©

no starch
press

open
source

D)
PRESS

“This book is incredibly detailed...I don’t think |
could have gone into that much detail if | wrote

>
. 4 N a book myself. Kudos!”
\ —Ethan Galstad, main developer, Nagios

NAGIOS

2ND EDITION

SYSTEM AND NETWORHK MONITORING

|

iy

WOLFGANG BARTH

For More eBooks Or Request, Support hill0 & Purchase a Premium Here in My Blog Thanks &
Enjoy!
https://avxhm.se/blogs/hill0

mounir
Typewriter
For More eBooks Or Request, Support hill0 & Purchase a Premium Here in My Blog Thanks & Enjoy!
https://avxhm.se/blogs/hill0

Nagios

For More eBooks Or Request, Support hill0 & Purchase a Premium Here in My
Blog Thanks & Enjoy!
https://avxhm.se/bloas/hill0

mounir
Typewriter
For More eBooks Or Request, Support hill0 & Purchase a Premium Here in My Blog Thanks & Enjoy!
https://avxhm.se/blogs/hill0

For More eBooks Or Request, Support hill0 & Purchase a Premium Here in My Blog Thanks &
Enjoy!
https://avxhm.se/blogs/hill0

mounir
Typewriter
For More eBooks Or Request, Support hill0 & Purchase a Premium Here in My Blog Thanks & Enjoy!
https://avxhm.se/blogs/hill0

Wolfgang Barth

Nagios
System and Network Monitoring

2nd Edition

Y ©

SR no starch
PRESS press

Munich San Francisco

NAGIOS. Copyright © 2008 Open Source Press GmbH

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

Printed on recycled paper in the United States of America.
12345678910—09 08 07 06

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners.
Rather than use a trademark symbol with every occurrence of a trademarked name, we are using the
names only in an editorial fashion and to the benefit of the trademark owner, with no intention of in-
fringement of the trademark.

Publisher: William Pollock

Cover Design: Octopod Studios

Translation: Steve Tomlin

U.S. edition published by No Starch Press, Inc.

555 De Haro Street, Suite 250, San Francisco, CA 94107

phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; http://www.nostarch.com

Original edition © 2008 Open Source Press GmbH

Published by Open Source Press GmbH, Munich, Germany

Publisher: Dr. Markus Wirtz

Original ISBN 978-3-937514-46-8

For information on translations, please contact

Open Source Press GmbH, Amalienstr. 45 Rg, 80799 Miinchen, Germany

phone +49.89.28755562; fax +49.89.28755563; info@opensourcepress.de; http://www.opensourcepress.de

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor Open Source Press GmbH nor
No Starch Press, Inc. shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in it.

Library of Congress Cataloging-in-Publication Data

Barth, Wolfgang
Nagios : system and network monitoring / Wolfgang Barth.- 2nd ed.
p. cm.
Includes index.
ISBN-13 978-1-59327-179-4
ISBN-10 1-59327-179-4
1. Computer networks-Management-Automation. I. Title.
TK5105.5.B374 2009
004.6-dc22
2008038558

Contents

Foreword to the second edition

Introduction

From Source Code to a Running Installation

1 Installation

1.1 Preparations
1.1.1 Determining and setting up the required users
1.2 Compiling Source Code
1.3 Starting Nagios Automatically
1.4 Installing and Testing Plugins
14.1 Installation
142 Plugintest.,
1.5 Configuration of the Web Interface
1.5.1 Settingup Apache
1.52 SELINUXottt

1.5.3 User authentication

2 Nagios Configuration

2.1 The Main Configuration File nagios.cfg
2.2 Objects—an Overview
2.3 Defining the Machines to Be Monitored, with host
2.4 Grouping Computers Together with hostgroup
2.5 Defining Services to Be Monitored with service

2.6 Grouping Services Together with servicegroup....... ..

21
25

35

37
38
38
39
43
43
44
45
47
47
48
49

Contents

2.7 Defining Addressees for Error Messages: contact
2.8 The Message Recipient: contactgroup
2.9 When Nagios Needs to Do Something: The command Object . .
2.10 Defining a Time Period with timeperiod
211 Templates
2.12 Configuration Aids for Those Too Lazy to Type
2.12.1 Defining services for several computers
2.12.2 One host group for all computers
2.12.3 Other configuration aids
2.13 CGI Configuration incgi.cfg
2.14 The Resources File resource.cfg
Startup
3.1 Checking the Configuration
3.2 Getting Monitoring Started
321 Manualstart,
3.2.2 Making configuration changes come into effect
3.3 Overview of the Web Interface

In More Detail...

Nagios Basics

4.1
4.2
4.3

Taking into Account the Network Topology
On-Demand Host Checks vs. Periodic Reachability Tests

States of Hosts and Services

Service Checks and How They Are Performed

5.1
5.2
5.3
5.4
5.5

Testing Network Services Directly
Running Plugins via Secure Shell on the Remote Computer
The Nagios Remote Plugin Executor
Monitoring viaSNMP oo oo oL
The Nagios Service Check Acceptor

Plugins for Network Services

6.1

Standard Options e

81
81
84
84
84
85

89

91
92
95
96

Contents

6.2 Reachability TestwithPing 108
6.2.1 check_icmpasaService Check 111
6.2.2 check_icmpasaHostCheck 111

6.3 Monitoring Mail Servers 113
6.3.1 Monitoring SMTP with check_smtp 113
6.32 POPandIMAP 115

6.4 Monitoring FTP and Web Servers 118
6.4.1 FTPservices. 119
6.4.2 Web server control viaHTTP. 119
6.4.3 Monitoring Web proxies 123

6.5 Domain Name Server Under Control 127
6.5.1 DNS check withnslookup 128
6.5.2 Monitoring the name server withdig 129

6.6 Querying the Secure Shell Server 131

6.7 Generic Network Plugins 132
6.7.1 Testing TCPports, 132
6.7.2 Monitoring UDP ports 135

6.8 Monitoring Databases 136
6.8.1 PostgreSQL 137
6.82 MySQL e 141

6.9 Monitoring LDAP Directory Services 143

6.10 Checkinga DHCP Server 146

6.11 Monitoring UPS with the Network UPS Tools 149

6.12 Health Check of an NTP Server with check_ntp_peer 154

Testing Local Resources 157

7.1 Free Hard Drive Capacity 158

7.2 Utilization of the Swap Space 162

7.3 Testing the System Load 162

7.4 Monitoring Processes o o oo 163

7.5 Checking LogFiles 167
7.5.1 The standard plugin check_log 168
7.5.2 The modern variation: check_logs.pl.......... 169
7.5.3 The Swiss Army knife: check_logfiles 170

Contents

7.6 Keeping Tabs on the Number of Logged-In Users
7.7 Checking the System Time

7.7.1 Checking the system time viaNTP

7.7.2 Checking system time with the time protocol
7.8 Regularly Checking the Status of the Mail Queue
7.9 Keeping an Eye on the Modification Date of aFile
7.10 Monitoring UPSs with apcupsd
7.11 Nagios Monitors Itself

7.11.1 Running the plugin manually with a script
7.12 Hardware Checks with LM Sensors

8 Plugins for Special Tasks

8.1 The Dummy Plugin for Tests
8.2 Negating PluginResults
8.3 Inserting Hyperlinks with urlize
8.4 Checking Host or Service Clusters as an Entity
8.5 Summarizing Checks with check_multi
8.5.1 Multiple-line plugin output
8.5.2 Installation requirements
8.5.3 Installation and testing
8.5.4 Configurationfile
8.5.5 Command-line parameters.
8.5.6 Performance dataand PNP

8.5.7 Simple business process monitoring

9 Executing Plugins via SSH

9.1 The check_by_sshPlugin
9.2 Configuring SSH
9.2.1 Generating SSH key pairs on the Nagios server
9.2.2 Setting up the user nagios on the target host
9.2.3 Checking the SSH connection and check_by_ssh
9.3 Nagios Configuration

10 The Nagios Remote Plugin Executor (NRPE)
10.1 Installation

187
188
188
189
189
191
193
194
194
195
196
198
199

205
206
208
208
209

. 209

210

213

Contents

10.1.1 Distribution-specific packages 214
10.1.2 Installation from the sourcecode 215

10.2 Starting via theinet Daemon 216
10.2.1 xinetd configuration 216
10.2.2 inetd configuration 217
10.2.3 Is the Inet daemon watching on the NRPE port? 218

10.3 NRPE Configuration on the Computer to Be Monitored 218
10.3.1 Passing parameters on to local plugins 220

10.4 NRPE Function Test 221
10.5 Nagios Configuration 222
10.5.1 NRPE without passing parameterson 222
10.5.2 Passing parameters onin NRPE 223
10.5.3 Optimizing the configuration 223

10.6 Indirect Checks 224
11 Collecting Information Relevant for Monitoring with SNMP 227
11.1 Introduction toSNMP Lo 228
11.1.1 The Management Information Base 229
11.1.2 SNMP protocol versions 233

11.2 NET-SNMP 234
11.2.1 Tools for SNMP requests 235
11.2.2 The NET-SNMP daemon 238

11.3 Nagios’s Own SNMP Plugins 246
11.3.1 The generic SNMP plugin check_snmp 246
11.3.2 Checking several interfaces simultaneously 252

11.3.3 Testing the operating status of individual interfaces . . . 254
11.4 Other SNMP-based Plugins 255

11.4.1 Monitoring hard drive space and processes with
nagios-snmp-plugins. 256

11.4.2 Observing the load on network interfaces with
check-iftraffic. 257

11.4.3 The manubulon. com plugins for special application
PUIPOSES o ittt e e e e e e e 259

Contents

12 The Nagios Notification System

12.2 When Does a Message Occur?
12.3 The Message Filter
12.3.1 Switching messages on and off systemwide

12.3.2 Enabling and suppressing computer and service-related
IMESSAZES - « v v v e e e e e e e e e e e e e

12.3.3 Person-related filter options
12.3.4 Caseexamples,
12.4 External Notification Programs
12.4.1 Notification viae-mail
12.4.2 Notification viaSMS
12.5 Escalation Management
12.6 Accounting for Dependencies between Hosts and Services . . .
12.6.1 The standard case: service dependencies

12.6.2 Only in exceptional cases: host dependencies

13 Passive Tests with the External Command File
13.1 The Interface for External Commands
13.2 Passive Service Checks
13.3 Passive Host Checks

13.4 Reacting to Out-of-Date Information of Passive Checks

14 The Nagios Service Check Acceptor (NSCA)
14.1 Installation
14.2 Configuring the Nagios Server
14.2.1 The configuration filensca.cfg
14.2.2 Configuring the inet daemon
14.3 Client-side Configuration
14.4 Sending Test Results tothe Server
14.5 Application Example I: Integrating syslog and Nagios
14.5.1 Preparing syslog-ng for use with Nagios
14.5.2 Nagios configuration: volatile services
14.5.3 Resetting error states manually

14.6 Application Example II: Processing SNMP Traps

291
292
293
294
295

10

Contents

14.6.1 Receiving traps with snmptrapd 312

14.6.2 PassingontrapstoNSCA 314

14.6.3 The matching service definition 315

15 Distributed Monitoring 317
15.1 Switching On the OCSP/OCHP Mechanism 318
15.2 Defining OCSP/OCHP Commands 319
15.3 Practical Scenarios 321
15.3.1 Avoiding redundancy in configuration files 321

15.3.2 Defining templates 322

[l The Web Interface and Other Ways to Visualize

Nagios Data 325
16 The Classical Web Interface 327
16.1 Recognizing and Acting On Problems 330
16.1.1 Comments on problematic hosts 330
16.1.2 Taking responsibility for problems 332
16.2 An Overview of the Individual CGI Programs 334
16.2.1 Variations in status display: status.cgi 334
16.2.2 Additional information and control center:
extinfo.cgi L. 339
16.2.3 Interface for external commands: cmd.cgi 343
16.2.4 The most important things at a glance: tac.cgi. .. .345

16.2.5 The topological map of the network: statusmap.cgi 346
16.2.6 Navigation in 3D: statuswrl.cgi 348

16.2.7 Querying the status with a cell phone:
statuswml.cgi 350

16.2.8 Analyzing disrupted partial networks: outages.cgi .350

16.2.9 Querying the object definition with config.cgi. .. .351
16.2.10 Availability statistics: avail.cgi 351
16.2.11 What events occur, how often?—histogram.cgi . . .353

16.2.12 Filtering log entries after specific states:
history.cgi 354

16.2.13 Who was told what, when?—notifications.cgi . .355

1

Contents

16.2.14 Showing all log file entries: showlog.cgi 356
16.2.15 Evaluating whatever you want: summary.cgi. 357

16.2.16 Following states graphically over time: trends.cgi. . 358

16.3 Planning Downtimes 359
16.3.1 Maintenance periods forhosts 360
16.3.2 Downtime for services 361

16.4 Additional Information on Hosts and Services 362
16.4.1 Extended host information 363
16.4.2 Extended service information 366

16.5 Configuration Changes through the Web Interfaces:

the Restart Problem 367

16.6 Modern Layout with the Nuvola Style 368
17 Flexible Web Interface with the NDOUtils 375
17.1 The Event Broker 376
17.2 The Database Interface 378
17.3 The Installation 380
17.3.1 Compiling the sourcecode 381
17.3.2 Preparing the MySQL database 381
17.3.3 Upgrading the database design 383

17.4 Configuration 383
17.4.1 Adjusting the Event Broker configuration 384
17.4.2 Configuring database access 385
17.4.3 Starting the ndo2dbdaemon 386
17.4.4 Loading the Event Broker module in Nagios 386

18 NagVis 389
18.1 Installation 391
18.1.1 Installing the source code 392
18.1.2 Initial configuration 393
18.1.3 User authentication 396

18.2 Creating NagVis Maps 396
18.2.1 Editing the configuration in text form 400
18.2.2 Adding NagVis maps to the Nagios Web interface401

12

Contents

19 Graphic Display of Performance Data 403
19.1 Processing Plugin Performance Data with Nagios 404
19.1.1 The template mechanism 405

19.1.2 Using external commands to process performance data 407

19.2 Graphs for the Web with Nagiosgraph 408
19.2.1 Basicinstallation 408
19.2.2 Configuration 409

19.3 Preparing Performance Data for Evaluation with Perf2rrd 415
19.3.1 Installation 416
19.3.2 Nagios configuration 417
19.3.3 Perf2rrd in practice 418

19.4 The Graphics Specialist drraw 420
19.4.1 Installation 420
19.4.2 Configuration 421
19.4.3 Practical application 423

19.5 Automated to a Large Extent: NagiosGrapher 426
19.5.1 Installation 427
19.5.2 Configuration 430

19.6 Smooth Plotting with PNP 446
19.6.1 Installation 447
19.6.2 The standard configuration 447
19.6.3 The PNP Web interface 449
19.6.4 Bulk processing of performance data 452
19.6.5 How should the graphic appear? 454

19.7 Other Tools and the Limits of Graphic Evaluation 456

IV Special Applications 459
20 Monitoring Windows Servers 461

20.1 Agent-less Checks viaWMI 463

20.2 Installing and Configuring the Additional Services 464
20.2.1 NSClient e 464
20.2.2 NC_Net i 465
20.2.3 NSClient++ o oo v it 465

13

Contents

20.3

20.2.4 OpMonAgent e
20.2.5 Rectifying problems with port 1248
The check_ntPlugin
20.3.1 Generally supported commands
20.3.2 Advanced functions of NC_Net
20.3.3 Installing the check_ncnetplugin
20.4 NRPE for Windows

21 Monitoring Room Temperature and Humidity

21.1

21.2

Sensors and Software
21.1.1 The PCMeasure software for Linux
21.1.2 The query protocol
The Nagios Plugin check_pcmeasure2.pl

22 Monitoring SAP Systems

22.1

22.2

Checking without a Login: sapinfo
22.1.1 Installation
22.1.2 Firsttest e
22.1.3 The plugin check_sap.sh

22.1.4 More up to date and written in Perl: check_sap.pl

Monitoring with SAP’s Own Monitoring System CCMS

22.2.1 A short overview over the alert monitor

22.2.2 Obtaining the necessary SAP usage permissions

forNagios
22.2.3 Monitors and templates
2224 The CCMSplugins

22.2.5 Performance optimization

23 Processing Events with the EventDB

23.1
23.2

How the EventDB Works

Installation

20.4.1 NRPE_NT, the classictool
20.4.2 Plugins for NRPE in Windows
20.4.3 NRPE with NSClient++

20.4.4 Internal NSClient++ functions

14

Contents

23.2.1 Installation requirements 534
23.2.2 Preparing the MySQL database 534
23.2.3 Sending events to the database with syslog-ng. 536
23.3 Using the Web Interface 538
23.3.1 Preselection of the filter with URL parameters 540
23.4 The Nagios Plugin for the EventDB 542
23.5 Maintenance 544
23.6 Sending Windows Events to Syslog 545
23.7 Making the Incomprehensible Legible with SNMPTT 546
23.7.1 The configuration file snmptt.ini 547
23.72 Converting MIBs 548
V Development 551
24 Writing Your Own Plugins 553
24.1 Programming Guidelines for Plugins 554
24.1.1 Returnvalues 554
24.1.2 Information for the administrator on the standard
Output o v e 555
24.1.3 Onboard online help? 556
24.14 Reserved options 557
24.1.5 Specifying thresholds 557
24.1.6 Timeout 558
24.1.7 Performancedata 559
24.1.8 Copyright 559
24.2 The Perl Module Nagios::Plugin. 560
2421 Installation 560
25 Determining File and Directory Sizes 563
25.1 Splitting up the Command Line With Getopt::Long 565
25.2 The Perl Online Documentation 566
25.2.1 The module Pod::Usage. 568
25.3 Determining Thresholds 570
25.4 Implementing Timeouts 571

15

Contents

25.5 Displaying Performance Data
25.6 Configuration Files for Plugins

26 Monitoring Oracle with the Instant Client
26.1 Installing the Oracle Instant Client
26.2 Establishing a Connection to the Oracle Database
26.3 A Wrapper Plugin for sqlplus
26.3.1 How the wrapper works
26.3.2 The Perl pluginindetail

Appendixes

A An Overview of the Nagios Configuration Parameters
A.1 The Main Configuration File nagios.cfg
A2 CGI Configurationincgi.cfg
A.2.1 Authentication parameters
A.2.2 Other Parameters

B Rapidly Alternating States: Flapping
B.1 Flap Detection with Services
B.1.1 Nagios configuration

B.1.2 The history memory and the chronological
progression of the changes instate

B.1.3 Representation in the Web interface

B.2 Flap Detection for Hosts

C Event Handlers
C.1 Execution Times for the Event Handler
C.2 Defining the Event Handler in the Service Definition
C.3 The Handler Script
C.4 Things to Note When Using Event Handlers

D Macros
D.1 Standard Macros oo i it e
D.1.1 Hostmacros uieeine.no.

D.1.2 Service macros it it

575
576
577
578
578
579

583

585
586
606
606
608

611
612
613

614
615
616

619
620
621
622
623

16

Contents

D.1.3 Group macros 628
D.1.4 Contact macros 629
D.1.5 Notification macros 630
D.1.6 Macros to specify time and date 630
D.1.7 Statistics macros 631
D.1.8 Using standard macros about the environment 631

D.2 On-Demand Macros 632
D.3 Macros for User-defined Variables 633
D.4 Macro Contents: Not Everything Is Allowed 635
E Single Sign-On for the Nagios Web Interface 637
E.1 HTTP Authentication for Single Sign-On 638
E.2 Kerberos Authentication with mod_auth_kerb 640
E2.1 Installation 641
E.2.2 Creating a service ticket for Apache 641
E.2.3 Kerberos configuration 642
E.2.4 Apache configuration 643
E.2.5 Definition of a Nagios contact 644

E.3 Single Sign-On with mod_auth_ntlm_winbind. 645
E.3.1 Installation 645
E.3.2 PreparingSamba 646
E.3.3 Apache configuration 648
E.3.4 Defining a Nagios contact 649

E.4 Mozilla Firefox asaWeb Client 650
E.4.1 Firefoxand NTLM 651

E.5 Microsoft Internet Explorer as a Web Client 651
F Tips on Optimizing Performance 653
F.1 Internal Statistics of Nagios 654
F1.1 The command-line tool nagiostats 654
F.1.2 Showing Nagios performance graphically 658
F.1.3 A plugin to monitor latency 660

F.2 Measures for Improving Performance 662

F.2.1 Service checks: as often as necessary, as few as possible 662

17

Contents

F.2.2 Processing performance data intelligently 663
F.2.3 Avoiding plugins in interpreted languages 664
F.2.4 Optimizing hostchecks 664
F.2.5 The matter of the Reaper 666
F.2.6 Preferring passivechecks 666
F.2.7 Optimizing large Nagios environments 667
F.2.8 Optimizing the NDOUtils database 667

G The Embedded Perl Interpreter 669
G.1 Requirements of an ePN-capable Plugin 670
G.2 UsingePN e 672
G.21 CompilingePN 672
G.2.2 Interpreter-specific parameters in nagios.cfg 673
G.2.3 Disabling ePN on a per-plugin basis 673

G.3 The Testing Tool new_mini_epn. 674
H What’s New in Nagios 3.0? 677
H.1 Changes in Object Definitions 678
H.1.1 Thehostobject 678
H.1.2 The serviceobject 680
H.1.3 Groupobjects. 681
H.1.4 The contactobject 681
H.1.5 Time definitions 682
H.1.6 Dependency descriptions 683
H.1.7 Escalation objects 683
H.1.8 Inheritance 684

H.2 Variable and Macros 685
H.3 Downtime, Comments, and Acknowledgments 687
H.4 Rapidly Changing States 687
H.5 External Commands 687
H.6 Embedded Perl 688
H.7 A New Logic for HostChecks 689
H.8 Restart 690
H.9 Performance Optimization 691

18

Contents

H.10 Extended Plugin Output

H.12 Miscellaneous

H.13 Upgrade from Nagios 2.x to 3.0

19

For More eBooks Or Request, Support hill0 & Purchase a Premium Here in My Blog Thanks & Enjoy!
https://avxhm.se/blogs/hill0

mounir
Typewriter
For More eBooks Or Request, Support hill0 & Purchase a Premium Here in My Blog Thanks & Enjoy!
https://avxhm.se/blogs/hill0

Foreword to the second edition

As soon as the stable Nagios version 3.0 appeared, as can be expected after
going to press, the question was raised: Nagios 2 or Nagios 3? For those
just starting out with Nagios, Nagios 3.0 is a safe bet. Even the release
candidate 3.0rcl was sufficiently stable for production environments, and
you can benefit directly from the new features, rather than having to get
used to them later on.

If you are already using Nagios 2 in a sizable environment, then you'll surely
be thinking, Never touch a running system. Why change if your existing
system is running smoothly? But there has been further development on
Nagios 2 since the first edition of this book appeared, and various bugs
have been fixed.! So it is perhaps advisable to change to the current Nagios
2 version, and then wait and see how things develop.

On the other hand, Nagios 3.0 does contain a number of improvements.
In particular where there are performance problems in large environments,
this major version provides some adjusting screws that can help the system
to achieve a higher performance through its greatly improved hostcheck
logic, thanks to the caching of check results and a series of optimization
parameters. Otherwise, it is smaller changes, ones that are not so obvious,
that distinguish Nagios 3.0 from Nagios 2. Many things, often hardly noti-
cable, combine to make your work with Nagios 3.0 easier, and sometimes
more pleasant as well. You can get to know and appreciate all these small
details best if, as a Nagios 2 administrator, you just try out Nagios 3. New-
comers will probably take all these small improvements for granted, and
not even notice them.

Fortunately, converting from Nagios 2 to Nagios 3.0, as described in Section
H.13 from page 693, is relatively simple, and you can continue using your
existing configuration unchanged in most cases.

What's New in the Second Edition?

The second edition deals with Nagios in both version 2.x and version 3.0,
since there is no difference in the basic principles. At first glance the struc-

1 Nagios 2.10 was the current version at the time of going to press.

21

Foreword to the second edition

ture of the book looks the same, as do the contents of many chapters. Nev-
ertheless, much has changed, even in the chapters that existed in the first
edition. Nearly all the chapters were revised and updated to do justice to
the current state of development of the tools introduced, but also to take
into account the differences between Nagios 2.x and Nagios 3.0.

The Monitoring Servers chapter was completely revised and expanded, in
particular where the NSClient++ tool is concerned. The chapter on the
processing of performance data was also extended. A new tool was added,
in the shape of PNP, and the description of the NagiosGrapher was brought
right up to date. Of the newly introduced plugins, check_logfiles by
Gerhard LauBer and check_multi by Matthias Flacke in particular deserve
special mention, and the author considers these to have great potential.
But caution is advised: both are for the advanced user.

There is a new chapter on NagVis, with which you can define a Web in-
terface based on your own images or graphics, with complete freedom in
its design. NagVis requires the database interface NDOUtils, to which a
separate chapter is devoted.

The EventDB reveals a database-supported approach to processing events
as an alternative to the classic log file check. A separate chapter is also
devoted to this. The chapters Writing Your Own Plugins and Determining
File and Directory Sizes are also new, and describe step by step how to write
your own Perl plugin, introducing the Perl module Nagios: :Plugin in so
doing. To optimize the performance of Perl scripts, Nagios provides its own
interpreter, which is also given its own chapter.

A chapter called What'’s New in Nagios 3.0? can't be missing, of course,
which compactly summarizes all the changes made compared to Nagios
2.x. For the sake of completeness, there is a new chapter on macros in
the Appendix. This compares the various macro types and explains their
intended use.

A chapter on performance optimization was also included. It certainly
doesn't contain any patent remedies, since this is just not possible, given
the wide range of monitored environments and scenarios for use. But it
does take a look at the problem zones of Nagios, and provides some tips on
where to look for support.

The fact that authentification on the Nagios Web interface does not have to
be restricted to the simple basis authentification described in the installa-
tion chapter is demonstrated by another new chapter about Single-Sign-On
in Microsoft Active Directory environments.

22

Foreword to the second edition

Information Sources on the Internet

Despite an increase of over 200 pages, the book cannot describe all the
existing tools and possibilities for use. The Internet provides a wealth of
information that is useful while, or after, studying this book. The most
important sources are listed here.

= The Nagios homepage at http://www.nagios.org/
= The homepage of Nagios plugins at http://www.nagiosplugins.org/
= The Nagios community at http://www.nagioscommunity.org/

= http://www.nagiosexchange.org/ as an exchange platform for plug-
ins

= The original mailing lists at
http://www.nagios.org/support/mailinglists.php

23

For More eBooks Or Request, Support hill0 & Purchase a Premium Here in My Blog Thanks &
Enjoy!
https://avxhm.se/blogs/hill0

mounir
Typewriter
For More eBooks Or Request, Support hill0 & Purchase a Premium Here in My Blog Thanks & Enjoy!
https://avxhm.se/blogs/hill0

Introduction

It’s ten o’clock on Monday morning. The boss of the branch office is in a
rage. He’s been waiting for hours for an important e-mail, and it still hasn’t
arrived. It can only be the fault of the mail server; it’s probably misbehaving
yet again. But a quick check of the computer shows that no mails have got
stuck in the queue there, and there’s no mention either in the log file that a
mail from the sender in question has arrived. So where’s the problem?

The central mail server of the company doesn’t respond to a ping. That’s
probably the root of the problem. But the IT department at the company
head office absolutely insists that it is not to blame. It also cannot ping
the mail node of the branch office, but it maintains that the network at the
head office is running smoothly, so the problem must lie with the network
at the branch office. The search for the error continues. ..

The humiliating result: the VPN connection to head office was down, and
although the ISDN backup connection was working, no route to the head
office (and thus to the central mail server) was defined in the backup router.
A globally operating IT service provider was responsible for the network
connections (VPN and ISDN) between branch and head office, for whom
something like this “just doesn't happen.” The end result: many hours
spent searching for the error, an irritated boss (the meeting for which the e-
mail was urgently required has long since finished), and a sweating admin.

With a properly configured Nagios system, the adminstrator would already
have noticed the problem at eight in the morning and been able to isolate
its cause within a few minutes. Instead of losing valuable time, the IT ser-
vice provider would have been informed directly. The time then required to
eliminate the error (in this case, half an hour) would have been sufficient
to deliver the e-mail in time.

A second example: somewhere in Germany, the hard drive on which the
central Oracle database for a hospital stores its log files reaches full capac-
ity. Although this does not cause the “lights to go out” in the operating
room, the database stops working and there is considerable disruption to
work procedures: patients cannot be admitted, examination results cannot
be saved, and reports cannot be documented until the problem has been
fixed.

25

Introduction

If the critical hard drive had been monitored with Nagios, the IT depart-
ment would have been warned at an early stage. The problem would not
even have occurred.

With personnel resources becoming more and more scarce, no IT depart-
ment can really afford to regularly check all systems manually. Networks
that are growing more and more complex especially demand the need to
be informed early on of disruptions that have occurred or of problems that
are about to happen. Nagios, the Open Source tool for system and network
monitoring, helps the administrator to detect problems before the phone
rings off the hook.

The aim of the software is to inform administrators quickly about ques-
tionable (WARNING) or critical conditions (CRITICAL). What is regarded as
“questionable” or “critical” is defined by the administrator in the configu-
ration. A Web page summary then informs the administrator of normally
working systems and services, which Nagios displays in green, of question-
able conditions (yellow), and of critical situations (red). There is also the
possibility of informing the administrators in charge—depending on spe-
cific services or systems—selectively by e-mail but also by paging services
such as SMS.

By concentrating on stop light states (green, yellow, red), Nagios is distinct
from network tools that display elapsed time graphically (for example in the
load of a WAN interface or a CPU throughout an entire day) or that record
and measure network traffic (how high was the proportion of HTTP on a
particular interface?). Nagios is involved plainly and simply with the issue
of whether everything is on a green light. The software does an excellent
job in looking after this, not just in terms of the current status but also over
long periods of time.

The tests

When checking critical hosts and services, Nagios distinguishes between
host and service checks. A host check tests a computer, called a host in Na-
gios slang, for reachability—as a rule, a simple ping is used. A service check
selectively tests individual network services such as HTTP, SMTP, DNS, etc.,
but also running processes, CPU load, or log files. Host checks are per-
formed by Nagios irregularly and only where required, for example if none
of the services to be monitored can be reached on the host being moni-
tored. As long as one service can be addressed there, then this is basically
valid for the entire computer, so this test can be dropped.

The simplest test for network services consists of looking to see whether the
relevant target port is open, and whether a service is listening there. But
this does not necessarily mean that, for example, the SSH daemon really is
running on TCP port 22. Nagios therefore uses tests for many services that

26

Introduction

go several steps further. With SMTP, for example, the software also tests
whether the mail server announces itself with a “220” output, the so-called
SMTP greeting; and for a PostgreSQL database, it checks whether this will
accept an SQL query.

Nagios becomes especially interesting through the fact that it takes into
account dependencies in the network topology (if it is configured to do so).
If the target system can only be reached through a particular router that has
just gone down, then Nagios reports that the target system is “unreachable”
and does not bother to bombard it with further host and service checks.
The software puts administrators in a position where they can more quickly
detect the actual cause and rectify the situation.

The suppliers of information

The great strength of Nagios—even in comparison with other network mon-
itoring tools—lies in its modular structure. The Nagios core does not con-
tain one single test. Instead it uses external programs for service and host
checks, which are known as plugins. The basic equipment already contains
a number of standard plugins for the most important application cases.
Special requests that go beyond these are answered—provided that you
have basic programming knowledge—by plugins that you can write your-
self. Before investing time in developing these, however, it is first worth tak-
ing a look on the Internet and browsing through the relevant mailing lists,?
as there is lively activity in this area. Ready-to-use plugins are available, es-
pecially in The Nagios Exchange platform, http://www.nagiosexchange.
org/.

A plugin is a simple program—often just a shell script (Bash, Perl, etc.)—
that gives out one of the four possible conditions: OK, WARNING, CRITI-
CAL, or (with operating errors, for example) UNKNOWN.

This means that in principle Nagios can test everything that can be mea-
sured or counted electronically: the temperature and humidity in the server
room, the amount of rainfall, the presence of persons in a certain room at a
time when nobody should enter it. There are no limits to this, provided that
you can find a way of providing measurement data or events as information
that can be evaluated by computer (for example, with a temperature and
humidity sensor, an infrared sensor, etc.). Apart from the standard plugins,
this book accordingly introduces further freely available plugins, such as
the use of a plugin to query a temperature and humidity sensor in Chapter
21 from page 505.

2 http://wuw. nagios.org/support/mailinglists.php

27

Introduction

Keeping admins up-to-date

Nagios possesses a sophisticated notification system. On the sender side
(that is, with the host or service check) you can configure when each group
of persons—the so-called contact groups—are informed about which con-
ditions or events (failure, recovery, warnings, etc.). On the receiver side you
can also define on multiple levels what is to be done with a corresponding
message—for example whether the system should forward it, depending on
the time of day, or discard the message.

If a specific service is to be monitored seven days a week round the clock,
this does not mean that the administrator in charge will never be able to
take a break. For example, you can instruct Nagios to notify the person
only from Monday to Friday between 8am and 5pm, every two hours at
the most. If the administrator in charge is not able to solve the problem
within a specified period of time, eight hours for example, then the head of
department responsible should receive a message. This process is known
as escalation management. The corresponding configuration is explained
in Chapter 12.5 from page 282.

Nagios can also make use of freely configurable, external programs for no-
tifications, so that you can integrate any system you like, from e-mail to
SMS, to a voice server that the administrator calls up and receives a voice
message concerning the error.

With its Web interface (Chapter 16 from page 327, Nagios provides the ad-
ministrator with a wide range of information, clearly arranged according
to the issues involved. Whether the admin needs a summary of the over-
all situation, a display of problematic services and hosts and the causes
of network outages, or the status of entire groups of hosts or services, Na-
gios provides an individually structured information page for nearly every
purpose.

Through the Web front end, an administrator can inform colleagues upon
accepting a particular problem so that they can concentrate on other issues
that have not yet been addressed. Information already obtained can be
stored as comments on hosts and services.

By reviewing past events, the Web interface can reveal problems that oc-
curred in a selected time interval, who was informed of the problems, and
which hosts and/or services were affected. Nagios can be configured to
recognize scheduled downtimes and to prevent false alarms from going off
during these periods.

Taking in information from outside

For tests, notifications, and so on, Nagios makes use of external programs,
but the reverse is also possible: through a separate interface (see 13.1 from

28

Introduction

page 292), independent programs can send status information and com-
mands to Nagios. The Web interface makes widespread use of this pos-
sibility, which allows the administrator to send interactive commands to
Nagios. But a backup program unknown to Nagios can also transmit a suc-
cess or failure to Nagios, as well as to a syslog daemon. The possibilities are
limitless. Thanks to this interface, Nagios allows distributed monitoring.
This involves several decentralized Nagios installations sending their test
results to a central instance, which then helps to maintain an overview of
the situation from a central location.

Other tools for network monitoring

Nagios is not the only tool for monitoring systems and networks. The most
well-known “competitor,” perhaps on an equal footing, is Big Brother (BB).
Despite a number of differences, its Web interface serves the same purpose
as that of Nagios: displaying to the administrator what is in the “green area”
and what is not.

The reason why the author uses Nagios instead of Big Brother lies in the li-
cense for Big Brother, on the BB homepage® called Better Than Free License:
the product continues to be commercially developed and distributed. If
you use BB and earn money with it, you must buy the software. The fact
that the software, including the source code, may not be passed on or modi-
fied, except with the explicit permission of the vendor, means that it cannot
be reconciled with the criteria for Open Source licenses. This means that
Linux distributors have their hands tied.

For the graphical display of certain measured values over a period of time,
such as the load on a network interface, CPU load, or the number of mails
per minute, there are other tools that perform this task better than Na-
gios. The original tool is certainly the Multi Router Traffic Grapher MRTG,*
which, despite growing competition, still enjoys great popularity. A rela-
tively young, but very powerful alternative is called Cacti®: this has a larger
range of applications, can be configured via Web interface, and avoids the
restrictions in MRTG, which can only display two measured values at the
same time and cannot display any negative values. Another interesting new
alternative is Munin.®

Nagios itself can also display performance data graphically, using exten-
sions (Chapter 19 from page 403). In many cases this is sufficient, but for
very dedicated requirements, the use of Nagios in tandem with a graphic
representation tool such as MRTG or Cacti is recommended.

http://www.bb4.org/
http://www.mrtg.org/
http://www.cacti.net/
http://munin.projects.linpro.no/

@ G s W

29

Introduction

About This Book

This book is directed at network administrators who want to find out about
the condition of their systems and networks using an Open Source tool. It
describes the Nagios versions 2.x and 3.0. The plugins, on the other hand,
lead their own lives, are to a great extent independent of Nagios, and are
therefore not restricted to a particular version.

Even though this book is based upon using Linux as the operating system
for the Nagios computer, this is not a requirement. Most descriptions also
apply to other Unix systems,” only system-specific details such as start
scripts need to be adjusted accordingly. Nagios currently does not officially
work under Windows, however.®

The first part of this book deals with getting Nagios up and running with a
simple configuration, albeit one that is sufficient for many uses, as quickly
as possible. This is why Chapters 1 through 3 do not have detailed descrip-
tions and treatments of all options and features. These are examined in the
second part of the book.

Chapter 4 looks at the details of service and host checks, and in particular
introduces their dependency on network topologies.

The options available to Nagios for implementing service checks and ob-
taining their results is described in Chapter 5.

This is followed by the presentation of individual standard plugins and a
number of additional, freely obtainable plugins. Chapter 6 takes a look at
the plugins that inspect the services of a network protocol directly from the
Nagios host, while Chapter 7 summarizes plugins that need to be installed
on the machine that is being monitored, and for which Nagios needs addi-
tional utilities to get them running. Several auxiliary plugins, which do not
perform any tests themselves, but manipulate already established results,
are introduced in Chapter 8.

Two utilities that Nagios requires to run local plugins on remote hosts are
introduced in the two subsequent chapters. Chapter 9 describes SSH, while
Chapter 10 introduces a daemon developed specifically for Nagios.

Wherever networks are being monitored, SNMP also needs to be imple-
mented. Chapter 11 not only describes SNMP-capable plugins but also
examines the protocol and the SNMP world itself in detail, providing the
background knowledge needed for this.

The Nagios notification system is introduced Chapter 12, which also deals
with notification using SMS, escalation management, and taking account
of dependencies.

7 For example, *BSD, HP-UX, AIX, and Solaris; the author does not know of any Nagios
versions running under MacOS X.
8 There are, however, rumors about Nagios running in Cygwin environments.

30

Introduction

The interface for external commands is discussed in Chapter 13. This forms
the basis of other Nagios mechanisms, such as the Nagios Service Check
Acceptor (NSCA), a client-server mechanism for transmitting passive test
results, covered in Chapter 14. The use of this is shown in two concrete
examples—integrating syslog-ng and processing SNMP traps. NSCA is
also a requirement for distributed monitoring, discussed in Chapter 15.

The third part of the book is devoted to how the extracted information can
be represented graphically. Chapter 16 explains how this works and how it
is set up in detail, supported by some useful screenshots. It also explains
a series of parameters, for which there are otherwise no documentation at
all, except in the source code.

Nagios can be expanded by adding external applications. The NDOUtils
enable database-driven storage of all Nagios objects and are described in
Chapter 17. Connection to a database, using the addon described in Chap-
ter 18, enables you to build a Web interface that can be configured far be-
yond the basic range of Nagios.

Although in its operation, Nagios concentrates primarily on stoplight sig-
nals (red-yellow-green), there are ways of evaluating and representing the
performance data provided by plugins, which are described in detail in
Chapter 19.

The fourth part of this book is dedicated to special applications. Networks
are rarely homogeneous—that is, equipped only with Linux and other Unix-
based operating systems. For this reason, Chapter 20 demonstrates what
utilities can be used to integrate and monitor Windows systems.

Chapter 21 uses the example of a low-cost hardware sensor to show how
room temperature and humidity can be monitored simply, yet effectively.

Nagios can also monitor proprietary commercial software, as long as mech-
anisms are available which can query states of the system integrated into a
plugin. In Chapter 22, this is described using an SAP-R/3 system.

Whereas event processing is only briefly outlined in Chapter 14, Chapter
23 presents a database-supported approach that provides more options for
selecting and processing events, including interlinking with Nagios.

Building your own plugins is the subject of the fifth part of this book. Chap-
ter 24 looks at the general requirements for a standard plugin, while Chap-
ter 25 uses a step-by-step example of how to write your own plugins that
are fit for publishing. Chapter 26 takes an example of the Instant Client of
Oracle to demonstrate how to build your own plugins based on programs
not really intended for this purpose.

Appendix A introduces all the parameters of the two central configuration
files nagios.cfg and cgi.cfg, while appendices B and C are devoted to
some useful but somewhat exotic features.

31

Introduction

A separate appendix (Appendix D) is devoted to macros, which allow flexi-
bility in configuration.

Appendix E wanders slightly away from the core topic of Nagios and demon-
strates how single sign-on scenarios can also be used for authentication in
the Nagios Web interface.

The larger the environment, the more important it is to have a powerful
and quick-reacting Nagios system. Appendix F offers a series suggestions
on this, while Appendix G is dedicated to a specific tool, the Perl interpreter
integrated into Nagios.

Finally, Appendix H briefly summarizes all the changes made since Nagios
2.X.

Further notes on the book

At the time of going to press, Nagios 3.0 is close to completion. By the time
this book reaches the market, there could well be some modifications. Rele-
vant notes, as well as corrections, in case some errors have slipped into the
book, can be found at http://linux.swobspace.net/books/nagios/.

Note of Thanks

Many people have contributed to the success of this book. My thanks go
first of all to Dr. Markus Wirtz, who initiated this book with his comment,
“Why don't you write a Nagios book, then?!”, when he refused to accept
my Nagios activities as an excuse for delays in writing another book. A
very special thanks goes to Patricia Jung, who, as the technical editor for
the German language version, overhauled the manuscript and pestered me
with thousands of questions—which was a good thing for the complete-
ness of the book, and which has ultimately made it easier for the reader to
understand.

The book would not be possible, of course, without all the tools it de-
scribes. Very special thanks go to Ethan Galstad, who as author, developer
and maintainer has made Nagios what it is today: an awesome, incredibly
useful and helpful tool that also fulfills high-level requirements, and one
that can rely on a very large—and above all very active— community. Also
many thanks to Ton Voon, representing all members of the Nagios Plugins
Development Team, who, together with his colleagues, manages the devel-
opment of Nagios plugins.

My thanks also go to those who have not only developed the Nagios-related
software introduced in this book, but have also helped to polish and im-
prove the book with their proofreading and feedback: Matthias Flacke (of

32

Introduction

check_multi fame), Jorg Linge (PNP), and Steffen Waitz, who proofread
the first edition, Hendrik Bicker (npcd), Lars Michelsen, Michael Luebben
(NagVis), Gerhard Lauller (check_logfiles), and the employees of NET-
WAYS GmbH (NagiosGrapher, EventDB, the exchange platform, NagiosEx-
change).

It is not possible for me to name all the individuals who have contributed in
one way or another to the success of Nagios. I would therefore like to thank
everybody who actively supports the Nagios community, whether this is
through free software or through involvement in forums and mailing lists.
Where would Nagios be without its users?

33

Part |

From Source Code to a Running
Installation

For More eBooks Or Request, Support hill0 & Purchase a Premium Here in My Blog Thanks & Enjoy!
https://avxhm.se/blogs/hill0

mounir
Typewriter
For More eBooks Or Request, Support hill0 & Purchase a Premium Here in My Blog Thanks & Enjoy!
https://avxhm.se/blogs/hill0

Installation

The simplest method of installation is for you to install the Nagios pack-
ages that are supplied with the distribution you are using. Nagios 2.x is by
now extremely mature and is therefore a component of most distributions.
The paths of individual directories in those packages maintained by Linux
distributors are usually different from the default specified in the source
package, and thus from the paths used in this book.

Nagios 3.0 is relatively new; it is recommended here that you “get your
hands dirty” by compiling and installing the software yourself. The fol-
lowing installation guide also applies to Nagios 2.x, and any differences
between versions 2.x and 3.0 are mentioned explicitly in the text.

If you compile your own software, you have control over the directory struc-
tures and a number of other parameters. A Nagios system compiled in this
way also provides an almost complete main configuration file, in which,
initially, nothing has to be changed. But it should be mentioned here that
compiling Nagios yourself might involve a laborious search for the neces-

37

1

Installation

sary development packages, depending on what is already installed on the
computer.

1.1 Preparations

For compiling Nagios itself you require gcc, make, autoconf, and automake.
Required libraries are 1ibgd! and openss1?. The development packages

for these must also be installed (depending on the distribution, with either

the ending -dev or -devel): libssl-dev, 1ibgd-dev, 1ibc6-dev.

With Debian and Ubuntu you prepare by using apt-get install to in-
stall the packages apache2, build-essential, and 1ibgd2-dev. In Open-
SUSE you install apache?2 via YAST2, along with all C/C++ development li-
braries, as well as the package gd. In Fedora you run the command yum
install on the command line and enter the packages httpd, gcc, glibc,
glibc-common, gd, and gd-devel as arguments.

For the plugins it is recommended that you also install the following pack-
ages: ntpdate3 (possibly contained in the package ntp or xntp), snmp,*
smbclient® (possibly a component of the package samba-client), the
1ibldap2 library, and the relevant development package 1ibldap2-dev®
(depending on the distribution, the appropriate packages are also called
openldap2-client and openldap2-devel). You will also need to install
the client and developer packages for the database used (e.g., postgresql-
client and postgresql-dev(el)).

1.1.1 Determining and setting up the required users

Prior to compiling and installing, use the command groupadd to set up the
groups necessary for operation. Groups nagios and nagcmd are set up with
groupadd, and the user nagios, who is assigned to these groups and with
whose permissions the Nagios server runs is set up with useradd:

linux:~ # groupadd -g 9000 nagios
linux:~ # groupadd -g 9001 nagcmd

1 nttp://www.boutell.com/gd/

2 http://www.openssl.org/ Depending on the distribution, the required RPM and
Debian packages are sometimes named differently. Here you need to refer to the search
help in the corresponding distribution. For Debian, the homepage will be of help.
For example, if a configure instruction complains of a missing gd.h file, you can
search specifically at http://www.debian.org/distrib/packages for the contents
of packages. The search will then come up with all packages that contain the file gd .h.
http://ntp.isc.org/bin/view/Main/SoftwareDownloads
http://net-snmp.sourceforge.net/

http://samba.org/samba/

http://www.openldap.org/

@ G s W

38

1.2 Compiling Source Code

linux:~ # useradd -u 9000 -g nagios -G nagemd -d /usr/local/magios \
-c "Nagios Admin" nagios

Instead of the user (9000) and group IDs (9000 or 9001) used here, any other
available IDs may be used. The primary group nagios of the user nagios
should remain reserved exclusively for this user.

The CGI scripts are run by Nagios under the user ID of the user with whose
permissions the Apache Web server runs. In order for this user to access
certain protected areas of Nagios, an additional group is required, the so-
called Nagios Command Group nagcmd. Only the Web user and the user
nagios should belong to this group. The Web user can be determined
from the Apache configuration file. In Debian/Ubuntu this is located at

/etc/apache2/apache2. conf;in Fedora itis at /etc/httpd/httpd. conf:

linux:~ # grep "“User" /etc/apache2/apache2.conf
User www-data

The user determined in this way (in Debian/Ubuntu www-data, in Open-
SUSE www-run, and in Fedora httpd) is additionally assigned to the group
nagcmd, shown here using the example for Debian/Ubuntu:

linux:~ # usermod -G nagcmd www-data

In the example, the Web user is called www-data. The command usermod
(this changes the data for an existing user account) also includes the Web
user in the nagemd group thanks to the -G option, by manipulating the
corresponding entry in the file /etc/group.

In addition, the directory specified as the home directory of the user na-
gios, /usr/local/nagios, the configuration directory /etc/nagios, and
the directory /var/nagios, which records variable data while Nagios is
running, are set up manually and are assigned to the user nagios and to
the group of the same name:

linux:~ # mkdir /usr/local/magios /etc/nagios /var/nagios
linux:~ # chown nagios.nagios /usr/local/nagios /etc/nagios /var/nagios

1.2 Compiling Source Code

The Nagios source code is available for download on the project page.” The
installation description below is for version 3.0, which is provided by the
developers as a tarball. A Nagios 2.x installation runs in an almost identical
manner:

7 http://www.nagios.org/

39

1 Installation

linux:~ # mkdir /usr/local/src
linux:~ # ed /usr/local/src
linux:local/src # tar xvzf path/to/nagios-3.0.tar.gz

The three commands unpack the source code into the directory created for
this purpose, /usr/local/src. A subdirectory called nagios-3.0 is also
created, containing the Nagios sources. To prepare these for compilation,
enter the parameter deviating from the default value when running the
configure command. Table 1.1 lists the most important parameters:

linux:~ # ed /usr/local/src/nagios-3.0
linux:src/nagios-3.0 # ./configure \
--sysconfdir=/etc/nagios \
--localstatedir=/var/nagios \
- -with-command-group=nagcmd

The values chosen here ensure that the installation routine selects the di-
rectories used in the book and sets all parameters correctly when generat-
ing the main configuration file. This simplifies fine tuning of the config-
uration considerably. If you want to use the Embedded Perl Interpreter to
accelerate the execution of Perl scripts, then you also need the two switches
--with-perlcache and --enable-embedded-perl.

In Nagios 3.0 you can leave out --with-perlcache, as it is enabled auto-
matically by --enable-embedded-perl. You can find more on the Embed-
ded Perl Interpreter in Appendix G, page 669.

Table 1.1: Property Value configure Option
Installation Root directory /usr/local/nagios --prefix
parameters for
Nagios Configuration direc- /etc/nagios --sysconfdir

tory
Directory for /var/nagios --localstatedir
variable data
Nagios user nagios (9000) --with-nagios-user
(UserID)
Nagios group nagios (9000) --with-nagios-group
(GrouplID)
Nagios Command nagcmd (9001) --with-command-group

Group (GrouplD)

40

1.2 Compiling Source Code

If --prefix is not specified, Nagios installs itself in the /usr/local/na-
gios directory. We recommend that you stick to this directory.?

The system normally stores its configuration files in the directory etc be-
neath its root directory. In general it is better to store these in the /etc
hierarchy, however. Here we use /etc/nagios.?

Variable data such as the log file and the status file are by default stored
in the directory /usr/local/nagios/var. This is in the /usr hierarchy,
which should only contain programs and other read-only files, not writable
ones. In order to ensure that this is the case, we use /var/nagios.!’

Irrespective of these changes, in most cases configure does not run
through faultlessly the very first time, since one package or another is miss-
ing. For required libraries such as 1ibgd, Nagios almost always demands
the relevant developer package with the header files (here, 1ibgd-dev or
libgd-devel). Depending on the distribution, their names will end in
-devel or -dev.

After all the tests have been run through, configure presents a summary
of all the important configuration parameters:

x+% Configuration summary for nagios 3.0 #xx:

General Options:

Nagios executable:
Nagios user/group:
Command user/group:
Embedded Perl:
Event Broker:

Install $prefix:

Lock file:

Check result directory:
Init directory:

Apache conf.d directory:
Mail program:

Host OS:

Web Interface Options:

HTML URL:
CGI URL:
Traceroute (used by WAP) :

nagios
nagios,nagios
nagios, nagcmd
yes, with caching

yes

/usr/local/nagios

/var/nagios/nagios.lock
/var/nagios/spool/checkresults
/etc/init.d
/etc/apache2/conf.d
/usr/bin/mail

linux-gnu

http://localhost/nagios/

http://localhost/nagios/cgi-bin/

/usr/sbin/traceroute

8 In accordance with the Filesystem Hierarchy Standard FHS, version 2.3, or local pro-

grams loaded by the administrator should be installed in /usr/local.
This is not entirely compatible with FHS 2.3, which would prefer to have the configura-

9

tion files in /etc/local/nagios.

10

This also does not quite match the requirements of the FHS 2.3. But since Nagios

makes no differentiation between spool, cache, and status information, an FHS-true
reproduction is not possible to achieve in a simple manner.

41

1 Installation

Table 1.2:
Nagios directories
under

/usr/local/nagios

In Nagios 2.x the lines Check result directory, Apache conf.d di-
rectory, and Mail program are missing.

If a yes is written after the item Embedded Perl, the Embedded Perl In-
terpreter is enabled. The Event Broker provides an interface for extensions
that can be loaded as additional modules while the system is running.!!

If you are satisfied with the result, make starts the actual compilation and

then installs the software:12

linux:src/nagios-3.0 # make all
linux:src/nagios-3.0 # make install
linux:src/nagios-3.0 # make install-init
iiﬁux:src/nagios—3.0 # make install-commandmode

linux:src/nagios-3.0 # make install-config

The command make all compiles all the relevant programs, which are
then copied to the appropriate directories, together with CGI scripts and
documentation, by make install. Apart from /etc/nagios and /var/
nagios, further directories are created under /usr/local/nagios, which
are summarized in Table 1.2.

Directory Contents

./bin Executable Nagios main program

./libexec Plugins

./sbin CGI scripts

./share Documentation, HTML files for the Web interface

The command make install-commandmode generates the directory that is
required for later usage of the command file mechanism (see Section 13.1,
page 292) onwards. This step is optional, depending on the intended use,
but since it is easy to forget later on, it is better to take precautions now.
The final make install-configcreates the example configuration, which
will be used in Chapter 2, page 53.

11 At the time of going to press there were not yet any external extensions, which is why
the Event Broker is currently only of interest to developers.

Caution is needed when updating from Nagios 2.x to Nagios 3.0: Here you should first
back up the existing configuration, initially run only make all, and carefully read Sec-
tion H.13 on page 693in Nagios 3.0 a make install-config command overwrites
existing files!

12

42

1.3 Starting Nagios Automatically

1.3 Starting Nagios Automatically

The command make install-init installs a suitable init script for the sy-
stem start. Here make automatically tries to detect the correct path, which
for most Linux distributions is /etc/init.d. Depending on your system,
this may not be correct, which is why you should check it. In order for
Nagios to start automatically when the system is booted, symbolic links
are created in the /etc/rc?.d directories. With Debian and Ubuntu using
System-V-Init, the included system script update-rc.d performs this task:

linux:~ # update-rc.d nagios defaults 99

This command creates symlinks beginning with the prefix S99 to the direc-
tories rc2.d to rcb.d, so that Nagios starts automatically when changing
to runlevels 2 to 5. In addition it ensures that K99 symlinks in the directo-
riesrc0.d, rcl.d, and rc6.d are responsible for stopping Nagios when the
system is shut down and rebooted, as well as when it changes to mainte-
nance mode. This corresponds to the following command-line commands:

linux:~ # 1ln -s /etc/init.d/nagios /etc/rc2.d/S99nagios
linux:~ # 1ln -s /etc/init.d/nagios /etc/rc3.d/S99nagios
linux:~ # 1ln -s /etc/init.d/nagios /etc/rc4.d/S99nagios
linux:~ # 1ln -s /etc/init.d/nagios /etc/rc5.d/S99nagios
linux:~ # 1ln -s /etc/init.d/nagios /etc/rc0.d/K99nagios
linux:~ # 1ln -s /etc/init.d/nagios /etc/rcl.d/K99nagios
linux:~ # 1ln -s /etc/init.d/nagios /etc/rc6.d/K99nagios

For OpenSUSE the required symlinks are created using the script insserv:
linux:~ # insserv nagios
Fedora users perform this task with chkconfig:

linux:~ # chkconfig --add nagios

linux:~ # nagios on

1.4 Installing and Testing Plugins

What is now still missing are the plugins. They must be downloaded sepa-
rately from http://www.nagios.org/ and installed. As independent pro-
grams, they are subject to a different versioning system than Nagios. The
current version at the time of going to press was version 1.4.11, but you can,
for example, also use plugins from earlier version if you don't mind doing

43

1

Installation

without the most recent features. Although the plugins are distributed in a
common source distribution, they are independent of one another, so that
you can replace one version of an individual plugin with another one at any
time, or with one you have written yourself.

1.4.1 Installation

The installation of the plugin sources takes place, like the Nagios ones, in
the directory /usr/local:

linux:~ # ed /usr/local/src
linux:local/src # tar xvzf path /to/nagios-plugins-1.4.tar.gz
linux:src/nagios-plugins-1.4.11 # ./configure \
--sysconfdir=/etc/nagios \
--localstatedir=/var/nagios \
--enable-perl-modules

When running the configure command you should specify the same non-
default values as for the server, which here are the configuration direc-
tory (/etc/nagios) and the directory intended for the data saved by Na-
gios (/var/nagios). Since the Nagios plugins are not maintained by the
same people as Nagios itself, you should always check in advance, with
./configure --help, whether the configure options for Nagios and the
plugins really match or deviate from one another.

The switch --enable-perl-modulesis only needed if you intend to install
the Perl module Nagios: :Plugin—for example, if you are using it to pro-
gram your own plugins in Perl. You can read more on this in Section 24.2,
page 560.

It is possible that a series of WARNINGs may appear in the output of the
configure command, something like this:

configure: WARNING: Skipping radius plugin
configure: WARNING: install radius libs to compile this plugin (see
REQUIREMENTS) .

configure: WARNING: Tried /usr/bin/perl - install Net::SNMP perl
module if you want to use the perl snmp plugins

If you are not using Radius, you need not have qualms about ignoring the
corresponding error messages. Otherwise you should install the missing
packages and repeat the configure procedure. The quite frequently re-
quired SNMP functionality is missing a Perl module in this example. This

44

1.4 Installing and Testing Plugins

may be installed either in the form of the distribution package or via the
online CPAN archive:!'3

linux:~ # perl -MCPAN -e ’install Net::SNMP’

If you are running the CPAN procedure for the first time, it will guide you
interactively through a self-explanatory setup, and you can answer nearly
all of the questions with the default option.

Running make in the directory nagios-plugins-1.4.11 will compile all

plugins. Afterwards you have the opportunity to perform tests, with make

check. Because these tests have not been particularly carefully programmed,
you will often see many error messages that have more to do with the test

itself than with the plugin. If you still want to try it, then the Cache Perl

module must also be installed. Regardless of whether you use make check,

you should manually check the most important plugins after the installa-

tion.

The command make install finally anchors the plugins in the subdirec-
tory libexec (which in our case is /usr/local/nagios/libexec). How-
ever, not all of them are installed through this command. The source direc-
tory contrib contains a number of plugins that make install does not
install automatically.

Most plugins in this directory are shell or Perl scripts. Where needed, these
are simply copied to the plugin directory /usr/local/nagios/libexec.
The few C programs first must be compiled, which in some cases may be
no laughing matter, since a corresponding makefile, and often even a de-
scription of the required libraries, can be missing. If a simple make is not
sufficient, as in the case of

linux:nagios-plugins-1.4.11/contrib # make check_clu.st:erz14
cc check cluster2.c -o check_cluster2

then it is best to look for help in the mailing list nagiosplug-help.!® The
compiled program must also be copied to the plugin directory.

1.4.2 Plugin test

Because plugins are independent programs, they can already be used man-
ually for test purposes right now—before the installation of Nagios has been

13
14

The Comprehensive Perl Archive Network at http://wuw.cpan.org/

With check_cluster, hosts and services of a cluster can be monitored. Here you
usually want to be notified if all nodes or redundant services provided fail at the same
time. If one specific service fails on the other hand, this is not critical, as long as other
hosts in the cluster provide this service.
http://lists.sourceforge.net/lists/listinfo/nagiosplug-help

45

1

Installation

completed. In any case you should check the check_icmp plugin, which
plays an essential role. It checks whether another computer can be reached
via ping, and it is the only plugin to be used both as a service check and
a host check. If it is not working correctly, Nagios will not work correctly
either, since the system cannot perform any service checks as long as it cat-
egorizes a host as “down.” Section 6.2, 108, describes check_icmp in detail,
which is why there is only short introduction here describing its manual
use.

In order for the plugin to function correctly it must, like the /bin/ping
program, be run as the user root. This is done by providing it with the
SUID bit. With current plugin versions, make install sets this automat-
ically. One way this can be seen is in the fact that the sources contain an
additional directory, plugins-root. With older plugin versions you have
to do this manually:

linux:~ # chown root.nagios /usr/local/nagios/libexec/check icmp
linux:~ # chmod 4711 /usr/local/nagios/libexec/check_icmp
linux:~ # 1ls -1 /usr/local/nagios/libexec/check icmp

-rwsr-x--x 1 root nagios 61326 2005-02-08 19:49 check_ icmp

Brief instructions for the plugin are given with the -h option:!6

nagios@linux:~$ /usr/local/nagios/libexec/check_icmp -h
Usage: check_icmp [options] [-H] hostl host2 hostn

Where options are any combination of:

* -H | --host specify a target
* -w | --warn warning threshold (currently 200.000ms,40%)
* -C | --crit critical threshold (currently 500.000ms,80%)
* -n | --packets number of packets to send (currently 5)
* -1 | --interval max packet interval (currently 80.000ms)
*+ -I | --hostint max target interval (currently 0.000ms)
* -1 | --ttl TTL on outgoing packets (currently 0)
* -t | --timeout timeout value (seconds, currently 10)
*+ -b | --bytes icmp packet size (currenly ignored)
-v | --verbose verbosity++
-h | --help this cruft

The -H switch is optional. Naming a host (or several) to check is not.

For a simple test it is sufficient to specify an IP address (it is immaterial
whether you prefix the -H flag or not):

user@linux:~$ ed /usr/local/nagios/libexec

usere@linux:nagios/libexec$./check icmp -H 192.168.1.13

OK - 192.168.1.13: rta 0.261ms, lost O%|rta:0.261ms;200.000;SO0.000;O;
pl=0%;40;80;;

16 The listed options are explained in detail in Section 6.2 from page 108.

46

1.5 Configuration of the Web Interface

The output appears as a single line, which has been line-wrapped here for
the printed version: with zero percent package loss (Lost 0%), the test has
been passed. Nagios uses only the first 300 bytes of the output line. If the
plugin provides more information, this is cut off.

If you would like to test other plugins, we refer you to Chapters 6 and 7,
which describe the most important plugins in detail. All (reasonably well-
programmed) plugins provide somewhat more detailed instructions with
the --help option.

1.5 Configuration of the Web Interface

In order for the Web front end of Nagios to function, the Web server must
know the CGI directory and the main Web directory. The following descrip-
tion applies to both Apache 1.3, Apache 2.0, and 2.2.

1.5.1 Setting up Apache

As long as you have not added a different address for the front end, through
the configure script with -with-cgiurl, Nagios expects the CGI pro-
grams at the URL /nagios/cgi-bin (actual directory: /usr/local/na-
gios/sbin) as well as the remaining HTML files below /nagios (actual
directory: /usr/local/nagios/share). Nagios 3.0 includes its own make
target for the Web interface, which configures the directories and sets cor-
responding aliases for the two URLs:

linux:~ # make install-webconf

This command installs the file nagios. conf in the configuration directory
of Apache. In Debian/Ubuntu and OpenSUSE it is named /etc/apache2/
conf.d, or in Fedora /etc/httpd/conf.d. It looks like this:

ScriptAlias /nagios/cgi-bin "/usr/local/nagios/sbin"
<Directory "/usr/local/nagios/sbin"s>

Options ExecCGI

AllowOverride None

Order allow,deny

Allow from all
Order deny,allow

+H

Deny from all

Allow from 127.0.0.1

AuthName "Nagios Access"

AuthType Basic

AuthUserFile /etc/nagios/htpasswd.users

47

1 Installation

Require valid-user
</Directorys>

In Nagios 2.x you have to set up the file by hand.

The directive ScriptAlias ensures that Apache accesses the Nagios CGI
directory when calling a URL such as http://nagios-server/nagios/
cgi-bin, irrespective of where the Apache CGI directories may be located.
Options ExcecCGI ensures that the Web server accepts all the scripts lo-
cated there as CGI. Order and Allow initially allow unrestricted access here
to the Web server. If you want to restrict access, the sequence of the Order
arguments is altered:

Order deny,allow

Deny from all

Allow from 127.0.0.1
Allow from 192.0.2.0/24

This example ensures that only clients from the network 192.0.2.0/24
(/24 stands for the subnet mask 255.255.255.0) and localhost gain ac-
cess to the directory specified. The three Auth*- and the Require directives
ensure authenticated access; more on user authentication in Section 1.5.3
on page 49.

The section for the Nagios documents directory /usr/local/nagios/
share is constructed in a similar fashion: the directive Alias allows the di-
rectory beneath the URL http://nagios-server /nagiosto be addressed,
independently of where the Apache-DocumentRoot is located.

The directives Order and Allow (and also Deny, if needed) are set in iden-
tical manner to the CGI section. Authentication is not absolutely essential
in the documentation sphere, but it is certainly useful if you want to install
extensions such as PNP there (see Section 19.6, page 446).

The command
linux:~ # /etc/init.d/apache reload

loads the new configuration. If everything has worked out correctly, the Na-
gios main page appears in the Web browser under http://nagios-ser-
ver /nagios.

1.5.2 SELinux

Just a few distributions—in particular, Fedora—enable the Security Enhanc-
ed Linux (SELinux) by default. When enabled and appropriately configured,
this allows services such as the Apache Web server access only to files and

48

1.5 Configuration of the Web Interface

directories explicitly mentioned. The directories /usr/local/nagios/bin
and /usr/local/nagios/share used by Nagios are not among these. The
consequence: SELinux first refuses Apache access until this is allowed via
the configuration. The command getenforce shows whether the Enforc-
ing Mode, in which SELinux enforces the strict observance of the configured
access rights, is switched on. This can be switched off with the command

linux:~ # setenforce 0

To retain this status at the next system start, the settings in /etc/selinux/
configare changed. Rather than switching off the Enforcing Mode, though,
it is better to configure the required accesses specifically. This does require
some understanding of how SELinux works, and some general Linux expe-
rience —knowledge that would go beyond the scope of this book. For those
who want to get to grips more intensively with the subject, further infor-
mation can be found in the Wiki of the Nagios community,'” including a
link to a concrete guide.'®

1.5.3 User authentication

In the state in which it is delivered, Nagios allows only authenticated users
access to the CGI directory. This means that users not “logged in” have
no way to see anything other than the homepage and the documentation.
They are blocked off from access to other functions.

There is a good reason for this: apart from status queries and other display
functions, Nagios has the ability to send commands via the Web interface.
The interface for external commands is used for this purpose (Section 13.1,
page 292). If this is active, checks can be switched on and off via the Web
browser, for example, and Nagios can even be restarted. Only authorized
users should be in a position to do this. Besides, general security consid-
erations would indicate that the huge volume of information provided by
Nagios should only be made available to trustworthy persons.

First of all, the parameter use_authentication in the CGI configuration
file cgi.cfg'® of Nagios must be set to 1:

use_authentication=1

This is the default during installation. The simplest authentication form
provided by Apache is the file-based Basic authentication, which is already
enabled in the configuration file:

17" Search http://www.nagioscommunity.org/wiki/ for the keyword SELinux.
18 http://www.rickwargo.com/2006/10/29/fc6-selinux-and-nagios/
19 More on this in Section 2.13 from page 77.

49

1

Installation

AuthName "Nagios Access"

AuthType Basic

AuthUserFile /etc/nagios/htpasswd.users
Require valid-user

AuthName is an information field that the browser displays if the Web ser-
ver requests authentication. AuthType Basic stands for simple authenti-
cation, in which the password is transmitted without encryption, as long
as no SSL connection is used. It is best to save the password file—here
htpasswd.users—in the Nagios configuration directory /etc/nagios.
The final parameter, require valid-user, means that all authenticated
users have access (there are no restrictions for specific groups; only the
user-password pair must be valid).

The (freely selectable) name of the password file will be specified here so
that it displays what type of password file is involved. It is generated with
the htpasswd2 program, included in Apache. (In Apache 1.3 and some
other distributions, the program is called htpasswd.) Running

linux:/etc/nagios # htpasswd2 -c htpasswd.users nagios
New password: passwort

Re-type new password: passwort

Adding password for user nagios

generates a new password file with a password for the user nagios. Its
format is relatively simple:

nagios:7N1yfpdI2UZEs

Each line contains a user-password pair, separated by a colon.?’ If you want
to add other users, you should ensure that you omit the -c (create) option.
Otherwise htpasswd (2) will recreate the file and delete the old contents:

linux:/etc/nagios # htpasswd2 htpasswd.users another user

The user name cannot be chosen freely but must match the name of a
contact person (see Section 2.7, page 70). Only the Web user (depending
on your distro, www-data, www-run oder httpd, see page 39) can access the
generated htpasswd.users file, and it should be protected from access by
anyone else:

linux:/etc/nagios # chown www-data htpasswd.users
linux:/etc/nagios # chmod 600 htpasswd

20 To be precise, the second position does not contain the password itself, but rather its
hash value.

50

1.5 Configuration of the Web Interface

In combination with its own modules and those of third parties, Apache
allows a series of other authentication methods. These include authentica-
tion via an LDAP directory, via Pluggable Authentication Modules (PAM),?!
or using SMB via a Windows server. Here we refer you to the relevant litera-
ture and the highly detailed documentation on the Apache homepage.?? A
quite advanced example, in which a user already authenticated by Kerberos
does not have to authenticate himself again, is described in Appendix E on
page 637.

Even though configuration of the Web interface is now finished, at the mo-
ment only the documentation is properly displayed: Nagios itself must
first be correspondingly adjusted—as described in detail in the following
chapter—before it can be used for monitoring data made available in this
way.

2l The “Pluggable Authentication Modules” now control authentication in all Linux distri-
butions, so that you can also use existing user accounts here.
22 http://httpd.apache.org/

51

Nagios Configuration

Although the Nagios configuration can become quite large, you only need
to handle a small part of this to get a system up and running. Luckily many
parameters in Nagios are already set to sensible default settings. So this
chapter will be concerned primarily with the most basic and frequently
used parameters, which is quite sufficient for an initial configuration.

Further details on the configuration are provided by the chapters on indi-
vidual Nagios features: in Chapter 6 on network plugins (page 105), there
are many examples on the configuration of services. All parameters of
the Nagios messaging system are explained in detail in Chapter 12, page
265, and the parameters for controlling the Web interface are described in
Chapter 16, page 327. In addition to this, Nagios includes its own exten-
sive documentation (/usr/local/nagios/share/docs), which can also
be reached from the Web interface. This can always be recommended as
a useful source for further information, which is why each of the sections
below refer to the corresponding location in the original documentation.

53

2 Nagios Configuration

The installation routine in make install-config(see Section 1.2 on page
39) stores examples of individual configuration files in the directory /etc/
nagios. But be careful: whereas the names of the example files in Nagios
2.0 ended in -sample (so that a possible update does not overwrite the files
required for production), this is no longer the case in the current Nagios 2.x
versions and in Nagios 3.0. Existing files are overwritten here. Admittedly,
make install does rename existing files: thus nagios.cfgis turned into
nagios.cfg”. But this only happens once. After running make install
one more time, the original contents of the file are deleted once and for all.
For this reason it is essential that you back up the existing configuration
prior to running make install-config.

After this command, the directory /etc/nagios of Nagios 3.0 contains the
three main configuration files: nagios.cfg, cgi.cfg, and resource.cfg.
Object definitions end up in other files in the subdirectory objects:
user@linux:/etc/nagioss$ tree!
|-- nagios.cfg
|-- cgi.cfg
|-- resource.cfg
‘-- objects
|-- templates.cfg
| -- commands.cfg
|-- contacts.cfg
|-- timeperiods.cfg
|-- localhost.cfg
| -- windows.cfg

|-- printer.cfg
‘-- switch.cfg

Nagios 2.10 uses fewer files; objects are defined only in the files localhost.
cfgand commands.cfg:

user@linux:/etc/nagios$ tree

|-- nagios.cfg
|-- cgi.cfg

|-- resource.cfg
|-- localhost.cfg
‘-- commands.cfg

All subsequent work should be carried out as the user nagios. If you
are editing files as the superuser, you must ensure yourself that the con-
tents of directory /etc/nagios afterwards belong to the user nagios again.
With the exception of the file resource. cfg—this may contain passwords,
which is why only the owner nagios should have the read permission set—
all other files may be readable for all.

1 http://mama.indstate.edu/users/ice/tree/

54

2.1 The Main Configuration File nagios.cfg

2.1 The Main Configuration File nagios.cfg

The central configuration takes place in nagios.cfg. Instead of storing all
configuration options there, it makes links to other configuration files (with
the exception of the CGI configuration).

Those who compile and install Nagios themselves have the advantage that
at first they do not even need to adjust nagios.cfg, since all paths are
already correctly set.? And that’s as much as you need to do. Nevertheless
one small modification is recommended, which helps to maintain a clear
picture and considerably simplifies configuration where larger networks are
involved.

The parameter concerned is cfg_file, which integrates files with object
definitions (see Sections 2.2 through 2.10 on page 59). The file nagios.cfg,
included in the Nagios 3.0 package, contains the following entries:

nagios@linux:/etc/nagios$ fgrep cfg file nagios.cfg

cfg_file=/etc/nagios/objects/commands.cfg
cfg file=/etc/nagios/objects/contacts.cfg
cfg_file=/etc/nagios/objects/timeperiods.cfg
cfg file=/etc/nagios/objects/templates.cfg
cfg_file=/etc/nagios/objects/localhost.cfg

Nagios 2.x gathers all example object files into just two configuration files:

nagios@linux:/etc/nagios$ fgrep cfg file nagios.cfg

cfg file=/etc/nagios/commands.cfg
cfg_file=/etc/nagios/localhost.cfg

As an alternative to cfg_file, you can also use the parameter cfg_dir:
this requests that you specify the name of a directory from which Nagios
should integrate all configuration files ending in .cfg (files with other ex-
tensions are simply ignored). This also works recursively; Nagios thus eval-
uates all *.cfg files from all subdirectories. With the parameter cfg_dir
you therefore only need to specify a signal directory, instead of calling all
configuration files, with cfg_file, individually. The only restriction: these
must be configuration files that describe objects. The configuration files
cgi.cfg and resource.cfg are excluded from this, which is why, like
the main configuration file nagios.cfg, they remain in the main directory
/etc/nagios.

2 1t Nagios is from a distribution package, it is worth checking at least the path details.
In a well-maintained distribution these will also be matched to the Nagios directories
used there.

55

2 Nagios Configuration

Simple structure

For the object-specific configuration, it is best to create a directory called
/etc/nagios/mysite,then remove all cfg_file directives innagios.cfg
(or comment them out with a # at the beginning of the line) and replace
them with the following:

cfg_dir=/etc/nagios/mysite

The contents of the directory /etc/nagios will be version-independent
and look like this:

nagiose@linux:/etc/nagioss$ tree

|-- nagios.cfg

|-- cgi.cfg

|-- resource.cfg

|-- htpasswd

‘-- mysite
| -- contactgroups.cfg
| -- misccommands.cfg
|-- contacts.cfg
|-- timeperiods.cfg
| -- checkcommands.cfg
|-- hosts.cfg
|-- services.cfg
‘-- hostgroups.cfg

The main directory /etc/nagios contains only three configuration files
and the password file for protected Web access. Whether you collect all
objects of the same type in one separate file, that is all host definitions in
hosts.cfg, all services in services.cfg, and so on, or divide these into
separate files, is left to the individual.

In this example, only the top directory mysite needs to be integrated with
cfg_dir in nagios.cfg. This forms the basis for our initial configuration.

A larger location

For larger installations, you should divide the object definitions into indi-
vidual files (creating a separate file with the host definition for each host,
for instance) and group these in subdirectories according to sensible crite-
ria, as in the following example:

56

2.1 The Main Configuration File nagios.cfg

‘-- mysite
|-- linux
| |-- services
| ‘-- hosts
| |-- linuxOl.cfg
| |-- linux02.cfg
| ‘-~ linux03.cfg
| -- windows
| |-- services
| ‘-- hosts
| |-- win03.cfg
| ‘-- win09.cfg
‘-- router
|-- services
‘-- hosts
|-- edgeo0l.cfg
|-- edge02.cfg

‘-- backbone.cfg

This example arranges the objects according to the operating system (1i-
nux, windows, and router). Each of these system directories has two fur-
ther subdirectories: hosts and services.

Each of the individual host objects are described in a separate file (for ex-
ample 1inux01.cfg). These can easily be copied if you want to create
other host objects with similar properties. You can copy services in a simi-
lar manner.

The other object definitions are placed either directly in the directory my-
site, as in the simple structure on page 56, or you can create subdirecto-
ries, as described in more detail in the next section.

In nagios.cfg the object definitions are again bound with a single direc-
tive:

cfg dir=/etc/nagios/mysite

Large installations with several different locations

For large installations, it is better to split up host and service objects ac-
cording to location. Even for the remaining objects, we recommend that
you split them up into individual files and group these into subdirectories:

-- global
| -- commands

| |-- check _http.cfg

\
\
| | | -- check-host-alive.cfg
\
| | |-- check_icmp.cfg

57

2 Nagios Configuration

| |-- contacts
| | |-- nagios.cfg

templates

ll--
| | |-- host_generic_t.cfg
| | |-- service generic_t.cfg
| | |-- service_perfdata_t.cfg
| ‘-- timeperiods
‘-- sites

|-- foreignsite

| |-- hosts

| ‘-- services

|-- mysite

| |-- hosts

| ‘-- services

‘-- othersite

|-- hosts

‘-- services

In this example, the directory global gathers together all the objects that
that do not themselves define a check (that is, everything that is not a host
or service object). This is where the subdirectories commands, contacts,
templates, and timeperiods are located, each of which contain the files
for the object categories of the same name. For many command objects,
individual files are easier to handle than one huge text file.

If the contact objects are also stored in individual files, it is easy to disable
a contact: the file extension is simply changed from .cfgto .cfx and then
a reload is performed. Nagios ignores all files in object directories that do
not end in .cfg. The overlying directories global and sites are bound
into nagios.cfg:

cfg_dir=/etc/nagios/global
cfg dir=/etc/nagios/sites

Setting the European date format

The date specifications in Nagios appear by default in the American format
MM-DD-YYYY:

date_format=us

If you prefer something else, e.g., the European date format, it is recom-
mended that you change the parameter date_format in nagios.cfgright
from the start. The value iso8601 ensures that Nagios date specifications
are displayed in the ISO or DIN format YYYY-MM-DD HH:MM:SS. Table 2.1
lists the possible values for date_format.

58

2.2 Objects—an Overview

The other parameters in nagios.cfgare described in Appendix A.1; in the
original documentation these can be found at http://localhost/nagios
/docs/configmain.html or /usr/local/nagios/share/docs/config-
main.html.

Value Representation Table 2.1:

us MM-DD-YYYY HH:MM:SS Possible date format
euro DD-MM-YYYY HH:MM:SS

is08601 YYYY-MM-DD HH:MM:SS

strict-iso8601 YYYY-MM-DDTHH:MM:SS

2.2 Objects—an Overview

A Nagios object describes a specific unit: a host, a service, a contact, or
the groups to which each belongs. Even commands are defined as objects.
This definition has not come about by chance. Nagios is also able to inherit
characteristics (Section 2.11 from page 75).

Object definitions follow the following pattern:

define object-type {
parameter value
parameter value

Nagios has the following values for the object-type:

host
The host object describes one of the network nodes that are to be
monitored. Nagios expects the IP address as a parameter here (or
the Fully Qualified Domain Name) and the command that should
define whether the host is alive (see Section 2.3, page 62). The host
definition is re-referenced in the service definition.

hostgroup
Several hosts can be combined into a group (see Section 2.4 on page
65). This simplifies configuration, since entire host groups instead
of single hosts can be specified when defining services (the service
will then exist for each member of the group). In addition, Nagios
represents the hosts of a host group together in a table in the Web
front end, which helps to increase clarity.

59

2 Nagios Configuration

service
The individual services to be monitored are defined as service objects
(Chapter 2.5, page 66). A service never exists independently of a host.
So it is quite possible to have several services with the same name, as
long as they belong to different hosts. The following code,

define service {
name PING
host_name linux01

}

define service {
name PING

host_name linux03

describes two services that both have the same service name but be-
long to different hosts. So in the language of Nagios, a service is
always a host-service pair.

servicegroup
As it does with host groups, Nagios combines several services and
represents these in the Web front end as a unit with its own table (see
Section 2.6, page 69). Service groups are not absolutely essential, but
help to improve clarity, and are also used in reporting.

contact
A person who is to be informed by Nagios of specific events (see Sec-
tion 2.7, page 70). Nagios uses contact objects to show to a user via
the Web front end only those things for which the user is listed as a
contact person. In the basic setting users do not get to see hosts and
services for which they are not responsible.

contactgroup
Notification of events in hosts and services takes place via the contact
group (Section 2.8, page 72). A direct link between the host/service
and a contact person is not possible.

timeperiod
Describes a time period within which Nagios should inform contact
groups (Section 2.10, page 74). Outside such a time slot, the system
will not send any messages. The messaging chain can be fine-tuned
via various time periods, depending on the host/service and con-
tact/contact groups. More on this will be presented in Section 12.3,
page 267.

60

2.2 Objects—an Overview

command
Nagios always calls external programs via command objects (Section
2.9, page 72). Apart from plugins, messaging programs also include
e-mail or SMS messaging applications.

servicedependency
This object type describes dependences between services. If, for ex-
ample, an application does not function without a database, a cor-
responding dependency object will ensure that Nagios will represent
the failed database as the primary problem instead of just announc-
ing the nonfunctioning of the application (see Section 12.6, page 285).

serviceescalation
Used to define proper escalation management: if a service is not
available after a specific time period, Nagios informs a further or dif-
ferent circle of people. This can also be configured on multiple levels
in any way you want (see Section 12.5).

hostdependency
Like servicedependency, but for hosts.

hostescalation
Like serviceescalation, but for hosts.

hostextinfo (Nagios 2.x)
Extended Host Information objects are optional and define a spe-
cific graphic and/or URL, which Nagios additionally integrates into
its graphic output. The URL can refer to a Web page that provides
additional information on the host (see Section 16.4, page 362).

hostextinfo This object is deprecated in Nagios 3.0, but it is still
available. Nagios 3.0 integrated the object parameters into the host
definition.

serviceextinfo (Nagios 2.x)
Extended Service Information, like Extended Host Information.

Not all object types are absolutely essential; especially at the beginning.
You easily can do without the *dependency, *escalation, and *extinfo
objects, as well as the servicegroup. Chapter 12 looks at escalation and
dependencies in detail. hostextinfo and serviceextinfo are used to
provide a “more colorful” graphical representation, but they are not at all
necessary for running Nagios. Section 16.4 from page 362 looks at this in
more detail. The original documentation also provides more information.?

3 http://localhost/nagios/docs/objectdefinitions.html#hostextinfo or
#serviceextinfo (Nagios 3.0)
http://localhost/nagios/docs/xodtemplate.html#hostextinfo or #ser-
viceextinfo (Nagios 2.x); the files can be found locally in /usr/local/nagios/
share/docs/.

61

2 Nagios Configuration

Notes on the object examples below

Although the following chapters describe individual object types in detail,
only the mandatory parameters and those that are absolutely essential for
meaningful operation are described there. Mandatory parameters here are
always printed in bold type. The first (comment) line in each example lists
the file in which the recorded object definition is to be stored. For the
parameters marked with) there are some differences between Nagios 2.x
and Nagios 3.0, each of which will be explained in more depth in the text.

When you first start using Nagios, it is recommended that you restrict your-
self to a minimal configuration with only one or two objects per object type,
in order to keep potential sources of error to a minimum and to obtain a
running system as quickly as possible. Afterwards extensions can be im-
plemented very simply and quickly, especially if you incorporate the tips
mentioned in Section 2.11 on templates (page 75).

Time details in general refer to time units. A time unit consists of 60 sec-
onds by default. It can be set to a different value in the configuration file
nagios.cfg, using the parameter interval_length. You should really
change this parameter only if you know exactly what you are doing.

2.3 Defining the Machines to Be Monitored, with
host
The host object is the central command post on which all host and service

checks are based. It defines the machine to be monitored. The parameters
printed in bold must be specified in all cases:

-- /etc/nagios/mysite/hosts.cfg

define host{
host_name linux01
hostgroups linux-servers
alias® Linux File Server
address 192.168.1.9
check_command check-host-alive
max check attempts 3
check period 24x7
contact_groups localadmins
notification interval 120
notification period 24x7
notification options d,u,r,f,s“
parents router0l

62

2.3 Defining the Machines to Be Monitored, with host

host_name
This parameter specifies the host name with which Nagios addresses
the machine in services, host groups, and other objects. Only the
special characters - and _ are allowed.

hostgroups
This parameter allocates the host to a host group object, which must
already be defined (Section 2.4, page 65). A host group in the Web
interface combines several hosts into a group (see Figure 16.10 on
page 334). The second possibility of assigning a host to a host group,
compatible with version 1.x, uses the members parameter in defining
the host group itself. The two methods can also be combined.

alias
This parameter contains a short description of the host, which Nagios
displays at various locations as additional information. Ordinary text
is allowed here. The parameter is no longer obligatory from Nagios
3.0. If it is missing, the value from host_name is used.

address
This specifies the IP address or the Fully Qualified Domain Name
(FQDN) of the computer. If it is possible (i.e., for static IP addresses),
you should use an IP address, since the resolution of a name to an IP
address is always dependent on DNS working, which is not infallible.

check_command
This specifies the command with which Nagios checks, if necessary,
to see whether the host is reachable. The parameter is optional. If
it is omitted, Nagios will never carry out a host check! This can be
useful for network components that are frequently switched off (for
example, print servers).

The command usually used for check_command is called check-host
-alive, which is already predefined in the supplied file, checkcom-
mands.cfg (see Section 2.9, page 72). This makes use of either the
plugin check_ping or the more modern check_icmp. Both plugins
check the reachability of the host via the ICMP packets ICMP Echo
Request and Echo Reply.

max_check_attempts
This parameter determines how often Nagios should try to reach the
computer if the first test has gone wrong. The value 3 in the example
means that the test is repeated up to three times if it returns anything
other than OK in the first test. As long as there are still repeat tests
to be made, Nagios refers to this as a soft state. If the final test has
been made, the system categorizes the state as hard. Nagios notifies

63

2 Nagios Configuration

the system administrator exclusively of hard states, and in the exam-
ple, sends messages only if the third test also ends with an error or
warning.

check_period

This specifies the time period in which the host should be moni-
tored. Really, only “round the clock” makes sense—that is, 24x7. A
timeperiod object is involved here, the definition of which is de-
scribed in more detail in Section 2.10 on page 74. It only makes sense
to use a specification other than 24x7 if you want to explicitly sup-
press the host check at certain times.

contact_groups

This specifies the receiver of messages which Nagios sends with re-
spect to the hosts defined here, that is localadmin. Section 2.8 ex-
plains this more fully on page 72.

notification_interval

This specifies at what intervals Nagios should repeat notification of
the continued existence of the state. 120 time units normally mean
one message every 120 minutes, provided the error state continues.

notification_period

This specifies at what time interval a message should be sent. A
time period different from 24x7 could certainly be useful here. It is
important to understand the difference here with check_period: if
check_period excludes time periods, Nagios cannot even determine
whether there is an error or not. But if the host is monitored round-
the-clock and only the notification period is restricted by the param-
eter notification_period, Nagios will certainly log errors and also
display them in the Web front end and in log evaluations. Outside
the notification_period the system does not send any messages.
A more detailed description of the notification system is given in Sec-
tion 12.3, page 267.

notification_options

This parameter describes the states about which Nagios should pro-
vide notification when they occur. Nagios knows the following states
for computers:

d down

u unreachable (host is not reachable because a network node be-
tween Nagios and a host has failed and the actual state of the
host cannot be determined)

recovery (OK state after an error)

f flapping (state changes very quickly; more on this in Appendix
B from page 611).

64

2.4 Grouping Computers Together with hostgroup

s scheduled downtime (Nagios 3.0 provides information here on
the start and end of a planned maintenance period, or in case
a planned maintenance period is canceled. This option is not
available for Nagios 2.x.)

By specifying d,u, the system will send messages if the host is not on
the network or not reachable over the network, but not if it can be
reached again after an error state (recovery). If n (none) is used as
the value, Nagios will normally not give any notification.

The form in which Nagios sends out a message depends on how the
contact is defined. Irrespective of when you want to be notified, the
Web interface always shows the current state, even if Nagios does
not send a message, because the time period does not match or the
system is still repeating the tests (the so-called soft state).

parents

This allows the physical topology of the network to be taken into ac-
count. Here the router or the network component is given by which
the host is reachable if it is not in direct contact in the same network
segment. This can also be a switch between the Nagios server and the
host. If Nagios does not reach the host because all parents (separated
by commas) are down, then Nagios categorizes it as UNREACHABLE,
but not as DOWN.

Further information is provided by the Nagios 3.0 online help under http:
//localhost/nagios/docs//objectdefinitions.html#host.* In Na-
gios 2.x the file is called xodtemplate.html and can be found in the same
directory. The differences between Nagios 2.x and Nagios 3.0 are described
in Section H.1.1, page 678.

2.4 Grouping Computers Together with hostgroup

A host group contains one or more computers so that they can be repre-
sented in the Web interface together (see Figure 16.10 on page 334)—in
addition, certain objects (e.g., services) can be applied to an entire group
of computers instead of having to define them individually for each host.

The hostgroup_name parameter specifies a unique name for the group,
alias accepts a short description. The members parameter lists all hosts
names belonging to the group, separated by commas:

-- /etc/nagios/mysite/hostgroups.cfg
define hostgroup{

4 Locally in /usr/local/nagios/share/docs/objectdefinitions.html.

65

2 Nagios Configuration

hostgroup name linux-servers
alias Linux Servers
members 1linux01,linux02

(

hostgroup_members*) hostgroupl, hostgroup2

If you specify to which group they belong in the host definition for indi-
vidual member computers, with the parameter hostgroups (page 63), the
members entry may be omitted from version 2.0. This means that you no
longer have two search through all group definitions if you just want to
delete a single host. The combined use—of members in the hostgroup ob-
ject and at the same time, of hostgroups in the host object—is equally
possible. A new host group in Nagios 3.0 is hostgroup_members, with
which you can specify other host groups as members, and thus form hi-
erarchies of host groups. This option is not available in Nagios 2.0.

2.5 Defining Services to Be Monitored with
service

A service in Nagios always consists of the combination of a host and a ser-
vice name. This combination must be unique. Service names, on the other
hand, may occur many times, as long as they are combined with different
hosts.

The simplest service consists of a simple ping, which tests whether the
relevant host is reachable, and which registers the response time and any
packet loss that may occur:

-- /etc/nagios/mysite/services.cfg

define service{
host_name linux01
service description PING
check command check ping!100.0,20%!500.0,60%
max_check attempts 3
normal check_ interval® 5
retry check interval(® 1
check period 24x7
notification interval 120
notification period® 24x7
notification options w,u,c,r,f,§*
contact_groups®™ localadmins

In contrast to a host check, which Nagios carries out only if it cannot reach
any other service of the host, a ping service is carried out at regular inter-
vals. Problems in the network can be detected relatively simply through

66

2.5 Defining Services to Be Monitored with service

response times and packet loss rates. The host check is less suitable for this
purpose.

host_name

This refers to the name defined in the host object. Nagios also ob-
tains the IP address of the computer via this. Instead of a single host
name, you can also enter a comma-separated list of multiple hosts.
As an alternative to host_name, it is also possible to use the parame-
ter hostgroup_name to specify an entire host group instead of indi-
vidual hosts. The service is then considered to be defined for each of
the individual computers groups together in this way. Whether you
make use of this optimization, or allocate your own service defini-
tions to each computer individually, makes no difference to Nagios.

service_description
This parameter defines the actual name of the service. Spaces, colons,
and dashes may be included in the name. Nagios always addresses a
service as a combination of host name (here: 1inux01) and service
description (PING). This must be unique.

servicegroups
assigns the service to a service group object that must already be
defined (section 2.6, page 69).

check_command
This defines the command with which Nagios tests the service for
functionality. Arguments are passed on to the actual command, ie.
check_ping, separated by exclamation marks. The definition of the
check_ping command, predefined in the example files, is explained
in Section 2.9 on page 72.

In the example, the values for the warning limit (100 ms, 20%) and
for the CRITICAL status (500 ms, 60%) are determined. You could
compare this to a traffic light: the state OK (green) occurs if the re-
sponse time remains under the warning limit of 100 milliseconds, and
if none or less than 20 percent of packets have been lost. The WARN-
ING state (yellow) occurs if the packet loss or response time lies above
the defined warning limit, but still beneath the critical limit. Above
the critical limit, Nagios issues a CRITICAL state (red). The return
value of the plugin is described at the beginning of Chapter 6 (page
6), the underlying plugin check_icmp is introduced in detail in Sec-
tion 6.2 from page 108.

max_check_attempts
This specifies how often Nagios should repeat a test in order to verify
and definitively accept an error state which has been discovered (or
also the recovered functionality), that is, to recognize it as a hard

67

2 Nagios Configuration

state. In the transitional phase (for example from OK to CRITICAL) we
speak of a soft state. Basic distinctions between soft and hard are only
made by the Nagios notification system, which is why the two states
are described in more detail in the context of this system (Chapter
12, page 265). The difference has no influence in the representation
in the Web interface.

normal_check_interval

This specifies at what interval Nagios should test the service when
the system is in a stable condition—this can equally be an OK or an
error state. In the example this is five time units, which is normally
five minutes. In Nagios 3.0 the parameter may also be written as
check_interval; as for the host definition, both forms are equiva-
lent.

retry_check_interval

This describes the time interval between two tests when the state is
in the process of changing (for example, from OK to WARNING), that
is, when there is a soft state. In Nagios 3.0 the parameter may also be
written as retry_interval; both forms are equivalent.

