
N A G I O S
 2 N D  E D I T I O N

N A G I O S
2 N D  E D I T I O N

S Y S T E M  A N D  N E T W O R K  M O N I T O R I N G

W O L F G A N G  B A R T H

“This book is incredibly detailed…I don’t think I 
could have gone into that much detail if I wrote 
a book myself. Kudos!”
—Ethan Galstad, main developer, Nagios

Cove
rs

NAGIOS

3.0

www.nostarch.com

TH E  F I N EST  I N  G E E K  E NTE RTA I N M E NT™

SHELVE IN:
SYSTEM

 ADM
INISTRATION

$59.95 ($59.95 CDN)

N O  M O R E  
N E T W O R K  

M O N I T O R I N G  
M I G R A I N E S !

N O  M O R E  
N E T W O R K  

M O N I T O R I N G  
M I G R A I N E S !

      “ I  LAY  F LAT .”

Th is book uses RepKover — a durab le b ind ing that won’t snap shut.

Good system administrators recognize problems long 
before anyone asks, “Hey, is the Internet down?” Nagios, 
an open source system and network monitoring tool, has 
emerged as the most popular solution for sys admins in 
organizations of all sizes. It’s robust but also complex, 
and Nagios: System and Network Monitoring, 2nd 
Edition, updated to address Nagios 3.0, will help you 
take full advantage of this program. 

Nagios, which runs on Linux and most *nix variants, can 
be configured to continuously monitor network services 
such as SMTP, POP3, HTTP, NNTP, SSH, and FTP. It can 
also supervise host resources (processor load, disk and 
memory usage, running processes, log files, and so on) 
and environmental factors, such as temperature and 
humidity. This book is your guide to getting the most out 
of this versatile and powerful monitoring tool.

Inside Nagios, you’ll learn how to:

• Install and configure the Nagios core, all standard 
plugins, and selected third-party plugins

• Configure the notification system to alert you of 
ongoing problems—and to alarm others in case of 
a serious crisis

• Program event handlers to take automatic action when 
trouble occurs

• Write Perl plugins to customize Nagios for your 
unique needs

• Quickly understand your Nagios data using graphing 
and visualization tools

• Monitor Windows servers, SAP systems, and Oracle 
databases

The book also includes a chapter that highlights the 
differences between Nagios versions 2 and 3 and 
gives practical migration and compatibility tips. Nagios: 
System and Network Monitoring, 2nd Edition is a great 
starting point for configuring and using Nagios in your 
own environment.

A B O U T  T H E  A U T H O R

Wolfgang Barth has written several books for profes-
sional network administrators, including The Firewall 
Book (Suse Press), Network Analysis (Suse Press), and 
Backup Solutions with Linux (Open Source Press). He is 
a professional system administrator with considerable 
experience using Nagios.

B
A

R
T

H
N

A
G

IO
S

2
N

D
 E

D
IT

IO
N

N
A

G
IO

S
2

N
D

 E
D

IT
IO

N



mounir
Typewriter
For More eBooks Or Request, Support hill0 & Purchase a Premium Here in My Blog Thanks & Enjoy!
https://avxhm.se/blogs/hill0



Nagios

mounir
Typewriter
For More eBooks Or Request, Support hill0 & Purchase a Premium Here in My Blog Thanks & Enjoy!
https://avxhm.se/blogs/hill0



mounir
Typewriter
For More eBooks Or Request, Support hill0 & Purchase a Premium Here in My Blog Thanks & Enjoy!
https://avxhm.se/blogs/hill0



Wolfgang Barth

Nagios
System and Network Monitoring

2nd Edition

Munich San Francisco



NAGIOS. Copyright © 2008 Open Source Press GmbH

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

Printed on recycled paper in the United States of America.

1 2 3 4 5 6 7 8 9 10 — 09 08 07 06

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners.
Rather than use a trademark symbol with every occurrence of a trademarked name, we are using the
names only in an editorial fashion and to the benefit of the trademark owner, with no intention of in-
fringement of the trademark.

Publisher: William Pollock
Cover Design: Octopod Studios
Translation: Steve Tomlin
U.S. edition published by No Starch Press, Inc.
555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; http://www.nostarch.com

Original edition © 2008 Open Source Press GmbH
Published by Open Source Press GmbH, Munich, Germany
Publisher: Dr. Markus Wirtz
Original ISBN 978-3-937514-46-8
For information on translations, please contact
Open Source Press GmbH, Amalienstr. 45 Rg, 80799 München, Germany
phone +49.89.28755562; fax +49.89.28755563; info@opensourcepress.de; http://www.opensourcepress.de

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor Open Source Press GmbH nor
No Starch Press, Inc. shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in it.

Library of Congress Cataloging-in-Publication Data

Barth, Wolfgang

Nagios : system and network monitoring / Wolfgang Barth.- 2nd ed.

p. cm.

Includes index.

ISBN-13 978-1-59327-179-4

ISBN-10 1-59327-179-4

1. Computer networks-Management-Automation. I. Title.

TK5105.5.B374 2009

004.6-dc22

2008038558



Contents

Foreword to the second edition 21

Introduction 25

I From Source Code to a Running Installation 35

1 Installation 37

1.1 Preparations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.1.1 Determining and setting up the required users . . . . . . 38

1.2 Compiling Source Code . . . . . . . . . . . . . . . . . . . . . . . . 39

1.3 Starting Nagios Automatically . . . . . . . . . . . . . . . . . . . . 43

1.4 Installing and Testing Plugins . . . . . . . . . . . . . . . . . . . . 43

1.4.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.4.2 Plugin test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.5 Configuration of the Web Interface . . . . . . . . . . . . . . . . . 47

1.5.1 Setting up Apache . . . . . . . . . . . . . . . . . . . . . . . 47

1.5.2 SELinux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1.5.3 User authentication . . . . . . . . . . . . . . . . . . . . . . 49

2 Nagios Configuration 53

2.1 The Main Configuration File ��������	� . . . . . . . . . . . . . 55

2.2 Objects—an Overview . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.3 Defining the Machines to Be Monitored, with 
��� . . . . . . . 62

2.4 Grouping Computers Together with 
������
� . . . . . . . . . 65

2.5 Defining Services to Be Monitored with ������� . . . . . . . . 66

2.6 Grouping Services Together with ����������
� . . . . . . . . . 69

5



Contents

2.7 Defining Addressees for Error Messages: ������� . . . . . . . . 70

2.8 The Message Recipient: ����������
� . . . . . . . . . . . . . . 72

2.9 When Nagios Needs to Do Something: The ������� Object . . 72

2.10 Defining a Time Period with ���������� . . . . . . . . . . . . . 74

2.11 Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.12 Configuration Aids for Those Too Lazy to Type . . . . . . . . . . 76

2.12.1 Defining services for several computers . . . . . . . . . . 76

2.12.2 One host group for all computers . . . . . . . . . . . . . . 77

2.12.3 Other configuration aids . . . . . . . . . . . . . . . . . . . 77

2.13 CGI Configuration in �����	� . . . . . . . . . . . . . . . . . . . . 77

2.14 The Resources File ����
�����	� . . . . . . . . . . . . . . . . . 79

3 Startup 81

3.1 Checking the Configuration . . . . . . . . . . . . . . . . . . . . . 81

3.2 Getting Monitoring Started . . . . . . . . . . . . . . . . . . . . . . 84

3.2.1 Manual start . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2.2 Making configuration changes come into effect . . . . . 84

3.3 Overview of the Web Interface . . . . . . . . . . . . . . . . . . . . 85

II In More Detail . . . 89

4 Nagios Basics 91

4.1 Taking into Account the Network Topology . . . . . . . . . . . . 92

4.2 On-Demand Host Checks vs. Periodic Reachability Tests . . . . 95

4.3 States of Hosts and Services . . . . . . . . . . . . . . . . . . . . . 96

5 Service Checks and How They Are Performed 99

5.1 Testing Network Services Directly . . . . . . . . . . . . . . . . . . 101

5.2 Running Plugins via Secure Shell on the Remote Computer . . 102

5.3 The Nagios Remote Plugin Executor . . . . . . . . . . . . . . . . 102

5.4 Monitoring via SNMP . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5 The Nagios Service Check Acceptor . . . . . . . . . . . . . . . . . 104

6 Plugins for Network Services 105

6.1 Standard Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6



Contents

6.2 Reachability Test with Ping . . . . . . . . . . . . . . . . . . . . . . 108

6.2.1 �
�������� as a Service Check . . . . . . . . . . . . . . . 111

6.2.2 �
�������� as a Host Check . . . . . . . . . . . . . . . . 111

6.3 Monitoring Mail Servers . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3.1 Monitoring SMTP with �
�������� . . . . . . . . . . . . 113

6.3.2 POP and IMAP . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4 Monitoring FTP and Web Servers . . . . . . . . . . . . . . . . . . 118

6.4.1 FTP services . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4.2 Web server control via HTTP . . . . . . . . . . . . . . . . . 119

6.4.3 Monitoring Web proxies . . . . . . . . . . . . . . . . . . . 123

6.5 Domain Name Server Under Control . . . . . . . . . . . . . . . . 127

6.5.1 DNS check with ������
� . . . . . . . . . . . . . . . . . . 128

6.5.2 Monitoring the name server with ��� . . . . . . . . . . . 129

6.6 Querying the Secure Shell Server . . . . . . . . . . . . . . . . . . 131

6.7 Generic Network Plugins . . . . . . . . . . . . . . . . . . . . . . . 132

6.7.1 Testing TCP ports . . . . . . . . . . . . . . . . . . . . . . . 132

6.7.2 Monitoring UDP ports . . . . . . . . . . . . . . . . . . . . 135

6.8 Monitoring Databases . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.8.1 PostgreSQL . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.8.2 MySQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.9 Monitoring LDAP Directory Services . . . . . . . . . . . . . . . . 143

6.10 Checking a DHCP Server . . . . . . . . . . . . . . . . . . . . . . . 146

6.11 Monitoring UPS with the Network UPS Tools . . . . . . . . . . . 149

6.12 Health Check of an NTP Server with �
������������ . . . . . 154

7 Testing Local Resources 157

7.1 Free Hard Drive Capacity . . . . . . . . . . . . . . . . . . . . . . . 158

7.2 Utilization of the Swap Space . . . . . . . . . . . . . . . . . . . . 162

7.3 Testing the System Load . . . . . . . . . . . . . . . . . . . . . . . . 162

7.4 Monitoring Processes . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.5 Checking Log Files . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.5.1 The standard plugin �
������� . . . . . . . . . . . . . . 168

7.5.2 The modern variation: �
����������� . . . . . . . . . . 169

7.5.3 The Swiss Army knife: �
�������	���� . . . . . . . . . 170

7



Contents

7.6 Keeping Tabs on the Number of Logged-In Users . . . . . . . . 177

7.7 Checking the System Time . . . . . . . . . . . . . . . . . . . . . . 177

7.7.1 Checking the system time via NTP . . . . . . . . . . . . . 177

7.7.2 Checking system time with the time protocol . . . . . . 178

7.8 Regularly Checking the Status of the Mail Queue . . . . . . . . . 180

7.9 Keeping an Eye on the Modification Date of a File . . . . . . . . 181

7.10 Monitoring UPSs with ���
��� . . . . . . . . . . . . . . . . . . . 182

7.11 Nagios Monitors Itself . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.11.1 Running the plugin manually with a script . . . . . . . . 184

7.12 Hardware Checks with LM Sensors . . . . . . . . . . . . . . . . . 184

8 Plugins for Special Tasks 187

8.1 The Dummy Plugin for Tests . . . . . . . . . . . . . . . . . . . . . 188

8.2 Negating Plugin Results . . . . . . . . . . . . . . . . . . . . . . . . 188

8.3 Inserting Hyperlinks with 
����� . . . . . . . . . . . . . . . . . 189

8.4 Checking Host or Service Clusters as an Entity . . . . . . . . . . 189

8.5 Summarizing Checks with �
�����
��� . . . . . . . . . . . . . 191

8.5.1 Multiple-line plugin output . . . . . . . . . . . . . . . . . 193

8.5.2 Installation requirements . . . . . . . . . . . . . . . . . . . 194

8.5.3 Installation and testing . . . . . . . . . . . . . . . . . . . . 194

8.5.4 Configuration file . . . . . . . . . . . . . . . . . . . . . . . 195

8.5.5 Command-line parameters . . . . . . . . . . . . . . . . . . 196

8.5.6 Performance data and PNP . . . . . . . . . . . . . . . . . 198

8.5.7 Simple business process monitoring . . . . . . . . . . . . 199

9 Executing Plugins via SSH 205

9.1 The �
���������
 Plugin . . . . . . . . . . . . . . . . . . . . . . 206

9.2 Configuring SSH . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

9.2.1 Generating SSH key pairs on the Nagios server . . . . . . 208

9.2.2 Setting up the user ������ on the target host . . . . . . 209

9.2.3 Checking the SSH connection and �
���������
 . . . 209

9.3 Nagios Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 210

10 The Nagios Remote Plugin Executor (NRPE) 213

10.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

8



Contents

10.1.1 Distribution-specific packages . . . . . . . . . . . . . . . 214

10.1.2 Installation from the source code . . . . . . . . . . . . . . 215

10.2 Starting via the inet Daemon . . . . . . . . . . . . . . . . . . . . . 216

10.2.1 ������ configuration . . . . . . . . . . . . . . . . . . . . . 216

10.2.2 ����� configuration . . . . . . . . . . . . . . . . . . . . . . 217

10.2.3 Is the Inet daemon watching on the NRPE port? . . . . . 218

10.3 NRPE Configuration on the Computer to Be Monitored . . . . . 218

10.3.1 Passing parameters on to local plugins . . . . . . . . . . 220

10.4 NRPE Function Test . . . . . . . . . . . . . . . . . . . . . . . . . . 221

10.5 Nagios Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 222

10.5.1 NRPE without passing parameters on . . . . . . . . . . . 222

10.5.2 Passing parameters on in NRPE . . . . . . . . . . . . . . . 223

10.5.3 Optimizing the configuration . . . . . . . . . . . . . . . . 223

10.6 Indirect Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

11 Collecting Information Relevant for Monitoring with SNMP 227

11.1 Introduction to SNMP . . . . . . . . . . . . . . . . . . . . . . . . . 228

11.1.1 The Management Information Base . . . . . . . . . . . . 229

11.1.2 SNMP protocol versions . . . . . . . . . . . . . . . . . . . 233

11.2 NET-SNMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

11.2.1 Tools for SNMP requests . . . . . . . . . . . . . . . . . . . 235

11.2.2 The NET-SNMP daemon . . . . . . . . . . . . . . . . . . . 238

11.3 Nagios’s Own SNMP Plugins . . . . . . . . . . . . . . . . . . . . . 246

11.3.1 The generic SNMP plugin �
�������� . . . . . . . . . . 246

11.3.2 Checking several interfaces simultaneously . . . . . . . . 252

11.3.3 Testing the operating status of individual interfaces . . . 254

11.4 Other SNMP-based Plugins . . . . . . . . . . . . . . . . . . . . . . 255

11.4.1 Monitoring hard drive space and processes with
��������������
���� . . . . . . . . . . . . . . . . . . . . 256

11.4.2 Observing the load on network interfaces with
�
�����	���		�� . . . . . . . . . . . . . . . . . . . . . . . 257

11.4.3 The ���
�
������� plugins for special application
purposes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

9



Contents

12 The Nagios Notification System 265

12.1 Who Should be Informed of What, When? . . . . . . . . . . . . . 266

12.2 When Does a Message Occur? . . . . . . . . . . . . . . . . . . . . 267

12.3 The Message Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

12.3.1 Switching messages on and off systemwide . . . . . . . . 268

12.3.2 Enabling and suppressing computer and service-related
messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

12.3.3 Person-related filter options . . . . . . . . . . . . . . . . . 272

12.3.4 Case examples . . . . . . . . . . . . . . . . . . . . . . . . . 273

12.4 External Notification Programs . . . . . . . . . . . . . . . . . . . 275

12.4.1 Notification via e-mail . . . . . . . . . . . . . . . . . . . . 276

12.4.2 Notification via SMS . . . . . . . . . . . . . . . . . . . . . . 278

12.5 Escalation Management . . . . . . . . . . . . . . . . . . . . . . . . 282

12.6 Accounting for Dependencies between Hosts and Services . . . 285

12.6.1 The standard case: service dependencies . . . . . . . . . 285

12.6.2 Only in exceptional cases: host dependencies . . . . . . 289

13 Passive Tests with the External Command File 291

13.1 The Interface for External Commands . . . . . . . . . . . . . . . 292

13.2 Passive Service Checks . . . . . . . . . . . . . . . . . . . . . . . . 293

13.3 Passive Host Checks . . . . . . . . . . . . . . . . . . . . . . . . . . 294

13.4 Reacting to Out-of-Date Information of Passive Checks . . . . . 295

14 The Nagios Service Check Acceptor (NSCA) 299

14.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

14.2 Configuring the Nagios Server . . . . . . . . . . . . . . . . . . . . 301

14.2.1 The configuration file ������	� . . . . . . . . . . . . . . 301

14.2.2 Configuring the inet daemon . . . . . . . . . . . . . . . . 303

14.3 Client-side Configuration . . . . . . . . . . . . . . . . . . . . . . . 304

14.4 Sending Test Results to the Server . . . . . . . . . . . . . . . . . . 305

14.5 Application Example I: Integrating syslog and Nagios . . . . . . 306

14.5.1 Preparing ��������� for use with Nagios . . . . . . . . . 307

14.5.2 Nagios configuration: volatile services . . . . . . . . . . . 309

14.5.3 Resetting error states manually . . . . . . . . . . . . . . . 310

14.6 Application Example II: Processing SNMP Traps . . . . . . . . . 312

10



Contents

14.6.1 Receiving traps with ��������� . . . . . . . . . . . . . . 312

14.6.2 Passing on traps to NSCA . . . . . . . . . . . . . . . . . . . 314

14.6.3 The matching service definition . . . . . . . . . . . . . . . 315

15 Distributed Monitoring 317

15.1 Switching On the OCSP/OCHP Mechanism . . . . . . . . . . . . 318

15.2 Defining OCSP/OCHP Commands . . . . . . . . . . . . . . . . . 319

15.3 Practical Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

15.3.1 Avoiding redundancy in configuration files . . . . . . . . 321

15.3.2 Defining templates . . . . . . . . . . . . . . . . . . . . . . 322

III The Web Interface and Other Ways to Visualize
Nagios Data 325

16 The Classical Web Interface 327

16.1 Recognizing and Acting On Problems . . . . . . . . . . . . . . . . 330

16.1.1 Comments on problematic hosts . . . . . . . . . . . . . 330

16.1.2 Taking responsibility for problems . . . . . . . . . . . . 332

16.2 An Overview of the Individual CGI Programs . . . . . . . . . . . 334

16.2.1 Variations in status display: ����
����� . . . . . . . . 334

16.2.2 Additional information and control center:
�����	����� . . . . . . . . . . . . . . . . . . . . . . . . . 339

16.2.3 Interface for external commands: ������� . . . . . . . 343

16.2.4 The most important things at a glance: ������� . . . . 345

16.2.5 The topological map of the network: ����
�������� 346

16.2.6 Navigation in 3D: ����
�������� . . . . . . . . . . . . 348

16.2.7 Querying the status with a cell phone:
����
�������� . . . . . . . . . . . . . . . . . . . . . . . 350

16.2.8 Analyzing disrupted partial networks: �
��������� . 350

16.2.9 Querying the object definition with ���	������ . . . . 351

16.2.10 Availability statistics: ��������� . . . . . . . . . . . . . 351

16.2.11 What events occur, how often?—
������������ . . . 353

16.2.12 Filtering log entries after specific states:

���������� . . . . . . . . . . . . . . . . . . . . . . . . . 354

16.2.13 Who was told what, when?—����	������������ . . 355

11



Contents

16.2.14 Showing all log file entries: �
��������� . . . . . . . . 356

16.2.15 Evaluating whatever you want: �
��������� . . . . . . 357

16.2.16 Following states graphically over time: ���������� . . 358

16.3 Planning Downtimes . . . . . . . . . . . . . . . . . . . . . . . . . . 359

16.3.1 Maintenance periods for hosts . . . . . . . . . . . . . . . 360

16.3.2 Downtime for services . . . . . . . . . . . . . . . . . . . . 361

16.4 Additional Information on Hosts and Services . . . . . . . . . . 362

16.4.1 Extended host information . . . . . . . . . . . . . . . . . . 363

16.4.2 Extended service information . . . . . . . . . . . . . . . . 366

16.5 Configuration Changes through the Web Interfaces:
the Restart Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 367

16.6 Modern Layout with the Nuvola Style . . . . . . . . . . . . . . . 368

17 Flexible Web Interface with the NDOUtils 375

17.1 The Event Broker . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

17.2 The Database Interface . . . . . . . . . . . . . . . . . . . . . . . . 378

17.3 The Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

17.3.1 Compiling the source code . . . . . . . . . . . . . . . . . . 381

17.3.2 Preparing the MySQL database . . . . . . . . . . . . . . . 381

17.3.3 Upgrading the database design . . . . . . . . . . . . . . . 383

17.4 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

17.4.1 Adjusting the Event Broker configuration . . . . . . . . . 384

17.4.2 Configuring database access . . . . . . . . . . . . . . . . . 385

17.4.3 Starting the ������ daemon . . . . . . . . . . . . . . . . . 386

17.4.4 Loading the Event Broker module in Nagios . . . . . . . 386

18 NagVis 389

18.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

18.1.1 Installing the source code . . . . . . . . . . . . . . . . . . 392

18.1.2 Initial configuration . . . . . . . . . . . . . . . . . . . . . . 393

18.1.3 User authentication . . . . . . . . . . . . . . . . . . . . . . 396

18.2 Creating NagVis Maps . . . . . . . . . . . . . . . . . . . . . . . . . 396

18.2.1 Editing the configuration in text form . . . . . . . . . . . 400

18.2.2 Adding NagVis maps to the Nagios Web interface . . . . 401

12



Contents

19 Graphic Display of Performance Data 403

19.1 Processing Plugin Performance Data with Nagios . . . . . . . . 404

19.1.1 The template mechanism . . . . . . . . . . . . . . . . . . 405

19.1.2 Using external commands to process performance data 407

19.2 Graphs for the Web with Nagiosgraph . . . . . . . . . . . . . . . 408

19.2.1 Basic installation . . . . . . . . . . . . . . . . . . . . . . . . 408

19.2.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 409

19.3 Preparing Performance Data for Evaluation with Perf2rrd . . . 415

19.3.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

19.3.2 Nagios configuration . . . . . . . . . . . . . . . . . . . . . 417

19.3.3 Perf2rrd in practice . . . . . . . . . . . . . . . . . . . . . . 418

19.4 The Graphics Specialist ����� . . . . . . . . . . . . . . . . . . . . 420

19.4.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

19.4.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 421

19.4.3 Practical application . . . . . . . . . . . . . . . . . . . . . . 423

19.5 Automated to a Large Extent: NagiosGrapher . . . . . . . . . . . 426

19.5.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

19.5.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 430

19.6 Smooth Plotting with PNP . . . . . . . . . . . . . . . . . . . . . . 446

19.6.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

19.6.2 The standard configuration . . . . . . . . . . . . . . . . . 447

19.6.3 The PNP Web interface . . . . . . . . . . . . . . . . . . . . 449

19.6.4 Bulk processing of performance data . . . . . . . . . . . 452

19.6.5 How should the graphic appear? . . . . . . . . . . . . . . 454

19.7 Other Tools and the Limits of Graphic Evaluation . . . . . . . . 456

IV Special Applications 459

20 Monitoring Windows Servers 461

20.1 Agent-less Checks via WMI . . . . . . . . . . . . . . . . . . . . . . 463

20.2 Installing and Configuring the Additional Services . . . . . . . . 464

20.2.1 NSClient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

20.2.2 NC_Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

20.2.3 NSClient++ . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

13



Contents

20.2.4 OpMon Agent . . . . . . . . . . . . . . . . . . . . . . . . . . 469

20.2.5 Rectifying problems with port 1248 . . . . . . . . . . . . . 471

20.3 The �
������ Plugin . . . . . . . . . . . . . . . . . . . . . . . . . 472

20.3.1 Generally supported commands . . . . . . . . . . . . . . 473

20.3.2 Advanced functions of NC_Net . . . . . . . . . . . . . . . 480

20.3.3 Installing the �
��������� plugin . . . . . . . . . . . . . 480

20.4 NRPE for Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

20.4.1 NRPE_NT, the classic tool . . . . . . . . . . . . . . . . . . 488

20.4.2 Plugins for NRPE in Windows . . . . . . . . . . . . . . . . 490

20.4.3 NRPE with NSClient++ . . . . . . . . . . . . . . . . . . . . 493

20.4.4 Internal NSClient++ functions . . . . . . . . . . . . . . . . 495

21 Monitoring Room Temperature and Humidity 505

21.1 Sensors and Software . . . . . . . . . . . . . . . . . . . . . . . . . 506

21.1.1 The ������
�� software for Linux . . . . . . . . . . . . . 506

21.1.2 The query protocol . . . . . . . . . . . . . . . . . . . . . . 507

21.2 The Nagios Plugin �
����������
������ . . . . . . . . . . . . 507

22 Monitoring SAP Systems 511

22.1 Checking without a Login: �����	� . . . . . . . . . . . . . . . . 512

22.1.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . 512

22.1.2 First test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512

22.1.3 The plugin �
���������
 . . . . . . . . . . . . . . . . . . 514

22.1.4 More up to date and written in Perl: �
���������� . . 516

22.2 Monitoring with SAP’s Own Monitoring System CCMS . . . . . 519

22.2.1 A short overview over the alert monitor . . . . . . . . . . 519

22.2.2 Obtaining the necessary SAP usage permissions
for Nagios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521

22.2.3 Monitors and templates . . . . . . . . . . . . . . . . . . . 523

22.2.4 The CCMS plugins . . . . . . . . . . . . . . . . . . . . . . . 525

22.2.5 Performance optimization . . . . . . . . . . . . . . . . . . 530

23 Processing Events with the EventDB 531

23.1 How the EventDB Works . . . . . . . . . . . . . . . . . . . . . . . 532

23.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533

14



Contents

23.2.1 Installation requirements . . . . . . . . . . . . . . . . . . . 534

23.2.2 Preparing the MySQL database . . . . . . . . . . . . . . . 534

23.2.3 Sending events to the database with ��������� . . . . . 536

23.3 Using the Web Interface . . . . . . . . . . . . . . . . . . . . . . . . 538

23.3.1 Preselection of the filter with URL parameters . . . . . . 540

23.4 The Nagios Plugin for the EventDB . . . . . . . . . . . . . . . . . 542

23.5 Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544

23.6 Sending Windows Events to Syslog . . . . . . . . . . . . . . . . . 545

23.7 Making the Incomprehensible Legible with SNMPTT . . . . . . 546

23.7.1 The configuration file ���������� . . . . . . . . . . . . . 547

23.7.2 Converting MIBs . . . . . . . . . . . . . . . . . . . . . . . . 548

V Development 551

24 Writing Your Own Plugins 553

24.1 Programming Guidelines for Plugins . . . . . . . . . . . . . . . . 554

24.1.1 Return values . . . . . . . . . . . . . . . . . . . . . . . . . . 554

24.1.2 Information for the administrator on the standard
output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555

24.1.3 Onboard online help? . . . . . . . . . . . . . . . . . . . . . 556

24.1.4 Reserved options . . . . . . . . . . . . . . . . . . . . . . . . 557

24.1.5 Specifying thresholds . . . . . . . . . . . . . . . . . . . . . 557

24.1.6 Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558

24.1.7 Performance data . . . . . . . . . . . . . . . . . . . . . . . 559

24.1.8 Copyright . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559

24.2 The Perl Module  �����!!��
��� . . . . . . . . . . . . . . . . . 560

24.2.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . 560

25 Determining File and Directory Sizes 563

25.1 Splitting up the Command Line With "�����!!#��� . . . . . . 565

25.2 The Perl Online Documentation . . . . . . . . . . . . . . . . . . . 566

25.2.1 The module ���!!$���� . . . . . . . . . . . . . . . . . . . 568

25.3 Determining Thresholds . . . . . . . . . . . . . . . . . . . . . . . 570

25.4 Implementing Timeouts . . . . . . . . . . . . . . . . . . . . . . . . 571

15



Contents

25.5 Displaying Performance Data . . . . . . . . . . . . . . . . . . . . 572

25.6 Configuration Files for Plugins . . . . . . . . . . . . . . . . . . . . 572

26 Monitoring Oracle with the Instant Client 575

26.1 Installing the Oracle Instant Client . . . . . . . . . . . . . . . . . 576

26.2 Establishing a Connection to the Oracle Database . . . . . . . . 577

26.3 A Wrapper Plugin for �%���
� . . . . . . . . . . . . . . . . . . . . 578

26.3.1 How the wrapper works . . . . . . . . . . . . . . . . . . . . 578

26.3.2 The Perl plugin in detail . . . . . . . . . . . . . . . . . . . 579

Appendixes 583

A An Overview of the Nagios Configuration Parameters 585

A.1 The Main Configuration File ��������	� . . . . . . . . . . . . . 586

A.2 CGI Configuration in �����	� . . . . . . . . . . . . . . . . . . . . 606

A.2.1 Authentication parameters . . . . . . . . . . . . . . . . . . 606

A.2.2 Other Parameters . . . . . . . . . . . . . . . . . . . . . . . 608

B Rapidly Alternating States: Flapping 611

B.1 Flap Detection with Services . . . . . . . . . . . . . . . . . . . . . 612

B.1.1 Nagios configuration . . . . . . . . . . . . . . . . . . . . . 613

B.1.2 The history memory and the chronological
progression of the changes in state . . . . . . . . . . . . . 614

B.1.3 Representation in the Web interface . . . . . . . . . . . . 615

B.2 Flap Detection for Hosts . . . . . . . . . . . . . . . . . . . . . . . 616

C Event Handlers 619

C.1 Execution Times for the Event Handler . . . . . . . . . . . . . . . 620

C.2 Defining the Event Handler in the Service Definition . . . . . . 621

C.3 The Handler Script . . . . . . . . . . . . . . . . . . . . . . . . . . . 622

C.4 Things to Note When Using Event Handlers . . . . . . . . . . . . 623

D Macros 625

D.1 Standard Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627

D.1.1 Host macros . . . . . . . . . . . . . . . . . . . . . . . . . . 627

D.1.2 Service macros . . . . . . . . . . . . . . . . . . . . . . . . . 628

16



Contents

D.1.3 Group macros . . . . . . . . . . . . . . . . . . . . . . . . . 628

D.1.4 Contact macros . . . . . . . . . . . . . . . . . . . . . . . . 629

D.1.5 Notification macros . . . . . . . . . . . . . . . . . . . . . . 630

D.1.6 Macros to specify time and date . . . . . . . . . . . . . . 630

D.1.7 Statistics macros . . . . . . . . . . . . . . . . . . . . . . . . 631

D.1.8 Using standard macros about the environment . . . . . 631

D.2 On-Demand Macros . . . . . . . . . . . . . . . . . . . . . . . . . . 632

D.3 Macros for User-defined Variables . . . . . . . . . . . . . . . . . 633

D.4 Macro Contents: Not Everything Is Allowed . . . . . . . . . . . . 635

E Single Sign-On for the Nagios Web Interface 637

E.1 HTTP Authentication for Single Sign-On . . . . . . . . . . . . . . 638

E.2 Kerberos Authentication with �����
�
����� . . . . . . . . . . 640

E.2.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . 641

E.2.2 Creating a service ticket for Apache . . . . . . . . . . . . 641

E.2.3 Kerberos configuration . . . . . . . . . . . . . . . . . . . . 642

E.2.4 Apache configuration . . . . . . . . . . . . . . . . . . . . . 643

E.2.5 Definition of a Nagios contact . . . . . . . . . . . . . . . . 644

E.3 Single Sign-On with �����
�
������������� . . . . . . . . . . 645

E.3.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . 645

E.3.2 Preparing Samba . . . . . . . . . . . . . . . . . . . . . . . . 646

E.3.3 Apache configuration . . . . . . . . . . . . . . . . . . . . . 648

E.3.4 Defining a Nagios contact . . . . . . . . . . . . . . . . . . 649

E.4 Mozilla Firefox as a Web Client . . . . . . . . . . . . . . . . . . . 650

E.4.1 Firefox and NTLM . . . . . . . . . . . . . . . . . . . . . . . 651

E.5 Microsoft Internet Explorer as a Web Client . . . . . . . . . . . . 651

F Tips on Optimizing Performance 653

F.1 Internal Statistics of Nagios . . . . . . . . . . . . . . . . . . . . . . 654

F.1.1 The command-line tool ���������� . . . . . . . . . . . 654

F.1.2 Showing Nagios performance graphically . . . . . . . . . 658

F.1.3 A plugin to monitor latency . . . . . . . . . . . . . . . . . 660

F.2 Measures for Improving Performance . . . . . . . . . . . . . . . 662

F.2.1 Service checks: as often as necessary, as few as possible 662

17



Contents

F.2.2 Processing performance data intelligently . . . . . . . . . 663

F.2.3 Avoiding plugins in interpreted languages . . . . . . . . 664

F.2.4 Optimizing host checks . . . . . . . . . . . . . . . . . . . . 664

F.2.5 The matter of the Reaper . . . . . . . . . . . . . . . . . . . 666

F.2.6 Preferring passive checks . . . . . . . . . . . . . . . . . . . 666

F.2.7 Optimizing large Nagios environments . . . . . . . . . . 667

F.2.8 Optimizing the NDOUtils database . . . . . . . . . . . . . 667

G The Embedded Perl Interpreter 669

G.1 Requirements of an ePN-capable Plugin . . . . . . . . . . . . . . 670

G.2 Using ePN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672

G.2.1 Compiling ePN . . . . . . . . . . . . . . . . . . . . . . . . . 672

G.2.2 Interpreter-specific parameters in ��������	� . . . . . 673

G.2.3 Disabling ePN on a per-plugin basis . . . . . . . . . . . . 673

G.3 The Testing Tool ������������ . . . . . . . . . . . . . . . . . . . 674

H What’s New in Nagios 3.0? 677

H.1 Changes in Object Definitions . . . . . . . . . . . . . . . . . . . . 678

H.1.1 The 
��� object . . . . . . . . . . . . . . . . . . . . . . . . 678

H.1.2 The ������� object . . . . . . . . . . . . . . . . . . . . . . 680

H.1.3 Group objects . . . . . . . . . . . . . . . . . . . . . . . . . . 681

H.1.4 The ������� object . . . . . . . . . . . . . . . . . . . . . . 681

H.1.5 Time definitions . . . . . . . . . . . . . . . . . . . . . . . . 682

H.1.6 Dependency descriptions . . . . . . . . . . . . . . . . . . 683

H.1.7 Escalation objects . . . . . . . . . . . . . . . . . . . . . . . 683

H.1.8 Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . 684

H.2 Variable and Macros . . . . . . . . . . . . . . . . . . . . . . . . . . 685

H.3 Downtime, Comments, and Acknowledgments . . . . . . . . . . 687

H.4 Rapidly Changing States . . . . . . . . . . . . . . . . . . . . . . . . 687

H.5 External Commands . . . . . . . . . . . . . . . . . . . . . . . . . . 687

H.6 Embedded Perl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688

H.7 A New Logic for Host Checks . . . . . . . . . . . . . . . . . . . . . 689

H.8 Restart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690

H.9 Performance Optimization . . . . . . . . . . . . . . . . . . . . . . 691

18



Contents

H.10 Extended Plugin Output . . . . . . . . . . . . . . . . . . . . . . . . 692

H.11 CGI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692

H.12 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692

H.13 Upgrade from Nagios 2.x to 3.0 . . . . . . . . . . . . . . . . . . . 693

19



mounir
Typewriter
For More eBooks Or Request, Support hill0 & Purchase a Premium Here in My Blog Thanks & Enjoy!
https://avxhm.se/blogs/hill0



Foreword to the second edition

As soon as the stable Nagios version 3.0 appeared, as can be expected after
going to press, the question was raised: Nagios 2 or Nagios 3? For those
just starting out with Nagios, Nagios 3.0 is a safe bet. Even the release
candidate 3.0rc1 was sufficiently stable for production environments, and
you can benefit directly from the new features, rather than having to get
used to them later on.

If you are already using Nagios 2 in a sizable environment, then you’ll surely
be thinking, Never touch a running system. Why change if your existing
system is running smoothly? But there has been further development on
Nagios 2 since the first edition of this book appeared, and various bugs
have been fixed.1 So it is perhaps advisable to change to the current Nagios
2 version, and then wait and see how things develop.

On the other hand, Nagios 3.0 does contain a number of improvements.
In particular where there are performance problems in large environments,
this major version provides some adjusting screws that can help the system
to achieve a higher performance through its greatly improved hostcheck
logic, thanks to the caching of check results and a series of optimization
parameters. Otherwise, it is smaller changes, ones that are not so obvious,
that distinguish Nagios 3.0 from Nagios 2. Many things, often hardly noti-
cable, combine to make your work with Nagios 3.0 easier, and sometimes
more pleasant as well. You can get to know and appreciate all these small
details best if, as a Nagios 2 administrator, you just try out Nagios 3. New-
comers will probably take all these small improvements for granted, and
not even notice them.

Fortunately, converting from Nagios 2 to Nagios 3.0, as described in Section
H.13 from page 693, is relatively simple, and you can continue using your
existing configuration unchanged in most cases.

What’s New in the Second Edition?

The second edition deals with Nagios in both version 2.x and version 3.0,
since there is no difference in the basic principles. At first glance the struc-

1 Nagios 2.10 was the current version at the time of going to press.

21



Foreword to the second edition

ture of the book looks the same, as do the contents of many chapters. Nev-
ertheless, much has changed, even in the chapters that existed in the first
edition. Nearly all the chapters were revised and updated to do justice to
the current state of development of the tools introduced, but also to take
into account the differences between Nagios 2.x and Nagios 3.0.

The Monitoring Servers chapter was completely revised and expanded, in
particular where the NSClient++ tool is concerned. The chapter on the
processing of performance data was also extended. A new tool was added,
in the shape of PNP, and the description of the NagiosGrapher was brought
right up to date. Of the newly introduced plugins, �
�������	���� by
Gerhard Laußer and �
�����
��� by Matthias Flacke in particular deserve
special mention, and the author considers these to have great potential.
But caution is advised: both are for the advanced user.

There is a new chapter on NagVis, with which you can define a Web in-
terface based on your own images or graphics, with complete freedom in
its design. NagVis requires the database interface NDOUtils, to which a
separate chapter is devoted.

The EventDB reveals a database-supported approach to processing events
as an alternative to the classic log file check. A separate chapter is also
devoted to this. The chapters Writing Your Own Plugins and Determining
File and Directory Sizes are also new, and describe step by step how to write
your own Perl plugin, introducing the Perl module  �����!!��
��� in so
doing. To optimize the performance of Perl scripts, Nagios provides its own
interpreter, which is also given its own chapter.

A chapter called What’s New in Nagios 3.0? can’t be missing, of course,
which compactly summarizes all the changes made compared to Nagios
2.x. For the sake of completeness, there is a new chapter on macros in
the Appendix. This compares the various macro types and explains their
intended use.

A chapter on performance optimization was also included. It certainly
doesn’t contain any patent remedies, since this is just not possible, given
the wide range of monitored environments and scenarios for use. But it
does take a look at the problem zones of Nagios, and provides some tips on
where to look for support.

The fact that authentification on the Nagios Web interface does not have to
be restricted to the simple ����� authentification described in the installa-
tion chapter is demonstrated by another new chapter about Single-Sign-On
in Microsoft Active Directory environments.

22



Foreword to the second edition

Information Sources on the Internet

Despite an increase of over 200 pages, the book cannot describe all the
existing tools and possibilities for use. The Internet provides a wealth of
information that is useful while, or after, studying this book. The most
important sources are listed here.

The Nagios homepage at 
���!&&��������������&

The homepage of Nagios plugins at 
���!&&������������
��������&

The Nagios community at 
���!&&��������������
��������&


���!&&�������������
��������& as an exchange platform for plug-
ins

The original mailing lists at

���!&&��������������&�
�����&��������������
�

23



mounir
Typewriter
For More eBooks Or Request, Support hill0 & Purchase a Premium Here in My Blog Thanks & Enjoy!
https://avxhm.se/blogs/hill0



Introduction

It’s ten o’clock on Monday morning. The boss of the branch office is in a
rage. He’s been waiting for hours for an important e-mail, and it still hasn’t
arrived. It can only be the fault of the mail server; it’s probably misbehaving
yet again. But a quick check of the computer shows that no mails have got
stuck in the queue there, and there’s no mention either in the log file that a
mail from the sender in question has arrived. So where’s the problem?

The central mail server of the company doesn’t respond to a ����. That’s
probably the root of the problem. But the IT department at the company
head office absolutely insists that it is not to blame. It also cannot ping
the mail node of the branch office, but it maintains that the network at the
head office is running smoothly, so the problem must lie with the network
at the branch office. The search for the error continues. . .

The humiliating result: the VPN connection to head office was down, and
although the ISDN backup connection was working, no route to the head
office (and thus to the central mail server) was defined in the backup router.
A globally operating IT service provider was responsible for the network
connections (VPN and ISDN) between branch and head office, for whom
something like this “just doesn’t happen.” The end result: many hours
spent searching for the error, an irritated boss (the meeting for which the e-
mail was urgently required has long since finished), and a sweating admin.

With a properly configured Nagios system, the adminstrator would already
have noticed the problem at eight in the morning and been able to isolate
its cause within a few minutes. Instead of losing valuable time, the IT ser-
vice provider would have been informed directly. The time then required to
eliminate the error (in this case, half an hour) would have been sufficient
to deliver the e-mail in time.

A second example: somewhere in Germany, the hard drive on which the
central Oracle database for a hospital stores its log files reaches full capac-
ity. Although this does not cause the “lights to go out” in the operating
room, the database stops working and there is considerable disruption to
work procedures: patients cannot be admitted, examination results cannot
be saved, and reports cannot be documented until the problem has been
fixed.

25



Introduction

If the critical hard drive had been monitored with Nagios, the IT depart-
ment would have been warned at an early stage. The problem would not
even have occurred.

With personnel resources becoming more and more scarce, no IT depart-
ment can really afford to regularly check all systems manually. Networks
that are growing more and more complex especially demand the need to
be informed early on of disruptions that have occurred or of problems that
are about to happen. Nagios, the Open Source tool for system and network
monitoring, helps the administrator to detect problems before the phone
rings off the hook.

The aim of the software is to inform administrators quickly about ques-
tionable (WARNING) or critical conditions (CRITICAL). What is regarded as
“questionable” or “critical” is defined by the administrator in the configu-
ration. A Web page summary then informs the administrator of normally
working systems and services, which Nagios displays in green, of question-
able conditions (yellow), and of critical situations (red). There is also the
possibility of informing the administrators in charge—depending on spe-
cific services or systems—selectively by e-mail but also by paging services
such as SMS.

By concentrating on stop light states (green, yellow, red), Nagios is distinct
from network tools that display elapsed time graphically (for example in the
load of a WAN interface or a CPU throughout an entire day) or that record
and measure network traffic (how high was the proportion of HTTP on a
particular interface?). Nagios is involved plainly and simply with the issue
of whether everything is on a green light. The software does an excellent
job in looking after this, not just in terms of the current status but also over
long periods of time.

The tests

When checking critical hosts and services, Nagios distinguishes between
host and service checks. A host check tests a computer, called a host in Na-
gios slang, for reachability—as a rule, a simple ���� is used. A service check
selectively tests individual network services such as HTTP, SMTP, DNS, etc.,
but also running processes, CPU load, or log files. Host checks are per-
formed by Nagios irregularly and only where required, for example if none
of the services to be monitored can be reached on the host being moni-
tored. As long as one service can be addressed there, then this is basically
valid for the entire computer, so this test can be dropped.

The simplest test for network services consists of looking to see whether the
relevant target port is open, and whether a service is listening there. But
this does not necessarily mean that, for example, the SSH daemon really is
running on TCP port 22. Nagios therefore uses tests for many services that

26



Introduction

go several steps further. With SMTP, for example, the software also tests
whether the mail server announces itself with a “220” output, the so-called
SMTP greeting ; and for a PostgreSQL database, it checks whether this will
accept an SQL query.

Nagios becomes especially interesting through the fact that it takes into
account dependencies in the network topology (if it is configured to do so).
If the target system can only be reached through a particular router that has
just gone down, then Nagios reports that the target system is “unreachable”
and does not bother to bombard it with further host and service checks.
The software puts administrators in a position where they can more quickly
detect the actual cause and rectify the situation.

The suppliers of information

The great strength of Nagios—even in comparison with other network mon-
itoring tools—lies in its modular structure. The Nagios core does not con-
tain one single test. Instead it uses external programs for service and host
checks, which are known as plugins. The basic equipment already contains
a number of standard plugins for the most important application cases.
Special requests that go beyond these are answered—provided that you
have basic programming knowledge—by plugins that you can write your-
self. Before investing time in developing these, however, it is first worth tak-
ing a look on the Internet and browsing through the relevant mailing lists,2

as there is lively activity in this area. Ready-to-use plugins are available, es-
pecially in The Nagios Exchange platform, 
���!&&�������������
�����
���&.

A plugin is a simple program—often just a shell script (Bash, Perl, etc.)—
that gives out one of the four possible conditions: OK, WARNING, CRITI-
CAL, or (with operating errors, for example) UNKNOWN.

This means that in principle Nagios can test everything that can be mea-
sured or counted electronically: the temperature and humidity in the server
room, the amount of rainfall, the presence of persons in a certain room at a
time when nobody should enter it. There are no limits to this, provided that
you can find a way of providing measurement data or events as information
that can be evaluated by computer (for example, with a temperature and
humidity sensor, an infrared sensor, etc.). Apart from the standard plugins,
this book accordingly introduces further freely available plugins, such as
the use of a plugin to query a temperature and humidity sensor in Chapter
21 from page 505.

2 ������������	
��
���
�
��������	����
��
�
����

27



Introduction

Keeping admins up-to-date

Nagios possesses a sophisticated notification system. On the sender side
(that is, with the host or service check) you can configure when each group
of persons—the so-called contact groups—are informed about which con-
ditions or events (failure, recovery, warnings, etc.). On the receiver side you
can also define on multiple levels what is to be done with a corresponding
message—for example whether the system should forward it, depending on
the time of day, or discard the message.

If a specific service is to be monitored seven days a week round the clock,
this does not mean that the administrator in charge will never be able to
take a break. For example, you can instruct Nagios to notify the person
only from Monday to Friday between 8am and 5pm, every two hours at
the most. If the administrator in charge is not able to solve the problem
within a specified period of time, eight hours for example, then the head of
department responsible should receive a message. This process is known
as escalation management. The corresponding configuration is explained
in Chapter 12.5 from page 282.

Nagios can also make use of freely configurable, external programs for no-
tifications, so that you can integrate any system you like, from e-mail to
SMS, to a voice server that the administrator calls up and receives a voice
message concerning the error.

With its Web interface (Chapter 16 from page 327, Nagios provides the ad-
ministrator with a wide range of information, clearly arranged according
to the issues involved. Whether the admin needs a summary of the over-
all situation, a display of problematic services and hosts and the causes
of network outages, or the status of entire groups of hosts or services, Na-
gios provides an individually structured information page for nearly every
purpose.

Through the Web front end, an administrator can inform colleagues upon
accepting a particular problem so that they can concentrate on other issues
that have not yet been addressed. Information already obtained can be
stored as comments on hosts and services.

By reviewing past events, the Web interface can reveal problems that oc-
curred in a selected time interval, who was informed of the problems, and
which hosts and/or services were affected. Nagios can be configured to
recognize scheduled downtimes and to prevent false alarms from going off
during these periods.

Taking in information from outside

For tests, notifications, and so on, Nagios makes use of external programs,
but the reverse is also possible: through a separate interface (see 13.1 from

28



Introduction

page 292), independent programs can send status information and com-
mands to Nagios. The Web interface makes widespread use of this pos-
sibility, which allows the administrator to send interactive commands to
Nagios. But a backup program unknown to Nagios can also transmit a suc-
cess or failure to Nagios, as well as to a syslog daemon. The possibilities are
limitless. Thanks to this interface, Nagios allows distributed monitoring.
This involves several decentralized Nagios installations sending their test
results to a central instance, which then helps to maintain an overview of
the situation from a central location.

Other tools for network monitoring

Nagios is not the only tool for monitoring systems and networks. The most
well-known “competitor,” perhaps on an equal footing, is Big Brother (BB).
Despite a number of differences, its Web interface serves the same purpose
as that of Nagios: displaying to the administrator what is in the “green area”
and what is not.

The reason why the author uses Nagios instead of Big Brother lies in the li-
cense for Big Brother, on the BB homepage3 called Better Than Free License:
the product continues to be commercially developed and distributed. If
you use BB and earn money with it, you must buy the software. The fact
that the software, including the source code, may not be passed on or modi-
fied, except with the explicit permission of the vendor, means that it cannot
be reconciled with the criteria for Open Source licenses. This means that
Linux distributors have their hands tied.

For the graphical display of certain measured values over a period of time,
such as the load on a network interface, CPU load, or the number of mails
per minute, there are other tools that perform this task better than Na-
gios. The original tool is certainly the Multi Router Traffic Grapher MRTG,4

which, despite growing competition, still enjoys great popularity. A rela-
tively young, but very powerful alternative is called Cacti5 : this has a larger
range of applications, can be configured via Web interface, and avoids the
restrictions in MRTG, which can only display two measured values at the
same time and cannot display any negative values. Another interesting new
alternative is Munin.6

Nagios itself can also display performance data graphically, using exten-
sions (Chapter 19 from page 403). In many cases this is sufficient, but for
very dedicated requirements, the use of Nagios in tandem with a graphic
representation tool such as MRTG or Cacti is recommended.

3 �����������������
�
4 ��������������
���
�
5 ������������	��������
6 ��������������������
�����������

29



Introduction

About This Book

This book is directed at network administrators who want to find out about
the condition of their systems and networks using an Open Source tool. It
describes the Nagios versions 2.x and 3.0. The plugins, on the other hand,
lead their own lives, are to a great extent independent of Nagios, and are
therefore not restricted to a particular version.

Even though this book is based upon using Linux as the operating system
for the Nagios computer, this is not a requirement. Most descriptions also
apply to other Unix systems,7 only system-specific details such as start
scripts need to be adjusted accordingly. Nagios currently does not officially
work under Windows, however.8

The first part of this book deals with getting Nagios up and running with a
simple configuration, albeit one that is sufficient for many uses, as quickly
as possible. This is why Chapters 1 through 3 do not have detailed descrip-
tions and treatments of all options and features. These are examined in the
second part of the book.

Chapter 4 looks at the details of service and host checks, and in particular
introduces their dependency on network topologies.

The options available to Nagios for implementing service checks and ob-
taining their results is described in Chapter 5.

This is followed by the presentation of individual standard plugins and a
number of additional, freely obtainable plugins. Chapter 6 takes a look at
the plugins that inspect the services of a network protocol directly from the
Nagios host, while Chapter 7 summarizes plugins that need to be installed
on the machine that is being monitored, and for which Nagios needs addi-
tional utilities to get them running. Several auxiliary plugins, which do not
perform any tests themselves, but manipulate already established results,
are introduced in Chapter 8.

Two utilities that Nagios requires to run local plugins on remote hosts are
introduced in the two subsequent chapters. Chapter 9 describes SSH, while
Chapter 10 introduces a daemon developed specifically for Nagios.

Wherever networks are being monitored, SNMP also needs to be imple-
mented. Chapter 11 not only describes SNMP-capable plugins but also
examines the protocol and the SNMP world itself in detail, providing the
background knowledge needed for this.

The Nagios notification system is introduced Chapter 12, which also deals
with notification using SMS, escalation management, and taking account
of dependencies.

7 For example, *BSD, HP-UX, AIX, and Solaris; the author does not know of any Nagios
versions running under MacOS X.

8 There are, however, rumors about Nagios running in Cygwin environments.

30



Introduction

The interface for external commands is discussed in Chapter 13. This forms
the basis of other Nagios mechanisms, such as the Nagios Service Check
Acceptor (NSCA), a client-server mechanism for transmitting passive test
results, covered in Chapter 14. The use of this is shown in two concrete
examples—integrating ��������� and processing SNMP traps. NSCA is
also a requirement for distributed monitoring, discussed in Chapter 15.

The third part of the book is devoted to how the extracted information can
be represented graphically. Chapter 16 explains how this works and how it
is set up in detail, supported by some useful screenshots. It also explains
a series of parameters, for which there are otherwise no documentation at
all, except in the source code.

Nagios can be expanded by adding external applications. The NDOUtils
enable database-driven storage of all Nagios objects and are described in
Chapter 17. Connection to a database, using the addon described in Chap-
ter 18, enables you to build a Web interface that can be configured far be-
yond the basic range of Nagios.

Although in its operation, Nagios concentrates primarily on stoplight sig-
nals (red-yellow-green), there are ways of evaluating and representing the
performance data provided by plugins, which are described in detail in
Chapter 19.

The fourth part of this book is dedicated to special applications. Networks
are rarely homogeneous—that is, equipped only with Linux and other Unix-
based operating systems. For this reason, Chapter 20 demonstrates what
utilities can be used to integrate and monitor Windows systems.

Chapter 21 uses the example of a low-cost hardware sensor to show how
room temperature and humidity can be monitored simply, yet effectively.

Nagios can also monitor proprietary commercial software, as long as mech-
anisms are available which can query states of the system integrated into a
plugin. In Chapter 22, this is described using an SAP-R/3 system.

Whereas event processing is only briefly outlined in Chapter 14, Chapter
23 presents a database-supported approach that provides more options for
selecting and processing events, including interlinking with Nagios.

Building your own plugins is the subject of the fifth part of this book. Chap-
ter 24 looks at the general requirements for a standard plugin, while Chap-
ter 25 uses a step-by-step example of how to write your own plugins that
are fit for publishing. Chapter 26 takes an example of the Instant Client of
Oracle to demonstrate how to build your own plugins based on programs
not really intended for this purpose.

Appendix A introduces all the parameters of the two central configuration
files ��������	� and �����	�, while appendices B and C are devoted to
some useful but somewhat exotic features.

31



Introduction

A separate appendix (Appendix D) is devoted to macros, which allow flexi-
bility in configuration.

Appendix E wanders slightly away from the core topic of Nagios and demon-
strates how single sign-on scenarios can also be used for authentication in
the Nagios Web interface.

The larger the environment, the more important it is to have a powerful
and quick-reacting Nagios system. Appendix F offers a series suggestions
on this, while Appendix G is dedicated to a specific tool, the Perl interpreter
integrated into Nagios.

Finally, Appendix H briefly summarizes all the changes made since Nagios
2.x.

Further notes on the book

At the time of going to press, Nagios 3.0 is close to completion. By the time
this book reaches the market, there could well be some modifications. Rele-
vant notes, as well as corrections, in case some errors have slipped into the
book, can be found at 
���!&&���
���������������&�����&������&.

Note of Thanks

Many people have contributed to the success of this book. My thanks go
first of all to Dr. Markus Wirtz, who initiated this book with his comment,
“Why don’t you write a Nagios book, then?!”, when he refused to accept
my Nagios activities as an excuse for delays in writing another book. A
very special thanks goes to Patricia Jung, who, as the technical editor for
the German language version, overhauled the manuscript and pestered me
with thousands of questions—which was a good thing for the complete-
ness of the book, and which has ultimately made it easier for the reader to
understand.

The book would not be possible, of course, without all the tools it de-
scribes. Very special thanks go to Ethan Galstad, who as author, developer
and maintainer has made Nagios what it is today: an awesome, incredibly
useful and helpful tool that also fulfills high-level requirements, and one
that can rely on a very large—and above all very active— community. Also
many thanks to Ton Voon, representing all members of the Nagios Plugins
Development Team, who, together with his colleagues, manages the devel-
opment of Nagios plugins.

My thanks also go to those who have not only developed the Nagios-related
software introduced in this book, but have also helped to polish and im-
prove the book with their proofreading and feedback: Matthias Flacke (of

32



Introduction

�
�����
��� fame), Jörg Linge (PNP), and Steffen Waitz, who proofread
the first edition, Hendrik Bäcker (����), Lars Michelsen, Michael Luebben
(NagVis), Gerhard Laußer (�
�������	����), and the employees of NET-
WAYS GmbH (NagiosGrapher, EventDB, the exchange platform, NagiosEx-
change).

It is not possible for me to name all the individuals who have contributed in
one way or another to the success of Nagios. I would therefore like to thank
everybody who actively supports the Nagios community, whether this is
through free software or through involvement in forums and mailing lists.
Where would Nagios be without its users?

33





Part I

From Source Code to a Running
Installation



mounir
Typewriter
For More eBooks Or Request, Support hill0 & Purchase a Premium Here in My Blog Thanks & Enjoy!
https://avxhm.se/blogs/hill0



1 Ch
ap

te
r

Installation

The simplest method of installation is for you to install the Nagios pack-
ages that are supplied with the distribution you are using. Nagios 2.x is by
now extremely mature and is therefore a component of most distributions.
The paths of individual directories in those packages maintained by Linux
distributors are usually different from the default specified in the source
package, and thus from the paths used in this book.

Nagios 3.0 is relatively new; it is recommended here that you “get your
hands dirty” by compiling and installing the software yourself. The fol-
lowing installation guide also applies to Nagios 2.x, and any differences
between versions 2.x and 3.0 are mentioned explicitly in the text.

If you compile your own software, you have control over the directory struc-
tures and a number of other parameters. A Nagios system compiled in this
way also provides an almost complete main configuration file, in which,
initially, nothing has to be changed. But it should be mentioned here that
compiling Nagios yourself might involve a laborious search for the neces-

37



1 Installation

sary development packages, depending on what is already installed on the
computer.

1.1 Preparations

For compiling Nagios itself you require ���, ����, �
�����	, and �
������.
Required libraries are �����1 and �������2. The development packages
for these must also be installed (depending on the distribution, with either
the ending ���� or ������): ����������, ���������, ����'����.

With Debian and Ubuntu you prepare by using ������� ������� to in-
stall the packages ����
��, �
�������������, and ����������. In Open-
SUSE you install ����
�� via YAST2, along with all C/C++ development li-
braries, as well as the package ��. In Fedora you run the command �
�
������� on the command line and enter the packages 
����, ���, �����,
������������, ��, and �������� as arguments.

For the plugins it is recommended that you also install the following pack-
ages: �������3 (possibly contained in the package ��� or ����), ����,4

���������5 (possibly a component of the package ������������), the
�������� library, and the relevant development package ������������6

(depending on the distribution, the appropriate packages are also called
���������������� and ���������������). You will also need to install
the client and developer packages for the database used (e.g., ��������%��
������ and ��������%�����(��)).

1.1.1 Determining and setting up the required users

Prior to compiling and installing, use the command ���
���� to set up the
groups necessary for operation. Groups ������ and ������ are set up with
���
����, and the user ������, who is assigned to these groups and with
whose permissions the Nagios server runs is set up with 
������:

linux:~ # groupadd -g 9000 nagios

linux:~ # groupadd -g 9001 nagcmd

1 �����������������������
��
2 ���������������

����
� Depending on the distribution, the required RPM and

Debian packages are sometimes named differently. Here you need to refer to the search
help in the corresponding distribution. For Debian, the homepage will be of help.
For example, if a �����
��� instruction complains of a missing 
��� file, you can
search specifically at ���������������	����
���
������	��	
�
 for the contents
of packages. The search will then come up with all packages that contain the file 
���.

3 ������������
����
�����������	��������	��������	�

4 �����������
����
��������
������
5 �������
	��	���
�
	��	�
6 �����������������	����
�

38



1.2 Compiling Source Code

linux:~ # useradd -u 9000 -g nagios -G nagcmd -d /usr/local/nagios \

-c "Nagios Admin" nagios

Instead of the user (9000) and group IDs (9000 or 9001) used here, any other
available IDs may be used. The primary group ������ of the user ������
should remain reserved exclusively for this user.

The CGI scripts are run by Nagios under the user ID of the user with whose
permissions the Apache Web server runs. In order for this user to access
certain protected areas of Nagios, an additional group is required, the so-
called Nagios Command Group ������. Only the Web user and the user
������ should belong to this group. The Web user can be determined
from the Apache configuration file. In Debian/Ubuntu this is located at
&���&����
��&����
������	; in Fedora it is at &���&
����&
��������	:

linux:~ # grep "^User" /etc/apache2/apache2.conf

User www-data

The user determined in this way (in Debian/Ubuntu ��������, in Open-
SUSE �����
�, and in Fedora 
����) is additionally assigned to the group
������, shown here using the example for Debian/Ubuntu:

linux:~ # usermod -G nagcmd www-data

In the example, the Web user is called ��������. The command 
������
(this changes the data for an existing user account) also includes the Web
user in the ������ group thanks to the �" option, by manipulating the
corresponding entry in the file &���&���
�.

In addition, the directory specified as the home directory of the user ���
����, &
��&�����&������, the configuration directory &���&������, and
the directory &���&������, which records variable data while Nagios is
running, are set up manually and are assigned to the user ������ and to
the group of the same name:

linux:~ # mkdir /usr/local/nagios /etc/nagios /var/nagios

linux:~ # chown nagios.nagios /usr/local/nagios /etc/nagios /var/nagios

1.2 Compiling Source Code

The Nagios source code is available for download on the project page.7 The
installation description below is for version 3.0, which is provided by the
developers as a tarball. A Nagios 2.x installation runs in an almost identical
manner:

7 ������������	
��
���
�

39



1 Installation

linux:~ # mkdir /usr/local/src

linux:~ # cd /usr/local/src

linux:local/src # tar xvzf path/to/nagios-3.0.tar.gz

...

The three commands unpack the source code into the directory created for
this purpose, &
��&�����&���. A subdirectory called �������*�+ is also
created, containing the Nagios sources. To prepare these for compilation,
enter the parameter deviating from the default value when running the
���	��
�� command. Table 1.1 lists the most important parameters:

linux:~ # cd /usr/local/src/nagios-3.0

linux:src/nagios-3.0 # ./configure \

--sysconfdir=/etc/nagios \

--localstatedir=/var/nagios \

--with-command-group=nagcmd

...

The values chosen here ensure that the installation routine selects the di-
rectories used in the book and sets all parameters correctly when generat-
ing the main configuration file. This simplifies fine tuning of the config-
uration considerably. If you want to use the Embedded Perl Interpreter to
accelerate the execution of Perl scripts, then you also need the two switches
�����
��������
� ��� ����������������������.

In Nagios 3.0 you can leave out �����
��������
�, as it is enabled auto-
matically by ����������������������. You can find more on the Embed-
ded Perl Interpreter in Appendix G, page 669.

Table 1.1:
Installation

parameters for
Nagios

Property Value ���	��
�� Option

Root directory &
��&�����&������ �����	��

Configuration direc-
tory

&���&������ ��������	���

Directory for
variable data

&���&������ ���������������

Nagios user
(UserID)

������ (,+++) �����
��������
���

Nagios group
(GroupID)

������ (,+++) �����
�����������
�

Nagios Command
Group (GroupID)

������ (,++-) �����
������������
�

40



1.2 Compiling Source Code

If �����	�� is not specified, Nagios installs itself in the &
��&�����&���
���� directory. We recommend that you stick to this directory.8

The system normally stores its configuration files in the directory ��� be-
neath its root directory. In general it is better to store these in the &���
hierarchy, however. Here we use &���&������.9

Variable data such as the log file and the status file are by default stored
in the directory &
��&�����&������&���. This is in the &
�� hierarchy,
which should only contain programs and other read-only files, not writable
ones. In order to ensure that this is the case, we use &���&������.10

Irrespective of these changes, in most cases ���	��
�� does not run
through faultlessly the very first time, since one package or another is miss-
ing. For required libraries such as �����, Nagios almost always demands
the relevant developer package with the header files (here, ��������� or
�����������). Depending on the distribution, their names will end in
������ or ����.

After all the tests have been run through, ���	��
�� presents a summary
of all the important configuration parameters:

*** Configuration summary for nagios 3.0 ***:

General Options:

-------------------------

Nagios executable: nagios

Nagios user/group: nagios,nagios

Command user/group: nagios,nagcmd

Embedded Perl: yes, with caching

Event Broker: yes

Install $prefix: /usr/local/nagios

Lock file: /var/nagios/nagios.lock

Check result directory: /var/nagios/spool/checkresults

Init directory: /etc/init.d

Apache conf.d directory: /etc/apache2/conf.d

Mail program: /usr/bin/mail

Host OS: linux-gnu

Web Interface Options:

------------------------

HTML URL: http://localhost/nagios/

CGI URL: http://localhost/nagios/cgi-bin/

Traceroute (used by WAP): /usr/sbin/traceroute

8 In accordance with the Filesystem Hierarchy Standard FHS, version 2.3, or local pro-
grams loaded by the administrator should be installed in ��
�����	�.

9 This is not entirely compatible with FHS 2.3, which would prefer to have the configura-
tion files in ��������	���	
��
.

10 This also does not quite match the requirements of the FHS 2.3. But since Nagios
makes no differentiation between spool, cache, and status information, an FHS-true
reproduction is not possible to achieve in a simple manner.

41



1 Installation

In Nagios 2.x the lines �
��� ���
�� ���������, .���
� ���	�� ���
�������, and ���� ������� are missing.

If a ��� is written after the item /������� ����, the Embedded Perl In-
terpreter is enabled. The Event Broker provides an interface for extensions
that can be loaded as additional modules while the system is running.11

If you are satisfied with the result, ���� starts the actual compilation and
then installs the software:12

linux:src/nagios-3.0 # make all

...

linux:src/nagios-3.0 # make install

...

linux:src/nagios-3.0 # make install-init

...

linux:src/nagios-3.0 # make install-commandmode

...

linux:src/nagios-3.0 # make install-config

...

The command ���� ��� compiles all the relevant programs, which are
then copied to the appropriate directories, together with CGI scripts and
documentation, by ���� �������. Apart from &���&������ and &���&
������, further directories are created under &
��&�����&������, which
are summarized in Table 1.2.

Table 1.2:
Nagios directories

under
��
�����	���	
��


Directory Contents

�&��� Executable Nagios main program

�&������� Plugins

�&���� CGI scripts

�&�
��� Documentation, HTML files for the Web interface

The command ���� �������������������generates the directory that is
required for later usage of the command file mechanism (see Section 13.1,
page 292) onwards. This step is optional, depending on the intended use,
but since it is easy to forget later on, it is better to take precautions now.
The final ���� �����������	�� creates the example configuration, which
will be used in Chapter 2, page 53.

11 At the time of going to press there were not yet any external extensions, which is why
the Event Broker is currently only of interest to developers.

12 Caution is needed when updating from Nagios 2.x to Nagios 3.0: Here you should first
back up the existing configuration, initially run only �	�� 	��, and carefully read Sec-
tion H.13 on page 693İn Nagios 3.0 a �	�� ��
�	��������
 command overwrites
existing files!

42



1.3 Starting Nagios Automatically

1.3 Starting Nagios Automatically

The command ���� ������������ installs a suitable init script for the sy-
stem start. Here ���� automatically tries to detect the correct path, which
for most Linux distributions is &���&������. Depending on your system,
this may not be correct, which is why you should check it. In order for
Nagios to start automatically when the system is booted, symbolic links
are created in the &���&��0�� directories. With Debian and Ubuntu using
System-V-Init, the included system script 
���������� performs this task:

linux:~ # update-rc.d nagios defaults 99

This command creates symlinks beginning with the prefix 1,, to the direc-
tories ����� to ��2��, so that Nagios starts automatically when changing
to runlevels 2 to 5. In addition it ensures that 3,, symlinks in the directo-
ries ��+��, ��-��, and ��'�� are responsible for stopping Nagios when the
system is shut down and rebooted, as well as when it changes to mainte-
nance mode. This corresponds to the following command-line commands:

linux:~ # ln -s /etc/init.d/nagios /etc/rc2.d/S99nagios

linux:~ # ln -s /etc/init.d/nagios /etc/rc3.d/S99nagios

linux:~ # ln -s /etc/init.d/nagios /etc/rc4.d/S99nagios

linux:~ # ln -s /etc/init.d/nagios /etc/rc5.d/S99nagios

linux:~ # ln -s /etc/init.d/nagios /etc/rc0.d/K99nagios

linux:~ # ln -s /etc/init.d/nagios /etc/rc1.d/K99nagios

linux:~ # ln -s /etc/init.d/nagios /etc/rc6.d/K99nagios

For OpenSUSE the required symlinks are created using the script �������:

linux:~ # insserv nagios

Fedora users perform this task with �
����	��:

linux:~ # chkconfig --add nagios

linux:~ # nagios on

1.4 Installing and Testing Plugins

What is now still missing are the plugins. They must be downloaded sepa-
rately from 
���!&&��������������& and installed. As independent pro-
grams, they are subject to a different versioning system than Nagios. The
current version at the time of going to press was version 1.4.11, but you can,
for example, also use plugins from earlier version if you don’t mind doing

43



1 Installation

without the most recent features. Although the plugins are distributed in a
common source distribution, they are independent of one another, so that
you can replace one version of an individual plugin with another one at any
time, or with one you have written yourself.

1.4.1 Installation

The installation of the plugin sources takes place, like the Nagios ones, in
the directory &
��&�����:

linux:~ # cd /usr/local/src

linux:local/src # tar xvzf path /to/nagios-plugins-1.4.tar.gz

linux:src/nagios-plugins-1.4.11 # ./configure \

--sysconfdir=/etc/nagios \

--localstatedir=/var/nagios \

--enable-perl-modules

...

When running the ���	��
�� command you should specify the same non-
default values as for the server, which here are the configuration direc-
tory (&���&������) and the directory intended for the data saved by Na-
gios (&���&������). Since the Nagios plugins are not maintained by the
same people as Nagios itself, you should always check in advance, with
�&���	��
�� ��
���, whether the ���	��
�� options for Nagios and the
plugins really match or deviate from one another.

The switch �����������������
��� is only needed if you intend to install
the Perl module  �����!!��
���—for example, if you are using it to pro-
gram your own plugins in Perl. You can read more on this in Section 24.2,
page 560.

It is possible that a series of 4.5 6 "s may appear in the output of the
���	��
�� command, something like this:

...

configure: WARNING: Skipping radius plugin

configure: WARNING: install radius libs to compile this plugin (see

REQUIREMENTS).

...

configure: WARNING: Tried /usr/bin/perl - install Net::SNMP perl

module if you want to use the perl snmp plugins

...

If you are not using Radius, you need not have qualms about ignoring the
corresponding error messages. Otherwise you should install the missing
packages and repeat the ���	��
�� procedure. The quite frequently re-
quired SNMP functionality is missing a Perl module in this example. This

44



1.4 Installing and Testing Plugins

may be installed either in the form of the distribution package or via the
online CPAN archive:13

linux:~ # perl -MCPAN -e ’install Net::SNMP’

...

If you are running the CPAN procedure for the first time, it will guide you
interactively through a self-explanatory setup, and you can answer nearly
all of the questions with the default option.

Running ���� in the directory ���������
�����-�7�-- will compile all
plugins. Afterwards you have the opportunity to perform tests, with ����
�
���. Because these tests have not been particularly carefully programmed,
you will often see many error messages that have more to do with the test
itself than with the plugin. If you still want to try it, then the ���
� Perl
module must also be installed. Regardless of whether you use ���� �
���,
you should manually check the most important plugins after the installa-
tion.

The command ���� ������� finally anchors the plugins in the subdirec-
tory ������� (which in our case is &
��&�����&������&�������). How-
ever, not all of them are installed through this command. The source direc-
tory ������� contains a number of plugins that ���� ������� does not
install automatically.

Most plugins in this directory are shell or Perl scripts. Where needed, these
are simply copied to the plugin directory &
��&�����&������&�������.
The few C programs first must be compiled, which in some cases may be
no laughing matter, since a corresponding makefile, and often even a de-
scription of the required libraries, can be missing. If a simple ���� is not
sufficient, as in the case of

linux:nagios-plugins-1.4.11/contrib # make check_cluster214

cc check_cluster2.c -o check_cluster2

then it is best to look for help in the mailing list ��������
��
���.15 The
compiled program must also be copied to the plugin directory.

1.4.2 Plugin test

Because plugins are independent programs, they can already be used man-
ually for test purposes right now—before the installation of Nagios has been

13 The Comprehensive Perl Archive Network at �������������	����
�
14 With ���������
���, hosts and services of a cluster can be monitored. Here you

usually want to be notified if all nodes or redundant services provided fail at the same
time. If one specific service fails on the other hand, this is not critical, as long as other
hosts in the cluster provide this service.

15 ���������
�
�
��������
��������
�
���
�������	
��
���
�����

45



1 Installation

completed. In any case you should check the �
�������� plugin, which
plays an essential role. It checks whether another computer can be reached
via ����, and it is the only plugin to be used both as a service check and
a host check. If it is not working correctly, Nagios will not work correctly
either, since the system cannot perform any service checks as long as it cat-
egorizes a host as “down.” Section 6.2, 108, describes �
�������� in detail,
which is why there is only short introduction here describing its manual
use.

In order for the plugin to function correctly it must, like the &���&����
program, be run as the user ����. This is done by providing it with the
SUID bit. With current plugin versions, ���� ������� sets this automat-
ically. One way this can be seen is in the fact that the sources contain an
additional directory, ��
���������. With older plugin versions you have
to do this manually:

linux:~ # chown root.nagios /usr/local/nagios/libexec/check_icmp

linux:~ # chmod 4711 /usr/local/nagios/libexec/check_icmp

linux:~ # ls -l /usr/local/nagios/libexec/check_icmp

-rwsr-x--x 1 root nagios 61326 2005-02-08 19:49 check_icmp

Brief instructions for the plugin are given with the �
 option:16

nagios@linux:~$ /usr/local/nagios/libexec/check_icmp -h

Usage: check_icmp [options] [-H] host1 host2 hostn

Where options are any combination of:

* -H | --host specify a target

* -w | --warn warning threshold (currently 200.000ms,40%)

* -c | --crit critical threshold (currently 500.000ms,80%)

* -n | --packets number of packets to send (currently 5)

* -i | --interval max packet interval (currently 80.000ms)

* -I | --hostint max target interval (currently 0.000ms)

* -l | --ttl TTL on outgoing packets (currently 0)

* -t | --timeout timeout value (seconds, currently 10)

* -b | --bytes icmp packet size (currenly ignored)

-v | --verbose verbosity++

-h | --help this cruft

The -H switch is optional. Naming a host (or several) to check is not.

For a simple test it is sufficient to specify an IP address (it is immaterial
whether you prefix the �8 flag or not):

user@linux:~$ cd /usr/local/nagios/libexec

user@linux:nagios/libexec$ ./check_icmp -H 192.168.1.13

OK - 192.168.1.13: rta 0.261ms, lost 0%|rta=0.261ms;200.000;500.000;0;

pl=0%;40;80;;

16 The listed options are explained in detail in Section 6.2 from page 108.

46



1.5 Configuration of the Web Interface

The output appears as a single line, which has been line-wrapped here for
the printed version: with zero percent package loss (���� +9), the test has
been passed. Nagios uses only the first 300 bytes of the output line. If the
plugin provides more information, this is cut off.

If you would like to test other plugins, we refer you to Chapters 6 and 7,
which describe the most important plugins in detail. All (reasonably well-
programmed) plugins provide somewhat more detailed instructions with
the ��
��� option.

1.5 Configuration of the Web Interface

In order for the Web front end of Nagios to function, the Web server must
know the CGI directory and the main Web directory. The following descrip-
tion applies to both Apache 1.3, Apache 2.0, and 2.2.

1.5.1 Setting up Apache

As long as you have not added a different address for the front end, through
the ���	��
�� script with ����
����
��, Nagios expects the CGI pro-
grams at the URL &������&������� (actual directory: &
��&�����&���
����&����) as well as the remaining HTML files below &������ (actual
directory: &
��&�����&������&�
���). Nagios 3.0 includes its own ����
target for the Web interface, which configures the directories and sets cor-
responding aliases for the two URLs:

linux:~ # make install-webconf

...

This command installs the file ����������	 in the configuration directory
of Apache. In Debian/Ubuntu and OpenSUSE it is named &���&����
��&
���	��, or in Fedora &���&
����&���	��. It looks like this:

ScriptAlias /nagios/cgi-bin "/usr/local/nagios/sbin"

<Directory "/usr/local/nagios/sbin">

Options ExecCGI

AllowOverride None

Order allow,deny

Allow from all

# Order deny,allow

# Deny from all

# Allow from 127.0.0.1

AuthName "Nagios Access"

AuthType Basic

AuthUserFile /etc/nagios/htpasswd.users

47



1 Installation

Require valid-user

</Directory>

In Nagios 2.x you have to set up the file by hand.

The directive 1�����.���� ensures that Apache accesses the Nagios CGI
directory when calling a URL such as 
���!&&���������	
�	&������&
�������, irrespective of where the Apache CGI directories may be located.
:������ /�����"6 ensures that the Web server accepts all the scripts lo-
cated there as CGI. :���� and .���� initially allow unrestricted access here
to the Web server. If you want to restrict access, the sequence of the :����
arguments is altered:

Order deny,allow

Deny from all

Allow from 127.0.0.1

Allow from 192.0.2.0/24

This example ensures that only clients from the network -,��+���+&�7
(&�7 stands for the subnet mask �22��22��22�+) and �����
��� gain ac-
cess to the directory specified. The three .
�
;- and the 5�%
���directives
ensure authenticated access; more on user authentication in Section 1.5.3
on page 49.

The section for the Nagios documents directory &
��&�����&������&
�
��� is constructed in a similar fashion: the directive .���� allows the di-
rectory beneath the URL 
���!&&���������	
�	&������ to be addressed,
independently of where the Apache-<��
����5��� is located.

The directives :���� and .���� (and also <���, if needed) are set in iden-
tical manner to the CGI section. Authentication is not absolutely essential
in the documentation sphere, but it is certainly useful if you want to install
extensions such as PNP there (see Section 19.6, page 446).

The command

linux:~ # /etc/init.d/apache reload

loads the new configuration. If everything has worked out correctly, the Na-
gios main page appears in the Web browser under 
���!&&���������	�

�	&������.

1.5.2 SELinux

Just a few distributions—in particular, Fedora—enable the Security Enhanc-
ed Linux (SELinux) by default. When enabled and appropriately configured,
this allows services such as the Apache Web server access only to files and

48



1.5 Configuration of the Web Interface

directories explicitly mentioned. The directories &
��&�����&������&���
and &
��&�����&������&�
���used by Nagios are not among these. The
consequence: SELinux first refuses Apache access until this is allowed via
the configuration. The command �����	���� shows whether the Enforc-
ing Mode, in which SELinux enforces the strict observance of the configured
access rights, is switched on. This can be switched off with the command

linux:~ # setenforce 0

To retain this status at the next system start, the settings in &���&�����
�&
���	�� are changed. Rather than switching off the Enforcing Mode, though,
it is better to configure the required accesses specifically. This does require
some understanding of how SELinux works, and some general Linux expe-
rience –knowledge that would go beyond the scope of this book. For those
who want to get to grips more intensively with the subject, further infor-
mation can be found in the Wiki of the Nagios community,17 including a
link to a concrete guide.18

1.5.3 User authentication

In the state in which it is delivered, Nagios allows only authenticated users
access to the CGI directory. This means that users not “logged in” have
no way to see anything other than the homepage and the documentation.
They are blocked off from access to other functions.

There is a good reason for this: apart from status queries and other display
functions, Nagios has the ability to send commands via the Web interface.
The interface for external commands is used for this purpose (Section 13.1,
page 292). If this is active, checks can be switched on and off via the Web
browser, for example, and Nagios can even be restarted. Only authorized
users should be in a position to do this. Besides, general security consid-
erations would indicate that the huge volume of information provided by
Nagios should only be made available to trustworthy persons.

First of all, the parameter 
����
�
���������� in the CGI configuration
file �����	�19 of Nagios must be set to -:

use_authentication=1

This is the default during installation. The simplest authentication form
provided by Apache is the file-based =���� authentication, which is already
enabled in the configuration file:

17 Search ������������	
��
�������� ���
������ for the keyword �!"���#.
18 ����������������	�
������$%%&�'%�$(���&�
�����#�	����	
��
�
19 More on this in Section 2.13 from page 77.

49



1 Installation

AuthName "Nagios Access"

AuthType Basic

AuthUserFile /etc/nagios/htpasswd.users

Require valid-user

.
�
 ��� is an information field that the browser displays if the Web ser-
ver requests authentication. .
�
>��� =���� stands for simple authenti-
cation, in which the password is transmitted without encryption, as long
as no SSL connection is used. It is best to save the password file—here

��������
����—in the Nagios configuration directory &���&������.
The final parameter, ��%
��� ������
���, means that all authenticated
users have access (there are no restrictions for specific groups; only the
user-password pair must be valid).