As soon as Nagios has performed the number of tests specified in
max_check_attempts, it checks the service again at intervals of nor-
mal_check_interval.

check_period

This describes the time period in which the service is to be mon-
itored. The entry represents a timeperiod object, the definition
of which is described in more detail in Section 2.10 from page 74.
Here you should enter 24x7 for “round the clock” unless you want
to explicitly stop the test from running at specific times (perhaps
because of a scheduled maintenance slot). If the notification is to
be prevented only at specific times, it is better to use the option
notification_period or other filters of the Nagios notification sy-
stem (see Section 12, page 265).

notification_interval

This determines at what regular intervals Nagios repeats reports on
error states. In the example, the system does this every 120 time units
(normally minutes), as long as the error state continues. A value of
0 causes Nagios to announce the current state only once. Beginning
with Nagios 3.0, notification_intervalis no longer an obligatory
parameter. If it is missing, the value is taken from the accompanying
host definition.

notification_period

This describes the time period within which a notification should
take place. This again involves a timeperiod object (see Section

68

2.6 Grouping Services Together with servicegroup

2.10). Here in the example, 24x7 is used, so notification is sent round
the clock. A more detailed discussion of the notification_period
parameter can be found in Section 12.3 from page 267. Beginning
with Nagios 3.0 this parameter is optional. If it is missing, the value
is taken from the accompanying host definition.

notification_options

This determines which error states Nagios should report. Possible
values which can be used here are the same states already described
for host objects, i.e., c (critical), w (warning), u (unknown), r (recov-
ered), £ (flapping), and (from Nagios 3.0) s (planned maintenance
interval). Specifying c,r only informs the system when a service is in
a CRITICAL state and if it subsequently recovers (RECOVERY).

If you use n (none) as the value, Nagios will normally not send any
notification. The Web interface nevertheless shows the current states.

contact_groups

Finally, this parameter defines the recipient group whose members
should receive the notifications. Several groups can be entered as a
comma-separated list. Beginning with Nagios 3.0 this parameter can
be omitted. Then the value is taken from the accompanying host
definition.

Further information can be found in the Nagios 3.0 online help at http://
localhost/nagios/docs/objectdefinitions.html#service.’ For ver-
sion 2.x the file is called xodtemplate.html. The differences between Na-

gios 2.x and Nagios 3.0 are described in Section H.1.2 from page 680.

2.6 Grouping Services Together with
servicegroup

Service groups, like host groups, combine several services into a group, so
that they can be represented together in the Web front end. This increases
clarity and simplifies certain evaluations, but it is optional, and is not rec-

ommended at the beginning, in order to keep configuration simple.

-- /etc/nagios/mysite/servicegroups.cfg

define servicegroup{

servicegroup name all-ping
alias All Pings
members 1linux01, PING, 1inux02, PING

servicegroup_members“’ servicegroupl, servicegroup?2

5 The corresponding file is located after installation in the directory /usr/local/

nagios/share/docs/.

69

2 Nagios Configuration

servicegroup_name and alias have the same meanings as for the host
group. It should be noted that the syntax is the same as for the members
entry. Because a service in Nagios always consists of the combination of
host and service names, both must always be listed in pairs. The computer
comes first, and then the service:

members hostl, servicel,host2, service2,

The members details can be omitted if the servicegroups parameter is
used in the service definition (page 67). If you want, you can use the two
possibilities in combination. As for the host groups, hierarchies can be
formed from service groups from Nagios 3.0, using the parameter service-
group_members.

2.7 Defining Addressees for Error Messages:
contact

A contact is basically a person to whom a message addressed via a contact
group is sent:

-- /etc/nagios/mysite/contacts.cfg
define contact({

contact_name nagios

alias Nagios Admin
host notification period 24x7

service notification period 24x7

service notification options w,u,c,r
host_notification options d,u,r

service notification_commands notify-by-email

host_notification_commands host-notify-by-email
email nagios-admin@localhost
can_submit commands™ 1

The contact also plays a role during authentication: a user who logs in at
the Web front end only gets to see the hosts and services for which that
user is entered as the contact. The user for logging in to the Web interface
must therefore be identical with the value of contact_name specified here.
The first time it is used, the user nagios is sufficient.

contact_name
This parameter defines the user name. It must match the correspond-
ing user name in the password file htpasswd.

alias
This parameter describes the contact briefly. Spaces are allowed here.

70

2.7 Defining Addressees for Error Messages: contact

host_notification_period
This defines the time period during which messages on the reachabil-
ity of a computer can be sent. Section 12.3 (page 267) shows how the
time period details can be sensibly combined in the different object
types. At the beginning, the value 24x7 (that is: always) is certainly
not a bad option.

service_notification_period

This defines the time period in which Nagios sends notifications to
the relevant user service. The entry takes effect as a filter: the gener-
ated message is simply discarded here if it is sent outside the speci-
fied time period. If no further message follows, the contact remains
uninformed. You must therefore think about combining individual
time periods in various different definitions. Dependencies are de-
scribed extensively in Section 12.3.

host_notification_options
This defines what types of host messages the user should receive. The
same options are used here as for the host parameter notification_
options (page 64).

service_notification_options
This parameter describes what types of service messages are received
by the contact. The same five values are involved as for the noti-
fication_options parameter for service and host objects.

service_notification_commands
This parameter defines which commands (one or more) take charge
of notification. They must be defined as the command object type (see
Section 2.9); basically any external programs can be integrated.

host_notification_commands
Like the service_notification_commands this parameter specifies
which commands are to be carried out to send the notification, al-
though here it concerns the reachability of computers.

email
This specifies one or more e-mail addresses (separated by commas)
to which a message should be sent. The notification command can
evaluate this value (one example of this is the command notify-by-
email®).

can_submit_commands (Nagios 3.0)
This controls whether the contact may execute commands via the
Web interface. The value 0 forbids him from doing this. For Nagios

6 see table 12.1 on page 277

71

2 Nagios Configuration

2.x, in general any contact may run commands via the Web inter-
face (see Section 16.2.3, page 343). Beginning with Nagios 3.0, this
parameter now also allows the definition of contacts with read-only
permission.

Further information can be found in the Nagios 3.0 online help at http://
localhost/nagios/docs/objectdefinitions.html#contact. In Na-
gios 2.x the file is called xodtemplate.html. The differences between Na-
gios 2.x and Nagios 3.0 are described in Section H.1.4, page 681.

2.8 The Message Recipient: contactgroup

The contactgroup serves as the interface between the notification system
and the individual contacts. Nagios never addresses individual contacts
directly in various object definitions, but always goes through the contact
group.

Here Nagios also expects a name (contactgroup_name) and a comment
(alias), which reveals to visitors of the Web site what the purpose of the
group is. For members (members) of the group, you can enter an individual
contact or a comma-separated list of several contacts:

-- /etc/nagios/mysite/contactgroups.cfg
define contactgroup{
contactgroup name localadmins
alias Local Site Administrators
members nagios
contactgroup_members“) contactgroupl, contactgroup2

The additional parameter contactgroup_members allows Nagios 3.0 to in-
clude further contact groups as members. In Nagios 2.x this parameter is
not available.

2.9 When Nagios Needs to Do Something: The
command Object

Everything that Nagios does is defined in command objects. In the exam-
ple file supplied, checkcommands.cfg defines a broad range of commands
which only need to be included. To do this, you just copy the file to the
subdirectory mysite:’

7 In Nagios 2.0 the example file lies directly in the directory /etc/nagios.

72

2.9 When Nagios Needs to Do Something: The command Object

nagios@linux:/etc/nagios$ cp objects/checkcommands.cfg \
mysite/checkcommands.cfg

The existing command check_ping illustrates the definition of this object

type:

-- /etc/nagios/mysite/checkcommands.cfg

define commandf{

command name check ping

command line $USER1S$/check icmp -H $HOSTADDRESSS -w SARG1S -c S$ARG2S
_p5

}

check_ping is the name by which the command will later be called when
defining a service. command_line describes the command to be executed.
Not only is the old plugin check_ping used here, but so is the more effi-
cient check_icmp. The differences between the two are explained in more
detail in Section 6.2 from page 108, but they use the same parameters to a
large extent.

The identifiers used here, surrounded by dollar signs, are macros. Nagios
recognizes three different types of macros: $USERx$ macros (x may take
on values between 1 and 32) define the file resource.cfg. The macro
$USER1$, which contains the path to the plugin directory, belongs to this.

The second group of macros are arguments which can be passed on when
a command is called. These include $ARG1$ and $ARG2S$.

The third group defined by Nagios includes the macro $HOSTADDRESSS,
which references the IP address of the host in the host definition (that is,
the parameter address). This type of macro is documented in the online
help at http://localhost/nagios/docs/macros.html.

If you call the service 1inux01,PING, defined on page 66, as a check_com-
mand

check ping!100.0,20%!500.0,60%

then 100.0,20% will appear in $ARG1$, and 500.0,60% in $ARG2$. To sep-
arate the command and the arguments to be passed on, the exclamation
mark is used.

In theory, any programs at all can be started via the command_line, but
Nagios expects a certain type of behavior here, particularly where the return
value is concerned. For this reason, only Nagios plugins should be used (see
Chapters 6 to 9).

73

2 Nagios Configuration

2.10 Defining a Time Period with timeperiod

timeperiod objects describe time periods in which Nagios generates and/
or sends notifications. The included example files (Nagios 3.0: objects/
timeperiods.cfg; Nagios 2.x: localhost.cfg) contain a number of def-
initions that can simply be copied to your own timeperiods.cfgfile.

In this, the definition of 24x7 is stated as “Sundays to Saturdays, from 0 to
24 hours in each case:”

-- /etc/nagios/mysite/timeperiods.cfg
define timeperiod{
timeperiod name 24x7

alias 24 Hours A Day, 7 Days A Week
sunday 00:00-24:00
monday 00:00-24:00
tuesday 00:00-24:00
wednesday 00:00-24:00
thursday 00:00-24:00
friday 00:00-24:00
saturday 00:00-24:00

}

The times of day on individual weekdays can also be “cobbled together”
from time periods, separated by a comma:

define timeperiod{
monday 00:00-09:00,12:00-13:00,17:00-24:00

If a day specification is omitted completely, the defined time period will not
include this day in its entirety.

Nagios 3.0 allows periods for individual calendar days to be defined:

2007-12-24 08:00-12:00

may 1 00:00-24:00
monday 2 may 00:00-24:00
monday 3 00:00-24:00

2007-12-24 - 2008-01-08 / 2 00:00-24:00

The first line names a fixed calendar day in the ISO format, the second line
describes every 1st May. The details in the third line refer to the second
Monday in May, and those of the fourth line, to the third Monday of each
month. The details can also be combined, in the form from - to. A sub-
sequent / acts as a separator: the sixth line describes every second day
(/ 2) in the period from 24.12.2007 to 8. 1.2008.

74

2.11 Templates

Section H.1.5, page 682 is also devoted to the extended format of Nagios 3.0.
The complete documentation can be found in the Nagios 3.0 online help at
http://localhost/nagios/docs/objectdefinitions.html#contact.
In Nagios 2.x the corresponding file is called xodtemplate.html.

2.11 Templates

Nagios categorizes definitions as objects for a very good reason: their fea-
tures can namely be inherited by other objects—a feature that can save
a lot of time otherwise spent typing. You can define a so-called template
and pass this on to other objects as a basis from which you only need to
describe those details that are different.

This is best illustrated by an example (the parameters that are required for
the use of templates are printed in bold):

-- /etc/nagios/mysite/hosts.cfg

define host(
name Generic-Host
register 0
check_command check-host-alive
max_check_attempts 3
check period 24x7
contact_groups localadmins
notification_interval 120
notification _period 24x7
notification_options d,u,r, f

With name, the template is first given a name so that it can be referenced
later on. The following entry, register 0, prevents Nagios from trying to
treat this template as a real host. In the example, the entries for the genuine
host object are not sufficient; consequently Nagios would break off when
reading the configuration file, with the error message that parameters are
missing that are obligatory for such a definition, for example:

Error: Host name is NULL

All the other parameters involve settings that are to apply to all definitions
dependent on Generic-Host.

In the actual host definition—in the following example for 1inux03 and
linux04—the parameter use references the template and thus takes over
the preset values:

-- /etc/nagios/mysite/hosts.cfg
define host(

75

2 Nagios Configuration

host_name 1linux03

use Generic-Host
alias Linux File Server
address 192.168.0.1

}

define host({

host_name linux04

use Generic-Host

alias Linux Print Server
address 192.168.0.2

In this way you only need to complete those entries that vary in any way
between the two hosts.

But parameters may also appear in host definitions that have already been
defined by the template. In this case the definition at the host has priority,
it overwrites the value from the template.

Templates created in this way can generally be used for all object types.
Further information on their use can be found in the Nagios 3.0 online
help at http://localhost/nagios/docs//objectinheritance.html.?
In Nagios 2.x the file is called templaterecursion.html. The extended
possibilities of Nagios 3.0, which only begin to play a role in more complex
setups, are described by H.1.8 from page 684.

2.12 Configuration Aids for Those Too Lazy to Type

2.12.1 Defining services for several computers

You can simplify things a lot in the service definition by defining a service
for several hosts, or even host groups, at the same time:

-- /etc/nagios/mysite/services.cfg
define servicef{
host_name 1linux01,1linux02,linux04, ...

service_description PING

Specifying several hosts, separated by commas, ensures that Nagios defines
multiple services in parallel. You can go one step further by specifying the
* character instead of individual computer aliases. This will assign this
service to all hosts.

8 Locally in /usr/local/nagios/share/docs//objectinheritance.html

76

2.13 CGl Configuration in cgi.cfg

A third possibility is an allocation in parallel via host groups:

-- /etc/nagios/mysite/services.cfg

define service{
hostgroup_ name linux-servers,windows-servers
service_description PING

In this case the parameter hostgroup_name is used instead of the parame-
ter host_name.
2.12.2 One host group for all computers

The quickest way to describe a host group containing all defined computers
is with the wild card *:

-- /etc/nagios/mysite/hostgroups.cfg
define hostgroup{

hostgroup_name all-hosts

members *

2.12.3 Other configuration aids

In practice, the definition of services covering multiple hosts, described
on page 76, is by far the most important. But there are other configura-
tion aids based on the escalation and dependency objects, introduced on
page 275 (see Sections 12.5 on page 282 and 12.6 on 285). There you can
also use hostgroup_name instead of host_name (a list of host groups) or
servicegroup_name instead of service_description. In addition you
may set the value * for host_name and service_description, which cov-
ers all hosts or services.

2.13 CGI Configuration in cgi.cfg

In order for the Web front end to work correctly, Nagios needs the configu-
ration file cgi.cfg. Nagios’ example file can initially be taken over one-to-
one, since the paths contained in it were set correctly during installation:

nagiose@linux:/etc/nagios$ cp sample/cgi.cfg-sample ./cgi.cfg

77

2 Nagios Configuration

Important: the file cgi.cfg must be located in the same directory as the
file nagios.cfg, because the CGI programs have been compiled in this
path permanently. If cgi.cfg is located in a different directory, the Web
server must also be given an environment variable with the correct path,
called NAGIOS_CGI_CONFIG. How this is set in the case of Apache is de-
scribed in the corresponding online documentation.®

Out of the box, several parameters are enabled in the CGI configuration
file. What these are is revealed by the following egrep command, which
excludes comments and empty lines:

nagios@linux:/etc/nagios$ egrep -v ’'“$|"#’ cgi.cfg-sample | less
main config file=/etc/nagios/nagios.cfg
physical_html_path=/usr/local/nagios/share

url html path=/nagios

show_context_help=0

use_authentication=1

main_config_file
This parameter specifies the main configuration file.

physical_html_path
This specifies the absolute path in the file tree to the directory in
which the HTML documents—including online documentation, im-
ages, and CSS stylesheets—are located.

url_html_path
This also describes the path to the Nagios HTML documents, but
from the perspective of the Web server, not of the operating system.

show_context_help
This option provides—as long as it is switched on (value 1)—a con-
text-dependent help if you move the mouse in the Web interface over
individual links or buttons.

use_authentication
This option should always be switched on (value 1). Nagios will then
only allow access to authenticated users. The authentication itself is
configured in a .htaccess file in the CGI directory (see Section 1.5
on page 47). If this file is missing, and if use_authentication=1,
then the CGI programs will refuse to work.

default_statusmap_layout and default_statuswrl_layout
These two layout parameters describe forms of representation in the
graphical illustration of network dependencies. Possible values are
described in Appendix A.2 on page 608.

9 http://httpd.apache.org/docs-2.0/env.html

78

2.14 The Resources File resource.cfg

refresh_rate
This specifies the timespan in seconds after which the browser is in-
structed to reload data from the Web server. In this way the display
in the browser is always up-to-date.

authorized_for_all_services and authorized_for_all_hosts
In order for a specific user to be able to see all computers and ser-
vices in the Web interface right from the beginning, without taking
account of the allocation of hosts and services to the correct contact
group, you should also activate the following two parameters in the
file cgi.cfg:

authorized for all services=nagios
authorized for_all hosts=nagios

The Web user (and contact) nagios is now able to see all hosts and all
services in the Web interface, even if he is not entered as the contact
responsible for all hosts or services.

A complete list of all parameters can be found in Appendix A.2 on page 606.

2.14 The Resources File resource.cfg

Nagios expects to find the definition of macros, concerning how they are
used to create command objects (Chapter 2.9 from page 72), in the re-
sources file resource.cfg. This can also be use as supplied.

The location where Nagios should search for this file is defined by the
resource.cfg parameter in the main configuration file nagios.cfg. It
makes sense here to use the same directory in which nagios.cfg is also
located.

In its “factory settings”, resource.cfg defines only the $USER1$ macro,
which contains the path to the plugins:

$USER1S$=/usr/local/nagios/libexec

In total, Nagios has provisions for 32 freely definable $USERx$ macros,
where x can be from 1 to 32. These can be very useful in combination with
passwords, for example: a password is defined via such a macro in the file
resource.cfg, which may be read only by the user nagios. The defined
macro is used in the actual service definitions, thus hiding the password
from view of curious onlookers.

79

Startup

Once Nagios and the plugins are installed, Apache is set up for the Web
interface, and a minimal configuration is created as previously described,
operation of the system can get under way. If you have not already done
so, it is recommended that you first spend a bit of time on the test for the
check_icmp plugin, described in Section 1.4 (page 43), to check the initial
configuration.

3.1 Checking the Configuration

The nagios program, which normally runs as a daemon and continually
collects data, can also be used to test the configuration:

nagios@linux:~$ /usr/local/nagios/bin/nagios -v /etc/nagios/nagios.cfg

Nagios 3.0rcl

81

3 Startup

Copyright (c) 1999-2007 Ethan Galstad (http://www.nagios
Last Modified: 12-17-2007
License: GPL

Reading configuration data...
Running pre-flight check on configuration data...

Checking services...

Checked 2092 services.
Checking hosts...
Warning: Host ‘eli-sw0l’ has no services associated with

Checked 183 hosts.
Checking host groups...

Checked 55 host groups.
Checking service groups...

Checked 34 service groups.
Checking contacts...

Checked 59 contacts.
Checking contact groups...

Checked 7 contact groups.
Checking service escalations...

Checked 0 service escalations.
Checking service dependencies...

Checked 24 service dependencies.
Checking host escalations...

Checked 0 host escalations.
Checking host dependencies...

Checked 0 host dependencies.
Checking service groups...

Checked 34 service groups.
Checking contacts. ..

Checked 59 contacts.
Checking contact groups...

Checked 7 contact groups.
Checking service escalations...

Checked 0 service escalations.
Checking service dependencies...

Checked 24 service dependencies.
Checking host escalations...

Checked 0 host escalations.
Checking host dependencies...

Checked 0 host dependencies.
Checking commands. ..

Checked 105 commands.
Checking time periods...

Checked 6 time periods.
Checking for circular paths between hosts...
Checking for circular host and service dependencies...
Checking global event handlers...
Checking obsessive compulsive processor commands...
Checking misc settings...

.org)

it!

82

3.1 Checking the Configuration

Total Warnings: 1
Total Errors: 0

Things look okay - No serious problems were detected during the pre-flig
ht check

Although warnings displayed here can in principle be ignored, this is not
always what the inventor had in mind: perhaps you made a mistake in the
configuration, and Nagios is ignoring a specific object, which you would
actually like to use.

If you have not defined any service for a host, for instance, Nagios will
issue a warning, as in the example above for eli-swO01. It is therefore rec-
ommended to define a “PING” service for every host, although this is not
absolutely essential. Even if the same plugin, check_icmp, is used here as
with the host check, this is not the same thing. The host check is satisfied
with a single response packet—after all, it only wants to find out if the host
“is alive”. As a service check, check_icmp registers packet run times and
loss rates, which can be used to draw conclusions, if necessary, concerning
existing problems with a network card.

In contrast to warnings, genuine errors must be eliminated, because Na-
gios will usually not start if the parser finds an error, as in the following
example:

Error: Could not find any host matching ’linux03’
Error: Could not expand hostgroups and/or hosts specified in service
(config file ’/etc/nagios/mysite/services.cfg’, starting on line 0)

*x%> One or more problems was encountered while processing the config
files...

Here the configuration mistakenly contains a host called 1inux03, for which
there is no definition. If you read through the error message carefully, you
will quickly realize that the error can be found in the file /etc/nagios/my-
site/services.cfg.

In the definition of independencies (host and service dependencies; see Sec-
tion 12.6, page 285) there is a fundamental risk that circular dependencies
could be specified by mistake. Because Nagios cannot automatically resolve
such dependencies, this is also checked before the start, and if necessary,
an error is displayed.

When using the parents parameter, it is also possible that two hosts may
inadvertently serve mutually as “parents;” Nagios also tests this.

83

3 Startup

3.2 Getting Monitoring Started

During the Nagios installation, the command

linux:src/nagios # make install-init

saves a startup script in the directory containing the boot-up scripts, usu-
ally /etc/init.d.

3.2.1 Manual start

If the configuration test ran without error, Nagios on Debian, Ubuntu, and
OpenSuSE is first started manually with this script:

linux:~ # /etc/init.d/nagios start

Fedora provides its own startup mechanism:

linux:~ # service nagios start

If everything runs smoothly here (which can be checked by running the
Web interface—see Chapter 3.3 on page 85), you only need to make sure
that the script is executed at system start. The required steps, depending
on the distribution, are described in Section 1.3 on page 43.

3.2.2 Making configuration changes come into effect

If configuration changes are made, it is not required, and not even recom-
mended, that you restart Nagios each time. Instead, you just perform a
reload:

linux:~ # /etec/init.d/nagios reload

This causes Nagios to reread the configuration, end tests for hosts and ser-
vices that no longer exist, and integrate new computers and services into
the test. However, with each reload there is a renewed scheduling of checks,
meaning that Nagios plans to carry out all tests afresh.

To prevent all tests from being started simultaneously at bootup, Nagios
performs a so-called spreading. Here the server spreads the start times
of the tests over a configurable period.! Therefore, for a large number of

1 The relevant configuration parameters are called max_host_check_spread and
max_service_check_spread, see Appendix A.1, page 599.

84

3.3 Overview of the Web Interface

services, it can take a while before Nagios continues the test for a specific
service. For this reason you should never run reloads at short intervals:
in the worst case, Nagios will not manage to perform some checks in the
intervening period and will perform them only some time after the most
recent reload.

Before being reloaded, the configuration is tested to eliminate any existing
errors, as shown in Section 3.1.

3.3 Overview of the Web Interface

If you call the URL http://nagios-server/nagios in the browser when
the Nagios daemon is running, you will be taken to the welcome screen
shown in Figure 3.1.

Nagios N - ® Figure 3.1:
. a g '0 s The start screen

® Home Copyright (c) 1999-2007 Ethan Galstad

® Documentation

Version 3.0rc1

® Tactical Overview December 17, 2007
@ service Detall
@ Host Detail

£ Hostgroup Overview New Installations:

@ Hostgroup Summary e

® Hostgroup Grid o . " . - .

® Servicegroup Overview If you have just installed Nagios, read the documentation for instructions on getting

® Servicegroup Summary everything up and running.
@ Servicegroup Grid
3D Seater Map Click here for a brief overview of new fealures that have been added in this release.
® Service Problems For More Information:
®Unhandled
® ':"Ijt :"‘":"f':s Visit the Nagios homepage at hitp:/www.nagios.org for information on bug fixes,
s upgrades, support, etc.

® Network Outages

& Comments

@ Downti
owntime Nagios and the Nagios logo are trademarks, jos Enterprises,

3 , registere: registered by Nag ,LLC.
® Process Info Nagios is provided AS IS with NO' WARRANTY OF ANY KIND, INCLUDING THE WARRANTY OF DESIGN, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
@ performance Info PURI
@ Scheduling Queue

@ Trends
@ Availability

@ Alert Histogram
@ Alert History

@ Alert Summary
@ Notifications

@ Event Log

Configuration

@ View Config

The so-called “tactical overview” (Tactical Overview), which can be reached
via the first monitoringlink in the left menu bar, is shown in Figure 3.2. It
summarizes the status of all tested systems.

Considerably more interesting in practice, however, is the display of the
menu item Service Problems (Figure 3.3). It documents the services that
are currently causing problems, those that are not in the OK status, in the
very sense for which Nagios was conceived: to inform the administrator
precisely of any problems.

85

3 Startup

Figure 3.2: .]
9 H a g 10S Tactical Monitoring Overview Monitoring Performance

Last Updated: Sun Jan 6§ 18:32:00 CET 2008

Updated every 80 seconds Service Check Execution Time: 0.01/6.12/ 0.379 sec
eneral Nagios® 3.0rc1 - Www nagios.org

"Tactical" overview

()f a Il Systems a nd Logged in as barthw@ELL ST-ELISABETH.DE Service Check Latency: 0.00/ 0.90/ 0.202 sec
) Host Check Execution Time: 0.01/0.36/ 0.070 sec
services to be _ Host Check Latency: 0.00/0.89/ 0.213 sec

Active Host / Service Checks: 182 / 2080

monitored #Tactical Overview:
Passive Host / Service Checks: 0/ 3
& Host Detail
 Hostgroup Overview
® Hostgroup Summary
® Hostgroup Grid Network Outages
® Servicoroun Sum |__ooutages |
® Servicegroup Summary ag HostHealth: [|
® Servicegroup G

® Status Map service Health: [|

#3-D Status Map

& Service Problems

® Unhandled
% Host Problems

® Unhandled 0 Unreachable 0 Pending
® Network Outages

v Ho:

N O

15 Critical 44 Warning 6 Unknown 2018 Ok 0 Pending

® Comments [6 Adnowledaed 3 Disabled
® Downtime
12 Acknowledged 7 Acknowledged

¥ Process Info
® performance Info

¥ Scheduling Queue Monitoring Features

Reporting Notifications. Event Handlers Actlve Checks Passive Checks.
® Trends 2 | Al Services Enabled All Services Enabled 3 Services Disabled || Al Services Enabled
® Availabi 2 Senvices Flapping | 2 Al Hosts Enabled Al Hosts Enabled Al Hosts Enabled
® Alert Histogram
® Alert History
® Alert Summary
& Notifications
® Event Log

F|g ure 3.3: A e D Host Status Totals Service Status Totals
i Last Updated: Sun Jan 6 18:36:18 CET 2008
NagIOS: summary of e G 82| o o 0 2018 44 6 El o

Naglos® 3.0rc1 - WWW.naglos.or
I . bl Logged in as barthw@ELI.ST-ELISABETH.DE
all service proolems View History For all hosts
View Notitications For All Hosts g 52 = 2

Display Filters: Service Status Details For All Hosts

Host Status Pending | Up Entries sorted by service status (descending)

Types:

Host Any

Properties:

Service Status All Problems

Types:

Service Not In Scheduled Downtime & Has Not

Properties: Been Acknowledged & Active Checks
Enabled

eligate? & VPN-Tunnel [GRITIGARNY 2005-01-06 18:33:07 0d 17h 28m 115 3/3 Tunnels failed (2); whb-eli vs-saar-eli

sap-57 SAPDialogNetworkTime [GRITIGAIN 2008-01-06 18:35:35 0d Oh 4m 435 1/1 P10 p10ap057_P10_04 Dialog FromEndNetTime 6846 msec
SAPDialogResponseTime [GRITIGALM 2008-01-06 18:35:37 0d Oh 4m 415 1/1 P10 p10ap057_P10_04 Dialog ResponseTime 2285 msec

ELISANO1 @y DISK_D J¢ WARNING 2008-01-06 18:34:20 0d 120 18m 495 3/3 DA total: 2214,41 Gb - used: 1741,52 Gb (79%) - free 472,69 Gb

@1%)

CRITICAL: hspfire Is very old - 2007-07-06 (184dyBuild: 01101/V
2.00/Kemel: 2.4/

CRITICAL: hspfire is very old - 2007-07-06 (184dyBuild: 02096/V

baaproxy ¥ GATE-hspfireVersion ~ WARNING 2008-01-06 16:43:41 39d 10h 52m 38s 141

. ¥
hspfire-Version WARNING 2008-01-06 18:30:02 2d 17h 6m 165 1/1 e
WARNING: boot (2007-12-17_16:07) older than config
proxy ATE - o ¥ 434 m
bitpros ¥ GATE Config-Version ~ WARNING 2008-01-06 16:43:41 1d 22h 52m 378 1/1 (2008-01-04_18:13) / rool @eii01 2008-01-04 16:13h
WARNING: boot (2007-12-17_0B:00) older than config
Y 5 N 8-071- m
hspfire-Config-Version ~ WARNING 2008-01-06 18:11:17 1d 23h 55m 15 11 (2008-01-05_14:03) / rool @eiix01 2008-01-05 14:03h

CRITICAL: hspfire Is very old - 2007-07-06 (184dyBuild: 01101/V
2.00/Kemel: 2.4/
CRITICAL: hspfire is very old - 2007-07-06 (184dyBuild: 02096/V
2.00/Kemel: 2.6/

dilproxy ¥ GATE-hspfire-Version ~ WARNING 2008-01-06 16:24:07 47d 8h 12m 11s 11

hspfire-Version WARNING ~ 2008-01-06 18:32:25 0d 17h 3m 535 1/1

86

3.3 Overview of the Web Interface

The first column names the host involved. If this has a gray background,
Nagios can reach the computer in principle. If the host is “down” this can
be seen by the red background. For services, red stands for CRITICAL and
yellow for WARNING.

The second column provides the service name, the third column the sta-

tus again, in plain text. Column four specifies the time of the last check.

Column five is interesting—it shows how long the current status has been

going on.

The sixth column with the heading Attempt reveals how often Nagios has al-

ready performed the test (unsuccessfully): 3/3 means that the error status

has been confirmed for the third time in succession, but that the test is only
performed three times if there is an error (parameter max_check_attempts,
see Section 2.3).

Finally, the last column passes on the information from the plugin to the
administrator, to whom it describes the current status in more detail. The
above line in Figure 3.3 warns that only 21 percent of disk space is still
available on drive D (service DISK_D) of the Windows server ELISANO1.

Current Network Status Host Status Totals Service Status Totals

Last Updated: Sun Jan 6 16:40:21 CET 2008
Updated every 90 seconds

Nagios® 3.0rc1 - wiwr.nagios.org

Logged in as barthw@ELl. ST-ELISABETH.DE

82| o 0 [2018 44 © El o

View Senvice Status Detall For All Host Groups
View Status Overview For Al Host Groups g 2 2 20
|View Status Summary For All Host Groups

View Status Grd For All Host Groups

Host Status Details For All Host Groups

AHDCO1 R e 2008-01-06 18:37:50 51d 18h 29m 338 OK - 172.17.129.160 responds to ICMP. Packet 1, rta 0.362ms
AHDC20 afpwe 2008-01-06 18:39:00 0d 17h 33m 365 OK - 172.19.10.20 responds to ICMP. Packet 1, rta 36.161ms
AHDS01 iR e 2008-01-06 18:39:05 71d 16h 32m 47s OK - 172.17.129.167 responds to ICMP. Packet 1, rta 6.565ms
AHPS01 ;e 2008-01-06 18:35:5 464 61 48m 20s OK - 172.17.129.169 responds to ICMP. Packet 1, rta 3.797ms
APODCO1 afawr 2008-01-06 18:38:50 14d 11h 54m 565 OK - 172.17.144.13 responds to IGMP. Packet 1, rta 7.186ms
APODC02 R e 2008-01-06 18:38:50 0d 17h 35m 265 OK - 172.17.233.80 responds to ICMP. Packet 1, rta 77.897ms
BITDCO1 afhwe 2008-01-06 18:38:50 0d 17h 35m 265 OK - 172.17.233.81 responds to ICMP. Packet 1, rta 79.477ms
BITDC02 iR e 2008-01-06 18:37:15 0d 17h 35m 265 OK - 172.17.233.82 responds to ICMP. Packet 1, rta 77.117ms

The Host Detail (Figure 3.4) and Service Detail overviews provide an
overview of all hosts and services. In practice you will be looking more
precisely for information, either via a single host or on a host group or
service group. The name in question is entered in the Show Host search
field. Figure 3.5 shows this using the example of the e1ix01 host.

Alternatively you can search for the names of host and service groups. An
interesting variation here is to have a status grid output shown via the link
Hostgroup Grid, which displays an overview of all hosts and their corre-
sponding services, together with the status of these (Figure 3.6). Through
the color of the service (green/yellow/red), you can quickly see at a glance
whether there are problems in the service group or host group that you are
viewing.

Figure 3.4:

An overview of all

hosts (extract)

87

3 Startup

Figure 3.5:

Services to the host
elix01 (extract)

Figure 3.6:
The host group

eliLINUX in the grid

representation

Host Status Totals Service Status Totals

|View History For This Host
View Notifications For This Host
View Service Status Detail For All Hosts

Service Status Details For Host "elix01'

Fost " Tservice ! status ¢ Last Gheck | Duration ©_Jattempt *_[status nformation

[— JR— -mws e FILE_AGE OK: /data/amdumpf.is_mounted is 77194208 seconds old and 1
OK - 172.17.129.2: ta 0.249ms, lost 0%

SMTP OK - 0,049 sec. response time.

OK Service Latency = 199ms

FILE_AGE OK: /vanllog/argus/argus.log is 0 seconds old and 138953516 bytes
B 2008-01-06 18:40:38 143d 10h 16m 285 113, DISK OK - free space: fnet/elix01/b 79784 MB (61% Inode=89%):

DK 2008-01-06 18:42:43 2364 1h 46m 275 113, DISK OK - free space: ftmp 877 MB (96% Inode=89%):

B 2008-01-06 18:36:33 35d 12h 12m 565 113, DISK OK - free space: fvar 7008 MB (36% Inode=38%):

Host Status Totals Service Status Totals

[pown[vnveachabicle
Wl o | o | o |

Al Problems|All Types
Lo s]

\Wiew Status Grid For All Host Groups

\View Service Status Detail For This Host Group
Wiew Host Status Detall For This Host Group
\Wiew Status Overview For This Host Group
\Wiew Status Summary For This Host Group

Status Grid For Host Group 'eliLINUX’

Marienhaus GmbH/GF (eliLINUX)

EERED

B

ML

E
=
I

88

For More eBooks Or Request, Support hill0 & Purchase a Premium Here in My Blog Thanks & Enjoy!
https://avxhm.se/blogs/hill0

Part Il

In More Detail...

mounir
Typewriter
For More eBooks Or Request, Support hill0 & Purchase a Premium Here in My Blog Thanks & Enjoy!
https://avxhm.se/blogs/hill0

Nagios Basics

The fact that a host can be reached, in itself, has little meaning if no service
is running on it on which somebody or something relies. Accordingly, ev-
erything in Nagios revolves around service checks. After all, no service can
run without a host. If the host computer fails, it cannot provide the desired
service. Things get slightly more complicated if, for example, a router that
lies between users and the system providing services is brought into play.
If this fails, the desired service may still be running on the target host, but
it is nevertheless no longer reachable for the user.

Nagios is in a position to reproduce such dependencies and to precisely
inform the administrator of the failure of an important network compo-
nent, instead of flooding the administrator with irrelevant error messages
concerning services that cannot be reached. An understanding of such de-
pendencies is essential for the smooth operation of Nagios, which is why
Section 4.1 will examine these dependencies and the way Nagios works in
more detail.

91

4 Nagios Basics

Figure 4.1:
Topology of an
example network

Another important item is the state of a host or service. On the one hand
Nagios allows a much finer distinction than just OK or “not OK;” on the
other hand the distinction between soft state and hard state means that
the administrator does not have to deal with short-term disruptions that
have long since disappeared by the time the administrator has received the
information. These states also influence the intensity of the service checks.
How this functions is described in detail in Section 4.3.

4.1 Taking into Account the Network Topology

How Nagios handles dependencies of hosts and services can be best illus-
trated with an example. Figure 4.1 represents a small network in which the
Domain Name Service on proxy is to be monitored.

pcOl [pc02] [pc03] [srv0l] [srv02] nagios

switchl

switch2

firewall

internet
server

http://www.swobspace.de

The service check always serves as the starting point for monitoring that is
regularly performed by the system. As long as the service can be reached,
Nagios takes no further steps; that is, it does not perform any host checks.!

For switchl, switch2, and proxy, such a check would be pointless any-
way, because if the DNS service responds to proxy, then the hosts men-
tioned are automatically accessible.

If the name service fails, however, Nagios tests the computer involved with
a host check, to see whether the service or the host is causing the problem.

1 Section 4.2 from page 95 deals with these on-demand checks.

92

4.1 Taking into Account the Network Topology

If proxy cannot be reached, Nagios might test the parent hosts entered
in the configuration (Figure 4.2). With the parents host parameter, the
administrator has a means available to provide Nagios with information on
the network topology.

3 Figure 4.2:
parent host |« Nagios The order of tests

performed after a

> service failure

host

When doing this, the administrator only enters the direct neighbor com-
puter for each host on the same path to the Nagios server as the parent.?
Hosts that are allocated in the same network segment as the Nagios server
itself are defined without a parent. For the network topology from Figure
4.1, the corresponding configuration (reduced to the host name and parent)
appears as follows:

define host({
host_name proxy

parents switch2

}

define host(
host_name switch2

parents switchl

}

define host(
host_name switchl

switchl is located in the same network segment as the Nagios server, so
it is therefore not allocated a parent computer. What belongs to a net-
work segment is a matter of opinion. If you interpret the switches as the
segment limit, as is the case here, this has the advantage of being able to
more closely isolate a disruption. But you can also take a different view
and interpret an IP subnetwork as a segment. Then a router would form

2 The parameter name parents can be explained by the fact that there are scenarios—
such as in high availability environments—in which a host has two upstream routers
that guarantee the Internet connection, for example.

93

4 Nagios Basics

Figure 4.3:

Classification of

individual network

nodes by Nagios

the segment limit; in our example, proxy would then count in the same
network as the Nagios server. However, it would no longer be possible to
distinguish between a failure of proxy and a failure of switchl or switch2.

[oeoz]| [peos] [swo1] [srwoz] [resios

2
CRITICAL 1

UNREACHABLE 5

firewall

7 6
UNREACHABLE
server

http://www.swobspace.de

If switchl in the example fails, Figure 4.3 shows the sequence in which
Nagios proceeds. First the system checks the DNS service on proxy and
determines that this service is no longer reachable (1). To differentiate, it
now performs a host check to determine the state of the proxy computer
(2). Since proxy cannot be reached, but it has switch?2 as a parent, Na-
gios performs a host check on switch2 (3). If this switch also cannot be
reached, the system checks its parent, switchl (4).

If Nagios can establish contact with switchl, the cause for the failure of the
DNS service on proxy can be isolated to switch2. The system accordingly
specifies the states of the host: switchl is UP, switch2 DOWN; proxy, on
the other hand, is UNREACHABLE. Through a suitable configuration of the
Nagios messaging system (see Section 12.3 on page 267) you can use this
distinction to determine, for example, that the administrator is informed
only about the host that is in the DOWN state and represents the actual
problem, but not about the hosts that are dependent on the down host.

In a further step, Nagios can determine other topology-specific failures in
the network (so-called network outages). proxy is the parent of gate, so
gate is also represented as UNREACHABLE (5). gate in turn functions as
a parent; the Internet server dependent on this is also classified as “UN-
REACHABLE.”

This “intelligence,” which distinguishes Nagios, helps the administrator all
the more when more hosts and services are dependent on a failed com-
ponent. For a router in the backbone, on which hundreds of hosts and

94

4.2 On-Demand Host Checks vs. Periodic Reachability Tests |

services are dependent, the system informs administrators of the specific
disruption, instead of sending them hundreds of error messages that are
not wrong in principle, but are not really of any help in trying to eliminate
the disruption.

4.2 On-Demand Host Checks vs. Periodic
Reachability Tests

As a matter of principle, Nagios performs service checks at regular intervals,
with the exception of passive service checks. (See Section 13.2 on page
293.) Some slightly different rules apply for host checks, which play the
main role. Nagios executes host checks when it needs them—that is, on de-
mand—and uses them to monitor hosts where a service installed on them
changes to an error state or hosts that lie in topological dependency to a
failed host. A third way is via host dependencies, as described in Section
12.6.2 on page 289. On-demand host checks are a core function of Nagios,
as this is the only way the system can precisely inform the administrator
about a failed central switch, instead of bombarding him with thousands of
error messages about unreachable services.

Planned host checks at regular intervals—active host checks in Nagios ter-
minology —play only a minor role. Although Nagios 2.0 does provide a way
to do this, Nagios 2.x only performs active host checks serially, which is
considered to be a real performance killer.

In Nagios 3.0, checks are executed simultaneously, eliminating the drop in
performance of earlier versions. If a Nagios version prior to 3.0 is used, you
would be well advised not to use active host checks. However, in Nagios 3.0
regular host checks like these can help to improve performance, because
this version caches the check results, if required, for a time that can be
specified. Instead of running an on-demand check, Nagios then reverts
to the cached result, saving considerable time—provided that this is still
sufficiently up-to-date. The new logic for host checks in Nagios 3.0 is dealt
with in Section H.7 on page 689.

The reachability of a host can also be regularly be checked in Nagios 2.x by
using a trick in the shape of a ping-based service check (see Section 6.2 on
page 108). Nagios performs service checks in parallel, so the serial brake in
performance under Nagios 2.x is released. At the same time you will obtain
further information such as the response times or possible packet losses,
which provides indirect clues about the network load or possible network
problems. A host check, on the other hand, also issues an OK even if many
packets go missing and the network performance is catastrophic. What
is involved here, as the name “host check” implies, is only reachability in
principle and not the quality of the connection.

95

4 Nagios Basics

4.3 States of Hosts and Services

Nagios uses plugins for the host and service checks. They provide four
different return values (see Table 6.1 on page 105): 0 (OK), 1 (WARNING),
2 (CRITICAL), and 3 (UNKNOWN).

The return value UNKNOWN means that the running of the plugin gener-
ally went wrong, perhaps because of wrong parameters. You can normally
specify the situations in which the plugin issues a warning or a critical state
when it is started.

Nagios determines the states of services and hosts from the return values
of the plugin. The states for services are the same as the return values OK,
WARNING, CRITICAL, and UNKNOWN. For the hosts the picture is slightly
different: the UP state describes a reachable host, DOWN means that the
computer is down, and UNREACHABLE refers to the state of nonreachabil-
ity, where Nagios cannot test whether the host is available or not, because
a parent is down (see Section 4.1, page 92).

In addition to this, Nagios makes a distinction between two types of state:
soft state and hard state. If a problem occurs for the first time (that is, if
there was nothing wrong with the state of a service until now), then the
program categorizes the new state initially as a soft state and repeats the
test several times. It may be the case that the error state was just a one-off
event that was eliminated a short while later. Only if the error continues to
exist after multiple tests is it then categorized by Nagios as a hard state. Ad-
ministrators are informed only of hard states, because messages involving
short-term disruptions that disappear again immediately afterwards only
add to an unnecessary flood of information.

In our example the chronological sequence of states of a service can be
illustrated quite simply. A service with the following parameters is used for
this purpose:

define service{
host_name proxy
service_description DNS

normal_check_interval3 5
retry check interval? 1
max_check_attempts 5

}

normal_check_interval specifies at what interval Nagios should check
the corresponding service as long as the state is OK or if a hard state exists—

3 As an alternative, Nagios 3.0 allows the notation known from the host definition,
check_interval.
4 For Nagios 3.0 you can alternatively use retry_interval.

96

4.3 States of Hosts and Services

in this case, every five minutes. retry_check_interval defines the in-
terval between two service checks during a soft state—one minute in the
example. If a new error occurs, then Nagios will take a closer look at the
service at shorter intervals.

max_check_attempts determines how often the service check is to be re-
peated after an error has first occurred. If max_check_attempts has been
reached and if the error state continues, Nagios inspects the service again
at the intervals specified in normal_check_interval.

Figure 4.4 represents the chronological progression in graphic form. The il-
lustration begins with an OK state (which is always a hard state). Normally
Nagios will repeat the service check at five-minute intervals. After ten min-
utes an error occurs; the state changes to CRITICAL, but this is initially a
soft state. At this point in time, Nagios has not yet issued any message.

Now the system checks the service at intervals specified in retry_check_
interval. Here this is every minute. After a total of five checks (as speci-
fied in max_check_attempts) with the same result, the state changes from
soft to hard. Only now does Nagios inform the relevant people. The tests
are now repeated at the intervals specified in normal_check_interval.

Figure 4.4:
Example of the
oK HARD HARD chronological
progression of states
WARNING in a monitored
CRITICAL SOFT | HARD service
Y vvvvy v vy
5 10 15 20 25 30

In the next test the service is again available; thus its state changes from
CRITICAL to OK. Since an OK state is always a hard state, this change is not
subject to any tests by Nagios at shorter intervals.

The transition of the service to the OK state after an error in the hard state
is referred to as a hard recovery. The system informs the administrators of
this (if it is configured to do so) as well as of the change between various
error-connected hard states (such as from WARNING to UNKNOWN). If
the service recovers from an error soft state to the normal state (OK)—also
called a soft recovery—the administrators will not be notified.

Even if the messaging system leaves out soft states and switches back to
soft states, it will still record such states in the Web interface and in the
log files. In the Web front end, soft states can be identified by the fact that
the value 2/5 is listed in the column Attempts, for example. This means

97

4 Nagios Basics

that max_check_attempts expects five attempts, but only two have been
carried out until now. With a hard state, max_check_attempts is listed
twice at the corresponding position, which in the example is 5/5.

More important for the administrator in the Web interface than the distinc-
tion of whether the state is still “soft” or already “hard,” is the duration of
the error state in the column Duration. From this a better judgment can be
made of how large the overall problem may be.

For services that are not available because the host is down, the entry 1/5
in the column Attempts would appear, since Nagios does not repeat service
checks until the entire host is reachable again. The failure of a computer
can be more easily recognized by its color in the Web interface: the service
overview figure on page 86 marks the failed host in red; if the computer is
reachable, the background remains gray.

98

Service Checks and How They Are
Performed

To test services, Nagios makes use of external programs called plugins. In
the simplest case this involves testing an Internet service, for example,
SMTP. Here the service can be addressed directly over the network, so it
is sufficient to call a program locally on the Nagios server that tests the
mail server on the remote host.

Not everything you might want to test can be reached so easily over the
network, however; there is no network protocol for checking free capacity
on a hard drive, for example. Then you must either start a plugin on the
remote host via a remote shell (but first this has to be installed on the
remote computer), or you use other methods, such as the Simple Network
Management Protocol (SNMP), to test the hard drive capacity.

The fact that different methods are available here does not make it any
easier to get started with Nagios. For this reason, this chapter provides

99

5 Service Checks and How They Are Performed

Figure 5.1:
Nagios allows
different testing
methods.

an overview of the common methods and attempts to develop an under-
standing of the underlying concepts involved. Later chapters then provide
detailed configuration examples.

Nagios server

| Nagios |
" |core logic)

3

external
command
file

NSCA
(daemon)

\J A\ A/ \J

check_xyz check_by_ssh check_nrpe snmp
(plugin) (plugin) (plugin) (plugin)

\J VL \J \J

. sshd nrpe snmpd send_nsca

[service] [(daemon)] [(inetd)] [(daemon)] [(client)]
check_xyz check_xyz
(plugin) (plugin)

2]]

result of
service check

client 1 client client client 4 client 5

Figure 5.1 shows an overview of the various test methods supported by
Nagios. The upper box with a gray background marks all the components
that run directly on the Nagios server machine: this includes the server
itself, as well as plugins and other auxiliary tools. This unit is in contact
with five clients, which are tested in various ways. The following sections
will go into somewhat more detail regarding the individual methods.

In order to monitor the network service on the first client (starting from the
left) marked as service, the Nagios server runs its “own” plugin, check_
xyz (Section 5.1, page 101). For the second client it starts the “middle plu-
gin” check_by_ssh, in order to execute the plugin it really wants remotely
on the client (Section 5.2, page 102).

In the third case the plugin is also executed directly on the client machine,
but now Nagios uses the NRPE service, created specifically for this purpose.
The query is made on the Nagios side with check_nrpe (Section 5.3, page
102).

The fourth method performs a query via SNMP. For this, the client must
have an SNMP agent available (Section 11.1, page 228). Various plugins are
available for querying data via SNMP (Section 5.4, page 103).

100

5.1 Testing Network Services Directly

These four methods represent “active” checks, because Nagios takes the
initiative and triggers the test itself. The fifth method, in contrast, is passive.
Here Nagios does nothing actively, but waits for incoming information that
the client sends to the Nagios server with the program send_nsca. On the
Nagios server itself the Nagios Service Check Acceptor, NSCA, is running as
a daemon that accepts the transmitted results and forwards them to the
interface for external commands (see Section 5.5, page 104).

There are other ways of performing checks in addition to these. Usu-
ally a separate service is installed on the client, which is then queried
by the Nagios server via a specialized plugin. A typical example here is
NSClient/NC_Net, which can be used to monitor Windows servers (Section
20.2.1, page 464).

5.1 Testing Network Services Directly

Mail or Web servers can be tested very simply over the network, since the
underlying protocols, SMTP and HTTP, are by definition network-capable
(Figure 5.1, page 100, Client 1). Nagios can call here on a wide range of
plugins, each specialized for a particular service.

Such a specific program has advantages over a generic one. A generic plu-
gin tests only whether the corresponding TCP or UDP port is open and
whether the service is waiting there, but it does not determine whether the
correct service is on the port, or whether it is active.

Specific plugins adopt the network protocol and test whether the service on
the port in question behaves as it is expected to. A mail server, for example,
normally responds with a so-called Greeting after a connection has been
established:

220 swobspace.de ESMTP

The important thing here is the number 220. A number in the 200 range
means OK, 220 stands for the greeting. The check_smtp plugin evaluates
this reply. It can also simulate the initial dialog when sending mail (in
addition to the greeting), as shown in Section 6.3 on page 113.

It behaves in a similar way with other specific plugins, such as check_http,
which not only can handle a simple HTTP dialog, but also manipulates
HTTP headers where required, checks SSL capabilities and certificates of
the Web server, and even sends data to the server with the POST command
(more on this in Section 6.4 from page 118).

The package with the Nagios plugins, which is installed separately (see Sec-
tion 1.4 from page 43), includes specific plugins for the most important

101

5 Service Checks and How They Are Performed

network services. If one is missing for a specific service, it is worth taking a
look at the Nagios homepage! or the Exchange for Nagios Add-ons.?

If no suitable plugin can be found in these locations, you can use the
generic plugins check_tcp or check_udp, which apart from performing
a pure port test, also send data to the target port and evaluate the re-
sponse. (In most cases, this only makes sense if an ASCII-based protocol is
involved.) More on generic plugins in Section 6.7.1 on page 132.

5.2 Running Plugins via Secure Shell on the
Remote Computer

To test local resources such as hard drive capacity, the load on the swap
area, the current CPU load, or whether a specific process is running, various
local plugins are available. They are called “local” because they have to be
installed on the computer that is to be checked.

The Nagios server has no way to directly access such information over the
network, without taking further measures. However, it can start local plu-
gins on the remote host via a remote shell (Figure 5.1, page 100, Client 2).
Only the Secure Shell, SSH, should be considered for use here; the Remote
Shell, RSH, simply has too many security holes.

To do this, the Nagios server runs the program check_by_ssh, which is
given the command, as an argument, to run the local plugin on the target
host. For this, check_by_ssh needs a way of logging into the target host
without a password, which can be set up with Public Key Authentication.

From the viewpoint of the Nagios server, check_by_sshis the plugin whose
results are processed. It does not notice anything concerning the start of
the secure shell connection and of the remote plugin—the main thing is
that the reply corresponds to the Nagios standard and contains the status
plus a line of comment text for the administrator. (See the introduction to
Chapter 6 on page 105.)

Further information on the Remote Execution of plugins via Secure Shell is
provided in Chapter 9 on page 205.

5.3 The Nagios Remote Plugin Executor

An alternative method of running plugins installed on the target computer
via the secure shell is represented by the Nagios Remote Plugin Executor
(NRPE). Figure 5.1 (page 100) illustrates this with the middle client.

1 nttp://www.nagios.org/
2 http://www.nagiosexchange.org/

102

5.4 Monitoring via SNMP

The NRPE is installed on the target host and started via the inet daemon,
which must be configured accordingly. If NRPE receives a query from the
Nagios server via the (selectable) TCP port 5666, it will run the matching
query for this. As with the method using the Secure Shell, the plugin that is
to perform the test must be installed on the target host.

So all of this is somewhat more work than using the Secure Shell, especially
as SSH should be installed on almost every Unix machine, and when it is
used, enables monitoring to be configured centrally on the Nagios server.
The Secure Shell method requires an account with a local shell, however,
thus enabling any command to be run on the target host.> The Remote Plu-
gin Executor, on the other hand, is restricted to the commands configured.

If you don’t want the user nagios to be able to do anything more than
run plugins on the target host without a password, than you are better off
sticking with NRPE. The installation configuration for this is described in
Chapter 10 on page 213.

5.4 Monitoring via SNMP

With the Simple Network Management Protocol, SNMP, local resources can
be queried over the network (see also Client 4 in Figure 5.1, page 100).
If an SNMP daemon is installed (NET-SNMPD is used extensively and is
described in Section 11.2.2 on page 238), Nagios can use it to query local
resources such as processes, hard drive, and interface load.

The advantage of SNMP lies in the fact that it is widely used. There are cor-
responding services for both UNIX and Windows systems, and almost all
modern network components such as routers and switches can be queried
via SNMP. Even uninterruptable power supplies (UPSs) and other equip-
ment sometimes have a network connection and can provide current status
information via SNMP.

Apart from the standard plugin check_snmp, a generic SNMP plugin, there
are various specialized plugins that concentrate on specific SNMP queries
but are sometimes more simple to use. check_ifstatus and check_if-
operstatus, for example, focus on the status of network interfaces.

If you are grappling with SNMP for the first time, you will soon come to
realize that the phrase “human-readable” did not seem to be high on the list
of priorities when the protocol was defined. SNMP queries are optimized
for machine processing, such as for a network monitoring tool.

If you use the tool available from the vendor for its network components,
SNMP will basically remain hidden to the user. But to use it with Nagios,

3 The Secure Shell does allow a single command to be executed without opening a sep-
arate shell. Usually, however, you will want to test several resources, so you'll need to
run more than one command.

103

5 Service Checks and How They Are Performed

you have to get your hands dirty and get involved with the protocol and
its underlying syntax. It takes some getting used to, but it’s not really as
difficult as it seems at first sight.

The use of SNMP is the subject of Chapter 11 (page 227); there you can
learn how to configure and use an SNMP daemon for Linux and other UNIX
systems.

5.5 The Nagios Service Check Acceptor

The fifth method of processing the results of service checks leads to the use
of the Nagios Service Check Acceptor, NSCA. This runs as a daemon on the
Nagios server and waits for incoming test results (see Figure 5.1 on the right
on page 100). This method is referred to as passive, because Nagios itself
does not take the initiative.

NSCA uses the interface for external commands used by CGI scripts, among
others, to send commands to Nagios. It consists of a named pipe* from
which Nagios reads the external commands. With the command PROCESS_
SERVICE_CHECK_RESULT Nagios processes test results that were determined
elsewhere. The interface itself is described in more detail in Section 13.1 on
page 292.

The main use for NSCA is Distributed Monitoring. By this we mean having
several different Nagios installations that send their results to a central Na-
gios server. The distributed Nagios servers, perhaps in different branches of
a company, work as autonomous and independent Nagios instances, except
that they also send the results to a head office. This does not check the de-
centralized networks actively, but processes the information sent from the
branches in a purely passive manner.

NSCA is not just restricted to distributed monitoring, however. With the
program send_nsca, test results can be sent which were not obtained from
a Nagios instance, but rather from a cron job, for example, which executes
the desired service check.

Before you use NSCA, you should consider the security aspects. Because it
can be used by external programs to send information and commands to
Nagios, there is a danger that it could be misused. This should not stop you
from using NSCA, but rather should motivate you into paying attention to
security aspects during the NSCA configuration.

Further information on using NSCA, distributed monitoring and on secu-
rity in general is provided in Chapter 14 on page 299.

4 A named pipe is a buffer to which a process writes something and from which another
process reads out the data. This buffer is given a name in the file system so that it can
be specifically addressed, which is why it is called named pipe.

104

Plugins for Network Services

Every plugin that is used for host and service checks is a separate and inde-
pendent program that can also be used independently of Nagios. The other
way round, it is not so easy: in order for Nagios to use an external program,
it must obey certain rules. The most important of these concerns the re-
turn status that is returned by the program. Using this, Nagios precisely
evaluates the status. Table 6.1 displays the possible values.

Status Name Description

0 OK Everything in order

1 WARNING Warning limit has been exceeded, but critical
limit not yet reached

2 CRITICAL Critical limit exceeded or the plugin has bro-

ken off the test after a timeout

Table 6.1:
Return values for
Nagios plugins

105

6 Plugins for Network Services

continued:

Status Name Description

3 UNKNOWN Error has occurred inside the plugin (the
wrong parameter has been used, for exam-
ple)

A plugin therefore does not distinguish by using the pattern “OK—Not OK,”
but instead is more highly differentiated. In order for it to be able to cat-
egorize a status as WARNING, it requires details of up to what measured
value a certain event is regarded as OK, when it is seen as a WARNING, and
when it is CRITICAL.

For example, apart from the response time, a ping also returns the rate of
packet loss. For a slow network connection (ISDN, DSL), a response time of
1000 milliseconds could be seen as a warning limit and 5000 milliseconds
as critical, because that would mean that interactive working is no longer
possible. If there is a high load on the network connection, occasional
packet loss could also occur,! so that 20 percent packet loss can be specified
as a warning limit and 60 percent as the critical limit.

In all cases, the administrator decides what values shall serve as warning
signs or be regarded as critical. Since all services can be individually con-
figured, the values for each host may vary, even in the same plugin.

Plugins always have a timeout, which is usually ten seconds. This prevents
the program from waiting endlessly, thus stopping a large number of plu-
gin processes from accumulating at the Nagios host. In other ways too, a
response time above 10 seconds makes little sense for many applications,
since these interrupt connection attempts themselves after a certain time
span, which has the same effect as the total failure of the corresponding
service. Here the administrator can step in and explicitly specify a different
timeout.

A further characteristic of all plugins is a text output, which Nagios shows in
its overview. It is principally intended for the administrator, so it needs to
be “human-readable.” Nagios 2.x processes only the first line, and here the
output may not exceed 300 characters. Nagios since version 3.0 no longer
has this restriction. The output may have multiple lines and can be up to
8 KB in length (see Section 8.5.1, page 193). In the Web interface, however,
Nagios 3.0 also displays only the first line. Simple plugins should there-
fore restrict their output to a single line, the multiple-line output is rec-
ommended only for special applications such as the plugin check_multi
(Section 8.5 from page 191). The following form has become established
for the text output:

TYPE OF CHECK STATUS - informational text

1 1c™mP packets are not re-sent; a lost packet remains lost.

106

6 Plugins for Network Services

In practice, the text output looks like this:

SMTP OK - 0.186 sec. response time
DISK WARNING - free space: /net/eli02/a 3905 MB (7%);

The above examples are from the plugin check_smtp and check_disk,
respectively. In both cases, the type of check (here SMTP or DISK) is followed
by the status in text form and then the actual information. Not all plugins
adhere to this recommendation in their output. Sometimes the detail of
the test type is missing, and sometimes even the status is missing.

Various plugins also provide performance information, which can be eval-
uated and graphically represented with external programs (see Chapter 19,
page 403):

OK - 172.17.129.2: rta 97.751ms, lost O%l rta=97.751ms;200.000;500.000;0
;pl=0%;40;80;;

As can be seen here from the example of the check_icmp plugin, the per-
formance data follows the text output, separated by the pipe character |.
These data do not appear in the Web interface.

check_icmp here provides two values: the medium reply time, rta (Real
Time Answer), in milliseconds and the packet loss rate, pl.2 For each vari-
able, the plugin first displays the measured value (97.751 ms and 0%), fol-
lowed by the warning limit (200 milliseconds or 40 percent) and the critical
limit (500 milliseconds or 80 percent). The fact that only the first value in
the rta or pl list is provided with a scale unit is specified by the Developer
Guidelines—since the unit of a variable does not change, it only needs to
be given once.

To keep the installation (Section 1.4 from page 43) as simple as possible,
there are no manual pages for the plugins. Each of these programs must
maintain an online help, which is displayed with the option -h or --help.
Some plugins distinguish here between a short help (-h) and a long one
(--help); it is therefore recommended that you always try --help as well.

This chapter introduces the most important plugins from the basic distri-
bution of the nagios-plugins package, version 1.4.11,> which test net-
work services. With their help, the Nagios server queries services on other
servers. The description is restricted to the functionality that is important
for normal operation. If you are interested in all the options, we refer you
to the integrated online help.

2
3

Short for packet loss.

Versions prior to 1.4 should no longer be used. Some parameters have changed, and
often performance data output is missing. In addition, plugin developers make great
efforts to clean up existing errors and to continually improve the plugins.

107

6 Plugins for Network Services

Standard options of

Table 6.2:

plugins

6.1 Standard Options

Table 6.2 lists the options that are common to all plugins. The options in
bold type must be known to all plugins. The key words not in bold type can
be omitted by the programs, but if they are supported at all, they must be
used in the sense specified.

If an option demands an argument, it is usually separated by spaces in the
short form, but by equals signs in the long form. But for Perl or shell scripts
in particular, not all authors adhere to these, so you have no option here
but to take a look at the corresponding description.

Short form Long form Description

-h --help Output of the online help

-V --version Output of the plugin version

-v --verbose Output of additional information-this
option may be given multiple times*

-H --hostname Host name or IP address of the target

-t --timeout Timeout in seconds after which the

plugin will interrupt the operation and
return the CRITICAL status

-w --warning Specificies the warning limit value
-c --critical Specifies the critical limit value
-4 --use-ipv4 Force IPv4 to be used

-6 --use-ipv6 Force IPv6 to be used

Thus it is not allowed to use -c, for example, for anything other than spec-
ifying a critical limit. How exactly -c and -w are used may, on the other
hand, vary from plugin to plugin, because sometimes an individual value
may be required, at other times, multiple values (see also the explanations
on the plugin check_icmp), described below.

Most plugins also have the options -4 and -6, which was not necessarily
the case prior to version 1.4.

6.2 Reachability Test with Ping

The classic reachability test in UNIX systems has always been a ping, which
sends an ICMP echo request packet and waits for an ICMP echo response
packet. The Nagios plugin package includes two programs that carry out

4 Whether this leads to more information depends on the individual plugin ...

108

6.2 Reachability Test with Ping

this ping check: check_icmp and check_ping. Even though check_ping
is used in the standard configuration, you should replace it with the more
efficient check_icmp, which has been included since plugin version 1.4.

Whereas check_ping calls the UNIX program /bin/ping, which is why
there are always compatibility problems with the existing ping version,
check_icmp sends ICMP without any external help programs. check_icmp
basically works more efficiently, since it does not wait for one second be-
tween individual packets, as ping does. In addition it evaluates ICMP error
messages such as ICMP host unreachable, while check_ping discards
these. check_icmp is backward-compatible to check_ping; this makes it
easy to do without check_ping entirely and to replace it with check_icmp.

check_icmp measures the reply time of the ICMP packets and determines
the proportion of packets that have been lost. If an error message arrives
instead of the expected ICMP echo reply, this is evaluated immediately.
Thus Nagios breaks off the test if an ICMP host unreachable message
arrives.

check_icmp has the following options:®

-H address
Without the host name or the IP address of the computer to be tested,
check_icmp cannot work. With -H, multiple host entries can be
separated, using spaces.

-w response_time ,packet_loss_percent},
This switch sets the warning limit for a warning. response time
stands here for the desired response time in milliseconds, packet
loss percent stands for the corresponding packet loss as a per-
centage. If you specify -w 500.0,20% the plugin will give a warning
either if the response time is at least 500.0 milliseconds or if 20 per-
cent or more of ICMP packets are lost.

-c response_time ,packet_loss_percent},
This switch specifies the critical limit in the same way as -w defines
the warning value. The critical limit should always be larger than the
warning limit.

-n packets
With packets you can set the number of packets that check_icmp
should use for each test. The default is 5 packets.

-1 packet_interval
This switch sets the time interval between two single packets that are
going to the same host. The default is 80 milliseconds. It is specified
as a floating point (e.g., -i 80.000).

5 The online help check_icmp -h says that it knows some of the options in the long
form as well, but these have not been implemented as of today.

109

6 Plugins for Network Services

-1 target_interval

This switch sets the time interval in which packets are sent to dif-
ferent hosts (provided that -H contains more than one host). The
default is 0 milliseconds, meaning that packets to multiple hosts are
sent simultaneously.

-m number_of_reachable_hosts

This switch specifies the number of hosts that must be reachable for
the plugin to return OK. This option allows a simple cluster check:

nagios@linux:local/libexecs$./check icmp -m 2 -H 192.168.1.9

\

192.168.1.11 192.168.1.13

OK - 192.168.1.9: rta 0.098ms, lost 0% :: 192.168.1.11l: rta nan, 1
ost 100% :: 192.168.1.13: rta 0.744ms, lost O%\192.168.1.9rta=0.09

8ms;200.000;500.000;0; 192.168.1.9p1=0%;40;80;; 192.168.1.11rta=0.
000ms;200.000;500.000;0; 192.168.1.11p1=100%;40;80;; 192.168.1.13r
ta=0.744ms;200.000 ;500.000;0; 192.168.1.13p1=0%;40;80;;

Of the three hosts specified, 192.168.1.11 (printed in bold) is not
reachable. -m 2 requests only two reachable hosts; therefore, the re-
sult is OK. Without this detail, the result would be CRITICAL, because
one host is not reachable.

-1 ttl

A value larger than 0 sets the TTL (Time to Live) of the IP packet. The
default is the value 0, which means that the plugin leaves the choice
of the TTL to the operating system.

-t timeout

After timeout seconds have passed, the plugin interrupts the test
and returns the CRITICAL status. The default is 10 seconds.

Like the program /bin/ping, check_icmp must also run with root per-
missions, which is why the SUID bit is set:

linux:~ # chown root.nagios /usr/local/nagios/libexec/check icmp
linux:~ # chmod 4711 /usr/local/nagios/libexec/check icmp
linux:~ # 1s -1 /usr/local/nagios/libexec/check_icmp

-rwsr-x--x 1 root nagios 61326 2005-02-08 19:49 check icmp

As a test, you should execute the plugin on the command line as the user
nagios, since Nagios will later execute it under this account:

nagios@linux:~$ cd /usr/local/nagios/libexec
nagios@linux:nagios/libexec$./check icmp -H 192.168.1.13 \
-w 100.0,20% -c 200.0,40%

OK - 192.168.1.13: rta 0.253ms, lost 0%| rta=0.253ms;100.000;200.000;0;
pl=0%;20;40;;

110

6.2 Reachability Test with Ping

check_icmp then sends the standard number of five ICMP packets on their
way. Instead of an OK, it issues a WARNING as soon as the response time,
averaged over all the packets, is at least 100.0 milliseconds or if 20 percent
or more are lost—that is, at least one packet in five. For a CRITICAL status,
the average response time must be at least 200.0 milliseconds, or at least
two packets (40 percent of five) must remain unanswered.

6.2.1 check_icmp as a Service Check

In order for check_icmp to be used as a service check, you need to have a
suitable command object. The file checkcommands . cfg, with check_ping,
already has one for the ping service. We will just replace the check_ping
plugin in it with check_icmp:

define commandf{
command name check ping
command_line $USER1S$/check icmp -H S$SHOSTADDRESSS -w SARG1S -c S$ARG2S

}

The macro $HOSTADDRESS$ provides the IP address of the address pa-
rameter from the host definition, and with the two freely defined macros
$ARG1$ and $ARG2$, parameters can be taken over from the service defini-
tion, so that warning and critical limits can be set with these.

In the service definition (an extract of it is shown here)® for the PING ser-
vice, the check_command entry, in addition to the name of the command
object to be executed, now needs two arguments, which are entered after
the command and separated by an exclamation mark:

define servicef
service_description PING
host_name linux01
check command check ping!100.0,20%!500.0,60%

}

From the definition of the command object, you can see that the first pa-
rameter (100.0,20%) defines the warning limit, and the second one (500.0,
60%) defines the critical value.

6.2.2 check_icmp as a Host Check

To be able to use the plugin under the name check_host for host checks,
a corresponding symbolic link to check_icmp is set:

6 Like any other object, service definitions can also be defined in a file of your choice,
from which Nagios loads object definitions. For the sake of clarity it is best to choose a
descriptive name for the file, such as services.cfg, as in our example on page 56.

111

6 Plugins for Network Services

linux:~ # cd /usr/local/nagios/libexec
linux:nagios/libexec # 1n -s check_icmp check_host

If it is called under its new name, check_host, the plugin modifies its be-
havior somewhat: it interrupts the test after receiving the first ICMP echo
reply, because a single reply packet is enough to prove that the host “is
alive.” The same applies if the first response to be returned is an error
message such as ICMP network unreachable or host unreachable—
the host is then considered to be unreachable.

Host checks are defined like every other check. The only difference is that
this test is specified during the definition of the host object (and not of a
service object):

define host({

host_name linux01
alias Linux File Server
address 192.168.1.21

check command check-host-alive

The name used here, check-host-alive, can be freely defined and can be
specified separately for each host. The definition of the command itself is
made in checkcommands.cfg:

define command{
command name check-host-alive
command_line $USER1$/check host -H SHOSTADDRESSS

Host checks do not always need to be executed with check_icmp. You
could just as well measure the refrigerator temperature or test, with the
generic plugins for TCP or UDP (check_tcp and check_udp; see Section
6.7.1 from page 132), whether a specific port is open or not. The port scan-
ner nmap, for example, uses TCP port 80 (HTTP).

The disadvantage of such a method lies in the fact that, apart from the
host itself, another application also needs to run—that is, the Web server.
In addition, the test of a specific application by no means proves that the
computer is no longer reachable. A ping has the great advantage that the
kernel replies to ICMP echo request messages itself, so that no application
needs to be running for this. You should therefore change from ping to
other host check methods only if there is a good reason to do so. One
example might be a firewall that filters ICMP messages, and over which the
administrator has no influence, but that does let through HTTP queries on
TCP port 80.

112

6.3 Monitoring Mail Servers

6.3 Monitoring Mail Servers

A number of plugins are also available to monitor mail servers. The mail
server itself (Mail Transport Agent (MTA)) is monitored by check_smtp,
and the mail queue on the mail server can be checked with check_mailqg.
Since the latter test takes place locally, the plugin is described in the next
chapter in Section 7.8 (page 180).

To monitor the Mail User Agent (MUA) protocols POP3 and IMAP —includ-
ing the SSL variants, POP3S and IMAPS—the plugin check_tcp is used.
check_pop and so forth are symbolic links to check_tcp, which deter-
mines which protocol it should test by means of the name by which it is
called, and makes the relevant presettings.

6.3.1 Monitoring SMTP with check_smtp

The SMTP monitoring plugin check_smtp has the following options:

-H address / --host=address
Details the computer on which the SMTP service should be checked.

-p port / --port=port
port determines the ports, in case the mail service is not listening
on the standard port 25. In this way the mail virus scanner Amavis
(usually port 10024) can be monitored, for example. But this can
normally be reached only from localhost.

-e string /| --expect=string
string defines the text which the mail server must provide in the
very first reply line. The default setting for string is 220, with which
the normal SMTP greeting begins, but there may be servers that have
different settings. A wrong reply from the service monitored will gen-
erate a WARNING.

-f address / --from=address
With address you specify a mail address that check_smtp then sends
to the server with the “MAIL FROM:” command. This option is re-
quired to test a Microsoft Exchange 2000 Server.

-C "mail command" / --command="mail command"
With -C you can send individual mail commands to the server, to
extend the test slightly (see example below).

-R "string" / --response="string"
If you send an SMTP command to the server with -C, you can spec-
ify the expected reply here instead of string (for example, 250). A
“wrong” reply triggers a WARNING.

113

6 Plugins for Network Services

-S/ --starttls
The connection setup during the test uses STARTTLS.

-D duration/ --certificate=duration
The minimum duration in days for which the certificate used for
STARTTLS must still be valid.

-A / --authtype=authentication type
The authentication type for the SMTP-Auth procedure. The default is
none (no authentication). The only procedure supported until now is
LOGIN, which is based on user-password pairs.

-U/ --authuser=user
The user name for the SMTP authentication, if -A LOGIN is used.

-P / --authpass=password
The accompanying password if -A LOGIN is specified.

-w floating_point_dec / --warning=floating_point_dec
If the server takes longer than floating_point_dec seconds for the
answer, check_smtp issues a WARNING.

-c floating_point_dec / --critical=floating_point_dec
Like -w, except that check_smtp issues a CRITICAL after floating_
point_dec seconds.

In the simplest case, you just enter the name or the IP address of the mail
server:

nagios@linux:nagios/libexec$./check smtp -H smtpOl
SMTP OK - 0,008 sec. response time\time=0,008157s;;;0,000000

The plugin check_smtp sends back a HELO hostname after receiving the
SMTP greeting, which should contain the reply 250.

The definition of the corresponding command object in this case appears
as follows:

define commandf{
command_name check smtp
command_line S$USER1S$S/check smtp -H $HOSTADDRESSS

To check the host object 1inux01 with this, it requires the following service
definition:

define service{
service_description SMTP

114

6.3 Monitoring Mail Servers

host_name linux01
check command check smtp

}

Using the -C option, the SMTP dialog can be extended even further, roughly
until RCPT TO:

nagios@linux:nagios/libexec$./check smtp -H localhost \
-C "MAIL FROM: <bla@gna.dot>" -R "250" \
-C "RCPT TO: <bla@gna.dot>" -R "554"
SMTP OK - 0,019 sec. response time\time=0,018553s;;;0,000000

Such a test could be used, for example, to check the configuration of the
restrictions built into the mail server (invalid domains, spam defenses, and
more). The example checks whether the mail server refuses to accept a mail
containing the invalid domain gna.dot (that is, in the RCPT T0:). The test
runs successfully, therefore, if the server rejects the mail with 554. What
check_smtp does here corresponds to the following mail dialog reproduced
by telnet:

user@linux:~$ telnet localhost 25
Trying 127.0.0.1...

Connected to localhost.

Escape character is '*]’.

220 swobspace.de ESMTP

helo swobspace

250 swobspace.de

MAIL FROM: <bla@gna.dot>

250 Ok

RCPT TO: <bla@gna.dot>

554 <bla@gna.dot>: Recipient address rejected: test not existing top lev
el domain

If the mail server did not reject the recipient domain because of the config-
uration error, the reply would no longer contain 554 and the plugin would
issue a WARNING.

In general you should remember, when checking restrictions, that the ser-
ver rejects mails only after a RCPT TO:, depending on the configuration,
even if the reason for this (a certain client IP address, the server name in
HELO or the sender address in MAIL FROM:) has already occurred before
this.

6.3.2 POP and IMAP

Four pseudo plugins are available for testing the POP and IMAP proto-
cols: check_pop, check_spop, check_imap, and check_simap. They are

115

6 Plugins for Network Services

called pseudo plugins because they are just symbolic links to the plugin
check_tcp. By means of the name with which the plugin is called, this
determines its intended use and correspondingly sets the required param-
eters, such as the standard port, whether something should be sent to the
server, the expected response, and how the connection should be termi-
nated. The options are the same for all plugins, which is why we shall
introduce them all together:

-H address / --host=address
This specifies the computer on which POP or IMAP is to be checked.

-p port / --port=port
port specifies an alternative port if the plugin is intended to monitor
a different port from the standard one: 110 for check_pop, 995 for
check_spop, 143 for check_imap, and 993 for check_simap (see also
/etc/services).

-w floating_point_dec / --warning=floating_point_dec
The placeholder floating_point_dec is replaced by the warning
limit for the response time in seconds, specified as a floating point
decimal.

-c floating_point_dec / --critical=floating_point_dec
This sets the critical limit for the response time in seconds (see -w).

-s "string" / --send="string"
This string is to be sent to the server. In the default setting, none of
the four plugins uses this option.

-e "string" /| --expect="string"
string specifies a text string, which must be contained in the re-
sponse of the server. The default is +0K for (S)POP and * 0K for
(SYIMAP. This option may be given multiple times to search for dif-
ferent partial strings in the answer.

-E / --escape
This switch allows the use of the escape sequences \n, \r, \t, or
simply \ in the details for -s and -e. In all cases -E must be placed
in front of the options -s and -e on which it is to have an influence.

-A/--all
If you specify several reply strings with -e, the plugin with -A will
only return OK if all required reply strings were found. Without this
option, one string out of several sought is enough to trigger a positive
acknowledgment.

-M return value / -mismatch=return value
How should the plugin react if a returned string does not match the

116

6.3 Monitoring Mail Servers

statement in -e? The default is warn, which means there is a WARN-
ING. With crit a false return can be assigned as CRITICAL, with ok
as OK.

-q "string" / --quit="string"
This is the string with which the service is requested to end the con-
nection. For (S)POP this is QUIT\r\n, for (S)IMAP, a1l LOGOUT\r\n.

-3/ --ssl
The connection set up during the test uses SSL/TLS for the connec-
tion. If you call the plugins check_simap and check_spop, this op-
tion is set automatically. In order for a connection to be established,
the server must support SSL/TLS directly on the addressed port.

STARTTLS’ on its own does not support the plugin. With

./check_imap -H computer -s "al CAPABILITY" -e "STARTTLS"

you can at least check whether the server provides this method: the
plugin returns OK if the reply string contains STARTTLS, or WARNING
if it doesn’t. But this is not really a genuine test of whether STARTTLS
really does work properly.

-D duration / --certificate=duration
This switch specifies the number of days the certificate used for
STARTTLS will remain valid.

-r return_value /| -refuse=return_value
This switch specifies which value the plugin returns if the server re-
jects the TCP connection. The default is crit (CRITICAL). The value
ok can be set in case no POP or IMAP service is available. The third
possible value, warn, triggers a WARNING.

-m bytes / --maxbytes=bytes
This switch advices the plugin to close the TCP connection when the
specified data amount (in bytes) has been received.

-d seconds / --delay=seconds
This switch waits for the specified time after a string has been sent to
the server before the answer is searched for the string specified with
-e.

STARTTLS refers to the capacity of a service to set up an SSL/TLS-secured connection
after a normal connection has been established—for example, for POP3, via TCP port
110. Every service that implements STARTTLS must have a suitable command avail-
able to do this. With POP3 this is called STLS (see RFC 2595). STARTTLS is used with
SMTP, LDAP, IMAP, and POP3, among others, but not every server supports this method
automatically.

117

6 Plugins for Network Services

Of course, all the other options of the generic plugin check_tcp (described
in Section 6.7.1 on page 132) can be used with check_pop, check_spop,
check_imap, and check_simap.

In the simplest case you just need to give the name of the computer to be
tested (here: mailsrv) or the IP address:

nagios@linux:nagios/libexec$./check pop -H mailsrv

POP OK - 0.064 second response time on port 110 [+OK elill Cyrus POP3
v2.1.16 server ready <1481963980.1118597146@elill>]
‘time:0.0642285;0.000000;0.000000;0.000000;l0.000000

In each case the plugin provides just one line of output, which has been
line-wrapped here for layout reasons. The details after the pipe character
| in turn involve performance data not shown by the Web interface. The
structure of performance data and how they are processed are described in
more detail in Section 19.1 on page 404.

Implemented as a command object, the above check_pop command looks
like this:

define commandf{
command_name check pop
command_line S$USER1S$/check pop -H $HOSTADDRESSS

As a service for the machine 1inux01, it is integrated like this:

define service{
service_description POP
host_name linux01
check command check pop

6.4 Monitoring FTP and Web Servers

The Nagios plugin package provides two plugins to monitor the classic In-
ternet services FTP and HTTP (including HTTPS): check_ftp and check_
http. When many users from a network are using Web services, a proxy is
usually used in addition. To monitor this, you could also use check_http,
but with the check_squid.pl plugin, The Nagios Exchange has a better
tool available.

118

6.4 Monitoring FTP and Web Servers

6.4.1 FIP services

The plugin check_ftp is, like the plugins for POP and IMAP, a symbolic
link to the generic plugin check_tcp, so that it also has the same options.
They are described in detail in Section 6.7.1 on page 132.

The generic plugin sets the following parameters if it is called with the name
check_ftp:

--port=21 --expect="220" --quit="QUIT\r\n"

It does not send a string to the server, but it expects a reply containing the
text 220, and it ends the connection to the standard port 21 cleanly with
QUIT\r\n.

On the command line there is, as usual, a one-line reply (with line breaks
for the printed version) with performance data after the | character that
is not shown by the Web interface, (see Section 19.1 from page 404) for an
explanation of this:

nagios@linux:nagios/libexec$./check ftp -H ftp.gwdg.de

FTP OK - 0,130 second response time on port 21 [220-Gesellschaft fuer wi
ssenschaftliche Datenverarbeitung mbH Goettingen] |time=0,130300s;0,0000
00;0,000000;0,000000;10,000000

As a command object, this call appears as follows:

define command{
command_name check_ ftp
command_line $USER1S$/check ftp -H SHOSTADDRESSS

A corresponding service definition looks like this:

define servicef{
service_description FTP
host_name linux01
check command check ftp

6.4.2 Web server control via HTTP

The check_http plugin for HTTP and HTTPS checks contains a large num-
ber of very useful options, depending on the intended use:

119

6 Plugins for Network Services

-H virtual_host / --hostname=virtual_host
This switch specifies the virtual host name that the plugin transmits
in the HTTP header in the host: field:

nagios@linux:nagios/libexec$./check http -H www.swobspace.de
HTTP OK HTTP/1.1 200 OK - 2553 bytes in 0.154 seconds

If you don’'t want check_http to send this, you can use -I instead.

-I ip-address / --IP-address=ip-address
Instead of ip, the host name or IP address of the target computer is
given. For systems with several virtual environments, you will land
in the default environment, and for most Web hosting providers you
will then receive an error message:

nagios@linux:nagios/libexec$./check http -I www.swobspace.de
HTTP WARNING: HTTP/1.1 404 Not Found

-u url_or_path / --url=url_or_path
The argument is the URL to be sent to the Web server. If the design
document lies on the server to be tested, it is sufficient to enter the
directory path, starting from the document root of the server:

nagios@linux:nagios/libexec$./check http -H linux.swobspace.net \
-u /mailinglisten/index.html
HTTP OK HTTP/1.1 200 OK - 5858 bytes in 3.461 seconds

If this option is not specified, the plugin asks for the document root

/.

-p port / --port=port
This is an alternative port specification for HTTP.

-w floating_point_dec / --warning=floating_point_dec
This is the warning limit for the response time of the Web server in
seconds.

-c floating_point_dec / --critical=floating_point_dec
This is the critical limit for the response time of the Web server in
seconds.

-t timeout / --timeout=timeout
After timeout seconds have expired, the plugin interrupts the test
and returns the CRITICAL status. The default is 10 seconds.

-L/ --1link-url
This option ensures that the virtual host in the text output appears
on the Web interface as a link.

120

6.4 Monitoring FTP and Web Servers

nagios@linux:nagios/libexec$./check_http -H www.swobspace.de -L
 HTTP OK HTT
P/1.1 200 OK - 2553 bytes in 0.156 seconds

-a username :password / --authorization=username : password
If the Web server requires authentication, this option can be used to
specify a user-password pair. The plugin can only handle basic au-
thentication, however; digest authentication is currently not yet pos-
sible.

-f behavior / --onredirect=behavior

If the Web server sends a redirect as a reply to the requested Web
page, the behavior parameter influences the behavior of the plu-
gin. The values ok, warning, critical and follow are allowed. The
default is ok, so the plugin will simply return an OK, without follow-
ing the redirect. The plugin can be made to follow the redirect with
follow. warning and critical with a redirect return the WARNING
or CRITICAL status.

-e "string" /| --expect="string"
This is the text that the server response should contain in its first
status line. If this option is not specified, the plugin expects HTTP/1.
as a string.

-s "string" / --string="string"
This is the search text that the plugin looks for in the contents of the
page returned, not in the header.

-r "regexp" | --regex="regexp"
This is a regular expression® for which the plugin should search in
the page returned.

-R "regexp" /| --eregi="regexp"
This switch works like -r, except that the plugin now makes no dis-
tinction between upper and lower case.

--invert-regex
This inverts the search with -r or -R. The plugin now returns CRITI-
CAL instead of OK if there is a match.

-1 / --linespan
Normally the search for regular expressions is restricted to one line
with -r and -R. If -1 precedes these options, the search pattern can
refer to text covering multiple lines.

8 Posix regular expressions, see man 7 regex.

121

6 Plugins for Network Services

-P string / --post=string

Use this switch for data that you would like to send via a POST com-
mand to the Web server. The characters in string must be encoded
in accordance with RFC 1738:° only the letters A to Z (upper and
lower case), the special characters $-_.+!*’ (), and the numbers 0
to 9 are allowed.

To send the text Ubung fiir Anfénger (“Exercise For Beginners” in
German) as a string, umlauts and spaces must be encoded before
they are sent: %,DCbung20£f%FCr/20Anf,E4nger.

-T string / -content-type=string

This specifies the content type of the header, if you are sending
something with --post, for example, to the server. The default is
application/x-www-form-urlencoded. A list of all content types
is given in the file /etc/mime. types, and a description of the format
can be found in RFC 2045.10

-m min_bytes :max_bytes /| --pagesize=min_bytes :max_bytes

This parameter defines that the page returned must be at least min_
bytes in size, otherwise the plugin will issue a WARNING. You can
optionally use an upper limit as well—separated by a colon—to spec-
ify the size of the Web page. Now check_http will also give a warning
if the page returned is larger than max_bytes. In the following ex-
ample, everything is in order if the page returned is at least 500 bytes
and at most 2000 bytes in size:

nagios@linux:nagios/libexec$./check http -H www.swobspace.de \
-m 500:2000
HTTP WARNING: page size 2802 too large|size=2802B;500;0;0

-N/ --no-body

With this option the plugin does not wait for the server to return the
complete page contents, but just reads in the header data. To do this
it uses the HTTP commands GET or POST, and not HEAD.

-M seconds / --max-age=seconds

If the returned document is older than the date specified in the header
(HTTP header field Date:), the plugin will generate a WARNING. In-
stead of seconds (without additional details) you can also use explicit
units such as 5m (five minutes), 12h (twelve hours), or 3d (three days);
combinations are not allowed.

-A "string" / --useragent="string"

This parameter explicitly specifies a user agent in the HTTP header,

9 http://www.faqs.org/rfcs/rfc1738.html, paragraph 2.2
10 http://tools.ietf.org/html/rfc2045#section-5

122

6.4 Monitoring FTP and Web Servers

such as -A *’Lynx/1.12” for Lynx version 1.12. Normally the plugin
does not send this field.

-k "string" / --header="string"
This specifies any HTTP header tags. If several tags are to be speci-
fied, they must be separated by a semicolon, as in the following ex-
ample:

-k "Accept-Charset: iso-8859-1; Accept-Encoding: compress, gzip;"

-S/ --ssl
This forces an SSL connection to be used:

nagios@linux:nagios/libexec$./check http --ssl -H \
www.verisign.com
HTTP OK HTTP/1.1 200 OK - 33836 bytes in 1.911 seconds

The host www.verisign.comallows an SSL connection. If this is not
the case, the server returns an error and the plugin returns the value
CRITICAL:"!

nagios@linux:nagios/libexec$./check http --ssl -H www.swobspace.de
Connection refused
Unable to open TCP socket

-C days / --certificate=days
Tests whether the certificate is at least valid for the given number of
days. Otherwise a WARNING is issued.

-4 /| --use-ipv4
The test is made explicitly over an IPv4 connection.

-6/ --use-ipv6

The test is made explicitly over an IPv6 connection.

The definition of a corresponding command object and its use as a ser-
vice is no different from that based on other plugins; page 124 shows an
example.

6.4.3 Monitoring Web proxies
Proxy test with check_http
A proxy such as Squid can also be tested with check_http, but this assumes

that you have some knowledge of how a browser makes contact with the
proxy. It does this in the form of an HTTP header:

11 This can be checked in the shell with echo $7.

123

6 Plugins for Network Services

GET http://www.swobspace.de/ HTTP/1.1

Host: www.swobspace.de

User-Agent: Mozilla/5.0 (X11; U; Linux i686; de-DE; rv:1.7.5)
Gecko/20041108 Firefox/1.0

Accept: text/xml,application/xml,application/xhtml+xml, ...
Accept-Language: de-de,de;g=0.8,en-us;g=0.5,en;g=0.3
Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-15,utf-8;9=0.7,%;9=0.7
Keep-Alive: 300

Proxy-Connection: keep-alive

Pragma: no-cache

Cache-Control: no-cache

The decisive entries are printed in bold type. In contrast to normal Web ser-
ver queries, the browser requests the document from the server via a GET
command, not by specifying the directory path, but by using the complete
URL, including the protocol type. In the Host: field it specifies the host
name of the Web server that it actually wants to reach. With normal HTTP
queries that go directly to a Web server (and not via a proxy), the host name
of the Web server would be written there. This behavior can be reproduced
with check_http:

nagios@linux:nagios/libexec$./check http -H www.swobspace.de \
-I 192.168.1.13 -p 3128 -u http://www.swobspace.de
HTTP OK HTTP/1.0 200 OK - 2553 bytes in 0.002 seconds

In order to set the Host: field in the header, you specify the name of a Web
server with -H. The nonlocal URL is forced by a -u, and specifying -I at
the same time ensures that the proxy is addressed, and not the Web server
itself. Finally you need to select the proxy port, and the proxy test is then
complete. Then check_http will send the following HTTP header to the

proxy:

GET http://www.swobspace.de HTTP/1.0
User-Agent: check_http/v1861 (nagios-plugins 1.4.11)
Connection: close

Host: www.swobspace.de

This test does not use any implementation-specific information of the proxy,
so it should work with every Web proxy.

The command object is defined as follows:

define commandf{
command_name check proxy
command_line S$USER1S$S/check http -H www.googl
e.de -u http://www.google.de -I SHOSTADDRESSS -p $ARG1S

}

124

6.4 Monitoring FTP and Web Servers

The proxy computer 1inux01 is then tested with the following service:

define servicef{
service_description Webproxy
host_name linux01
check command check proxy!3128

}

The parameter 3128 ensures that the command object check_proxy can
read out the port from $ARG13$.

Proxy test with check_squid

The proxy check with check_http, introduced in the last section, works
only if the desired Web page is available or is already in the cache. If neither
is the case, this test will produce an error, even if the proxy is working in
principle.

The plugin check_squid.pl uses a different method, but it is not part of
the standard installation, and is to be found in the Check Plugins category,
under Software | HTTP & FTP | Squid Proxy.'?

It makes use of the cache manager of the Squid proxy, which is queried by
a pseudo protocol. A command is sent in the form

GET cache _object://ip address/command HTTP/1.1\n\n

to Squid and obtains the desired information. The plugin check_squid.pl
uses the info command, which queries a range of statistical usage infor-
mation:

usere@linux:~$ echo "GET cache object://192.168.1.13/info HTTP/1.1\n\n" \
| netcat 192.168.1.13 3128

File descriptor usage for squid:

Maximum number of file descriptors: 1024
Largest file desc currently in use: 18
Number of file desc currently in use: 15
Files queued for open: 0
Available number of file descriptors: 1009
Reserved number of file descriptors: 100
Store Disk files open: 0

It is targeted at the number of still-free file descriptors (the third line from
the end); you can set a warning or critical limit for this value. The num-
ber of file descriptors plays a role when access is made to objects in the

12 http://www.nagiosexchange.org/cgi-bin/pages/Detailed/1764.html

125

6 Plugins for Network Services

Squid cache at the same time. In environments with a high number of par-
allel accesses to the proxy, it is quite possible that 1024 file descriptors are
insufficient. In smaller networks with just a few hundred users, not all of
whom are surfing at the same time, the compiled-in value of 1024 will be
sufficient.