The (freely selectable) name of the password file will be specified here so
that it displays what type of password file is involved. It is generated with
the 
�������� program, included in Apache. (In Apache 1.3 and some
other distributions, the program is called 
�������.) Running

linux:/etc/nagios # htpasswd2 -c htpasswd.users nagios

New password: passwort

Re-type new password: passwort

Adding password for user nagios

generates a new password file with a password for the user ������. Its
format is relatively simple:

nagios:7NlyfpdI2UZEs

Each line contains a user-password pair, separated by a colon.20 If you want
to add other users, you should ensure that you omit the �� (create) option.
Otherwise 
�������(�) will recreate the file and delete the old contents:

linux:/etc/nagios # htpasswd2 htpasswd.users another_user

The user name cannot be chosen freely but must match the name of a
contact person (see Section 2.7, page 70). Only the Web user (depending
on your distro, ��������, �����
� oder 
����, see page 39) can access the
generated 
��������
���� file, and it should be protected from access by
anyone else:

linux:/etc/nagios # chown www-data htpasswd.users

linux:/etc/nagios # chmod 600 htpasswd

20 To be precise, the second position does not contain the password itself, but rather its
hash value.

50



1.5 Configuration of the Web Interface

In combination with its own modules and those of third parties, Apache
allows a series of other authentication methods. These include authentica-
tion via an LDAP directory, via Pluggable Authentication Modules (PAM),21

or using SMB via a Windows server. Here we refer you to the relevant litera-
ture and the highly detailed documentation on the Apache homepage.22 A
quite advanced example, in which a user already authenticated by Kerberos
does not have to authenticate himself again, is described in Appendix E on
page 637.

Even though configuration of the Web interface is now finished, at the mo-
ment only the documentation is properly displayed: Nagios itself must
first be correspondingly adjusted—as described in detail in the following
chapter—before it can be used for monitoring data made available in this
way.

21 The “Pluggable Authentication Modules” now control authentication in all Linux distri-
butions, so that you can also use existing user accounts here.

22 �������������	�	������
�

51





2 Ch
ap

te
r

Nagios Configuration

Although the Nagios configuration can become quite large, you only need
to handle a small part of this to get a system up and running. Luckily many
parameters in Nagios are already set to sensible default settings. So this
chapter will be concerned primarily with the most basic and frequently
used parameters, which is quite sufficient for an initial configuration.

Further details on the configuration are provided by the chapters on indi-
vidual Nagios features: in Chapter 6 on network plugins (page 105), there
are many examples on the configuration of services. All parameters of
the Nagios messaging system are explained in detail in Chapter 12, page
265, and the parameters for controlling the Web interface are described in
Chapter 16, page 327. In addition to this, Nagios includes its own exten-
sive documentation (&
��&�����&������&�
���&����), which can also
be reached from the Web interface. This can always be recommended as
a useful source for further information, which is why each of the sections
below refer to the corresponding location in the original documentation.

53



2 Nagios Configuration

The installation routine in ���� �����������	�� (see Section 1.2 on page
39) stores examples of individual configuration files in the directory &���&
������. But be careful: whereas the names of the example files in Nagios
2.0 ended in ������� (so that a possible update does not overwrite the files
required for production), this is no longer the case in the current Nagios 2.x
versions and in Nagios 3.0. Existing files are overwritten here. Admittedly,
���� ������� does rename existing files: thus ��������	� is turned into
��������	�?. But this only happens once. After running ���� �������
one more time, the original contents of the file are deleted once and for all.
For this reason it is essential that you back up the existing configuration
prior to running ���� �����������	��.

After this command, the directory &���&������ of Nagios 3.0 contains the
three main configuration files: ��������	�, �����	�, and ����
�����	�.
Object definitions end up in other files in the subdirectory ��@����:

user@linux:/etc/nagios$ tree1

.

|-- nagios.cfg

|-- cgi.cfg

|-- resource.cfg

‘-- objects

|-- templates.cfg

|-- commands.cfg

|-- contacts.cfg

|-- timeperiods.cfg

|-- localhost.cfg

|-- windows.cfg

|-- printer.cfg

‘-- switch.cfg

Nagios 2.10 uses fewer files; objects are defined only in the files �����
����
�	� and ����������	�:

user@linux:/etc/nagios$ tree

.

|-- nagios.cfg

|-- cgi.cfg

|-- resource.cfg

|-- localhost.cfg

‘-- commands.cfg

All subsequent work should be carried out as the user ������. If you
are editing files as the superuser, you must ensure yourself that the con-
tents of directory &���&������ afterwards belong to the user ������ again.
With the exception of the file ����
�����	�—this may contain passwords,
which is why only the owner ������ should have the read permission set—
all other files may be readable for all.

1 ��������	�	����
�	��������
��
����������

54



2.1 The Main Configuration File ��������	�

2.1 The Main Configuration File ��������	�

The central configuration takes place in ��������	�. Instead of storing all
configuration options there, it makes links to other configuration files (with
the exception of the CGI configuration).

Those who compile and install Nagios themselves have the advantage that
at first they do not even need to adjust ��������	�, since all paths are
already correctly set.2 And that’s as much as you need to do. Nevertheless
one small modification is recommended, which helps to maintain a clear
picture and considerably simplifies configuration where larger networks are
involved.

The parameter concerned is �	��	���, which integrates files with object
definitions (see Sections 2.2 through 2.10 on page 59). The file ��������	�,
included in the Nagios 3.0 package, contains the following entries:

nagios@linux:/etc/nagios$ fgrep cfg_file nagios.cfg

...

cfg_file=/etc/nagios/objects/commands.cfg

cfg_file=/etc/nagios/objects/contacts.cfg

cfg_file=/etc/nagios/objects/timeperiods.cfg

cfg_file=/etc/nagios/objects/templates.cfg

cfg_file=/etc/nagios/objects/localhost.cfg

...

Nagios 2.x gathers all example object files into just two configuration files:

nagios@linux:/etc/nagios$ fgrep cfg_file nagios.cfg

...

cfg_file=/etc/nagios/commands.cfg

cfg_file=/etc/nagios/localhost.cfg

...

As an alternative to �	��	���, you can also use the parameter �	�����:
this requests that you specify the name of a directory from which Nagios
should integrate all configuration files ending in ��	� (files with other ex-
tensions are simply ignored). This also works recursively; Nagios thus eval-
uates all ;��	� files from all subdirectories. With the parameter �	�����
you therefore only need to specify a signal directory, instead of calling all
configuration files, with �	��	���, individually. The only restriction: these
must be configuration files that describe objects. The configuration files
�����	� and ����
�����	� are excluded from this, which is why, like
the main configuration file ��������	�, they remain in the main directory
&���&������.

2 If Nagios is from a distribution package, it is worth checking at least the path details.
In a well-maintained distribution these will also be matched to the Nagios directories
used there.

55



2 Nagios Configuration

Simple structure

For the object-specific configuration, it is best to create a directory called
&���&������&������, then remove all �	��	���directives in ��������	�
(or comment them out with a A at the beginning of the line) and replace
them with the following:

...

cfg_dir=/etc/nagios/mysite

...

The contents of the directory &���&������ will be version-independent
and look like this:

nagios@linux:/etc/nagios$ tree

.

|-- nagios.cfg

|-- cgi.cfg

|-- resource.cfg

|-- htpasswd

‘-- mysite

|-- contactgroups.cfg

|-- misccommands.cfg

|-- contacts.cfg

|-- timeperiods.cfg

|-- checkcommands.cfg

|-- hosts.cfg

|-- services.cfg

‘-- hostgroups.cfg

The main directory &���&������ contains only three configuration files
and the password file for protected Web access. Whether you collect all
objects of the same type in one separate file, that is all host definitions in

������	�, all services in ����������	�, and so on, or divide these into
separate files, is left to the individual.

In this example, only the top directory ������ needs to be integrated with
�	����� in ��������	�. This forms the basis for our initial configuration.

A larger location

For larger installations, you should divide the object definitions into indi-
vidual files (creating a separate file with the host definition for each host,
for instance) and group these in subdirectories according to sensible crite-
ria, as in the following example:

56



2.1 The Main Configuration File ��������	�

...

‘-- mysite

|-- linux

| |-- services

| ‘-- hosts

| |-- linux01.cfg

| |-- linux02.cfg

| ‘-- linux03.cfg

|-- windows

| |-- services

| ‘-- hosts

| |-- win03.cfg

| ‘-- win09.cfg

‘-- router

|-- services

‘-- hosts

|-- edge01.cfg

|-- edge02.cfg

‘-- backbone.cfg

This example arranges the objects according to the operating system (���
�
�, �������, and ��
���). Each of these system directories has two fur-
ther subdirectories: 
���� and ��������.

Each of the individual host objects are described in a separate file (for ex-
ample ���
�+-��	�). These can easily be copied if you want to create
other host objects with similar properties. You can copy services in a simi-
lar manner.

The other object definitions are placed either directly in the directory ���
����, as in the simple structure on page 56, or you can create subdirecto-
ries, as described in more detail in the next section.

In ��������	� the object definitions are again bound with a single direc-
tive:

cfg_dir=/etc/nagios/mysite

Large installations with several different locations

For large installations, it is better to split up host and service objects ac-
cording to location. Even for the remaining objects, we recommend that
you split them up into individual files and group these into subdirectories:

|-- global

| |-- commands

| | |-- check-host-alive.cfg

| | |-- check_http.cfg

| | |-- check_icmp.cfg

... ... ...

57



2 Nagios Configuration

| |-- contacts

| | |-- nagios.cfg

... ... ...

| |-- templates

| | |-- host_generic_t.cfg

| | |-- service_generic_t.cfg

| | |-- service_perfdata_t.cfg

... ... ...

| ‘-- timeperiods

‘-- sites

|-- foreignsite

| |-- hosts

| ‘-- services

|-- mysite

| |-- hosts

| ‘-- services

‘-- othersite

|-- hosts

‘-- services

In this example, the directory ������ gathers together all the objects that
that do not themselves define a check (that is, everything that is not a host
or service object). This is where the subdirectories ��������, ��������,
���������, and ����������� are located, each of which contain the files
for the object categories of the same name. For many command objects,
individual files are easier to handle than one huge text file.

If the contact objects are also stored in individual files, it is easy to disable
a contact: the file extension is simply changed from ��	� to ��	� and then
a reload is performed. Nagios ignores all files in object directories that do
not end in ��	�. The overlying directories ������ and ����� are bound
into ��������	�:

cfg_dir=/etc/nagios/global

cfg_dir=/etc/nagios/sites

Setting the European date format

The date specifications in Nagios appear by default in the American format
������



 :

date_format=us

If you prefer something else, e.g., the European date format, it is recom-
mended that you change the parameter �����	����� in ��������	� right
from the start. The value ���B'+- ensures that Nagios date specifications
are displayed in the ISO or DIN format 



������ ��!��!�� . Table 2.1
lists the possible values for �����	�����.

58



2.2 Objects—an Overview

The other parameters in ��������	� are described in Appendix A.1; in the
original documentation these can be found at 
���!&&�����
���&������
&����&���	�������
��� or &
��&�����&������&�
���&����&���	���
�����
���.

Table 2.1:
Possible date format

Value Representation


� MM -DD-YYYY HH :MM :SS

�
�� DD-MM -YYYY HH :MM :SS

���B'+- YYYY -MM -DD HH :MM :SS

����������B'+- YYYY -MM -DDTHH :MM :SS

2.2 Objects—an Overview

A Nagios object describes a specific unit: a host, a service, a contact, or
the groups to which each belongs. Even commands are defined as objects.
This definition has not come about by chance. Nagios is also able to inherit
characteristics (Section 2.11 from page 75).

Object definitions follow the following pattern:

define object-type {

parameter value

parameter value

...

}

Nagios has the following values for the ����������� :


���
The host object describes one of the network nodes that are to be
monitored. Nagios expects the IP address as a parameter here (or
the Fully Qualified Domain Name) and the command that should
define whether the host is alive (see Section 2.3, page 62). The host
definition is re-referenced in the service definition.


������
�
Several hosts can be combined into a group (see Section 2.4 on page
65). This simplifies configuration, since entire host groups instead
of single hosts can be specified when defining services (the service
will then exist for each member of the group). In addition, Nagios
represents the hosts of a host group together in a table in the Web
front end, which helps to increase clarity.

59



2 Nagios Configuration

�������
The individual services to be monitored are defined as service objects
(Chapter 2.5, page 66). A service never exists independently of a host.
So it is quite possible to have several services with the same name, as
long as they belong to different hosts. The following code,

define service {

name PING

host_name linux01

...

}

define service {

name PING

host_name linux03

}

describes two services that both have the same service name but be-
long to different hosts. So in the language of Nagios, a service is
always a host-service pair.

����������
�
As it does with host groups, Nagios combines several services and
represents these in the Web front end as a unit with its own table (see
Section 2.6, page 69). Service groups are not absolutely essential, but
help to improve clarity, and are also used in reporting.

�������
A person who is to be informed by Nagios of specific events (see Sec-
tion 2.7, page 70). Nagios uses contact objects to show to a user via
the Web front end only those things for which the user is listed as a
contact person. In the basic setting users do not get to see hosts and
services for which they are not responsible.

����������
�
Notification of events in hosts and services takes place via the contact
group (Section 2.8, page 72). A direct link between the host/service
and a contact person is not possible.

����������
Describes a time period within which Nagios should inform contact
groups (Section 2.10, page 74). Outside such a time slot, the system
will not send any messages. The messaging chain can be fine-tuned
via various time periods, depending on the host/service and con-
tact/contact groups. More on this will be presented in Section 12.3,
page 267.

60



2.2 Objects—an Overview

�������
Nagios always calls external programs via command objects (Section
2.9, page 72). Apart from plugins, messaging programs also include
e-mail or SMS messaging applications.

�����������������
This object type describes dependences between services. If, for ex-
ample, an application does not function without a database, a cor-
responding dependency object will ensure that Nagios will represent
the failed database as the primary problem instead of just announc-
ing the nonfunctioning of the application (see Section 12.6, page 285).

�����������������
Used to define proper escalation management: if a service is not
available after a specific time period, Nagios informs a further or dif-
ferent circle of people. This can also be configured on multiple levels
in any way you want (see Section 12.5).


�������������
Like �����������������, but for hosts.


�������������
Like �����������������, but for hosts.


��������	� (Nagios 2.x)
Extended Host Information objects are optional and define a spe-
cific graphic and/or URL, which Nagios additionally integrates into
its graphic output. The URL can refer to a Web page that provides
additional information on the host (see Section 16.4, page 362).


��������	� This object is deprecated in Nagios 3.0, but it is still
available. Nagios 3.0 integrated the object parameters into the host
definition.

������������	� (Nagios 2.x)
Extended Service Information, like Extended Host Information.

Not all object types are absolutely essential; especially at the beginning.
You easily can do without the ;����������, ;����������, and ;�����	�
objects, as well as the ����������
�. Chapter 12 looks at escalation and
dependencies in detail. 
��������	� and ������������	� are used to
provide a “more colorful” graphical representation, but they are not at all
necessary for running Nagios. Section 16.4 from page 362 looks at this in
more detail. The original documentation also provides more information.3

3 ����������	���
���	
��
����
�����������������
�����)��
��#����� or
)
�������#����� (Nagios 3.0)
����������	���
���	
��
����
�#�������	�������)��
��#����� or )
���

�����#����� (Nagios 2.x); the files can be found locally in ��
�����	���	
��
�


�	������
�.

61



2 Nagios Configuration

Notes on the object examples below

Although the following chapters describe individual object types in detail,
only the mandatory parameters and those that are absolutely essential for
meaningful operation are described there. Mandatory parameters here are
always printed in bold type. The first (comment) line in each example lists
the file in which the recorded object definition is to be stored. For the
parameters marked with (∗) , there are some differences between Nagios 2.x
and Nagios 3.0, each of which will be explained in more depth in the text.

When you first start using Nagios, it is recommended that you restrict your-
self to a minimal configuration with only one or two objects per object type,
in order to keep potential sources of error to a minimum and to obtain a
running system as quickly as possible. Afterwards extensions can be im-
plemented very simply and quickly, especially if you incorporate the tips
mentioned in Section 2.11 on templates (page 75).

Time details in general refer to time units. A time unit consists of 60 sec-
onds by default. It can be set to a different value in the configuration file
��������	�, using the parameter ��������������
. You should really
change this parameter only if you know exactly what you are doing.

2.3 Defining the Machines to Be Monitored, with

���

The host object is the central command post on which all host and service
checks are based. It defines the machine to be monitored. The parameters
printed in bold must be specified in all cases:

# -- /etc/nagios/mysite/hosts.cfg

define host{

host_name linux01

hostgroups linux-servers

alias(∗) Linux File Server

address 192.168.1.9

check_command check-host-alive

max_check_attempts 3

check_period 24x7

contact_groups localadmins

notification_interval 120

notification_period 24x7

notification_options d,u,r,f,s(∗)

parents router01

}

62



2.3 Defining the Machines to Be Monitored, with 
���


��������
This parameter specifies the host name with which Nagios addresses
the machine in services, host groups, and other objects. Only the
special characters � and � are allowed.


������
��
This parameter allocates the host to a host group object, which must
already be defined (Section 2.4, page 65). A host group in the Web
interface combines several hosts into a group (see Figure 16.10 on
page 334). The second possibility of assigning a host to a host group,
compatible with version 1.x, uses the ������� parameter in defining
the host group itself. The two methods can also be combined.

�����
This parameter contains a short description of the host, which Nagios
displays at various locations as additional information. Ordinary text
is allowed here. The parameter is no longer obligatory from Nagios
3.0. If it is missing, the value from 
�������� is used.

�������
This specifies the IP address or the Fully Qualified Domain Name
(FQDN) of the computer. If it is possible (i.e., for static IP addresses),
you should use an IP address, since the resolution of a name to an IP
address is always dependent on DNS working, which is not infallible.

�
�����������
This specifies the command with which Nagios checks, if necessary,
to see whether the host is reachable. The parameter is optional. If
it is omitted, Nagios will never carry out a host check! This can be
useful for network components that are frequently switched off (for
example, print servers).

The command usually used for �
����������� is called �
����
���
������, which is already predefined in the supplied file, �
�������
�������	� (see Section 2.9, page 72). This makes use of either the
plugin �
�������� or the more modern �
��������. Both plugins
check the reachability of the host via the ICMP packets ICMP Echo
Request and Echo Reply.

�����
������������
This parameter determines how often Nagios should try to reach the
computer if the first test has gone wrong. The value * in the example
means that the test is repeated up to three times if it returns anything
other than OK in the first test. As long as there are still repeat tests
to be made, Nagios refers to this as a soft state. If the final test has
been made, the system categorizes the state as hard. Nagios notifies

63



2 Nagios Configuration

the system administrator exclusively of hard states, and in the exam-
ple, sends messages only if the third test also ends with an error or
warning.

�
����������
This specifies the time period in which the host should be moni-
tored. Really, only “round the clock” makes sense—that is, �7�C. A
���������� object is involved here, the definition of which is de-
scribed in more detail in Section 2.10 on page 74. It only makes sense
to use a specification other than �7�C if you want to explicitly sup-
press the host check at certain times.

�����������
��
This specifies the receiver of messages which Nagios sends with re-
spect to the hosts defined here, that is ����������. Section 2.8 ex-
plains this more fully on page 72.

����	����������������
This specifies at what intervals Nagios should repeat notification of
the continued existence of the state. 120 time units normally mean
one message every 120 minutes, provided the error state continues.

����	��������������
This specifies at what time interval a message should be sent. A
time period different from �7�C could certainly be useful here. It is
important to understand the difference here with �
����������: if
�
���������� excludes time periods, Nagios cannot even determine
whether there is an error or not. But if the host is monitored round-
the-clock and only the notification period is restricted by the param-
eter ����	��������������, Nagios will certainly log errors and also
display them in the Web front end and in log evaluations. Outside
the ����	�������������� the system does not send any messages.
A more detailed description of the notification system is given in Sec-
tion 12.3, page 267.

����	���������������
This parameter describes the states about which Nagios should pro-
vide notification when they occur. Nagios knows the following states
for computers:

� down


 unreachable (host is not reachable because a network node be-
tween Nagios and a host has failed and the actual state of the
host cannot be determined)

� recovery (OK state after an error)

	 flapping (state changes very quickly; more on this in Appendix
B from page 611).

64



2.4 Grouping Computers Together with 
������
�

� scheduled downtime (Nagios 3.0 provides information here on
the start and end of a planned maintenance period, or in case
a planned maintenance period is canceled. This option is not
available for Nagios 2.x.)

By specifying �D
, the system will send messages if the host is not on
the network or not reachable over the network, but not if it can be
reached again after an error state (recovery). If � (none) is used as
the value, Nagios will normally not give any notification.

The form in which Nagios sends out a message depends on how the
contact is defined. Irrespective of when you want to be notified, the
Web interface always shows the current state, even if Nagios does
not send a message, because the time period does not match or the
system is still repeating the tests (the so-called soft state).

�������
This allows the physical topology of the network to be taken into ac-
count. Here the router or the network component is given by which
the host is reachable if it is not in direct contact in the same network
segment. This can also be a switch between the Nagios server and the
host. If Nagios does not reach the host because all parents (separated
by commas) are down, then Nagios categorizes it as UNREACHABLE,
but not as DOWN.

Further information is provided by the Nagios 3.0 online help under 
���!
&&�����
���&������&����&&��@�����	���������
���A
���.4 In Na-
gios 2.x the file is called ������������
��� and can be found in the same
directory. The differences between Nagios 2.x and Nagios 3.0 are described
in Section H.1.1, page 678.

2.4 Grouping Computers Together with 
������
�

A host group contains one or more computers so that they can be repre-
sented in the Web interface together (see Figure 16.10 on page 334)—in
addition, certain objects (e.g., services) can be applied to an entire group
of computers instead of having to define them individually for each host.

The 
������
������ parameter specifies a unique name for the group,
����� accepts a short description. The ������� parameter lists all hosts
names belonging to the group, separated by commas:

# -- /etc/nagios/mysite/hostgroups.cfg

define hostgroup{

4 Locally in ��
�����	���	
��
�
�	������
�����������������
�����.

65



2 Nagios Configuration

hostgroup_name linux-servers

alias Linux Servers

members linux01,linux02

hostgroup_members(∗) hostgroup1,hostgroup2

}

If you specify to which group they belong in the host definition for indi-
vidual member computers, with the parameter 
������
�� (page 63), the
������� entry may be omitted from version 2.0. This means that you no
longer have two search through all group definitions if you just want to
delete a single host. The combined use—of ������� in the 
������
� ob-
ject and at the same time, of 
������
�� in the 
��� object—is equally
possible. A new host group in Nagios 3.0 is 
������
���������, with
which you can specify other host groups as members, and thus form hi-
erarchies of host groups. This option is not available in Nagios 2.0.

2.5 Defining Services to Be Monitored with
�������

A service in Nagios always consists of the combination of a host and a ser-
vice name. This combination must be unique. Service names, on the other
hand, may occur many times, as long as they are combined with different
hosts.

The simplest service consists of a simple ping, which tests whether the
relevant host is reachable, and which registers the response time and any
packet loss that may occur:

# -- /etc/nagios/mysite/services.cfg

define service{

host_name linux01

service_description PING

check_command check_ping!100.0,20%!500.0,60%

max_check_attempts 3

normal_check_interval(∗) 5

retry_check_interval(∗) 1

check_period 24x7

notification_interval 120

notification_period(∗) 24x7

notification_options w,u,c,r,f,s(∗)

contact_groups(∗) localadmins

}

In contrast to a host check, which Nagios carries out only if it cannot reach
any other service of the host, a ping service is carried out at regular inter-
vals. Problems in the network can be detected relatively simply through

66



2.5 Defining Services to Be Monitored with �������

response times and packet loss rates. The host check is less suitable for this
purpose.


��������
This refers to the name defined in the host object. Nagios also ob-
tains the IP address of the computer via this. Instead of a single host
name, you can also enter a comma-separated list of multiple hosts.
As an alternative to 
��������, it is also possible to use the parame-
ter 
������
������ to specify an entire host group instead of indi-
vidual hosts. The service is then considered to be defined for each of
the individual computers groups together in this way. Whether you
make use of this optimization, or allocate your own service defini-
tions to each computer individually, makes no difference to Nagios.

�������������������
This parameter defines the actual name of the service. Spaces, colons,
and dashes may be included in the name. Nagios always addresses a
service as a combination of host name (here: ���
�+-) and service
description (�6 "). This must be unique.

����������
��
assigns the service to a service group object that must already be
defined (section 2.6, page 69).

�
�����������
This defines the command with which Nagios tests the service for
functionality. Arguments are passed on to the actual command, i e.
�
��������, separated by exclamation marks. The definition of the
�
�������� command, predefined in the example files, is explained
in Section 2.9 on page 72.

In the example, the values for the warning limit (-++ ��D �+9) and
for the CRITICAL status (2++ ��D '+9) are determined. You could
compare this to a traffic light: the state OK (green) occurs if the re-
sponse time remains under the warning limit of 100 milliseconds, and
if none or less than 20 percent of packets have been lost. The WARN-
ING state (yellow) occurs if the packet loss or response time lies above
the defined warning limit, but still beneath the critical limit. Above
the critical limit, Nagios issues a CRITICAL state (red). The return
value of the plugin is described at the beginning of Chapter 6 (page
6), the underlying plugin �
�������� is introduced in detail in Sec-
tion 6.2 from page 108.

�����
������������
This specifies how often Nagios should repeat a test in order to verify
and definitively accept an error state which has been discovered (or
also the recovered functionality), that is, to recognize it as a hard

67



2 Nagios Configuration

state. In the transitional phase (for example from OK to CRITICAL) we
speak of a soft state. Basic distinctions between soft and hard are only
made by the Nagios notification system, which is why the two states
are described in more detail in the context of this system (Chapter
12, page 265). The difference has no influence in the representation
in the Web interface.

��������
������������
This specifies at what interval Nagios should test the service when
the system is in a stable condition—this can equally be an OK or an
error state. In the example this is five time units, which is normally
five minutes. In Nagios 3.0 the parameter may also be written as
�
������������; as for the host definition, both forms are equiva-
lent.

�������
������������
This describes the time interval between two tests when the state is
in the process of changing (for example, from OK to WARNING), that
is, when there is a soft state. In Nagios 3.0 the parameter may also be
written as ��������������; both forms are equivalent.

As soon as Nagios has performed the number of tests specified in
�����
������������, it checks the service again at intervals of ����
�����
������������.

�
����������
This describes the time period in which the service is to be mon-
itored. The entry represents a ���������� object, the definition
of which is described in more detail in Section 2.10 from page 74.
Here you should enter �7�C for “round the clock” unless you want
to explicitly stop the test from running at specific times (perhaps
because of a scheduled maintenance slot). If the notification is to
be prevented only at specific times, it is better to use the option
����	�������������� or other filters of the Nagios notification sy-
stem (see Section 12, page 265).

����	����������������
This determines at what regular intervals Nagios repeats reports on
error states. In the example, the system does this every 120 time units
(normally minutes), as long as the error state continues. A value of
+ causes Nagios to announce the current state only once. Beginning
with Nagios 3.0, ����	���������������� is no longer an obligatory
parameter. If it is missing, the value is taken from the accompanying
host definition.

����	��������������
This describes the time period within which a notification should
take place. This again involves a ���������� object (see Section

68



2.6 Grouping Services Together with ����������
�

2.10). Here in the example, �7�C is used, so notification is sent round
the clock. A more detailed discussion of the ����	��������������
parameter can be found in Section 12.3 from page 267. Beginning
with Nagios 3.0 this parameter is optional. If it is missing, the value
is taken from the accompanying host definition.

����	���������������
This determines which error states Nagios should report. Possible
values which can be used here are the same states already described
for host objects, i.e., � (critical), � (warning), 
 (unknown), � (recov-
ered), 	 (flapping), and (from Nagios 3.0) � (planned maintenance
interval). Specifying �D� only informs the system when a service is in
a CRITICAL state and if it subsequently recovers (RECOVERY).

If you use � (none) as the value, Nagios will normally not send any
notification. The Web interface nevertheless shows the current states.

�����������
��
Finally, this parameter defines the recipient group whose members
should receive the notifications. Several groups can be entered as a
comma-separated list. Beginning with Nagios 3.0 this parameter can
be omitted. Then the value is taken from the accompanying host
definition.

Further information can be found in the Nagios 3.0 online help at 
���!&&
�����
���&������&����&��@�����	���������
���A�������.5 For ver-
sion 2.x the file is called ������������
���. The differences between Na-
gios 2.x and Nagios 3.0 are described in Section H.1.2 from page 680.

2.6 Grouping Services Together with
����������
�

Service groups, like host groups, combine several services into a group, so
that they can be represented together in the Web front end. This increases
clarity and simplifies certain evaluations, but it is optional, and is not rec-
ommended at the beginning, in order to keep configuration simple.

# -- /etc/nagios/mysite/servicegroups.cfg

define servicegroup{

servicegroup_name all-ping

alias All Pings

members linux01,PING,linux02,PING

servicegroup_members(∗) servicegroup1,servicegroup2

}

5 The corresponding file is located after installation in the directory ��
�����	��

�	
��
�
�	������
�.

69



2 Nagios Configuration

����������
������ and ����� have the same meanings as for the host
group. It should be noted that the syntax is the same as for the �������
entry. Because a service in Nagios always consists of the combination of
host and service names, both must always be listed in pairs. The computer
comes first, and then the service:

members �����,����	
��,�����,����	
��, ...

The ������� details can be omitted if the ����������
�� parameter is
used in the service definition (page 67). If you want, you can use the two
possibilities in combination. As for the host groups, hierarchies can be
formed from service groups from Nagios 3.0, using the parameter ��������
���
���������.

2.7 Defining Addressees for Error Messages:
�������

A contact is basically a person to whom a message addressed via a contact
group is sent:

# -- /etc/nagios/mysite/contacts.cfg

define contact{

contact_name nagios

alias Nagios Admin

host_notification_period 24x7

service_notification_period 24x7

service_notification_options w,u,c,r

host_notification_options d,u,r

service_notification_commands notify-by-email

host_notification_commands host-notify-by-email

email nagios-admin@localhost

can_submit_commands(∗) 1

}

The contact also plays a role during authentication: a user who logs in at
the Web front end only gets to see the hosts and services for which that
user is entered as the contact. The user for logging in to the Web interface
must therefore be identical with the value of ������������ specified here.
The first time it is used, the user ������ is sufficient.

������������
This parameter defines the user name. It must match the correspond-
ing user name in the password file 
�������.

�����
This parameter describes the contact briefly. Spaces are allowed here.

70



2.7 Defining Addressees for Error Messages: �������


��������	��������������
This defines the time period during which messages on the reachabil-
ity of a computer can be sent. Section 12.3 (page 267) shows how the
time period details can be sensibly combined in the different object
types. At the beginning, the value �7�C (that is: always) is certainly
not a bad option.

������������	��������������
This defines the time period in which Nagios sends notifications to
the relevant user service. The entry takes effect as a filter: the gener-
ated message is simply discarded here if it is sent outside the speci-
fied time period. If no further message follows, the contact remains
uninformed. You must therefore think about combining individual
time periods in various different definitions. Dependencies are de-
scribed extensively in Section 12.3.


��������	���������������
This defines what types of host messages the user should receive. The
same options are used here as for the host parameter ����	��������
������� (page 64).

������������	���������������
This parameter describes what types of service messages are received
by the contact. The same five values are involved as for the �����
	��������������� parameter for service and host objects.

������������	����������������
This parameter defines which commands (one or more) take charge
of notification. They must be defined as the ������� object type (see
Section 2.9); basically any external programs can be integrated.


��������	����������������
Like the ������������	���������������� this parameter specifies
which commands are to be carried out to send the notification, al-
though here it concerns the reachability of computers.

�����
This specifies one or more e-mail addresses (separated by commas)
to which a message should be sent. The notification command can
evaluate this value (one example of this is the command ����	�����
�����6).

�����
������������� (Nagios 3.0)
This controls whether the contact may execute commands via the
Web interface. The value + forbids him from doing this. For Nagios

6 see table 12.1 on page 277

71



2 Nagios Configuration

2.x, in general any contact may run commands via the Web inter-
face (see Section 16.2.3, page 343). Beginning with Nagios 3.0, this
parameter now also allows the definition of contacts with read-only
permission.

Further information can be found in the Nagios 3.0 online help at 
���!&&
�����
���&������&����&��@�����	���������
���A�������. In Na-
gios 2.x the file is called ������������
���. The differences between Na-
gios 2.x and Nagios 3.0 are described in Section H.1.4, page 681.

2.8 The Message Recipient: ����������
�

The ����������
� serves as the interface between the notification system
and the individual contacts. Nagios never addresses individual contacts
directly in various object definitions, but always goes through the contact
group.

Here Nagios also expects a name (����������
������) and a comment
(�����), which reveals to visitors of the Web site what the purpose of the
group is. For members (�������) of the group, you can enter an individual
contact or a comma-separated list of several contacts:

# -- /etc/nagios/mysite/contactgroups.cfg

define contactgroup{

contactgroup_name localadmins

alias Local Site Administrators

members nagios

contactgroup_members(∗) contactgroup1,contactgroup2

}

The additional parameter ����������
��������� allows Nagios 3.0 to in-
clude further contact groups as members. In Nagios 2.x this parameter is
not available.

2.9 When Nagios Needs to Do Something: The
������� Object

Everything that Nagios does is defined in ������� objects. In the exam-
ple file supplied, �
�������������	�defines a broad range of commands
which only need to be included. To do this, you just copy the file to the
subdirectory ������:7

7 In Nagios 2.0 the example file lies directly in the directory ������	
��
.

72



2.9 When Nagios Needs to Do Something: The ������� Object

nagios@linux:/etc/nagios$ cp objects/checkcommands.cfg \

mysite/checkcommands.cfg

The existing command �
�������� illustrates the definition of this object
type:

# -- /etc/nagios/mysite/checkcommands.cfg

...

define command{

command_name check_ping

command_line $USER1$/check_icmp -H $HOSTADDRESS$ -w $ARG1$ -c $ARG2$

-p 5

}

...

�
�������� is the name by which the command will later be called when
defining a service. ������������ describes the command to be executed.
Not only is the old plugin �
�������� used here, but so is the more effi-
cient �
��������. The differences between the two are explained in more
detail in Section 6.2 from page 108, but they use the same parameters to a
large extent.

The identifiers used here, surrounded by dollar signs, are macros. Nagios
recognizes three different types of macros: E$1/5�E macros (� may take
on values between 1 and 32) define the file ����
�����	�. The macro
E$1/5-E, which contains the path to the plugin directory, belongs to this.

The second group of macros are arguments which can be passed on when
a command is called. These include E.5"-E and E.5"�E.

The third group defined by Nagios includes the macro E8:1>.<<5/11E,
which references the IP address of the host in the host definition (that is,
the parameter �������). This type of macro is documented in the online
help at 
���!&&�����
���&������&����&�������
���.

If you call the service ���
�+-D�6 ", defined on page 66, as a �
��������
����

check_ping!100.0,20%!500.0,60%

then -++�+D�+9 will appear in E.5"-E, and 2++�+D'+9 in E.5"�E. To sep-
arate the command and the arguments to be passed on, the exclamation
mark is used.

In theory, any programs at all can be started via the ������������, but
Nagios expects a certain type of behavior here, particularly where the return
value is concerned. For this reason, only Nagios plugins should be used (see
Chapters 6 to 9).

73



2 Nagios Configuration

2.10 Defining a Time Period with ����������

���������� objects describe time periods in which Nagios generates and/
or sends notifications. The included example files (Nagios 3.0: ��@����&
�������������	�; Nagios 2.x: �����
�����	�) contain a number of def-
initions that can simply be copied to your own �������������	� file.

In this, the definition of �7�C is stated as “Sundays to Saturdays, from 0 to
24 hours in each case:”

# -- /etc/nagios/mysite/timeperiods.cfg

define timeperiod{

timeperiod_name 24x7

alias 24 Hours A Day, 7 Days A Week

sunday 00:00-24:00

monday 00:00-24:00

tuesday 00:00-24:00

wednesday 00:00-24:00

thursday 00:00-24:00

friday 00:00-24:00

saturday 00:00-24:00

}

The times of day on individual weekdays can also be “cobbled together”
from time periods, separated by a comma:

define timeperiod{

...

monday 00:00-09:00,12:00-13:00,17:00-24:00

...

}

If a day specification is omitted completely, the defined time period will not
include this day in its entirety.

Nagios 3.0 allows periods for individual calendar days to be defined:

2007-12-24 08:00-12:00

may 1 00:00-24:00

monday 2 may 00:00-24:00

monday 3 00:00-24:00

...

2007-12-24 - 2008-01-08 / 2 00:00-24:00

The first line names a fixed calendar day in the ISO format, the second line
describes every 1st May. The details in the third line refer to the second
Monday in May, and those of the fourth line, to the third Monday of each
month. The details can also be combined, in the form �	�� � �� . A sub-
sequent & acts as a separator: the sixth line describes every second day
(& �) in the period from 24. 12. 2007 to 8. 1. 2008.

74



2.11 Templates

Section H.1.5, page 682 is also devoted to the extended format of Nagios 3.0.
The complete documentation can be found in the Nagios 3.0 online help at

���!&&�����
���&������&����&��@�����	���������
���A�������.
In Nagios 2.x the corresponding file is called ������������
���.

2.11 Templates

Nagios categorizes definitions as objects for a very good reason: their fea-
tures can namely be inherited by other objects—a feature that can save
a lot of time otherwise spent typing. You can define a so-called template
and pass this on to other objects as a basis from which you only need to
describe those details that are different.

This is best illustrated by an example (the parameters that are required for
the use of templates are printed in bold):

# -- /etc/nagios/mysite/hosts.cfg

define host{

name Generic-Host

register 0

check_command check-host-alive

max_check_attempts 3

check_period 24x7

contact_groups localadmins

notification_interval 120

notification_period 24x7

notification_options d,u,r,f

}

With ����, the template is first given a name so that it can be referenced
later on. The following entry, �������� +, prevents Nagios from trying to
treat this template as a real host. In the example, the entries for the genuine
host object are not sufficient; consequently Nagios would break off when
reading the configuration file, with the error message that parameters are
missing that are obligatory for such a definition, for example:

Error: Host name is NULL

All the other parameters involve settings that are to apply to all definitions
dependent on "�������8���.

In the actual host definition—in the following example for ���
�+* and
���
�+7—the parameter 
�� references the template and thus takes over
the preset values:

# -- /etc/nagios/mysite/hosts.cfg

define host{

75



2 Nagios Configuration

host_name linux03

use Generic-Host

alias Linux File Server

address 192.168.0.1

}

define host{

host_name linux04

use Generic-Host

alias Linux Print Server

address 192.168.0.2

}

In this way you only need to complete those entries that vary in any way
between the two hosts.

But parameters may also appear in host definitions that have already been
defined by the template. In this case the definition at the host has priority,
it overwrites the value from the template.

Templates created in this way can generally be used for all object types.
Further information on their use can be found in the Nagios 3.0 online
help at 
���!&&�����
���&������&����&&��@�����
���������
���.8

In Nagios 2.x the file is called �����������
������
���. The extended
possibilities of Nagios 3.0, which only begin to play a role in more complex
setups, are described by H.1.8 from page 684.

2.12 Configuration Aids for Those Too Lazy to Type

2.12.1 Defining services for several computers

You can simplify things a lot in the service definition by defining a service
for several hosts, or even host groups, at the same time:

# -- /etc/nagios/mysite/services.cfg

define service{

host_name linux01,linux02,linux04,...

service_description PING

...

}

Specifying several hosts, separated by commas, ensures that Nagios defines
multiple services in parallel. You can go one step further by specifying the
; character instead of individual computer aliases. This will assign this
service to all hosts.

8 Locally in ��
�����	���	
��
�
�	������
���������������	��������.

76



2.13 CGI Configuration in �����	�

A third possibility is an allocation in parallel via host groups:

# -- /etc/nagios/mysite/services.cfg

define service{

hostgroup_name linux-servers,windows-servers

service_description PING

...

}

In this case the parameter 
������
������ is used instead of the parame-
ter 
��������.

2.12.2 One host group for all computers

The quickest way to describe a host group containing all defined computers
is with the wild card ;:

# -- /etc/nagios/mysite/hostgroups.cfg

define hostgroup{

hostgroup_name all-hosts

members *
...

}

2.12.3 Other configuration aids

In practice, the definition of services covering multiple hosts, described
on page 76, is by far the most important. But there are other configura-
tion aids based on the escalation and dependency objects, introduced on
page 275 (see Sections 12.5 on page 282 and 12.6 on 285). There you can
also use 
������
������ instead of 
�������� (a list of host groups) or
����������
������ instead of �������������������. In addition you
may set the value ; for 
�������� and �������������������, which cov-
ers all hosts or services.

2.13 CGI Configuration in �����	�

In order for the Web front end to work correctly, Nagios needs the configu-
ration file �����	�. Nagios’ example file can initially be taken over one-to-
one, since the paths contained in it were set correctly during installation:

nagios@linux:/etc/nagios$ cp sample/cgi.cfg-sample ./cgi.cfg

77



2 Nagios Configuration

Important: the file �����	� must be located in the same directory as the
file ��������	�, because the CGI programs have been compiled in this
path permanently. If �����	� is located in a different directory, the Web
server must also be given an environment variable with the correct path,
called  ."6:1��"6��: F6". How this is set in the case of Apache is de-
scribed in the corresponding online documentation.9

Out of the box, several parameters are enabled in the CGI configuration
file. What these are is revealed by the following ����� command, which
excludes comments and empty lines:

nagios@linux:/etc/nagios$ egrep -v ’^$|^#’ cgi.cfg-sample | less

main_config_file=/etc/nagios/nagios.cfg

physical_html_path=/usr/local/nagios/share

url_html_path=/nagios

show_context_help=0

use_authentication=1

...

��������	���	���
This parameter specifies the main configuration file.

�
�������
�������

This specifies the absolute path in the file tree to the directory in
which the HTML documents—including online documentation, im-
ages, and CSS stylesheets—are located.


���
�������

This also describes the path to the Nagios HTML documents, but
from the perspective of the Web server, not of the operating system.

�
�����������
���
This option provides—as long as it is switched on (value -)—a con-
text-dependent help if you move the mouse in the Web interface over
individual links or buttons.


����
�
����������
This option should always be switched on (value -). Nagios will then
only allow access to authenticated users. The authentication itself is
configured in a �
������� file in the CGI directory (see Section 1.5
on page 47). If this file is missing, and if 
����
�
����������G-,
then the CGI programs will refuse to work.

��	�
�������
���������
� and ��	�
�������
���������
�
These two layout parameters describe forms of representation in the
graphical illustration of network dependencies. Possible values are
described in Appendix A.2 on page 608.

9 �������������	�	������
����
�$�%���������

78



2.14 The Resources File ����
�����	�

��	���
�����
This specifies the timespan in seconds after which the browser is in-
structed to reload data from the Web server. In this way the display
in the browser is always up-to-date.

�
�
�������	��������������� and �
�
�������	�������
����
In order for a specific user to be able to see all computers and ser-
vices in the Web interface right from the beginning, without taking
account of the allocation of hosts and services to the correct contact
group, you should also activate the following two parameters in the
file �����	�:

authorized_for_all_services=nagios

authorized_for_all_hosts=nagios

The Web user (and contact) ������ is now able to see all hosts and all
services in the Web interface, even if he is not entered as the contact
responsible for all hosts or services.

A complete list of all parameters can be found in Appendix A.2 on page 606.

2.14 The Resources File ����
�����	�

Nagios expects to find the definition of macros, concerning how they are
used to create command objects (Chapter 2.9 from page 72), in the re-
sources file ����
�����	�. This can also be use as supplied.

The location where Nagios should search for this file is defined by the
����
�����	� parameter in the main configuration file ��������	�. It
makes sense here to use the same directory in which ��������	� is also
located.

In its “factory settings”, ����
�����	� defines only the E$1/5-E macro,
which contains the path to the plugins:

$USER1$=/usr/local/nagios/libexec

In total, Nagios has provisions for 32 freely definable E$1/5�E macros,
where � can be from 1 to 32. These can be very useful in combination with
passwords, for example: a password is defined via such a macro in the file
����
�����	�, which may be read only by the user ������. The defined
macro is used in the actual service definitions, thus hiding the password
from view of curious onlookers.

79





3 Ch
ap

te
r

Startup

Once Nagios and the plugins are installed, Apache is set up for the Web
interface, and a minimal configuration is created as previously described,
operation of the system can get under way. If you have not already done
so, it is recommended that you first spend a bit of time on the test for the
�
�������� plugin, described in Section 1.4 (page 43), to check the initial
configuration.

3.1 Checking the Configuration

The ������ program, which normally runs as a daemon and continually
collects data, can also be used to test the configuration:

nagios@linux:~$ /usr/local/nagios/bin/nagios -v /etc/nagios/nagios.cfg

Nagios 3.0rc1

81



3 Startup

Copyright (c) 1999-2007 Ethan Galstad (http://www.nagios.org)

Last Modified: 12-17-2007

License: GPL

Reading configuration data...

Running pre-flight check on configuration data...

Checking services...

Checked 2092 services.

Checking hosts...

Warning: Host ’eli-sw01’ has no services associated with it!

Checked 183 hosts.

Checking host groups...

Checked 55 host groups.

Checking service groups...

Checked 34 service groups.

Checking contacts...

Checked 59 contacts.

Checking contact groups...

Checked 7 contact groups.

Checking service escalations...

Checked 0 service escalations.

Checking service dependencies...

Checked 24 service dependencies.

Checking host escalations...

Checked 0 host escalations.

Checking host dependencies...

Checked 0 host dependencies.

Checking service groups...

Checked 34 service groups.

Checking contacts...

Checked 59 contacts.

Checking contact groups...

Checked 7 contact groups.

Checking service escalations...

Checked 0 service escalations.

Checking service dependencies...

Checked 24 service dependencies.

Checking host escalations...

Checked 0 host escalations.

Checking host dependencies...

Checked 0 host dependencies.

Checking commands...

Checked 105 commands.

Checking time periods...

Checked 6 time periods.

Checking for circular paths between hosts...

Checking for circular host and service dependencies...

Checking global event handlers...

Checking obsessive compulsive processor commands...

Checking misc settings...

82



3.1 Checking the Configuration

Total Warnings: 1

Total Errors: 0

Things look okay - No serious problems were detected during the pre-flig

ht check

Although warnings displayed here can in principle be ignored, this is not
always what the inventor had in mind: perhaps you made a mistake in the
configuration, and Nagios is ignoring a specific object, which you would
actually like to use.

If you have not defined any service for a host, for instance, Nagios will
issue a warning, as in the example above for ������+-. It is therefore rec-
ommended to define a “PING” service for every host, although this is not
absolutely essential. Even if the same plugin, �
��������, is used here as
with the host check, this is not the same thing. The host check is satisfied
with a single response packet—after all, it only wants to find out if the host
“is alive”. As a service check, �
�������� registers packet run times and
loss rates, which can be used to draw conclusions, if necessary, concerning
existing problems with a network card.

In contrast to warnings, genuine ������ must be eliminated, because Na-
gios will usually not start if the parser finds an error, as in the following
example:

Error: Could not find any host matching ’linux03’

Error: Could not expand hostgroups and/or hosts specified in service

(config file ’/etc/nagios/mysite/services.cfg’, starting on line 0)

***> One or more problems was encountered while processing the config

files...

Here the configuration mistakenly contains a host called ���
�+*, for which
there is no definition. If you read through the error message carefully, you
will quickly realize that the error can be found in the file &���&������&���
����&����������	�.

In the definition of independencies (host and service dependencies; see Sec-
tion 12.6, page 285) there is a fundamental risk that circular dependencies
could be specified by mistake. Because Nagios cannot automatically resolve
such dependencies, this is also checked before the start, and if necessary,
an error is displayed.

When using the ������� parameter, it is also possible that two hosts may
inadvertently serve mutually as “parents;” Nagios also tests this.

83



3 Startup

3.2 Getting Monitoring Started

During the Nagios installation, the command

linux:src/nagios # make install-init

...

saves a startup script in the directory containing the boot-up scripts, usu-
ally &���&������.

3.2.1 Manual start

If the configuration test ran without error, Nagios on Debian, Ubuntu, and
OpenSuSE is first started manually with this script:

linux:~ # /etc/init.d/nagios start

Fedora provides its own startup mechanism:

linux:~ # service nagios start

If everything runs smoothly here (which can be checked by running the
Web interface—see Chapter 3.3 on page 85), you only need to make sure
that the script is executed at system start. The required steps, depending
on the distribution, are described in Section 1.3 on page 43.

3.2.2 Making configuration changes come into effect

If configuration changes are made, it is not required, and not even recom-
mended, that you restart Nagios each time. Instead, you just perform a
reload:

linux:~ # /etc/init.d/nagios reload

This causes Nagios to reread the configuration, end tests for hosts and ser-
vices that no longer exist, and integrate new computers and services into
the test. However, with each reload there is a renewed scheduling of checks,
meaning that Nagios plans to carry out all tests afresh.

To prevent all tests from being started simultaneously at bootup, Nagios
performs a so-called spreading. Here the server spreads the start times
of the tests over a configurable period.1 Therefore, for a large number of

1 The relevant configuration parameters are called �	#���
��������
���	� and
�	#�
�������������
���	�, see Appendix A.1, page 599.

84



3.3 Overview of the Web Interface

services, it can take a while before Nagios continues the test for a specific
service. For this reason you should never run reloads at short intervals:
in the worst case, Nagios will not manage to perform some checks in the
intervening period and will perform them only some time after the most
recent reload.

Before being reloaded, the configuration is tested to eliminate any existing
errors, as shown in Section 3.1.

3.3 Overview of the Web Interface

If you call the URL 
���!&&���������	
�	&������ in the browser when
the Nagios daemon is running, you will be taken to the welcome screen
shown in Figure 3.1.

Figure 3.1:
The start screen

The so-called “tactical overview” (Tactical Overview), which can be reached
via the first ���������� link in the left menu bar, is shown in Figure 3.2. It
summarizes the status of all tested systems.

Considerably more interesting in practice, however, is the display of the
menu item Service Problems (Figure 3.3). It documents the services that
are currently causing problems, those that are not in the OK status, in the
very sense for which Nagios was conceived: to inform the administrator
precisely of any problems.

85



3 Startup

Figure 3.2:
“Tactical” overview
of all systems and

services to be
monitored

Figure 3.3:
Nagios: summary of
all service problems

86



3.3 Overview of the Web Interface

The first column names the host involved. If this has a gray background,
Nagios can reach the computer in principle. If the host is “down” this can
be seen by the red background. For services, red stands for CRITICAL and
yellow for WARNING.

The second column provides the service name, the third column the sta-
tus again, in plain text. Column four specifies the time of the last check.
Column five is interesting—it shows how long the current status has been
going on.

The sixth column with the heading Attempt reveals how often Nagios has al-
ready performed the test (unsuccessfully): *&* means that the error status
has been confirmed for the third time in succession, but that the test is only
performed three times if there is an error (parameter �����
������������,
see Section 2.3).

Finally, the last column passes on the information from the plugin to the
administrator, to whom it describes the current status in more detail. The
above line in Figure 3.3 warns that only 21 percent of disk space is still
available on drive D (service <613�<) of the Windows server ELISAN01.

Figure 3.4:
An overview of all
hosts (extract)

The 8��� <����� (Figure 3.4) and 1������ <����� overviews provide an
overview of all hosts and services. In practice you will be looking more
precisely for information, either via a single host or on a host group or
service group. The name in question is entered in the Show Host search
field. Figure 3.5 shows this using the example of the ����+- host.

Alternatively you can search for the names of host and service groups. An
interesting variation here is to have a status grid output shown via the link
Hostgroup Grid, which displays an overview of all hosts and their corre-
sponding services, together with the status of these (Figure 3.6). Through
the color of the service (green/yellow/red), you can quickly see at a glance
whether there are problems in the service group or host group that you are
viewing.

87



3 Startup

Figure 3.5:
Services to the host

���#%' (extract)

Figure 3.6:
The host group

���"*+,- in the grid
representation

88



Part II

In More Detail . . .

mounir
Typewriter
For More eBooks Or Request, Support hill0 & Purchase a Premium Here in My Blog Thanks & Enjoy!
https://avxhm.se/blogs/hill0





4 Ch
ap

te
r

Nagios Basics

The fact that a host can be reached, in itself, has little meaning if no service
is running on it on which somebody or something relies. Accordingly, ev-
erything in Nagios revolves around service checks. After all, no service can
run without a host. If the host computer fails, it cannot provide the desired
service. Things get slightly more complicated if, for example, a router that
lies between users and the system providing services is brought into play.
If this fails, the desired service may still be running on the target host, but
it is nevertheless no longer reachable for the user.

Nagios is in a position to reproduce such dependencies and to precisely
inform the administrator of the failure of an important network compo-
nent, instead of flooding the administrator with irrelevant error messages
concerning services that cannot be reached. An understanding of such de-
pendencies is essential for the smooth operation of Nagios, which is why
Section 4.1 will examine these dependencies and the way Nagios works in
more detail.

91



4 Nagios Basics

Another important item is the state of a host or service. On the one hand
Nagios allows a much finer distinction than just OK or “not OK;” on the
other hand the distinction between soft state and hard state means that
the administrator does not have to deal with short-term disruptions that
have long since disappeared by the time the administrator has received the
information. These states also influence the intensity of the service checks.
How this functions is described in detail in Section 4.3.

4.1 Taking into Account the Network Topology

How Nagios handles dependencies of hosts and services can be best illus-
trated with an example. Figure 4.1 represents a small network in which the
Domain Name Service on ����� is to be monitored.

Figure 4.1:
Topology of an

example network

The service check always serves as the starting point for monitoring that is
regularly performed by the system. As long as the service can be reached,
Nagios takes no further steps; that is, it does not perform any host checks.1

For �����
-, �����
�, and �����, such a check would be pointless any-
way, because if the DNS service responds to �����, then the hosts men-
tioned are automatically accessible.

If the name service fails, however, Nagios tests the computer involved with
a host check, to see whether the service or the host is causing the problem.

1 Section 4.2 from page 95 deals with these on-demand checks.

92



4.1 Taking into Account the Network Topology

If ����� cannot be reached, Nagios might test the parent hosts entered
in the configuration (Figure 4.2). With the ������� host parameter, the
administrator has a means available to provide Nagios with information on
the network topology.

Figure 4.2:
The order of tests
performed after a
service failure

When doing this, the administrator only enters the direct neighbor com-
puter for each host on the same path to the Nagios server as the parent.2

Hosts that are allocated in the same network segment as the Nagios server
itself are defined without a parent. For the network topology from Figure
4.1, the corresponding configuration (reduced to the host name and parent)
appears as follows:

define host{

host_name proxy

...

parents switch2

}

define host{

host_name switch2

...

parents switch1

}

define host{

host_name switch1

...

}

�����
- is located in the same network segment as the Nagios server, so
it is therefore not allocated a parent computer. What belongs to a net-
work segment is a matter of opinion. If you interpret the switches as the
segment limit, as is the case here, this has the advantage of being able to
more closely isolate a disruption. But you can also take a different view
and interpret an IP subnetwork as a segment. Then a router would form

2 The parameter name �	����
 can be explained by the fact that there are scenarios—
such as in high availability environments—in which a host has two upstream routers
that guarantee the Internet connection, for example.

93



4 Nagios Basics

the segment limit; in our example, ����� would then count in the same
network as the Nagios server. However, it would no longer be possible to
distinguish between a failure of ����� and a failure of �����
- or �����
�.

Figure 4.3:
Classification of

individual network
nodes by Nagios

If �����
- in the example fails, Figure 4.3 shows the sequence in which
Nagios proceeds. First the system checks the DNS service on ����� and
determines that this service is no longer reachable (1). To differentiate, it
now performs a host check to determine the state of the ����� computer
(2). Since ����� cannot be reached, but it has �����
� as a parent, Na-
gios performs a host check on �����
� (3). If this switch also cannot be
reached, the system checks its parent, �����
- (4).

If Nagios can establish contact with �����
-, the cause for the failure of the
DNS service on ����� can be isolated to �����
�. The system accordingly
specifies the states of the host: �����
- is UP, �����
� DOWN; �����, on
the other hand, is UNREACHABLE. Through a suitable configuration of the
Nagios messaging system (see Section 12.3 on page 267) you can use this
distinction to determine, for example, that the administrator is informed
only about the host that is in the DOWN state and represents the actual
problem, but not about the hosts that are dependent on the down host.

In a further step, Nagios can determine other topology-specific failures in
the network (so-called network outages). ����� is the parent of ����, so
���� is also represented as UNREACHABLE (5). ���� in turn functions as
a parent; the Internet server dependent on this is also classified as “UN-
REACHABLE.”

This “intelligence,” which distinguishes Nagios, helps the administrator all
the more when more hosts and services are dependent on a failed com-
ponent. For a router in the backbone, on which hundreds of hosts and

94



4.2 On-Demand Host Checks vs. Periodic Reachability Tests

services are dependent, the system informs administrators of the specific
disruption, instead of sending them hundreds of error messages that are
not wrong in principle, but are not really of any help in trying to eliminate
the disruption.

4.2 On-Demand Host Checks vs. Periodic
Reachability Tests

As a matter of principle, Nagios performs service checks at regular intervals,
with the exception of passive service checks. (See Section 13.2 on page
293.) Some slightly different rules apply for host checks, which play the
main role. Nagios executes host checks when it needs them—that is, on de-
mand—and uses them to monitor hosts where a service installed on them
changes to an error state or hosts that lie in topological dependency to a
failed host. A third way is via host dependencies, as described in Section
12.6.2 on page 289. On-demand host checks are a core function of Nagios,
as this is the only way the system can precisely inform the administrator
about a failed central switch, instead of bombarding him with thousands of
error messages about unreachable services.

Planned host checks at regular intervals—active host checks in Nagios ter-
minology —play only a minor role. Although Nagios 2.0 does provide a way
to do this, Nagios 2.x only performs active host checks serially, which is
considered to be a real performance killer.

In Nagios 3.0, checks are executed simultaneously, eliminating the drop in
performance of earlier versions. If a Nagios version prior to 3.0 is used, you
would be well advised not to use active host checks. However, in Nagios 3.0
regular host checks like these can help to improve performance, because
this version caches the check results, if required, for a time that can be
specified. Instead of running an on-demand check, Nagios then reverts
to the cached result, saving considerable time—provided that this is still
sufficiently up-to-date. The new logic for host checks in Nagios 3.0 is dealt
with in Section H.7 on page 689.

The reachability of a host can also be regularly be checked in Nagios 2.x by
using a trick in the shape of a ping-based service check (see Section 6.2 on
page 108). Nagios performs service checks in parallel, so the serial brake in
performance under Nagios 2.x is released. At the same time you will obtain
further information such as the response times or possible packet losses,
which provides indirect clues about the network load or possible network
problems. A host check, on the other hand, also issues an OK even if many
packets go missing and the network performance is catastrophic. What
is involved here, as the name “host check” implies, is only reachability in
principle and not the quality of the connection.

95



4 Nagios Basics

4.3 States of Hosts and Services

Nagios uses plugins for the host and service checks. They provide four
different return values (see Table 6.1 on page 105): : (OK), - (WARNING),
� (CRITICAL), and * (UNKNOWN).

The return value UNKNOWN means that the running of the plugin gener-
ally went wrong, perhaps because of wrong parameters. You can normally
specify the situations in which the plugin issues a warning or a critical state
when it is started.

Nagios determines the states of services and hosts from the return values
of the plugin. The states for services are the same as the return values OK,
WARNING, CRITICAL, and UNKNOWN. For the hosts the picture is slightly
different: the UP state describes a reachable host, DOWN means that the
computer is down, and UNREACHABLE refers to the state of nonreachabil-
ity, where Nagios cannot test whether the host is available or not, because
a parent is down (see Section 4.1, page 92).

In addition to this, Nagios makes a distinction between two types of state:
soft state and hard state. If a problem occurs for the first time (that is, if
there was nothing wrong with the state of a service until now), then the
program categorizes the new state initially as a soft state and repeats the
test several times. It may be the case that the error state was just a one-off
event that was eliminated a short while later. Only if the error continues to
exist after multiple tests is it then categorized by Nagios as a hard state. Ad-
ministrators are informed only of hard states, because messages involving
short-term disruptions that disappear again immediately afterwards only
add to an unnecessary flood of information.

In our example the chronological sequence of states of a service can be
illustrated quite simply. A service with the following parameters is used for
this purpose:

define service{

host_name proxy

service_description DNS

...

normal_check_interval3 5

retry_check_interval4 1

max_check_attempts 5

...

}

��������
������������ specifies at what interval Nagios should check
the corresponding service as long as the state is OK or if a hard state exists—

3 As an alternative, Nagios 3.0 allows the notation known from the host definition,
������������	�.

4 For Nagios 3.0 you can alternatively use ���� �������	�.

96



4.3 States of Hosts and Services

in this case, every five minutes. �������
������������ defines the in-
terval between two service checks during a soft state—one minute in the
example. If a new error occurs, then Nagios will take a closer look at the
service at shorter intervals.

�����
������������ determines how often the service check is to be re-
peated after an error has first occurred. If �����
������������ has been
reached and if the error state continues, Nagios inspects the service again
at the intervals specified in ��������
������������.

Figure 4.4 represents the chronological progression in graphic form. The il-
lustration begins with an OK state (which is always a hard state). Normally
Nagios will repeat the service check at five-minute intervals. After ten min-
utes an error occurs; the state changes to CRITICAL, but this is initially a
soft state. At this point in time, Nagios has not yet issued any message.

Now the system checks the service at intervals specified in �������
����
��������. Here this is every minute. After a total of five checks (as speci-
fied in �����
������������) with the same result, the state changes from
soft to hard. Only now does Nagios inform the relevant people. The tests
are now repeated at the intervals specified in ��������
������������.

Figure 4.4:
Example of the
chronological
progression of states
in a monitored
service

In the next test the service is again available; thus its state changes from
CRITICAL to OK. Since an OK state is always a hard state, this change is not
subject to any tests by Nagios at shorter intervals.

The transition of the service to the OK state after an error in the hard state
is referred to as a hard recovery. The system informs the administrators of
this (if it is configured to do so) as well as of the change between various
error-connected hard states (such as from WARNING to UNKNOWN). If
the service recovers from an error soft state to the normal state (OK)—also
called a soft recovery—the administrators will not be notified.

Even if the messaging system leaves out soft states and switches back to
soft states, it will still record such states in the Web interface and in the
log files. In the Web front end, soft states can be identified by the fact that
the value �&2 is listed in the column Attempts, for example. This means

97



4 Nagios Basics

that �����
������������ expects 	��� attempts, but only two have been
carried out until now. With a hard state, �����
������������ is listed
twice at the corresponding position, which in the example is 2&2.

More important for the administrator in the Web interface than the distinc-
tion of whether the state is still “soft” or already “hard,” is the duration of
the error state in the column Duration. From this a better judgment can be
made of how large the overall problem may be.

For services that are not available because the host is down, the entry -&2
in the column Attempts would appear, since Nagios does not repeat service
checks until the entire host is reachable again. The failure of a computer
can be more easily recognized by its color in the Web interface: the service
overview figure on page 86 marks the failed host in red; if the computer is
reachable, the background remains gray.

98



5 Ch
ap

te
r

Service Checks and How They Are
Performed

To test services, Nagios makes use of external programs called plugins. In
the simplest case this involves testing an Internet service, for example,
SMTP. Here the service can be addressed directly over the network, so it
is sufficient to call a program locally on the Nagios server that tests the
mail server on the remote host.

Not everything you might want to test can be reached so easily over the
network, however; there is no network protocol for checking free capacity
on a hard drive, for example. Then you must either start a plugin on the
remote host via a remote shell (but first this has to be installed on the
remote computer), or you use other methods, such as the Simple Network
Management Protocol (SNMP), to test the hard drive capacity.

The fact that different methods are available here does not make it any
easier to get started with Nagios. For this reason, this chapter provides

99



5 Service Checks and How They Are Performed

an overview of the common methods and attempts to develop an under-
standing of the underlying concepts involved. Later chapters then provide
detailed configuration examples.

Figure 5.1:
Nagios allows

different testing
methods.

Figure 5.1 shows an overview of the various test methods supported by
Nagios. The upper box with a gray background marks all the components
that run directly on the Nagios server machine: this includes the server
itself, as well as plugins and other auxiliary tools. This unit is in contact
with five clients, which are tested in various ways. The following sections
will go into somewhat more detail regarding the individual methods.

In order to monitor the network service on the first client (starting from the
left) marked as �������, the Nagios server runs its “own” plugin, �
����
��� (Section 5.1, page 101). For the second client it starts the “middle plu-
gin” �
���������
, in order to execute the plugin it really wants remotely
on the client (Section 5.2, page 102).

In the third case the plugin is also executed directly on the client machine,
but now Nagios uses the NRPE service, created specifically for this purpose.
The query is made on the Nagios side with �
�������� (Section 5.3, page
102).

The fourth method performs a query via SNMP. For this, the client must
have an SNMP agent available (Section 11.1, page 228). Various plugins are
available for querying data via SNMP (Section 5.4, page 103).

100



5.1 Testing Network Services Directly

These four methods represent “active” checks, because Nagios takes the
initiative and triggers the test itself. The fifth method, in contrast, is passive.
Here Nagios does nothing actively, but waits for incoming information that
the client sends to the Nagios server with the program ���������. On the
Nagios server itself the Nagios Service Check Acceptor, NSCA, is running as
a daemon that accepts the transmitted results and forwards them to the
interface for external commands (see Section 5.5, page 104).

There are other ways of performing checks in addition to these. Usu-
ally a separate service is installed on the client, which is then queried
by the Nagios server via a specialized plugin. A typical example here is
NSClient/NC_Net, which can be used to monitor Windows servers (Section
20.2.1, page 464).

5.1 Testing Network Services Directly

Mail or Web servers can be tested very simply over the network, since the
underlying protocols, SMTP and HTTP, are by definition network-capable
(Figure 5.1, page 100, Client 1). Nagios can call here on a wide range of
plugins, each specialized for a particular service.

Such a specific program has advantages over a generic one. A generic plu-
gin tests only whether the corresponding TCP or UDP port is open and
whether the service is waiting there, but it does not determine whether the
correct service is on the port, or whether it is active.

Specific plugins adopt the network protocol and test whether the service on
the port in question behaves as it is expected to. A mail server, for example,
normally responds with a so-called Greeting after a connection has been
established:

220 swobspace.de ESMTP

The important thing here is the number ��+. A number in the 200 range
means OK, 220 stands for the greeting. The �
�������� plugin evaluates
this reply. It can also simulate the initial dialog when sending mail (in
addition to the greeting), as shown in Section 6.3 on page 113.

It behaves in a similar way with other specific plugins, such as �
����
���,
which not only can handle a simple HTTP dialog, but also manipulates
HTTP headers where required, checks SSL capabilities and certificates of
the Web server, and even sends data to the server with the �:1> command
(more on this in Section 6.4 from page 118).

The package with the Nagios plugins, which is installed separately (see Sec-
tion 1.4 from page 43), includes specific plugins for the most important

101



5 Service Checks and How They Are Performed

network services. If one is missing for a specific service, it is worth taking a
look at the Nagios homepage1 or the Exchange for Nagios Add-ons.2

If no suitable plugin can be found in these locations, you can use the
generic plugins �
������� or �
����
��, which apart from performing
a pure port test, also send data to the target port and evaluate the re-
sponse. (In most cases, this only makes sense if an ASCII-based protocol is
involved.) More on generic plugins in Section 6.7.1 on page 132.

5.2 Running Plugins via Secure Shell on the
Remote Computer

To test local resources such as hard drive capacity, the load on the swap
area, the current CPU load, or whether a specific process is running, various
local plugins are available. They are called “local” because they have to be
installed on the computer that is to be checked.

The Nagios server has no way to directly access such information over the
network, without taking further measures. However, it can start local plu-
gins on the remote host via a remote shell (Figure 5.1, page 100, Client 2).
Only the Secure Shell, SSH, should be considered for use here; the Remote
Shell, RSH, simply has too many security holes.

To do this, the Nagios server runs the program �
���������
, which is
given the command, as an argument, to run the local plugin on the target
host. For this, �
���������
 needs a way of logging into the target host
without a password, which can be set up with Public Key Authentication.

From the viewpoint of the Nagios server, �
���������
 is the plugin whose
results are processed. It does not notice anything concerning the start of
the secure shell connection and of the remote plugin—the main thing is
that the reply corresponds to the Nagios standard and contains the status
plus a line of comment text for the administrator. (See the introduction to
Chapter 6 on page 105.)

Further information on the Remote Execution of plugins via Secure Shell is
provided in Chapter 9 on page 205.

5.3 The Nagios Remote Plugin Executor

An alternative method of running plugins installed on the target computer
via the secure shell is represented by the Nagios Remote Plugin Executor
(NRPE). Figure 5.1 (page 100) illustrates this with the middle client.

1 ������������	
��
���
�
2 ������������	
��
�#��	�
����
�

102



5.4 Monitoring via SNMP

The NRPE is installed on the target host and started via the inet daemon,
which must be configured accordingly. If NRPE receives a query from the
Nagios server via the (selectable) TCP port 5666, it will run the matching
query for this. As with the method using the Secure Shell, the plugin that is
to perform the test must be installed on the target host.

So all of this is somewhat more work than using the Secure Shell, especially
as SSH should be installed on almost every Unix machine, and when it is
used, enables monitoring to be configured centrally on the Nagios server.
The Secure Shell method requires an account with a local shell, however,
thus enabling any command to be run on the target host.3 The Remote Plu-
gin Executor, on the other hand, is restricted to the commands configured.

If you don’t want the user ������ to be able to do anything more than
run plugins on the target host without a password, than you are better off
sticking with NRPE. The installation configuration for this is described in
Chapter 10 on page 213.

5.4 Monitoring via SNMP

With the Simple Network Management Protocol, SNMP, local resources can
be queried over the network (see also Client 4 in Figure 5.1, page 100).
If an SNMP daemon is installed (NET-SNMPD is used extensively and is
described in Section 11.2.2 on page 238), Nagios can use it to query local
resources such as processes, hard drive, and interface load.

The advantage of SNMP lies in the fact that it is widely used. There are cor-
responding services for both UNIX and Windows systems, and almost all
modern network components such as routers and switches can be queried
via SNMP. Even uninterruptable power supplies (UPSs) and other equip-
ment sometimes have a network connection and can provide current status
information via SNMP.

Apart from the standard plugin �
��������, a generic SNMP plugin, there
are various specialized plugins that concentrate on specific SNMP queries
but are sometimes more simple to use. �
�����	����
� and �
�����	�
��������
�, for example, focus on the status of network interfaces.

If you are grappling with SNMP for the first time, you will soon come to
realize that the phrase “human-readable” did not seem to be high on the list
of priorities when the protocol was defined. SNMP queries are optimized
for machine processing, such as for a network monitoring tool.

If you use the tool available from the vendor for its network components,
SNMP will basically remain hidden to the user. But to use it with Nagios,

3 The Secure Shell does allow a single command to be executed without opening a sep-
arate shell. Usually, however, you will want to test several resources, so you’ll need to
run more than one command.

103



5 Service Checks and How They Are Performed

you have to get your hands dirty and get involved with the protocol and
its underlying syntax. It takes some getting used to, but it’s not really as
difficult as it seems at first sight.

The use of SNMP is the subject of Chapter 11 (page 227); there you can
learn how to configure and use an SNMP daemon for Linux and other UNIX
systems.

5.5 The Nagios Service Check Acceptor

The fifth method of processing the results of service checks leads to the use
of the Nagios Service Check Acceptor, NSCA. This runs as a daemon on the
Nagios server and waits for incoming test results (see Figure 5.1 on the right
on page 100). This method is referred to as passive, because Nagios itself
does not take the initiative.

NSCA uses the interface for external commands used by CGI scripts, among
others, to send commands to Nagios. It consists of a named pipe4 from
which Nagios reads the external commands. With the command �5:�/11�
1/5H6�/��8/�3�5/1$#>Nagios processes test results that were determined
elsewhere. The interface itself is described in more detail in Section 13.1 on
page 292.

The main use for NSCA is Distributed Monitoring. By this we mean having
several different Nagios installations that send their results to a central Na-
gios server. The distributed Nagios servers, perhaps in different branches of
a company, work as autonomous and independent Nagios instances, except
that they also send the results to a head office. This does not check the de-
centralized networks actively, but processes the information sent from the
branches in a purely passive manner.

NSCA is not just restricted to distributed monitoring, however. With the
program ���������, test results can be sent which were not obtained from
a Nagios instance, but rather from a cron job, for example, which executes
the desired service check.

Before you use NSCA, you should consider the security aspects. Because it
can be used by external programs to send information and commands to
Nagios, there is a danger that it could be misused. This should not stop you
from using NSCA, but rather should motivate you into paying attention to
security aspects during the NSCA configuration.

Further information on using NSCA, distributed monitoring and on secu-
rity in general is provided in Chapter 14 on page 299.

4 A named pipe is a buffer to which a process writes something and from which another
process reads out the data. This buffer is given a name in the file system so that it can
be specifically addressed, which is why it is called named pipe.

104



6 Ch
ap

te
r

Plugins for Network Services

Every plugin that is used for host and service checks is a separate and inde-
pendent program that can also be used independently of Nagios. The other
way round, it is not so easy: in order for Nagios to use an external program,
it must obey certain rules. The most important of these concerns the re-
turn status that is returned by the program. Using this, Nagios precisely
evaluates the status. Table 6.1 displays the possible values.

Table 6.1:
Return values for
Nagios plugins

Status Name Description

0 OK Everything in order

1 WARNING Warning limit has been exceeded, but critical
limit not yet reached

2 CRITICAL Critical limit exceeded or the plugin has bro-
ken off the test after a timeout

105



6 Plugins for Network Services

continued:

Status Name Description

3 UNKNOWN Error has occurred inside the plugin (the
wrong parameter has been used, for exam-
ple)

A plugin therefore does not distinguish by using the pattern “OK—Not OK,”
but instead is more highly differentiated. In order for it to be able to cat-
egorize a status as WARNING, it requires details of up to what measured
value a certain event is regarded as OK, when it is seen as a WARNING, and
when it is CRITICAL.

For example, apart from the response time, a ping also returns the rate of
packet loss. For a slow network connection (ISDN, DSL), a response time of
1000 milliseconds could be seen as a warning limit and 5000 milliseconds
as critical, because that would mean that interactive working is no longer
possible. If there is a high load on the network connection, occasional
packet loss could also occur,1 so that 20 percent packet loss can be specified
as a warning limit and 60 percent as the critical limit.

In all cases, the administrator decides what values shall serve as warning
signs or be regarded as critical. Since all services can be individually con-
figured, the values for each host may vary, even in the same plugin.

Plugins always have a timeout, which is usually ten seconds. This prevents
the program from waiting endlessly, thus stopping a large number of plu-
gin processes from accumulating at the Nagios host. In other ways too, a
response time above 10 seconds makes little sense for many applications,
since these interrupt connection attempts themselves after a certain time
span, which has the same effect as the total failure of the corresponding
service. Here the administrator can step in and explicitly specify a different
timeout.

A further characteristic of all plugins is a text output, which Nagios shows in
its overview. It is principally intended for the administrator, so it needs to
be “human-readable.” Nagios 2.x processes only the first line, and here the
output may not exceed 300 characters. Nagios since version 3.0 no longer
has this restriction. The output may have multiple lines and can be up to
8 KB in length (see Section 8.5.1, page 193). In the Web interface, however,
Nagios 3.0 also displays only the first line. Simple plugins should there-
fore restrict their output to a single line, the multiple-line output is rec-
ommended only for special applications such as the plugin �
�����
���
(Section 8.5 from page 191). The following form has become established
for the text output:

TYPE_OF_CHECK STATUS - informational text

1 ICMP packets are not re-sent; a lost packet remains lost.

106



6 Plugins for Network Services

In practice, the text output looks like this:

SMTP OK - 0.186 sec. response time

DISK WARNING - free space: /net/eli02/a 3905 MB (7%);

The above examples are from the plugin �
�������� and �
��������,
respectively. In both cases, the type of check (here 1�>� or <613) is followed
by the status in text form and then the actual information. Not all plugins
adhere to this recommendation in their output. Sometimes the detail of
the test type is missing, and sometimes even the status is missing.

Various plugins also provide performance information, which can be eval-
uated and graphically represented with external programs (see Chapter 19,
page 403):

OK - 172.17.129.2: rta 97.751ms, lost 0%| rta=97.751ms;200.000;500.000;0

;pl=0%;40;80;;

As can be seen here from the example of the �
�������� plugin, the per-
formance data follows the text output, separated by the pipe character I.
These data do not appear in the Web interface.

�
�������� here provides two values: the medium reply time, ��� (Real
Time Answer), in milliseconds and the packet loss rate, ��.2 For each vari-
able, the plugin first displays the measured value (,C�C2- �� and +9), fol-
lowed by the warning limit (200 milliseconds or 40 percent) and the critical
limit (500 milliseconds or 80 percent). The fact that only the first value in
the ��� or �� list is provided with a scale unit is specified by the Developer
Guidelines—since the unit of a variable does not change, it only needs to
be given once.

To keep the installation (Section 1.4 from page 43) as simple as possible,
there are no manual pages for the plugins. Each of these programs must
maintain an online help, which is displayed with the option �
 or ��
���.
Some plugins distinguish here between a short help (�
) and a long one
(��
���); it is therefore recommended that you always try ��
��� as well.

This chapter introduces the most important plugins from the basic distri-
bution of the ���������
���� package, version 1.4.11,3 which test net-
work services. With their help, the Nagios server queries services on other
servers. The description is restricted to the functionality that is important
for normal operation. If you are interested in all the options, we refer you
to the integrated online help.

2 Short for packet loss.
3 Versions prior to 1.4 should no longer be used. Some parameters have changed, and

often performance data output is missing. In addition, plugin developers make great
efforts to clean up existing errors and to continually improve the plugins.

107



6 Plugins for Network Services

6.1 Standard Options

Table 6.2 lists the options that are common to all plugins. The options in
bold type must be known to all plugins. The key words not in bold type can
be omitted by the programs, but if they are supported at all, they must be
used in the sense specified.

If an option demands an argument, it is usually separated by spaces in the
short form, but by equals signs in the long form. But for Perl or shell scripts
in particular, not all authors adhere to these, so you have no option here
but to take a look at the corresponding description.

Table 6.2:
Standard options of

plugins

Short form Long form Description

�
 ��
��� Output of the online help

�H ��������� Output of the plugin version

�� ��������� Output of additional information–this
option may be given multiple times4

�8 ��
������� Host name or IP address of the target

�� �������
� Timeout in seconds after which the
plugin will interrupt the operation and
return the CRITICAL status

�� ��������� Specificies the warning limit value

�� ���������� Specifies the critical limit value

�7 ��
������7 Force IPv4 to be used

�' ��
������' Force IPv6 to be used

Thus it is not allowed to use ��, for example, for anything other than spec-
ifying a critical limit. How exactly �� and �� are used may, on the other
hand, vary from plugin to plugin, because sometimes an individual value
may be required, at other times, multiple values (see also the explanations
on the plugin �
��������), described below.

Most plugins also have the options �7 and �', which was not necessarily
the case prior to version 1.4.

6.2 Reachability Test with Ping

The classic reachability test in UNIX systems has always been a ping, which
sends an ICMP echo request packet and waits for an ICMP echo response
packet. The Nagios plugin package includes two programs that carry out

4 Whether this leads to more information depends on the individual plugin . . .

108



6.2 Reachability Test with Ping

this ping check: �
�������� and �
��������. Even though �
��������
is used in the standard configuration, you should replace it with the more
efficient �
��������, which has been included since plugin version 1.4.

Whereas �
�������� calls the UNIX program &���&����, which is why
there are always compatibility problems with the existing ���� version,
�
�������� sends ICMP without any external help programs. �
��������
basically works more efficiently, since it does not wait for one second be-
tween individual packets, as ���� does. In addition it evaluates ICMP error
messages such as 6��� 
��� 
�����
����, while �
�������� discards
these. �
�������� is backward-compatible to �
��������; this makes it
easy to do without �
�������� entirely and to replace it with �
��������.

�
�������� measures the reply time of the ICMP packets and determines
the proportion of packets that have been lost. If an error message arrives
instead of the expected 6��� ��
� �����, this is evaluated immediately.
Thus Nagios breaks off the test if an 6��� 
��� 
�����
���� message
arrives.

�
�������� has the following options:5

�8 ���	���
Without the host name or the IP address of the computer to be tested,
�
�������� cannot work. With �8, multiple ���� entries can be
separated, using spaces.

�� 	������������D��������������	����9
This switch sets the warning limit for a warning. 	������� ����
stands here for the desired response time in milliseconds, ������
���� ��	���� stands for the corresponding packet loss as a per-
centage. If you specify �� 2++�+D�+9 the plugin will give a warning
either if the response time is at least 500.0 milliseconds or if 20 per-
cent or more of ICMP packets are lost.

�� 	������������D��������������	����9
This switch specifies the critical limit in the same way as �� defines
the warning value. The critical limit should always be larger than the
warning limit.

�� �������
With ������� you can set the number of packets that �
��������
should use for each test. The default is 2 packets.

�� �����������	
��
This switch sets the time interval between two single packets that are
going to the same host. The default is 80 milliseconds. It is specified
as a floating point (e.g., �� B+�+++).

5 The online help ���������� �� says that it knows some of the options in the long
form as well, but these have not been implemented as of today.

109



6 Plugins for Network Services

�6 ��	��������	
��
This switch sets the time interval in which packets are sent to dif-
ferent hosts (provided that �8 contains more than one host). The
default is + milliseconds, meaning that packets to multiple hosts are
sent simultaneously.

�� �����	����	��������������
This switch specifies the number of hosts that must be reachable for
the plugin to return OK. This option allows a simple cluster check:

nagios@linux:local/libexec$ ./check_icmp -m 2 -H 192.168.1.9

\

192.168.1.11 192.168.1.13

OK - 192.168.1.9: rta 0.098ms, lost 0% :: 192.168.1.11: rta nan, l

ost 100% :: 192.168.1.13: rta 0.744ms, lost 0%|192.168.1.9rta=0.09

8ms;200.000;500.000;0; 192.168.1.9pl=0%;40;80;; 192.168.1.11rta=0.

000ms;200.000;500.000;0; 192.168.1.11pl=100%;40;80;; 192.168.1.13r

ta=0.744ms;200.000 ;500.000;0; 192.168.1.13pl=0%;40;80;;

Of the three hosts specified, -,��-'B�-�-- (printed in bold) is not
reachable. �� � requests only two reachable hosts; therefore, the re-
sult is OK. Without this detail, the result would be CRITICAL, because
one host is not reachable.

�� ���
A value larger than + sets the TTL (Time to Live) of the IP packet. The
default is the value +, which means that the plugin leaves the choice
of the TTL to the operating system.

�� �������
After ������� seconds have passed, the plugin interrupts the test
and returns the CRITICAL status. The default is -+ seconds.

Like the program &���&����, �
�������� must also run with ���� per-
missions, which is why the SUID bit is set:

linux:~ # chown root.nagios /usr/local/nagios/libexec/check_icmp

linux:~ # chmod 4711 /usr/local/nagios/libexec/check_icmp

linux:~ # ls -l /usr/local/nagios/libexec/check_icmp

-rwsr-x--x 1 root nagios 61326 2005-02-08 19:49 check_icmp

As a test, you should execute the plugin on the command line as the user
������, since Nagios will later execute it under this account:

nagios@linux:~$ cd /usr/local/nagios/libexec

nagios@linux:nagios/libexec$ ./check_icmp -H 192.168.1.13 \

-w 100.0,20% -c 200.0,40%

OK - 192.168.1.13: rta 0.253ms, lost 0%| rta=0.253ms;100.000;200.000;0;

pl=0%;20;40;;

110



6.2 Reachability Test with Ping

�
�������� then sends the standard number of five ICMP packets on their
way. Instead of an OK, it issues a WARNING as soon as the response time,
averaged over all the packets, is at least 100.0 milliseconds or if 20 percent
or more are lost—that is, at least one packet in five. For a CRITICAL status,
the average response time must be at least 200.0 milliseconds, or at least
two packets (40 percent of five) must remain unanswered.

6.2.1 ���������� as a Service Check

In order for �
�������� to be used as a service check, you need to have a
suitable command object. The file �
�������������	�, with �
��������,
already has one for the ping service. We will just replace the �
��������
plugin in it with �
��������:

define command{

command_name check_ping

command_line $USER1$/check_icmp -H $HOSTADDRESS$ -w $ARG1$ -c $ARG2$

}

The macro E8:1>.<<5/11E provides the IP address of the ������� pa-
rameter from the host definition, and with the two freely defined macros
E.5"-E and E.5"�E, parameters can be taken over from the service defini-
tion, so that warning and critical limits can be set with these.

In the service definition (an extract of it is shown here)6 for the �6 " ser-
vice, the �
����������� entry, in addition to the name of the command
object to be executed, now needs two arguments, which are entered after
the command and separated by an exclamation mark:

define service{

service_description PING

host_name linux01

check_command check_ping!100.0,20%!500.0,60%

...

}

From the definition of the command object, you can see that the first pa-
rameter (-++�+D�+9) defines the warning limit, and the second one (2++�+D
'+9) defines the critical value.

6.2.2 ���������� as a Host Check

To be able to use the plugin under the name �
����
��� for host checks,
a corresponding symbolic link to �
�������� is set:

6 Like any other object, service definitions can also be defined in a file of your choice,
from which Nagios loads object definitions. For the sake of clarity it is best to choose a
descriptive name for the file, such as 
������
���
, as in our example on page 56.

111



6 Plugins for Network Services

linux:~ # cd /usr/local/nagios/libexec

linux:nagios/libexec # ln -s check_icmp check_host

If it is called under its new name, �
����
���, the plugin modifies its be-
havior somewhat: it interrupts the test after receiving the first ICMP echo
reply, because a single reply packet is enough to prove that the host “is
alive.” The same applies if the first response to be returned is an error
message such as 6��� ������� 
�����
���� or 
��� 
�����
����—
the host is then considered to be unreachable.

Host checks are defined like every other check. The only difference is that
this test is specified during the definition of the host object (and not of a
service object):

define host{

host_name linux01

alias Linux File Server

address 192.168.1.21

check_command check-host-alive

...

}

The name used here, �
����
���������, can be freely defined and can be
specified separately for each host. The definition of the command itself is
made in �
�������������	�:

define command{

command_name check-host-alive

command_line $USER1$/check_host -H $HOSTADDRESS$

}

Host checks do not always need to be executed with �
��������. You
could just as well measure the refrigerator temperature or test, with the
generic plugins for TCP or UDP (�
������� and �
����
��; see Section
6.7.1 from page 132), whether a specific port is open or not. The port scan-
ner ����, for example, uses TCP port 80 (HTTP).

The disadvantage of such a method lies in the fact that, apart from the
host itself, another application also needs to run—that is, the Web server.
In addition, the test of a specific application by no means proves that the
computer is no longer reachable. A ping has the great advantage that the
kernel replies to ICMP echo request messages itself, so that no application
needs to be running for this. You should therefore change from ping to
other host check methods only if there is a good reason to do so. One
example might be a firewall that filters ICMP messages, and over which the
administrator has no influence, but that does let through HTTP queries on
TCP port 80.

112



6.3 Monitoring Mail Servers

6.3 Monitoring Mail Servers

A number of plugins are also available to monitor mail servers. The mail
server itself (Mail Transport Agent (MTA)) is monitored by �
��������,
and the mail queue on the mail server can be checked with �
��������%.
Since the latter test takes place locally, the plugin is described in the next
chapter in Section 7.8 (page 180).

To monitor the Mail User Agent (MUA) protocols POP3 and IMAP —includ-
ing the SSL variants, POP3S and IMAPS—the plugin �
������� is used.
�
������� and so forth are symbolic links to �
�������, which deter-
mines which protocol it should test by means of the name by which it is
called, and makes the relevant presettings.

6.3.1 Monitoring SMTP with ������	�
�

The SMTP monitoring plugin �
�������� has the following options:

�8 ���	��� / ��
���G���	���
Details the computer on which the SMTP service should be checked.

�� ��	� / ������G��	�
��	� determines the ports, in case the mail service is not listening
on the standard port 25. In this way the mail virus scanner Amavis
(usually port 10024) can be monitored, for example. But this can
normally be reached only from �����
���.

�� ��	��� / ��������G��	���
��	��� defines the text which the mail server must provide in the
very first reply line. The default setting for ��	��� is ��+, with which
the normal SMTP greeting begins, but there may be servers that have
different settings. A wrong reply from the service monitored will gen-
erate a WARNING.

�	 ���	��� / ��	���G���	���
With ���	��� you specify a mail address that �
�������� then sends
to the server with the “�.6# F5:�!” command. This option is re-
quired to test a Microsoft Exchange 2000 Server.

�� J���� �������J / ���������GJ���� �������J
With �� you can send individual mail commands to the server, to
extend the test slightly (see example below).

�5 J��	���J / ����������GJ��	���J
If you send an SMTP command to the server with ��, you can spec-
ify the expected reply here instead of ��	��� (for example, �2+). A
“wrong” reply triggers a WARNING.

113



6 Plugins for Network Services

�1 / ����������
The connection setup during the test uses STARTTLS.

�< ��	�����/ �������	�����G��	�����
The minimum duration in days for which the certificate used for
STARTTLS must still be valid.

�. / ���
�
����G�������������� ����
The authentication type for the SMTP-Auth procedure. The default is
���� (no authentication). The only procedure supported until now is
#:"6 , which is based on user-password pairs.

�$ / ���
�

���G���	
The user name for the SMTP authentication, if �. #:"6 is used.

�� / ���
�
����G������	�
The accompanying password if �. #:"6 is specified.

�� ������������������ / ���������G������������������
If the server takes longer than ������������������ seconds for the
answer, �
�������� issues a WARNING.

�� ������������������ / ����������G������������������
Like ��, except that �
�������� issues a CRITICAL after ���������
��������� seconds.

In the simplest case, you just enter the name or the IP address of the mail
server:

nagios@linux:nagios/libexec$ ./check_smtp -H smtp01

SMTP OK - 0,008 sec. response time|time=0,008157s;;;0,000000

The plugin �
�������� sends back a 8/#: �������� after receiving the
SMTP greeting, which should contain the reply �2+.

The definition of the corresponding command object in this case appears
as follows:

define command{

command_name check_smtp

command_line $USER1$/check_smtp -H $HOSTADDRESS$

}

To check the host object ���
�+-with this, it requires the following service
definition:

define service{

service_description SMTP

114



6.3 Monitoring Mail Servers

host_name linux01

check_command check_smtp

...

}

Using the �� option, the SMTP dialog can be extended even further, roughly
until 5��> >:!

nagios@linux:nagios/libexec$ ./check_smtp -H localhost \

-C "MAIL FROM: <bla@gna.dot>" -R "250" \

-C "RCPT TO: <bla@gna.dot>" -R "554"

SMTP OK - 0,019 sec. response time|time=0,018553s;;;0,000000

Such a test could be used, for example, to check the configuration of the
restrictions built into the mail server (invalid domains, spam defenses, and
more). The example checks whether the mail server refuses to accept a mail
containing the invalid domain ������� (that is, in the 5��> >:!). The test
runs successfully, therefore, if the server rejects the mail with 227. What
�
��������does here corresponds to the following mail dialog reproduced
by ������:

user@linux:~$ telnet localhost 25

Trying 127.0.0.1...

Connected to localhost.

Escape character is ’^]’.

220 swobspace.de ESMTP

helo swobspace

250 swobspace.de

MAIL FROM: <bla@gna.dot>

250 Ok

RCPT TO: <bla@gna.dot>

554 <bla@gna.dot>: Recipient address rejected: test not existing top lev

el domain

...

If the mail server did not reject the recipient domain because of the config-
uration error, the reply would no longer contain 227 and the plugin would
issue a WARNING.

In general you should remember, when checking restrictions, that the ser-
ver rejects mails only after a 5��> >:!, depending on the configuration,
even if the reason for this (a certain client IP address, the server name in
8/#: or the sender address in �.6# F5:�!) has already occurred before
this.

6.3.2 POP and IMAP

Four pseudo plugins are available for testing the POP and IMAP proto-
cols: �
�������, �
��������, �
��������, and �
���������. They are

115



6 Plugins for Network Services

called pseudo plugins because they are just symbolic links to the plugin
�
�������. By means of the name with which the plugin is called, this
determines its intended use and correspondingly sets the required param-
eters, such as the standard port, whether something should be sent to the
server, the expected response, and how the connection should be termi-
nated. The options are the same for all plugins, which is why we shall
introduce them all together:

�8 ���	��� / ��
���G���	���
This specifies the computer on which POP or IMAP is to be checked.

�� ��	� / ������G��	�
��	� specifies an alternative port if the plugin is intended to monitor
a different port from the standard one: 110 for �
�������, 995 for
�
��������, 143 for �
��������, and 993 for �
��������� (see also
&���&��������).

�� ������������������ / ���������G������������������
The placeholder ������������������ is replaced by the warning
limit for the response time in seconds, specified as a floating point
decimal.

�� ������������������ / ����������G������������������
This sets the critical limit for the response time in seconds (see ��).

�� J��	���J / ������GJ��	���J
This string is to be sent to the server. In the default setting, none of
the four plugins uses this option.

�� J��	���J / ��������GJ��	���J
��	��� specifies a text string, which must be contained in the re-
sponse of the server. The default is K:3 for (S)POP and ; :3 for
(S)IMAP. This option may be given multiple times to search for dif-
ferent partial strings in the answer.

�/ / ��������
This switch allows the use of the escape sequences L�, L�, L�, or
simply L in the details for �� and ��. In all cases �/ must be placed
in front of the options �� and �� on which it is to have an influence.

�. / �����
If you specify several reply strings with ��, the plugin with �. will
only return OK if all required reply strings were found. Without this
option, one string out of several sought is enough to trigger a positive
acknowledgment.

�� 	���	� 
���� / M�������
G	���	� 
����
How should the plugin react if a returned string does not match the

116



6.3 Monitoring Mail Servers

statement in ��? The default is ����, which means there is a WARN-
ING. With ���� a false return can be assigned as CRITICAL, with ��
as OK.

�% J��	���J / ��%
��GJ��	���J
This is the string with which the service is requested to end the con-
nection. For (S)POP this is N$6>L�L�, for (S)IMAP, �- #:":$>L�L�.

�1 / �����
The connection set up during the test uses SSL/TLS for the connec-
tion. If you call the plugins �
��������� and �
��������, this op-
tion is set automatically. In order for a connection to be established,
the server must support SSL/TLS directly on the addressed port.

STARTTLS7 on its own does not support the plugin. With

./check_imap -H computer -s "a1 CAPABILITY" -e "STARTTLS"

you can at least check whether the server provides this method: the
plugin returns OK if the reply string contains STARTTLS, or WARNING
if it doesn’t. But this is not really a genuine test of whether STARTTLS
really does work properly.

�< ��	����� / �������	�����G��	�����
This switch specifies the number of days the certificate used for
STARTTLS will remain valid.

�� 	���	��
���� / M��	
��G	���	��
����
This switch specifies which value the plugin returns if the server re-
jects the TCP connection. The default is ���� (CRITICAL). The value
�� can be set in case no POP or IMAP service is available. The third
possible value, ����, triggers a WARNING.

�� ����� / ����������G�����
This switch advices the plugin to close the TCP connection when the
specified data amount (in bytes) has been received.

�� ������� / �������G�������
This switch waits for the specified time after a string has been sent to
the server before the answer is searched for the string specified with
��.

7 STARTTLS refers to the capacity of a service to set up an SSL/TLS-secured connection
after a normal connection has been established—for example, for POP3, via TCP port
110. Every service that implements STARTTLS must have a suitable command avail-
able to do this. With POP3 this is called �."� (see RFC 2595). STARTTLS is used with
SMTP, LDAP, IMAP, and POP3, among others, but not every server supports this method
automatically.

117



6 Plugins for Network Services

Of course, all the other options of the generic plugin �
������� (described
in Section 6.7.1 on page 132) can be used with �
�������, �
��������,
�
��������, and �
���������.

In the simplest case you just need to give the name of the computer to be
tested (here: �������) or the IP address:

nagios@linux:nagios/libexec$ ./check_pop -H mailsrv

POP OK - 0.064 second response time on port 110 [+OK eli11 Cyrus POP3

v2.1.16 server ready <1481963980.1118597146@eli11>]

|time=0.064228s;0.000000;0.000000;0.000000;10.000000

In each case the plugin provides just one line of output, which has been
line-wrapped here for layout reasons. The details after the pipe character
I in turn involve performance data not shown by the Web interface. The
structure of performance data and how they are processed are described in
more detail in Section 19.1 on page 404.

Implemented as a command object, the above �
������� command looks
like this:

define command{

command_name check_pop

command_line $USER1$/check_pop -H $HOSTADDRESS$

}

As a service for the machine ���
�+-, it is integrated like this:

define service{

service_description POP

host_name linux01

check_command check_pop

...

}

6.4 Monitoring FTP and Web Servers

The Nagios plugin package provides two plugins to monitor the classic In-
ternet services FTP and HTTP (including HTTPS): �
����	�� and �
����

���. When many users from a network are using Web services, a proxy is
usually used in addition. To monitor this, you could also use �
����
���,
but with the �
�����%
����� plugin, The Nagios Exchange has a better
tool available.

118



6.4 Monitoring FTP and Web Servers

6.4.1 FTP services

The plugin �
����	�� is, like the plugins for POP and IMAP, a symbolic
link to the generic plugin �
�������, so that it also has the same options.
They are described in detail in Section 6.7.1 on page 132.

The generic plugin sets the following parameters if it is called with the name
�
����	��:

--port=21 --expect="220" --quit="QUIT\r\n"

It does not send a string to the server, but it expects a reply containing the
text ��+, and it ends the connection to the standard port 21 cleanly with
N$6>L�L�.

On the command line there is, as usual, a one-line reply (with line breaks
for the printed version) with performance data after the I character that
is not shown by the Web interface, (see Section 19.1 from page 404) for an
explanation of this:

nagios@linux:nagios/libexec$ ./check_ftp -H ftp.gwdg.de

FTP OK - 0,130 second response time on port 21 [220-Gesellschaft fuer wi

ssenschaftliche Datenverarbeitung mbH Goettingen] |time=0,130300s;0,0000

00;0,000000;0,000000;10,000000

As a command object, this call appears as follows:

define command{

command_name check_ftp

command_line $USER1$/check_ftp -H $HOSTADDRESS$

}

A corresponding service definition looks like this:

define service{

service_description FTP

host_name linux01

check_command check_ftp

...

}

6.4.2 Web server control via HTTP

The �
����
��� plugin for HTTP and HTTPS checks contains a large num-
ber of very useful options, depending on the intended use:

119



6 Plugins for Network Services

�8 
�	��������� / ��
�������G
�	���������
This switch specifies the virtual host name that the plugin transmits
in the HTTP header in the 
���! field:

nagios@linux:nagios/libexec$ ./check_http -H www.swobspace.de

HTTP OK HTTP/1.1 200 OK - 2553 bytes in 0.154 seconds

If you don’t want �
����
��� to send this, you can use �6 instead.

�6 ������	��� / ��6���������G������	���
Instead of �� , the host name or IP address of the target computer is
given. For systems with several virtual environments, you will land
in the default environment, and for most Web hosting providers you
will then receive an error message:

nagios@linux:nagios/libexec$ ./check_http -I www.swobspace.de

HTTP WARNING: HTTP/1.1 404 Not Found

�
 �	���	����� / ��
��G�	���	�����
The argument is the URL to be sent to the Web server. If the design
document lies on the server to be tested, it is sufficient to enter the
directory path, starting from the document root of the server:

nagios@linux:nagios/libexec$ ./check_http -H linux.swobspace.net \

-u /mailinglisten/index.html

HTTP OK HTTP/1.1 200 OK - 5858 bytes in 3.461 seconds

If this option is not specified, the plugin asks for the document root
&.

�� ��	� / ������G��	�
This is an alternative port specification for HTTP.

�� ������������������ / ���������G������������������
This is the warning limit for the response time of the Web server in
seconds.

�� ������������������ / ����������G������������������
This is the critical limit for the response time of the Web server in
seconds.

�� ������� / �������
�G�������
After ������� seconds have expired, the plugin interrupts the test
and returns the CRITICAL status. The default is -+ seconds.

�# / �������
��
This option ensures that the virtual host in the text output appears
on the Web interface as a link.

120



6.4 Monitoring FTP and Web Servers

nagios@linux:nagios/libexec$ ./check_http -H www.swobspace.de -L

<A HREF="http://www.swobspace.de:80/" target="_blank"> HTTP OK HTT

P/1.1 200 OK - 2553 bytes in 0.156 seconds </A>

�� ���	����!������	� / ���
�
���������G���	����!������	�
If the Web server requires authentication, this option can be used to
specify a user-password pair. The plugin can only handle basic au-
thentication, however; digest authentication is currently not yet pos-
sible.

�	 ����
��	 / ������������G����
��	
If the Web server sends a redirect as a reply to the requested Web
page, the ����
��	 parameter influences the behavior of the plu-
gin. The values ��, �������, �������� and 	����� are allowed. The
default is ��, so the plugin will simply return an OK, without follow-
ing the redirect. The plugin can be made to follow the redirect with
	�����. ������� and �������� with a redirect return the 4.5 6 "
or �56>6�.# status.

�� J��	���J / ��������GJ��	���J
This is the text that the server response should contain in its first
status line. If this option is not specified, the plugin expects 8>>�&-�
as a ��	��� .

�� J��	���J / ��������GJ��	���J
This is the search text that the plugin looks for in the contents of the
page returned, not in the header.

�� J	�����J / �������GJ	�����J
This is a regular expression8 for which the plugin should search in
the page returned.

�5 J	�����J / �������GJ	�����J
This switch works like ��, except that the plugin now makes no dis-
tinction between upper and lower case.

��������������
This inverts the search with �� or �5. The plugin now returns CRITI-
CAL instead of OK if there is a match.

�� / ����������
Normally the search for regular expressions is restricted to one line
with �� and �5. If �� precedes these options, the search pattern can
refer to text covering multiple lines.

8 Posix regular expressions, see �	� / ��
�#.

121



6 Plugins for Network Services

�� ��	��� / ������G��	���
Use this switch for data that you would like to send via a POST com-
mand to the Web server. The characters in ��	��� must be encoded
in accordance with RFC 1738:9 only the letters A to Z (upper and
lower case), the special characters E���KO;P()D and the numbers 0
to 9 are allowed.

To send the text Q�
�� 	R� .�	S���� (“Exercise For Beginners” in
German) as a ��	��� , umlauts and spaces must be encoded before
they are sent: 9<��
��9�+	9F��9�+.�	9/7����.

�> ��	��� / M������������G��	���
This specifies the ������� ���� of the header, if you are sending
something with ������, for example, to the server. The default is
�����������&������	����
���������. A list of all content types
is given in the file &���&����������, and a description of the format
can be found in RFC 2045.10

�� ���������!��������� / ����������G���������!���������
This parameter defines that the page returned must be at least ����
����� in size, otherwise the plugin will issue a WARNING. You can
optionally use an upper limit as well—separated by a colon—to spec-
ify the size of the Web page. Now �
����
���will also give a warning
if the page returned is larger than ��������� . In the following ex-
ample, everything is in order if the page returned is at least 500 bytes
and at most 2000 bytes in size:

nagios@linux:nagios/libexec$ ./check_http -H www.swobspace.de \

-m 500:2000

HTTP WARNING: page size 2802 too large|size=2802B;500;0;0

� / ���������
With this option the plugin does not wait for the server to return the
complete page contents, but just reads in the header data. To do this
it uses the HTTP commands "/> or �:1>, and not 8/.<.

�� ������� / ���������G�������
If the returned document is older than the date specified in the header
(HTTP header field <���!), the plugin will generate a WARNING. In-
stead of seconds (without additional details) you can also use explicit
units such as 2� (five minutes), -�
 (twelve hours), or *� (three days);
combinations are not allowed.

�. J��	���J / ��
��������GJ��	���J
This parameter explicitly specifies a user agent in the HTTP header,

9 ������������	0
���
����
����'/12�����, paragraph 2.2
10 �����������
��������
���������$%�3)
�������3

122



6.4 Monitoring FTP and Web Servers

such as �. T#���&-�-�T for Lynx version 1.12. Normally the plugin
does not send this field.

�� J��	���J / ��
�����GJ��	���J
This specifies any HTTP header tags. If several tags are to be speci-
fied, they must be separated by a semicolon, as in the following ex-
ample:

-k "Accept-Charset: iso-8859-1; Accept-Encoding: compress, gzip;"

�1 / �����
This forces an SSL connection to be used:

nagios@linux:nagios/libexec$ ./check_http --ssl -H \

www.verisign.com

HTTP OK HTTP/1.1 200 OK - 33836 bytes in 1.911 seconds

The host ���������������� allows an SSL connection. If this is not
the case, the server returns an error and the plugin returns the value
CRITICAL:11

nagios@linux:nagios/libexec$ ./check_http --ssl -H www.swobspace.de

Connection refused

Unable to open TCP socket

�� ���� / �������	�����G����
Tests whether the certificate is at least valid for the given number of
days. Otherwise a WARNING is issued.

�7 / ��
������7
The test is made explicitly over an IPv4 connection.

�' / ��
������'
The test is made explicitly over an IPv6 connection.

The definition of a corresponding command object and its use as a ser-
vice is no different from that based on other plugins; page 124 shows an
example.

6.4.3 Monitoring Web proxies

Proxy test with �
����
���

A proxy such as Squid can also be tested with �
����
���, but this assumes
that you have some knowledge of how a browser makes contact with the
proxy. It does this in the form of an HTTP header:

11 This can be checked in the shell with ���� 45.

123



6 Plugins for Network Services

GET http://www.swobspace.de/ HTTP/1.1

Host: www.swobspace.de

User-Agent: Mozilla/5.0 (X11; U; Linux i686; de-DE; rv:1.7.5)

Gecko/20041108 Firefox/1.0

Accept: text/xml,application/xml,application/xhtml+xml,...

Accept-Language: de-de,de;q=0.8,en-us;q=0.5,en;q=0.3

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-15,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Proxy-Connection: keep-alive

Pragma: no-cache

Cache-Control: no-cache

The decisive entries are printed in bold type. In contrast to normal Web ser-
ver queries, the browser requests the document from the server via a GET
command, not by specifying the directory path, but by using the complete
URL, including the protocol type. In the 8���! field it specifies the host
name of the Web server that it actually wants to reach. With normal HTTP
queries that go directly to a Web server (and not via a proxy), the host name
of the Web server would be written there. This behavior can be reproduced
with �
����
���:

nagios@linux:nagios/libexec$ ./check_http -H www.swobspace.de \

-I 192.168.1.13 -p 3128 -u http://www.swobspace.de

HTTP OK HTTP/1.0 200 OK - 2553 bytes in 0.002 seconds

In order to set the 8���! field in the header, you specify the name of a Web
server with �8. The nonlocal URL is forced by a �
, and specifying �6 at
the same time ensures that the proxy is addressed, and not the Web server
itself. Finally you need to select the proxy port, and the proxy test is then
complete. Then �
����
��� will send the following HTTP header to the
proxy:

GET http://www.swobspace.de HTTP/1.0

User-Agent: check_http/v1861 (nagios-plugins 1.4.11)

Connection: close

Host: www.swobspace.de

This test does not use any implementation-specific information of the proxy,
so it should work with every Web proxy.

The command object is defined as follows:

define command{

command_name check_proxy

command_line $USER1$/check_http -H www.googl

e.de -u http://www.google.de -I $HOSTADDRESS$ -p $ARG1$

}

124



6.4 Monitoring FTP and Web Servers

The proxy computer ���
�+- is then tested with the following service:

define service{

service_description Webproxy

host_name linux01

check_command check_proxy!3128

...

}

The parameter *-�B ensures that the command object �
��������� can
read out the port from E.5"-E.

Proxy test with �
�����%
��

The proxy check with �
����
���, introduced in the last section, works
only if the desired Web page is available or is already in the cache. If neither
is the case, this test will produce an error, even if the proxy is working in
principle.

The plugin �
�����%
����� uses a different method, but it is not part of
the standard installation, and is to be found in the Check Plugins category,
under Software | HTTP & FTP | Squid Proxy.12

It makes use of the cache manager of the Squid proxy, which is queried by
a pseudo protocol. A command is sent in the form

GET cache_object://ip_address/command HTTP/1.1\n\n

to Squid and obtains the desired information. The plugin �
�����%
�����
uses the ��	� command, which queries a range of statistical usage infor-
mation:

user@linux:~$ echo "GET cache_object://192.168.1.13/info HTTP/1.1\n\n" \

| netcat 192.168.1.13 3128

...

File descriptor usage for squid:

Maximum number of file descriptors: 1024

Largest file desc currently in use: 18

Number of file desc currently in use: 15

Files queued for open: 0

Available number of file descriptors: 1009

Reserved number of file descriptors: 100

Store Disk files open: 0

...

It is targeted at the number of still-free file descriptors (the third line from
the end); you can set a warning or critical limit for this value. The num-
ber of file descriptors plays a role when access is made to objects in the

12 ������������	
��
�#��	�
����
��
�������	
�
����	�����'/&������

125



6 Plugins for Network Services

Squid cache at the same time. In environments with a high number of par-
allel accesses to the proxy, it is quite possible that 1024 file descriptors are
insufficient. In smaller networks with just a few hundred users, not all of
whom are surfing at the same time, the compiled-in value of 1024 will be
sufficient.

Squid configuration Normally Squid allows access to the cache manager
only from �����
���. So that Nagios can query it over the network, the
proxy must be reconfigured accordingly:

...

acl manager proto cache_object

acl nagiosserver 192.168.1.9

http_access allow manager nagiosserver

http_access deny manager

cachemgr_passwd none info menu

...

The necessary changes to the configuration file �%
������	 are printed
in bold type, and the other relevant lines are already contained in the de-
fault file. The first line to be printed defines an access control list (Ac-
cess Control List, ���) called ������� by means of the internal protocol
���
����@���, so it refers to everything that accesses the proxy using
the ���
����@��� protocol. This is followed by an access control list for
the Nagios server, based on its IP address, here -,��-'B�-�,. The list
name ������������ may be freely chosen here (as can ������� in the
first line). With 
���������� �����, ������������ obtains access to the
cache manager (�������), before the line

http_access deny manager

prohibits access to all others through the ���
����@��� protocol. Finally,
���
����������� provides a password for the cache manager access. If
you omit this, with ����, then only selected commands should be allowed
that have no potential to change things, such as ��	� and ���
, which
shows all the things that the cache manager can do. After the configuration
file has been modified, Squid needs to read it in again:

linux:~ # /etc/init.d/squid reload

Applying the plugin The test plugin �
�����%
����� itself has the following
options:

�8 ���	��� / ��
�������G���	���
This is the server on which Squid is to be tested, specified by IP ad-
dress or FQDN.

126



6.5 Domain Name Server Under Control

�� ��	� / ������G��	�
This specifies the port on which Squid is listening. The default is the
standard port 3128.

�� ������	� / ����������G������	�
This is the password for access to the cache manager.

�� �	�������	����	� / ���������G�	�������	����	�
This is the number of free file descriptors, where the plugin will issue
a warning if the number drops below this. The default is 200.

�� �	�������	����	� / ����������G�	�������	����	�
This is the critical limit for free file descriptors. If the number falls
below this, �
�����%
�� returns CRITICAL. The default is 50.

When �
�����%
�� is run, it is usually very unspectacular:

nagios@linux:nagios/libexec$ ./check_squid.pl -H 192.168.1.13

Squid cache OK (1009 FreeFileDesc)

The matching command also presents no problems . . .

define command{

command_name check_squid.pl

command_line $USER1$/check_squid.pl -H $HOSTADDRESS$

}

. . . and the same goes for service definitions:

define service{

service_description Squid

host_name linux01

check_command check_squid.pl

...

}

6.5 Domain Name Server Under Control

Two plugins are also available for testing the Domain Name Service (DNS):
�
������� and �
�������. While �
������� tests whether a host name
can be resolved, using the external ������
� program, �
������� allows
any records at all to be queried. Both plugins are part of the standard dis-
tribution.

The situations in which they are used overlap somewhat. With �
�������,
you can also explicitly query a specific DNS server, although this plugin is
really for checking whether the name service is available generally.

127



6 Plugins for Network Services

6.5.1 DNS check with �	�

���

The �
������� plugin checks whether a specified host name can be re-
solved to an IP address. Used locally, the plugin tests the DNS configura-
tion of the computer on which it is run. For the name resolution, it uses
the name server configured in &���&����������	.

The possible options are just as unspectacular.

�8 ���� / ��
�������G����
This is the host name to be resolved to an IP address.

�� ������	
�	 / ��������G������	
�	
This switch explicitly specifies the name server to be used. If this op-
tion is missing, �
�������uses the name server from &���&�������
���	.

�� ������	��� / ������������������G������	���
The ������	��� is the IP address that ���� should have. If the name
service returns a different address, the plugin will raise the alarm
with CRITICAL. This option makes sense only if it is necessary for
the name server to provide a fixed IP address. Without this option,
the plugin will accept every IP address as a reply.

�. / ����������
�
�����
The name server specified with �� should answer the given query
authoritatively, so the corresponding domain must act as a primary
or secondary name server. If this is not the case, the plugin returns
CRITICAL.

�� �������� ����� / M�������G�������� �����
This switch specifies the warning limit for the response time of the
name server in seconds (specified as a floating point).

�� �������� ����� / M��������G�������� �����
This switch gives the critical response time of name server in seconds,
specified as a floating point.

�� ������� / �������
�G�������
After ������� seconds have expired, the plugin interrupts the test
and returns the CRITICAL state. The default is -+ seconds.

For the local test of the DNS configuration (not that for a name server) you
just require a host name that is highly unlikely to disappear from the DNS,
such as ��������������:

nagios@linux:nagios/libexec$ /check_dns -H www.google.com

DNS OK: 0,009 seconds response time www.google.com returns 216.239.59.99

128



6.5 Domain Name Server Under Control

The corresponding command definition appears as follows in this case:

define command{

command_name check_dns

command_line $USER1$/check_dns -H www.google.de

}

The following service tests whether the name server configuration for the
computer ���
�+- is functioning:

define service{

service_description DNS/nslookup

host_name linux01

check_command check_dns

...

}

6.5.2 Monitoring the name server with ���

The plugin �
�������provides more options for monitoring a name server
than �
�������. As the name implies, it is based on the external utility
���, intended for precisely this purpose.

�8 ���	��� / ��
�������G���	���
The ���	��� is the IP address for the DNS server to be tested. It is
also possible to specify a host name (instead of an IP address), but in
most cases this makes little sense, because this would first have to be
resolved before it can reach the name server.

�� ��	� / ������G��	�
This switch specifies the UDP port to be used. The default is 2*.

�� �������� / ������
�G��������
The �������� is the host name to be tested. If no particular com-
puter is looked up, but only the functionality of the DNS server is to
be tested, you should specify an address here easily reachable from
the Internet, such as ��������������.

�> 	���	������ / �������������G	���	������
This switch specifies the record type to be queried. The default is
. (IPv4 address), but often  1 (relevant name server), �U (relevant
Mail Exchange), �>5 (Pointer ; IP address for reverse lookup), or 1:.
(Source of Authority, the administration details of the domain) are
also used.

129



6 Plugins for Network Services

�� ������������������ / ���������G������������������
This switch sets the warning limit for the response time of the name
server in seconds (floating point decimal).

�� ������������������ / ����������G������������������
This switch sets the critical response time of the name server in sec-
onds (floating point decimal).

�� ���	��� / ������������������G���	���
This is the address that ��� should return in the ANSWER SECTION.
In contrast to �
�������, �
������� delivers a WARNING only if the
IP address does not match, but the reply itself has arrived within the
given time limit.

�� ������� / �������
�G�������
After ������� seconds have expired, the plugin breaks off the test
and returns the CRITICAL state. The default is -+ seconds.

The following two examples check the name server -,7��2���-�,, by re-
questing it for the IP address of the computer ����������������. The
second example ends with a WARNING, since the reply of the name server
for ���������������� returns a different IP address from -���*�7 in the
. 14/5 1/�>6: :

nagios@linux:nagios/libexec$ ./check_dig -H 194.25.2.129 -l \

www.swobspace.de

DNS OK - 2,107 Sekunden Antwortzeit (www.swobspace.de. 1800 IN A 21

2.227.119.101)

nagios@linux:nagios/libexec$ ./check_dig -H 194.25.2.129 -l \

www.swobspace.de -a 1.2.3.4

DNS WARNING - 0,094 Sekunden Antwortzeit (Server nicht gefunden in ANSWE

R SECTION)

Example 1 is implemented as a command object as follows:

define command{

command_name check_dig

command_line $USER1$/check_dig -H $HOSTADDRESS$ -l $ARG1$

}

In order to test the specific name server ���
�+-, you look for an address
that Nagios should always be able to resolve, such as ��������������:

define service{

service_description DNS/dig

host_name linux01

check_command check_dig!www.google.com

...

}

130



6.6 Querying the Secure Shell Server

6.6 Querying the Secure Shell Server

Monitoring of Secure Shell servers (irrespective of whether they use proto-
col version 1 or 2) is taken over by the plugin �
������
 (included in the
standard distribution). It is quite a simple construction and just evaluates
the SSH handshake. User name and password are not required for the test.

Not to be confused with �
������
 is the plugin �
���������
 (see Chap-
ter 9 from page 205), which starts plugins remotely on a different computer.

�8 ���	��� / ��
�������G���	���
Host name or IP address of the computer to which the plugin should
set up an SSH connection.

�� ��	� / ������G��	�
This specifies an alternative port. The default is 22.

�� 
�	���� / ����������������G
�	����
The version details for the tested Secure Shell must match the speci-
fied text instead of 
�	���� , otherwise a WARNING will be sent (see
example below). If the version details contain spaces, the string must
be enclosed by double quotes.

�� ������� / �������
�G�������
After ������� (by default, -+) seconds the plugin breaks off the test
and returns the CRITICAL state.

The following example in turn tests the Secure Shell daemons on the local
computer and on �������, to see whether the current SSH version from
Debian Etch is being used:

nagios@linux:nagios/libexec$ ./check_ssh -H localhost \

-r ’OpenSSH_4.3p2 Debian-9’

SSH OK - OpenSSH_4.3p2 Debian-9 (protocol 2.0)

nagios@linux:nagios/libexec$ ./check_ssh -H wobgate -r \

’OpenSSH_4.3p2 Debian-9’

SSH WARNING - OpenSSH_3.8.1p1 Debian-8.sarge.6 (protocol 2.0) version mi

smatch, expected ’OpenSSH_4.3p2 Debian-9’

The latest version of SSH is not in use on �������.

In heterogeneous environments with various Linux distributions, you will
usually use version checking “manually” only for plugin calls, and only
rarely integrate them into the Nagios configuration. Instead, it is normally
sufficient to use command and service definitions using the following sim-
ple pattern:

131



6 Plugins for Network Services

define command{

command_name check_ssh

command_line $USER1$/check_ssh -H $HOSTADDRESS$

}

define service{

service_description SSH

host_name linux01

check_command check_ssh

...

}

Otherwise you run the risk of having to adjust the version number in the
command object after every security update.

6.7 Generic Network Plugins

Sometimes no plugin can be found that is precisely geared to the ser-
vice to be monitored. For such cases, two generic plugins are available:
�
������� and �
����
��. Both of them test whether a service is active
on the target port for the protocol in question. Although this does not yet
guarantee that the service running on the port really is the one in question,
in an environment that one adminstrator looks after and configures, this
can be sufficiently guaranteed in other ways.

Both plugins send a string to the server and evaluate the reply. This is
at its most simple for text-based protocols such as POP or IMAP: these
two “specific” plugins, which are tailor-made for these two mail services
(see Section 6.3.2 from page 115), use nothing more than symbolic links
to �
�������, which has already completed the corresponding question-
and-answer game with relevant default settings.

If you know the protocol to be tested and you configure a “quiz” that will
fit this (no easy task for binary protocols), a check becomes considerably
more than just a port scan. In this way the generic plugins can also be
substituted for specific missing plugins.

6.7.1 Testing TCP ports

�
������� is concentrated on TCP-based services. In line with its generic
nature, it has a large number of options:

�8 ���	��� / ��
�������G���	���
This is the IP address or host name of the computer whose port
should be tested.

132



6.7 Generic Network Plugins

�� ��	� / ������G��	�
This specifies the target port. In contrast to the plugins that are
formed as a symbolic link to �
�������, this detail is always re-
quired.

�� ������������������ / ���������G������������������
This sets the warning limit for the response time in seconds.

�� ������������������ / ����������G������������������
This sets a time limit like �� but specifies the critical limit value.

�� J��	���J / ������GJ��	���J
This is the string that the plugin should send to the server.

�� J��	���J/ ��������GJ��	���J
This is the string that the reply of the server should contain. The
plugin does not restrict its search here to the first line.

�/ / ��������
This allows the use of the escape sequences L�, L�, L� or simply L for
�� and ��. In all cases �/ must be placed in front of the options ��
and �� on which it should have an influence.

�. / �����
If you specify multiple reply strings with ��, the plugin with �. will
only return OK if all required reply strings were found. Without this
option it is enough for a positive return if just one of several strings
is found.

�� 	���	��
���� / ���������
G	���	��
����
How should the plugin react if a returned string does not match what
is specified with ��? The default is ����, which means that a WARN-
ING is given. With ����, a false return value could be categorized as
CRITICAL, and with ��, as OK.

�% J��	���J / ��%
��GJ��	���J
This is the string that requests the service to end the connection.

�� ����� / ����������G�����
The plugin closes the connection if it has received more than ����� .

�� ���������������������� / �������G����������������������
This is the time period in seconds between sending a string and
checking the response.

�� ������� / �������
�G�������
After ������� (the default is -+) seconds the plugin stops the test
and returns the CRITICAL status.

133



6 Plugins for Network Services

�@ / ��@���
Setting this displays the TCP output. For text-based protocols such
as POP or IMAP, this is usually “human-readable”, but for binary pro-
tocols you generally cannot decipher the output, so that �@ is appro-
priate.

�� 	���	��
���� / ����	
��G	���	��
����
This switch specifies what value the plugin returns if the server re-
jects the TCP connection. The default is ���� (CRITICAL). With ��
as the 	���	��
���� , you can test whether a service is available that
should not be accessible from outside. The third possible value, ����,
ensures that a WARNING is given.

�< ���� / �������	�����G����
This is the time span in days for which a server certificate must at
least be valid for the test to run successfully. It is relevant only for
SSL connections. Note that there is a danger of confusion: in the
�
����
��� plugin this same option is �� (see page 123). If the time
span drops below the time period specified for the server certificate,
the plugin returns a WARNING.

�1 / �����
SSL/TLS should be used for the connection. The plugin cannot han-
dle STARTTLS13 .

The following example checks on the command line whether a service on
the target host -,��-'B�-�B, is active on port 5631, the TCP port for the
Windows remote-control software, PCAnywhere:

nagios@linux:nagios/libexec$ ./check_tcp -H 192.168.1.89 -p 5631

TCP OK - 0,061 second response time on port 5631 | time=0,060744s;0,

000000;0,000000;0,000000;10,000000

For all services for which the computer name and port detail are sufficient
as parameters for the test, the command object is as follows:

define command{

command_name check_tcp

command_line $USER1$/check_tcp -H $HOSTADDRESS$ -p $ARG1$

}

To monitor the said PCAnywhere on the machine 4��+-, the following ser-
vice definition would be used:

13 See footnote on page 117.

134



6.7 Generic Network Plugins

define service{

service_description pcAnywhere

host_name Win01

check_command check_tcp!5631

...

}

6.7.2 Monitoring UDP ports

It is not so simple to monitor UDP ports, since there is no standard con-
nection setup, such as the three-way-handshake for TCP, in the course of
which a connection is opened, but data is not yet transferred. For a stateless
protocol such as UDP there is no regulated sequence for sent and received
packets. The server can reply to a UDP packet sent by the client with a UDP
packet, but it is not obliged to do this.

If you find an unoccupied port, the requested host normally sends back an
ICMP port unreachable message, which evaluates the plugin. If there is no
reply, there are two possibilities: either the service on the target port is not
reacting to the request, or a firewall is filtering out network traffic (either
the UDP traffic itself or the ICMP message). This is why you can never be
sure with UDP whether the server behind a particular port really is offering
a service or not.

In order to force a positive response where possible, you normally have
to send data to the server, with the option ��, containing some kind of
meaningful message for the underlying protocol. Most services will not
respond to empty or meaningless packets. This is why you cannot avoid
getting to grips with the corresponding protocol, since you will otherwise
not be in a position to send meaningful data to the server, to prompt it into
giving a reply at all.

Ever since Nagios plugin version 1.4.4, �
����
�� has been a symlink to
�
�������, so that �
����
�� has the same options as �
������� (see
page 132). �� ��	� , �� ��	��� , and �� ��	��� are obligatory entries,
even though the integrated online help declares these to be optional.

The following example tests whether a service on the target host -,��-'B�
-�-* is active on the time server (NTP) Port 123. The NTP daemon only
replies to packets containing a meaningful request (e.g., to ones whose con-
tents begin with �):

nagios@linux:nagios/libexec$ ./check_udp -H 192.168.1.13 -p 123 -s "w" \

-e ""

UDP OK - 0.001 second response time on port 123 []|time=0.000586s;;;0.00

0000;10.000000

135



6 Plugins for Network Services

The reply remains empty, so the reply string is specified as �� JJ. The
NTP server does not respond to packets with data not in the protocol form.
Normally NTP expects a relatively complex packet14 containing various in-
formation. The � used here was found out by trial and error: It does not
contain really meaningful data, but it does provoke the server into giving a
response.

The command line command shown above is implemented as follows as a
command object:

define command{

command_name check_udp

command_line $USER1$/check_udp -H $HOSTADDRESS$ -p $ARG1$ -s $ARG2$

}

Here we pass on the port as the first argument; all the other switches of the
plugin are accessed through E.5"�E.

Checking an NTP time server is then taken over by the following service
definition:

define service{

service_description

host_name timesrv

check_command check_tcp!123!-s "w" -e ""

...

}

As in the command line example, Nagios sends the string � to the service
to provoke a positive response.

6.8 Monitoring Databases

Nagios provides three plugins for monitoring databases: �
�������%� for
PostgreSQL, �
�������%� for MySQL, and �
���������� for Oracle. The
last will not be covered in this book.15 They all have in common the fact
that they can be used both locally and over the network. The latter has
the advantage that the plugin in question does not have to be installed on
the database server. The disadvantage is that you have to get more deeply
involved with the subject of authentication, because configuring a secure
local access to the database is somewhat more simple.

14 The protocol version NTPv3 is described in RFC 1305: �����������
��
�������

�������'1%3�����.
15 The plugin ��������	��� assumes the installation of an Oracle Full Client on the Na-

gios server; it does not work together with the Instant Client and expects its users to
have an extensive knowledge of Oracle. To explain all this here is far beyond the scope
of this book.

136



6.8 Monitoring Databases

For less critical systems, network access by the plugin can be done without
a password. To do this, the user ������ is set up with its own database in
the database management system to be tested, which does not contain any
(important) data. Areas accessed by this user can be isolated from other
data, stored in the DBMS, through the database’s own permissions system.

Of course, there is nothing stopping you from setting up a password for the
user ������. But if you cannot make use of SSL-encrypted connections,
this will be transmitted in plain text for most database connections. In
addition, it is stored unencrypted in the Nagios configuration files. In this
respect the password does offer some protection, but it is not really that
secure.

As an additional measure, you should certainly restrict the IP address from
which a user ������ user can access the database on the Nagios server.

The plugins introduced here have only read access to the database. �
����
���%� additionally allows a pure connection check, without read access.
A write access to the database is not available in any of the plugins men-
tioned. For Oracle there is a plugin on Nagios Exchange16 called �
����
��������������������
, which also tests the writeability of the database.

6.8.1 PostgreSQL

With the �
�������%� plugin you can establish both local and network
connections to the database. Local connections are handled by PostgreSQL
via a Unix socket, which is a purely local mechanism. An IP connection is
set up by �
�������%� if a target host is explicitly passed to it. The plugin
performs a pure connection test to a test database but does not read any
data from it.

In order that PostgreSQL can be reached over the network, you must start
the ����������program, either with ��, or by setting the parameter �����
������� in the configuration file ��������%�����	 to the value ��
�.

Configuring a monitor-friendly DBMS

In order to separate the data that the user ������ (executing the plugin)
gets to see more clearly from other data, you first set up a database user
with the same name, and a database to which this user is given access:

postgres@linux:~$ createuser --no-adduser --no-createdb nagios

postgres@linux:~$ createdb --owner nagios nagdb

Of particular importance when creating a database user with the command
������
��� is the option ��������
���. To PostgreSQL, the ability to be

16 ������������	
��
�#��	�
����
�'3161

137



6 Plugins for Network Services

allowed to create users automatically means that you are the superuser,
who can easily get round the various permissions set.17 But ������ should
not be given superuser permissions under any circumstances.

�������� finally creates a new, empty database called �����, which be-
longs to ������.

Access to the database can be restricted in the file ���
������	. Depend-
ing on the distribution, this can be found either in &���&��������%� or
in the subdirectory �&���� of the database itself (for example, &���&���&
���%�&���� for SUSE). The following extract restricts access by the data-
base user ������ to a specific database and to the IP address of the Nagios
server (instead of the IP address to be completed by ��������� ):

#type db user ip-address ip-mask method options

local nagdb nagios ident sameuser

host nagdb nagios ip-nagios 255.255.255.255 ident sameuser

The first line is a comment describing the function of the columns. The
second line allows the database user ������ access to the database �����
over a local connection. Even though the authentication method here is
called �����, you do not need a local ident daemon for Linux and BSD
variants (NetBSD, FreeBSD, etc.).

The last line describes the same restriction, but this time it is for a TCP/IP
connection to the Nagios server. But now PostgreSQL asks the ident dae-
mon of the Nagios server which user has set off the connection request.
This means that an ident daemon must be installed on ��������� . In this
way the DBMS tests whether the user initiating the connection from the
Nagios server really is called ������. It will not permit another user (or a
connection from a different host).

Normally the ident protocol is only partially suited for user authentication.
But in the case of the Nagios server you can assume that a host is involved
that is under the control of the administrator who can ensure that an ident
daemon really is running on port 113.

There is a huge range of different ident daemons. �������18 is widely used
and is included in most Linux distributions. Normally it is already precon-
figured and just needs to be started. But how it is started depends on the
distribution; usually ����� or ������ takes over this task. A glance at the
documentation (should) put you straight.

After modifying the configuration in ���
������	you must stop the DBMS
so that it can reload the configuration files. This is best done with the com-
mand

linux:~ # /etc/init.d/postgresql reload

17 Permissions in PostgreSQL are given by the database command 789+..
18 ������������ 
	��������
��:�������������

138



6.8 Monitoring Databases

(a restart is not necessary). If the configuration of the �����/������ was
modified, this daemon is reinitialized in the same way.

The test plugin �
�������%�

�
�������%� has the following options:

�8 ���	��� / ��
�������G���	���
If given this option, the plugin establishes a TCP/IP connection in-
stead of making contact with a local DBMS through a Unix socket.

�� ��	� / ������G��	�
In contrast to the plugins discussed until now, �
�������%� uses a
capital P to specify the port on which PostgreSQL is running. In its
default value it is connected to port 5432. This option is only useful
if PostgreSQL allows TCP/IP connections.

�� �������� / ����������G��������
Specifies the name of the database to which the plugin should con-
nect. If this detail is missing, it uses the standard database ��������-.

�� ������������������ / ���������G������������������
This is the warning time in seconds for the performance time for the
test.

�� ������������������ / ����������G������������������
This is the critical limit for the performance time of the test in sec-
onds.

�� ���	 / ���������G���	
This is the name of the user who should establish contact to the
database.

�� ������ / ����������G������
This switch sets the password for access to the database. Since this
must be stored in plain text in the service definition, a potential se-
curity problem is involved. It is preferable to explicitly define a re-
stricted, password-free access to the database in the PostgreSQL con-
figuration for the user ������.

�� ������� / �������
�G�������
After 10 seconds have expired, the plugin stops the test and returns
the CRITICAL status. This option allows the default value to be
changed.

To test the reachability across the network of the database ����� set up
specially for this purpose, this is passed on as a parameter together with
the target host (here: ���
�+-):

139



6 Plugins for Network Services

nagios@linux:nagios/libexec$ ./check_pgsql -H linux01 -d nagdb

CRITICAL - no connection to ’nagdb’ (FATAL: IDENT authentication failed

for user "nagios")

The fact that the check went wrong in the example is clearly due to the
ident authentication. This happens, for example, if you forget to reload the
ident daemon after the configuration has been modified. Once the error
has been rectified, the plugin—hopefully—will work better:

nagios@linux:nagios/libexec$ ./check_pgsql -H linux01 -d nagdb

OK - database nagdb (0 sec.)|time=0,000000s;2,000000;8,000000;0,000000

If the database parameter is omitted, �
�������%� will address the data-
base ��������-:

nagios@linux:nagios/libexec$ ./check_pgsql -H linux01

CRITICAL - no connection to ’template1’ (FATAL: no pg_hba.conf entry fo

r host "172.17.129.2", user "nagios", database "template1", SSL off)

A similar result is obtained if you run the test with the correct database, but
with the wrong user:

wob@linux:nagios/libexec$ ./check_pgsql -H linux01 -d nagdb

CRITICAL - no connection to ’nagdb’ (FATAL: no pg_hba.conf entry for ho

st "172.17.129.2", user "wob", database "nagdb", SSL off)

You should certainly run the last two tests, just to check that the PostgreSQL
database really does reject corresponding requests. Otherwise you will have
a security leak, and we recommend that you remove settings in the config-
uration that are too generous.

If you have created a separate database for the check, there is no reason
why you shouldn’t write this explicitly in the command definition, instead
of using parameters, with E.5"-E:

define command{

command_name check_pgsql

command_line $USER1$/check_pgsql -H $HOSTADDRESS$ -d nagdb

}

Then the service definition for ���
�+- is as simple as this:

define service{

service_description PostgreSQL

host_name linux01

check_command check_pgsql

...

}

140



6.8 Monitoring Databases

6.8.2 MySQL

With the �
�������%� plugin, MySQL databases can be tested both locally
and across the network. For local connections, it makes contact via a Unix
socket, and not via a real network connection.

MySQL configuration

In order that the database can be reached across the network, the �����
���������� option in the configuration file �����	 must be commented
out. The database should then be running on TCP port 3306, which can be
tested with ������� ����, for example:

user@linux:~$ netstat -ant | grep 3306

tcp 0 0 0.0.0.0:3306 0.0.0.0:* LISTEN

To set up the password-free access to the database relatively securely, a
separate ����� database is created here that does not contain any critical
data, and for which the user ������ is given restricted access from the
Nagios server. To do this, you connect yourself, as the database user ����,
to the database ���%�, and there you create the database �����:

user@linux:~$ mysql --user=root mysql

mysql> CREATE DATABASE nagdb;

If the command ���%� ��
���G���� ���%� functions without the need
to enter a ���� password, then you have a serious security problem. In
that case, anyone—at least from the database server—is able to obtain full
access to the database. If this is the case, it is essential that you read the
security notes in the MySQL documentation.19

Recreating a user and the access restrictions can be done in one and the
same step:

mysql> GRANT select ON nagdb.* TO nagios@ip-nagios;

The command sets up the user ������, if it does not exist. It may only
accept connections from the Nagios server with the IP address ���������
and obtains access to all tables in the database �����, but may execute
only the 1/#/�> command there (no 6 1/5>, no $�<.>/ or </#/>/); that
is, user ������ only has read access.

19 To be found at ������������ 
0����������� 
0������������ �����.

141



6 Plugins for Network Services

The test plugin �
�������%�

�
�������%�has fewer options than its PostgreSQL equivalent—apart from
�8, it does not implement any standard flags and has neither a warning
not a critical limit for the performance time of the test. For the database-
specific options, it uses the same syntax as �
�������%�, except for the
user entry:

�8 ���	��� / ��
�������G���	���
This sets the host name or IP address of the database server. If the
option �8 is omitted, or if it is used in connection with the argu-
ment �����
���, �
�������%� does not set up a network connec-
tion but uses a Unix socket. If you want to establish an IP connection
to �����
���, you must explicitly specify the IP address -�C�+�+�-.

�� ��	� / ������G��	�
This is the TCP port on which MySQL is installed. In the default, port
3306 is used.

�� �������� / ����������G��������
This is the name of the database to which the plugin should set up a
connection. If this option is omitted, it only makes a connection to
the database process, without addressing a specific database.

�
 ���	 / ��
�������G���	
This is the user in whose name the plugin should log in to the DBMS.

�� ������ / ����������G������
This switch is used to provide the password for logging in to the
database.

To set up a connection to the database ����� as the user ������, both
parameters are passed on to the plugin:

nagios@linux:nagios/libexec$ ./check_mysql -H dbhost -u nagios -d nagdb

Uptime: 19031 Threads: 2 Questions: 80 Slow queries: 0 Opens: 12

Flush tables: 1 Open tables: 6 Queries per second avg: 0.004

In contrast to PostgreSQL, with MySQL you can also make contact without
establishing a connection to a specific database:

nagios@linux:nagios/libexec$ ./check_mysql -H dbhost

Uptime: 19271 Threads: 1 Questions: 84 Slow queries: 0 Opens: 12

Flush tables: 1 Open tables: 6 Queries per second avg: 0.004

With a manual connection to the database, with ���%�, you can then sub-
sequently change to the desired database, using the MySQL command 
��:

142



6.9 Monitoring LDAP Directory Services

user@linux:~$ mysql -u nagios

mysql> use nagdb;

Database changed

mysql>

With this plugin, a subsequent database change is not possible. Here you
must decide from the beginning whether you want to contact a database
or whether you just want to establish a connection to the MySQL database
system.

To test a ����� database set up explicitly for this purpose, you can do with-
out parameters when creating the corresponding command object, and ex-
plicitly specify both user and database:

define command{

command_name check_mysql

command_line $USER1$/check_mysql -H $HOSTADDRESS$ -u nagios -d nagdb

}

This simplifies the service definition:

define service{

service_description MySQL

host_name linux01

check_command check_mysql

...

}

6.9 Monitoring LDAP Directory Services

For monitoring LDAP directory services, the �
�������� plugin is avail-
able. It runs a search query that can be specified anonymously or with
authentication. It has the following parameters to do this:

�8 ���	��� / ��
�������G���	���
This is the host name or IP address of the LDAP server.

�� ������� / ������G�������
This is the top element (Base Domain Name) of the LDAP direc-
tory, formed for example from the components of the domain name:
��G���������D��G��.

�� ��	� / ������G��	�
This is the port on which the LDAP server is running. The default is
the standard port 389.

143



6 Plugins for Network Services

�� J��������	�����J / ������GJ��������	�����J
This switch enables a search according to specific attributes. Thus
�� J(��@��������G����:��������)J searches for all nodes in the
directory tree containing the object class ����:�������� (normally
used for telephone and e-mail directories, for example).

Specifying attributes in the check is less useful than it may seem. If
you search through an LDAP directory for nonexistent attributes, you
will normally receive an answer with zero results, but no errors.

�< ������������ / ������G������������
This specifies a bind DN20 for an authenticated connection, such as:

uid=wob,dc=swobspace,dc=de

Without this entry, the plugin establishes an anonymous connection.

�� ����������� / ������G�����������
This is the password for an authenticated connection. It only makes
sense in conjunction with the option �<.

�� ������� / �������
�G�������
After ������� seconds have expired (-+ seconds if this option is not
given), the plugin stops the test and returns the CRITICAL status.

�� / ������
Use LDAP version v2 (the default). If the server does not support this
protocol version, the connection will fail. In OpenLDAP from version
2.1, v3 is used by default; to activate protocol version v2, the following
line is entered in the configuration file ���������	:

allow bind_v2

Many clients, such as Mozilla and the Thunderbird address book, are
still using LDAP version v2.

�* / �����*
Use LDAP version v3. For many modern LDAP servers such as Open-
LDAP, this is now the standard, but they usually also have parallel
support for the older version v2, since various clients cannot yet im-
plement v3.

�� ������������������ / ���������G������������������
If the performance time of the plugin exceeds ������������������
seconds, it issues a warning.

20 A bind DN serves to identify the user and refers to the user’s nodes in the directory tree,
specifying all the overlying nodes. The bind DN in LDAP corresponds in its function
more or less to the user name when logging in under Unix.

144



6.9 Monitoring LDAP Directory Services

�� ������������������ / ����������G������������������
If the performance time of the plugin exceeds ������������������
seconds, it returns CRITICAL.

�> / ����������
Uses the STARTTLS intended in LDAPv3.21

�1 / �����
Uses SSL encrypted LDAP (LDAPS) from LDAPv2 and at the same
time sets the port used for this, port 636. Whenever possible you
should choose STARTTLS. LDAP with STARTTLS uses the same port
as LDAP without SSL encryption; in many cases this allows the un-
encrypted LDAP access to be configured as a fallback for LDAP with
STARTTLS. Such a fallback is not possible for LDAPS due to the dif-
ferent ports.

In the simplest case it is sufficient to query whether the LDAP server really
does own the base DN specified with ��:

nagios@linux:nagios/libexec$ ./check_ldap -H ldap.swobspace.de \

-b "dc=swobspace,c=de"

LDAP OK - 0,002 seconds response time|time=0,002186s;;;0,000000

This query corresponds to the following command object:

define command{

command_name check_ldap

command_line $USER1$/check_ldap -H $HOSTADDRESS$ -b $ARG1$

}

Since an LDAP server can handle many LDAP directories with different base
DNs, it is recommended that you configure this with parameters:

define service{

service_description LDAP

host_name linux01

check_command check_ldap!dc=swobspace,dc=de

...

}

If authentication is involved, things get slightly more complicated. On the
one hand the plugin is given the bind-DN of the ������ user, with �<.
On the other hand, the following example protects the necessary password
from curious onlookers by storing this as the macro E$1/5*E in the file
����
�����	�, which may be readable only for the user ������ (see Sec-
tion 2.14, page 79):

21 See footnote on page 117.

145



6 Plugins for Network Services

define command{

command_name check_ldap_auth

command_line $USER1$/check_ldap -H $HOSTADDRESS$ -b $ARG1$ -D $ARG2$

-P $USER3$

}

Accordingly, the matching service definition contains the base DN and bind
DN as arguments, but not the password:

define service{

service_description LDAP

host_name linux01

check_command check_ldap_auth!dc=swobspace,dc=de!uid=nagios,\

dc=swobspace,dc=de

...

}

6.10 Checking a DHCP Server

To monitor DHCP services, the plugin �
�����
�� is available. It sends
a <8��<61�:H/5 via UDP broadcast to the target port 67 and waits for an
offer from a DHCP server in the form of a <8��:FF/5, which offers an IP
address and further configuration information.

Because �
�����
�� does not send a <8��5/N$/1> after this, the server
does not need to reserve the sources and to confirm this reservation with
<8��.�3, nor does it need to reject the request with <8�� .�3.

Granting the plugin ���� permissions

There is a further restriction to the �
�����
��: it requires full access to
the network interface and must therefore run with ���� privileges.

In order for the user ������ to be able to run the plugin with ���� per-
missions, the plugin must belong to the user ���� and the SUID bit must
be set. If you install the plugins from a current tarball, the permissions will
be set correctly. Several distributions disable the SUID bit, as it represents
a potential danger—it is possible that general ���� permissions may slip
in via buffer overflows in uncleanly programmed code. Here the program
owner must be changed manually to the user ���� so that the SUID bit can
be set with �
���. When this is done, only the group ������, apart from
����, is allowed to run the plugin:

linux:nagios/libexec # chown root.nagios check_dhcp

linux:nagios/libexec # chmod 4750 check_dhcp

146



6.10 Checking a DHCP Server

linux:nagios/libexec # ls -l check_dhcp

-rwsr-x--- 1 root nagios 115095 Jan 8 12:15 check_dhcp

The �
��� command assigns the plugin to the user ���� and to the group
������, to whom nobody else should belong apart from the user ������
itself. (The user in whose name the Web server is running should be a
member of a different group, such as ������, as is described in Chapter 1
from page 37.)

In addition the �
��� ensures that nobody apart from ���� may even read
the plugin file, let alone edit it.

Applying the plugin

�
�����
�� only the following options:

�� ��	
�	��� / ����������G��	
�	���
This is the IP address of a DHCP server that the plugin should ex-
plicitly query. Without this entry, it is sufficient to have a functioning
DHCP server in the network to pass the test satisfactorily. So you
have to decide whether you want to test the general availability of
the DHCP service or the functionality of a specific DHCP server.

�� 	� ��������� / ����%
�������G	� ���������
With this option the plugin attempts to obtain the IP address 	� ����
������ from the server. If this is not successful because it is already
reserved or lies outside the configured area, �
�����
�� reacts with
a warning.

�� ����	���� / �������	���G����	����
This selects a specific network interface through which the DHCP
request should pass. Without this parameter, the plugin always uses
the first network card to be configured (in Linux, usually ��
+).

�� �������	��� / M���G�������	��� (from version 1.4.10)
Uses the specified MAC address in DHCP queries instead of that of
the Nagios server. This explicit detail is required if the DHCP server
only assigns IP addresses to specific MAC addresses, and the MAC
address of the Nagios server is not one of these.

�
 / ��
������ (from version 1.4.10)
Sends a unicast message instead of a broadcast.22 The IP address to
which the DHCP request is addressed is specified with �� ��	
�	��� .

22 A unicast message is addressed to exactly one IP address, whereas a broadcast message
is meant for all stations in the local network.

147



6 Plugins for Network Services

�� ������� / �������
�G�������
After -+ seconds have expired (the default), otherwise ������� sec-
onds, the plugin stops the test and returns the CRITICAL state.

With a configurable warning or critical limit for the performance time, the
plugin is of no use. Here you must, where necessary, explicitly set a timeout,
which causes the CRITICAL return value to be issued.

The following example shows that the DHCP service in the network is work-
ing:

nagios@linux:nagios/libexec$ ./check_dhcp -i eth0

DHCP ok: Received 1 DHCPOFFER(s), max lease time = 600 sec.

The plugin includes only the ����� ���� as additional information, that
is, the time for which the client would be assigned an IP address. If you
want to see all the information contained in <8��:FF/5, you should use
the option �� (“verbose”).

In the next example the plugin explicitly requests a specific IP address
(-,��-'B�-�7+), but this is not available:

nagios@linux:nagios/libexec$ ./check_dhcp -i eth0 -r 192.168.1.40

DHCP problem: Received 1 DHCPOFFER(s), requested address (192.168.1.40)

was not offered, max lease time = 600 sec.

nagios@linux:nagios/libexec$ echo $?

1

The result is a WARNING, as is shown by the output of the status, with E0.

If you want to test both the availability of the DHCP service overall and the
servers in question individually, you need two different commands:

define command{

command_name check_dhcp_service

command_line $USER1$/check_dhcp -i eth0

}

�
�����
���������� grills the DHCP service as a whole by sending a
broadcast, to which any DHCP server at all may respond.

define command{

command_name check_dhcp_server

command_line $USER1$/check_dhcp -i eth0 -s $HOSTADDRESS$

}

�
�����
��������� on the other hand explicitly tests the DHCP service
on a specific server.

148



6.11 Monitoring UPS with the Network UPS Tools

To match this, you can then define one service that monitors DHCP as a
whole and another one that tests DHCP for a specific host. Even if the
first variation is in principle not host-specific, it still needs to be assigned
explicitly to a computer for it to run in Nagios:

define service{

service_description DHCP Services

host_name linux01

check_command check_dhcp_service

...

}

define service{

service_description DHCP Server

host_name linux01

check_command check_dhcp_server

...

}

6.11 Monitoring UPS with the Network UPS Tools

There are two possibilities for monitoring uninterruptible power supplies
(UPS): the Network UPS Tools support nearly all standard devices. The
���
��� daemon is specifically tailored to UPS’s from the company APC,
described in Section 7.10 from page 182. The plugin �
����
�� included
in Nagios only supports the first implementation.

The following rule generally applies: no plugin directly accesses the UPS
interface. Rather they rely on a corresponding daemon that monitors the
UPS and provides status information. This daemon primarily serves the
purpose of shutting down the connected servers in time in case of a power
failure. But it also always provides status information, which plugins can
query and which can be processed by Nagios.

Both the solution with the Network UPS Tools and that with ���
��� are
fundamentally network-capable, that is, the daemon is always queried via
TCP/IP (through a proprietary protocol, or alternatively SNMP). But you
should be aware here that a power failure may affect the transmission path,
so that the corresponding information might no longer even reach Nagios.
Monitoring via the network therefore makes sense only if the entire network
path is safeguarded properly against power failure. In the ideal scenario,
the UPS is connected directly to the Nagios server. Calling the �
����
��
plugin is no different in this case from that for the network configuration,
since even for local use it communicates via TCP/IP—but in this case, with
the host �����
���.

149



6 Plugins for Network Services

The Network UPS Tools

The Network UPS Tools is a manufacturer-independent package contain-
ing tools for monitoring uninterruptible power supplies. Different specific
drivers take care of hardware access, so that new power supplies can be
easily supported, provided their protocols are known.

The remaining functionality is also spread across various programs: while
the daemon 
��� provides information, the program 
����� shuts down
the computers supplied by the UPS in a controlled manner. It takes care
both of machines connected via serial interface to the UPS and, in client/
server mode, of computers supplied via the network.


���!&&�����������
�����������& lists the currently supported mod-
els and provides further information on the topic of UPS. Standard distri-
butions already contain the software, but not always with package names
that are very obvious: in SuSE and Debian they are known by the name of
�
�.

To query the information provided by the daemon 
���, there is the �
����

�� plugin from the Nagios Plugin package. It queries the status of the
UPS through the network UPS Tools’ own network protocol. A subproject
also allows it to query the power supplies via SNMP.23 However, further
development on it is not taking place at the present time.

For purely monitoring purposes via Nagios (without shutting down the
computer automatically, depending on the test result), it is sufficient to
configure and start the 
��� on the host to which the UPS is connected
via serial cable. The relevant configuration file in the directory &���&�
�
is called 
������	. If you perform the query via the network, you must
normally add an entry for the Nagios server in the (IP-based) access per-
missions. Detailed information can be found directly in the files them-
selves or in the documentation included, which in Debian is in the directory
&
��&�
���&���&�
�, and in SuSE, in &
��&�
���&���&��������&�
�.

Provided that the Network UPS Tools include a suitable driver for the un-
interruptable power supply used, the driver and communication interface
are entered in the file 
������	:

# -- /etc/nut/ups.conf

[upsfw]

driver = apcsmart

port = /dev/ttyS0

desc = "Firewalling/DMZ"

In the example, a UPS of the company APC is used. Communication takes
place on the serial interface &���&���1+. A name for the UPS is given in

23 ���������'����������
����
���
�
�������������
�

150



6.11 Monitoring UPS with the Network UPS Tools

square brackets, with which it is addressed later on: ���� can be used to
describe the intended purpose of the UPS in more detail, but Nagios ignores
this.

Next you must ensure that the user with whose permissions the Network
UPS Tools are running (such as the user �
� from the group �
�) has full
access to the interface &���&���1+:

user@linux:~$ chown nut:nut /dev/ttyS0

user@linux:~$ chmod 660 /dev/ttyS0

In order for Nagios to access information from the UPS via the 
��� dae-
mon, corresponding data is entered in an Access Control List in the 
���
configuration file 
�������	:

# -- /etc/nut/upsd.conf

# ACL aclname ipblock

ACL all 0.0.0.0/0

ACL localhost 127.0.0.1/32

ACL nagios 172.17.129.2/32

ACCEPT localhost nagios

REJECT all

With the keyword .�# you first define hosts and network ranges with their
IP address. You must always specify a network block here: &*� means that
all 32 bits of the netmask are set to 1 (this corresponds to 255.255.255.255),
which is therefore a single host address. It is not sufficient just to specify
the IP address here.

An .��/�> entry allows access for the computer specified in the ACL ����
���� . .��/�> rules may be used more than once. The final 5/V/�> entry
then refuses access to all other hosts.

To conclude the configuration, you should make sure that the UPS daemon
is started with every system start. In SuSE this is done via YaST2; in Debian
this is taken care of during the installation.

The �
����
�� plugin

The monitoring plugin itself has the following options:

�8 ���	��� / ��
���G���	���
This is the computer on which 
��� is installed.

�
 ���������	 / ��
��G���������	
This is the name for the UPS in 
������	, specified in square brack-
ets.

151



6 Plugins for Network Services

�� ��	� / ������G��	�
This is the number of the port on which the 
��� is running. The
default is TCP port 3493.

�� �����������	 / ���������G�����������	
This switch defines a warning limit as a whole number. If no vari-
able is given (see ��), �����������	 means a response time in sec-
onds; otherwise the value range of the variable (e.g., B+ for 80% in
=.>>��>). Specifying multiple warning limits is currently not possi-
ble: the plugin then only uses the last variable and the last warning
limit.

�� �����������	 / ����������G�����������	
This option specifies a critical limit in connection with a variable (see
��).

�� 
�	����� / ����������G
�	�����
With this option, specific values of the UPS can be queried. The limit
values then referred to this parameter. �
����
�� currently supports
only the following variables:

#6 /: input voltage of the UPS.

>/��: Temperature of the USV.

=.>>��>: Remaining battery capacity in percent.

#:.<��>: Load on the UPS in percent.

If this option is missing, the plugin only checks the status of the UPS
(online or offline).

Since �� thus has another value, �
����
�� does not know the oblig-
atory option ��������� (see Table 6.2 on page 108), even in its long
form.

�> / ����������
��
This command issues temperature values in degrees Celsius instead
of Fahrenheit.

�� ������� / �������
�G�������
After ������� seconds have expired, the plugin stops the test and
returns the CRITICAL state. The default is -+ seconds.

The following example tests the above defined local UPS with the name

��	�. The �> switch ensures that the output of the temperature is given
in degrees Celsius:

user@linux:nagios/libexec$ ./check_ups -H localhost -u upsfw -T

UPS OK - Status=Online Utility=227.5V Batt=100.0% Load=27.0% Temp=30.6C|

voltage=227500mV;;;0 battery=100%;;;0;100 load=27%;;;0;100 temp=30degF;;

;0

152



6.11 Monitoring UPS with the Network UPS Tools

If a variable is not used, the plugin returns a CRITICAL if the UPS is switched
off (1���
�G:		) or has reached low battery capacity (1���
�G:� =���
����D #�� =������). �
����
�� issues a warning if at least one of the
three states :� =������, #�� =������, or 5������ =������ applies, but
this is not sufficient for a CRITICAL status (for example, because of corre-
spondingly set variables). With :� =������ the power supply is provided
by the battery, with #�� =������ the UPS is online with a low battery state,
and with 5������ =������, the battery must be replaced.

If none of these points apply, the plugin issues an OK for the following
states:

In the normal ������ state

If the UPS is being calibrated (�����������)

If it is currently being bypassed and the power supply is provided directly
from the power supply grid (:� =�����)

If the UPS is overloaded (:�������)

If the voltage in the power grid is too high and the UPS restricts the volt-
age to the normal value (>�������)

If the voltage in the power grid is too low and is supplemented by the
UPS (=�������)

If the UPS is currently being charged (�
������)

If the UPS is currently being discharged (e.g., during a programmed main-
tenance procedure) (<���
������)

Transformed into a command object, the above test for any host looks like
this:

define command{

command_name check_ups

command_line $USER1$/check_ups -H $HOSTADDRESS$ -u $ARG1$ -T

}

The corresponding service definition for the computer ���
�+-, to which
the UPS is connected, and for the above defined UPS 
��	�, would then
look like this:

define service{

service_description UPS

host_name linux01

check_command check_ups!upsfw

...

}

153



6 Plugins for Network Services

If �
����
�� is to determine the UPS status by means of the current load,
the relevant information is taken from the variable #:.<��>:

user@linux:nagios/libexec$ ./check_ups -H linux01 -u upsfw -T -v \

LOADPCT -W 60 -c 80

UPS WARNING - Status=Online Utility=227.5V Batt=100.0% Load=61.9%

Temp=30.6C|voltage=227500mV;;;0 battery=100%;;;0;100 load=61%;60000;

80000;0;100 temp=30degC;;;0

With 61 percent, the UPS has a heavier load than specified in the limit
value ��, but it does not yet reach the critical area above 80 percent, so
there is just a warning. If two error criteria occur, such as a warning limit
for a queried variable being exceeded and a critical state simultaneously,
because the UPS is losing power (:� =������ and #�� =������ simul-
taneously), the most critical state has priority for the return value of the
plugin, so here, �
����
��would return CRITICAL, and not the WARNING
which results from the query of #:.<��>.

6.12 Health Check of an NTP Server with
�
������������

The plugin �
������������, which is included from plugin version 1.4.11,
tests the quality of an NTP server. If you want to check the time devia-
tion of a local server against an NTP server, you need to use the plugin
�
������������, described in Section 7.7.1 on page 177.

Several parameters characterize the quality: the offset describes the time
difference from other NTP servers (the reference servers). Jitter is a mea-
surement of the fluctuations in the packet delay to a remote reference ser-
ver, and stratum specifies the topological distance from the next atomic
clock. Stratum 0 is the atomic clock itself, stratum 1 refers to an NTP ser-
ver directly connected to an atomic clock. Stratum 2 is an NTP server that
obtains its time from an NTP server with stratum 1. The further an NTP
server is away from the atomic clock, the higher the stratum value. The
imprecision of the server also increases the higher this value is.

These parameters can also be queried with the program ���%, by giving the
IP address of the NTP server. The option �� reveals the reference server
from which the queried NTP server obtains its time details. The option ��
prevents name resolution on the reference servers, thus accelerating the
execution of ���%:

154



6.12 Health Check of an NTP Server with �
������������

nagios@linux:nagios/libexec$ ntpq -np 192.168.1.13

remote refid st t when poll reach delay offset jitter

============================================================================

127.127.1.1 .LOCL. 10 l 26 64 377 0.000 0.000 0.001

*81.169.141.30 81.169.172.219 3 u 1 128 377 27.515 -4.411 1.219

+217.160.215.119 212.82.32.26 3 u 125 128 377 17.834 1.505 1.069

The ������ column specifies the reference server that uses the queried
NTP server. -�C�-�C�-�- here is a special case, and stands for the local
system clock. The stratum value (column ��), with -+, is relatively high,
but the local system clock only plays a role if no other NTP source can is
reachable. The other two quality parameters, offset and jitter, are located
in the last two columns.

In the simplest case you can run �
������������, specifying only the NTP
server to be checked (option �8):

nagios@linux:nagios/libexec$ ./check_ntp_peer -H 192.168.1.13

NTP OK: Offset -0.004411 secs|offset=-0.004411s;60.000000;120.000000;

Without further details the plugin checks the time deviation from the refer-
ence servers, and the stratum and jitter are not taken into account. All
threshold details from �
������������ are specified in the format de-
scribed in Section 24.1.5 from page 557Ṫhe plugin has the following op-
tions:

�8 ���	��� / M
���G���	���
This is the name or IP address of the NTP server to be checked.

�� ��	� / ������G��	�
This is the UDP port on which the NTP server is listening. The default
is port -�*.

�% / ��%
���
This returns UNKNOWN instead of WARNING or CRITICAL if the NTP
server is not synchronized.

�� ��	������ / M�������G��	������
This is the warning threshold for the time deviation. A warning is is-
sued if the time deviation between the NTP server and at least one of
the reference servers is greater than the specified number of seconds.
The default is '+ seconds.

�� ������� / M��������G�������
This is the critical threshold for the time deviation. If the time of one
of the reference servers used deviates by more than ������� seconds
(in the default: -�+) from that of the NTP server, the state becomes
CRITICAL.

155



6 Plugins for Network Services

�4 ��	������ / M�����G��	������
This is the warning threshold based on the stratum value. A warn-
ing is issued if no reference server is available whose stratum value
matches the specified threshold. This means that �4 -!� causes a
WARNING if no reference server is available with stratum 1 or stra-
tum 2. Without the detail of this parameter the stratum value is not
included in the check.

�� ��	������ / M�����G��	������
This is the critical threshold based on the stratum value. See �4.

�@ ��	������ / M@����G��	������
This is the warning threshold for the jitter in milliseconds, given in
the threshold format. The plugin returns OK if at least one reference
server displays a jitter within the specified range. If this option is not
given, the jitter is not included in the evaluation; there is no default.

�� ��	������ / M@����G��	������
This is the critical threshold for the jitter in milliseconds in the thresh-
old format.

156



7 Ch
ap

te
r

Testing Local Resources

The plugins introduced in this chapter, originating from the ���������
��
��� package,1 test local resources that do not have their own network pro-
tocol and therefore cannot be easily queried over the network. They must
therefore be locally installed on the computer to be tested. Such plugins on
the Nagios server can test only the server itself—with command and service
definitions as described in Chapter 6.

To perform such local tests from a central Nagios server on remote hosts,
you require further utilities: the plugins are started via a secure shell, or
you use the Nagios Remote Plugin Executor (NRPE). Using the secure shell is
described in Chapter 9 from page 205, and Chapter 10 (page 213) is devoted
to NRPE.

The definition of command and service depends on the choice of mecha-
nism. If you want to test for free hard drive capacity with the �
���������


1 This edition is based on version 1.4.11.

157



7 Testing Local Resources

plugin installed on the Nagios server, which remotely calls �
�������� on
the target server (see Section 7, page 157), then a special command defini-
tion is required for this, which differs somewhat from the definitions given
in Chapter 6 (page 105). What command and service definitions for re-
motely executed local plugins look like is described in the aforementioned
chapters on NRPE and SSH.