Squid configuration Normally Squid allows access to the cache manager
only from localhost. So that Nagios can query it over the network, the
proxy must be reconfigured accordingly:

acl manager proto cache_object

acl nagiosserver 192.168.1.9

http access allow manager nagiosserver
http_access deny manager

cachemgr passwd none info menu

The necessary changes to the configuration file squid.conf are printed
in bold type, and the other relevant lines are already contained in the de-
fault file. The first line to be printed defines an access control list (Ac-
cess Control List, acl) called manager by means of the internal protocol
cache_object, so it refers to everything that accesses the proxy using
the cache_object protocol. This is followed by an access control list for
the Nagios server, based on its IP address, here 192.168.1.9. The list
name nagiosserver may be freely chosen here (as can manager in the
first line). With http_access allow, nagiosserver obtains access to the
cache manager (manager), before the line

http_access deny manager

prohibits access to all others through the cache_object protocol. Finally,
cachemgr_passwd provides a password for the cache manager access. If
you omit this, with none, then only selected commands should be allowed
that have no potential to change things, such as info and menu, which
shows all the things that the cache manager can do. After the configuration
file has been modified, Squid needs to read it in again:

linux:~ # /ete/init.d/squid reload

Applying the plugin The test plugin check_squid. plitself has the following
options:

-H address / --hostname=address
This is the server on which Squid is to be tested, specified by IP ad-
dress or FQDN.

126

6.5 Domain Name Server Under Control

-P port / --port=port
This specifies the port on which Squid is listening. The default is the
standard port 3128.

-p password / --password=password
This is the password for access to the cache manager.

-w free_descriptors /| --warning=free_descriptors
This is the number of free file descriptors, where the plugin will issue
a warning if the number drops below this. The default is 200.

-c free_descriptors / --critical=free_descriptors
This is the critical limit for free file descriptors. If the number falls
below this, check_squid returns CRITICAL. The default is 50.

When check_squid is run, it is usually very unspectacular:

nagios@linux:nagios/libexec$./check squid.pl -H 192.168.1.13
Squid cache OK (1009 FreeFileDesc)

The matching command also presents no problems ...

define command{
command_name check squid.pl
command_line $USER1$/check_squid.pl -H $HOSTADDRESSS

}
...and the same goes for service definitions:

define service{
service_description Squid
host_name linux01
check command check squid.pl

6.5 Domain Name Server Under Control

Two plugins are also available for testing the Domain Name Service (DNS):
check_dns and check_dig. While check_dns tests whether a host name
can be resolved, using the external nslookup program, check_dig allows
any records at all to be queried. Both plugins are part of the standard dis-
tribution.

The situations in which they are used overlap somewhat. With check_dns,
you can also explicitly query a specific DNS server, although this plugin is
really for checking whether the name service is available generally.

127

6 Plugins for Network Services

6.5.1 DNS check with nslookup

The check_dns plugin checks whether a specified host name can be re-
solved to an IP address. Used locally, the plugin tests the DNS configura-
tion of the computer on which it is run. For the name resolution, it uses
the name server configured in /etc/resolv.conf.

The possible options are just as unspectacular.

-H host / --hostname=host
This is the host name to be resolved to an IP address.

-s dns-server | --server=dns-server
This switch explicitly specifies the name server to be used. If this op-
tion is missing, check_dns uses the name server from /etc/resolv.
conf.

-a ip_address / --expected-address=ip_address
The ip_address is the IP address that host should have. If the name
service returns a different address, the plugin will raise the alarm
with CRITICAL. This option makes sense only if it is necessary for
the name server to provide a fixed IP address. Without this option,
the plugin will accept every IP address as a reply.

-A / --expect-authority
The name server specified with -s should answer the given query
authoritatively, so the corresponding domain must act as a primary
or secondary name server. If this is not the case, the plugin returns
CRITICAL.

-w floating point / -warning=floating point
This switch specifies the warning limit for the response time of the
name server in seconds (specified as a floating point).

-c floating point / -critical=floating point
This switch gives the critical response time of name server in seconds,
specified as a floating point.

-t timeout / --timeout=timeout
After timeout seconds have expired, the plugin interrupts the test
and returns the CRITICAL state. The default is 10 seconds.

For the local test of the DNS configuration (not that for a name server) you
just require a host name that is highly unlikely to disappear from the DNS,
such as www.google. com:

nagios@linux:nagios/libexec$ /check dns -H www.google.com
DNS OK: 0,009 seconds response time www.google.com returns 216.239.59.99

128

6.5 Domain Name Server Under Control

The corresponding command definition appears as follows in this case:

define command{
command_name check_dns
command_line $USER1$/check_dns -H www.google.de

The following service tests whether the name server configuration for the
computer 1inux01 is functioning:

define service{
service_description DNS/nslookup
host_name linux01
check command check dns

6.5.2 Monitoring the name server with dig

The plugin check_digprovides more options for monitoring a name server
than check_dns. As the name implies, it is based on the external utility
dig, intended for precisely this purpose.

-H address / --hostname=address
The address is the IP address for the DNS server to be tested. It is
also possible to specify a host name (instead of an IP address), but in
most cases this makes little sense, because this would first have to be
resolved before it can reach the name server.

-p port / --port=port
This switch specifies the UDP port to be used. The default is 53.

-1 hostname / --lookup=hostname
The hostname is the host name to be tested. If no particular com-
puter is looked up, but only the functionality of the DNS server is to
be tested, you should specify an address here easily reachable from
the Internet, such as www.google.com.

-T record_type /| --record_type=record_type
This switch specifies the record type to be queried. The default is
A (IPv4 address), but often NS (relevant name server), MX (relevant
Mail Exchange), PTR (Pointer; IP address for reverse lookup), or SOA
(Source of Authority, the administration details of the domain) are
also used.

129

6 Plugins for Network Services

-w floating_point_dec / --warning=floating_point_dec
This switch sets the warning limit for the response time of the name
server in seconds (floating point decimal).

-c floating_point_dec / --critical=floating_point_dec
This switch sets the critical response time of the name server in sec-
onds (floating point decimal).

-a address / --expected_address=address
This is the address that dig should return in the ANSWER SECTION.
In contrast to check_dns, check_dig delivers a WARNING only if the
IP address does not match, but the reply itself has arrived within the
given time limit.

-t timeout / --timeout=timeout
After timeout seconds have expired, the plugin breaks off the test
and returns the CRITICAL state. The default is 10 seconds.

The following two examples check the name server 194.25.2.129, by re-
questing it for the IP address of the computer www.swobspace.de. The
second example ends with a WARNING, since the reply of the name server
for www.swobspace.de returns a different IP address from 1.2.3.4 in the
ANSWER SECTION:

nagios@linux:nagios/libexec$./check dig -H 194.25.2.129 -1 \
www . swobspace.de
DNS OK - 2,107 Sekunden Antwortzeit (www.swobspace.de. 1800 IN A 21
2.227.119.101)
nagios@linux:nagios/libexec$./check dig -H 194.25.2.129 -1 \
www.swobspace.de -a 1.2.3.4
DNS WARNING - 0,094 Sekunden Antwortzeit (Server nicht gefunden in ANSWE
R SECTION)

Example 1 is implemented as a command object as follows:

define commandf{
command_name check dig
command_line S$USER1S$/check dig -H $HOSTADDRESSS -1 SARG1S

}

In order to test the specific name server 1inux01, you look for an address
that Nagios should always be able to resolve, such as www.google. com:

define service{
service_description DNS/dig
host_name linux01
check command check dig!www.google.com

130

6.6 Querying the Secure Shell Server

6.6 Querying the Secure Shell Server

Monitoring of Secure Shell servers (irrespective of whether they use proto-
col version 1 or 2) is taken over by the plugin check_ssh (included in the
standard distribution). It is quite a simple construction and just evaluates
the SSH handshake. User name and password are not required for the test.

Not to be confused with check_sshis the plugin check_by_ssh (see Chap-
ter 9 from page 205), which starts plugins remotely on a different computer.

-H address / --hostname=address
Host name or IP address of the computer to which the plugin should
set up an SSH connection.

-p port / --port=port
This specifies an alternative port. The default is 22.

-r version / --remote-version=version
The version details for the tested Secure Shell must match the speci-
fied text instead of version, otherwise a WARNING will be sent (see
example below). If the version details contain spaces, the string must
be enclosed by double quotes.

-t timeout / --timeout=timeout
After timeout (by default, 10) seconds the plugin breaks off the test
and returns the CRITICAL state.

The following example in turn tests the Secure Shell daemons on the local
computer and on wobgate, to see whether the current SSH version from
Debian Etch is being used:

nagios@linux:nagios/libexec$./check ssh -H localhost \

-r ’‘OpenSSH_4.3p2 Debian-9’
SSH OK - OpenSSH_4.3p2 Debian-9 (protocol 2.0)
nagios@linux:nagios/libexec$./check ssh -H wobgate -r \

'‘OpenSSH_4.3p2 Debian-9’
SSH WARNING - OpenSSH_3.8.1pl Debian-8.sarge.6 (protocol 2.0) version mi
smatch, expected ’'OpenSSH_4.3p2 Debian-9’

The latest version of SSH is not in use on wobgate.

In heterogeneous environments with various Linux distributions, you will
usually use version checking “manually” only for plugin calls, and only
rarely integrate them into the Nagios configuration. Instead, it is normally
sufficient to use command and service definitions using the following sim-
ple pattern:

131

6 Plugins for Network Services

define command{
command_name check ssh
command_line $USER1$/check_ssh -H $HOSTADDRESSS

define service{
service_description SSH
host_name linux01
check command check ssh

Otherwise you run the risk of having to adjust the version number in the
command object after every security update.

6.7 Generic Network Plugins

Sometimes no plugin can be found that is precisely geared to the ser-
vice to be monitored. For such cases, two generic plugins are available:
check_tcp and check_udp. Both of them test whether a service is active
on the target port for the protocol in question. Although this does not yet
guarantee that the service running on the port really is the one in question,
in an environment that one adminstrator looks after and configures, this
can be sufficiently guaranteed in other ways.

Both plugins send a string to the server and evaluate the reply. This is
at its most simple for text-based protocols such as POP or IMAP: these
two “specific” plugins, which are tailor-made for these two mail services
(see Section 6.3.2 from page 115), use nothing more than symbolic links
to check_tcp, which has already completed the corresponding question-
and-answer game with relevant default settings.

If you know the protocol to be tested and you configure a “quiz” that will
fit this (no easy task for binary protocols), a check becomes considerably
more than just a port scan. In this way the generic plugins can also be
substituted for specific missing plugins.

6.7.1 Testing TCP ports

check_tcp is concentrated on TCP-based services. In line with its generic
nature, it has a large number of options:

-H address / --hostname=address
This is the IP address or host name of the computer whose port
should be tested.

132

6.7 Generic Network Plugins

-p port / --port=port
This specifies the target port. In contrast to the plugins that are
formed as a symbolic link to check_tcp, this detail is always re-
quired.

-w floating_point_dec / --warning=floating_point_dec
This sets the warning limit for the response time in seconds.

-c floating_point_dec / --critical=floating_point_dec
This sets a time limit like -w but specifies the critical limit value.

-s "string" / --send="string"
This is the string that the plugin should send to the server.

-e "string"/ --expect="string"
This is the string that the reply of the server should contain. The
plugin does not restrict its search here to the first line.

-E / --escape
This allows the use of the escape sequences \n, \r, \t or simply \ for
-s and -e. In all cases -E must be placed in front of the options -s
and -e on which it should have an influence.

-A/ --all
If you specify multiple reply strings with -e, the plugin with -A will
only return OK if all required reply strings were found. Without this
option it is enough for a positive return if just one of several strings
is found.

-M return_value / --mismatch=return_value
How should the plugin react if a returned string does not match what
is specified with -e? The default is warn, which means that a WARN-
ING is given. With crit, a false return value could be categorized as
CRITICAL, and with ok, as OK.

-q "string" / --quit="string"
This is the string that requests the service to end the connection.

-m bytes / --maxbytes=bytes
The plugin closes the connection if it has received more than bytes.

-d floating_point_decimal / --delay=floating_point_decimal
This is the time period in seconds between sending a string and
checking the response.

-t timeout / --timeout=timeout
After timeout (the default is 10) seconds the plugin stops the test
and returns the CRITICAL status.

133

6 Plugins for Network Services

-j/--jail
Setting this displays the TCP output. For text-based protocols such
as POP or IMAP, this is usually “human-readable”, but for binary pro-
tocols you generally cannot decipher the output, so that -j is appro-
priate.

-r return_value /| --refuse=return_value
This switch specifies what value the plugin returns if the server re-
jects the TCP connection. The default is crit (CRITICAL). With ok
as the return_value, you can test whether a service is available that
should not be accessible from outside. The third possible value, warn,
ensures that a WARNING is given.

-D days / --certificate=days
This is the time span in days for which a server certificate must at
least be valid for the test to run successfully. It is relevant only for
SSL connections. Note that there is a danger of confusion: in the
check_http plugin this same option is -C (see page 123). If the time
span drops below the time period specified for the server certificate,
the plugin returns a WARNING.

-S/ --ssl
SSL/TLS should be used for the connection. The plugin cannot han-
dle STARTTLS'S.

The following example checks on the command line whether a service on
the target host 192.168.1.89 is active on port 5631, the TCP port for the
Windows remote-control software, PCAnywhere:

nagios@linux:nagios/libexec$./check tcp -H 192.168.1.89 -p 5631
TCP OK - 0,061 second response time on port 5631 | time=0,060744s;0,
000000;0,000000;0,000000;10,000000

For all services for which the computer name and port detail are sufficient
as parameters for the test, the command object is as follows:

define command{
command_name check tcp
command_line $USER1$/check_tcp -H $HOSTADDRESSS$ -p S$SARGLS

To monitor the said PCAnywhere on the machine Win01, the following ser-
vice definition would be used:

13 See footnote on page 117.

134

6.7 Generic Network Plugins

define service{
service_ description pcAnywhere
host_name WinO01l
check command check tcp!5631

6.7.2 Monitoring UDP ports

It is not so simple to monitor UDP ports, since there is no standard con-
nection setup, such as the three-way-handshake for TCP, in the course of
which a connection is opened, but data is not yet transferred. For a stateless
protocol such as UDP there is no regulated sequence for sent and received
packets. The server can reply to a UDP packet sent by the client with a UDP
packet, but it is not obliged to do this.

If you find an unoccupied port, the requested host normally sends back an
ICMP port unreachable message, which evaluates the plugin. If there is no
reply, there are two possibilities: either the service on the target port is not
reacting to the request, or a firewall is filtering out network traffic (either
the UDP traffic itself or the ICMP message). This is why you can never be
sure with UDP whether the server behind a particular port really is offering
a service or not.

In order to force a positive response where possible, you normally have
to send data to the server, with the option -s, containing some kind of
meaningful message for the underlying protocol. Most services will not
respond to empty or meaningless packets. This is why you cannot avoid
getting to grips with the corresponding protocol, since you will otherwise
not be in a position to send meaningful data to the server, to prompt it into
giving a reply at all.

Ever since Nagios plugin version 1.4.4, check_udp has been a symlink to
check_tcp, so that check_udp has the same options as check_tcp (see
page 132). -p port, -s string, and -e string are obligatory entries,
even though the integrated online help declares these to be optional.

The following example tests whether a service on the target host 192.168.
1.13 is active on the time server (NTP) Port 123. The NTP daemon only
replies to packets containing a meaningful request (e.g., to ones whose con-
tents begin with w):

nagios@linux:nagios/libexec$./check udp -H 192.168.1.13 -p 123 -s "w" \
_e wn

UDP OK - 0.001 second response time on port 123 []|time=0.000586s;;;0.00

0000;10.000000

135

6 Plugins for Network Services

The reply remains empty, so the reply string is specified as -e "". The
NTP server does not respond to packets with data not in the protocol form.
Normally NTP expects a relatively complex packet'* containing various in-
formation. The w used here was found out by trial and error: It does not
contain really meaningful data, but it does provoke the server into giving a
response.

The command line command shown above is implemented as follows as a
command object:

define commandf{
command_name check udp
command_line S$USER1S$/check udp -H $HOSTADDRESSS -p SARG1S -s S$ARG2S

Here we pass on the port as the first argument; all the other switches of the
plugin are accessed through $ARG2$.

Checking an NTP time server is then taken over by the following service
definition:

define servicef
service_description
host_name timesrv
check command check tcp!l23!-s "w" -e ""

As in the command line example, Nagios sends the string w to the service
to provoke a positive response.

6.8 Monitoring Databases

Nagios provides three plugins for monitoring databases: check_pgsql for
PostgreSQL, check_mysql for MySQL, and check_oracle for Oracle. The
last will not be covered in this book.!® They all have in common the fact
that they can be used both locally and over the network. The latter has
the advantage that the plugin in question does not have to be installed on
the database server. The disadvantage is that you have to get more deeply
involved with the subject of authentication, because configuring a secure
local access to the database is somewhat more simple.

14 The protocol version NTPv3 is described in RFC 1305: http://rfc.sunsite.dk/
rfc/rfc1305.html.

The plugin check_oracle assumes the installation of an Oracle Full Client on the Na-
gios server; it does not work together with the Instant Client and expects its users to
have an extensive knowledge of Oracle. To explain all this here is far beyond the scope
of this book.

15

136

6.8 Monitoring Databases

For less critical systems, network access by the plugin can be done without
a password. To do this, the user nagios is set up with its own database in
the database management system to be tested, which does not contain any
(important) data. Areas accessed by this user can be isolated from other
data, stored in the DBMS, through the database’s own permissions system.

Of course, there is nothing stopping you from setting up a password for the
user nagios. But if you cannot make use of SSL-encrypted connections,
this will be transmitted in plain text for most database connections. In
addition, it is stored unencrypted in the Nagios configuration files. In this
respect the password does offer some protection, but it is not really that
secure.

As an additional measure, you should certainly restrict the IP address from
which a user nagios user can access the database on the Nagios server.

The plugins introduced here have only read access to the database. check_
mysql additionally allows a pure connection check, without read access.
A write access to the database is not available in any of the plugins men-
tioned. For Oracle there is a plugin on Nagios Exchange'® called check_
oracle_writeaccess.sh,which also tests the writeability of the database.

6.8.1 PostgreSQL

With the check_pgsql plugin you can establish both local and network
connections to the database. Local connections are handled by PostgreSQL
via a Unix socket, which is a purely local mechanism. An IP connection is
set up by check_pgsql if a target host is explicitly passed to it. The plugin
performs a pure connection test to a test database but does not read any
data from it.

In order that PostgreSQL can be reached over the network, you must start
the postmaster program, either with -1i, or by setting the parameter tcpip
_socket in the configuration file postgresql.conf to the value true.

Configuring a monitor-friendly DBMS

In order to separate the data that the user nagios (executing the plugin)
gets to see more clearly from other data, you first set up a database user
with the same name, and a database to which this user is given access:

postgres@linux:~$ createuser --no-adduser --no-createdb nagios
postgres@linux:~$ createdb --owner nagios nagdb

Of particular importance when creating a database user with the command
createuser is the option --no-adduser. To PostgreSQL, the ability to be

16 http://www.nagiosexchange.org/153;3

137

6 Plugins for Network Services

allowed to create users automatically means that you are the superuser,
who can easily get round the various permissions set.!” But nagios should
not be given superuser permissions under any circumstances.

createdb finally creates a new, empty database called nagdb, which be-
longs to nagios.

Access to the database can be restricted in the file pg_hba. conf. Depend-
ing on the distribution, this can be found either in /etc/postgresql or
in the subdirectory ./data of the database itself (for example, /var/1ib/
pgsql/data for SUSE). The following extract restricts access by the data-
base user nagios to a specific database and to the IP address of the Nagios
server (instead of the IP address to be completed by ip-nagios):

#type db user ip-address ip-mask method options
local nagdb nagios ident sameuser
host nagdb nagios ip-nagios 255.255.255.255 ident sameuser

The first line is a comment describing the function of the columns. The
second line allows the database user nagios access to the database nagdb
over a local connection. Even though the authentication method here is
called ident, you do not need a local ident daemon for Linux and BSD
variants (NetBSD, FreeBSD, etc.).

The last line describes the same restriction, but this time it is for a TCP/IP
connection to the Nagios server. But now PostgreSQL asks the ident dae-
mon of the Nagios server which user has set off the connection request.
This means that an ident daemon must be installed on ip-nagios. In this
way the DBMS tests whether the user initiating the connection from the
Nagios server really is called nagios. It will not permit another user (or a
connection from a different host).

Normally the ident protocol is only partially suited for user authentication.
But in the case of the Nagios server you can assume that a host is involved
that is under the control of the administrator who can ensure that an ident
daemon really is running on port 113.

There is a huge range of different ident daemons. pidentd!8 is widely used
and is included in most Linux distributions. Normally it is already precon-
figured and just needs to be started. But how it is started depends on the
distribution; usually inetd or xinetd takes over this task. A glance at the
documentation (should) put you straight.

After modifying the configuration in pg_hba. conf you must stop the DBMS
so that it can reload the configuration files. This is best done with the com-
mand

linux:~ # /etc/init.d/postgresqgl reload

17 permissions in PostgreSQL are given by the database command GRANT.
18 http://www.lysator.liu.se/~pen/pidentd/.

138

6.8 Monitoring Databases

(a restart is not necessary). If the configuration of the inetd/xinetd was
modified, this daemon is reinitialized in the same way.

The test plugin check_pgsql
check_pgsql has the following options:

-H address / --hostname=address
If given this option, the plugin establishes a TCP/IP connection in-
stead of making contact with a local DBMS through a Unix socket.

-P port / --port=port
In contrast to the plugins discussed until now, check_pgsql uses a
capital P to specify the port on which PostgreSQL is running. In its
default value it is connected to port 5432. This option is only useful
if PostgreSQL allows TCP/IP connections.

-d database / --database=database
Specifies the name of the database to which the plugin should con-
nect. If this detail is missing, it uses the standard database templatel.

-w floating_point_dec / --warning=floating_point_dec
This is the warning time in seconds for the performance time for the
test.

-c floating_point_dec / --critical=floating_point_dec
This is the critical limit for the performance time of the test in sec-
onds.

-1 user / --logname=user
This is the name of the user who should establish contact to the
database.

-p passwd / --password=passwd
This switch sets the password for access to the database. Since this
must be stored in plain text in the service definition, a potential se-
curity problem is involved. It is preferable to explicitly define a re-
stricted, password-free access to the database in the PostgreSQL con-
figuration for the user nagios.

-t timeout / --timeout=timeout
After 10 seconds have expired, the plugin stops the test and returns
the CRITICAL status. This option allows the default value to be
changed.

To test the reachability across the network of the database nagdb set up
specially for this purpose, this is passed on as a parameter together with
the target host (here: 1inux01):

139

6 Plugins for Network Services

nagios@linux:nagios/libexec$./check pgsql -H linux0l -d nagdb
CRITICAL - no connection to ‘nagdb’ (FATAL: IDENT authentication failed
for user "nagios"

The fact that the check went wrong in the example is clearly due to the
ident authentication. This happens, for example, if you forget to reload the
ident daemon after the configuration has been modified. Once the error
has been rectified, the plugin—hopefully—will work better:

nagios@linux:nagios/libexec$./check pgsql -H linux01 -d nagdb
OK - database nagdb (0 sec.)|time=0,000000S;2,000000;B,OOOOOO;0,000000

If the database parameter is omitted, check_pgsql will address the data-
base templatel:

nagios@linux:nagios/libexec$./check pgsql -H linux01
CRITICAL - no connection to ’templatel’ (FATAL: no pg_hba.conf entry fo
r host "172.17.129.2", user "nagios", database "templatel", SSL off)

A similar result is obtained if you run the test with the correct database, but
with the wrong user:

wob@linux:nagios/libexec$./check pgsql -H linux01 -d nagdb
CRITICAL - no connection to ’‘nagdb’ (FATAL: no pg_hba.conf entry for ho
st "172.17.129.2", user "wob", database "nagdb", SSL off)

You should certainly run the last two tests, just to check that the PostgreSQL
database really does reject corresponding requests. Otherwise you will have
a security leak, and we recommend that you remove settings in the config-
uration that are too generous.

If you have created a separate database for the check, there is no reason
why you shouldn’t write this explicitly in the command definition, instead
of using parameters, with $ARG1$:

define command{
command_name check pgsql
command_line $USER1$/check_pgsql -H SHOSTADDRESSS -d nagdb

Then the service definition for 1inux01 is as simple as this:

define service{
service_description PostgreSQL
host_name linux01
check command check pgsql

140

6.8 Monitoring Databases

6.8.2 MySQL

With the check_mysql plugin, MySQL databases can be tested both locally
and across the network. For local connections, it makes contact via a Unix
socket, and not via a real network connection.

MySQL configuration

In order that the database can be reached across the network, the skip-
networking option in the configuration file my.cnf must be commented
out. The database should then be running on TCP port 3306, which can be
tested with netstat -ant, for example:

user@elinux:~$ netstat -ant | grep 3306
tecp 0 0 0.0.0.0:3306 0.0.0.0:% LISTEN

To set up the password-free access to the database relatively securely, a
separate nagdb database is created here that does not contain any critical
data, and for which the user nagios is given restricted access from the
Nagios server. To do this, you connect yourself, as the database user root,
to the database mysql, and there you create the database nagdb:

user@linux:~$ mysqgl --user=root mysqgl
mysgl> CREATE DATABASE nagdb;

If the command mysql --user=root mysql functions without the need
to enter a root password, then you have a serious security problem. In
that case, anyone—at least from the database server—is able to obtain full
access to the database. If this is the case, it is essential that you read the
security notes in the MySQL documentation.'?

Recreating a user and the access restrictions can be done in one and the
same step:

mysgl> GRANT select ON nagdb.* TO nagios@ip-nagios;

The command sets up the user nagios, if it does not exist. It may only
accept connections from the Nagios server with the IP address ip-nagios
and obtains access to all tables in the database nagdb, but may execute
only the SELECT command there (no INSERT, no UPDATE or DELETE); that
is, user nagios only has read access.

19 To be found at http://dev.mysql.com/doc/mysql/de/Security.html.

141

6 Plugins for Network Services

The test plugin check_mysql

check_mysql has fewer options than its PostgreSQL equivalent—apart from
-H, it does not implement any standard flags and has neither a warning
not a critical limit for the performance time of the test. For the database-
specific options, it uses the same syntax as check_pgsql, except for the
user entry:

-H address / --hostname=address
This sets the host name or IP address of the database server. If the
option -H is omitted, or if it is used in connection with the argu-
ment localhost, check_mysql does not set up a network connec-
tion but uses a Unix socket. If you want to establish an IP connection
to localhost, you must explicitly specify the IP address 127.0.0.1.

-P port / --port=port
This is the TCP port on which MySQL is installed. In the default, port
3306 is used.

-d database / --database=database
This is the name of the database to which the plugin should set up a
connection. If this option is omitted, it only makes a connection to
the database process, without addressing a specific database.

-u user / --username=user
This is the user in whose name the plugin should log in to the DBMS.

-p passwd / --password=passwd
This switch is used to provide the password for logging in to the
database.

To set up a connection to the database nagdb as the user nagios, both
parameters are passed on to the plugin:

nagios@linux:nagios/libexec$./check mysql -H dbhost -u nagios -d nagdb
Uptime: 19031 Threads: 2 Questions: 80 Slow queries: 0 Opens: 12
Flush tables: 1 Open tables: 6 Queries per second avg: 0.004

In contrast to PostgreSQL, with MySQL you can also make contact without
establishing a connection to a specific database:

nagios@linux:nagios/libexec$./check mysql -H dbhost
Uptime: 19271 Threads: 1 Questions: 84 Slow queries: 0 Opens: 12
Flush tables: 1 Open tables: 6 Queries per second avg: 0.004

With a manual connection to the database, with mysql, you can then sub-
sequently change to the desired database, using the MySQL command use:

142

6.9 Monitoring LDAP Directory Services

user@linux:~$ mysql -u nagios
mysgl> use nagdb;
Database changed

mysql>

With this plugin, a subsequent database change is not possible. Here you
must decide from the beginning whether you want to contact a database
or whether you just want to establish a connection to the MySQL database
system.

To test a nagdb database set up explicitly for this purpose, you can do with-
out parameters when creating the corresponding command object, and ex-
plicitly specify both user and database:

define commandf{
command_name check mysql
command_line $USER1$/check mysql -H S$SHOSTADDRESSS -u nagios -d nagdb

This simplifies the service definition:

define service{
service_ description MySQL
host_name linux01
check command check mysql

6.9 Monitoring LDAP Directory Services

For monitoring LDAP directory services, the check_ldap plugin is avail-
able. It runs a search query that can be specified anonymously or with
authentication. It has the following parameters to do this:

-H address / --hostname=address
This is the host name or IP address of the LDAP server.

-b base_dn / --base=base_dn
This is the top element (Base Domain Name) of the LDAP direc-
tory, formed for example from the components of the domain name:
dc=swobspace,dc=de.

-p port / --port=port
This is the port on which the LDAP server is running. The default is
the standard port 389.

143

6 Plugins for Network Services

-a"ldap-attribute" / --attr="1dap-attribute"

This switch enables a search according to specific attributes. Thus
-a "(objectclass=inet0OrgPerson)" searches for all nodes in the
directory tree containing the object class inetOrgPerson (normally
used for telephone and e-mail directories, for example).

Specifying attributes in the check is less useful than it may seem. If
you search through an LDAP directory for nonexistent attributes, you
will normally receive an answer with zero results, but no errors.

-D ldap_bind_dn / --bind=1dap_bind_dn

This specifies a bind DN20 for an authenticated connection, such as:

uid=wob, dc=swobspace, dc=de

Without this entry, the plugin establishes an anonymous connection.

-P ldap_passwd /| --pass=1dap_passwd

This is the password for an authenticated connection. It only makes
sense in conjunction with the option -D.

-t timeout / --timeout=timeout

After timeout seconds have expired (10 seconds if this option is not
given), the plugin stops the test and returns the CRITICAL status.

-2/ --ver?2

Use LDAP version v2 (the default). If the server does not support this
protocol version, the connection will fail. In OpenLDAP from version
2.1, v3 is used by default; to activate protocol version v2, the following
line is entered in the configuration file slapd.conf:

allow bind v2

Many clients, such as Mozilla and the Thunderbird address book, are
still using LDAP version v2.

-3/ --ver3

Use LDAP version v3. For many modern LDAP servers such as Open-
LDAP, this is now the standard, but they usually also have parallel
support for the older version v2, since various clients cannot yet im-
plement v3.

-w floating_point_dec / --warning=floating_point_dec

20

If the performance time of the plugin exceeds floating_point_dec
seconds, it issues a warning.

A bind DN serves to identify the user and refers to the user’s nodes in the directory tree,
specifying all the overlying nodes. The bind DN in LDAP corresponds in its function
more or less to the user name when logging in under Unix.

144

6.9 Monitoring LDAP Directory Services

-c floating_point_dec / --critical=floating_point_dec
If the performance time of the plugin exceeds floating_point_dec
seconds, it returns CRITICAL.

-T/ --starttls
Uses the STARTTLS intended in LDAPv3.2!

-S/ --ssl

Uses SSL encrypted LDAP (LDAPS) from LDAPv2 and at the same
time sets the port used for this, port 636. Whenever possible you
should choose STARTTLS. LDAP with STARTTLS uses the same port
as LDAP without SSL encryption; in many cases this allows the un-
encrypted LDAP access to be configured as a fallback for LDAP with
STARTTLS. Such a fallback is not possible for LDAPS due to the dif-
ferent ports.

In the simplest case it is sufficient to query whether the LDAP server really
does own the base DN specified with -b:

nagios@linux:nagios/libexec$./check ldap -H ldap.swobspace.de \
-b "dc=swobspace, c=de"
LDAP OK - 0,002 seconds response time|time=0,002186s;;;0,000000

This query corresponds to the following command object:

define commandf{
command_name check ldap
command_line $USER1S$/check ldap -H S$SHOSTADDRESSS -b SARG1S

Since an LDAP server can handle many LDAP directories with different base
DN, it is recommended that you configure this with parameters:

define service{
service_description LDAP
host_name linux01
check command check ldap!dc=swobspace,dc=de

If authentication is involved, things get slightly more complicated. On the
one hand the plugin is given the bind-DN of the nagios user, with -D.
On the other hand, the following example protects the necessary password
from curious onlookers by storing this as the macro $USER3$ in the file
resource.cfg, which may be readable only for the user nagios (see Sec-
tion 2.14, page 79):

21 gee footnote on page 117.

145

6 Plugins for Network Services

define command{

command_name check ldap auth

command_line $USER1$/check_ldap -H $HOSTADDRESSS -b $ARGLS$ -D $ARG2S
-P SUSER3$

}

Accordingly, the matching service definition contains the base DN and bind
DN as arguments, but not the password:

define service{
service_description LDAP
host_name linux01
check command check ldap auth!dc=swobspace,dc=deluid=nagios,\
dc=swobspace,dc=de

6.10 Checking a DHCP Server

To monitor DHCP services, the plugin check_dhcp is available. It sends
a DHCPDISCOVER via UDP broadcast to the target port 67 and waits for an
offer from a DHCP server in the form of a DHCPOFFER, which offers an IP
address and further configuration information.

Because check_dhcp does not send a DHCPREQUEST after this, the server
does not need to reserve the sources and to confirm this reservation with
DHCPACK, nor does it need to reject the request with DHCPNACK.

Granting the plugin root permissions

There is a further restriction to the check_dhcp: it requires full access to
the network interface and must therefore run with root privileges.

In order for the user nagios to be able to run the plugin with root per-
missions, the plugin must belong to the user root and the SUID bit must
be set. If you install the plugins from a current tarball, the permissions will
be set correctly. Several distributions disable the SUID bit, as it represents
a potential danger—it is possible that general root permissions may slip
in via buffer overflows in uncleanly programmed code. Here the program
owner must be changed manually to the user root so that the SUID bit can
be set with chmod. When this is done, only the group nagios, apart from
root, is allowed to run the plugin:

linux:nagios/libexec # chown root.nagios check_dhcp
linux:nagios/libexec # chmod 4750 check dhcp

146

6.10 Checking a DHCP Server

linux:nagios/libexec # 1s -1 check_dhcp
-rwsr-x--- 1 root nagios 115095 Jan 8 12:15 check dhcp

The chown command assigns the plugin to the user root and to the group
nagios, to whom nobody else should belong apart from the user nagios
itself. (The user in whose name the Web server is running should be a
member of a different group, such as nagcmd, as is described in Chapter 1
from page 37.)

In addition the chmod ensures that nobody apart from root may even read
the plugin file, let alone edit it.

Applying the plugin

check_dhcp only the following options:

-s server_ip / --serverip=server_ip
This is the IP address of a DHCP server that the plugin should ex-
plicitly query. Without this entry, it is sufficient to have a functioning
DHCP server in the network to pass the test satisfactorily. So you
have to decide whether you want to test the general availability of
the DHCP service or the functionality of a specific DHCP server.

-r requested_ip / --requestedip=requested_ip
With this option the plugin attempts to obtain the IP address reques-
ted_ip from the server. If this is not successful because it is already
reserved or lies outside the configured area, check_dhcp reacts with
a warning.

-1 interface / --interface=interface
This selects a specific network interface through which the DHCP
request should pass. Without this parameter, the plugin always uses
the first network card to be configured (in Linux, usually eth0).

-m mac_address / -mac=mac_address (from version 1.4.10)
Uses the specified MAC address in DHCP queries instead of that of
the Nagios server. This explicit detail is required if the DHCP server
only assigns IP addresses to specific MAC addresses, and the MAC
address of the Nagios server is not one of these.

-u/ --unicast (from version 1.4.10)
Sends a unicast message instead of a broadcast.?> The IP address to
which the DHCP request is addressed is specified with -s server_ip.

22 A unicast message is addressed to exactly one IP address, whereas a broadcast message
is meant for all stations in the local network.

147

6 Plugins for Network Services

-t timeout / --timeout=timeout
After 10 seconds have expired (the default), otherwise timeout sec-
onds, the plugin stops the test and returns the CRITICAL state.

With a configurable warning or critical limit for the performance time, the
plugin is of no use. Here you must, where necessary, explicitly set a timeout,
which causes the CRITICAL return value to be issued.

The following example shows that the DHCP service in the network is work-
ing:

nagios@linux:nagios/libexec$./check dhcp -i eth0
DHCP ok: Received 1 DHCPOFFER(s), max lease time = 600 sec.

The plugin includes only the l1ease time as additional information, that
is, the time for which the client would be assigned an IP address. If you
want to see all the information contained in DHCPOFFER, you should use
the option -v (“verbose”).

In the next example the plugin explicitly requests a specific IP address
(192.168.1.40), but this is not available:

nagios@linux:nagios/libexec$./check dhcp -i eth0 -r 192.168.1.40
DHCP problem: Received 1 DHCPOFFER(s), requested address (192.168.1.40)
was not offered, max lease time = 600 sec.
nagios@linux:nagios/libexec$ echo $°?

1

The result is a WARNING, as is shown by the output of the status, with $7.

If you want to test both the availability of the DHCP service overall and the
servers in question individually, you need two different commands:

define command{
command_name check dhcp service
command_line $USER1$/check_dhcp -i etho

check_dhcp_service grills the DHCP service as a whole by sending a
broadcast, to which any DHCP server at all may respond.

define commandf{
command_name check dhcp server
command_line S$USER1S$/check dhecp -i ethO -s SHOSTADDRESSS

check_dhcp_server on the other hand explicitly tests the DHCP service
on a specific server.

148

6.11 Monitoring UPS with the Network UPS Tools

To match this, you can then define one service that monitors DHCP as a
whole and another one that tests DHCP for a specific host. Even if the
first variation is in principle not host-specific, it still needs to be assigned
explicitly to a computer for it to run in Nagios:

define servicef
service_description DHCP Services
host_name linux01
check command check dhcp_ service

}

define service{
service_description DHCP Server
host_name linux01

check command check dhcp server

6.11 Monitoring UPS with the Network UPS Tools

There are two possibilities for monitoring uninterruptible power supplies
(UPS): the Network UPS Tools support nearly all standard devices. The
apcupsd daemon is specifically tailored to UPS’s from the company APC,
described in Section 7.10 from page 182. The plugin check_ups included
in Nagios only supports the first implementation.

The following rule generally applies: no plugin directly accesses the UPS
interface. Rather they rely on a corresponding daemon that monitors the
UPS and provides status information. This daemon primarily serves the
purpose of shutting down the connected servers in time in case of a power
failure. But it also always provides status information, which plugins can
query and which can be processed by Nagios.

Both the solution with the Network UPS Tools and that with apcupsd are
fundamentally network-capable, that is, the daemon is always queried via
TCP/IP (through a proprietary protocol, or alternatively SNMP). But you
should be aware here that a power failure may affect the transmission path,
so that the corresponding information might no longer even reach Nagios.
Monitoring via the network therefore makes sense only if the entire network
path is safeguarded properly against power failure. In the ideal scenario,
the UPS is connected directly to the Nagios server. Calling the check_ups
plugin is no different in this case from that for the network configuration,
since even for local use it communicates via TCP/IP—but in this case, with
the host localhost.

149

6 Plugins for Network Services

The Network UPS Tools

The Network UPS Tools is a manufacturer-independent package contain-
ing tools for monitoring uninterruptible power supplies. Different specific
drivers take care of hardware access, so that new power supplies can be
easily supported, provided their protocols are known.

The remaining functionality is also spread across various programs: while
the daemon upsd provides information, the program upsmon shuts down
the computers supplied by the UPS in a controlled manner. It takes care
both of machines connected via serial interface to the UPS and, in client/
server mode, of computers supplied via the network.

http://www.networkupstools.org/ lists the currently supported mod-
els and provides further information on the topic of UPS. Standard distri-
butions already contain the software, but not always with package names
that are very obvious: in SuSE and Debian they are known by the name of
nut.

To query the information provided by the daemon upsd, there is the check_
ups plugin from the Nagios Plugin package. It queries the status of the
UPS through the network UPS Tools’ own network protocol. A subproject
also allows it to query the power supplies via SNMP.?®> However, further
development on it is not taking place at the present time.

For purely monitoring purposes via Nagios (without shutting down the
computer automatically, depending on the test result), it is sufficient to
configure and start the upsd on the host to which the UPS is connected
via serial cable. The relevant configuration file in the directory /etc/nut
is called ups.conf. If you perform the query via the network, you must
normally add an entry for the Nagios server in the (IP-based) access per-
missions. Detailed information can be found directly in the files them-
selves or in the documentation included, which in Debian is in the directory
/usr/share/doc/nut, and in SuSE, in /usr/share/doc/packages/nut.

Provided that the Network UPS Tools include a suitable driver for the un-
interruptable power supply used, the driver and communication interface
are entered in the file ups. conf:

-- /etc/nut/ups.conf

[upsfw]
driver = apcsmart
port = /dev/ttySoO
desc = "Firewalling/DMZ"

In the example, a UPS of the company APC is used. Communication takes
place on the serial interface /dev/ttyS0. A name for the UPS is given in

23 http://eul.networkupstools.org/server-projects/

150

6.11 Monitoring UPS with the Network UPS Tools

square brackets, with which it is addressed later on: desc can be used to
describe the intended purpose of the UPS in more detail, but Nagios ignores
this.

Next you must ensure that the user with whose permissions the Network
UPS Tools are running (such as the user nut from the group nut) has full
access to the interface /dev/ttySO0:

user@linux:~$ chown nut:nut /dev/ttyS0
user@linux:~$ chmod 660 /dev/ttySO

In order for Nagios to access information from the UPS via the upsd dae-
mon, corresponding data is entered in an Access Control List in the upsd
configuration file upsd.conf:

-- /etc/nut/upsd.conf

ACL aclname ipblock

ACL all 0.0.0.0/0

ACL localhost 127.0.0.1/32
ACL nagios 172.17.129.2/32

ACCEPT localhost nagios
REJECT all

With the keyword ACL you first define hosts and network ranges with their
IP address. You must always specify a network block here: /32 means that
all 32 bits of the netmask are set to 1 (this corresponds to 255.255.255.255),
which is therefore a single host address. It is not sufficient just to specify
the IP address here.

An ACCEPT entry allows access for the computer specified in the ACL acl-
name. ACCEPT rules may be used more than once. The final REJECT entry
then refuses access to all other hosts.

To conclude the configuration, you should make sure that the UPS daemon
is started with every system start. In SuSE this is done via YaST2; in Debian
this is taken care of during the installation.

The check_ups plugin

The monitoring plugin itself has the following options:

-H address / --host=address
This is the computer on which upsd is installed.

-u identifier / --ups=identifier
This is the name for the UPS in ups. conf, specified in square brack-
ets.

151

6 Plugins for Network Services

-p port / --port=port
This is the number of the port on which the upsd is running. The
default is TCP port 3493.

-w whole_number / --warning=whole_number
This switch defines a warning limit as a whole number. If no vari-
able is given (see -v), whole_number means a response time in sec-
onds; otherwise the value range of the variable (e.g., 80 for 80% in
BATTPCT). Specifying multiple warning limits is currently not possi-
ble: the plugin then only uses the last variable and the last warning
limit.

-c whole_number / --critical=whole_number
This option specifies a critical limit in connection with a variable (see
-v).

-v variable / --variable=variable
With this option, specific values of the UPS can be queried. The limit
values then referred to this parameter. check_ups currently supports
only the following variables:

LINE: input voltage of the UPS.

TEMP: Temperature of the USV.

BATTPCT: Remaining battery capacity in percent.
LOADPCT: Load on the UPS in percent.

If this option is missing, the plugin only checks the status of the UPS
(online or offline).

Since -v thus has another value, check_ups does not know the oblig-
atory option --verbose (see Table 6.2 on page 108), even in its long
form.

-T /| --temperature
This command issues temperature values in degrees Celsius instead
of Fahrenheit.

-t timeout / --timeout=timeout
After timeout seconds have expired, the plugin stops the test and
returns the CRITICAL state. The default is 10 seconds.

The following example tests the above defined local UPS with the name
upsfw. The -T switch ensures that the output of the temperature is given
in degrees Celsius:

usere@linux:nagios/libexec$./check ups -H localhost -u upsfw -T

UPS OK - Status=Online Utility=227.5V Batt=100.0% Load=27.0% Temp=30.6C|
voltage=227500mV;; ;0 battery=100%;;;0;100 load=27%;;;0;100 temp=30degF;;
;0

152

6.11 Monitoring UPS with the Network UPS Tools

If a variable is not used, the plugin returns a CRITICAL if the UPS is switched
off (Status=0ff) or has reached low battery capacity (Status=0n Bat-
tery, Low Battery). check_ups issues a warning if at least one of the
three states On Battery, Low Battery, or Replace Battery applies, but
this is not sufficient for a CRITICAL status (for example, because of corre-
spondingly set variables). With On Battery the power supply is provided
by the battery, with Low Battery the UPS is online with a low battery state,
and with Replace Battery, the battery must be replaced.

If none of these points apply, the plugin issues an OK for the following
states:

= In the normal online state
= If the UPS is being calibrated (Calibrating)

= If it is currently being bypassed and the power supply is provided directly
from the power supply grid (On Bypass)

= [f the UPS is overloaded (Overload)

= If the voltage in the power grid is too high and the UPS restricts the volt-
age to the normal value (Trimming)

= If the voltage in the power grid is too low and is supplemented by the
UPS (Boosting)

= If the UPS is currently being charged (Charging)

= If the UPS is currently being discharged (e.g., during a programmed main-
tenance procedure) (Discharging)

Transformed into a command object, the above test for any host looks like
this:

define command{
command_name check_ups
command_line $USER1$/check_ups -H $HOSTADDRESSS -u $ARGLS -T

}

The corresponding service definition for the computer 1inux01, to which
the UPS is connected, and for the above defined UPS upsfw, would then
look like this:

define service{
service description UPS
host_name linux01
check command check ups!upsfw

153

6 Plugins for Network Services

If check_ups is to determine the UPS status by means of the current load,
the relevant information is taken from the variable LOADPCT:

user@linux:nagios/libexec$./check ups -H linux0l1 -u upsfw -T -v \
LOADPCT -W 60 -c 80

UPS WARNING - Status=Online Utility=227.5V Batt=100.0% Load=61.9%

Temp=30.6C\voltage=227500mv;;;O battery=100%;;;0;100 load=61%;60000;

80000;0;100 temp=30degC;;;O0

With 61 percent, the UPS has a heavier load than specified in the limit
value -w, but it does not yet reach the critical area above 80 percent, so
there is just a warning. If two error criteria occur, such as a warning limit
for a queried variable being exceeded and a critical state simultaneously,
because the UPS is losing power (On Battery and Low Battery simul-
taneously), the most critical state has priority for the return value of the
plugin, so here, check_ups would return CRITICAL, and not the WARNING
which results from the query of LOADPCT.

6.12 Health Check of an NTP Server with
check_ntp_peer

The plugin check_ntp_peer, which is included from plugin version 1.4.11,
tests the quality of an NTP server. If you want to check the time devia-
tion of a local server against an NTP server, you need to use the plugin
check_ntp_time, described in Section 7.7.1 on page 177.

Several parameters characterize the quality: the offset describes the time
difference from other NTP servers (the reference servers). Jitter is a mea-
surement of the fluctuations in the packet delay to a remote reference ser-
ver, and stratum specifies the topological distance from the next atomic
clock. Stratum 0 is the atomic clock itself, stratum 1 refers to an NTP ser-
ver directly connected to an atomic clock. Stratum 2 is an NTP server that
obtains its time from an NTP server with stratum 1. The further an NTP
server is away from the atomic clock, the higher the stratum value. The
imprecision of the server also increases the higher this value is.

These parameters can also be queried with the program ntpq, by giving the
IP address of the NTP server. The option -p reveals the reference server
from which the queried NTP server obtains its time details. The option -n
prevents name resolution on the reference servers, thus accelerating the
execution of ntpq:

154

6.12 Health Check of an NTP Server with check_ntp_peer

nagios@linux:nagios/libexec$ ntpqg -np 192.168.1.13

remote refid st t when poll reach delay offset jitter
127.127.1.1 .LOCL. 10 1 26 64 377 0.000 0.000 0.001
*81.169.141.30 81.169.172.219 3 u 1 128 377 27.515 -4.411 1.219
+217.160.215.119 212.82.32.26 3 u 125 128 377 17.834 1.505 1.069

The remote column specifies the reference server that uses the queried
NTP server. 127.127.1.1 here is a special case, and stands for the local
system clock. The stratum value (column st), with 10, is relatively high,
but the local system clock only plays a role if no other NTP source can is
reachable. The other two quality parameters, offset and jitter, are located
in the last two columns.

In the simplest case you can run check_ntp_peer, specifying only the NTP
server to be checked (option -H):

nagios@linux:nagios/libexec$./check ntp peer -H 192.168.1.13
NTP OK: Offset -0.004411 SeCS‘Offset:—o.0044115;60.000000;120.000000;

Without further details the plugin checks the time deviation from the refer-
ence servers, and the stratum and jitter are not taken into account. All
threshold details from check_ntp_peer are specified in the format de-
scribed in Section 24.1.5 from page 557The plugin has the following op-
tions:

-H address / -host=address
This is the name or IP address of the NTP server to be checked.

-p port / --port=port
This is the UDP port on which the NTP server is listening. The default
is port 123.

-q/ --quiet
This returns UNKNOWN instead of WARNING or CRITICAL if the NTP
server is not synchronized.

-w threshold / -warning=threshold
This is the warning threshold for the time deviation. A warning is is-
sued if the time deviation between the NTP server and at least one of
the reference servers is greater than the specified number of seconds.
The default is 60 seconds.

-c seconds / -critical=seconds
This is the critical threshold for the time deviation. If the time of one
of the reference servers used deviates by more than seconds seconds
(in the default: 120) from that of the NTP server, the state becomes
CRITICAL.

155

6 Plugins for Network Services

-W threshold / -swarn=threshold
This is the warning threshold based on the stratum value. A warn-
ing is issued if no reference server is available whose stratum value
matches the specified threshold. This means that -W 1:2 causes a
WARNING if no reference server is available with stratum 1 or stra-
tum 2. Without the detail of this parameter the stratum value is not
included in the check.

-C threshold / -scrit=threshold
This is the critical threshold based on the stratum value. See -W.

-j threshold / -jwarn=threshold
This is the warning threshold for the jitter in milliseconds, given in
the threshold format. The plugin returns OK if at least one reference
server displays a jitter within the specified range. If this option is not
given, the jitter is not included in the evaluation; there is no default.

-k threshold / -jcrit=threshold
This is the critical threshold for the jitter in milliseconds in the thresh-
old format.

156

Testing Local Resources

The plugins introduced in this chapter, originating from the nagios-plug-
ins package,' test local resources that do not have their own network pro-
tocol and therefore cannot be easily queried over the network. They must
therefore be locally installed on the computer to be tested. Such plugins on
the Nagios server can test only the server itself—with command and service
definitions as described in Chapter 6.

To perform such local tests from a central Nagios server on remote hosts,
you require further utilities: the plugins are started via a secure shell, or
you use the Nagios Remote Plugin Executor (NRPE). Using the secure shell is
described in Chapter 9 from page 205, and Chapter 10 (page 213) is devoted
to NRPE.

The definition of command and service depends on the choice of mecha-
nism. If you want to test for free hard drive capacity with the check_by_ssh

1 This edition is based on version 1.4.11.

157

7 Testing Local Resources

plugin installed on the Nagios server, which remotely calls check_disk on
the target server (see Section 7, page 157), then a special command defini-
tion is required for this, which differs somewhat from the definitions given
in Chapter 6 (page 105). What command and service definitions for re-
motely executed local plugins look like is described in the aforementioned
chapters on NRPE and SSH.

For the remote query of some local resources you can also use SNMP (see
Chapter 11 from page 227), but the checks are then restricted to the capa-
bilities of the SNMP daemon used. Local plugins are usually more flexible
here and provide more options for querying.

7.1 Free Hard Drive Capacity

The question of when the hard drive(s) of a computer may threaten to over-
flow is answered by the check_disk plugin. It has the following options for
specifying thresholds:

-w limit / --warning=limit
The plugin will give a warning if the free hard drive capacity drops
below this limit, expressed as a percentage or as an integer. If you
specify percentage, the percent sign % must also be included; floating
point decimals such as 12.5, are possible. Integer values represent
the absolute free space in the unit that defines the --units switch.
The default is --units=MB, or megabytes.

-c limit / --critical=1imit
If the free hard drive capacity level falls below this as a percentage
or integer (see -w), check_disk displays the CRITICAL status. The
critical limit must be smaller than the warning limit.

-W limit / -iwarning=limit
The number of free inodes in the file system as a percentage; check_
disk issues a warning if this drops below the limit.

-K 1limit / -icritical=1imit
Like -W, except that this is the critical threshold.

-u unit / --units=unit
In what unit do you specify integer limit values? kB, MB, GB, and TB
are all possible.

-k / --kilobytes
With this switch, limit values given as whole numbers with -c and -w
are to be interpreted as KB. This is the same as --units=kB.

158

7.1 Free Hard Drive Capacity

-m / --megabytes
With this switch, whole number limit values with -c and -w are in-
terpreted by the plugin as MB (the default). This is the same as
--units=MB.

Before one of the following path selectors is specified, at least one threshold
must be given (-w, -c, -W, or -K).

-p path_or_partition / --path=path or --partition=partition
This specifies the root directory in file systems or the physical device
in partitions (e.g., /dev/sdab). From version 1.4 -p can be called
multiple times. If the path is not specified, the plugin tests all file
systems (see also -x and -X).

-E / --exact-match
This demands that the root of the file system is included for all paths
or partitions specified with -p, otherwise the plugin will issue an er-
rorT:

nagios@linux:nagios/libexec$ df /usr/local
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/md2 9843168 7062980 2280172 76% /usr

/usr/local is not a file system, but a directory within the /usr
file system on the partition /dev/md2. If you call the plugin with
the switches -p /usr/local and -E, you will receive an error, since
/usr/local is not itself the root of the file system as required by -E:

nagios@linux:nagios/libexec$./check disk -w 10% -E -p/usr/local
DISK CRITICAL: /usr/local not found

-x path / --exclude_device=path
This switch excludes the mount point specified as path from the test.
This option assumes that paths are specified with -p and that they
may be run in a plugin call multiple times.

-X fs_typ / --exclude-type=fs_typ (from 1.4)
This switch excludes a specific file system type from the test. It is
given the same abbreviation as in the -t option of the mount com-
mand. In this way fs_type can take the values ext3, reiserfs, or
proc, for example (see also man 8 mount). This option can be used
several times in a plugin command.

-R regexp / --eregi-path=regexp, --eregi-partition=regexp
From version 1.4.8: a regular expression that selects all paths or par-
titions with which it matches. Upper/lower case is ignored here. The
following example checks all partitions that end with mdO thru md2:

159

7 Testing Local Resources

nagios@linux:nagios/libexec$./check disk -w 10% -r '‘md[0-2]1§’
DISK OK - free space: / 281 MB (31% inode=80%); /usr 2226 MB (24% i
node=77%) ;| /=626MB;861;;0;957 /usr=6897MB;8650;;0;9612

The swap partition /dev/md1 is ignored here.

-r regexp |/ --ereg-path=regexp, --ereg-partition=regexp
From version 1.4.8: a regular expression to check partitions and/or
paths. Like -R, except that it is now case-sensitive.

-A/--all
From version 1.4.10: checks all partitions and file systems. The equiv-
alent of -R 7 .x’.

-I regexp / --ignore-eregi-path=regexp,
--ignore-eregi-partition=regexp
From version 1.4.10: a regular expression that excludes paths or par-
titions that match it from the check. Upper/lower case is ignored.

-1 regexp / --ignore-ereg-path=regexp,
--ignore-ereg-partition=regexp
From version 1.4.10: like -I, except that it is now case-sensitive.

In addition the plugin has the following options:

-e / --errors-only
With this switch, the plugin shows only the file systems or partitions
that are in a WARNING or CRITICAL state.

-M / --mountpoint
From version 1.4 on, check_disk by default displays the file system
path (e.g., /usr). With -M you are told instead what physical device
(e.g., /dev/sdab) is involved.

-C/ --clear
From version 1.4 on, -p can be used multiple times. If you want to
test several file systems at the same time, but using different limit
values, -C can be used to delete old limit values that have been set:

-w 10% -¢ 5% -p / -p /usr -C -w 500 -c¢ 100 -p /var

The order is important here: the limit values are valid for the file
system details until they are reset with -C. Then new limits must be
set with -w and -c.

-1/ --local
Only checks local file systems, others-file systems mounted via NFS,
for example-are ignored.

160

7.1 Free Hard Drive Capacity

-L / --stat-remote-fs (ab Version 1.4.10)
Checks local file systems for the specified thresholds, but checks net-
work file systems only for availability. With this switch you can test,
for example, whether a stale file handle exists for a path connected
via NFS.2

-g group_name |/ --group-type=group_name
Refers to the thresholds of the sum of all specified partitions and
paths. Without this switch the plugin compares each path and each
partition separately with the thresholds. -g requires a name to be
given, which the plugin includes as additional information in the out-
put:

nagios@linux:nagios/libexec$./check disk -g CLUSTER -w 10%\

-r 'md[0-3]"
DISK OK - free space: CLUSTER 7437 MB (38% inode=86%);| CLUSTER=11
719MB;18163;;0;20182

This option must be placed in front of the path specification to which
it refers.

-t timeout / --timeout=timeout
After timeout seconds have expired the plugin stops the test and
returns the CRITICAL status. The default is 10 seconds.

Here is a somewhat more extensive example of the use of check_disk:

usere@linux:nagios/libexec$./check_disk -w 10% -c 5% -p / -p /usr \

-p /var -C -w 5% -c 3% -p /net/emill/a -p /net/emill/c -e
DISK WARNING - free space: /net/emill/c 915 MB (5%);| /=146MB;458;483;0;
509 /usr=1280MB;3633;3835;0;4037 /var=2452MB;3633;3835;0;4037 /net/emill
/a=1211MB;21593;22048;0;22730 /net/emill/c=17584MB;17574;17944;0;18499

Everything is in order on the file system /, /usr, and /var, since more
space is available on them—as can be seen from the performance data—
than the limit value of 10 percent (for a warning), and certainly more than
5 percent (for the critical status). The file systems /net/emill/a and
/net/emill/c encompass significantly larger ranges of data, which is why
the limit values are set lower, after the previous ones have been deleted
with -C.

-e ensures that Nagios shows only the file systems that really display an
error status. In fact the output of the plugin before the | sign, with /net/
emill/c, only displays one single file system. The performance informa-
tion after the pipe can only be seen on the command line—it contains all

2 The error message NFS stale file handle indicates the non-availability of the NFS
path.

161

7 Testing Local Resources

file systems tested, as before. This is slightly confusing, because a Nagios
plugin restricts its output to a single line, which has been line wrapped here
for this printed version.

7.2 Utilization of the Swap Space

The check_swap plugin tests the locally available swap space:

-w limit / --warning=limit
The warning limit can be specified as a percentage or as an integer,
as with check_disk, but the integer value is specified in bytes, not in
kilobytes!

If at least 10 percent should remain free, specify -c 10%. The integer
specification refers to the remaining free space, too.

-c limit / --critical=1imit
Critical limit, similar to the warning limit.

-a/ --allswaps
Tests the threshold values for each swap partition individually.

The following example tests to see whether at least half of the swap space is
available. If there is less than 20 percent free swap space, the plugin should
return a critical status. After the | sign the program again provides perfor-
mance data, which is logged by Nagios but not displayed in the message on
the Web interface:

usere@linux:nagios/libexec$./check_swap -w 50% -c 20%
swap OK: 100% free (3906 MB out of 3906 MB) \swap:3906MB;1953;781;0;3906

7.3 Testing the System Load

The load on a system can be seen from the number of simultaneously run-
ning processes, which is tested by the check_load plugin. With the help
of the uptime program, it determines the average value for the last minute,
the last five minutes, and the last 15 minutes. uptime displays these values
in this sequence after the keyword load average:

user@linux:~$ uptime
16:33:35 up 7:05, 18 users, load average: 1.87, 1.38, 0.74

check_load has only two options (the two limit values), but these can be
specified in two different ways:

162

7.4 Monitoring Processes

-w limit / --warning=limit
This option specifies the warning limit either as a simple floating
point decimal (5.0) or as a comma-separated triplet containing three
floating point decimals (10.0,8.0,5.0).

In the first case, the limit specified applies to all three average val-
ues. The plugin issues a warning if (at least) one of these is exceeded.
In the second case the triplet allows the limit value to be specified
separately for each average value. Here as well, check_load issues
a warning as soon as one of the average values exceeds the limit de-
fined for it.

-c limit / --critical=1imit
This specifies the critical limit in the same way as -w specifies the
warning limit. These critical limit values should be higher than the
values for -w.

-r / —--percpu (from Version 1.4.9)
Divides the system load determined by the number of existing CPU
kernels, to get a better idea of the load per CPU kernel.

In the following example Nagios would raise the alarm if more than 15 pro-
cesses were active on average in the last minute, if more than 10 were active
on average in the last five minutes, or if eight were active on average in the
last 15 minutes. There is a warning for average values of ten, eight, or five
processes:

user@linux:local/libexec$./check load -w 10.0,8.0,5.0 -c¢ 15.0,10.0,8.0
OK - load average: 1.93, 0.95, 0.50| 1oadl=1.930000;10.000000;15.000000;
0.000000 load5=0.950000;8.000000;10.000000;0.000000 10adl5=0.500000;
5.000000;8.000000;0.000000

7.4 Monitoring Processes

The check_procs plugin monitors processes according to various criteria.
Usually it is used to monitor the running processes of just one single pro-
gram. Here the upper and lower limits can also be specified.

nmbd, for example, the name service of Samba, always runs as a daemon
with two processes. A larger number of nmbd entries in the process table is
always a sure sign of a problem; it is commonly encountered, especially in
older Samba versions.

Services such as Nagios itself should only have one main process. This can
be seen by the fact that its parent process has the process ID 1, marking it
as a child of the init process. It was often the case, in the development

163

7 Testing Local Resources

phase of Nagios 2.0, that several such processes were active in parallel after
a failed restart or reload, which led to undesirable side effects. You can test
to see whether there really is just one single Nagios main process active, as
follows:

nagios@linux:nagios/libexec$./check procs -c 1:1 -C nagios -p 1
PROCS OK: 1 process with command name ’‘nagios’, PPID = 1

The program to be monitored is called nagios (option -C), and its parent
process should have the ID 1 (option -p). Exactly one Nagios process must
be running, no more and no less; otherwise the plugin will issue a CRITICAL
status. This is specified as a range: -c 1:1.

Another example: between one and four simultaneous processes of the
OpenLDAP replication service slurpd should be active:

nagios@linux:nagios/libexecs$./check procs -w 1:4 -c 1:7 -C slurpd
PROCS OK: 1 process with command name ’‘slurpd’

If the actual process number lies between 1 and 4, the plugin returns OK,
as is the case here. If it finds between five and seven processes, however,
a warning will be given. Outside this range, check_procs categorizes the
status as CRITICAL. This is the case here if there are either no processes
running at all, or more than seven running.

Instead of the number of processes of the same program, you can also mon-
itor the CPU load caused by it, its use of memory, or even the CPU runtime
used. check_procs has the following options:

-w start:end / --warning=start :end
The plugin issues a warning if the actual values lie outside the range
specified by the start and end value. Without further details, it as-
sumes that it should count processes: -w 2:10 means that check_
procs gives a warning if it finds less than two or more than ten pro-
cesses.

If you omit one of the two limit values, zero applies as the lower
value, or infinite as the upper limit. This means that the range :10
is identical to 0:10; 10: describes any number larger than or equal
to 10. If you just enter a single whole number instead of a range, this
represents the maximum. The entry 5 therefore stands for 0:5.

If you swap the maximum and minimum, the plugin will give a warn-
ing if the actual value lies within the range, so for -w 10:5 this will
be if the value is 5, 6, 7, 8, 9, or 10. You may always specify only one
interval.

-c start:end / --critical=start :end
This specifies the critical range, in the same way as for the warning
limit.

164

7.4 Monitoring Processes

-m type / --metric=type
This switch selects one of the following metrics for the test:

PROCS: number of processes (the default if no specific type is given)

VSZ: the virtual size of a process in the memory (virtual memory
size), consisting of the main memory space that the process
uses exclusively, plus that of the shared libraries used. These
only take up memory space once, even if they are used by sev-
eral different processes. The specification is given in bytes.

RSS: the proportion of main memory in KB that the process actually
uses for itself (Resident Set Size), that is, VSZ minus the shared
memory.

CPU: CPU usage in percent. The plugin here checks the CPU usage
for each individual process for morning and critical limits. If
one of the processes exceeds the warning limit, Nagios will issue
a warning. In the text output the plugin also shows how many
processes have exceeded the warning or critical limit.

ELAPSED: The overall time that has passed since the process was
started.

-s flags |/ --state=flags
This restricts the test to processes with the specified status flag.> The
plugin in the following example gives a warning if there is more than
one zombie process (status flag: Z):

nagios/libexec@linux: $./check procs -w 1 -c 5 -s 2
PROCS OK: 0 processes with STATE = Z

Things become critical here if more than five zombies “block up” the
process table. Several states can be queried at the same time by by
adding individual flags together, as in -s DSZ. Now Nagios cancels
the processes that are in at least one of the states mentioned.

-p ppid / --ppid=ppid
This switch restricts the test to processes whose parent processes
have the parent process ID (ppid). The only PPIDs that are known
from the beginning, and that do not change, are 0 (started by the ker-
nel, and usually only concerns the init process) and 1 (the init process
itself).

-P pcpu / --pcpu=pcpu
This option filters processes according to the percentage of CPU they
use:

The following states are possible in Linux: D (uninterruptible waiting, usually a Disk
Wait), R (running process), S (wait status), T (process halted), W (paging, only up to ker-
nel 2.4), X (a finished, killed process), and Z (zombie). Further information is provided
by man ps.

165

7 Testing Local Resources

nagios/libexec@linux: $./check procs -w 1 -c¢c 5 -P 10
PROCS OK: 1 process with PCPU >= 10,00

The plugin in this example takes into account only processes which
have at least a ten percent share of CPU usage. As long as there is just
one such process (-w 1), it returns OK. If there are between two and
five such processes, the return value is a WARNING. With at least six
processes, each with a CPU usage of at least ten percent, things get
critical.

-r rss / --rss=rss
This option filters out processes that occupy at least rss bytes of
main memory. It is used like -P.

-z vsz | --vsz=vsz
This option filters out processes whose VSZ (see above) is at least vsz
bytes. It is used like -P.

-u user / --user=user
This option filters out processes that belong to the specified user (see
example below).

-a "string" / --argument-array="’string”’
Filters out commands whose argument list contains string. -a
.tex, for example, refers to all processes that work with *.tex files;
-a -v to all processess that are called with the -v flag.

-C command / --command=command
This causes the process list to be searched for the specified command
name. command must exactly match the command specified, without
a path (see example below).

-t timeout / --timeout=timeout
After timeout seconds have expired, the plugin stops the test and
returns the CRITICAL status. The default is 10 seconds.

The following example checks to see whether exactly one process called
master is running on a mail server on which the Cyrus IMAPd is installed.
No process is just as much an error as more than one process:

usere@linux:nagios/libexec$./check_procs -w 1:1 -c 1:1 -C master
CRITICAL - 2 processes running with command name master

The first attempt returns two processes, although only a single Cyrus Master
process is running. The reason can be found if you run ps:

166

7.5 Checking Log Files

user@linux:~$ ps -fC master

UIlD PID PPID C STIME TTY TIME CMD
cyrus 431 1 0 2004 ? 00:00:28 /usr/lib/cyrus/bin/master
root 1042 1 0 2004 ? 00:00:57 /usr/lib/postfix/master

The Postfix mail service also has a process with the same name. To keep
an eye just on the master process of the IMAPd, the search is additionally
restricted to processes running with the permissions of the user cyrus:

user@linux:nagios/libexec$./check procs -w 1:1 -c 1:1 -C master -u \
cyrus
OK - 1 processes running with command name master, UID = 96 (cyrus)

7.5 Checking Log Files

Monitoring log files is not really part of the concept of Nagios. On the
one hand, the syslog daemon notices critical events there immediately, so
that an error status can be correctly determined. But if the error status
continues, this cannot be seen in the log file in most cases.

Correspondingly the plugins described here can determine only whether
other, new entries on error events are added. In order to communicate
information on a continuing error behavior to Nagios via a log file, the
service monitored must log the error status regularly—at least at the same
intervals as Nagios reads the log file—and repeatedly. Otherwise the plugin
will alternate between returning an error status, and then an OK status,
depending on whether the (continuing) error has in the meantime turned
up in the log or not.

Under no circumstances may Nagios repeat its test. The parameter max_
check_attempts (see page 63) must have the value 1. Otherwise Nagios
would first assign the error status as a soft state, would repeat the test, and
would almost always arrive at an OK, since it only takes into account new
entries during repeat tests. max_check_attempts = 1 ensures that Nagios
diagnoses a hard state after the first test.

For events that log an error just once, Nagios has volatile services, described
in Section 14.5.2 from page 309. For services defined in this way, the system
treats every error status as if it was occurring for the first time (causing a
message to be sent each time, for example).

Nagios periodically performs (active) checks with the plugins introduced
here. If the entry sought does not reoccur, the plugin returns an OK. This
is desired in many cases, and the administrator does not need to worry
about the earlier error event. But if an error event needs to be handled
in all cases, a simple Nagios check is no longer sufficient, since it will be

167

7 Testing Local Resources

easily overlooked due to the OK of a subsequent check. A slightly different
approach, in which an administrator has to explicitly confirm every error
result, is introduced in Chapter 23 on page 531.

7.5.1 The standard plugin check_log

With check_log, Nagios provides a simple plugin for monitoring log files.
It creates a copy of the tested log file each time it is run. If the log file has
changed since the previous call, check_log searches the newly added data
for simple text patterns. The plugin does not have any longer options and
just has the states OK and CRITICAL:

-F logfile
This is the name and path of the log file to be tested. It must be
readable for the user nagios.

-0 oldlog
This is the name and path of the log file copy. The plugin just ex-
amines the difference between oldlog and logfile when it is run.
Afterward it copies the current log file to o1dlog. oldlog must con-
tain the absolute path and be readable for the user nagios.

-q query
This is the pattern searched for in examining the log file. Not found
means OK; a match returns the CRITICAL status.

It is recommended that you generally do not use messages of the type re-
covery notification (OK after an error state).

An OK in a repeated test just means that no new error in events have oc-
curred since the last test. The notification_options parameter (see
page 64) in the service definition should therefore not contain an r.

The following command examines the file /var/log/auth for failed logins:

nagios@linux:local/libexec$./check log -F /var/log/auth \

-0 /tmp/check_log.badlogin -q "authentication failure"
(1) < Jan 1 18:47:56 swobspace su[22893]: (pam unix) authentication
failure; logname=wob uid=200 euid=0 tty=pts/8 ruser=wob rhost= user=root

This produces one hit. The plugin does not show its return value in the
text, but it can be displayed in the shell with echo $7. In the example, a 2
for CRITICAL is returned.

If you examine the log file for several different events, you must specify a
separate oldlog for each log file:

168

7.5 Checking Log Files

./chec og -F /var/log/messages -O /tmp/chec og.pluto - "pluto"
/check_log /var/log/ g /tmp/check_log.pl q "pl
./check_log -F /var/log/messages -O /tmp/check_log.ntpd -g "ntpd"

Even if you are searching in the same original log file, you cannot avoid us-
ing two different oldlogs: otherwise check_log would not work correctly.

7.5.2 The modern variation: check_logs.pl

As an alternative, The Nagios Exchange? provides a completely new plugin
for monitoring log files. check_logs.plrepresents a further development
of the Perl plugin check_log2.pl, which is included in the contrib direc-
tory for Nagios plugins but is not installed automatically.

check_logs.pl can examine several log files simultaneously for events, in
contrast to check_log and check_log2.pl. It requires a configuration file
to do this.

It does have a simple command line mode, but this functions only if you
specify a single log file and a single regular expression simultaneously. But
the really interesting feature of check_logs.pl is that you can perform
several examinations in one go. This is why we will not spend any more
time describing the command line mode.

Initially we create a configuration file with roughly the following contents,
preferably in the directory /etc/nagios:

/etc/nagios/check_logs.cfg
$seek_file template='/var/nagios/$log file.check_ log.seek’;

@log files = (
{"file _name’ => ’/var/log/messages’,
'reg_exp’ =>'ntpd’,
I
{"file name’ => ’/var/log/warn’,
'reg_exp’ =>' (named|dhcpd)’,
I
)i
1;

The Perl variable $seek_file_template contains the path to the file in
which the plugin saves the current position of the last search. check_logs.
pl remembers here at what point in the log file it should carry on searching
the next time it is run. This means that the plugin does not require a copy of
the processed log file. Instead of the variable $1og_file, it uses the name
of the log file to be examined in each case and creates a separate position
file for each log file.

4 http://www.nagiosexchange.org/54;279

169

7 Testing Local Resources

What exactly check_logs.plis to do is defined by the Perl array @log_
files. The entry file_name points to the log file to be tested (with the
absolute path), and reg_exp contains the regular expression,® for which
check_logs.plshould search the log file. In the example above this is just
a simple text called ntpd in the case of the /var/log/messageslog file, but
there is an alternative in the case of /var/log/warn: the regular expression
(named | dhcpd) matches lines that contain either the text named or the text
dhcpd.

The only specification that the plugin itself requires when it is run is the
configuration file (option -c) :

nagios@linux:local/libexec$./check logs.pl -c \
/etc/nagios/check logs.cfg
messages => OK; warn => OK;

nagios@linux:local/libexec$./check logs.pl -c \
/etc/nagios/check logs.cfg

messages => OK; warn => (4): Jul 2 14:33:25 swobspace dhcpd:
Configuration file errors encountered -- exiting;

The first command shows the basic principle: in the text output the plugin
for each log file announces separately whether it has found a matching
event or not. In the above example it didn't find anything, so it returns OK.
In the second command the plugin comes across four relevant entries in
the warn log file, but it doesn’t find any in /var/log/messages. Because
of this, the plugin returns a WARNING; OK is given only if no relevant events
were found in any of the log files checked. In its output line, after (4) :, the
plugin remembers the last of the four lines found.

7.5.3 The Swiss Army knife: check_logfiles

If you have many requirements from a log file check and the tools intro-
duced so far do not meet your needs, then you really should take a look
at the plugin check_logfiles by Gerhard LauBer. As well as sophisti-
cated search options, it can handle any rotation methods you please, so
that no information will be lost after a rotation. Its range of functions can
be extended by scripts, which can be used to restart applications that have
crashed, to send SNMP traps, or send passive check results to an NSCA
daemon via send_nsca (Section 14.4, page 305).

For simple tasks the plugin can be operated easily from the command line,
but to use it in more advanced ways you will need to have some knowledge
of Perl: the configuration file that is needed to make use of all the features
uses the Perl syntax.

5 In the form of Perl-compatible regular expressions (PCRE, see man perlre), since
check_logs.pl is a Perl script.

170

7.5 Checking Log Files

The plugin® is unpacked in a suitable directory, for example in /usr/local/
Src:

linux:local/src # tar xvzf /pfad-zu/check_logfiles-2.3.1.2.tar.gz

linux:local/src # cd check logfiles-2.3.1.2

linux:check logfiles-2.3.1.2 # ./configure \
--with-seekfiles-dir=/var/tmp \
--with-protocols-dir=/var/tmp

linux:check logfiles-2.3.1.2 # make && make install

The installation is done with the three commands configure && make &&
make install. --with-seekfiles-dir specifies the directory in which
check_logfiles writes status information, and --with-protocol-dir
specifies the directory in which check_logfiles explicitly retains matches
it has found. When doing this you should select a directory that is not
deleted directly after every reboot. Logging can be switched off in the con-
figuration, depending on the check defined.

On the command line, check_logfiles offers the following options:

--tag=designator
Indicates individual checks, to make better distinction between them.
The names of the variables in the performance data also start with
this designator, so that the values can later be reassigned to a check.
Specifying --tag is optional, but the author of the plugin generally
recommends its use.

--logfile=logfile
Specifies the name and path of the log files to be examined. check_
logfiles takes note of the last line of the file to be considered during
each check, so that it can continue at the same place the next time it
is called. In addition, check_logfiles saves other information such
as inode and timestamp, so that it can detect log file rotations.

--rotation=rotation method
Specifies the rotation procedure for the log file: loglogOloglgz is
used if if you want to turn logfile into logfile.O and turn this
into logfile.1l.gz.

loglogOgzloglgz means that logfile is first compressed to log-
file.0.gz and is later renamed logfile.1.gz.

loglogdate8gzstates that logfile will be converted into logfile.
YYYYMMDD. gz.

6 http://www.consol.de/opensource/nagios/check-logfiles

171

7 Testing Local Resources

loglogOlogl describes the rotation method that turns logfile into
logfile.O and creates the file Jogfile.1 in the next rotation step.

hpux in turn describes the variation " 1ogfile is turned into OLDlog-
file".

If a suitable rotation method is missing, you can specify a regular
expression that matches the archived files instead. For Debian, you
therefore specify --rotation=’logfile\. (0| [0-9]+\.gz). This is
in case the ending .0 is missed during the initial rotation of the file,
and if all older archived files end in .number.gz.

--criticalpattern=regexp
Regular expression in Perl syntax that triggers a CRITICAL. More de-
tailed information on this is provided by man perlre.

--warningpattern=regexp
Like --criticalpattern, except that the regular expression here
triggers a WARNING.

--noprotocol
Switches off logging of matches to a separate file.

--syslogserver
Restricts the evaluation of log files of a syslog server to lines that the
server itself has entered.

--syslogclient=clientname
Restricts the evaluation of log files of a syslog server to lines that
originate from the syslog client clientname.

-f configfile
Specifies a configuration file that allows a more extensive configu-
ration than that allowed by just a few command line parameters. A
knowledge of Perl is essential for this (see page 173).

-d
Switches on debugging. Useful for searching for errors; this option
should not be used during normal operation.

check_logfiles is initialized when it is first called so that it can orient
itself. The plugin only takes into account log entries that are subsequently
appended to the log file, so it cannot evaluate already existing details.

For demonstration purposes we will first use the logger program to gen-
erate an entry in the file /var/log/messages:’

7 We are assuming here that the daemon facility is logged with the info priority in
/var/log/messages. This is dependent on the distribution, however. In Debian, such
entries land in /var/log/daemon.log.

172

7.5 Checking Log Files

user@linux:~$ logger -p daemon.info hellowob

The log file now contains the following entry:

Dec 16 17:46:06 swobspace wob: hellowob
A simple call of check_logfilesreturns the following result:

nagios@linux:nagios/libexec$./check logfiles --tag=hellowob \
--logfile=/var/log/messages --criticalpattern='hellowob’

CRITICAL - (1 errors in check_logfiles.protocol-2007-12-16-17-46-08) - D

ec 16 17:46:06 swobspace wob: hellowob |hellowob lines=2 hellowob warni

ngs=0 hellowob_criticals=1 hellowob_ unknowns=0

All variables in the performance data are appended to the hellowob tag so
that the respective events can be referenced again, if check_logfilesis to
simultaneously search for several different entries.

Re-running check_logfiles again returns an OK, since none of the 32
newly added entries (hellowob_lines=32) contains the text being sought:

nagios@linux:nagios/libexecs$./check logfiles --tag=hellowob \
--logfile=/var/log/messages --criticalpattern='hellowob’

OK - no errors or warnings |hellowob_lines=32 hellowob_warnings=0 hellow

ob_criticals=0 hellowob_ unknowns=0

Configuration Files

Configuration files for check_logfiles basically contain an array consist-
ing of search instructions, each of which are written as an anonymous hash:

@searches = (
{ search instruction 1 },
{ search instruction 2 },

{ search instruction n },

The array is called @searches; each instruction enclosed in {} is a search
instruction. A configuration file for the hellowob example could look like
this:

@searches = (
{
tag => 'hellowob’,
logfile => ' /var/log/messages’,

criticalpatterns => ‘hellowob’,

173

7 Testing Local Resources

rotation => ’'debian’,
options => ’‘noprotocol,nocase’,

b
)

The instructions tag and rotation correspond to the command line pa-
rameters of the same name. The instructions criticalpatternsand war-
ningpatterns are notated here —in contrast to the equivalent command
line parameter-in the plural. The configuration file also allows multiple
details:

criticalpatterns => [’/VIRUS found’, ‘hellowob’],

Instead of a scalar, an anonymous array may also be specified within square
brackets. Here are some more instructions for @searches:

archivedir
Archive directory for rotated log files. The default is the directory in
which the log file is located.

type

Specifies the type of log file: rotation is accepted by default if the
parameter rotation is set. simple describes log files without rota-
tion, check_logfiles does not continue searching for archived files.
virtual indicates files that should always be searched from the be-
ginning, such as sockets or files from the /proc directory in Linux.
For AIX, the option errpt is also available: instead of a real file, the
plugin now searches for the output of the errpt command.

criticalpatterns
Like the command line option --criticalpattern, except that now
a number of expressions may be specified as an array:

criticalpatterns => [’.xhallowob.x’, ’.xhellowob.x’, ’!dontcryforme’],

The exclamation mark ensures a CRITICAL if no line is found with
the text dontcryforme.

criticalexceptions
Like criticalpatterns, except as an exception: If a line matches an
expression from criticalpatterns,a CRITICAL would be triggered.
If an expression from criticalexceptions also matches this very
same line, this then stops the critical state. The instruction is used to
intercept special cases.

criticalthreshold
Sets a threshold. The value 5, for example, means that only every
fifth match from criticalpatterns is really counted as CRITICAL.
Below this threshold, the result remains OK.

174

7.5 Checking Log Files

warningpatterns
Like criticalpatterns, except for warnings.

warningexceptions
Like criticalexceptions, except for warnings.

warningthreshold
Like criticalthreshold, except for warnings.

okpatterns
Sometimes errors can rectify themselves. In such cases the adminis-
trator does not want to be woken up by unnecessary alarms.

okpatterns cancels all previous WARNINGs and CRITICALs. It is
possible to specify multiple details (see criticalpatterns).

script
Allows a script to be executed in case a match is found. To follow-
ing instructions supplement this: scriptparams passes additional
command line options to the script, scriptstdin allows to specify
strings that are expected by the script on STDIN, and scriptdelay
forces check_logfiles to take a break after the script has been exe-
cuted.

options
This instruction allows further settings options to be made, the mean-
ings of which can be negated by placing the prefix no in front of the
option:

script Executes the specified script. The default is noscript.

smartscript Controls whether the return value of the script and
its output should be included in the match list. The default is
nosmartscript.

supersmartscript Defines whether the return value and the out-
put of the script should replace previous matches (the default
is nosupersmartscript). The return value 0 (OK) of the script
would, for example, suppress a found match, by overwriting the
return value that is normally returned by check_logfiles.

protocol Controls whether matches are to be retained in a separate
log file. (The default is protocol).

count Should matches be counted or not? count is the default.
If this option is switched off with nocount, you can still use
check_logfiles to just execute scripts.

syslogserver Corresponds to the option --syslogserver (the de-
fault is nosyslogserver).

175

7 Testing Local Resources

syslogclient=string Like --syslogclient, except that an addi-

tional filter may be specified, for example, to search only for the
files of a specific client (nosyslogclient is the default).

perfdata Should performance data be displayed? The default is

perfdata.

logfilenocry If a log file does not exist, check_logfiles outputs

UNKNOWN, in accordance with the default, logfilenocry. The
parameter nologfilenocry tells the plugin to omit an error
message if the log file is missing.

case nocase ignores upper/lower case. The default, with case, is

the opposite of this.

sticky=seconds With this option check_logfiles notices an er-

ror state for the amount of time specified. Normally a subse-
quent check that does not find any more matches would return
an OK, so that the administrator might overlook an important
entry.

Let us assume that you only accept the truce when there have
been no more matches in the log file for two hours. Then the
check with sticky=7200 will announce an error state for up to
two hours. Only after this period has expired will check_log-
files return to an OK, provided that in the meantime no new
entry restarts the two-hour time limit.

If the search pattern contains okpattern, check_logfilesre-
turns an OK directly after a match, that is, before the specified
time has expired.

savethresholdcount If an event does not attain the number of

matches required in the *threshold options, no error is an-
nounced. The question here is how the matches overall should
be handled. savethresholdcount (the default) saves the num-
ber of matches until the next check and adds these together
until the threshold is reached and an error is triggered. The
parameter nosavethresholdcount prevents the event counter
from always being reset to zero between two checks.

It is beyond the scope of this book to describe all the possible applications
of check_logfiles. For this reason, we refer to the documentation, avail-
able in German and English, on the check_logfiles Web site.?

8 http://www.consol.com/opensource/nagios/check-logfiles

176

7.6 Keeping Tabs on the Number of Logged-In Users

7.6 Keeping Tabs on the Number of Logged-In
Users

The plugin check_usersis used to monitor the number of logged-in users:

user@linux:nagios/libexec$./check users -w 5 -c 10
USERS CRITICAL - 20 users currently logged in |users=20;5;10;0

It has just two options:

-w number / --warning=number
This is the threshold for the number of logged-in users after which
the plugin should give a warning.

-c number / --critical=number
This is the threshold for a critical state, measured by the number of
logged-in users.

The performance data after the | is as usual visible only on the command
line; Nagios does not include it in the Web interface.

7.7 Checking the System Time

7.7.1 Checking the system time via NTP

The two plugins check_ntp and check_ntp_time compare the clock time
of the local computer with that of an available NTP server in the network.
If the Nagios server keeps time via NTP accurately enough, so that it can
serve as a reference itself, then it can also be used as a network plugin,
provided that the host to be checked in the network has an NTP daemon
installed.

From plugin version 1.4.11, the plugins check_ntp_time and check_ntp_
peer (Section 6.12, page 154) replace check_ntp, which contains the func-
tions of both: the comparison of the local system time with an NTP server
described here and the health check of the NTP server itself. The options
here apply both to check_ntp and to check_ntp_time.

In the simplest case, check_ntp is called, specifying the computer (here:
ntpserver) whose time should be compared with that of the local com-
puter:

nagios@linux:nagios/libexec$./check ntp time -H ntpserver
NTP OK: Offset -0.009505749214 Secs|offset=—0.009506s;60.000000;120.0000
00;

177

7 Testing Local Resources

The deviation determined here amounts to just 9.5 milliseconds, a good
value. How much deviation can be tolerated depends on the particular in-
tended use. If you want to compare the log file entries of several different
computers, they ought to be NTP-synchronized. Then you can certainly
use -w 1 -c 2, that is, assign a deviation of two seconds as critical. In
environments in which Kerberos is used for authentication, time synchro-
nization of all hosts involved is also important, but not quite as critical:
Microsoft’s Active Directory under Windows Server 2003 tolerates a maxi-
mum deviation of five minutes, and only when there are larger deviations
do real problems arise.

check_ntp_time and check_ntp have the following options:

-H address / --host=address
This is the NTP server with which the plugin should compare the
local system time.

-p port / --port=port
The UDP port on which the NTP server runs. The default is port 123.

-w threshold / --warning=threshold
This is the warning limit, specified in the standard threshold format
(Section 24.1.5, page 557). The warning is given if the fluctuation
of the local system time is larger than the threshold specified. The
default is 60 seconds.

-c threshold / --critical=threshold
Critical threshold in seconds, specified in the standard threshold for-
mat (Section 24.1.5, page 557). If the local system time deviates more
than the given number of seconds (in the default setting 120 seconds)
from that of the NTP server, the status becomes CRITICAL.

-q/ --quiet (only check_ntp_time)
Returns UNKNOWN instead of CRITICAL if the NTP server—for what-
ever reason—does not provide an offset.

7.7.2 Checking system time with the time protocol

Apart from the Network Time Protocol NTP there is another protocol, older
and more simple: the Time Protocol described in RFC 868, in which com-
munication takes place via TCP port 37. On many Unix systems the corre-
sponding server is integrated into the inet daemon, so you do not have to
start a separate daemon. With check_time, Nagios provides an appropri-
ate test plugin.

178

7.7 Checking the System Time

check_time can also be used as a network plugin, in a similar way to
check_ntp, but this again assumes that the time service is available for ev-
ery client. In most cases it will therefore be used as a local plugin that com-
pares its own clock time with that of a central time server (here: timesrv):

nagios@linux:nagios/libexecs$./check time -H timesrv -w 10 -c 60
TIME CRITICAL - 1160 second time difference| time=0s;;;0 offset=1160s;10
;60;0

The performance data after the | sign, not shown in the Web interface,
contains the response time in seconds, with time (here: zero seconds);
offset describes by how much the clock time differs from that of the time
server (here: 1160 seconds). The other values, each separated by a semi-
colon, provide the warning limit, the critical threshold, and the minimum
(see also Section 19.1 from page 404). Since we have not set any threshold
values with the options -W or -C, the corresponding entries for time are
empty.

check_time has the following options:

-H address / --hostname=address
This is the host name or IP address of the time server.

-p port / --port=port
This is the TCP port specification, if different from the default 37.

-u/ --udp
Normally the time server is queried via TCP. With -u you can use UDP
if the server supports this.

-w integer /| --warning-variance=integer
If the local time deviates more than integer seconds from that of
the time server, the plugin returns a WARNING. integer is always
positive, and this covers clocks that are running both slow and fast.

-c integer /| --critical-variance=integer
If there is more than integer seconds difference between the local
and the time server time, the return value of the plugin is CRITICAL.

-W integer / --warning-connect=integer
If the time server needs more than integer seconds for the response,
a WARNING is returned.

-C integer / --critical-connect=integer
If the time server does not respond within integer seconds, the
plugin reacts with the return value CRITICAL.

179

7 Testing Local Resources

7.8 Regularly Checking the Status of the Mail
Queue

The check_mailq plugin can be used to monitor the mail queue of a mail
server for e-mails that have not yet been delivered. check_mailq runs
the program mailq of the mail service installed. Unfortunately each MTA
interprets the mail queue differently, so the plugin can evaluate only mail
queues from mail services that the programmer has taken into account.
These are, specifically: sendmail, gmail, postfix, and exim. The check_
mailq plugin has the following options:

-w number / --warning=number
If there are at least number mails in the mail queue, the plugin gives
a warning.

-c number / --critical=number
As soon as there are at least number of mails in the queue waiting to
be delivered, then the critical status has been reached.

-W number_of_domains / --Warning=number_of_domains
This is the warning limit with respect to the number of recipient do-
mains of a message waiting in the mail queue. Thus -W 3 generates
a warning if there are any mails in the queue that are addressed to
three or more different recipient domains.

-C number_of_domains /| --Critical=number_of_domains
This is the critical threshold with respect to the number of recipient
domains (like -W).

-M daemon / --mailserver=daemon (from version 1.4)
This specifies the mail service used. Possible values for daemon are
sendmail (the default), gmail, postfix, and exim.

-t timeout / --timeout=timeout
After timeout seconds, the plugin stops the test and returns the
CRITICAL status. The default here—as an exception—is 15 seconds
(usually it is 10 seconds).

In the following example, Nagios should give a warning if there are at least
five mails in the queue; if the number reaches ten, the status of the MTAs

Postfix used here becomes CRITICAL:

user@linux:nagios/libexec$./check mailqgq -w 5 -c 10 -M postfix
OK: mailg reports queue is empty|unsent=0;5;10;0

Since the queue is empty, check_mailq returns OK here.

180

7.9 Keeping an Eye on the Modification Date of a File

7.9 Keeping an Eye on the Modification Date of a
File

With the check_file_age plugin you can monitor not only the last modi-
fication date of a file, but also its size. In the simplest case it is just run with
the name and path of the file to be monitored:

user@linux:nagios/libexec$./check file age /var/log/messages
WARNING - /var/log/syslog/messages is 376 seconds old and 7186250 bytes

Here the plugin gives a warning, since the warning limit set is 240 seconds
and the critical limit, 600 seconds. The last modification of the file was 376
seconds ago—that is, inside the warning range.

The file size is taken into account by check_file_age only if a warning
limit for the file size (option -W) is explicitly specified. The plugin could
then give a warning if the file is smaller than the given limit (in bytes). The
defaults for the warning and critical limits here are both zero bytes.

check_file_age has the following options:

-w integer /| --warning-age=integer
If the file is older than integer9 (the default is 240) seconds, the
plugin issues a warning.

-c integer /| --critical-age=integer
A critical status occurs if the file is older than integer (default: 600)
seconds.

-W size / --warning-size=size
If the file is smaller than size bytes, the plugin gives a warning. If the
option is omitted, O bytes is the limit. In this case check_file_age
does not take the file size into account.

-C size / --critical-size=size
A file size smaller than size bytes sets off a critical status. The default
is 0 bytes, which means that the file size is ignored.

-f file / --file=file
The name of the file to be tested. The option may be omitted if you
instead—as in the above example—just give the file name itself as an
argument.

9 Because check_file_age is a Perl script, it does not matter in this case whether an
integer or a floating point decimal is specified. Fractions of a second do not play a role
in the file system.

181

7 Testing Local Resources

7.10 Monitoring UPSs with apcupsd

To monitor uninterruptible power supplies (UPS) from the company APC
there is the possibility, apart from the Network UPS Tools described in Sec-
tion 6.11 from page 149 of using the apcupsd daemon, optimized specifi-
cally for use with these UPSs. The software can be obtained from http://
www . apcupsd. com/ and is licensed under the GPL, despite the fact that it
is vendor-dependent.

The principal function here is the capacity to be able to shut down systems
in the event of power failure, rather than a mere monitoring function with
Nagios. For this latter purpose, it is easier to configure the Network UPS
Tools.

Nearly all Linux distributions contain a working apcupsd package,'? so you
don’t have to worry about installing it. Nagios does not include an apcupsd
plugin, but there is a very simple and effective script available for download
at http://www.negativel.org/check_apc/: check_apc.'! It is also li-
censed under the GPL, but it has no network capabilities. The plugin can-
not be given a host when it is run, and it also does not support any other
types of options. Instead of this, internal commands control its functional-
ity, which are given as the first argument.

Executing check_apc status tests whether the UPS is online. If this is the
case, the plugin returns the OK status, in all other cases it returns CRITICAL:

user@linux:nagios/libexec$./check apc status
UPS OK - ONLINE

check_apc load warn crit checks the load currently on the UPS and
displays it as a percentage of the maximum capacity. A warning is given if
the load is greater than the warning limits specified in warn (in the follow-
ing example, 60 percent), CRITICAL if the load is greater than crit (here
80 percent):

usere@linux:nagios/libexec$./check_apc load 60 80
UPS OK - LOAD: 39%

The load status of the UPS is checked by the command check_apc bcharge
warn crit. Here the warning limit warn and the critical limit crit are

also given in percent. The value 100 means “fully loaded.” The plugin ac-

cordingly gives a warning if the load is smaller than the warning limit, and

a CRITICAL if the load is smaller than the critical limit:

usere@linux:nagios/libexec$./check_apc bcharge 50 30
UPS OK - Battery Charge: 100%

10 At Jeast SuSE and Debian use this package name.
11 1t can also be obtained at: http://www.nagiosexchange.org/54;615.

182

7.11 Nagios Monitors Itself

You can find out how long the saved energy will last with check_apc time
warn crit. Here check_apc gives a warning if the remaining time is less
than warn minutes, and a CRITICAL if the remaining time is less than crit
minutes:

usere@linux:nagios/libexec$./check_apc time 20 10
UPS OK - Time Left: 30 mins

7.11 Nagios Monitors Itself

If necessary, Nagios can even monitor itself: the included plugin, check_
nagios, tests, on the one hand, whether Nagios processes are running and,
on the other hand, the age of the log file nagios.log in the Nagios var
directory, for example, /var/nagios/nagios.log.

Despite this, the question needs to be asked: if Nagios itself is not running,
then the system simply cannot perform the plugin, which in turn cannot
deliver an error message. The solution to this problem consists in having
two Nagios servers, each of which addresses the locally installed plugin on
the opposite server, with the help of NRPE (see Chapter 10 from page 213).

If you have just one Nagios server you can also run check_nagios alone
via cron and have the return value checked using a shell script. In this case,
you take action yourself, as shown in Section 7.11.1, so that you are suitably
informed of this.

The plugin has the following options:

-C /path/to/nagios | --command=/path/to/nagios
This is the complete nagios command, including the path (e.g., -C
/usr/local/nagios/bin/nagios).

-F /path/to/logfile | --filename=/path/to/logfile
This is the path to where the Nagios log file nagios.logis saved. The
file is located in the Nagios var directory.

-e integer /| --expires=integer
This is the maximum age of the log file. If there have been no changes
to the file for longer than integer minutes, check_nagios issues a
warning.

You should make sure that this time specification is large enough:
if no errors are currently occurring, Nagios will not log anything in
the log file. The only reliable way to obtain a regular entry is with
the parameter retention_update_interval in the configuration
file nagios.cfg (see page 601). The default value is 60 minutes.

183

7 Testing Local Resources

In the following example the log file should not be older than 60 minutes
(this corresponds to the default retention update interval; see page 601):

user@linux:nagios/libexec$./check nagios -e 60 \
-F /var/nagios/magios.log -C /usr/local/nagios/bin/nagios
NAGIOS OK: 1 process, status log updated 184 seconds ago

With one running Nagios process and a log file last changed 183 seconds
(about three minutes) ago, everything is in order here. If the -e parameter
is omitted, the plugin always gives a warning.

7.11.1 Running the plugin manually with a script

The following example script demonstrates how the plugin is called outside
the Nagios environment. It starts check_nagios initially as Nagios does
and then evaluates the return value. If the status is not O, it sends an e-
mail to the administrator nagios-admin@example. com, using the external
mailx program:

#!/bin/bash

NAGCHK="/usr/local/nagios/libexec/check _nagios"
PARAMS="-e 60 -F /var/nagios/nagios.log -C /usr/local/nagios/bin/nagios"

INFO="'S$NAGCHK $PARAMS"
STATUS=$?

case $STATUS in
0) echo "OK : " SINFO

%) echo "ERROR : " SINFO | \
/usr/bin/mailx -s "Nagios Error" nagios-admineexample.com

esac

The script can be run at regular intervals via a cron job—such as every 15
minutes. But then it will also “irritate” the administrator every quarter of
an hour with an e-mail. There is certainly room for improvement in this
respect—but that would go beyond the scope of this book.

7.12 Hardware Checks with LM Sensors

Modern mainboards are equipped with sensors that allow you to check the
“health” of the system. In the Im-sensors'? project it is also possible in

12 http://www.lm-sensors.nu/

184

7.12 Hardware Checks with LM Sensors

Linux to query this data via I2C or SMBus (System Management Bus, a 12C
special case).

To enable this, the kernel must have a suitable driver. Kernel 2.4.x normally
requires additional modules, which are included in the software.!®> With a
little luck, your distribution may include precompiled modules (e.g., SUSE).
Kernel 2.6, however, already includes many drivers; here you just compile
the entire branch below I2C Hardware Sensors Chip support.

It would take too much space here to detail the installation of the neces-
sary modules. We will therefore only go into detail for the check_sensors
plugin, and assume that the corresponding kernel driver is already loaded
as a module. Help is provided during operation with the sensors-detect
program from the 1m-sensors package, which does a number of tests and
then tells you which modules need to be loaded. If all requirements are
fulfilled, running the sensors program will produce an output similar to
the following one, and shows that the onboard sensors are providing data:

user@linux:~$ sensors
fscher-i2c-0-73
Adapter: SMBus I801 adapter at 2400

Templ/CPU: +41.00 C
Temp2/MB: +45.00 C
Temp3 /AUX: failed
Fanl/PS: 1440 RPM
Fan2/CPU: 0 RPM
Fan3/AUX: 0 RPM
+12V: +11.86 V
+5V: +5.10 V
Battery: +3.07 V

The output depends on the hardware, so it will be slightly different for each
computer. Here you can see, for example, the CPU and motherboard tem-
peratures (41 and 45 degrees Celsius), the rotation speed of the fans, and
the voltages on the 12- and 5-volt circuits and on the battery. Depending
on the board design and the manufacturer, some details may be missing; in
this example, only the fan for the power supply FAN1/PS!# provides infor-
mation; Fan3/AUX refers to an additional fan inside the computer box that,
although it is running, is not recorded by the chipset.

Apart from the standard options -h (help function), -v (verbose), which dis-
plays the response of the sensors, and -V, which shows the plugin version,
the plugin itself has no special options. Warning and critical limits must
be set via the 1Im-sensors configuration. check_sensors only returns the
status given by the onboard sensors:

13 http://secure.netroedge.com/”1m78/download.html
14 ps stands for power supply; but the names displayed can be edited in /etc/
sensors.conf

185

7 Testing Local Resources

usere@linux:nagios/libexec$./check_sensors
sensor ok

If this is called with the -v option, you can see more clearly whether the
test works:

user@linux:nagios/libexec$./check sensors -v

fscher-i2c-0-73 Adapter: SMBus I801 adapter at 2400 Templ/CPU: +40.00 C
Temp2/MB: +45.00 C Temp3/AUX: failed Fanl/PS: 1440 RPM Fan2/CPU: 0 RPM
Fan3/AUX: 0 RPM +12V: +11.86 V +5V: +5.10 V Battery: +3.07 V

sensor ok

The output line is only wrapped for printing purposes; the plugin displays
verbose information on a single line.

Alternatively you can use SNMP to access the sensor data: the NET-SNMP
package (see Chapter 11.2 from page 234) provides the data delivered by
Im-sensors, and with the SNMP plugin check_snmp, warning limits can
also be set from Nagios. This solution is described in Section 11.3.1 from
page 246.

186

Plugins for Special Tasks

A number of plugins do not really fit into the category of local checks versus
remote checks because they themselves do not detect operating states but
manipulate the results of other checks or summarize them into new results.
These include the plugin check_dummy, which always returns a fixed result
in order to create a well-defined environment for test scenarios.

negate (which negates the return value) and urlize (which adds a hyper-
link to the text output) manipulate the outputs. Summarizing and process-
ing check results is the task of check_cluster and check_multi. Whereas
check_cluster only combines and evaluates existing states, check_multi
calls the specified plugins itself and combines their results.

187

8 Plugins for Special Tasks

8.1 The Dummy Plugin for Tests

For tests expected to end with a defined response, the check_dummy plugin
can be used. it is given a return value and the desired response text as
parameters, and it provides exactly these two responses as a result:

nagios@linux:nagios/libexec$./check dummy 1 "Debugging"
WARNING: Debugging

nagiose@linux:nagios/libexec$ echo $?

1

The output line contains the defined response, preceded by the status in
text form. the return value can again be checked with echo $7: 1 stands
for WARNING.

Alternatively you can give check_dummy a 0 (OK), an 2 (CRITICAL) or a 3
(UNKNOWN) as the first argument. The second argument, the response
text, is optional.

8.2 Negating Plugin Results

In some situations you may want to test the opposite of what the standard
plugin normally tests, such as an interface that should not be active, a Web
page or a host that should normally not be reached. In these cases the pro-
gram negate, included in the Nagios plugins, provides a way of negating
the return value of the original check.

Like plugins, negate has an option to specify a timeout in seconds, with
-t, after which it should abort the operation. The actual command line
must always contain the complete path to the plugin:

negate plugin command
negate -t timeout plugin command

negate changes the return value of 2 (CRITICAL) to 0 (OK) and vice versa.
The return codes 1 (WARNING) and 3 (UNKNOWN) remain unchanged.

The following example carries out check_icmp on the host 192.0.2.1,
which in normal cases should not be reachable:

nagios@linux:nagios/libexec$./negate \
/usr/local/nagios/libexec/check icmp -H 192.0.2.1

CRITICAL - 192.0.2.1: rta nan, lost 100%| rta=0.000ms;200.000;500.000;0;

pl=100%;40;80;;

nagios@linux:nagios/libexec$ echo $?

0

188

8.3 Inserting Hyperlinks with urlize

The plugin itself returns a CRITICAL in this case with a corresponding text.
negate “inverts” the return value; 2 (CRITICAL) turns into 0 (OK). Since
the text originates from the plugin and is not changed, the information
CRITICAL remains here. For Nagios itself, however, nothing but the return
value is of any interest.

8.3 Inserting Hyperlinks with urlize

The program urlize represents the text output of a plugin as a hyperlink, if
required, so that clicking in the Nagios Web interface on the test result takes
you to another Web page. Like negate, urlize functions as a wrapper
around the normal plugin command and is included with the other Nagios
plugins.

As the first argument it expects a valid URL to which the hyperlink should
point. This is followed by the plugin command, including its path:

urlize url plugin command

To avoid problems with spaces in plugin arguments, you can set the com-
plete
plugin command in double quotation marks.

The hyperlink around the normal plugin output can be easily recognized
when running the command manually:

nagios@linux:nagios/libexec$./urlize http://www.swobspace.de \
/usr/local/nagios/libexec/check http -H www.swobspace.de

HTTP OK HTTP/1.1 200 OK - 2802 bytes
in 0.132 seconds |time=0.132491s;;;0.000000 size=2802B;;;0

In version 1.4 urlize also embeds the performance output in the link text,
but Nagios cut this off before the representation in the Web interface, to-
gether with the end tag. But most browsers do not have any problem with
the missing .

8.4 Checking Host or Service Clusters as an Entity

Plugins normally check an individual host or service, compare the result
with the specified thresholds, and then return an appropriate result. On
systems with redundant designs (such as in clusters) you can also check the
respective host or service individually. In addition, a check of the virtual
host or service provides a clue as to whether or not the virtual system as

189

8 Plugins for Special Tasks

a whole is reachable. The plugin check_cluster allows more complex
values to be queried.

As an example, we will take a host cluster consisting of five identical single
systems. One of these hosts may fail without any problem, but if a second
one fails, the plugin should issue a WARNING. If a third host should fail, a
CRITICAL should certainly be signalled.

The special feature of check_cluster is that it does not actively perform
a check itself but determines the return value from already-existing status
values from the desired hosts or services. To do this it uses on-demand
macros (see Section D.2 from page 632). Whereas the standard macros
always refer to the current host or service, which obviously makes little
sense for check_cluster, on-demand macros allow access to all existing
information on other hosts or services.

For check_cluster we require the status of various hosts or services. These
can be determined through the on-demand macros $HOSTSTATEID: host $
and $SERVICESTATEID: host :service_description$. They both pro-
vide the respective status in numerical form: 0 for OK; for hosts, 1 for
DOWN and 2 for UNREACHABLE; for services, 1 for WARNING, 2 for CRITI-
CAL, and 3 for UNKNOWN).! In each case the host name must be specified,
and for $SERVICESTATEIDS the service description of the host or service
from which Nagios is to obtain the values must also be given.

The plugin has the following options:

-s / --service
Handles the status values as the results of service checks, that is, 0 as
OK, 1 as WARNING and 2 as CRITICAL

-h / --host
Handles the status values as the results of host checks, that is, 0 as
UP, 1 as DOWN, and 2 as UNREACHABLE

-1 label / --label=1label
Inserts the text specified with 1abel into the text output

-d statusliste / --data=statusliste
Comma-separated list of the states from which the total result should
be determined; here the already mentioned macros are used:

--data=$HOSTSTATEID: srvl$, $HOSTSTATEID: srv2$, $SHOSTSTATEID: STv3$

-w schwellwert | --warning=schwellwert
Warning threshold in the threshold format,? with respect to the num-
ber of error states. So by specifying -w 0:2, a maximum of two er-

1 see Appendix D from page 625.
2 For the specification of thresholds, see Section 24.1.5 on page 557.

190

8.5 Summarizing Checks with check_multi

ror states are allowed for an OK result. From the third error state, a
WARNING is issued.

-c threshold /| --critical=threshold
Like --warning, but refers to the critical threshold

The following call simulates the failure of two out of a total of five existing
Web servers. A third server displays a WARNING. This means that we have
a total of three error states:

nagios@linux:local/libexec$./check_cluster -s -d 0,2,1,0,2 -w 0:2 -c 0:3
CLUSTER WARNING: Service cluster: 2 ok, 1 warning, 0 unknown, 2 critical

The check issues a WARNING because the warning threshold is exceeded
(even though the critical threshold is not). The definition of the check_
cluster command is kept simple:

define command{
command_name check_cluster
command_line $USER1$/check_cluster -1 $ARG1S $ARG2S

}

The command expects a label as the first argument, and the plugin prefixes
it to the text output. Everything else is defined in the second argument in
the host or service definition:

define servicef{

host_name mycluster

service_description Web Cluster

command check cluster!Web Cluster!--service -d $SERVICESTATEID:srvl:
HTTPS$, SSERVICESTATEID:srv2:HTTPS -w 0:0 -c 0:1

}

The service Web Cluster checks the service states of the two services srvl:
HTTP and srv2:HTTP. As long as they are both working without errors, the
command returns OK. If there is an error state, the result will be a WARN-
ING, and if both services have errors, CRITICAL is returned.

This completes the possibilities of check_cluster. If you are not satisfied
with simply evaluating the number of existing error states, you should take
a closer look at the plugin check_multi, which also allows AND and OR
operations.

8.5 Summarizing Checks with check_multi

There are various reasons for grouping different checks into a single one.
On one hand it simplifies work for Nagios, because the system now only

191

8 Plugins for Special Tasks

Figure 8.1:
Summarizing checks
with check_multi

needs to manage 1,000 procedures instead of maybe 20,000—this increases
performance significantly in many cases. If you summarize checks re-
motely, Nagios now performs 1 instead of 20 network queries, which results
in better network performance. The Nagios administrator may also have an
easier time, as the configuration is more concise.

The method originally planned for load distribution and reducing checks
was via distributed Nagios instances. There are certainly productive instal-
lations in which a Nagios instance performs only 50 checks and transmits
these to a central Nagios installation. If there are some several hundred
Nagios instances, this method does ease the load on the central Nagios in-
stallation but not on the administrator, who has a considerable amount of
work managing such configurations.

The plugin check_multi, by Matthias Flacke, takes a different approach. It
performs (almost) any number of checks decentrally and returns just a sum
total of the results to the Nagios server (Figure 8.1). The plugin is executed
remotely; it is called either via NRPE (Section 10 from page 213) or via the
plugin check_by_ssh (Section 9.1 from page 206).

->| Check 1

check_by_ssh
w N;PE_ check_multi]— Check 2

Check 3

>(_check s]
Server

Information is lost during this process—ultimately, there can be only one
return value for each check_multi call. But you gain clarity with the con-
figuration of services, and you acquire—unexpectedly—a nice feature: The
checks that must be performed are listed in an NRPE-like configuration
file on the corresponding target system on which check_multi is also in-
stalled. This makes it possible to delegate certain tasks, such as the main-
tenance of threshold values, to other (non-Nagios) administrators. They
require write access to the relevant check_multi configuration file but do
not need to continue grappling—apart from correctly running the plugins
used—with a Nagios configuration.

To be able to pass on as much information as possible, check_multi makes
regular use of the multiple-line plugin output format that was introduced

192

8.5 Summarizing Checks with check_multi

with Nagios 3.0 (see Section 8.5.1). This restricts the use of check_multi
essentially to Nagios 3.0. Starting from check_multi in version 0.14, there
have been approaches to support Nagios 2.x. These are only of limited use,
however, since the entire amount of information for plugins in Nagios 2.x
is about 300 bytes, and only the first line of the plugin output is utilized.

8.5.1 Multiple-line plugin output

Starting with Nagios 3.0, an expanded output format for plugins has been
introduced. Instead of squeezing everything onto a single line, the output
may be spread over several lines:

normal text output | optional performance data
longtext, 1st line
longtext, 2nd line

longtext, n-th line | performance data, 2nd line
performance data, 3rd line

performance data, n-th line

The first line contains the standard text output, supplemented with perfor-
mance data if required. This line can still be processed by Nagios 2.x, so it
shouldn’t be longer than 300 bytes. In the following lines a plugin may sup-
ply other text information until the character | closes the text output and
allows other performance data to be written. Nagios 3.0 displays the entire
text information in the status information generated by extinfo.cgi on
the Web interface (see Section 16.2.2 from page 339).

When accessing text information via macros (See Appendix D.1 from page
627), Nagios splits up the information into two macros: $HOSTOUTPUT$
contains the first line of the text information of host checks (that is, the con-
tents of the placeholder normal text output), and $LONGHOSTOUTPUT$
contains only the long text. For service checks the macros are called $SER-
VICEQUTPUT$ and $LONGSERVICEOUTPUT$. The LONG* variation of the
macro is available only in Nagios 3.0 and later; Nagios 2.x only knows the
short version.

The performance data from the first line and from the end is summarized
by Nagios 3.0 in the macros $HOSTPERFDATA$ and $SERVICEPERFDATAS.
There is no LONG* variation, as is the case for the output.

The entire output, including performance data, is a maximum of 8 KB long
in Nagios 3.0. If Nagios runs a plugin directly, as opposed to indirectly,
(for instance, via NRPE or check_by_ssh), you must ensure that the entire
8KB really are passed across the entire transmission path. This is covered
in Section 8.5.2.

193

8 Plugins for Special Tasks

8.5.2 Installation requirements

check_multi does not put any restrictions on the size of its output. In or-
der to support enough checks, you should ensure that all the resources used
allow at least 8 KB of plugin output. For Nagios version 3.0, the developers
have increased the buffer size to to 8 KB, so no adjustments are necessary.
For scenarios involving remote use with NRPE or check_by_ssh, you may
need to make manual adjustments.

Adjusting buffer sizes for NRPE

By default, NRPE (Section 10, page 213) transmits no more than 1,024 char-
acters. To make proper use of check_multi, you need to adjust the buffer
size in the source code. To do this, you set the appropriate values in the file
include/common.hto 8192:

#define MAX INPUT BUFFER 8192

#define MAX PACKETBUFFER_LENGTH 8192

Afterward, you must re-compile and re-install the NRPE daemon and the
check_nrpe plugin.

Adjusting buffer sizes for check_by_ssh

The plugin check_by_ssh (Section 9.1 from page 206) can handle multiple-
line output from plugins in versions 1.4.10 and later, so it can be used un-
changed. A patch is required for older versions, which can be found on the
check_multi homepage.®

8.5.3 Installation and testing

After downloading the plugin from the very extensive and well-documented
homepage,* you should unpack it in a directory anywhere, and then change
to that directory to carry out an initial test. In the subdirectory contrib of
the source code there is a preconfigured file, check_multi. cmd, containing
several example checks. When running the plugin, specify this file with the
option -f; check_multi will perform all the checks defined there in one
go. This output gives you a feeling of how the plugin functions:

3 http://www.my-plugin.de/wiki/de/projects/check_multi/installation#c
heck_by_ssh
4 http://www .my-plugin.de/wiki/de/projects/check_multi/start

194

8.5 Summarizing Checks with check_multi

user@linux:~$./check multi -f contrib/check multi.cmd

MULTI CRITICAL - 35 plugins checked, 7 critical (network rsync, proc_acp
id, proc_httpd, system_syslog, system users, nagios_system, dummy critic
al), 2 warning (nagios_tac, dummy warning), 2 unknown (network if ethl,
dummy_ unknown) , 24 ok

[1] network_ping PING OK - Packet loss = 0%, RTA = 0.06 ms

[2] network_interfaces OK: host ’'localhost’, interfaces up: 6, down: O,
dormant: 0, excluded: 0, unused: 0

[3] network_if ethl Either a valid snmpkey key (-k) or a ifDescr (-d) m
ust be provided)

[16] system_ load OK - load average: 0.89, 0.71, 0.71

[17] system mail TCP OK - 0.000 second response time on port 25

[18] system mailqueue OK: mailg is empty

[19] system mysgl Uptime: 5573 Threads: 1 Questions: 140 Slow queries

0 Opens: 137 Flush tables: 1 Open tables: 19 Queries per second avg
0.025
[20] system ntp NTP OK: Offset -0.07118669868 secs
[21] system_portmapper OK: RPC program portmapper version 2 udp running
[22] system_rootdisk DISK OK - free space: / 287 MB (31% inode=81%);
[23] system ssh SSH OK - OpenSSH_4.3p2 Debian-9 (protocol 2.0)

|[MULTI::check multi::plugins=35 time=10.92 network interfaces::check ifs
tatus::up=6,down=0,dormant=0, excluded=0,unused=0 system load::check load
::10ad1=0.890;5.000;10.000;0; load5=0.710;4.000;8.000;0; loadl5=0.710;3.
000;6.000;0; system mail::check tcp::time=0.000225s;;;0.000000;10.000000
system mailqueue::check mailg::unsent=0;2;4;0 system ntp::check ntp::off
set=-0.071187s;60.000000;120.000000; system_rootdisk::check_disk::/=62OM
B;909;937;0;957 system_swap: :check_swap::swap=3906MB;0;0;0;3906 system_u
sers::check users::users=25;5;10;0 nagios.org dns::check dns::time=0.039
187s;;;0.000000 nagios.org_http::check _http::time=0.674044s;;;0.000000 s
ize=21530B;;;0

The first line of the output—starting with MULTI CRITICAL—summarizes
all the executed checks. These lines (line-wrapped here for display pur-
poses) are also processed by Nagios 2.x. The output from the individ-
ual checks begins on line 2 (starting with [1]), which looks exactly like
the output of a single call of the plugin currently being run. The perfor-
mance data is summarized by check_multi, but only at the the end, in a
totals line—starting with |MULTI::check_multi::plugins. The individ-
ual variables are separated by spaces. The purpose for the variable names,
along with their format (which takes some getting used to), is explained in
Section 8.5.6 from page 198.

8.5.4 Configuration file

The format of the configuration file is based on that of NRPE (Section 10.3
from page 218). For check_multi, however, only the commands are de-
fined. Here is an extract from the example file included, check_multi.cmd:

195

8 Plugins for Special Tasks

command

[network interfaces] = check ifstatus -H localhost
command [system_load] = check load -w 5,4,3 -c 10,8,6
command [system mail] = check tcp -H localhost -p 25
command[system mailqueue] = check mailg -w 2 -c 4
command [system_mysqgl] = check mysgl -u admin
command [system _ntp] = check ntp -H ntpl.fau.de
command [system_portmapper] = check _rpc -H localhost -C portmapper
command[system rootdisk] = check disk -w 5% -c 2% -p /
command [system_ssh] = check_ssh localhost

The command command[Name_of_check] specifies the name for the
appropriate check. This is used in the text output and in the performance
data.

After the equal sign comes the check to be executed. When calling the
plugin, path details can be omitted if the plugins are located in the default
path, /usr/local/nagios/libexec. Alternatively, you can include the
plugin path with the option -1 when running check_multi. You can also
specify the absolute path in the configuration file, of course.

8.5.5 Command-line parameters

check_multi has the following options:

-f /path/to/config/file /| --filename=/path/to/config/file
This specifies the configuration file. So that Nagios can find it, you
should always specify the complete path. This option does not have
a default value; it can be given several times.

-1 /path/to/the/plugins | --libexec=/path/to/the/plugins
The default for calling plugins is the path /usr/local/nagios/lib-
exec. If they are located in a different directory, this is specified here
with the -1 option.

-n name / --name=name
This is the name of a check that check_multi outputs in the text
output and in the performance data. The default is an empty string.
If you run check_multi on a machine several times with different
checks, it is better here to use different names so that they are more
clearly separated from each other.

-t sekunden / --timeout=seconds
This specifies the timeout for an individual check. The default is 10
seconds.

196

8.5 Summarizing Checks with check_multi

-T seconds / --TIMEQUT=seconds
For all checks together, check_multi requires a further timeout pa-
rameter, which is defined with -T (the default is 60 seconds).

This ensures that the call of check_multi will end within the time
specified. The plugin does not start any new checks if the starting
time and the timeout of a single plugin exceed the timeout of the
entire check_multi call.’ Such individual checks are given the status
UNKNOWN; in the output, check_multi assigns them the message
plugin cancelled due to global timeout.

-r integer /| --report=integer
This option controls the output behavior of check_multi. The place-
holder integer can take on the following values:

= 1 includes the service name for error states in parentheses in the
plugin output:

.., 2 critical (network rsync, proc_acpid), 1 warning (nagios_t
ac), 1 unknown (if_ethl) , dummy_unknown), 24 ok

= 2 formats the output as HTML. Here the numbers of the individual
checks (e.g., [31]) are stored along with the color of the respective
return value (green for OK, yellow for WARNING, red for CRITICAL,
and orange for UNKNOWN).

If you use check_multi recursively (a check_multi itself calls
other instances of check_multi), the output of the subordinate
checks are indented (see Figure 8.3 on page 202).

= 4 shows the output of the individual check—if they exist—on STD-
ERR.

= 8 outputs the performance data in the multi-format (see Section
8.5.6 from page 198).

= 16 has the same function as 1, except that states for which there
are no check results (e.g., 0 unknown) are also included.

= 32 outputs performance data in the classical format (see Section
8.5.6).

= 128 extends the HTML format required by 2 by including a hy-
perlink to an installed PNP if performance data is available and the
output is in multi-format (8). PNP is described in Section 19.6 from
page 446.

= 256 displays the output in XML formatting.

Let us assume that 53 have passed since check_multi was called, but not all planned
individual checks have yet been processed. The total from starting time and individual
timeout (53 + 10 = 63) exceeds the timeout of the check_multi call, so check_multi
does not start any further checks.

197

8 Plugins for Special Tasks

= 512 ensures that the output is Nagios 2.x compatible in order to
bring the output below the 300-byte limit.

Indivudal values may be combined; the default is 13 (8 + 4 + 1).

-W expression / --warning=expression
This sets the status WARNING if expression is true, e.g., COUNT (WAR-
NING) >0 (the default). For all states, check_multi separately checks
whether or not the corresponding status was determined. Eventu-
ally, the status with the highest priority wins out: CRITICAL trumps
WARNING, trumps UNKNOWN, trumps OK. The definition and use
of expressions is explained in Section 8.5.7 from page 199.

-c ausdruck / --critical=expression
If the expression is true, the status is set to CRITICAL. Eventually, the
status with the highest priority wins out (see --warning and Section
8.5.7).

-u expression / --unknown=expression
If the expresion is true, the status UNKNOWN is set. The status with
the highest priority (see --warning and Section 8.5.7) wins out.

-0 expression /| --ok=expression
If ausdruck is true, the status OK is set. Here the status with the
highest priority also wins out (see --warning and Section 8.5.7).

-v / --verbose
This increases the verbosity of the plugin for debugging purposes.
The option can be used up to three times; if specified three times,
you will obtain the most detailed information.

8.5.6 Performance data and PNP

In the simple output form for performance data (which can be set with
the option -r 32), check_multi simply lists all variables provided by the
plugins:

...|rta=0.111ms;500.000;1000.000;0; pl=0%;5;10;; offset=0.002980s;60.000
000;120.000000;

The performance data for the plugin check_icmp (the average response
time rta and the packet loss pl) in this example seamlessly follow the per-
formance data of check_ntp in the form of deviation from the local system
time (offset). You can't tell, at first glance, what information comes from
which plugin—you have to consult the order in the configuration file and
the outputs of the individual checks.

198

8.5 Summarizing Checks with check_multi

This is not particularly suitable for automatic processing. check_multi
therefore provides an extended output with the default option -r 8, which
is modified specifically to handle PNP (see Section 19.6 from page 446).
When doing this, the plugin adds a service description and the name of the
plugin used to the name of the variables. No deviation is made from the
standardized format; the label is just given a more extensive form:

servicedescription: :plugin: :label=values [label=calues]

PNP requires information on the plugin executed so that it can select a
suitable template for processing the graphics (see Section 19.6.5 from page
454). In addition, check_multi now also provides performance data refer-
ring to the overall processing:

|[MULTI::check multi::plugins=5 time=0.18 net ping::check icmp::rta=0.048
ms;500.000;1000.000;0; pl=0%;5;10;; system ntp::check ntp::offset=0.0022
66s;60.000000;120.000000;

First check_multi announces that it has called 5 plugins and has used a
total of 0.18 seconds for processing. This is followed by the performance
data for the other plugins, each supplemented with the service description
and plugin name. If a plugin issues more than one variable, the service
description and plugin name are not repeated.

8.5.7 Simple business process monitoring

In order to evaluate business processes, you generally want to know whether
a particular process is working—for instance, whether or not a customer
can perform online banking. Individual pieces of information on all hosts
and services involved are not relevant from this perspective and are also
not always useful if systems are designed redundantly in different forms.

=)

[providerl H gatel }

OpenVPN ll
Internet ts01-ts08
[providerZ]—[gate2)—
OpenVPN

One example is shown in Figure 8.2: Home office users access a terminal
server farm via OpenVPN. For access from the Internet, two connections

Figure 8.2:

For the terminal
server farm to be
reachable from the
Internet, an
OpenVPN access and
a terminal server
must be available.

199

8 Plugins for Special Tasks

are available, and with gatel and gate2, two OpenVPN gateways are avail-
able. The terminal server farm consists of the eight terminal servers ts01
through ts08.

In order for home office users to be able to work, at least one Internet
connection (including the accompanying gateway) must be available, and
the server farm must be reachable. The business process can be split into
two processes: Our example looks at the Internet access separated from the
server farm, and afterward it can connect the two results with one another.

The condition for a critical status for Internet access could be formulated
as follows:

(gatel > 1 || providerl > 1) && (gate2 > 1 || provider2 > 1)

Access is unusable if the provider is unreachable or (| |) the OpenVPN ser-
vice is not available on the gateway. But it is sufficient if one of the two
access points is functioning (thus the AND logical operator with &&). The
syntax is taken from Perl and can equally be processed by check_multi.
The configuration file for the Internet check therefore contains four com-
mands and the logocal operators:

openvpn.cmd

command[gatel] = check _nrpe -H gatel -c check_openvpn

command[providerl] = check_icmp -H providerl -c 1000.0,60%

command [gate2] = check _nrpe -H gate2 -c check_openvpn

command[provider2] = check_icmp -H provider2 -c 1000.0,60%
state[warning] = count (CRITICAL) > 0 || count (UNKNOWN) > 0
state[critical] = (gatel > 1 || providerl > 1) && (gate2 > 1 || provider
2 > 1)

The two gate* commands each check (via NRPE) whether the gateway of
the OpenVPN service is running. The provider test sends ICMP echo pack-
ets to the dial-up router of the respective provider. You should take great
care here to ensure that routing is correctly set up, that is, that the ICMP
packets to the respective provider really are sent across the accompanying
connection.

For a business process, a Boolean expression for individual states is defined
in the configuration file, so depending on requirements, there may be one
for CRITICAL, one for WARNING, and, if necessary, one for UNKNOWN
as well. The syntax and the operators are passed on to Perl as specified
and are described in detail in the Perl online documentation (man perlop).
Before evaluating the expression, check_multi undertakes the following
substitutions:

= If the expression contains the name of a check previously defined with
command, the return value of this check will be used instead. Let’s assume

200

8.5 Summarizing Checks with check_multi

that check gatel returns 2 and check provider1 returns 1. Then the
partial expression shown above will become

state[critical] = (2 > 1 || 1 > 1)

Within the brackets, the first condition is true, and through the subse-
quent OR (| | in Perl syntax) the partial expression evaluates to true.

= The function count determines the number of all checks that provided
the return value given as an argument.

= Instead of the numerical value of a status, the text form (UNKNOWN,
WARNING, CRITICAL, WARNING, OK) can also be included in the expres-
sion (so you can write something like gatel > WARNING). This detail is
replaced by check_multi with the numerical value before the expression
is evaluated.

The WARNING status is set in openvpn . cmd if at least one critical status oc-
curs, at least one check delivers UNKNOWN, or at least one check returns
WARNING. The CRITICAL status appears if both accesses should fail (be-
cause of the AND logical operator between the two partial expressions in
brackets). The partial expressions on their own are true if either of the gate
or provider checks delivers a CRITICAL (return value 2) or an UNKNOWN
(return value 3). The condition for the UNKNOWN status can be omitted
since UNKNOWN results always lead to the WARNING status.

The second partial process—the function of the terminal server farm—is
described in the configuration file terminalserver.cmd:

terminalserver.cmd

command[ts01 = check_tcp -H ts01 -p 3389

]
command[ts02] = check_tcp -H ts02 -p 3389
command[ts03] = check_tcp -H ts03 -p 3389
command[ts04] = check_tcp -H ts04 -p 3389
command[ts05] = check_tcp -H ts05 -p 3389
command[ts06] = check_tcp -H ts06 -p 3389
command[ts07] = check_tcp -H ts07 -p 3389
command[ts08] = check_tcp -H ts08 -p 3389
state[warning] = count (CRITICAL) > 0 || count (UNKNOWN) > 0 || count (WA
RNING) > 0
state[critical] = ts0l1 >= CRITICAL || count (CRITICAL) > 3

The individual checks here consist of only a primitive TCP check of the RDP
port 3389 in order to keep the example relatively simple. WARNING should
be indicated if at least one CRITICAL or at least one UNKNOWN occurs so
that the administrator has the opportunity to fix the problem at an early
stage. The condition for the CRITICAL status stipulates that ts01 must not

201

8 Plugins for Special Tasks

Recursive output of

Figure 8.3:

check_multi on the
Extended Info page
of the Nagios Web

interface

be CRITICAL because a very specific application is running there which is
not available on the other servers. In addition, no more than three terminal
servers may fail, as otherwise the load on the other servers may increase so
heavily that useful work would no longer be possible.

Current Status: WARNING (for 2d 21h 56m 16s)
Status - 2 plugins checked, O critical, 1 waning (terminalserver), 0 unknown, 1 ok
1 openvpn OK - 4 plugins checked, 0 critical, 0 warning, 0 unknown, 4 ok

1/ gatel_ovpn PROCS OK: 1 process with command name ‘openvpn’
2 gatel_internet OK - provider1: rta 45.997ms, lost 0%
3/ gate2 ovpn PROCS OK: 1 process with command name ‘openvpn'
4 gate2_internet OK - provider2: rta 46.232ms, lost 0%

nN

terminalserver WARNING - 8 plugins checked, 2 critical (07, tsD8), 0 warning, O unknown, 6 ok
1/ts01 TCP OK - 0.001 second response time on port 3388
2 ts02 TCP OK - 0.001 second response time on port 3389
31503 TCP OK - 0.000 second response time on port 3389
41504 TCP OK - 0.000 second response time on port 3389
8 ts05 TCP OK - 0.000 second response time on port 3383
6! 1506 TCP OK - 0.000 second response time on port 3389
[l ts07 Connection refused
I8l ts08 No route to host

=4 time=0.74

F Data: ::check_multiz:plugins=2 time=4.06 openvpn::check_multiz:plugl
gate1_intemet::check_icmp::ta=45.997ms;200.000;1000.000;0; pl=0%;40;
gate2_intemet::check_icmp::rta=46.232ms; 200.000;1000.000;0; pl=0%; - terminalserver::check_multi::plugins=8 time=3.13
ts01::check_top::time=0.000523s;;;0.000000;10.000000 ts02::check_top::time=0.000514s;;;0.000000;10.000000
1s03::check_tcp::time=0.000367s:;:0.000000;10.000000 ts04::check_tcp::time=0.000299s;::0.000000; 10.000000
ts05::check_top::time=0.000318s;;;0.000000;10.000000 ts06::check_tcp::time=0.000358s;;;0.000000; 10.000000

The two checks of the partial processes are summarized by a check_multi
call into a single result (the lines are wrapped for display purposes):

homeoffice.cmd

command [openvpn] = check multi -f /etc/nagios/check_multi/openvpn.cmd
-r3l
command [terminalserver] = check multi -f /etc/nagios/check multi/termi

nalserver.cmd -r31

So that the Extended Info page of Nagios (Figure 8.3) is more presentable,
the details of the respective plugin names are omitted (through the missing
option -n; the recursive HTML output of check_multi adds the name of
the check called anyway). The -r 31 detail sets all reporting functions from
1 to 16, including HTML formatting (-r 2). Special conditions for a status
are not formulated, so a WARNING of a partial process leads to a WARNING
in the overlying check, and a CRITICAL leads to a CRITICAL.

Figure 8.3 shows the two partial processes quite clearly separated. The
serial numbers of the checks are stored with the respective status colors,
which are unfortunately not visible in this black-and-white book. A com-
plex color example of recursive display in the Extended Info Web page can
be found on the homepage of the plugin.®

For the sake of completeness, here is the definition of command and service
for Nagios. The former is kept deliberately simple, and all the details for the
command line are repeated in the service definition:

6 http://www.my-plugin.de/wiki/de/projects/check_multi/screenshot#ser-
vice_extended_info_rekursiv

202

8.5 Summarizing Checks with check_multi

define command{
command_name check multi
command_line $USER1$/check _multi $ARG1S

}

define servicef{

host_name elix01

service_description homeoffice

check_command check multi!-f /etc/nagios/check_multi/homeoffice.cmd -n

homeoffice -r 31

If the mapping of business processes with check_multi isn't enough for
you, you should take a look at the somewhat more complex addon Na-
gios Business Process View and Nagios Business Impact Analysis from the
Sparda-Datenverarbeitung eG, Nuremberg, Germany, which is available on
the Nagios-Exchange.”

In contrast to check_multi, which appears as the only Nagios service and
which also needs to be managed only once by Nagios, this addon uses ser-
vices already defined in Nagios, which means that Nagios performs each
individual check as usual. It retrieves the results of individual checks, links
these, and displays them on its own Web interface.

When doing so, the result of such links—business processes, so to speak—
can be redefined in Nagios as a separate service so that it is possible, for
instance, to use the notification logic of Nagios. Furthermore, the addon
includes a mode with which it can simulate a “what would happen if” sce-
nario. Individual services are set to an expected status, and the effects can
be seen via the Web interface.

check_multi and the Nagios Business Process View and Nagios Business
Impact Analysis addon are thus not in competition. Depending on the
intended use, either check_multi will reduce the complexity of the ser-
vices represented in Nagios and therefore will reduce the number of checks
performed, or the addon will allow a more detailed view of overall events,
though it does demand that all services are individually mapped in Nagios.

7 http://www.nagiosexchange.org/22;1088

203

Executing Plugins via SSH

Local plugins, that is, programs that only run tests locally because there are
no network protocols available, must be installed on the target system and
started there. They check processes, CPU load, or how much free hard disk
capacity is still available, among other things.

But if you still want to execute these plugins from the Nagios server, it is
recommended that you use the secure shell, especially if any kind of Unix
system is installed on the machine to be tested—a Secure Shell daemon will
almost always be running on such a target system, and you do not require
any special permissions to run most plugins. The Nagios administrator
needs nothing more than an account, which he can use from the Nagios
server. On the server itself, the check_by_ssh plugin must be installed.

In heterogeneous environments the Secure Shell itself often create condi-
tions that may cause problems: depending on the operating system, an

205

9 Executing Plugins via SSH

SSH daemon may be in use that returns a false return code! or is so old
that it cannot handle the SSH protocol version 2.0. In this case it is better
to install the current OpenSSH version.? In pure Linux environments with
up-to-date and maintained installations, such problems generally do not
occur.

9.1 The check_by_ssh Plugin

check_by_ssh is run on the Nagios server and establishes a Secure Shell
connection to a remote computer so that it can perform local tests on it.
The programs run on the remote machine are to a large extent local plu-
gins (see Chapter 7 from page 157); the use of check_by_ssh is not just
restricted to these, however.

The plugin sends a complete command line to the remote computer and
then waits for a plugin-compatible response: a response status between
0 (OK) and 3 (UNKNOWN), as well as a one-line text information for the
administrator (page 105).

If you run network plugins via check_by_ssh in order to perform tests
on other computers, these are known as indirect checks, which will be ex-
plained in the context of the Nagios Remote Plugin Executor in Section 10.6
from page 224.

The following example shows how check_by_ssh can be used to check the
swap partition on the target computer:

nagios@linux:nagios/libexecs$./check by ssh -H target computer \
-i /etc/nagios/.ssh/id _dsa \
-C "/usr/local/nagios/libexec/check_swap -w 50% -c 10%"
SWAP OK: 100% free (972 MB out of 972 MB) \swap:972MB;486;97;0;972

The command is similar to that for a secure shell, in the form of
ssh -i private key target computer "command"

The fact that a separate private key—not the default private key in the home
directory—is used, is optional and is described in detail in section 9.2 from
page 208. The command to be run is specified in check_by_ssh—in con-
trast to the secure shell ssh— with the option -C, the plugin is always spec-
ified with an absolute path.

check_by_ssh has the following options:
L' In the nagios-users mailing list it was reported that Sun_SSH_1.0 returns a return

code of 255 instead of 0, which makes it unsuitable for the deployment described here.
2 http://www.openssh. org/

206

9.1 The check_by_ssh Plugin

-W

address / --hostname=address
The host name or IP address of the computer to which the plugin
should set up an SSH connection.

command / --command=command
The command to be run on the remote computer, that is, the plugin
with its complete path and all the necessary parameters:

-C "/usr/local/nagios/libexec/check_disk -w 10% -c 5% -e -m"

| --protol
Force version 1 of the secure shell protocol.

| --proto2
Force version 2 of the secure shell protocol.

ssh_option / --ssh-option=ssh_option (from version 1.4.6)
Passes an SSH option to the secure shell on the target host. To specify
multiple options, use of the switch is repeated.

keyfile /| --identity=keyfile
Which file should be used instead of the standard key file containing
the private key of the user nagios? For one option, which is recom-
mended, see Section 9.2.3, page 210.

port / --port=port
This specifies the port if the Secure Shell daemon on the target server
is not listening on the standard TCP port 22.

user / --logname=user
User name on the target host. [-S number / --skip-stdout=number
(from version 1.4.9)]
Ignores the specified number of lines at the beginning of the output
to STDOUT. If this option is omitted, the entire output is ignored.

number | --skip-stderr=1ines (from version 1.4.9)
Like --skip-stdout, but refers only to the output of STDERR.

floating_point_decimal /

--warning=floating_point_decimal

-C

If the response to the command to be executed takes more than float-
ing point_decimal seconds, the plugin will issue a warning.

floating_point_decimal /

--critical=floating_point_decimal

The critical value in seconds concerning the response time of the
command to be executed.

207

9 Executing Plugins via SSH

_£3
Starts a background process without opening an interactive terminal
(tty).

-t timeout | --timeout=timeout
After timeout seconds have expired, the plugin stops the test and
returns the CRITICAL status. The default is 10 seconds.

In addition to this, check_by_ssh has parameters available, -0, -s and -n,
enabling it to write the result in passive mode to the interface for external
commands (see section 13.1 from page 292). The mode is named this way
because Nagios does not receive the information itself but reads it indirectly
from the interface.

This procedure has the advantage of being able to run several separate
commands simultaneously over a single SSH connection. This may cause
the command definition to be rather complicated, however. Since the plu-
gins themselves are called and executed as programs on the target server,
it hardly matters whether the SSH connection is established once or three
times. For this reason it is better to use a simple command definition rather
than the passive mode.

But if you still want to find more information about this, you can look in
the online help, which is called with check_by_ssh -h.

9.2 Configuring SSH

So that Nagios can run plugins over the secure shell remotely and automat-
ically, it—or, strictly speaking, the user nagios on the Nagios server—must
not be distracted by any password queries. This is avoided with a login via
a Public Key mechanism.

9.2.1 Generating SSH key pairs on the Nagios server

The key pair required to do this is stored by the key generator ssh-keygen
by default in the subdirectory .ssh of the respective user’s home directory
(for the user nagios, this therefore corresponds to the installation guide in
Chapter 1.2 from page 39, that is, /usr/local/nagios). If it is also sent on
its way with the -f private_keyfile option (without path specification),
it will land in the current working directory, which in the following example
is /etc/nagios/.ssh:

nagios@linux:~$ mkdir /etc/mnagios/.ssh
nagios@linux:~$ cd /etc/nagios/.ssh

3 There is currently no long form for this option.

208

9.2 Configuring SSH

nagios@linux:/etc/nagios/.ssh$ ssh-keygen -b 1024 -f id dsa -t dsa -N '’
Generating public/private dsa key pair.

Your identification has been saved in id_dsa.

Your public key has been saved in id _dsa.pub.

The key fingerprint is:

02:0b:5a:16:9c:b4:fe:54:24:9c:£d:c3:12:8f:69:5¢c nagios@nagserv

The length of the key here is 1024 bits, and DSA is used to encrypt the keys.
-N ’? ensures that the private key in id_dsa does not receive separate
password protection: this option forces an empty password.

9.2.2 Setting up the user nagios on the target host

Similar to the configuration on the Nagios server, the group and the user
nagios are also set up on the computer to be monitored:

target_computer:~ # groupadd -g 9000 nagios

target computer:~ # useradd -u 9000 -g nagios -d /home/nagios -m \
-c "Nagios Admin" nagios

target computer:~ # mkdir /home/nagios/.ssh

The target computer is given the directory /home/nagios as the home di-
rectory, where a subdirectory .ssh is created. In this the administrator
(or another user*) saves the public key generated on the Nagios server
/etc/nagios/.ssh/id_dsa.pub, in a file called authorized_keys:

linux:~ # scp /etc/nagios/.ssh/id dsa.pub \
target computer:/home/nagios/.ssh/authorized keys

Now the user nagios does not require its own password on the target ser-
ver. You just need to make sure that on the target server the .ssh directory,
together with authorized_keys, belongs to the user nagios:

target computer:~ # chown -R nagios.nagios /home/nagios/.ssh
target_computer:~ # chmod 700 /home/nagios/.ssh

9.2.3 Checking the SSH connection and check_by_ssh

With this configuration you should first check whether the secure shell con-
nection is working properly. The test is performed as the user nagios, since

Nagios makes use of this during the checks:

4. but not the user nagios, because when an account is created, useradd first sets an
invalid password here, which we do not change into a valid one. This means that you
cannot currently log in to the target computer as nagios.

209

9 Executing Plugins via SSH

nagios@linux:~$ ssh -i /etc/nagios/.ssh/id dsa target computer w
18:02:09 up 128 days, 10:03, 8 users, load average: 0.01, 0.02, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

wob pts/1 1linux01:S.1 08Sep04 1:27 4.27s 0.03s -bin/tcsh

The -1 option explicitly specifies the path to the private key file. If the com-
mand w to be run on the target computer does not provide any output or
if the opposite SSH daemon requests a password, then the login via public
key is not working. In this case you must first find and eliminate the error
before you can move on to testing check_by_ssh.

In this next step, you run the local plugin on the target computer, with
check_by_ssh, which later on is run automatically, from the command
line of the Nagios server. Make sure that the plugin paths are correct in
each case. The path to the private key file of the user nagios on the server
is specified with -i:

nagios@linux:~$ /usr/local/nagios/libexec/check by ssh \

-H target computer -i /etc/nagios/.ssh/id _dsa \

-C "/usr/local/nagios/libexec/check disk -w 10% -c 5% -e -m"
DISK CRITICAL [2588840 kB (5%) free on /net/linux04/b] [937152 kB (5%)
free on /net/linux04/c]

In the example, check_by_sshshould start the /usr/local/nagios/lib-
exec/check_disk plugin on the target computer with the options -w 10%
-c 5% -e -m. If this does not work, then this is first run locally on the
target host with the same parameter. By doing this you can rule out that
the problem lies in the plugin command itself and not in the secure shell
connection.

9.3 Nagios Configuration

The matching command object is again defined in the file checkcommands .
cfg; similar to check_local_disk, it should be named check_ssh_disk:

check_ssh _disk command definition
define commandf{
command_name check ssh disk
command_line SUSER1S$/check by ssh -H $SHOSTADDRESSS \
-i /etc/nagios/.ssh/id_dsa \
-C "$USER1$/check_disk -w SARG1S -c $ARG2S$ -p SARG3S"

The command line stored in command_line first runs check_by_ssh;
$USER1$ contains the local plugin path on the Nagios server. Next come

210

9.3 Nagios Configuration

the arguments—the IP address of the target host (parameter -H), the pri-
vate key file (parameter -1i) and finally, with the -C parameter, the complete
command that the target host should carry out. If the plugin path on the
target host and on the Nagios server are identical, then you can also use
the $USER1$ macro in it; otherwise the plugin path on the target computer
is given explicitly.

Setting up the command is no different here to the one in check_local_
disk in Section 7.1 on page 158. This means that apart from the warning
and critical limits, we explicitly specify a file system or a hard drive parti-
tion, with the -p parameter.

The command check_ssh_disk defined in this way is applied as follows,
here on a computer called 1inux02:

define service{
host_name linux02
service_description FS_root

check command check_ssh_disk!lO%!S%!/

The service object defined in this way ensures that Nagios checks its / file
system. The warning limit lies at 10 percent, the critical limit at 5 percent.

If you use the check_by_ssh plugin with check_ssh_disk, as in the exam-
ple here, you must make sure that the plugin path is identical on all target
hosts. This is also worth doing for reasons of simplicity, though it is not al-
ways possible in practice. The following service definition, for this reason,
gives the plugin path to the target computer as an additional argument:

define servicef
host_name linux02

service description FS_root

check command check_ssh disk!/usr/lib/nagios/plugins!10%!5%!/

In order for this to work, you must change the command line in the com-
mand definition, passed on with -C, as follows:

-C "$ARG1$/check disk -w $ARG2S -c $ARG3S -p $SARG4S"

Caution: this causes the numbers of each of the $ARGx macros for -w, -c,
and -p to be shifted by one.

21

The Nagios Remote Plugin
Executor (NRPE)

The Nagios Remote Plugin Executor (or in short, NRPE) as the name sug-
gests, executes programs on a remote host. These are usually plugins that
test the corresponding computer locally and therefore must be installed on
it. The use of NRPE is not restricted to local plugins; any plugins at all
can be executed, including those intended to test network services—for ex-
ample, to indirectly test computers that are not reachable from the Nagios
server (as shown in Section 10.6 from page 224).

While a genuine user account must be available on the remote computer
when the secure shell is used (see Chapter 9), which can also be used to
do other things than just start plugins, NRPE is restricted exclusively to ex-
plicitly configured tests. If you want to, or are forced to, do without a login
shell on the target host, it is better to use NRPE, even if there is somewhat
more configuration work involved than with the secure shell. In addition to

213

10 The Nagios Remote Plugin Executor (NRPE)

the Nagios configuration and the installation of the check_nrpe plugin on
the Nagios server, the following tasks remain on the target system:

= The program nrpe must be installed.

= The inet daemon there (inetd or xinetd) must be configured with ad-
ministrator privileges.

= All the plugins called via NRPE must be installed.

10.1 Installation

NRPE and the plugins are installed from the sources, or you can fall back
on the packages provided by the distributor. You should use at least version
2.0 of NRPE, since this is incompatible with its predecessors. Starting with
version 2.6, NRPE has the switch -u. If the NRPE service on the target sy-
stem is not reachable, the plugin check_nrpe on the Nagios server returns
an UNKNOWN for this switch. Starting with version 2.8, NRPE supports the
multi-line output of plugins that was introduced with Nagios 3.0 (see Sec-
tion 8.5.1 from page 193). At the time this book went to press, the current
version was 2.12, dated 26. 03. 2008.

All established distributions include the plugin collection from at least ver-
sion 1.4. Whether you need the most up-to-date version depends on your
expectations of the respective plugins.

10.1.1 Distribution-specific packages

SuSE Linux 10.3 includes the packages nagios-nrpe-2.10-4.1.i586.rpm,
nagios-plugins-1.4.10-12.1.1586.rpm, and nagios-plugins-extras
-1.4.10-12.1.1i586.rpm. nagios-nrpe contains both the daemon and

the plugin check_nrpe. nagios-plugins-extras installs several addi-

tional plugins, such as database checks, FPing test or Radius test, which

can be omitted, depending on your specific monitoring needs.

For the sake of simplicity, the design packages are installed via YAST2! or
rpm -ihv package. the second method is also open to Fedora users.

For Fedora Core and Red Hat Enterprise Linux, Dag Wieers has made avail-
able corresponding Nagios packages of several versions.?

Debian/Sarge distributes the NRPE daemon and the NRPE plugin check_
nrpe in two different packages called nagios-nrpe-server and nagios-
nrpe-plugin, which can be installed separately via apt-get install

1 On the command line, using yast -i package.
2 http://dag.wieers.com/

214

10.1 Installation

package. If you want to do without local documentation, you can omit the
package nagios-nrpe-docand just add the plugin package nagios-plug-
ins to the target hosts.

The paths for the program nrpe, the configuration file nrpe. cfg, and the
plugin directory are listed in Table 10.1.

Distribution NRPE program Configuration file Plugins

Self- /usr/local/sbin/ /etc/nagios/nrpe.cfg /usr/local/nagios/

compiled® nrpe libexec

SuSE /usr/bin/nrpe /etc/nagios/nrpe.cfg /usr/lib/nagios/
plugins

Debian /usr/sbin/nrpe /etc/nagios/nrpe.cfg /usr/lib/nagios/
plugins

Fedora* /usr/sbin/nrpe /etc/nagios/nrpe.cfg /usr/lib/nagios/
plugins

10.1.2 Installation from the source code

The plugins are installed on the computers to be monitored exactly as de-
scribed in Section 1.4 from page 43 for the Nagios server.

The NRPE source code is obtained from the Nagios homepage.® The direc-
tory /usr/local/src’ is ideal for unloading the sources.

linux:~ # mkdir /usr/local/src
linux:~ # cd /usr/local/src
linux:local/src # tar xvzf /path/to/nrpe-2.1l.tar.gz

In the new directory that has been created, you run the configure com-
mand:

linux:local/src # cd nrpe-2.11
linux:src/rnpe-2.11 # ./configure --sysconfdir=/etc/nagios --enable-ssl

The recommended path specifications are listed in Table 10.1. The only
difference from the default settings are for the directory in which the NRPE
configuration file is stored (configure option --sysconfdir).

Recommended.

From the packages provided by Dag Wieers.
http://www.nagios.org/download/

The subdirectory src may need to be created first.

@ G s W

Table 10.1:
Installation paths for
NRPE and plugins

215

10 The Nagios Remote Plugin Executor (NRPE)

Accordingly, we can leave out the entry for --with-nrpe-userand --with
-nrpe-group in the configure command. Both options are relevant only
if the nrpe program is running as a daemon, and they can be overwritten
in the configuration file. If the inet daemon is used, you should specify the
user with whose permissions nrpe should start in the configuration file for
the inet daemon.

--enable-ssl ensures that NRPE communicates over an SSL-encrypted
channel. This will only work, of course, if both nrpe on the target host and
check_nrpe on the Nagios server have both been compiled accordingly.

The command make all compiles the programs nrpe and check_nrpe,
but it does not copy them from /usr/local/src/nrpe-2.11/src to the
corresponding system directories. Since there is no make install, you
must do this yourself, following the details in Table 10.1: you need to have
nrpe on the computer to be monitored and the check_nrpe plugin on the
Nagios server.

If the Nagios server and the target host used the same platform, you can
compile both programs on one computer (e.g., the server) and then copy
nrpe together with its configuration file to the computer to be monitored,
instead of separately compiling check_nrpe on the Nagios server and nrpe
on the target system.

10.2 Starting via the inet Daemon

It is best to start the program nrpe on the machine to be monitored via
the inet daemon rather than as a separate daemon, since the Nagios server
only performs the tests occasionally, and nrpe does not need to load any
large resources.

If you have a choice, you should use the more modern xinetd. But to keep
work to a minimum, the inet daemon will normally be used, as it is already
running on the target system. In order that NRPE can be started as a service
via inetd or xinetd, the nrpe service is defined in the file /etc/services:

nrpe 5666/tcp # Nagios Remote Plugin Executor NRPE

Even if this has been installed as a package, you should still check to see
whether this entry exists. By default, NRPE uses TCP port 5666.

10.2.1 xinetd configuration

If xinetd is used, a separate file is stored in the directory /etc/xinetd.d
for each service to be started, so for nrpe it is best to create a file called
nrpe or nagios-nrpe:

216

10.2 Starting via the inet Daemon

/etc/xinetd.d/nrpe
description: NRPE
default: on

service nrpe

{

flags = REUSE

socket_type = stream

wait = no

user = nobody

group = nogroup

server = /usr/local/sbin/nrpe

server_args = -c¢ /etc/nagios/nrpe.cfg --inetd
log on_ failure += USERID

disable = no

only from = 127.0.0.1 ip of the nagios_server

The values printed in italics are passed on to your own environment; in-
stead of the placeholder ip_of_the_nagios_server you should enter, for
example for only_from, the IP address of your own Nagios server. The
NRPE access from outside is then restricted to this computer and to local-
host (127.0.0.1). The latter address allows local tests; multiple IP ad-
dresses are separated by a space. However, this restrictive configuration
functions only if xinetd has been compiled with support for the TCP wrap-
per (this is normally the case).

Under no circumstances should NRPE run with the permissions of a priv-
ileged user—nobody is therefore a sensible value. The server parameter
specifies the complete path to the program nrpe; for server_args you
should enter the matching path to the configuration file. After this modifi-
cation, the configuration of xinetd is reloaded, with

linux:~ # /etc/init.d/xinetd reload

10.2.2 inetd configuration

In the standard inetd, the following line is added to the configuration file
/etc/inetd.conf:

nrpe stream tcp nowait nobody /usr/sbin/tcpd /usr/local/sbin/nrpe -c
/etc/nagios/nrpe.cfg --inetd

The line has been split up for reasons of space, but in the configuration
file this must all be in a single line. Here the TCP wrapper tcpd is used. If

217

10 The Nagios Remote Plugin Executor (NRPE)

this is not intended, you simply leave out this entry.” Here you should also
explicitly enter the user nobody, the complete path to the binary nrpe, and
the configuration file, also with its complete path. These strings, printed
above in italics, should be adjusted to your own system, where necessary.
After the configuration change, inetd is reloaded:

linux:~ # /etc/init.d/inetd reload

10.2.3 Is the Inet daemon watching on the NRPE port?

A simple test shows whether the inet daemon wants to respond to queries
on port 5666:

linux:~ # netstat -lnt | grep ’:5666"

tcp 0 0 0.0.0.0:5666 0.0.0.0:% LISTEN

The program netstat uses option -1 to display all the ports on which a
service is waiting for incoming queries, that is, a service which is in the
LISTEN state. Option -n suppresses the name resolution of hosts and ports
and speeds up the display of information, and -t restricts the otput to TCP
ports.

The test shows only whether the inet daemon was properly configured and
newly started, for instance, whether the nrpe service is correctly entered in
/etc/services. It does not clarify whether the paths to the NRPE daemon
and its configuration file are correct. Errors like this are announced by the
inet daemon only when a concrete access attempt takes place on NRPE
port 5666. The subsequent complete function test is carried out only after
the NRPE daemon has been configured. This is described in Section 10.4
from page 221.

10.3 NRPE Configuration on the Computer to Be
Monitored

When compiling NRPE, the file nrpe. cfgis created in the source directory,
which contains several parameters as well as the commands to run NRPE.
These are copied manually to the configuration directory, which normally

first has to be created on the target computer:

7 inetd does not have a built-in method to allow access to services only from specific
IP addresses. This function is added in the TCP wrapper tcpd. The access configura-
tion is then taken over by the files /etc/hosts.allow and /etc/hosts.deny. More
information on this is given by man host_access.

218

10.3 NRPE Configuration on the Computer to Be Monitored

linux:src/rnpe-2.11 # mkdir /etc/nagios
linux:src/rnpe-2.11 # cp nrpe.cfg /etc/nagios/.

Distribution-specific packages are unpacked from the location specified in
Table 10.1 on page 215.

nrpe is given the permissions of the user at runtime specified in the inet
daemon configuration, which in our case is that of nobody. Therefore
nrpe.cfg needs to be readable for this user. As long as the file does not
contain any passwords (these really should not be used) or other critical
information, then read permissions for all can be allowed.

The configuration file contains many comments; the following command
displays the active parameters:®

user@linux:~$ egrep -v ’'“#|"$’ nrpe.cfg | less
server_port=5666

allowed_hosts=127.0.0.1

nrpe_user=nobody

nrpe_group=nogroup

dont_blame_nrpe=0

debug=0

command_timeout=60

The parameters server_port, allowed_hosts, nrpe_user, and nrpe_
group are only relevant if nrpe is working as a daemon. When the inet
daemon is used, the program ignores these values since they have already
been determined by the (x) indetd configuration.

The entry dont_blame_nrpe=0 prevents nrpe from accepting parameters,
thus closing a potential security hole. debug=1 allows extensive logging,
useful if you are looking for errors (debug=0 switches off the output for de-
bugging information), and command_timeout specifies a timespan in sec-
onds after which nrpe abruptly interrupts a plugin that has hung. Com-
ments in the configuration file explain all these parameters as well.

After this, the commands are defined that are to be executed by NRPE. The
configuration file nrpe.cfg already contains some, but first they all have
to be commented out, and only those commands activated that really are
intended for use.

The keyword command is followed in square brackets by the name with
which check_nrpe should call the command. After the equals sign (=),
the corresponding plugin command is specified, with its complete path:®

8 The regular expression ~#|~$ matches all lines that either begin with a comment sign
or that consist of an empty line. The option -v ensures that egrep shows all lines
that are not matched by this.

The check_users command is explained in Section 7.6 from page 177, check_load
is explained in Section 7.3 from page 162, and Section 7.4 from page 163 deals with
check_procs.

219

10 The Nagios Remote Plugin Executor (NRPE)

command [check users]=/usr/local/nagios/libexec/check users -w 5 -c 10
command [check_load] =/usr/lib/nagios/libexec/check_load -w 8,5,3 -c 15,10,7
command [check zombies]=/usr/lib/nagios/libexec/check procs -w :1 -c :2 -s Z

With the path, care must be taken that this really does point to the local plu-
gin directory. In the directory specified here, /usr/local/nagios/1ib-
exec, the self-compiled plugins are located!?; and for installations from
distribution packages the path is usually /usr/lib/nagios/plugins.

From the Nagios server, the command just defined, check_users is now
run on the target computer via check_nrpe:

nagios@linux:nagios/libexec$./check nrpe -H target host -c check users

10.3.1 Passing parameters on to local plugins

The method described so far has one disadvantage: for each test on the
target system, a separately defined command is required for this. Here is
the example of a server on which the plugin check_disk (see Section 7.1
from page 158) is required to monitor nine file systems:

u

command [check disk al=path/to/check disk -w

] -c 2% -p /net/linux01l/a
command [check_disk_bl=path/to/check_disk -w
]

-c 2% -p /net/linux01/b

»
o° o o° oP

u

[

[
command [check disk cl=path/to/check disk -w -c 2% -p /net/linux01/c
command [check_disk_dl=path/to/check_disk -w -c 2% -p /net/linux01/d
command [check disk rootl]=path/to/check disk -w 10% -c 5% -p /
[
[
[
[

)]

command [check_disk_usr]=path/to/check_disk -w 10% -c 5% -p /usr
command [check_disk_var]=path/to/check_disk -w 10% -c 5% -p /var
command [check_disk_home] =path/to/check_disk -w 10% -c 5% -p /home
command [check disk tmpl=path/to/check disk -w 10% -c 5% -p /tmp

To avoid all this work, NRPE can also be configured so that parameters may
be passed on to check_nrpe:

dont_blame_nrpe=1

command [check disk]=path/to/check disk -w $SARGlS -c S$ARG2S$S -p SARG3S

In order for this to work, the NRPE configure script must be run with the
option

--enable-command-args. The reason for this inconvenient procedure is
that passing parameters on is a fundamental risk, since it cannot be ruled
out that a certain choice of parameters could cause an (as yet unknown)
buffer overflow, allowing the target system to be penetrated.

10 provided you have followed the instructions in the book.

220

10.4 NRPE Function Test

If you still decide on this, despite all the security risks, you should use a
TCP wrapper (see Section 10.2.2, page 217), to ensure that only the Nagios
server itself is allowed to send commands to NRPE.

If the plugin provides the corresponding options, there is sometimes a third
method, however: the above-mentioned problem can also be solved by
getting check_disk, if necessary, to test all file systems with one single
command:

usere@linux:nagios/libexec$./check disk -w 10% -c 4% -e -m
DISK WARNING [2588840 kB (5%) free on /net/linuxl/b] [937160 kB (5%) free
on /net/linuxl/c]

The -e parameter persuades the plugin to display only those file systems
that produced a warning or an error. One restriction remains: the warning
and critical limits are, by necessity, the same for all file systems.

10.4 NRPE Function Test

For a concluding function test, the plugin check_nrpe on the Nagios server
is called. The command -H target host returns the IP address specified
for the server on which the NRPE service has just been installed:

nagios@linux:nagios/libexec$./check nrpe -H swobspace
CHECK_NRPE: Error - Could not complete SSL handshake.

The error message given here occurs very frequently and causes confusion
almost as often because although problems may occur with the SSL hand-
shake, the cause is to be found elsewhere in most cases. You only have
an SSL problem if the SSL versions used by the plugin check_nrpe and
the NRPE daemon addressed are incompatible or if one of the two software
packages was compiled without SSL and the other was compiled with SSL.

Otherwise, the cause will lie elsewhere: The problem could be caused by
an error in the configuration file, the inet daemon being unable to find
the NRPE program or configuration file, or access permissions for the file
nrpe.cfg that are not sufficient. You would also receive the error mes-
sage mentioned if the Nagios server cannot access the NRPE service at all
via the inetd configuration. In this case, you need to check the parameter
only_fromfor xinetd or the same restrictions via the tcpd for inetd.

You can search for the exact cause of error in the syslog files, particularly
in the file messages, and depending on the distribution, also in warn. log,
daemon. log, or another log file:

linux:~ # grep nrpe /var/log/messages

221

10 The Nagios Remote Plugin Executor (NRPE)

nrpe [19844] : Unable to open config file ’/etc/nagios/nrpe.cfg’ for readi
ng

nrpe [19844] : Config file ’/etc/nagios/nrpe.cfg’ contained errors, aborti
ng. ..

In this example, the file nrpe.cfg is either not in the path being searched
or nrpe cannot open it. Since nrpe is running with the permissions of the
user nobody, it must also be able to read the configuration file.

A successful call of check_nrpe will then provide the version of the in-
stalled NRPE service:

nagios@linux:nagios/libexecs$./check nrpe -H swobspace
NRPE v2.11

10.5 Nagios Configuration

Commands that “trigger” local plugins on remote computers via check_
nrpe are defined as before in the file checkcommands.cfg on the Nagios
server.

10.5.1 NRPE without passing parameters on

If no parameters are passed on to the target plugin, things will look like
this:

define command{
command_name check_nrpe
command_line $USER1$/check nrpe -H $HOSTADDRESSS$ -c $SARGLS

As the only argument, Nagios passes the command here that NRPE is to
execute. If the check_nrpe plugin on the Nagios server is located in a
different directory to the other plugins, you must enter the correct path
instead of $USER13$.

A service to be tested via NRPE uses the command just defined, check_
nrpe, as check_command. As an argument, the command is specified that
was defined in nrpe.cfg on the target system (here: 1inux04):

define service{
host_name linux04
service_description FS_var

222

10.5 Nagios Configuration

check command check nrpel!check disk var

10.5.2 Passing parameters on in NRPE

In order to address the command defined in Section 10.3.1 on page 220
command [check_disk] =path/to/check_disk -w $SARG1$ -c $ARG2$ -p S$SARG3$

from the Nagios server, the check_nrpe is given the corresponding argu-
ments through the option -a:

define command{
command_name check_nrpe
command_line $USER1$/check _nrpe -H $HOSTADDRESSS$ -c $ARGLS -a $ARG2S

So that $ARG2$ can correctly transport the parameters for the remote plu-
gin, these are separated by spaces in the service definition. in addition, you
should ensure that the order is correct:

define servicef{
host_name linux04
service description FS_var

check_command check_nrpe!check disk!10% 5% /var

The locally installed check_disk on 1inux04 distributes the three strings
10%, 5%, and /var to its own three macros $ARG1$, $ARG2$, and $ARG3$ for
the command defined in nrpe.cfg.

10.5.3 Optimizing the configuration

If the NRPE commands are given identical names on all target systems,
then all NRPE commands with the same name can be included in a single
service definition. When doing this you can make use of the possibility of
specifying several hosts, or even an entire group of hosts:

define service{
host_name linux04,1linux02,linuxll
service_description FS_var

223

10 The Nagios Remote Plugin Executor (NRPE)

check _command check _nrpe!check disk var

With the command check_disk_var, defined at the beginning of Section
10.3.1 on page 220, Nagios now checks the /var file systems on the com-
puters 1inux04, 1inux02, and linux11. If other file systems are to be
included in the test, a separate service is created for each one, thus avoid-
ing the security problem involved in passing parameters on. If you use
the option of testing all file systems at the same time, with the check_disk
plugin (see Section 7.1), then ultimately, one single service definition is suf-
ficient to monitor all file systems on all Linux servers— provided you have
a corresponding NRPE configuration on the target system:

define servicef{
hostgroup name linux-servers
service_description Disks

check command check _nrpe!check disk

10.6 Indirect Checks

NRPE executes not just local plugins, but any plugins that are available. If
you use network plugins via NRPE, these are referred to as indirect checks,
as illustrated graphically in Figure 10.1.

Figure 10.1:
Indirect checks with Nagios server

NRPE

firewall

check_nrpe
(plugin) (

NRPE server
nrpe
(inetd)

check_xyz
(plugin)

Y L] L] Y L

linux01 linux02 linux03 linux04 linux05
smtp http Idap postgresql ssh

224

10.6 Indirect Checks

If every network service was tested directly across the firewall, it would have
to open all the required ports. In the example, these would be the ports
for SMTP, HTTP, LDAP, PostgreSQL, and SSH. If the checks are performed
indirectly from a computer that is behind the firewall, on the other hand,
then it is sufficient just to have the port for NRPE (TCP port 5666) open on
the firewall. As long as it is configured via NRPE, the NRPE server behind
the firewall can perform any tests it wants.

Whether the effort involved in indirect checks is greater than that for direct
ones is dependent on the specific implementation: if this means that you
would have to “drill holes into your firewall,” then the additional work on
the NRPE server may be worthwhile. But if the ports involved are open
anyway, then the direct test can usually be recommended; this would make
additional configuration work on an NRPE host unnecessary.

225

Collecting Information Relevant
for Monitoring with SNMP

SNMP stands for Simple Network Management Protocol, a protocol defined
above all to monitor and manage network devices. This means being able
to have not only read access, but also write access to network devices, so
that you can turn a specific port on a switch on or off, or intervene in other
ways.

Nearly all network-capable devices that can also be addressed via TCP/IP
can handle SNMP, and not just switches and routers. For Unix systems
there are SNMP daemons; even Windows servers contain an SNMP im-
plementation in their standard distribution, although this must be explic-
itly installed. But even uninterruptible power supplies (UPSs) or network-
capable sensors are SNMP-capable.

227

11 Collecting Information Relevant for Monitoring with SNMP

If you are using Nagios, then at some point you can’'t avoid coming into con-
tact with SNMP, because although you usually have a great choice of query-
ing techniques for Unix and Windows systems, when it comes to hardware-
specific components such as switches, without their own sophisticated op-
erating system, then SNMP is often the only way to obtain information
from the network device. SNMP certainly does not have a reputation of be-
ing easy to understand, which among other things lies in the fact that it is
intended for communication between programs, and machine processing
is in the foreground. In addition, you generally do not make direct contact
with the protocol and with the original information, since even modems or
routers provide a simple-to-operate interface that disguises the complexity
of the underlying SNMP.

If you want to use SNMP with Nagios, you cannot avoid getting involved
with the information structure of the protocol. Section 11.1 therefore pro-
vides a short introduction to SNMP. Section 11.2 from page 234 introduces
NET-SNMP, probably the most widely used implementation for SNMP on
Unix systems. On the one hand it shows how to obtain an overview of the
information structure of a network device with command-line tools, and
on the other it describes the configuration of the SNMP daemon in Linux.
Finally, Section 11.3 from page 246 is devoted to the concrete use of SNMP
with Nagios.

11.1 Introduction to SNMP

Although SNMP contains the P for “protocol” in its name, this does not
stand for a protocol alone, but is used as a synonym for the Internet Stan-
dard Management Framework. This consists of the following components:

= Manageable network nodes that can be controlled remotely via SNMP.
A specific implementation of an SNMP engine, whether by software or
hardware, is referred to as an agent.

= At least one SNMP unit consisting of applications with which the agents
can be managed. This unit is referred to as a manager.

= A protocol with which agent and manager can exchange information: the
Simple Network Management Protocol (SNMP).

= A well-defined information structure, so that any managers and agents
can understand each other: the so-called Management Information Base,
or in short, MIB.

The framework assigns the manager the active role. The agent itself just
waits passively for incoming commands. In addition, so-called traps extend

228

11.1 Introduction to SNMP

the application possibilities of SNMP: these are messages that the agent ac-
tively sends to a single manager or a whole group of managers, for example
if predefined limit values are exceeded or if functions of the network device
fail.

As agents, SNMP engines implemented by the manufacturer are used for
hardware-specific devices (switches, routers). For Linux and general Unix
systems, the NET-SNMP implementation is available (see Section 11.2), for
Windows servers there is equivalent software already included with the op-
erating system.

In combination with Nagios, there are two possibilities. With respect to
Nagios in the active role, corresponding Nagios plugins, as the manager,
ask the agents for the desired information. The other way round, Nagios
can also passively receive incoming SNMP traps using utilities and process
these. Section 14.6 from page 312 is devoted to this topic.

An understanding of the SNMP information structure, the so-called Man-
agement Information Base (MIB), is critical if you want to use SNMP with
Nagios successfully. For this reason this section will focus on this. The pro-
tocol itself is only mentioned briefly to illustrate the differences between
different protocol versions.

If you want to get involved more deeply with SNMP, we refer you to the nu-
merous Request for Comments (RFCs) describing SNMP. The best place to
start would be in RFC 3410, “Introduction and Applicability Statements for
Internet Standard Management Framework”, and RFC 3411: “An Architec-
ture for Describing Simple Network Management Protocol (SNMP) Man-
agement Frameworks.” Apart from an introduction and numerous cross-
links, you will also find references there to the original documents of the
older versions, today referred to as SNMPv1l and SNMPv2.

11.1.1 The Management Information Base

The SNMP information structure consists of a hierarchical namespace con-
struction of numbers. Figure 11.1 shows an extract from this. The tree
structure is similar to those of other hierarchical directory services, such as
DNS or LDAP.

Its root is called 1 (iso) and stands for the International Organization
for Standardization. The next level, 3 (org) shown in Figure 11.1 pro-
vides a space for general, national and international organizations. Beneath
this is 6 (dod) for the U.S. Department of Defense. The general (IP-based)
internet owes its assignment as a subitem 1 (internet) of dod to its ori-
gin as a military project.

If you bring together the corresponding numbers from left to right and sep-
arate them with the dot, then for the internet node in the tree, you arrive

229

11 Collecting Information Relevant for Monitoring with SNMP

Figure 11.1:

SNMP namespace
using the example of
the MIB-II interfaces

at the designation 1.3.6.1. Such nodes are referred to in general as ob-
Jject identifiers (OID). Their syntax is used not only in SNMP but also in the
definition of LDAP objects and attributes, for example.

The OID 1.3.6.1 is not exactly easily readable for humans, which is why
other notation methods have gained acceptance: both iso.org.dod.in-
ternet and the combination iso (1) .org(3) .dod(6) .internet (1) is al-
lowed. Because this would quickly make readable descriptions infinitely
long if the tree were deep enough, another abbreviated notation method
has become established: as long as the term remains unique, you may sim-
ply write internet instead of 1.3.6. 1.

The important thing here is that the communication between manager and
agent is exclusively of a numerical nature. Whether the manager also al-
lows text input or is capable of issuing information as text instead of as
a numeric OID depends on the implementation in each case. The infor-
mation on individual nodes is provided by the manufacturer of the SNMP
agent as a Management Information Base (MIB) in file form.

1-iso
1.3-org
1.3.6 - dod

1.3.6.1 - internet

1.3.6.1.1 1.3.6.1.2 1.3.6.1.3 1.3.6.1.4 1.3.6.1.5 1.3.6.1.6
directory mgmt experimental private security SNMPv2

mib-2.1 mib-2.2 mib-2.4 mib-2.5mib-2.6 mib-2.7 mib-2.25
system interfaces ip icmp tcp udp host

interfaces.1 interfaces.2
ifNumber ifTable

ifTable.1
ifEntry

ifEntry.iflndex(1).1
ifEntry.iflndex(1).2
ifEntry.ifDescr(2).1 thO
ifEntry.ifDescr(2).2 = lo
ifEntry.ifType(3).1 = ethernetCsmacd(6)
ifEntry.ifType(3).2 = softwareLoopback(24)

!
2
€

230

11.1 Introduction to SNMP

The data stored in the MIB includes contact information (who designed
the MIB; usually the manufacturer of the device will be given here), the
definition of individual subnodes and attributes, and the data types used. If
an MIB file also describes the individual subnodes and attributes, this puts
the manager in a position to supply the user with additional information
on the meaning and purpose of the entry in question.

Below internet, the next level is divided into various namespaces. The
management node 1.3.6.1.2 is especially important for SNMP, that is,
iso(1) .org(3).dod(6) .internet (1) .mgmt (2). The namespace here is
described by RFC 1155, “Structure and Identification of Management Infor-
mation for TCP/IP-based Internets.”

In order for manager and agent to be able to understand each other, the
manager needs to know how the agent structures its data. This is where the
Management Information Base, Version II comes into play. SNMP requests
information from the agents on their implementation; with this, every man-
ager can access the most important parameters of the agent, without a pre-
vious exchange of MIB definitions. The Management Information Base II, or
MIB-II (or mib-2) for short, can be found in the namespace at1.3.6.1.2.1
or iso(1).org(3).dod(6) .internet (1) .mgmt (2) .mib-2(1). Since itis
well-defined and unique, OIDs lying beneath that are usually described in
short, starting with MIB-II or mib-2.

Manufacturer-specific information can also be defined in your own Man-
agement Information Base. Corresponding MIBs are located beneath in-
ternet.private.enterprise. Once an OID has been described in an
MIB, the meaning of this entry may never be changed. The description
format for an MIB is standardized by RFC 1212, which is the reason that
special MIBs, included by a vendor for its agents, can be integrated into
almost any manager.

MIB-II

MIB-II, the Management Information Base , which is obligatory for all SNMP
agents, contains several information groups. The most important of these

are summarized in Table 11.1. The notation mib-2.x stands for 1.3.6.1.2.
1.x.

Group OID Description Table 11.1:
system mib-2.1 Information on the device, (e.g., the location, MIIB‘" gr)(’”ps (a
selection

contact partner, or uptime)

interfaces mib-2.2 Information on the network interfaces (Name,
interface type, status, statistics etc.)

231

11 Collecting Information Relevant for Monitoring with SNMP

continued:

Group OID Description

at mib-2.3 Assignment of physical addresses (e.g., of MAC
addresses) to the IP address (Address Translation
Table)

ip mib-2.4 Routing tables and IP packet statistics

icmp mib-2.5 Statistics on individual ICMP packet types

tcp mib-2.6 Open ports and existing TCP connections

udp mib-2.7 ditto for UDP

host mib-2.25 Information on storage media, devices, running

processes and their use of resources

How you specifically handle information stored in the MIB-II can be ex-
plained using the example of the interfaces group: Figure 11.1 shows how
they are split up into the two OID interfaces.ifNumberand interfaces.
ifTable. This is because one network node initially reveals an unknown
number of interfaces. This number is taken up by ifNumber. Before look-
ing at these interfaces more closely, a manager can get the information
from ifNumber about how many there really are.

ifTable then contains the actual information on the different interfaces.
To obtain this information for a specific interface, the manager queries all
the entries in which the last number is the same, like this:

ifEntry.ifIndex.1 = INTEGER: 1

ifEntry.ifDescr.l = STRING: ethO

ifEntry.ifType.1l = INTEGER: ethernetCsmacd(6)
ifEntry.ifMtu.l = INTEGER: 1500
ifEntry.ifSpeed.l = Gauge32: 100000000
ifEntry.ifPhysAddress.l = STRING: 0:30:5:6b:70:70
ifEntry.ifAdminStatus.1l = INTEGER: up (1)
ifEntry.ifOperStatus.l = INTEGER: up (1)

ifIndex describes the device-internal index—SNMP always starts count-
ing from 1, switches start counting here from 100. ifDescr contains the
name of the interface, here ethO—this is obviously a Linux machine. It
can be assumed from the next four entries that a normal 100-Mbit Ethernet
interface is involved.

The interface type ifType is given as ethernetCsmacd,' that is, Ethernet.
ifMtu specifies the Maximum Transfer Unit, which in local networks is al-
ways 1,500 bytes for Ethernet. The interface speed ifSpeed is 100,000,000

L Carrier Sense (CS) means that each network interface checks to see whether the line

is free, based on the network signal (in contrast to Token Ring, for example, where the
network card may use the line only if it explicitly receives a token); Multiple Access (MA)
means that several network cards may access a common network medium simultane-
ously.

232

11.1 Introduction to SNMP

bits here, that is, 100 Mbit. And ifPhysAddress contains the physical net-
work address, also called the MAC address.

ifAdminStatus reveals whether the admin has switched the interface on
(up) or off (down) via the configuration. ifOperStatus on the other hand
specifies the actual status, since even interfaces activated by an adminis-
trator are not necessarily connected to a device, or even switched on.

There is a similar picture for the second interface:

ifEntry.ifIndex.2 = INTEGER: 2
ifEntry.ifDescr.2 = STRING: lo

ifEntry.ifType.2 = INTEGER: softwareLoopback (24)
ifEntry.ifMtu.2 = INTEGER: 16436
ifEntry.ifSpeed.2 = Gauge32: 10000000
ifEntry.ifPhysAddress.2 = STRING:
ifEntry.ifAdminStatus.2 = INTEGER: up (1)
ifEntry.ifOperStatus.2 = INTEGER: up (1)

This is not an Ethernet card here, however, but a local loopback device.

11.1.2 SNMP protocol versions

The first SNMP version and Internet Standard Management Framework were
described back in 1988 in RFCs 1065-1067; the current documentation on
this version, named SNMPv1, can be found in RFC 1155-1157. It is still
used today, since higher versions are fundamentally backward-compatible.

The big disadvantage of SNMPv1 is that this version allows only unsatisfac-
tory authentication in precisely three stages: no access, read access, and
full access for read and write operations. Two simple passwords, the so-
called communities, provide a little protection here: they divide users into
one community with read permissions, and the second one with read and
write permissions. No further differentiation is possible. If this was not
enough, the community is transmitted in plain text, making it an easy prey
for sniffer tools.

Further development on the second version, SNMPv2, was intended to
solve problems concerning the display of value ranges, error events, and
the performance if there are mass requests (RFC 1905). This RFC was never
fully implemented, however. The only relatively complete implementation
that was used in practice is known as the Community-based SNMPv2, or
SNMPv2c¢ for short (RFC 1901-1908). The current version, SNMPv3 (RFC
3411-3418), has the status of an Internet standard. Agents with SNMPv3
implementations always understand requests from SNMPv1.

Apart from extended protocol operations, there are no fundamental differ-
ences between SNMPvl and SNMPv2c. This is probably also the reason

233

11 Collecting Information Relevant for Monitoring with SNMP

why SNMPv2 could not really gain a foothold. The hoped-for increase in
security was certainly missing in this version. It is only the extensions of the
framework in SNMPv3 which allow more precise access control, but this is
much more complicated than the two community strings in SNMPv1. RFC
3414 describes the user-based security model (USM), RFC 3415 the view-
based access control model (VACM).

When accessing an SNMP agent, you must tell all tools, including plugins,
which protocol version is to be used. In Nagios you exclusively require read
access. If this is restricted to the required information and you only allow
the access from the Nagios server, you need have no qualms about doing
without the extended authentication of SNMPv3. It is only important that
you configure the agent—if possible—so that it completely prevents write
accesses, or at least demands a password. You should never use this: since
it is transmitted in plain text, there is always a danger that somebody may
be listening, and misuse the password later on.

In NET-SNMP, write accesses can be completely prevented, access can be
restricted to specific hosts, and information revealed can be limited. For
other agents implemented in hardware such as switches and routers, you
must weigh up whether you really need SNMPv3, assuming the manufac-
turer has made this available. SNMPv1, however, is available for all SNMP
devices.

We will therefore only explain access via SNMPv1 below, and assume that
this is generally read access only. If you still want to get involved with
SNMPv3, we refer you to the NET-SNMP documentation.?

11.2 NET-SNMP

Probably the most widely used SNMP implementation for Linux and other
UNIX systems is NET-SNMP? and was originally conceived at Carnegie-
Mellon University. Wes Hardaker, a system administrator at the University
of California in Davis, continued developing the code and first published it
under the name UCD-SNMP (Version 3.0).

With version 5.0 the project finally got the name NET-SNMP. But various
distributions still call the package UCD-SNMP, in part because it contains
version 4.2, in part because the maintainer has simply not gotten around
to renaming it.

NET-SNMP consists of a set of command line tools, a graphical browser
(tkmib), an agent (snmpd, see Section 11.2.2 on page 238) and a library,
which now forms the basis of nearly all SNMP implementations in the Open
Source field.

2 http://net-snmp. sourceforge.net/docs/FAQ.html#How_do_I_use_SNMPv
3 http://net-snmp. sourceforge.net/

234

11.2 NET-SNMP

All common distributions include corresponding packages. In SuSE this is
called net-snmp and contains all the components; Debian packs the tools
in the package snmp, and the daemon in the package snmpd. At the time of
going to press, version 5.4.1 was the current version, but an older 5.x version
will do the job for our purposes. Their outputs differ to some extent, but
the exact options can be looked up where necessary in the man page.

11.2.1 Tools for SNMP requests

For read access, the programs snmpget, snmpgetnext and snmpwalk are
used. snmpget specifically requests a single OID and returns a single value
from it. snmpgetnext displays the next variable existing in the Manage-
ment Information Base, including its value:

user@linux:~$ snmpget -vl -c public localhost ifDescr.l
IF-MIB::ifDescr.l = STRING: ethoO

user@linux:~$ snmpgetnext -vl -c public localhost ifDescr.l
IF-MIB::ifDescr.2 = STRING: lo

user@linux:~$ snmpgetnext -vl -c public localhost ifDescr.3
IF-MIB::ifType.1l = INTEGER: ethernetCsmacd(6)

The option -v1 instructs snmpget to use SNMPv1 as the protocol. With
-c you specify the read community an; in this case then, the password is
public. This is followed by the computer to be queried, here localhost,
and finally there is the OID whose value we would like to find out.

The NET-SNMP tools are masters of OID abbreviation: without special in-
structions, they always assume that an OID is involved which lies inside
the MIB-II. For unique entries such as ifDescr.1, this is sufficient. But
whether the various SNMP plugins for Nagios can also handle this depends
on the specific implementation; it is best to try out cases on an individual
basis. To be on the safe side, it is better to use complete OIDs, either nu-
merical in readable form. The latter is obtained if you instruct snmpget to
display the full OID:

user@linux:~$ snmpget -vl -On -c public localhost ifDescr.l
.1.3.6.1.2.1.2.2.1.2.1 = STRING: ethoO

user@linux:~$ snmpget -vl -Of -c public localhost ifDescr.l
.iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifDescr.1 =
STRING: ethO

The -0n option provides the numerical OID, -0f the text version. In this
way you can easily find out the complete OID, for plugins which cannot
handle the abbreviation. It is important to remember here: each OID al-
ways starts with a period. If you omit this, there will always be a plugin
which doesn’'t work properly.

235

11 Collecting Information Relevant for Monitoring with SNMP

In order to obtain the entire information stored in the MIB-II, it is better to
use snmpwalk. As the name suggests, the program takes a walk through the
Management Information Base, either in its entirety or in a specified part of
the tree. If you would like to find out about all the entries beneath the node
mib-2.interfaces (Figure 11.1 on page 230), you simply give snmpwalk
the required OID:

user@linux:~$ snmpwalk -vl -c public localhost mib-2.interfaces
IF-MIB::ifNumber.0 = INTEGER: 3

IF-MIB::ifIndex.1 = INTEGER: 1
IF-MIB::ifIndex.2 = INTEGER: 2
IF-MIB::ifIndex.3 = INTEGER: 3
IF-MIB::ifDescr.l = STRING: ethoO
IF-MIB::ifDescr.2 = STRING: lo
IF-MIB::ifDescr.3 = STRING: ethl
IF-MIB::ifType.1l = INTEGER: ethernetCsmacd(6)

snmpwalk hides the exact structure slightly (links to ifTable and ifEntry
are missing, for example, see Figure 11.1), so that it is better to use -0f:

user@linux:~$ snmpwalk -vl -Of -c public localhost mib-2.interfaces
..mib-2.interfaces.ifNumber.0 = INTEGER: 3
..mib-2.interfaces.ifTable.ifEntry.ifIndex.1 = INTEGER: 1
..mib-2.interfaces.ifTable.ifEntry.ifIndex.2 = INTEGER: 2
..mib-2.interfaces.ifTable.ifEntry.ifIndex.3 = INTEGER: 3
..mib-2.interfaces.ifTable.ifEntry.ifDescr.1l = STRING: ethO
2 = STRING: lo
..mib-2.interfaces.ifTable.ifEntry.ifDescr.3 = STRING: ethl

..mib-2.interfaces.ifTable.ifEntry.ifType.1l = INTEGER: ethernetCsmacd(6)

..mib-2.interfaces.ifTable.ifEntry.ifDescr.

The three dots ... in the version here abbreviated for print stand for
.iso.org.dod.internet .mgmt.

As the next step, you could take a look around your own network and query
the Management Information Bases available there. Normally you will get
quite far with the read community public, since this is often the default
setting. So you should also try out the community string private, which is
the default set by many vendors. An extremely dubious practice, by the way:
anyone who knows a bit about SNMP and who has access to the network
can use this to manipulate device settings, such as switching off certain
ports or the entire switch. But even with all the other default passwords,
you should take the trouble to change them. Entire password lists can be
found on the Internet, sorted by vendors and devices—easily found through
Google.

Whether you also change the preset read community (such as public) de-
pends on the information available on it and on your own security require-
ments. But the read-write community should under no circumstances re-
tain the default setting. In addition it is recommended that you switch off

236

11.2 NET-SNMP

SNMP completely for devices that are neither queried nor administrated
via SMNP, just to be on the safe side.

Taking a graphic walk with mbrowse

A graphical interface is often recommended for interactive research and
for initial explorations of the Management Information Base, such as the
SNMP browser mbrowse* (see Figure 11.2). This is not a component of
NET-SNMP, but most Linux distributions provide an mbrowse package for
installation.