For the remote query of some local resources you can also use SNMP (see
Chapter 11 from page 227), but the checks are then restricted to the capa-
bilities of the SNMP daemon used. Local plugins are usually more flexible
here and provide more options for querying.

7.1 Free Hard Drive Capacity

The question of when the hard drive(s) of a computer may threaten to over-
flow is answered by the �
�������� plugin. It has the following options for
specifying thresholds:

�� ����� / ���������G�����
The plugin will give a warning if the free hard drive capacity drops
below this limit, expressed as a percentage or as an integer. If you
specify percentage, the percent sign 9 must also be included; floating
point decimals such as -��29 are possible. Integer values represent
the absolute free space in the unit that defines the ��
���� switch.
The default is ��
����G�=, or megabytes.

�� ����� / ����������G�����
If the free hard drive capacity level falls below this as a percentage
or integer (see ��), �
�������� displays the CRITICAL status. The
critical limit must be smaller than the warning limit.

�4 ����� / M��������G�����
The number of free inodes in the file system as a percentage; �
����
���� issues a warning if this drops below the limit.

�3 ����� / M���������G�����
Like �4, except that this is the critical threshold.

�
 ���� / ��
����G����
In what unit do you specify integer limit values? �=, �=, "=, and >=
are all possible.

�� / �����������
With this switch, limit values given as whole numbers with �� and ��
are to be interpreted as KB. This is the same as ��
����G�=.

158



7.1 Free Hard Drive Capacity

�� / �����������
With this switch, whole number limit values with �� and �� are in-
terpreted by the plugin as MB (the default). This is the same as
��
����G�=.

Before one of the following path selectors is specified, at least one threshold
must be given (��, ��, �4, or �3).

�� ������	���	������ / �����
G���� or �����������G��	������
This specifies the root directory in file systems or the physical device
in partitions (e.g., &���&���2). From version 1.4 �� can be called
multiple times. If the path is not specified, the plugin tests all file
systems (see also �� and �U).

�/ / ������������

This demands that the root of the file system is included for all paths
or partitions specified with ��, otherwise the plugin will issue an er-
ror:

nagios@linux:nagios/libexec$ df /usr/local

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/md2 9843168 7062980 2280172 76% /usr

&
��&����� is not a file system, but a directory within the &
��
file system on the partition &���&���. If you call the plugin with
the switches �� &
��&����� and �/, you will receive an error, since
&
��&����� is not itself the root of the file system as required by �/:

nagios@linux:nagios/libexec$ ./check_disk -w 10% -E -p/usr/local

DISK CRITICAL: /usr/local not found

�� ���� / ������
���������G����
This switch excludes the mount point specified as ���� from the test.
This option assumes that paths are specified with �� and that they
may be run in a plugin call multiple times.

�U ������ / ������
�������G������ (from 1.4)
This switch excludes a specific file system type from the test. It is
given the same abbreviation as in the �� option of the ��
�� com-
mand. In this way ������� can take the values ���*, ������	�, or
����, for example (see also ��� B ��
��). This option can be used
several times in a plugin command.

�5 	����� / �����������
G	����� , �����������������G	�����
From version 1.4.8: a regular expression that selects all paths or par-
titions with which it matches. Upper/lower case is ignored here. The
following example checks all partitions that end with ��+ thru ���:

159



7 Testing Local Resources

nagios@linux:nagios/libexec$ ./check_disk -w 10% -r ’md[0-2]$’

DISK OK - free space: / 281 MB (31% inode=80%); /usr 2226 MB (24% i

node=77%);| /=626MB;861;;0;957 /usr=6897MB;8650;;0;9612

The swap partition &���&��- is ignored here.

�� 	����� / ����������
G	����� , ����������������G	�����
From version 1.4.8: a regular expression to check partitions and/or
paths. Like �5, except that it is now case-sensitive.

�. / �����
From version 1.4.10: checks all partitions and file systems. The equiv-
alent of �5 P�;P.

�6 	����� / ������������������
G	����� ,
������������������������G	�����
From version 1.4.10: a regular expression that excludes paths or par-
titions that match it from the check. Upper/lower case is ignored.

�� 	����� / �����������������
G	����� ,
�����������������������G	�����
From version 1.4.10: like �6, except that it is now case-sensitive.

In addition the plugin has the following options:

�� / �������������
With this switch, the plugin shows only the file systems or partitions
that are in a WARNING or CRITICAL state.

�� / ����
�������
From version 1.4 on, �
�������� by default displays the file system
path (e.g., &
��). With �� you are told instead what physical device
(e.g., &���&���2) is involved.

�� / �������
From version 1.4 on, �� can be used multiple times. If you want to
test several file systems at the same time, but using different limit
values, �� can be used to delete old limit values that have been set:

-w 10% -c 5% -p / -p /usr -C -w 500 -c 100 -p /var

The order is important here: the limit values are valid for the file
system details until they are reset with ��. Then new limits must be
set with �� and ��.

�� / �������
Only checks local file systems, others–file systems mounted via NFS,
for example–are ignored.

160



7.1 Free Hard Drive Capacity

�# / ��������������	� (ab Version 1.4.10)
Checks local file systems for the specified thresholds, but checks net-
work file systems only for availability. With this switch you can test,
for example, whether a stale file handle exists for a path connected
via NFS.2

�� �	�������� / �����
������G�	��������
Refers to the thresholds of the sum of all specified partitions and
paths. Without this switch the plugin compares each path and each
partition separately with the thresholds. �� requires a name to be
given, which the plugin includes as additional information in the out-
put:

nagios@linux:nagios/libexec$ ./check_disk -g CLUSTER -w 10%\

-r ’md[0-3]’

DISK OK - free space: CLUSTER 7437 MB (38% inode=86%);| CLUSTER=11

719MB;18163;;0;20182

This option must be placed in front of the path specification to which
it refers.

�� ������� / �������
�G�������
After ������� seconds have expired the plugin stops the test and
returns the CRITICAL status. The default is -+ seconds.

Here is a somewhat more extensive example of the use of �
��������:

user@linux:nagios/libexec$ ./check_disk -w 10% -c 5% -p / -p /usr \

-p /var -C -w 5% -c 3% -p /net/emil1/a -p /net/emil1/c -e

DISK WARNING - free space: /net/emil1/c 915 MB (5%);| /=146MB;458;483;0;

509 /usr=1280MB;3633;3835;0;4037 /var=2452MB;3633;3835;0;4037 /net/emil1

/a=1211MB;21593;22048;0;22730 /net/emil1/c=17584MB;17574;17944;0;18499

Everything is in order on the file system &, &
��, and &���, since more
space is available on them—as can be seen from the performance data—
than the limit value of 10 percent (for a warning), and certainly more than
5 percent (for the critical status). The file systems &���&����-&� and
&���&����-&� encompass significantly larger ranges of data, which is why
the limit values are set lower, after the previous ones have been deleted
with ��.

�� ensures that Nagios shows only the file systems that really display an
error status. In fact the output of the plugin before the I sign, with &���&
����-&�, only displays one single file system. The performance informa-
tion after the pipe can only be seen on the command line—it contains all

2 The error message +;� 
�	�� ���� �	���� indicates the non-availability of the NFS
path.

161



7 Testing Local Resources

file systems tested, as before. This is slightly confusing, because a Nagios
plugin restricts its output to a single line, which has been line wrapped here
for this printed version.

7.2 Utilization of the Swap Space

The �
�������� plugin tests the locally available swap space:

�� ����� / ���������G�����
The warning limit can be specified as a percentage or as an integer,
as with �
��������, but the integer value is specified in bytes, not in
kilobytes!

If at least 10 percent should remain free, specify �� -+9. The integer
specification refers to the remaining free space, too.

�� ����� / ����������G�����
Critical limit, similar to the warning limit.

�� / ����������
Tests the threshold values for each swap partition individually.

The following example tests to see whether at least half of the swap space is
available. If there is less than 20 percent free swap space, the plugin should
return a critical status. After the I sign the program again provides perfor-
mance data, which is logged by Nagios but not displayed in the message on
the Web interface:

user@linux:nagios/libexec$ ./check_swap -w 50% -c 20%

swap OK: 100% free (3906 MB out of 3906 MB) |swap=3906MB;1953;781;0;3906

7.3 Testing the System Load

The load on a system can be seen from the number of simultaneously run-
ning processes, which is tested by the �
�������� plugin. With the help
of the 
����� program, it determines the average value for the last minute,
the last five minutes, and the last 15 minutes. 
����� displays these values
in this sequence after the keyword ���� �������:

user@linux:~$ uptime

16:33:35 up 7:05, 18 users, load average: 1.87, 1.38, 0.74

�
�������� has only two options (the two limit values), but these can be
specified in two different ways:

162



7.4 Monitoring Processes

�� ����� / ���������G�����
This option specifies the warning limit either as a simple floating
point decimal (2�+) or as a comma-separated triplet containing three
floating point decimals (-+�+DB�+D2�+).

In the first case, the limit specified applies to all three average val-
ues. The plugin issues a warning if (at least) one of these is exceeded.
In the second case the triplet allows the limit value to be specified
separately for each average value. Here as well, �
�������� issues
a warning as soon as one of the average values exceeds the limit de-
fined for it.

�� ����� / ����������G�����
This specifies the critical limit in the same way as �� specifies the
warning limit. These critical limit values should be higher than the
values for ��.

�� / �������
 (from Version 1.4.9)
Divides the system load determined by the number of existing CPU
kernels, to get a better idea of the load per CPU kernel.

In the following example Nagios would raise the alarm if more than 15 pro-
cesses were active on average in the last minute, if more than 10 were active
on average in the last five minutes, or if eight were active on average in the
last 15 minutes. There is a warning for average values of ten, eight, or five
processes:

user@linux:local/libexec$ ./check_load -w 10.0,8.0,5.0 -c 15.0,10.0,8.0

OK - load average: 1.93, 0.95, 0.50| load1=1.930000;10.000000;15.000000;

0.000000 load5=0.950000;8.000000;10.000000;0.000000 load15=0.500000;

5.000000;8.000000;0.000000

7.4 Monitoring Processes

The �
��������� plugin monitors processes according to various criteria.
Usually it is used to monitor the running processes of just one single pro-
gram. Here the upper and lower limits can also be specified.

����, for example, the name service of Samba, always runs as a daemon
with two processes. A larger number of ���� entries in the process table is
always a sure sign of a problem; it is commonly encountered, especially in
older Samba versions.

Services such as Nagios itself should only have one main process. This can
be seen by the fact that its parent process has the process ID -, marking it
as a child of the ���� process. It was often the case, in the development

163



7 Testing Local Resources

phase of Nagios 2.0, that several such processes were active in parallel after
a failed restart or reload, which led to undesirable side effects. You can test
to see whether there really is just one single Nagios main process active, as
follows:

nagios@linux:nagios/libexec$ ./check_procs -c 1:1 -C nagios -p 1

PROCS OK: 1 process with command name ’nagios’, PPID = 1

The program to be monitored is called ������ (option ��), and its parent
process should have the ID - (option ��). Exactly one Nagios process must
be running, no more and no less; otherwise the plugin will issue a CRITICAL
status. This is specified as a range: �� -!-.

Another example: between one and four simultaneous processes of the
OpenLDAP replication service ��
��� should be active:

nagios@linux:nagios/libexec$ ./check_procs -w 1:4 -c 1:7 -C slurpd

PROCS OK: 1 process with command name ’slurpd’

If the actual process number lies between - and 7, the plugin returns OK,
as is the case here. If it finds between five and seven processes, however,
a warning will be given. Outside this range, �
��������� categorizes the
status as CRITICAL. This is the case here if there are either no processes
running at all, or more than seven running.

Instead of the number of processes of the same program, you can also mon-
itor the CPU load caused by it, its use of memory, or even the CPU runtime
used. �
��������� has the following options:

�� ���	�!��� / ���������G���	�!���
The plugin issues a warning if the actual values lie outside the range
specified by the start and end value. Without further details, it as-
sumes that it should count processes: �� �!-+ means that �
����
����� gives a warning if it finds less than two or more than ten pro-
cesses.

If you omit one of the two limit values, zero applies as the lower
value, or infinite as the upper limit. This means that the range !-+
is identical to +!-+; -+! describes any number larger than or equal
to 10. If you just enter a single whole number instead of a range, this
represents the maximum. The entry 2 therefore stands for +!2.

If you swap the maximum and minimum, the plugin will give a warn-
ing if the actual value lies within the range, so for �� -+!2 this will
be if the value is 5, 6, 7, 8, 9, or 10. You may always specify only one
interval.

�� ���	�!��� / ����������G���	�!���
This specifies the critical range, in the same way as for the warning
limit.

164



7.4 Monitoring Processes

�� ���� / ��������G����
This switch selects one of the following metrics for the test:

�5:�1: number of processes (the default if no specific type is given)

H1W: the virtual size of a process in the memory (virtual memory
size), consisting of the main memory space that the process
uses exclusively, plus that of the shared libraries used. These
only take up memory space once, even if they are used by sev-
eral different processes. The specification is given in bytes.

511: the proportion of main memory in KB that the process actually
uses for itself (Resident Set Size), that is, H1W minus the shared
memory.

��$: CPU usage in percent. The plugin here checks the CPU usage
for each individual process for morning and critical limits. If
one of the processes exceeds the warning limit, Nagios will issue
a warning. In the text output the plugin also shows how many
processes have exceeded the warning or critical limit.

/#.�1/<: The overall time that has passed since the process was
started.

�� ����� / �������G�����
This restricts the test to processes with the specified status flag.3 The
plugin in the following example gives a warning if there is more than
one zombie process (status flag: W):

nagios/libexec@linux: $ ./check_procs -w 1 -c 5 -s Z

PROCS OK: 0 processes with STATE = Z

Things become critical here if more than five zombies “block up” the
process table. Several states can be queried at the same time by by
adding individual flags together, as in �� <1W. Now Nagios cancels
the processes that are in at least one of the states mentioned.

�� ���� / ������G����
This switch restricts the test to processes whose parent processes
have the parent process ID (���� ). The only PPIDs that are known
from the beginning, and that do not change, are 0 (started by the ker-
nel, and usually only concerns the init process) and 1 (the init process
itself).

�� ���� / �����
G����
This option filters processes according to the percentage of CPU they
use:

3 The following states are possible in Linux: � (uninterruptible waiting, usually a Disk
Wait), 8 (running process), � (wait status), . (process halted), < (paging, only up to ker-
nel 2.4), - (a finished, killed process), and = (zombie). Further information is provided
by �	� �
.

165



7 Testing Local Resources

nagios/libexec@linux: $ ./check_procs -w 1 -c 5 -P 10

PROCS OK: 1 process with PCPU >= 10,00

The plugin in this example takes into account only processes which
have at least a ten percent share of CPU usage. As long as there is just
one such process (�� -), it returns OK. If there are between two and
five such processes, the return value is a WARNING. With at least six
processes, each with a CPU usage of at least ten percent, things get
critical.

�� 	�� / �����G	��
This option filters out processes that occupy at least 	�� bytes of
main memory. It is used like ��.

�� 
�! / �����G
�!
This option filters out processes whose VSZ (see above) is at least 
�!
bytes. It is used like ��.

�
 ���	 / ��
���G���	
This option filters out processes that belong to the specified user (see
example below).

�� J��	���J / �����
����������GT��	���T
Filters out commands whose argument list contains ��	��� . ��
����, for example, refers to all processes that work with ;���� 	����;
�� �� to all processess that are called with the -v flag.

�� ������� / ���������G�������
This causes the process list to be searched for the specified command
name. ������� must exactly match the command specified, without
a path (see example below).

�� ������� / �������
�G�������
After ������� seconds have expired, the plugin stops the test and
returns the CRITICAL status. The default is -+ seconds.

The following example checks to see whether exactly one process called
������ is running on a mail server on which the Cyrus IMAPd is installed.
No process is just as much an error as more than one process:

user@linux:nagios/libexec$ ./check_procs -w 1:1 -c 1:1 -C master

CRITICAL - 2 processes running with command name master

The first attempt returns two processes, although only a single Cyrus Master
process is running. The reason can be found if you run ��:

166



7.5 Checking Log Files

user@linux:~$ ps -fC master

UID PID PPID C STIME TTY TIME CMD

cyrus 431 1 0 2004 ? 00:00:28 /usr/lib/cyrus/bin/master

root 1042 1 0 2004 ? 00:00:57 /usr/lib/postfix/master

The Postfix mail service also has a process with the same name. To keep
an eye just on the master process of the IMAPd, the search is additionally
restricted to processes running with the permissions of the user ���
�:

user@linux:nagios/libexec$ ./check_procs -w 1:1 -c 1:1 -C master -u \

cyrus

OK - 1 processes running with command name master, UID = 96 (cyrus)

7.5 Checking Log Files

Monitoring log files is not really part of the concept of Nagios. On the
one hand, the syslog daemon notices critical events there immediately, so
that an error status can be correctly determined. But if the error status
continues, this cannot be seen in the log file in most cases.

Correspondingly the plugins described here can determine only whether
other, new entries on error events are added. In order to communicate
information on a continuing error behavior to Nagios via a log file, the
service monitored must log the error status regularly—at least at the same
intervals as Nagios reads the log file—and repeatedly. Otherwise the plugin
will alternate between returning an error status, and then an OK status,
depending on whether the (continuing) error has in the meantime turned
up in the log or not.

Under no circumstances may Nagios repeat its test. The parameter ����
�
������������ (see page 63) must have the value -. Otherwise Nagios
would first assign the error status as a soft state, would repeat the test, and
would almost always arrive at an OK, since it only takes into account new
entries during repeat tests. �����
������������ G - ensures that Nagios
diagnoses a hard state after the first test.

For events that log an error just once, Nagios has volatile services, described
in Section 14.5.2 from page 309. For services defined in this way, the system
treats every error status as if it was occurring for the first time (causing a
message to be sent each time, for example).

Nagios periodically performs (active) checks with the plugins introduced
here. If the entry sought does not reoccur, the plugin returns an OK. This
is desired in many cases, and the administrator does not need to worry
about the earlier error event. But if an error event needs to be handled
in all cases, a simple Nagios check is no longer sufficient, since it will be

167



7 Testing Local Resources

easily overlooked due to the OK of a subsequent check. A slightly different
approach, in which an administrator has to explicitly confirm every error
result, is introduced in Chapter 23 on page 531.

7.5.1 The standard plugin �������
�

With �
�������, Nagios provides a simple plugin for monitoring log files.
It creates a copy of the tested log file each time it is run. If the log file has
changed since the previous call, �
������� searches the newly added data
for simple text patterns. The plugin does not have any longer options and
just has the states OK and CRITICAL:

�F �������
This is the name and path of the log file to be tested. It must be
readable for the user ������.

�: ������
This is the name and path of the log file copy. The plugin just ex-
amines the difference between ������ and ������� when it is run.
Afterward it copies the current log file to ������ . ������ must con-
tain the absolute path and be readable for the user ������.

�%  ��	�
This is the pattern searched for in examining the log file. Not found
means OK; a match returns the CRITICAL status.

It is recommended that you generally do not use messages of the type re-
covery notification (OK after an error state).

An OK in a repeated test just means that no new error in events have oc-
curred since the last test. The ����	��������������� parameter (see
page 64) in the service definition should therefore not contain an �.

The following command examines the file &���&���&�
�
 for failed logins:

nagios@linux:local/libexec$ ./check_log -F /var/log/auth \

-O /tmp/check_log.badlogin -q "authentication failure"

(1) < Jan 1 18:47:56 swobspace su[22893]: (pam_unix) authentication

failure; logname=wob uid=200 euid=0 tty=pts/8 ruser=wob rhost= user=root

This produces one hit. The plugin does not show its return value in the
text, but it can be displayed in the shell with ��
� E0. In the example, a �
for CRITICAL is returned.

If you examine the log file for several different events, you must specify a
separate ������ for each log file:

168



7.5 Checking Log Files

./check_log -F /var/log/messages -O /tmp/check_log.pluto -q "pluto"

./check_log -F /var/log/messages -O /tmp/check_log.ntpd -q "ntpd"

Even if you are searching in the same original log file, you cannot avoid us-
ing two different ������s: otherwise �
������� would not work correctly.

7.5.2 The modern variation: �������
�	���

As an alternative, The Nagios Exchange4 provides a completely new plugin
for monitoring log files. �
����������� represents a further development
of the Perl plugin �
�����������, which is included in the ������� direc-
tory for Nagios plugins but is not installed automatically.

�
����������� can examine several log files simultaneously for events, in
contrast to �
������� and �
�����������. It requires a configuration file
to do this.

It does have a simple command line mode, but this functions only if you
specify a single log file and a single regular expression simultaneously. But
the really interesting feature of �
����������� is that you can perform
several examinations in one go. This is why we will not spend any more
time describing the command line mode.

Initially we create a configuration file with roughly the following contents,
preferably in the directory &���&������:

# /etc/nagios/check_logs.cfg

$seek_file_template=’/var/nagios/$log_file.check_log.seek’;

@log_files = (

{’file_name’ => ’/var/log/messages’,

’reg_exp’ =>’ntpd’,

},

{’file_name’ => ’/var/log/warn’,

’reg_exp’ =>’(named|dhcpd)’,

},

);

1;

The Perl variable E�����	������������ contains the path to the file in
which the plugin saves the current position of the last search. �
���������
�� remembers here at what point in the log file it should carry on searching
the next time it is run. This means that the plugin does not require a copy of
the processed log file. Instead of the variable E����	���, it uses the name
of the log file to be examined in each case and creates a separate position
file for each log file.

4 ������������	
��
�#��	�
����
�3�6$/(

169



7 Testing Local Resources

What exactly �
����������� is to do is defined by the Perl array X����
	����. The entry 	�������� points to the log file to be tested (with the
absolute path), and ������� contains the regular expression,5 for which
�
����������� should search the log file. In the example above this is just
a simple text called ���� in the case of the &���&���&�������� log file, but
there is an alternative in the case of &���&���&����: the regular expression
(�����I�
���)matches lines that contain either the text ����� or the text
�
���.

The only specification that the plugin itself requires when it is run is the
configuration file (option ��) :

nagios@linux:local/libexec$ ./check_logs.pl -c \

/etc/nagios/check_logs.cfg

messages => OK; warn => OK;

nagios@linux:local/libexec$ ./check_logs.pl -c \

/etc/nagios/check_logs.cfg

messages => OK; warn => (4): Jul 2 14:33:25 swobspace dhcpd:

Configuration file errors encountered -- exiting;

The first command shows the basic principle: in the text output the plugin
for each log file announces separately whether it has found a matching
event or not. In the above example it didn’t find anything, so it returns OK.
In the second command the plugin comes across four relevant entries in
the ���� log file, but it doesn’t find any in &���&���&��������. Because
of this, the plugin returns a WARNING; OK is given only if no relevant events
were found in any of the log files checked. In its output line, after (7)!, the
plugin remembers the last of the four lines found.

7.5.3 The Swiss Army knife: �������
�����	

If you have many requirements from a log file check and the tools intro-
duced so far do not meet your needs, then you really should take a look
at the plugin �
�������	���� by Gerhard Laußer. As well as sophisti-
cated search options, it can handle any rotation methods you please, so
that no information will be lost after a rotation. Its range of functions can
be extended by scripts, which can be used to restart applications that have
crashed, to send SNMP traps, or send passive check results to an NSCA
daemon via ��������� (Section 14.4, page 305).

For simple tasks the plugin can be operated easily from the command line,
but to use it in more advanced ways you will need to have some knowledge
of Perl: the configuration file that is needed to make use of all the features
uses the Perl syntax.

5 In the form of Perl-compatible regular expressions (PCRE, see �	� ������), since
��������

��� is a Perl script.

170



7.5 Checking Log Files

The plugin6 is unpacked in a suitable directory, for example in &
��&�����&
���:

linux:local/src # tar xvzf /pfad-zu/check_logfiles-2.3.1.2.tar.gz

...

linux:local/src # cd check_logfiles-2.3.1.2

linux:check_logfiles-2.3.1.2 # ./configure \

--with-seekfiles-dir=/var/tmp \

--with-protocols-dir=/var/tmp

...

linux:check_logfiles-2.3.1.2 # make && make install

...

The installation is done with the three commands ���	��
�� YY ���� YY
���� �������. �����
�����	�������� specifies the directory in which
�
�������	���� writes status information, and �����
�������������
specifies the directory in which �
�������	����explicitly retains matches
it has found. When doing this you should select a directory that is not
deleted directly after every reboot. Logging can be switched off in the con-
figuration, depending on the check defined.

On the command line, �
�������	���� offers the following options:

�����G���������	
Indicates individual checks, to make better distinction between them.
The names of the variables in the performance data also start with
this designator, so that the values can later be reassigned to a check.
Specifying ����� is optional, but the author of the plugin generally
recommends its use.

�����	���G�������
Specifies the name and path of the log files to be examined. �
����
���	���� takes note of the last line of the file to be considered during
each check, so that it can continue at the same place the next time it
is called. In addition, �
�������	���� saves other information such
as inode and timestamp, so that it can detect log file rotations.

����������G	������� ������
Specifies the rotation procedure for the log file: ������+���-�� is
used if if you want to turn ������� into ��������+ and turn this
into ��������-���.

������+�����-�� means that ������� is first compressed to ����
�����+��� and is later renamed ��������-���.

����������B�� states that ������� will be converted into ��������




�������.

6 ��������������
����������
�������	
��
���������
����


171



7 Testing Local Resources

������+���- describes the rotation method that turns ������� into
��������+ and creates the file ��������- in the next rotation step.


�
� in turn describes the variation " ������� is turned into :#<����
����".

If a suitable rotation method is missing, you can specify a regular
expression that matches the archived files instead. For Debian, you
therefore specify ����������GP�������L�(+IZ+�,[KL���). This is
in case the ending �+ is missed during the initial rotation of the file,
and if all older archived files end in ������	���.

�����������������G	�����
Regular expression in Perl syntax that triggers a CRITICAL. More de-
tailed information on this is provided by ��� ������.

����������������G	�����
Like �����������������, except that the regular expression here
triggers a WARNING.

������������
Switches off logging of matches to a separate file.

��������������
Restricts the evaluation of log files of a syslog server to lines that the
server itself has entered.

��������������G����������
Restricts the evaluation of log files of a syslog server to lines that
originate from the syslog client ���������� .

�	 ����������
Specifies a configuration file that allows a more extensive configu-
ration than that allowed by just a few command line parameters. A
knowledge of Perl is essential for this (see page 173).

��
Switches on debugging. Useful for searching for errors; this option
should not be used during normal operation.

�
�������	���� is initialized when it is first called so that it can orient
itself. The plugin only takes into account log entries that are subsequently
appended to the log file, so it cannot evaluate already existing details.

For demonstration purposes we will first use the ������ program to gen-
erate an entry in the file &���&���&��������:7

7 We are assuming here that the �	���� facility is logged with the ���� priority in
��	����
���

	
�
. This is dependent on the distribution, however. In Debian, such
entries land in ��	����
��	�������
.

172



7.5 Checking Log Files

user@linux:~$ logger -p daemon.info hellowob

The log file now contains the following entry:

Dec 16 17:46:06 swobspace wob: hellowob

A simple call of �
�������	���� returns the following result:

nagios@linux:nagios/libexec$ ./check_logfiles --tag=hellowob \

--logfile=/var/log/messages --criticalpattern=’hellowob’

CRITICAL - (1 errors in check_logfiles.protocol-2007-12-16-17-46-08) - D

ec 16 17:46:06 swobspace wob: hellowob |hellowob_lines=2 hellowob_warni

ngs=0 hellowob_criticals=1 hellowob_unknowns=0

All variables in the performance data are appended to the 
������� tag so
that the respective events can be referenced again, if �
�������	���� is to
simultaneously search for several different entries.

Re-running �
�������	���� again returns an OK, since none of the 32
newly added entries (
�������������G*�) contains the text being sought:

nagios@linux:nagios/libexec$ ./check_logfiles --tag=hellowob \

--logfile=/var/log/messages --criticalpattern=’hellowob’

OK - no errors or warnings |hellowob_lines=32 hellowob_warnings=0 hellow

ob_criticals=0 hellowob_unknowns=0

Configuration Files

Configuration files for �
�������	���� basically contain an array consist-
ing of search instructions, each of which are written as an anonymous hash:

@searches = (

{ search_instruction_1 },

{ search_instruction_2 },

...

{ search_instruction_n },

)

The array is called X�����
��; each instruction enclosed in \] is a search
instruction. A configuration file for the 
������� example could look like
this:

@searches = (

{

tag => ’hellowob’,

logfile => ’/var/log/messages’,

criticalpatterns => ’hellowob’,

173



7 Testing Local Resources

rotation => ’debian’,

options => ’noprotocol,nocase’,

},

)

The instructions tag and �������� correspond to the command line pa-
rameters of the same name. The instructions ����������������and ����
������������ are notated here –in contrast to the equivalent command
line parameter–in the plural. The configuration file also allows multiple
details:

criticalpatterns => [’VIRUS found’, ’hellowob’],

Instead of a scalar, an anonymous array may also be specified within square
brackets. Here are some more instructions for X�����
��:

���
������
Archive directory for rotated log files. The default is the directory in
which the log file is located.

����
Specifies the type of log file: �������� is accepted by default if the
parameter �������� is set. ������ describes log files without rota-
tion, �
�������	����does not continue searching for archived files.
����
�� indicates files that should always be searched from the be-
ginning, such as sockets or files from the &���� directory in Linux.
For AIX, the option ����� is also available: instead of a real file, the
plugin now searches for the output of the ����� command.

����������������
Like the command line option �����������������, except that now
a number of expressions may be specified as an array:

criticalpatterns => [’.*hallowob.*’, ’.*hellowob.*’, ’!dontcryforme’],

The exclamation mark ensures a CRITICAL if no line is found with
the text �������	����.

������������������
Like ����������������, except as an exception: If a line matches an
expression from ����������������, a CRITICAL would be triggered.
If an expression from ������������������ also matches this very
same line, this then stops the critical state. The instruction is used to
intercept special cases.

���������
���
���
Sets a threshold. The value 2, for example, means that only every
fifth match from ���������������� is really counted as CRITICAL.
Below this threshold, the result remains OK.

174



7.5 Checking Log Files

���������������
Like ����������������, except for warnings.

�����������������
Like ������������������, except for warnings.

��������
���
���
Like ���������
���
���, except for warnings.

����������
Sometimes errors can rectify themselves. In such cases the adminis-
trator does not want to be woken up by unnecessary alarms.

���������� cancels all previous WARNINGs and CRITICALs. It is
possible to specify multiple details (see ����������������).

������
Allows a script to be executed in case a match is found. To follow-
ing instructions supplement this: ������������ passes additional
command line options to the script, ����������� allows to specify
strings that are expected by the script on STDIN, and �����������
forces �
�������	���� to take a break after the script has been exe-
cuted.

�������
This instruction allows further settings options to be made, the mean-
ings of which can be negated by placing the prefix �� in front of the
option:

������ Executes the specified script. The default is ��������.

����������� Controls whether the return value of the script and
its output should be included in the match list. The default is
�������������.

�
�������������� Defines whether the return value and the out-
put of the script should replace previous matches (the default
is ���
��������������). The return value + (OK) of the script
would, for example, suppress a found match, by overwriting the
return value that is normally returned by �
�������	����.

�������� Controls whether matches are to be retained in a separate
log file. (The default is ��������).

��
�� Should matches be counted or not? ��
�� is the default.
If this option is switched off with ����
��, you can still use
�
�������	���� to just execute scripts.

������������ Corresponds to the option �������������� (the de-
fault is ��������������).

175



7 Testing Local Resources

������������G������ Like ��������������, except that an addi-
tional filter may be specified, for example, to search only for the
files of a specific client (�������������� is the default).

���	���� Should performance data be displayed? The default is
���	����.

���	�������� If a log file does not exist, �
�������	���� outputs
UNKNOWN, in accordance with the default, ���	��������. The
parameter �����	�������� tells the plugin to omit an error
message if the log file is missing.

���� ������ ignores upper/lower case. The default, with ����, is
the opposite of this.

������G������� With this option �
�������	���� notices an er-
ror state for the amount of time specified. Normally a subse-
quent check that does not find any more matches would return
an OK, so that the administrator might overlook an important
entry.

Let us assume that you only accept the truce when there have
been no more matches in the log file for two hours. Then the
check with ������GC�++ will announce an error state for up to
two hours. Only after this period has expired will �
��������
	���� return to an OK, provided that in the meantime no new
entry restarts the two-hour time limit.

If the search pattern contains ���������, �
�������	���� re-
turns an OK directly after a match, that is, before the specified
time has expired.

�����
���
�����
�� If an event does not attain the number of
matches required in the ;�
���
��� options, no error is an-
nounced. The question here is how the matches overall should
be handled. �����
���
�����
�� (the default) saves the num-
ber of matches until the next check and adds these together
until the threshold is reached and an error is triggered. The
parameter �������
���
�����
�� prevents the event counter
from always being reset to zero between two checks.

It is beyond the scope of this book to describe all the possible applications
of �
�������	����. For this reason, we refer to the documentation, avail-
able in German and English, on the �
�������	����Web site.8

8 ��������������
�����������
�������	
��
���������
����


176



7.6 Keeping Tabs on the Number of Logged-In Users

7.6 Keeping Tabs on the Number of Logged-In
Users

The plugin �
����
���� is used to monitor the number of logged-in users:

user@linux:nagios/libexec$ ./check_users -w 5 -c 10

USERS CRITICAL - 20 users currently logged in |users=20;5;10;0

It has just two options:

�� �����	 / ���������G�����	
This is the threshold for the number of logged-in users after which
the plugin should give a warning.

�� �����	 / ����������G�����	
This is the threshold for a critical state, measured by the number of
logged-in users.

The performance data after the I is as usual visible only on the command
line; Nagios does not include it in the Web interface.

7.7 Checking the System Time

7.7.1 Checking the system time via NTP

The two plugins �
������� and �
������������ compare the clock time
of the local computer with that of an available NTP server in the network.
If the Nagios server keeps time via NTP accurately enough, so that it can
serve as a reference itself, then it can also be used as a network plugin,
provided that the host to be checked in the network has an NTP daemon
installed.

From plugin version 1.4.11, the plugins �
������������ and �
��������
���� (Section 6.12, page 154) replace �
�������, which contains the func-
tions of both: the comparison of the local system time with an NTP server
described here and the health check of the NTP server itself. The options
here apply both to �
������� and to �
������������.

In the simplest case, �
������� is called, specifying the computer (here:
���������) whose time should be compared with that of the local com-
puter:

nagios@linux:nagios/libexec$ ./check_ntp_time -H ntpserver

NTP OK: Offset -0.009505749214 secs|offset=-0.009506s;60.000000;120.0000

00;

177



7 Testing Local Resources

The deviation determined here amounts to just 9.5 milliseconds, a good
value. How much deviation can be tolerated depends on the particular in-
tended use. If you want to compare the log file entries of several different
computers, they ought to be NTP-synchronized. Then you can certainly
use �� - �� �, that is, assign a deviation of two seconds as critical. In
environments in which Kerberos is used for authentication, time synchro-
nization of all hosts involved is also important, but not quite as critical:
Microsoft’s Active Directory under Windows Server 2003 tolerates a maxi-
mum deviation of five minutes, and only when there are larger deviations
do real problems arise.

�
������������ and �
������� have the following options:

�8 ���	��� / ��
���G���	���
This is the NTP server with which the plugin should compare the
local system time.

�� ��	� / ������G��	�
The UDP port on which the NTP server runs. The default is port -�*.

�� ��	������ / ���������G��	������
This is the warning limit, specified in the standard threshold format
(Section 24.1.5, page 557). The warning is given if the fluctuation
of the local system time is larger than the threshold specified. The
default is 60 seconds.

�� ��	������ / ����������G��	������
Critical threshold in seconds, specified in the standard threshold for-
mat (Section 24.1.5, page 557). If the local system time deviates more
than the given number of seconds (in the default setting 120 seconds)
from that of the NTP server, the status becomes CRITICAL.

�% / ��%
��� (only �
������������)
Returns UNKNOWN instead of CRITICAL if the NTP server–for what-
ever reason–does not provide an offset.

7.7.2 Checking system time with the time protocol

Apart from the Network Time Protocol NTP there is another protocol, older
and more simple: the Time Protocol described in RFC 868, in which com-
munication takes place via TCP port 37. On many Unix systems the corre-
sponding server is integrated into the inet daemon, so you do not have to
start a separate daemon. With �
��������, Nagios provides an appropri-
ate test plugin.

178



7.7 Checking the System Time

�
�������� can also be used as a network plugin, in a similar way to
�
�������, but this again assumes that the time service is available for ev-
ery client. In most cases it will therefore be used as a local plugin that com-
pares its own clock time with that of a central time server (here: �������):

nagios@linux:nagios/libexec$ ./check_time -H timesrv -w 10 -c 60

TIME CRITICAL - 1160 second time difference| time=0s;;;0 offset=1160s;10

;60;0

The performance data after the I sign, not shown in the Web interface,
contains the response time in seconds, with ���� (here: zero seconds);
�		��� describes by how much the clock time differs from that of the time
server (here: --'+ seconds). The other values, each separated by a semi-
colon, provide the warning limit, the critical threshold, and the minimum
(see also Section 19.1 from page 404). Since we have not set any threshold
values with the options �4 or ��, the corresponding entries for ���� are
empty.

�
�������� has the following options:

�8 ���	��� / ��
�������G���	���
This is the host name or IP address of the time server.

�� ��	� / ������G��	�
This is the TCP port specification, if different from the default *C.

�
 / ��
��
Normally the time server is queried via TCP. With �
 you can use UDP
if the server supports this.

�� ������	 / ������������������G������	
If the local time deviates more than ������	 seconds from that of
the time server, the plugin returns a WARNING. ������	 is always
positive, and this covers clocks that are running both slow and fast.

�� ������	 / �������������������G������	
If there is more than ������	 seconds difference between the local
and the time server time, the return value of the plugin is CRITICAL.

�4 ������	 / �����������������G������	
If the time server needs more than ������	 seconds for the response,
a WARNING is returned.

�� ������	 / ������������������G������	
If the time server does not respond within ������	 seconds, the
plugin reacts with the return value CRITICAL.

179



7 Testing Local Resources

7.8 Regularly Checking the Status of the Mail
Queue

The �
��������% plugin can be used to monitor the mail queue of a mail
server for e-mails that have not yet been delivered. �
��������% runs
the program ����% of the mail service installed. Unfortunately each MTA
interprets the mail queue differently, so the plugin can evaluate only mail
queues from mail services that the programmer has taken into account.
These are, specifically: ��������, %����, ����	��, and ����. The �
����
����% plugin has the following options:

�� �����	 / ���������G�����	
If there are at least �����	 mails in the mail queue, the plugin gives
a warning.

�� �����	 / ����������G�����	
As soon as there are at least �����	 of mails in the queue waiting to
be delivered, then the critical status has been reached.

�4 �����	����������� / ��4������G�����	�����������
This is the warning limit with respect to the number of recipient do-
mains of a message waiting in the mail queue. Thus �4 * generates
a warning if there are any mails in the queue that are addressed to
three or more different recipient domains.

�� �����	����������� / ����������G�����	�����������
This is the critical threshold with respect to the number of recipient
domains (like �4).

�� ������ / ������������G������ (from version 1.4)
This specifies the mail service used. Possible values for ������ are
�������� (the default), %����, ����	��, and ����.

�� ������� / �������
�G�������
After ������� seconds, the plugin stops the test and returns the
CRITICAL status. The default here—as an exception—is -2 seconds
(usually it is 10 seconds).

In the following example, Nagios should give a warning if there are at least
five mails in the queue; if the number reaches ten, the status of the MTAs
Postfix used here becomes CRITICAL:

user@linux:nagios/libexec$ ./check_mailq -w 5 -c 10 -M postfix

OK: mailq reports queue is empty|unsent=0;5;10;0

Since the queue is empty, �
��������% returns OK here.

180



7.9 Keeping an Eye on the Modification Date of a File

7.9 Keeping an Eye on the Modification Date of a
File

With the �
����	������� plugin you can monitor not only the last modi-
fication date of a file, but also its size. In the simplest case it is just run with
the name and path of the file to be monitored:

user@linux:nagios/libexec$ ./check_file_age /var/log/messages

WARNING - /var/log/syslog/messages is 376 seconds old and 7186250 bytes

Here the plugin gives a warning, since the warning limit set is 240 seconds
and the critical limit, 600 seconds. The last modification of the file was 376
seconds ago—that is, inside the warning range.

The file size is taken into account by �
����	������� only if a warning
limit for the file size (option �4) is explicitly specified. The plugin could
then give a warning if the file is smaller than the given limit (in bytes). The
defaults for the warning and critical limits here are both zero bytes.

�
����	������� has the following options:

�� ������	 / �������������G������	
If the file is older than ������	 9 (the default is �7+) seconds, the
plugin issues a warning.

�� ������	 / ��������������G������	
A critical status occurs if the file is older than ������	 (default: '++)
seconds.

�4 ��!� / ��������������G��!�
If the file is smaller than ��!� bytes, the plugin gives a warning. If the
option is omitted, + bytes is the limit. In this case �
����	�������
does not take the file size into account.

�� ��!� / ���������������G��!�
A file size smaller than ��!� bytes sets off a critical status. The default
is + bytes, which means that the file size is ignored.

�	 ���� / ��	���G����
The name of the file to be tested. The option may be omitted if you
instead—as in the above example—just give the file name itself as an
argument.

9 Because �����������	
� is a Perl script, it does not matter in this case whether an
integer or a floating point decimal is specified. Fractions of a second do not play a role
in the file system.

181



7 Testing Local Resources

7.10 Monitoring UPSs with ���
���

To monitor uninterruptible power supplies (UPS) from the company APC
there is the possibility, apart from the Network UPS Tools described in Sec-
tion 6.11 from page 149 of using the ���
��� daemon, optimized specifi-
cally for use with these UPSs. The software can be obtained from 
���!&&
�������
�������& and is licensed under the GPL, despite the fact that it
is vendor-dependent.

The principal function here is the capacity to be able to shut down systems
in the event of power failure, rather than a mere monitoring function with
Nagios. For this latter purpose, it is easier to configure the Network UPS
Tools.

Nearly all Linux distributions contain a working ���
��� package,10 so you
don’t have to worry about installing it. Nagios does not include an ���
���
plugin, but there is a very simple and effective script available for download
at 
���!&&������������-����&�
�������&: �
�������.11 It is also li-
censed under the GPL, but it has no network capabilities. The plugin can-
not be given a host when it is run, and it also does not support any other
types of options. Instead of this, internal commands control its functional-
ity, which are given as the first argument.

Executing �
������� ����
� tests whether the UPS is online. If this is the
case, the plugin returns the OK status, in all other cases it returns CRITICAL:

user@linux:nagios/libexec$ ./check_apc status

UPS OK - ONLINE

�
������� ���� ��	� �	�� checks the load currently on the UPS and
displays it as a percentage of the maximum capacity. A warning is given if
the load is greater than the warning limits specified in ��	� (in the follow-
ing example, 60 percent), CRITICAL if the load is greater than �	�� (here
80 percent):

user@linux:nagios/libexec$ ./check_apc load 60 80

UPS OK - LOAD: 39%

The load status of the UPS is checked by the command �
������� ��
����
��	� �	�� . Here the warning limit ��	� and the critical limit �	�� are
also given in percent. The value -++ means “fully loaded.” The plugin ac-
cordingly gives a warning if the load is smaller than the warning limit, and
a CRITICAL if the load is smaller than the critical limit:

user@linux:nagios/libexec$ ./check_apc bcharge 50 30

UPS OK - Battery Charge: 100%

10 At least SuSE and Debian use this package name.
11 It can also be obtained at: ������������	
��
�#��	�
����
�3�6&'3.

182



7.11 Nagios Monitors Itself

You can find out how long the saved energy will last with �
������� ����
��	� �	�� . Here �
������� gives a warning if the remaining time is less
than ��	� minutes, and a CRITICAL if the remaining time is less than �	��
minutes:

user@linux:nagios/libexec$ ./check_apc time 20 10

UPS OK - Time Left: 30 mins

7.11 Nagios Monitors Itself

If necessary, Nagios can even monitor itself: the included plugin, �
����
������, tests, on the one hand, whether Nagios processes are running and,
on the other hand, the age of the log file ���������� in the Nagios ���
directory, for example, &���&������&����������.

Despite this, the question needs to be asked: if Nagios itself is not running,
then the system simply cannot perform the plugin, which in turn cannot
deliver an error message. The solution to this problem consists in having
two Nagios servers, each of which addresses the locally installed plugin on
the opposite server, with the help of NRPE (see Chapter 10 from page 213).

If you have just one Nagios server you can also run �
���������� alone
via cron and have the return value checked using a shell script. In this case,
you take action yourself, as shown in Section 7.11.1, so that you are suitably
informed of this.

The plugin has the following options:

�� "����"��"������ / ���������G"����"��"������
This is the complete ������ command, including the path (e.g., ��
&
��&�����&������&���&������).

�F "����"��"������� / ��	�������G"����"��"�������
This is the path to where the Nagios log file ���������� is saved. The
file is located in the Nagios ��� directory.

�� ������	 / ���������G������	
This is the maximum age of the log file. If there have been no changes
to the file for longer than ������	 minutes, �
���������� issues a
warning.

You should make sure that this time specification is large enough:
if no errors are currently occurring, Nagios will not log anything in
the log file. The only reliable way to obtain a regular entry is with
the parameter ����������
�������������� in the configuration
file ��������	� (see page 601). The default value is 60 minutes.

183



7 Testing Local Resources

In the following example the log file should not be older than 60 minutes
(this corresponds to the default retention update interval; see page 601):

user@linux:nagios/libexec$ ./check_nagios -e 60 \

-F /var/nagios/nagios.log -C /usr/local/nagios/bin/nagios

NAGIOS OK: 1 process, status log updated 184 seconds ago

With one running Nagios process and a log file last changed 183 seconds
(about three minutes) ago, everything is in order here. If the �� parameter
is omitted, the plugin always gives a warning.

7.11.1 Running the plugin manually with a script

The following example script demonstrates how the plugin is called outside
the Nagios environment. It starts �
���������� initially as Nagios does
and then evaluates the return value. If the status is not +, it sends an e-
mail to the administrator ������������X�����������, using the external
����� program:

#!/bin/bash

NAGCHK="/usr/local/nagios/libexec/check_nagios"

PARAMS="-e 60 -F /var/nagios/nagios.log -C /usr/local/nagios/bin/nagios"

INFO=‘$NAGCHK $PARAMS‘

STATUS=$?

case $STATUS in

0) echo "OK : " $INFO

;;

*) echo "ERROR : " $INFO | \

/usr/bin/mailx -s "Nagios Error" nagios-admin@example.com

;;

esac

The script can be run at regular intervals via a cron job—such as every 15
minutes. But then it will also “irritate” the administrator every quarter of
an hour with an e-mail. There is certainly room for improvement in this
respect—but that would go beyond the scope of this book.

7.12 Hardware Checks with LM Sensors

Modern mainboards are equipped with sensors that allow you to check the
“health” of the system. In the ����������12 project it is also possible in

12 ��������������
��
��
����

184



7.12 Hardware Checks with LM Sensors

Linux to query this data via I2C or SMBus (System Management Bus, a I2C
special case).

To enable this, the kernel must have a suitable driver. Kernel 2.4.x normally
requires additional modules, which are included in the software.13 With a
little luck, your distribution may include precompiled modules (e.g., SUSE).
Kernel 2.6, however, already includes many drivers; here you just compile
the entire branch below 6�� 8������� 1������ �
�� �
�����.

It would take too much space here to detail the installation of the neces-
sary modules. We will therefore only go into detail for the �
�����������
plugin, and assume that the corresponding kernel driver is already loaded
as a module. Help is provided during operation with the ��������������
program from the ���������� package, which does a number of tests and
then tells you which modules need to be loaded. If all requirements are
fulfilled, running the ������� program will produce an output similar to
the following one, and shows that the onboard sensors are providing data:

user@linux:~$ sensors

fscher-i2c-0-73

Adapter: SMBus I801 adapter at 2400

Temp1/CPU: +41.00 C

Temp2/MB: +45.00 C

Temp3/AUX: failed

Fan1/PS: 1440 RPM

Fan2/CPU: 0 RPM

Fan3/AUX: 0 RPM

+12V: +11.86 V

+5V: +5.10 V

Battery: +3.07 V

The output depends on the hardware, so it will be slightly different for each
computer. Here you can see, for example, the CPU and motherboard tem-
peratures (41 and 45 degrees Celsius), the rotation speed of the fans, and
the voltages on the 12- and 5-volt circuits and on the battery. Depending
on the board design and the manufacturer, some details may be missing; in
this example, only the fan for the power supply F. -&�114 provides infor-
mation; F��*&.$U refers to an additional fan inside the computer box that,
although it is running, is not recorded by the chipset.

Apart from the standard options �
 (help function), �� (verbose), which dis-
plays the response of the sensors, and �H, which shows the plugin version,
the plugin itself has no special options. Warning and critical limits must
be set via the ���������� configuration. �
����������� only returns the
status given by the onboard sensors:

13 �������
�������������
������:��/2�������	������
14 PS stands for power supply; but the names displayed can be edited in �����


��
��
�����.

185



7 Testing Local Resources

user@linux:nagios/libexec$ ./check_sensors

sensor ok

If this is called with the �� option, you can see more clearly whether the
test works:

user@linux:nagios/libexec$ ./check_sensors -v

fscher-i2c-0-73 Adapter: SMBus I801 adapter at 2400 Temp1/CPU: +40.00 C

Temp2/MB: +45.00 C Temp3/AUX: failed Fan1/PS: 1440 RPM Fan2/CPU: 0 RPM

Fan3/AUX: 0 RPM +12V: +11.86 V +5V: +5.10 V Battery: +3.07 V

sensor ok

The output line is only wrapped for printing purposes; the plugin displays
verbose information on a single line.

Alternatively you can use SNMP to access the sensor data: the NET-SNMP
package (see Chapter 11.2 from page 234) provides the data delivered by
����������, and with the SNMP plugin �
��������, warning limits can
also be set from Nagios. This solution is described in Section 11.3.1 from
page 246.

186



8 Ch
ap

te
r

Plugins for Special Tasks

A number of plugins do not really fit into the category of local checks versus
remote checks because they themselves do not detect operating states but
manipulate the results of other checks or summarize them into new results.
These include the plugin �
�����
���, which always returns a fixed result
in order to create a well-defined environment for test scenarios.

������ (which negates the return value) and 
����� (which adds a hyper-
link to the text output) manipulate the outputs. Summarizing and process-
ing check results is the task of �
������
���� and �
�����
���. Whereas
�
������
����only combines and evaluates existing states, �
�����
���
calls the specified plugins itself and combines their results.

187



8 Plugins for Special Tasks

8.1 The Dummy Plugin for Tests

For tests expected to end with a defined response, the �
�����
��� plugin
can be used. it is given a return value and the desired response text as
parameters, and it provides exactly these two responses as a result:

nagios@linux:nagios/libexec$ ./check_dummy 1 "Debugging"

WARNING: Debugging

nagios@linux:nagios/libexec$ echo $?

1

The output line contains the defined response, preceded by the status in
text form. the return value can again be checked with ��
� E0: - stands
for WARNING.

Alternatively you can give �
�����
��� a + (OK), an � (CRITICAL) or a *
(UNKNOWN) as the first argument. The second argument, the response
text, is optional.

8.2 Negating Plugin Results

In some situations you may want to test the opposite of what the standard
plugin normally tests, such as an interface that should not be active, a Web
page or a host that should normally not be reached. In these cases the pro-
gram ������, included in the Nagios plugins, provides a way of negating
the return value of the original check.

Like plugins, ������ has an option to specify a timeout in seconds, with
��, after which it should abort the operation. The actual command line
must always contain the complete path to the plugin:

negate plugin command

negate -t timeout plugin command

������ changes the return value of � (CRITICAL) to + (OK) and vice versa.
The return codes - (WARNING) and * (UNKNOWN) remain unchanged.

The following example carries out �
�������� on the host -,��+���-,
which in normal cases should not be reachable:

nagios@linux:nagios/libexec$ ./negate \

/usr/local/nagios/libexec/check_icmp -H 192.0.2.1

CRITICAL - 192.0.2.1: rta nan, lost 100%| rta=0.000ms;200.000;500.000;0;

pl=100%;40;80;;

nagios@linux:nagios/libexec$ echo $?

0

188



8.3 Inserting Hyperlinks with 
�����

The plugin itself returns a CRITICAL in this case with a corresponding text.
������ “inverts” the return value; � (CRITICAL) turns into + (OK). Since
the text originates from the plugin and is not changed, the information
�56>6�.# remains here. For Nagios itself, however, nothing but the return
value is of any interest.

8.3 Inserting Hyperlinks with 
�����

The program 
����� represents the text output of a plugin as a hyperlink, if
required, so that clicking in the Nagios Web interface on the test result takes
you to another Web page. Like ������, 
����� functions as a wrapper
around the normal plugin command and is included with the other Nagios
plugins.

As the first argument it expects a valid URL to which the hyperlink should
point. This is followed by the plugin command, including its path:

urlize url plugin command

To avoid problems with spaces in plugin arguments, you can set the com-
plete
������ ������� in double quotation marks.

The hyperlink around the normal plugin output can be easily recognized
when running the command manually:

nagios@linux:nagios/libexec$ ./urlize http://www.swobspace.de \

/usr/local/nagios/libexec/check_http -H www.swobspace.de

<A href="http://www.swobspace.de">HTTP OK HTTP/1.1 200 OK - 2802 bytes

in 0.132 seconds |time=0.132491s;;;0.000000 size=2802B;;;0</A>

In version 1.4 
����� also embeds the performance output in the link text,
but Nagios cut this off before the representation in the Web interface, to-
gether with the end tag. But most browsers do not have any problem with
the missing ^&._.

8.4 Checking Host or Service Clusters as an Entity

Plugins normally check an individual host or service, compare the result
with the specified thresholds, and then return an appropriate result. On
systems with redundant designs (such as in clusters) you can also check the
respective host or service individually. In addition, a check of the virtual
host or service provides a clue as to whether or not the virtual system as

189



8 Plugins for Special Tasks

a whole is reachable. The plugin �
������
���� allows more complex
values to be queried.

As an example, we will take a host cluster consisting of five identical single
systems. One of these hosts may fail without any problem, but if a second
one fails, the plugin should issue a WARNING. If a third host should fail, a
CRITICAL should certainly be signalled.

The special feature of �
������
���� is that it does not actively perform
a check itself but determines the return value from already-existing status
values from the desired hosts or services. To do this it uses on-demand
macros (see Section D.2 from page 632). Whereas the standard macros
always refer to the current host or service, which obviously makes little
sense for �
������
����, on-demand macros allow access to all existing
information on other hosts or services.

For �
������
����we require the status of various hosts or services. These
can be determined through the on-demand macros E8:1>1>.>/6<!����E
and E1/5H6�/1>.>/6<!����!��	
��������	������E. They both pro-
vide the respective status in numerical form: + for OK; for hosts, - for
DOWN and � for UNREACHABLE; for services, - for WARNING, � for CRITI-
CAL, and * for UNKNOWN).1 In each case the host name must be specified,
and for E1/5H6�/1>.>/6<E the service description of the host or service
from which Nagios is to obtain the values must also be given.

The plugin has the following options:

�� & ���������
Handles the status values as the results of service checks, that is, + as
OK, - as WARNING and � as CRITICAL

�
 & ��
���
Handles the status values as the results of host checks, that is, + as
UP, - as DOWN, and � as UNREACHABLE

�� ����� / �������G�����
Inserts the text specified with ����� into the text output

�� ����������� / ������G�����������
Comma-separated list of the states from which the total result should
be determined; here the already mentioned macros are used:

--data=$HOSTSTATEID:srv1$,$HOSTSTATEID:srv2$,$HOSTSTATEID:srv3$

�� ���������	� / ���������G���������	�
Warning threshold in the threshold format,2 with respect to the num-
ber of error states. So by specifying �� +!�, a maximum of two er-

1 See Appendix D from page 625.
2 For the specification of thresholds, see Section 24.1.5 on page 557.

190



8.5 Summarizing Checks with �
�����
���

ror states are allowed for an OK result. From the third error state, a
WARNING is issued.

�� ��	������ / ����������G��	������
Like ���������, but refers to the critical threshold

The following call simulates the failure of two out of a total of five existing
Web servers. A third server displays a WARNING. This means that we have
a total of three error states:

nagios@linux:local/libexec$ ./check_cluster -s -d 0,2,1,0,2 -w 0:2 -c 0:3

CLUSTER WARNING: Service cluster: 2 ok, 1 warning, 0 unknown, 2 critical

The check issues a WARNING because the warning threshold is exceeded
(even though the critical threshold is not). The definition of the �
����
��
���� command is kept simple:

define command{

command_name check_cluster

command_line $USER1$/check_cluster -l $ARG1$ $ARG2$

}

The command expects a label as the first argument, and the plugin prefixes
it to the text output. Everything else is defined in the second argument in
the host or service definition:

define service{

host_name mycluster

service_description Web Cluster

command check_cluster!Web Cluster!--service -d $SERVICESTATEID:srv1:

HTTP$,$SERVICESTATEID:srv2:HTTP$ -w 0:0 -c 0:1

}

The service 4�� ��
���� checks the service states of the two services ���-!
8>>� and ����!8>>�. As long as they are both working without errors, the
command returns OK. If there is an error state, the result will be a WARN-
ING, and if both services have errors, CRITICAL is returned.

This completes the possibilities of �
������
����. If you are not satisfied
with simply evaluating the number of existing error states, you should take
a closer look at the plugin �
�����
���, which also allows AND and OR
operations.

8.5 Summarizing Checks with �
�����
���

There are various reasons for grouping different checks into a single one.
On one hand it simplifies work for Nagios, because the system now only

191



8 Plugins for Special Tasks

needs to manage 1,000 procedures instead of maybe 20,000—this increases
performance significantly in many cases. If you summarize checks re-
motely, Nagios now performs 1 instead of 20 network queries, which results
in better network performance. The Nagios administrator may also have an
easier time, as the configuration is more concise.

The method originally planned for load distribution and reducing checks
was via distributed Nagios instances. There are certainly productive instal-
lations in which a Nagios instance performs only 50 checks and transmits
these to a central Nagios installation. If there are some several hundred
Nagios instances, this method does ease the load on the central Nagios in-
stallation but not on the administrator, who has a considerable amount of
work managing such configurations.

The plugin �
�����
���, by Matthias Flacke, takes a different approach. It
performs (almost) any number of checks decentrally and returns just a sum
total of the results to the Nagios server (Figure 8.1). The plugin is executed
remotely; it is called either via NRPE (Section 10 from page 213) or via the
plugin �
���������
 (Section 9.1 from page 206).

Figure 8.1:
Summarizing checks
with �����������

Information is lost during this process—ultimately, there can be only one
return value for each �
�����
��� call. But you gain clarity with the con-
figuration of services, and you acquire—unexpectedly—a nice feature: The
checks that must be performed are listed in an NRPE-like configuration
file on the corresponding target system on which �
�����
��� is also in-
stalled. This makes it possible to delegate certain tasks, such as the main-
tenance of threshold values, to other (non-Nagios) administrators. They
require write access to the relevant �
�����
��� configuration file but do
not need to continue grappling—apart from correctly running the plugins
used—with a Nagios configuration.

To be able to pass on as much information as possible, �
�����
���makes
regular use of the multiple-line plugin output format that was introduced

192



8.5 Summarizing Checks with �
�����
���

with Nagios 3.0 (see Section 8.5.1). This restricts the use of �
�����
���
essentially to Nagios 3.0. Starting from �
�����
��� in version 0.14, there
have been approaches to support Nagios 2.x. These are only of limited use,
however, since the entire amount of information for plugins in Nagios 2.x
is about 300 bytes, and only the first line of the plugin output is utilized.

8.5.1 Multiple-line plugin output

Starting with Nagios 3.0, an expanded output format for plugins has been
introduced. Instead of squeezing everything onto a single line, the output
may be spread over several lines:

normal text output | optional performance data

longtext, 1st line

longtext, 2nd line

...

longtext, n-th line | performance data, 2nd line

performance data, 3rd line

...

performance data, n-th line

The first line contains the standard text output, supplemented with perfor-
mance data if required. This line can still be processed by Nagios 2.x, so it
shouldn’t be longer than 300 bytes. In the following lines a plugin may sup-
ply other text information until the character I closes the text output and
allows other performance data to be written. Nagios 3.0 displays the entire
text information in the status information generated by �����	����� on
the Web interface (see Section 16.2.2 from page 339).

When accessing text information via macros (See Appendix D.1 from page
627), Nagios splits up the information into two macros: E8:1>:$>�$>E
contains the first line of the text information of host checks (that is, the con-
tents of the placeholder ��	��� ���� ������ ), and E#: "8:1>:$>�$>E
contains only the long text. For service checks the macros are called E1/5�
H6�/:$>�$>E and E#: "1/5H6�/:$>�$>E. The #: "; variation of the
macro is available only in Nagios 3.0 and later; Nagios 2.x only knows the
short version.

The performance data from the first line and from the end is summarized
by Nagios 3.0 in the macros E8:1>�/5F<.>.E and E1/5H6�/�/5F<.>.E.
There is no #: "; variation, as is the case for the output.

The entire output, including performance data, is a maximum of 8 KB long
in Nagios 3.0. If Nagios runs a plugin directly, as opposed to indirectly,
(for instance, via NRPE or �
���������
), you must ensure that the entire
8 KB really are passed across the entire transmission path. This is covered
in Section 8.5.2.

193



8 Plugins for Special Tasks

8.5.2 Installation requirements

�
�����
��� does not put any restrictions on the size of its output. In or-
der to support enough checks, you should ensure that all the resources used
allow at least 8 KB of plugin output. For Nagios version 3.0, the developers
have increased the buffer size to to 8 KB, so no adjustments are necessary.
For scenarios involving remote use with NRPE or �
���������
, you may
need to make manual adjustments.

Adjusting buffer sizes for NRPE

By default, NRPE (Section 10, page 213) transmits no more than 1,024 char-
acters. To make proper use of �
�����
���, you need to adjust the buffer
size in the source code. To do this, you set the appropriate values in the file
����
��&�������
 to B-,�:

#define MAX_INPUT_BUFFER 8192

...

#define MAX_PACKETBUFFER_LENGTH 8192

Afterward, you must re-compile and re-install the NRPE daemon and the
�
�������� plugin.

Adjusting buffer sizes for �
���������


The plugin �
���������
 (Section 9.1 from page 206) can handle multiple-
line output from plugins in versions 1.4.10 and later, so it can be used un-
changed. A patch is required for older versions, which can be found on the
�
�����
��� homepage.3

8.5.3 Installation and testing

After downloading the plugin from the very extensive and well-documented
homepage,4 you should unpack it in a directory anywhere, and then change
to that directory to carry out an initial test. In the subdirectory ������� of
the source code there is a preconfigured file, �
�����
�������, containing
several example checks. When running the plugin, specify this file with the
option �	; �
�����
��� will perform all the checks defined there in one
go. This output gives you a feeling of how the plugin functions:

3 ������������ ����
���������������������
���������������
�	��	����)�

������ �

�
4 ������������ ����
���������������������
�������������
�	��

194



8.5 Summarizing Checks with �
�����
���

user@linux:~$ ./check_multi -f contrib/check_multi.cmd

MULTI CRITICAL - 35 plugins checked, 7 critical (network_rsync, proc_acp

id, proc_httpd, system_syslog, system_users, nagios_system, dummy_critic

al), 2 warning (nagios_tac, dummy_warning), 2 unknown (network_if_eth1,

dummy_unknown), 24 ok

[ 1] network_ping PING OK - Packet loss = 0%, RTA = 0.06 ms

[ 2] network_interfaces OK: host ’localhost’, interfaces up: 6, down: 0,

dormant: 0, excluded: 0, unused: 0

[ 3] network_if_eth1 Either a valid snmpkey key (-k) or a ifDescr (-d) m

ust be provided)

...

[16] system_load OK - load average: 0.89, 0.71, 0.71

[17] system_mail TCP OK - 0.000 second response time on port 25

[18] system_mailqueue OK: mailq is empty

[19] system_mysql Uptime: 5573 Threads: 1 Questions: 140 Slow queries

: 0 Opens: 137 Flush tables: 1 Open tables: 19 Queries per second avg

: 0.025

[20] system_ntp NTP OK: Offset -0.07118669868 secs

[21] system_portmapper OK: RPC program portmapper version 2 udp running

[22] system_rootdisk DISK OK - free space: / 287 MB (31% inode=81%);

[23] system_ssh SSH OK - OpenSSH_4.3p2 Debian-9 (protocol 2.0)

...

|MULTI::check_multi::plugins=35 time=10.92 network_interfaces::check_ifs

tatus::up=6,down=0,dormant=0,excluded=0,unused=0 system_load::check_load

::load1=0.890;5.000;10.000;0; load5=0.710;4.000;8.000;0; load15=0.710;3.

000;6.000;0; system_mail::check_tcp::time=0.000225s;;;0.000000;10.000000

system_mailqueue::check_mailq::unsent=0;2;4;0 system_ntp::check_ntp::off

set=-0.071187s;60.000000;120.000000; system_rootdisk::check_disk::/=620M

B;909;937;0;957 system_swap::check_swap::swap=3906MB;0;0;0;3906 system_u

sers::check_users::users=25;5;10;0 nagios.org_dns::check_dns::time=0.039

187s;;;0.000000 nagios.org_http::check_http::time=0.674044s;;;0.000000 s

ize=21530B;;;0

The first line of the output—starting with �$#>6 �56>6�.#—summarizes
all the executed checks. These lines (line-wrapped here for display pur-
poses) are also processed by Nagios 2.x. The output from the individ-
ual checks begins on line 2 (starting with Z -[), which looks exactly like
the output of a single call of the plugin currently being run. The perfor-
mance data is summarized by �
�����
���, but only at the the end, in a
totals line—starting with I�$#>6!!�
�����
���!!��
����. The individ-
ual variables are separated by spaces. The purpose for the variable names,
along with their format (which takes some getting used to), is explained in
Section 8.5.6 from page 198.

8.5.4 Configuration file

The format of the configuration file is based on that of NRPE (Section 10.3
from page 218). For �
�����
���, however, only the commands are de-
fined. Here is an extract from the example file included, �
�����
�������:

195



8 Plugins for Special Tasks

...

command[ network_interfaces ] = check_ifstatus -H localhost

command[ system_load ] = check_load -w 5,4,3 -c 10,8,6

command[ system_mail ] = check_tcp -H localhost -p 25

command[ system_mailqueue ] = check_mailq -w 2 -c 4

command[ system_mysql ] = check_mysql -u admin

command[ system_ntp ] = check_ntp -H ntp1.fau.de

command[ system_portmapper ] = check_rpc -H localhost -C portmapper

command[ system_rootdisk ] = check_disk -w 5% -c 2% -p /

command[ system_ssh ] = check_ssh localhost

...

The command �������Z #������������ [ specifies the name for the
appropriate check. This is used in the text output and in the performance
data.

After the equal sign comes the check to be executed. When calling the
plugin, path details can be omitted if the plugins are located in the default
path, &
��&�����&������&�������. Alternatively, you can include the
plugin path with the option �� when running �
�����
���. You can also
specify the absolute path in the configuration file, of course.

8.5.5 Command-line parameters

�
�����
��� has the following options:

�	 "����"��"������"���� / ��	�������G"����"��"������"����
This specifies the configuration file. So that Nagios can find it, you
should always specify the complete path. This option does not have
a default value; it can be given several times.

�� "����"��"���"������� / ���������G"����"��"���"�������
The default for calling plugins is the path &
��&�����&������&����
����. If they are located in a different directory, this is specified here
with the �� option.

�� ���� / ������G����
This is the name of a check that �
�����
��� outputs in the text
output and in the performance data. The default is an empty string.
If you run �
�����
��� on a machine several times with different
checks, it is better here to use different names so that they are more
clearly separated from each other.

�� �������� / �������
�G�������
This specifies the timeout for an individual check. The default is -+
seconds.

196



8.5 Summarizing Checks with �
�����
���

�> ������� / ��>6�/:$>G�������
For all checks together, �
�����
��� requires a further timeout pa-
rameter, which is defined with �> (the default is '+ seconds).

This ensures that the call of �
�����
��� will end within the time
specified. The plugin does not start any new checks if the starting
time and the timeout of a single plugin exceed the timeout of the
entire �
�����
��� call.5 Such individual checks are given the status
UNKNOWN; in the output, �
�����
��� assigns them the message
��
��� ��������� �
� �� ������ �����
�.

�� ������	 / ��������G������	
This option controls the output behavior of �
�����
���. The place-
holder ������	 can take on the following values:

- includes the service name for error states in parentheses in the
plugin output:

..., 2 critical (network_rsync, proc_acpid), 1 warning (nagios_t

ac), 1 unknown (if_eth1), dummy_unknown), 24 ok

� formats the output as HTML. Here the numbers of the individual
checks (e.g., Z *[) are stored along with the color of the respective
return value (green for OK, yellow for WARNING, red for CRITICAL,
and orange for UNKNOWN).

If you use �
�����
��� recursively (a �
�����
��� itself calls
other instances of �
�����
���), the output of the subordinate
checks are indented (see Figure 8.3 on page 202).

7 shows the output of the individual check—if they exist—on STD-
ERR.

B outputs the performance data in the multi-format (see Section
8.5.6 from page 198).

-' has the same function as -, except that states for which there
are no check results (e.g., + 
������) are also included.

*� outputs performance data in the classical format (see Section
8.5.6).

-�B extends the HTML format required by � by including a hy-
perlink to an installed PNP if performance data is available and the
output is in multi-format (B). PNP is described in Section 19.6 from
page 446.

�2' displays the output in XML formatting.

5 Let us assume that 53 have passed since ����������� was called, but not all planned
individual checks have yet been processed. The total from starting time and individual
timeout (53 + 10 = 63) exceeds the timeout of the ����������� call, so �����������

does not start any further checks.

197



8 Plugins for Special Tasks

2-� ensures that the output is Nagios 2.x compatible in order to
bring the output below the 300-byte limit.

Indivudal values may be combined; the default is 13 (8 + 4 + 1).

�� ���	������ / ���������G���	������
This sets the status WARNING if ���	������ is true, e.g., �:$ >(4.5�
 6 ")_ + (the default). For all states, �
�����
��� separately checks
whether or not the corresponding status was determined. Eventu-
ally, the status with the highest priority wins out: CRITICAL trumps
WARNING, trumps UNKNOWN, trumps OK. The definition and use
of expressions is explained in Section 8.5.7 from page 199.

�� ����	��� / ����������G���	������
If the expression is true, the status is set to CRITICAL. Eventually, the
status with the highest priority wins out (see ��������� and Section
8.5.7).

�
 ���	������ / ��
������G���	������
If the expresion is true, the status UNKNOWN is set. The status with
the highest priority (see ��������� and Section 8.5.7) wins out.

�� ���	������ / ����G���	������
If ����	��� is true, the status OK is set. Here the status with the
highest priority also wins out (see ��������� and Section 8.5.7).

�� / ���������
This increases the verbosity of the plugin for debugging purposes.
The option can be used up to three times; if specified three times,
you will obtain the most detailed information.

8.5.6 Performance data and PNP

In the simple output form for performance data (which can be set with
the option �� *�), �
�����
��� simply lists all variables provided by the
plugins:

...|rta=0.111ms;500.000;1000.000;0; pl=0%;5;10;; offset=0.002980s;60.000

000;120.000000;

The performance data for the plugin �
�������� (the average response
time ��� and the packet loss ��) in this example seamlessly follow the per-
formance data of �
������� in the form of deviation from the local system
time (�		���). You can’t tell, at first glance, what information comes from
which plugin—you have to consult the order in the configuration file and
the outputs of the individual checks.

198



8.5 Summarizing Checks with �
�����
���

This is not particularly suitable for automatic processing. �
�����
���
therefore provides an extended output with the default option �� B, which
is modified specifically to handle PNP (see Section 19.6 from page 446).
When doing this, the plugin adds a service description and the name of the
plugin used to the name of the variables. No deviation is made from the
standardized format; the label is just given a more extensive form:

servicedescription::plugin::label=values [label=calues]

PNP requires information on the plugin executed so that it can select a
suitable template for processing the graphics (see Section 19.6.5 from page
454). In addition, �
�����
��� now also provides performance data refer-
ring to the overall processing:

|MULTI::check_multi::plugins=5 time=0.18 net_ping::check_icmp::rta=0.048

ms;500.000;1000.000;0; pl=0%;5;10;; system_ntp::check_ntp::offset=0.0022

66s;60.000000;120.000000;

First �
�����
��� announces that it has called 2 plugins and has used a
total of 0.18 seconds for processing. This is followed by the performance
data for the other plugins, each supplemented with the service description
and plugin name. If a plugin issues more than one variable, the service
description and plugin name are not repeated.

8.5.7 Simple business process monitoring

In order to evaluate business processes, you generally want to know whether
a particular process is working—for instance, whether or not a customer
can perform online banking. Individual pieces of information on all hosts
and services involved are not relevant from this perspective and are also
not always useful if systems are designed redundantly in different forms.

Figure 8.2:
For the terminal
server farm to be
reachable from the
Internet, an
OpenVPN access and
a terminal server
must be available.

One example is shown in Figure 8.2: Home office users access a terminal
server farm via OpenVPN. For access from the Internet, two connections

199



8 Plugins for Special Tasks

are available, and with ����- and �����, two OpenVPN gateways are avail-
able. The terminal server farm consists of the eight terminal servers ��+-
through ��+B.

In order for home office users to be able to work, at least one Internet
connection (including the accompanying gateway) must be available, and
the server farm must be reachable. The business process can be split into
two processes: Our example looks at the Internet access separated from the
server farm, and afterward it can connect the two results with one another.

The condition for a critical status for Internet access could be formulated
as follows:

(gate1 > 1 || provider1 > 1) && (gate2 > 1 || provider2 > 1)

Access is unusable if the provider is unreachable or (II) the OpenVPN ser-
vice is not available on the gateway. But it is sufficient if one of the two
access points is functioning (thus the AND logical operator with YY). The
syntax is taken from Perl and can equally be processed by �
�����
���.
The configuration file for the Internet check therefore contains four com-
mands and the logocal operators:

# openvpn.cmd

command[ gate1 ] = check_nrpe -H gate1 -c check_openvpn

command[ provider1 ] = check_icmp -H provider1 -c 1000.0,60%

command[ gate2 ] = check_nrpe -H gate2 -c check_openvpn

command[ provider2 ] = check_icmp -H provider2 -c 1000.0,60%

state[warning] = count(CRITICAL) > 0 || count(UNKNOWN) > 0

state[critical] = (gate1 > 1 || provider1 > 1) && (gate2 > 1 || provider

2 > 1)

The two ����; commands each check (via NRPE) whether the gateway of
the OpenVPN service is running. The provider test sends ICMP echo pack-
ets to the dial-up router of the respective provider. You should take great
care here to ensure that routing is correctly set up, that is, that the ICMP
packets to the respective provider really are sent across the accompanying
connection.

For a business process, a Boolean expression for individual states is defined
in the configuration file, so depending on requirements, there may be one
for CRITICAL, one for WARNING, and, if necessary, one for UNKNOWN
as well. The syntax and the operators are passed on to Perl as specified
and are described in detail in the Perl online documentation (��� ������).
Before evaluating the expression, �
�����
��� undertakes the following
substitutions:

If the expression contains the name of a check previously defined with
�������, the return value of this check will be used instead. Let’s assume

200



8.5 Summarizing Checks with �
�����
���

that check ����- returns � and check ��������- returns -. Then the
partial expression shown above will become

state[critical] = (2 > 1 || 1 > 1) ...

Within the brackets, the first condition is true, and through the subse-
quent OR (II in Perl syntax) the partial expression evaluates to true.

The function ��
�� determines the number of all checks that provided
the return value given as an argument.

Instead of the numerical value of a status, the text form (UNKNOWN,
WARNING, CRITICAL, WARNING, OK) can also be included in the expres-
sion (so you can write something like ����- _ 4.5 6 "). This detail is
replaced by �
�����
���with the numerical value before the expression
is evaluated.

The WARNING status is set in ����������� if at least one critical status oc-
curs, at least one check delivers UNKNOWN, or at least one check returns
WARNING. The CRITICAL status appears if both accesses should fail (be-
cause of the AND logical operator between the two partial expressions in
brackets). The partial expressions on their own are true if either of the ����
or �������� checks delivers a CRITICAL (return value �) or an UNKNOWN
(return value *). The condition for the UNKNOWN status can be omitted
since UNKNOWN results always lead to the WARNING status.

The second partial process—the function of the terminal server farm—is
described in the configuration file ������������������:

# terminalserver.cmd

command[ ts01 ] = check_tcp -H ts01 -p 3389

command[ ts02 ] = check_tcp -H ts02 -p 3389

command[ ts03 ] = check_tcp -H ts03 -p 3389

command[ ts04 ] = check_tcp -H ts04 -p 3389

command[ ts05 ] = check_tcp -H ts05 -p 3389

command[ ts06 ] = check_tcp -H ts06 -p 3389

command[ ts07 ] = check_tcp -H ts07 -p 3389

command[ ts08 ] = check_tcp -H ts08 -p 3389

state[ warning ] = count(CRITICAL) > 0 || count(UNKNOWN) > 0 || count(WA

RNING) > 0

state[ critical ] = ts01 >= CRITICAL || count(CRITICAL) > 3

The individual checks here consist of only a primitive TCP check of the RDP
port 3389 in order to keep the example relatively simple. WARNING should
be indicated if at least one CRITICAL or at least one UNKNOWN occurs so
that the administrator has the opportunity to fix the problem at an early
stage. The condition for the CRITICAL status stipulates that ��+- must not

201



8 Plugins for Special Tasks

be CRITICAL because a very specific application is running there which is
not available on the other servers. In addition, no more than three terminal
servers may fail, as otherwise the load on the other servers may increase so
heavily that useful work would no longer be possible.

Figure 8.3:
Recursive output of

����������� on the
Extended Info page
of the Nagios Web

interface

The two checks of the partial processes are summarized by a �
�����
���
call into a single result (the lines are wrapped for display purposes):

# homeoffice.cmd

command[ openvpn ] = check_multi -f /etc/nagios/check_multi/openvpn.cmd

-r31

command[ terminalserver ] = check_multi -f /etc/nagios/check_multi/termi

nalserver.cmd -r31

So that the Extended Info page of Nagios (Figure 8.3) is more presentable,
the details of the respective plugin names are omitted (through the missing
option ��; the recursive HTML output of �
�����
��� adds the name of
the check called anyway). The �� *- detail sets all reporting functions from
1 to 16, including HTML formatting (�� �). Special conditions for a status
are not formulated, so a WARNING of a partial process leads to a WARNING
in the overlying check, and a CRITICAL leads to a CRITICAL.

Figure 8.3 shows the two partial processes quite clearly separated. The
serial numbers of the checks are stored with the respective status colors,
which are unfortunately not visible in this black-and-white book. A com-
plex color example of recursive display in the Extended Info Web page can
be found on the homepage of the plugin.6

For the sake of completeness, here is the definition of command and service
for Nagios. The former is kept deliberately simple, and all the details for the
command line are repeated in the service definition:

6 ������������ ����
���������������������
�������������
�����
���)
���

������#�����������������
��

202



8.5 Summarizing Checks with �
�����
���

define command{

command_name check_multi

command_line $USER1$/check_multi $ARG1$

}

define service{

host_name elix01

service_description homeoffice

check_command check_multi!-f /etc/nagios/check_multi/homeoffice.cmd -n

homeoffice -r 31

...

}

If the mapping of business processes with �
�����
��� isn’t enough for
you, you should take a look at the somewhat more complex addon Na-
gios Business Process View and Nagios Business Impact Analysis from the
Sparda-Datenverarbeitung eG, Nuremberg, Germany, which is available on
the Nagios-Exchange.7

In contrast to �
�����
���, which appears as the only Nagios service and
which also needs to be managed only once by Nagios, this addon uses ser-
vices already defined in Nagios, which means that Nagios performs each
individual check as usual. It retrieves the results of individual checks, links
these, and displays them on its own Web interface.

When doing so, the result of such links—business processes, so to speak—
can be redefined in Nagios as a separate service so that it is possible, for
instance, to use the notification logic of Nagios. Furthermore, the addon
includes a mode with which it can simulate a “what would happen if” sce-
nario. Individual services are set to an expected status, and the effects can
be seen via the Web interface.

�
�����
��� and the Nagios Business Process View and Nagios Business
Impact Analysis addon are thus not in competition. Depending on the
intended use, either �
�����
��� will reduce the complexity of the ser-
vices represented in Nagios and therefore will reduce the number of checks
performed, or the addon will allow a more detailed view of overall events,
though it does demand that all services are individually mapped in Nagios.