* - MIB Browser [=EE Figure 11.2:
File Options Bockmarks SNMP browser

Host Name |localhost Read Community |public Write Community
mbrowse

QObject Identifier “1‘3‘6‘1.4.1.2021‘1O

Set lﬂib Tree | Details | Search | Optioms'
K O gt

‘ O experimental
O private
‘ &0 enterprises
- g unix
il B uedavis
&8 prTaple
33 memory

33 extTable
#5 dskTable

= systemnStats
- @ ucdinternal
& O3 ucdExperimental
=0 ucdDemaIB
e 8 fileTable
= loghatch
E

E:

E

33 version
a3 snmperrs
+8 mrTable
=E miEniry
= (0 ucdSnmpAgent
v & 0O ucdTraps

pu j
Instance Value | J as | A

Jis0.org.dodinternet private enterprises.Ucdavis.laT able laEntry laindex. 1 = INTEGER: 1
Jis0.org.dodinternet private enterprises.Ucdavis laT able laEntry laindex.2 = INTEGER: 2
Jis0.org.dodinternet private. enterprises.ucdavis laT able laEntry laindex.3 = INTEGER: 3
Jis0.org.dodinternet private enterprises.ucdavis.laTable [aEntry laNames. 1 = STRING: Load-1
Jis0.org.dodinternet.private enterprises.Ucdavis laT able laEntry laNames.2 = STRING: Load-5
Jis0.org.dodinternet private enterprises.Ucdavis laTable laEntry laNames.3 = STRING: Load-15
Jis0.org.dodinternet private. enterprises. Ucdavis. laTable [aEntry laLoad. 1 = STRING: 0.00
Jis0.org.dodinternet private enterprises. Ucdavis. laTable [aEntry laLoad.2 = STRING: 0.02

£ |450.0rg.dod.internet private enterprises Ucdavis laT able laEntry laLoad.3 = STRING: 0.00
‘ariables found: 24

| I

If you highlight an entry and click on the Walk button, the lower window
displays the same output as snmpwalk. The graphical display, however,
allows better orientation—it is easier to see in which partial tree you are
currently located. It is also interesting that mbrowse shows the numeric
OID of each selected object, in Object Identifier.

4 http://wuw.kill-9.org/mbrowse/

237

11 Collecting Information Relevant for Monitoring with SNMP

11.2.2 The NET-SNMP daemon

The NET-SNMP daemon snmpd works as an SNMP agent for Linux and
other Unix systems; that is, it answers requests from a manager and also
provides a way of making settings to the Linux system via write accesses,
such as manipulating the routing table.

Supported Mangement Information Bases

The agent initially provides information on the MIB-II described in RFC
1213 (Section 11.1.1 from page 229), but also the host extensions belonging
to this from RFC 2790 (host MIB). Table 11.2 summarizes the groups of the
host MIB, and the most important MIB-II groups are introduced in Table
11.1 (page 231).

If you are interested in a detailed description of the MIB-II, including the
host MIB, we refer you to http://www.snmplink.org/. There you can
surf through a huge number of MIBs and download them if you wish.

In addition to the basic MIB-II, the NET-SNMP implementation has its own
extension at private.enterprises.ucdavis (UCD-SNMP-MIB). The di-
rectives given in table 11.3 refer to instructions in the configuration file
snmpd . conf (see page 240). Some of the information here is also given in
the Host Resources MIB.

Table 11.2: Group OID Description
Components of the

hrSystem host.1 System time and uptime of the host, logged-in

Host Resources MIB users, and number of active processes

mib-2.host (RFC

2790) hrStorage host.2 Details on all storage media such as swap, hard

drives, removable media, and main memory

hrDevice host.3 List of available devices and their properties:
apart from details on the processor, network
interfaces, printer and DVD-/CD-ROM drives,
there is also information on hard drives, their
partitioning, file systems, mount points and
file system types

hrSWRun host.4 All running processes including PID and com-
mand line parameters

hrSWRunPerf host.5 CPU usage and memory usage for the pro-
cesses from hrSWRun

hrSWinstalled host.6 Installed software; the information originates
from the RPM database (unfortunately this
does not work in Debian).

238

11.2 NET-SNMP

Group OID Directive description

prTable ucdavis.2 proc details of running processes

memory ucdavis.4 - Memory and Swap space load, as
in the program free

extTable ucdavis.8 exec Information on self-defined
commands in the configuration
filed

dskTable ucdavis.9 disk Information on file systems, see
example in the text

laTable ucdavis.10 load System load

ucdExper- ucdavis.13 - Experimental extension contain-

imental ing an entry with Im-sensor in-
formation, among other things

fileTable ucdavis.15 file Information on files to be explic-
itly monitored

version ucdavis.100 - Details on the NET-SNMP ver-

sion and the parameters with
which the daemon was compiled

While mib-2.host only specifies absolute values, such as for file systems,
UCD-SNMP-MIB also allows threshold values to be set for agent pages,
which then explicitly generate an error value (dskErrorFlag) with error
text (dskErrorMsg):

user@linux:~$

grep ’.2

UCD-SNMP-MIB:
UCD-SNMP-MIB:
UCD-SNMP-MIB:
UCD-SNMP-MIB:
UCD-SNMP-MIB:
UCD-SNMP-MIB:
UCD-SNMP-MIB:
UCD-SNMP-MIB:
UCD-SNMP-MIB:
UCD-SNMP-MIB:
UCD-SNMP-MIB:
UCD-SNMP-MIB:

ee (= 95%)

snmpwalk -vl -c public localhost ucdavis.dskTable |\

’

:dskIndex.2 = INTEGER: 2

:dskPath.2 = STRING: /net/swobspace/b
:dskDevice.2 = STRING: /dev/mdé
:dskMinimum.2 = INTEGER: -1
:dskMinPercent.2 = INTEGER: 10
:dskTotal.2 = INTEGER: 39373624
:dskAvail.2 = INTEGER: 1694904
:dskUsed.2 = INTEGER: 35678636
:dskPercent.2 = INTEGER: 95
:dskPercentNode.2 = INTEGER: 1
:dskErrorFlag.2 = INTEGER: 1
:dskErrorMsg.2 = STRING: /net/swobspace/b: less than 10% fr

The grep ’.2 =’ filters all entries on the second device from the snmpwalk
output, the Linux software-RAID /dev/md6. The entry dskPercent shows

5 Any executable programs can be used here.

Table 11.3:
Extract from the
UCD-SNMP-MIB

239

11 Collecting Information Relevant for Monitoring with SNMP

the current load of this data medium. An error exists if dskErrorFlag
contains the value 1 instead of 0; dskErrorMsg adds a readable message
to the error message. It can be assumed from this that the agent is being
configured so that it will announce an error if free capacity falls below 10
percent.

The configuration file snmpd. conf

Configuring the agent is done in the file snmpd. conf, which is either lo-
cated in the directory /etc directly (the case for SUSE) or in /etc/snmp
(Debian), depending on the distribution.

Authentication and security As the first step towards a finely tuned access
control, you first need to define who should have access to which commu-

nity:

(1) source addressesQuelladressen

com2sec localnet 192.168.1.0/24 public
com2sec localhost 127.0.0.1 public
com2sec nagiossrv 192.168.1.9 public

com2sec links the source IP addresses to a community string (the SNMP
password). This keyword is followed by an alias for the IP address range,
the address range itself, and then a freely selectable community string, for
which we will use public here, to keep things simple.® 192.168.1.0/24
refers to the local network; the Nagios server itself has the IP address 192.
168.1.9. If you set access permissions for the alias 1ocalnet later on, they
will apply to the entire local network 192.168.1.0/24, but if you reference
nagiossrv when doing this, they will only apply to the Nagios server itself.

Then the defined computers and networks are assigned via their aliases to
groups which have different security models:

(2) assignment of group - security model - source-IP alias
group Local vl localhost

group Nagios vl nagiossrv

The keyword group is followed first by a freely selectable group name: here
we define the group Local with the security model v1, which belongs to
the address range defined as localhost, and the group Nagios with the
same security model contained in the Nagios server.

You can choose from v1 (SNMPv1), v2c (community-based SNMPv2), and
usm (the User Model from SNMPv3) as the security model. If you assign

6 See also page 236.

240

11.2 NET-SNMP

a computer or a network several security models at the same time, then
separate entries with the same group name are required:

group Nagios vl nagiossrv

group Nagios usm nagiossrv

With the definition of views (keyword view) the view from the outside can
be restricted precisely to partial trees of the Management Information Base.
Each view here is also given a name for referencing:

#(3) View definition for partial trees of the SNMP namespace
view all included .1

view system included .iso.org.dod.internet.mgmt.mib-2.system

The reference included includes the following partial tree in the view.
Thus the view all covers the entire tree (.1). If you want to exclude certain
partial trees in this, then the keyword excluded is used:

view all included .1

view all excluded .iso.org.dod.internet.private

The partial tree beneath private in all is now blocked, such as the MIB
ucdavis (private.enterprises.ucdavis).

One interesting feature is the mask; it specifies in hexadecimal notation
which nodes correspond exactly to the subtree:

view all included .iso.org.dod.internet.mgmt F8

All places of the queried OID, for which the mask contains a 1 in binary
notation, must be identical in the queried partial tree to the OID specified
here, .iso.org.dod.internet.mgmt, otherwise the daemon will refuse
access and not provide any information. .iso.org.dod.internet.mgmt
is written numerically as .1.3.6.1.2.

Thanks to the mask F8,’ binary 11111000, the first five places from the left
in the OID must always be .iso.org.dod.internet.mgmt. If somebody
queried an OID (such as the private tree .1.3.6.1.4), which deviates
from this, the agent would remain silent and not provide any information.
If you leave out the mask detail, FF will be used.

If you have defined the alias, community, security model, and view, you just
need to bring them together for the purpose of access control. This is done
with the access instruction:

7 F= 1-2341:2241-2141-20 = 1111, 8=1000

241

11 Collecting Information Relevant for Monitoring with SNMP

(4) Definition of the access control
access Local any noauth exact all none none
access NagiosGrp any noauth exact all none none

The access restrictions are bound to the group. The context column re-
mains empty (), since only SNMPv3 requires it.8 As the security model,
you then normally choose any, but you may define a specific model with
v1, v2c or usm, since several different security models may be assigned
to a group, as shown in the discussion of “Authentication and Security” at
the beginning of this Section. The fifth column specifies the security level,
which is also of interest only for SNMPv3. In the other two security models
(we are only using v1), noauth is given here. The fourth last column also
has just one meaning in SNMPv3. But since you must enter a valid value
forSNMPv1 and SNMPv2c as well, then exact is chosen here.

The last two columns specify which view should be used for which access
(read or write). In the example, the groups Local and NagiosGrp obtain
read access for the view all, but no write access. The final column defines
whether the agent should send SNMP traps—that is, active messages, to
the manager—for events that occur within the range of validity of the view.
Section 14.6 from page 312 goes into more detail about SNMP traps.

With the configuration described here, you can now exclusively access the
Nagios server and localhost via SNMPvI for information. The server ac-
cess can be restricted further by defining a view that makes only parts of the
MIB visible. But you should only try this once the configuration described
is working, to avoid logical errors and time-consuming debugging.

System and local information The partial tree mib-2. system provides infor-
mation on the system itself and on the available (that is, implemented)
MIBs. With syslocation you can specify where a system is located in the
company or on the campus, and after the keyword syscontact you enter
the e-mail address of the administrator responsible:

(5) mib-2.system
syslocation Server room Martinstr., 2nd rack from the left

syscontact root <wob@swobspace.de>

As long as you do not redefine the parameters sysname and sysdescr at
this point, the corresponding MIBs in the default will reveal the host name
and/or the system and kernel specification, corresponding to uname -a:

user@linux:~$ snmpwalk -vl -c public localhost system
system.sysDescr.0 = STRING: Linux swobspace 2.6.10 #20 SMP Mon Dec 27
11:55:25 CET 2004 1686

8 Corresponding descriptions on SNMPv3 would go beyond the bounds of this book.

242

11.2 NET-SNMP

system.sysObjectID.0 = OID: NET-SNMP-MIB: :netSnmpAgentOIDs.10
system.sysUpTime.0 = Timeticks: (1393474) 3:52:14.74
system.sysContact.0 = STRING: root <wob@swobspace.de>

system.sysName.0 = STRING: swobspace

system.sysLocation.0 = STRING: Serverraum Martinstr., 2. Rack von links

Defining processes to be monitored Processes that you want to monitor using
SNMP are specified with the proc directive, and if required you can specify
the minimum or maximum number of processes:

(6) Processes: enterprises.ucdavis.procTable
proc process maximum minimum

proc process maximum

proc process

proc sshd

proc nmbd 2 1

proc smbd

proc slapd

If the entry for maximum and minimum is missing, at least one process
must be running. If only the minimum is omitted, NET-SNMP will define
this with zero processes. The corresponding entries end up in the MIB
ucdavis.prTable;in case of error you will receive an error flag (prError-
Flag and an error description (prErrMessage) (which unfortunately you
cannot define yourself):

user@linux:~$ snmpwalk -vl -c public localhost prTable

prTable.prIndex.4 = INTEGER: 4

prTable.prNames.4 = STRING: slapd

prTable.prMin.4 = INTEGER: 0O

prTable.prMax.4 = INTEGER: 0O

prTable.prCount.4 = INTEGER: O

prTable.prErrorFlag.4 = INTEGER: 1

prTable.prErrMessage.4 = STRING: No slapd process running.

ucdavis.prTableonly reveals the configured processes; on the other hand
it allows mib-2.host.hrSWRun and mib-2.host.hrSWRunPerf in general
to query all running processes. If you want to prevent this, the view must
exclude the area you do not want.

Your own commands With the exec directive you can specify commands in
the extension ucdavis.extTable, which the agent will execute in the cor-
responding queries. The result then appears in the relevant entries. In the
following example the agent calls /bin/echoifit is asked for ucdavis.ext-
Table:

243

11 Collecting Information Relevant for Monitoring with SNMP

(7) your own commands: enterprises.ucdavis.extTable
exec name command arguments
exec echotest /bin/echo hello world

The program to be executed must appear with its absolute path in the con-
figuration. Running snmpwalk provides only the following:

user@linux:~$ snmpwalk -vl -c public localhost extTable
extTable.extEntry.extIndex.1l = INTEGER: 1
extTable.extEntry.extNames.1l = STRING: echotest
extTable.extEntry.extCommand.l = STRING: /bin/echo hello world
extTable.extEntry.extResult.l = INTEGER: 0
extTable.extEntry.extOutput.l = STRING: hello world

extTable.extEntry.extResult contains the return value of the com-
mand executed, and extTable.extEntry.extOutput contains the text
output.

With the exec directive you can thus query everything that a local script
or program can find out. This could be a security problem, however: if
the programs used are susceptible to buffer overflows, this feature could be
misused as a starting point for a denial-of-service attack.

Monitoring hard drive capacity The disk directive is suitable for monitoring
file systems. The keyword disk is followed by the path for a mount point,
and then the minimum hard drive space in KB or in percent that should be
available. If you omit the capacity entry, at least 100 MB must be available;
otherwise an error message will be given.

In the following example the free capacity in the / file system should not
drop below 10%, and on /usr, at least 800 MBY should remain free:

#(8) File systems: enterprises.ucdavis.dskTable
#disk mount point

#disk mount point minimum capacity in_ KB

#disk mountpoint minimum capacity in percent%
disk / 10%

disk /usr 819200

disk /data 50%

As far as the data partition /data is concerned, the alarm should be raised
if free capacity falls below 50%. dskErrorFlag in this case contains the
value 1 instead of 0, and dskErrorMsg contains an error text:

UCD-SNMP-MIB: :dskPercent.3 = INTEGER: 65

9 1024KB * 800

244

11.2 NET-SNMP

UCD-SNMP-MIB: :dskErrorFlag.3 = INTEGER: 1
UCD-SNMP-MIB: :dskErrorMsg.3 = STRING: /data: less than 50% free (= 65%)

dskPercent reveals a current load of 65%. Instead of the partial tree con-
figured here, ucdavis.dskTable, mib-2.host.hrStorage also provides
an overview of all file systems, even those not explicitly defined. These are
missing percentage details, however, and you do not receive an error status
or error message, as supplied by ucdavis.dskTable.

You should think hard about whether you set the warning limit in the NET-
SNMP or in the Nagios configuration. In the first case you must configure
the values on each individual host. If you query the percentage load, how-
ever, with the check_snmp plugin (see section 11.3.1 from page 246), then
you set warning and critical limits centrally on the Nagios server, saving
yourself a lot of work if you make changes later on. The includeA11Disks
directive adds all existing file systems to the dskTable table:

includeAllDisks 10%

It requires a minimum limit to be specified in percent, and also returns
error values. An absolute specification in KB is not possible here. If you
set warning and error limits centrally for check_snmp; (see Section 11.3.1
from page 246) the error attributes dskErrorFlag and dskErrorMsg are
not queried, so that the value set here as the minimum limit can be ignored.

System load The load directive queries the CPU load. As the limit values,
you specify the average values for one minute, and optionally for five and
15 minutes:

(9) System Load: enterprises.ucdavis.laTable
load maxl

load maxl max5

load maxl max5 maxl5

load 5 3 2

If the values are overstepped, laErrorFlag will contain the status 1 (oth-
erwise: 0) and laErrMessage will have the text of the error message.

In a system that exceeds one of the specified limits, snmpwalk returns the
following:

user@linux:~$ snmpwalk -vl -c public localhost laTable

UCD-SNMP-MIB: :laNames.1l = STRING: Load-1
UCD-SNMP-MIB: :laNames.2 = STRING: Load-5
UCD-SNMP-MIB: :laNames.3 = STRING: Load-15

245

11 Collecting Information Relevant for Monitoring with SNMP

UCD-SNMP-MIB:
UCD-SNMP-MIB:
UCD-SNMP-MIB:

UCD-SNMP-MIB:

:lalLoad.l = STRING: 5.31
:laLoad.2 = STRING: 2.11
:lalLoad.3 = STRING: 0.77

:laLoadInt.1l = INTEGER: 530
UCD-SNMP-MIB: :laLoadInt.2 = INTEGER: 210
UCD-SNMP-MIB: :laLoadInt.3 = INTEGER: 77
UCD-SNMP-MIB: :laLoadFloat.1l = Opaque: Float: 5.310000
UCD-SNMP-MIB: :lalLoadFloat.2 = Opaque: Float: 2.110000
UCD-SNMP-MIB: :lalLoadFloat.3 = Opaque: Float: 0.770000
UCD-SNMP-MIB: :laErrorFlag.l = INTEGER: 1
UCD-SNMP-MIB: :laErrorFlag.2 = INTEGER: 0
UCD-SNMP-MIB: :laErrorFlag.3 = INTEGER: 0
UCD-SNMP-MIB: :laErrMessage.l = STRING: 1 min Load Average too high (=5.31)
UCD-SNMP-MIB: : laErrMessage.2 = STRING:

UCD-SNMP-MIB: :laErrMessage.3 = STRING:

From lalLoadInt.1 we are told the one-minute average value for the sy-
stem load as an integer, from laload.1 as a string, and from lalLoad-
Float.1 as a floating-point decimal. laErrorFlag.1 contains the corre-
sponding error status, laErrMessage. 1 the corresponding error message.
The same applies for the other two averages.

You can also use the check_snmp plugin here to query the floating-point
decimal values just as accurately, and specify limit values centrally.

11.3 Nagios's Own SNMP Plugins

Among the standard Nagios plugins there are three programs with which
data can be obtained via SNMP: a generic plugin that queries any OIDs you
want, and two Perl scripts that are specialized in interface data of network
cards and the ports of switches, routers and so forth. In addition to this,
the directory contrib contains the source code of other SNMP plugins that
are not automatically installed. Apparently these are no longer maintained
and cannot run without major adjustments to the code.

http://www.nagiosexchange.org/ also provides some useful specialized
plugins, some of which are introduced in Section 11.4 from page 255. The
following descriptions are limited, for reasons of space, to SNMPv1/2
queries; for SNMPv3-specific options, we refer you to the online help for
the corresponding plugin.

11.3.1 The generic SNMP plugin check_snmp

With check_snmp a generic plugin is available that queries all available
information via SNMP, according to your requirements. However, its oper-

246

11.3 Nagios's Own SNMP Plugins

ation does require a degree of care, since as a generic plugin, it has no idea
of specifically what data it is querying.

For this reason as well, its output looks quite meager; specialized plugins
provide more convenience here. But since these don't exist for every pur-
pose, check_snmp is then quite justified. It calls the program snmpget auf,
which means that the NET-SNMP tools must be installed.

It provides the following options:

-H

address / --host=address
This is the host name or IP address of the SNMP agent to be queried.

0ID / --0id=0ID
This is the object identifier to be queried, either as a complete nu-
merical OID or as a string, which is interpreted by snmpget (e.g.,
system.sysName.O).

Attention: in contrast to snmpwalk, you must always specify the end
nodes containing the information.

port / --port=port
This is the alternative port on which the SNMP agent is running. The
default is UDP port 161.

password / --community=password
This is the community string for read access. The default value is
public.

start :end / --warning=start :end
If the queried value lies within the range specified by start and end,
check_snmp does not give out a warning. For -w 0:90 it must there-
fore be larger than 0 and smaller than 90.

start:end / --critical=start:end
If the query value lies outside the range, the plugin gives out CRITI-
CAL. If the warning and critical limits overlap, the critical limit always
has priority.

string / --string=string
The contents of the queried OID must correspond exactly to the spec-
ified string, otherwise check_snmp will give out an error.

regexp | --ereg=regexp
This option checks the contents of the queried OID to see whether
the regular expression regexp'® is matched. If this is the case, the
plugin returns OK, otherwise CRITICAL.

10 pOSIX regular expression, see man 7 regex.

247

11 Collecting Information Relevant for Monitoring with SNMP

regexp | --erexi=regexp
As -r, except that there is no case distinction.

prefix /| --label=prefix
A string that is placed in front of the plugin response. The default is
SNMP.

string / --units=string
SNMP only has simple values, not units. A string that is specified
instead of string is extended by the plugin in the text output so that
it serves the value as a unit. Because only text is involved here, you
can also specify apples or pears, for example, as “units”.

delimiter / --delimiter=delimiter
This character separates the OID in the snmpget output from the
value. The default is =.

delimiter / --output-delimiter=delimiter
The plugin is able to query several OIDs simultaneously. The result
values are separated with delimiter, which in the default is a space.

mibs / --miblist=mibs
This specifies the MIBs that should be loaded for snmpget. The de-
fault is ALL. -m +UCD-DEMO-MIB!! loads in addition, -m UCD-DEMO-
MIB (without the + sign) only loads the specified MIB.!?

version / --protocol=version
Defines the SNMP protocol version. The values for version are 1 or 3.
Without this option, SNMPv1 is used.

SNMP provides almost unlimited possibilities, so the following examples
can merely convey a feeling for other plugins used.

Testing hard drive capacity via SNMP

The following command queries the load of a file system and to do this ac-
cesses the partial tree ucdavis.dskTable of a locally running NET-SNMP
agent:

nagios@linux:local/libexec$./check snmp -H swobspace -C public \

-o dskTable.dskEntry.dskPercent.2 -w 0:90 -c 0:95 -u percent

SNMP WARNING - x95x percent

11" yCD-DEMO-MIB is an MIB included for demonstration purposes.
12 gee also the online help, with man snmpcmd.

248

11.3 Nagios's Own SNMP Plugins

The query applies to the percentage load of the file system with the index
number 2. As long as no more than 90 percent of the hard drive space is
then occupied, the test should return OK; here a warning will be returned
if it is between 91 and 95 percent, and critical status if it goes beyond this.
Thanks to the -u option, check_snmp adds the description percent to the
output of the figure determined.

Nevertheless, the plugin does not tell the whole truth: a test check with
df shows a 96 percent load, which comes from the fact that this program
correctly rounded up the actual 95.8 percent load, while integer values in
SNMP are seldom rounded up, but simply cut off. So you just have to live
with slight inaccuracies as long as the MIB does not provide any floating-
point decimals.

If you would like things to be more detailed, you can use the option -1: -1
>SNMP-DISK: /net/swobspace/b’ causes other, self-defined information
to be added to the output of the above command:

SNMP-DISK: /net/swobspace/b WARNING - x95% percent

The above query can be more generally run through a command object
such as the following:

define commandf{
command_name check snmp
command_line $USER1S$/check snmp -H SHOSTADDRESSS -C SUSER3S
-P 1 -0 $ARG1S -w $ARG2S -c S$ARG3S$ -1 $SARG4S

}

This definition assumes that the value being queried is numerical, and not
Boolean (see page 251), otherwise specifying a warning and critical value
simultaneously would make no sense. We store the community here in the
macro $USER3$.!? this is followed by the protocol version (-P 1 stands for
SNMPv1), the OID, the warning and critical limits, and a prefix.

The call for this command in service definitions is then made in the form
check snmpl!oid!warn!critical!prefix

If you want to specifically monitor the load of the file system with the in-
dex number 2 on the computer swobspace through dskTable, then the
following definition would be used:

define servicef{
service_description SNMP-DISK-a
host_name swobspace

13 The $USERx $ macros are defined in the resource file resource. cfg.

249

11 Collecting Information Relevant for Monitoring with SNMP

check command check snmp!dskTable.dskEntry.dskPercent.2!0:90!0:95!DIS
K: /net/swobspace/a

}

Even though the check_command line is wrapped here, in practice all pa-
rameters must be on a single line, separated by an exclamation point !
(without spaces before or after the delimiter).

Measuring temperature via lm-sensors

The next test checks the CPU temperature of the host. For the sensor, the
package 1lm-sensors'® is used here, which accesses corresponding chips
on modern mainboards. As soon as lm-sensors is active, it allows the NET-
SNMP agents to read out the corresponding information from the partial
tree ucdavis.ucdExperimental.lmSensors:

nagios@linux:local/libexec$./check snmp -H localhost -C public \
-o lmTempSensorsValue.l -w 25000:45000 -c 20000:48000 \
-u ’‘degrees Celsius (% 1000)’ -1 ’Templ/CPU’

Templ/CPU OK - 41000 degrees Celsius (% 1000)

The output depends on the chipset: here you must multiply the query val-
ues by the factor 1000. Accordingly, you have no other alternative but to
adjust the warning and critical limits to the main board you are using. In
the example, the CPU temperature, 41 degrees Celsius, is “on a green light”:
if it were to drop below 25 degrees or rise above 45 degrees, it would cause
a warning, while below 20 or above 48 degrees, this would be critical.

Regular expressions and comparing fixed strings

You can check whether the text swobspace occurs in the system name as
follows:

nagios@linux:local/libexec$./check snmp -H localhost -C public \
-o system.sysName.0 -r swobspace
SNMP OK - "swobspace"

Instead of defining the string being searched for, with -r as the regular
expression, you could also use the -s option. Then the text must match
exactly, however, which may be quite tricky, since everything counts that
snmpget outputs after the delimiter, =.

14 http://www.lm-sensors.nu/

250

11.3 Nagios's Own SNMP Plugins

Monitoring network interfaces

The final example queries whether the first network interface of a Cisco
router is in operation:

nagios@linux:local/libexec$./check_snmp -H ciscol -C public \
-o ifOperStatus.l -w 1:1 -1 'SNMP: Port Status for Port 1 is:
SNNP: Port Status for Port 1 is: OK - 1

The information sought can be found in ifOperStatus. Here we are query-
ing port 1. While ifOperStatus gives out the operating status, ifAdmin-
Status reveals whether the interface is administratively switched on or off.

When specifying the warning limit here, we use the range 1:1, so that the
plugin gives out a warning if the interface is physically switched off, and the
return value is thus 0. We will do without the definition of a critical status
here, since there are only two states, “on” or “off.” If the plugin returns a
CRITICAL when the interface is switched off, you should use -c 1:1 and
omit -w entirely.

If you just want to query the status of network interfaces, you should cer-
tainly take a look at the plugins check_ifstatus and check_ifoper-
status, described below, which provide slightly more operating conve-
nience.

If MIB-II or MIB ucdavis do not provide the desired information, you could
also take a look at the MIB provided by the manufacturer. You can find out
from mib-2.systemin which partial tree the overall MIB is hidden:

user@linux:~$ snmpwalk -vl -c public konica0Ol system
system.sysDescr.0 = Konica IP Controller
system.sysObjectID.0 = OID: enterprises.2364

The example involves a network-capable Konica photocopying machine
called konica0O1l. system.sys0ObjectID.Oreveals that enterprises.2364
serves as the entry point for device specific details. With snmpwalk you can
then obtain further information:

user@linux:~$ snmpwalk -vl -c public konica0l enterprises.2364

enterprises.2364.1.2.6.1.1.5.1.1 = "Ready to Print"

In the concrete case of this photocopier, you can query the current de-
vice status through enterprises.2364.1.2.6.1.1.5.1.1. Manufactur-
ers usually store information on the implemented MIBs, so that you are not
restricted to just guessing.

251

11 Collecting Information Relevant for Monitoring with SNMP

11.3.2 Checking several interfaces simultaneously

Active network components such as switches usually have quite a large
number of ports, and it would be very time-consuming to check every sin-
gle one of them. Here the check_ifstatus plugin is very useful, since it
tests all ports simultaneously. It retrieves the information necessary for this
via SNMP, and has the following options:

-H address / --host=address
This is the host name or IP address of the SNMP agent to be queried.

-C password / --community=password
This sets the community string for read access.

-p port / --port=port
This parameter is the alternative port on which the SNMP agent is
running. The default is UDP port 161.

-v version / --snmp_version=version
This parameter specifies the SNMP version (1, 2, or 3) for the query.

-x list / --exclude=list
Use this to specify a comma-separated list of interface types that
should not be queried (see example below).

-u list / --unused_ports=1list
Use this to specify a comma-separated list of all ports that should be
excluded from the test. Like -x, the list consists of the indices of the
interfaces which are determined from ifIndex: -u 13,14,15,16.

-M bytes / --maxmsgsize=bytes
This is the maximum size of the SNMP data packets; the default is
1472 bytes.

With exclusion lists it is possible to exclude certain interface types or port
numbers from the test, perhaps because these are not occupied, or are
connected to PCs or other devices that are not always running.

With the following query we can find out, for example, which interface
types are gathered together on the Cisco switch here named ciscoO1:

user@linux:~$ snmpwalk -vl -c public cisco0l ifType

interfaces.ifTable.ifEntry.ifType.12 = ethernetCsmacd(6)
interfaces.ifTable.ifEntry.ifType.13 = other (1)
interfaces.ifTable.ifEntry.ifType.14 = propVirtual (53)

252

11.3 Nagios's Own SNMP Plugins

If the interface types other (1) and propVirtual (53) should now be ex-
cluded, the plugin is sent off with the two figures, separated by a comma,
as the exclusion list -x 1,53:

nagios@linux:local/libexec$./check ifstatus -C public -H ciscoOl \

-x 1,53
CRITICAL: host ’‘cisco0l’, interfaces up: 2, down: 10, dormant: O,
excluded: 4, unused: 0
GigabitEthernet0/2: down

GigabitEthernet0/3: down
GigabitEthernet0/4: down

GigabitEthernet0/10: down
GigabitEthernet0/5: down

GigabitEthernet0/11: down
GigabitEthernet0/6: down

GigabitEthernet0/7: down
GigabitEthernet0/8: down

GigabitEthernet0/9: down
 |up=2,down:lO,dormant:O,excluded=4,unu
sed=0

In reality, this plugin also does not display its output over several lines, as
the line wrap here may suggest. The fact that this information appears on
the Nagios Web interface in a relatively clear form is because the HMTL
formatting element
 is thrown in. This causes the output for each port
to be displayed on a separate line. The | character defines the beginning of
the performance data, which does not appear at all in the Web interface.

A query of this type is implemented as a command object as follows:

define command{
command_name check ifstatus
command_line $USER1$/check ifstatus -H S$SHOSTADDRESSS -C
SUSER3$
-X $ARG1$

}

Here the macro $USER3$ is also used to define the community string in the
file resource.cfg. Altogether, 32 $USERx $ macros are available, of which
the first two usually contain path details, and the others can be used in any
way you want.

If you would prefer to exclude ports rather than interface types, you can
use the -u option instead of -x in the definition.

If Nagios is to monitor the switch cisco01, as shown above, excluding the
two interface types 1 and 53, the corresponding service definition begins
as follows:

define servicef

service_description Interfaces
host_name cisco01
check command check ifstatus!l,53

253

11 Collecting Information Relevant for Monitoring with SNMP

11.3.3 Testing the operating status of individual interfaces

To test an individual interface, you can use either the generic plugin check_
snmp or check_ifoperstatus, which specifically tests the operating status
(1fOperStatus) of the network card. The advantage of this over the generic
plugin consists above all in its ease of use: instead of an index for the port,
you can also specify its description here—for example, eth0.

check_ifoperstatus has the following options:

-H address / --host=address
This is the host name or IP address of the SNP agent to be queried.

-C password / --community=password
This parameter gives the community string for read access.

-p port / --port=port
As long as the SNMP agent is not running on UDP port 161, the port
is specified with this option.

-k ifIndex / --key=ifIndex
ifIndex is the number of the network interface to be queried (such as
the network card of a computer or the port of a switch).

-d ifDescr /| --descr=ifDescr
Instead of the index key, the plugin processes the name of the inter-
face from ifDescr (see below).

-V version / --snmp_version=version
This specifies the SNMP version (1, 2, or 3) for the query.

-w return_value /| --warn=return_value
This option selects the return value if the interface is dormant. The
return_value can be i (ignore the dormant status and return OK!),
w (WARNING) or ¢ (CRITICAL, the default).

-D return_value / --admin-down=return_value
What value (i, w or c) should the plugin return if the interface has
been shut down administratively? The default, w, issues a warning, c
returns CRITICAL, and i returns OK.

-M bytes / --maxmsgsize=bytes
This is the maximum size of the SNMP data packets; the default is
1472 bytes.

On a system called igate, on which snmpwalk finds the following inter-
faces ...

254

11.4 Other SNMP-based Plugins

interfaces.ifTable.ifEntry.ifDescr.3 = ipsecO
interfaces.ifTable.ifEntry.ifDescr.4 = ipsecl

interfaces.ifTable.ifEntry.ifDescr.7 = etho
interfaces.ifTable.ifEntry.ifDescr.8 = ethl
interfaces.ifTable.ifEntry.ifDescr.9 = eth2
interfaces.ifTable.ifEntry.ifDescr.10 = pppO

the first Ethernet card is tested either with -k 7 or with -d ethO. Since the
plugin in the second case has to query all ifDescr entries to determine
the index itself, this variation generates a somewhat higher network load.
It can be especially useful if not all network interfaces are active on a host,
causing its index to change.

The plugin itself reveals which index this port currently has:

nagios@linux:local/libexec$./check ifoperstatus -H igate -c public \
-d etho
OK: Interface ethO0 (index 7) is up.

As the command object in the Nagios configuration, the call looks like this:

define command{

command_name check ifoperstatus

command_line $USER1$/check_ifoperstatus -H SHOSTADDRESSS -C SUSER
3$ -d $ARG1$

}

The $USER3$ macro again contains the community string, defined in the
file resource.cfg. The service definition for igate specifies the name of
the interface to be tested as a plugin argument:

define servicef

service_description Interface etho
host_name igate
check command check ifoperstatus!eth0

11.4 Other SNMP-based Plugins

Apart form the SNMP plugins from the Nagios Plugin package, the Nagios
community provides a large variety of other plugins for special purposes.
Most of them can be found at http://www.nagiosexchange.org/ in the
category Check Plugins | SNMP.!®

15 http://www.nagiosexchange.org/SNMP.51.0.html

255

11 Collecting Information Relevant for Monitoring with SNMP

11.4.1 Monitoring hard drive space and processes with
nagios-snmp-plugins

One of these is the package nagios-snmp-plugins,'® which exists not
only as source code but also as an RPM package (for Red Hat and Fe-
dora). It contains two very easy-to-use plugins: check_snmp_disk and
check_snmp_proc.

Both absolutely require the NET-SNMP agent as the partner on the other
side (see Section 11.2.2 from page 238) and use ucdavis.dskTable and
ucdavis.prTable to test the processes and file systems specified in the
configuration file snmpd. conf. Its options are restricted to specifying the
host and the community string:

-H address / --host=address
This is the host name or IP address of the NET-SNMP agent to be
queried.

-C password / --community=password
This is the community string for read access.

The next example tests the available capacity of the /data file system;
public is again used as the community string:

nagios@linux:local/libexec$./check snmp disk -H swobspace -C public
/data: less than 50% free (= 95%) (/dev/mdé)

The configuration of the NET-SNMP agent specifies, with the disk directive
(page 244), 50% as the threshold for this file system. In this case the plugin
accordingly returns a CRITICAL. It can only distinguish between an error
and OK; it does not have a WARNING status.

Using check_snmp_proc is just as easy:

nagios@linux:local/libexec$./check snmp proc -H localhost -C public

No slapd process running.

The plugin again tests the processes defined in the configuration of the
NET-SNMP agent with the proc directive (page 243). The process slapd
is missing here, which is why a CRITICAL is returned. The return value is
revealed by echo $7.

The corresponding command objects are defined in a similar unspectacular
way:

16 ftp://ftp.hometree.net/pub/nagios-snmp-plugins/

256

11.4 Other SNMP-based Plugins

define command{
command_name check_snmp proc
command_line $USER1$/check_snmp proc -H $HOSTADDRESSS -C SUSER3S

}

define commandf{
command_name check snmp disk
command_line $USER1S$/check snmp disk -H S$SHOSTADDRESSS -C S$USER3$

}

This definition also assumes that the community string is stored in the
$USER3$ macro in the file resource.cfg. In order to query the NET-
SMTPD on the computer 1inuxO01 for its hard drive load, the following
service object is defined:

define servicef
service_description DISK
host_name linux01
check command check snmp disk

11.4.2 Observing the load on network interfaces with
check-iftraffic

The MIB-II contains only numbers that provide information on the load
on network interfaces, but no average values for the used bandwidth, for
example. If the vendor has not specifically made such an entry available in
his MIB, then you will always have to make a note of the last counter status
and the timestamp, so that you can work out the relative usage yourself.

http://www.nagiosexchange.org/ introduces two plugins that take over
this task. The Perl-based plugin check_traffic!’ writes the query values
into a round-robin database (RRD, see page 408), which makes it somewhat
more complex to handle.

The same purpose is achieved, but with more simple means, by the check_
iftraffic.pl plugin.'® It has the following options:

-H address / --host=address
address is the host name or IP address of the NET-SNMP agent that
is to be queried.

-C password / --community=password
password is the community string for read access. The default is
public.

17 http://nagios.sourceforge.net/download/contrib/misc/check_traffic/
18 http://www.nagiosexchange.org//51;37

257

11 Collecting Information Relevant for Monitoring with SNMP

-i ifDescr / --interface=ifDescr
From the interface name ifDescr the plugin determines the index
so that it can access other values (e. g., the counter states).

-b integer / --bandwith=integer
This is the maximum bandwidth of the interface in bits (see -u).

-u unit / --units=unit
This is the unit for bandwidth specification with -b. Possible values
are g (Gbit), m (Mbit), k (kbit) and the default b (bit): -b 100 -u m
corresponds to 100 Megabits (Fast Ethernet).

-w integer / --warning=integer
If traffic exceeds this warning limit in percent (default: 85 percent),
the plugin issues a WARNING.

-c integer /| --critical=integer
This is the critical threshold in percent (default: 92 percent).

The plugin saves the timestamp and counter status of the interface queried
in files in /tmp, to which it adds the prefix traffic. So if you are using
a different user ID than nagios for the manual test on the command line,
you should delete the files /tmp/traffic_interface_computer before
activating the appropriate Nagios service.

The following command line example queries the Fast Ethernet network
interface ethO on the computer 1inux01, which in theory has a bandwidth
of 100 Mbit:

nagios@linux:local/libexec$./check iftraffic.pl -H linux0l -i ethO \
-b 100 -um

Total RX Bytes: 60.32 MB, Total TX Bytes: 26.59 MB
 Average Traffic:

1.14 kB/s (0.0%) in, 777.93 B/s (0.0%) out | inUsage=0.0,85,98 outUsage

=0.0,85,98

The amount of data transmitted here is reported separately by the plugin,
depending on the direction, and here it announces 60.32 (RX, “received”)
and 26.59 MB (TX, “transmitted”). The text contains the HTML element

 (line break), to display the output in the Nagios Web interface on two
lines. This is followed by the average transmission rate, again separated
for incoming and outgoing data traffic. The performance data (see Section
19.1, page 404) after the | sign contain only the average load as a percent-
age, each separated by incoming and outgoing values. The numbers 85 and
98 are the default values for the warning and critical limits.

The corresponding command object is implemented as follows:

define command{
command_name check iftraffic

258

11.4 Other SNMP-based Plugins

command_line $USER1$/check_iftraffic.pl -H SHOSTADDRESSS -C SUSER3S
-i $ARG1S -b S$ARG2S -u m

}

If the definition is taken over literally, you must define the community
string in the $USER3$ macro. If you only generally use public as the pass-
word, it is better to write -C public instead of -C $USER3$.

To simplify the call of the command within the following service definition,
we set the unit to Mbit/second (-u m).

define service{
service_description Traffic load ethO
host_name linux01
check command check iftrafficleth0!100

max_check attempts 1
normal_check_interval 5
retry check interval 5

check_iftraffic calculates the bandwidth used by comparing two
counter states at different times. Because Nagios does not test exactly
down to the second, the check interval you choose should not be too small.
The Multi Router Traffic Grapher,'® which displays the bandwidth used in
graphic form, normally works at five-minute intervals.

If you select max_check_attempts other than 1, you should make sure
that the retry interval (retry_check_interval)is the same as the normal
check interval. For max_check_attempts 1 this makes no difference, but
you have to define a retry_check_interval at some time or other.

11.4.3 The manubulon. com plugins for special application
purposes

The Nagios Exchange, with the SNMP plugins to be found under http://
www.manubulon. com/nagios/ (see Table 11.4), also includes some that are
customized to a specific application, such as querying hard drive space.
They are relatively simple to use.

Plugin Description

check_snmp_storage.pl Query of storage devices (hard drives, swap
space, main memory, etc.)

19 http://www.mrtg.org/

Table 11.4:
The
manubulon.c

SNMP plugins

om-

259

11 Collecting Information Relevant for Monitoring with SNMP

continued:

Plugin Description

check_snmp_int.pl Interface status and load
check_snmp_process.pl processes: status, CPU and memory usage
check_snmp_load.pl System load

check_snmp_mem.pl main memory and swap usage
check_snmp_vrrp.pl querying a Nokia-VRRP cluster?’
check_snmp_cpfw.pl querying a Checkpoint firewall-12!
check_snmp_env.pl tests environment parameters of switches

such as temperature, power supply unit,
and fan (Cisco, Foundry, and others)

check_snmp_win.pl Queries Windows services via SNMP

We will introduce two of the plugins—check_snmp_storage.pl and check
_snmp_load.pl—in detail here.

Keeping checks on storage media with check_snmp_storage

While the check_snmp_disk plugin, introduced in Section 11.4.1 from page
256, only checks the file systems entered in the NET-SNMP configuration,
check_snmp_storage.plis capable of querying any storage media—even
swap space or main memory—without previous configuration on the tar-
get host. check_snmp_storage.pl tests the partial tree mib-2.host here,
while check_snmp_mem.pl uses ucdavis.memory, so that it remains re-
stricted to NET-SNMP.

The fact that you do not have to battle with OIDs, but instead can work
with descriptions of the swap space type to specify the type of the storage
medium, provides a certain level of convenience. These can be queried
with snmpwalk as follows:

user@linux:~$ snmpwalk -vl -c public swobspace hrStorageDescr
hrStorageDescr.2 = STRING: Real Memory

hrStorageDescr.3 = STRING: Swap Space

hrStorageDescr.4 = STRING: /

hrStorageDescr.11l = STRING: /net/swobspace/b

When the plugin is called, the text specified after the STRING: is sufficient
or—if unique—a part of this:

20 The abbreviation VRRP stands for Virtual Router Redundancy Protocol.
2l http://www.checkpoint.com/products/firewall-1/

260

11.4 Other SNMP-based Plugins

nagios@linux:local/libexec$./check_snmp storage.pl -H swobspace \

-C public -m /net/swobspace/b -w 90 -c 95
/net/swobspace/b : 91 %used (34842MB/38451MB) (< 90) : WARNING
nagios@linux:local/libexec$./check snmp storage.pl -H swobspace \

-C public -m "Swap" -w 50 -c 75 -f
Swap Space : 0 %used (OMB/3906MB) (< 50) : OK | ’‘Swap Space’=0MB;1953;
2930;0;3906

In the second example, it is sufficient to specify Swap, in order to query the
data for Swap Space, since the pattern is unique. The -f option ensures
that check_snmp_storage.pl will include performance data in its output.

-w and -c specify in normal fashion the warning or critical limits in percent
of the available memory space. The following overview lists all the options:

-H address / --host=address
This is the host name or IP address of the NET-SNMP agent that is to
be queried.

-C string /| --community=string
This is the community string for read access.

-p port / --port=port
port specifies an alternative port if the SNMP agent is not running
on the default UDP port 161.

-m string /| --name=string
string contains a description of the device to be queried, corre-
sponding to its description in hrStorageDescr (see above), such
as -m "Swap Space" for swap devices, -m "Real Memory" for the
main memory, or -m "/usr" for the partition mounted under /usr
in the file tree.

-w percent /| --warn=percent
A warning is given in the default if the proportion of used memory
is larger than the specified threshold. Other warning limits can be
defined with the -T parameter.

-c crit / --critical=crit
In the default, the status is categorized as critical if the proportion of
used memory is larger than the specified critical limit. Other critical
limits can also be specified with the -T parameter.

-T option / --type=option
What do the critical and the warning thresholds refer to?

= pu (percent used): used capacity in percent

= pl (percent left): free capacity in percent

261

11 Collecting Information Relevant for Monitoring with SNMP

= bu (bytes used): used capacity in megabytes
= bl (bytes left): free capacity in megabytes

The default is -T pu.

-r / --noregexp
Normally the description in the -m parameter is treated as a regu-
lar expression. For example, /var here stands for all file systems
containing /var, for example /var and /var/spool/imap, provided
that these are really two independent file systems. The -r option
switches off the regular expression capability, so that specifying /var
will then match this file system exactly, but not /var/spool/imap,
for example.

-s/ -—sum
Instead of performing individual tests for several specified storage
media, the total occupied space is added up and compared to the
total capacity. It is then determined whether thresholds are exceeded.

-i/ --index
With -m, a text is normally specified, which turns up again in the
description hrStorageDescr. With the -i option, the index table
is used instead of the description. Here the Regexp capability also
applies: -m 2 matches all the entries containing the number 2 in the
index (that is, 2, 12, 20, etc.). It then makes sense to use the -r option
at the same time.

-e / --exclude
Now all the memories that are matched by the -m specification are
excluded from the test, the remaining ones are included in the test.

-f / --perfparse
This option provides an additional output of performance data that
is not shown in the Web interface but can be evaluated by additonal
tools (see Chapter 19).

Testing system load with check_snmp_load

The plugin compares either the average system load in form of averages of
1 min, 5 min, and 15 min, or the CPU load in percent.

-H address / --host=address
This is the host name or IP address of the NET-SNMP agent to be
queried.

262

11.4 Other SNMP-based Plugins

-C string /| --community=string
This is the community string for read access.

-p port / --port=port
port is the alternative UDP port on which the SNMP agent is run-
ning. The default is UDP port 161.

-w warning_limit / --warn=warning_limit
The warning limit is given either as a simple integer value in percent
(e.g., 90) or as an integer triplet separated by commas, which defines
the thresholds for the system load average for one, five, and 15 min-
utes (e.g., 8,5,5). The percentage load, on the other hand, always
refers to the CPU load of the last minute.

If the plugin queries a NET-SNMP agent, you must additionally spec-
ify the -L option in the second variation, for the percentage, -N.

-c critical_limit / --crit=critical_limit
This specifies a critical limit; the syntax is the same as that for -w.

-L/ --1linux
This option specifies that the plugin queries the system mode of a
Linux system via NET-SNMP.

-A / --as400
This option specifies that the CPU loaded on an AS/400 machine is
queried.

-I/--cisco
This option specifies that the CPU load of a Cisco network compo-
nent is involved.

-N/ --netsnmp
If the plugin queries the percentage CPU load of a Linux system via
NET-SNMP, the -N option must be specified.

-f / --perfparse
This option ensures the output of performance data that is not dis-
played in the Web interface, but can be evaluated by additional tools
(see Chapter 19).

The following example queries the system load on the computer swobspace
via NET-SNMP and specifies threshold values for the one-, five-, and fifteen-
minute averages:

nagios@linux:local/libexec$./check snmp load.pl -H swobspace \
-C public -w 1,2,3 -c 3,5,6 -L

Load : 0.05 0.07 0.06 : OK

nagios@linux:local/libexec$./check snmp load.pl -H swobspace \

263

11 Collecting Information Relevant for Monitoring with SNMP

-C public -N -w 80 -c 90 -f
CPU used 3.0 : < 80 : OK | cpu prct used=3%;80;90

The second example involves the percentage CPU load on the same ma-
chine. Here we additionally request performance data, which as usual re-
peats not only the measured value but also the thresholds.

264

The Nagios Notification System

What would be the point of system and network monitoring if it did not
inform the right contact partner when things went wrong? Hardly any sy-
stem or network administrator can afford to keep an eye on the Nagios
Web interface continually and wait for changes in status to occur. A practi-
cal working system must inform the admin actively (push information), so
that the admin has time to devote to other things and needs to intervene
only when Nagios raises the alarm.

Whether a notification system does its job in practice or not is ultimately
decided by how well it can be adjusted to the requirements of a specific
situation. What may already be a critical error for one person may, for
another, not be normal but still tolerable, and nothing is worse than being
bombarded with supposed error messages that are not even seen as errors
in a certain environment. An excess of wrong information can make the
administrator careless, and at some point the real problems get lost in a
flood of false messages.

265

12 The Nagios Notification System

Nagios provides a sophisticated notification system allowing your own en-
vironment to be fine-tuned to your own requirements. The wide range of
settings at first seem confusing, but once you have understood the basic
principle, everything becomes much clearer.

The efforts to keep Nagios small and modular also apply to the notification
system: sending a message is again left by the system to external programs:
from a simple e-mail through SMS, down to hardware solutions—such as a
real traffic light on the server cabinet—anything is possible.

12.1 Who Should be Informed of What, When?

In order for Nagios to send meaningful messages, the administrator must
answer four questions:

= When should the system generate a message?
= When should it be delivered?

= Whom should the system inform?

How should the message be sent?

Figure 12.1:
An overview of the

service or
host check

contact

z

notification system

Figure 12.1 gives a rough outline of the concept. The service and host check
generate the message, which then runs through various filters,! which usu-
ally refer to the time. The contact refers to the person whom Nagios should
inform. If the message has passed all tests, the system hands it to an exter-
nal program, which informs the respective contact.

1 Strictly speaking, filters defined in the host or service prevent a message from being cre-
ated, instead of filtering already generated messages. To keep things simple, however,
we pretend that Nagios has created a message that is then discarded by a corresponding
filter.

266

12.2 When Does a Message Occur?

12.2 When Does a Message Occur?

Each message is preceded by a host or service check, which determines the
current status. In the following two cases it generates a message:

= One hard state changes to another hard state.

= One computer or service remains in a hard error state. (The test therefore
confirms a problem that already exists.)

To remind you: the max_check_attempts parameter (see Sections 2.3 and
2.5) defines in host and service objects how often a test should be repeated
before Nagios categorizes a new status as “hard.” If it is set to 1, this is
immediately the case and is followed by the corresponding message. With
a value greater than 1, the system repeats the test that number of times,
and only if they all come to the same new result—such as determining the
CRITICAL error status—does the status finally change to the new hard state,
thus triggering a new notification.

As long as Nagios has not exhausted the specified number of repeats, a
soft state exists. If the old status reoccurs before these have finished, the
administrator remains uninformed unless he looks at the Web interface or
in the log file. Ultimately the administrator is only interested in genuine
unsolved problems. On the other hand, to assess availability as such, it
normally does matter if a service is not available for minutes on end, which
is why the soft states are also taken into account in the evaluation.

12.3 The Message Filter

Even if you define on a systemwide basis that Nagios may bring attention
to errors not just through the Web interface and log files but also via e-mail
and/or SMS, filter parameters in the host and service definition may in
individual cases cancel out these basic decisions. In all cases the final word
is had by the filters defined for the relevant contact. Which parameters play
a role on each of these three levels (systemwide, host/service, contact), is
described in Figure 12.2.

If a filter stops a notification, the filter chain ends “in a vacuum,” so to
speak—filter options further down in the hierarchy remain unaccounted
for—and Nagios does not generate any message.

267

12 The Nagios Notification System

Figure 12.2: Precedence of Filters
1
The filter sequence in Global notification
. ?
the Nagios enabled?
I host |
notification system 0s
Host/service based
(some parameters are notifications_enabled=1 notification enabled?
i 1
only available Current downtime
starting with Nagios interval?
. . _ Detecting flapping
flap_detect bled=1
version 3_0) ap_detection_enable states?
notification_options= Should the detected state
[d,u,r,f,s] be notified?
e . Lo Notify immediately or wait
notification_period=24x7 for active notification period?

notification_interval=120 o
Repeat notifications

first_notificf}ion_delay= periodically?
157
contact_group=admins Inform which
group?
contactgroup

members=nagios,wob,mwi

contact = mwi

contact = nagios

host_notification\
_enabled=1""°

On which hosts/service

service notification\ states should the contact
_enabled=1"° be notified?
host_notification_options=
[d,u,r,£,n,s""]
service_notification\
_options=[w,u,c,r,£,n,s"°] Notify contact at this time
host_notification_period or drop message?
=24x7
Hservice notification_period
=24x7
notification
email
SMS

39 available from Nagios version 3.0 - external programm

12.3.1 Switching messages on and off systemwide

With the enable_notifications parameter in the central configuration
file nagios.cfg, you can in principal define whether Nagios should send
messages at all. Only if it is set to 1 will the notification system work:

enable notifications=1

268

12.3 The Message Filter

12.3.2 Enabling and suppressing computer and
service-related messages

When defining a host or service, various parameters can influence the mes-
saging system. Here you can define, for example, at what time Nagios
should send messages, whether the contact person is regularly informed
of error states, and about which states or changes in state he should be
informed (just CRITICAL, or WARNING as well, etc.).

The switch notifications_enabled determines whether this specific com-
puter or service is important enough for the admin to be informed of errors
not just through the Web interface, but also in other ways as well. If this is
so, the parameter must be set to 1:

notifications_enabled=1

This is also the case in the default, so that you have to set the value explicitly
to 0 at this point to stop separate notifications.

Taking downtimes into account

At times when a specific service or host is intentionally not available, Nagios
should certainly not send any error messages through the network. The
configuration of corresponding maintenance periods (downtime schedul-
ing) is only possible through the Web interface and is described in Section
16.3 from page 359.

What states and changes of state are worth a notification?

If a regular test shows that service or computer is changing its data con-
tinuously, this is called flapping in Nagios (see also Appendix B from page
611). If the flap_detection_enabled parameter is set to 1, the system
tries to detect this situation.

Whether Nagios sends a message in this case depends on the notifica-
tion_options filter. This decides on which states or changes of state Na-
gios will inform the contact involved. In host definitions it can have the
following combinations of values, separated by commas: d (switched off or
crashed, down), u (unreachable), r (computer again reachable, recovered),
and f (quickly alternating state, flapping). Starting with Nagios 3.0, there
is an additional value s, which is used to send notifications if a planned
maintenance period is about to start, end, or is canceled.

For service objects, notification_options recognizes the following
states: ¢ (CRITICAL), w (WARNING), u (UNKNOWN, unknown problem),
r (service again reachable, recovered), and f (flapping). From Nagios 3.0

269

12 The Nagios Notification System

onward, the value s is also available for sending notifications on planned
maintenance periods.

Nagios correspondingly informs the admin of the state of the service whose
definition is contained in the line

notification options=c,r

only if this is critical or was recreated after an error state. Messages involv-
ing a WARNING or flapping are discarded by the system.

Ifnotification_optionsis set to n (none), Nagios will generally not send
a message concerning this computer or service.

When should Nagios send messages?

At what time should a message be sent? This can be defined with the
notification_period parameter:

notification period=24x7h

notification_period expects a time object (see Section 2.10 from page
74) as the value; 24x7h is such a value and stands for “round the clock.”

Outside the specified time period, Nagios suppresses possible messages,
but does not simply discard them, in contrast to the other filters. Instead
of this, the system places the message in a kind of queue and sends it as
soon as the notification period begins (rescheduling). This means that the
relevant contact will certainly get to hear about the problem. Nagios also
ensures that the admin receives the message only once, even if multiple
messages on the same event were generated outside the time period.

notification_period is the only time-controlled filter in which a mes-
sage is not lost, despite filtering. With all the other time filters, the message
never reaches its destination outside the specified period of time.

With an interval check, Nagios can be instructed to report at regular inter-
vals on problems that persist for a longer time:

notification_interval=120

If a state persists that Nagios should normally report, corresponding to
the notification_optionparameter—CRITICAL, for example—for a long
time, the system would grant this wish, in the example, every 120 time units
(normally, minutes). In other words it suppresses the notification that is
generated anyway with every check, after a corresponding notification un-
til the specified time has elapsed. If nothing has changed in the state until
then, it then sends the corresponding notification.

270

12.3 The Message Filter

If you set notification_interval to 0, Nagios will send a notification
of this only once. You should be careful when doing this, however: filters
defined for the contact can also reject messages. If you normally generate
just one single message, which might arrive at the relevant admin outside
the admin’s chosen contact time period, then the admin will never be told
anything about the problem, even if it persists into working hours.

Starting with Nagios 3.0, the parameter first_notification_delay al-
lows the delayed sending of a notification. With the setting

first notification delay=15

Nagios sends notification only after 15 time units (usually minutes) have
expired. If the system administrator responsible for handling the problem
posts an acknowledgement within the delay period (Section 16.1.2 from
page 332), the notification will not be sent, but if the administrator does not
react in time, then Nagios sends the first notification once the delay period
has expired. This option is useful for avoiding unneeded notifications when
administrators use the Web interface to check on the system periodically
during their regular working hours.

Whose concern is the message?

The contact group defined in the host or service object does not itself be-
long to the message filters, but it still decides on who is informed and who
is not:

contact_group=admins

What contacts belong to the specified group (here: admins) is defined by
the corresponding contact_group object in its definition object (see also
Section 2.8 from page 72):

-- /etc/nagios/global/contactgroups.cfg
define contactgroup{

contactgroup name admins

alias administrators

members nagios,wob,mwi

}

The specified contact group, though, merely makes a rough preselection:
which of the contacts specified in it actually receive the message depends
on the filter functions in the definition of the individual contact. In this way
you can ensure that one employee is only notified during normal office
hours, another one round-the-clock, and that one of them is kept up to
date about all changes in status, and the other one is informed only of a
selection (for example, only CRITICAL but not WARNING).

271

12 The Nagios Notification System

12.3.3 Person-related filter options

When defining the contact objects, the method is also specified in which
Nagios delivers the notification in specific cases (see Section 12.4 from page
275). It can be described separately for host and service problems. Several
parallel methods are also possible, such as via e-mail and SMS.

Since the contact-related filters are specifically for the corresponding con-
tact object, it can certainly be useful to define several contacts for one and
the same recipient that differ in individual parameters, such as a contact
object that keeps the person informed via e-mail of all problems during
normal working hours, and a second one for SMS messages concerning
critical events outside working hours.

What should Nagios inform you about?

The events for which somebody should be informed can be specified not
only by host or service, but also by contact. Host and service-related states
are defined separately here:

host_notification options=d,u,r
service notification options=c,r,u

The possible values are the same as those for the host-service parameter
notification_options (page 269).

From Nagios 3.0 onward you can normally switch notifications for host and
service on and off via an additional parameter:

host_notifications_enabled=1
service notifications_enabled=1

The value 0 prevents the corresponding messages, and the value 1 ensures
that the messages are sent. At first glance this corresponds to the value n
(no notification) for the accompanying option parameter.

The two *_notifications_enabled parameters can also be switched on
and off with the external commands ENABLE/DISABLE_CONTACT_HOST_NO-
TIFICATIONS and ENABLE/DISABLE_CONTACT_SVC_NOTIFICATIONS? via
the interface for external commands (Section 13.1 from page 292). This
can be done with a script where the contact is concerned, without having
to alter the preset *_notification_options.

2 See http://www.nagios.org/developerinfo/externalcommands/.

272

12.3 The Message Filter

When do messages reach the recipient?

The final filter in the filter chain again refers to time periods. If a message
is produced in the time period specified here, Nagios notifies the contact;
otherwise it discards the message. The notification window can again be
set separately for hosts and services, and as a value it expects a timeperiod
object defined elsewhere:

host_notification period=24x7
service_notification period=workhours

12.3.4 Case examples
Letting you know once, but doing this reliably

What should you do if only a single message should be sent for each change
in status of the service, but this message must always reach the relevant re-
cipient during working hours? We can illustrate the solution to this problem
through the example of the admins contact group to which the contact wob
is assigned, ...

define contactgroup{
contactgroup name admins
alias Local Site Administrators

members wob

...and to the PING service for the computer 1inux01:

define servicef

host_name linux01
service_description PING
check command check ping!100.0,20%!500.0,60%
max_check_ attempts 3
normal_check_interval 2

retry check interval 1

check period 24x7
notification_interval 0
notification_period workhours
notification options w,u,c,r,f
contact_groups admins

notification_interval O normally forces Nagios not to produce any re-
peat messages. The notification_period ensures the desired time pe-
riod through the timeperiod object workhours: if Nagios raises the alarm

273

12 The Nagios Notification System

at other times, the inbuilt rescheduling is used, that is, the notification is
sent on its way only if the specified time period again applies. It is definitely
not discarded.

In order for Nagios to be active in all changes of state, the notification
options must always cover all possible events for services.

To guarantee that the contact wob always receives the messages, it is essen-
tial that the service_notification_period in the corresponding con-
tact object is 24x7:

define contact({

contact_name wob

alias Wolfgang
host_notification_period 24x7
host_notification_ options d,u,r
service notification period 24x7
service notification options w,u,c,r,f

A restricted time filter at this position could, under certain circumstances,
lead to the loss of each of the individual messages. The same applies for the
values of service_notification_options: only if all are entered here as
well will no message be lost.

Informing different admins at different times

If you want to inform different persons at different times about differ-
ent events, you may not restrict either the notification_period or the
notification_options of a host or service:

define servicef

notification interval 120

notification period 24x7
notification options w,u,c,r, £

Filtering takes place exclusively for individual contacts. For this to work
on a time level you must ensure that Nagios generates a message regularly
(here every 120 time units, normally minutes) if error states persist.

If admin A is to be informed only during his working hours, and then only
of changes to critical or OK states, A's contact object will be sent with the
following parameters:

274

12.4 External Notification Programs

define contact({

service notification period workhours

service notification options c,r

There is also a second and not quite so obvious difference to the first exam-
ple: let us assume that the service reports the CRITICAL status at 7:30 in the
morning, which will persist for several hours. The workhours object is de-
fined so that it describes the time from Monday to Friday between 8:00 and
18:00. In the above example, Nagios holds back the message (rescheduling),
until the time period defined in it has been reached. The administrator
therefore receives a corresponding message at 8:00.

In the case described here, no rescheduling takes place, Nagios generates a
corresponding message every two hours, which is filtered out if the contact
is currently taking a “break.” The system correspondingly discards the mes-
sage at 7:30, but allows the next message two hours later to pass through.
The administrator therefore does not receive the corresponding informa-
tion until 9:30, provided that the problem still exists at this point in time.

Which of the two solutions is more suitable depends on specific require-
ments. For an e-mail notification, for example, it makes little difference if
the administrator receives mails round-the-clock but reads them only when
sitting in his office. A filter for Nagios messages in the mail client, sorting
them in reverse chronological order (the most current mail first) makes
sense in this case. Sitting in front of the screen, the administrator can also
take a quick look at the Web interface when problems are announced, to
check whether anything has changed.

If the methods of differentiation described so far are not sufficient, then
escalation management, described in Section 12.5, may be of further help.

12.4 External Notification Programs

Which external programs deliver the messages is defined by the contact
definition.

Here there are again two parameters to define the commands to be used,
one for services and one for hosts:

define contact({

service_notification commands notify-by-email,notify-by-sms

host_notification_commands host-notify-by-email, host-notify-by-sms
email nagios-admin@localhost
pager +49-1234-56789

275

12 The Nagios Notification System

addressl root@example.com
address2 123-456789

Both *_notification_commands allow comma-separated lists, so it is per-
mitted to specify more than one command at the same time. The message
is then sent simultaneously to the recipient in all the ways defined. The
names of the command objects describe these ways: via e-mail and via
SMS.

To achieve a better overview, the corresponding commands are not defined
together with the plugin commands in the file checkcommands.cfg, but
in a separate object file, misccommands.cfg. Nagios loads these like any
other file with object definitions, which is why any name can be chosen for
them.

The other parameters, email, pager, addressl, and address2, can be re-
garded as variables. The delivery commands access the values set in these
through macros. Whether pager contains a telephone number for SMS de-
livery or an e-mail address pointing to an e-mail SMS gateway is immaterial
for the contact definition. The decisive factor is that the value matches the
corresponding command that references this variable.

12.4.1 Notification via e-mail

In defining the notify-by-email command, a name and the command
line to be executed is specified, as with every other command object. Only
its length is unusual, which is why it has had to be line-wrapped several
times for this printed version:

define command{

command_name notify-by-email

command_line /usr/bin/printf "$b" "sxxxx Nagios x**xxx\n\n Notificat
ion Type: $NOTIFICATIONTYPE$\n\nService: $SERVICEDESCS\nHost: $HOSTALIAS
$\nAddress: S$HOSTADDRESSS$\nState: $SERVICESTATES\n\nDate/Time: $LONGDATE
TIME$\n\nAdditional Info:\n\n$SERVICEOUTPUTS" | /usr/bin/mail -s "xx $N
OTIFICATIONTYPES alert - $HOSTALIASS/SSERVICEDESCS is $SERVICESTATES *x"
$CONTACTEMAILS

}
The printed-out command object comes from the included example file
misccommands.cfg-sample. The command line defined in it can be re-

duced in principle to the following pattern:

printf text | mail -s "subject" e-mail address

276

12.4 External Notification Programs

With the help of the macro, printf generates the message text, which is
passed on to the mail program through a pipe. What is caused by the
macros specifically used is revealed in Table 12.1.> Using this, the jumbo
line shown above produces messages that look something like this:

To: wob@swobspace.de

Subject: %% PROBLEM alert - mail-WOB/SMTP is CRITICAL x+
Date: Fri, 14 Jan 2005 16:22:47 +0100 (CET)
From: Nagios Admin <nagios@swobspace.de>
kkk NAagios Hxkxx

Notification Type: PROBLEM

Service: SMTP

Host: mail-WOB

Address: 172.17.168.2

State: CRITICAL

Date/Time: Fri Jan 14 16:22:47 CET 2005

Additional Info:

CRITICAL - Socket timeout after 10 seconds

Macro Description Table 12.1:
$CONTACTEMAILS Value of the email parameter from the contact Macros used in
definition notify-by-email
$LONGDATETIMES$ Long form of data specification, e.g., Fri Jan and .
14 16:22:47 CET 2005 :;Z:;nmfy'by'
$HOSTALIASS Value of the alias parameter from the host def-
inition
$HOSTADDRESSS Value of the address parameter from the host
definition
$HOSTNAMES$ Value of the host_name parameter from the
host definition
$HOSTOUTPUTS Text output of the last host check
$HOSTSTATES State of the host: UP, DOWN, or UNREACHABLE

3 A complete list of all macros is contained in the original documentation at
http://localhost/nagios/docs/macros.html (normally to be found in the file
system under /usr/local/nagios/share/docs/macros.html). For Nagios 3.0 the
corresponding file macrolist.html can also be found in this directory.

277

12 The Nagios Notification System

continued:

Macro Description

$NOTIFICATIONTYPE$ Type of notification: PROBLEM (CRITICAL,
WARNING, or UNKNOWN), RECOVERY (OK after
error state), ACKNOWLEDGEMENT (an admin has
confirmed the error state; see Section 16.1.2,
page 332), FLAPPINGSTART or FLAPPINGSTOP

$SERVICEDESCS Value of the description parameter in the ser-
vice definition

$SERVICEQUTPUTS Text output of the last service check

$SERVICESTATES State of the service: 0K, WARNING, CRITICAL,
UNKNOWN

For the command host-notify-by-email, the command line looks simi-
lar, except that now host-related macros are used:

/usr/bin/printf "$b" "xxxx* Nagios *xxxx\n\nNotification Type:
S$NOTIFICATIONTYPES\nHost: SHOSTNAMES\nState: $SHOSTSTATES\nAddress:
SHOSTADDRESSS\nInfo: $HOSTOUTPUTS\n\nDate/Time: $LONGDATETIMES\n" |
/usr/bin/mail -s "Host $HOSTSTATES alert for $HOSTNAMES!" $CONTACTEMAILS

It generates e-mails with the following content:

To: wob@swobspace.de

Subject: Host UP alert for wob-proxy!

Date: Fri, 14 Jan 2005 17:50:21 +0100 (CET)
From: Nagios Admin <nagios@swobspace.de>

**x*x* Naglos ,x*xx

Notification Type: RECOVERY

Host: wob-proxy

State: UP

Address: 172.17.168.19

Info: PING OK - Packet loss = 0%, RTA = 69.10 ms

Date/Time: Fri Jan 14 17:50:21 CET 2005

12.4.2 Notification via SMS

While the infrastructure necessary for sending e-mails* is usually available
anyway, programs for sending SMS messages such as yaps,® smssend,’ or

4 Apart from the /usr/bin/mail client, a local mail server is required.
5 http://www.sta.to/ftp/yaps/
6 http://zekiller.skytech.org/smssend_menu_en.html

278

12.4 External Notification Programs

smsclient’ usually have to be additionally installed. yaps and smsclient
require a local modem or ISDN card and “telephone” directly with the cell
phone provider (e.g., T-Mobile), smssend establishes a connection to the
Internet servers of the cellphone provider and sends the SMS message on
this route. With yaps and smsclient you can also use a mail gateway that
generates and sends an SMS message from an e-mail.

Whichever method you choose, you should be aware of possible interfer-
ence in sending messages: a connection between the Nagios server and
the Internet passes through many hosts, routers, and firewalls. Especially
if Nagios is itself monitoring one of the computers involved, things get in-
teresting: if this machine is down, then a message sent via smssend will
no longer work either. The same thing applies for e-mail-SMS gateways.
Whether a self-made construction is involved, with yaps or smsclient,
each of which represents its own SMS gateway, or a telecom installation
with a sophisticated unified messaging solution, if the actual sender of the
SMS is many nodes removed from the Nagios server (because you have a
networked telephone installation with several locations, for example), the
chances increase that the message will not reach its destination because of
an interrupted connection.

For this reason the best solution is an smsclient or yaps installation on
the Nagios server itself with a direct telephone access. In larger, networked
telephone systems you can also consider giving the telephone access a ded-
icated, direct line from the telephone system. Whether this is ISDN or ana-
log is just a question here of the technology used.

To represent the programs mentioned here, we will take a closer look at
smsclient, which can be configured very simply, and has an active com-
munity. On its homepage you can also find a link to a mailing list whose
members will be pleased to help in case you have questions.

Setting up smsclient

While Debian has its own precompiled smsclient package, for SuSE and
other distributions you have to compile the software yourself. For historical
reasons the program itself is called sms_client; a short subtext is provided
with man sms_client.

The installation from the source code follows the usual procedure:

linux:~ # cd /usr/local/src

linux:local/src # tar xvzf /path/to/sms_client-2.x.y
linux:local/src # cd ./sms_client-2.x.y
linux:src/sms_client-2.x.y # ./configure
linux:src/sms_client-2.x.y # make && make install

7 http://www.smsclient.org/

279

12 The Nagios Notification System

Table 12.2:
smsclients

configuration files

The only point worth mentioning here is that the “homemade” configure
procedure manages without autoconf and automake.

The configuration files listed in Table 12.2 are now located in the directory
/etc/sms; the Debian package installs it to /etc/smsclient.

File Description

sms_addressbook Definition of aliases and groups

sms_config Main configuration file

sms_daemons Configuration file for the daemon mode of

smsclient, in which this can be reached via a pro-
prietary protocol. Is not required.

sms_modem Modem configuration

sms_services Supported provider

The file sms_services lists the supported providers and at the same time
assigns them to the protocol used. The precise telephone number dialed
is specified by the corresponding service file in the directory services (if
you have compiled this yourself) or /usr/1ib/smsclient/services (for
Debian). In case of doubt, you should request the telephone number of
your own mobile cell provider. The mailing list can also be of assistance
here.

In the file sms_config you set a default provider, which the program uses
for calls when the provider is not specifically given:

SMS_default_service = "d1"

Only the configuration of the modem is now missing in the file sms_modem.
In principle, however, any modem that functions under Linux can be used.
In the following example we address an ISDN card with the Isdn4Linux-
HiSax driver:

MDM_lock_dir = "/var/lock" # directory for the lock files
MDM_device = "ttyIo" # device name of the modem

MDM_command_prefix = "AT"

MDM_init_command = "Z&E<MSN>"
MDM_dial_ command = "D"
MDM_number_ prefix = "0" # outside line, if required

/dev/ttyl0 is used as the device here; for MDM_init_command, your own
MSN is used. This applies particularly to private branch exchanges, which
allow a connection only if your own MSN has been correctly specified.

280

12.4 External Notification Programs

Since Isdn4Linux does not recognize tone or pulse dialing, we use only D
instead of the usual DT as the MDM_dial_command. If the ISDN connection
requires an outside line as part of a phone exchange, you should enter the
corresponding prefix; otherwise this string remains empty.

smsclient requires write permissions both for the device used and for the
log file /var/log/smsclient.log:

linux:~ # touch /var/log/smsclient.log

linux:~ # chgrp dialout /usr/bin/sms client

linux:~ # chgrp dialout /dev/ttyI0 /var/log/smsclient.log
linux:~ # chmod 2755 /usr/bin/sms_client

linux:~ # chmod 664 /dev/ttyI0 /var/log/smsclient.log

To test this, you should now send—preferably as the user nagios, who will
later use smsclient—an SMS message to your own cellphone (here to be
reached at the number 01604711):

nagios@linux:~$ sms_client 01604711 "Text"
Dialing SMSC 01712521002...

WARNING: read() Timeout

Connection Established.

Login. ..

SMSC Acknowledgment received

Login successful

Ready to receive message

Received Message Response: Message 3003123223 send successful - message
submitted for processing<CR>

Successful message submission
Disconnect. ..

Disconnected from SMSC

Hangup. ..

dl Service Time: 17 Seconds

[000] d1:01604711 "Text"

Total Elapsed Time: 17 Seconds

Getting Nagios to work together with smsclient

If the second argument is missing in smsclient, which contains the mes-
sage text, the program will read it from STDIN:

nagios@linux:~$ /bin/printf "%b" message | sms client number
Based on the command notify-by-email, described from page 276, we
will use the second variation here for defining the notify-by-sms com-

mand:

'notify-by-sms’ command definition
define commandf{

281

12 The Nagios Notification System

command_name notify-by-sms

command_line /usr/bin/printf "%.150s" "$NOTIFICATIONTYPES $HOSTNAM
ES [$HOSTADDRESSS] /$SERVICEDESCS is $SERVICESTATES /$SHORTDATETIMES/ $SER
VICEOUTPUTS" ‘ /usr/bin/smsclient $CONTACTPAGERS

}

As usual, the entire command_line is written on a single line. Nagios ob-
tains the telephone number (or alias) through the macro $CONTACTPAGERS,
which reads out the value of the pager parameter from the contact def-
inition. Since an SMS here may not be longer than 150 characters, we
will considerably abbreviate the information, compared to the e-mail mes-
sage. To be on the safe side (you never know how long the plugin output
($SERVICEQUTPUTS) really is), the printf format specification .150 (in-
stead of %b) cuts off the text after 150 characters. Although we then do
without the line breaks in the message, by means of \n, an SMS is never
formatted cleanly, due to its limited display. Thus notify-by-sms gener-
ates a one-line message of the following type:

PROBLEM elimail[172.17.130.1]/UPS is CRITICAL /2005-03-30 17:00:53/ Conn
ection refused

12.5 Escalation Management

Whenever the administrators responsible cannot find a solution in the spec-
ified time when important components fail, although Service Level Agree-
ments or other contracts commit the IT department to do this,? Nagios’s
ability to escalate notifications makes allowances for conflicts, at least on
an organizational level. It can be used to provide multilevel support. For ex-
ample, Nagios first informs the First Level Support (usually the Help Desk).
If the problem still persists after one day, then the Second Level Support is
notified, and so on.

Nagios also makes a distinction here between host- and service-related es-
calation stages. In essence, both function identically.

In the escalation, Nagios does not count in time units, but in how many
messages it has already sent out. In the following example the system
should report on error states of the Database service on 1inux01 every
120 minutes,? and this, round-the-clock:

define service{
host_name linux01

8 These can also be internal specialist departments.
9 Tobe precise, every 120 time units, whereby the default time unit is 60 seconds.

282

12.5 Escalation Management

service_description Database
notification _period 24x7
notification_interval 120

contact_groups admins

The corresponding messages always go to a contact group, so without es-
calation, that is to admins.

third-level
|___admins, second-level
I 1
admins admins (default)
| | | | | | | | | | | | | | .
1 1 1 1 1 1 1 1 1 1 1 1 1 1 >
2 a4 6 8 10 12 notifications

After the fourth notification, Nagios should switch on the first stage of es-
calation (as illustrated in Figure 12.3) and, in addition to admins, should
notify the second-1level contact group. The eighth message triggers the
second level, at which Nagios informs the contact_group third-level.

As shown in Figure 12.3, escalations may certainly overlap. It can also be
seen from the graphics that the contact group defined in the service object
only applies as long as Nagios does not escalate. As soon as an escala-
tion stage is switched on, the system puts the default contact group out of
action.

If the original contact group—here admins—should also receive a message
in the first escalation level, then this must be additionally specified in the
escalation definition. If several levels overlap, Nagios informs all the groups
involved. In Figure 12.3 the eighth to the tenth messages accordingly go
both to admins and to second-level and third-level, while only the
latter receives message numbers 11 and 12. From message number 13,
Nagios keeps only the contact group admins informed, since escalation is
no longer defined here.

The latter takes place via separate serviceescalation (for services) and
hostescalation objects (for computers). For a service escalation object,
Nagios requires the beginning and the end of exceptional circumstances to
be defined, apart from service details (consisting of the service_descrip-
tion and host_name) parameters and the name of the contact groups re-
sponsible:

Figure 12.3:

Nagios escalates,
depending on the
number of messages
already sent

283

12 The Nagios Notification System

define serviceescalation{
host_name linux01
service_description Database
first notification 4
last_notification 10
notification_interval 60
contact_groups admins, second-level

The escalation level defined here starts, as desired, with message No 4 and
ends with message No 10. If last_notificationis given the value 0, the
escalation only ends if the service changes back to the OK state.

In addition you must specify the notification_interval parameter for
service escalations: this changes the notification interval (previously 120
according to the service definition) to 60 time units. This parameter is also
mandatory for a host escalation. The only difference in the definition of
a hostescalation object is that instead of the host name, you can also
specify one or more host groups (in addition the service_description
parameter is dropped, of course).

The second escalation step is defined in the same way:

define serviceescalation(
host_name linux01
service_description Database
first notification 8
last_notification 12
notification_interval 90
contact_groups third-level

If there are overlapping escalations with different notification_inter-
vals, Nagios chooses the smallest defined time unit in each case. Nagios
therefore sends messages 8 to 10 at intervals of 60 minutes, numbers 11 and
12 at intervals of 90 minutes, and then the original interval of 120 minutes
again applies.

With escalation_period and escalation_options there are two more
setting parameters specially for escalations. Both have the same function as
notification_periodandnotification_optionsin the host or service
definition, but they refer only to the escalation case.

In contrast to notification_interval, escalation_period does not re-
place the notification_period, but acts in addition to this. From the in-
tersection of notification_periodand escalation_period, the actual
time period is deduced. Suppose that notification_period refers to the
time between 7:00 A:M and 5:00 P.M., and escalation_period to the pe-
riod from 8:00 A.M. to 8:00 P.M.. Then Nagios will only send out messages

284

12.6 Accounting for Dependencies between Hosts and Services

in the escalation level between 8:00 A.M. and 5:00 P.M.. You must always re-
member here that it is only the number of messages that have already been
sent that decides whether an escalation level exists. escalation_period
and escalation_options only have an effect as additional filters.

Before these two parameters are used, you should carefully consider what
it is you want to achieve with them. To restrict the escalation to a specific
time period could under certain circumstances result in it being omitted
entirely. If you restrict them to weekdays, for example, this would mean that
if the Database service failed during the weekend, Nagios would inform
the contact group admins only on Monday morning: over the weekend the
system has already sent more than 12 messages, so it no longer even uses
its escalation mechanism. If there is a time restriction via escalation_pe-
riod, you should set last_notificationto O to ensure that the escalation
really does take place.

Every case of error is followed at some point in time by a recovery. An
intelligent mechanism ensures that Nagios only notifies those contacts of
the corresponding recovery who are in charge, depending on the active
escalation level, and who also received the last notification to be sent.

12.6 Accounting for Dependencies between Hosts
and Services

If you test services with local plugins (see Chapter 7) via NRPE (see Chapter
10), all these tests will come to nothing the moment the Plugin Executor
fails. With service dependencies you can prevent Nagios from flooding the
appropriate administrator with messages on the dependent services. In-
stead of this, the system informs him specifically of the NRPE failure.

Aa with such service dependencies, Nagios also has host dependencies,
which suppress messages, depending on individual hosts. Both variations
can also be used to specifically "switch off” tests.

12.6.1 The standard case: service dependencies

Let us take as an example the host 1inux01, illustrated in Figure 12.4, on
which locally installed plugins, controlled via NRPE, monitor hard drive
space (Disks service, see page 224), the number of logged-in users (Users
service), and the system load (Load service). If NRPE were now to fail,
Nagios would announce the CRITICAL state for all three services, although
their actual state is unknown, and the real problem is the “NRPE daemon.”

In order to solve this contradiction, NRPE is monitored as a separate service
and describes the dependencies in a servicedependency object.

285

12 The Nagios Notification System

Figure 12.4:
The three

above-mentioned
services depend on

NRPE

linux01; linux01; linux01;
disks users load
1 T f

linux01;
NRPE

To define the additional service check for NRPE, we make use of the possi-
bility of calling the check_nrpe plugin (see page 214) (almost) without any
parameters at all. It then simply returns the version of the NRPE daemons
being used:

nagios@linux:~$ /usr/local/nagios/libexec/check nrpe -H linux01
NRPE v2.0

The command defined in Section 10.5 on page 222, check_nrpe, requires
further arguments and therefore cannot be used for our purposes. For this
reason we set up a new command object, test_nrpe, which exclusively
tests NRPE:

define commandf{
command_name test_nrpe
command_line SUSER1S$/check nrpe -H $HOSTADDRESSS

With this, an NRPE service can now be defined:

define servicef{
host_name linux01
service description NRPE
check command test_nrpe

The dependencies of the three local services of NRPE are described by the
following servicedependency object.

define servicedependency({

host_name linux01
service_description NRPE
dependent_host_name linux01

dependent_service_description Disks,Users,Load
notification failure criteria c,u
execution failure criteria n

286

12.6 Accounting for Dependencies between Hosts and Services

host_name and service_description define the master service, the fail-
ure of which leads to the failure of the services named in dependent_ser-
vice_description on the computer specified in dependent_host_name.
Multiple entries, separated by commas, are possible for all four parame-
ters mentioned. You should bear in mind, however, that each dependent
service is dependent on every possible master service.

The remaining parameters influence service checks and notifications:
notification_failure_criteria specifies for which states of the mas-
ter service notifications involving an error of the dependent services (e.g.,
Disks) should not appear. Possible values are u (UNKNOWN), w (WARN-
ING), ¢ (CRITICAL), p (PENDING, i.e., an initial check is planned but was
so far not yet carried out), o (OK), and n (None).

u, c in the example above means that Nagios does not inform the admin-
istrators responsible of “errors” in the services Disks, Users, and Load on
linuxO01 if the master service is in the CRITICAL or UNKNOWN state. With
an o for OK, the logic can be reversed: here there is no message if there is
an error in the dependent service, as long as the master service is in an OK
state. Accordingly, n means that Nagios provides a notification irrespective
of the status of the master service.

The execution_failure_criteria parameter controls tests, depending
on the state of the master service. The details u (UNKNOWN), w (WARN-
ING), c (CRITICAL), p (PENDING), o (OK), and n (None), as with notifica-
tion_failure_criteria, refer to states of the master service for which
there should be no check. In the example, n is specified, so that Nagios
tests Disks, Users, and Load even if NRPE fails.

Nagios therefore suppresses messages, but since it still carries out the ser-
vice checks on the dependent services, the Web interface always shows the
current status of these.

The details for notification_failure_criteriainteract with the Fresh-
ness mechanism of passive tests (see Section 13.4 from page 295). If check_
freshness is used in the service definition, and if Nagios considers the
most recently determined status to be out of date, it will carry out active
tests even if it ought to suppress them, according to the service depen-
dency.

Inheritance

Nagios does not automatically inherit dependencies. An example of this is
shown in Figure 12.5: on the internal side of a firewall, the system should
query various resources via SNMP. For security reasons, the test is per-
formed indirectly via NRPE, that is, the Nagios server runs the SNMP plug-
ins, which are installed on a host inside the file, indirectly via NRPE.

287

12 The Nagios Notification System

Figure 12.5:
Multilevel linux04; linux04; linux04;
. disks users load
dependencies for T “ T

services

linux04;
SNMP

Iil firewall

linux01;
NRPE

The following two servicedependency objects describe a dependency be-
tween the SNMP (Master) service and the Disks service (dependent service)
on the host 1inux04, as well as between the NRPE service on 1inux01 and
the SNMP service on 1inux04:

define servicedependency({

host_name linux04
service_description SNMP
dependent_host_name linux04

dependent_service_description Disks
notification failure criteria c,u
execution failure criteria c,u

define servicedependency(

host_name linux01
service description NRPE
dependent_host_name linux04

dependent_service_description SNMP
notification_failure criteria c,u

execution_ failure criteria c,u

If the NRPE daemon on 1inuxO1 fails, Nagios would only recognize the
defined dependencies between NRPE and SNMP, but not the implicit depen-
dency between NRPE and Disks. To take these into account as well, the
parameter inherits_parent is inserted in the definition of the service de-
pendency between Disks and SNMP:

inherits_parent 1

With this, Nagios tests whether the master service itself (here SNMP) is de-
pendent on another service, thanks to a corresponding servicedepend-
ency. If the NRPE service on 1inux01 fails (CRITICAL state), Nagios leaves

288

12.6 Accounting for Dependencies between Hosts and Services

out the check of Disks on 1inux04, thanks to execution_failure_cri-
teria c,u, and also does not send any notification of the most recently
detected status of Disks.

Other application cases

Dependency definitions between services are particularly useful if a great
deal depends on a single service, so that the actual problem is in danger
of disappearing under a flood of error messages. Apart from the already
described use in combination with NRPE, this applies for all services that
the Nagios server cannot test directly and for which it must use tools in-
stead (NRPE, SNMP, or even NSCLIENT for Windows, see Section 20.2.1).
If a simple connection to the utility cannot be established and a constant
value (version number, system name) cannot be queried, you can still use
a generic plugin to address the corresponding port.

Another example of using service dependencies are the applications that
depend on a database: a Web application with dynamic Web pages fails if
the underlying database (which may be located somewhere in the network
on another host) is not working. A precisely defined dependency between
the database service and dynamic Web application also ensures here that
the administrator is notified of the actual cause.

Additional functions in Nagios 3.0

Nagios 3.0 includes two innovations: On one hand, the parameter depend-
ency_period now allows a time restriction to be placed on the depen-
dency. The default is 7x24h, that is, round the clock.

On the other hand, Nagios 3.0 makes it easier to define the dependen-
cies between services and dependent services on the same host. Speci-
fying dependent_host_name, as was done in the previous examples, can
be omitted if this is identical to host_name. An example of this so-called
same-host dependency is described in Section H.1.6 on page 683.

12.6.2 Only in exceptional cases: host dependencies

Host dependencies function in principle exactly like service dependencies;
the hostdependency object is also capable of suppressing messages.

There are a number of subtle differences in the detail, however. Only ex-
plicitly configured regular host checks can be suppressed in which checked
intervals are defined as for services. This type of host check should be used
only in exceptional circumstances, however, since it can have a significant
influence on the performance of Nagios. Normally Nagios decides for itself
when it will perform a host check (see Section 4.1 from page 92).

289

12 The Nagios Notification System

In nearly all cases the parents parameter in the host definition is bet-
ter at describing the dependencies between hosts. As long as Nagios can
test individual hosts directly, the system can distinguish much better be-
tween DOWN and UNREACHABLE (see Section 4.1 from page 92). If you
do not want any notification for particular hosts, dependent on the net-
work topology, then you should be informed only for DOWN, but not for
UNREACHABLE.

Host dependencies should be used only when Nagios can no longer distin-
guish between DOWN and UNREACHABLE. This is usually the case when
indirect checksthe host check is performed indirectly (e.g., in the figure
shown on page 224).

290

Passive Tests with the External
Command File

Apart from active service and host checks, Nagios also makes use of passive
tests (and combinations of both types of test). While the system itself de-
fines the time for active checks when they are performed, and then initiates
them, Nagios in passive mode only processes incoming results.

For this to work, an interface is required that allows test results from the
outside to be passed on to Nagios, as well as commands that perform
checks and feed in the results through the interface. Normally remote hosts
send their test results, determined by shell scripts, via the Nagios Service
Check Acceptor (NSCA), which is introduced in the next chapter (page 299),
to the Nagios server.

Passive checks are used in particular with distributed monitoring, in which
noncentral Nagios servers send all their results to a central Nagios instance.
This subject is discussed in Chapter 15. Another field in which they are

291

13 Passive Tests with the External Command File

used is in the processing of asynchronous events, the time of which Nagios
cannot define itself. One example of this is a backup script that sends a
result to Nagios (OK or CRITICAL) when it has completed a data backup,
and another example is processing SNMP traps (see Section 14.6).

13.1 The Interface for External Commands

The interface for external commands, known in Nagios jargon as External
Command Files, consists of a named pipe (FIFO)! in the subdirectory rw of
the Nagios var directory:

user@linux:~$ 1ls -1F /var/nagios/rw

prw-rw---- 1 nagios nagcmd 0 Dec 19 10:56 nagios.cmd|

The pipe, marked in the 1s output with p, correctly sets up the make in-
stall-commandmode command during installation. For reasons of security
it is essential that you ensure that only the group nagcmd can read from and
write to the pipe. Anyone who has access here can control Nagios remotely
via commands, and can, if they want, shut it down entirely.

Commands that Nagios accepts from the External Command File have the
following form:

[timestamp] command;arguments

As the timestamp in square brackets, Nagios expects the current time in
epoch seconds, that is the number of seconds which have elapsed in the
UTC time zone since January 1, 1970. This is followed by a space, then a
command followed by a matching number of arguments, separated by a
semicolon.

The interface makes extensive use of this mechanism, allowing its users to
make various settings via mouse click. A detailed description of all possible
commands is provided by the online documentation.? An example script
for each command can be found there, which can be copied to a file with
cut-and-paste and used after a few path adjustments have been made.

In this chapter we will limit ourselves to the two processing commands with
which computers deliver the results of passive checks to the Nagios server,
PROCESS_SERVICE_CHECK_RESULT and PROCESS_HOST_CHECK_RESULT.

1 A named pipe is a buffer to which a process can write something, which can then be
read by another process. Whatever is written first is also read first: First In, First Out
(FIFO). Since this involves space in the main memory, a named pipe does not need any
space on the hard drive.

2 http://www.nagios.org/developerinfo/externalcommands/

292

13.2 Passive Service Checks

For reasons of security, the processing of external commands must be ex-
plicitly switched on in the main configuration file nagios.cfg with the
directive check_external_commands=1:

/etc/nagios/nagios.cfg

check external_ commands=1
command_check_interval=-1
command_file=/var/nagios/rw/nagios.cmd

The command_check_interval determines that Nagios checks the inter-
face for existing commands every so many seconds. -1 means “as often as
possible.” command_f1ile specifies the path to the named pipe.

13.2 Passive Service Checks

In order for Nagios to be able to accept passive service checks via the inter-
face, this must be explicitly allowed in the global configuration and in the
corresponding service definition. The corresponding entry in nagios.cfg
is

/etc/nagios/nagios.cfg

accept_passive_service_ checks=1

In the service definition you can select whether you want to perform active
checks in parallel to the passive ones. Active checks are only possible, of
course, if Nagios can query the information itself. The following example
allows passive checks and stops all active ones:

define service{
host_name linux01
service_description Disks
passive_checks_enabled 1
active checks_enabled 0
check command check_dummy
check period none

An exception is normally made for freshness checks (see Section 13.4 from
page 295)—here Nagios makes use of the command defined in check_
command. To ban active checks entirely, the check_period parameter is

293

13 Passive Tests with the External Command File

set to none. The check command does not play a role in this case, so you
can just enter a dummy check here, for example (which like all other com-
mands has to be defined, of course).

On the computer to be tested passively (in this example, 1inux01) you
must ensure, via NSCA (see Chapter 14), that it contacts the Nagios server
through the interface for external commands. There it writes the command
for passive service checks in the following one-line form:

[timestamp] PROCESS_SERVICE CHECK RESULT; host-name;service;

return value;plugin output
The timestamp can be created in a shell script, for example with date:

user@linux:~$ date +%s
1112435763

A simple script that passes on the result of a passive service check on the
Nagios server itself to the Nagios installed there, could look like this:

#!/bin/bash

EXTCMDFILE="/var/nagios/rw/nagios.cmd"

TIME=‘date +%s*

HOST=3$1

SRV=$2

RESULT=$3

OUTPUT=$4

CMD=" [$TIME] PROCESS_SERVICE_CHECK RESULT;$HOST;$SRV; SRESULT; $SOUTPUT"

/bin/echo $CMD >> $EXTCMDFILE
When it is run it expects the parameters in the correct sequence:
name_of script linux01l Disks 0 ’'Disks ok: everything in order :-)’

After the host and service names, the test status follows as a digit, and
finally the output text. If the service name contains spaces, then it should
also be set in quotation marks.

13.3 Passive Host Checks

Passive host checks follow the same principle as passive service checks, ex-
cept that they involve computers and not services. To allow them globally,
the accept_passive_host_checks parameter is set in nagios.cfgto 1:

294

13.4 Reacting to Out-of-Date Information of Passive Checks

/etc/nagios/nagios.cfg

accept_passive_host_checks=1

In addition, the host definition for the computer to be monitored passively
must allow this kind of host check:

define host({
host_name linux01
passive_checks_enabled 1
active checks_enabled 0
check _period none
check_command check_dummy

In this example it simultaneously forbids active checks.

The command to be sent through the external interface with which the
computer delivers its test results differs here only marginally from the syn-
tax used in the service check command already introduced:

[timestamp] PROCESS HOST_CHECK_RESULT; hostname; return value; plugin output

Active and passive host checks differ in one important respect: with passive
checks, Nagios is no longer in a position to distinguish between DOWN and
UNREACHABLE (see Section 4.1 from page 92). If you still want to take
account of network topology dependencies when making notifications and
to give specific information on the actual host that is down, you must make
use of host dependencies in this case (see Section 12.6.2 from page 289).

13.4 Reacting to Out-of-Date Information of
Passive Checks

It lies in the nature of passive checks that Nagios is content with the infor-
mation delivered. Nagios has no influence over when and at what intervals
the remote host delivers them. It may even be the case that the information
does not arrive at all.

In order to classify the “knowledge state” of the server as out of date, Nagios
has the ability to become active itself, with a freshness check. Like passive
checks, freshness checking must be enabled both globally and in the rele-
vant serviceable host object. To do this, you need to set the following global
parameters in the file nagios.cfg:

295

13 Passive Tests with the External Command File

/etc/nagios/nagios.cfg

check service_freshness=1

service_ freshness_check interval=60
check _host_freshness=0
host_freshness_check interval=60

The value 0 in check_host_freshnessand the value 1in check_service_
freshness ensure that Nagios carries out freshness checks only for ser-
vices, and not for hosts. The check interval defines the intervals at which
the server updates its information, in this case, every 60 seconds. When
Nagios really becomes active in the case of a specific service or host de-
pends on the threshold value, which you can set in the appropriate service
or host definition with the freshness_threshold parameter:

define servicef
host_name linux01
service_description Disks
passive_checks_enabled 1
active checks_enabled 0

check freshness 1
freshness_threshold 3600
check_command service_is_stale

So in this example Nagios performs the freshness check for this service
only if the last transmitted value is older than 3600 seconds (one hour).
Then Nagios starts the command defined in check_command, even if active
checks have been switched off in the corresponding host or service defini-
tion, or even globally.

If you define the command named here in the example, service_is_
stale, so that Nagios really does check the service or host, then Nagios
will perform active tests even if active checking is switched off, but always
only if passive results are overdue for longer than the threshold value set.

If active checks are not possible or not wanted, you can ensure, using a
pseudo-test, that Nagios will explicitly signal an error status, so that the ad-
ministrator’s attention is drawn to it. Otherwise Nagios will always display
the last status to be received. If this was OK, then it will not necessarily be
noticed that current results have not been arriving for some time. The fol-
lowing pseudo-test script delivers an appropriate error message with echo,
and with exit 2 delivers the return value for CRITICAL, so that the admin-
istrator can react accordingly:

3 If you do not explicitly specify freshness_threshold, the value set for normal_
check_interval will be used in the hard state, and if there is a soft state, the value
retry_check_interval will serve as the default.

296

13.4 Reacting to Out-of-Date Information of Passive Checks

#!/bin/bash
/bin/echo "CRITICAL: no current results of the service"
exit 2

If you start the script from the plugin directory as service_is_stale.sh,
the Nagios command service_is_stale will be defined as follows:

define commandf{
command_name service_is_stale
command_line SUSER1S$/service_is_ stale.sh

If the results for the service Disks on linuxO1 fail to appear for longer
than one hour, Nagios will run the script service_is_stale.sh, which
always returns CRITICAL, irrespective of what data 1inux01 last sent. This
CRITICAL status is only ended when the host passes on new and more
positive results to the server through a passive check.

297

The Nagios Service Check
Acceptor (NSCA)

In order to send service and host checks across the network to the central
Nagios server, a transmission mechanism is required. This is provided by
the Nagios Service Check Acceptor (NSCA). It consists of two components:
a client program send_nsca, which accepts the results of a service or host
check on the remote host and sends them to the Nagios server, and the
NSCA daemon nsca, which runs on the server, receives data from the client,
processes this for the External Command File interface (see Section 13.1),
and passes this data on to it (Figure 14.1).

The Nagios Service Check Acceptor was originally developed to enable dis-
tributed monitoring in which decentralized Nagios servers can send their
results to a central Nagios server (see Chapter 15 from page 317). In prin-
ciple, the data that send_nsca sends to the Nagios server can come from
any applications you like.

299

14 The Nagios Service Check Acceptor (NSCA)

Figure 14.1:

How the NSCA

functions

Sending commands across the network to the central Nagios instance is
not insignificant, from a security point of view, since Nagios could be com-
pletely switched off using the External Command File. This is why NSCA
sends the data in encrypted form, and clients must have the correct key to
obtain access to the interface. This prevents an arbitrary network partici-
pant from being able to run any commands at all on the Nagios server.

resuft of
service check

Nagios server

Pt
NSCA
(daemon)
client
/varfnagios/rw/
nagios.cmd

Nagios
core

encrypted

send_nsca
(client)

14.1 Installation

NSCA version 2.7.2, current at the time of going to press, was published in
the spring of 2007; the chances are therefore quite high that the distribution
you are using contains a current package. The source code! is quite easy to
compile yourself, however. As a prerequisite, you need to have the library
libmcrypt installed, together with the relevant header files,? or else the
integrated encryption cannot be used.

In the unpacked source directory, you should run the included configure
script, specifying the Nagios configuration and var directories:

linux:local/src # tar xvzf /path/to/nsca-2.7.2.tar.gz

linux:local/src # cd nsca-2.7.2

linux:src/nsca-2.7.2 # ./configure --sysconfdir=/etc/nagios \
--localstatedir=/var/nagios

x Configuration summary for nsca 2.7.2 07-03-2007 #*%*:

General Options:

NSCA port: 5667

1 http://www.nagios.org/download/
2 The corresponding binary package usually contains -dev or -devel in its name.

300

14.2 Configuring the Nagios Server

NSCA user: nagios
NSCA group: nagios

At the end it displays output, showing the permissions with which the NSCA
user starts by default, if not otherwise specified in the configuration. Nor-
mally the NSCA daemon waits on TCP port 5667.

A final make all compiles the two programs nsca and send_nsca. They
are now located in the subdirectory src and need to be copied manually to
a suitable directory:

linux:src/nsca-2.7.2 # cp src/nsca /usr/local/sbin/.
linux:src/nsca-2.7.2 # scp src/send nsca remote host:/usr/local/bin/.

nsca is copied to the Nagios server, preferably to the directory /usr/local/
sbin. send_nsca belongs on the remote host that is to send its test results
to the Nagios server. If this computer has a different operating system ver-
sion or platform, it is possible that the client to run there will need to be
recompiled. Both programs each require their own configuration file, which
is best stored in the directory /etc/nagios:

linux:src/nsca-2.7.2 # cp nsca.cfg /etc/nagios/.
linux:src/nsca-2.7.2 # scp send nsca.cfg remote host:/etc/nagios/.

14.2 Configuring the Nagios Server

14.2.1 The configuration file nsca.cfg

For NSCA to work, the External Command File interface on the Nagios ser-
ver must be activated in the configuration file /etc/nagios/nagios.cfg
(Section 13.1, page 292) and the corresponding data entered in the NSCA
configuration file nsca.cfg:

/etc/nagios/nsca.cfg
server_port=5667
server_address=192.168.1.1
allowed_hosts=127.0.0.1
nsca_user=nagios

nsca_group=nagios

debug=0
command_file=/var/nagios/rw/nagios.cmd
alternate dump file=/var/nagios/rw/nsca.dump
aggregate_writes=0

append_to_file=0

301

14 The Nagios Service Check Acceptor (NSCA)

max_packet_age=30
password=verysecret
decryption _method=10

The parameters server_port, server_address, allowed_hosts, nsca_
user, and nsca_group take effect only if nsca is started as a daemon. If
it is started as an inet daemon, the values set in its configuration apply to
the NSCA server address and the port on which the NSCA is listening, the
IP addresses of the hosts that are allowed to access the interface,® and the
users and group with whose permissions the Service Check Acceptor runs.

The debug parameter makes it easier to search for errors, but it should
normally be switched off (value 0). If it is set to 1, NSCA writes debugging
information in the syslog.

The named pipe is defined by the entry command_file. If you specify an al-
ternative output file, with alternate_dump_file, this serves as a fallback
in case the named pipe given does not exist. Before version 2.0, Nagios
removed the pipe each time it was shut down, but this should not happen
anymore.

If it is set to 1, aggregate_writes ensures that NSCA collects all the in-
coming commands just once and then passes these on to the interface as a
block. If the value at this position is 0, then NSCA sends on each incoming
command immediately to the External Command File.

append_to_file can have the values 0 (opens the External Command File
in write mode) or 1 (opens it in the append mode), and it should always be
set to 0.4

Client messages older than max_packet_age seconds are discarded by
NSCA, to avoid replay attacks. This value may not be larger than 900 sec-
onds (15 minutes) and should be as small as possible.

The last two parameters refer to the encryption of the communication.
password contains the actual key, which is identical for clients, and which
must be entered in the configuration for the clients (see Section 14.3 on
page 304). Because the key is written in the file in plain text, nsca.cfg
should be readable only for the user with whose permissions the NSCA is
running, which in our case is nagios:

linux:/etc/nagios # chown nagios.nagios nsca.cfg
linux:/etc/nagios # chmod 400 nsca.cfg

Finally, decryption_method defines the encryption algorithm. The default
is 1 (XOR), which is almost as insecure as 0 (no encryption). 10 stands for

S af you want to define more than one IP address for allowed_hosts, they are separated
by a comma.

4 The append mode only makes sense if the External Command File is replaced for de-
bugging purposes with a simple file.

302

14.2 Configuring the Nagios Server

LOKI97, which is regarded as secure.® The list of all possible algorithms
is contained in the supplied configuration file, which contains many old
algorithms and some newer ones, such as DES (2), Triple-DES (3), Blowfish
(8), and Rijndael (AES).%

14.2.2 Configuring the inet daemon

If you want to start nsca with the inet daemon, the following entry is added
in the file /etc/services:

nsca 5667/tcp # Nagios Service Check Acceptor (NSCA)

xinetd configuration

If the newer xinetdis used, the file nagios-nscais created in the directory
/etc/xinetd.d with the following contents:

/etc/xinetd.d/nsca
description: NSCA
default: on

service nsca

{

flags = REUSE

socket_type = stream

wait = no

user = nagios

group = nagios

server = /usr/local/sbin/nsca
server_args = -c¢ /etc/nagios/nsca.cfg --inetd
log on_ failure += USERID

disable = no

only from = 127.0.0.1 ipl ip2 ... ipn

The values printed in bold type for the user and group with whose permis-
sions the NSCA should run, and the path to the NSCA daemon nsca (pa-
rameter server) and the corresponding configuration file, are adjusted if
necessary to your own environment. The line only_from, as an equivalent
to the nsca.cfg parameter allowed_hosts, takes in all the IP addresses,
separated by spaces, from which the NSCA may be addressed. Distribu-
tions that include NSCA as a finished package and install xinetd by default,
include a ready-to-use xinetd configuration file, where you only need to
adjust this last parameter.

5 http://en.wikipedia.org/wiki/LOKI97
6 Rijndael-128: 14; Rijndael-192: 15; Rijndael-256: 16

303

14 The Nagios Service Check Acceptor (NSCA)

In order for the new configuration to become effective, the xinetd init
script is run with the reload argument:

linux:~ # /etc/init.d/xinetd reload

inetd configuration

If the standard inetd command is run, the following line is added (line-
wrapped for the printed version) in the configuration file /etc/inetd.
conf:

nsca stream tcp nowait nagios /usr/sbin/tcpd
/usr/local/sbin/nsca -c /etc/nagios/nsca.cfg --inetd

If you want to leave out the TCP wrapper tcpd, you just omit the string
/usr/sbin/tcpd. In this case you must also explicitly specify the user
(nagios) with whose permissions the NSCA starts, the complete path to
the binary nsca, and the configuration file with its absolute path. So that
the Internet daemon can take account of the modification, its configuration
must be reloaded:

linux:~ # /etc/init.d/inetd reload

14.3 Client-side Configuration

The configuration file send_nsca.cfg on the client side must contain the
same encryption parameters as the file on the Nagios server:

password=verysecret
decryption method=10

Since the key is also written here in plain text, it should not be readable for
just any user. For this reason it is best to create a user nagios and a group
nagios on the client side:

linux:~ # groupadd -g 9000 nagios
linux:~ # useradd -u 9000 -g nagios -d /usr/local/nagios \
-c "Nagios Admin" nagios

You should now protect the file send_nsca.cfg so that only the user na-
gios can read it, and ensure, using the SUID mechanism, that the program
send_nsca always runs under the user ID of this user. If you now grant
execute permission to the group nagios, only its members may execute
the NSCA client program:

304

14.4 Sending Test Results to the Server

chown nagios.nagios /etc/nagios/send nsca.cfg
chown nagios.nagios /usr/bin/send nsca

chmod 4710 /usr/bin/send nsca

#
#
linux:~ # chmod 400 /etc/nagios/send nsca.cfg
#
1ls -1 /usr/bin/send nsca

-rws--x--- 1 nagios nagios 83187 Apr 2 17:56 /usr/local/bin/send nsca

14.4 Sending Test Results to the Server

The client program send_nsca reads the details of a host or service check
from the standard input, which the administrator must format as follows:”

host-name\tservice\treturn value\toutput
host-name\treturn value\toutput

send_nsca sends this to the Nagios server. The first line describes the
format for service checks and the second line, that for host checks. The
placeholder return value is replaced by the status determined, that is, 0
for OK, 1 for WARNING, 2 for CRITICAL, and 3 for UNKNOWN. By output,
a one-line text is meant, of the type that plugins provide as a support for
the administrator. As the separator, a tab sign is used (\t).

In order to make a complete command from this that can be understood by
the external command, the NSCA daemon first prefixes the timestamp and
the matching command (PROCESS_SERVICE_CHECK_RESULT or PROCESS_
HOST_CHECK_RESULT). This is why only these two commands can be sent
using NSCA.

send_nsca itself has the following options:

-H address
This is the host name or IP address of the Nagios server to be ad-
dressed by NSCA.

-d delimiter
This is the delimiter for the input; the default is a tab sign. The fol-
lowing example page uses the semicolon as a delimiter.

-c path/to_the/configuration_file
This parameter specifies the path to the configuration file send_nsca.
cfg. Since no path has been compiled into the client, send_nsca
expects by default to find the file in the current directory. For this
reason it makes sense to specify the absolute path with this option.

Normally you have to ensure that test scripts you have written yourself produce the
correct output; if you use Nagios plugins, you must reformat their output accordingly.
Since the latter can be run much better directly with NRPE, this should be the exception
to the rule.

305

14 The Nagios Service Check Acceptor (NSCA)

-p port
This defines an alternative port if the default, the TCP port 5667, is

not used.

-to timeout
After timeout seconds (by default, 10) send_nsca aborts the con-
nection attempt to the NSCA daemon, if no connection is established.

With simple test scripts such as the following one, the functionality of the
NSCA can be tested. A service is chosen as the test object, which is in a state
other than UNKNOWN (e.g., OK), in this case, nmbd on the host 1inux01:

#!/bin/bash
CFG="/etc/nagios/send nsca.cfg"
CMD="1inux01;nmbd;3;UNKNOWN - just one NSCA test"

/bin/echo $CMD | /usr/local/bin/send nsca -H nagios -d ’';’ -c $CFG

The script puts it, from Nagios’s point of view, into the UNKNOWN status.
After it is run, you should discover if the transfer was successful:

nagios@linux:~$ bash ./test_nsca
1 data packet (s) sent to host successfully.

As soon as Nagios processes the command and you have reloaded the page
in your browser, the Web interface displays the UNKNOWN status for the
selected service. With the next active check, the previous status will be
recovered.

Because it is so simple to send Nagios check results with send_nsca, it is
essential that you protect the NSCA from misuse, as already demonstrated.
On the client, you should restrict access to the client program send_nsca
and to its configuration file and you should make sure that you have secure
encryption, and on the server explicitly define the sender and IP addresses
that are to be allowed.

14.5 Application Example I: Integrating syslog and
Nagios

Linux and Unix systems as a rule log system-relevant events through sys-
log. Sooner or later you will probably want Nagios to also inform the ad-
ministrator of important syslog events. To do this, you require passive ser-
vice checks, NSCA for transmitting the results to the Nagios server, and a
method of filtering individual block entries.

306

14.5 Application Example I: Integrating syslog and Nagios

If you are using syslog-ng® instead of the standard BSD syslog, you can
make use of its ability to set filters and to format the output using tem-
plates. The use of NSCA compensates for the fact that the program cannot
itself transmit data in encrypted form.

This connection to Nagios is supplemented by programs to evaluate log
files, such as logcheck,9 which is contained in almost every Linux distri-
bution, but it does not replace them. This is because Nagios can send indi-
vidual e-mails for each event, but not for a summary of events, as logcheck
does (usually once per hour). In addition to this, the Web interface always
displays the last event in each case.

14.5.1 Preparing syslog-ng for use with Nagios

Apart from the source code, the syslog-ng homepage! also provides a
detailed manual, which is why we shall only discuss the basic principle at
this point. The software differentiates between the source, filter, and
destination. All three objects can be combined in any form; they are
defined in the configuration file /etc/syslog-ng/syslog-ng.conf:

/etc/syslog-ng/syslog-ng.conf
source local {
unix-stream("/dev/log") ;
internal() ;
file("/proc/kmsg" log prefix("kernel: "));

}i

destination console 10 {
file("/dev/ttylo") ;

}i

filter f messages {
not facility(auth, authpriv) and
level (info .. alert);

Vi

log {
source (local) ;
filter (f_messages) ;
destination(console_10) ;

This example defines three sources at the same time: unix-stream reads
from the socket /dev/log, through which most programs send their mes-
sages to the syslog. internal is the name of the source syslog-ng feeds

8 The “ng” stands here for next generation.
9 http://sourceforge.net/projects/logcheck/
10 http://www.balabit.com/products/syslog_ng/

307

14 The Nagios Service Check Acceptor (NSCA)

with internal messages, and from the file /proc/kmsg syslog receives ker-
nel messages. These are given the kernel: prefix, so that they can be be
distinguished from normal log entries.

The destination definition ensures that all syslog output appears on the
console tty10 (this can be displayed with (Alt)(F10)).

filter defines what messages should reach this destination, if any. In the
case of the f_messages filter, this is all messages matching the category
(the level) info and that syslog does not provide with the stamp (the
facility; see man syslog.conf and man 3 syslog) auth or authpriv.
Alternatively syslog-ng filters according to a search pattern, with the in-
struction match("pattern"), according to the program doing the log-
ging (program("program name")) and according to the source host (host
("hostname')).

Finally the keyword log links the source, filter, and destination. Multiple
specifications are possible here, so several sources and destinations can be
specified in a single statement:

log {
sourcel); source2; ...
filterl; filter2; ...
destinationl; destination2; ...

}

If you specify several filters in a 1og statement, syslog-ng only allows data
through that matches all filter criteria (AND link).

To integrate this into Nagios, use is made of the option of defining a pro-
gram as a target, which is called for every event:

destination d_nagios_warn {
program("/usr/local/nagios/misc/send syslog.sh"
template ("$HOST; syslog-ng;1l; WARNING: $MSG\n") template_escape (no)) ;

i

destination d nagios_crit {
program("/usr/local/nagios/misc/send_syslog.sh"
template ("SHOST;syslog-ng;2;CRITICAL: $SMSG\n") template_ escape (no)) ;

Vi

The template directive formats the output so that it is suitable for send_
nsca, using a semicolon as the delimiter: host and service names (syslog-
ng) are followed by the state (1 = WARNING; 2 = CRITICAL), and then the
actual output text is given. Apart from $HOST and $MSG, syslog-ng has
a series of further macros, which are described individually in the docu-
mentation on the homepage. The parameter template_escape protects
quotation marks in the text and is intended principally for SQL commands,
so in this case it can be set to no.

308

14.5 Application Example I: Integrating syslog and Nagios

The following script send_syslog.shuses the bash function read to read
from the standard input line by line, and for each line read it calls up
send_nsca, which sends on the data—as described in this chapter—as a
passive test result to Nagios:

#!/bin/bash
while read -r line; do
echo $line | /usr/bin/send nsca -H nagsrv -d ';’ \
-c /etc/nagios/send nsca.cfg \
1>/usr/local/nagios/var/send_syslog.log 2>&l
done

Because a semicolon is used as a delimiter, we specify this explicitly with
the option -d. The status report that each send_nsca command displays
on the standard output is diverted by the script into a separate log file
(/usr/local/nagios/var/send_syslog.log).

Thanks to the program instruction in the syslog configuration, syslog-ng
starts the script automatically. This is also the reason that the send_nsca
command is in an endless loop: this means that syslog-ng does not run
an external program every time there is a relevant event.

14.5.2 Nagios configuration: volatile services

In Nagios slang, “volatile” refers to services that show an error state only
once. This refers to devices, for example, that automatically reset the state
when an error is queried—which means that the error cannot be repro-
duced. The same applies for syslog entries: if a check following an error
state returns an error, this will always be a second event. So we don’t have
a continuing error state here, but a problem that has again occurred.

For continuing error states, Nagios normally does not send any further mes-
sages for the time being. With the is_volatile parameter, however, it
treats every error as if it had just occurred. Nagios logs the state, sends a
notification, and implements the event handler—provided it is defined—
(see Appendix C from page 619).

For syslog-ng, this means that each entry is seen as an independent event.
In order that Nagios sees things in this way as well, the corresponding ser-
vice definition contains the is_volatile parameter:

define servicef
host_name linux01
service_description syslog-ng
active checks_enabled 0
passive checks enabled 1
check freshness 0
is_volatile 1

309

14 The Nagios Service Check Acceptor (NSCA)

Figure 14.2:

The syslog-ng

service in an error

state

max_check attempts 1
normal_check_interval 1

retry check interval 1

check_command check dummy!3!active check
check _period none

contact_groups localadmins
notification_options w,c,u

notification_interval 480
notification_period 24x7

Since the Nagios server should not test anything on its own, active_checks
_enabled 0 switches off active service checks. However, freshness checking
(see Section 13.4 from page 295) can always cause Nagios to perform active
tests. To prevent this, we set the check_freshness parameter in this case
explicitly to 0.

This service definition does not really require the parameters check_com-
mand and check_period, but since these are mandatory parameters, they
must still be specified: as check_command, the plugin check_dummy (see
Section 8.1 on page 188) is used.

It is also important that max_check_attempts is set to 1, so that a trans-
mitted error state immediately triggers a hard state. With a value larger
than 1, Nagios would wait for further error results here before categorizing
the problem state as a hard state.

The notification_options parameter ensures that the system informs
the specified contact group of all error states (WARNING, CRITICAL, and
UNKNOWN). The notification_interval, which defines the interval be-
tween two notifications for a continuing error state, is actually superflu-
ous, since Nagios, thanks to is_volatile 1, provides notification of every
event immediately, irrespective of what the previous state looked like. But
since it is a mandatory parameter, notification_interval still has to be
specified.

14.5.3 Resetting error states manually

Events that are taken into account by the syslog filter always inform you
of only one current state, which is why the syslog service in Nagios never
displays an OK state on its own (Figure 14.2).

Service Status Details For
Service Group 'Syslog’

Pz CRITICAL: woh: OTRS-PM-10[5080):
eliog syslog-ng | | 2005-05-27 16:08:08 0dCh 5m 195 171 [Errorl[Kernel:: System:: Ticket: ArticleW
Need ArticlelD

310

14.5 Application Example I: Integrating syslog and Nagios

This problem can be solved with the Web interface, which allows a passive
check result to be generated manually.

If you click on the service name in Figure 14.2, the extended status infor-
mation will be shown (Figure 14.3). There you will find the entry Submit
passive check result for this service, with which a test result can
be sent manually (Figure 14.4). In this way the syslog-ng service can be
reset to its normal state. Since the Web interface always shows only the
most recent error state, but not individual error messages, you must look
through the e-mail messages to see whether other errors have occurred
apart from those errors displayed by Nagios in the Web interface.

Service Information Service
Last Updated: Fri May 27 16:23:08 CEST
2008 syslog-ng

Updated every 50 seconds On Host

e e = eli0B@eli.st-elisabeth.de

Logged in as wob Celiog)
eli

\View Information For This Host —

\View Status Detail For This Host

[View Alert History For This Service Member of

View Trends For This Service Syslog

\View Alert Histogram For This Service

\View Report For This Service

\View Notifications For This Service 172.17.130.1

Service
Commands

Service State Information

Current Starus: [CRICAN

e CRITICAL: wob: OTRS-PM-10[5080]: Enable active
P — [Error][Eernel:System:Ticket:: ArticleWritePlain][Line:131]: Need # checks of this
) ArticlelD service
Submit passive
Performance SUBmE passive
Data: @ check result for this
service
Current 11 Stop accepting
Abtempt: I passive checks for
State Type: HARD this service
Last Check Stop obsessing over
Type: FASSIVE X, this service

You can also define your own service for each syslog event, of course. This
may sometimes be quite time-consuming, but it does allow you to separate
various messages and their processing states in the Web interface. If the fil-
ter in syslog-ngis restricted so that a syslog service object always refers to
just one resource to be monitored, you can also leave out the is_volatile
parameter.

External Command Interface
Last Updated: Fri May 27 16 15: 55 CEST
2005

Nagios® - umw. nagios org

Logged in as wob

You are requesting to submit a passive check result for a particular service

Command Options Command Description

This command is used to submit a passive check result

Hest Name: olios for a particular service. It is particularly useful for
Service: syslog-ng Tesetting security-related services to O states once
R h they have been dealt with

Check Output: Reset

Performance Data;

Commit | Reset

Please enter all required information before committing the command.
Required fields are marked in red.
Failure to supply all required values will result in an error.

Figure 14.3:

The arrow points to
the possibility of
“generating” a
passive test result for
the syslog-ng
service

Figure 14.4:
Creating a passive
check result
syslog-ng

311

14 The Nagios Service Check Acceptor (NSCA)

14.6 Application Example II: Processing SNMP
Traps

Asynchronous messages that are sent by an SNMP agent (see Section 11.1
from page 228) to a central management unit, called traps in SNMP jargon,
can be processed by Nagios in a way similar to the Nagios Service Check
Acceptor (NSCA). In addition, it allows SNMP traps to be accepted on a
host other than the Nagios server itself.

Processing SNMP traps with Nagios is particularly worthwhile if the system
monitors the network almost completely, and only a few devices or services
restrict their communication just to SNMP and SNMP traps. Nagios, or
the Open Source tool OpenNMS,!! are no substitutes for real commercial
SNMP management systems.

In many cases, SNMP traps are vendor-specific, so that you cannot avoid
getting to grips with the appropriate documentation and the vendor-specific
MIB (Management Information Base; see Section 11.1.1 from page 229).

14.6.1 Receiving traps with snmptrapd

In order to receive SNMP traps, you require a special Unix/Linux daemon
that generates messages for Nagios from them. The software package NET-
SNMP, described in Section 11.2.2 from page 238, includes the daemon
snmptrapd.

In the following scenario, snmptrapd is installed on a third host (neither
the computer generating the trap, nor the Nagios server). It evaluates the
information received by means of a script and forwards it with NSCA to the
Nagios server.'?

In the snmptrapd configuration file /etc/snmp/snmptrapd.conf, each
trap type is given a separate entry, the syntax of which corresponds to one
of the following lines:

traphandle oid program

traphandle oid program arguments
traphandle default program
traphandle default program arguments

The keyword traphandle is followed either by the object identifier of the
desired trap, or by the keyword default. In the second case the entry

1 http://www.opennms . org/

12 qf you install the snmptrapd on the Nagios server itself, you do not need NSCA and
you can send a correspondingly formatted command, as described in Section 13.2 from
page 293 directly to the interface for external commands.

312

14.6 Application Example II: Processing SNMP Traps

applies to all traps that do not have their own configuration entry. Finally
the program that should run if a relevant trap arrives is specified.

In addition you can also include arguments used with this program. But
you must be a bit careful when doing this. Quotation marks are passed on
by snmptrapd as characters and spaces are always used as delimiters. This
means that you cannot pass on any arguments containing spaces, which
you should bear in mind when assigning name services in Nagios.

snmpdtrapd gives this program information via the standard output in the
following format:

hostname
ip-address
oid value

The first line contains the fully qualified domain name of the host that
sends the message and the second, its IP address. Then one or more OID-
value pairs are given, each on a separate line. A particular event is very
often linked to a unique OID-value pair, so that the program can often
omit the evaluation of the OID-value pair entirely.

In the following snmptrapd.conf example, the lines are wrapped for read-
ability. Each traphandle instruction must be entered on a single line:

snmptrapd.conf

traphandle SNMPv2-MIB::coldStart /usr/local/nagios/libexec/eventhandler/
handle-trap SNMP cold-start

traphandle NET-SNMP-AGENT-MIB::nsNotifyRestart /usr/local/nagios/libexec
/eventhandler/handle-trap SNMP restart

traphandle NET-SNMP-AGENT-MIB::nsNotifyShutdown /usr/local/nagios/libexe
c/eventhandler/handle-trap SNMP shutdown

traphandle default /usr/local/nagios/libexec/eventhandler/handle-trap SN
MP unknown

The traps used here are sent by the SNMP agent snmpd from the NET-SNMP
package by default, as long as a destination was specified in snmpd. conf:

snmpd.conf
trapsink name or ip of the nagios-server

If a trap arrives with the OID SNMPv2-MIB: : coldStart, for example, snmp-
trapd starts the script handle-trap with the argument cold-start. In
this way it does not have to search first for the necessary information from
the OID-value pairs. However, this shortcut only works with trap OID
names that describe their function.

313

14 The Nagios Service Check Acceptor (NSCA)

14.6.2 Passing on traps to NSCA

The script handle-trap, which is run by snmptrapd, breaks down the in-
formation passed on and hands it over, correctly formatted, to send_nsca:

#!/bin/bash

NAGIOS="nagsrv"
LOGFILE="/usr/local/nagios/var/handle-trap.log"

read HOST && echo "host: $HOST" >> SLOGFILE
read IPADDR && echo "ip: $SIPADDR" >> $SLOGFILE

case S$SIPADDR in
192.168.201.4)
HOSTNAME="irouter"
*)
silent discard from unknown hosts
exit 0

esac

if [-z "$1" 1; then
echo "usage: $0 <service> <key>"
echo "usage: $0 <service> <key>" >> SLOGFILE

exit 1

else
SERVICE="S1"

fi

if [! -z "$2"]; then
SWITCH="$2"

fi

case S$SWITCH in

"cold-start")
OUTPUT="snmpd: Cold Start"
STATE=0

restart)
OUTPUT="snmpd: Restart"
STATE=1

shutdown)
OUTPUT="snmpd: Shutdown"
STATE=2

i

OUTPUT="Unknown Trap"
STATE=1

314

14.6 Application Example II: Processing SNMP Traps

esac
CMD="$HOSTNAME ; $SERVICE; $STATE; $OUTPUT"
echo "$CMD" >> $SLOGFILE

echo "SCMD" | /usr/bin/send nsca -H $NAGIOS -d ;' \
-c /etc/nagios/send nsca.cfg >> SLOGFILE 2>&1

First it saves the log file and the name of the Nagios server nagsrv, each in
a separate variable. The first case statement specifies the host name used
by Nagios for the IP address passed on (and temporarily stored in IPADDR).
HOST normally contains the fully qualified domain name, which also cannot
be used directly, and sometimes also just contains one IP address, so that
it is better to use the latter here. The explicit test also allows it to discard
traps from undesired hosts. Finally, matching traps land without further
authentication on the Nagios server.'3

The following if statement determines whether a service name was also
given to the script. If this is the case, then it is saved in the SERVICE vari-
able. If there was a second argument, the procedure is similar. Depending
on the value, the next case $SWITCH instruction defines the output text
and the desired status for Nagios.

The command for NSCA is finally assembled and the CMD variable is passed
on by the script to send_nsca. As in previous examples, a semicolon is used
as the delimiter, which must be specified in send_nsca with the option -d.

14.6.3 The matching service definition

As in the syslog-ng example (page 309), we again define the service on
the Nagios server as a purely passive one:

define service{
host_name irouter
service_description SNMP
active checks_enabled 0
passive checks_enabled

1
check freshness 0
max_check attempts 1

1

is_volatile

13 Although SNMPv3 does provide authentication for SNMP traps, this would go beyond
the scope of this book.

315

14 The Nagios Service Check Acceptor (NSCA)

Since soft states do not make any sense in a single trap message, we should
set max_check_attempts back to 1. Whether the parameter is_volatile
is used or not depends on the purpose to which the service is put. As long
as you define a separate service for each error category, there is no problem
in omitting is_volatile. But if you form different error categories using
a single service, you should set is_volatile 1, because in this case the
previous error will seldom have anything to do with the new one. Section
14.5.2 on page 309 is devoted to the subject of volatile services.

316

Distributed Monitoring

Passive service and host checks can be used to create a scenario in which
several noncentral Nagios instances send their results to a central server. In
general they transfer their results using the Nagios Service Check Acceptor
(see Chapter 14); the central Nagios instance receives them through the
External Command File interface and continues processing them as passive
checks (see Chapter 13 from page 291).

What is now missing is the mechanism that prepares each test result of a
noncentral Nagios instance to be sent with NSCA. For such cases, Nagios
provides the commands OCSP (“Obsessive Compulsive Service Processor”)
and OCHP (“Obsessive Compulsive Host Processor”), two commands de-
signed specifically for distributed monitoring. In contrast to event handler
(see Appendix C from page 619), which shows changes in status and only
passes on check results if the status has changed, these two commands
obsessively pass on every test result (Figure 15.1).

317

15 Distributed Monitoring

Figure 15.1:
Distributed

monitoring with

Nagios

Nagios distributed distributed Nagios
core logic Nagios server Nagios server core logic

OCSP/OCHP
command

OCSP/OCHP
command

send_nsca

(client) \

send_nsca

/ (client)

external

command
file

Nagios central
core logic Nagios server

J

15.1 Switching On the OCSP/OCHP Mechanism

In order to use OCSP/OCHP, several steps are necessary. The mechanism is
initially switched on (only) on the noncentral Nagios servers in the global
configuration file /etc/nagios/nagios.cfg, where a global command for
hosts (OCHP) and services (OCSP) is defined. This causes the noncentral
Nagios instance to send every result to the central server.

In the service and host definitions you can additionally set whether the
corresponding service or host should use the mechanism or not. For the
central Nagios server to be able to use the results transferred, each service
or host on it must finally be defined once again.

You should only switch on the two parameters obsess_over_services
and obsess_over_hosts in nagios.cfg if you really do want distributed
monitoring:

/etc/nagios/nagios.cfg

obsess_over_services=1
ocsp_command=submit_service_check
ocsp_timeout=5
obsess_over_hosts=1
ochp_command=submit_host_check
ochp timeout=5

318

15.2 Defining OCSP/OCHP Commands

Every time a new test result arrives on the Nagios server, it calls the com-
mand object defined with ocsp_command or ochp_command. This causes
an additional load on resources.

The two timeouts prevent Nagios from spending too much time on one
command. If processing does not terminate (because the command itself
does not receive a timeout and the central Nagios server does not react),
then the process table of the noncentral Nagios instance would fill very
quickly, and might overflow.

If you want to selectively exclude test results for specific services and hosts
from transmission to the central Nagios server, the following parameters
are used:

define host({

obsess_over_ hosts=0

}

define service{

obsess_over_services:O

With a value of 1 the local Nagios instance sends the results of the host or
service check to the central server, but with a value of 0, this does not hap-
pen. The 1 is the default for both obsess_over_hosts and obsess_over_
services; if results are not to be transferred, then you have to specify the
two parameters. This is always recommended if the central location is only
responsible for particular things, and the remaining administration is car-
ried out on site.

15.2 Defining OCSP/OCHP Commands

Defining the two commands with which the noncentral instances send
their results to the Nagios main server in most cases involves scripts that
are based on send_nsca (see also the example on page 306). For ser-
vices, such a script would look like the following one, in this case called
submit_service_check:

#!/bin/bash
Script submit_service_check

PRINTF="/usr/bin/printf"
CMD="/usr/local/bin/send_nsca"

319

15 Distributed Monitoring

CFG="/etc/nagios/send _nsca.cfg"
HOST=$1

SRV=5$2

RESULT=$3

OUTPUT=$4

$PRINTF "$b" "$HOST\t$SRV\t$RESULT\t$OUTPUT\n" | $CMD -H nagios -c $CFG

When run, the command expects four parameters on the command line in
the correct order: the host monitored, the service name, the return value
for the plugin opened (0 for OK, 1 for WARNING, etc.), and the one-line
info text that is issued by the plugin. To format the data we use the printf
function (man printf). The newly formatted string is finally passed on to
send_nsca.

The equivalent script for OCHP (stored here in the file submit_host_check)
looks something like this:

#!/bin/bash
Script submit_host_check

PRINTF="/usr/bin/printf"
CMD="/usr/local/bin/send_nsca"
CFG="/etc/nagios/send nsca.cfg"
HOST=$1

RESULT=S$2

OUTPUT=$3

$PRINTF "$b" "S$HOST\t$RESULT\t$OUTPUT\n" | $CMD -H nagios -c $CFG

The only thing missing is the specification of the service description.

It is best to store the two scripts, in conformity with the Nagios documen-
tation, in a subdirectory eventhandlers (which normally needs to be cre-
ated) in the plugin directory (usually /usr/local/nagios/libexec, but
for some distributions this will be /usr/lib/nagios/plugins). You can
retrieve this from the definition of the matching command object using the
macro $USER18$. This is best defined in the misccommands . cfgfile:

define command{

command_name submit_service_check

command_line $USER1$/eventhandlers/submit_ service check $HOSTNAMES '$
SERVICEDESCS’ $SERVICESTATEIDS ’S$SERVICEOUTPUTS’

define command{

command_name submit_host_check

command_line $USER1$/eventhandlers/submit_host_check $HOSTNAMES$ S$HO
STSTATEIDS ‘S$HOSTOUTPUTS’

320

15.3 Practical Scenarios

If you use a separate file for this, you must make sure that Nagios will
load this file by adding an entry to /etc/nagios/nagios.cfg. The single
quotes surrounding the $SERVICEDESC$ macro and the two output macros
in the command_line line are important. Their values sometimes contain
empty spaces, which the command line would interpret as delimiters with-
out the quotes.

15.3 Practical Scenarios

One application for distributed monitoring is the monitoring of branches
or external offices in which a noncentral Nagios installation is limited to
running service and host checks and sending the results to the central in-
stance. The noncentral instances do not need further Nagios functions,
such as the notification system or the Web interface.

On the other hand, if administrators look after the networks at the dis-
tributed locations, while the central IT department only looks after spe-
cial services, then the noncentral Nagios server is set up as a normal, full-
fledged installation and selectively forwards only those check results over
the OCSP/OCHP mechanism to the central office for which the specialists
there are responsible.

Whatever the case, you must ensure that the host and service definition is
available both noncentrally and centrally. This can be done quite simply
using templates (Section 2.11 on page 75) and the cfg_dir directive (Sec-
tion 2.1, page 55): you set up the definition so that the configuration files
can be copied 1:1.

15.3.1 Avoiding redundancy in configuration files

In the following example we assume that the noncentral servers only per-
form host and service checks and send the results to the central server, and
do not provide any other Nagios functions. The following directories are
set up on the central host:

/etc/nagios/global
/etc/nagios/local
/etc/nagios/sites
/etc/nagios/sites/bonn
/etc/nagios/sites/frankfurt
/etc/nagios/sites/berlin

Each of the configurations used for a location lands in the directory /etc/
nagios/sites/location. After global, all the definitions follow that

321

15 Distributed Monitoring

can be used identically at all locations (e.g., the command definitions in
checkcommands . cfg). The directory local takes in specific definitions for
the central server definitions. These include the templates for services and
hosts, where distinction must be made between central and noncentral.

This directory is also created separately on the noncentral servers: only the
folders global and sites/location are copied from the central instance
to the branch offices.

The three directories are read in with the cfg_dir directive in /etc/na-
gios/nagios.cfg:

-- /etc/nagios/nagios.cfg

cfg_dir=/etc/nagios/global
cfg dir=/etc/nagios/local
cfg_dir=/etc/nagios/sites

Only settings that are identical for the noncentral and central page are used
in the service definition:

-- /etc/nagios/sites/bonn/services.cfg
define service{
host_name bonno01l
service_description HTTP
use bonn-svc-template

check_command check_http

The location-dependent parameters are dealt with by the templates.

15.3.2 Defining templates

In order that service definitions are identical on both the central and non-
central servers, the local templates must have the same names as the cen-
tral ones. In addition you should ensure that the obligatory parameters
(see Chapter 2 from page 53) are also all entered, even if they are not even
required at one of the locations, because together, the template and service
definitions must cover all obligatory parameters.

The following example shows a service template for one of the noncentral
locations:

-- On-Site configuration for the Bonn location
define servicef{

322

15.3 Practical Scenarios

name bonn-svc-template
register 0

max check_attempts
normal_ check_interval

3
5
retry check interval 1
active checks_enabled 1

1

passive_ checks_enabled

check period 24x7
obsess_over_services 1
notification_interval 0
notification_period none
notification_options n
notifications_enabled 0
contact_groups dummy

The parameters that are important for the noncentral page are printed in
bold type. Besides the parameters that refer to the test itself, the parameter
obsess_over_services must also not be left out. This ensures that the
check results are sent to the central server.

notifications_enabled switches off notification in this case, since the
local admins do not need to worry about error messages from services that
are centrally monitored. Alternatively this can be done globally in the non-
central /etc/nagios/nagios.cfg.

register O ensures that the template is used exclusively as a template, so
that Nagios does not interpret it as a separate service definition.

The counterpart with the same name on the central server looks something
like this:

-- Service template for the central Nagios server
define service{

name bonn-svc-template

register 0

max_check_attempts 3
normal_check_interval 5
retry check interval 1
active_checks_enabled 0
passive checks enabled 1
check period none
check freshness 0
obsess_over_ services 0
notification_interval 480
notification period 24x7
notification_options u,c,r

notifications_enabled 1
contact_groups admins

323

15 Distributed Monitoring

The parameter passive_checks_enabled is of importance here, as well
as the configuration of the notification system. On the central side, the pa-
rameters involving the test itself come into play only if freshness checking
is used (see Section 13.4 from page 295). This works only if the central Na-
gios server is itself in a position to actively test all services if there is any
doubt. Since the check_command in this simple template solution is given
in the location-dependent service definition, which is identical on the non-
central and central servers, this will work only if the same command object
can be used both centrally and noncentrally—if the object definitions in
global/checkcommands. cfg match on both sides.

In the example, however, we completely switch off active tests of services
at the Bonn location, with check_period none and check_freshness set
to 0. The system described so far can also be applied to host checks, of
course.

324

Part Il

The Web Interface and Other Ways
to Visualize Nagios Data

The Classical Web Interface

On the right is the navigation area with the unmistakable black background,
and the remaining area is for displaying the CGI scripts called (Figure 16.1)-
the Nagios Web interface is that simple. The start screen provides access to
the program documentation—extremely useful if you just want to look up
something quickly.

Provided you have the correct access rights, the Web interface allows much
more than just looking up information. You can run a series of commands
and control Nagios actively: from setting a single command, to switching
messages on and off, to restarting the server.

A separate book would be needed to describe all the features completely.
This is why we will just describe the concept here on which the CGI pro-
grams are based,' in this way giving you a picture of the extensive range of
options available.

1 There is a good reason that we refer here to CGI programs and not to CGI scripts: all
CGI programs for Nagios 2.x and 3.0 are C programs.

327

16 The Classical Web Interface

Many functions use the very same CGI program. If you move the mouse
up and down in the navigation area shown in Figure 16.1 and observe the
status display of the browser when doing this, which reveals the URLs to
be called, you will see that in the Monitoring section up to the Show Hosts:
entry field, the CGI program status.cgi is always called, with just four
exceptions. Only the parameters are different. Things are similar for the
CGI program cmd.cgi, with which general commands can be run. The
parameters passed specify whether a comment is to be read, or a message
enabled or disabled, or if Nagios is to be restarted.

Figure 16.1:
AR . - ®
) Nagios
The subitem Nag a 'os
—
Unhandled under s Copyright (c) 1999-2007 Ethan Galstad
. ® Documentation
both the Service Version 3.0rc1
Problems and Host o Tactical Overview December 17, 2007
. # Host Detail
Problems menu items © Hostgroup Overview New Installations:
Hortgroup cria
has on Iy been on the @ Serviceoroup Overview If you have just installed Nagios, read the documentation for instructions on getting
f h ® :erv?cegronp zurr:mal’v everything up and running.
start page of the Sstatue o

#3-D Status Map Click here for a brief overview of new features that have been added in this release.

Nagios Web interface
since Nagios 3.0.

For More Information:

® Unhandled Visit the Nagios homepage at hitp:/Awww.nagios.org for information on bug fixes,
nhandle:
@ Network Outages upgrades, support, ete.

& Comments

. c
Downtime Nagios and the Nagios logo are trademars, , regisiere registered by Nagios Enterprises, LG

®Process Info Nagios is provided AS 1S wilh NO WARRANTY OF ANY KIND, INCLUDING THE WARRANTY OF DESIGN, MERGHANTABILITY, AND FITNESS FOR A PARTICULAR

® performance Info PURI

Scheduling Queue

Reporting
Trends

Availability
 Alert Histogram
@ Alert History

® Alert Summary

® Notifications
® Event Log

Configuration

® View Config

Table 16.1: CGI program Description
overview of CGI status.cgi Status display in various forms; by far the most
programs important CGI program (Figures 16.10 to 16.15,
page 334.)
statusmap.cgi Topological representation of the monitored

host (see Figure 16.27, page 347)
statuswrl.cgi Topological representation in 3D format; re-
quires a VRML-capable browser and allows in-
teractive navigation in a virtual space (Figure
16.29, page 349)
statuswml.cgi Simple status page for WAP devices (cellphone)

328

16 The Classical Web Interface

continued:

CGI program Description

extinfo.cgi Additional information on a host or service,
with the possibility of running commands (Fig-
ure 16.4, page 331)

cmd.cgi Running commands (Figure 16.23, page 343)

tac.cgi Overview of all services and hosts to be moni-
tored, the Tactical Overview (see Figure 16.26 on
page 346)

outages.cgi Network nodes that cause the failure of partial
networks (Figure 16.30, page 350)

config.cgi Display of Nagios object definitions (Figure
16.31, page 351)

avail.cgi Availability report (e.g., “98 percent of all sys-
tems OK, 2 percent WARNING”, see Figure
16.32, page 352)

histogram.cgi Histogram of the number of events occurring
(Figure 16.34, page 353)

history.cgi Display of all events that have ever occurred

(Figure 16.35, page 355)
notifications.cgi Overview of all sent notifications (Figure 16.36,

page 355)

showlog.cgi Display of all log file entries (Figure 16.37, page
356)

summary.cgi Report of events, which can be compiled by

host, service, error category and time period
(Figure 16.39, page 358)

trends.cgi Time axis recording the states that have oc-
curred (Figure 16.40, page 359)

Table 16.1 shows an overview of all the CGI programs included in the pack-
age. They all check to see whether the person running the requested action
is allowed to do so. Normally a user can only access the hosts and services
for which he is entered as the contact. In addition there is the possibility of
assigning specific users more comprehensive rights, so that they are basi-
cally allowed to display all hosts and services, for example, or to request sy-
stem information. Settings for other users are made in the cgi.cfg config-
uration file, and the authentication parameters are described in Appendix
A.2, page 606.

329

16 The Classical Web Interface

Figure 16.2:

The menu item
Service Problems
brings current
problems to
attention

Figure 16.3:
The Host Problems
menu item reveals
this display

16.1 Recognizing and Acting On Problems

A suitable starting point for the administrator is the Service Problems page,
which can be reached through the menu item, shown in Figure 16.2. You
can see all problems at a glance. If there is just a service-related problem,
but not a host-related one, the host name in the Host column has a gray
background, but a red background means the host itself is the source of the
trouble.

Host Status Totals Service Status Totals

N a ios Current Network Status
g Last Updated: Sun Jul 17

10:06:28 CEST 2005
Updated svery S0 seconds ol 1 I s 1 [
® Hiome Nagios® - www. nagios ora

Logged b
& Documentation (/=g B e

2 59 5 104

View History For all hosts

View Notifications For All Hosts
View Host Status Detail For ALl
Hosts

@ Host Detail

© Hostgroup Overview

® Hostgroup Summary

up Grid

roup Overview
roup Summary
roup Grid

® Status Map

#3-D Status Map

Service Status Details For
All Hosts

Display Filters:
Host Status Types: All

Host Properties; Any

Service Status Types: All Problems.
Service Properties. Any

CRITICAL- 172.21.33.1 rta
27431.748ms, lost 0%

baamail PING 07-15-2005 18:00:00 3d Oh 5m28s 10/10

® Network Outages WARNING- 172 18.70.2: rta

07-15-2005 18:00:00 10d 17h 7m 235 10/10 14309, 547ms, lost 0%

mwimail PING WARNING

CRITICAL- 172.17.17.6: Tta nan,
-m lost 100%
CRITICAL - Socket timeout after 10
seconds

07-17-2005 10:03:21 1d 18h 33m 165 1/3
® Comments

® Downtime SMTP

-

07-17-2005 10:01:24 1d 18h 30m 55 1/3
® Process Info

® Performance Info
% Scheduling Quene

CRITICAL- 172.17.17.7: Tta nan,

07-17-2005 10:05:06 1d 18h 31m 235 U3 lost 100%

5 Matching Service Entries Displayed

& Availability

The hosts s1s-mail and sls-proxy, which have failed in Figure 16.2, can
be seen again in the Host Problems menu item (Figure 16.3): sls-mail can-
not be reached (UNREACHABLE), so the real problem therefore exists in the
failure of the host s1s-proxy. This dependency is illustrated in the Outages
menu item (Figure 16.30, page 350) or the Status Map (Figure 16.27, page
347). In Figure 16.27 the two failed hosts are shown with a red background,
and you can also clearly see which host is dependent on the other (always
from the point of view of the central Nagios host).

_ 07-17-2005 12:21.24 1d 20h 48m 95 CRITICAL - 172.17.17.6: rta nan, lost 100%
5 _ 07-17-2005 12:20.06 1d 20h 48m 95 CRITICAL - 172.17.17.7: rta nan, lost 100%

2 Matching Host Entries Displayed

16.1.1 Comments on problematic hosts

The administrator clarifies the problem with the external office by tele-
phone: the DSL connection has failed. He announces this failure to the

330

16.1 Recognizing and Acting On Problems

provider responsible. To stop his colleagues from going to the same trouble
again, the admin enters a corresponding comment on the failed host. To
do this he clicks in the status display on the host name, which takes him
to an information page for this specific host (Figure 16.4), the options of

which are described in more detail in Section 16.2.2, page 339.

Nagios

@ Home
® Documentation

Monitoring

® Tactical Overview
® Service Detail

® Host Detail

%) Hostgroup Overview

& Sexvicagroup Grid
4 Status Map
4 3-D Status Map

® Service Problems
® Host Problems
® Network Outages

® Comments
® Downtime

& Availability
& Alert Histogram
& Alert History

& Alext Summary

® Notifications
® Event Log

Configuration

Using the Add a new comment link at the bottom of the page, the CGI
program cmd.cgi (Section 16.2.3, page 343), which by passing on a cor-
responding parameter is already prepared for this task,? allows a comment
to be recorded (Figure 16.5). The host name is already shown, the check
mark in the Persistent box ensures that the comments will also “survive” a
Nagios restart. The user name filled out in the Author (Your Name): field

Host Information

Last Updated: Sun Jul 17 10:20.03 CEST 2005 Host
Updated every 50 seconds proxy SLS
Nagios® - www narios org

Loged in a5 web (sls-proxy)
View Status Detail For Thic Host Member of
Visw Alert History For This Host : .
View Trends For This Host eli-vpn-proxies
View Alert Histogram For This Host

(View Availahility Report For This Host 172.17.17.7

Wiew Motifications This Host

Host State Information

Host Status:
Status Information: ~ CRITICAL - 172.17.17.7: rta nan, lost 100%
Tta=0.000ms;1000.000;1000.000;0;

Performance Data: Pl—100%;100,100s,

Current Attempt: 5/5

State Type: HARD

Last Check Type: ACTIVE

Last Check Time: 07-17-2005 10:15:06
Status Data Age: 0d 0h 4m 575
gﬁzzgfheduled Active

Latency: 0.000 seconds

Check Duration: 10.008 seconds

Last State Change: 07-15-2005 15:35:06
Current State Duration: 1d 18h 44m 57s
Last Host Notification: 07-15-2005 15:35:06
Current Notification
Number:

Is This Host Flapping? N/A
Percent State Change: IN/A
In Scheduled
Dovmtime?
Last Update:

1

NO

07-17-2005 10:19:49

Active Checks: = ENABLED

Passive Checks: ENABLED

Cbsessing: ENABLED

Notifications: ~ ENABLED

Event Handler: = ENABLED

Flap Detection: =ENABLED

Host Comments

£ Add a new comment

& Delete all comments

This host has no comments associated with it

Host Commands

ﬂ Locate host on map

xmsable active checks of this host

mﬂe'schedule the next check of
this host
aSubmlt passive check result for
this host

Stop accepting passive checks
for this host

xstup obsessing over this host
@ Acknowledge this host problem
3 Disable notifications for this host

ixDelay next host notification

#schedule downtime for this host
Disable notifications for all
services on this host

"Enahle notifications for all

services on this host

ms:hedule a check of all services
‘on this host

Disable checks of all services on
this host
Enable checks of all services on
this host
Disable event handler for this
host

xDlsahle flap detection for this
host

can be edited, as can the actual comment in the Comment field.3

page 343.

parameter lock_author_name (see page 609).

cmd_type=1&host=sls-proxy. More on the parameters in Section 16.2.3 following,

Starting with Nagios 3.0, amending the author name can be prevented by using the

Figure 16.4:
extinfo.cgi
provides additional
information on the
selected host

331

16 The Classical Web Interface

Figure 16.5:

Entering a comment

for a host

Figure 16.6:

A speech bubble

displays the
existence of
comments

Figure 16.7:

A click on Delete all

comments deletes all

comments at once

External Command Interface
Last Updated: Sun Jul 17 10:24:13 CEST
2008

Nagios® - www. nagios org

® Homd Logged in as web

® Documentation

You are requesting to add a host comment

Command Options Command Description

® Host Detail Host This command is used to add & comment

O T — ——— Mame: SISProXy for the specified host. If you worl with

® Hostgroup Summary other administrators, you may find 1t

® Hostgroup Grid Persistent: |+ usefil to share information about a host

® Servicegroup Overview Author that is having problems if more than one
up Summary (Your fwob of you may be working on it. [fyou do not

® Servicegroup Grid Name): check the ‘persistent’ option, the

® Status Map comment will be automatically be deleted

®3-D Status Map Comment:husfa\\ der DSL-Leitung, Stérung gemeldet the next time Nagios is restarted

@ Service Problems Commit | Reset

® Host Problems
& Network Outages

Please enter all required information before committing the command.
T Required fields are marked in red.

Failure to supply all required values will result in an error.
® Comments
® Downtime

The administrator confirms the entry with the Commit button. Returning to
the status overview, for example with the Service Problems menu item, the
administrator will see a speech bubble next to the host name, indicating
that a comment exists for this host (Figure 16.6). Clicking on the icon opens
the corresponding information page and takes the admin directly to the
comment entries (Figure 16.7). Clicking on the icon of the trash can in the
Actions column deletes these individually, if required.

- FING g-200507—17 10:29:06 1d 18h 66m 1s /&

Host Comments
¢ Add a new comment

CRITICAL -
172.17.17.7: rta
nan, lost 100%

E’ Delete all comments

2005-07-17 waob

Ausfall der DSL-Leitung, Stérung 5
10:28:28

— Yes User N/A =

16.1.2 Taking responsibility for problems

Acknowledgements (so spelled on the Web interface) are oriented more
closely to the workflow than simple comments. An acknowledgement sig-
nals to other administrators that somebody is already working on a prob-
lem, so nobody else needs to get involved with it for the time being. In the
status overview, a small laborer icon symbolizes this form of taking respon-
sibility (Figure 16.8), and Nagios additionally notifies the relevant contacts.

332

16.1 Recognizing and Acting On Problems

1d 23h 26m E1s CRITICAL- 172.17.17.7: rta nan, lost 100%

I 5 I - -7 5 0x.c6

To issue such a statement, the link Acknowledge this Host Problem is used
on the extended info page for the host in question. As well as the fields
used for entering a normal comment, there are two checkboxes in this case,
Sticky Acknowledgement (Figure 16.9)—if checked, this option prevents pe-
riod notification if the error status persists—and Send Notification. If the
latter is also checked, Nagios notifies the other administrators.

You are requesting to acknowledge a host problem

Command Description

Command Options
Host Name:

sls-proxy
Sticky

~
Acknowledgement:
Send Notification: [+

This command is used to acknowledge a host problem
When a host problem is acknowledged, fature
notifications about problems are temporarily disabled
until the host changes from its current state. Ifyou
want acknowledgement to disable notifications until
the host recovers, check the ‘Sticky Acknowledgement®

Persistent I~ checkbax. Contacts for this hast will receive a
Comment: notification about the acknowledgement, so they are
Author (Your aware that someone isworking on the problem.
Name): L"! Additionally, a comment will also be added to the host
Make sure to enter your name and fill in a brief
Comment: |J"3 bearbeitet DSL-Stérung description of what you are doing in the comment fisld
If you would lilee the host comment to be retained
_Commit | Reset | e e T e e ek vy

t' checkbox. Ifyou do not want an
acknowledgement notification sent out to the
appropriate contacts, uncheck the 'Send Notification'

checkbox.

Please enter all required information before committing the command.
Required fields are marked in red.
Failure to supply all required values will result in an error.

The effect of Persistent Comment is different in Nagios 2.x and Nagios 3.0:
In Nagios 2.x the comment is only preserved on a reboot if the checkbox
has been marked. Unfortunately, using this to save comments in case of
a reboot has the disadvantage that the comment does not disappear auto-
matically when the problem has been solved. On the other hand, Nagios
3.0 normally retains all comments after a reboot. If the check mark for Per-
sistent Comment is deleted, Nagios will remove the comment automatically
as soon as the problem has been rectified. If the check mark is set, the
comment must be removed manually if it is no longer needed, as in Nagios
2.X.

What we are demonstrating here, using a faulty host state, can also be ap-
plied to faulty services. The CGI programs are the same, and through the
passing of parameters they receive information on whether a host or ser-
vice is involved, and react accordingly; only the host field receives company
in the form of a Service entry.

Figure 16.8:

A laborer icon shows
that an admin has
already taken on
responsibility for the
problem
(acknowledgement)

Figure 16.9:
Entry dialog for a
host
acknowlegement

333

16 The Classical Web Interface

16.2 An Overview of the Individual CGI Programs

At the time of going to press, this chapter was the most extensive docu-
mentation on the Nagios Web interface, especially for the individual CGI
scripts. But for reasons of space, we shall not go into every detail. If you
want to know more, you must take a look at the source code of the scripts
or look at the nagios-users* mailing list. Some of these are also read by
the Nagios developers, and many a question is answered there for which
there is currently no documentation.

16.2.1 Variations in status display: status.cgi

By far the most important CGI program, status. cgi is responsible for the
status display. What it shows is determined by three parameter groups.
The first one defines whether the Web page generated displays all hosts, a
specific host, or a service group:

http://nagiosserver/nagios/cgi-bin/status.cgi?host=all
http://nagiosserver/nagios/cgi-bin/status.cgi?hostgroup=all
http://nagiosserver/nagios/cgi-bin/status.cgi?servicegroup=all

With host you can select individual hosts, and all in this case stands for
all hosts. hostgroup enables a specific host group to be displayed, and
again you can use all to stand for all host groups. Finally, servicegroup
tells the CGI program to display either the individual service group given
as avalue, or all service groups, given with all.

Figure 16.10: Service Overview For Host
The overview Group 'SAP*

output style
SAP P-10 (SAP)

sap-12 |UP Fok | |Q %f‘
sap-13 |UP T |, Qﬁ%
sap14 UP soK 1 |Q Qﬁﬂ_

sap-39 UP — Q ﬁ\ﬁ
sap-57 |UB sox (AR

The outputs of host=all and hostgroup=all are only different in their
style, which is defined by the second parameter group. For host=all,
style=detail is the default setting, and for hostgroup=all, it is style=

4 http://lists.sourceforge.net/mailman/listinfo/nagios-users

334

16.2 An Overview of the Individual CGI Programs

overview. status.cgi?host=all&style=overviewtherefore delivers the
same result as status.cgi?hostgroup=all.

Hosts that do not belong to a host group only appear in the detail view
host=all&style=detail or hostgroup=all&style=hostdetail. All
other display styles always show entire host groups from which individ-
ual hosts may be missing. status.cgi provides five possible output styles:
overview represents the hosts in a table, but summarizes the services ac-
cording to states (Figure 16.10). For the host group SAP, you would call the
corresponding display with the URL

http://nagiosserver/nagios/cgi-bin/status.cgi?hostgroup=SAP&style=overview

The style value summary compresses the output of overview: status.
cgi only displays one host group for each line (Figure 16.11 shows this for
Nagios 2.x, Figure 16.12 for Nagios 3.0). For Nagios 3.0, error states are
distinguished as unhandled (no acknowledgement set) or acknowledged.

Status Summary For Host Figure 16.11:
Group 'SAP* The summary output

style of Nagios 2.x

SAPP-10(SAP 2z 2 WARNING
Status Summary For Host Group 'SAP"' Figure 16.12:
The summary output
style of Nagios 3.0
30 0K
SAP P-10 (SAP) sup LwarninG : [N
|1 Acknowlsdged |

The grid style provides an extremely attractive summary in which you can
see the status of each individual service by means of the color with which it
is highlighted (Figure 16.13). detail shows each service in detail on a sep-
arate line. The hostdetail output style is limited just to host information,
providing detailed information with one line for each host (Figure 16.15).

Status Grid For Host Group Figure 16.13:
The gridoutput style

SAP P-10 (SAP)

sap-12 |PING SAP Dialog Networl: Time SAP Dialog Response Time SAP-3200 SAP-3300 SAP-3600 SAP AS 12 QB A
FING SAP Dialog Network Time SAP Dialog Response Time SAP

<4213 5ol Numbers SAP-3201 SAP-3301 SAP_AS 13 A

sap-14 PING SAP Dialog Networl Time SAP Dislog Response Time SAP-3202 SAPAS_14 QR A

sap-39 | BING SAP Dialog Networl Time SAP Dislog Response Time SAP-3203 SAP_AS_39 QRS

sap-57 PING SAP Dialog Networlk Time SAP Dialog Response Time SAP-3204 SAP_AS 57 QBA

335

16 The Classical Web Interface

Figure 16.14:
The detail output
style

Figure 16.15:
The hostdetail
output style

Table 16.2:
Possible values for
hoststatustypes

sap12 Ry FING Hox

SAP Dialog Network
SAP Dialog Network o
Time

SAP Dialog Response
SAP Dialog Response |y

Time
SAP-3200 = ok
SAP-3300 =14
SAP.3600 Hox
SAP AS 12 oK
sapl3 PING Hex

SAP Dialog Network |z
ime

SAP Dialog Response
SAP Dialog Response {55

Time

SAP SpoolNumbers DK

SAP-3201 =1
SAP.3301 Hox
SAP 4S 13 oK

sariz @R ue

sapls R
sap14 Ao
sap-38 Ao
sap-57 Ao

The third and final parameter group allows you to influence, through selec-
tors, what states and what properties are shown by status.cgi, such as
all services in an error state for which no acknowledgement has yet been
set by an administrator (see Section 16.1.2, page 332). States are passed
on with the hoststatustypes or servicestatustypes parameter, prop-
erties with hostprops and serviceprops. All four parameters demand
numerical values after the equals sign, and these are summarized in Tables

16.2, 16.3, and 16.4.

Value Description

2005-07-17 15:54:15
2005-07-15 18;14:49
2005-07-17 07: 59: 13
2005-07-17 16:37:36

2005-07-17 01:22:55

Service Status Details For

Host Group 'SAP'

2008-07-17 16:68:21 0d 14h 41m 40s

2005-07-17 15:58:05 0d Oh Om 225

2005-07-17 15:58:49 0d 22h 56m 595

2005-07-17 15:68:33 1d 21h 48m 57s

2008-07-17 15:58:38 1d 21h 48m 57s

2008-07-17 16:68:22 1d 21h 49m 57s
2005-07-17 16:69:06 1d 21h 49m 8s

2005-07-17 15:58:50 2d 2h 51m 315

2005-07-17 15:54:34 1d 21h 48m 18

2008-07-17 16:66:39 1d 21h 46m 38

2005-07-17 15:57:23 1d 21h 39m 465

2005-07-17 15:68:07 5d Sh 56m 145

2005-07-17 15:68:51 5d Sh 56m 14s
2005-07-17 15:58:35 1d 21h 50m 43s

Host Status Details For Host

Group 'SAP"

2048h32m20s Ol

=

2048h34m23s Ol

b

2048h34m22s Ol

e

2048h34m22s Ol

b

§ Matching Host Entries Displayed

OK- 10.128.264.12: rta 39.244ms, lost 0%
P10 p10db012_P10_00 Dialog
FrontEndNetTime 15 msec

P10 p10dh012_P10_00 Dialog ResponseTime
81 msec

TCP OK- 0.031 second response time on port
3200

TCP OK- 0,031 second response time on port
3300

TCP OK- 0,031 second response time on port
3600

OK- SAP server p10db012_ P10 00 available.

OK- 10.128.254.13: ta 92.678ms, lost 0%

P10 pl0ap013_P10_01 Dialog
FrontEndNetTime 517 msec

P10 p10ap013_P10_01 Dialog ResponseTime
31msec

P10 Spool
SpoolNumbers UsedNumbers 35 %

TCP OK- 0.031 second respense time on port.
3201
TCP OK- 0,030 secand response time on port.
3301

OK. SAP server pl0ap013_P10 01 available.

7d 6h 37m 345 OK.- 10,128,254 12 responds to ICMP. Packet 1, rta 39.340ms
- 10.128.254 13 responds to ICMP, Packet 1, rta 39.158ms
- 10.128.254 14 responds to ICMP. Packet 1, rta 39.223ms
- 10,128,254 39 responds to ICMP. Packet 1, rta 39 472ms

- 10,128,254 57 responds to ICMP. Packet 1, rta 39 389ms

1 PENDING (a result of the very first test planned for this host

is not yet available)

2 UP
DOWN

8 UNREACHABLE

336

16.2 An Overview of the Individual CGI Programs

The third and final parameter group allows selectors to be used to influence
what states and properties are displayed bystatus.cgi, fofr instance all
services in an error state for which no administrator has yet set an acknowl-
edgement (see Section 16.1.2, page 332). Conditions are passed with the pa-
rameter hoststatustypes or servicestatustypes, and properties with
the hostprops and serviceprops parameters. All four parameters require
numerical values after the equals sign, and these are summarized in tables

16.2, 16.3 and 16.4.

Value Description
1 PENDING (Service was originally planned for a check, but so
far no result is available)
2 OK
4 WARNING
8 UNKNOWN
16 CRITICAL
Value Description
1 Scheduled downtime (downtime planned)
2 No Scheduled downtime (no downtime planned)
4 Acknowledgement (status confirmed by the admin)
8 No acknowledgement
16 Host/Service check disabled
32 Host/Service check enabled
64 Event Handler disabled
128 Event Handler enabled
256 Flap Detection disabled
512 Flap Detection enabled
1024 Host/Service oscillates (flapping)
2048 Host/Service does not oscillate
4096 Hosts or services currently excluded from a notification
8192 Notification enabled
16384 Passive host/service checks disabled (Chapter 13, page 291)
32768 Passive host/service checks enabled
65536 Hosts/services for which there is at least one result deter-
mined for each passive test
131072 Hosts/services for which there is at least one active check re-

sult

Table 16.3:
Possible values for

servicestatus-

types

Table 16.4:
Possible values for
host and

serviceprops

337

16 The Classical Web Interface

Figure 16.16:

This information box

shows what states

and properties

status.cgi should

display

continued:

Value Description
262144 Hosts/services in the hard state (from Nagios 3.0)
524288 Hosts/services in the soft state (from Nagios 3.0)

If you want to query several states or properties simultaneously, you just
add the specified values together: status.cgi?host=all&servicesta-
tustypes=28 shows all services with an error status: WARNING, UN-
KNOWN, and CRITICAL, that is, 4+8+ 16=28. This query is identical to
the Service Problems menu item in the navigation area.

status.cgi?hostgroup=all&hoststatustypes=12&style=hostdetail
corresponds to the Host Problems menu item in the navigation area. It
queries all hosts which are either DOWN or UNREACHABLE (here 4 + 8=12).
Since only host information should be shown, but no service information,
the output style is in the form of hostdetail.

status.cgi?host=all&servicestatustypes=24&serviceprops=10 is
the variation of the first example: only the states UNKNOWN and CRIT-
ICAL (8 +16=24) are shown, and only those that neither show a planned
downtime, nor have already been confirmed (2 +8=10).

The CGI program specifies the filter parameter each time in a separate
checkbox. Figure 16.16 shows this for the third example.

Display Filters:

Host Status all

Types:

Host Properties: Any

Service Status Unknown | Critical

Types:
Service Mot In Scheduled Downtime & Has Not
Properties: Been Acknowledged

If you want, you can define your own navigation area to your own re-
quirements or just use the existing one. The main page consists of one
frame, and the navigation area itself is defined by a normal HTML file:
/usr/local/nagios/share/side.html.}

One example of a changed side.html is provided on the Nagios Demo
page® at Netways;’ another is the Nuvola style, shown in the figure on page
369.

5 If you have kept to the installation in this book.
6 http://nagios-demo.netways.de/
7 http://www.netways.de/

338

16.2 An Overview of the Individual CGI Programs

16.2.2 Additional information and control center:
extinfo.cgi

If called with the host or service parameter, extinfo.cgi not only pro-
vides detailed information on a specific host (Figure 16.4, page 331) or ser-
vice, it also serves as a control center for hosts and services (parameter
hostgroup) and for service groups (servicegroup). Depending on the
object class for which it is called, you can run various commands from
here.

In the area on the left, the status of the host is extensively documented
and in the box on the right—overwritten with Host Commands—there is a
selection of commands that can be run. The latter commands call cmd. cgi
(Section 16.2.3, page 343) and only function if the interface for external
commands (Section 13.1, page 292) is active. The lower area of the page
allows you to enter object-specific comments, read them, and delete them
again. The Web page that extinfo.cgi generates for services also follows
this pattern.

Corresponding pages for service and host groups (Figure 16.17), on the
other hand, allow only group-specific commands to be run and do not show
any additional information. Each command applies to the entire group,
sparing you from a lot of mouse clicking. Disabling notifications for all hosts
in this hostgroup, for example, ensures that Nagios does not send any more
messages for hosts in this host group.

Hostgroup Information
Last Updated: Sun Jul 24 15:17:07 CEST 2005
Updated every 90 seconds

Nagios® - v nagios. org HOStngUp
Logged in as wob SAP P-10
Wiew Status Detail For This Hostgroup (SAP)

Wiew Status Overview For This Hostgroup
Wiew Status Grid For This Hostgroup
View Availability For This Hostgroup

Hostgroup Commands

_‘x’zSchedule downtime for all hosts in this hostgroup
_‘szSchedule downtime for all services in this hostgroup
wfEnable notifications for all hosts in this hostgroup
n@EDisable notifications for all hosts in this hostgroup
‘EEnable notifications for all services in this hostgqroup
@EDlsahle notifications for all services in this hostgqroup
‘/Enable active checks of all services in this hostgroup
xDisahle active checks of all services in this hostgroup

Apart from hosts, services, and corresponding groups, the CGI program has
other display functions, enabled by the CGI parameter type:

http://nagsrv/nagios/cgi-bin/extinfo.cgi?type=value

Figure 16.17:
Command center for
the SAP host group:
extinfo.cgi?type=
5&hostgroup=SAP

339

16 The Classical Web Interface

Figure 16.18:
Information on the
Nagios process and

global settings:
extinfo.cgi?type=
0

Figure 16.19:
Overview of all
existing comments:
extinfo.cgi?type=
3

Depending on the value specified, further parameters are required, so to
display the service you also have to include the host name and service des-
ignation:

extinfo.cgi?type=0
Shows information (such as starting time and process ID) for the Na-
gios process itself and all global parameters (normally notifications
are sent, performance data processed, etc.; see Figure 16.18). In the
Process Commands box the global parameters can be changed, and
Nagios can also be stopped and restarted.

Process Information Process Commands

Program Start Time: 2005-07-24 13:07:54 9. Shutdown the Nagios process
Total Runaing Time: od 1h 31m 43s /-Restart the Nagios process
Last External Command Check: 2005-07-24 14:39:23 X Disable notifications
Last Log File Rotation: NJA X stop exscuting service checks
Nagios PID 16838 3 stop accepting passive service checks
Notifications Enakled? YES X stop executing host checks
Service Checks Being Executed? YES X stop accepting passive host checks
Passive Service Checks Being Accepted? | YES X Disable event handlers
Host Checks Being Executed? YES W/ Start obsessing over services
Passive Host Checks Being Accepted? || YES | Sl e e i
Event Handlers Enabled? es V/Enabl flap detection

) XDlsable performance data
Obsessing Over Services? No
Obsessing Over Hosts? No
Flap Detection Enabled? No
Perf Data Being Pr d? res

extinfo.cgi?type=1&host=host
Shows commands and information on the host (see Figure 16.4, page
331).

extinfo.cgi?type=2&service=service
The same for the service.

extinfo.cgi?type=3
Shows all available host and service comments on a single page (Fig-
ure 16.19).

[Host Comments | Service Comments]

Host Comments
dd a new host comment

‘This host has been scheduled for flexible dovmtime
starting between 2005-07-25 17:50:00 and 2005-07-25

2005:07:24 (Nagios Scheduled =

elisaprouter 29000 18:00:00 and asting f 0 3 No 7% 7l
143605 Process) pnintes, Notifications for the host will not be sant out peaime
during that time perio
‘This host has been scheduled for flexible downtime
g starting between 2005-07-25 17:50:00 and 2005-07-25 L
sapi2 20080724 (Naglo® 16,0000 and lasting for a period of 0 hours and 30 4 No Scheduled na §
36 ‘minutes. Notifications for the host will not be sent out
during that time period.
‘This host has been scheduled for flexible downtime
starting between 2005-07-25 17:50:00 and 2005-07-25
sap13 20080724 (Naglo® 16,0000 and lasting for a period of 0 hours and 30 5 No Scheduled gy 5y
e ‘minutes. Notifications for the host will not be sent out
during that time period.
‘This host has been scheduled for flexible downtime
tarting between 2005-07-25 17:50:00 and 2005-07-25.
2005-07-24 (Nagios 5| Scheduled
sapi4 o 19:00:00 and lasting for a period of 0 hours and 30 6 No Na Ff
143645 Process) pinytes, Notifications for the host will not be sent out. pEzED
during that time period.
‘This host has been scheduled for flexible downtime
tarting b 20050725 17:50:00 and 2005-07-25
200507-24 (Nagios 3 Scheduled =
sap39 T4o5. Prosess) 19:00:00 and lasting for a period of 0 hours and 30 7 No Downtime NA F

‘minutes. Notifications for the host will not be sent out
during that time period.

‘This host has been scheduled for flexible dovmtime
starting between 2005-07-25 17:50:00 and 2005-07-25 Scheduled L,
19:00:00 and lasting for a period of 0 hours and 30 8 No Dotine NA &
‘minutes. Notifications for the host will not be sent out

during that time period.

20050724 (Nagios
=pa] 14:36:15 Process)

340

16.2 An Overview of the Individual CGI Programs

extinfo.cgi?type=4
Provides information on the performance of Nagios, separated ac-
cording to host and service, as well as active and passive checks (Fig-
ure 16.20).

Figure 16.20:
Information on the

Program-Wide Performance Information

<= 1 minute: 85 (41.5%) Check Execution Time: 0.01 sec 10.23 sec 0.266 sec performance:

Active Service Checks: | < 2 minutes: 201 (98.0%) Check Latency: 0.00 sec 0.72 sec 0.160 sec R o _
<= 15 minutes: 204 (99.5%) Percent State Change: 0.00% 6.12% 0.08% extinfo. cgi?type=
<= 1 hour: 204 (99.5%) 4

Since program start: 204 (99.5%)

<= 1 minute: 0(0.0%) Percent State Change: 12.37% 59.14% 35.76%
. . <= 5 minutes: 0(0.0%)
Passive Service Checks:
<= 15 minutes: 0(0.0%)
<= 1 hour: 0(0.0%)

Since program start: 0 (0.0%)

<= 1 minute: 2 (4.2%) Check Execution Time: 0.00 sec 7.66 sec 0.371 sec
. <= b minutes: 3 (6.2%) Check Latency: 0.00 sec 0.97 sec 0.020 sec
Active Host Checks:
<= 15 minutes: 3 (6.2%) Percent State Change: 0.00% 0.00% 0.00%
<=1 hour: 5 (10.4%)

Since program start: 5 (10.4%)

<= 1 minute: 0(0.0%) Percent State Change: 0.00% 0.00% 0.00%
<=5 minutes: 0(0.0%
Passive Host Cheoks: (o)
<= 15 minutes: 0(0.0%)
<=1 hour: 0(0.0%)

Since program start: 0 (0.0%)

The middle column reveals how many of the planned tests Nagios
has already performed in the last 1, 5, 15, and 60 minutes. As long
as there are checks for which normal_check_intervalis more than
five minutes, the first two values can never reach 100 percent.

The right-hand columns define the actual value for this page: Check
Execution Time specifies the minimum, maximum, and average time
which Nagios requires to perform active host and service checks.
Check Latency measures the distance between the planned start and
the actual running time of a test. If this delay is considerably larger
than one or two seconds, Nagios probably has a performance prob-
lem. One possible cause is that the system is processing performance
data too slowly, but low-performance hardware may also play a role
here. Searching for the cause can sometimes turn out to be very dif-
ficult, and the original documentation® provides a number of tips on
the subject.

extinfo.cgi?type=b&hostgroup=hostgroup
Shows command center for a host group (Figure 16.17 on page 339).

8 /usr/local/nagios/share/docs/tuning.html

341

16 The Classical Web Interface

extinfo.cgi?type=6
Shows all planned maintenance periods for hosts and services (Figure
16.21).

Figure 16.21: [Host Downtime | Service Downtime]
Overview of all Scheduled Host Downtime

schedule host downtime

planned
maintenance pCI'IOdS: [E— 33?5707‘;14 — ygzi;\:sg;aegee:\;;c}? 35?556%25 32?55:%25 Flenblegguhmm] -)
extinfo.cgi?type= s ESUE e lommgbinh mmes Omem eedhong
6 i EEUY e ISR BRIS BSOS aapete,
s EETE g Gommgbinh mmes Omem peedton, g
we P e S ESOD R0 aweves
mpll T et e B b
e EEOP e SR ESOR RO naiewn;
nou ST e Immgdelih e Rem peedhong
iz Bl TWOT el
sy DRI L, pddm DR mmom pelteni
wi EEUY e mmn DR BSOS aaptien
mom DEOE L, i meen mmompeioen,
N T e = e
i REOH e Atmetes TG R 1 g
e RETD e RmoTs DMOS nan@oons oy

extinfo.cgi?type=7
Shows an overview of all planned tests, sorted by the next implemen-
tation time (see Figure 16.22). Next to this, extinfo.cgi also lists
the time of the last check.

The Active Checks column shows if the respective tests are active or
not, and in the Actions column the planned check can be deleted or
moved to a different time.

extinfo.cgi?type=8&servicegroup=servicegroup
Shows the command centre for a service group, identical in structure
to the command center of a host group.

Figure 16.22: Check Scheduling Quene
Last Updated: Sun Jul 24 14:28:21 CEST 2005
Updated every 90 seconds
All planned tests, s

Logged in as wob

sorted by their
planned Entries sorted by next oheck time (ascending)

implementation time:

eliod NTE 2005-07-24 14:22:50 2005-07-24 1 4:27:5¢ ENABLED X[

extinfo.cgi?type= elios PING 2005-07-24 14:27:04 2005-07-24 14:28:04 ENABLED X[

7 eliog NRPE 2005-07-24 14:23:05 2005-07-24 1 4:26:05 ENABLED X

mailbast PING 2005-07-24 14:27:06 2005-07-24 1 4:28:06 ENABLED X

eliog SSH 2005-07-24 14:23:06 2005-07-24 14.28:06 ENABLED xm

elios fs_tmp 2005-07-24 14:23:07 2005-07-24 14.28:07 ENABLED xm

aisy-mhk PING 2005-07-24 14:27:09 2005-07-24 14:28:09 ENABLED xm

elios rocs_nmbd 2005-07-24 14:23:09 2005-07-24 14:28:09 ENABLED xm

sap-12 PING 2005-07-24 14:27:10 2005-07-24 14:28:10 ENABLED xm

eliog CPU Load 2005-07-24 14:23:10 2005-07-24 14:28:10 ENABLED xm

sapl2 SAP-3600 2005.07-24 14:27:11 2005-07-24 14:28:11 ENABLED. X

342

16.2 An Overview of the Individual CGI Programs

16.2.3 Interface for external commands: cmd.cgi

As a real all-rounder, cgi.cmd, with some 100 functions, covers nearly all
the possibilities that the interface provides for external commands. The
cmd_typ parameter defines which of these the CGI program should run.
The command

http://nagiosserver/nagios/cgi-bin/cmd.cgi?cmd_typ=6

switches off active service checks for a specific service (Figure 16.23). In
order to describe the desired service uniquely, you must specify the host
and service description. If you run the CGI program manually, the Web
form shown queries these values, and if cmd. cgi is started by another CGI
program, the required data is passed through CGI parameters. Possible pa-
rameters here are host, service, hostgroup, and servicegroup, which
are followed by an equals (=) sign and then the appropriate Nagios object.

External Command Interface

Last Updated: Mon Jul 25 20:46: 56 CEST 2005
Nagios® - wurw nagios org

Logged in as wob

You are requesting to disable actice checks of a particular service

Command Options Command Description
Host Mame:| This command is used to disable active checks of a service.
Service:
Commit Reset

Please enter all required information before committing the command.
Required fields are marked in red.
Failure to supply all required values will result in an error.

Figure 16.24 lists the most important commands which refer to a host or
service, and Figure 16.25 shows those that refer to the control of global
parameters (corresponding to the values in the main configuration file na-
gios.cfg). The source code file include/common.h contains a complete
list of all possible values, including ones that are planned but not yet im-
plemented.

The first column in Figures 16.24 and 16.25 describes the function of the
command: ADD_HOST_COMMENT adds a comment to a host, and DISABLE_
ACTIVE_SVC_CHECK switches off active checks for a service (in abbreviated
form: SVC).

The columns after this specify the object type to which the respective func-
tion refers. To add a comment with ADD_HOST_COMMENT, you must specify
the host in question. For this reason the function code 1 is shown in the
Host column. A specific active service check can only be switched off if the
matching service is named, so the function code 6 is to be found in the Ser-
vice column. With 16 you switch off all active service checks on a host to be
specified; there are also corresponding codes for all active service checks
for a host or service group.

Figure 16.23:
Disabling a service
check with
cmd.cgi?cmd_typ=6

343

16 The Classical Web Interface

Figure 16.24:

The most important
host and service
related codes for
cmd.cgi?cmd_typ=

With ACKNOWLEDGE_PROBLEN, an administrator confirms that he is taking
care of a specific problem. 33 (Host column) refers to a host problem, and
34 (Service column) to a service problem. The gray fields mean that there is
no corresponding function for host and service groups. The Web form that
opens with cmd_typ=33 (Figure 16.9, page 333) then allows a comment to
be entered.

:
a
s E 3
y ¢t & %
command 2] £]
ADD_HOST_COMMENT 1
DEL_HOST_COMMENT 2
DEL_ALL_HOST_COMMENT 20
ADD SVC COMMENT 3
DEL_SVC_COMMENT 4
DEL_ALL_SVC_COMMENT 21
ENABLE_ACTIVE_SVC_CHECK 15 5 67 113
DIRABLE_ACTWVE_SVC CHECK 16 & 68 114
SCHEDULE_SVC_CHECK 17 7
ENABLE ACTVE HOST CHECK 47 103 115
DISABLE_ACTIVE_HOST_CHECK 48 104 116
SCHEDULE HOST CHECK 96
ENABLE_HOST_NOTIFICATIONS 24 65 111
DISABLE_HOST_NOTIFICATIONS 25 66 112
DELAY_HOST_NOTIFICATIONS 140
ENABLE_SVC_NOTIFICATIONS 28 22 63 108
DEABLE_SVC_NOTIFICATIONS 23 23 64 114
DELAY 5VC_NOTIFICATIONS 15 1]
ACKNOWLEDGE_PRCBLEM 33 34
REMCVE_ACKNCWLEDGE 51 52
ENABLE_PASSIVE_HOST_CHECKS 92 107 119
DISABLE_PASSIWE_HOST CHECKS 93 e 120
ENABLE PASSIVE_SVC_CHECKS 39 105 117
DISABLE_PASSIVE_SVC_CHECKS 40 106 118
SCHEDULE_HOST_DOWNTIME 55 84 121
DEL_HOST_DOWNTIME 78
SCHEDULE_SVCT_DOWNTIME 56 85 122
DEL_SVC_DOWNTIME 79
ENABLE_EVENT_HANDLER 43 as
DISABLE_EVENT_HANDLER 44 46
ENAEBLE FLAP DETECTICN 57 59
DISABLE_FLAP_DETECTION 58 &0

Functions that refer to global parameters (Figure 16.25) can normally only
be switched on or off. So the value 11 in the Start column for NOTIFICA-
TIONS means that this command code switches on all notifications globally,
while 12 switches them off globally.

344

16.2 An Overview of the Individual CGI Programs

If you are not quite certain whether the determined function does what you
really wanted, it is best to run cmd.cgi manually with the corresponding
function code, such as shown here:

http://nagiosserver/nagios/cgi-bin/cmd.cgi?cmd typ=12

The Web page generated in this way always has a small gray box available
next to the required entry fields that explains the corresponding command
(Figure 16.23, on the right side of the page).

L --E Figure 16.25:
EE 59 cmd.cgi command
global parameters hE E a codes for global
NOTIFICATICNS 11 12
SVC_CHECKS 35 36 parameters
ACCEPTING_PASSIVE_SVC _CHECKS 37 3B
HOST_CHECKS BB 85
ACCEPTING_PASSNVE_HOST CHECKS =li] 91
EVENT_HANDLER 41 42
FLAF DETECTION 61 62
PERFORMANCE_DATA B2 asz

16.2.4 The most important things at a glance: tac.cgi

As a “tactical overview,” tac.cgi provides a wealth of information on a
single Web page, displayed in a summary (Figure 16.26). On the left-hand
side of the page you can see, in order of priority, first the failure of en-
tire network ranges (Network Outages), followed by the status of hosts and
services, and at the bottom tac.cgi lists whether individual monitoring
features such as notifications and event handlers are active.

Up to this final section, everything is concentrated on displaying problems.
Provided everything is OK, the CGI merely shows the number of unprob-
lematic services or hosts, highlighted in light gray (and announces 47 Up,
for example, in the Hosts box). In problem cases it distinguishes between
open problems, which nobody has looked at yet (highlighted in red, e.g., 2
Unhandled Problems for Services | Critical), and those for which an ad-
minstrator has already taken responsibility through an acknowledgement
(pink background, like 1 Acknowledged for Services | Unknown). If host or
service checks are disabled, these are also shown with a pink background,
since they are problems that do not require the immediate attention of the
admin (e.g., 2 Disabled for Services | Ok).

Enabled features in the lower parts are marked by tac.cgi in green, and
disabled ones, in red. The vertically written green Enabled in Notifications
means that notifications are enabled globally, whereas the red background

345

16 The Classical Web Interface

Figure 16.26:
Tactical overview
with tac.cgi

on the other hand, 2 Services Disabled, means that they were explicitly
switched off for two individual services.

For all the problems displayed you are taken to a single overview specifically
showing the hosts and services in question.

Tactical Monitoring Overview Monitoring Performance
Last Updated: FriJul 29 18 02:08 CEST 2005
Updated every 50 seconds Service Check Execution Time: 0.01/16.23/0.360 sec

Service Check Latency: 0.00/0.58 f 0.298 sec
Host Check Execution Time: 0.00/5.02 /0480 sec
Host Check Latency: 0.00/0.97 /0020 sec
Active Host / Service Checks: 48206

Passive Host / Service Checks: 0/2

Network Network Health
outages

0 Outages Host Health: :
Service Health: [

Nagios® - www. nagios org
Logged in as wob.

0 Unreachable 1 Pending

2 Critical 1 Warning 1 Unknown 0 Pending

oo

Monitoring Features

Flap Detection Notifications Event Handlers | Active Checks | Passive Checks

All Services Al Services
Enabled

|All Hosts Enabled All Hosts Enabled |All Hosts Enabled All Hosts Enabled

On the right-hand side of the page the upper box summarizes the extinfo.
cgi?type=4 (see page 341) Nagios performance data, which can be shown
in detail. The bar graph beneath it shows the health of the entire network
monitored as a percentage. If you move the mouse over one of the bars,
you will also see the percentage as a number.

16.2.5 The topological map of the network: statusmap.cgi

statusmap.cgi (Figure 16.27) provides a view of the dependencies be-
tween the monitored hosts. Starting from the central Nagios server in the
middle, lines connect all hosts that the server reaches directly—and whose
host definitions do not need the parents parameter to be specified (see
Section 2.3, page 62.).

The graphics also reveal the hosts to which Nagios has only indirect ac-
cess through other hosts. So between sls-mail and the Nagios server in
Figure 16.27 lie the hosts sls-proxy, hspvip, and pfint. sls-proxy, as
the comment Down and the red (instead of green) background suggest, has
failed. Since sls-mail depends on this, it is in an UNREACHABLE state,
which statusmap.cgi also marks with a red background.

346

16.2 An Overview of the Individual CGI Programs

?

nci-makl
2
sap-Ftp
[&
D ¢
maris-und
Up

madﬂnail\
‘<

waoe-mail

Up

oj-nail

gios Process
wan-nail
p

tre—mall/_ﬂa.

sls-proxy
Dowin

Unr‘ear?'ﬁle
nki-nail nki-proxy
Up; Up
- T
maris-—nki /me __//
Up ? Up
ned—mal?
new-nail Up
L mor"fmall?
Up
Up
kai—mail? ?

gate

? S
? U herfproxy ? ? LT
FiEk -, ggmpr-gETPRORY Lo
tbk-mail Ls Up Bufraa i & Up ?
= ? bit-mail
Up

eit-mail

M
Up
U0 heromail ? ; (Fle-ieEl

ger-mail Up
elpbridge
Up

U gou-nail gha-mail © |
Up Up

elinail
Up

sls-mail

abgfmall
[
it-pro
Un

—hried

How Nagios arranges the hosts in the graphics is defined by the parameter
default_statusmap_layout (page 608) in the configuration file cgi.cfg.
The layout can also be changed with a selection window in the Web inter-
face (at the top right in Figure 16.28). The figure shows the demo system of
Netways,? whose appearance depends on user-specific coordinates, which
in this case you have to specify individually for each host (see page 365).
The question mark icon supplied by Nagios has been replaced with nicer
pictures by the operator of the site. Coordinates and icons are defined with

the hostextinfo object, described in more detail in Section 16.4.1).

9 http://netways.de/Demosystem.1621.0.html

Figure 16.27:
Dependencies of
monitored hosts
shown graphically

347

16 The Classical Web Interface

Figure 16.28:
Statusmap with
self-defined
coordinates and
icons

Layout Method: Scaling factor:

User-supplied coords +[[0.0

NETWAYS» (5[\ coole

General

Name: oogle.de Drawing Layers: Ler mode
Alins: — FimaL ¢ menae
Addross: 66.249.85.104 inteme! Bxclude
www-hosts
state: up
Status Information: PING OK - Packet loss = 0%, RTA = 5.80 ms 5
upress popups:
State Duration: 5d 10h 27m 355 press popup Update

Last Status Check:
Last State Change:
Parent Host(s):

Immediate Child Hosts: 0

26-07-2005 14:52:56
e (e 25-07-2005 00:46:16
ostgroup Summary
ostgroup Grid

internet

ervicegroup Overview

Services:

ervicegroup Summary ok
icegroup Grid
Google [
atus Map \

pen Problems guugulpe.de

ervice Problems
ost Problems

etwork Outages
Hostgroups Nagios®
Choose Group ¥|
Servicegroups

Choose Group x|

rocess Info
erformance Info
cheduling Queue

Reporting

lert Histogram
lert History
lert Summary
otifications

Lol Loz
Dowun up

K

If you move the mouse onto a particular host, Nagios opens a yellow win-
dow at the top left with status information, which includes the IP address,
current status information, and the time of the last check. At the bottom of
this box, statusmap.cgi summarizes the states of the services running on
this host.