7 ������������	
��
�#��	�
����
�$$6'%22

203





9 Ch
ap

te
r

Executing Plugins via SSH

Local plugins, that is, programs that only run tests locally because there are
no network protocols available, must be installed on the target system and
started there. They check processes, CPU load, or how much free hard disk
capacity is still available, among other things.

But if you still want to execute these plugins from the Nagios server, it is
recommended that you use the secure shell, especially if any kind of Unix
system is installed on the machine to be tested—a Secure Shell daemon will
almost always be running on such a target system, and you do not require
any special permissions to run most plugins. The Nagios administrator
needs nothing more than an account, which he can use from the Nagios
server. On the server itself, the �
���������
 plugin must be installed.

In heterogeneous environments the Secure Shell itself often create condi-
tions that may cause problems: depending on the operating system, an

205



9 Executing Plugins via SSH

SSH daemon may be in use that returns a false return code1 or is so old
that it cannot handle the SSH protocol version 2.0. In this case it is better
to install the current OpenSSH version.2 In pure Linux environments with
up-to-date and maintained installations, such problems generally do not
occur.

9.1 The �
���������
 Plugin

�
���������
 is run on the Nagios server and establishes a Secure Shell
connection to a remote computer so that it can perform local tests on it.
The programs run on the remote machine are to a large extent local plu-
gins (see Chapter 7 from page 157); the use of �
���������
 is not just
restricted to these, however.

The plugin sends a complete command line to the remote computer and
then waits for a plugin-compatible response: a response status between
+ (OK) and * (UNKNOWN), as well as a one-line text information for the
administrator (page 105).

If you run network plugins via �
���������
 in order to perform tests
on other computers, these are known as indirect checks, which will be ex-
plained in the context of the Nagios Remote Plugin Executor in Section 10.6
from page 224.

The following example shows how �
���������
 can be used to check the
swap partition on the target computer:

nagios@linux:nagios/libexec$ ./check_by_ssh -H target_computer \

-i /etc/nagios/.ssh/id_dsa \

-C "/usr/local/nagios/libexec/check_swap -w 50% -c 10%"

SWAP OK: 100% free (972 MB out of 972 MB) |swap=972MB;486;97;0;972

The command is similar to that for a secure shell, in the form of

ssh -i private_key target_computer "command"

The fact that a separate private key—not the default private key in the home
directory—is used, is optional and is described in detail in section 9.2 from
page 208. The command to be run is specified in �
���������
—in con-
trast to the secure shell ��
— with the option ��, the plugin is always spec-
ified with an absolute path.

�
���������
 has the following options:

1 In the �	
��
��
��
 mailing list it was reported that ������>�'�% returns a return
code of 255 instead of 0, which makes it unsuitable for the deployment described here.

2 ���������������

����
�

206



9.1 The �
���������
 Plugin

�8 ���	��� / ��
�������G���	���
The host name or IP address of the computer to which the plugin
should set up an SSH connection.

�� ������� / ���������G�������
The command to be run on the remote computer, that is, the plugin
with its complete path and all the necessary parameters:

-C "/usr/local/nagios/libexec/check_disk -w 10% -c 5% -e -m"

�- / �������-
Force version 1 of the secure shell protocol.

�� / ��������
Force version 2 of the secure shell protocol.

�� ���������� / ����
�������G���������� (from version 1.4.6)
Passes an SSH option to the secure shell on the target host. To specify
multiple options, use of the switch is repeated.

�� ������� / ����������G�������
Which file should be used instead of the standard key file containing
the private key of the user ������? For one option, which is recom-
mended, see Section 9.2.3, page 210.

�� ��	� / ������G��	�
This specifies the port if the Secure Shell daemon on the target server
is not listening on the standard TCP port 22.

�� ���	 / ���������G���	
User name on the target host. [�1 �����	 / �����������
�G�����	
(from version 1.4.9)]
Ignores the specified number of lines at the beginning of the output
to STDOUT. If this option is omitted, the entire output is ignored.

�/ �����	 / �������������G����� (from version 1.4.9)
Like �����������
�, but refers only to the output of STDERR.

�� ���������������������� /
���������G����������������������

If the response to the command to be executed takes more than float-
ing_point_decimal seconds, the plugin will issue a warning.

�� ���������������������� /
����������G����������������������

The critical value in seconds concerning the response time of the
command to be executed.

207



9 Executing Plugins via SSH

�	3

Starts a background process without opening an interactive terminal
(tty).

�� timeout / �������
�Gtimeout
After timeout seconds have expired, the plugin stops the test and
returns the CRITICAL status. The default is -+ seconds.

In addition to this, �
���������
 has parameters available, �:, �� and ��,
enabling it to write the result in passive mode to the interface for external
commands (see section 13.1 from page 292). The mode is named this way
because Nagios does not receive the information itself but reads it indirectly
from the interface.

This procedure has the advantage of being able to run several separate
commands simultaneously over a single SSH connection. This may cause
the command definition to be rather complicated, however. Since the plu-
gins themselves are called and executed as programs on the target server,
it hardly matters whether the SSH connection is established once or three
times. For this reason it is better to use a simple command definition rather
than the passive mode.

But if you still want to find more information about this, you can look in
the online help, which is called with �
���������
 �
.

9.2 Configuring SSH

So that Nagios can run plugins over the secure shell remotely and automat-
ically, it—or, strictly speaking, the user ������ on the Nagios server—must
not be distracted by any password queries. This is avoided with a login via
a Public Key mechanism.

9.2.1 Generating SSH key pairs on the Nagios server

The key pair required to do this is stored by the key generator ��
�������
by default in the subdirectory ���
 of the respective user’s home directory
(for the user ������, this therefore corresponds to the installation guide in
Chapter 1.2 from page 39, that is, &
��&�����&������). If it is also sent on
its way with the �	 �	�
����������� option (without path specification),
it will land in the current working directory, which in the following example
is &���&������&���
:

nagios@linux:~$ mkdir /etc/nagios/.ssh

nagios@linux:~$ cd /etc/nagios/.ssh

3 There is currently no long form for this option.

208



9.2 Configuring SSH

nagios@linux:/etc/nagios/.ssh$ ssh-keygen -b 1024 -f id_dsa -t dsa -N ’’

Generating public/private dsa key pair.

Your identification has been saved in id_dsa.

Your public key has been saved in id_dsa.pub.

The key fingerprint is:

02:0b:5a:16:9c:b4:fe:54:24:9c:fd:c3:12:8f:69:5c nagios@nagserv

The length of the key here is 1024 bits, and DSA is used to encrypt the keys.
� P P ensures that the private key in ������ does not receive separate
password protection: this option forces an empty password.

9.2.2 Setting up the user ����
	 on the target host

Similar to the configuration on the Nagios server, the group and the user
������ are also set up on the computer to be monitored:

target_computer:~ # groupadd -g 9000 nagios

target_computer:~ # useradd -u 9000 -g nagios -d /home/nagios -m \

-c "Nagios Admin" nagios

target_computer:~ # mkdir /home/nagios/.ssh

The target computer is given the directory &
���&������ as the home di-
rectory, where a subdirectory ���
 is created. In this the administrator
(or another user4 ) saves the public key generated on the Nagios server
&���&������&���
&��������
�, in a file called �
�
�����������:

linux:~ # scp /etc/nagios/.ssh/id_dsa.pub \

target_computer:/home/nagios/.ssh/authorized_keys

Now the user ������ does not require its own password on the target ser-
ver. You just need to make sure that on the target server the ���
 directory,
together with �
�
�����������, belongs to the user ������:

target_computer:~ # chown -R nagios.nagios /home/nagios/.ssh

target_computer:~ # chmod 700 /home/nagios/.ssh

9.2.3 Checking the SSH connection and ���������		�

With this configuration you should first check whether the secure shell con-
nection is working properly. The test is performed as the user ������, since
Nagios makes use of this during the checks:

4 . . . but not the user �	
��
, because when an account is created, �
��	�� first sets an
invalid password here, which we do not change into a valid one. This means that you
cannot currently log in to the target computer as �	
��
.

209



9 Executing Plugins via SSH

nagios@linux:~$ ssh -i /etc/nagios/.ssh/id_dsa target_computer w

18:02:09 up 128 days, 10:03, 8 users, load average: 0.01, 0.02, 0.00

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

wob pts/1 linux01:S.1 08Sep04 1:27 4.27s 0.03s -bin/tcsh

...

The �� option explicitly specifies the path to the private key file. If the com-
mand � to be run on the target computer does not provide any output or
if the opposite SSH daemon requests a password, then the login via public
key is not working. In this case you must first find and eliminate the error
before you can move on to testing �
���������
.

In this next step, you run the local plugin on the target computer, with
�
���������
, which later on is run automatically, from the command
line of the Nagios server. Make sure that the plugin paths are correct in
each case. The path to the private key file of the user ������ on the server
is specified with ��:

nagios@linux:~$ /usr/local/nagios/libexec/check_by_ssh \

-H target_computer -i /etc/nagios/.ssh/id_dsa \

-C "/usr/local/nagios/libexec/check_disk -w 10% -c 5% -e -m"

DISK CRITICAL [2588840 kB (5%) free on /net/linux04/b] [937152 kB (5%)

free on /net/linux04/c]

In the example, �
���������
 should start the &
��&�����&������&����
����&�
�������� plugin on the target computer with the options �� -+9
�� 29 �� ��. If this does not work, then this is first run locally on the
target host with the same parameter. By doing this you can rule out that
the problem lies in the plugin command itself and not in the secure shell
connection.

9.3 Nagios Configuration

The matching command object is again defined in the file �
������������
�	�; similar to �
��������������, it should be named �
������
�����:

# check_ssh_disk command definition

define command{

command_name check_ssh_disk

command_line $USER1$/check_by_ssh -H $HOSTADDRESS$ \

-i /etc/nagios/.ssh/id_dsa \

-C "$USER1$/check_disk -w $ARG1$ -c $ARG2$ -p $ARG3$"

}

The command line stored in ������������ first runs �
���������
;
E$1/5-E contains the local plugin path on the Nagios server. Next come

210



9.3 Nagios Configuration

the arguments—the IP address of the target host (parameter �8), the pri-
vate key file (parameter ��) and finally, with the �� parameter, the complete
command that the target host should carry out. If the plugin path on the
target host and on the Nagios server are identical, then you can also use
the E$1/5-E macro in it; otherwise the plugin path on the target computer
is given explicitly.

Setting up the command is no different here to the one in �
����������
���� in Section 7.1 on page 158. This means that apart from the warning
and critical limits, we explicitly specify a file system or a hard drive parti-
tion, with the �� parameter.

The command �
������
����� defined in this way is applied as follows,
here on a computer called ���
�+�:

define service{

host_name linux02

service_description FS_root

...

check_command check_ssh_disk!10%!5%!/

...

}

The service object defined in this way ensures that Nagios checks its & file
system. The warning limit lies at 10 percent, the critical limit at 5 percent.

If you use the �
���������
plugin with �
������
�����, as in the exam-
ple here, you must make sure that the plugin path is identical on all target
hosts. This is also worth doing for reasons of simplicity, though it is not al-
ways possible in practice. The following service definition, for this reason,
gives the plugin path to the target computer as an additional argument:

define service{

host_name linux02

service_description FS_root

...

check_command check_ssh_disk!/usr/lib/nagios/plugins!10%!5%!/

...

}

In order for this to work, you must change the command line in the com-
mand definition, passed on with ��, as follows:

-C "$ARG1$/check_disk -w $ARG2$ -c $ARG3$ -p $ARG4$"

Caution: this causes the numbers of each of the E.5"� macros for ��, ��,
and �� to be shifted by one.

211





10 Ch
ap

te
r

The Nagios Remote Plugin
Executor (NRPE)

The Nagios Remote Plugin Executor (or in short, NRPE) as the name sug-
gests, executes programs on a remote host. These are usually plugins that
test the corresponding computer locally and therefore must be installed on
it. The use of NRPE is not restricted to local plugins; any plugins at all
can be executed, including those intended to test network services—for ex-
ample, to indirectly test computers that are not reachable from the Nagios
server (as shown in Section 10.6 from page 224).

While a genuine user account must be available on the remote computer
when the secure shell is used (see Chapter 9), which can also be used to
do other things than just start plugins, NRPE is restricted exclusively to ex-
plicitly configured tests. If you want to, or are forced to, do without a login
shell on the target host, it is better to use NRPE, even if there is somewhat
more configuration work involved than with the secure shell. In addition to

213



10 The Nagios Remote Plugin Executor (NRPE)

the Nagios configuration and the installation of the �
�������� plugin on
the Nagios server, the following tasks remain on the target system:

The program ���� must be installed.

The inet daemon there (����� or ������) must be configured with ad-
ministrator privileges.

All the plugins called via NRPE must be installed.

10.1 Installation

NRPE and the plugins are installed from the sources, or you can fall back
on the packages provided by the distributor. You should use at least version
2.0 of NRPE, since this is incompatible with its predecessors. Starting with
version 2.6, NRPE has the switch �
. If the NRPE service on the target sy-
stem is not reachable, the plugin �
�������� on the Nagios server returns
an UNKNOWN for this switch. Starting with version 2.8, NRPE supports the
multi-line output of plugins that was introduced with Nagios 3.0 (see Sec-
tion 8.5.1 from page 193). At the time this book went to press, the current
version was 2.12, dated 26. 03. 2008.

All established distributions include the plugin collection from at least ver-
sion 1.4. Whether you need the most up-to-date version depends on your
expectations of the respective plugins.

10.1.1 Distribution-specific packages

SuSE Linux 10.3 includes the packages ��������������-+�7�-��2B'����,
���������
�����-�7�-+�-��-��2B'����, and ���������
�����������
�-�7�-+�-��-��2B'����. ����������� contains both the daemon and
the plugin �
��������. ���������
����������� installs several addi-
tional plugins, such as database checks, FPing test or Radius test, which
can be omitted, depending on your specific monitoring needs.

For the sake of simplicity, the design packages are installed via YAST21 or
��� ��
� ������� . the second method is also open to Fedora users.

For Fedora Core and Red Hat Enterprise Linux, Dag Wieers has made avail-
able corresponding Nagios packages of several versions.2

Debian/Sarge distributes the NRPE daemon and the NRPE plugin �
����
���� in two different packages called ������������������ and �������
�������
���, which can be installed separately via ������� �������

1 On the command line, using  	
� �� ������� .
2 ��������	
������
�����

214



10.1 Installation

������� . If you want to do without local documentation, you can omit the
package ���������������and just add the plugin package ���������
��
��� to the target hosts.

The paths for the program ����, the configuration file ������	�, and the
plugin directory are listed in Table 10.1.

Table 10.1:
Installation paths for
NRPE and plugins

Distribution NRPE program Configuration file Plugins

Self-
compiled3

�
��������������

����

������������������	� �
����������������

�������

SuSE �
����������� ������������������	� �
��������������

��
����

Debian �
������������ ������������������	� �
��������������

��
����

Fedora4 �
������������ ������������������	� �
��������������

��
����

10.1.2 Installation from the source code

The plugins are installed on the computers to be monitored exactly as de-
scribed in Section 1.4 from page 43 for the Nagios server.

The NRPE source code is obtained from the Nagios homepage.5 The direc-
tory &
��&�����&���6 is ideal for unloading the sources.

linux:~ # mkdir /usr/local/src

linux:~ # cd /usr/local/src

linux:local/src # tar xvzf /path/to/nrpe-2.11.tar.gz

In the new directory that has been created, you run the ���	��
�� com-
mand:

linux:local/src # cd nrpe-2.11

linux:src/rnpe-2.11 # ./configure --sysconfdir=/etc/nagios --enable-ssl

The recommended path specifications are listed in Table 10.1. The only
difference from the default settings are for the directory in which the NRPE
configuration file is stored (���	��
�� option ��������	���).

3 Recommended.
4 From the packages provided by Dag Wieers.
5 ������������	
��
���
�������	��
6 The subdirectory 
�� may need to be created first.

215



10 The Nagios Remote Plugin Executor (NRPE)

Accordingly, we can leave out the entry for �����
������
���and �����

���������
� in the ���	��
�� command. Both options are relevant only
if the ���� program is running as a daemon, and they can be overwritten
in the configuration file. If the inet daemon is used, you should specify the
user with whose permissions ���� should start in the configuration file for
the inet daemon.

������������ ensures that NRPE communicates over an SSL-encrypted
channel. This will only work, of course, if both ���� on the target host and
�
�������� on the Nagios server have both been compiled accordingly.

The command ���� ��� compiles the programs ���� and �
��������,
but it does not copy them from &
��&�����&���&�������--&��� to the
corresponding system directories. Since there is no ���� �������, you
must do this yourself, following the details in Table 10.1: you need to have
���� on the computer to be monitored and the �
�������� plugin on the
Nagios server.

If the Nagios server and the target host used the same platform, you can
compile both programs on one computer (e.g., the server) and then copy
���� together with its configuration file to the computer to be monitored,
instead of separately compiling �
�������� on the Nagios server and ����
on the target system.

10.2 Starting via the inet Daemon

It is best to start the program ���� on the machine to be monitored via
the inet daemon rather than as a separate daemon, since the Nagios server
only performs the tests occasionally, and ���� does not need to load any
large resources.

If you have a choice, you should use the more modern ������. But to keep
work to a minimum, the inet daemon will normally be used, as it is already
running on the target system. In order that NRPE can be started as a service
via ����� or ������, the ���� service is defined in the file &���&��������:

nrpe 5666/tcp # Nagios Remote Plugin Executor NRPE

Even if this has been installed as a package, you should still check to see
whether this entry exists. By default, NRPE uses TCP port 5666.

10.2.1 ����
� configuration

If ������ is used, a separate file is stored in the directory &���&��������
for each service to be started, so for ���� it is best to create a file called
���� or �����������:

216



10.2 Starting via the inet Daemon

# /etc/xinetd.d/nrpe

# description: NRPE

# default: on

service nrpe

{

flags = REUSE

socket_type = stream

wait = no

user = nobody

group = nogroup

server = /usr/local/sbin/nrpe

server_args = -c /etc/nagios/nrpe.cfg --inetd

log_on_failure += USERID

disable = no

only_from = 127.0.0.1 ip_of_the_nagios_server

}

The values printed in italics are passed on to your own environment; in-
stead of the placeholder �������������������	
�	 you should enter, for
example for �����	���, the IP address of your own Nagios server. The
NRPE access from outside is then restricted to this computer and to ������

��� (-�C�+�+�-). The latter address allows local tests; multiple IP ad-
dresses are separated by a space. However, this restrictive configuration
functions only if ������ has been compiled with support for the TCP wrap-
per (this is normally the case).

Under no circumstances should NRPE run with the permissions of a priv-
ileged user—������ is therefore a sensible value. The ������ parameter
specifies the complete path to the program ����; for ����������� you
should enter the matching path to the configuration file. After this modifi-
cation, the configuration of ������ is reloaded, with

linux:~ # /etc/init.d/xinetd reload

10.2.2 ���
� configuration

In the standard �����, the following line is added to the configuration file
&���&���������	:

nrpe stream tcp nowait nobody /usr/sbin/tcpd /usr/local/sbin/nrpe -c

/etc/nagios/nrpe.cfg --inetd

The line has been split up for reasons of space, but in the configuration
file this must all be in a single line. Here the TCP wrapper ���� is used. If

217



10 The Nagios Remote Plugin Executor (NRPE)

this is not intended, you simply leave out this entry.7 Here you should also
explicitly enter the user ������, the complete path to the binary ����, and
the configuration file, also with its complete path. These strings, printed
above in italics, should be adjusted to your own system, where necessary.
After the configuration change, ����� is reloaded:

linux:~ # /etc/init.d/inetd reload

10.2.3 Is the Inet daemon watching on the NRPE port?

A simple test shows whether the inet daemon wants to respond to queries
on port 5666:

linux:~ # netstat -lnt | grep ’:5666’

...

tcp 0 0 0.0.0.0:5666 0.0.0.0:* LISTEN

...

The program ������� uses option �� to display all the ports on which a
service is waiting for incoming queries, that is, a service which is in the
#61>/ state. Option �� suppresses the name resolution of hosts and ports
and speeds up the display of information, and �� restricts the otput to TCP
ports.

The test shows only whether the inet daemon was properly configured and
newly started, for instance, whether the ���� service is correctly entered in
&���&��������. It does not clarify whether the paths to the NRPE daemon
and its configuration file are correct. Errors like this are announced by the
inet daemon only when a concrete access attempt takes place on NRPE
port 5666. The subsequent complete function test is carried out only after
the NRPE daemon has been configured. This is described in Section 10.4
from page 221.

10.3 NRPE Configuration on the Computer to Be
Monitored

When compiling NRPE, the file ������	� is created in the source directory,
which contains several parameters as well as the commands to run NRPE.
These are copied manually to the configuration directory, which normally
first has to be created on the target computer:

7 ����� does not have a built-in method to allow access to services only from specific
IP addresses. This function is added in the TCP wrapper ����. The access configura-
tion is then taken over by the files �������
�
�	���� and �������
�
���� . More
information on this is given by �	� ��
��	���

.

218



10.3 NRPE Configuration on the Computer to Be Monitored

linux:src/rnpe-2.11 # mkdir /etc/nagios

linux:src/rnpe-2.11 # cp nrpe.cfg /etc/nagios/.

Distribution-specific packages are unpacked from the location specified in
Table 10.1 on page 215.

���� is given the permissions of the user at runtime specified in the inet
daemon configuration, which in our case is that of ������. Therefore
������	� needs to be readable for this user. As long as the file does not
contain any passwords (these really should not be used) or other critical
information, then read permissions for all can be allowed.

The configuration file contains many comments; the following command
displays the active parameters:8

user@linux:~$ egrep -v ’^#|^$’ nrpe.cfg | less

server_port=5666

allowed_hosts=127.0.0.1

nrpe_user=nobody

nrpe_group=nogroup

dont_blame_nrpe=0

debug=0

command_timeout=60

...

The parameters �����������, ��������
����, �����
���, and �����
���
� are only relevant if ���� is working as a daemon. When the inet
daemon is used, the program ignores these values since they have already
been determined by the (�)������ configuration.

The entry ���������������G+ prevents ���� from accepting parameters,
thus closing a potential security hole. ���
�G- allows extensive logging,
useful if you are looking for errors (���
�G+ switches off the output for de-
bugging information), and �������������
� specifies a timespan in sec-
onds after which ���� abruptly interrupts a plugin that has hung. Com-
ments in the configuration file explain all these parameters as well.

After this, the commands are defined that are to be executed by NRPE. The
configuration file ������	� already contains some, but first they all have
to be commented out, and only those commands activated that really are
intended for use.

The keyword ������� is followed in square brackets by the name with
which �
�������� should call the command. After the equals sign (G),
the corresponding plugin command is specified, with its complete path:9

8 The regular expression ?)@?4 matches all lines that either begin with a comment sign
) or that consist of an empty line. The option �� ensures that �
��� shows all lines
that are not matched by this.

9 The �������
��
 command is explained in Section 7.6 from page 177, ��������	�
is explained in Section 7.3 from page 162, and Section 7.4 from page 163 deals with
����������
.

219



10 The Nagios Remote Plugin Executor (NRPE)

command[check_users]=/usr/local/nagios/libexec/check_users -w 5 -c 10

command[check_load]=/usr/lib/nagios/libexec/check_load -w 8,5,3 -c 15,10,7

command[check_zombies]=/usr/lib/nagios/libexec/check_procs -w :1 -c :2 -s Z

With the path, care must be taken that this really does point to the local plu-
gin directory. In the directory specified here, &
��&�����&������&����
����, the self-compiled plugins are located10 ; and for installations from
distribution packages the path is usually &
��&���&������&��
����.

From the Nagios server, the command just defined, �
����
���� is now
run on the target computer via �
��������:

nagios@linux:nagios/libexec$ ./check_nrpe -H target_host -c check_users

10.3.1 Passing parameters on to local plugins

The method described so far has one disadvantage: for each test on the
target system, a separately defined command is required for this. Here is
the example of a server on which the plugin �
�������� (see Section 7.1
from page 158) is required to monitor nine file systems:

command[check_disk_a]=path/to/check_disk -w 5% -c 2% -p /net/linux01/a

command[check_disk_b]=path/to/check_disk -w 4% -c 2% -p /net/linux01/b

command[check_disk_c]=path/to/check_disk -w 5% -c 2% -p /net/linux01/c

command[check_disk_d]=path/to/check_disk -w 5% -c 2% -p /net/linux01/d

command[check_disk_root]=path/to/check_disk -w 10% -c 5% -p /

command[check_disk_usr]=path/to/check_disk -w 10% -c 5% -p /usr

command[check_disk_var]=path/to/check_disk -w 10% -c 5% -p /var

command[check_disk_home]=path/to/check_disk -w 10% -c 5% -p /home

command[check_disk_tmp]=path/to/check_disk -w 10% -c 5% -p /tmp

To avoid all this work, NRPE can also be configured so that parameters may
be passed on to �
��������:

dont_blame_nrpe=1

...

command[check_disk]=path/to/check_disk -w $ARG1$ -c $ARG2$ -p $ARG3$

In order for this to work, the NRPE ���	��
�� script must be run with the
option
���������������������. The reason for this inconvenient procedure is
that passing parameters on is a fundamental risk, since it cannot be ruled
out that a certain choice of parameters could cause an (as yet unknown)
buffer overflow, allowing the target system to be penetrated.

10 . . . provided you have followed the instructions in the book.

220



10.4 NRPE Function Test

If you still decide on this, despite all the security risks, you should use a
TCP wrapper (see Section 10.2.2, page 217), to ensure that only the Nagios
server itself is allowed to send commands to NRPE.

If the plugin provides the corresponding options, there is sometimes a third
method, however: the above-mentioned problem can also be solved by
getting �
��������, if necessary, to test all file systems with one single
command:

user@linux:nagios/libexec$ ./check_disk -w 10% -c 4% -e -m

DISK WARNING [2588840 kB (5%) free on /net/linux1/b] [937160 kB (5%) free

on /net/linux1/c]

The �� parameter persuades the plugin to display only those file systems
that produced a warning or an error. One restriction remains: the warning
and critical limits are, by necessity, the same for all file systems.

10.4 NRPE Function Test

For a concluding function test, the plugin �
�������� on the Nagios server
is called. The command �8 ��	��� ���� returns the IP address specified
for the server on which the NRPE service has just been installed:

nagios@linux:nagios/libexec$ ./check_nrpe -H swobspace

CHECK_NRPE: Error - Could not complete SSL handshake.

The error message given here occurs very frequently and causes confusion
almost as often because although problems may occur with the SSL hand-
shake, the cause is to be found elsewhere in most cases. You only have
an SSL problem if the SSL versions used by the plugin �
�������� and
the  5�/ ������ addressed are incompatible or if one of the two software
packages was compiled without SSL and the other was compiled with SSL.

Otherwise, the cause will lie elsewhere: The problem could be caused by
an error in the configuration file, the inet daemon being unable to find
the NRPE program or configuration file, or access permissions for the file
������	� that are not sufficient. You would also receive the error mes-
sage mentioned if the Nagios server cannot access the NRPE service at all
via the inetd configuration. In this case, you need to check the parameter
�����	��� for ������ or the same restrictions via the ���� for �����.

You can search for the exact cause of error in the syslog files, particularly
in the file ��������, and depending on the distribution, also in ��������,
����������, or another log file:

linux:~ # grep nrpe /var/log/messages

...

221



10 The Nagios Remote Plugin Executor (NRPE)

nrpe[19844]: Unable to open config file ’/etc/nagios/nrpe.cfg’ for readi

ng

nrpe[19844]: Config file ’/etc/nagios/nrpe.cfg’ contained errors, aborti

ng...

...

In this example, the file ������	� is either not in the path being searched
or ���� cannot open it. Since ���� is running with the permissions of the
user ������, it must also be able to read the configuration file.

A successful call of �
�������� will then provide the version of the in-
stalled NRPE service:

nagios@linux:nagios/libexec$ ./check_nrpe -H swobspace

NRPE v2.11

10.5 Nagios Configuration

Commands that “trigger” local plugins on remote computers via �
����
���� are defined as before in the file �
�������������	� on the Nagios
server.

10.5.1 NRPE without passing parameters on

If no parameters are passed on to the target plugin, things will look like
this:

define command{

command_name check_nrpe

command_line $USER1$/check_nrpe -H $HOSTADDRESS$ -c $ARG1$

}

As the only argument, Nagios passes the command here that NRPE is to
execute. If the �
�������� plugin on the Nagios server is located in a
different directory to the other plugins, you must enter the correct path
instead of E$1/5-E.

A service to be tested via NRPE uses the command just defined, �
����
����, as �
�����������. As an argument, the command is specified that
was defined in ������	� on the target system (here: ���
�+7):

define service{

host_name linux04

service_description FS_var

...

222



10.5 Nagios Configuration

check_command check_nrpe!check_disk_var

...

}

10.5.2 Passing parameters on in NRPE

In order to address the command defined in Section 10.3.1 on page 220

command[check_disk]=path/to/check_disk -w $ARG1$ -c $ARG2$ -p $ARG3$

from the Nagios server, the �
�������� is given the corresponding argu-
ments through the option ��:

define command{

command_name check_nrpe

command_line $USER1$/check_nrpe -H $HOSTADDRESS$ -c $ARG1$ -a $ARG2$

}

So that E.5"�E can correctly transport the parameters for the remote plu-
gin, these are separated by spaces in the service definition. in addition, you
should ensure that the order is correct:

define service{

host_name linux04

service_description FS_var

...

check_command check_nrpe!check_disk!10% 5% /var

...

}

The locally installed �
�������� on ���
�+7 distributes the three strings
-+9, 29, and &��� to its own three macros E.5"-E, E.5"�E, and E.5"*E for
the command defined in ������	�.

10.5.3 Optimizing the configuration

If the NRPE commands are given identical names on all target systems,
then all NRPE commands with the same name can be included in a single
service definition. When doing this you can make use of the possibility of
specifying several hosts, or even an entire group of hosts:

define service{

host_name linux04,linux02,linux11

service_description FS_var

...

223



10 The Nagios Remote Plugin Executor (NRPE)

check_command check_nrpe!check_disk_var

...

}

With the command �
������������, defined at the beginning of Section
10.3.1 on page 220, Nagios now checks the &��� file systems on the com-
puters ���
�+7, ���
�+�, and ���
�--. If other file systems are to be
included in the test, a separate service is created for each one, thus avoid-
ing the security problem involved in passing parameters on. If you use
the option of testing all file systems at the same time, with the �
��������
plugin (see Section 7.1), then ultimately, one single service definition is suf-
ficient to monitor all file systems on all Linux servers— provided you have
a corresponding NRPE configuration on the target system:

define service{

hostgroup_name linux-servers

service_description Disks

...

check_command check_nrpe!check_disk

...

}

10.6 Indirect Checks

NRPE executes not just local plugins, but any plugins that are available. If
you use network plugins via NRPE, these are referred to as indirect checks,
as illustrated graphically in Figure 10.1.

Figure 10.1:
Indirect checks with

NRPE

224



10.6 Indirect Checks

If every network service was tested directly across the firewall, it would have
to open all the required ports. In the example, these would be the ports
for SMTP, HTTP, LDAP, PostgreSQL, and SSH. If the checks are performed
indirectly from a computer that is behind the firewall, on the other hand,
then it is sufficient just to have the port for NRPE (TCP port 5666) open on
the firewall. As long as it is configured via NRPE, the NRPE server behind
the firewall can perform any tests it wants.

Whether the effort involved in indirect checks is greater than that for direct
ones is dependent on the specific implementation: if this means that you
would have to “drill holes into your firewall,” then the additional work on
the NRPE server may be worthwhile. But if the ports involved are open
anyway, then the direct test can usually be recommended; this would make
additional configuration work on an NRPE host unnecessary.

225





11 Ch
ap

te
r

Collecting Information Relevant
for Monitoring with SNMP

SNMP stands for Simple Network Management Protocol, a protocol defined
above all to monitor and manage network devices. This means being able
to have not only read access, but also write access to network devices, so
that you can turn a specific port on a switch on or off, or intervene in other
ways.

Nearly all network-capable devices that can also be addressed via TCP/IP
can handle SNMP, and not just switches and routers. For Unix systems
there are SNMP daemons; even Windows servers contain an SNMP im-
plementation in their standard distribution, although this must be explic-
itly installed. But even uninterruptible power supplies (UPSs) or network-
capable sensors are SNMP-capable.

227



11 Collecting Information Relevant for Monitoring with SNMP

If you are using Nagios, then at some point you can’t avoid coming into con-
tact with SNMP, because although you usually have a great choice of query-
ing techniques for Unix and Windows systems, when it comes to hardware-
specific components such as switches, without their own sophisticated op-
erating system, then SNMP is often the only way to obtain information
from the network device. SNMP certainly does not have a reputation of be-
ing easy to understand, which among other things lies in the fact that it is
intended for communication between programs, and machine processing
is in the foreground. In addition, you generally do not make direct contact
with the protocol and with the original information, since even modems or
routers provide a simple-to-operate interface that disguises the complexity
of the underlying SNMP.

If you want to use SNMP with Nagios, you cannot avoid getting involved
with the information structure of the protocol. Section 11.1 therefore pro-
vides a short introduction to SNMP. Section 11.2 from page 234 introduces
NET-SNMP, probably the most widely used implementation for SNMP on
Unix systems. On the one hand it shows how to obtain an overview of the
information structure of a network device with command-line tools, and
on the other it describes the configuration of the SNMP daemon in Linux.
Finally, Section 11.3 from page 246 is devoted to the concrete use of SNMP
with Nagios.

11.1 Introduction to SNMP

Although SNMP contains the P for “protocol” in its name, this does not
stand for a protocol alone, but is used as a synonym for the Internet Stan-
dard Management Framework. This consists of the following components:

Manageable network nodes that can be controlled remotely via SNMP.
A specific implementation of an SNMP engine, whether by software or
hardware, is referred to as an agent.

At least one SNMP unit consisting of applications with which the agents
can be managed. This unit is referred to as a manager.

A protocol with which agent and manager can exchange information: the
Simple Network Management Protocol (SNMP).

A well-defined information structure, so that any managers and agents
can understand each other: the so-called Management Information Base,
or in short, MIB.

The framework assigns the manager the active role. The agent itself just
waits passively for incoming commands. In addition, so-called traps extend

228



11.1 Introduction to SNMP

the application possibilities of SNMP: these are messages that the agent ac-
tively sends to a single manager or a whole group of managers, for example
if predefined limit values are exceeded or if functions of the network device
fail.

As agents, SNMP engines implemented by the manufacturer are used for
hardware-specific devices (switches, routers). For Linux and general Unix
systems, the NET-SNMP implementation is available (see Section 11.2), for
Windows servers there is equivalent software already included with the op-
erating system.

In combination with Nagios, there are two possibilities. With respect to
Nagios in the active role, corresponding Nagios plugins, as the manager,
ask the agents for the desired information. The other way round, Nagios
can also passively receive incoming SNMP traps using utilities and process
these. Section 14.6 from page 312 is devoted to this topic.

An understanding of the SNMP information structure, the so-called Man-
agement Information Base (MIB), is critical if you want to use SNMP with
Nagios successfully. For this reason this section will focus on this. The pro-
tocol itself is only mentioned briefly to illustrate the differences between
different protocol versions.

If you want to get involved more deeply with SNMP, we refer you to the nu-
merous Request for Comments (RFCs) describing SNMP. The best place to
start would be in RFC 3410, “Introduction and Applicability Statements for
Internet Standard Management Framework”, and RFC 3411: “An Architec-
ture for Describing Simple Network Management Protocol (SNMP) Man-
agement Frameworks.” Apart from an introduction and numerous cross-
links, you will also find references there to the original documents of the
older versions, today referred to as SNMPv1 and SNMPv2.

11.1.1 The Management Information Base

The SNMP information structure consists of a hierarchical namespace con-
struction of numbers. Figure 11.1 shows an extract from this. The tree
structure is similar to those of other hierarchical directory services, such as
DNS or LDAP.

Its root is called - (���) and stands for the International Organization
for Standardization. The next level, * (���) shown in Figure 11.1 pro-
vides a space for general, national and international organizations. Beneath
this is ' (���) for the U.S. Department of Defense. The general (IP-based)
�������� owes its assignment as a subitem - (��������) of ��� to its ori-
gin as a military project.

If you bring together the corresponding numbers from left to right and sep-
arate them with the dot, then for the �������� node in the tree, you arrive

229



11 Collecting Information Relevant for Monitoring with SNMP

at the designation -�*�'�-. Such nodes are referred to in general as ob-
ject identifiers (OID). Their syntax is used not only in SNMP but also in the
definition of LDAP objects and attributes, for example.

The OID -�*�'�- is not exactly easily readable for humans, which is why
other notation methods have gained acceptance: both ���������������
������ and the combination ���(-)����(*)����(')���������(-) is al-
lowed. Because this would quickly make readable descriptions infinitely
long if the tree were deep enough, another abbreviated notation method
has become established: as long as the term remains unique, you may sim-
ply write �������� instead of -�*�'�-.

The important thing here is that the communication between manager and
agent is exclusively of a numerical nature. Whether the manager also al-
lows text input or is capable of issuing information as text instead of as
a numeric OID depends on the implementation in each case. The infor-
mation on individual nodes is provided by the manufacturer of the SNMP
agent as a Management Information Base (MIB) in file form.

Figure 11.1:
SNMP namespace

using the example of
the MIB-II interfaces

230



11.1 Introduction to SNMP

The data stored in the MIB includes contact information (who designed
the MIB; usually the manufacturer of the device will be given here), the
definition of individual subnodes and attributes, and the data types used. If
an MIB file also describes the individual subnodes and attributes, this puts
the manager in a position to supply the user with additional information
on the meaning and purpose of the entry in question.

Below ��������, the next level is divided into various namespaces. The
management node -�*�'�-�� is especially important for SNMP, that is,
���(-)����(*)����(')���������(-)�����(�). The namespace here is
described by RFC 1155, “Structure and Identification of Management Infor-
mation for TCP/IP-based Internets.”

In order for manager and agent to be able to understand each other, the
manager needs to know how the agent structures its data. This is where the
Management Information Base, Version II comes into play. SNMP requests
information from the agents on their implementation; with this, every man-
ager can access the most important parameters of the agent, without a pre-
vious exchange of MIB definitions. The Management Information Base II, or
MIB-II (or mib-2) for short, can be found in the namespace at -�*�'�-���-
or ���(-)����(*)����(')���������(-)�����(�)������(-). Since it is
well-defined and unique, OIDs lying beneath that are usually described in
short, starting with MIB-II or mib-2.

Manufacturer-specific information can also be defined in your own Man-
agement Information Base. Corresponding MIBs are located beneath ���
�������������������������. Once an OID has been described in an
MIB, the meaning of this entry may never be changed. The description
format for an MIB is standardized by RFC 1212, which is the reason that
special MIBs, included by a vendor for its agents, can be integrated into
almost any manager.

MIB-II

MIB-II, the Management Information Base , which is obligatory for all SNMP
agents, contains several information groups. The most important of these
are summarized in Table 11.1. The notation ������� stands for -�*�'�-���
-�� .

Table 11.1:
MIB-II groups (a
selection)

Group OID Description

system mib-2.1 Information on the device, (e.g., the location,
contact partner, or uptime)

interfaces mib-2.2 Information on the network interfaces (Name,
interface type, status, statistics etc.)

231



11 Collecting Information Relevant for Monitoring with SNMP

continued:

Group OID Description

at mib-2.3 Assignment of physical addresses (e.g., of MAC
addresses) to the IP address (Address Translation
Table)

ip mib-2.4 Routing tables and IP packet statistics

icmp mib-2.5 Statistics on individual ICMP packet types

tcp mib-2.6 Open ports and existing TCP connections

udp mib-2.7 ditto for UDP

host mib-2.25 Information on storage media, devices, running
processes and their use of resources

How you specifically handle information stored in the MIB-II can be ex-
plained using the example of the interfaces group: Figure 11.1 shows how
they are split up into the two OID �����	������	 
����and �����	�����
�	>����. This is because one network node initially reveals an unknown
number of interfaces. This number is taken up by �	 
����. Before look-
ing at these interfaces more closely, a manager can get the information
from �	 
���� about how many there really are.

�	>���� then contains the actual information on the different interfaces.
To obtain this information for a specific interface, the manager queries all
the entries in which the last number is the same, like this:

ifEntry.ifIndex.1 = INTEGER: 1

ifEntry.ifDescr.1 = STRING: eth0

ifEntry.ifType.1 = INTEGER: ethernetCsmacd(6)

ifEntry.ifMtu.1 = INTEGER: 1500

ifEntry.ifSpeed.1 = Gauge32: 100000000

ifEntry.ifPhysAddress.1 = STRING: 0:30:5:6b:70:70

ifEntry.ifAdminStatus.1 = INTEGER: up(1)

ifEntry.ifOperStatus.1 = INTEGER: up(1)

�	6���� describes the device-internal index—SNMP always starts count-
ing from -, switches start counting here from -++. �	<���� contains the
name of the interface, here ��
+—this is obviously a Linux machine. It
can be assumed from the next four entries that a normal 100-Mbit Ethernet
interface is involved.

The interface type �	>��� is given as ��
�����������,1 that is, Ethernet.
�	��
 specifies the Maximum Transfer Unit, which in local networks is al-
ways 1,500 bytes for Ethernet. The interface speed �	1���� is 100,000,000

1 Carrier Sense (CS) means that each network interface checks to see whether the line
is free, based on the network signal (in contrast to Token Ring, for example, where the
network card may use the line only if it explicitly receives a token); Multiple Access (MA)
means that several network cards may access a common network medium simultane-
ously.

232



11.1 Introduction to SNMP

bits here, that is, 100 Mbit. And �	�
��.������ contains the physical net-
work address, also called the MAC address.

�	.����1���
� reveals whether the admin has switched the interface on
(
�) or off (����) via the configuration. �	:���1���
� on the other hand
specifies the actual status, since even interfaces activated by an adminis-
trator are not necessarily connected to a device, or even switched on.

There is a similar picture for the second interface:

ifEntry.ifIndex.2 = INTEGER: 2

ifEntry.ifDescr.2 = STRING: lo

ifEntry.ifType.2 = INTEGER: softwareLoopback(24)

ifEntry.ifMtu.2 = INTEGER: 16436

ifEntry.ifSpeed.2 = Gauge32: 10000000

ifEntry.ifPhysAddress.2 = STRING:

ifEntry.ifAdminStatus.2 = INTEGER: up(1)

ifEntry.ifOperStatus.2 = INTEGER: up(1)

...

This is not an Ethernet card here, however, but a local loopback device.

11.1.2 SNMP protocol versions

The first SNMP version and Internet Standard Management Framework were
described back in 1988 in RFCs 1065–1067; the current documentation on
this version, named SNMPv1, can be found in RFC 1155–1157. It is still
used today, since higher versions are fundamentally backward-compatible.

The big disadvantage of SNMPv1 is that this version allows only unsatisfac-
tory authentication in precisely three stages: no access, read access, and
full access for read and write operations. Two simple passwords, the so-
called communities, provide a little protection here: they divide users into
one community with read permissions, and the second one with read and
write permissions. No further differentiation is possible. If this was not
enough, the community is transmitted in plain text, making it an easy prey
for sniffer tools.

Further development on the second version, SNMPv2, was intended to
solve problems concerning the display of value ranges, error events, and
the performance if there are mass requests (RFC 1905). This RFC was never
fully implemented, however. The only relatively complete implementation
that was used in practice is known as the Community-based SNMPv2, or
SNMPv2c for short (RFC 1901–1908). The current version, SNMPv3 (RFC
3411–3418), has the status of an Internet standard. Agents with SNMPv3
implementations always understand requests from SNMPv1.

Apart from extended protocol operations, there are no fundamental differ-
ences between SNMPv1 and SNMPv2c. This is probably also the reason

233



11 Collecting Information Relevant for Monitoring with SNMP

why SNMPv2 could not really gain a foothold. The hoped-for increase in
security was certainly missing in this version. It is only the extensions of the
framework in SNMPv3 which allow more precise access control, but this is
much more complicated than the two community strings in SNMPv1. RFC
3414 describes the user-based security model (USM), RFC 3415 the view-
based access control model (VACM).

When accessing an SNMP agent, you must tell all tools, including plugins,
which protocol version is to be used. In Nagios you exclusively require read
access. If this is restricted to the required information and you only allow
the access from the Nagios server, you need have no qualms about doing
without the extended authentication of SNMPv3. It is only important that
you configure the agent—if possible—so that it completely prevents write
accesses, or at least demands a password. You should never use this: since
it is transmitted in plain text, there is always a danger that somebody may
be listening, and misuse the password later on.

In NET-SNMP, write accesses can be completely prevented, access can be
restricted to specific hosts, and information revealed can be limited. For
other agents implemented in hardware such as switches and routers, you
must weigh up whether you really need SNMPv3, assuming the manufac-
turer has made this available. SNMPv1, however, is available for all SNMP
devices.

We will therefore only explain access via SNMPv1 below, and assume that
this is generally read access only. If you still want to get involved with
SNMPv3, we refer you to the NET-SNMP documentation.2

11.2 NET-SNMP

Probably the most widely used SNMP implementation for Linux and other
UNIX systems is NET-SNMP3 and was originally conceived at Carnegie-
Mellon University. Wes Hardaker, a system administrator at the University
of California in Davis, continued developing the code and first published it
under the name UCD-SNMP (Version 3.0).

With version 5.0 the project finally got the name NET-SNMP. But various
distributions still call the package UCD-SNMP, in part because it contains
version 4.2, in part because the maintainer has simply not gotten around
to renaming it.

NET-SNMP consists of a set of command line tools, a graphical browser
(�����), an agent (�����, see Section 11.2.2 on page 238) and a library,
which now forms the basis of nearly all SNMP implementations in the Open
Source field.

2 �����������
����
��������
���������
�;9A�����)>������*��
���+�B�
3 �����������
����
��������
������

234



11.2 NET-SNMP

All common distributions include corresponding packages. In SuSE this is
called �������� and contains all the components; Debian packs the tools
in the package ����, and the daemon in the package �����. At the time of
going to press, version 5.4.1 was the current version, but an older 5.x version
will do the job for our purposes. Their outputs differ to some extent, but
the exact options can be looked up where necessary in the man page.

11.2.1 Tools for SNMP requests

For read access, the programs �������, ����������� and �������� are
used. ������� specifically requests a single OID and returns a single value
from it. ����������� displays the next variable existing in the Manage-
ment Information Base, including its value:

user@linux:~$ snmpget -v1 -c public localhost ifDescr.1

IF-MIB::ifDescr.1 = STRING: eth0

user@linux:~$ snmpgetnext -v1 -c public localhost ifDescr.1

IF-MIB::ifDescr.2 = STRING: lo

user@linux:~$ snmpgetnext -v1 -c public localhost ifDescr.3

IF-MIB::ifType.1 = INTEGER: ethernetCsmacd(6)

The option ��- instructs ������� to use SNMPv1 as the protocol. With
�� you specify the read community an; in this case then, the password is
�
����. This is followed by the computer to be queried, here �����
���,
and finally there is the OID whose value we would like to find out.

The NET-SNMP tools are masters of OID abbreviation: without special in-
structions, they always assume that an OID is involved which lies inside
the MIB-II. For unique entries such as �	<�����-, this is sufficient. But
whether the various SNMP plugins for Nagios can also handle this depends
on the specific implementation; it is best to try out cases on an individual
basis. To be on the safe side, it is better to use complete OIDs, either nu-
merical in readable form. The latter is obtained if you instruct ������� to
display the full OID:

user@linux:~$ snmpget -v1 -On -c public localhost ifDescr.1

.1.3.6.1.2.1.2.2.1.2.1 = STRING: eth0

user@linux:~$ snmpget -v1 -Of -c public localhost ifDescr.1

.iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifDescr.1 =

STRING: eth0

The �:� option provides the numerical OID, �:	 the text version. In this
way you can easily find out the complete OID, for plugins which cannot
handle the abbreviation. It is important to remember here: each OID al-
ways starts with a period. If you omit this, there will always be a plugin
which doesn’t work properly.

235



11 Collecting Information Relevant for Monitoring with SNMP

In order to obtain the entire information stored in the MIB-II, it is better to
use ��������. As the name suggests, the program takes a walk through the
Management Information Base, either in its entirety or in a specified part of
the tree. If you would like to find out about all the entries beneath the node
�����������	���� (Figure 11.1 on page 230), you simply give ��������
the required OID:

user@linux:~$ snmpwalk -v1 -c public localhost mib-2.interfaces

IF-MIB::ifNumber.0 = INTEGER: 3

IF-MIB::ifIndex.1 = INTEGER: 1

IF-MIB::ifIndex.2 = INTEGER: 2

IF-MIB::ifIndex.3 = INTEGER: 3

IF-MIB::ifDescr.1 = STRING: eth0

IF-MIB::ifDescr.2 = STRING: lo

IF-MIB::ifDescr.3 = STRING: eth1

IF-MIB::ifType.1 = INTEGER: ethernetCsmacd(6)

...

�������� hides the exact structure slightly (links to �	>���� and �	/����
are missing, for example, see Figure 11.1), so that it is better to use �:	:

user@linux:~$ snmpwalk -v1 -Of -c public localhost mib-2.interfaces

...mib-2.interfaces.ifNumber.0 = INTEGER: 3

...mib-2.interfaces.ifTable.ifEntry.ifIndex.1 = INTEGER: 1

...mib-2.interfaces.ifTable.ifEntry.ifIndex.2 = INTEGER: 2

...mib-2.interfaces.ifTable.ifEntry.ifIndex.3 = INTEGER: 3

...mib-2.interfaces.ifTable.ifEntry.ifDescr.1 = STRING: eth0

...mib-2.interfaces.ifTable.ifEntry.ifDescr.2 = STRING: lo

...mib-2.interfaces.ifTable.ifEntry.ifDescr.3 = STRING: eth1

...mib-2.interfaces.ifTable.ifEntry.ifType.1 = INTEGER: ethernetCsmacd(6)

The three dots ��� in the version here abbreviated for print stand for
��������������������������.

As the next step, you could take a look around your own network and query
the Management Information Bases available there. Normally you will get
quite far with the read community �
����, since this is often the default
setting. So you should also try out the community string �������, which is
the default set by many vendors. An extremely dubious practice, by the way:
anyone who knows a bit about SNMP and who has access to the network
can use this to manipulate device settings, such as switching off certain
ports or the entire switch. But even with all the other default passwords,
you should take the trouble to change them. Entire password lists can be
found on the Internet, sorted by vendors and devices—easily found through
Google.

Whether you also change the preset read community (such as �
����) de-
pends on the information available on it and on your own security require-
ments. But the read-write community should under no circumstances re-
tain the default setting. In addition it is recommended that you switch off

236



11.2 NET-SNMP

SNMP completely for devices that are neither queried nor administrated
via SMNP, just to be on the safe side.

Taking a graphic walk with �������

A graphical interface is often recommended for interactive research and
for initial explorations of the Management Information Base, such as the
SNMP browser �������4 (see Figure 11.2). This is not a component of
NET-SNMP, but most Linux distributions provide an ������� package for
installation.

Figure 11.2:
SNMP browser
�����
�

If you highlight an entry and click on the 4��� button, the lower window
displays the same output as ��������. The graphical display, however,
allows better orientation—it is easier to see in which partial tree you are
currently located. It is also interesting that ������� shows the numeric
OID of each selected object, in :�@��� 6�����	���.

4 ����������������(���
������
��

237



11 Collecting Information Relevant for Monitoring with SNMP

11.2.2 The NET-SNMP daemon

The NET-SNMP daemon ����� works as an SNMP agent for Linux and
other Unix systems; that is, it answers requests from a manager and also
provides a way of making settings to the Linux system via write accesses,
such as manipulating the routing table.

Supported Mangement Information Bases

The agent initially provides information on the MIB-II described in RFC
1213 (Section 11.1.1 from page 229), but also the host extensions belonging
to this from RFC 2790 (host MIB). Table 11.2 summarizes the groups of the
host MIB, and the most important MIB-II groups are introduced in Table
11.1 (page 231).

If you are interested in a detailed description of the MIB-II, including the
host MIB, we refer you to 
���!&&����������������&. There you can
surf through a huge number of MIBs and download them if you wish.

In addition to the basic MIB-II, the NET-SNMP implementation has its own
extension at ��������������������
������ (UCD-SNMP-MIB). The di-
rectives given in table 11.3 refer to instructions in the configuration file
���������	 (see page 240). Some of the information here is also given in
the Host Resources MIB.

Table 11.2:
Components of the

Host Resources MIB
����$���
� (RFC

2790)

Group OID Description

hrSystem host.1 System time and uptime of the host, logged-in
users, and number of active processes

hrStorage host.2 Details on all storage media such as swap, hard
drives, removable media, and main memory

hrDevice host.3 List of available devices and their properties:
apart from details on the processor, network
interfaces, printer and DVD-/CD-ROM drives,
there is also information on hard drives, their
partitioning, file systems, mount points and
file system types

hrSWRun host.4 All running processes including PID and com-
mand line parameters

hrSWRunPerf host.5 CPU usage and memory usage for the pro-
cesses from hrSWRun

hrSWInstalled host.6 Installed software; the information originates
from the RPM database (unfortunately this
does not work in Debian).

238



11.2 NET-SNMP

Table 11.3:
Extract from the
UCD-SNMP-MIB

Group OID Directive description

prTable ucdavis.2 ���� details of running processes

memory ucdavis.4 – Memory and Swap space load, as
in the program 	���

extTable ucdavis.8 ���� Information on self-defined
commands in the configuration
file5

dskTable ucdavis.9 ���� Information on file systems, see
example in the text

laTable ucdavis.10 ���� System load

ucdExper-
imental

ucdavis.13 – Experimental extension contain-
ing an entry with lm-sensor in-
formation, among other things

fileTable ucdavis.15 	��� Information on files to be explic-
itly monitored

version ucdavis.100 – Details on the NET-SNMP ver-
sion and the parameters with
which the daemon was compiled

While ������
��� only specifies absolute values, such as for file systems,
UCD-SNMP-MIB also allows threshold values to be set for agent pages,
which then explicitly generate an error value (���/����F���) with error
text (���/�������):

user@linux:~$ snmpwalk -v1 -c public localhost ucdavis.dskTable |\

grep ’.2 =’

UCD-SNMP-MIB::dskIndex.2 = INTEGER: 2

UCD-SNMP-MIB::dskPath.2 = STRING: /net/swobspace/b

UCD-SNMP-MIB::dskDevice.2 = STRING: /dev/md6

UCD-SNMP-MIB::dskMinimum.2 = INTEGER: -1

UCD-SNMP-MIB::dskMinPercent.2 = INTEGER: 10

UCD-SNMP-MIB::dskTotal.2 = INTEGER: 39373624

UCD-SNMP-MIB::dskAvail.2 = INTEGER: 1694904

UCD-SNMP-MIB::dskUsed.2 = INTEGER: 35678636

UCD-SNMP-MIB::dskPercent.2 = INTEGER: 95

UCD-SNMP-MIB::dskPercentNode.2 = INTEGER: 1

UCD-SNMP-MIB::dskErrorFlag.2 = INTEGER: 1

UCD-SNMP-MIB::dskErrorMsg.2 = STRING: /net/swobspace/b: less than 10% fr

ee (= 95%)

The ���� P�� GP filters all entries on the second device from the ��������
output, the Linux software-RAID &���&��'. The entry ���������� shows

5 Any executable programs can be used here.

239



11 Collecting Information Relevant for Monitoring with SNMP

the current load of this data medium. An error exists if ���/����F���
contains the value 1 instead of 0; ���/������� adds a readable message
to the error message. It can be assumed from this that the agent is being
configured so that it will announce an error if free capacity falls below 10
percent.

The configuration file ���������	

Configuring the agent is done in the file ���������	, which is either lo-
cated in the directory &��� directly (the case for SUSE) or in &���&����
(Debian), depending on the distribution.

Authentication and security As the first step towards a finely tuned access
control, you first need to define who should have access to which commu-
nity:

# (1) source addressesQuelladressen

com2sec localnet 192.168.1.0/24 public

com2sec localhost 127.0.0.1 public

com2sec nagiossrv 192.168.1.9 public

������� links the source IP addresses to a community string (the SNMP
password). This keyword is followed by an alias for the IP address range,
the address range itself, and then a freely selectable community string, for
which we will use �
���� here, to keep things simple.6 -,��-'B�-�+&�7
refers to the local network; the Nagios server itself has the IP address -,��
-'B�-�,. If you set access permissions for the alias �������� later on, they
will apply to the entire local network -,��-'B�-�+&�7, but if you reference
���������when doing this, they will only apply to the Nagios server itself.

Then the defined computers and networks are assigned via their aliases to
groups which have different security models:

# (2) assignment of group - security model - source-IP alias

group Local v1 localhost

group Nagios v1 nagiossrv

The keyword ���
� is followed first by a freely selectable group name: here
we define the group #���� with the security model �-, which belongs to
the address range defined as �����
���, and the group  ����� with the
same security model contained in the Nagios server.

You can choose from �- (SNMPv1), ��� (community-based SNMPv2), and

�� (the User Model from SNMPv3) as the security model. If you assign

6 See also page 236.

240



11.2 NET-SNMP

a computer or a network several security models at the same time, then
separate entries with the same group name are required:

group Nagios v1 nagiossrv

group Nagios usm nagiossrv

With the definition of views (keyword ����) the view from the outside can
be restricted precisely to partial trees of the Management Information Base.
Each view here is also given a name for referencing:

#(3) View definition for partial trees of the SNMP namespace

view all included .1

view system included .iso.org.dod.internet.mgmt.mib-2.system

The reference ����
��� includes the following partial tree in the view.
Thus the view ��� covers the entire tree (�-). If you want to exclude certain
partial trees in this, then the keyword ����
��� is used:

view all included .1

view all excluded .iso.org.dod.internet.private

The partial tree beneath ������� in ��� is now blocked, such as the MIB

������ (��������������������
������).

One interesting feature is the mask; it specifies in hexadecimal notation
which nodes correspond exactly to the subtree:

view all included .iso.org.dod.internet.mgmt F8

All places of the queried OID, for which the mask contains a 1 in binary
notation, must be identical in the queried partial tree to the OID specified
here, ��������������������������, otherwise the daemon will refuse
access and not provide any information. ��������������������������
is written numerically as �-�*�'�-��.

Thanks to the mask FB,7 binary 11111000, the first five places from the left
in the OID must always be ��������������������������. If somebody
queried an OID (such as the ������� tree �-�*�'�-�7), which deviates
from this, the agent would remain silent and not provide any information.
If you leave out the mask detail, FF will be used.

If you have defined the alias, community, security model, and view, you just
need to bring them together for the purpose of access control. This is done
with the ������ instruction:

7 F= 1·23+1·22+1·21+1·20 = 1111, 8=1000

241



11 Collecting Information Relevant for Monitoring with SNMP

# (4) Definition of the access control

access Local any noauth exact all none none

access NagiosGrp any noauth exact all none none

The access restrictions are bound to the group. The ������� column re-
mains empty (TT), since only SNMPv3 requires it.8 As the security model,
you then normally choose ���, but you may define a specific model with
�-, ��� or 
��, since several different security models may be assigned
to a group, as shown in the discussion of “Authentication and Security” at
the beginning of this Section. The fifth column specifies the security level,
which is also of interest only for SNMPv3. In the other two security models
(we are only using �-), ���
�
 is given here. The fourth last column also
has just one meaning in SNMPv3. But since you must enter a valid value
forSNMPv1 and SNMPv2c as well, then ����� is chosen here.

The last two columns specify which view should be used for which access
(read or write). In the example, the groups #���� and  �����"�� obtain
read access for the view ���, but no write access. The final column defines
whether the agent should send SNMP traps—that is, active messages, to
the manager—for events that occur within the range of validity of the view.
Section 14.6 from page 312 goes into more detail about SNMP traps.

With the configuration described here, you can now exclusively access the
Nagios server and �����
��� via SNMPv1 for information. The server ac-
cess can be restricted further by defining a view that makes only parts of the
MIB visible. But you should only try this once the configuration described
is working, to avoid logical errors and time-consuming debugging.

System and local information The partial tree ������������ provides infor-
mation on the system itself and on the available (that is, implemented)
MIBs. With ����������� you can specify where a system is located in the
company or on the campus, and after the keyword ���������� you enter
the e-mail address of the administrator responsible:

# (5) mib-2.system

syslocation Server room Martinstr., 2nd rack from the left

syscontact root <wob@swobspace.de>

As long as you do not redefine the parameters ������� and �������� at
this point, the corresponding MIBs in the default will reveal the host name
and/or the system and kernel specification, corresponding to 
���� ��:

user@linux:~$ snmpwalk -v1 -c public localhost system

system.sysDescr.0 = STRING: Linux swobspace 2.6.10 #20 SMP Mon Dec 27

11:55:25 CET 2004 i686

8 Corresponding descriptions on SNMPv3 would go beyond the bounds of this book.

242



11.2 NET-SNMP

system.sysObjectID.0 = OID: NET-SNMP-MIB::netSnmpAgentOIDs.10

system.sysUpTime.0 = Timeticks: (1393474) 3:52:14.74

system.sysContact.0 = STRING: root <wob@swobspace.de>

system.sysName.0 = STRING: swobspace

system.sysLocation.0 = STRING: Serverraum Martinstr., 2. Rack von links

...

Defining processes to be monitored Processes that you want to monitor using
SNMP are specified with the ���� directive, and if required you can specify
the minimum or maximum number of processes:

# (6) Processes: enterprises.ucdavis.procTable

# proc process maximum minimum

# proc process maximum

# proc process

proc sshd

proc nmbd 2 1

proc smbd

proc slapd

If the entry for maximum and minimum is missing, at least one process
must be running. If only the minimum is omitted, NET-SNMP will define
this with zero processes. The corresponding entries end up in the MIB

���������>����; in case of error you will receive an error flag (��/�����
F��� and an error description (��/���������) (which unfortunately you
cannot define yourself ):

user@linux:~$ snmpwalk -v1 -c public localhost prTable

...

prTable.prIndex.4 = INTEGER: 4

prTable.prNames.4 = STRING: slapd

prTable.prMin.4 = INTEGER: 0

prTable.prMax.4 = INTEGER: 0

prTable.prCount.4 = INTEGER: 0

prTable.prErrorFlag.4 = INTEGER: 1

prTable.prErrMessage.4 = STRING: No slapd process running.

...


���������>����only reveals the configured processes; on the other hand
it allows ������
����
�145
� and ������
����
�145
����	 in general
to query all running processes. If you want to prevent this, the view must
exclude the area you do not want.

Your own commands With the ���� directive you can specify commands in
the extension 
����������>����, which the agent will execute in the cor-
responding queries. The result then appears in the relevant entries. In the
following example the agent calls &���&��
� if it is asked for 
�����������
>����:

243



11 Collecting Information Relevant for Monitoring with SNMP

# (7) your own commands: enterprises.ucdavis.extTable

# exec name command arguments

exec echotest /bin/echo hello world

The program to be executed must appear with its absolute path in the con-
figuration. Running �������� provides only the following:

user@linux:~$ snmpwalk -v1 -c public localhost extTable

extTable.extEntry.extIndex.1 = INTEGER: 1

extTable.extEntry.extNames.1 = STRING: echotest

extTable.extEntry.extCommand.1 = STRING: /bin/echo hello world

extTable.extEntry.extResult.1 = INTEGER: 0

extTable.extEntry.extOutput.1 = STRING: hello world

...

���>��������/��������5��
�� contains the return value of the com-
mand executed, and ���>��������/��������:
��
� contains the text
output.

With the ���� directive you can thus query everything that a local script
or program can find out. This could be a security problem, however: if
the programs used are susceptible to buffer overflows, this feature could be
misused as a starting point for a denial-of-service attack.

Monitoring hard drive capacity The ���� directive is suitable for monitoring
file systems. The keyword ���� is followed by the path for a mount point,
and then the minimum hard drive space in KB or in percent that should be
available. If you omit the capacity entry, at least 100 MB must be available;
otherwise an error message will be given.

In the following example the free capacity in the & file system should not
drop below -+9, and on &
��, at least 800 MB9 should remain free:

#(8) File systems: enterprises.ucdavis.dskTable

#disk mount point

#disk mount point minimum_capacity_in_KB

#disk mountpoint minimum_capacity_in_percent%

disk / 10%

disk /usr 819200

disk /data 50%

As far as the data partition &���� is concerned, the alarm should be raised
if free capacity falls below 2+9. ���/����F��� in this case contains the
value 1 instead of 0, and ���/������� contains an error text:

...

UCD-SNMP-MIB::dskPercent.3 = INTEGER: 65

9 1024KB ∗800

244



11.2 NET-SNMP

UCD-SNMP-MIB::dskErrorFlag.3 = INTEGER: 1

UCD-SNMP-MIB::dskErrorMsg.3 = STRING: /data: less than 50% free (= 65%)

...

���������� reveals a current load of '29. Instead of the partial tree con-
figured here, 
����������>����, ������
����
�1������ also provides
an overview of all file systems, even those not explicitly defined. These are
missing percentage details, however, and you do not receive an error status
or error message, as supplied by 
����������>����.

You should think hard about whether you set the warning limit in the NET-
SNMP or in the Nagios configuration. In the first case you must configure
the values on each individual host. If you query the percentage load, how-
ever, with the �
�������� plugin (see section 11.3.1 from page 246), then
you set warning and critical limits centrally on the Nagios server, saving
yourself a lot of work if you make changes later on. The ����
��.��<����
directive adds all existing file systems to the ���>���� table:

includeAllDisks 10%

It requires a minimum limit to be specified in percent, and also returns
error values. An absolute specification in KB is not possible here. If you
set warning and error limits centrally for �
��������; (see Section 11.3.1
from page 246) the error attributes ���/����F��� and ���/������� are
not queried, so that the value set here as the minimum limit can be ignored.

System load The ���� directive queries the CPU load. As the limit values,
you specify the average values for one minute, and optionally for five and
15 minutes:

# (9) System Load: enterprises.ucdavis.laTable

# load max1

# load max1 max5

# load max1 max5 max15

load 5 3 2

If the values are overstepped, ��/����F��� will contain the status - (oth-
erwise: +) and ��/��������� will have the text of the error message.

In a system that exceeds one of the specified limits, �������� returns the
following:

user@linux:~$ snmpwalk -v1 -c public localhost laTable

...

UCD-SNMP-MIB::laNames.1 = STRING: Load-1

UCD-SNMP-MIB::laNames.2 = STRING: Load-5

UCD-SNMP-MIB::laNames.3 = STRING: Load-15

245



11 Collecting Information Relevant for Monitoring with SNMP

UCD-SNMP-MIB::laLoad.1 = STRING: 5.31

UCD-SNMP-MIB::laLoad.2 = STRING: 2.11

UCD-SNMP-MIB::laLoad.3 = STRING: 0.77

...

UCD-SNMP-MIB::laLoadInt.1 = INTEGER: 530

UCD-SNMP-MIB::laLoadInt.2 = INTEGER: 210

UCD-SNMP-MIB::laLoadInt.3 = INTEGER: 77

UCD-SNMP-MIB::laLoadFloat.1 = Opaque: Float: 5.310000

UCD-SNMP-MIB::laLoadFloat.2 = Opaque: Float: 2.110000

UCD-SNMP-MIB::laLoadFloat.3 = Opaque: Float: 0.770000

UCD-SNMP-MIB::laErrorFlag.1 = INTEGER: 1

UCD-SNMP-MIB::laErrorFlag.2 = INTEGER: 0

UCD-SNMP-MIB::laErrorFlag.3 = INTEGER: 0

UCD-SNMP-MIB::laErrMessage.1 = STRING: 1 min Load Average too high (=5.31)

UCD-SNMP-MIB::laErrMessage.2 = STRING:

UCD-SNMP-MIB::laErrMessage.3 = STRING:

From ��#���6���- we are told the one-minute average value for the sy-
stem load as an integer, from ��#����- as a string, and from ��#����
F�����- as a floating-point decimal. ��/����F����- contains the corre-
sponding error status, ��/����������- the corresponding error message.
The same applies for the other two averages.

You can also use the �
�������� plugin here to query the floating-point
decimal values just as accurately, and specify limit values centrally.

11.3 Nagios’s Own SNMP Plugins

Among the standard Nagios plugins there are three programs with which
data can be obtained via SNMP: a generic plugin that queries any OIDs you
want, and two Perl scripts that are specialized in interface data of network
cards and the ports of switches, routers and so forth. In addition to this,
the directory ������� contains the source code of other SNMP plugins that
are not automatically installed. Apparently these are no longer maintained
and cannot run without major adjustments to the code.


���!&&�������������
��������&also provides some useful specialized
plugins, some of which are introduced in Section 11.4 from page 255. The
following descriptions are limited, for reasons of space, to SNMPv1/2
queries; for SNMPv3-specific options, we refer you to the online help for
the corresponding plugin.

11.3.1 The generic SNMP plugin ������	���

With �
�������� a generic plugin is available that queries all available
information via SNMP, according to your requirements. However, its oper-

246



11.3 Nagios’s Own SNMP Plugins

ation does require a degree of care, since as a generic plugin, it has no idea
of specifically what data it is querying.

For this reason as well, its output looks quite meager; specialized plugins
provide more convenience here. But since these don’t exist for every pur-
pose, �
�������� is then quite justified. It calls the program ������� auf,
which means that the NET-SNMP tools must be installed.

It provides the following options:

�8 ���	��� / ��
���G���	���
This is the host name or IP address of the SNMP agent to be queried.

�� $%� / �����G$%�
This is the object identifier to be queried, either as a complete nu-
merical OID or as a string, which is interpreted by ������� (e.g.,
���������� ����+).

Attention: in contrast to ��������, you must always specify the end
nodes containing the information.

�� ��	� / ������G��	�
This is the alternative port on which the SNMP agent is running. The
default is UDP port 161.

�� ������	� / ������
����G������	�
This is the community string for read access. The default value is
�
����.

�� ���	�!��� / ���������G���	�!���
If the queried value lies within the range specified by start and end,
�
�������� does not give out a warning. For �� +!,+ it must there-
fore be larger than 0 and smaller than 90.

�� ���	�!��� / ����������G���	�!���
If the query value lies outside the range, the plugin gives out CRITI-

CAL. If the warning and critical limits overlap, the critical limit always
has priority.

�� ��	��� / ��������G��	���
The contents of the queried OID must correspond exactly to the spec-
ified string, otherwise �
�������� will give out an error.

�� 	����� / ������G	�����
This option checks the contents of the queried OID to see whether
the regular expression regexp10 is matched. If this is the case, the
plugin returns OK, otherwise CRITICAL.

10 POSIX regular expression, see �	� / ��
�#.

247



11 Collecting Information Relevant for Monitoring with SNMP

�5 	����� / �������G	�����
As ��, except that there is no case distinction.

�� �	���� / �������G�	����
A string that is placed in front of the plugin response. The default is
1 ��.

�
 ��	��� / ��
����G��	���
SNMP only has simple values, not units. A string that is specified
instead of string is extended by the plugin in the text output so that
it serves the value as a unit. Because only text is involved here, you
can also specify ������ or �����, for example, as “units”.

�� ��������	 / �����������G��������	
This character separates the OID in the ������� output from the
value. The default is G.

�< ��������	 / ���
��
�����������G��������	
The plugin is able to query several OIDs simultaneously. The result
values are separated with delimiter, which in the default is a space.

�� ���� / ���������G����
This specifies the MIBs that should be loaded for �������. The de-
fault is .##. �� K$�<�</�:��6=11 loads in addition, �� $�<�</�:�
�6= (without the K sign) only loads the specified MIB.12

�� 
�	���� / ����������G
�	����
Defines the SNMP protocol version. The values for version are - or *.
Without this option, SNMPv1 is used.

SNMP provides almost unlimited possibilities, so the following examples
can merely convey a feeling for other plugins used.

Testing hard drive capacity via SNMP

The following command queries the load of a file system and to do this ac-
cesses the partial tree 
����������>���� of a locally running NET-SNMP
agent:

nagios@linux:local/libexec$ ./check_snmp -H swobspace -C public \

-o dskTable.dskEntry.dskPercent.2 -w 0:90 -c 0:95 -u percent

SNMP WARNING - *95* percent

11 ,C���!�D��*E is an MIB included for demonstration purposes.
12 See also the online help, with �	� 
������.

248



11.3 Nagios’s Own SNMP Plugins

The query applies to the percentage load of the file system with the index
number 2. As long as no more than 90 percent of the hard drive space is
then occupied, the test should return OK; here a warning will be returned
if it is between 91 and 95 percent, and critical status if it goes beyond this.
Thanks to the �
 option, �
�������� adds the description ������� to the
output of the figure determined.

Nevertheless, the plugin does not tell the whole truth: a test check with
�	 shows a 96 percent load, which comes from the fact that this program
correctly rounded up the actual 95.8 percent load, while integer values in
SNMP are seldom rounded up, but simply cut off. So you just have to live
with slight inaccuracies as long as the MIB does not provide any floating-
point decimals.

If you would like things to be more detailed, you can use the option ��: ��
P1 ���<613! &���&���������&�Pcauses other, self-defined information
to be added to the output of the above command:

SNMP-DISK: /net/swobspace/b WARNING - *95* percent

The above query can be more generally run through a command object
such as the following:

define command{

command_name check_snmp

command_line $USER1$/check_snmp -H $HOSTADDRESS$ -C $USER3$

-P 1 -o $ARG1$ -w $ARG2$ -c $ARG3$ -l $ARG4$

}

This definition assumes that the value being queried is numerical, and not
Boolean (see page 251), otherwise specifying a warning and critical value
simultaneously would make no sense. We store the community here in the
macro E$1/5*E.13 this is followed by the protocol version (�� - stands for
SNMPv1), the OID, the warning and critical limits, and a prefix.

The call for this command in service definitions is then made in the form

check_snmp!oid!warn!critical!prefix

If you want to specifically monitor the load of the file system with the in-
dex number 2 on the computer ��������� through ���>����, then the
following definition would be used:

define service{

service_description SNMP-DISK-a

host_name swobspace

13 The 4,�!8�4 macros are defined in the resource file ��
��������
.

249



11 Collecting Information Relevant for Monitoring with SNMP

check_command check_snmp!dskTable.dskEntry.dskPercent.2!0:90!0:95!DIS

K: /net/swobspace/a

...

}

Even though the �
����������� line is wrapped here, in practice all pa-
rameters must be on a single line, separated by an exclamation point O
(without spaces before or after the delimiter).

Measuring temperature via ����������

The next test checks the CPU temperature of the host. For the sensor, the
package ����������14 is used here, which accesses corresponding chips
on modern mainboards. As soon as ���������� is active, it allows the NET-
SNMP agents to read out the corresponding information from the partial
tree 
�������
��/��������������1������:

nagios@linux:local/libexec$ ./check_snmp -H localhost -C public \

-o lmTempSensorsValue.1 -w 25000:45000 -c 20000:48000 \

-u ’degrees Celsius (* 1000)’ -l ’Temp1/CPU’

Temp1/CPU OK - 41000 degrees Celsius (* 1000)

The output depends on the chipset: here you must multiply the query val-
ues by the factor 1000. Accordingly, you have no other alternative but to
adjust the warning and critical limits to the main board you are using. In
the example, the CPU temperature, 41 degrees Celsius, is “on a green light”:
if it were to drop below 25 degrees or rise above 45 degrees, it would cause
a warning, while below 20 or above 48 degrees, this would be critical.

Regular expressions and comparing fixed strings

You can check whether the text ��������� occurs in the system name as
follows:

nagios@linux:local/libexec$ ./check_snmp -H localhost -C public \

-o system.sysName.0 -r swobspace

SNMP OK - "swobspace"

Instead of defining the string being searched for, with �� as the regular
expression, you could also use the �� option. Then the text must match
exactly, however, which may be quite tricky, since everything counts that
������� outputs after the delimiter, G.

14 ��������������
��
��
����

250



11.3 Nagios’s Own SNMP Plugins

Monitoring network interfaces

The final example queries whether the first network interface of a Cisco
router is in operation:

nagios@linux:local/libexec$ ./check_snmp -H cisco1 -C public \

-o ifOperStatus.1 -w 1:1 -l ’SNMP: Port Status for Port 1 is: ’

SNNP: Port Status for Port 1 is: OK - 1

The information sought can be found in �	:���1���
�. Here we are query-
ing port 1. While �	:���1���
� gives out the operating status, �	.�����
1���
� reveals whether the interface is administratively switched on or off.

When specifying the warning limit here, we use the range -!-, so that the
plugin gives out a warning if the interface is physically switched off, and the
return value is thus 0. We will do without the definition of a critical status
here, since there are only two states, “on” or “off.” If the plugin returns a
CRITICAL when the interface is switched off, you should use �� -!- and
omit �� entirely.

If you just want to query the status of network interfaces, you should cer-
tainly take a look at the plugins �
�����	����
� and �
�����	�����
����
�, described below, which provide slightly more operating conve-
nience.

If MIB-II or MIB 
������do not provide the desired information, you could
also take a look at the MIB provided by the manufacturer. You can find out
from ������������ in which partial tree the overall MIB is hidden:

user@linux:~$ snmpwalk -v1 -c public konica01 system

system.sysDescr.0 = Konica IP Controller

system.sysObjectID.0 = OID: enterprises.2364

...

The example involves a network-capable Konica photocopying machine
called ������+-. ����������:�@���6<�+ reveals that �������������*'7
serves as the entry point for device specific details. With �������� you can
then obtain further information:

user@linux:~$ snmpwalk -v1 -c public konica01 enterprises.2364

...

enterprises.2364.1.2.6.1.1.5.1.1 = "Ready to Print"

...

In the concrete case of this photocopier, you can query the current de-
vice status through �������������*'7�-���'�-�-�2�-�-. Manufactur-
ers usually store information on the implemented MIBs, so that you are not
restricted to just guessing.

251



11 Collecting Information Relevant for Monitoring with SNMP

11.3.2 Checking several interfaces simultaneously

Active network components such as switches usually have quite a large
number of ports, and it would be very time-consuming to check every sin-
gle one of them. Here the �
�����	����
� plugin is very useful, since it
tests all ports simultaneously. It retrieves the information necessary for this
via SNMP, and has the following options:

�8 ���	��� / ��
���G���	���
This is the host name or IP address of the SNMP agent to be queried.

�� ������	� / ������
����G������	�
This sets the community string for read access.

�� ��	� / ������G��	�
This parameter is the alternative port on which the SNMP agent is
running. The default is UDP port 161.

�� 
�	���� / ��������������G
�	����
This parameter specifies the SNMP version (-, �, or *) for the query.

�� ���� / ������
��G����
Use this to specify a comma-separated list of interface types that
should not be queried (see example below).

�
 ���� / ��
�
���������G����
Use this to specify a comma-separated list of all ports that should be
excluded from the test. Like ��, the list consists of the indices of the
interfaces which are determined from �	6����: �
 -*D-7D-2D-'.

�� ����� / ������������G�����
This is the maximum size of the SNMP data packets; the default is
-7C� bytes.

With exclusion lists it is possible to exclude certain interface types or port
numbers from the test, perhaps because these are not occupied, or are
connected to PCs or other devices that are not always running.

With the following query we can find out, for example, which interface
types are gathered together on the Cisco switch here named �����+-:

user@linux:~$ snmpwalk -v1 -c public cisco01 ifType

...

interfaces.ifTable.ifEntry.ifType.12 = ethernetCsmacd(6)

interfaces.ifTable.ifEntry.ifType.13 = other(1)

interfaces.ifTable.ifEntry.ifType.14 = propVirtual(53)

...

252



11.3 Nagios’s Own SNMP Plugins

If the interface types ��
��(-) and ����H���
��(2*) should now be ex-
cluded, the plugin is sent off with the two figures, separated by a comma,
as the exclusion list �� -D2*:

nagios@linux:local/libexec$ ./check_ifstatus -C public -H cisco01 \

-x 1,53

CRITICAL: host ’cisco01’, interfaces up: 2, down: 10, dormant: 0,

excluded: 4, unused: 0<BR>GigabitEthernet0/2: down

<BR>GigabitEthernet0/3: down <BR>GigabitEthernet0/4: down

<BR>GigabitEthernet0/10: down <BR>GigabitEthernet0/5: down

<BR>GigabitEthernet0/11: down <BR>GigabitEthernet0/6: down

<BR>GigabitEthernet0/7: down <BR>GigabitEthernet0/8: down

<BR>GigabitEthernet0/9: down <BR> |up=2,down=10,dormant=0,excluded=4,unu

sed=0

In reality, this plugin also does not display its output over several lines, as
the line wrap here may suggest. The fact that this information appears on
the Nagios Web interface in a relatively clear form is because the HMTL
formatting element ^=5_ is thrown in. This causes the output for each port
to be displayed on a separate line. The I character defines the beginning of
the performance data, which does not appear at all in the Web interface.

A query of this type is implemented as a command object as follows:

define command{

command_name check_ifstatus

command_line $USER1$/check_ifstatus -H $HOSTADDRESS$ -C

$USER3$

-x $ARG1$

}

Here the macro E$1/5*E is also used to define the community string in the
file ����
�����	�. Altogether, 32 E$1/5�E macros are available, of which
the first two usually contain path details, and the others can be used in any
way you want.

If you would prefer to exclude ports rather than interface types, you can
use the �
 option instead of �� in the definition.

If Nagios is to monitor the switch �����+-, as shown above, excluding the
two interface types - and 2*, the corresponding service definition begins
as follows:

define service{

service_description Interfaces

host_name cisco01

check_command check_ifstatus!1,53

...

}

253



11 Collecting Information Relevant for Monitoring with SNMP

11.3.3 Testing the operating status of individual interfaces

To test an individual interface, you can use either the generic plugin �
����
���� or �
�����	��������
�, which specifically tests the operating status
(�	:���1���
�) of the network card. The advantage of this over the generic
plugin consists above all in its ease of use: instead of an index for the port,
you can also specify its description here—for example, ��
+.

�
�����	��������
� has the following options:

�8 ���	��� / ��
���G���	���
This is the host name or IP address of the SNP agent to be queried.

�� ������	� / ������
����G������	�
This parameter gives the community string for read access.

�� ��	� / ������G��	�
As long as the SNMP agent is not running on UDP port 161, the port
is specified with this option.

�� ��%���� / �����G��%����
ifIndex is the number of the network interface to be queried (such as
the network card of a computer or the port of a switch).

�� ������	 / �������G������	
Instead of the index key, the plugin processes the name of the inter-
face from ifDescr (see below).

�� 
�	���� / ��������������G
�	����
This specifies the SNMP version (-, �, or *) for the query.

�� 	���	��
���� / ������G	���	��
����
This option selects the return value if the interface is dormant. The
	���	��
���� can be � (ignore the dormant status and return OK!),
� (WARNING) or � (CRITICAL, the default).

�< 	���	��
���� / ������������G	���	��
����
What value (�, � or �) should the plugin return if the interface has
been shut down administratively? The default, �, issues a warning, �
returns CRITICAL, and � returns OK.

�� ����� / ������������G�����
This is the maximum size of the SNMP data packets; the default is
-7C� bytes.

On a system called �����, on which �������� finds the following inter-
faces . . .

254



11.4 Other SNMP-based Plugins

...

interfaces.ifTable.ifEntry.ifDescr.3 = ipsec0

interfaces.ifTable.ifEntry.ifDescr.4 = ipsec1

...

interfaces.ifTable.ifEntry.ifDescr.7 = eth0

interfaces.ifTable.ifEntry.ifDescr.8 = eth1

interfaces.ifTable.ifEntry.ifDescr.9 = eth2

interfaces.ifTable.ifEntry.ifDescr.10 = ppp0

the first Ethernet card is tested either with �� C or with �� ��
+. Since the
plugin in the second case has to query all �	<���� entries to determine
the index itself, this variation generates a somewhat higher network load.
It can be especially useful if not all network interfaces are active on a host,
causing its index to change.

The plugin itself reveals which index this port currently has:

nagios@linux:local/libexec$ ./check_ifoperstatus -H igate -c public \

-d eth0

OK: Interface eth0 (index 7) is up.

As the command object in the Nagios configuration, the call looks like this:

define command{

command_name check_ifoperstatus

command_line $USER1$/check_ifoperstatus -H $HOSTADDRESS$ -C $USER

3$ -d $ARG1$

}

The E$1/5*E macro again contains the community string, defined in the
file ����
�����	�. The service definition for ����� specifies the name of
the interface to be tested as a plugin argument:

define service{

service_description Interface eth0

host_name igate

check_command check_ifoperstatus!eth0

...

}

11.4 Other SNMP-based Plugins

Apart form the SNMP plugins from the Nagios Plugin package, the Nagios
community provides a large variety of other plugins for special purposes.
Most of them can be found at 
���!&&�������������
��������& in the
category Check Plugins | SNMP.15

15 ������������	
��
�#��	�
����
��+�B�3'�%�����

255



11 Collecting Information Relevant for Monitoring with SNMP

11.4.1 Monitoring hard drive space and processes with
����
	�	����������	

One of these is the package ��������������
����,16 which exists not
only as source code but also as an RPM package (for Red Hat and Fe-
dora). It contains two very easy-to-use plugins: �
������������� and
�
�������������.

Both absolutely require the NET-SNMP agent as the partner on the other
side (see Section 11.2.2 from page 238) and use 
����������>���� and

���������>���� to test the processes and file systems specified in the
configuration file ���������	. Its options are restricted to specifying the
host and the community string:

�8 ���	��� / ��
���G���	���
This is the host name or IP address of the NET-SNMP agent to be
queried.

�� ������	� / ������
����G������	�
This is the community string for read access.

The next example tests the available capacity of the &���� file system;
�
���� is again used as the community string:

nagios@linux:local/libexec$ ./check_snmp_disk -H swobspace -C public

/data: less than 50% free (= 95%) (/dev/md6)

The configuration of the NET-SNMP agent specifies, with the ���� directive
(page 244), 2+9 as the threshold for this file system. In this case the plugin
accordingly returns a CRITICAL. It can only distinguish between an error
and OK; it does not have a WARNING status.

Using �
������������� is just as easy:

nagios@linux:local/libexec$ ./check_snmp_proc -H localhost -C public

No slapd process running.

The plugin again tests the processes defined in the configuration of the
NET-SNMP agent with the ���� directive (page 243). The process �����
is missing here, which is why a CRITICAL is returned. The return value is
revealed by ��
� E0.

The corresponding command objects are defined in a similar unspectacular
way:

16 ����������������������������	
��
�
�������
��
�

256



11.4 Other SNMP-based Plugins

define command{

command_name check_snmp_proc

command_line $USER1$/check_snmp_proc -H $HOSTADDRESS$ -C $USER3$

}

define command{

command_name check_snmp_disk

command_line $USER1$/check_snmp_disk -H $HOSTADDRESS$ -C $USER3$

}

This definition also assumes that the community string is stored in the
E$1/5*E macro in the file ����
�����	�. In order to query the NET-
SMTPD on the computer ���
�+- for its hard drive load, the following
service object is defined:

define service{

service_description DISK

host_name linux01

check_command check_snmp_disk

...

}

11.4.2 Observing the load on network interfaces with
��������
������

The MIB-II contains only numbers that provide information on the load
on network interfaces, but no average values for the used bandwidth, for
example. If the vendor has not specifically made such an entry available in
his MIB, then you will always have to make a note of the last counter status
and the timestamp, so that you can work out the relative usage yourself.


���!&&�������������
��������& introduces two plugins that take over
this task. The Perl-based plugin �
�������		��17 writes the query values
into a round-robin database (RRD, see page 408), which makes it somewhat
more complex to handle.

The same purpose is achieved, but with more simple means, by the �
����
�	���		����� plugin.18 It has the following options:

�8 ���	��� / ��
���G���	���
���	��� is the host name or IP address of the NET-SNMP agent that
is to be queried.

�� ������	� / ������
����G������	�
������	� is the community string for read access. The default is
�
����.

17 ��������	
��
�
��������
������������	������������
����������	�����
18 ������������	
��
�#��	�
����
��3'61/

257



11 Collecting Information Relevant for Monitoring with SNMP

�� ������	 / �������	���G������	
From the interface name ������	 the plugin determines the index
so that it can access other values (e. g., the counter states).

�� ������	 / ���������
G������	
This is the maximum bandwidth of the interface in bits (see �
).

�
 ���� / ��
����G����
This is the unit for bandwidth specification with ��. Possible values
are � (Gbit), � (Mbit), � (kbit) and the default � (bit): �� -++ �
 �
corresponds to 100 Megabits (Fast Ethernet).

�� ������	 / ���������G������	
If traffic exceeds this warning limit in percent (default: B2 percent),
the plugin issues a WARNING.

�� ������	 / ����������G������	
This is the critical threshold in percent (default: ,� percent).

The plugin saves the timestamp and counter status of the interface queried
in files in &���, to which it adds the prefix ���		��. So if you are using
a different user ID than ������ for the manual test on the command line,
you should delete the files &���&���		�������	������������	 before
activating the appropriate Nagios service.

The following command line example queries the Fast Ethernet network
interface ��
+ on the computer ���
�+-, which in theory has a bandwidth
of 100 Mbit:

nagios@linux:local/libexec$ ./check_iftraffic.pl -H linux01 -i eth0 \

-b 100 -u m

Total RX Bytes: 60.32 MB, Total TX Bytes: 26.59 MB<br> Average Traffic:

1.14 kB/s (0.0%) in, 777.93 B/s (0.0%) out | inUsage=0.0,85,98 outUsage

=0.0,85,98

The amount of data transmitted here is reported separately by the plugin,
depending on the direction, and here it announces 60.32 (5U, “received”)
and 26.59 MB (>U, “transmitted”). The text contains the HTML element
^��_ (line break), to display the output in the Nagios Web interface on two
lines. This is followed by the average transmission rate, again separated
for incoming and outgoing data traffic. The performance data (see Section
19.1, page 404) after the I sign contain only the average load as a percent-
age, each separated by incoming and outgoing values. The numbers B2 and
,B are the default values for the warning and critical limits.

The corresponding command object is implemented as follows:

define command{

command_name check_iftraffic

258



11.4 Other SNMP-based Plugins

command_line $USER1$/check_iftraffic.pl -H $HOSTADDRESS$ -C $USER3$

-i $ARG1$ -b $ARG2$ -u m

}

If the definition is taken over literally, you must define the community
string in the E$1/5*E macro. If you only generally use �
���� as the pass-
word, it is better to write �� �
���� instead of �� E$1/5*E.

To simplify the call of the command within the following service definition,
we set the unit to Mbit/second (�
 �).

define service{

service_description Traffic load eth0

host_name linux01

check_command check_iftraffic!eth0!100

...

max_check_attempts 1

normal_check_interval 5

retry_check_interval 5

...

}

�
�����	���		�� calculates the bandwidth used by comparing two
counter states at different times. Because Nagios does not test exactly
down to the second, the check interval you choose should not be too small.
The Multi Router Traffic Grapher,19 which displays the bandwidth used in
graphic form, normally works at five-minute intervals.

If you select �����
������������ other than -, you should make sure
that the retry interval (�������
������������) is the same as the normal
check interval. For �����
������������ - this makes no difference, but
you have to define a �������
������������ at some time or other.

11.4.3 The �������
���
� plugins for special application
purposes

The Nagios Exchange, with the SNMP plugins to be found under 
���!&&
�������
�
�������&������& (see Table 11.4), also includes some that are
customized to a specific application, such as querying hard drive space.
They are relatively simple to use.

Table 11.4:
The
�	�����������-
SNMP plugins

Plugin Description

�
������������������� Query of storage devices (hard drives, swap
space, main memory, etc.)

19 ��������������
���
�

259



11 Collecting Information Relevant for Monitoring with SNMP

continued:

Plugin Description

�
��������������� Interface status and load

�
������������������� processes: status, CPU and memory usage

�
���������������� System load

�
��������������� main memory and swap usage

�
���������������� querying a Nokia-VRRP cluster20

�
�����������	���� querying a Checkpoint firewall-121

�
��������������� tests environment parameters of switches
such as temperature, power supply unit,
and fan (Cisco, Foundry, and others)

�
��������������� Queries Windows services via SNMP

We will introduce two of the plugins—�
������������������� and �
���
�������������—in detail here.

Keeping checks on storage media with �
����������������

While the �
�������������plugin, introduced in Section 11.4.1 from page
256, only checks the file systems entered in the NET-SNMP configuration,
�
������������������� is capable of querying any storage media—even
swap space or main memory—without previous configuration on the tar-
get host. �
������������������� tests the partial tree ������
��� here,
while �
��������������� uses 
�������������, so that it remains re-
stricted to NET-SNMP.

The fact that you do not have to battle with OIDs, but instead can work
with descriptions of the ���� ����� type to specify the type of the storage
medium, provides a certain level of convenience. These can be queried
with �������� as follows:

user@linux:~$ snmpwalk -v1 -c public swobspace hrStorageDescr

hrStorageDescr.2 = STRING: Real Memory

hrStorageDescr.3 = STRING: Swap Space

hrStorageDescr.4 = STRING: /

...

hrStorageDescr.11 = STRING: /net/swobspace/b

When the plugin is called, the text specified after the 1>56 "! is sufficient
or—if unique—a part of this:

20 The abbreviation VRRP stands for Virtual Router Redundancy Protocol.
21 ���������������������������������
������	���'�

260



11.4 Other SNMP-based Plugins

nagios@linux:local/libexec$ ./check_snmp_storage.pl -H swobspace \

-C public -m /net/swobspace/b -w 90 -c 95

/net/swobspace/b : 91 %used (34842MB/38451MB) (< 90) : WARNING

nagios@linux:local/libexec$ ./check_snmp_storage.pl -H swobspace \

-C public -m "Swap" -w 50 -c 75 -f

Swap Space : 0 %used (0MB/3906MB) (< 50) : OK | ’Swap Space’=0MB;1953;

2930;0;3906

In the second example, it is sufficient to specify 1���, in order to query the
data for 1��� 1����, since the pattern is unique. The �	 option ensures
that �
�������������������will include performance data in its output.

�� and �� specify in normal fashion the warning or critical limits in percent
of the available memory space. The following overview lists all the options:

�8 ���	��� / ��
���G���	���
This is the host name or IP address of the NET-SNMP agent that is to
be queried.

�� ��	��� / ������
����G��	���
This is the community string for read access.

�� ��	� / ������G��	�
��	� specifies an alternative port if the SNMP agent is not running
on the default UDP port 161.

�� ��	��� / ������G��	���
��	��� contains a description of the device to be queried, corre-
sponding to its description in 
�1������<���� (see above), such
as �� J1��� 1����J for swap devices, �� J5��� ������J for the
main memory, or �� J&
��J for the partition mounted under &
��
in the file tree.

�� ��	���� / ������G��	����
A warning is given in the default if the proportion of used memory
is larger than the specified threshold. Other warning limits can be
defined with the �> parameter.

�� �	�� / ����������G�	��
In the default, the status is categorized as critical if the proportion of
used memory is larger than the specified critical limit. Other critical
limits can also be specified with the �> parameter.

�> ������ / ������G������
What do the critical and the warning thresholds refer to?

�
 (percent used): used capacity in percent

�� (percent left): free capacity in percent

261



11 Collecting Information Relevant for Monitoring with SNMP

�
 (bytes used): used capacity in megabytes

�� (bytes left): free capacity in megabytes

The default is �> �
.

�� / ����������
Normally the description in the �� parameter is treated as a regu-
lar expression. For example, &��� here stands for all file systems
containing &���, for example &��� and &���&�����&����, provided
that these are really two independent file systems. The �� option
switches off the regular expression capability, so that specifying &���
will then match this file system exactly, but not &���&�����&����,
for example.

�� / ���
�
Instead of performing individual tests for several specified storage
media, the total occupied space is added up and compared to the
total capacity. It is then determined whether thresholds are exceeded.

�� / �������
With ��, a text is normally specified, which turns up again in the
description 
�1������<����. With the �� option, the index table
is used instead of the description. Here the Regexp capability also
applies: �� � matches all the entries containing the number � in the
index (that is, �, -�, �+, etc.). It then makes sense to use the �� option
at the same time.

�� / ������
��
Now all the memories that are matched by the �� specification are
excluded from the test, the remaining ones are included in the test.

�	 / �����	�����
This option provides an additional output of performance data that
is not shown in the Web interface but can be evaluated by additonal
tools (see Chapter 19).

Testing system load with �
�������������

The plugin compares either the average system load in form of averages of
1 min, 5 min, and 15 min, or the CPU load in percent.

�8 ���	��� / ��
���G���	���
This is the host name or IP address of the NET-SNMP agent to be
queried.

262



11.4 Other SNMP-based Plugins

�� ��	��� / ������
����G��	���
This is the community string for read access.

�� ��	� / ������G��	�
��	� is the alternative UDP port on which the SNMP agent is run-
ning. The default is UDP port 161.

�� ��	���������� / ������G��	����������
The warning limit is given either as a simple integer value in percent
(e.g., ,+) or as an integer triplet separated by commas, which defines
the thresholds for the system load average for one, five, and 15 min-
utes (e.g., BD2D2). The percentage load, on the other hand, always
refers to the CPU load of the last minute.

If the plugin queries a NET-SNMP agent, you must additionally spec-
ify the �# option in the second variation, for the percentage, � .

�� �	������������ / ������G�	������������
This specifies a critical limit; the syntax is the same as that for ��.

�# / �����
�
This option specifies that the plugin queries the system mode of a
Linux system via NET-SNMP.

�. / ����7++
This option specifies that the CPU loaded on an AS/400 machine is
queried.

�6 / �������
This option specifies that the CPU load of a Cisco network compo-
nent is involved.

� / ���������
If the plugin queries the percentage CPU load of a Linux system via
NET-SNMP, the � option must be specified.

�	 / �����	�����
This option ensures the output of performance data that is not dis-
played in the Web interface, but can be evaluated by additional tools
(see Chapter 19).

The following example queries the system load on the computer ���������
via NET-SNMP and specifies threshold values for the one-, five-, and fifteen-
minute averages:

nagios@linux:local/libexec$ ./check_snmp_load.pl -H swobspace \

-C public -w 1,2,3 -c 3,5,6 -L

Load : 0.05 0.07 0.06 : OK

nagios@linux:local/libexec$ ./check_snmp_load.pl -H swobspace \

263



11 Collecting Information Relevant for Monitoring with SNMP

-C public -N -w 80 -c 90 -f

CPU used 3.0 : < 80 : OK | cpu_prct_used=3%;80;90

The second example involves the percentage CPU load on the same ma-
chine. Here we additionally request performance data, which as usual re-
peats not only the measured value but also the thresholds.

264



12 Ch
ap

te
r

The Nagios Notification System

What would be the point of system and network monitoring if it did not
inform the right contact partner when things went wrong? Hardly any sy-
stem or network administrator can afford to keep an eye on the Nagios
Web interface continually and wait for changes in status to occur. A practi-
cal working system must inform the admin actively (push information), so
that the admin has time to devote to other things and needs to intervene
only when Nagios raises the alarm.

Whether a notification system does its job in practice or not is ultimately
decided by how well it can be adjusted to the requirements of a specific
situation. What may already be a critical error for one person may, for
another, not be normal but still tolerable, and nothing is worse than being
bombarded with supposed error messages that are not even seen as errors
in a certain environment. An excess of wrong information can make the
administrator careless, and at some point the real problems get lost in a
flood of false messages.

265



12 The Nagios Notification System

Nagios provides a sophisticated notification system allowing your own en-
vironment to be fine-tuned to your own requirements. The wide range of
settings at first seem confusing, but once you have understood the basic
principle, everything becomes much clearer.

The efforts to keep Nagios small and modular also apply to the notification
system: sending a message is again left by the system to external programs:
from a simple e-mail through SMS, down to hardware solutions—such as a
real traffic light on the server cabinet—anything is possible.

12.1 Who Should be Informed of What, When?

In order for Nagios to send meaningful messages, the administrator must
answer four questions:

When should the system generate a message?

When should it be delivered?

Whom should the system inform?

How should the message be sent?

Figure 12.1:
An overview of the
notification system

Figure 12.1 gives a rough outline of the concept. The service and host check
generate the message, which then runs through various filters,1 which usu-
ally refer to the time. The contact refers to the person whom Nagios should
inform. If the message has passed all tests, the system hands it to an exter-
nal program, which informs the respective contact.

1 Strictly speaking, filters defined in the host or service prevent a message from being cre-
ated, instead of filtering already generated messages. To keep things simple, however,
we pretend that Nagios has created a message that is then discarded by a corresponding
filter.

266



12.2 When Does a Message Occur?

12.2 When Does a Message Occur?

Each message is preceded by a host or service check, which determines the
current status. In the following two cases it generates a message:

One hard state changes to another hard state.

One computer or service remains in a hard error state. (The test therefore
confirms a problem that already exists.)

To remind you: the �����
������������ parameter (see Sections 2.3 and
2.5) defines in host and service objects how often a test should be repeated
before Nagios categorizes a new status as “hard.” If it is set to -, this is
immediately the case and is followed by the corresponding message. With
a value greater than 1, the system repeats the test that number of times,
and only if they all come to the same new result—such as determining the
CRITICAL error status—does the status finally change to the new hard state,
thus triggering a new notification.

As long as Nagios has not exhausted the specified number of repeats, a
soft state exists. If the old status reoccurs before these have finished, the
administrator remains uninformed unless he looks at the Web interface or
in the log file. Ultimately the administrator is only interested in genuine
unsolved problems. On the other hand, to assess availability as such, it
normally does matter if a service is not available for minutes on end, which
is why the soft states are also taken into account in the evaluation.

12.3 The Message Filter

Even if you define on a systemwide basis that Nagios may bring attention
to errors not just through the Web interface and log files but also via e-mail
and/or SMS, filter parameters in the host and service definition may in
individual cases cancel out these basic decisions. In all cases the final word
is had by the filters defined for the relevant contact. Which parameters play
a role on each of these three levels (systemwide, host/service, contact), is
described in Figure 12.2.

If a filter stops a notification, the filter chain ends “in a vacuum,” so to
speak—filter options further down in the hierarchy remain unaccounted
for—and Nagios does not generate any message.

267



12 The Nagios Notification System

Figure 12.2:
The filter sequence in

the Nagios
notification system

(some parameters are
only available

starting with Nagios
version 3.0)

12.3.1 Switching messages on and off systemwide

With the �����������	�������� parameter in the central configuration
file ��������	�, you can in principal define whether Nagios should send
messages at all. Only if it is set to - will the notification system work:

enable_notifications=1

268



12.3 The Message Filter

12.3.2 Enabling and suppressing computer and
service-related messages

When defining a host or service, various parameters can influence the mes-
saging system. Here you can define, for example, at what time Nagios
should send messages, whether the contact person is regularly informed
of error states, and about which states or changes in state he should be
informed (just CRITICAL, or WARNING as well, etc.).

The switch ����	����������������determines whether this specific com-
puter or service is important enough for the admin to be informed of errors
not just through the Web interface, but also in other ways as well. If this is
so, the parameter must be set to -:

notifications_enabled=1

This is also the case in the default, so that you have to set the value explicitly
to + at this point to stop separate notifications.

Taking downtimes into account

At times when a specific service or host is intentionally not available, Nagios
should certainly not send any error messages through the network. The
configuration of corresponding maintenance periods (downtime schedul-
ing) is only possible through the Web interface and is described in Section
16.3 from page 359.

What states and changes of state are worth a notification?

If a regular test shows that service or computer is changing its data con-
tinuously, this is called flapping in Nagios (see also Appendix B from page
611). If the 	��������������������� parameter is set to -, the system
tries to detect this situation.

Whether Nagios sends a message in this case depends on the ����	����
������������ filter. This decides on which states or changes of state Na-
gios will inform the contact involved. In host definitions it can have the
following combinations of values, separated by commas: � (switched off or
crashed, down), 
 (unreachable), � (computer again reachable, recovered),
and 	 (quickly alternating state, flapping ). Starting with Nagios 3.0, there
is an additional value �, which is used to send notifications if a planned
maintenance period is about to start, end, or is canceled.

For service objects, ����	��������������� recognizes the following
states: � (CRITICAL), � (WARNING), 
 (UNKNOWN, unknown problem),
� (service again reachable, recovered), and 	 (flapping ). From Nagios 3.0

269



12 The Nagios Notification System

onward, the value � is also available for sending notifications on planned
maintenance periods.

Nagios correspondingly informs the admin of the state of the service whose
definition is contained in the line

notification_options=c,r

only if this is critical or was recreated after an error state. Messages involv-
ing a WARNING or flapping are discarded by the system.

If ����	��������������� is set to � (none), Nagios will generally not send
a message concerning this computer or service.

When should Nagios send messages?

At what time should a message be sent? This can be defined with the
����	�������������� parameter:

notification_period=24x7h

����	�������������� expects a time object (see Section 2.10 from page
74) as the value; �7�C
 is such a value and stands for “round the clock.”

Outside the specified time period, Nagios suppresses possible messages,
but does not simply discard them, in contrast to the other filters. Instead
of this, the system places the message in a kind of queue and sends it as
soon as the notification period begins (rescheduling ). This means that the
relevant contact will certainly get to hear about the problem. Nagios also
ensures that the admin receives the message only once, even if multiple
messages on the same event were generated outside the time period.

����	�������������� is the only time-controlled filter in which a mes-
sage is not lost, despite filtering. With all the other time filters, the message
never reaches its destination outside the specified period of time.

With an interval check, Nagios can be instructed to report at regular inter-
vals on problems that persist for a longer time:

notification_interval=120

If a state persists that Nagios should normally report, corresponding to
the ����	��������������parameter—CRITICAL, for example—for a long
time, the system would grant this wish, in the example, every 120 time units
(normally, minutes). In other words it suppresses the notification that is
generated anyway with every check, after a corresponding notification un-
til the specified time has elapsed. If nothing has changed in the state until
then, it then sends the corresponding notification.

270



12.3 The Message Filter

If you set ����	���������������� to +, Nagios will send a notification
of this only once. You should be careful when doing this, however: filters
defined for the contact can also reject messages. If you normally generate
just one single message, which might arrive at the relevant admin outside
the admin’s chosen contact time period, then the admin will never be told
anything about the problem, even if it persists into working hours.

Starting with Nagios 3.0, the parameter 	���������	������������� al-
lows the delayed sending of a notification. With the setting

first_notification_delay=15

Nagios sends notification only after 15 time units (usually minutes) have
expired. If the system administrator responsible for handling the problem
posts an acknowledgement within the delay period (Section 16.1.2 from
page 332), the notification will not be sent, but if the administrator does not
react in time, then Nagios sends the first notification once the delay period
has expired. This option is useful for avoiding unneeded notifications when
administrators use the Web interface to check on the system periodically
during their regular working hours.

Whose concern is the message?

The contact group defined in the host or service object does not itself be-
long to the message filters, but it still decides on who is informed and who
is not:

contact_group=admins

What contacts belong to the specified group (here: ������) is defined by
the corresponding �����������
� object in its definition object (see also
Section 2.8 from page 72):

# -- /etc/nagios/global/contactgroups.cfg

define contactgroup{

contactgroup_name admins

alias administrators

members nagios,wob,mwi

}

The specified contact group, though, merely makes a rough preselection:
which of the contacts specified in it actually receive the message depends
on the filter functions in the definition of the individual contact. In this way
you can ensure that one employee is only notified during normal office
hours, another one round-the-clock, and that one of them is kept up to
date about all changes in status, and the other one is informed only of a
selection (for example, only CRITICAL but not WARNING).

271



12 The Nagios Notification System

12.3.3 Person-related filter options

When defining the ������� objects, the method is also specified in which
Nagios delivers the notification in specific cases (see Section 12.4 from page
275). It can be described separately for host and service problems. Several
parallel methods are also possible, such as via e-mail and SMS.

Since the contact-related filters are specifically for the corresponding con-
tact object, it can certainly be useful to define several contacts for one and
the same recipient that differ in individual parameters, such as a contact
object that keeps the person informed via e-mail of all problems during
normal working hours, and a second one for SMS messages concerning
critical events outside working hours.

What should Nagios inform you about?

The events for which somebody should be informed can be specified not
only by host or service, but also by contact. Host and service-related states
are defined separately here:

host_notification_options=d,u,r

service_notification_options=c,r,u

The possible values are the same as those for the host-service parameter
����	��������������� (page 269).

From Nagios 3.0 onward you can normally switch notifications for host and
service on and off via an additional parameter:

host_notifications_enabled=1

service_notifications_enabled=1

The value 0 prevents the corresponding messages, and the value 1 ensures
that the messages are sent. At first glance this corresponds to the value �
(no notification) for the accompanying option parameter.

The two ;�����	���������������� parameters can also be switched on
and off with the external commands / .=#/&<61.=#/��: >.�>�8:1>� :�
>6F6�.>6: 1 and / .=#/&<61.=#/��: >.�>�1H�� :>6F6�.>6: 12 via
the interface for external commands (Section 13.1 from page 292). This
can be done with a script where the contact is concerned, without having
to alter the preset ;�����	���������������.

2 See ������������	
��
���
����������������#����	�����	��
�.

272



12.3 The Message Filter

When do messages reach the recipient?

The final filter in the filter chain again refers to time periods. If a message
is produced in the time period specified here, Nagios notifies the contact;
otherwise it discards the message. The notification window can again be
set separately for hosts and services, and as a value it expects a ����������
object defined elsewhere:

host_notification_period=24x7

service_notification_period=workhours

12.3.4 Case examples

Letting you know once, but doing this reliably

What should you do if only a single message should be sent for each change
in status of the service, but this message must always reach the relevant re-
cipient during working hours? We can illustrate the solution to this problem
through the example of the ������ contact group to which the contact ���
is assigned, . . .

define contactgroup{

contactgroup_name admins

alias Local Site Administrators

members wob

}

. . . and to the �6 " service for the computer ���
�+-:

define service{

host_name linux01

service_description PING

check_command check_ping!100.0,20%!500.0,60%

max_check_attempts 3

normal_check_interval 2

retry_check_interval 1

check_period 24x7

notification_interval 0

notification_period workhours

notification_options w,u,c,r,f

contact_groups admins

}

����	���������������� + normally forces Nagios not to produce any re-
peat messages. The ����	�������������� ensures the desired time pe-
riod through the ���������� object ����
�
��: if Nagios raises the alarm

273



12 The Nagios Notification System

at other times, the inbuilt rescheduling is used, that is, the notification is
sent on its way only if the specified time period again applies. It is definitely
not discarded.

In order for Nagios to be active in all changes of state, the ����	��������
������� must always cover all possible events for services.

To guarantee that the contact ��� always receives the messages, it is essen-
tial that the ������������	�������������� in the corresponding ����
���� object is �7�C:

define contact{

contact_name wob

alias Wolfgang

host_notification_period 24x7

host_notification_options d,u,r

service_notification_period 24x7

service_notification_options w,u,c,r,f

...

}

A restricted time filter at this position could, under certain circumstances,
lead to the loss of each of the individual messages. The same applies for the
values of ������������	���������������: only if all are entered here as
well will no message be lost.

Informing different admins at different times

If you want to inform different persons at different times about differ-
ent events, you may not restrict either the ����	�������������� or the
����	��������������� of a host or service:

define service{

...

notification_interval 120

notification_period 24x7

notification_options w,u,c,r,f

...

}

Filtering takes place exclusively for individual contacts. For this to work
on a time level you must ensure that Nagios generates a message regularly
(here every 120 time units, normally minutes) if error states persist.

If admin A is to be informed only during his working hours, and then only
of changes to critical or OK states, A’s contact object will be sent with the
following parameters:

274



12.4 External Notification Programs

define contact{

...

service_notification_period workhours

service_notification_options c,r

...

}

There is also a second and not quite so obvious difference to the first exam-
ple: let us assume that the service reports the CRITICAL status at 7:30 in the
morning, which will persist for several hours. The ����
�
�� object is de-
fined so that it describes the time from Monday to Friday between 8:00 and
18:00. In the above example, Nagios holds back the message (rescheduling),
until the time period defined in it has been reached. The administrator
therefore receives a corresponding message at 8:00.

In the case described here, no rescheduling takes place, Nagios generates a
corresponding message every two hours, which is filtered out if the contact
is currently taking a “break.” The system correspondingly discards the mes-
sage at 7:30, but allows the next message two hours later to pass through.
The administrator therefore does not receive the corresponding informa-
tion until 9:30, provided that the problem still exists at this point in time.

Which of the two solutions is more suitable depends on specific require-
ments. For an e-mail notification, for example, it makes little difference if
the administrator receives mails round-the-clock but reads them only when
sitting in his office. A filter for Nagios messages in the mail client, sorting
them in reverse chronological order (the most current mail first) makes
sense in this case. Sitting in front of the screen, the administrator can also
take a quick look at the Web interface when problems are announced, to
check whether anything has changed.

If the methods of differentiation described so far are not sufficient, then
escalation management, described in Section 12.5, may be of further help.

12.4 External Notification Programs

Which external programs deliver the messages is defined by the contact
definition.

Here there are again two parameters to define the commands to be used,
one for services and one for hosts:

define contact{

...

service_notification_commands notify-by-email,notify-by-sms

host_notification_commands host-notify-by-email,host-notify-by-sms

email nagios-admin@localhost

pager +49-1234-56789

275



12 The Nagios Notification System

address1 root@example.com

address2 123-456789

...

}

Both ;�����	����������������allow comma-separated lists, so it is per-
mitted to specify more than one command at the same time. The message
is then sent simultaneously to the recipient in all the ways defined. The
names of the command objects describe these ways: via e-mail and via
SMS.

To achieve a better overview, the corresponding commands are not defined
together with the plugin commands in the file �
�������������	�, but
in a separate object file, ��������������	�. Nagios loads these like any
other file with object definitions, which is why any name can be chosen for
them.

The other parameters, �����, �����, �������-, and ��������, can be re-
garded as variables. The delivery commands access the values set in these
through macros. Whether ����� contains a telephone number for SMS de-
livery or an e-mail address pointing to an e-mail SMS gateway is immaterial
for the contact definition. The decisive factor is that the value matches the
corresponding command that references this variable.

12.4.1 Notification via e-mail

In defining the ����	���������� command, a name and the command
line to be executed is specified, as with every other command object. Only
its length is unusual, which is why it has had to be line-wrapped several
times for this printed version:

define command{

command_name notify-by-email

command_line /usr/bin/printf "%b" "***** Nagios *****\n\n Notificat

ion Type: $NOTIFICATIONTYPE$\n\nService: $SERVICEDESC$\nHost: $HOSTALIAS

$\nAddress: $HOSTADDRESS$\nState: $SERVICESTATE$\n\nDate/Time: $LONGDATE

TIME$\n\nAdditional Info:\n\n$SERVICEOUTPUT$" | /usr/bin/mail -s "** $N

OTIFICATIONTYPE$ alert - $HOSTALIAS$/$SERVICEDESC$ is $SERVICESTATE$ **"

$CONTACTEMAIL$

}

The printed-out command object comes from the included example file
��������������	��������. The command line defined in it can be re-
duced in principle to the following pattern:

printf text | mail -s "subject" e-mail_address

276



12.4 External Notification Programs

With the help of the macro, �����	 generates the message text, which is
passed on to the mail program through a pipe. What is caused by the
macros specifically used is revealed in Table 12.1.3 Using this, the jumbo
line shown above produces messages that look something like this:

To: wob@swobspace.de

Subject: ** PROBLEM alert - mail-WOB/SMTP is CRITICAL **
Date: Fri, 14 Jan 2005 16:22:47 +0100 (CET)

From: Nagios Admin <nagios@swobspace.de>

***** Nagios *****

Notification Type: PROBLEM

Service: SMTP

Host: mail-WOB

Address: 172.17.168.2

State: CRITICAL

Date/Time: Fri Jan 14 16:22:47 CET 2005

Additional Info:

CRITICAL - Socket timeout after 10 seconds

Table 12.1:
Macros used in
����� �� ���	��

and
��
������� �� �

��	��

Macro Description

E�: >.�>/�.6#E Value of the ����� parameter from the contact
definition

E#: "<.>/>6�/E Long form of data specification, e.g., F�� V��
-7 -'!��!7C �/> �++2

E8:1>.#6.1E Value of the ����� parameter from the host def-
inition

E8:1>.<<5/11E Value of the ������� parameter from the host
definition

E8:1> .�/E Value of the 
�������� parameter from the
host definition

E8:1>:$>�$>E Text output of the last host check

E8:1>1>.>/E State of the host: $�, <:4 , or $ 5/.�8.=#/

3 A complete list of all macros is contained in the original documentation at
����������	���
���	
��
����
��	���
����� (normally to be found in the file
system under ��
�����	���	
��
�
�	������
��	���
�����). For Nagios 3.0 the
corresponding file �	�����
������ can also be found in this directory.

277



12 The Nagios Notification System

continued:

Macro Description

E :>6F6�.>6: >`�/E Type of notification: �5:=#/� (CRITICAL,
WARNING, or UNKNOWN), 5/�:H/5` (OK after
error state), .�3 :4#/<"/�/ > (an admin has
confirmed the error state; see Section 16.1.2,
page 332), F#.��6 "1>.5> or F#.��6 "1>:�

E1/5H6�/</1�E Value of the ����������� parameter in the ser-
vice definition

E1/5H6�/:$>�$>E Text output of the last service check

E1/5H6�/1>.>/E State of the service: :3, 4.5 6 ", �56>6�.#,
$ 3 :4 

For the command 
��������	����������, the command line looks simi-
lar, except that now host-related macros are used:

/usr/bin/printf "%b" "***** Nagios *****\n\nNotification Type:

$NOTIFICATIONTYPE$\nHost: $HOSTNAME$\nState: $HOSTSTATE$\nAddress:

$HOSTADDRESS$\nInfo: $HOSTOUTPUT$\n\nDate/Time: $LONGDATETIME$\n" |

/usr/bin/mail -s "Host $HOSTSTATE$ alert for $HOSTNAME$!" $CONTACTEMAIL$

It generates e-mails with the following content:

To: wob@swobspace.de

Subject: Host UP alert for wob-proxy!

Date: Fri, 14 Jan 2005 17:50:21 +0100 (CET)

From: Nagios Admin <nagios@swobspace.de>

***** Nagios *****

Notification Type: RECOVERY

Host: wob-proxy

State: UP

Address: 172.17.168.19

Info: PING OK - Packet loss = 0%, RTA = 69.10 ms

Date/Time: Fri Jan 14 17:50:21 CET 2005

12.4.2 Notification via SMS

While the infrastructure necessary for sending e-mails4 is usually available
anyway, programs for sending SMS messages such as ����,5 �������,6 or

4 Apart from the ��
�������	�� client, a local mail server is required.
5 �����������
�	�������� 	�
�
6 �������F��������
� �������
�
�

����������������

278



12.4 External Notification Programs

���������7 usually have to be additionally installed. ���� and ���������
require a local modem or ISDN card and “telephone” directly with the cell
phone provider (e.g., T-Mobile), ������� establishes a connection to the
Internet servers of the cellphone provider and sends the SMS message on
this route. With ���� and ��������� you can also use a mail gateway that
generates and sends an SMS message from an e-mail.

Whichever method you choose, you should be aware of possible interfer-
ence in sending messages: a connection between the Nagios server and
the Internet passes through many hosts, routers, and firewalls. Especially
if Nagios is itself monitoring one of the computers involved, things get in-
teresting: if this machine is down, then a message sent via ������� will
no longer work either. The same thing applies for e-mail-SMS gateways.
Whether a self-made construction is involved, with ���� or ���������,
each of which represents its own SMS gateway, or a telecom installation
with a sophisticated unified messaging solution, if the actual sender of the
SMS is many nodes removed from the Nagios server (because you have a
networked telephone installation with several locations, for example), the
chances increase that the message will not reach its destination because of
an interrupted connection.

For this reason the best solution is an ��������� or ���� installation on
the Nagios server itself with a direct telephone access. In larger, networked
telephone systems you can also consider giving the telephone access a ded-
icated, direct line from the telephone system. Whether this is ISDN or ana-
log is just a question here of the technology used.

To represent the programs mentioned here, we will take a closer look at
���������, which can be configured very simply, and has an active com-
munity. On its homepage you can also find a link to a mailing list whose
members will be pleased to help in case you have questions.

Setting up ���������

While Debian has its own precompiled ��������� package, for SuSE and
other distributions you have to compile the software yourself. For historical
reasons the program itself is called ����������; a short subtext is provided
with ��� ����������.

The installation from the source code follows the usual procedure:

linux:~ # cd /usr/local/src

linux:local/src # tar xvzf /path/to/sms_client-2.x.y

linux:local/src # cd ./sms_client-2.x.y

linux:src/sms_client-2.x.y # ./configure

linux:src/sms_client-2.x.y # make && make install

7 �����������
�
���������
�

279



12 The Nagios Notification System

The only point worth mentioning here is that the “homemade” ���	��
��
procedure manages without �
�����	 and �
������.

The configuration files listed in Table 12.2 are now located in the directory
&���&���; the Debian package installs it to &���&���������.

Table 12.2:

�
������s

configuration files

File Description

��������������� Definition of aliases and groups

�������	�� Main configuration file

����������� Configuration file for the daemon mode of
���������, in which this can be reached via a pro-
prietary protocol. Is not required.

��������� Modem configuration

������������ Supported provider

The file ������������ lists the supported providers and at the same time
assigns them to the protocol used. The precise telephone number dialed
is specified by the corresponding service file in the directory �������� (if
you have compiled this yourself ) or &
��&���&���������&�������� (for
Debian). In case of doubt, you should request the telephone number of
your own mobile cell provider. The mailing list can also be of assistance
here.

In the file �������	�� you set a default provider, which the program uses
for calls when the provider is not specifically given:

SMS_default_service = "d1"

Only the configuration of the modem is now missing in the file ���������.
In principle, however, any modem that functions under Linux can be used.
In the following example we address an ISDN card with the Isdn4Linux-
HiSax driver:

MDM_lock_dir = "/var/lock" # directory for the lock files

MDM_device = "ttyI0" # device name of the modem

...

MDM_command_prefix = "AT"

MDM_init_command = "Z&E<MSN>"

MDM_dial_command = "D"

MDM_number_prefix = "0" # outside line, if required

...

&���&���6+ is used as the device here; for �<��������������, your own
MSN is used. This applies particularly to private branch exchanges, which
allow a connection only if your own MSN has been correctly specified.

280



12.4 External Notification Programs

Since Isdn4Linux does not recognize tone or pulse dialing, we use only <
instead of the usual <> as the �<��������������. If the ISDN connection
requires an outside line as part of a phone exchange, you should enter the
corresponding prefix; otherwise this string remains empty.

��������� requires write permissions both for the device used and for the
log file &���&���&�������������:

linux:~ # touch /var/log/smsclient.log

linux:~ # chgrp dialout /usr/bin/sms_client

linux:~ # chgrp dialout /dev/ttyI0 /var/log/smsclient.log

linux:~ # chmod 2755 /usr/bin/sms_client

linux:~ # chmod 664 /dev/ttyI0 /var/log/smsclient.log

To test this, you should now send—preferably as the user ������, who will
later use ���������—an SMS message to your own cellphone (here to be
reached at the number +-'+7C--):

nagios@linux:~$ sms_client 01604711 "Text"

Dialing SMSC 01712521002...

WARNING: read() Timeout

Connection Established.

Login...

SMSC Acknowledgment received

Login successful

Ready to receive message

Received Message Response: Message 3003123223 send successful - message

submitted for processing<CR>

Successful message submission

Disconnect...

Disconnected from SMSC

Hangup...

d1 Service Time: 17 Seconds

[000] d1:01604711 "Text"

Total Elapsed Time: 17 Seconds

Getting Nagios to work together with ���������

If the second argument is missing in ���������, which contains the mes-
sage text, the program will read it from STDIN:

nagios@linux:~$ /bin/printf "%b" message | sms_client number

Based on the command ����	����������, described from page 276, we
will use the second variation here for defining the ����	�������� com-
mand:

# ’notify-by-sms’ command definition

define command{

281



12 The Nagios Notification System

command_name notify-by-sms

command_line /usr/bin/printf "%.150s" "$NOTIFICATIONTYPE$ $HOSTNAM

E$[$HOSTADDRESS$]/$SERVICEDESC$ is $SERVICESTATE$ /$SHORTDATETIME$/ $SER

VICEOUTPUT$" | /usr/bin/smsclient $CONTACTPAGER$

}

As usual, the entire ������������ is written on a single line. Nagios ob-
tains the telephone number (or alias) through the macro E�: >.�>�."/5E,
which reads out the value of the ����� parameter from the contact def-
inition. Since an SMS here may not be longer than 150 characters, we
will considerably abbreviate the information, compared to the e-mail mes-
sage. To be on the safe side (you never know how long the plugin output
(E1/5H6�/:$>�$>E) really is), the �����	 format specification �-2+ (in-
stead of 9�) cuts off the text after 150 characters. Although we then do
without the line breaks in the message, by means of L�, an SMS is never
formatted cleanly, due to its limited display. Thus ����	�������� gener-
ates a one-line message of the following type:

PROBLEM elimail[172.17.130.1]/UPS is CRITICAL /2005-03-30 17:00:53/ Conn

ection refused

12.5 Escalation Management

Whenever the administrators responsible cannot find a solution in the spec-
ified time when important components fail, although Service Level Agree-
ments or other contracts commit the IT department to do this,8 Nagios’s
ability to escalate notifications makes allowances for conflicts, at least on
an organizational level. It can be used to provide multilevel support. For ex-
ample, Nagios first informs the First Level Support (usually the Help Desk).
If the problem still persists after one day, then the Second Level Support is
notified, and so on.

Nagios also makes a distinction here between host- and service-related es-
calation stages. In essence, both function identically.

In the escalation, Nagios does not count in time units, but in how many
messages it has already sent out. In the following example the system
should report on error states of the <������� service on ���
�+- every
120 minutes,9 and this, round-the-clock:

define service{

host_name linux01

8 These can also be internal specialist departments.
9 To be precise, every 120 time units, whereby the default time unit is 60 seconds.

282



12.5 Escalation Management

service_description Database

notification_period 24x7

notification_interval 120

...

contact_groups admins

}

The corresponding messages always go to a contact group, so without es-
calation, that is to ������.

Figure 12.3:
Nagios escalates,
depending on the
number of messages
already sent

After the fourth notification, Nagios should switch on the first stage of es-
calation (as illustrated in Figure 12.3) and, in addition to ������, should
notify the ������������ contact group. The eighth message triggers the
second level, at which Nagios informs the �����������
� �
���������.

As shown in Figure 12.3, escalations may certainly overlap. It can also be
seen from the graphics that the contact group defined in the service object
only applies as long as Nagios does not escalate. As soon as an escala-
tion stage is switched on, the system puts the default contact group out of
action.

If the original contact group—here ������—should also receive a message
in the first escalation level, then this must be additionally specified in the
escalation definition. If several levels overlap, Nagios informs all the groups
involved. In Figure 12.3 the eighth to the tenth messages accordingly go
both to ������ and to ������������ and �
���������, while only the
latter receives message numbers 11 and 12. From message number 13,
Nagios keeps only the contact group ������ informed, since escalation is
no longer defined here.

The latter takes place via separate ����������������� (for services) and

������������� objects (for computers). For a service escalation object,
Nagios requires the beginning and the end of exceptional circumstances to
be defined, apart from service details (consisting of the ����������������
���� and 
��������) parameters and the name of the contact groups re-
sponsible:

283



12 The Nagios Notification System

define serviceescalation{

host_name linux01

service_description Database

first_notification 4

last_notification 10

notification_interval 60

contact_groups admins,second-level

}

The escalation level defined here starts, as desired, with message No 4 and
ends with message No 10. If ���������	������� is given the value +, the
escalation only ends if the service changes back to the OK state.

In addition you must specify the ����	���������������� parameter for
service escalations: this changes the notification interval (previously -�+
according to the service definition) to '+ time units. This parameter is also
mandatory for a host escalation. The only difference in the definition of
a 
������������� object is that instead of the host name, you can also
specify one or more host groups (in addition the �������������������
parameter is dropped, of course).

The second escalation step is defined in the same way:

define serviceescalation{

host_name linux01

service_description Database

first_notification 8

last_notification 12

notification_interval 90

contact_groups third-level

}

If there are overlapping escalations with different ����	��������������
���s, Nagios chooses the smallest defined time unit in each case. Nagios
therefore sends messages 8 to 10 at intervals of 60 minutes, numbers 11 and
12 at intervals of 90 minutes, and then the original interval of 120 minutes
again applies.

With ����������������� and ������������������ there are two more
setting parameters specially for escalations. Both have the same function as
����	��������������and ����	��������������� in the host or service
definition, but they refer only to the escalation case.

In contrast to ����	����������������, �����������������does not re-
place the ����	��������������, but acts in addition to this. From the in-
tersection of ����	�������������� and �����������������, the actual
time period is deduced. Suppose that ����	�������������� refers to the
time between 7:00 A:M and 5:00 P.M., and ����������������� to the pe-
riod from 8:00 A.M. to 8:00 P.M.. Then Nagios will only send out messages

284



12.6 Accounting for Dependencies between Hosts and Services

in the escalation level between 8:00 A.M. and 5:00 P.M.. You must always re-
member here that it is only the number of messages that have already been
sent that decides whether an escalation level exists. �����������������
and ������������������ only have an effect as additional filters.

Before these two parameters are used, you should carefully consider what
it is you want to achieve with them. To restrict the escalation to a specific
time period could under certain circumstances result in it being omitted
entirely. If you restrict them to weekdays, for example, this would mean that
if the <������� service failed during the weekend, Nagios would inform
the contact group ������ only on Monday morning: over the weekend the
system has already sent more than 12 messages, so it no longer even uses
its escalation mechanism. If there is a time restriction via ��������������
����, you should set ���������	������� to + to ensure that the escalation
really does take place.

Every case of error is followed at some point in time by a recovery. An
intelligent mechanism ensures that Nagios only notifies those contacts of
the corresponding recovery who are in charge, depending on the active
escalation level, and who also received the last notification to be sent.

12.6 Accounting for Dependencies between Hosts
and Services

If you test services with local plugins (see Chapter 7) via NRPE (see Chapter
10), all these tests will come to nothing the moment the Plugin Executor
fails. With service dependencies you can prevent Nagios from flooding the
appropriate administrator with messages on the dependent services. In-
stead of this, the system informs him specifically of the NRPE failure.

Aa with such service dependencies, Nagios also has host dependencies,
which suppress messages, depending on individual hosts. Both variations
can also be used to specifically ”switch off” tests.

12.6.1 The standard case: service dependencies

Let us take as an example the host ���
�+-, illustrated in Figure 12.4, on
which locally installed plugins, controlled via NRPE, monitor hard drive
space (<���� service, see page 224), the number of logged-in users ($����
service), and the system load (#��� service). If NRPE were now to fail,
Nagios would announce the CRITICAL state for all three services, although
their actual state is unknown, and the real problem is the “NRPE daemon.”

In order to solve this contradiction, NRPE is monitored as a separate service
and describes the dependencies in a ����������������� object.

285



12 The Nagios Notification System

Figure 12.4:
The three

above-mentioned
services depend on

NRPE

To define the additional service check for NRPE, we make use of the possi-
bility of calling the �
�������� plugin (see page 214) (almost) without any
parameters at all. It then simply returns the version of the NRPE daemons
being used:

nagios@linux:~$ /usr/local/nagios/libexec/check_nrpe -H linux01

NRPE v2.0

The command defined in Section 10.5 on page 222, �
��������, requires
further arguments and therefore cannot be used for our purposes. For this
reason we set up a new command object, ���������, which exclusively
tests NRPE:

define command{

command_name test_nrpe

command_line $USER1$/check_nrpe -H $HOSTADDRESS$

}

With this, an  5�/ service can now be defined:

define service{

host_name linux01

service_description NRPE

check_command test_nrpe

...

}

The dependencies of the three local services of NRPE are described by the
following ����������������� object.

define servicedependency{

host_name linux01

service_description NRPE

dependent_host_name linux01

dependent_service_description Disks,Users,Load

notification_failure_criteria c,u

execution_failure_criteria n

}

286



12.6 Accounting for Dependencies between Hosts and Services


�������� and ������������������� define the master service, the fail-
ure of which leads to the failure of the services named in ��������������
���������������� on the computer specified in ����������
��������.
Multiple entries, separated by commas, are possible for all four parame-
ters mentioned. You should bear in mind, however, that each dependent
service is dependent on every possible master service.

The remaining parameters influence service checks and notifications:
����	��������	���
����������� specifies for which states of the mas-
ter service notifications involving an error of the dependent services (e.g.,
<����) should not appear. Possible values are 
 (UNKNOWN), � (WARN-
ING), � (CRITICAL), � (PENDING, i.e., an initial check is planned but was
so far not yet carried out), � (OK), and � (None).


D� in the example above means that Nagios does not inform the admin-
istrators responsible of “errors” in the services <����, $����, and #��� on
���
�+- if the master service is in the CRITICAL or UNKNOWN state. With
an � for OK, the logic can be reversed: here there is no message if there is
an error in the dependent service, as long as the master service is in an OK
state. Accordingly, � means that Nagios provides a notification irrespective
of the status of the master service.

The ����
�����	���
����������� parameter controls tests, depending
on the state of the master service. The details 
 (UNKNOWN), � (WARN-
ING), � (CRITICAL), � (PENDING), � (OK), and � (None), as with ����	����
�����	���
�����������, refer to states of the master service for which
there should be no check. In the example, � is specified, so that Nagios
tests <����, $����, and #��� even if NRPE fails.

Nagios therefore suppresses messages, but since it still carries out the ser-
vice checks on the dependent services, the Web interface always shows the
current status of these.

The details for ����	��������	���
����������� interact with the Fresh-
ness mechanism of passive tests (see Section 13.4 from page 295). If �
����
	���
���� is used in the service definition, and if Nagios considers the
most recently determined status to be out of date, it will carry out active
tests even if it ought to suppress them, according to the service depen-
dency.

Inheritance

Nagios does not automatically inherit dependencies. An example of this is
shown in Figure 12.5: on the internal side of a firewall, the system should
query various resources via SNMP. For security reasons, the test is per-
formed indirectly via NRPE, that is, the Nagios server runs the SNMP plug-
ins, which are installed on a host inside the file, indirectly via NRPE.

287



12 The Nagios Notification System

Figure 12.5:
Multilevel

dependencies for
services

The following two ����������������� objects describe a dependency be-
tween the 1 �� (Master) service and the <���� service (dependent service)
on the host ���
�+7, as well as between the  5�/ service on ���
�+- and
the 1 �� service on ���
�+7:

define servicedependency{

host_name linux04

service_description SNMP

dependent_host_name linux04

dependent_service_description Disks

notification_failure_criteria c,u

execution_failure_criteria c,u

}

define servicedependency{

host_name linux01

service_description NRPE

dependent_host_name linux04

dependent_service_description SNMP

notification_failure_criteria c,u

execution_failure_criteria c,u

}

If the NRPE daemon on ���
�+- fails, Nagios would only recognize the
defined dependencies between  5�/ and 1 ��, but not the implicit depen-
dency between  5�/ and <����. To take these into account as well, the
parameter ��
������������ is inserted in the definition of the service de-
pendency between <���� and 1 ��:

inherits_parent 1

With this, Nagios tests whether the master service itself (here 1 ��) is de-
pendent on another service, thanks to a corresponding ��������������
����. If the  5�/ service on ���
�+- fails (CRITICAL state), Nagios leaves

288



12.6 Accounting for Dependencies between Hosts and Services

out the check of <���� on ���
�+7, thanks to ����
�����	���
�������
����� �D
, and also does not send any notification of the most recently
detected status of <����.

Other application cases

Dependency definitions between services are particularly useful if a great
deal depends on a single service, so that the actual problem is in danger
of disappearing under a flood of error messages. Apart from the already
described use in combination with NRPE, this applies for all services that
the Nagios server cannot test directly and for which it must use tools in-
stead (NRPE, SNMP, or even  1�#6/ > for Windows, see Section 20.2.1).
If a simple connection to the utility cannot be established and a constant
value (version number, system name) cannot be queried, you can still use
a generic plugin to address the corresponding port.

Another example of using service dependencies are the applications that
depend on a database: a Web application with dynamic Web pages fails if
the underlying database (which may be located somewhere in the network
on another host) is not working. A precisely defined dependency between
the database service and dynamic Web application also ensures here that
the administrator is notified of the actual cause.

Additional functions in Nagios 3.0

Nagios 3.0 includes two innovations: On one hand, the parameter �������
����������� now allows a time restriction to be placed on the depen-
dency. The default is C��7
, that is, round the clock.

On the other hand, Nagios 3.0 makes it easier to define the dependen-
cies between services and dependent services on the same host. Speci-
fying ����������
��������, as was done in the previous examples, can
be omitted if this is identical to 
��������. An example of this so-called
same-host dependency is described in Section H.1.6 on page 683.

12.6.2 Only in exceptional cases: host dependencies

Host dependencies function in principle exactly like service dependencies;
the 
������������� object is also capable of suppressing messages.

There are a number of subtle differences in the detail, however. Only ex-
plicitly configured regular host checks can be suppressed in which checked
intervals are defined as for services. This type of host check should be used
only in exceptional circumstances, however, since it can have a significant
influence on the performance of Nagios. Normally Nagios decides for itself
when it will perform a host check (see Section 4.1 from page 92).

289



12 The Nagios Notification System

In nearly all cases the ������� parameter in the host definition is bet-
ter at describing the dependencies between hosts. As long as Nagios can
test individual hosts directly, the system can distinguish much better be-
tween DOWN and UNREACHABLE (see Section 4.1 from page 92). If you
do not want any notification for particular hosts, dependent on the net-
work topology, then you should be informed only for DOWN, but not for
UNREACHABLE.

Host dependencies should be used only when Nagios can no longer distin-
guish between DOWN and UNREACHABLE. This is usually the case when
indirect checksthe host check is performed indirectly (e. g., in the figure
shown on page 224).

290



13 Ch
ap

te
r

Passive Tests with the External
Command File

Apart from active service and host checks, Nagios also makes use of passive
tests (and combinations of both types of test). While the system itself de-
fines the time for active checks when they are performed, and then initiates
them, Nagios in passive mode only processes incoming results.

For this to work, an interface is required that allows test results from the
outside to be passed on to Nagios, as well as commands that perform
checks and feed in the results through the interface. Normally remote hosts
send their test results, determined by shell scripts, via the Nagios Service
Check Acceptor (NSCA), which is introduced in the next chapter (page 299),
to the Nagios server.

Passive checks are used in particular with distributed monitoring, in which
noncentral Nagios servers send all their results to a central Nagios instance.
This subject is discussed in Chapter 15. Another field in which they are

291



13 Passive Tests with the External Command File

used is in the processing of asynchronous events, the time of which Nagios
cannot define itself. One example of this is a backup script that sends a
result to Nagios (OK or CRITICAL) when it has completed a data backup,
and another example is processing SNMP traps (see Section 14.6).

13.1 The Interface for External Commands

The interface for external commands, known in Nagios jargon as External
Command Files, consists of a named pipe (FIFO)1 in the subdirectory �� of
the Nagios ��� directory:

user@linux:~$ ls -lF /var/nagios/rw

prw-rw---- 1 nagios nagcmd 0 Dec 19 10:56 nagios.cmd|

The pipe, marked in the �� output with �, correctly sets up the ���� ���
����������������� command during installation. For reasons of security
it is essential that you ensure that only the group ������ can read from and
write to the pipe. Anyone who has access here can control Nagios remotely
via commands, and can, if they want, shut it down entirely.

Commands that Nagios accepts from the External Command File have the
following form:

[timestamp] command;arguments

As the timestamp in square brackets, Nagios expects the current time in
epoch seconds, that is the number of seconds which have elapsed in the
UTC time zone since January 1, 1970. This is followed by a space, then a
command followed by a matching number of arguments, separated by a
semicolon.

The interface makes extensive use of this mechanism, allowing its users to
make various settings via mouse click. A detailed description of all possible
commands is provided by the online documentation.2 An example script
for each command can be found there, which can be copied to a file with
cut-and-paste and used after a few path adjustments have been made.

In this chapter we will limit ourselves to the two processing commands with
which computers deliver the results of passive checks to the Nagios server,
�5:�/11�1/5H6�/��8/�3�5/1$#> and �5:�/11�8:1>��8/�3�5/1$#>.

1 A named pipe is a buffer to which a process can write something, which can then be
read by another process. Whatever is written first is also read first: First In, First Out
(FIFO). Since this involves space in the main memory, a named pipe does not need any
space on the hard drive.

2 ������������	
��
���
����������������#����	�����	��
�

292



13.2 Passive Service Checks

For reasons of security, the processing of external commands must be ex-
plicitly switched on in the main configuration file ��������	� with the
directive �
���������������������G-:

# /etc/nagios/nagios.cfg

...

check_external_commands=1

command_check_interval=-1

command_file=/var/nagios/rw/nagios.cmd

...

The ���������
������������ determines that Nagios checks the inter-
face for existing commands every so many seconds. �- means “as often as
possible.” ��������	��� specifies the path to the named pipe.

13.2 Passive Service Checks

In order for Nagios to be able to accept passive service checks via the inter-
face, this must be explicitly allowed in the global configuration and in the
corresponding service definition. The corresponding entry in ��������	�
is

# /etc/nagios/nagios.cfg

...

accept_passive_service_checks=1

...

In the service definition you can select whether you want to perform active
checks in parallel to the passive ones. Active checks are only possible, of
course, if Nagios can query the information itself. The following example
allows passive checks and stops all active ones:

define service{

host_name linux01

service_description Disks

passive_checks_enabled 1

active_checks_enabled 0

check_command check_dummy

check_period none

...

}

An exception is normally made for freshness checks (see Section 13.4 from
page 295)—here Nagios makes use of the command defined in �
����
�������. To ban active checks entirely, the �
���������� parameter is

293



13 Passive Tests with the External Command File

set to ����. The check command does not play a role in this case, so you
can just enter a dummy check here, for example (which like all other com-
mands has to be defined, of course).

On the computer to be tested passively (in this example, ���
�+-) you
must ensure, via NSCA (see Chapter 14), that it contacts the Nagios server
through the interface for external commands. There it writes the command
for passive service checks in the following one-line form:

[timestamp] PROCESS_SERVICE_CHECK_RESULT;host-name;service;

return value;plugin output

The timestamp can be created in a shell script, for example with ����:

user@linux:~$ date +%s

1112435763

A simple script that passes on the result of a passive service check on the
Nagios server itself to the Nagios installed there, could look like this:

#!/bin/bash

EXTCMDFILE="/var/nagios/rw/nagios.cmd"

TIME=‘date +%s‘

HOST=$1

SRV=$2

RESULT=$3

OUTPUT=$4

CMD="[$TIME] PROCESS_SERVICE_CHECK_RESULT;$HOST;$SRV;$RESULT;$OUTPUT"

/bin/echo $CMD >> $EXTCMDFILE

When it is run it expects the parameters in the correct sequence:

name_of_script linux01 Disks 0 ’Disks ok: everything in order :-)’

After the host and service names, the test status follows as a digit, and
finally the output text. If the service name contains spaces, then it should
also be set in quotation marks.

13.3 Passive Host Checks

Passive host checks follow the same principle as passive service checks, ex-
cept that they involve computers and not services. To allow them globally,
the ���������������
�����
���� parameter is set in ��������	� to 1:

294



13.4 Reacting to Out-of-Date Information of Passive Checks

# /etc/nagios/nagios.cfg

...

accept_passive_host_checks=1

...

In addition, the host definition for the computer to be monitored passively
must allow this kind of host check:

define host{

host_name linux01

passive_checks_enabled 1

active_checks_enabled 0

check_period none

check_command check_dummy

...

}

In this example it simultaneously forbids active checks.

The command to be sent through the external interface with which the
computer delivers its test results differs here only marginally from the syn-
tax used in the service check command already introduced:

[timestamp] PROCESS_HOST_CHECK_RESULT;hostname;return value; plugin output

Active and passive host checks differ in one important respect: with passive
checks, Nagios is no longer in a position to distinguish between DOWN and
UNREACHABLE (see Section 4.1 from page 92). If you still want to take
account of network topology dependencies when making notifications and
to give specific information on the actual host that is down, you must make
use of host dependencies in this case (see Section 12.6.2 from page 289).

13.4 Reacting to Out-of-Date Information of
Passive Checks

It lies in the nature of passive checks that Nagios is content with the infor-
mation delivered. Nagios has no influence over when and at what intervals
the remote host delivers them. It may even be the case that the information
does not arrive at all.

In order to classify the “knowledge state” of the server as out of date, Nagios
has the ability to become active itself, with a freshness check. Like passive
checks, freshness checking must be enabled both globally and in the rele-
vant serviceable host object. To do this, you need to set the following global
parameters in the file ��������	�:

295



13 Passive Tests with the External Command File

# /etc/nagios/nagios.cfg

...

check_service_freshness=1

service_freshness_check_interval=60

check_host_freshness=0

host_freshness_check_interval=60

...

The value + in �
����
����	���
����and the value - in �
������������
	���
���� ensure that Nagios carries out freshness checks only for ser-
vices, and not for hosts. The check interval defines the intervals at which
the server updates its information, in this case, every 60 seconds. When
Nagios really becomes active in the case of a specific service or host de-
pends on the threshold value, which you can set in the appropriate service
or host definition with the 	���
������
���
��� parameter:3

define service{

host_name linux01

service_description Disks

passive_checks_enabled 1

active_checks_enabled 0

check_freshness 1

freshness_threshold 3600

check_command service_is_stale

...

}

So in this example Nagios performs the freshness check for this service
only if the last transmitted value is older than 3600 seconds (one hour).
Then Nagios starts the command defined in �
�����������, even if active
checks have been switched off in the corresponding host or service defini-
tion, or even globally.

If you define the command named here in the example, �����������
�����, so that Nagios really does check the service or host, then Nagios
will perform active tests even if active checking is switched off, but always
only if passive results are overdue for longer than the threshold value set.

If active checks are not possible or not wanted, you can ensure, using a
pseudo-test, that Nagios will explicitly signal an error status, so that the ad-
ministrator’s attention is drawn to it. Otherwise Nagios will always display
the last status to be received. If this was OK, then it will not necessarily be
noticed that current results have not been arriving for some time. The fol-
lowing pseudo-test script delivers an appropriate error message with ��
�,
and with ���� � delivers the return value for CRITICAL, so that the admin-
istrator can react accordingly:

3 If you do not explicitly specify ���
���

�����
����, the value set for ����	��

������������	� will be used in the hard state, and if there is a soft state, the value
���� �������������	� will serve as the default.

296



13.4 Reacting to Out-of-Date Information of Passive Checks

#!/bin/bash

/bin/echo "CRITICAL: no current results of the service"

exit 2

If you start the script from the plugin directory as ������������������
,
the Nagios command ����������������will be defined as follows:

define command{

command_name service_is_stale

command_line $USER1$/service_is_stale.sh

}

If the results for the service <���� on ���
�+- fail to appear for longer
than one hour, Nagios will run the script ������������������
, which
always returns CRITICAL, irrespective of what data ���
�+- last sent. This
CRITICAL status is only ended when the host passes on new and more
positive results to the server through a passive check.

297





14 Ch
ap

te
r

The Nagios Service Check
Acceptor (NSCA)

In order to send service and host checks across the network to the central
Nagios server, a transmission mechanism is required. This is provided by
the Nagios Service Check Acceptor (NSCA). It consists of two components:
a client program ���������, which accepts the results of a service or host
check on the remote host and sends them to the Nagios server, and the
NSCA daemon ����, which runs on the server, receives data from the client,
processes this for the External Command File interface (see Section 13.1),
and passes this data on to it (Figure 14.1).

The Nagios Service Check Acceptor was originally developed to enable dis-
tributed monitoring in which decentralized Nagios servers can send their
results to a central Nagios server (see Chapter 15 from page 317). In prin-
ciple, the data that ��������� sends to the Nagios server can come from
any applications you like.

299



14 The Nagios Service Check Acceptor (NSCA)

Sending commands across the network to the central Nagios instance is
not insignificant, from a security point of view, since Nagios could be com-
pletely switched off using the External Command File. This is why NSCA
sends the data in encrypted form, and clients must have the correct key to
obtain access to the interface. This prevents an arbitrary network partici-
pant from being able to run any commands at all on the Nagios server.

Figure 14.1:
How the NSCA

functions

14.1 Installation

NSCA version 2.7.2, current at the time of going to press, was published in
the spring of 2007; the chances are therefore quite high that the distribution
you are using contains a current package. The source code1 is quite easy to
compile yourself, however. As a prerequisite, you need to have the library
��������� installed, together with the relevant header files,2 or else the
integrated encryption cannot be used.

In the unpacked source directory, you should run the included ���	��
��
script, specifying the Nagios configuration and ��� directories:

linux:local/src # tar xvzf /path/to/nsca-2.7.2.tar.gz

...

linux:local/src # cd nsca-2.7.2

linux:src/nsca-2.7.2 # ./configure --sysconfdir=/etc/nagios \

--localstatedir=/var/nagios

...

*** Configuration summary for nsca 2.7.2 07-03-2007 ***:

General Options:

-------------------------

NSCA port: 5667

1 ������������	
��
���
�������	��
2 The corresponding binary package usually contains ���� or ������ in its name.

300



14.2 Configuring the Nagios Server

NSCA user: nagios

NSCA group: nagios

...

At the end it displays output, showing the permissions with which the NSCA
user starts by default, if not otherwise specified in the configuration. Nor-
mally the NSCA daemon waits on TCP port 5667.

A final ���� ��� compiles the two programs ���� and ���������. They
are now located in the subdirectory ��� and need to be copied manually to
a suitable directory:

linux:src/nsca-2.7.2 # cp src/nsca /usr/local/sbin/.

linux:src/nsca-2.7.2 # scp src/send_nsca remote host:/usr/local/bin/.

���� is copied to the Nagios server, preferably to the directory &
��&�����&
����. ��������� belongs on the remote host that is to send its test results
to the Nagios server. If this computer has a different operating system ver-
sion or platform, it is possible that the client to run there will need to be
recompiled. Both programs each require their own configuration file, which
is best stored in the directory &���&������:

linux:src/nsca-2.7.2 # cp nsca.cfg /etc/nagios/.

linux:src/nsca-2.7.2 # scp send_nsca.cfg remote_host:/etc/nagios/.

14.2 Configuring the Nagios Server

14.2.1 The configuration file �	������

For NSCA to work, the External Command File interface on the Nagios ser-
ver must be activated in the configuration file &���&������&��������	�
(Section 13.1, page 292) and the corresponding data entered in the NSCA
configuration file ������	�:

# /etc/nagios/nsca.cfg

server_port=5667

server_address=192.168.1.1

allowed_hosts=127.0.0.1

nsca_user=nagios

nsca_group=nagios

debug=0

command_file=/var/nagios/rw/nagios.cmd

alternate_dump_file=/var/nagios/rw/nsca.dump

aggregate_writes=0

append_to_file=0

301



14 The Nagios Service Check Acceptor (NSCA)

max_packet_age=30

password=verysecret

decryption_method=10

The parameters �����������, ��������������, ��������
����, �����

���, and ��������
� take effect only if ���� is started as a daemon. If
it is started as an inet daemon, the values set in its configuration apply to
the NSCA server address and the port on which the NSCA is listening, the
IP addresses of the hosts that are allowed to access the interface,3 and the
users and group with whose permissions the Service Check Acceptor runs.

The ���
� parameter makes it easier to search for errors, but it should
normally be switched off (value +). If it is set to -, NSCA writes debugging
information in the syslog.

The named pipe is defined by the entry ��������	���. If you specify an al-
ternative output file, with �����������
���	���, this serves as a fallback
in case the named pipe given does not exist. Before version 2.0, Nagios
removed the pipe each time it was shut down, but this should not happen
anymore.

If it is set to -, ���������������� ensures that NSCA collects all the in-
coming commands just once and then passes these on to the interface as a
block. If the value at this position is +, then NSCA sends on each incoming
command immediately to the External Command File.

����������	��� can have the values + (opens the External Command File
in write mode) or - (opens it in the append mode), and it should always be
set to +.4

Client messages older than �������������� seconds are discarded by
NSCA, to avoid replay attacks. This value may not be larger than 900 sec-
onds (15 minutes) and should be as small as possible.

The last two parameters refer to the encryption of the communication.
�������� contains the actual key, which is identical for clients, and which
must be entered in the configuration for the clients (see Section 14.3 on
page 304). Because the key is written in the file in plain text, ������	�
should be readable only for the user with whose permissions the NSCA is
running, which in our case is ������:

linux:/etc/nagios # chown nagios.nagios nsca.cfg

linux:/etc/nagios # chmod 400 nsca.cfg

Finally, ��������������
��defines the encryption algorithm. The default
is - (XOR), which is almost as insecure as + (no encryption). -+ stands for

3 If you want to define more than one IP address for 	���������
�
, they are separated
by a comma.

4 The append mode only makes sense if the External Command File is replaced for de-
bugging purposes with a simple file.

302



14.2 Configuring the Nagios Server

LOKI97, which is regarded as secure.5 The list of all possible algorithms
is contained in the supplied configuration file, which contains many old
algorithms and some newer ones, such as DES (�), Triple-DES (*), Blowfish
(B), and Rijndael (AES).6

14.2.2 Configuring the inet daemon

If you want to start ���� with the inet daemon, the following entry is added
in the file &���&��������:

nsca 5667/tcp # Nagios Service Check Acceptor (NSCA)

������ configuration

If the newer ������ is used, the file ����������� is created in the directory
&���&��������with the following contents:

# /etc/xinetd.d/nsca

# description: NSCA

# default: on

service nsca

{

flags = REUSE

socket_type = stream

wait = no

user = nagios

group = nagios

server = /usr/local/sbin/nsca

server_args = -c /etc/nagios/nsca.cfg --inetd

log_on_failure += USERID

disable = no

only_from = 127.0.0.1 ip1 ip2 ... ipn

}

The values printed in bold type for the user and group with whose permis-
sions the NSCA should run, and the path to the NSCA daemon ���� (pa-
rameter ������) and the corresponding configuration file, are adjusted if
necessary to your own environment. The line �����	���, as an equivalent
to the ������	� parameter ��������
����, takes in all the IP addresses,
separated by spaces, from which the NSCA may be addressed. Distribu-
tions that include NSCA as a finished package and install ������by default,
include a ready-to-use ������ configuration file, where you only need to
adjust this last parameter.

5 ������������������	���
������"DG*(/
6 Rijndael-128: '�; Rijndael-192: '3; Rijndael-256: '&

303



14 The Nagios Service Check Acceptor (NSCA)

In order for the new configuration to become effective, the ������ init
script is run with the ������ argument:

linux:~ # /etc/init.d/xinetd reload

����� configuration

If the standard ����� command is run, the following line is added (line-
wrapped for the printed version) in the configuration file &���&������
���	:

nsca stream tcp nowait nagios /usr/sbin/tcpd

/usr/local/sbin/nsca -c /etc/nagios/nsca.cfg --inetd

If you want to leave out the TCP wrapper ����, you just omit the string
&
��&����&����. In this case you must also explicitly specify the user
(������) with whose permissions the NSCA starts, the complete path to
the binary ����, and the configuration file with its absolute path. So that
the Internet daemon can take account of the modification, its configuration
must be reloaded:

linux:~ # /etc/init.d/inetd reload

14.3 Client-side Configuration

The configuration file �����������	� on the client side must contain the
same encryption parameters as the file on the Nagios server:

password=verysecret

decryption_method=10

Since the key is also written here in plain text, it should not be readable for
just any user. For this reason it is best to create a user ������ and a group
������ on the client side:

linux:~ # groupadd -g 9000 nagios

linux:~ # useradd -u 9000 -g nagios -d /usr/local/nagios \

-c "Nagios Admin" nagios

You should now protect the file �����������	� so that only the user ���
���� can read it, and ensure, using the SUID mechanism, that the program
��������� always runs under the user ID of this user. If you now grant
execute permission to the group ������, only its members may execute
the NSCA client program:

304



14.4 Sending Test Results to the Server

linux:~ # chown nagios.nagios /etc/nagios/send_nsca.cfg

linux:~ # chown nagios.nagios /usr/bin/send_nsca

linux:~ # chmod 400 /etc/nagios/send_nsca.cfg

linux:~ # chmod 4710 /usr/bin/send_nsca

linux:~ # ls -l /usr/bin/send_nsca

-rws--x--- 1 nagios nagios 83187 Apr 2 17:56 /usr/local/bin/send_nsca

14.4 Sending Test Results to the Server

The client program ��������� reads the details of a host or service check
from the standard input, which the administrator must format as follows:7

host-name\tservice\treturn value\toutput

host-name\treturn value\toutput

��������� sends this to the Nagios server. The first line describes the
format for service checks and the second line, that for host checks. The
placeholder 	���	� 
���� is replaced by the status determined, that is, +
for OK, - for WARNING, � for CRITICAL, and * for UNKNOWN. By ������ ,
a one-line text is meant, of the type that plugins provide as a support for
the administrator. As the separator, a tab sign is used (L�).

In order to make a complete command from this that can be understood by
the external command, the NSCA daemon first prefixes the timestamp and
the matching command (�5:�/11�1/5H6�/��8/�3�5/1$#> or �5:�/11�
8:1>��8/�3�5/1$#>). This is why only these two commands can be sent
using NSCA.

��������� itself has the following options:

�8 ���	���
This is the host name or IP address of the Nagios server to be ad-
dressed by NSCA.

�� ��������	
This is the delimiter for the input; the default is a tab sign. The fol-
lowing example page uses the semicolon as a delimiter.

�� ����"������"�������	����������
This parameter specifies the path to the configuration file ����������
�	�. Since no path has been compiled into the client, ���������
expects by default to find the file in the current directory. For this
reason it makes sense to specify the absolute path with this option.

7 Normally you have to ensure that test scripts you have written yourself produce the
correct output; if you use Nagios plugins, you must reformat their output accordingly.
Since the latter can be run much better directly with NRPE, this should be the exception
to the rule.

305



14 The Nagios Service Check Acceptor (NSCA)

�� ��	�
This defines an alternative port if the default, the TCP port 5667, is
not used.

��� �������
After ������� seconds (by default, -+) ��������� aborts the con-
nection attempt to the NSCA daemon, if no connection is established.

With simple test scripts such as the following one, the functionality of the
NSCA can be tested. A service is chosen as the test object, which is in a state
other than UNKNOWN (e.g., OK), in this case, ���� on the host ���
�+-:

#!/bin/bash

CFG="/etc/nagios/send_nsca.cfg"

CMD="linux01;nmbd;3;UNKNOWN - just one NSCA test"

/bin/echo $CMD | /usr/local/bin/send_nsca -H nagios -d ’;’ -c $CFG

The script puts it, from Nagios’s point of view, into the UNKNOWN status.
After it is run, you should discover if the transfer was successful:

nagios@linux:~$ bash ./test_nsca

1 data packet(s) sent to host successfully.

As soon as Nagios processes the command and you have reloaded the page
in your browser, the Web interface displays the UNKNOWN status for the
selected service. With the next active check, the previous status will be
recovered.

Because it is so simple to send Nagios check results with ���������, it is
essential that you protect the NSCA from misuse, as already demonstrated.
On the client, you should restrict access to the client program ���������
and to its configuration file and you should make sure that you have secure
encryption, and on the server explicitly define the sender and IP addresses
that are to be allowed.

14.5 Application Example I: Integrating syslog and
Nagios

Linux and Unix systems as a rule log system-relevant events through sys-
log. Sooner or later you will probably want Nagios to also inform the ad-
ministrator of important syslog events. To do this, you require passive ser-
vice checks, NSCA for transmitting the results to the Nagios server, and a
method of filtering individual block entries.

306



14.5 Application Example I: Integrating syslog and Nagios

If you are using ���������8 instead of the standard BSD syslog, you can
make use of its ability to set filters and to format the output using tem-
plates. The use of NSCA compensates for the fact that the program cannot
itself transmit data in encrypted form.

This connection to Nagios is supplemented by programs to evaluate log
files, such as ����
���,9 which is contained in almost every Linux distri-
bution, but it does not replace them. This is because Nagios can send indi-
vidual e-mails for each event, but not for a summary of events, as ����
���
does (usually once per hour). In addition to this, the Web interface always
displays the last event in each case.

14.5.1 Preparing 	�	�
���� for use with Nagios

Apart from the source code, the ��������� homepage10 also provides a
detailed manual, which is why we shall only discuss the basic principle at
this point. The software differentiates between the ��
���, 	�����, and
�����������. All three objects can be combined in any form; they are
defined in the configuration file &���&���������&�������������	:

# /etc/syslog-ng/syslog-ng.conf

source local {

unix-stream("/dev/log");

internal();

file("/proc/kmsg" log_prefix("kernel: "));

};

destination console_10 {

file("/dev/tty10");

};

filter f_messages {

not facility(auth, authpriv) and

level(info .. alert);

};

log {

source(local);

filter(f_messages);

destination(console_10);

};

This example defines three sources at the same time: 
���������� reads
from the socket &���&���, through which most programs send their mes-
sages to the syslog. �������� is the name of the source ��������� feeds

8 The “ng” stands here for next generation.
9 �������
��������
�������������
���
������

10 ������������	�	���������������
�
 
��
��
�

307



14 The Nagios Service Check Acceptor (NSCA)

with internal messages, and from the file &����&���� syslog receives ker-
nel messages. These are given the ������! prefix, so that they can be be
distinguished from normal log entries.

The ����������� definition ensures that all syslog output appears on the
console ���-+ (this can be displayed with

�

�

�

�
Alt -

�

�

�

�
F10 ).

	����� defines what messages should reach this destination, if any. In the
case of the 	��������� filter, this is all messages matching the category
(the �����) ��	� and that syslog does not provide with the stamp (the
	�������; see ��� ����������	 and ��� * ������) �
�
 or �
�
����.
Alternatively ��������� filters according to a search pattern, with the in-
struction ����
(J�����	�J), according to the program doing the log-
ging (�������(J�	��	�� ����J)) and according to the source host (
���
(J��������J)).