If you double-click on a particular host, Nagios branches off to the usual
status overview, which apart from data on the host selected, also displays
all the services belonging to this host (Figure 16.14 on page 336 gives an
example).

16.2.6 Navigation in 3D: statuswrl.cgi

statuswrl.cgi allows Nagios to move through a 3D representation of the
network plan (Figure 16.29). In this you can zoom on to hosts, move the
overall view, rotate it, etc.

A VRML-capable browser is necessary for the display.!® Although the orig-
inal documentation'! provides links to the corresponding plugins, two of

10 The Virtual Reality Markup Language (VRML), version 2.0/1997, is used to describe the
virtual “space.”

11 /usr/local/nagios/share/docs/cgis.html#statuswrl_cgi

348

16.2 An Overview of the Individual CGI Programs

them are out of date, and only Cortona'? could be reached at the time of
going to press. This plugin does not work under Linux, however; in Win-
dows it works with Internet Explorer, and also with Netscape, Mozilla, and
Firefox.!3 A good overview of VRML software, organized according to oper-
ating system and browser, is provided by the National Institute of Standards
and Technology (NIST) on its Web site.!*

Of the VRML plugins for Linux, OpenVRML,'®> and freeWRL'® are the most
likely to be used. The standard Linux distributions usually do not include a
finished package. OpenVRML is included in Fedora in Extras; on the home-
page of freeWRL there are binary packages for Fedora and Ubuntu. You
should not try compiling the software yourself unless you are an experi-
enced system administrator or software developer: there are a large num-
ber of pitfalls. If you have never worked with the Java compiler before and
have not compiled complex software packages such as Mozilla or Firefox
yourself, then you should leave it alone.

But all of this is no reason to despair, since the use of 3D navigation is
questionable anyway, especially as the 2D view of the normal status map
displays all the information required, and displaying simple flat graphics in
the browser takes up considerably less time than CPU-intensive 3D render-
ing. Before you rush into the adventure of compiling software yourself, we

http://www.parallelgrafics.com/products/cortona/

For Firefox you have to install it manually, select Custom instead of Typical in the instal-
lation routine, and in not supported browsers specify the plugin directory of the browser.
14 http://cic.nist.gov/vrml/vbdetect.html

http://www.openvrml.org/

http://freewrl.sourceforge.net/

Figure 16.29:

This picture marks
the beginning of the
tour through your
own network

349

16 The Classical Web Interface

Figure 16.30:
As long as

sls-proxy fails,

Nagios cannot reach

any hosts lying

behind it

recommend that you decide for yourself, using the Cortona plugin, whether
it is worth the effort of compiling a project like OpenVRML.

16.2.7 Querying the status with a cell phone:
statuswml.cgi

In order to make the information provided by Nagios accessible for WAP!7 -
capable devices without a fully functional browser, statuswml.cgi gen-
erates a Web page in the WML format,'® which can be displayed with a
cellphone—provided that the Nagios server is reachable in the Internet.
Apart from the status query for hosts and services, it also allows the CGI
program to switch off tests and notifications and to confirm existing prob-
lems with acknowledgements.

You should think carefully before you make Nagios accessible over the In-
ternet: Nagios makes available much sensitive data that can be misused by
hackers. In case of doubt, you're better off doing without it. Without direct
Internet access, statuswml.cgi is useless, since a cellphone cannot use
protected access methods such as a VPN tunnel. This is why we shall not
introduce statuswml.cgi in great detail at this point.

16.2.8 Analyzing disrupted partial networks: outages.cgi

The CGI program outages.cgi only shows those network nodes in a host
overview that are responsible for the failure of a partial network: In contrast
to a status overview, as in Figure 16.15, page 336, outages. cgi specifies in
the # Hosts Affected column how many services and hosts this affects in
each case (Figure 16.30).

Blocking Outages

2 slsprﬂ-N/A 1d 20h 41m 195 2 3 AR -

With the icons in the Actions column you call other CGI programs that se-
lectively filter out information on the host shown here. From left to right,
they show the status display in the detail view (traffic light), the topological
network view (network tree), the 3D view (3-D), the trend display (graph),
the log file entries for the host (spreadsheet), and the display of notifica-
tions which have been made (megaphone).

17 Wireless Access Protocol.
18 The Wireless Markup Language contains a part of HTML, heavily reduced in its func-
tionality.

350

16.2 An Overview of the Individual CGI Programs

16.2.9 Querying the object definition with config.cgi

config.cgi shows a tabular overview of the definition of all objects for a
type that can be specified (Figure 16.31)—the type of object involved can
be defined in the selection field in the top right corner. Where the consider-
ation itself contains Nagios objects (in the host view Host Check Command,
Default Contact Group, and—not visible in the picture—Notification Period),
a link takes you directly to the configuration view of this object type.

Configuration Object Type:

Last Updated: Sun Jul 24 11.03.53 CEST 2005 =
[Nagios® - ww naios or Hosts K|
Logged in as wob e

Hosts

bpory FrowyET 1724722220 st 5 ohomos checdoddieves Mo Y No Adedetenming

- elicnadmine 2homos

cipory FrowyET imanions e 5 ohomos checomdeves Mo ves No Adedetenmind

elivnaduins 2h0mos

hauproter A7 Rnter v im0 homos chedddasibne Mo T me Aedlemieli oo, Dovn

a0 clo2gelisteliabethde 172171202 10 Ohomos chechhpstalve Yes No Yes No Aodetormined) pere ohomos DOVR

a0s choiQei saiabethie 172171304 o ohomor kbt e No v N AMdeemned g

The CGI program does not provide any way of changing anything in the set-
tings. In addition, only users who are entered in the parameter authorized
_for_configuration_information (configuration file cgi.cfg, p. 607)
have access to this view.

16.2.10 Availability statistics: avail.cgi

If you are monitoring systems, then you also take an interest in their avail-
ability. avail.cgi first asks if you are interested in Hosts, Services, Host-
groups, and Servicegroups. After you have selected a time period, you will
see an overview, as in Figure 16.32. For Services and Hosts you can also have
the availability data presented through All Hosts or All Services as a CSV file.

avail.cgi shows the hosts involved separately from the services. How
long a service or host remained in a particular state can be seen from the
corresponding colored column—green for OK, yellow for WARNING, red for
CRITICAL (service), DOWN and UNREACHABLE (host)—in percent. The
column that shows how much time the status of a service was UNKNOWN
is shown in orange. Incomplete log files are shown in the Undetermined
column. If there is a value larger than zero, then there are periods for which
Nagios cannot make a statement concerning the state.

Below each table, the Average line specifies the average of the individual
values. In Figure 16.32 the hosts involved were available 99.965 percent of
the time.

Figure 16.31:
config.cgi displays
the current
configuration of the
selected object
class—here
hosts—(extract)

351

16 The Classical Web Interface

avail.cgi shows the availability twice in each case: first as an absolute
value for the evaluation period, and then (in brackets) with respect to the
time during which data actually was available. As long as the Time Undeter-
mined column displays 0.000%, the two availability values match.

Figure 16.32:

Servicegroup Availability Report Servicegroup 'SAP-Services' i host states T !
Lt Updated. S 24 11.19.03 CBST 2003 stake
H oR Nagios® - wurv narios ox: - [Host Up =] [Senice ok =l
An availability report omedinus vl 20050701 00:00:00 £02003.07.24 1116:03 negest pesed: Backtxacked archiven
using the example of [Tcurrent tme range 1 =

Update
the SAP-Services

[Avallability report complated in 0 min 0 sec |

service group

Servicegroup 'SAP-Services' Host State Breakdowns:

Jliost % TimeUp b6 Time Down % Time Unreachablel Time Undetermined
90.824% (99.824%) | G003 OO0 0N 0.000%

Average 09.965% (99.965%) (010359 (0.035%) 0.000% (0:000%) 1] 0.000%

Servicegroup 'SAP-Services' Service State Breakdowns:
sap-12 SAP Dialog Network Time 94.859% (94.8569) 3.334% (3.334%) 0.163% (0.163%) | IRGAMSENANGA4) 0.000%
SAP Dialog Response Time 03.863% (93.863%) 2.467% (2.467%) 0.178% (0.178%) | BMOSA(EMOE) 0.000%
SAP AS 12 197.250% (97.250%) 0.000% (0.000%) 0.000% (0.000%) BRFATSRICHTATR 0.000%
sap-13 SAP Dialog Network Time 92.331% (92.331%) 3.069% (3.069%) 3.681% (3.681%) (26199I(0:9169%) 0.000%
SAP Dialog Response Time 88.532% (88.53296) 2.474% (2.474%) 3.695% (3.605%) | FIS000AI(GI300%)] 0.000%
SAP AS 13 197.3745% (97.374%) 0.000% (0.000%) 0.000% (0.000%) BEETEHRIAGI6R) 0.000%
sap-14 SAP Dialog Network Time 95.233% (95.233%) 3.5 04% (3.504%) 0.000% (0.000%) | E36286(123625)| 0.000%
SAP Dialog Response Time 94.975% (94.975%) 2.432% (2.432%) 0.000% (0.000%) | BISOE(RIE0E) 0.000%
SAP AS 14 197.421% (97.421%) 0.000% (0.000%) 0.000% (0.000%) - BISTHHRICABTER 0.000%
sap-39 SAP Dialog Network Time 84.853% (84.853%) 7.680% (7.680%) 5.164% (5.164%) 2I3036I(2:803%) 0.000%
SAP Dialog Response Time 87.882% (87.8829) 2.142% (2.442%) 5.176% (5.176%) | ES005IA500%) 0.000%
SAP AS 30 197.506% (97.506%) 0.000% (0.000%) 0.000% (0.000%) - BGASEICAAOARY 0.000%
sap-57 SAP Dialog Network Time 90.777% (90.7779%) 3.633% (3.633%) 0.340% (0.340%) | FE2S0RN(5:25009)| 0.000%
SAP Dialog Respanse Time 02.387% (92.387%) 2.436% (2.436%) 0.355% (0.355%) | [8399AI(4183256)] 0.000%
SAP AS 57 197.500% (97.500%) 0.000% (0.000%) 0.000% (0.000%) NISTSRICAMONSE 0.000%
Average 935179 (93517%) 2.231% (2.231%) 1.250% (1.250%) BI00TSEIEHO01 0.000%

If you click on one of the hosts or services displayed, a detailed view will
appear. Figure 16.33 shows such a view for the host sap-12.

FIgUI’e 16.33: Host Availability Report Host 'sap-12' Fixstassumedhost First assumed service
R s ca - et it
The availability of D 2o smamomzsosorsossonos [P S [T 3]
\ll Hosts. ‘Duration: 25 16h & Report period: Backtracked
w_Trends For This Host i
the host sap-12 e Al it or This st [Temetmmmt] o
- =
A . . v Noiiicaions For This Host =
explained in detail | iy eor ol O e
Host State Breakdowns:
e | [L s)

mscheduled 29015hEm26s 995
Scheduld 040k 0mo0= 0.000% 0.000%
Unscheduled 437104 3h 31m 332 0.140% 0.140%
Scheduld Odamsem20: 0553 os53%
Unschedulsd 040h0m 0z 0.000% 0.000%
Scheduld 0401 om0 0.000% 0.000%

Nagios Not Runing 04 0h.0m 05 0.000%
Unietermined InsufficientData 040k 0mo0s 0.000%
Total 040k 0mos 0.000%
a Total 26d16hemas 100.000% 100.000%

State Ereakduwns For Host Services:
e e e)
'S5 (9563%) 0000 (0.000%) BGOOHGO0%H|
SAP Dilog Netw ork Time 855245 (85.53456) 2.813% (2. xm)__muu
SAP Disloq Response Time — 1.951% (1.951%) 0:140% (0:140%) BABEENEHEER) 0.000%

sapax0 98:840% (98:846%) 0.000% (0.000%) 0,000% (0.000%), EESHHNASER) 0 000%
sapzan 19819459% (98.8437%) 0.000% (0.0007%) (10003 (0,0007%) EASTRRIALASARB) 0 oo
sapason 988475 (98:8475) 0.000% (0.000%) 0,000% (0,000%), EESSHNASEN) 0 000%
sras 12 19793156 (97.831%) 0.000% (0.0007%) (10003 (0,0007%) ELGTEEGRB) 0 oo
verage 977835 (97:7835%) 0.091% (0.091%) 0,03% (0.039%)) EEOBHIATADDR) 0 000%

Host Log Ent;
isw full og extries

20050624 20050624
e e 0423k 16m 8= OK 10,128 254.12 responds to ICMP. Packet 1, sta 42 052ms

20050624 20050624 Ep—— CRUTICAL - 10128254 12: Host wreachble @ 17217128 3. sa .

20050627 20050628

352

16.2 An Overview of the Individual CGI Programs

On a bar diagram that shows the states over the selected period in color,
there is detailed information on the host itself, followed by statistics on the
availability of the service that is monitored on this host. This includes an
extract from the log file, which only shows the relevant entries for the avail-
ability of the host; that is, HOST UP, HOST DOWN, or HOST UNREACHABLE.
The log file entries are cut off by avail.cgi to save space.

16.2.11 What events occur, how often?—histogram.cgi

If the state of a host or service changes, this is called an event. The CGI
program histogram.cgi shows the frequency of this in different views. If
you select Day of the Month as the Breakdown type, it illustrates what event
took place on which day of the month, and how often (Figure 16.34). The
red graph in services stands for CRITICAL, the orange one for UNKNOWN,
yellow for WARNING, and green for OK. The curve for hosts in the DOWN
state is marked by histogram. cgiin red, that for UNREACHABLE hosts in
wine-red, and the green line stands, as usual, for OK.

Service Alert Histogram Service 'SAP_AS 12' On Host 'sap-12' Repostpexiod: Assume state
Last Updated: Sun Jnl 24 11.27.55 CEST 2005 retention:
g A [Current time range | x| [yes x|
2005-07-01 00:00:00 to 2005-07-25 00:00:00 Erealkdown type: Initial states
[View Trenis For This Service Duration: 244 0h O 0s logyed:
[Uew Avalshility Report For This S
— - e se== Day of the Month =] no =
or eruice Events to graph: Ignore repeated

All senvice events ~lno =]

State types to graph:

Hard and soft states ~| Update

Event History For Service "SAP_AS_12° On Host “sap-127
Fri Jul 1 00:00300 2005 to Hon Jul 25 00:00:00 2005
0 EYENT TVPE MIN - TMAR SUM AWG
9 Recavery (OkD: o 4 95 028

8 0 0.00
7 Unkncir z

[Critical:

5

4

3

z

1

o

A
Histogram

o
o
o

Nunber of Events

o
0 0000
7o 077
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmmmmmmm

Day of the Month

If you choose the variation Day of Week, the Web page shows on which day
of the week most events occur, so you can find out whether Monday really
is always the worst day. In addition to this you can have the frequency pre-
sented by day (Hour of Day) or by the month of a year (Month). With Report
Period you can adjust the report period. With Assume state retention you
can adjust whether the previously existing states are retained and included
in the evaluation (yes) or not (no).

Figure 16.34:

How many events of
what type were there
on which day?

353

16 The Classical Web Interface

If you have configured Nagios so that it explicitly logs the states of the mon-
itored hosts and services for a restart or when the log file is changed,'? and
if you set Initial states logged to yes, the script includes this explic-
itly in the evaluation. A no ignores the entry; histogram. cgi then assumes
that the state after a system start is identical to that which existed directly
before the restart.?

Ignore repeated states makes allowances if a state persists for a long time
and therefore delivers the same result again and again. If you set yes here,
the script evaluates it once instead of many times.

If you select the item Hard and soft states in State types to graph:, histo-
gram. cgi also counts soft states. If a service changes from OK to CRITICAL,
for example, while retry_check_intervalis set to 4,21 then histogram.
cgi counts a total of four results, three soft and one hard. If you only eval-
uate hard states, the statistics evaluate the value 1. If an error is rectified,
there are no soft states; therefore the value for CRITICAL is usually larger
that that for RECOVERY if you include soft states in the evaluation.

16.2.12 Filtering log entries after specific states:
history.cgi

The history.cgi script allows the states of a type (soft or hard) to be
extracted selectively from the log file using the selection field State type
options (at the top right in Figure 16.35), and specific events to be extracted
(all, all related to hosts, all service events, only host-recovery, only host-
down, etc.) using History detail level for all hosts. The entries to be shown
can be restricted through parameters to individual hosts, services, or host
or service groups when the CGI program is called. So the command

histogram.cgi?host=sap-12

only displays log file entries for the host sap-12. If the output should be re-
stricted to a specific host, then the service description needs to be specified
as well:

histogram.cgi?host=sap-12&service=PING
Selecting a host and service group is done in the same way:
histogram.cgi?hostgroup=SAP

histogram.cgi?servicegroup=SAP-Services

19
20

Parameter log_initial_state in nagios.cfg; see page 597.

The subtle difference here lies in retain_state_information (see page 601). If this
parameter is set to 0, Nagios forgets the previous state. Without log_initial_state
= yes, Nagios accepts an OK after the restart.

2l Nagios thus repeats the test four times before it categorizes the state as “hard.”

354

16.2 An Overview of the Individual CGI Programs

The period that history.cgi views depends on the archiving interval of
the log file. The script always refers to the contents of an archive file. If you
set the parameter log_rotation_method (page 597) in the configuration
file nagios.cfgto d for daily archiving, the Web page presents the entries
for one day. Using the arrows (at the top in Figure 16.35) you can then scroll
up and down through the days.

All Hosts and Services State type options:

Al state types v|

Alert History
Last Updated: SunJul 24 11.31:35 GEST 2005

Nagios® - www Log File 5 2
Logyedinas wab Jarest Navigation History detail level for all hosts:
e S et For Al s Sun Jul 24 00:00:00 AT eierts =
|iiew otiiations For All Fosts T

N ™ Hide Flapping Alests

™ Hide Downtime Alerts
File: nagios.log
I™ Hide Process Messages

I™ Older Entries First

Update

July 24, 2005 11:00

[2005.07-24 11.18:58] Nagios 2 0b3 stasting. . (PID=16838
/- [32005:07:24 11,18 58] Caugit SICHUP, restastng

July 24, 2005 09:00

(2005.07.24 09.48/57] SERVICE ALERT: walproxy.PING.OK SOFT.2.0K - 31 039 12: xia 108 608xms, lost 0%
1) (20050724 ALERT: walproxy
(@ (200507-24 0928 57] SERVICE ALERT: bibproey PING,OR SOPT 20K - 172 17,392 200: ra 101 520, ozt 0%

L WARNING - 81.0.39.12. 7t 1558 633ms, lost 40%

1) (20050724 ALERT. £ T 172.17.232.200. r4a 98.48Tms, Joct 40%

ALERT. elil | proes 2
ALERT: elil 1 proas_sombies CRITICAL SOFT 1.CHECK_NRPE: Socket timeout after 10 seconds

"T.2;PROCS OK: 0 processes with STATE = 2

Qg (20050724
@2oosor

[2005.07-24 03.09:56] SERVICE ALERT: elil 1:FING:OK:SOFT-20K - 17217 128.11: r1a 0 3461us, lost 0%
ALERT: elit 1

T T WARNING - 172.17.128 11: rta 0 230ms, lost 40%

July 24, 2005 08:00

T:2;PROCS OK: 0 processes with STATE = Z

ALERT: el 1 praes.»

@y 120050724

1) (20050724 ALERT: elit 1 procs. T:1 PROCS WARNING: 2 processes with STATE = Z
@l (20050724 ALERT: elio2.procs.x “T;2:0K -2 processes running with command name nbd.
@l (20050724 ALERT. OX: Value coml .1 /18.4/

1) (30050724 ALERT: elio2 proes 1
(Qlf (20050724 08:17 561 SERVICE ALERT: elil | PING,0KSOFT 20K - 173,17 129 11: rla 0 342ms, lost 0%
ALERT: elit 1
420050721 ALERT.

“T1;WARNING - 3 processes running with command name nmbd

120050724 031

T.AWARNING - 172.17 139 11: ria 0 355ms, lost 40%
RINING: Value corl 1: 167/ < 170

16.2.13 Who was told what, when?—notifications.cgi

Another filtered view of the log file is offered by notifications.cgi: It
shows all sent messages. Here the view can aso be restricted to a specific
message group, through the selection field at the top right in Figure 16.36:
to all notifications involving hosts, to all which are about services in a crit-
ical state, and so on.

Contact Notifications All Contacts Notification detail level for all contacts:
Last Updated: Sun Jul 24 11.37.24 CEST 2005 Al notfications =
[Nagios® - www natios orq Log File =
Logged in as wob Navigation Moxe Recent Older Btries First:

A

Fri Jul 22 00:00:00 N
CEST 2005 l;:)
to
sat Jul 23 00:00:00

CEST 2005

r Update

File: nagios-07-23-2003-00.1og

Mo A ostue XU uoh osmubuemal OK-21288140.19 respon o ICMP. Packet 1, ia 54 500ms
dext N BT v esastenena CRITICAL 21288 140,18, rianan, lost 100%
wvarory A hostue XU uoh josvmufbuemal OK-17217169.19 responds to ICMP. Packet 1, ria 85 802ms
o prory NA BT v hesasstenena CRITICAL -172.17188.18. ria nan lost 100%

Figure 16.35:
history.cgi filters
the information from
the log file

Figure 16.36:
notifications.cgi
answers the question
of who gets
messages when,
about what

355

16 The Classical Web Interface

Figure 16.37:

A blue button marks
information entries,
the graph changing
from red to green
stands for Nagios
restarts, and the icon
marked GO with a
green checked
background
represents restarts of
the monitoring
system

If you just want to see messages here concerning particular hosts and ser-
vices, you must again specify this with parameters when running the CGI
program:

notifications.cgi?host=host
notifications.cgi?host=host&service=service name

notifications.cgi?contact=contact

Apart from host and service, you can also select a particular contact, but
selecting host or service groups is not possible.

16.2.14 Showing all log file entries: showlog.cgi

The CGI program showlog.cgi shows the log file as it is, with the few
colored icons added to help you find your way: a red button marks criti-
cal service states or DOWN/UNREACHABLE hosts, a yellow button marks
WARNINGS, and a green one, OK. Other buttons refer to information en-
tries or Nagios restarts (Figure 16.37).

You only have a single option here: the chronological order. Normally
showlog. cgi shows the newest entries first. If you enable the check mark
in Older Entries First: (top right), the oldest entries will be shown first.

The period represented here also depends on the archiving method: if you
archive once a day, you will obtain just one day for each Web page. To reach
the entries for other days you must make your way through the individual
archive files of the log file using the arrows at the top of the picture.

Current Event Log Log File I™ Older Entries First:
Last Updated: SunJul 24 11 40:03 CEST 2005 Latest Navigation Update
Nagios® - urunw. naios oo Archive Sun Jul 24
Logged in as wob 00:00:00 CEST
2005
to
Present..

File: nagios.log

July 24, 2005 11:00

() 12005.07-24 11.18:56] Warning: Contact ‘wob2" is not a member of any contact groups!
€) (2005-07-24 11:13: 58] LOG VERSION: 2.0

[2005-07-24 11:18: 58] Nagios 2.0b3 starting. .. (PID-16838)
/- [2005-07-24 11 18: 58] Caught SIGHUP, restarting.

July 24, 2005 10:00

€ [2005-07-24 10:42:48] Auto-save of retention data completed successiully.

July 24, 2005 09:00

[2005-07-24 09:48: 57] SERVICE ALERT: wad- proxy; PING; OK; SOFT; 2, OK- 91.0.39. 12: rta 106.608ms, lost 0%
!J [2005-07-24 09:48: 16] SERVICE ALERT: wad- proxy; PING; WARNING; SOFT; L, WARNING - 91.0.39.12: rta 1559.633ms, lost 40%
e [2005-07-24 09:42: 48] Auto-save of retention data completed successfully.
w [2005-07-24 09:26:57] SERVICE ALERT: bit- praxy; PING OK: SOFT; 2; OK- 172.17.232.200: rta 101 522ms, lost 0%
!J [2005-07-24 09:26: 16] SERVICE ALERT: bit- praxy; PING WARNING; SOFT; L, WARNING - 172.17.232.200: rta 98 497ms, lost 40%
@ [2005-07-24 09:33:36] SERVICE ALERT: eli11;procs_sormbies;OK SOFT, PROCS OK: 0 processes with STATE = 2
@ 120050724 09.22:46] SERVICE ALERT: eliL1; procs_zombies, CRITICAL SOFT,; ; CHECK_NRPE: Socket timeaut after 10 seconds
u [2005-07-24 09:09: 56] SERVICE ALERT: elill; PING;OK SOFT;2; OK- 172.17.129.11: rta 0.346ms, lost 0%
!J [2005-07-24 09:09: 18] SERVICE ALERT: elilL; PINGWARNING SOFT; LWARNING- 172.17. 129 11: rta 0.230ms, lost 40%

July 24, 2005 08:00

@l [2005-07-24 06:57:36] SERVICE ALERT: eliLL; procs_zombies;OK SOFT, 2 PROCS OK: O processes with STATE = Z
1) [2005-07-24 05:56:36] SERVICE ALERT. eli11; procs_zombies; FT,1; PROCS WARNING: 2 STATE=Z

356

16.2 An Overview of the Individual CGI Programs

16.2.15 Evaluating whatever you want: summary.cgi

If the display and selection options are introduced so far are not sufficient
for you, you can create your own report with summary.cgi, which gener-
ates the selection dialog shown in Figure 16.38. The upper section, Standard
Reports:, provides a quick summary in which just one fixed report type can
be selected. Clicking on the button directly below this generates the report.

The second section is more sophisticated. The field Report Type: with the
report type Most Recent Alerts provides an individual listing of the last n of
individual events. The number n is defined further down in the selection
dialog in Max List Items:.?2 Report Type: can also be used to show all events
individually on a separate line, with Most Recent Alerts, or you can have
statistics displayed, for the number of events that have occurred overall,
for each host group, etc., with Alert Totals, Alert Totals by Hostgroups, etc.

One particularly interesting report type is Top Alert Producer: such reports
show in a hit list of who has caused most trouble during the report period.

In Report Period: you can either choose the desired report period from pre-
defined intervals (this week, the past seven days, this month, last week, last
month, etc.), or you can specify CUSTOM REPORT PERIOD and define any
period you choose. If you forget to specify CUSTOM REPORT PERIOD explic-
itly, the CGI program ignores the dates you have set and selects what is
currently entered in Report Period.

Standard Reports: Flgure 16.38:
Report Type: |25 Most Recent Hard Alerts =l Selection template
Create Summary Report! for pal’ametel’s in

Custom Report Options: summary.cgi

Report Type: I Most Recent Alerts j
Report Period: [TRis Month =l

If Custom Report Period...
Start Date (Inclusvel: | july = 2005
End Date (Inclusive): [july =||24 |2005

Limit To Hostgroup: | ** ALL HOSTGROUPS *# j

Limit To Servicegroup: | SAP-Services |

Limit To Host: | ** ALL HOSTS ** j

Alert Types: | Host and Service Alerts x|
State Types: |Hard and Soft States x|

Host States: | All Host States =l
Service States: | All Service States |
Max List Items: l?
Create Summary Report!

22 If the number of events in the report period is less than specified in Max List Items:, the
report covers all the events that have happened during this period.

357

16 The Classical Web Interface

Figure 16.39:
An individual report,
as generated by

summary.cgi

The details that follow the report period filter according to host, services
or their groups, state types, and/or individual states (e.g., only services in
a CRITICAL state). It is important to specify Max List Items at the end:
summary . cgi always shows only as many entries as are specified here. The
default is a little small; if you want all the entries in the selected period
to be shown, you should enter 0 as the value. The largest value that can
be given explicitly here is 999. The Create Summary Report! button then
generates the requested report (Figure 16.39).

The header of the report contains details of the report period and the se-
lection made. The detail directly above the table is interesting: Displaying
most recent 25 of 3721 total matching alerts shows that the selection cri-
teria matched a total of 3721 entries, but that the CGI script restricted the
output to the 25 most current entries, thanks to Max List Items:.

Most Recent Alerts For Servicegroup Report Options Summary:
‘SAP-Services' AlextTypes: Host & Service Alerts

Soft & ard States

Up, Dova, Unreachable

Service States: Ok Waming, Unknown Criical

Generate New Report

Alert Summary Report
Last Updated: Sun Jul 24 114720 CEST 2005

TR 2005-07-01 00:00:00 to 2005-07-24 11:47:20
Dusation: 234 11h 47 202

Displaying most recent 25 of 3721 total matching alerts

2005-07-24 06:34:36 Sevice Alert sap 14 SAP Dialog Network Time OK HARD P10 pl0ap014 P10 02 Dialog FrontEndNetTime 625 msec

2005-07-24 06:26:36 Service Alert sap- 14 SAP Dialog Network Time WARNING HARD
2005-07-24 05:24:36 Service Alert sap 14 SAP Dialog Network Time [ERITIGAT HARD
2005-07-24 06:23:36 Service Alert sap 14 SAP Dialog Network Time [SRITICAE SOFT
2005-07-24 08: 13:36 Service Alert sap. 14 SAP Dialog Network Time OK HARD
2005-07-24 05: 58 36 Service Alert sap- 14 SAP Dialog Network Time [SRETIGAE HARD
2005-07-24 05: 57: 36 Service Alert sap- 14 SAP Dialog Network Time [SRITIGAR SOFT
2005-07-24 05 17:36 Service Alert sap 14 SAP Dialog Network Time GK HARD
2005-07-24 051236 Service Alert sap 14 SAP Dialog Network Time WARNING HARD
2005-07-24 05: 11:35 Service Alert sap 14 SAP Dialog Netwrork Time WARNING SOFT
2005-07-24 02:07:36 Service Alert sap- 14 SAP Dialog Response Time OK HARD
2005-07-24 02:02:36 Service Alert sap 14 SAP Dialog Response Time [SRITIGAE HARD
2005-07-24 02:01:38 Service Alert sap 14 SAP Dialog Response Time [SRITICAE SOFT
2005-07-24 01: 1826 Service Alert sap. 12 SAP Dialog Network Time OK HARD
2005-07-24 01:05 17 Service Alert sap- 12 SAP Dialog Network Time [SRETIGAE HARD
2005-07-24 01:02:33 Service Alert sap- 12 SAP Dialog Network Time [SRETIGAE SOFT
2005-07-24 00 47:33 Service Alert sap- 12 SAP Dialog Network Time OK HARD
2005-07-2400:37:33 Service Alert sap- 12 SAP Dialog Network Time [ERITIGAE HARD
2005-07-24 00:32:34 Service Alert sap- 12 SAP Dialog Network Time WARNING HARD
2005-07-24 00:31:36 Service Alert sap. 12 SAP Dialog Network Time WARNING SOFT
2005-07-23 20:20:18 Service Alert sap. 14 SAP Dialog Network Time BK HARD
2005-07-23 20:10:18 Service Alert sap. 14 SAP Dialog Network Time WARNING HARD
2005-07-23 20:08: 19 Service Alert sap. 14 SAP Dialog Netuork Time WARNING SOFT
2005-07-23 18:43:20 Service Alert sap. 13 SAP Dialog Network Time BK SOFT
2005-07-23 19:42:19 Service Alert sap 13 SAP Dialog Network Time WARNING SOFT

P10 p10ap014_P10_02 Dialog FrontEndNetTime 1878 msec
P10 p10ap014_P10_02 Dialog FrontEndNetTime 3368 msec
P10p10ap014 P10_02 Dialog FrontEndNetTime 3398 msec
P10p10ap014 P10_02 Dialog FrontEndNetTime 288 msse
P10p10ap014 P10_02 Dialog FrontEndNetTime 3432 msec
P10p10ap014 P10_02 Dialog FrontEndNetTime 3432 msec
P10p10ap014 P10_02 Dialog FrontEndNetTime 246 msss
P10p10ap014 P10_02 Dialeg FrontEndNetTime 2114 msse
P10 p10ap014_P10_02 Dialog FrontEndNetTime 2114 msec
P10 p10ap014 P10_02 Dialog ResponseTime 285 msec.
P10p10ap014_P10_02 Dialog ResponseTime 1147 msec
P10p10ap014 P10_02 Dislog ResponseTime 1091 msee
P10p10db012_P10_00 Dialog FrontEndNetTime 332 msse
P10p10db012_P10_00 Dialog FrontEndNetTime 8625 msec
P10p10db012_P10_00 Dialog FrontEndNetTime 9674 msec
P10p10db012_P10_00 Dialog FrontEndNetTime 700 msss
P10p10dk012_P10_00 Dialeg FrontEndNetTime 3857 msse
P10 p10db012_P10_00 Dialog FrontEndNetTime 2256 msec
P10 p10db012_P10_00 Dialog FrontEndNetTime 2265 msec
P10p10ap014_P10_02 Dialog FrontEndNetTime 516 msse

P10p10ap014 P10_02 Dialog FrontEndNetTime 1772 msec
P10p10ap014 P10_02 Dialog FrontEndNetTime 1786 msec
P10p10ap013_P10_01 Dialog FrontEndNetTime 574 msec

P10p10ap013_P10_01 Dialog FrontEndNetTime 2413 msec

16.2.16 Following states graphically over time: trends.cgi

A rapid overview of what state occurred when for a particular host or ser-
vice is provided by the graphic output of trends.cgi (Figure 16.40). Af-
ter selecting a specific host or service, you can define a period, as with
summary.cgi. The states are color-coded by trends.cgi, which makes
the overview easier to follow.

The zoom function of the CGI program is an interesting detail. If you click
in the colored area on a particular section, the selected area is enlarged
or reduced in size by the zoom factor specified at the top right. Negative
entries (-1, -2, -3, and -4 are possible) expand the report period instead
of reducing it.

358

16.3 Planning Downtimes

i Service 'fs_a' On Host 'eli02’
Eletrites ik Mol - First assumed service Backtracked
Last Updated: Wed Aug 10 21,0129 CEST 2005 state: atchives:
Nagios® - wurw nadios org Ape
Logged in as wob Unspecified M 4
99 2005-07-01 00:00:00 ta 2005-07-25 P H
[View Trends For This Host 00:00:00 Report period: Zoom factor:
(View Availability Report For This Service Duration: 24d 0h Om Os [Current time range | 7] m
[View Alert Histogram For This Service 9
[View Alert Historv This Service
\Wiew Notifications For This Service Update
P
Trends State History For Service *fs_a” On Host “eliog”
Fri Jul 1 00:00:00 2005 to Hon Jul 25 00:00:00 2005 State Breakdowns
ok e ok : (14.1322) 3d Sh 24m 05
Unkriaun Unkriaun 1 C0.000%) 0t OR om O3
Critical . Critical @ (4.395%) 1d 1h 18m d5s
Indeterminate Indeterminate: (0.000) Od Oh tm Os
TR T T E T ERETET
28828888 B2 ©LoELEE S QR B2 g9 2882
SC S EEC5 5 55 5555532658 55 5 g s oss
SR RS ARR R R RA A SSSES RS 8 & g’ sR
S 2 % 22 ENE SN T E S 2 e 2T 23 8 o 2m EE
£82 82598 88 $£8¢£¢%¢ 8% g0 44 288
S S SSECiE 5% S oScS S Sa Sk %o oop me
222823228 88 38 2¢£¢¢2 ¢ gw ¢ 28I
S EEEs 54 £S5 E8 5 S8 £ of o5 2838
£S5 5888825 8% §8888 8688 &% 53 sy I8
S e t
ER A L L A
332333333 33 33333338 33 3 3 3833
s 2 & E Y ET R ME S ¥ T b S5 uE B I 4w S8
P % 5 EYEEZE BE ESEZIT R SS X% E Z 8% SS
EB3E2ELE BF ESLELEZS PR L E BB 38

16.3 Planning Downtimes

In every system environment maintenance work accumulates from time
to time that the administrator can normally plan, so that users can be in-
formed accordingly beforehand. Nagios refers to such maintenance win-
dows as Scheduled Downtime; the administrator enters these either in the
information page for the host or service generated by extinfo.cgi (Fig-
ure 16.4, page 331) or for the corresponding host or service group (Figure
16.17, page 339). In doing this, extinfo.cgi makes use of cmd. cgi (Sec-
tion 16.2.3, page 343), which can also be called selectively:

http://nagiosserver/nagios/cgi-bin/cmd.cgi?cmd_typ=55

opens the import template for maintenance times for a single host. The
values for cmd_typ are summarized by Figure 16.24 on page 344.

A further method of recording maintenance periods is provided by addons,
which, like the CGI programs, use the external command interface, but
which can be automated, in contrast to the interactive Web interface. Such
addons can also be found on the Nagios Exchange.??

For scheduled downtimes, Nagios prevents notifications from being sent.
This ensures that the administrator is not flooded with false alarms. When

23 nttp://www.nagiosexchange.org/Downtimes.38.0.html.

Figure 16.40:
trends.cgi
represents the
chronological
sequence of
states—here using
the example of a
service

359

16 The Classical Web Interface

Figure 16.41:

The downtime for a
host in the Web
interface is recorded
using this dialog

checks are made to see whether messages should be sent, a downtime is
the third item in the list (Figure 16.2, page 268). In addition, avail.cgi
(Section 16.2.10, page 351.) takes account of the downtime when evaluating
the availability of individual hosts and services, and assigns error states that
occur during these times not as error states, but as OK.

Maintenance periods can overlap. If one maintenance window lasts from
8:00 A.M. till 12:00 P.M., and a second one involving the same host or ser-
vice, from 10:00 A.M. to 2:00 P.M., then Nagios does not send any error
messages between 8:00 A.M. and 2:00 P.M., and the whole period is also
ignored in the availability statistics.

16.3.1 Maintenance periods for hosts
What data is required to record the maintenance window can be explained

quite clearly using the Web interface. Figure 16.41 shows the input template
for the downtime of a host (cmd.cgi?cmd_typ=55).

You are requesting to schedule downtime for a particular host

Command Options Command Description
Host This command is used to schedule downtims for
Mame: |eli-saprouter a particular host. During the specified
§ downtime, Nagios will not send natifications
Author out about the host. When the scheduled
(Your l-;ub downtime expires, Nagios will send out
Name): notifications for this host as it normally would

Scheduled downtimes are preserved across
program shutdowns and restarts Both the
start and end times should be specified in the
Triggered following format: mm/dd/yyyy hhimamiss, If
Ey:gg NA | you select the fived option, the downtime will be
in sffect between the start and end times you
spectfy. fyon do not select the fived option,

Start Nagios will treat. this as "flexible” downtime.
07/25/2005 17:50:00 o
Time: /23l Flexible downtime starts when the host goes
! ; down or becomes unreachable (somstime

B 072512005 19:00:00 between the start and end times you specified)

Type: Flexible | and lasts as long as the duration of time you
enter. The duration fields do not apply for fixed

downtime.

CDmment:lRuulerUpgrade durch T-Systems gegen 18h

f
Flexible, |0 Hours|30 Minutes
Duration:

Child
Hosts: IScheduIe triggered downtime for all child hosts =
Commit Reset

Please enter all required information before committing the command.
Required fields are marked in red.
Failure to supply all required values will result in an error.

The first line defines the host, and in the second line Nagios automatically
enters the login with which you have logged in to the Web interface. In the
input field after the Comment: keyword, you can describe the reason for the
planned downtime. Specifying the trigger shows whether it was generated
indirectly through another entry. When recording a new downtime, you
should leave the value N/A (not available, that is, no trigger) as it is.

In the next four lines you have the option of entering two different down-
time types: fixed ones (Type: Fixed) or variable periods (Flexible). The first
has a fixed start and a fixed end. In this case Nagios ignores the period
entry in hours and minutes in the Flexible Duration: fields completely.

360

16.3 Planning Downtimes

A flexible downtime starts when the first-ever event occurs in the period
specified. From this point in time Nagios plans the downtime for the length
of time that was specified here in hours and minutes. This may certainly
exceed the end point specified in End Time:.

If further hosts are dependent on the computer specified in Host Name:
(perhaps because a router is involved, which other host objects have en-
tered as parents), you have the possibility of extending the downtime to all
dependent hosts with the last item, Child Hosts:. Schedule triggered down-
time for all child hosts passes on flexible downtimes to all “child hosts,”
Schedule non-triggered downtime for all child hosts does the same for fixed
downtimes, and Do nothing with child hosts ignores dependencies, so that
Nagios does not plan for any downtime for any hosts other than the one
specified here.

How this hereditary behavior takes effect in Figure 16.41 is shown by the
overview of all scheduled downtimes in Figure 16.21 on page 342. The first
line contains the downtime just described for the host eli-saprouter with the
Downtime ID number 1. Entries that are caused by inheriting this timeout
contain the Downtime ID of the downtime causing them in the Trigger 1D
column: for sap-12 this is 1, since the maintenance of eli-saprouter
also affects this host.

Nagios simultaneously generates a comment entry when planning a down-
time, which is automatically removed when this period has passed. This is
why a speech bubble appears in the status display. During the downtime
Nagios supplements this with a “snoring sign,” which is meant to represent
a sleep state (Figure 16.42).

elisaprouter() £ pvg Hox 2005.07.31 12:02:50 34d 3h 56m 115 1/3 OK- 172.17.130.227: rta 1 324ms, lost 0%

16.3.2 Downtime for services

Downtimes for services differ from those for hosts in two small details.
Apart from host name, the service description must be included, and the
possibility of inheritance is excluded, since there are no corresponding de-
pendencies for services.

A downtime for a host does not automatically apply to the services running
on it. But since they are also not available if the host is down, it is recom-
mended that you plan the same downtime for all dependent services. It
can be quite strenuous to enter all the services individually. It is much eas-
ier to do this using a host group (cmd_typ=85), as shown in Figure 16.43.
With this you can define the downtime for services in a specific host group
with a single command, and much more as well: a check mark in Schedule

Figure 16.42:

The snoring sign
zzz7z shows that the
downtime for the
host has begun

361

16 The Classical Web Interface

Figure 16.43:

One downtime for all

services of a host

group

Downtime For Hosts Too at the same time defines the same downtime for all
hosts belonging to this group.?*

You are requesting to schedule downtime for all services in a particular hostgroup

Command Options Command Description
5 This command is used to schedule downtime for all services in a particular
Hostgroup Name: — |Sap hastgroup, During the specified downtims, Nagios will nat send niotifications
Auther (Your Name): wob out about the services. When the scheduled downtime expires, Nagios will
- send out notifications for the services as it normally would. Scheduled
Comment: Firmwareupgrade am Router] downtimes are preserved across program shutdowns and restarts. Both the
Start Time: 07/31/2005 13:00:00 start and end times should be specified in the following format: mmy/dd/yyyy
07/31/2005 13:00:00 | hh:mmsss. Ifyou select the fived option, the downtime will be in effect
End Time: 07/31/2005 14:00:00 between the start and end times you specify. [f you do not select the fived
. e option, Nagioswill treat this as "flexible” downtime. Flexible downtime starts
Type: Flexible | when a service enters a non-OK state (somstime between the start and end

times you specified) and lasts as long as the duration of time you enter. The

e TeerslENe, [mtilerss | SR oo g R dulration fields do not apply for fixed dowtime. Note that scheduling

Schedule Downtime dewntime for services does not automatically schedule downtime for the hosts
S F ‘thase services are assoctated with [fyou want to als schedule downtime for
all hosts in the hostgroup, oheck the 'Schedule downtime for host too'
Commit | Reset aption

Please enter all required information before committing the command.
Required fields are marked in red.
Failure to supply all required values will result in an error.

16.4 Additional Information on Hosts and Services

With the extended information for hosts and services, you can incorporate
additional information in the Web interface and also brighten up its ap-
pearance somewhat, using suitable icons. Two separate objects hold this
information in Nagios 2.x: hostextinfo and serviceextinfo. Starting
with Nagios 3.0, the additional information is defined directly in the host
and service objects. Although Nagios 3.0 still evaluates the hostextinfo
and serviceextinfo objects, it issues a warning message when checking
the configuration and considers these objects to be obsolete.

It is planned to leave these out of Nagios entirely, by version 4 at the lat-
est. Those using Nagios 3.0 for the first time should specify the information
introduced below directly in the host and service definitions and leave out
hostextinfo and serviceextinfo right from the start. If you are chang-
ing from Nagios 2.x to Nagios 3.0, you don't need to worry about this, and
you can continue using existing instances of these objects.

To make this clearer, below we will use the terms hostextinfo and ser-
viceextinfo object information. For Nagios 2.x, the term refers to the ob-
ject of the same name, whereas for Nagios 3.0 it refers to the corresponding
details given in the host and service objects. The parameters themselves
are identical for Nagios 2.x and 3.0. The object information only influences
the Web interface and has no effect on the capabilities of Nagios.

2 Up until (at least) Nagios version 3.0rcl, the check mark has no effect, how-
ever; there you have to enter the downtime of the hosts separately by running
cmd. cgi?cmd_typ=84 again.

362

16.4 Additional Information on Hosts and Services

16.4.1 Extended host information

Object information for hosts allow you to enhance the display of hosts in
the Web interface through additional functions in the form of links and
enhancement features in the form of icons and coordinates:

Nagios 3.0
define host({

Nagios 2.x

define hostextinfo{
linux01
Samba Primary Domaincontroller
/hosts/linux01.html
/hosts/actions/linux01.html
base/linux40.png

host_name
notes
notes_url
action url
icon_image
icon_image_alt Linux Host
vrml_image base/linux40.png
statusmap_image base/linux40.gd2
120,80

70.0,30.0,40.0

2d_coords
3d_coords

The only obligatory parameter when these are defined is the specification
of the host, with host_name; everything else is optional:

host_name
This is the name of the host object whose Web pages are to be ex-

panded by the following properties.

notes
Use this for additional information that extinfo.cgi takes into ac-
count in its information pages. (The entry specified in the above ex-
ample, Samba Primary Domaincontroller, can be found in Figure 16.44
below the Linux icon.)

Host Information Host

Last Updated: Sun Jul 31 16:45:24 CEST 2005 Host linux01

Updated every 90 seconds (linux01)

Nagios® - www. nagios. orq

Logged in as wob

Wigw Status Detail For This Host Member of <
\ew Status Detail For This Hos 3

Wiew Alert History For This Host No hostgroups ~

Wiew Trends For This Bost Extra Host Actions

View Alert Histogram For This Host 172.17.120.2

View ity Report For This Host

Wiew This Host %

{ Limux Host) Extra Host Notes

Samba Primary Domaincontroller

Host Commands
{Locate host on map
xDlsable active checks of this host
[S{Re-schedule the next check of this host
(@ submit passive check result for this host

Host State Information

Host Status: up
OK - 172.17.129.2 responds to ICMP. Packet 1, rta
0.121ms

Ppkt=1;;0;5 rta=0.121;5000.000;9000.000;;

Status Information:

Performance Data:

Figure 16.44:
extinfo.cgi also
shows an alternative
text here for the
Linux icon (beneath
the Tux in brackets)
and the additional
information from the
parameter notes
(beneath the
alternative text)

363

16 The Classical Web Interface

Figure 16.45:

This detail view
shows an icon each
for notes_url
(open, read booklet),
action_url (pink
star), and icon_
image (here, Linux
penguin)

notes_url

This is the URL of a (HTML) file with additional information on the
host in question, to which you are linked by an icon in the form of
a red, slightly opened manual, both in the status overview (Figure
16.45) and in the info page generated by extinfo.cgi (Figure 16.44).
If the documentation on the host involved is stored in the Intranet,
then maintenance contracts, hotline numbers, system configuration,
etc. are then just a mouse click away.

The parameter may contain an absolute path (from the view of the
Web server) or a complete URL (http://...).

Service Status Details For Host
‘linux01’

limuxo1 @y4¢- [LD & ox 2005-07-31 16:43:18 040hOm25s 13 TCP OK.- 0,000 second response time on port 515

1 Matching Service Entries Displayed

action_url

This is a link pointing to an action to be run for the host, which
executes a CGI program such as cmd.cgi, for example, with just a
mouse click. Since a link in the browser is always just a link, this does
not have to be a command, and you can just as easily link another
Web page. Both in the status overview (Figure 16.45), and on the
extinfo.cgi info page (Figure 16.44) it is hidden behind the pink
star.

As a value, absolute paths from the view of the Web server or com-
plete URLSs can be used.

icon_image

This is an icon to enhance the Web interface, but also to provide
help: if you systematically use pictures here that represent the oper-
ating system (e. g., the Tux for Linux, the Windows window for Mi-
crosoft operating systems, the Sun logo for Solaris computers, etc.),
this helps you to keep an overview of the operating systems in the
status view—especially if you have a large number of hosts (Figure
16.45). extinfo.cgi also uses this icon (Figure 16.44).

Icons should be approximately 40x40 pixels large and be available
as a GIF, JPEG, or PNG file. If you specify a relative path (or none at
all), then this begins with the directory /usr/local/nagios/share/
images/logos/.?%

25 0f you have kept to the paths suggested in this book.

364

16.4 Additional Information on Hosts and Services

icon_image_alt
This alternative text for the icon appears if the browser does not
show a picture (for example for reading devices or output devices
for Braille). From the icon and the icon text details, Nagios generates
the following HTML code:

vrml_image
This is an image symbolizing the host in the 3D representation of
statuswrl.cgi. Permissible formats are again GIF, JPEG, or PNG.
You should avoid slides, since the image is placed on a cube, and the
transparent parts in the 3D interface may lead to unexpected results.

statusmap_image
This is the image with which statusmap.cgi (see Section 16.2.5,
page 346) symbolizes the host in its topological map. The Nagios
demo page of Netways,?® (Figure 16.28 on page 348) shows a nice
example.

Although GIFs, JPEGs, and PNGs are allowed, it is better to use the
GD2 format, because then Nagios requires less computer time to gen-
erate the status map. Using the program pngtogd2, which ought to
be available as a component of the utilities for Thomas Boutells GD
library in most Linux distributions, PNG files can be easily converted.
Again the image size of 40x40 pixels is recommended.

2d_coords
This parameter specifies coordinates for a user-defined layout of the
topological map. Details are given in pixels, with the origin, (0,0),
at the top left, and values must be positive: a positive x
value counts the number of pixels from the origin to the right, a pos-
itive y value from the origin downwards.

Figure 16.28 works with fixed coordinates for individual hosts. Nagios
ignores 2d_coords details if the status maps a different layout to the
user-defined one.

3d_coords
These are the coordinates for the 3D representation. Positive and
negative floating-point numbers are allowed. (0.0,0.0,0.0) is used
as the origin. In the start view, statuswrl.cgi scales the 3D image
so that all existing hosts appear on the screen. Where the starting
point lies on the screen can therefore not be predicted.

26 http: //nagios-demo.netways.de/

365

16 The Classical Web Interface

On The Nagios Exchange there is a wide range of finished icons in the cate-
gory Logos and Images.?’ It is best to unpack these into separate subdirec-
tories, and then the individual packages will not get in each other’s way:

linux:~ # ed /usr/local/nagios/share/images/logos
linux:images/logos # tar xvzf imagepak-base.tar.gz
base/aix.gd2

base/aix.gif

base/aix.jpg

base/aix.png

base/amiga.gd2

imagepak-base.tar.gz contains a basic selection of icons, which can be
supplemented as you please with other packages. The base subdirectory
created, as with the object definition at the beginning of this chapter, must
also be included.

16.4.2 Extended service information

Extended service object information is more or less identical to the host
equivalents, so that we will only mention the differences. In addition to the
host name, the service description in service_descriptionis obligatory,
but the details on the 2D (status map) and 3D views are omitted:

Nagios 2.x # Nagios 3.0
define serviceextinfo{ define service{
host_name linux01

service description LPD

notes Linux Print Services

notes_url /hosts/linux01-1pd.html
action_url /hosts/linux01-1pd-action.html
icon_image base/hp-printer40.png
icon_image_alt Linux Print Server

In contrast to extended host information, the status overview for this exam-
ple only shows the printer icon specified in icon_image, but not the two
icons defined in notes_url and action_url for the two links notes_url
and action_url. They only appear in the page generated by extinfo.cgi
with the same icons as for the extended host information (Figure 16.44,
page 363).

27 http://www.nagiosexchange.org/Image_Packs.75.0.html

366

16.5 Configuration Changes through the Web Interfaces:the Restart Problem

16.5 Configuration Changes through the Web
Interfaces: the Restart Problem

The CGI program cmd.cgi (Section 16.2.3, page 343) enables a series of
changes to be made to the current configuration through the Web inter-
face.?® In this way notifications or active checks can be switched on and
off, for example.

Nagios does not save such changes in the accompanying configuration file,
but notes the the current status in a separately defined file, with the pa-
rameter state_retention_filein nagios.cfg (see page 604). But what
happens if you restart Nagios after many changes using the Web interface?

Whether Nagios retains the interactive changes made after a restart or for-
gets them is dependent on the parameter retain_state_informationin
the configuration file nagios.cfg (page 601). The default O tells the system
to forget interactive changes. For Nagios to remember this, you have to set

/etc/nagios/nagios.cfg

retain state_information=1

But this causes a new problem: settings made in the Web interface do not
have priority over the details in the configuration files. If you change the
active_checks_enabled parameter there for a service, a direction of the
parameter in the configuration file is ignored, since the current, temporarily
stored setting in the file defined with state_retention_file will always
“win out.” This behavior affects all parameters for external commands that
can be changed in the interface, and therefore also via the CGI program
cmd. cgi. The original documentation of Nagios?® labels these with a red
star.

Two approaches provide a remedy in this case: on the one hand you can set
the parameter retain_state_information to O shortly before a restart.
Then Nagios forgets all the changes when it restarts and reads the con-
figuration files in from scratch. This procedure is recommended only in
exceptional cases, as in large environments it will hardly be possible to go
through all the interactive changes in the configuration files. Alternatively
you can get into the habit, whenever you make changes in the configura-
tion file, of making them a second time in the Web interface. Although this
means slightly more work, there is never a danger that current, and perhaps
very important settings, will be lost.

28 The CGI program makes use of the External Command File interface when doing this.
29 Nagios 2x: /usr/local/magios/share/docs/xodtemplate.html, Nagios 3.0
/usr/local/nagios/docs/objectdefinitions.html

367

16 The Classical Web Interface

Two additional parameters in the host and service definitions provide op-
portunities for fine-tuning:

define host(

retain_ status_information 1
retain nonstatus_information 1

}

define servicef{

retain_status_information 1
retain nonstatus_information 1

retain_status_informationspecifies whether the current state of a host
or service should survive the Nagios restart: 1 means that the system tem-
porarily stores the state, and 0, that it forgets it. 1 is certainly the more
sensible value for states, and you should depart from this only in cases that
can be justified.

retain_nonstatus_information, on the other hand, refers to all infor-
mation that describes no status. This includes, for example, whether active
checks are switched on or off, whether passive checks are allowed or not, or
whether admins are to be informed of status changes for this object. With a
value of 1, the system stores this information temporarily and uses it again
after a restart, whereas with a value of 0, Nagios forgets the current settings
and reads the settings from the configuration file when it restarts.

16.6 Modern Layout with the Nuvola Style

The classical view of the Nagios Web interface described so far uses only
a few of the CGI configuration options. However, it is hardly possible to
pack any more items into the navigation bar on the left, which has become
somewhat amateurish in appearance. One solution to this is the Nuvola
style, shown in Figure 16.46.

The layout for the actual CGI program—this example shows a view of the
service problems with status.cgi on the right of the picture—is not only
in color, but there are also new icons. On the left of the picture you can see
the rather elegant navigation, spiced up with corresponding icons. The real
highlight, though, is the use of a Javascript-based menu tree: The individual
entries (such as the sections Home, Monitoring, Reporting, and Configura-
tion) can be opened and closed via mouse click.

368

16.6 Modern Layout with the Nuvola Style |

Host Status Totals Service Status Totals

[ame ®

@ Documentation

L o
@ Tactical Overview
@ Service Detall
@ Host Detail
Qhostname

(& Host Group

) service Group
o Status Map

Current Network Status Up Down Unreachable Pending Ok Waming Unknown Critical Pending
Last Updated: Fri Jan 18 18:22:07 GET 2008

8 2 0 0 16 1 1 3 0
Updated every 90 seoonds
Nagios® 3.0rc1 - www.nagios org Al Problems: Ali Types Al Types

° Logged in as nagios 2 0 5 2

- Nofifications are disabled

All Problems

View History For all hosts
‘View Natfications For All Hosts
‘View Host Status Detal For Al Hosts

Display Filters: Service Status Details For All Hosts
Host Sialus Types: Al
Host Propertis:

Service Stafus Types:

Any
All Problems
Servics Properties: Any

& & Problems
& Senvice Host Service Status o~ Last Check Duration 4~ Attempt Status Information
& Host <liog PING CRITICAL 01-18-2008 18:21:53-16d 6 42m 595 173 GRITIGAL - 172.17.130.1: tta nan, lost 100%
& Network Outages
®e N messhox Temperatur WARNING 01-18-2008 18:21:58 0d 1h35m 85 11 WARNING: Valus com1 1: 24 4
omments
3 Downtime swobspace ¢ PostoreSOL [ZP<y UNKNOWN 01-18-2008 18:22.01356d 1h2m 455 373 Usage:check_pgsal -H1 P [-c][w]
P CRITICAL 01-16-2008 18:21:4192d 7h44m 23s 353 DISKCRITICAL - free space: inevswobspacsia 1281 MB (7%
& Trenc wobpe PING CRITICAL 01-18-2008 18:21:5017d 4n 31m 525 173 CRITICAL - 192.168.1.31: ta nan, lost 100%
rends
) Mailability
& Aerts 5 Matching Service Entries Displayed
o) Notifications
& Event Log

P\ conn 5

Before installing the Nuvola style it is essential that you back up the direc-
tory /usr/local/nagios/share so that you can restore the old setup if
you don't like the new one.

The current version 1.0.3 of Nuvola from NagiosExchange®® at the time of
going to press is from September 2005, but it does work very well with Na-
gios 3.0 as well. The contents are unpacked into a suitable empty directory:

linux:~ # ed /usr/local/src; mkdir nuvola; cd nuvola
linux:src/nuvola # tar xvzfpfad/zu/nagios-nuvola-1.0.3.tar.gz

linux:src/nuvola # cd html

The sources contain files (index.html, main.html) and directories
(stylesheets, images) that already exist in Nagios, and they overwrite
the originals during installation. In addition, the Nuvola style includes a
new subdirectory, side, which contains the actual Javascript code for the
tree navigation:

linux:nuvola/html # tree

|-- config.js
|-- images
I

|-- index.html
|-- main.html

|-- side

30 nttp://www.nagiosexchange.org/75;252

Figure 16.46:

Nagios in the Nuvola
style: shown here are
the Service Problems

369

16 The Classical Web Interface

| | -- apytmenu.css
| |-- apytmenu.js

-- apytmenu data.js
. 9% _ j

| |-- dtree.css
| |-- dtree.js
| |-- dtree_data.js

| |-- icons

N
|-- sidel.html
‘-- stylesheets

5 directories, 175 files

The contents of the directory html are simply copied to /usr/local/share,
for example, with rsync:

linux:nuvola/html # rsync -av . /usr/local/nagios/share/.

For the new navigation to appear, the file sidel.html must be installed.
If you just rename it to side.html, though, the make install of a new
Nagios version will just overwrite it again. So it is better to use a separate
index file instead, such as index1.html, and run the Nagios Web interface
from this:

http://nagiosserver/nagios/indexl.html

To do this, you copy the index.html file included in Nuvola to the Nagios
share directory with the name index1.html:

linux:nuvola/html # cp index.html/usr/local/nagios/share/indexl.html

In the file index1.html you replace side.html with sidel.html so that
the Javascript navigation is called:

document .write (’ <FRAME SCROLLING="no" SRC="sidel.html" NAME="side"

If, like the author of this book, you consider it to be going over the top
to change the styles of all the CGI programs, you can just pick out the
improved navigation and supplement and redesign this as you think fit.
Instead of making a complete copy of the directory html, you just select
the files you require:

370

16.6 Modern Layout with the Nuvola Style |

linux:nuvola/html # cp -r side /usr/local/nagios/share/.
linux:nuvola/html # cp sidel.html config.js/usr/local/nagios/share/.
linux:nuvola/html # cp index.html/usr/local/nagios/share/indexl.html

You change the file index1.html as we have just shown and check the
cgipath variable in config. js:

var cgipath = "/nagios/cgi-bin/";

Nuvola uses a ready-made menu tree library, which is available in a com-
mercial version called apytmenu,31 which will not be discussed here, or in a
free variation, dTree.3? dTree is the default setting in config. js (treeType
=’dtree’) and is included in full. Configuration of the menu and trees is
done in the file dtree_data. js in the directory side. The basic principle
can be briefly explained using the Home menu as an example:

general = new dTree(’general’);

general .header('Home’, 'icon’, ...);

general.add(0,-1) ;

general.add(1l, 0,’Documentation’,’docs/index.html’, ...);
document .write (general) ;

The dTree function generates a new menu tree. Its parameter is a freely
selectable identifier (in this case, general), which is used to reference the
tree. general.header sets the title of the menu to Home. The function
requires other parameters as well, including an icon (as shown).

The first general.add call anchors the tree still to be created. The first
two parameters of the add function refer to the number of the node to be
added, followed by its parent node. The topmost node is called 0, and be-
neath this is the entry Documentation, to which the number 1 is assigned.
If Documentationitself is to have subnodes, the invocations would be writ-
ten as follows:

general.add (2, 1, ’'new entry', ...);
general.add(3, 1, ’'new entry’, ...);
general.add (4, 1, 'new entry', ...);

Finally document .write builds the entire menu tree. The header function
has the following parameters:

menu_name.header (title, icon, height, background image, background color,open) ;

31 http://dhtml-menu.com/
32 http://www.destroydrop.com/javascripts/tree/

371

16 The Classical Web Interface

title contains the heading and can also be set up as a URL. A mouse click
on the heading opens the hyperlink specified.

icon specifies the path to a small graphic that is displayed in front of the
heading.

height specifies the height of the background beneath the heading. Fol-
lowing this, the property of this background can be specified either as a
background image, with backgroundimage, or as a color (background
color).

Finally open specifies whether the menu tree should be open (1) or closed
(0) at the start. Arguments specifying textual values are enclosed in sin-
gle quotes, and numerical arguments are written directly, as shown in the
examples.

The add function is invoked in a similar way:

menu_name.add (id, pid, name,
url, title, target, icon,

iconOpen, open, css);

id is the node number, and pid is the number of the node beneath which
the entry should be integrated. name defines the name of the node in the
menu, and url defines the hyperlink to be called. title and target op-
tionally specify a page title and the target frame for displaying the page
called via url. Both parameters normally remain empty here; the default
for the target—correctly for Nagios—is the frame main.

icon defines the mini-graphic that is placed in front of the menu entry, and
icon0Open optionally contains another icon that is used in its place when
the menu entry is open. open again defines whether the entry should be
opened (value 1) or closed (value 0) on starting, and css optionally allows
an alternative CSS definition. For all optional parameters, the following ap-
plies: If they are at the end, they can be omitted, but if they are followed by
other details, their omission must be marked by a pair of single quotation
marks (??).

The included file dtree_data. js contains four extensive menus. If you
have little experience with handling Javascript, it is best to save this tem-
plate and adjust it in small steps. In case of error, information is very sparse
and usually misleading, so it is particularly important that you note exactly
what has been changed from one step to the next in order to be able to
quickly isolate the error.

At this point we would like to mention the dTree homepage3® once again,
which provides examples with extracts of code, along with a description of
the programming interface.

33 http://www.destroydrop.com/javascripts/tree/

372

16.6 Modern Layout with the Nuvola Style |

Those who are not satisfied with the possibilities of the Nagios Web inter-
face described in this chapter should take a look at NagVis (Chapter 18 from
page 389). The addon enables a freely definable interface and supplements
the standard CGIs in an impressive manner. However, a prerequisite for
NagVis is the installation of the database interface NDOUtils (Chapter 17
from page 375), which sets the installation hurdle slightly higher.

373

Flexible Web Interface with the
NDOUtils

The Web interface of Nagios 2.x ansd 3.0, introduced in Chapter 16 from
page 327, has a crucial disadvantage for large environments with hundreds
of hosts: It cannot be scaled up. As long as you only observe error states and
work intensively with acknowledges, you will manage fine with the CGI-
based Web interface. But if you try to display several thousand services,
you will have to be prepared to wait—it does not matter what their states
are. Setting up the page can take a long time, and then practical work is
hardly possible.

Nagios extensions struggle with the CGI Web interface because this directly
evaluates Nagios internals, such as object configuration, status data, and
log files. This means that every extension that is used to supplement or
replace the Web interface must follow this logic.

375

17 Flexible Web Interface with the NDOUtils

Figure 17.1:

An external
application
communicates with a
loaded NEB module

The solution to this is called NDOUgtils (Nagios Data Objects Utilities). These
consist of a handful of tools that write all data—from configuration through
events and check results to historical records—to a database and make
them available via a uniform database model.

The mechanism that connects the NDOUtils to Nagios is called Nagios
Event Broker (NEB). This adds a modular interface to Nagios. The NEB
loads the extensions as modules when Nagios starts so that the modules
can be used without having to recompile Nagios. This approach is similar
to that of the Apache modules, which are loaded when required and add
new functions to the Web server.

The NDOUtils form the basis for the future Web interface of Nagios, imple-
mented with PHP, which should see the light of day starting with Nagios
4.x. With NagVis (see Chapter 18 from page 389), however, there is already
an alternative Web interface that is based on the NDOUftils.

17.1 The Event Broker

The NEB provides an interface between Nagios and external modules based
on shared libraries. An external, application-dependent module makes
callback functions available. The Nagios kernel itself calls the accompany-
ing callback function from the loaded module for every event: If there is no
matching function, nothing happens. What actions the callback function
executes is left to the imagination of the developer: Either it does some-
thing itself or it passes on configuration, status, and event data to an exter-
nal application, as outlined in Figure 17.1.

For the transfer of data to external tools, Unix sockets or network sockets
can be used, although it is also possible to use the file system. The applica-
tion further processes information (saves it in a database, for example, or
sends it as messages via SNMP traps, writes it to the syslog, etc.).

Nagios kernel

external

NEB module S
application

When a callback function is called, Nagios waits for it to finish. This means
that long execution times hinder the system. For this reason callback func-
tions should always leave time-consuming processing steps to an external
application and be restricted to sending on the necessary information as
quickly as possible.

376

17.1 The Event Broker

Building event broker modules is something that should be left to experi-
enced programmers; mere mortals must be content with using ready-made

modules. An NEB module can be integrated via the instruction broker_

module in the main configuration file nagios.cfg:

/etc/nagios/nagios.cfg

broker module=module-with-path arguments
event_broker options=-1

Whether you pass on arguments to the module or not depends on its con-
crete implementation. The parameter event_broker_options controls
what information Nagios passes on to event broker modules. With the op-
tion -1 it is all of them, while the value 0 prevents any information from
being passed on. An alternate approach, of selectively passing on specific
information, is provided by the file broker.h from the Nagios sources:

/+ broker.h from the Nagios sources x/

[xxxxxxxxxxxxxxx BEVENT BROKER OPTIONS #*kkkkkkkkkkkkxxx/

#define BROKER_NOTHING 0
#define BROKER_EVERYTHING 1048575
#define BROKER_PROGRAM STATE 1 /% DONE */
#define BROKER DOWNTIME DATA 512 /+ DONE x/
#define BROKER_ STATUS_DATA 4096 /% DONE */
#define BROKER_RETENTION_DATA 32768 /* DONE x/
#define BROKER_ACKNOWLEDGEMENT DATA 65536
Broker Option Value Explanation
BROKER_PROGRAM_STATE 1 Is the program Nagios run-
ning?
BROKER_DOWNTIME_DATA 512 Details of planned mainte-
nance periods
BROKER_STATUS_DATA 4096 Current status information
of all checks
BROKER_RETENTION_DATA 32768 Data which is buffered for

a restart of Nagios

BROKER_ACKNOWLEDGEMENT_DATA 65536 Confirmations that have
been made on error states
of host and service checks

Table 17.1:
Data to be
transferred to NagVis

377

17 Flexible Web Interface with the NDOUtils

NagVis 1.1, introduced in Chapter 18, requires the information listed in
Table 17.1. The corresponding numerical values add up to 102913, so that
event_broker_options can be modified as follows so that is tailor-made
for NagVis:

/etc/nagios/nagios.cfg

event_broker options=102913

Information on the event broker is currently very sparse. The only descrip-
tions of the interface are a quite old documentation from Nagios 2.0 and
the Nagios Event Broker API'.

17.2 The Database Interface

As a concrete and practically-oriented application of the event broker con-
cept, the Nagios data object utilities, or NDOUgtils, save all configuration
and event data to a database. In order to be able to make use of the
database, further applications are required. For Nagios 4.x, this will in all
probability be a newly designed, PHP-based Web interface. Whether this
Nagios version will immediately manage all the configuration data in the
database was still a matter of speculation at press time (when Nagios 3.0
was not quite finished).

For the database, the NDOUTtils currently support only MySQL; the use of
PostgreSQL is planned, but is not yet implemented in version 1.4, intro-
duced here.

Since the NDOUtils addons provide a database interface that is relatively
simple to use, it is expected that their use with Nagios 3.x will increase.
NagVis (discussed in the next chapter from page 389) already provides a
powerful NDO-based front end that in many cases can replace the status
map, which remains relatively simple and is discussed in Section 16.2.5
from page 346.

Figure 17.2 shows the various paths by which Nagios data can be imported
into the NDOUtils database. Export of data from Nagios is handled by the
event broker module ndomod. It can either operate a TCP or Unix socket,
or write the data to a file. If Nagios is installed on the same computer
as the NDOUtils database, the Unix socket interface will provide the best
performance and the greatest security (Unix sockets cannot be addressed
from a network, in contrast to TCP sockets). The socket of the ndo2db
daemon that ultimately writes the data to a database is queried.

1 nttp://www.nagios.org/developerinfo

378

17.2 The Database Interface

The method using a file involves the utility FILE2SOCK, which reads in the
file and also delivers data to the nd02db daemon via a TCP or Unix socket.
FILE2SOCK can also read data from the standard input.

log
files
Nagios kernel o
NDOMOD file »|FILE2SOCK | file J ‘LOGZNDO

A A J

/

TCP or TCP or / TCPor /
Unix socket Unix socket i Unix socket /

\ / \ /

NDO2DB- NDO2DB- NDO2DB- NDO2DB-
process daemon process process

database

—.

directly through TCP file based
oder Unix socket NEB export

For each database you need exactly one ndo2db daemon. If several differ-
ent clients have access to the socket interface, it will start several processes
to handle these.

The program LOG2NDO is one of the NDOUTtils. It reads log files from Na-
gios 2.x and 3.0 and passes this data to the ndo2db daemon—either directly
via the socket interface or via a file that has to be separately imported with
FILE2SOCK. If you want to integrate such historical data into the database,
you will have to make plenty of storage space available, because the log
files are compressed when they are archived but are saved in the database
in uncompressed form. Thus the log files occupy more space when they are
managed using the database.

FILE2SOCK and LOG2NDO are primarily used to import historical data.
The data later required by NagVis is updated by Nagios at very short inter-
vals. Since historical data is not required here, we shall not describe these
two programs in any more detail.

Figure 17.2:

How can you
integrate Nagios
data into the
NDOUtils database?

379

17 Flexible Web Interface with the NDOUtils

17.3 The Installation

Since there are problems with INSERT statements in some tables of the
NDOUtils database when MySQL in version 4.0 is used, it is better to use
MySQL 5 right from the start.? In addition to the MySQL server package
(in Debian, “Etch” mysql-server-5.0) and the libraries that are usually
selected automatically during the installation of the server package, you
also require the accompanying development package (in Debian, “Etch”
libmysqlclient15-dev) in order to be able to compile the NDOUTtils.

One consequence of the far-reaching integration of the NDOUgtils into Na-
gios is that the version must exactly match that of the Nagios version used.
Both Nagios and the NDOUTtils define their version status in the source
code with the macro CURRENT_0BJECT_STRUCTURE_VERSION. The macro
can be found in the file ./include/objects.h in the Nagios source code
(for Nagios 3.0, in this example):

linux:src/nagios-3.0rcl # f£grep CURRENT OBJECT STRUCTURE VERSION \
include/objects.h
#define CURRENT OBJECT_ STRUCTURE_VERSION 307

The NDOUtils package contains two include files, one for Nagios 2.x and
one for Nagios 3.x:

linux:src/ndoutils-1.4b7 # fgrep CURRENT OBJECT STRUCTURE VERSION \
include/*/objects.h

include/nagios-2x/objects.h:#define CURRENT OBJECT STRUCTURE_VERSION 2

include/nagios-3x/objects.h:#define CURRENT OBJECT STRUCTURE_VERSION 307

If the CURRENT_OBJECT_STRUCTURE_VERSION value of Nagios does not
match one of the two values in the NDOUtils source code, the NDOUtils
module will unload itself and refuse to perform. The procedure is docu-
mented in the log file nagios.logwith an entry like the following (the two
different versions are marked in bold type):

[1186152181] ndomod: NDOMOD 1.4b4 (06-19-2007) Copyright (c) 2005 -2007

Ethan Galstad (nagios@nagios.org)

[1186152181] ndomod: I’'ve been compiled with support for revision 303 of
the internal Nagios object structures, but the Nagios daemon is currentl
y using revision 304. I'm going to unload so I don’t cause any probl...

2 The author has tested version 5.0.23, but there are also reports of NDOUtils working
successfully with MySQL 4.1.x.

380

17.3 The Installation

17.3.1 Compiling the source code

The up-to-date NDOUtils code can be downloaded from the Nagios Web
page® and then unpacked to a suitable directory:

linux:~ # ed /usr/local/src/nagios
linux:src/nagios # tar xvzf /path/to/ndoutils-1.4b7.tar.gz

linux:src/nagios # cd ndoutils-1.4b7
linux:nagios/ndoutils-1.4.b7 # ./configure --sysconfdir=/etc

linux:nagios/ndoutils-1.4.b7 # make

We start the configure run with the switch --sysconfdir=/etc in order
to install the configuration files for the module and daemon to match the
convention in this book, that is, to the directory /etc/nagios. The make
call compiles the program code, and the installation is then done manually:

linux:nagios/ndoutils-1.4.b7 # cd ./src
linux:ndoutils-1.4.b7/src # cp ndo2db-3x ndomod-3x.0 log2ndo file2sock \
/usr/local/nagios/bin/

For Nagios 2.x the daemon ndo2db-2x and the module ndomod-2x. o are
copied to /usr/local/nagios/bininstead of the 3.x versions.

17.3.2 Preparing the MySQL database

In the MySQL database system, we require a database storing appropriate
access options for the user nagios. In order to set this up, we first log in to
MySQL as the user root:

user@linux:~$ mysqgl --user=root -p

Enter password: root-passwort_ for the db

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1861

Server version: 5.0.32-Debian_7etchl Debian etch distribution

Type 'help;’ or '\h’ for help. Type ’'\c’ to clear the buffer.

mysql>

The switch -p ensures that the password is requested. The following com-
mand tests whether a password is set or not:

3 http://www.nagios.org/download/

381

17 Flexible Web Interface with the NDOUtils

user@linux:~$ mysqgl --user=root

If the login triggered by this works without an error message, then the root
password is missing. This should be specified with the command

user@linux:~$ /usr/bin/mysqladmin -u root password ’secret’

You should replace secret with your own secure password.*

The database (it is given the name nagios) is created with the SQL com-
mand CREATE DATABASE, and it is then given the required permissions
with GRANT:

mysqgl> CREATE DATABASE nagios;

Query OK, 1 row affected (0.01 sec)

mysgl> GRANT USAGE ON *.* TO ‘nagios’@’localhost’ IDENTIFIED BY ’secret’
WITH MAX QUERIES PER HOUR 0
MAX CONNECTIONS_ PER_HOUR 0
MAX UPDATES_ PER_HOUR 0 ;

Query OK, 0 rows affected (0.00 sec)

mysgl> GRANT SELECT , INSERT , UPDATE , DELETE ON ‘nagios‘.=*
TO ’‘nagios’@’localhost’;

Query OK, 0 rows affected (0.01 sec)

mysqgl> FLUSH PRIVILEGES;

Query OK, 0 rows affected (0.00 sec)

mysgl> quit

The GRANT USAGE command defines the user, along with his password, and
specifies that for him there are no restrictions in the number of queries,
database connections, or database updates per hour. For the password,
something slighty more secure than secret is chosen, but it must be writ-
ten here in plain text. GRANT USAGE does not yet give any access permis-
sions to the tables of the nagios database. This is handled by the second
GRANT command. The changes to the permissions of the nagios user are
activated with FLUSH PRIVILEGES.

The NDOUtils require SELECT, INSERT, UPDATE, and DELETE permissions.
For NagVis and other applications, which only read data from the database,
the SELECT permission is sufficient.

In the next step the tables are generated in which the NDOUtils will later
save data. A finished SQL script in the db subdirectory of the NDOUtils
sources is provided for this purpose, and needs only to be executed:

user@linux:src/ndoutils-1.4b7$ cd db
user@linux:ndoutils-1.4b7/db$ mysql -u root -p nagios < mysqgl.sql

4 Further notes on the secure adminstration of MySQL can be found in the online doc-
umentation at http://www.mysql.org/doc/refman/5.0/en/security-guide-
lines.html and possibly in the documentation delivered with the distribution under
/usr/share/doc/.

382

17.4 Configuration

The script should run without error in all cases (meaning without any mes-
sages). The tables created can be shown with the SQL command show
tables.

Various distributions install MySQL by default with logging switched on.
With the (usually binary) log files, the current status of the database can be
replicated or restored. In combination with the NDOUJtils, however, these
log files grow very quickly. If you are using the database only for the ND-
OUtils, you will need such tools only in rare cases, and you can therefore
comment out all the *1og* parameters in the my . cnf configuration file and
restart MySQL—this time without logging.

17.3.3 Upgrading the database design

Since the NDOUtils are actively undergoing development, larger changes to
the database structure cannot be ruled out. For an upgrade, it is possible
that the database design must also be changed. The NDOUtils provide a
script for this purpose, upgradedb in the subdirectory db, which automat-
ically adjusts the tables:

linux:~ # ed /usr/local/src/nagios/ndoutils-1.4b7/db
linux:ndoutils-1.4b7/db # ./upgradedb -u root -p password \
-h localhost -d nagios
Current database version: 1.4Db5
** DB upgrade required for 1.4b7

Using mysqgl-upgrade-1.4b5.sgl for upgrade...
** Upgrade to 1.4b7 complete

The script detects the existing NDOUTtils version and adjusts the tables ac-
cordingly. Among other things, it uses the SQL command ALTER TABLE, for
which the MySQL user nagios, created in the last section, does not have
sufficient permissions. The script therefore needs to be run as the MySQL
user root.

17.4 Configuration

The NDOUtils are configured at three different locations. The file ndomod.
cfg specifies the settings for the Event Broker module. ndo2db.cfg con-
trols the daemon ndo2db, which accepts data from the Broker and writes to
the database. An entry in /etc/nagios/nagios.cfg finally ensures that
Nagios loads the Event Broker module ndomod when it starts.

The NDOUtils source code in the subdirectory ./config provides a tem-
plate for each of the two configuration files. The command

linux:src/ndoutils-1.4b7 # cp config/ndo*.cfg /etc/nagios/.

383

17 Flexible Web Interface with the NDOUtils

copies these, in accordance with the convention used in this book, to the
directory /etc/nagios.

17.4.1 Adjusting the Event Broker configuration

The template for ndomod. cfg can almost be used unchanged; you need to
adjust only the path to the var directory:

/etc/nagios/ndomod.cfg
instance_name=default
output_type=unixsocket
output=/var/nagios/ndo.sock

tcp_port=5668

output_buffer items=5000

buffer file=/var/nagios/ndomod.tmp
file_rotation_command=rotate_ndo_log
file rotation_ interval=14400

file rotation_timeout=60
reconnect_interval=15
reconnect_warning interval=15
data_processing_options=-1

config output_options=2

instance_name refers to the instance in the database to be used. Pro-
vided that you map only one Nagios instance in the database, it is no
problem to keep to the default settings. Assuming that Nagios and the
ndo2db daemon are running on the same host, a Unix socket can be used
as the output_type, the name of which is defined by the output param-
eter. tcp_port is used only for output_type=tcpsocket and is therefore
commented out.

In case the ndomod module cannot release data via the socket interface
(because the daemon has just restarted, for instance), these are saved tem-
porarily in the file buffer_file. The number of entries to be saved in this
in the output_buffer_items parameter should not be set too low. A tried-
and-tested rule of thumb here is to take the number of all defined host and
service objects and multiply this by five. This is an empirical value: When
reloaded, or when Nagios is restarted, the NDOUtils write the start state
for each host and each service to the database, along with all planned and
started checks. These might be supplemented by the results of new or still
running checks.

The file_rotation_* parameters are required only for output_type=
file, which requires the use of the additional daemon FILE2S0CK. For rea-
sons of performance it is recommended, however, that you use the socket
interface instead of the file-based one. The file interface also makes the
configuration more complex, due to additional daemons.

384

17.4 Configuration

The parameters reconnect_interval and reconnect_warning_inter-
val are also intended for cases where a connection using the ndo2db dae-
mon could not be established. They specify in seconds how often Nagios
should try to make contact with them and how often a warning should ap-
pear in the log file if a connection is not established. These two parameters
should be left as they are in the default.

17.4.2 Configuring database access

There is also little to adjust in the template for the configuration file of the
ndo2db daemon. Apart from the path to the socket interface, the relevant
password for write access to the database must be specified here:

/etc/nagios/ndo2db.cfg
ndo2db_user=nagios
ndo2db_group=nagios
socket_type=unix
socket_name=/var/nagios/ndo.sock
tcp_port=5668
db_servertype=mysql
db_host=localhost
db_port=3306

db_name=nagios
db_prefix=nagios_
db_user=nagios
db_pass=secret
max_timedevents_age=1440
max_ systemcommands_age=1440
max_servicechecks age=1440
max_hostchecks_age=1440
max_eventhandlers_age=10080

The two ndo2db_* parameters specify the user and group with whose per-
missions the daemon runs after the start. socket_type and socket_name
must be set to the configuration in ndomod. cfg.

The only database type that can currently be specified db_servertype is
mysql; for db_port the standard port of MySQL (3306) is normally en-
tered. The database name in db_name must match the name selected in
the CREATE DATABASE command (in this case, nagios), and the database
user and password must also be given in the same way as described when
setting up the database. The value of the parameter db_prefix should not
be changed under any circumstances, otherwise the name of the tables to
be created in the mysql.sql script must also be adjusted.

The parameters beginning with max_* define in minutes how long the NDO-
Utils data on system commands, planned events, service and host checks,

385

17 Flexible Web Interface with the NDOUtils

and event handlers® should be kept in the database. The value 1440 cor-
responds to one day. If you are using the NDOUtils only with NagVis, you
won't need longer times. Short intervals go easy on the database, as well as
the hard disk.

17.4.3 Starting the ndo2db daemon

When everything is configured, the ndo2db daemon is first called manually:
/usr/local/nagios/bin/ndo2db-3x -c¢ /etc/nagios/ndo2db.cfg

Later on it is recommended that you create an init script by copying and
modifying the script /etc/init.d/skeleton, provided in the distribution.
The daemon must match the Nagios version: ndo2db-3x works together
with Nagios version 3.x, ndo2db-2x with version 2.x. After it has started
you should look to see whether the socket specified in the configuration
exists:

linux:~ # 1ls -1 /var/nagios/ndo.sock
srwxr-xr-x 1 nagios nagios 0 Jul 18 21:16 /var/nagios/ndo.sock

If the message Socket already in use appears when the daemon is run,
then either the daemon is already running or the socket ndo.sock was not
removed when the daemon was stopped. In this case you should delete it
manually before restarting it.

17.4.4 Loading the Event Broker module in Nagios

In order for Nagios to load the Event Broker module of the NDOUtils when
it is started, the following entry is added to the configuration file /etc/na-
gios/nagios.cfg:

/etc/nagios/nagios.cfg:
=== NDO ===

broker module=/usr/local/nagios/bin/ndomod-3x.0 config file=/etc/nagios/
ndomod.cfg

In this example the module for Nagios version 3.x is used; if you are using
Nagios 2.x, you enter ndomod-2x. o instead. A reload activates the module:

linux:~ # /etc/init.d/nagios reload

5 For event handlers, see Appendix C on page 619

386

17.4 Configuration

Shortly after the reload, all host and service objects should be recorded in
the database:

user@linux:~$ mysqgl --user=nagios -p nagios
mysgl> select namel,name2 from nagios_objects WHERE objecttype id=2 ;

AHDCO1	CPU_LOAD
AHDCOl1	DISK C
AHDCO1	DISK D

The table nagios_objects contains all the objects, and objecttype_id=2
shows all the services. Alternatively the object type 1 refers to hosts, 3 to
host groups, and 4 to service groups. A complete description of the tables
is provided in the file NDOUTILS DB Model.pdf, included in the NDOUtils
in the subdirectory ./docs.

387

NagVis

NagVis' is an addon for Nagios that displays host and service states against
a background image selected by the user. This must be available in the PNG
format; the choice is yours whether you use a map, a diagram of your own
system documentation, a photo of the server room, or a schematic diagram
of the system environment as a background, as shown in Figure 18.1.

Via the Web interface, you can place objects wherever you want on the
background. NagVis displays different icons, depending on the state of the
object: red for the CRITICAL state, yellow for WARNING, green for OK, and
a question mark on a gray background for UNKNOWN. If an acknowledg-
ment was set, this is indicated by a green button with a picture of a worker
on it.

There are different icons for hosts and services; in the default template,
host icons are rectangular, and service icons are round. A finished NagVis

1 nttp://www.nagvis.org/

389

18 NagVis

Figure 18.1:
Schematic diagram
of a system
environment as a
template for NagVis

display—NagVis refers to this as a map—is shown in Figure 18.2. Further
examples—such as using a geographical map, or a photo of the server room,

as a background—are provided on the NagVis homepage.?

TSY RZV
BEZ
Host Host Headquarters
Print
SAP Login SAP Login Remote Offices
Performance
EIT
Headquarters i
Terminal Server Exchange Domain Controller Print Server QEehal
TS03 AHDS01 AHDCO1 AHPSO01 N
Print
AHDG20 Print
TS04 r -»BBG
File Server TP GOW
TS05 ELIFS01
Firewall
T Firewall
TS07 eligate3 B
AWA DIL HEK KAI NEJ NWJ VoJ
Firewall Firewall Firewall Firewall Firewall Firewall Firewall
Print Print Print Print Print Print Print
BBG HAU HOP MOR NKV TRR WAM
Gival Firewall Firewall Firewall Firewall Firewall Firewall
AHDC20
Print Print Print Print Print Print

Print

In addition to hosts and services, host and service groups can also be inte-
grated into a NagVis display, as well as additional maps. Thus a geograph-
ical overview map could be used for the start page, which has an icon for
each location monitored that links to a detailed NagVis map specifically for
that location.

If an icon contains several states, as is the case for host and service groups,
for instance, NagVis displays the state with the highest priority. CRITICAL
has a higher priority than WARNING, WARNING trumps UNKNOWN, UN-
KNOWN gets more attention than an acknowledgment, and OK has the
lowest priority of all. If any host in a host group assumes the CRITICAL
state, this is shown accordingly for the entire host group.

For hosts and host groups, NagVis offers you the choice of having only host
states considered in determining the state that is displayed, or having the
services dependent on these hosts are included as well (see page 394). In
the latter case, a red stop light is displayed if even a single service of a host
is in the critical state.

2 http://www.nagvis.org/screenshots

390

18.1 Installation
Of particular interest is NagVis’s ability to evaluate only hard states (page
394). For routine work with the Web interface, it turns out to be quite
useful if not every temporary soft CRITICAL state immediately generates a
red light.
TSY RZV Figure 18.2:
Host EHEEHEEHHE Host i Headquartersg BEZ o Displaying the
Print
saPlogn @D @ @ Q@ @ SAP Login (2 Remote Offices @ " o system environment
Performance @ @ @ @ @ @
[ﬁ] /@/ EIT
Headquarters .
Terminal Server Exchange Domain Controller Print Server Firewall ()
Tso3 |id AHDS01 i AHpco1 i AHPSO1 €3)
Print
TETY E File Server iHBDé:éO FF_:.:, g GOW
Tsos |d ELIFS01 @
Firewall ()
508 E Firewall
Tso7 |4 eligate3 [Print
AWA[@] DIL[ﬂ] HEK@ KAIEﬂ] NEJ[@ NWJ@ & VoJ
Firewall @ Firewall () Firewall @ Firewall @ Firewall () Firewall E Firewall E
Print @ Print @ Print @ Print @ Print @ Print @ Print @
BBG[@] HAU[@ HOP[@] MOF{E@:| NKV[@:| TRR[@I WAM[@|
Firewall E Firewall () Firewall @ Firewall E Firewall @ Firewall @ Firewall ‘\)
AHDC20 4
Print O Print @ Print @ Print @ Print @ Print @ Print @

It will especially please fans of object-oriented programming that NagVis
makes full use of object-oriented concepts. For example, the system inher-
its defaults from the global configuration for individual maps and settings
on the map level and passes these on to individual objects, with the option
of overwriting settings locally always available. This simplifies the configu-
ration to a considerable extent, and NagVis also indicates in the graphical
editor (also called the Web user interface or WUI) which settings are object-
specific and which have been inherited (Figure 18.8 on page 399).

NagVis is published under the GNU Public License Version 2 (GPLv2); the
description below refers to version 1.3.

18.1 Installation

NagVis makes use of NDOUtils and is implemented in PHP. Therefore, be-
sides an NDO database in running order, as described in Chapter 17 from
page 375, you need a Web server with PHP 4.2 or higher, as well as the pack-

391

18 NagVis

ages php-mysql for access to the NDO database and php-gd to be able to
draw lines.®> Depending on the distribution and the PHP version used, the
package names may vary slightly. For Debian “Etch” and PHP5 you need
the packages libapache2-mod-php5, php5, php5-common, php5-gd, and
php5-mysql.

NagVis does not necessarily have to be installed on the same computer as
Nagios and the NDOUtils, although in many cases they are packed onto
one host. The configuration of the NDO database—NagVis documenta-
tion refers to this as the backend—can refer (as described on page 395)
to any system you please. NagVis even allows the backend to be selected
separately for each individual object so that maps can be generated that
combine several Nagios installations in a single graphic.

18.1.1 Installing the source code

The NagVis source code, from http://www.nagvis.org/downloads, is
unpacked in a directory of your choice:

linux:~ # tar xvzf /pfad/zu/nagvis-1l.3.tar.gz

If a previous installation exists, you should back this up first. Then you
copy the directory that has been created (in our case, nagvis-1.3) with
the name nagvis to /usr/local/nagios/share:

linux:~ # mv nagvis-1.3 /usr/local/nagios/share/nagvis
linux:~ # 1ls -F /usr/local/nagios/share/nagvis
INSTALL LICENCE README config.php etc/ index.php nagvis/ var/ wui/

The duplicated directory name nagvis can sometimes lead to confusion,
but it is correct:

/usr/local/nagios/share/nagvis
/usr/local/nagios/share/nagvis/nagvis
/usr/local/nagios/share/nagvis/wui

/usr/local/nagios/share/nagvis represents the main directory of the
NagVis installation, while the subdirectory nagvis contains the NagVis
application, together with its configuration. Finally the subdirectory wui
contains the graphic editor that enables NagVis maps to be edited via the
browser.

3 You can manage without using the GD libraries if the parameter usedgdlibs in the
NagVis configuration file config.ini.php (see page 393) is set to 0.

392

18.1

Installation

At present, the correct access permissions for directories and files must be
set manually. To do this, you first need to determine the user with whose
permissions the Web server is running (see also Section 1.2, page 39):

linux:~ # grep "“User" /etc/apache2/apache2.conf

User www-data

linux:~ # id www-data

uid=33 (www-data) gid=33 (www-data) Groups=33(www-data), 9001 (nagcmd)

The first grep command looks for the corresponding user in the configura-
tion file for the Web server—in this case, Apache2—and then the id com-
mand searches for the primary group of this user. This can be found after
the gid= specification. The access permissions are now set accordingly:

linux:~ # chown www-data.www-data -R /usr/local/nagios/share/nagvis
linux:~ # chmod 664 /usr/local/nagios/share/nagvis/etc/nagvis.ini.php
linux:~ # chmod 775 /usr/local/nagios/share/nagvis/nagvis/images/maps
linux:~ # chmod 664 /usr/local/nagios/share/nagvis/nagvis/images/maps/*
linux:~ # chmod 775 /usr/local/nagios/share/nagvis/etc/maps

linux:~ # chmod 664 /usr/local/nagios/share/nagvis/etc/maps/*

linux:~ # chmod 775 /usr/local/nagios/share/nagvis/var

linux:~ # chmod 664 /usr/local/nagios/share/mnagvis/var/#*

Before the Web user interface can be used, you must create the central
configuration file and ensure that access to NagVis is only possible after
successful authentication.