Finally the keyword ��� links the source, filter, and destination. Multiple
specifications are possible here, so several sources and destinations can be
specified in a single statement:

log {

source1); source2; ...

filter1; filter2; ...

destination1; destination2; ...

}

If you specify several filters in a ��� statement, ��������� only allows data
through that matches all filter criteria (AND link).

To integrate this into Nagios, use is made of the option of defining a pro-
gram as a target, which is called for every event:

destination d_nagios_warn {

program("/usr/local/nagios/misc/send_syslog.sh"

template("$HOST;syslog-ng;1;WARNING: $MSG\n") template_escape(no));

};

destination d_nagios_crit {

program("/usr/local/nagios/misc/send_syslog.sh"

template("$HOST;syslog-ng;2;CRITICAL: $MSG\n") template_escape(no));

};

The �������� directive formats the output so that it is suitable for �����
����, using a semicolon as the delimiter: host and service names (�������
��) are followed by the state (- = WARNING; � = CRITICAL), and then the
actual output text is given. Apart from E8:1> and E�1", ��������� has
a series of further macros, which are described individually in the docu-
mentation on the homepage. The parameter ��������������� protects
quotation marks in the text and is intended principally for SQL commands,
so in this case it can be set to ��.

308



14.5 Application Example I: Integrating syslog and Nagios

The following script �������������
 uses the bash function ���� to read
from the standard input line by line, and for each line read it calls up
���������, which sends on the data—as described in this chapter—as a
passive test result to Nagios:

#!/bin/bash

while read -r line; do

echo $line | /usr/bin/send_nsca -H nagsrv -d ’;’ \

-c /etc/nagios/send_nsca.cfg \

1>/usr/local/nagios/var/send_syslog.log 2>&1

done

Because a semicolon is used as a delimiter, we specify this explicitly with
the option ��. The status report that each ��������� command displays
on the standard output is diverted by the script into a separate log file
(&
��&�����&������&���&���������������).

Thanks to the ������� instruction in the syslog configuration, ���������
starts the script automatically. This is also the reason that the ���������
command is in an endless loop: this means that ��������� does not run
an external program every time there is a relevant event.

14.5.2 Nagios configuration: volatile services

In Nagios slang, “volatile” refers to services that show an error state only
once. This refers to devices, for example, that automatically reset the state
when an error is queried—which means that the error cannot be repro-
duced. The same applies for syslog entries: if a check following an error
state returns an error, this will always be a second event. So we don’t have
a continuing error state here, but a problem that has again occurred.

For continuing error states, Nagios normally does not send any further mes-
sages for the time being. With the ����������� parameter, however, it
treats every error as if it had just occurred. Nagios logs the state, sends a
notification, and implements the event handler—provided it is defined—
(see Appendix C from page 619).

For ���������, this means that each entry is seen as an independent event.
In order that Nagios sees things in this way as well, the corresponding ser-
vice definition contains the ����������� parameter:

define service{

host_name linux01

service_description syslog-ng

active_checks_enabled 0

passive_checks_enabled 1

check_freshness 0

is_volatile 1

309



14 The Nagios Service Check Acceptor (NSCA)

max_check_attempts 1

normal_check_interval 1

retry_check_interval 1

check_command check_dummy!3!active check

check_period none

contact_groups localadmins

notification_options w,c,u

notification_interval 480

notification_period 24x7

}

Since the Nagios server should not test anything on its own, ��������
����
�������� + switches off active service checks. However, freshness checking
(see Section 13.4 from page 295) can always cause Nagios to perform active
tests. To prevent this, we set the �
����	���
���� parameter in this case
explicitly to +.

This service definition does not really require the parameters �
��������
���� and �
����������, but since these are mandatory parameters, they
must still be specified: as �
�����������, the plugin �
�����
��� (see
Section 8.1 on page 188) is used.

It is also important that �����
������������ is set to -, so that a trans-
mitted error state immediately triggers a hard state. With a value larger
than -, Nagios would wait for further error results here before categorizing
the problem state as a hard state.

The ����	��������������� parameter ensures that the system informs
the specified contact group of all error states (WARNING, CRITICAL, and
UNKNOWN). The ����	����������������, which defines the interval be-
tween two notifications for a continuing error state, is actually superflu-
ous, since Nagios, thanks to ����������� -, provides notification of every
event immediately, irrespective of what the previous state looked like. But
since it is a mandatory parameter, ����	���������������� still has to be
specified.

14.5.3 Resetting error states manually

Events that are taken into account by the syslog filter always inform you
of only one current state, which is why the syslog service in Nagios never
displays an OK state on its own (Figure 14.2).

Figure 14.2:
The 
 
��
��


service in an error
state

310



14.5 Application Example I: Integrating syslog and Nagios

This problem can be solved with the Web interface, which allows a passive
check result to be generated manually.

If you click on the service name in Figure 14.2, the extended status infor-
mation will be shown (Figure 14.3). There you will find the entry 1
����
������� �
��� ���
�� 	�� �
�� �������, with which a test result can
be sent manually (Figure 14.4). In this way the ��������� service can be
reset to its normal state. Since the Web interface always shows only the
most recent error state, but not individual error messages, you must look
through the e-mail messages to see whether other errors have occurred
apart from those errors displayed by Nagios in the Web interface.

Figure 14.3:
The arrow points to
the possibility of
“generating” a
passive test result for
the 
 
��
��


service

You can also define your own service for each syslog event, of course. This
may sometimes be quite time-consuming, but it does allow you to separate
various messages and their processing states in the Web interface. If the fil-
ter in ��������� is restricted so that a syslog service object always refers to
just one resource to be monitored, you can also leave out the �����������
parameter.

Figure 14.4:
Creating a passive
check result

 
��
��


311



14 The Nagios Service Check Acceptor (NSCA)

14.6 Application Example II: Processing SNMP
Traps

Asynchronous messages that are sent by an SNMP agent (see Section 11.1
from page 228) to a central management unit, called traps in SNMP jargon,
can be processed by Nagios in a way similar to the Nagios Service Check
Acceptor (NSCA). In addition, it allows SNMP traps to be accepted on a
host other than the Nagios server itself.

Processing SNMP traps with Nagios is particularly worthwhile if the system
monitors the network almost completely, and only a few devices or services
restrict their communication just to SNMP and SNMP traps. Nagios, or
the Open Source tool OpenNMS,11 are no substitutes for real commercial
SNMP management systems.

In many cases, SNMP traps are vendor-specific, so that you cannot avoid
getting to grips with the appropriate documentation and the vendor-specific
MIB (Management Information Base; see Section 11.1.1 from page 229).

14.6.1 Receiving traps with 	���
����

In order to receive SNMP traps, you require a special Unix/Linux daemon
that generates messages for Nagios from them. The software package NET-
SNMP, described in Section 11.2.2 from page 238, includes the daemon
���������.

In the following scenario, ��������� is installed on a third host (neither
the computer generating the trap, nor the Nagios server). It evaluates the
information received by means of a script and forwards it with NSCA to the
Nagios server.12

In the ��������� configuration file &���&����&�������������	, each
trap type is given a separate entry, the syntax of which corresponds to one
of the following lines:

traphandle oid program

traphandle oid program arguments

traphandle default program

traphandle default program arguments

The keyword ����
����� is followed either by the object identifier of the
desired trap, or by the keyword ��	�
��. In the second case the entry

11 �����������������
���
�
12 If you install the 
�����	�� on the Nagios server itself, you do not need NSCA and

you can send a correspondingly formatted command, as described in Section 13.2 from
page 293 directly to the interface for external commands.

312



14.6 Application Example II: Processing SNMP Traps

applies to all traps that do not have their own configuration entry. Finally
the program that should run if a relevant trap arrives is specified.

In addition you can also include arguments used with this program. But
you must be a bit careful when doing this. Quotation marks are passed on
by ��������� as characters and spaces are always used as delimiters. This
means that you cannot pass on any arguments containing spaces, which
you should bear in mind when assigning name services in Nagios.

���������� gives this program information via the standard output in the
following format:

hostname

ip-address

oid value

...

The first line contains the fully qualified domain name of the host that
sends the message and the second, its IP address. Then one or more OID-
value pairs are given, each on a separate line. A particular event is very
often linked to a unique OID-value pair, so that the program can often
omit the evaluation of the OID-value pair entirely.

In the following �������������	 example, the lines are wrapped for read-
ability. Each ����
����� instruction must be entered on a single line:

# snmptrapd.conf

traphandle SNMPv2-MIB::coldStart /usr/local/nagios/libexec/eventhandler/

handle-trap SNMP cold-start

traphandle NET-SNMP-AGENT-MIB::nsNotifyRestart /usr/local/nagios/libexec

/eventhandler/handle-trap SNMP restart

traphandle NET-SNMP-AGENT-MIB::nsNotifyShutdown /usr/local/nagios/libexe

c/eventhandler/handle-trap SNMP shutdown

traphandle default /usr/local/nagios/libexec/eventhandler/handle-trap SN

MP unknown

The traps used here are sent by the SNMP agent ����� from the NET-SNMP
package by default, as long as a destination was specified in ���������	:

# snmpd.conf

trapsink name_or_ip_of_the_nagios-server

If a trap arrives with the OID 1 ������6=!!����1����, for example, �����
����� starts the script 
���������� with the argument ����������. In
this way it does not have to search first for the necessary information from
the OID-value pairs. However, this shortcut only works with trap OID
names that describe their function.

313



14 The Nagios Service Check Acceptor (NSCA)

14.6.2 Passing on traps to NSCA

The script 
����������, which is run by ���������, breaks down the in-
formation passed on and hands it over, correctly formatted, to ���������:

#!/bin/bash

NAGIOS="nagsrv"

LOGFILE="/usr/local/nagios/var/handle-trap.log"

read HOST && echo "host: $HOST" >> $LOGFILE

read IPADDR && echo "ip: $IPADDR" >> $LOGFILE

case $IPADDR in

192.168.201.4)

HOSTNAME="irouter"

;;

*)

# silent discard from unknown hosts

exit 0

;;

esac

if [ -z "$1" ]; then

echo "usage: $0 <service> <key>"

echo "usage: $0 <service> <key>" >> $LOGFILE

exit 1

else

SERVICE="$1"

fi

if [ ! -z "$2" ]; then

SWITCH="$2"

fi

case $SWITCH in

"cold-start")

OUTPUT="snmpd: Cold Start"

STATE=0

;;

restart)

OUTPUT="snmpd: Restart"

STATE=1

;;

shutdown)

OUTPUT="snmpd: Shutdown"

STATE=2

;;

*)

OUTPUT="Unknown Trap"

STATE=1

314



14.6 Application Example II: Processing SNMP Traps

;;

esac

CMD="$HOSTNAME;$SERVICE;$STATE;$OUTPUT"

echo "$CMD" >> $LOGFILE

echo "$CMD" | /usr/bin/send_nsca -H $NAGIOS -d ’;’ \

-c /etc/nagios/send_nsca.cfg >> $LOGFILE 2>&1

First it saves the log file and the name of the Nagios server ������, each in
a separate variable. The first ���� statement specifies the host name used
by Nagios for the IP address passed on (and temporarily stored in 6�.<<5).
8:1> normally contains the fully qualified domain name, which also cannot
be used directly, and sometimes also just contains one IP address, so that
it is better to use the latter here. The explicit test also allows it to discard
traps from undesired hosts. Finally, matching traps land without further
authentication on the Nagios server.13

The following �	 statement determines whether a service name was also
given to the script. If this is the case, then it is saved in the 1/5H6�/ vari-
able. If there was a second argument, the procedure is similar. Depending
on the value, the next ���� E146>�8 instruction defines the output text
and the desired status for Nagios.

The command for NSCA is finally assembled and the ��< variable is passed
on by the script to ���������. As in previous examples, a semicolon is used
as the delimiter, which must be specified in ��������� with the option ��.

14.6.3 The matching service definition

As in the ��������� example (page 309), we again define the service on
the Nagios server as a purely passive one:

define service{

host_name irouter

service_description SNMP

active_checks_enabled 0

passive_checks_enabled 1

check_freshness 0

max_check_attempts 1

is_volatile 1

...

}

13 Although SNMPv3 does provide authentication for SNMP traps, this would go beyond
the scope of this book.

315



14 The Nagios Service Check Acceptor (NSCA)

Since soft states do not make any sense in a single trap message, we should
set �����
������������ back to -. Whether the parameter �����������
is used or not depends on the purpose to which the service is put. As long
as you define a separate service for each error category, there is no problem
in omitting �����������. But if you form different error categories using
a single service, you should set ����������� -, because in this case the
previous error will seldom have anything to do with the new one. Section
14.5.2 on page 309 is devoted to the subject of volatile services.

316



15 Ch
ap

te
r

Distributed Monitoring

Passive service and host checks can be used to create a scenario in which
several noncentral Nagios instances send their results to a central server. In
general they transfer their results using the Nagios Service Check Acceptor
(see Chapter 14); the central Nagios instance receives them through the
External Command File interface and continues processing them as passive
checks (see Chapter 13 from page 291).

What is now missing is the mechanism that prepares each test result of a
noncentral Nagios instance to be sent with NSCA. For such cases, Nagios
provides the commands OCSP (“Obsessive Compulsive Service Processor”)
and OCHP (“Obsessive Compulsive Host Processor”), two commands de-
signed specifically for distributed monitoring. In contrast to event handler
(see Appendix C from page 619), which shows changes in status and only
passes on check results if the status has changed, these two commands
obsessively pass on every test result (Figure 15.1).

317



15 Distributed Monitoring

Figure 15.1:
Distributed

monitoring with
Nagios

15.1 Switching On the OCSP/OCHP Mechanism

In order to use OCSP/OCHP, several steps are necessary. The mechanism is
initially switched on (only) on the noncentral Nagios servers in the global
configuration file &���&������&��������	�, where a global command for
hosts (OCHP) and services (OCSP) is defined. This causes the noncentral
Nagios instance to send every result to the central server.

In the service and host definitions you can additionally set whether the
corresponding service or host should use the mechanism or not. For the
central Nagios server to be able to use the results transferred, each service
or host on it must finally be defined once again.

You should only switch on the two parameters ��������������������
and ������������
���� in ��������	� if you really do want distributed
monitoring:

# /etc/nagios/nagios.cfg

...

obsess_over_services=1

ocsp_command=submit_service_check

ocsp_timeout=5

obsess_over_hosts=1

ochp_command=submit_host_check

ochp_timeout=5

318



15.2 Defining OCSP/OCHP Commands

Every time a new test result arrives on the Nagios server, it calls the com-
mand object defined with ������������ or ��
���������. This causes
an additional load on resources.

The two timeouts prevent Nagios from spending too much time on one
command. If processing does not terminate (because the command itself
does not receive a timeout and the central Nagios server does not react),
then the process table of the noncentral Nagios instance would fill very
quickly, and might overflow.

If you want to selectively exclude test results for specific services and hosts
from transmission to the central Nagios server, the following parameters
are used:

define host{

...

obsess_over_hosts=0

...

}

define service{

...

obsess_over_services=0

...

}

With a value of - the local Nagios instance sends the results of the host or
service check to the central server, but with a value of +, this does not hap-
pen. The - is the default for both ������������
���� and ������������
��������; if results are not to be transferred, then you have to specify the
two parameters. This is always recommended if the central location is only
responsible for particular things, and the remaining administration is car-
ried out on site.

15.2 Defining OCSP/OCHP Commands

Defining the two commands with which the noncentral instances send
their results to the Nagios main server in most cases involves scripts that
are based on ��������� (see also the example on page 306). For ser-
vices, such a script would look like the following one, in this case called
�
��������������
���:

#!/bin/bash

# Script submit_service_check

PRINTF="/usr/bin/printf"

CMD="/usr/local/bin/send_nsca"

319



15 Distributed Monitoring

CFG="/etc/nagios/send_nsca.cfg"

HOST=$1

SRV=$2

RESULT=$3

OUTPUT=$4

$PRINTF "%b" "$HOST\t$SRV\t$RESULT\t$OUTPUT\n" | $CMD -H nagios -c $CFG

When run, the command expects four parameters on the command line in
the correct order: the host monitored, the service name, the return value
for the plugin opened (+ for OK, - for WARNING, etc.), and the one-line
info text that is issued by the plugin. To format the data we use the �����	
function (��� �����	). The newly formatted string is finally passed on to
���������.

The equivalent script for OCHP (stored here in the file �
�����
�����
���)
looks something like this:

#!/bin/bash

# Script submit_host_check

PRINTF="/usr/bin/printf"

CMD="/usr/local/bin/send_nsca"

CFG="/etc/nagios/send_nsca.cfg"

HOST=$1

RESULT=$2

OUTPUT=$3

$PRINTF "%b" "$HOST\t$RESULT\t$OUTPUT\n" | $CMD -H nagios -c $CFG

The only thing missing is the specification of the service description.

It is best to store the two scripts, in conformity with the Nagios documen-
tation, in a subdirectory �����
������� (which normally needs to be cre-
ated) in the plugin directory (usually &
��&�����&������&�������, but
for some distributions this will be &
��&���&������&��
����). You can
retrieve this from the definition of the matching command object using the
macro E$1/5-E. This is best defined in the ��������������	� file:

define command{

command_name submit_service_check

command_line $USER1$/eventhandlers/submit_service_check $HOSTNAME$ ’$

SERVICEDESC$’ $SERVICESTATEID$ ’$SERVICEOUTPUT$’

define command{

command_name submit_host_check

command_line $USER1$/eventhandlers/submit_host_check $HOSTNAME$ $HO

STSTATEID$ ’$HOSTOUTPUT$’

320



15.3 Practical Scenarios

If you use a separate file for this, you must make sure that Nagios will
load this file by adding an entry to &���&������&��������	�. The single
quotes surrounding the E1/5H6�/</1�Emacro and the two output macros
in the ������������ line are important. Their values sometimes contain
empty spaces, which the command line would interpret as delimiters with-
out the quotes.

15.3 Practical Scenarios

One application for distributed monitoring is the monitoring of branches
or external offices in which a noncentral Nagios installation is limited to
running service and host checks and sending the results to the central in-
stance. The noncentral instances do not need further Nagios functions,
such as the notification system or the Web interface.

On the other hand, if administrators look after the networks at the dis-
tributed locations, while the central IT department only looks after spe-
cial services, then the noncentral Nagios server is set up as a normal, full-
fledged installation and selectively forwards only those check results over
the OCSP/OCHP mechanism to the central office for which the specialists
there are responsible.

Whatever the case, you must ensure that the host and service definition is
available both noncentrally and centrally. This can be done quite simply
using templates (Section 2.11 on page 75) and the �	����� directive (Sec-
tion 2.1, page 55): you set up the definition so that the configuration files
can be copied 1:1.

15.3.1 Avoiding redundancy in configuration files

In the following example we assume that the noncentral servers only per-
form host and service checks and send the results to the central server, and
do not provide any other Nagios functions. The following directories are
set up on the central host:

/etc/nagios/global

/etc/nagios/local

/etc/nagios/sites

/etc/nagios/sites/bonn

/etc/nagios/sites/frankfurt

/etc/nagios/sites/berlin

...

Each of the configurations used for a location lands in the directory &���&
������&�����&�������� . After ������, all the definitions follow that

321



15 Distributed Monitoring

can be used identically at all locations (e.g., the command definitions in
�
�������������	�). The directory ����� takes in specific definitions for
the central server definitions. These include the templates for services and
hosts, where distinction must be made between central and noncentral.

This directory is also created separately on the noncentral servers: only the
folders ������ and �����&�������� are copied from the central instance
to the branch offices.

The three directories are read in with the �	����� directive in &���&���
����&��������	�:

# -- /etc/nagios/nagios.cfg

...

cfg_dir=/etc/nagios/global

cfg_dir=/etc/nagios/local

cfg_dir=/etc/nagios/sites

...

Only settings that are identical for the noncentral and central page are used
in the service definition:

# -- /etc/nagios/sites/bonn/services.cfg

define service{

host_name bonn01

service_description HTTP

use bonn-svc-template

...

check_command check_http

...

}

The location-dependent parameters are dealt with by the templates.

15.3.2 Defining templates

In order that service definitions are identical on both the central and non-
central servers, the local templates must have the same names as the cen-
tral ones. In addition you should ensure that the obligatory parameters
(see Chapter 2 from page 53) are also all entered, even if they are not even
required at one of the locations, because together, the template and service
definitions must cover all obligatory parameters.

The following example shows a service template for one of the noncentral
locations:

# -- On-Site configuration for the Bonn location

define service{

322



15.3 Practical Scenarios

name bonn-svc-template

register 0

max_check_attempts 3

normal_check_interval 5

retry_check_interval 1

active_checks_enabled 1

passive_checks_enabled 1

check_period 24x7

obsess_over_services 1

notification_interval 0

notification_period none

notification_options n

notifications_enabled 0

contact_groups dummy

}

The parameters that are important for the noncentral page are printed in
bold type. Besides the parameters that refer to the test itself, the parameter
�������������������� must also not be left out. This ensures that the
check results are sent to the central server.

����	���������������� switches off notification in this case, since the
local admins do not need to worry about error messages from services that
are centrally monitored. Alternatively this can be done globally in the non-
central &���&������&��������	�.

�������� + ensures that the template is used exclusively as a template, so
that Nagios does not interpret it as a separate service definition.

The counterpart with the same name on the central server looks something
like this:

# -- Service template for the central Nagios server

define service{

name bonn-svc-template

register 0

max_check_attempts 3

normal_check_interval 5

retry_check_interval 1

active_checks_enabled 0

passive_checks_enabled 1

check_period none

check_freshness 0

obsess_over_services 0

notification_interval 480

notification_period 24x7

notification_options u,c,r

notifications_enabled 1

contact_groups admins

}

323



15 Distributed Monitoring

The parameter ���������
������������ is of importance here, as well
as the configuration of the notification system. On the central side, the pa-
rameters involving the test itself come into play only if freshness checking
is used (see Section 13.4 from page 295). This works only if the central Na-
gios server is itself in a position to actively test all services if there is any
doubt. Since the �
����������� in this simple template solution is given
in the location-dependent service definition, which is identical on the non-
central and central servers, this will work only if the same command object
can be used both centrally and noncentrally—if the object definitions in
������&�
�������������	�match on both sides.

In the example, however, we completely switch off active tests of services
at the Bonn location, with �
���������� ���� and �
����	���
���� set
to 0. The system described so far can also be applied to host checks, of
course.

324



Part III

The Web Interface and Other Ways
to Visualize Nagios Data





16 Ch
ap

te
r

The Classical Web Interface

On the right is the navigation area with the unmistakable black background,
and the remaining area is for displaying the CGI scripts called (Figure 16.1)–
the Nagios Web interface is that simple. The start screen provides access to
the program documentation—extremely useful if you just want to look up
something quickly.

Provided you have the correct access rights, the Web interface allows much
more than just looking up information. You can run a series of commands
and control Nagios actively: from setting a single command, to switching
messages on and off, to restarting the server.

A separate book would be needed to describe all the features completely.
This is why we will just describe the concept here on which the CGI pro-
grams are based,1 in this way giving you a picture of the extensive range of
options available.

1 There is a good reason that we refer here to CGI programs and not to CGI scripts: all
CGI programs for Nagios 2.x and 3.0 are C programs.

327



16 The Classical Web Interface

Many functions use the very same CGI program. If you move the mouse
up and down in the navigation area shown in Figure 16.1 and observe the
status display of the browser when doing this, which reveals the URLs to
be called, you will see that in the Monitoring section up to the Show Hosts:
entry field, the CGI program ����
����� is always called, with just four
exceptions. Only the parameters are different. Things are similar for the
CGI program �������, with which general commands can be run. The
parameters passed specify whether a comment is to be read, or a message
enabled or disabled, or if Nagios is to be restarted.

Figure 16.1:
The subitem

Unhandled under
both the Service

Problems and Host
Problems menu items
has only been on the

start page of the
Nagios Web interface

since Nagios 3.0.

Table 16.1:
overview of CGI

programs

CGI program Description

����
����� Status display in various forms; by far the most
important CGI program (Figures 16.10 to 16.15,
page 334.)

����
�������� Topological representation of the monitored
host (see Figure 16.27, page 347)

����
�������� Topological representation in 3D format; re-
quires a VRML-capable browser and allows in-
teractive navigation in a virtual space (Figure
16.29, page 349)

����
�������� Simple status page for WAP devices (cellphone)

328



16 The Classical Web Interface

continued:

CGI program Description

�����	����� Additional information on a host or service,
with the possibility of running commands (Fig-
ure 16.4, page 331)

������� Running commands (Figure 16.23, page 343)

������� Overview of all services and hosts to be moni-
tored, the Tactical Overview (see Figure 16.26 on
page 346)

�
��������� Network nodes that cause the failure of partial
networks (Figure 16.30, page 350)

���	������ Display of Nagios object definitions (Figure
16.31, page 351)

��������� Availability report (e.g., “98 percent of all sys-
tems OK, 2 percent WARNING”, see Figure
16.32, page 352)


������������ Histogram of the number of events occurring
(Figure 16.34, page 353)


���������� Display of all events that have ever occurred
(Figure 16.35, page 355)

����	������������ Overview of all sent notifications (Figure 16.36,
page 355)

�
��������� Display of all log file entries (Figure 16.37, page
356)

�
��������� Report of events, which can be compiled by
host, service, error category and time period
(Figure 16.39, page 358)

���������� Time axis recording the states that have oc-
curred (Figure 16.40, page 359)

Table 16.1 shows an overview of all the CGI programs included in the pack-
age. They all check to see whether the person running the requested action
is allowed to do so. Normally a user can only access the hosts and services
for which he is entered as the contact. In addition there is the possibility of
assigning specific users more comprehensive rights, so that they are basi-
cally allowed to display all hosts and services, for example, or to request sy-
stem information. Settings for other users are made in the �����	� config-
uration file, and the authentication parameters are described in Appendix
A.2, page 606.

329



16 The Classical Web Interface

16.1 Recognizing and Acting On Problems

A suitable starting point for the administrator is the Service Problems page,
which can be reached through the menu item, shown in Figure 16.2. You
can see all problems at a glance. If there is just a service-related problem,
but not a host-related one, the host name in the Host column has a gray
background, but a red background means the host itself is the source of the
trouble.

Figure 16.2:
The menu item

Service Problems
brings current

problems to
attention

The hosts �������� and ���������, which have failed in Figure 16.2, can
be seen again in the Host Problems menu item (Figure 16.3): �������� can-
not be reached (UNREACHABLE), so the real problem therefore exists in the
failure of the host ���������. This dependency is illustrated in the Outages
menu item (Figure 16.30, page 350) or the Status Map (Figure 16.27, page
347). In Figure 16.27 the two failed hosts are shown with a red background,
and you can also clearly see which host is dependent on the other (always
from the point of view of the central Nagios host).

Figure 16.3:
The Host Problems
menu item reveals

this display

16.1.1 Comments on problematic hosts

The administrator clarifies the problem with the external office by tele-
phone: the DSL connection has failed. He announces this failure to the

330



16.1 Recognizing and Acting On Problems

provider responsible. To stop his colleagues from going to the same trouble
again, the admin enters a corresponding comment on the failed host. To
do this he clicks in the status display on the host name, which takes him
to an information page for this specific host (Figure 16.4), the options of
which are described in more detail in Section 16.2.2, page 339.

Figure 16.4:
�#�������
�

provides additional
information on the
selected host

Using the Add a new comment link at the bottom of the page, the CGI
program ������� (Section 16.2.3, page 343), which by passing on a cor-
responding parameter is already prepared for this task,2 allows a comment
to be recorded (Figure 16.5). The host name is already shown, the check
mark in the Persistent box ensures that the comments will also “survive” a
Nagios restart. The user name filled out in the Author (Your Name): field
can be edited, as can the actual comment in the Comment field.3

2 ����� ��H'I��
�H
�
����# . More on the parameters in Section 16.2.3 following,
page 343.

3 Starting with Nagios 3.0, amending the author name can be prevented by using the
parameter �����	�������	�� (see page 609).

331



16 The Classical Web Interface

Figure 16.5:
Entering a comment

for a host

The administrator confirms the entry with the Commit button. Returning to
the status overview, for example with the Service Problems menu item, the
administrator will see a speech bubble next to the host name, indicating
that a comment exists for this host (Figure 16.6). Clicking on the icon opens
the corresponding information page and takes the admin directly to the
comment entries (Figure 16.7). Clicking on the icon of the trash can in the
Actions column deletes these individually, if required.

Figure 16.6:
A speech bubble

displays the
existence of

comments

Figure 16.7:
A click on Delete all

comments deletes all
comments at once

16.1.2 Taking responsibility for problems

Acknowledgements (so spelled on the Web interface) are oriented more
closely to the workflow than simple comments. An acknowledgement sig-
nals to other administrators that somebody is already working on a prob-
lem, so nobody else needs to get involved with it for the time being. In the
status overview, a small laborer icon symbolizes this form of taking respon-
sibility (Figure 16.8), and Nagios additionally notifies the relevant contacts.

332



16.1 Recognizing and Acting On Problems

Figure 16.8:
A laborer icon shows
that an admin has
already taken on
responsibility for the
problem
(acknowledgement)

To issue such a statement, the link Acknowledge this Host Problem is used
on the extended info page for the host in question. As well as the fields
used for entering a normal comment, there are two checkboxes in this case,
Sticky Acknowledgement (Figure 16.9)—if checked, this option prevents pe-
riod notification if the error status persists—and Send Notification. If the
latter is also checked, Nagios notifies the other administrators.

Figure 16.9:
Entry dialog for a
host
acknowlegement

The effect of Persistent Comment is different in Nagios 2.x and Nagios 3.0:
In Nagios 2.x the comment is only preserved on a reboot if the checkbox
has been marked. Unfortunately, using this to save comments in case of
a reboot has the disadvantage that the comment does not disappear auto-
matically when the problem has been solved. On the other hand, Nagios
3.0 normally retains all comments after a reboot. If the check mark for Per-
sistent Comment is deleted, Nagios will remove the comment automatically
as soon as the problem has been rectified. If the check mark is set, the
comment must be removed manually if it is no longer needed, as in Nagios
2.x.

What we are demonstrating here, using a faulty host state, can also be ap-
plied to faulty services. The CGI programs are the same, and through the
passing of parameters they receive information on whether a host or ser-
vice is involved, and react accordingly; only the host field receives company
in the form of a Service entry.

333



16 The Classical Web Interface

16.2 An Overview of the Individual CGI Programs

At the time of going to press, this chapter was the most extensive docu-
mentation on the Nagios Web interface, especially for the individual CGI
scripts. But for reasons of space, we shall not go into every detail. If you
want to know more, you must take a look at the source code of the scripts
or look at the �������
����4 mailing list. Some of these are also read by
the Nagios developers, and many a question is answered there for which
there is currently no documentation.

16.2.1 Variations in status display: 	
�
�	����

By far the most important CGI program, ����
����� is responsible for the
status display. What it shows is determined by three parameter groups.
The first one defines whether the Web page generated displays all hosts, a
specific host, or a service group:

http://nagiosserver/nagios/cgi-bin/status.cgi?host=all

http://nagiosserver/nagios/cgi-bin/status.cgi?hostgroup=all

http://nagiosserver/nagios/cgi-bin/status.cgi?servicegroup=all

With 
��� you can select individual hosts, and ��� in this case stands for
all hosts. 
������
� enables a specific host group to be displayed, and
again you can use ��� to stand for all host groups. Finally, ����������
�
tells the CGI program to display either the individual service group given
as a value, or ��� ������� ���
��, given with ���.

Figure 16.10:
The ��������

output style

The outputs of 
���G��� and 
������
�G��� are only different in their
style, which is defined by the second parameter group. For 
���G���,
�����G������ is the default setting, and for 
������
�G���, it is �����G

4 ���������
�
�
��������
�������	���	����
�������	
��
��
��


334



16.2 An Overview of the Individual CGI Programs

��������. ����
�����0
���G���Y�����G�������� therefore delivers the
same result as ����
�����0
������
�G���.

Hosts that do not belong to a host group only appear in the detail view

���G���Y�����G������ or 
������
�G���Y�����G
���������. All
other display styles always show entire host groups from which individ-
ual hosts may be missing. ����
����� provides five possible output styles:
�������� represents the hosts in a table, but summarizes the services ac-
cording to states (Figure 16.10). For the host group 1.�, you would call the
corresponding display with the URL

http://nagiosserver/nagios/cgi-bin/status.cgi?hostgroup=SAP&style=overview

The ����� value �
����� compresses the output of ��������: ����
��
��� only displays one host group for each line (Figure 16.11 shows this for
Nagios 2.x, Figure 16.12 for Nagios 3.0). For Nagios 3.0, error states are
distinguished as unhandled (no acknowledgement set) or acknowledged.

Figure 16.11:
The 
���	� output
style of Nagios 2.x

Figure 16.12:
The 
���	� output
style of Nagios 3.0

The ���� style provides an extremely attractive summary in which you can
see the status of each individual service by means of the color with which it
is highlighted (Figure 16.13). ������ shows each service in detail on a sep-
arate line. The 
��������� output style is limited just to host information,
providing detailed information with one line for each host (Figure 16.15).

Figure 16.13:
The 
���output style

335



16 The Classical Web Interface

Figure 16.14:
The ���	�� output

style

Figure 16.15:
The ��
����	��

output style

The third and final parameter group allows you to influence, through selec-
tors, what states and what properties are shown by ����
�����, such as
all services in an error state for which no acknowledgement has yet been
set by an administrator (see Section 16.1.2, page 332). States are passed
on with the 
�������
������ or �����������
������ parameter, prop-
erties with 
�������� and ������������. All four parameters demand
numerical values after the equals sign, and these are summarized in Tables
16.2, 16.3, and 16.4.

Table 16.2:
Possible values for
��
�
�	��
� ��


Value Description

1 PENDING (a result of the very first test planned for this host
is not yet available)

2 UP

4 DOWN

8 UNREACHABLE

336



16.2 An Overview of the Individual CGI Programs

The third and final parameter group allows selectors to be used to influence
what states and properties are displayed by����
�����, fofr instance all
services in an error state for which no administrator has yet set an acknowl-
edgement (see Section 16.1.2, page 332). Conditions are passed with the pa-
rameter 
�������
������ or �����������
������, and properties with
the 
�������� and ������������parameters. All four parameters require
numerical values after the equals sign, and these are summarized in tables
16.2, 16.3 and 16.4.

Table 16.3:
Possible values for

������
�	��
�

� ��


Value Description

1 PENDING (Service was originally planned for a check, but so
far no result is available)

2 OK

4 WARNING

8 UNKNOWN

16 CRITICAL

Table 16.4:
Possible values for
��
� and

����������


Value Description

1 Scheduled downtime (downtime planned)

2 No Scheduled downtime (no downtime planned)

4 Acknowledgement (status confirmed by the admin)

8 No acknowledgement

16 Host/Service check disabled

32 Host/Service check enabled

64 Event Handler disabled

128 Event Handler enabled

256 Flap Detection disabled

512 Flap Detection enabled

1024 Host/Service oscillates (flapping)

2048 Host/Service does not oscillate

4096 Hosts or services currently excluded from a notification

8192 Notification enabled

16384 Passive host/service checks disabled (Chapter 13, page 291)

32768 Passive host/service checks enabled

65536 Hosts/services for which there is at least one result deter-
mined for each passive test

131072 Hosts/services for which there is at least one active check re-
sult

337



16 The Classical Web Interface

continued:

Value Description

262144 Hosts/services in the hard state (from Nagios 3.0)

524288 Hosts/services in the soft state (from Nagios 3.0)

If you want to query several states or properties simultaneously, you just
add the specified values together: ����
�����0
���G���Y�����������
�
������G�B shows all services with an error status: WARNING, UN-
KNOWN, and CRITICAL, that is, 4 + 8 + 16 = 28. This query is identical to
the Service Problems menu item in the navigation area.

����
�����0
������
�G���Y
�������
������G-�Y�����G
���������
corresponds to the Host Problems menu item in the navigation area. It
queries all hosts which are either DOWN or UNREACHABLE (here 4 + 8 = 12).
Since only host information should be shown, but no service information,
the output style is in the form of 
���������.

����
�����0
���G���Y�����������
������G�7Y������������G-+ is
the variation of the first example: only the states UNKNOWN and CRIT-
ICAL (8 + 16 = 24) are shown, and only those that neither show a planned
downtime, nor have already been confirmed (2 + 8 = 10).

The CGI program specifies the filter parameter each time in a separate
checkbox. Figure 16.16 shows this for the third example.

Figure 16.16:
This information box

shows what states
and properties


�	��
��
� should
display

If you want, you can define your own navigation area to your own re-
quirements or just use the existing one. The main page consists of one
frame, and the navigation area itself is defined by a normal HTML file:
&
��&�����&������&�
���&�����
���.5

One example of a changed �����
��� is provided on the Nagios Demo
page6 at Netways;7 another is the Nuvola style, shown in the figure on page
369.

5 If you have kept to the installation in this book.
6 ��������	
��
����������	 
����
7 ���������������	 
����

338



16.2 An Overview of the Individual CGI Programs

16.2.2 Additional information and control center:
��
���
����

If called with the 
��� or ������� parameter, �����	����� not only pro-
vides detailed information on a specific host (Figure 16.4, page 331) or ser-
vice, it also serves as a control center for hosts and services (parameter

������
�) and for service groups (����������
�). Depending on the
object class for which it is called, you can run various commands from
here.

In the area on the left, the status of the host is extensively documented
and in the box on the right—overwritten with Host Commands—there is a
selection of commands that can be run. The latter commands call �������
(Section 16.2.3, page 343) and only function if the interface for external
commands (Section 13.1, page 292) is active. The lower area of the page
allows you to enter object-specific comments, read them, and delete them
again. The Web page that �����	����� generates for services also follows
this pattern.

Corresponding pages for service and host groups (Figure 16.17), on the
other hand, allow only group-specific commands to be run and do not show
any additional information. Each command applies to the entire group,
sparing you from a lot of mouse clicking. Disabling notifications for all hosts
in this hostgroup, for example, ensures that Nagios does not send any more
messages for hosts in this host group.

Figure 16.17:
Command center for
the �9B host group:
�#�������
�5� ��H

3I��
�
����H�9B

Apart from hosts, services, and corresponding groups, the CGI program has
other display functions, enabled by the CGI parameter ����:

http://nagsrv/nagios/cgi-bin/extinfo.cgi?type=value

339



16 The Classical Web Interface

Depending on the value specified, further parameters are required, so to
display the service you also have to include the host name and service des-
ignation:

�����	�����0����G+
Shows information (such as starting time and process ID) for the Na-
gios process itself and all global parameters (normally notifications
are sent, performance data processed, etc.; see Figure 16.18). In the
Process Commands box the global parameters can be changed, and
Nagios can also be stopped and restarted.

Figure 16.18:
Information on the
Nagios process and

global settings:
�#�������
�5� ��H

%

�����	�����0����G-Y
���G����
Shows commands and information on the ���� (see Figure 16.4, page
331).

�����	�����0����G�Y�������G��	
���
The same for the ��	
��� .

�����	�����0����G*
Shows all available host and service comments on a single page (Fig-
ure 16.19).

Figure 16.19:
Overview of all

existing comments:
�#�������
�5� ��H

1

340



16.2 An Overview of the Individual CGI Programs

�����	�����0����G7
Provides information on the performance of Nagios, separated ac-
cording to host and service, as well as active and passive checks (Fig-
ure 16.20).

Figure 16.20:
Information on the
performance:
�#�������
�5� ��H

�

The middle column reveals how many of the planned tests Nagios
has already performed in the last 1, 5, 15, and 60 minutes. As long
as there are checks for which ��������
������������ is more than
five minutes, the first two values can never reach 100 percent.

The right-hand columns define the actual value for this page: Check
Execution Time specifies the minimum, maximum, and average time
which Nagios requires to perform active host and service checks.
Check Latency measures the distance between the planned start and
the actual running time of a test. If this delay is considerably larger
than one or two seconds, Nagios probably has a performance prob-
lem. One possible cause is that the system is processing performance
data too slowly, but low-performance hardware may also play a role
here. Searching for the cause can sometimes turn out to be very dif-
ficult, and the original documentation8 provides a number of tips on
the subject.

�����	�����0����G2Y
������
�G�����	���
Shows command center for a host group (Figure 16.17 on page 339).

8 ��
�����	���	
��
�
�	������
������
�����

341



16 The Classical Web Interface

�����	�����0����G'
Shows all planned maintenance periods for hosts and services (Figure
16.21).

Figure 16.21:
Overview of all

planned
maintenance periods:
�#�������
�5� ��H

&

�����	�����0����GC
Shows an overview of all planned tests, sorted by the next implemen-
tation time (see Figure 16.22). Next to this, �����	����� also lists
the time of the last check.

The Active Checks column shows if the respective tests are active or
not, and in the .������ column the planned check can be deleted or
moved to a different time.

�����	�����0����GBY����������
�G��	
����	���
Shows the command centre for a service group, identical in structure
to the command center of a host group.

Figure 16.22:
All planned tests,

sorted by their
planned

implementation time:
�#�������
�5� ��H

/

342



16.2 An Overview of the Individual CGI Programs

16.2.3 Interface for external commands: �������

As a real all-rounder, �������, with some 100 functions, covers nearly all
the possibilities that the interface provides for external commands. The
������� parameter defines which of these the CGI program should run.
The command

http://nagiosserver/nagios/cgi-bin/cmd.cgi?cmd_typ=6

switches off active service checks for a specific service (Figure 16.23). In
order to describe the desired service uniquely, you must specify the host
and service description. If you run the CGI program manually, the Web
form shown queries these values, and if ������� is started by another CGI
program, the required data is passed through CGI parameters. Possible pa-
rameters here are 
���, �������, 
������
�, and ����������
�, which
are followed by an equals (=) sign and then the appropriate Nagios object.

Figure 16.23:
Disabling a service
check with
�����
�5����� �H&

Figure 16.24 lists the most important commands which refer to a host or
service, and Figure 16.25 shows those that refer to the control of global
parameters (corresponding to the values in the main configuration file ���
������	�). The source code file ����
��&�������
 contains a complete
list of all possible values, including ones that are planned but not yet im-
plemented.

The first column in Figures 16.24 and 16.25 describes the function of the
command: .<<�8:1>��:��/ > adds a comment to a host, and <61.=#/�
.�>6H/�1H���8/�3 switches off active checks for a service (in abbreviated
form: 1H�).

The columns after this specify the object type to which the respective func-
tion refers. To add a comment with .<<�8:1>��:��/ >, you must specify
the host in question. For this reason the function code - is shown in the
Host column. A specific active service check can only be switched off if the
matching service is named, so the function code ' is to be found in the Ser-
vice column. With -' you switch off all active service checks on a host to be
specified; there are also corresponding codes for all active service checks
for a host or service group.

343



16 The Classical Web Interface

With .�3 :4#/<"/��5:=#/�, an administrator confirms that he is taking
care of a specific problem. ** (Host column) refers to a host problem, and
*7 (Service column) to a service problem. The gray fields mean that there is
no corresponding function for host and service groups. The Web form that
opens with �������G** (Figure 16.9, page 333) then allows a comment to
be entered.

Figure 16.24:
The most important

host and service
related codes for

�����
�5����� �H

Functions that refer to global parameters (Figure 16.25) can normally only
be switched on or off. So the value -- in the Start column for  :>6F6�.�
>6: 1means that this command code switches on all notifications globally,
while -� switches them off globally.

344



16.2 An Overview of the Individual CGI Programs

If you are not quite certain whether the determined function does what you
really wanted, it is best to run ������� manually with the corresponding
function code, such as shown here:

http://nagiosserver/nagios/cgi-bin/cmd.cgi?cmd_typ=12

The Web page generated in this way always has a small gray box available
next to the required entry fields that explains the corresponding command
(Figure 16.23, on the right side of the page).

Figure 16.25:
�����
� command
codes for global
parameters

16.2.4 The most important things at a glance: 
������

As a “tactical overview,” ������� provides a wealth of information on a
single Web page, displayed in a summary (Figure 16.26). On the left-hand
side of the page you can see, in order of priority, first the failure of en-
tire network ranges (Network Outages), followed by the status of hosts and
services, and at the bottom ������� lists whether individual monitoring
features such as notifications and event handlers are active.

Up to this final section, everything is concentrated on displaying problems.
Provided everything is OK, the CGI merely shows the number of unprob-
lematic services or hosts, highlighted in light gray (and announces 7C $�,
for example, in the 8���� box). In problem cases it distinguishes between
open problems, which nobody has looked at yet (highlighted in red, e.g., �
$�
������ �������� for Services | Critical), and those for which an ad-
minstrator has already taken responsibility through an acknowledgement
(pink background, like - .����������� for Services | Unknown). If host or
service checks are disabled, these are also shown with a pink background,
since they are problems that do not require the immediate attention of the
admin (e.g., � <������� for Services | Ok).

Enabled features in the lower parts are marked by ������� in green, and
disabled ones, in red. The vertically written green Enabled in Notifications
means that notifications are enabled globally, whereas the red background

345



16 The Classical Web Interface

on the other hand, � 1������� <�������, means that they were explicitly
switched off for two individual services.

For all the problems displayed you are taken to a single overview specifically
showing the hosts and services in question.

Figure 16.26:
Tactical overview

with �	���
�

On the right-hand side of the page the upper box summarizes the �����	��
���0����G7 (see page 341) Nagios performance data, which can be shown
in detail. The bar graph beneath it shows the health of the entire network
monitored as a percentage. If you move the mouse over one of the bars,
you will also see the percentage as a number.

16.2.5 The topological map of the network: 	
�
�	�������

����
�������� (Figure 16.27) provides a view of the dependencies be-
tween the monitored hosts. Starting from the central Nagios server in the
middle, lines connect all hosts that the server reaches directly—and whose
host definitions do not need the ������� parameter to be specified (see
Section 2.3, page 62.).

The graphics also reveal the hosts to which Nagios has only indirect ac-
cess through other hosts. So between �������� and the Nagios server in
Figure 16.27 lie the hosts ���������, 
�����, and �	���. ���������, as
the comment Down and the red (instead of green) background suggest, has
failed. Since �������� depends on this, it is in an UNREACHABLE state,
which ����
�������� also marks with a red background.

346



16.2 An Overview of the Individual CGI Programs

Figure 16.27:
Dependencies of
monitored hosts
shown graphically

How Nagios arranges the hosts in the graphics is defined by the parameter
��	�
�������
���������
� (page 608) in the configuration file �����	�.
The layout can also be changed with a selection window in the Web inter-
face (at the top right in Figure 16.28). The figure shows the demo system of
Netways,9 whose appearance depends on user-specific coordinates, which
in this case you have to specify individually for each host (see page 365).
The question mark icon supplied by Nagios has been replaced with nicer
pictures by the operator of the site. Coordinates and icons are defined with
the 
��������	� object, described in more detail in Section 16.4.1).

9 �����������	 
��������
 
����'&$'�%�����

347



16 The Classical Web Interface

Figure 16.28:
Statusmap with

self-defined
coordinates and

icons

If you move the mouse onto a particular host, Nagios opens a yellow win-
dow at the top left with status information, which includes the IP address,
current status information, and the time of the last check. At the bottom of
this box, ����
�������� summarizes the states of the services running on
this host.

If you double-click on a particular host, Nagios branches off to the usual
status overview, which apart from data on the host selected, also displays
all the services belonging to this host (Figure 16.14 on page 336 gives an
example).

16.2.6 Navigation in 3D: 	
�
�	�������

����
�������� allows Nagios to move through a 3D representation of the
network plan (Figure 16.29). In this you can zoom on to hosts, move the
overall view, rotate it, etc.

A VRML-capable browser is necessary for the display.10 Although the orig-
inal documentation11 provides links to the corresponding plugins, two of

10 The Virtual Reality Markup Language (VRML), version 2.0/1997, is used to describe the
virtual “space.”

11 ��
�����	���	
��
�
�	������
��
�
�����)
�	��
�����
�

348



16.2 An Overview of the Individual CGI Programs

them are out of date, and only Cortona12 could be reached at the time of
going to press. This plugin does not work under Linux, however; in Win-
dows it works with Internet Explorer, and also with Netscape, Mozilla, and
Firefox.13 A good overview of VRML software, organized according to oper-
ating system and browser, is provided by the National Institute of Standards
and Technology (NIST) on its Web site.14

Of the VRML plugins for Linux, OpenVRML,15 and freeWRL16 are the most
likely to be used. The standard Linux distributions usually do not include a
finished package. OpenVRML is included in Fedora in Extras; on the home-
page of freeWRL there are binary packages for Fedora and Ubuntu. You
should not try compiling the software yourself unless you are an experi-
enced system administrator or software developer: there are a large num-
ber of pitfalls. If you have never worked with the Java compiler before and
have not compiled complex software packages such as Mozilla or Firefox
yourself, then you should leave it alone.

Figure 16.29:
This picture marks
the beginning of the
tour through your
own network

But all of this is no reason to despair, since the use of 3D navigation is
questionable anyway, especially as the 2D view of the normal status map
displays all the information required, and displaying simple flat graphics in
the browser takes up considerably less time than CPU-intensive 3D render-
ing. Before you rush into the adventure of compiling software yourself, we

12 ������������	�	����
�	���
������������
�������	�
13 For Firefox you have to install it manually, select Custom instead of Typical in the instal-

lation routine, and in not supported browsers specify the plugin directory of the browser.
14 �������������
��
���������������������
15 ����������������������
�
16 ���������������
��������
������

349



16 The Classical Web Interface

recommend that you decide for yourself, using the Cortona plugin, whether
it is worth the effort of compiling a project like OpenVRML.

16.2.7 Querying the status with a cell phone:
	
�
�	�������

In order to make the information provided by Nagios accessible for WAP17 -
capable devices without a fully functional browser, ����
�������� gen-
erates a Web page in the WML format,18 which can be displayed with a
cellphone—provided that the Nagios server is reachable in the Internet.
Apart from the status query for hosts and services, it also allows the CGI
program to switch off tests and notifications and to confirm existing prob-
lems with acknowledgements.

You should think carefully before you make Nagios accessible over the In-
ternet: Nagios makes available much sensitive data that can be misused by
hackers. In case of doubt, you’re better off doing without it. Without direct
Internet access, ����
�������� is useless, since a cellphone cannot use
protected access methods such as a VPN tunnel. This is why we shall not
introduce ����
�������� in great detail at this point.

16.2.8 Analyzing disrupted partial networks: 
�
���	����

The CGI program �
��������� only shows those network nodes in a host
overview that are responsible for the failure of a partial network: In contrast
to a status overview, as in Figure 16.15, page 336, �
��������� specifies in
the # Hosts Affected column how many services and hosts this affects in
each case (Figure 16.30).

Figure 16.30:
As long as


�
����# fails,
Nagios cannot reach

any hosts lying
behind it

With the icons in the Actions column you call other CGI programs that se-
lectively filter out information on the host shown here. From left to right,
they show the status display in the detail view (traffic light), the topological
network view (network tree), the 3D view (3-D), the trend display (graph),
the log file entries for the host (spreadsheet), and the display of notifica-
tions which have been made (megaphone).

17 Wireless Access Protocol.
18 The Wireless Markup Language contains a part of HTML, heavily reduced in its func-

tionality.

350



16.2 An Overview of the Individual CGI Programs

16.2.9 Querying the object definition with �
��������

���	������ shows a tabular overview of the definition of all objects for a
type that can be specified (Figure 16.31)—the type of object involved can
be defined in the selection field in the top right corner. Where the consider-
ation itself contains Nagios objects (in the host view Host Check Command,
Default Contact Group, and—not visible in the picture—Notification Period),
a link takes you directly to the configuration view of this object type.

Figure 16.31:
�����
��
� displays
the current
configuration of the
selected object
class—here
hosts—(extract)

The CGI program does not provide any way of changing anything in the set-
tings. In addition, only users who are entered in the parameter �
�
������
�	������	��
���������	�������� (configuration file �����	�, p. 607)
have access to this view.

16.2.10 Availability statistics: ���������

If you are monitoring systems, then you also take an interest in their avail-
ability. ��������� first asks if you are interested in Hosts, Services, Host-
groups, and Servicegroups. After you have selected a time period, you will
see an overview, as in Figure 16.32. For Services and Hosts you can also have
the availability data presented through All Hosts or All Services as a CSV file.

��������� shows the hosts involved separately from the services. How
long a service or host remained in a particular state can be seen from the
corresponding colored column—green for OK, yellow for WARNING, red for
CRITICAL (service), DOWN and UNREACHABLE (host)—in percent. The
column that shows how much time the status of a service was UNKNOWN
is shown in orange. Incomplete log files are shown in the Undetermined
column. If there is a value larger than zero, then there are periods for which
Nagios cannot make a statement concerning the state.

Below each table, the Average line specifies the average of the individual
values. In Figure 16.32 the hosts involved were available 99.965 percent of
the time.

351



16 The Classical Web Interface

��������� shows the availability twice in each case: first as an absolute
value for the evaluation period, and then (in brackets) with respect to the
time during which data actually was available. As long as the Time Undeter-
mined column displays +�+++9, the two availability values match.

Figure 16.32:
An availability report
using the example of

the �9B��������


service group

If you click on one of the hosts or services displayed, a detailed view will
appear. Figure 16.33 shows such a view for the host ����-�.

Figure 16.33:
The availability of
the host 
	��'$

explained in detail

352



16.2 An Overview of the Individual CGI Programs

On a bar diagram that shows the states over the selected period in color,
there is detailed information on the host itself, followed by statistics on the
availability of the service that is monitored on this host. This includes an
extract from the log file, which only shows the relevant entries for the avail-
ability of the host; that is, 8:1> $�, 8:1> <:4 , or 8:1> $ 5/.�8.=#/.
The log file entries are cut off by ��������� to save space.

16.2.11 What events occur, how often?—��	

��������

If the state of a host or service changes, this is called an event. The CGI
program 
������������ shows the frequency of this in different views. If
you select Day of the Month as the Breakdown type, it illustrates what event
took place on which day of the month, and how often (Figure 16.34). The
red graph in services stands for CRITICAL, the orange one for UNKNOWN,
yellow for WARNING, and green for OK. The curve for hosts in the DOWN
state is marked by 
������������ in red, that for UNREACHABLE hosts in
wine-red, and the green line stands, as usual, for OK.

Figure 16.34:
How many events of
what type were there
on which day?

If you choose the variation Day of Week, the Web page shows on which day
of the week most events occur, so you can find out whether Monday really
is always the worst day. In addition to this you can have the frequency pre-
sented by day (Hour of Day) or by the month of a year (Month). With Report
Period you can adjust the report period. With Assume state retention you
can adjust whether the previously existing states are retained and included
in the evaluation (���) or not (��).

353



16 The Classical Web Interface

If you have configured Nagios so that it explicitly logs the states of the mon-
itored hosts and services for a restart or when the log file is changed,19 and
if you set 6������ ������ ������ to ���, the script includes this explic-
itly in the evaluation. A �� ignores the entry; 
������������ then assumes
that the state after a system start is identical to that which existed directly
before the restart.20

Ignore repeated states makes allowances if a state persists for a long time
and therefore delivers the same result again and again. If you set ��� here,
the script evaluates it once instead of many times.

If you select the item Hard and soft states in State types to graph:, 
�����
�������� also counts soft states. If a service changes from OK to CRITICAL,
for example, while �������
������������ is set to 7,21 then 
���������
��� counts a total of four results, three soft and one hard. If you only eval-
uate hard states, the statistics evaluate the value 1. If an error is rectified,
there are no soft states; therefore the value for CRITICAL is usually larger
that that for RECOVERY if you include soft states in the evaluation.

16.2.12 Filtering log entries after specific states:
��	

������

The 
���������� script allows the states of a type (soft or hard) to be
extracted selectively from the log file using the selection field State type
options (at the top right in Figure 16.35), and specific events to be extracted
(all, all related to hosts, all service events, only host-recovery, only host-
down, etc.) using History detail level for all hosts. The entries to be shown
can be restricted through parameters to individual hosts, services, or host
or service groups when the CGI program is called. So the command

histogram.cgi?host=sap-12

only displays log file entries for the host ����-�. If the output should be re-
stricted to a specific host, then the service description needs to be specified
as well:

histogram.cgi?host=sap-12&service=PING

Selecting a host and service group is done in the same way:

histogram.cgi?hostgroup=SAP

histogram.cgi?servicegroup=SAP-Services

19 Parameter ��
������	��
�	�� in �	
��
���
; see page 597.
20 The subtle difference here lies in ���	���
�	���������	���� (see page 601). If this

parameter is set to %, Nagios forgets the previous state. Without ��
������	��
�	��
H  �
, Nagios accepts an OK after the restart.

21 Nagios thus repeats the test four times before it categorizes the state as “hard.”

354



16.2 An Overview of the Individual CGI Programs

The period that 
���������� views depends on the archiving interval of
the log file. The script always refers to the contents of an archive file. If you
set the parameter ����������������
�� (page 597) in the configuration
file ��������	� to � for daily archiving, the Web page presents the entries
for one day. Using the arrows (at the top in Figure 16.35) you can then scroll
up and down through the days.

Figure 16.35:
��
��� ��
� filters
the information from
the log file

16.2.13 Who was told what, when?—�

�����
�
�	����

Another filtered view of the log file is offered by ����	������������: It
shows all sent messages. Here the view can aso be restricted to a specific
message group, through the selection field at the top right in Figure 16.36:
to all notifications involving hosts, to all which are about services in a crit-
ical state, and so on.

Figure 16.36:
�������	����
��
�

answers the question
of who gets
messages when,
about what

355



16 The Classical Web Interface

If you just want to see messages here concerning particular hosts and ser-
vices, you must again specify this with parameters when running the CGI
program:

notifications.cgi?host=host

notifications.cgi?host=host&service=service name

notifications.cgi?contact=contact

Apart from 
��� and �������, you can also select a particular contact, but
selecting host or service groups is not possible.

16.2.14 Showing all log file entries: 	�
��
�����

The CGI program �
��������� shows the log file as it is, with the few
colored icons added to help you find your way: a red button marks criti-
cal service states or DOWN/UNREACHABLE hosts, a yellow button marks
WARNINGs, and a green one, OK. Other buttons refer to information en-
tries or Nagios restarts (Figure 16.37).

You only have a single option here: the chronological order. Normally
�
��������� shows the newest entries first. If you enable the check mark
in Older Entries First: (top right), the oldest entries will be shown first.

The period represented here also depends on the archiving method: if you
archive once a day, you will obtain just one day for each Web page. To reach
the entries for other days you must make your way through the individual
archive files of the log file using the arrows at the top of the picture.

Figure 16.37:
A blue button marks
information entries,
the graph changing

from red to green
stands for Nagios

restarts, and the icon
marked GO with a

green checked
background

represents restarts of
the monitoring

system

356



16.2 An Overview of the Individual CGI Programs

16.2.15 Evaluating whatever you want: 	����������

If the display and selection options are introduced so far are not sufficient
for you, you can create your own report with �
���������, which gener-
ates the selection dialog shown in Figure 16.38. The upper section, Standard
Reports:, provides a quick summary in which just one fixed report type can
be selected. Clicking on the button directly below this generates the report.

The second section is more sophisticated. The field Report Type: with the
report type Most Recent Alerts provides an individual listing of the last � of
individual events. The number � is defined further down in the selection
dialog in Max List Items:.22 Report Type: can also be used to show all events
individually on a separate line, with Most Recent Alerts, or you can have
statistics displayed, for the number of events that have occurred overall,
for each host group, etc., with Alert Totals, Alert Totals by Hostgroups, etc.

One particularly interesting report type is Top Alert Producer: such reports
show in a hit list of who has caused most trouble during the report period.

In Report Period: you can either choose the desired report period from pre-
defined intervals (this week, the past seven days, this month, last week, last
month, etc.), or you can specify �$1>:� 5/�:5> �/56:< and define any
period you choose. If you forget to specify �$1>:� 5/�:5> �/56:< explic-
itly, the CGI program ignores the dates you have set and selects what is
currently entered in Report Period.

Figure 16.38:
Selection template
for parameters in

���	� ��
�

22 If the number of events in the report period is less than specified in Max List Items:, the
report covers all the events that have happened during this period.

357



16 The Classical Web Interface

The details that follow the report period filter according to host, services
or their groups, state types, and/or individual states (e.g., only services in
a CRITICAL state). It is important to specify Max List Items at the end:
�
��������� always shows only as many entries as are specified here. The
default is a little small; if you want all the entries in the selected period
to be shown, you should enter + as the value. The largest value that can
be given explicitly here is 999. The Create Summary Report! button then
generates the requested report (Figure 16.39).

The header of the report contains details of the report period and the se-
lection made. The detail directly above the table is interesting: Displaying
most recent 25 of 3721 total matching alerts shows that the selection cri-
teria matched a total of 3721 entries, but that the CGI script restricted the
output to the 25 most current entries, thanks to Max List Items:.

Figure 16.39:
An individual report,

as generated by

���	� ��
�

16.2.16 Following states graphically over time: 
����	����

A rapid overview of what state occurred when for a particular host or ser-
vice is provided by the graphic output of ���������� (Figure 16.40). Af-
ter selecting a specific host or service, you can define a period, as with
�
���������. The states are color-coded by ����������, which makes
the overview easier to follow.

The zoom function of the CGI program is an interesting detail. If you click
in the colored area on a particular section, the selected area is enlarged
or reduced in size by the zoom factor specified at the top right. Negative
entries (�-, ��, �*, and �7 are possible) expand the report period instead
of reducing it.

358



16.3 Planning Downtimes

Figure 16.40:
�����
��
�

represents the
chronological
sequence of
states—here using
the example of a
service

16.3 Planning Downtimes

In every system environment maintenance work accumulates from time
to time that the administrator can normally plan, so that users can be in-
formed accordingly beforehand. Nagios refers to such maintenance win-
dows as Scheduled Downtime; the administrator enters these either in the
information page for the host or service generated by �����	����� (Fig-
ure 16.4, page 331) or for the corresponding host or service group (Figure
16.17, page 339). In doing this, �����	����� makes use of ������� (Sec-
tion 16.2.3, page 343), which can also be called selectively:

http://nagiosserver/nagios/cgi-bin/cmd.cgi?cmd_typ=55

opens the import template for maintenance times for a single host. The
values for ������� are summarized by Figure 16.24 on page 344.

A further method of recording maintenance periods is provided by addons,
which, like the CGI programs, use the external command interface, but
which can be automated, in contrast to the interactive Web interface. Such
addons can also be found on the Nagios Exchange.23

For scheduled downtimes, Nagios prevents notifications from being sent.
This ensures that the administrator is not flooded with false alarms. When

23 ������������	
��
�#��	�
����
���������
�12�%�����.

359



16 The Classical Web Interface

checks are made to see whether messages should be sent, a downtime is
the third item in the list (Figure 16.2, page 268). In addition, ���������
(Section 16.2.10, page 351.) takes account of the downtime when evaluating
the availability of individual hosts and services, and assigns error states that
occur during these times not as error states, but as OK.

Maintenance periods can overlap. If one maintenance window lasts from
8:00 A.M. till 12:00 P.M., and a second one involving the same host or ser-
vice, from 10:00 A.M. to 2:00 P.M., then Nagios does not send any error
messages between 8:00 A.M. and 2:00 P.M., and the whole period is also
ignored in the availability statistics.

16.3.1 Maintenance periods for hosts

What data is required to record the maintenance window can be explained
quite clearly using the Web interface. Figure 16.41 shows the input template
for the downtime of a host (�������0�������G22).

Figure 16.41:
The downtime for a

host in the Web
interface is recorded

using this dialog

The first line defines the host, and in the second line Nagios automatically
enters the login with which you have logged in to the Web interface. In the
input field after the Comment: keyword, you can describe the reason for the
planned downtime. Specifying the trigger shows whether it was generated
indirectly through another entry. When recording a new downtime, you
should leave the value N/A (not available, that is, no trigger) as it is.

In the next four lines you have the option of entering two different down-
time types: fixed ones (Type: Fixed) or variable periods (Flexible). The first
has a fixed start and a fixed end. In this case Nagios ignores the period
entry in hours and minutes in the Flexible Duration: fields completely.

360



16.3 Planning Downtimes

A flexible downtime starts when the first-ever event occurs in the period
specified. From this point in time Nagios plans the downtime for the length
of time that was specified here in hours and minutes. This may certainly
exceed the end point specified in End Time:.

If further hosts are dependent on the computer specified in Host Name:
(perhaps because a router is involved, which other host objects have en-
tered as parents), you have the possibility of extending the downtime to all
dependent hosts with the last item, Child Hosts:. Schedule triggered down-
time for all child hosts passes on flexible downtimes to all “child hosts,”
Schedule non-triggered downtime for all child hosts does the same for fixed
downtimes, and Do nothing with child hosts ignores dependencies, so that
Nagios does not plan for any downtime for any hosts other than the one
specified here.

How this hereditary behavior takes effect in Figure 16.41 is shown by the
overview of all scheduled downtimes in Figure 16.21 on page 342. The first
line contains the downtime just described for the host eli-saprouter with the
Downtime ID number -. Entries that are caused by inheriting this timeout
contain the Downtime ID of the downtime causing them in the Trigger ID
column: for ����-� this is -, since the maintenance of ���������
���
also affects this host.

Nagios simultaneously generates a comment entry when planning a down-
time, which is automatically removed when this period has passed. This is
why a speech bubble appears in the status display. During the downtime
Nagios supplements this with a “snoring sign,” which is meant to represent
a sleep state (Figure 16.42).

Figure 16.42:
The snoring sign
zzzzz shows that the
downtime for the
host has begun

16.3.2 Downtime for services

Downtimes for services differ from those for hosts in two small details.
Apart from host name, the service description must be included, and the
possibility of inheritance is excluded, since there are no corresponding de-
pendencies for services.

A downtime for a host does not automatically apply to the services running
on it. But since they are also not available if the host is down, it is recom-
mended that you plan the same downtime for all dependent services. It
can be quite strenuous to enter all the services individually. It is much eas-
ier to do this using a host group (�������GB2), as shown in Figure 16.43.
With this you can define the downtime for services in a specific host group
with a single command, and much more as well: a check mark in Schedule

361



16 The Classical Web Interface

Downtime For Hosts Too at the same time defines the same downtime for all
hosts belonging to this group.24

Figure 16.43:
One downtime for all

services of a host
group

16.4 Additional Information on Hosts and Services

With the extended information for hosts and services, you can incorporate
additional information in the Web interface and also brighten up its ap-
pearance somewhat, using suitable icons. Two separate objects hold this
information in Nagios 2.x: 
��������	� and ������������	�. Starting
with Nagios 3.0, the additional information is defined directly in the host
and service objects. Although Nagios 3.0 still evaluates the 
��������	�
and ������������	� objects, it issues a warning message when checking
the configuration and considers these objects to be obsolete.

It is planned to leave these out of Nagios entirely, by version 4 at the lat-
est. Those using Nagios 3.0 for the first time should specify the information
introduced below directly in the host and service definitions and leave out

��������	� and ������������	� right from the start. If you are chang-
ing from Nagios 2.x to Nagios 3.0, you don’t need to worry about this, and
you can continue using existing instances of these objects.

To make this clearer, below we will use the terms 
��������	� and ����
���������	� object information. For Nagios 2.x, the term refers to the ob-
ject of the same name, whereas for Nagios 3.0 it refers to the corresponding
details given in the 
��� and ������� objects. The parameters themselves
are identical for Nagios 2.x and 3.0. The object information only influences
the Web interface and has no effect on the capabilities of Nagios.

24 Up until (at least) Nagios version 3.0rc1, the check mark has no effect, how-
ever; there you have to enter the downtime of the hosts separately by running
�����
�5����� �H2� again.

362



16.4 Additional Information on Hosts and Services

16.4.1 Extended host information

Object information for hosts allow you to enhance the display of hosts in
the Web interface through additional functions in the form of links and
enhancement features in the form of icons and coordinates:

# Nagios 2.x # Nagios 3.0

define hostextinfo{ define host{

host_name linux01

notes Samba Primary Domaincontroller

notes_url /hosts/linux01.html

action_url /hosts/actions/linux01.html

icon_image base/linux40.png

icon_image_alt Linux Host

vrml_image base/linux40.png

statusmap_image base/linux40.gd2

2d_coords 120,80

3d_coords 70.0,30.0,40.0

}

The only obligatory parameter when these are defined is the specification
of the host, with 
��������; everything else is optional:


��������
This is the name of the host object whose Web pages are to be ex-
panded by the following properties.

�����
Use this for additional information that �����	����� takes into ac-
count in its information pages. (The entry specified in the above ex-
ample, Samba Primary Domaincontroller, can be found in Figure 16.44
below the Linux icon.)

Figure 16.44:
�#�������
� also
shows an alternative
text here for the
Linux icon (beneath
the Tux in brackets)
and the additional
information from the
parameter ����

(beneath the
alternative text)

363



16 The Classical Web Interface

������
��
This is the URL of a (HTML) file with additional information on the
host in question, to which you are linked by an icon in the form of
a red, slightly opened manual, both in the status overview (Figure
16.45) and in the info page generated by �����	����� (Figure 16.44).
If the documentation on the host involved is stored in the Intranet,
then maintenance contracts, hotline numbers, system configuration,
etc. are then just a mouse click away.

The parameter may contain an absolute path (from the view of the
Web server) or a complete URL (
���!&&���).

Figure 16.45:
This detail view

shows an icon each
for ����
����

(open, read booklet),
	��������� (pink

star), and �����

��	
� (here, Linux
penguin) �������
��

This is a link pointing to an action to be run for the host, which
executes a CGI program such as �������, for example, with just a
mouse click. Since a link in the browser is always just a link, this does
not have to be a command, and you can just as easily link another
Web page. Both in the status overview (Figure 16.45), and on the
�����	����� info page (Figure 16.44) it is hidden behind the pink
star.

As a value, absolute paths from the view of the Web server or com-
plete URLs can be used.

����������
This is an icon to enhance the Web interface, but also to provide
help: if you systematically use pictures here that represent the oper-
ating system (e. g., the Tux for Linux, the Windows window for Mi-
crosoft operating systems, the Sun logo for Solaris computers, etc.),
this helps you to keep an overview of the operating systems in the
status view—especially if you have a large number of hosts (Figure
16.45). �����	����� also uses this icon (Figure 16.44).

Icons should be approximately 40x40 pixels large and be available
as a GIF, JPEG, or PNG file. If you specify a relative path (or none at
all), then this begins with the directory &
��&�����&������&�
���&
������&�����&.25

25 If you have kept to the paths suggested in this book.

364



16.4 Additional Information on Hosts and Services

��������������
This alternative text for the icon appears if the browser does not
show a picture (for example for reading devices or output devices
for Braille). From the icon and the icon text details, Nagios generates
the following HTML code:

<IMG SRC=icon_image ALT=icon_image_alt>

����������
This is an image symbolizing the host in the 3D representation of
����
��������. Permissible formats are again GIF, JPEG, or PNG.
You should avoid slides, since the image is placed on a cube, and the
transparent parts in the 3D interface may lead to unexpected results.

����
����������
This is the image with which ����
�������� (see Section 16.2.5,
page 346) symbolizes the host in its topological map. The Nagios
demo page of Netways,26 (Figure 16.28 on page 348) shows a nice
example.

Although GIFs, JPEGs, and PNGs are allowed, it is better to use the
GD2 format, because then Nagios requires less computer time to gen-
erate the status map. Using the program ��������, which ought to
be available as a component of the utilities for Thomas Boutells GD
library in most Linux distributions, PNG files can be easily converted.
Again the image size of 40x40 pixels is recommended.

���������
This parameter specifies coordinates for a user-defined layout of the
topological map. Details are given in pixels, with the origin, (+D+)D
�� �
� ��� ��	�D ��� ���
�� �
�� �� ��������: a positive x
value counts the number of pixels from the origin to the right, a pos-
itive y value from the origin downwards.

Figure 16.28 works with fixed coordinates for individual hosts. Nagios
ignores ��������� details if the status maps a different layout to the
user-defined one.

*��������
These are the coordinates for the 3D representation. Positive and
negative floating-point numbers are allowed. (+�+D+�+D+�+) is used
as the origin. In the start view, ����
�������� scales the 3D image
so that all existing hosts appear on the screen. Where the starting
point lies on the screen can therefore not be predicted.

26 ��������	
��
����������	 
����

365



16 The Classical Web Interface

On The Nagios Exchange there is a wide range of finished icons in the cate-
gory Logos and Images.27 It is best to unpack these into separate subdirec-
tories, and then the individual packages will not get in each other’s way:

linux:~ # cd /usr/local/nagios/share/images/logos

linux:images/logos # tar xvzf imagepak-base.tar.gz

base/aix.gd2

base/aix.gif

base/aix.jpg

base/aix.png

base/amiga.gd2

...

�������������������� contains a basic selection of icons, which can be
supplemented as you please with other packages. The ���� subdirectory
created, as with the object definition at the beginning of this chapter, must
also be included.

16.4.2 Extended service information

Extended service object information is more or less identical to the host
equivalents, so that we will only mention the differences. In addition to the
host name, the service description in ������������������� is obligatory,
but the details on the 2D (status map) and 3D views are omitted:

# Nagios 2.x # Nagios 3.0

define serviceextinfo{ define service{

...

host_name linux01

service_description LPD

notes Linux Print Services

notes_url /hosts/linux01-lpd.html

action_url /hosts/linux01-lpd-action.html

icon_image base/hp-printer40.png

icon_image_alt Linux Print Server

}

In contrast to extended host information, the status overview for this exam-
ple only shows the printer icon specified in ����������, but not the two
icons defined in ������
�� and �������
�� for the two links ������
��
and �������
��. They only appear in the page generated by �����	�����
with the same icons as for the extended host information (Figure 16.44,
page 363).

27 ������������	
��
�#��	�
����
�*�	
��B	��
�/3�%�����

366



16.5 Configuration Changes through the Web Interfaces:the Restart Problem

16.5 Configuration Changes through the Web
Interfaces: the Restart Problem

The CGI program ������� (Section 16.2.3, page 343) enables a series of
changes to be made to the current configuration through the Web inter-
face.28 In this way notifications or active checks can be switched on and
off, for example.

Nagios does not save such changes in the accompanying configuration file,
but notes the the current status in a separately defined file, with the pa-
rameter ����������������	��� in ��������	� (see page 604). But what
happens if you restart Nagios after many changes using the Web interface?

Whether Nagios retains the interactive changes made after a restart or for-
gets them is dependent on the parameter ���������������	�������� in
the configuration file ��������	� (page 601). The default + tells the system
to forget interactive changes. For Nagios to remember this, you have to set

# /etc/nagios/nagios.cfg

...

retain_state_information=1

...

But this causes a new problem: settings made in the Web interface do not
have priority over the details in the configuration files. If you change the
��������
������������ parameter there for a service, a direction of the
parameter in the configuration file is ignored, since the current, temporarily
stored setting in the file defined with ����������������	��� will always
“win out.” This behavior affects all parameters for external commands that
can be changed in the interface, and therefore also via the CGI program
�������. The original documentation of Nagios29 labels these with a red
star.

Two approaches provide a remedy in this case: on the one hand you can set
the parameter ���������������	�������� to + shortly before a restart.
Then Nagios forgets all the changes when it restarts and reads the con-
figuration files in from scratch. This procedure is recommended only in
exceptional cases, as in large environments it will hardly be possible to go
through all the interactive changes in the configuration files. Alternatively
you can get into the habit, whenever you make changes in the configura-
tion file, of making them a second time in the Web interface. Although this
means slightly more work, there is never a danger that current, and perhaps
very important settings, will be lost.

28 The CGI program makes use of the External Command File interface when doing this.
29 Nagios 2.x: ��
�����	���	
��
�
�	������
�#�������	�������, Nagios 3.0:

��
�����	���	
��
����
�����������������
�����

367



16 The Classical Web Interface

Two additional parameters in the host and service definitions provide op-
portunities for fine-tuning:

define host{

...

retain_status_information 1

retain_nonstatus_information 1

...

}

define service{

...

retain_status_information 1

retain_nonstatus_information 1

...

}

�����������
����	�������� specifies whether the current state of a host
or service should survive the Nagios restart: - means that the system tem-
porarily stores the state, and +, that it forgets it. - is certainly the more
sensible value for states, and you should depart from this only in cases that
can be justified.

��������������
����	��������, on the other hand, refers to all infor-
mation that describes no status. This includes, for example, whether active
checks are switched on or off, whether passive checks are allowed or not, or
whether admins are to be informed of status changes for this object. With a
value of -, the system stores this information temporarily and uses it again
after a restart, whereas with a value of +, Nagios forgets the current settings
and reads the settings from the configuration file when it restarts.

16.6 Modern Layout with the Nuvola Style

The classical view of the Nagios Web interface described so far uses only
a few of the CGI configuration options. However, it is hardly possible to
pack any more items into the navigation bar on the left, which has become
somewhat amateurish in appearance. One solution to this is the Nuvola
style, shown in Figure 16.46.

The layout for the actual CGI program—this example shows a view of the
service problems with ����
����� on the right of the picture—is not only
in color, but there are also new icons. On the left of the picture you can see
the rather elegant navigation, spiced up with corresponding icons. The real
highlight, though, is the use of a Javascript-based menu tree: The individual
entries (such as the sections Home, Monitoring, Reporting, and Configura-
tion) can be opened and closed via mouse click.

368



16.6 Modern Layout with the Nuvola Style

Figure 16.46:
Nagios in the Nuvola
style: shown here are
the Service Problems

Before installing the Nuvola style it is essential that you back up the direc-
tory &
��&�����&������&�
��� so that you can restore the old setup if
you don’t like the new one.

The current version 1.0.3 of Nuvola from NagiosExchange30 at the time of
going to press is from September 2005, but it does work very well with Na-
gios 3.0 as well. The contents are unpacked into a suitable empty directory:

linux:~ # cd /usr/local/src; mkdir nuvola; cd nuvola

linux:src/nuvola # tar xvzfpfad/zu/nagios-nuvola-1.0.3.tar.gz

...

linux:src/nuvola # cd html

The sources contain files (������
���, �����
���) and directories
(������
����, ������) that already exist in Nagios, and they overwrite
the originals during installation. In addition, the Nuvola style includes a
new subdirectory, ����, which contains the actual Javascript code for the
tree navigation:

linux:nuvola/html # tree

.

|-- config.js

|-- images

| |

... ...

|-- index.html

|-- main.html

|-- side

30 ������������	
��
�#��	�
����
�/36$3$

369



16 The Classical Web Interface

| |-- apytmenu.css

| |-- apytmenu.js

| |-- apytmenu_data.js

... ...

| |-- dtree.css

| |-- dtree.js

| |-- dtree_data.js

... ...

| |-- icons

| | |

... ...

|-- side1.html

‘-- stylesheets

|

... ...

5 directories, 175 files

The contents of the directory 
��� are simply copied to &
��&�����&�
���,
for example, with �����:

linux:nuvola/html # rsync -av . /usr/local/nagios/share/.

...

For the new navigation to appear, the file ����-�
��� must be installed.
If you just rename it to �����
���, though, the ���� ������� of a new
Nagios version will just overwrite it again. So it is better to use a separate
index file instead, such as �����-�
���, and run the Nagios Web interface
from this:

http://nagiosserver/nagios/index1.html

To do this, you copy the ������
��� file included in Nuvola to the Nagios
�
��� directory with the name �����-�
���:

linux:nuvola/html # cp index.html/usr/local/nagios/share/index1.html

In the file �����-�
��� you replace �����
��� with ����-�
��� so that
the Javascript navigation is called:

...

document.write(’<FRAME SCROLLING="no" SRC="side1.html" NAME="side"

...

...

If, like the author of this book, you consider it to be going over the top
to change the styles of all the CGI programs, you can just pick out the
improved navigation and supplement and redesign this as you think fit.
Instead of making a complete copy of the directory 
���, you just select
the files you require:

370



16.6 Modern Layout with the Nuvola Style

linux:nuvola/html # cp -r side /usr/local/nagios/share/.

linux:nuvola/html # cp side1.html config.js/usr/local/nagios/share/.

linux:nuvola/html # cp index.html/usr/local/nagios/share/index1.html

You change the file �����-�
��� as we have just shown and check the
������
 variable in ���	���@�:

...

var cgipath = "/nagios/cgi-bin/";

...

Nuvola uses a ready-made menu tree library, which is available in a com-
mercial version called �������
,31 which will not be discussed here, or in a
free variation, dTree.32 dTree is the default setting in ���	���@� (����>���
GP�����P) and is included in full. Configuration of the menu and trees is
done in the file �����������@� in the directory ����. The basic principle
can be briefly explained using the Home menu as an example:

general = new dTree(’general’);

general.header( ’Home’, ’icon’, ... );

general.add(0,-1);

general.add(1, 0,’Documentation’,’docs/index.html’, ... );

document.write(general);

The �>��� function generates a new menu tree. Its parameter is a freely
selectable identifier (in this case, �������), which is used to reference the
tree. ��������
����� sets the title of the menu to 8���. The function
requires other parameters as well, including an icon (as shown).