18.1.2 Initial configuration

A template for the central NagVis configuration file config.ini.php can
be found in the directory /usr/local/nagios/share/nagvis/etc, which
only needs to be renamed and modified:

linux:~ # cd /usr/local/nagios/share/nagvis/etc
linux:nagvis/etc # cp config.ini.php.dist config.ini.php
linux:nagvis/etc # chown www-data.www-data config.ini.php
linux:nagvis/etc # chmod 664 config.ini.php

The commands chown and chmod ensure that the correct access permis-
sions are set for the Web user (here, www-data) and his group.

Apart from the configuration of the backend (that is, the NDO database),
the included config.ini.php already has usable defaults. The following
description is therefore limited to introducing the most important param-
eters:*

4 The complete documentation can be found at http://www.nagvis.org/docs/1.3/
nagvis_config_format_description

393

18 NagVis

[global]
language="german"
refreshtime=60

In the [global] section you can set the language with language; the de-
fault is english. refreshtime defines every how many seconds the dis-
play in the brower is refreshed.

The section [defaults] specifies defaults that are inherited by the defined
objects from the map configuration. The values can be overwritten via the
map, if required. It is best to define settings here that are identical for the
majority of objects, in order to avoid the repeated work of defining them
explicitly in the object definitions:

[defaults]
backend="ndomy_1"
icons="std medium"
recognizeservices=1
onlyhardstates=1

backend specifies which NDO database is used as the default backend. The
name for this can be anything you like, but the backend itself must still be
defined in a separate section (see page 395). If you are just getting started,
it is best to keep the name supplied, ndomy_1.

The parameter icons defines the icon set from the directory ./nagvis/
nagvis/images/iconsets that is to be used. Four sets are included: std_
small, std_medium, std_big, and folder. Other icons can be down-
loaded from the NagVis homepage,® or you can create them yourself.®

The setting recognizeserivces=1 ensures for hosts and host groups that
the current states of the accompanying services are included when the
overall state is being determined. The value 0 switches off this behavior.

onlyhardstates=1 on the other hand instructs NagVis to take only hard
states into account. The default 0 also includes soft states.

The [wui] section allows settings to be made for the NagVis editor:

[wui]
autoupdatefreg=25
maplocktime=5

autoupdatefreq determines how often (in number of seconds) the Web
user interface automatically saves changes, while maplocktime specifies
the number of minutes after which any further changes to a map that is

5 http://www.nagvis.org/downloads
6 A corresponding guide can be found at http://www.nagvis.org/docs/extending/
iconsets.

394

18.1

Installation

currently being edited should be blocked, from the time of the last change.
This is intended to prevent several users from simultaneously editing the
same map.

The paths to the NagVis installation from the perspective of the file system
(base) and—separately for NagVis data and NagVis CGIs—from the per-
spective of the browser, are specified in Section [paths]:

[paths]
base="/usr/local/nagios/share/nagvis/"
htmlbase="/nagios/nagvis"
htmlcgi="/nagios/cgi-bin"

The defaults listed here match the standard installation described above.

The configuration for the backend, that is, for accessing the NDO database,
follows at the bottom of the file:

[backend ndomy 1]
backendtype="ndomy"
dbhost="1localhost"
dbport=3306
dbname="nagios"
dbuser="nagios"
dbpass="verysecret"
dbprefix="nagios_"
dbinstancename="default"
maxtimewithoutupdate=180

This name of this section must contain the name specified with the backend
parameter under [defaults], according to the pattern [backend_value_
of_backend]. The default here is ndomy_1. If the backend parameter
value does not match any of the defined backend sections, NagVis will
refuse to work.

backendtype defines the type of backend, and for now ndomy—an NDO
database based on MySQL—is the only possible value.

dbhost and dbport specify the host name or IP address and the accom-
panying TCP port for access to the database. dbname contains the name of
the NDO database, and dbuser and dbpass give the user and the password
for access.

The values defined by default for dbprefix and dbinstancename are set
for a NDOUtils standard installation. Provided that you have not changed
the parameter instance_name in the file ndomod.cfg (see Chapter 17.4.1
from page 384) and db_prefix in the file ndo2db. cfg (see Chapter 17.4.2
from page 385), you can use the values given here.

One parameter to which you should pay particular attention is maxtime-
withoutupdate: This defines how much time in seconds is allowed for the

395

18 NagVis

Figure 18.3:

After a right mouse
click on the graphic
displayed, the menu

will appear

status update of Nagios to appear. If the time specified here is exceeded,
NagVis assumes that the data is obsolete and displays this as an error. If
NagVis accesses NDO databases that are distributed across several servers,
it is essential that the clock times of the servers be synchronized with one
another, otherwise NagVis will refuse to work if it comes across a time dif-
ference greater than maxtimewithoutupdate seconds.

At this point we shall mention another problem involving data exchange
between the NDO database and NagVis: NagVis evaluates the current pro-
gram status. Nagios versions prior to 3.0bl, however, only write this to the
NDO database after the nightly change of the log files. Starting with version
3.0b1, Nagios updates the status every five seconds, so that NagVis always
has up-to-date information.

18.1.3 User authentication

NagVis demands authentication from the user. Without user authentica-
tion, it will just issue an error message.”

If the share directory of Nagios is not accessible for authentication, as in
the Apache configuration on page 48, you should change this in the Apa-
che configuration file /etc/apache2/conf .d/nagios. The authentication
data are best taken from the CGI directory (see Section 1.5 from page 47).

NagVis
Welcome to NagVis WUI wWW.nagvis.org

This is the NagVis web configuration interface. You can use it to
configure Nag\is or build your own Nagvis maps via browser

Open Map
To start just right click on this background image, OpenapinNagVis »
a context menu should open.

Have fun using Nag\is, please report problems or bugs

NagVis configuration
Maps

Backgrounds

Backends

18.2 Creating NagVis Maps

The NagVis configuration interface is accessed through the URL http://
nagiosserver /nagios/wui/index.php. Here you replace nagiosser-
ver with your own Nagios host name (Figure 18.3 shows the start page).

7 The FAQ entry http://www.nagvis.org/docs/general/faq#how/to/run/nagvis/
without/authentication/ describes a way of using NagVis without authentication,
but you should avoid this, for reasons of security.

396

18.2 Creating NagVis Maps

It is operated through a menu that opens when you click the right mouse
button. For browsers that overlay the NagVis menu with their own menu,
a second click with the right mouse button will cause the browser menu to
disappear.

If you don't have a suitable background graphic available in PNG format,
you can create a new, empty background image via the menu item Man-
age | Backgrounds, as shown in Figure 18.4. In this example, a gray image of
size 800x600 pixels is created.

CREATE BACKGROUND IMAGE

Name ftest

Width (px) (oo

J
Color (Hex) [Fanan |
J
|

Helght (px) [600

UPLOAD BACKGROUND IMAGE
Select a PNG Image Durchsuchen...
DELETE BACKGROUND IMAGE
e e —

This image is displayed on screen in its original size, that is, not scaled. To
avoid scrolling, it should not be too large, with the proper size depending
on the screen resolution and taking into account possible window frames.

Later on the image size can only be altered to a limited extent: although
you can upload or create a background image at any time, objects that
have already been placed are not affected by any changes in the size or
other characteristics of the background, and so they may not fit properly
into a new background image. The only option then is to reposition all the
objects. The best approach is to experiment at first with just a few objects
in the definitive environment before you set up an extensive map.

CREATE MAP
Map name est
[EVERYONE

User with read permissions

User with write

=
i
Ed
H
«

Map Iconset std_medium

<

Background testpng

RENAME MAP
Select map

New name

EHH

DELETE MAP

EXPORT MAP

|

Select map

Select map

|

IMPORT MAP
Durchsuchen...

Select a MapFile

Figure 18.4:
Creating a new,
empty background

Figure 18.5:

If the entry for Map
Iconset remains
empty, NagVis uses
the defaults from the
central
configuration.

397

18 NagVis

Figure 18.6:
Inserting objects via
the graphical
interface

You now create a new map for the generated or uploaded image. Via the
menu entry Manage | Maps (Figure 18.3) you navigate to the dialog shown
in Figure 18.5. There you define the name of the map and select the back-
ground image. If every authenticated user should see the map, you en-
ter EVERYONE as User with read permissions. For the User with write
permissions, on the other hand, you would probably enter a specific user,
or several user names, separated by commas. Defining the icon sets is op-
tional at this point, although the example shown specifies them.

Newly created maps are automatically opened by NagVis in editing mode.
You can reach this later on via the menu item Open Map in the context
menu of the opening dialog or by calling it directly with the URL http://
nagiosserver /nagios/nagvis/wui/index.php?map=mapname.

Open Map 13
Open Map in NagVis 3

Save

Opticns

Add Object lcon Host
Line » Service
Manage L3 Servicegroup

Map

The mapname for the map created in Figure 18.5 is Test. In the map it-
self you now insert objects using the right mouse button (see Figure 18.6).
An object can be an icon, a line, or a special object. Icons and lines rep-
resent the current state of a host or service and can also stand for entire
host or service groups. Icons can only reflect the overall state of a map.
Special objects are graphics representing stateless objects (which might be
icons as well, for example) or text boxes, which can also be provided with a
hyperlink.

To insert a host group you select Add Object | Icon | Hostgroup in the menu.
Then you place the mouse over the desired position and define the desti-
nation of the icon with a left mouse click (the position can be changed later
on).

When this is done a dialog opens, as shown in Figure 18.7. The entry
backend_id can remain empty, and NagVis will then use the value of the
backend parameter from the central configuration file config.php.ini.
In the hostgroup_name pulldown menu, NagVis allows you to select from
all defined host groups.

Icons can be positioned according to the x and y coordinates by either en-
tering numerical values or using the mouse. For simple icons, the point
(x,y) corresponds to the center, and for lines to the start or end points. The

398

18.2 Creating NagVis Maps

z coordinate is only used when icons overlap. The value O describes the
underlying image at the rear and is reserved for the background, and the
object with the highest z value is right at the front. If the z coordinate is
explicitly left empty when the object is inserted, it automatically receives
the value 1.

o [f =l Figure 18.7:
hostgroup_name [aH - Defining a host
x les | group in the
¥ lea | graphical interface
z | |
recognize_services [fes |
only_hard_states [ves |
The parameter recognize_services allows the recognizeservices set-
ting from the config.ini.php (see page 394) to be overridden, and only_
hard_states does the same for the parameter onlyhardstates (page
394).
The object inserted in this way always appears in the graphical editor in the
form of the OK icon from the icon set chosen; the Web interface takes no
account of its actual state.
If you move the mouse over the icon, a hover menu opens, as shown in
Figure 18.8. It clearly distinguishes which settings are inherited and which
ones have been specified directly in the object. If you follow the Change
link there, the settings can be changed again.
v Figure 18.8:
If you move the
mtgl_nupj:':‘:“’e:H mouse over the
x 65 inserted object, a
:,"E:ngze_serwces ?4 hover menu opens

only_hard_states |1

Change Delete

399

18 NagVis

Figure 18.9:
Object in the final
view with text box

and hover menu

When your work is finished, don’t forget to save your changes via the con-
text menu entry Save (see Figure 18.3 on page 396). The menu item Open
Map in NagVis will then take you to the finished view, which now does dis-
play the actual states.

In Figure 18.9 a text box has been added to the host group icon. The field
displayed beneath this is a hover menu, which shows information on the
object and its state if you move the mouse over the object. This example
shows that two hosts of the host group display a Not OK state and that this
has already been confirmed with an acknowledgment.

@ [Fesmi

Hostgroup
Hestgroup Name Headquarters
Alias
Summary State CRITICAL (Acknowledged)
Summary Output There are 1 CRITICAL, 1 WARNING, 8 UP Hosts.
Host Mame State Output

eligate3 CRITICAL (Acknowledged) The Host is UP. There are 1 CRITICAL, 13 OK Services.
ELIFS01 WARNING (Acknowledged) The Host is UP. There are 1 WARNING, 8 OK Services.

ELITSDS UP The Host is UP. There are 11 0K Services.
ELITSDE UP The Host is UP. There are 11 0K Services.
ELITSD4 UP The Host is UP. There are 11 0K Services.
ELITSO? UP The Host is UP. There are 11 0K Services.
ELITSD3 UP The Host is UP. There are 11 0K Services.
AHPS01 UP The Host is UP. There are 37 OK Services.
AHDCD1 UP The Host is UP. There are 23 OK Services.
AHDSD1 UP The Host is UP. There are 30 OK Services.

The finished map can be called directly via the URL http://nagiosser-
ver /nagios/nagvis/nagvis/index.php?map=mapname.

18.2.1 Editing the configuration in text form

NagVis stores the entire configuration of a map in text files, which can
also be edited with a text editor. The files are located in the directory
/usr/local/nagios/share/nagvis/etc/maps/. If you are using a back-
ground image with a known raster, you can insert several objects in the
WUI and continue editing the map in the editor using the coordinates just
determined. This is how the map shown in Figure 18.2 was created. The
background image (Figure 18.1) was created with OpenOffice in order to
obtain a reproducible raster; the OpenOffice drawing is subsequently ex-
ported as a PNG file.

The configuration options for the text files, which altogether are very ex-
tensive, are described in the online documentation.®

8 http://www.nagvis.org/docs

400

18.2 Creating NagVis Maps

18.2.2 Adding NagVis maps to the Nagios Web interface

NagVis maps can also be integrated into the Nagios Web interface. Figure
18.10 shows these after a third frame has been added to the index.html
page, which binds a 32-pixel-high map beneath the main window. No mat-
ter what the administrator is currently working on, the most important
states (here these are the host groups) are always displayed directly and
can be reached with a single mouse click. There are no limits to your user

interface dreams when using NagVis!

Nagios

& Documentation

s Map
©3-D Status Map

e Problems
andled
@ Host Problems
Unhandied
@ Network Outages

s Info
a

® m
@ Scheduling Queue

Reporting

Current Network Status
Last Updated: Tue Aug 14 21:05:28 GEST 2007
seconds

Nagios® - www.nsqos.org
Logged in as barthwELLST-ELISABETH DE
Visw Service Satus Delail For Al Hosl Groups,
View Host Status Detad For This Hos! Group
View Status Overview For This Host Group

View Status Summary For This Host Group.
View Sialus Grid For This Host Group

Figure 18.10:

Host Status Totals Service Status Totals

Display Fliters:
HostStatus Al
Types

Host Any
Propertes:

rvce Status Al Problems
ypes

AHPSO1 & rzv oo7s WARNING

ELIIGF @ AH () FRA @

)

Service Nt In Scheduled Downtime & Has Not Been
Properties: Acknowledged & Aclive Cheks Enabled

2007-08-14 21:02:17 03 7h45m 108 33

D 0 0 @ o e e o NagVis map as a
! "footnote” in the

Nagios Web interface

Service Status Details For Host Group

Jobs i print queve < 1

1 Malching Service Entries Displayed

MHK () HOD @ PTHV () AD-EL] mhvPN()

401

Graphic Display of
Performance Data

When Nagios reports to the administrator quickly and selectively on prob-
lems that have occurred, it can basically only distinguish between OK states
and error states, sparing the admin a flood of information on problematic
services and hosts. The graphic display of measured values over a time
period cannot be integrated into this “traffic light approach,” but it is avail-
able through third-party software. Nagios supports external processing of
values with an interface created specifically for this. The data processed
through it is referred to in Nagios jargon as performance data.

Nagios has two different classes of performance data. The first is Nagios-
internal performance data, statistics on the performance times of tests and
on the difference between the actual test time and the planned time (the la-
tency). The second class includes performance data that the plugin passes
on with the test result. This involves everything that the plugin can mea-

403

19 Graphic Display of Performance Data

sure: response times, hard drive usage, system load, and so on. These are
the very things that are of interest to an administrator, which is why the
book concentrates on how they are processed.

Nagios extracts this data and either writes it to a file where it can be pro-
cessed by other programs, or passes it on directly to the external software
that is run after every service or host check.

19.1 Processing Plugin Performance Data with
Nagios

Performance data provided by service and host checks can be processed
only if the corresponding plugin delivers it in a predefined format. As
shown here using the check_icmp plugin (Section 6.2, page 108), it is pre-
ceded by a | sign and is not shown in the Web interface:

nagios@linux:libexec/nagios$./check icmp -H vpnOl
OK - eli02: rta 96.387ms, lost 0%| rta=96.387ms;200.000;500.000;0; pl=0%;
40;80; ;

This standardized form is provided by most plugins only after version 1.4.!
The performance data itself consists of one or more variables in the follow-
ing form:

name=value;warn; crit;min; max

The variable name may contain spaces, but then it must be surrounded
by single quotation marks. After the equals sign comes first the measured
value as an integer or floating-point decimal, with or without a unit. Possi-
ble units are % (percentage), s (time in seconds), B (data size in bytes), or c
(counter, an incremental counter).

This is followed, separated by a semicolon, by the warning and critical lim-
its, and then the minimum and maximum value. Percentage values can be
left out by the plugin. You can also specify 0 for minimum/maximum, as
well as for the warning or critical limit, if there is no such threshold value.
If there are several variables, these are separated with spaces, as in the
check_icmp example. However, in contrast to this, the final specification
should not end with a semicolon, according to the Developer Guidelines.

1 Some tools such as Nagiosgraph and NagiosGrapher make use of the fact that the re-
maining text normally contains performance data as well. If they are correspondingly
configured, they are able to extract the performance data contained there. In this way
they can further process data that does not conform to the standard format.

404

19.1 Processing Plugin Performance Data with Nagios

19.1.1 The template mechanism

Nagios has two methods of processing performance data: either the system
saves the data to a file using a template, or it executes an external com-
mand. If you just want to write data consistently to a log file, the template
procedure is somewhat easier to configure.

In order that Nagios can process performance data at all, the parameter

/etc/nagios/nagios.cfg

process_performance_data=1

must be set to 1. The file to which Nagios writes the host or service per-
formance data is specified by the parameters host_perfdata_file and
service_perfdata_file:

/etc/nagios/nagios.cfg

host_perfdata file=/var/nagios/host-perfdata.dat
service_perfdata_file=/var/nagios/service-perfdata.dat

host perfdata file template=[HOSTPERFDATA] \tSTIMETS\tSHOSTNAMES\tS$HOST
EXECUTIONTIMES\tSHOSTOUTPUTS\ t SHOSTPERFDATAS

service perfdata file template=[SERVICEPERFDATA]\tS$TIMETS\tSHOSTNAMES\tS
SERVICEDESCS\t$SERVICEEXECUTIONTIMES\ t $SERVICELATENCYS\ t $SERVICEOUTPUTS \
t$SSERVICEPERFDATAS

Ifhost_perfdata_fileis commented out, as in this example, Nagios does
not save any performance data of host checks. But since they are only used
if all service checks fail, it lies in the nature of host checks that they only
provide data sporadically and at irregular intervals. This is why it is not
worth evaluating them in most cases.

The *_perfdata_file_template parameters define the output format.
The definition shown above, service_perfdata_file_template, deliv-
ers (one-line) log file entries in the following pattern:

[SERVICEPERFDATA] 1114353266 1linux01 PING 0.483 0.104 OK
- 10.128.254.12: rta 100.436ms, lost 0% rta=100.436ms;3000.000;6000.000
;0; pl=0%;40;80;;

Each line begins with a [SERVICEPERFDATA] “stamp,” followed by the test
time in epoch seconds ($TIMETS), the host name and service description
($HOSTNAME$ and $SERVICEDESCS), the time Nagios requires for the test
($SERVICEEXECUTIONTIMES), and the latency between the planned and ac-
tual time of performance ($SERVICELATENCY$), each separated by a tab.

405

19 Graphic Display of Performance Data

Then Nagios writes the output for the Web interface to the log file ($SER-
VICEQUTPUTS) and finally the actual performance data ($SERVICEPERF-
DATA$). \t in the parameter definition ensures that a tab separates the indi-
vidual details from each other in the log. With the *_perfdata_file_mode
parameters you can define whether Nagios appends the data to an existing
file (a) or overwrites the existing file (w):

/etc/nagios/nagios.cfg

host_perfdata file mode=a
service perfdata file mode=a

This is suitable for external programs that can read the data from a (previ-
ously set up) named pipe. This method provides better performance and
does not require any space on the hard drive. If the processing software is
not running, however, the data may be lost: Nagios does try for a time to
continue writing to the pipe, but aborts this process after a timeout if the
data cannot be read out.

Programs that read from a log file generally delete it afterwards, to prevent
the file system from overflowing. If the program does not retrieve any data,
the file will grow quickly, but nothing will be lost as long as there is still
space on the file system.

It is best to run external evaluation software as a permanent service. But
you can also configure Nagios so that it regularly triggers a program for
further processing:

/etc/nagios/nagios.cfg

host_perfdata file processing interval=0
service perfdata file processing interval=0
host_perfdata file processing command=process-host-perfdata-file

H#H oH H H .

service perfdata file processing command=process-service-perfdata-file

With the *_perfdata_file_processing_interval parameters you set
an interval in seconds after which Nagios will carry on running the cor-
responding *_perfdata_file_processing_command at specific intervals.
This command is defined as a normal Nagios command object:

misccommands.cfg

define commandf{
command_name process-service-perfdata-file
command_line /path/to_the/evaluation program

406

19.1 Processing Plugin Performance Data with Nagios

As long as the external software itself looks after the further processing of
the file with the performance data, you do need to use the *_perfdata_
file_processing_* parameters.

19.1.2 Using external commands to process performance
data

As an alternative to the template method, Nagios can also directly call a
command that takes over further processing of data. This is done directly
after each test result; so after each individual check, an external program
is started. If you have a large number of services to be checked, this can,
depending on the software, considerably degrade performance.

The command itself is defined with the process_perfdata_command pa-
rameter instead of the perfdata_file parameter:

/etc/nagios/nagios.cfg

process_performance_data=1
service perfdata command=process-service-perfdata

In the same way as with service performance data, you can also process
the results of host checks, using the host_perfdata_command parameter.
process-service-perfdata itself again refers to a normal Nagios com-
mand object:

misccommands.cfg

define command{

command_name process-service-perfdata

command_line /pfad/zum/programm "$LASTSERVICECHECKS | |SHOSTNAMES | |$
SERVICEDESCS | | $SERVICEOUTPUTS | | SSERVICEPERFDATAS"

}

This opens the external program, which is given the necessary information
as arguments. This should include at least the timestamp of the last ser-
vice check ($LASTSERVICECHECK$), the host name ($HOSTNAME$), and the
service description ($SERVICEDESC$), as well as the actual service perfor-
mance data ($SERVICEPERFDATA$). The delimiter depends on the program
used: this example uses | |, as is used by the Nagiosgraph program.

407

19 Graphic Display of Performance Data

19.2 Graphs for the Web with Nagiosgraph

With the program Nagiosgraph from http://nagiosgraph.sf.net/, per-
formance data supplied by plugins can be displayed graphically in a Web
interface in chronological form. The software consists of two Perl scripts.
The script insert . pl writes the Nagios performance data to a round-robin
database, a ring buffer in which the newest data overwrites the oldest.2 The
advantage of this is the small amount of space required, which can be de-
fined beforehand.

The trick consists of saving data in various resolutions, depending on its
age: older data with a lower resolution (e.g., one measurement value per
day), current data with a high resolution (e.g., one measurement every five
minutes). When setting up the database, you also define how long the data
is retained. This defines space requirements right from the beginning.

Provided that Nagiosgraph detects the performance data, the program cre-
ates a separate round-robin database for each new service, when it ap-
pears for the first time. The map configuration file included describes just a
few services, so that usually some manual work—and a basic knowledge of
Perl—is required.

The second Nagiosgraph script show. cgi, a CGI script, represents the in-
formation from the database in a dynamic HTML page. To do this, it is run
(after configuration is completed) in the form

http://nagsrv/path/to/show.cgi?host=host&service=service description

Nagiosgraph then displays four graphs (a daily, a weekly, a monthly, and a
yearly summary) for the desired service.

19.2.1 Basic installation

An installed RRDtool package, which is contained in most Linux distribu-
tions, is a prerequisite for Nagiosgraph. Alternatively you can obtain the
current source code from http://www.rrdtool.org/.> For reasons of
performance, it is recommended here that you also install the included
Perl module RRDs.

The Nagiosgraph tar file itself is preferably unpacked in the directory /usr/
local/nagios:

nagios@linux:local/nagios$ tar xvzf nagiosgraph-0.5.tar.gz
nagiosgraph/INSTALL
nagiosgraph/README

2 Further information on this topic can be found at http://www.rrdtool.org/.
35 To install, see page 421.

408

19.2 Graphs for the Web with Nagiosgraph

nagiosgraph/README. map
nagiosgraph/insert.pl
nagiosgraph/insert_fast.pl
nagiosgraph/map
nagiosgraph/nagiosgraph.conf
nagiosgraph/show.cgi
nagiosgraph/testcolor.cgi
nagiosgraph/testentry.pl

insert.pl extracts the data transferred by Nagios and inserts this into the
RRD database. If this does not exist, however, the script will create it. Al-
ternatively insert_fast.pl can take on this task. This script uses the Perl
module RRDs, which is considerably more efficient than calling up rrdtool
as an external program each time, which is what insert.pl does.

Another Perl script called testentry.pl helps if you are testing your own
map entries. But since you have to write these directly into this file, you
can also change the map file itself (as shown below)—provided you have
made a backup copy first. The CGI script testcolor.cgi looks more like
a developer’s utility left over in the package, rather than a tool that is of any
use for users.

Apart from the already mentioned map configuration file, there is a second
one, nagiosgraph.conf, and its path must be defined correctly in both
insert.pl (or insert_fast.pl) and show.cgi, so it is recommended
that you check this:

my $configfile = ’/usr/local/nagios/nagiosgraph/nagiosgraph.conf’;

19.2.2 Configuration
The configuration file nagiosgraph.conf

All other relevant paths—such as those to the map file and to the rrdtool—
are adjusted in nagiosgraph.conf:

rrdtool = /usr/bin/rrdtool

rrddir = /var/lib/rrd/nagiosgraph

logfile = /var/nagios/nagiosgraph.log
mapfile = /usr/local/nagios/nagiosgraph/map
debug =2

colorscheme = 4

Nagiosgraph creates the RRD databases in the rrddir directory. Here the
user nagios must have write access and the user with whose rights the Web
server is running must have read access:

409

19 Graphic Display of Performance Data

linux:~ # mkdir -p /var/lib/rrd/nagiosgraph
linux:~ # chown nagios.nagemd /var/lib/rrd/nagiosgraph
linux:~ # chmod 755 /var/lib/rrd/nagiosgraph

The log file, for which both users need write access (the Web user because
the CGI script also records information to the log file), is also critical:

linux:~ # touch /var/nagios/nagiosgraph.log
linux:~ # chown nagios.nagcmd /var/nagios/nagiosgraph.log
linux:~ # chmod 775 /var/nagios/nagiosgraph.log

How verbose Nagiosgraph is can be adjusted with debug. The possible
debug levels are documented in the configuration file included: 2 means
“errors,” 4 “information”—here Nagiosgraph is already so verbose that you
must watch out that the file system does not overflow. Except for debugging
purposes (such as when setting up the system), it is better to choose 2.

With colorscheme, which can accept values from 1 to 8, you can influence
the amount of color in the graphs—it is best to try out the options to see
which color scheme matches your personal taste best.

Nagios configuration

Nagiosgraph grabs the performance data directly from Nagios. For this rea-
son nagios.cfg does not require any *_perfdata_file_* parameters.

/etc/nagios/nagios.cfg

process_performance_data=1
service_perfdata command=process-service-perfdata

process_performance_data switches on processing of performance data
in general; service_perfdata_command refers to the Nagios command
object that contains the external command:

misccommands.cfg

define command{

command_name process-service-perfdata

command_line /usr/local/nagios/nagiosgraph/insert_fast.pl "$LASTSERV
ICECHECKS | | SHOSTNAMES | | $SERVICEDESCS | | $SERVICEOUTPUTS | | SSERVICEPERFDATAS"

}

The definition of the parameter command_1ine must be written on one line
(without the backslashes \), as usual.

410

19.2 Graphs for the Web with Nagiosgraph

So that the CGI script can run directly from the Nagios Web interface, a
serviceextinfo object is defined:

define serviceextinfof{
service_description PING

host_name *
notes_url /nagiosgraph/show.cgi?host=$HOSTNAMES&service=PING
icon_image graph.gif

icon_image_alt show graphics

If the graphic defined in icon_image is in the directory /usr/local/na-
gios/share/images/logos, the Web interface marks the PING services for
all hosts in the status display with this.* Here the strength of show.cgi can
be seen: only because this script is called explicitly with host and service
names is a definition like the one above possible. Instead of an individual
host name, you can also specify a host group, or, as in this example, a *. A
requirement for this is that PING really is defined as a service for every host.

The $HOSTNAMES$ macro then automatically inserts the appropriate host.
The additional information for a specific service type (which must have the
same service description in all hosts) can therefore be catered for with just
one single definition.

Apache configuration

So that the Apache Web server can accept the CGI script as it is, a Script-
Alias is created, for example:

ScriptAlias /nagiosgraph/ /usr/local/nagios/nagiosgraph/

This entry is best placed in the configuration file discussed in Section 1.5
(page 47), nagios.conf. Only after Apache is reloaded can the CGI script
be run from the URL specified on page 408.

Adjustments to the map

Depending on the service, the round-robin database may also save several
series of measurements, which can be requested individually through the
CGI script:

http://nagsrv/path/to/show.cgi?host=host&service=service_ description&db=
database, entryl, entry2&db=database, entry3

4 A more detailed description of the serviceextinfo object is contained in Section
16.4.2, page 366.

411

19 Graphic Display of Performance Data

The database used here contains at least three different series of measure-
ments, the first two of which are shown together in one graphic, while the
third is shown in a separate graphic. What is shown together and what is
separate depends on the standardization. It makes little sense to display
the percentage load of a hard drive and the absolute value in bytes in the
same graphic, since the Y axis can only have one scale. It is better here
to display percentage values in one graphic and absolute byte values in a
second one. On the other hand you can display the various average values
of the system load (for one, five, and 15 minutes) in a single graphic. If you
leave out all db= specifications, Nagiosgraph always displays all measured
values for a service in a single graphic.

What individual databases and measured values display is defined by the
map file. To understand how the instructions contained there influence the
extraction of data, you just need to switch the debugging level to 4 and
take a look at the output in the log file nagiosgraph.log. Each time the
insert function is run, Nagiosgraph rereads the configuration files, so that
this does not cause any kind of reset.

In the following extract from the log file the three dots mark sections which
we will not print, for the sake of clarity:

. INSERT info:... servicedescr:PING

. INSERT info:... hostname:linux01l
... INSERT info:... perfdata:rta=99.278ms;3000.000;7000.000;0; pl=0%;60;
80;;

. INSERT info:... lastcheck:1114853435

. INSERT info:... output:0K - 172.17.4.11: rta 99.278ms, lost 0%

The output is from the check_icmp plugin. The host name, service de-
scription, performance data, (perfdata:) and the standard output line
(output:) each have their own line. In the performance data the plugin
announces the round trip average with the variable rta, and the number
of packets that have gone missing with pl (packet loss).

The map file contains Perl instructions that filter these outputs and extracts
the corresponding data if there are hits. Each of them starts with a search
instruction:

/perfdata:rta=([.\d]l+)ms.+pl=(\d+) %/

The classic Perl search function consists of the two forward slashes / with a
search pattern in the form of a regular expression in between. Round pairs
of brackets enclose partial patterns with which the text found in this way
can later be accessed using the variables $1, $2, etc.

The pattern in the first bracket thus matches a single digit (\d) or a dot,’
and the next + states that there can be several of them (or none at all). In

5a pair of square brackets contains alternatives.

412

19.2 Graphs for the Web with Nagiosgraph

the second round brackets, though, one or more digits are allowed, but no
period. In concrete terms $1 delivers the numerical value of the response
time, $2 provides the packet loss in percent.

The full instruction in the map file links two Perl statements with the and
operator:

-- check_icmp
perfdata:rta=100.424ms;5000.000;9000 .000;0; pl=0%;40;80;;
/perfdata:rta=([.\d]+)ms.+pl=(\d+) %/

and push @s, [’'ping’,
['rta’, "GAUGE’, s1 1],
["losspct’, 'GAUGE’, $2],

If the first one—the search function—is successful, then it is the turn of
the push statement. It adds the expression in square brackets following to
the array @s. The instruction ends with a semicolon. If the search function
provides no result, the map instruction will not save any entry in the @s
array. The expression to be included in the array has the following format:

[db-name,
[name_of data source, type, value],
[name_of data_ source, type, value 1,

The file name for a Nagiosgraph database file consists of the host name, ser-
vice description, and the database name together, for example, 1inux01_
PING_ping.rrd. The desired string for the database name is entered in-
stead of the placeholder db-name into the map file (in this case, ping).

The name of the data source can be chosen freely, but should contain an
indication of the data that is stored here, such as rta for the response time
or losspct for percentage of packets that have been lost.

What type you specify is determined by the RRD tools. GAUGE stands for
simple measured values that are displayed simply as they are. DERIVE is
recommended by Nagiosgraph author Soren Dossing for processing coun-
ters, such as in querying a packet counter on the network interface. Coun-
ters grow incrementally and, when they run over, start again at zero. What
is of interest here is the difference between two points in time. The RRD
database determines these automatically if the data source type DERIVE is
specified.

The database name, data source, and type should always be placed in single
quotation marks in the map file, so that no name conflicts can occur with
keywords reserved in Perl.

413

19 Graphic Display of Performance Data

The measured value itself is determined using Perl methods, and the place-
holder value is substituted with the corresponding instructions. In the sim-
plest case, you take over the values found with the search pattern in the
performance data with $1, $2, etc. (see example above), or calculate new
values from these by multiplying® by 1024 or by calculating the percentage:

-- check_nt -v USEDDISKSPACE
perfdata:C:\ Used Space=1.71Gb;6.40;7.20;0.00;8.00
/perfdata: .xUsed Space=([.\dl+)Gb; ([.\dl+); ([.\dl+); ([.\dl+); ([.\dl+)/
and push @s, [’disk’,
['used’, 'GAUGE’, $1%1024],
['usepct’, 'GAUGE’, ($1/$5)%100],
['freepct’, 'GAUGE’, (($5-$1)/$5)%100 1,
1
-- check _disk (unix)
perfdata:/=498MB;1090;1175;0;1212
m@perfdata:.+/ ([* =1+)=([.\dl+)MB; ([.\dl+); ([.\dl+); ([.\dl+); ([.\d]l+)e
and push es, [$1,
["used’, 'GAUGE’, $2%x1024*x2],
["warn’, 'GAUGE’, $3%1024x%x2],
["crit’, 'GAUGE’, $4%1024*x2],

1

The first entry evaluates the query of hard drive space on a Windows server
with check_nt (see Section 20.2.1, page 476). The performance data also
contains, apart from the occupied space in $1, the size of the data carrier in
$5. This can be used to calculate the percentage that is available (freepct)
and the percentage used (usepct).

The second example evaluates data obtained on a Unix host, with check_
disk, by multiplying the free hard drive space specified in MB by 10242 to
convert it to bytes. The critical and warning limits always remain constant,
which leads to horizontal lines, as seen in Figure 19.1: the lower line at
12.1 GB represents the warning limit, the middle line the current load, and
the top line at 18.1 GB, the critical limit. The keys for the individual graphs
each list minimum, maximum, and average as a numerical value. This
differentiation for the two limit values is not of any use, but it cannot be
avoided, since Nagiosgraph does not know that these are constant values:
it treats warning and critical limits just like any other measured values.

If a plugin does not provide any performance data, but values that are
used in normal output, the search function can be applied to the output
(/output: .. ./) instead of to the performance data. Help is provided, for
example, by the Nagiosgraph Forum athttp://sourceforge.net/forum/
forum.php?forum_id=394748.

6 This turns kilobytes into bytes.

414

19.3 Preparing Performance Data for Evaluation with Perf2rrd

nagiosgraph

Performance data for Host: 1inuxCGl - Service: fs_a

Daily
20 G g
15 G i = g
L) E
L z
10 G >
18:00 0000 0600 12:00 1500
B crit Max: 15.14G Awg: 18.14G Min: 18.14G Cur: 15.14G
W warn Max: 12.10G Awg: 12.106 Min: 12.10G Cur: 12.10G
Eoused Max: 15.726 Avg: 14.92G Min: 12.44G Cur: 15.72G
Weekly
206 E]
A i
155 £ 1 A2
-
10 G >

Sun Tue Thu Sat

W ocrit Max: 18.146 Avg: 18.14G Min: 18.14G Cur: 13.14G
B owarn Max: 12,106 Avg: 12,106 Min: 12.10G Cur: 12.10G
Hused Max: 16.54G Awg: 15.07G Min: 13.286 Cur: 15.72G

Changes to the map are critical. It is therefore recommended that you copy
the file first and edit the copy, and then perform a syntax check, using
perl -c:

nagios@linux:libexec/nagios$ cp map map.new
nagiose@linux:libexec/nagios$ vi map.new
nagios@linux:libexec/nagios$ perl -c map.new

nagios@linux:libexec/nagios$ mv map.new map

If the syntax check is in order, you can install the new file as map.

19.3 Preparing Performance Data for Evaluation
with Perf2rrd

Another tool which transfers Nagios performance data to an RRD database
is the Java application Perf2rrd. This requires an installed Java Runtime
Environment (1.4.2, or preferably 1.5). Since the virtual machine generates
a noticeable load on less powerful computers, and also requires a large

Figure 19.1:

Used space and limit
values for the file
system
/net/linux01/a on
the host 1inux01, as
Nagiosgraph
represents them

415

19 Graphic Display of Performance Data

amount of memory, the requirements made of the Nagios server by Perf2rrd
are significantly higher than those made by Nagiosgraph.

On the other hand there is no more work after the installation as far as
generating the RRD databases is concerned, because Perf2rrd uses the tem-
plate mechanism of Nagios (see Section 19.1, page 404). For each service
and each variable contained in the template, the tool creates a separate
RRD database using the following naming pattern:

host+service description+variable name.rrd

So to evaluate the check_icmp variables rta (round trip average) and pl
(packet loss), the file names are 1inux01+PING+pl.rrdand 1inuxO1+PING
+rta.rrd.

Perf2rrd only looks after the storage of data in an RRD database and does
not provide any tools to graphically display the data saved there. The
Perf2rrd author Marc DeTrano refers here to the drraw tool (see Section
19.4, page 420). It can be advantageous to use this, because on the one
hand drraw allows far more than just the one display provided by Nagios-
graph, and on the other hand you do not have to struggle with regular
expressions in Perl.

19.3.1 Installation

For the installation you should get hold of the archive in tar format from
http://perf2rrd.sf.net/, and copy it, preferably to the /usr/local
hierarchy:

linux:~ # c¢d /usr/local
linux:usr/local # tar xvzf /path/to/perf2rrd-1.0.tar.gz

perf2rrd/run

The executable program that is later run is a script called run, which in
turn calls the Java bytecode interpreter, java. Besides this the directory
contains the Java class files and other utilities, with which you can recom-
pile the included shared library librrdj.so, if required. This is normally
not necessary for the newer distributions.

In order for run to be able to find the java program, it must be located
in /usr/bin. If this is not the case (because you have installed the Java
archive from http://www.sun.com/, for example), then you should set a
link:

linux:~ # 1ln -s /usr/local/jrel.5.0 02/bin/java /usr/bin/java

416

19.3 Preparing Performance Data for Evaluation with Perf2rrd

A short test shows whether or not Perf2rrd starts correctly:

nagios@linux:local/perf2rrd$./run
perf2rrd starting

Using Nagios Config: /etc/nagios/nagios.cfg
Using RRD Repository: /var/log/nagios/rrd
Unable to create RRD Repository

The error message issued in the last line is not a problem at the moment,
since we have saved the RRD databases in a different directory anyway
(page 420).

19.3.2 Nagios configuration

Perf2rrd searches in the Nagios configuration for all the data it requires: to
what file Nagios should write the performance data, the write mode used
for this,” and the format of the template:

/etc/nagios/nagios.cfg
process_performance_data=1

service perfdata file=/var/nagios/service-perfdata.dat

service perfdata file template=$STIMETS\tSHOSTNAMES\t\
$SERVICEDESCS\t$SERVICEEXECUTIONTIMES \t $SERVICELATENCYS\t\
$SERVICEOUTPUTS\t$SSERVICEPERFDATAS

service_perfdata_ file mode=w

The named pipe used here, thanks to service_perfdata_file_mode=w,
must be created manually—Perf2rrd 1.0 in Nagios 2.0 has problems with
the normal file interface (service_perfdata_file_mode=a):

linux:~ # mknod /var/nagios/service-perfdata.dat p
linux:~ # 1ls -1 /var/nagios/service-perfdata.dat
prw-r--r-- 1 nagios nagios 0 May 1 10:49 /var/nagios/service-perfdata.dat

In the template the introductory [SERVICEPERFDATA] stamp is missing
(see Section 19.1), since Perf2rrd 1.0 does not parse this correctly. Changes
to the Nagios configuration require a reload:

linux:~ # /etc/init.d/nagios reload

7 With a, Nagios appends the data to a normal log file; with w it makes it accessible
through a named pipe. See Section 19.1, page 404.

417

19 Graphic Display of Performance Data

Finally you create the directory for the RRD databases:

linux:~ # mkdir /var/lib/rrd/perf2rrd
linux:~ # chown nagios.nagios /var/lib/rrd/perf2rrd

19.3.3 Perf2rrd in practice

Loading the Java Virtual Machine each time Perf2rrd is started requires con-
siderable resources. For this reason you should not use the method of start-
ing Perf2rrd with the parameter service_perfdata_file_processing_
command at specific intervals of Nagios, and also should not use the one-
shot mode, with ./run -o, in which the software processes one file at a
time. In theory this would make it possible to run Perf2rrd regularly with
a cron job. Instead, it is recommended that you keep the program running
permanently.

When using this for the first time, we recommend that you switch on the
debugging mode, which will show any problems that occur. The option -d
specifies the directory in which the tools should create and update the RRD
databases:

nagios@linux:local/perf2rrd$./run -d /var/lib/rrd/perf2rrd -x
perf2rrd starting

Using Nagios Config: /etc/nagios/nagios.cfg

Using RRD Repository: /var/lib/rrd/perf2rrd

Debug Mode is on

Reading perfdata from named pipe.

Perf Data File is : /var/nagios/service-perfdata.dat

I believe we are using Nagios ver. 2

Object Cache File is : /var/nagios/objects.cache

Nagios interval length 60

called update with: .../eli02+PING+rta.rrd 1114938329:0.079

called update with: .../eli02+PING+pl.rrd 1114938329:0.0
/var/lib/rrd/perf2rrd/sap-14+SAP-3202+time.rrd created.

called update with: .../sap-14+SAP-3202+time.rrd 1114938688:0.030775

The output of the Nagios configuration file, the RRD repository, and the
data transfer mode (named pipe) is followed by the time unit used by Na-
gios (and set with the interval_length parameter). Normally this is 60
seconds, that is, a check interval of 5 is five minutes long. It is extremely
important that this parameter is correctly recognized, since Perf2rrd deter-
mines the step interval of the RRD database by multiplying the normal_
check_interval and interval_length parameters together.

All measured values that occur during a step interval are averaged by the
database. If this time period is too small, it is possible that the database

418

19.3 Preparing Performance Data for Evaluation with Perf2rrd

will never issue any values, since it expects considerably more data than it
obtains for saving.

While Nagiosgraph works with a fixed five-minute interval, Perf2rrd adjusts
itself to the Nagios configuration. The software only takes into account the
interval when creating the RRD database, however; changing the Nagios
configuration later on has no further consequences. The only thing you
can do here to alter this is delete the RRD database and set it up again.

Perf2rrd in permanent operation

Operating Perf2rrd on a named pipe has one disadvantage: if Nagios restarts,
it closes the pipe before opening it again. Unfortunately when the pipe
closes, Perf2rrd closes as well.

This can be prevented by the use of the Daemon Tools by Daniel J. Bern-
stein. They monitor programs and restart them, if these programs should
ever stop. They are themselves started through an /etc/inittab entry by
the init process, and are restarted if they were to shut themselves down at
some point. The Daemon Tools tar file can be obtained from http://cr.
yp.to/daemontools/install.html and it is unpacked in the directory
/usr/local/src:

linux:~ # cd /usr/local/src

linux:local/src # tar xvzf /path/to/daemontools-0.76.tar.gz
admin

admin/daemontools-0.76

admin/daemontools-0.76/package
admin/daemontools-0.76/package/README

admin/daemontools-0.76/src

This creates the directory admin/daemontools-0.76, with the subdirec-
tories package and src. From there you should run the install script,
which compiles and installs the program:

linux:local/src # cd admin/daemontools-0.76
linux:admin/daemontools-0.76 # package/install

The binaries land in the newly created directory daemontools-0.76/com-
mand and remain there. The installation routine also sets up symbolic links
pointing to them from the—also newly created—folder /command.

The install script also includes the following line in the file /etc/init-
tab, which ensures that the Daemon Tools run permanently:

SV:123456:respawn: /command/svscanboot

419

19 Graphic Display of Performance Data

The program svscanboot searches regularly for new or crashed daemons.
For this purpose it scans the /service directory, which is also created dur-
ing the installation. Just one symbolic link is required to have Perf2rrd
monitored:

linux:~ # 1ln -s /usr/local/perf2rrd /service/perf2rrd

The Daemon Tools search in this directory for a script called run and start
it. In order for run to be able to find the path to the RRD repository, an
actual command-line option is entered in the script file instead of $x*:

exec java -cp S$classpath perf2rrd $x
exec java -cp Sclasspath perf2rrd -d /var/lib/rrd/perf2rrd

Starting and ending Perf2rrd is now taken over by the program svc:

linux:~ # /command/svc -d /service/perf2rrd
linux:~ # /command/svc -u /service/perf2rrd

The -d option (for down) stops the service specified, and -u (up) starts it
again. It is not necessary to run it at the beginning, since the Daemon Tools
regularly scan the /service directory for new services and automatically
start them. This is important insofar as the Nagios-2.0 beta versions, on
which this book is based, had problems if the configured named pipe was
not read. Then it might not deliver any more data at all until a reload or
restart. Whether this problem has been fixed in the final version 2.0 of
Nagios could not be clarified at the time of going to press.

19.4 The Graphics Specialist drraw

From the RRD databases, generated for example by Perf2rrd or Nagios-
graph, the CGI script drraw creates interactive graphics—simple ones rela-
tively quicky, whereas for more complex ones you need to know a bit more
about the RRDtools.?

19.4.1 Installation

For the drraw installation, you need to obtain the current tar file from
http://www.taranis.org/drraw/ and unpack it to its own subdirectory
in the CGI hierarchy® on the Web server:

8 Apart from the documentation on the homepage http://www.rrdtool.org/, the tu-
torial included (man rrdtutorial) is a useful starting point, as well as the man page
man rrdgraph

9 Which directory this is depends on the distribution or Apache configuration you are
using.

420

19.4 The Graphics Specialist drraw

linux:~ # ed /usr/lib/cgi-bin

linux:1lib/cgi-bin # tar xvzf /path/to/drraw-2.l.l.tar.gz
drraw-2.1.1/

drraw-2.1.1/drraw.cgi

drraw-2.1.1/drraw.conf
drraw-2.1.1/icons/

The directory created by this is then renamed to drraw:'’

linux:1ib/cgi-bin # mv drraw-2.1.1 drraw

drraw.cgi itself requires, apart from Per], the Perl CGI module (CGI.pm),
and the RRDtools, from at least version 1.0.47; nothing will work below
version 1.0.36. If your distribution does not include a current version, you
should obtain the sources from http://www.rrdtool.org/ and compile
them yourself:

linux:~ # ed /usr/local/src
linux:local/src # tar xvzf /path/to/rrdtool-1.0.49.tar.gz

linux:local/src # cd rrdtool-1.0.49
linux:src/rrdtool-1.0..49 # ./configure

linux:src/rrdtool-1.0..49 # make
linux:src/rrdtool-1.0..49 # make install

linux:src/rrdtool-1.0..49 # make site-perl-install

The CGI script drraw. cgi uses the Perl module RRDs, which after the in-
stallation with make site-perl-install,is found automatically.

19.4.2 Configuration

The drraw configuration is contained in the file drraw. conf:

linux:cgi-bin/drraw # egrep -v ’“#|”$’ drraw.conf

%datadirs = (’/var/lib/rrd’ => ' [RRDbase]’,

)i
Svrefresh = 7120’ ;
@dv_def = (’‘end - 6 hours’, ‘end - 28 hours’, ’‘end - 1 week’, ‘end - 1

10 A symbolic link would also be possible, but then Apache must be configured so that it
follows symbolic links, which is normally not automatically the case.

421

19 Graphic Display of Performance Data

month’, ’‘end - 1 year’);
@dv_name = (‘Past 6 Hours’, ’‘Past 28 Hours’, 'Past Week’, ’Past Month’,
'Past Year’);

' /var/lib/drraw/saved’ ;

S$tmp_dir = ’/var/lib/drraw/tmp’;

@dv_secs = (21600, 100800, 604800, 2419200, 31536000);
$saved_dir =

The extract shown specifies the RRD repository (here: /var/1ib/rrd) as
the most important detail, but several directories can also be specified:

%$datadirs = (’/var/lib/rrd’ => ' [RRDbase]’,
' /data/rrd’ => ' [RRDdatal’,
)i

The text in square brackets (e.g., [RRDbase]) appears later on the Web in-
terface, which allows a distinction to be made between various different
repositories. The variables @dv_def, @dv_name, and @dv_secs influence
the layout and number of graphics.

The configuration shown above generates one graphic more than the stan-
dard configuration. This represents the past six hours: the extended state-
ment ’end--6 hours’ in @dv_def describes the time period for rrdtool
(see man rrdgraph), in @dv_name the representation is given a suitable ti-
tle with ’Past 6 Hours’, and @dv_secs contains the six hours, converted
into (21600) seconds, displayed by drraw as a time period in a separate
graphic.

The repository must be readable for the user with whose rights the Web ser-
ver is running, and the directories specified in $saved_dir and $tmp_dir
must also be readable. If a user other than www-data runs this, the follow-
ing command must be adapted accordingly:

linux:~ # mkdir -p /var/lib/drraw/{saved, tmp}
linux:~ # chown -R www-data.www-data /var/lib/drraw

Data arrives in the temporary directory $temp_dir, whose contents can
be deleted at any time, whereas in $saved_dir drraw stores configuration
data which the program needs in order to access already created graphics
later on. This data must not be lost.

drraw implements a simple access protection in three stages: read-only (0),
restricted editing (1), and full access (2). Users logged in to the Web server
automatically obtain level 2. Nonauthorized users are treated as guests
and assigned level 0. To avoid the hassle with authentication at the begin-
ning, you can grant the user guest full access via the following directive in
the configuration file:

%$users = (‘guest’ => 2);

422

19.4 The Graphics Specialist drraw

19.4.3 Practical application

The CGI script in the CGI directory of the Web server can be addressed
through the URL http://nagiosserver/cgi-bin/drraw/drraw.cgi.

Draw Round Robin Archives on the Web Figure 19.2:
The ddraw start
D Create a new graph menu
Define a new dashboard
@AH Graphs (2)
[view] [Edit/Clone] [Delste] SAP-12 Ping
[view] [Edit/Clone] [Delete] SAP-12 Ping
aAII Templates (2)
aAII Dashboards (0}
3 ChangelLog
Help
Report a bug, ...
New graphics are generated in the menu item Create a new graph in the
start picture, which is shown in Figure 19.2. The dialog shown in Figure
19.3 allows the appropriate RRD database to be selected. Using a regular
expression'! in the Data Source filter regexp field, the data sources available
can be further restricted; this expression can also be a simple literal text,
such as sap-12.
Draw Round Robin Archives on the Web Figure 19.3:

Selecting the data

The first step in creating a graph is to choose which data to use. This is done by source
selecting Data Sources from available databases and event files. Only one type of
Data Source (either database or event file) may be added at the same time.

Filename filter regexp: [perf2rrdisap-12

Available Database Files
Refresh

[RRDbase] perf2rrd/sap-12+PING+pl
[RRDbase] perf2rrd/sap-12+PING+rta

[RRDbase] perf2rrdfsap-12+SAP-3200+time
[RRDbase] perf2rrdfsap-12+5AP-3300+time
[RRDbase] perf2rrd/sap-12+SAP-3600+time

Data Source filter regexp: ‘
Data Source RRA(s): [~ MIN & AVERAGE & MAX [T LAST
| Add DB(s) to data sources ‘

RRD Info for selected DB

Once you have chosen an RRD database, you just need to specify the round-
robin archive (RRA) to be used. Each of these archives saves data in a partic-

11 posIx regular expression; see man 7 regex.

423

19 Graphic Display of Performance Data

Figure 19.4:

Fine-tuning the

graphic
configuration

ular form, processed with a consolidation function: the AVERAGE function
averages all measurement data that accumulates in a measurement period,
MIN saves only the minimum value of the data in an interval, and MAX saves
only the maximum. Since the original data is lost, the archives must be
specified when the round-robin database is created; maximum values can
only be recalled later if this was taken into account at the time.

If you cannot remember what archives exist, you can display them using
the button RRD Info for selected DB. Clicking on the Add DB(s) to
Data Sources button takes you to a dialog where you first have to scroll
down a bit to reach the item Data Source Configuration (Figure 19.4).
There you can fine-tune the desired graph—now or later. You can define
your own colors, and whether a line or a surface will be shown. You should
only make use of the other possibilities if you are familiar with the concepts
of the RRDtools and the way they work.!?

The Update button provides a preview of the finished graphic, which at the
same time reveals the rrdtool options used (Figure 19.5). When you save,
with Save Graph, you obtain a link in the form

http://nagiosserver/cgi-bin/drraw/drraw.cgi?Mode=view; Graph=11149589.4932

with which the graphic can be accessed at any time. Alternatively you can
now find the graphic in the drraw starting menu under All Graphs.

‘ « BR:Whether or not to add a line break (in the lagend area) after this element ‘

Available Colors

[reai T c1ue] vavy[purpie|Fuchis T waroon]Real X Oivel] € creen T TE T Grayl 1

Update
Data Source Configuration Help
Additional
DEL [Name . RRA Type GPRINTS
7 | Seq Data Source ([Lists) CDEF Color Label [Format Min/Avg/MaxiLast BR

* on O Off

[RRDbase] perf2rrd/sap-12+PING+rta Avg w| | ETENN -
T a2 lyar — val AVERAGE rrrro|r

- Max LINE1 -
e ‘['ZTDbase] perfzrrdisap-12+PING+rta \‘ | ‘W Frrre -

Blue

Use the following row to add a new CDEF to the araph, or to define a DS based on a perl regular expression,

File RE:
N
Element: Formula:

rrroro|r

Graph Options
Options Values

Graph Title [

\ertical Label [

12 There are a number of tutorials on the homepage of the RRDtools author, To-
bias Oetiker, at http://people.ee.ethz.ch/ oetiker/webtools/rrdtool/tut/
index.en.html.

424

19.4 The Graphics Specialist drraw

Draw Round Robin Archives on the Web Figure 19.5:

Preview and
rrdtool graph - \

--start=end-86400 \ B .
vidthas00 | specifying the
--base=1000 % .
~ingfornat=PNG \ rrdtool options

--height=120 \

--interlaced \

--overlay=/var/Lib/drraw/tnp/drraw.gd \
DEF:a=/var/lib/rrd//perf2rrd/sap-12+PING+rta. rrd: val: AVERAGE \
DEF:b=/var/lib/rrd//perf2rrd/sap-12+PINGFrta. rrd: val: MAX \

AREA:a#00FFFF:val AVERAGE \
rrdtool invocation
fs: show (" Hide

LINEL:b#0000FF:val MAX

AR 7 £ BT

i goul ¢ on

10k i

12100 14/00 16(00 18(00 20(00 22:00 O0:00 0Zi00 0300 0S/00 08:00 10:00
O wal AVERAGE I wal MAX

start end: | Update
Describe your change(s) here before saving..

Save Graph

] [Home [Edt] Figure 19.6:
SAP-12 Ping T Sreshing m 1m 105 The finished graphic
represents different

REAI 7 € RALT

SAP-12 Ping Z . .
i time periods

2.0k B

£ 20k §
T ook i i
i el o fid B -ait
Al A Lk i Hel

o200 o500 o700 o500 osi 00 10,00

[0 val AVERAGE M val MAX

Past 6 Hours

R 7 AL

SAP-12 Ping

o

1200 18i00 o0i oo 08i00
[0 val AVERAGE M ual MAX

Past 28 Hours

RN 7 . KALT

SAP-12 Ping f
4.0 k 5
20k E
S zok | o :
Tk N i Jur
1 i
. } | : L |

sat sun Hon Tue wed Thu
[val AVERAGE I ual MAX

Past Week

The link mentioned when you save a graphic can be recorded in a service-
extinfo object, making it directly accessible through the Nagios interface:

425

19 Graphic Display of Performance Data

define serviceextinfof{
service_description PING
host sap-12
notes_url /nagiosgraph/drraw/drraw.cgi?Mode=view;Graph=11149589.4932
icon_image graph.gif
icon_image_alt View graphics

With templates and dashboards, drraw includes other features, which can-
not be discussed in detail here, for reasons of space. Templates allow sev-
eral sources of the same type to be shown in the same graphic. What these
are can be specified in Create a new Graph (see Figure 19.3). Since you can
only add one source at a time there, you must click the Add button for each
separate source, before moving on to the next one.

A dashboard presents a display containing several preview graphics. If you
click on one of the graphics, you are shown the detailed representation.
The interactive menu Create a Dashboard contains brief instructions where
you can obtain help on the two features.

19.5 Automated to a Large Extent: NagiosGrapher

NagiosGrapher from Netways, the host of The Nagios Exchange Platform
http://www.nagiosexchange.org/,is a powerful representation tool for
performance data, but already a very powerful one. This also saves data
in round-robin databases and uses the RRDtools for processing and rep-
resentation. It claims to be easy to install and to work automatically to a
large extent in contrast to the “competition.” The latter promise has so far
not been kept; as in Nagiosgraph, you have to configure search patterns
in order to interpret the plugin output or performance data correspond-
ingly. The RRD databases are generated by NagiosGrapher automatically;
in addition to this, the tool serviceextinfo also generates entries.

As soon as it once recognizes the performance data, you don't have to worry
any more about integrating it into Nagios. A reload is sufficient to make the
serviceextinfo entries generated in the meantime usable in Nagios. The
entries are created “intelligently,” so that if you click on the corresponding
icon in the service summary (see Figure 19.7 on page 434), you are taken
directly to the graphic display of the performance data.

As far as functionality and installation efforts are concerned, NagiosGra-
pher lies somewhere between Nagiosgraph and Perf2rrd: the initial con-
figuration needed is somewhat more than for Nagiosgraph, but the pos-
sibilities of variations in the graphic output are considerably larger, and
you do not have to generate each graphic individually, as is the case with
Perf2rrd/drraw.

426

19.5 Automated to a Large Extent: NagiosGrapher

19.5.1 Installation

In addition to the RRDtools (in version 1.2, at least) and the program auto-
conf, NagiosGrapher requires a series of Perl modules: CGI, CGI: :Carp,
Calendar: :Simple,Carp, Data: :Dumper,File: :Basename,File: : Copy,
GD, I0::Handle, Image: :Magick, POSIX, RRDs, Storable, Time: :HiRes,
Time: :Local, and URI: :Escape.

There are two alternatives for installing them, namely from the packages in-
cluded in the distribution or from CPAN. On Debian “Etch” and comparable
Debian-based systems, you have all the modules if you select the packages
autoconf, rrdtool, perl-modules, libcalendar-simple-perl, 1libgd-
gd2-perl, perlmagick, librrds-perl, and liburi-perl for installation.
In other distributions you must search for the above-mentioned modules,
preferably using the graphic package installer in the distribution. You can
see whether you have installed all the required modules by running make
testdeps after the configure command. Installing each of the most cur-
rent module versions from the CPAN is done with the command make
fixdeps.

The NagiosGrapher sources can be obtained from NagiosExchange,'® and
they are unpacked into the directory /usr/local/src:

linux:~ # ed /usr/local/src
linux:local/src # tar xvjf /path/to/NagiosGrapher-1.6.1l.tar.bz2

linux:local/src # cd NagiosGrapher-1.6.1
linux:src/NagiosGrapher-1.6.1 # autoconf

The command autoconf generates a configure script. Before you run
this, edit the file config.layout, which provides various layouts. In the
NagiosGrapher documentation, this term means the definition of all instal-
lation paths that are required.

config.layout contains a series of distribution-dependent suggestions
that need to be changed in certain aspects in order to comply with the
conventions in this book. For this purpose it is best if you copy the section
that matches your distribution and rename it to <Layout nagiosbook>
and modify a number of entries.!* For Debian “Etch,” the following entries
apply (the changed values are shown in bold print):

config.layout

<Layout nagiosbook>
prefix: /usr/local/nagios
nagios_config: /etc/nagios

13 http://www.nagiosexchange.org/42;195
14 Starting from NagiosGrapher 1.7, the file config.layout already contains the entry
<Layout nagiosbook>.

427

19 Graphic Display of Performance Data

nagios_config cgi:
nagios_images:

nagios_images_logos:

nagios_ folder cgi:

nagios_contribution:

perl_inc:
ng_config:
ng_config sub:
ng_daemon:
ng_srvext_ file:
ng_srvext dir:
ng_interface_pipe:
ng_perffile path:
ng logfile:
ng_rrd:

/etc/nagios/cgi.cfg
${prefix}/share/images
${prefix}/share/images/logos
${prefix}/sbin
${prefix}/contrib
${prefix}/perl/1lib
/etc/nagios
${ng_config}/ngraph.d
/var/nagios_grapher
/etc/nagios/serviceextinfo.cfg
/etc/nagios/serviceext
/var/nagios/rw/ngraph.pipe
/var/nagios/
/var/nagios/ngraph.log
/var/lib/rrd/nagios_grapher

ng_rrd font: /usr/share/fonts/truetype/ttf-dejavu/DejaVuSansCondensed

.ttf
ng_cgi:
ng_logos:
ng pid file:
init_script_dir:
logrotate_conf dir:
</Layout>

/nagios/cgi-bin
/nagios/images/logos
${ng_daemon}/nagios_grapher.pid
/etc/init.d

/etc/logrotate.d

The path for the Perl modules defined in the parameter perl_inc corre-
sponds in this case to the directory suggested by Ton Voon for the Perl
module Nagios: :Plugin (see page 561).

The new layout is included in the configure script:
linux:src/NagiosGrapher-1.6.1 # ./configure --with-layout=nagiosbook
You can run make testdeps to check whether all dependencies, especially
the ones for the Perl modules, have been met:

linux:src/NagiosGrapher-1.6.1 # make testdeps
/usr/bin/perl ./tools/testdeps.pl

Checking Data: :Dumper ... found
Checking IO::Handle ... found
Checking URI::Escape ... found

Checking Calendar::Simple not installed!

make: *x* [testdeps] Error 1

If an error occurs, as in this example, you must install the appropriate mod-
ule (here Calendar: :Simple). This can be done from the CPAN with the
command

linux:src/NagiosGrapher-1.6.1 # make fixdeps

428

19.5 Automated to a Large Extent: NagiosGrapher

For Debian-based distributions, the package naming scheme is quite sim-
ple: The Perl module Calendar: :Simple is turned into the package 1ib-
calendar-simple-perl, which is installed with apt-get or aptitude:

linux:src/NagiosGrapher-1.6.1 # apt-get install libcalendar-simple-perl

Running make testdeps again shows whether all requirements have now
been met.

An already installed NagiosGrapher is updated with make update, since
the make install, intended for a new installation, does not take account
of already existing configuration files and simply overwrites them.!® make
install creates all the necessary directories, ensures that the correct ac-
cess permissions are set, and copies all the files to where they should go:

linux:src/NagiosGrapher-1.6.1 # make install
mkdir -p /etc/nagios/serviceext

chown -R nagios /etc/nagios/serviceext
mkdir -p /var/lib/rrd/nagios_grapher

chown -R nagios /var/lib/rrd/nagios_grapher

Just a few steps to run the grapher ...

The output of make ends with some instructions on the configuration of
NagiosGrapher and of Nagios, which we will examine in more detail on
page 430 and page 443.

A core component of NagiosGrapher is the daemon collect2.pl, which is
started via the startup script nagios_grapherin /etc/init.d:

linux:~ # /etc/init.d/nagios_grapher start

So that the daemon starts automatically on system start, corresponding
symlinks are set in distributions that use the system V init. On Debian/
Ubuntu this is done by the system script update-rc.d:

linux:~ # update-rc.d nagios_grapher defaults 98
OpenSUSE includes the script insserv for this purpose:

linux:~ # insserv nagios_grapher

15 Even when running make update, it doesn’t hurt for you to back up the configuration
files beforehand.

429

19 Graphic Display of Performance Data

In Fedora this task is performed by chkconfig:

linux:~ # chkconfig --add nagios_grapher
linux:~ # nagios on

19.5.2 Configuration
The configuration file ngraph.ncfg

The configuration file ngraph.ncfg contains a global config section with
paths and general settings. This is followed by an include instruction with
the parameter cfg_dir, which, as in Nagios, integrates all the configuration
files located in the directory specified. In contrast to Nagios, the configura-
tion files for NagiosGrapher all end in .ncfg.

It can be seen even from a quick glance that the syntax complies with the
convention used by Nagios:

/etc/nagios/ngraph.ncfg
define config {

interface file

perffile path /var/nagios/

pipe /var/nagios/rw/ngraph.pipe

port 5667

buffer 1024

pidfile /var/nagios_grapher/nagios_grapher.pid

user nagios

group nagios

step 300

heartbeat AUTO

rrdpath /var/lib/rrd/nagios_grapher/

tmppath /tmp/nagiosgrapher/

fontfile /usr/share/fonts/truetype/ttf-dejavu/DejavuSansCon
densed.ttf

serviceext_type MULTIPLE

serviceextinfo /etc/nagios/serviceextinfo.cfg
serviceext_path /etc/nagios/serviceext

url /nagios/cgi-bin/graphs.cgi

#notes_url /wiki/index.php/$HOSTNAMES#$SERVICEDESCS

notes_url

nagios_config /etc/nagios
cgi_config /etc/nagios/cgi.cfg

430

19.5 Automated to a Large Extent: NagiosGrapher

icon_image_tag dot.png’ border="0"><A TARGET="_blank" HREF='"g
raphs.cgi?###URL###"><img src='##H#IMAGESRCHH## '
icon_image_src /nagios/images/logos/graph.png

icon_image_script /nagios/cgi-bin/rrd2-system.cgi?###URL###&start=-5
400&title=Actual&width=20&height=20&type=AVERAGE&only-graph=true
icon_image_static true

log_file /var/nagios/ngraph.log
log_level 1023

rrd_color_background ffffff

rrd_color_font 333333
rrd_color_arrow ££0000
rrd_color_frame fEfFEfFf
rrd_color_grid

rrd_color_canvas fEfFfFf
rrd_color_shadea c0c0cO
rrd_color_shadeb c0c0cO
fe _use_browser all false

fe use_browser for nagiosadmin
fe_use_browser_url false

fe use_timefilter true
use_authentication true

Includes
cfg_dir=/etc/nagios/ngraph.d

The config section contains the following parameters:

interface
This defines the type of connection to Nagios. Possible connections
are pipe, network, and file. For the pipe type, Nagios and the
collect2.pl daemon communicate via a named pipe (see the pipe
parameter); for the network type, Nagios sends the performance data
via the UDP transport protocol over a network socket (see parameter
port).

In contrast to the interface types just described, the file type (avail-
able from version 1.7) makes use of the template mechanism,'® which
means that Nagios writes the performance data to a file which is pe-
riodically evaluated by the daemon collect2.pl. This makes pos-
sible, for the first time, bulk processing of performance data, thus
saving resources. The default interface type is pipe up to version 1.6,
and file from version 1.7.

16 gee Section 19.1.1 on page 405

431

19 Graphic Display of Performance Data

perffile_path
This defines the directory for the file to which Nagios writes all per-
formance data via the template mechanism.

pipe
This defines a named pipe to which Nagios writes data with the pro-
gram fifo_write and from which the collector script collect2.pl
reads them out again. The named pipe is created automatically by
make install from version 1.6.1.

port
This specifies the UDP port for the network communication type.
The default is 5667.

buffer
This determines the size of the buffer for sending performance data
via UDP in bytes. The default is 1024 bytes.

pidfile
This defines the file to which NagiosGrapher writes its own process
ID on starting.

user, group
These define the user and group with whose permissions the daemon
collect2.plruns. Here it makes sense to specify the user and group
with whose permissions Nagios is working.

step
This defines the step size in seconds for the RRD database. All val-
ues recorded during this period are summarized by the RRDtools in
a single value. step therefore also describes the smallest time reso-
lution of data in the RRD database. The value only has an effect on
newly created RRD databases, and a modification made later on has
no effect on existing databases.

heartbeat
The heartbeat defines a time period in seconds, during which the
RRD database always expects data. If no measured value at all arrives
during this period, NagiosGrapher generates an invalid entry (nan,
not a number).

In order for valid entries to materialize in the above example, at least
one measured value must arrive every 600 seconds. Since the reso-
lution is 60 seconds, the database contains ten entries for the period
of the “heartbeat.” If one of these values is missing, NagiosGrapher
simply replaces it with the last valid one. If just one measured value
arrives in ten minutes, it will be recorded ten times in the database.

432

19.5 Automated to a Large Extent: NagiosGrapher

rrdpath
This specifies the directory for the RRD databases. It must be writable
for the user nagios and (along with the database files) readable for
the Web server user. The directory is created automatically during
the installation of NagiosGrapher.

tmppath
This defines where NagiosGrapher temporarily saves internal XML
files.

fontfile
This specifies the font file for the font used by the RRDtools for label-
ing the graphics.

serviceext_type
This describes how the serviceextinfo objects are created. With
the SINGLE type, NagiosGrapher writes everything to the file specified
in serviceextinfo.

Nagios 2.0 can also read directories recursively, and in this case it is
better to use the MULTIPLE type. Then NagiosGrapher creates a sep-
arate file for each host with the corresponding serviceextinfo ob-
ject. The directory is specified with the serviceext_pathparameter.
This must be made known to Nagios through the cfg_dir directive.

url
This contains the path to the CGI script graphs. cgi from the point
of view of the Web server (a path starting from the server root) or of
the browser (that is, the complete URL).

notes_url
NagiosGrapher automatically generates serviceextinfo objects; it
is useful to also be able to set the parameter notes_url (Section
16.4.2 from page 366), for example, to generate a service-related link
to a Wiki entry.

nagios_config
This reveals to NagiosGrapher where the standard configuration file
of Nagios is located.

cgi_config
This specifies the Nagios CGI configuration file. NagiosGrapher uses
this to find out who, apart from the contact groups, has the right to
query information on all hosts.

icon_image_tag
This parameter corresponds to the entry that is later to be found in
the serviceextinfo object as the icon_image parameter. In the
serviceextinfo object, NagiosGrapher replaces the text ###URL###

433

19 Graphic Display of Performance Data

Figure 19.7:

The NagiosGrapher

icon (arrow) in the
Nagios Web interface

indicates a
time-related

evaluation for this

service

with the host and service names. The entry ###IMAGESRC###, on the
other hand, is replaced by NagiosGrapher with the contents of the
parameter icon_image_src.

Here the program outwits Nagios with a trick: dot.png is a graphic
that is one pixel in size, which is invisible on the screen. To create a
second, visible icon, graph.png, around it, a hyperlink is set to the
CGI script graphs.cgi.

Normally if you click on an image specified in icon_image, Nagios
will take you to the Extended info page, and the graphic can be
reached at url (Nagios: notes_url) only with another mouse click.
With the trick used here, you can do this directly.

The specification following icon_image_tag must be written on a
single line. Figure 19.7 shows the icon graph.png, which is visi-
ble on the Nagios interface, thanks to the automatically generated
serviceextinfo objects.

Service Status Details For
Host 'mrelay’

HTTP OKHTTP/1. 1200 OK- 444 bytes
in 0.126 seconds

OK- 172.17.10.71: rta 57. 540ms, lost
0%

20050507 18:23:11 1d 6h 49m 315 U3 SMTP OK- 0.173 sec. response time
SSH OK- OpenSSH_3.8. 1pl

Debian-8 sarge. 4 (protocol 2.0)

mrelay HTTP oK 2005-05-07 18:20:57 1d 9h 43m 31s 1/3

0K 20050507 18:21:53 1d 3h 57m30s LU/3

20050507 18:19:07 2d 0h 41m 40s 1/3

0
=}

—p (]
g &

4 Matching Service Entries Displaysd

icon_image_static
This specifies whether the icon integrated in Figure 19.7 is generated
statically or dynamically. Possible values are true (static icon) or
false (dynamically generated icon).

icon_image_src
This specifies a static icon, which NagiosGrapher integrates into icon
_image_tag.

icon_image_script
This defines a script that generates a mini-view of a graph rather than
a dynamic icon.

log_file
This defines the log file to which the NagiosGrapher writes infor-
mation. If you want log rotation, you have to set it up yourself, as
NagiosGrapher does not clean up automatically. Because Nagios re-
quries write permissions for the file, it is better stored in the Nagios
var directory (in this case: /var/nagios).

434

19.5 Automated to a Large Extent: NagiosGrapher

log_level

This parameter specifies what information the log file should contain.
Possible values are 1 (detected services and values), 2 (performance
data delivered by Nagios which has not been recognized by Nagios-
Grapher), 4 (program states), 8 (information on the serviceextinfo
object), 16 (RRD actions), and 32 (input which is read from the pipe).
For more extensive debugging, there are the values 64 (details of how
regular expressions are parsed) and 128 (advanced information on
how the configuration files are parsed).

If you want to log several of these information types, you just add
the relevant values together, so the most extensive output is obtained
with 255; page 445 shows an example of this. It is recommended that
you only use these log levels for debugging purposes, and you should
normally use O or 4.

rrd_color_x*

The rrd_color options bring color to the Web interface (Figure 19.8):
rrd_color_background defines the background color for the entire
image, rrd_color_font the font color, rrd_color_arrow the color
of the arrow tips, rrd_color_frame the frame color for the keys,
rrd_color_grid the grid color, and rrd_color_canvas the back-
ground of the diagram itself. rrd_color_shadea defines the colors
for the top and left of the frame, and rrd_color_shadeb does so
for the right and bottom of the frame. Colors are specified as RGB
values in hexadecimal notation, with a preceding #, as is the norm
for Web pages. Changes to these options take effect immediately the
next time the Web page is reloaded.

Figure 19.8:

sap-12(PING) - Actual Graph The influence of the

300 rrd_color_x color

250

ATULLI0 T300 2 00109

options

PV L A WO OSSO N ——

5

FTETIR e 5 s S

100

B Time to answer METWAYS GmbH [[10:52/01.07 200

/4

background canvas frame font grid arrow

fe_use_browser_all
From version 1.2, NagiosGrapher provides a method of switching
from the display of a specific service to that of other services for

435

19 Graphic Display of Performance Data

Figure 19.9:
Whether

NagiosGrapher shows

serv

the host and
ices fields is

determined by the

fe_use_browser

parameters

any host at all. To do this it integrates a selection window into the
graphs.cgi display (see Figure 19.9).

The value 1 activates the pulldown menus host and service, O hides
them.

NETWAYS Nagios Grapher v1.6.1-rc5 (Logged in as nagios)

[1 Current] [2 Daily] [3Weekly] [4 Monthly] [5 Yearly]
Width: |500 Height [120 Refresh: [3 minutes =]

page: | RTA A

Type: IAverage values j

Start: I

End: I
Only values defined by the AT-STYLE TIME SPECIFICATICN

Host: |e|ix01 |

Service: I PING j

[RRDInfe] [Templatelnfo] Change |

fe_use_browser_for
This option allows particular users to use the host/service selection.
Several users can be specified, separated by commas. So that only
the users specified here can see the selection fields for host and
service, fe_use_browser_all must also be set to O at the same
time.

fe_use_browser_url
This option allows the selection fields for host and service to be in-
serted through the URL graphs. cgi?browser=1, provided the value
is 1. This is not possible if the value is 0.

fe_use_timefilter
This controls whether the time selection via Start and End appears
in the browser menu (see Figure 19.9 on page 436). The value true
displays the selection, false hides it.

use_authentication
This defines whether NagiosGrapher should take the result of authen-
tication by Nagios into account or not. The value true allows the
observer only to access hosts and services for which he is responsible
as the contact. The value false switches off authentication entirely,
so that everyone has access to everything.

436

19.5 Automated to a Large Extent: NagiosGrapher

The cfg_dir configuration parameter already mentioned on page 430 de-
fines a directory containing additional configuration files, in particular the
definition of the various graphs:

cfg_dir=/etc/nagios/ngraph.d

NagiosGrapher examines it recursively for configuration files of any name;
they just need to end in .ncfg. The parameter must stand outside the
config{} block; there has to be an = sign between the parameter and the
value.

Configuring the graphics—the basic principle

ngraph objects are used to define what data is to be extracted and written to
an RRD database, but the objects also contain information on the display
form. Like Nagios, NagiosGrapher saves the information temporarily in
a cache file, which is why the data collection script collect2.pl must
be restarted after every change to a configuration file with /etc/init.d/
nagios_grapher restart. collect2.pl also updates the object cache
when this is done.

During its installation, NagiosGrapher provides a number of templates for
ngraph objects; these can be found in the subdirectories standard and
extra below /etc/nagios/ngraph.d/templates. These templates all
end in .ncfg_disabled so that they are not considered by NagiosGrapher.
In order to use them, the file extension is renamed:

nagios@linux:nagios/ngraph.d$ ep \
templates/standard/check ping.ncfg disabled ./check ping.ncfg

The example in check_ping.ncfg_disabled, however, only works with
check_ping and not with check_icmp (see page 111). So that NagiosG-
rapher can graphically display the average response time rta (round trip
average) and the pl (packet loss) from the performance data of the check_
icmp plugin,

nagios@linux:libexec/nagios$./check icmp -H linux01

OK - linux01l: rta 96.387ms, lost O%| rta=96.387ms;200.000;500.000;0; pl=
0%;40;80;;

the following ngraph objects are used:

check_icmp.ncfg

Ping Packet loss
define ngraph{

437

19 Graphic Display of Performance Data

}

service_name
graph_perf_ regex
graph_value
graph_units
graph_legend
graph_legend_eol
page
rrd_plottype
rrd_color

Ping RTA
define ngraph{

service_name
graph_perf_ regex
graph_value
graph_units
graph_legend
page

PING
pl=([0-9]+)%

Loss

<
g

Packet Loss
none

Packet Loss
LINE2
££0000

PING

rta=([0-9]1x\.[0-9]«)

RTA

ms

Time to answer
RTA

rrd_plottype AREA
rrd_color 00a000

service_name

This consists of a regular expression,!” with which the NagiosGrapher
identifies the service to be displayed in the data passed on. If the
service description in service objects that use the same plugin is pro-
vided with the same prefix, one ngraph definition is enough for all:
Disk_ matches both Disk_usr, as well as Disk_var or Disk_tmp.
In order for this to work, the performance data must be structured
identically, which is always the case if the same plugin is used.

graph_perf_regex

With this regular expression, NagiosGrapher finds the value being
searched for in the performance data. The pattern in the round
brackets must match the value itself.

If a plugin does not provide any performance data, you can use graph
_log_regex instead. The search pattern specified there is applied by
NagiosGrapher to the normal text output of the plugin.

graph_value

The name of the variable in the RRD database must be unique for
each service and may not contain empty spaces or special characters
(exception: _ is allowed).

graph_units

This parameter defines the unit of the y axis.

17" Since we have a Perl script on our hands, this is, of course, a Perl regexp.

438

19.5 Automated to a Large Extent: NagiosGrapher

graph_legend
This contains the key for the variables.

graph_legend_eol
This determines whether and how a line break should be inserted into
the legend after the entry for these graphs. Possible values: 1eft (line
break, line is left-aligned), right (line break, line is right-aligned),
center (line break, line is centrally aligned), justify (line break,
fully aligned), and none (no line break, left-aligned). You can append
to all values the number of empty spaces to be added, separated from
it by a colon: none:20 does not create a line break, but the entry is

followed by 20 empty spaces.

graph_legend_max
This defines a column width for the legend. Instead of formatting
this manually with empty spaces, using graph_legend_eol, this pa-
rameter specifies how wide the column for a legend entry should be.
Entries that are longer are truncated.

page
This optional parameter ensures that NagiosGrapher displays the vari-
ables in different diagrams if the standardization does not match. All
values which are to be used in a single graphic are given the same
page entry. For the selection of the “page” to be displayed, the CGI
script contains its own page entry field (see Figure 19.10).

o Figure 19.10:

[112 Daily] [kiy] [10 1 10 1
. - . [reen [SATS] The average response

NETWAYS Nagios Grapher v1.6.1-rc5 (Logged in as nax

page: RTA v 1 1
time to pings,
S — represented by
E .
Only values defned by he AT-STYLE TiVE ar NagiosGrapher
1RROIo) {Tempiatino [Cchange |

swobspace (PING) - 1 Current Graph

50
20
Y 1 JJ
] 1 1 " |
500 %00 o700 o800

J L,
o To0

[10:24/2008-01-0]

View as:

swobspace (PING) - 2 Daily Graph

L] II |”|J‘ ‘\
oo s oem S oe

00

110:24/2008-01-06]
[To t0p]3 Weekly graph View as: PDF, SVG, EP

swobspace (PING) - 3 Weekly Graph

00
£ 400m
200 m
sl Aol
o Y o o 02 o4 o5

[10:24/2008-01-06]

439

19 Graphic Display of Performance Data

For the two check_icmp outputs, it is recommended that the per-
centage of Loss, which is in the value range from 0 to 100, be sepa-
rated from RTA, which can be several thousand milliseconds.

If you leave out the page parameter, both graphs—the one for Packet
Loss and that for RTA—are displayed in one graphic.

rrd_plottype
This parameter defines which drawing function the RRDtools should
use:

= LINE1: simple line,

= LLINE2: double line,

= LINE3: extra-fat line,

= AREA: filled out surface,

STACK: adds the current value to the previous one. In this case the
display (line or surface) depends on the previous value.

rrd_color
This is the color of the graph in RGB hexadecimal notation (rrggbb).

Figure 19.10 shows how NagiosGrapher displays the average response time
RTA for the PING service on the host sap-13. The respective output page
page can be selected at the top of the Web form. In addition you can adjust
the width: and height: of an individual graphic, as well as the Refresh
rate.

Starting with version 1.7, NagiosGrapher also has a zoom function: If you
click on one of the graphics in Figure 19.10, you can see it in greater detail.
You can select a time period in the diagram with the mouse, and NagiosG-
rapher will display the diagram for this period after the mouse button has
been released.

Advanced options of graphic reprocessing

You may not always want the measured values to be displayed directly. With
the CDEF feature of the RRDtools you can add new values that are calcu-
lated from the ones recorded.

As an example, we will use the output of the check_disk plugin (section
7.1, page 158), which determines amount of a file system occupied:

DISK OK - free space: /usr 287 MB (19%);| /usr=1225MB;1359;1465;0;1511

The used space is shown as an dark grey area, the free capacity as a light
grey one. The performance data provides the current used space (1225MB)

440

19.5 Automated to a Large Extent: NagiosGrapher

and uncritical warning limits, as well as the minimum and maximum (the
size of the file system). The capacity that is still free is determined as the
difference between the maximum and the current occupied space. In addi-
tion, the unit of MB is somewhat unfortunate: the graphic would show 10
GB as 10k MB. For this reason you first determine the value that the plugin
returns, so that you can then scale it as you wish:

(1) readout current occupancy of hard drive space,

but do not show it as a graphic
define ngraph{
service_name fs_
graph_perf_ regex =(0.1+)MB; [+ 0.1+ 0.1+ 0.1+
graph_value disk used
graph_units Bytes
graph_legend used space
rrd_plottype AREA
rrd_color 00a000
hide yes

The regular expression specified after service_name matches all service
descriptions that start with fs_ (short for file system), that is, fs_root,
fs_usr, fs_var, fs_tmp, etc. The parameter hide ensures that the CGI
script does not show the graphs. Instead, NagiosGrapher just stores the
data in a database.

In the second step, the values determined are standardized with the RRD
feature CDEF:

(2) display used hard drive space in scaled form

define ngraph{

service_name fs_

type CDEF

graph_value DISK USED

graph_legend used space

graph_calc disk used,1024,1024,*,*
rrd_plottype AREA

rrd_color 666666

hide no

type identifies the entry as a CDEF definition, which calculates new values
from already existing ones. graph_value must be unique, which is why
the entry here is given its own name.

graph_calc finally processes the data. This parameter expects the instruc-
tions in reverse Polish notation (RPN).!® In this, the values to be processed
are pushed, in turn, onto a stack, to be removed and operated on later.

18 An introduction to RPN can be found at http://people.ee.ethz.ch/ oetiker/
webtools/rrdtool/tut/rpntutorial.en.html.

441

19 Graphic Display of Performance Data

Adding 2 + 3 is noted in RPN accordingly as 2, 3, +. In the example we mul-
tiply the variable defined on page 441, disk_used, by 10242 so that the
result is in bytes. hide no now ensures that this value is displayed.

To display available space according to the same pattern, we first determine
the entire space available (disk_max), which NagiosGrapher should not
display, calculate the difference between disk_max and the above disk_
used value, and convert the result to bytes:

(3) defining the space available,

but not displaying it in the graphic
define ngraph{
service_name fs_
graph_perf_ regex =0 1+MB; LD+ 0T+ 0.0+ (0.14)
graph_value disk max
graph_legend max space
rrd_plottype LINE2
rrd_color 0000a0
hide yes

}
(4) calculate and display free space
define ngraph{

service_name fs_

type CDEF

graph_value DISK MAX

graph_legend free space

rrd_plottype STACK

rrd_color ccececece

graph_calc disk_max,disk_used, -,1024,1024,*,
hide no

}

The corresponding formula is (disk_max-disk_used)x10242. The plot
type STACK ensures that the value determined from the previous disk_used
value is placed on top of this. Figure 19.11 shows a corresponding out-
put: The lower part of the screen represents the current used space on the
file system for the past six hours and the past day and week, and the top
part shows the remaining free hard drive space. The graph also contains a
monthly and a yearly view, not shown here.

At this point it should again be emphasized that with this definition, Na-
giosGrapher automatically records all services that begin with fs_ and are
matched by the search pattern, writes the data to an RRD database, and
generates a corresponding serviceextinfo entry, which appears auto-
matically in the Web interface after a Nagios reload (see Figure 19.7 on
page 434).

After changes have been made to the configuration file ngraph.ncfg, the
file collector collect2.pl must also be restarted:

linux:~ # /etc/init.d/nagios_grapher restart

442

19.5 Automated to a Large Extent: NagiosGrapher

[To top 11 Current graph View as: PDF, SV, EPS Figure 19.11:
swobspace(fs_var) - 1 Current Graph Dlsplaylng the
6 calculated load data
0
w
o
& 106
05: 80 06: 60 07:00 08: 00 09: 00 10: 80
m used space free space
[10:29/2008-01-06
[To top 12 Daily graph View as: POF, SVG, EPS
swobspace(fs_var) - 2 Daily Graph
20 G
n
o
o
@ 106
sat 12:00 sat 16:00 sat 20:00 Sun 00: 08 Sun 04: 00 Sun 08: 00
® used space free space
[10: 29/2008-01-06]
[To top 13 Weekly graph View as: POF, SVG, EPS
swobspace(fs_var) - 3 Weekly Graph
20 G
n
o
-
& 196
30 21 [02 03 04 05
m used space free space

[10:29/2008-01-06]

Nagios configuration

Nagios passes on data for NagiosGrapher through the command interface,
that is, each individual result leads to an external command being started.
Correspondingly, the Nagios main configuration file contains the following
parameter:

/etc/nagios/nagios.cfg

process_performance_data=1
service perfdata_command=process-service-perfdata

The definition of the command object process-service-perfdata—
which is best achieved by creating a separate file with the name process_
service_perfdata_ngraph.cfg—depends on the interface type used.

443

19 Graphic Display of Performance Data

For interface pipe, the program fifo_writeis used, whereas for inter-
face network, NagiosGrapher requires the program udpecho.

The definition of the command with fifo_write is as follows:

process_service_ perfdata ngraph.cfg

define commandf{

command name process-service-perfdata

command_line /usr/local/nagios/contrib/fifo write /var/nagios/rw/ngr
aph.pipe ’$HOSTNAMES\t$SERVICEDESCS\t$SERVICEOUTPUTS\t$SERVICEPERFDATAS\
n’ 3

process-service-perfdata calls the script fifo_write.pl, which is
given three arguments as parameters: the named pipe, a string with the
performance details, and a timeout in seconds. The latter ensures that the
script aborts the action if the data cannot be written within three seconds.
The command_line must, as usual, be writen on one line.

For the program udpecho, the definition of the command is somewhat sim-
pler:

process_service_ perfdata ngraph.cfg

define commandf{
command name process-service-perfdata
command_line /usr/local/nagios/contrib/udpecho

udpecho does not need any parameters: It retrieves the required informa-
tion from the environment variables NAGIOS_HOSTNAME, NAGIOS_SERVICE-
DESC, NAGIOS_SERVICEQUTPUT, and NAGIOS_SERVICEPERFDATA. Nagios
has to make these available with enable_environment_macros=1 (see
page 592) so that udpecho can provide NagiosGrapher with usable data.'®

For the file interface type, the command process-service-perfdata
has another meaning: It is not called for every check result, but rather
shifts the file into which Nagios writes all performance data via the tem-
plate mechanism:

process_service_ perfdata ngraph.cfg

define commandf{
command name process-service-perfdata

19 Environment macros are described in Section D.1.8 from page 631.

444

19.5 Automated to a Large Extent: NagiosGrapher

command_line mv /var/nagios/service-perfdata /var/nagios/service-per
fdata.STIMETS

}

The current timestamp is simply appended to the file name service-perf-
data. The daemon collect2.pl searches for all files called service-
perfdata. time_stamp from the specified directory and processes these.

What data is written to the file by Nagios is specified by service_perfdata
_file_templatein nagios.cfg:

/etc/nagios/nagios.cfg

service_perfdata file processing command=process-service-perfdata
service perfdata file=/var/nagios/service-perfdata

service _perfdata_file template=$HOSTNAMES\tS$SERVICEDESCS\t$SERVICEOUTPUT
$\tSSERVICEPERFDATAS\t$TIMETS$

service_perfdata file mode=a

service perfdata file processing interval=60

Compared to the variation with fifo_write.pl, Nagios now also passes on
a timestamp for each check. This is necessary because the data are not pro-
cessed immediately, but periodically at intervals of service_perfdata_
file_processing_interval—this is 60 seconds in our example.

If you want to squeeze a little more performance out of this, you can se-
lect a temporary file system such as /dev/shm for the service-perfdatax
files. The file then is not written to the hard drive, but remains in the main
memory of the Nagios server.

As usual, changes to the Nagios configuration require a reload:
linux:~ # /etc/init.d/nagios reload

The success of this can be clearly observed in the log file if you set the
loglevel to 255 (see page 435).2° For the sake of clarity we will omit the
timestamp at the beginning of the line:

CFG: buffer => 1024’
CFG: cgi_config => ’/etc/nagios/cgi.cfg’

PRG: Starting up collect2.pl (PID: 25003)
PRG: using UDP socket (port: 5667)

NET: got udp message from localhost:32783

20 In general: 2" —1 with n>8

445

19 Graphic Display of Performance Data

PIPE: swobspace PING OK - 192.168.1.9: rta 0.104ms, lost 0% rt a
=0.104ms;200.000;500.000;0; pl=0%;20;60;;

REGEX: 2 blocks for ’'PING’ found.

REGEX: graph_value=RTA

REGEX: output=perfdata

REGEX: regex=m/rta=([0-9]%[0-9]%)/i

REGEX: perfdata=rta=0.104ms;200.000;500.000;0; pl=0%;20;60;;

REGEX: match=0.104

REGEX: graph value=Loss

REGEX: output=perfdata

REGEX: regex=m/.*pl=([0-9]%) /i

REGEX: perfdata=rta=0.104ms;200.000;500.000;0; pl=0%;20;60;;

REGEX: match=0

VALUES: [swobspace] [PING]: RTA=0.104 Loss=0

RRD: rrdtool update /var/lib/rrd/nagios_grapher/swobspace/f66ffe61c885 d
e2d8b6d0c41ff444b39.rrd --template=RTA:Loss N:0.104:0

The label PRG identifies program states, such as the restart here. PIPE re-
produces in full all the data taken from the named pipe (host name, service
description, plugin output, and performance data, each separated by a tab).
REGEX shows how the search for matching entries takes place and how the
values are extracted from them. RRD reveals the commands performed with
rrdtool and VALUES shows the recognized values(PING).

19.6 Smooth Plotting with PNP

PNP is not PerfParse—with this recursive acronym, which is an allusion to
the PerfParse tool (not described in this book)—the authors of PNP, Jorg
Linge and Hendrik Bicker, are clearly heralding the virtues of their own
tool for processing performance data: It is allegedly very easy to install (in
contrast to PerfParse) and can be used (almost) without configuration, yet
provides extensive configuration options for advanced usage.

Besides providing the