The first ����������� call anchors the tree still to be created. The first
two parameters of the ��� function refer to the number of the node to be
added, followed by its parent node. The topmost node is called +, and be-
neath this is the entry <��
���������, to which the number - is assigned.
If <��
��������� itself is to have subnodes, the invocations would be writ-
ten as follows:

general.add(2, 1, ’new_entry’, ...);

general.add(3, 1, ’new_entry’, ...);

general.add(4, 1, ’new_entry’, ...);

Finally ���
����������builds the entire menu tree. The 
����� function
has the following parameters:

menu_name.header(title,icon,height,background image,background color,open);

31 ����������������������
32 �������������
��� ����������	�	
�����
������

371



16 The Classical Web Interface

����� contains the heading and can also be set up as a URL. A mouse click
on the heading opens the hyperlink specified.

���� specifies the path to a small graphic that is displayed in front of the
heading.

������ specifies the height of the background beneath the heading. Fol-
lowing this, the property of this background can be specified either as a
background image, with �����	��������� , or as a color (�����	����
����	 ).

Finally ���� specifies whether the menu tree should be open (-) or closed
(+) at the start. Arguments specifying textual values are enclosed in sin-
gle quotes, and numerical arguments are written directly, as shown in the
examples.

The ��� function is invoked in a similar way:

menu_name.add(id, pid, name,

url, title, target, icon,

iconOpen, open, css);

�� is the node number, and ��� is the number of the node beneath which
the entry should be integrated. ���� defines the name of the node in the
menu, and �	� defines the hyperlink to be called. ����� and ��	��� op-
tionally specify a page title and the target frame for displaying the page
called via url. Both parameters normally remain empty here; the default
for the target—correctly for Nagios—is the frame ����.

���� defines the mini-graphic that is placed in front of the menu entry, and
����$��� optionally contains another icon that is used in its place when
the menu entry is open. ���� again defines whether the entry should be
opened (value -) or closed (value +) on starting, and ��� optionally allows
an alternative CSS definition. For all optional parameters, the following ap-
plies: If they are at the end, they can be omitted, but if they are followed by
other details, their omission must be marked by a pair of single quotation
marks (PP).

The included file �����������@� contains four extensive menus. If you
have little experience with handling Javascript, it is best to save this tem-
plate and adjust it in small steps. In case of error, information is very sparse
and usually misleading, so it is particularly important that you note exactly
what has been changed from one step to the next in order to be able to
quickly isolate the error.

At this point we would like to mention the dTree homepage33 once again,
which provides examples with extracts of code, along with a description of
the programming interface.

33 �������������
��� ����������	�	
�����
������

372



16.6 Modern Layout with the Nuvola Style

Those who are not satisfied with the possibilities of the Nagios Web inter-
face described in this chapter should take a look at NagVis (Chapter 18 from
page 389). The addon enables a freely definable interface and supplements
the standard CGIs in an impressive manner. However, a prerequisite for
NagVis is the installation of the database interface NDOUtils (Chapter 17
from page 375), which sets the installation hurdle slightly higher.

373





17 Ch
ap

te
r

Flexible Web Interface with the
NDOUtils

The Web interface of Nagios 2.x ansd 3.0, introduced in Chapter 16 from
page 327, has a crucial disadvantage for large environments with hundreds
of hosts: It cannot be scaled up. As long as you only observe error states and
work intensively with acknowledges, you will manage fine with the CGI-
based Web interface. But if you try to display several thousand services,
you will have to be prepared to wait—it does not matter what their states
are. Setting up the page can take a long time, and then practical work is
hardly possible.

Nagios extensions struggle with the CGI Web interface because this directly
evaluates Nagios internals, such as object configuration, status data, and
log files. This means that every extension that is used to supplement or
replace the Web interface must follow this logic.

375



17 Flexible Web Interface with the NDOUtils

The solution to this is called NDOUtils (Nagios Data Objects Utilities). These
consist of a handful of tools that write all data—from configuration through
events and check results to historical records—to a database and make
them available via a uniform database model.

The mechanism that connects the NDOUtils to Nagios is called Nagios
Event Broker (NEB). This adds a modular interface to Nagios. The NEB
loads the extensions as modules when Nagios starts so that the modules
can be used without having to recompile Nagios. This approach is similar
to that of the Apache modules, which are loaded when required and add
new functions to the Web server.

The NDOUtils form the basis for the future Web interface of Nagios, imple-
mented with PHP, which should see the light of day starting with Nagios
4.x. With NagVis (see Chapter 18 from page 389), however, there is already
an alternative Web interface that is based on the NDOUtils.

17.1 The Event Broker

The NEB provides an interface between Nagios and external modules based
on shared libraries. An external, application-dependent module makes
callback functions available. The Nagios kernel itself calls the accompany-
ing callback function from the loaded module for every event: If there is no
matching function, nothing happens. What actions the callback function
executes is left to the imagination of the developer: Either it does some-
thing itself or it passes on configuration, status, and event data to an exter-
nal application, as outlined in Figure 17.1.

For the transfer of data to external tools, Unix sockets or network sockets
can be used, although it is also possible to use the file system. The applica-
tion further processes information (saves it in a database, for example, or
sends it as messages via SNMP traps, writes it to the syslog, etc.).

Figure 17.1:
An external
application

communicates with a
loaded NEB module

When a callback function is called, Nagios waits for it to finish. This means
that long execution times hinder the system. For this reason callback func-
tions should always leave time-consuming processing steps to an external
application and be restricted to sending on the necessary information as
quickly as possible.

376



17.1 The Event Broker

Building event broker modules is something that should be left to experi-
enced programmers; mere mortals must be content with using ready-made
modules. An NEB module can be integrated via the instruction �������
���
�� in the main configuration file ��������	�:

# /etc/nagios/nagios.cfg

...

broker_module=module-with-path arguments

event_broker_options=-1

Whether you pass on arguments to the module or not depends on its con-
crete implementation. The parameter �������������������� controls
what information Nagios passes on to event broker modules. With the op-
tion �- it is all of them, while the value 0 prevents any information from
being passed on. An alternate approach, of selectively passing on specific
information, is provided by the file �������
 from the Nagios sources:

/* broker.h from the Nagios sources */

...

/*************** EVENT BROKER OPTIONS *****************/

#define BROKER_NOTHING 0

#define BROKER_EVERYTHING 1048575

#define BROKER_PROGRAM_STATE 1 /* DONE */

...

#define BROKER_DOWNTIME_DATA 512 /* DONE */

...

#define BROKER_STATUS_DATA 4096 /* DONE */

...

#define BROKER_RETENTION_DATA 32768 /* DONE */

#define BROKER_ACKNOWLEDGEMENT_DATA 65536

Table 17.1:
Data to be
transferred to NagVis

Broker Option Value Explanation

=5:3/5��5:"5.��1>.>/ 1 Is the program Nagios run-
ning?

=5:3/5�<:4 >6�/�<.>. 512 Details of planned mainte-
nance periods

=5:3/5�1>.>$1�<.>. 4096 Current status information
of all checks

=5:3/5�5/>/ >6: �<.>. 32768 Data which is buffered for
a restart of Nagios

=5:3/5�.�3 :4#/<"/�/ >�<.>. 65536 Confirmations that have
been made on error states
of host and service checks

377



17 Flexible Web Interface with the NDOUtils

NagVis 1.1, introduced in Chapter 18, requires the information listed in
Table 17.1. The corresponding numerical values add up to -+�,-*, so that
�������������������� can be modified as follows so that is tailor-made
for NagVis:

# /etc/nagios/nagios.cfg

...

event_broker_options=102913

Information on the event broker is currently very sparse. The only descrip-
tions of the interface are a quite old documentation from Nagios 2.0 and
the Nagios Event Broker API 1.

17.2 The Database Interface

As a concrete and practically-oriented application of the event broker con-
cept, the Nagios data object utilities, or NDOUtils, save all configuration
and event data to a database. In order to be able to make use of the
database, further applications are required. For Nagios 4.x, this will in all
probability be a newly designed, PHP-based Web interface. Whether this
Nagios version will immediately manage all the configuration data in the
database was still a matter of speculation at press time (when Nagios 3.0
was not quite finished).

For the database, the NDOUtils currently support only MySQL; the use of
PostgreSQL is planned, but is not yet implemented in version 1.4, intro-
duced here.

Since the NDOUtils addons provide a database interface that is relatively
simple to use, it is expected that their use with Nagios 3.x will increase.
NagVis (discussed in the next chapter from page 389) already provides a
powerful NDO-based front end that in many cases can replace the status
map, which remains relatively simple and is discussed in Section 16.2.5
from page 346.

Figure 17.2 shows the various paths by which Nagios data can be imported
into the NDOUtils database. Export of data from Nagios is handled by the
event broker module ndomod. It can either operate a TCP or Unix socket,
or write the data to a file. If Nagios is installed on the same computer
as the NDOUtils database, the Unix socket interface will provide the best
performance and the greatest security (Unix sockets cannot be addressed
from a network, in contrast to TCP sockets). The socket of the ndo2db
daemon that ultimately writes the data to a database is queried.

1 ������������	
��
���
��������������

378



17.2 The Database Interface

The method using a file involves the utility FILE2SOCK, which reads in the
file and also delivers data to the nd02db daemon via a TCP or Unix socket.
FILE2SOCK can also read data from the standard input.

Figure 17.2:
How can you
integrate Nagios
data into the
NDOUtils database?

For each database you need exactly one ndo2db daemon. If several differ-
ent clients have access to the socket interface, it will start several processes
to handle these.

The program LOG2NDO is one of the NDOUtils. It reads log files from Na-
gios 2.x and 3.0 and passes this data to the ndo2db daemon—either directly
via the socket interface or via a file that has to be separately imported with
FILE2SOCK. If you want to integrate such historical data into the database,
you will have to make plenty of storage space available, because the log
files are compressed when they are archived but are saved in the database
in uncompressed form. Thus the log files occupy more space when they are
managed using the database.

FILE2SOCK and LOG2NDO are primarily used to import historical data.
The data later required by NagVis is updated by Nagios at very short inter-
vals. Since historical data is not required here, we shall not describe these
two programs in any more detail.

379



17 Flexible Web Interface with the NDOUtils

17.3 The Installation

Since there are problems with 6 1/5> statements in some tables of the
NDOUtils database when MySQL in version 4.0 is used, it is better to use
MySQL 5 right from the start.2 In addition to the MySQL server package
(in Debian, “Etch” ���%���������2�+) and the libraries that are usually
selected automatically during the installation of the server package, you
also require the accompanying development package (in Debian, “Etch”
������%�������-2����) in order to be able to compile the NDOUtils.

One consequence of the far-reaching integration of the NDOUtils into Na-
gios is that the version must exactly match that of the Nagios version used.
Both Nagios and the NDOUtils define their version status in the source
code with the macro �$55/ >�:=V/�>�1>5$�>$5/�H/516: . The macro
can be found in the file �&����
��&��@�����
 in the Nagios source code
(for Nagios 3.0, in this example):

linux:src/nagios-3.0rc1 # fgrep CURRENT_OBJECT_STRUCTURE_VERSION \

include/objects.h

#define CURRENT_OBJECT_STRUCTURE_VERSION 307

The NDOUtils package contains two include files, one for Nagios 2.x and
one for Nagios 3.x:

linux:src/ndoutils-1.4b7 # fgrep CURRENT_OBJECT_STRUCTURE_VERSION \

include/*/objects.h

include/nagios-2x/objects.h:#define CURRENT_OBJECT_STRUCTURE_VERSION 2

include/nagios-3x/objects.h:#define CURRENT_OBJECT_STRUCTURE_VERSION 307

If the �$55/ >�:=V/�>�1>5$�>$5/�H/516: value of Nagios does not
match one of the two values in the NDOUtils source code, the NDOUtils
module will unload itself and refuse to perform. The procedure is docu-
mented in the log file ���������� with an entry like the following (the two
different versions are marked in bold type):

[1186152181] ndomod: NDOMOD 1.4b4 (06-19-2007) Copyright (c) 2005 -2007

Ethan Galstad (nagios@nagios.org)

[1186152181] ndomod: I’ve been compiled with support for revision 303 of

the internal Nagios object structures, but the Nagios daemon is currentl

y using revision 304. I’m going to unload so I don’t cause any probl...

2 The author has tested version 5.0.23, but there are also reports of NDOUtils working
successfully with MySQL 4.1.x.

380



17.3 The Installation

17.3.1 Compiling the source code

The up-to-date NDOUtils code can be downloaded from the Nagios Web
page3 and then unpacked to a suitable directory:

linux:~ # cd /usr/local/src/nagios

linux:src/nagios # tar xvzf /path/to/ndoutils-1.4b7.tar.gz

...

linux:src/nagios # cd ndoutils-1.4b7

linux:nagios/ndoutils-1.4.b7 # ./configure --sysconfdir=/etc

...

linux:nagios/ndoutils-1.4.b7 # make

...

We start the ���	��
�� run with the switch ��������	���G&��� in order
to install the configuration files for the module and daemon to match the
convention in this book, that is, to the directory &���&������. The ����
call compiles the program code, and the installation is then done manually:

linux:nagios/ndoutils-1.4.b7 # cd ./src

linux:ndoutils-1.4.b7/src # cp ndo2db-3x ndomod-3x.o log2ndo file2sock \

/usr/local/nagios/bin/

For Nagios 2.x the daemon ��������� and the module ����������� are
copied to &
��&�����&������&��� instead of the 3.x versions.

17.3.2 Preparing the MySQL database

In the MySQL database system, we require a database storing appropriate
access options for the user ������. In order to set this up, we first log in to
MySQL as the user ����:

user@linux:~$ mysql --user=root -p

Enter password: root-passwort_for_the_db

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 1861

Server version: 5.0.32-Debian_7etch1 Debian etch distribution

Type ’help;’ or ’\h’ for help. Type ’\c’ to clear the buffer.

mysql>

The switch �� ensures that the password is requested. The following com-
mand tests whether a password is set or not:

3 ������������	
��
���
�������	��

381



17 Flexible Web Interface with the NDOUtils

user@linux:~$ mysql --user=root

If the login triggered by this works without an error message, then the ����
password is missing. This should be specified with the command

user@linux:~$ /usr/bin/mysqladmin -u root password ’secret’

You should replace ���	�� with your own secure password.4

The database (it is given the name ������) is created with the SQL com-
mand �5/.>/ <.>.=.1/, and it is then given the required permissions
with "5. >:

mysql> CREATE DATABASE nagios;

Query OK, 1 row affected (0.01 sec)

mysql> GRANT USAGE ON *.* TO ’nagios’@’localhost’ IDENTIFIED BY ’secret’

WITH MAX_QUERIES_PER_HOUR 0

MAX_CONNECTIONS_PER_HOUR 0

MAX_UPDATES_PER_HOUR 0 ;

Query OK, 0 rows affected (0.00 sec)

mysql> GRANT SELECT , INSERT , UPDATE , DELETE ON ‘nagios‘.*
TO ’nagios’@’localhost’;

Query OK, 0 rows affected (0.01 sec)

mysql> FLUSH PRIVILEGES;

Query OK, 0 rows affected (0.00 sec)

mysql> quit

The "5. > $1."/ command defines the user, along with his password, and
specifies that for him there are no restrictions in the number of queries,
database connections, or database updates per hour. For the password,
something slighty more secure than ���	�� is chosen, but it must be writ-
ten here in plain text. "5. > $1."/ does not yet give any access permis-
sions to the tables of the ������ database. This is handled by the second
"5. > command. The changes to the permissions of the ������ user are
activated with F#$18 �56H6#/"/1.

The NDOUtils require 1/#/�>, 6 1/5>, $�<.>/, and </#/>/ permissions.
For NagVis and other applications, which only read data from the database,
the 1/#/�> permission is sufficient.

In the next step the tables are generated in which the NDOUtils will later
save data. A finished SQL script in the �� subdirectory of the NDOUtils
sources is provided for this purpose, and needs only to be executed:

user@linux:src/ndoutils-1.4b7$ cd db

user@linux:ndoutils-1.4b7/db$ mysql -u root -p nagios < mysql.sql

4 Further notes on the secure adminstration of MySQL can be found in the online doc-
umentation at ������������ 
0����
���������	��3�%����
������ �
�����

����
����� and possibly in the documentation delivered with the distribution under
��
��
�	�������.

382



17.4 Configuration

The script should run without error in all cases (meaning without any mes-
sages). The tables created can be shown with the SQL command �
��
������.

Various distributions install MySQL by default with logging switched on.
With the (usually binary) log files, the current status of the database can be
replicated or restored. In combination with the NDOUtils, however, these
log files grow very quickly. If you are using the database only for the ND-
OUtils, you will need such tools only in rare cases, and you can therefore
comment out all the ;���; parameters in the �����	 configuration file and
restart MySQL—this time without logging.

17.3.3 Upgrading the database design

Since the NDOUtils are actively undergoing development, larger changes to
the database structure cannot be ruled out. For an upgrade, it is possible
that the database design must also be changed. The NDOUtils provide a
script for this purpose, 
�������� in the subdirectory ��, which automat-
ically adjusts the tables:

linux:~ # cd /usr/local/src/nagios/ndoutils-1.4b7/db

linux:ndoutils-1.4b7/db # ./upgradedb -u root -p password \

-h localhost -d nagios

Current database version: 1.4b5

** DB upgrade required for 1.4b7

Using mysql-upgrade-1.4b5.sql for upgrade...

** Upgrade to 1.4b7 complete

The script detects the existing NDOUtils version and adjusts the tables ac-
cordingly. Among other things, it uses the SQL command .#>/5 >.=#/, for
which the MySQL user ������, created in the last section, does not have
sufficient permissions. The script therefore needs to be run as the MySQL
user ����.

17.4 Configuration

The NDOUtils are configured at three different locations. The file �������
�	� specifies the settings for the Event Broker module. ��������	� con-
trols the daemon ������, which accepts data from the Broker and writes to
the database. An entry in &���&������&��������	� finally ensures that
Nagios loads the Event Broker module ������ when it starts.

The NDOUtils source code in the subdirectory �&���	�� provides a tem-
plate for each of the two configuration files. The command

linux:src/ndoutils-1.4b7 # cp config/ndo*.cfg /etc/nagios/.

383



17 Flexible Web Interface with the NDOUtils

copies these, in accordance with the convention used in this book, to the
directory &���&������.

17.4.1 Adjusting the Event Broker configuration

The template for ��������	� can almost be used unchanged; you need to
adjust only the path to the ��� directory:

# /etc/nagios/ndomod.cfg

instance_name=default

output_type=unixsocket

output=/var/nagios/ndo.sock

# tcp_port=5668

output_buffer_items=5000

buffer_file=/var/nagios/ndomod.tmp

# file_rotation_command=rotate_ndo_log

# file_rotation_interval=14400

# file_rotation_timeout=60

reconnect_interval=15

reconnect_warning_interval=15

data_processing_options=-1

config_output_options=2

������������� refers to the instance in the database to be used. Pro-
vided that you map only one Nagios instance in the database, it is no
problem to keep to the ��	�
�� settings. Assuming that Nagios and the
������ daemon are running on the same host, a Unix socket can be used
as the �
��
������, the name of which is defined by the �
��
� param-
eter. �������� is used only for �
��
������G��������� and is therefore
commented out.

In case the ������ module cannot release data via the socket interface
(because the daemon has just restarted, for instance), these are saved tem-
porarily in the file �
		���	���. The number of entries to be saved in this
in the �
��
���
		��������parameter should not be set too low. A tried-
and-tested rule of thumb here is to take the number of all defined host and
service objects and multiply this by five. This is an empirical value: When
reloaded, or when Nagios is restarted, the NDOUtils write the start state
for each host and each service to the database, along with all planned and
started checks. These might be supplemented by the results of new or still
running checks.

The 	�������������; parameters are required only for �
��
������G
	���, which requires the use of the additional daemon F6#/�1:�3. For rea-
sons of performance it is recommended, however, that you use the socket
interface instead of the file-based one. The file interface also makes the
configuration more complex, due to additional daemons.

384



17.4 Configuration

The parameters ������������������ and ������������������������
��� are also intended for cases where a connection using the ������ dae-
mon could not be established. They specify in seconds how often Nagios
should try to make contact with them and how often a warning should ap-
pear in the log file if a connection is not established. These two parameters
should be left as they are in the default.

17.4.2 Configuring database access

There is also little to adjust in the template for the configuration file of the
������ daemon. Apart from the path to the socket interface, the relevant
password for write access to the database must be specified here:

# /etc/nagios/ndo2db.cfg

ndo2db_user=nagios

ndo2db_group=nagios

socket_type=unix

socket_name=/var/nagios/ndo.sock

# tcp_port=5668

db_servertype=mysql

db_host=localhost

db_port=3306

db_name=nagios

db_prefix=nagios_

db_user=nagios

db_pass=secret

max_timedevents_age=1440

max_systemcommands_age=1440

max_servicechecks_age=1440

max_hostchecks_age=1440

max_eventhandlers_age=10080

The two �������; parameters specify the user and group with whose per-
missions the daemon runs after the start. ����������� and �����������
must be set to the configuration in ��������	�.

The only database type that can currently be specified ������������� is
���%�; for ������� the standard port of MySQL (**+') is normally en-
tered. The database name in ������� must match the name selected in
the �5/.>/ <.>.=.1/ command (in this case, ������), and the database
user and password must also be given in the same way as described when
setting up the database. The value of the parameter ������	�� should not
be changed under any circumstances, otherwise the name of the tables to
be created in the ���%���%� script must also be adjusted.

The parameters beginning with ����; define in minutes how long the NDO-
Utils data on system commands, planned events, service and host checks,

385



17 Flexible Web Interface with the NDOUtils

and event handlers5 should be kept in the database. The value 1440 cor-
responds to one day. If you are using the NDOUtils only with NagVis, you
won’t need longer times. Short intervals go easy on the database, as well as
the hard disk.

17.4.3 Starting the ��
��� daemon

When everything is configured, the ������ daemon is first called manually:

/usr/local/nagios/bin/ndo2db-3x -c /etc/nagios/ndo2db.cfg

Later on it is recommended that you create an init script by copying and
modifying the script &���&������&��������, provided in the distribution.
The daemon must match the Nagios version: �������*� works together
with Nagios version 3.x, ��������� with version 2.x. After it has started
you should look to see whether the socket specified in the configuration
exists:

linux:~ # ls -l /var/nagios/ndo.sock

srwxr-xr-x 1 nagios nagios 0 Jul 18 21:16 /var/nagios/ndo.sock

If the message 1����� ������� �� 
�� appears when the daemon is run,
then either the daemon is already running or the socket �������� was not
removed when the daemon was stopped. In this case you should delete it
manually before restarting it.

17.4.4 Loading the Event Broker module in Nagios

In order for Nagios to load the Event Broker module of the NDOUtils when
it is started, the following entry is added to the configuration file &���&���
����&��������	�:

# /etc/nagios/nagios.cfg:

...

# === NDO ===

broker_module=/usr/local/nagios/bin/ndomod-3x.o config_file=/etc/nagios/

ndomod.cfg

In this example the module for Nagios version 3.x is used; if you are using
Nagios 2.x, you enter ����������� instead. A reload activates the module:

linux:~ # /etc/init.d/nagios reload

5 For event handlers, see Appendix C on page 619

386



17.4 Configuration

Shortly after the reload, all host and service objects should be recorded in
the database:

user@linux:~$ mysql --user=nagios -p nagios

mysql> select name1,name2 from nagios_objects WHERE objecttype_id=2 ;

+--------+-----------------+

| name1 | name2 |

+--------+-----------------+

| AHDC01 | CPU_LOAD |

| AHDC01 | DISK_C |

| AHDC01 | DISK_D |

...

The table ���������@����contains all the objects, and ��@����������G�
shows all the services. Alternatively the object type - refers to hosts, * to
host groups, and 7 to service groups. A complete description of the tables
is provided in the file  <:$>6#1 <= ��������	, included in the NDOUtils
in the subdirectory �&����.

387





18 Ch
ap

te
r

NagVis

NagVis1 is an addon for Nagios that displays host and service states against
a background image selected by the user. This must be available in the PNG
format; the choice is yours whether you use a map, a diagram of your own
system documentation, a photo of the server room, or a schematic diagram
of the system environment as a background, as shown in Figure 18.1.

Via the Web interface, you can place objects wherever you want on the
background. NagVis displays different icons, depending on the state of the
object: red for the CRITICAL state, yellow for WARNING, green for OK, and
a question mark on a gray background for UNKNOWN. If an acknowledg-
ment was set, this is indicated by a green button with a picture of a worker
on it.

There are different icons for hosts and services; in the default template,
host icons are rectangular, and service icons are round. A finished NagVis

1 ������������	
��
���
�

389



18 NagVis

display—NagVis refers to this as a map—is shown in Figure 18.2. Further
examples—such as using a geographical map, or a photo of the server room,
as a background—are provided on the NagVis homepage.2

Figure 18.1:
Schematic diagram

of a system
environment as a

template for NagVis

In addition to hosts and services, host and service groups can also be inte-
grated into a NagVis display, as well as additional maps. Thus a geograph-
ical overview map could be used for the start page, which has an icon for
each location monitored that links to a detailed NagVis map specifically for
that location.

If an icon contains several states, as is the case for host and service groups,
for instance, NagVis displays the state with the highest priority. CRITICAL
has a higher priority than WARNING, WARNING trumps UNKNOWN, UN-
KNOWN gets more attention than an acknowledgment, and OK has the
lowest priority of all. If any host in a host group assumes the CRITICAL
state, this is shown accordingly for the entire host group.

For hosts and host groups, NagVis offers you the choice of having only host
states considered in determining the state that is displayed, or having the
services dependent on these hosts are included as well (see page 394). In
the latter case, a red stop light is displayed if even a single service of a host
is in the critical state.

2 ������������	
��
���
�
�����
���


390



18.1 Installation

Of particular interest is NagVis’s ability to evaluate only hard states (page
394). For routine work with the Web interface, it turns out to be quite
useful if not every temporary soft CRITICAL state immediately generates a
red light.

Figure 18.2:
Displaying the
system environment

It will especially please fans of object-oriented programming that NagVis
makes full use of object-oriented concepts. For example, the system inher-
its defaults from the global configuration for individual maps and settings
on the map level and passes these on to individual objects, with the option
of overwriting settings locally always available. This simplifies the configu-
ration to a considerable extent, and NagVis also indicates in the graphical
editor (also called the Web user interface or WUI) which settings are object-
specific and which have been inherited (Figure 18.8 on page 399).

NagVis is published under the GNU Public License Version 2 (GPLv2); the
description below refers to version 1.3.

18.1 Installation

NagVis makes use of NDOUtils and is implemented in PHP. Therefore, be-
sides an NDO database in running order, as described in Chapter 17 from
page 375, you need a Web server with PHP 4.2 or higher, as well as the pack-

391



18 NagVis

ages �
�����%� for access to the NDO database and �
���� to be able to
draw lines.3 Depending on the distribution and the PHP version used, the
package names may vary slightly. For Debian “Etch” and PHP5 you need
the packages �������
��������
�2, �
�2, �
�2�������, �
�2���, and
�
�2����%�.

NagVis does not necessarily have to be installed on the same computer as
Nagios and the NDOUtils, although in many cases they are packed onto
one host. The configuration of the NDO database—NagVis documenta-
tion refers to this as the backend—can refer (as described on page 395)
to any system you please. NagVis even allows the backend to be selected
separately for each individual object so that maps can be generated that
combine several Nagios installations in a single graphic.

18.1.1 Installing the source code

The NagVis source code, from 
���!&&��������������&���������, is
unpacked in a directory of your choice:

linux:~ # tar xvzf /pfad/zu/nagvis-1.3.tar.gz

...

If a previous installation exists, you should back this up first. Then you
copy the directory that has been created (in our case, �������-�*) with
the name ������ to &
��&�����&������&�
���:

linux:~ # mv nagvis-1.3 /usr/local/nagios/share/nagvis

linux:~ # ls -F /usr/local/nagios/share/nagvis

INSTALL LICENCE README config.php etc/ index.php nagvis/ var/ wui/

The duplicated directory name ������ can sometimes lead to confusion,
but it is correct:

/usr/local/nagios/share/nagvis

/usr/local/nagios/share/nagvis/nagvis

/usr/local/nagios/share/nagvis/wui

&
��&�����&������&�
���&������ represents the main directory of the
NagVis installation, while the subdirectory ������ contains the NagVis
application, together with its configuration. Finally the subdirectory �
�
contains the graphic editor that enables NagVis maps to be edited via the
browser.

3 You can manage without using the GD libraries if the parameter �
��
����
 in the
NagVis configuration file �����
�������� (see page 393) is set to %.

392



18.1 Installation

At present, the correct access permissions for directories and files must be
set manually. To do this, you first need to determine the user with whose
permissions the Web server is running (see also Section 1.2, page 39):

linux:~ # grep "^User" /etc/apache2/apache2.conf

User www-data

linux:~ # id www-data

uid=33(www-data) gid=33(www-data) Groups=33(www-data),9001(nagcmd)

The first ���� command looks for the corresponding user in the configura-
tion file for the Web server—in this case, Apache2—and then the �� com-
mand searches for the primary group of this user. This can be found after
the ���G specification. The access permissions are now set accordingly:

linux:~ # chown www-data.www-data -R /usr/local/nagios/share/nagvis

linux:~ # chmod 664 /usr/local/nagios/share/nagvis/etc/nagvis.ini.php

linux:~ # chmod 775 /usr/local/nagios/share/nagvis/nagvis/images/maps

linux:~ # chmod 664 /usr/local/nagios/share/nagvis/nagvis/images/maps/*
linux:~ # chmod 775 /usr/local/nagios/share/nagvis/etc/maps

linux:~ # chmod 664 /usr/local/nagios/share/nagvis/etc/maps/*
linux:~ # chmod 775 /usr/local/nagios/share/nagvis/var

linux:~ # chmod 664 /usr/local/nagios/share/nagvis/var/*

Before the Web user interface can be used, you must create the central
configuration file and ensure that access to NagVis is only possible after
successful authentication.

18.1.2 Initial configuration

A template for the central NagVis configuration file ���	��������
� can
be found in the directory &
��&�����&������&�
���&������&���, which
only needs to be renamed and modified:

linux:~ # cd /usr/local/nagios/share/nagvis/etc

linux:nagvis/etc # cp config.ini.php.dist config.ini.php

linux:nagvis/etc # chown www-data.www-data config.ini.php

linux:nagvis/etc # chmod 664 config.ini.php

The commands �
��� and �
��� ensure that the correct access permis-
sions are set for the Web user (here, ��������) and his group.

Apart from the configuration of the backend (that is, the NDO database),
the included ���	��������
� already has usable defaults. The following
description is therefore limited to introducing the most important param-
eters:4

4 The complete documentation can be found at ������������	
��
���
����
�'�1�
�	
��
������
�����	����
��������.

393



18 NagVis

[global]

language="german"

refreshtime=60

In the Z������[ section you can set the language with ����
���; the de-
fault is ������
. ��	���
���� defines every how many seconds the dis-
play in the brower is refreshed.

The section Z��	�
���[ specifies defaults that are inherited by the defined
objects from the map configuration. The values can be overwritten via the
map, if required. It is best to define settings here that are identical for the
majority of objects, in order to avoid the repeated work of defining them
explicitly in the object definitions:

[defaults]

backend="ndomy_1"

icons="std_medium"

recognizeservices=1

onlyhardstates=1

������� specifies which NDO database is used as the default backend. The
name for this can be anything you like, but the backend itself must still be
defined in a separate section (see page 395). If you are just getting started,
it is best to keep the name supplied, ������-.

The parameter ����� defines the icon set from the directory �&������&
������&������&�������� that is to be used. Four sets are included: ����
�����, ��������
�, �������, and 	�����. Other icons can be down-
loaded from the NagVis homepage,5 or you can create them yourself.6

The setting �����������������G- ensures for hosts and host groups that
the current states of the accompanying services are included when the
overall state is being determined. The value 0 switches off this behavior.

����
���������G- on the other hand instructs NagVis to take only hard
states into account. The default + also includes soft states.

The Z�
�[ section allows settings to be made for the NagVis editor:

[wui]

autoupdatefreq=25

maplocktime=5

�
��
�����	��% determines how often (in number of seconds) the Web
user interface automatically saves changes, while ����������� specifies
the number of minutes after which any further changes to a map that is

5 ������������	
��
���
�������	�

6 A corresponding guide can be found at ������������	
��
���
����
��#������
�

����
��
.

394



18.1 Installation

currently being edited should be blocked, from the time of the last change.
This is intended to prevent several users from simultaneously editing the
same map.

The paths to the NagVis installation from the perspective of the file system
(����) and—separately for NagVis data and NagVis CGIs—from the per-
spective of the browser, are specified in Section Z���
�[:

[paths]

base="/usr/local/nagios/share/nagvis/"

htmlbase="/nagios/nagvis"

htmlcgi="/nagios/cgi-bin"

The defaults listed here match the standard installation described above.

The configuration for the backend, that is, for accessing the NDO database,
follows at the bottom of the file:

[backend_ndomy_1]

backendtype="ndomy"

dbhost="localhost"

dbport=3306

dbname="nagios"

dbuser="nagios"

dbpass="verysecret"

dbprefix="nagios_"

dbinstancename="default"

maxtimewithoutupdate=180

This name of this section must contain the name specified with the �������
parameter under Z��	�
���[, according to the pattern Z��������
�����
����������[. The default here is ������-. If the ������� parameter
value does not match any of the defined backend sections, NagVis will
refuse to work.

����������� defines the type of backend, and for now �����—an NDO
database based on MySQL—is the only possible value.

��
��� and ������ specify the host name or IP address and the accom-
panying TCP port for access to the database. ������ contains the name of
the NDO database, and ��
��� and ������ give the user and the password
for access.

The values defined by default for �����	�� and �������������� are set
for a NDOUtils standard installation. Provided that you have not changed
the parameter ������������� in the file ��������	� (see Chapter 17.4.1
from page 384) and ������	�� in the file ��������	� (see Chapter 17.4.2
from page 385), you can use the values given here.

One parameter to which you should pay particular attention is ��������
���
�
�
�����: This defines how much time in seconds is allowed for the

395



18 NagVis

status update of Nagios to appear. If the time specified here is exceeded,
NagVis assumes that the data is obsolete and displays this as an error. If
NagVis accesses NDO databases that are distributed across several servers,
it is essential that the clock times of the servers be synchronized with one
another, otherwise NagVis will refuse to work if it comes across a time dif-
ference greater than ����������
�
�
����� seconds.

At this point we shall mention another problem involving data exchange
between the NDO database and NagVis: NagVis evaluates the current pro-
gram status. Nagios versions prior to 3.0b1, however, only write this to the
NDO database after the nightly change of the log files. Starting with version
3.0b1, Nagios updates the status every five seconds, so that NagVis always
has up-to-date information.

18.1.3 User authentication

NagVis demands authentication from the user. Without user authentica-
tion, it will just issue an error message.7

If the �
��� directory of Nagios is not accessible for authentication, as in
the Apache configuration on page 48, you should change this in the Apa-
che configuration file &���&����
��&���	��&������. The authentication
data are best taken from the CGI directory (see Section 1.5 from page 47).

Figure 18.3:
After a right mouse
click on the graphic
displayed, the menu

will appear

18.2 Creating NagVis Maps

The NagVis configuration interface is accessed through the URL 
���!&&
��������	
�	&������&�
�&�������
�. Here you replace ��������	�

�	 with your own Nagios host name (Figure 18.3 shows the start page).

7 The FAQ entry ������������	
��
���
����
�
����	���	0)������������	
��
�
��������	��������	����� describes a way of using NagVis without authentication,
but you should avoid this, for reasons of security.

396



18.2 Creating NagVis Maps

It is operated through a menu that opens when you click the right mouse
button. For browsers that overlay the NagVis menu with their own menu,
a second click with the right mouse button will cause the browser menu to
disappear.

If you don’t have a suitable background graphic available in PNG format,
you can create a new, empty background image via the menu item Man-
age | Backgrounds, as shown in Figure 18.4. In this example, a gray image of
size 800x600 pixels is created.

Figure 18.4:
Creating a new,
empty background

This image is displayed on screen in its original size, that is, not scaled. To
avoid scrolling, it should not be too large, with the proper size depending
on the screen resolution and taking into account possible window frames.

Later on the image size can only be altered to a limited extent: although
you can upload or create a background image at any time, objects that
have already been placed are not affected by any changes in the size or
other characteristics of the background, and so they may not fit properly
into a new background image. The only option then is to reposition all the
objects. The best approach is to experiment at first with just a few objects
in the definitive environment before you set up an extensive map.

Figure 18.5:
If the entry for Map
Iconset remains
empty, NagVis uses
the defaults from the
central
configuration.

397



18 NagVis

You now create a new map for the generated or uploaded image. Via the
menu entry Manage | Maps (Figure 18.3) you navigate to the dialog shown
in Figure 18.5. There you define the name of the map and select the back-
ground image. If every authenticated user should see the map, you en-
ter /H/5`: / as User with read permissions. For the $��� ���
 �����
�����������, on the other hand, you would probably enter a specific user,
or several user names, separated by commas. Defining the icon sets is op-
tional at this point, although the example shown specifies them.

Newly created maps are automatically opened by NagVis in editing mode.
You can reach this later on via the menu item Open Map in the context
menu of the opening dialog or by calling it directly with the URL 
���!&&
��������	
�	&������&������&�
�&�������
�0���G������� .

Figure 18.6:
Inserting objects via

the graphical
interface

The ������� for the map created in Figure 18.5 is >���. In the map it-
self you now insert objects using the right mouse button (see Figure 18.6).
An object can be an icon, a line, or a special object. Icons and lines rep-
resent the current state of a host or service and can also stand for entire
host or service groups. Icons can only reflect the overall state of a map.
Special objects are graphics representing stateless objects (which might be
icons as well, for example) or text boxes, which can also be provided with a
hyperlink.

To insert a host group you select Add Object | Icon | Hostgroup in the menu.
Then you place the mouse over the desired position and define the desti-
nation of the icon with a left mouse click (the position can be changed later
on).

When this is done a dialog opens, as shown in Figure 18.7. The entry
backend_id can remain empty, and NagVis will then use the value of the
������� parameter from the central configuration file ���	����
�����.
In the hostgroup_name pulldown menu, NagVis allows you to select from
all defined host groups.

Icons can be positioned according to the x and y coordinates by either en-
tering numerical values or using the mouse. For simple icons, the point
(x,y) corresponds to the center, and for lines to the start or end points. The

398



18.2 Creating NagVis Maps

z coordinate is only used when icons overlap. The value + describes the
underlying image at the rear and is reserved for the background, and the
object with the highest z value is right at the front. If the z coordinate is
explicitly left empty when the object is inserted, it automatically receives
the value -.

Figure 18.7:
Defining a host
group in the
graphical interface

The parameter ������������������ allows the ����������������� set-
ting from the ���	��������
� (see page 394) to be overridden, and �����

���������� does the same for the parameter ����
��������� (page
394).

The object inserted in this way always appears in the graphical editor in the
form of the OK icon from the icon set chosen; the Web interface takes no
account of its actual state.

If you move the mouse over the icon, a hover menu opens, as shown in
Figure 18.8. It clearly distinguishes which settings are inherited and which
ones have been specified directly in the object. If you follow the Change
link there, the settings can be changed again.

Figure 18.8:
If you move the
mouse over the
inserted object, a
hover menu opens

399



18 NagVis

When your work is finished, don’t forget to save your changes via the con-
text menu entry Save (see Figure 18.3 on page 396). The menu item Open
Map in NagVis will then take you to the finished view, which now does dis-
play the actual states.

In Figure 18.9 a text box has been added to the host group icon. The field
displayed beneath this is a hover menu, which shows information on the
object and its state if you move the mouse over the object. This example
shows that two hosts of the host group display a Not OK state and that this
has already been confirmed with an acknowledgment.

Figure 18.9:
Object in the final
view with text box

and hover menu

The finished map can be called directly via the URL 
���!&&��������	�

�	&������&������&������&�������
�0���G������� .

18.2.1 Editing the configuration in text form

NagVis stores the entire configuration of a map in text files, which can
also be edited with a text editor. The files are located in the directory
&
��&�����&������&�
���&������&���&����&. If you are using a back-
ground image with a known raster, you can insert several objects in the
WUI and continue editing the map in the editor using the coordinates just
determined. This is how the map shown in Figure 18.2 was created. The
background image (Figure 18.1) was created with OpenOffice in order to
obtain a reproducible raster; the OpenOffice drawing is subsequently ex-
ported as a PNG file.

The configuration options for the text files, which altogether are very ex-
tensive, are described in the online documentation.8

8 ������������	
��
���
����


400



18.2 Creating NagVis Maps

18.2.2 Adding NagVis maps to the Nagios Web interface

NagVis maps can also be integrated into the Nagios Web interface. Figure
18.10 shows these after a third frame has been added to the ������
���
page, which binds a 32-pixel-high map beneath the main window. No mat-
ter what the administrator is currently working on, the most important
states (here these are the host groups) are always displayed directly and
can be reached with a single mouse click. There are no limits to your user
interface dreams when using NagVis!

Figure 18.10:
NagVis map as a
“footnote” in the
Nagios Web interface

401





19 Ch
ap

te
r

Graphic Display of
Performance Data

When Nagios reports to the administrator quickly and selectively on prob-
lems that have occurred, it can basically only distinguish between OK states
and error states, sparing the admin a flood of information on problematic
services and hosts. The graphic display of measured values over a time
period cannot be integrated into this “traffic light approach,” but it is avail-
able through third-party software. Nagios supports external processing of
values with an interface created specifically for this. The data processed
through it is referred to in Nagios jargon as performance data.

Nagios has two different classes of performance data. The first is Nagios-
internal performance data, statistics on the performance times of tests and
on the difference between the actual test time and the planned time (the la-
tency). The second class includes performance data that the plugin passes
on with the test result. This involves everything that the plugin can mea-

403



19 Graphic Display of Performance Data

sure: response times, hard drive usage, system load, and so on. These are
the very things that are of interest to an administrator, which is why the
book concentrates on how they are processed.

Nagios extracts this data and either writes it to a file where it can be pro-
cessed by other programs, or passes it on directly to the external software
that is run after every service or host check.

19.1 Processing Plugin Performance Data with
Nagios

Performance data provided by service and host checks can be processed
only if the corresponding plugin delivers it in a predefined format. As
shown here using the �
�������� plugin (Section 6.2, page 108), it is pre-
ceded by a I sign and is not shown in the Web interface:

nagios@linux:libexec/nagios$ ./check_icmp -H vpn01

OK - eli02: rta 96.387ms, lost 0%| rta=96.387ms;200.000;500.000;0; pl=0%;

40;80;;

This standardized form is provided by most plugins only after version 1.4.1

The performance data itself consists of one or more variables in the follow-
ing form:

name=value;warn;crit;min;max

The variable ���� may contain spaces, but then it must be surrounded
by single quotation marks. After the equals sign comes first the measured
value as an integer or floating-point decimal, with or without a unit. Possi-
ble units are 9 (percentage), � (time in seconds), = (data size in bytes), or �
(counter, an incremental counter).

This is followed, separated by a semicolon, by the warning and critical lim-
its, and then the minimum and maximum value. Percentage values can be
left out by the plugin. You can also specify + for minimum/maximum, as
well as for the warning or critical limit, if there is no such threshold value.
If there are several variables, these are separated with spaces, as in the
�
�������� example. However, in contrast to this, the final specification
should not end with a semicolon, according to the Developer Guidelines.

1 Some tools such as Nagiosgraph and NagiosGrapher make use of the fact that the re-
maining text normally contains performance data as well. If they are correspondingly
configured, they are able to extract the performance data contained there. In this way
they can further process data that does not conform to the standard format.

404



19.1 Processing Plugin Performance Data with Nagios

19.1.1 The template mechanism

Nagios has two methods of processing performance data: either the system
saves the data to a file using a template, or it executes an external com-
mand. If you just want to write data consistently to a log file, the template
procedure is somewhat easier to configure.

In order that Nagios can process performance data at all, the parameter

# /etc/nagios/nagios.cfg

...

process_performance_data=1

...

must be set to -. The file to which Nagios writes the host or service per-
formance data is specified by the parameters 
�������	�����	��� and
�����������	�����	���:

# /etc/nagios/nagios.cfg

...

# host_perfdata_file=/var/nagios/host-perfdata.dat

service_perfdata_file=/var/nagios/service-perfdata.dat

# host_perfdata_file_template=[HOSTPERFDATA]\t$TIMET$\t$HOSTNAME$\t$HOST

EXECUTIONTIME$\t$HOSTOUTPUT$\t$HOSTPERFDATA$

service_perfdata_file_template=[SERVICEPERFDATA]\t$TIMET$\t$HOSTNAME$\t$

SERVICEDESC$\t$SERVICEEXECUTIONTIME$\t$SERVICELATENCY$\t$SERVICEOUTPUT$\

t$SERVICEPERFDATA$

...

If 
�������	�����	��� is commented out, as in this example, Nagios does
not save any performance data of host checks. But since they are only used
if all service checks fail, it lies in the nature of host checks that they only
provide data sporadically and at irregular intervals. This is why it is not
worth evaluating them in most cases.

The ;����	�����	������������ parameters define the output format.
The definition shown above, �����������	�����	������������, deliv-
ers (one-line) log file entries in the following pattern:

[SERVICEPERFDATA] 1114353266 linux01 PING 0.483 0.104 OK

- 10.128.254.12: rta 100.436ms, lost 0% rta=100.436ms;3000.000;6000.000

;0; pl=0%;40;80;;

Each line begins with a Z1/5H6�/�/5F<.>.[ “stamp,” followed by the test
time in epoch seconds (E>6�/>E), the host name and service description
(E8:1> .�/E and E1/5H6�/</1�E), the time Nagios requires for the test
(E1/5H6�//U/�$>6: >6�/E), and the latency between the planned and ac-
tual time of performance (E1/5H6�/#.>/ �`E), each separated by a tab.

405



19 Graphic Display of Performance Data

Then Nagios writes the output for the Web interface to the log file (E1/5�
H6�/:$>�$>E) and finally the actual performance data (E1/5H6�/�/5F�
<.>.E). L� in the parameter definition ensures that a tab separates the indi-
vidual details from each other in the log. With the ;����	�����	��������
parameters you can define whether Nagios appends the data to an existing
file (�) or overwrites the existing file (�):

# /etc/nagios/nagios.cfg

...

host_perfdata_file_mode=a

service_perfdata_file_mode=a

...

This is suitable for external programs that can read the data from a (previ-
ously set up) named pipe. This method provides better performance and
does not require any space on the hard drive. If the processing software is
not running, however, the data may be lost: Nagios does try for a time to
continue writing to the pipe, but aborts this process after a timeout if the
data cannot be read out.

Programs that read from a log file generally delete it afterwards, to prevent
the file system from overflowing. If the program does not retrieve any data,
the file will grow quickly, but nothing will be lost as long as there is still
space on the file system.

It is best to run external evaluation software as a permanent service. But
you can also configure Nagios so that it regularly triggers a program for
further processing:

# /etc/nagios/nagios.cfg

...

# host_perfdata_file_processing_interval=0

# service_perfdata_file_processing_interval=0

# host_perfdata_file_processing_command=process-host-perfdata-file

# service_perfdata_file_processing_command=process-service-perfdata-file

...

With the ;����	�����	����������������������� parameters you set
an interval in seconds after which Nagios will carry on running the cor-
responding ;����	�����	���������������������� at specific intervals.
This command is defined as a normal Nagios command object:

# misccommands.cfg

...

define command{

command_name process-service-perfdata-file

command_line /path/to_the/evaluation_program

}

...

406



19.1 Processing Plugin Performance Data with Nagios

As long as the external software itself looks after the further processing of
the file with the performance data, you do need to use the ;����	�����
	���������������; parameters.

19.1.2 Using external commands to process performance
data

As an alternative to the template method, Nagios can also directly call a
command that takes over further processing of data. This is done directly
after each test result; so after each individual check, an external program
is started. If you have a large number of services to be checked, this can,
depending on the software, considerably degrade performance.

The command itself is defined with the �����������	������������ pa-
rameter instead of the ���	�����	��� parameter:

# /etc/nagios/nagios.cfg

...

process_performance_data=1

service_perfdata_command=process-service-perfdata

...

In the same way as with service performance data, you can also process
the results of host checks, using the 
�������	������������ parameter.
�������������������	���� itself again refers to a normal Nagios com-
mand object:

# misccommands.cfg

...

define command{

command_name process-service-perfdata

command_line /pfad/zum/programm "$LASTSERVICECHECK$||$HOSTNAME$||$

SERVICEDESC$||$SERVICEOUTPUT$||$SERVICEPERFDATA$"

}

...

This opens the external program, which is given the necessary information
as arguments. This should include at least the timestamp of the last ser-
vice check (E#.1>1/5H6�/�8/�3E), the host name (E8:1> .�/E), and the
service description (E1/5H6�/</1�E), as well as the actual service perfor-
mance data (E1/5H6�/�/5F<.>.E). The delimiter depends on the program
used: this example uses II, as is used by the Nagiosgraph program.

407



19 Graphic Display of Performance Data

19.2 Graphs for the Web with Nagiosgraph

With the program Nagiosgraph from 
���!&&����������
��	����&, per-
formance data supplied by plugins can be displayed graphically in a Web
interface in chronological form. The software consists of two Perl scripts.
The script ���������writes the Nagios performance data to a round-robin
database, a ring buffer in which the newest data overwrites the oldest.2 The
advantage of this is the small amount of space required, which can be de-
fined beforehand.

The trick consists of saving data in various resolutions, depending on its
age: older data with a lower resolution (e.g., one measurement value per
day), current data with a high resolution (e.g., one measurement every five
minutes). When setting up the database, you also define how long the data
is retained. This defines space requirements right from the beginning.

Provided that Nagiosgraph detects the performance data, the program cre-
ates a separate round-robin database for each new service, when it ap-
pears for the first time. The ��� configuration file included describes just a
few services, so that usually some manual work—and a basic knowledge of
Perl—is required.

The second Nagiosgraph script �
������, a CGI script, represents the in-
formation from the database in a dynamic HTML page. To do this, it is run
(after configuration is completed) in the form

http://nagsrv/path/to/show.cgi?host=host&service=service_description

Nagiosgraph then displays four graphs (a daily, a weekly, a monthly, and a
yearly summary) for the desired service.

19.2.1 Basic installation

An installed RRDtool package, which is contained in most Linux distribu-
tions, is a prerequisite for Nagiosgraph. Alternatively you can obtain the
current source code from 
���!&&���������������&.3 For reasons of
performance, it is recommended here that you also install the included
Perl module 55<�.

The Nagiosgraph tar file itself is preferably unpacked in the directory &
��&
�����&������:

nagios@linux:local/nagios$ tar xvzf nagiosgraph-0.5.tar.gz

nagiosgraph/INSTALL

nagiosgraph/README

2 Further information on this topic can be found at ���������������������
�.
3 To install, see page 421.

408



19.2 Graphs for the Web with Nagiosgraph

nagiosgraph/README.map

nagiosgraph/insert.pl

nagiosgraph/insert_fast.pl

nagiosgraph/map

nagiosgraph/nagiosgraph.conf

nagiosgraph/show.cgi

nagiosgraph/testcolor.cgi

nagiosgraph/testentry.pl

��������� extracts the data transferred by Nagios and inserts this into the
RRD database. If this does not exist, however, the script will create it. Al-
ternatively �������	������ can take on this task. This script uses the Perl
module 55<�, which is considerably more efficient than calling up �������
as an external program each time, which is what ��������� does.

Another Perl script called ������������ helps if you are testing your own
��� entries. But since you have to write these directly into this file, you
can also change the ��� file itself (as shown below)—provided you have
made a backup copy first. The CGI script ������������� looks more like
a developer’s utility left over in the package, rather than a tool that is of any
use for users.

Apart from the already mentioned ��� configuration file, there is a second
one, ����������
����	, and its path must be defined correctly in both
��������� (or �������	������) and �
������, so it is recommended
that you check this:

my $configfile = ’/usr/local/nagios/nagiosgraph/nagiosgraph.conf’;

19.2.2 Configuration

The configuration file ����������
����	

All other relevant paths—such as those to the ��� file and to the �������—
are adjusted in ����������
����	:

rrdtool = /usr/bin/rrdtool

rrddir = /var/lib/rrd/nagiosgraph

logfile = /var/nagios/nagiosgraph.log

mapfile = /usr/local/nagios/nagiosgraph/map

debug = 2

colorscheme = 4

Nagiosgraph creates the RRD databases in the ������ directory. Here the
user ������must have write access and the user with whose rights the Web
server is running must have read access:

409



19 Graphic Display of Performance Data

linux:~ # mkdir -p /var/lib/rrd/nagiosgraph

linux:~ # chown nagios.nagcmd /var/lib/rrd/nagiosgraph

linux:~ # chmod 755 /var/lib/rrd/nagiosgraph

The log file, for which both users need write access (the Web user because
the CGI script also records information to the log file), is also critical:

linux:~ # touch /var/nagios/nagiosgraph.log

linux:~ # chown nagios.nagcmd /var/nagios/nagiosgraph.log

linux:~ # chmod 775 /var/nagios/nagiosgraph.log

How verbose Nagiosgraph is can be adjusted with ���
�. The possible
debug levels are documented in the configuration file included: � means
“errors,” 7 “information”—here Nagiosgraph is already so verbose that you
must watch out that the file system does not overflow. Except for debugging
purposes (such as when setting up the system), it is better to choose �.

With �������
���, which can accept values from 1 to 8, you can influence
the amount of color in the graphs—it is best to try out the options to see
which color scheme matches your personal taste best.

Nagios configuration

Nagiosgraph grabs the performance data directly from Nagios. For this rea-
son ��������	� does not require any ;����	�����	����; parameters.

# /etc/nagios/nagios.cfg

...

process_performance_data=1

service_perfdata_command=process-service-perfdata

...

�����������	������������ switches on processing of performance data
in general; �����������	������������ refers to the Nagios command
object that contains the external command:

# misccommands.cfg

...

define command{

command_name process-service-perfdata

command_line /usr/local/nagios/nagiosgraph/insert_fast.pl "$LASTSERV

ICECHECK$||$HOSTNAME$||$SERVICEDESC$||$SERVICEOUTPUT$||$SERVICEPERFDATA$"

}

...

The definition of the parameter ������������must be written on one line
(without the backslashes L), as usual.

410



19.2 Graphs for the Web with Nagiosgraph

So that the CGI script can run directly from the Nagios Web interface, a
������������	� object is defined:

define serviceextinfo{

service_description PING

host_name *
notes_url /nagiosgraph/show.cgi?host=$HOSTNAME$&service=PING

icon_image graph.gif

icon_image_alt show graphics

}

If the graphic defined in ���������� is in the directory &
��&�����&���
����&�
���&������&�����, the Web interface marks the �6 " services for
all hosts in the status display with this.4 Here the strength of �
������ can
be seen: only because this script is called explicitly with host and service
names is a definition like the one above possible. Instead of an individual
host name, you can also specify a host group, or, as in this example, a ;. A
requirement for this is that �6 " really is defined as a service for every host.

The E8:1> .�/E macro then automatically inserts the appropriate host.
The additional information for a specific service type (which must have the
same service description in all hosts) can therefore be catered for with just
one single definition.

Apache configuration

So that the Apache Web server can accept the CGI script as it is, a 1������
.���� is created, for example:

ScriptAlias /nagiosgraph/ /usr/local/nagios/nagiosgraph/

This entry is best placed in the configuration file discussed in Section 1.5
(page 47), ����������	. Only after Apache is reloaded can the CGI script
be run from the URL specified on page 408.

Adjustments to the map

Depending on the service, the round-robin database may also save several
series of measurements, which can be requested individually through the
CGI script:

http://nagsrv/path/to/show.cgi?host=host&service=service_description&db=

database,entry1,entry2&db=database,entry3

4 A more detailed description of the 
�������#����� object is contained in Section
16.4.2, page 366.

411



19 Graphic Display of Performance Data

The database used here contains at least three different series of measure-
ments, the first two of which are shown together in one graphic, while the
third is shown in a separate graphic. What is shown together and what is
separate depends on the standardization. It makes little sense to display
the percentage load of a hard drive and the absolute value in bytes in the
same graphic, since the Y axis can only have one scale. It is better here
to display percentage values in one graphic and absolute byte values in a
second one. On the other hand you can display the various average values
of the system load (for one, five, and 15 minutes) in a single graphic. If you
leave out all ��G specifications, Nagiosgraph always displays all measured
values for a service in a single graphic.

What individual databases and measured values display is defined by the
��� file. To understand how the instructions contained there influence the
extraction of data, you just need to switch the debugging level to 7 and
take a look at the output in the log file ����������
����. Each time the
insert function is run, Nagiosgraph rereads the configuration files, so that
this does not cause any kind of reset.

In the following extract from the log file the three dots mark sections which
we will not print, for the sake of clarity:

... INSERT info:... servicedescr:PING

... INSERT info:... hostname:linux01

... INSERT info:... perfdata:rta=99.278ms;3000.000;7000.000;0; pl=0%;60;

80;;

... INSERT info:... lastcheck:1114853435

... INSERT info:... output:OK - 172.17.4.11: rta 99.278ms, lost 0%

The output is from the �
�������� plugin. The host name, service de-
scription, performance data, (���	����!) and the standard output line
(�
��
�!) each have their own line. In the performance data the plugin
announces the round trip average with the variable ���, and the number
of packets that have gone missing with �� (packet loss).

The ��� file contains Perl instructions that filter these outputs and extracts
the corresponding data if there are hits. Each of them starts with a search
instruction:

/perfdata:rta=([.\d]+)ms.+pl=(\d+)%/

The classic Perl search function consists of the two forward slashes & with a
search pattern in the form of a regular expression in between. Round pairs
of brackets enclose partial patterns with which the text found in this way
can later be accessed using the variables E-, E�, etc.

The pattern in the first bracket thus matches a single digit (L�) or a dot,5

and the next K states that there can be several of them (or none at all). In

5 A pair of square brackets contains alternatives.

412



19.2 Graphs for the Web with Nagiosgraph

the second round brackets, though, one or more digits are allowed, but no
period. In concrete terms E- delivers the numerical value of the response
time, E� provides the packet loss in percent.

The full instruction in the ��� file links two Perl statements with the ���
operator:

# -- check_icmp

# perfdata:rta=100.424ms;5000.000;9000 .000;0; pl=0%;40;80;;

/perfdata:rta=([.\d]+)ms.+pl=(\d+)%/

and push @s, [ ’ping’,

[ ’rta’, ’GAUGE’, $1 ],

[ ’losspct’, ’GAUGE’, $2 ],

];

If the first one—the search function—is successful, then it is the turn of
the �
�
 statement. It adds the expression in square brackets following to
the array X�. The instruction ends with a semicolon. If the search function
provides no result, the ��� instruction will not save any entry in the X�
array. The expression to be included in the array has the following format:

[ db-name,

[name_of_data_source, type, value ],

[name_of_data_source, type, value ],

...

]

The file name for a Nagiosgraph database file consists of the host name, ser-
vice description, and the database name together, for example, ���
�+-�
�6 "���������. The desired string for the database name is entered in-
stead of the placeholder db-name into the ��� file (in this case, ����).

The name of the data source can be chosen freely, but should contain an
indication of the data that is stored here, such as ��� for the response time
or ������� for percentage of packets that have been lost.

What type you specify is determined by the RRD tools. ".$"/ stands for
simple measured values that are displayed simply as they are. </56H/ is
recommended by Nagiosgraph author Soren Dossing for processing coun-
ters, such as in querying a packet counter on the network interface. Coun-
ters grow incrementally and, when they run over, start again at zero. What
is of interest here is the difference between two points in time. The RRD
database determines these automatically if the data source type </56H/ is
specified.

The database name, data source, and type should always be placed in single
quotation marks in the ��� file, so that no name conflicts can occur with
keywords reserved in Perl.

413



19 Graphic Display of Performance Data

The measured value itself is determined using Perl methods, and the place-
holder value is substituted with the corresponding instructions. In the sim-
plest case, you take over the values found with the search pattern in the
performance data with E-, E�, etc. (see example above), or calculate new
values from these by multiplying6 by 1024 or by calculating the percentage:

# -- check_nt -v USEDDISKSPACE

# perfdata:C:\ Used Space=1.71Gb;6.40;7.20;0.00;8.00

/perfdata:.*Used Space=([.\d]+)Gb;([.\d]+);([.\d]+);([.\d]+);([.\d]+)/

and push @s, [ ’disk’,

[ ’used’, ’GAUGE’, $1*1024 ],

[ ’usepct’, ’GAUGE’, ($1/$5)*100 ],

[ ’freepct’, ’GAUGE’, (($5-$1)/$5)*100 ],

];

# -- check_disk (unix)

# perfdata:/=498MB;1090;1175;0;1212

m@perfdata:.*/([^ =]+)=([.\d]+)MB;([.\d]+);([.\d]+);([.\d]+);([.\d]+)@

and push @s, [ $1,

[ ’used’, ’GAUGE’, $2*1024**2 ],

[ ’warn’, ’GAUGE’, $3*1024**2 ],

[ ’crit’, ’GAUGE’, $4*1024**2 ],

];

The first entry evaluates the query of hard drive space on a Windows server
with �
������ (see Section 20.2.1, page 476). The performance data also
contains, apart from the occupied space in E-, the size of the data carrier in
E2. This can be used to calculate the percentage that is available (	������)
and the percentage used (
�����).

The second example evaluates data obtained on a Unix host, with �
����
����, by multiplying the free hard drive space specified in MB by 10242 to
convert it to bytes. The critical and warning limits always remain constant,
which leads to horizontal lines, as seen in Figure 19.1: the lower line at
12.1 GB represents the warning limit, the middle line the current load, and
the top line at 18.1 GB, the critical limit. The keys for the individual graphs
each list minimum, maximum, and average as a numerical value. This
differentiation for the two limit values is not of any use, but it cannot be
avoided, since Nagiosgraph does not know that these are constant values:
it treats warning and critical limits just like any other measured values.

If a plugin does not provide any performance data, but values that are
used in normal output, the search function can be applied to the output
(&�
��
�!���&) instead of to the performance data. Help is provided, for
example, by the Nagiosgraph Forum at 
���!&&��
���	��������&	��
�&
	��
���
�0	��
����G*,7C7B.

6 This turns kilobytes into bytes.

414



19.3 Preparing Performance Data for Evaluation with Perf2rrd

Figure 19.1:
Used space and limit
values for the file
system
���������#%'�	 on
the host ����#%', as
Nagiosgraph
represents them

Changes to the ��� are critical. It is therefore recommended that you copy
the file first and edit the copy, and then perform a syntax check, using
���� ��:

nagios@linux:libexec/nagios$ cp map map.new

nagios@linux:libexec/nagios$ vi map.new

nagios@linux:libexec/nagios$ perl -c map.new

nagios@linux:libexec/nagios$ mv map.new map

If the syntax check is in order, you can install the new file as ���.

19.3 Preparing Performance Data for Evaluation
with Perf2rrd

Another tool which transfers Nagios performance data to an RRD database
is the Java application Perf2rrd. This requires an installed Java Runtime
Environment (1.4.2, or preferably 1.5). Since the virtual machine generates
a noticeable load on less powerful computers, and also requires a large

415



19 Graphic Display of Performance Data

amount of memory, the requirements made of the Nagios server by Perf2rrd
are significantly higher than those made by Nagiosgraph.

On the other hand there is no more work after the installation as far as
generating the RRD databases is concerned, because Perf2rrd uses the tem-
plate mechanism of Nagios (see Section 19.1, page 404). For each service
and each variable contained in the template, the tool creates a separate
RRD database using the following naming pattern:

host+service_description+variable_name.rrd

So to evaluate the �
�������� variables ��� (round trip average) and ��
(packet loss), the file names are ���
�+-K�6 "K������and ���
�+-K�6 "
K�������.

Perf2rrd only looks after the storage of data in an RRD database and does
not provide any tools to graphically display the data saved there. The
Perf2rrd author Marc DeTrano refers here to the ����� tool (see Section
19.4, page 420). It can be advantageous to use this, because on the one
hand ����� allows far more than just the one display provided by Nagios-
graph, and on the other hand you do not have to struggle with regular
expressions in Perl.

19.3.1 Installation

For the installation you should get hold of the archive in tar format from

���!&&���	������	����&, and copy it, preferably to the &
��&�����
hierarchy:

linux:~ # cd /usr/local

linux:usr/local # tar xvzf /path/to/perf2rrd-1.0.tar.gz

...

perf2rrd/run

...

The executable program that is later run is a script called �
�, which in
turn calls the Java bytecode interpreter, @���. Besides this the directory
contains the Java class files and other utilities, with which you can recom-
pile the included shared library ������@���, if required. This is normally
not necessary for the newer distributions.

In order for �
� to be able to find the @��� program, it must be located
in &
��&���. If this is not the case (because you have installed the Java
archive from 
���!&&�����
�����&, for example), then you should set a
link:

linux:~ # ln -s /usr/local/jre1.5.0_02/bin/java /usr/bin/java

416



19.3 Preparing Performance Data for Evaluation with Perf2rrd

A short test shows whether or not Perf2rrd starts correctly:

nagios@linux:local/perf2rrd$ ./run

perf2rrd starting

Using Nagios Config: /etc/nagios/nagios.cfg

Using RRD Repository: /var/log/nagios/rrd

Unable to create RRD Repository

The error message issued in the last line is not a problem at the moment,
since we have saved the RRD databases in a different directory anyway
(page 420).

19.3.2 Nagios configuration

Perf2rrd searches in the Nagios configuration for all the data it requires: to
what file Nagios should write the performance data, the write mode used
for this,7 and the format of the template:

# /etc/nagios/nagios.cfg

...

process_performance_data=1

...

service_perfdata_file=/var/nagios/service-perfdata.dat

service_perfdata_file_template=$TIMET$\t$HOSTNAME$\t\

$SERVICEDESC$\t$SERVICEEXECUTIONTIME$\t$SERVICELATENCY$\t\

$SERVICEOUTPUT$\t$SERVICEPERFDATA$

service_perfdata_file_mode=w

...

The named pipe used here, thanks to �����������	�����	��������G�,
must be created manually—Perf2rrd 1.0 in Nagios 2.0 has problems with
the normal file interface (�����������	�����	��������G�):

linux:~ # mknod /var/nagios/service-perfdata.dat p

linux:~ # ls -l /var/nagios/service-perfdata.dat

prw-r--r-- 1 nagios nagios 0 May 1 10:49 /var/nagios/service-perfdata.dat

In the template the introductory Z1/5H6�/�/5F<.>.[ stamp is missing
(see Section 19.1), since Perf2rrd 1.0 does not parse this correctly. Changes
to the Nagios configuration require a reload:

linux:~ # /etc/init.d/nagios reload

7 With 	, Nagios appends the data to a normal log file; with � it makes it accessible
through a named pipe. See Section 19.1, page 404.

417



19 Graphic Display of Performance Data

Finally you create the directory for the RRD databases:

linux:~ # mkdir /var/lib/rrd/perf2rrd

linux:~ # chown nagios.nagios /var/lib/rrd/perf2rrd

19.3.3 Perf2rrd in practice

Loading the Java Virtual Machine each time Perf2rrd is started requires con-
siderable resources. For this reason you should not use the method of start-
ing Perf2rrd with the parameter �����������	�����	���������������
������� at specific intervals of Nagios, and also should not use the one-
shot mode, with �&�
� ��, in which the software processes one file at a
time. In theory this would make it possible to run Perf2rrd regularly with
a cron job. Instead, it is recommended that you keep the program running
permanently.

When using this for the first time, we recommend that you switch on the
debugging mode, which will show any problems that occur. The option ��
specifies the directory in which the tools should create and update the RRD
databases:

nagios@linux:local/perf2rrd$ ./run -d /var/lib/rrd/perf2rrd -x

perf2rrd starting

Using Nagios Config: /etc/nagios/nagios.cfg

Using RRD Repository: /var/lib/rrd/perf2rrd

Debug Mode is on

Reading perfdata from named pipe.

Perf Data File is : /var/nagios/service-perfdata.dat

I believe we are using Nagios ver. 2

Object Cache File is : /var/nagios/objects.cache

Nagios interval_length 60

called update with: .../eli02+PING+rta.rrd 1114938329:0.079

called update with: .../eli02+PING+pl.rrd 1114938329:0.0

/var/lib/rrd/perf2rrd/sap-14+SAP-3202+time.rrd created.

called update with: .../sap-14+SAP-3202+time.rrd 1114938688:0.030775

...

The output of the Nagios configuration file, the RRD repository, and the
data transfer mode (����� ����) is followed by the time unit used by Na-
gios (and set with the ��������������
 parameter). Normally this is 60
seconds, that is, a check interval of 2 is five minutes long. It is extremely
important that this parameter is correctly recognized, since Perf2rrd deter-
mines the step interval of the RRD database by multiplying the �������
�
������������ and ��������������
 parameters together.

All measured values that occur during a step interval are averaged by the
database. If this time period is too small, it is possible that the database

418



19.3 Preparing Performance Data for Evaluation with Perf2rrd

will never issue any values, since it expects considerably more data than it
obtains for saving.

While Nagiosgraph works with a fixed five-minute interval, Perf2rrd adjusts
itself to the Nagios configuration. The software only takes into account the
interval when creating the RRD database, however; changing the Nagios
configuration later on has no further consequences. The only thing you
can do here to alter this is delete the RRD database and set it up again.

Perf2rrd in permanent operation

Operating Perf2rrd on a named pipe has one disadvantage: if Nagios restarts,
it closes the pipe before opening it again. Unfortunately when the pipe
closes, Perf2rrd closes as well.

This can be prevented by the use of the Daemon Tools by Daniel J. Bern-
stein. They monitor programs and restart them, if these programs should
ever stop. They are themselves started through an &���&������� entry by
the init process, and are restarted if they were to shut themselves down at
some point. The Daemon Tools tar file can be obtained from 
���!&&���
�����&�����������&��������
��� and it is unpacked in the directory
&
��&�����&���:

linux:~ # cd /usr/local/src

linux:local/src # tar xvzf /path/to/daemontools-0.76.tar.gz

admin

admin/daemontools-0.76

admin/daemontools-0.76/package

admin/daemontools-0.76/package/README

...

admin/daemontools-0.76/src

This creates the directory �����&������������+�C', with the subdirec-
tories ������� and ���. From there you should run the ������� script,
which compiles and installs the program:

linux:local/src # cd admin/daemontools-0.76

linux:admin/daemontools-0.76 # package/install

The binaries land in the newly created directory ������������+�C'&����
���� and remain there. The installation routine also sets up symbolic links
pointing to them from the—also newly created—folder &�������.

The ������� script also includes the following line in the file &���&�����
���, which ensures that the Daemon Tools run permanently:

SV:123456:respawn:/command/svscanboot

419



19 Graphic Display of Performance Data

The program ���������� searches regularly for new or crashed daemons.
For this purpose it scans the &������� directory, which is also created dur-
ing the installation. Just one symbolic link is required to have Perf2rrd
monitored:

linux:~ # ln -s /usr/local/perf2rrd /service/perf2rrd

The Daemon Tools search in this directory for a script called �
� and start
it. In order for �
� to be able to find the path to the RRD repository, an
actual command-line option is entered in the script file instead of E;:

# exec java -cp $classpath perf2rrd $*
exec java -cp $classpath perf2rrd -d /var/lib/rrd/perf2rrd

Starting and ending Perf2rrd is now taken over by the program ���:

linux:~ # /command/svc -d /service/perf2rrd

linux:~ # /command/svc -u /service/perf2rrd

The �� option (for down) stops the service specified, and �
 (up) starts it
again. It is not necessary to run it at the beginning, since the Daemon Tools
regularly scan the &������� directory for new services and automatically
start them. This is important insofar as the Nagios-2.0 beta versions, on
which this book is based, had problems if the configured named pipe was
not read. Then it might not deliver any more data at all until a reload or
restart. Whether this problem has been fixed in the final version 2.0 of
Nagios could not be clarified at the time of going to press.

19.4 The Graphics Specialist �����

From the RRD databases, generated for example by Perf2rrd or Nagios-
graph, the CGI script ����� creates interactive graphics—simple ones rela-
tively quicky, whereas for more complex ones you need to know a bit more
about the RRDtools.8

19.4.1 Installation

For the ����� installation, you need to obtain the current tar file from

���!&&���������������&�����& and unpack it to its own subdirectory
in the CGI hierarchy9 on the Web server:

8 Apart from the documentation on the homepage ���������������������
�, the tu-
torial included (�	� ���������	�) is a useful starting point, as well as the man page
�	� ���
�	��.

9 Which directory this is depends on the distribution or Apache configuration you are
using.

420



19.4 The Graphics Specialist �����

linux:~ # cd /usr/lib/cgi-bin

linux:lib/cgi-bin # tar xvzf /path/to/drraw-2.1.1.tar.gz

drraw-2.1.1/

...

drraw-2.1.1/drraw.cgi

drraw-2.1.1/drraw.conf

drraw-2.1.1/icons/

...

The directory created by this is then renamed to �����:10

linux:lib/cgi-bin # mv drraw-2.1.1 drraw

��������� itself requires, apart from Perl, the Perl CGI module (�"6���),
and the RRDtools, from at least version 1.0.47; nothing will work below
version 1.0.36. If your distribution does not include a current version, you
should obtain the sources from 
���!&&���������������& and compile
them yourself:

linux:~ # cd /usr/local/src

linux:local/src # tar xvzf /path/to/rrdtool-1.0.49.tar.gz

...

linux:local/src # cd rrdtool-1.0.49

linux:src/rrdtool-1.0..49 # ./configure

...

linux:src/rrdtool-1.0..49 # make

...

linux:src/rrdtool-1.0..49 # make install

...

linux:src/rrdtool-1.0..49 # make site-perl-install

...

The CGI script ��������� uses the Perl module 55<�, which after the in-
stallation with ���� �����������������, is found automatically.

19.4.2 Configuration

The ����� configuration is contained in the file ���������	:

linux:cgi-bin/drraw # egrep -v ’^#|^$’ drraw.conf

...

%datadirs = (’/var/lib/rrd’ => ’[RRDbase]’,

);

$vrefresh = ’120’;

@dv_def = ( ’end - 6 hours’, ’end - 28 hours’, ’end - 1 week’, ’end - 1

10 A symbolic link would also be possible, but then Apache must be configured so that it
follows symbolic links, which is normally not automatically the case.

421



19 Graphic Display of Performance Data

month’, ’end - 1 year’ );

@dv_name = ( ’Past 6 Hours’, ’Past 28 Hours’, ’Past Week’, ’Past Month’,

’Past Year’ );

@dv_secs = ( 21600, 100800, 604800, 2419200, 31536000 );

$saved_dir = ’/var/lib/drraw/saved’;

$tmp_dir = ’/var/lib/drraw/tmp’;

...

The extract shown specifies the RRD repository (here: &���&���&���) as
the most important detail, but several directories can also be specified:

%datadirs = (’/var/lib/rrd’ => ’[RRDbase]’,

’/data/rrd’ => ’[RRDdata]’,

);

The text in square brackets (e.g., Z55<����[) appears later on the Web in-
terface, which allows a distinction to be made between various different
repositories. The variables X�����	, X�������, and X������� influence
the layout and number of graphics.

The configuration shown above generates one graphic more than the stan-
dard configuration. This represents the past six hours: the extended state-
ment P���M�' 
�
��P in X�����	 describes the time period for �������
(see ��� �������
), in X������� the representation is given a suitable ti-
tle with P���� ' 8�
��PD and X������� contains the six hours, converted
into (�-'++) seconds, displayed by ����� as a time period in a separate
graphic.

The repository must be readable for the user with whose rights the Web ser-
ver is running, and the directories specified in E��������� and E�������
must also be readable. If a user other than �������� runs this, the follow-
ing command must be adapted accordingly:

linux:~ # mkdir -p /var/lib/drraw/{saved,tmp}

linux:~ # chown -R www-data.www-data /var/lib/drraw

Data arrives in the temporary directory E��������, whose contents can
be deleted at any time, whereas in E��������� ����� stores configuration
data which the program needs in order to access already created graphics
later on. This data must not be lost.

����� implements a simple access protection in three stages: read-only (+),
restricted editing (-), and full access (�). Users logged in to the Web server
automatically obtain level 2. Nonauthorized users are treated as �
���s
and assigned level +. To avoid the hassle with authentication at the begin-
ning, you can grant the user �
��� full access via the following directive in
the configuration file:

%users = ( ’guest’ => 2 );

422



19.4 The Graphics Specialist �����

19.4.3 Practical application

The CGI script in the CGI directory of the Web server can be addressed
through the URL 
���!&&��������	
�	&�������&�����&���������.

Figure 19.2:
The ���	� start
menu

New graphics are generated in the menu item Create a new graph in the
start picture, which is shown in Figure 19.2. The dialog shown in Figure
19.3 allows the appropriate RRD database to be selected. Using a regular
expression11 in the Data Source filter regexp field, the data sources available
can be further restricted; this expression can also be a simple literal text,
such as ����-�.

Figure 19.3:
Selecting the data
source

Once you have chosen an RRD database, you just need to specify the round-
robin archive (RRA) to be used. Each of these archives saves data in a partic-

11 POSIX regular expression; see �	� / ��
�#.

423



19 Graphic Display of Performance Data

ular form, processed with a consolidation function: the .H/5."/ function
averages all measurement data that accumulates in a measurement period,
�6 saves only the minimum value of the data in an interval, and �.U saves
only the maximum. Since the original data is lost, the archives must be
specified when the round-robin database is created; maximum values can
only be recalled later if this was taken into account at the time.

If you cannot remember what archives exist, you can display them using
the button 55< 6�	� 	�� �������� <=. Clicking on the .�� <=(�) ��
<��� 1�
���� button takes you to a dialog where you first have to scroll
down a bit to reach the item <��� 1�
��� ���	��
������ (Figure 19.4).
There you can fine-tune the desired graph—now or later. You can define
your own colors, and whether a line or a surface will be shown. You should
only make use of the other possibilities if you are familiar with the concepts
of the RRDtools and the way they work.12

The Update button provides a preview of the finished graphic, which at the
same time reveals the ������� options used (Figure 19.5). When you save,
with Save Graph, you obtain a link in the form

http://nagiosserver/cgi-bin/drraw/drraw.cgi?Mode=view;Graph=11149589.4932

with which the graphic can be accessed at any time. Alternatively you can
now find the graphic in the ����� starting menu under All Graphs.

Figure 19.4:
Fine-tuning the

graphic
configuration

12 There are a number of tutorials on the homepage of the RRDtools author, To-
bias Oetiker, at ��������������������F����:���������������
�������������
����#��������.

424



19.4 The Graphics Specialist �����

Figure 19.5:
Preview and
specifying the
������� options

Figure 19.6:
The finished graphic
represents different
time periods

The link mentioned when you save a graphic can be recorded in a ��������
�����	� object, making it directly accessible through the Nagios interface:

425



19 Graphic Display of Performance Data

define serviceextinfo{

service_description PING

host sap-12

notes_url /nagiosgraph/drraw/drraw.cgi?Mode=view;Graph=11149589.4932

icon_image graph.gif

icon_image_alt View graphics

}

With templates and dashboards, ����� includes other features, which can-
not be discussed in detail here, for reasons of space. Templates allow sev-
eral sources of the same type to be shown in the same graphic. What these
are can be specified in Create a new Graph (see Figure 19.3). Since you can
only add one source at a time there, you must click the Add button for each
separate source, before moving on to the next one.

A dashboard presents a display containing several preview graphics. If you
click on one of the graphics, you are shown the detailed representation.
The interactive menu Create a Dashboard contains brief instructions where
you can obtain help on the two features.

19.5 Automated to a Large Extent: NagiosGrapher

NagiosGrapher from Netways, the host of The Nagios Exchange Platform

���!&&�������������
��������&, is a powerful representation tool for
performance data, but already a very powerful one. This also saves data
in round-robin databases and uses the RRDtools for processing and rep-
resentation. It claims to be easy to install and to work automatically to a
large extent in contrast to the “competition.” The latter promise has so far
not been kept; as in Nagiosgraph, you have to configure search patterns
in order to interpret the plugin output or performance data correspond-
ingly. The RRD databases are generated by NagiosGrapher automatically;
in addition to this, the tool ������������	� also generates entries.

As soon as it once recognizes the performance data, you don’t have to worry
any more about integrating it into Nagios. A reload is sufficient to make the
������������	� entries generated in the meantime usable in Nagios. The
entries are created “intelligently,” so that if you click on the corresponding
icon in the service summary (see Figure 19.7 on page 434), you are taken
directly to the graphic display of the performance data.

As far as functionality and installation efforts are concerned, NagiosGra-
pher lies somewhere between Nagiosgraph and Perf2rrd: the initial con-
figuration needed is somewhat more than for Nagiosgraph, but the pos-
sibilities of variations in the graphic output are considerably larger, and
you do not have to generate each graphic individually, as is the case with
Perf2rrd/�����.

426



19.5 Automated to a Large Extent: NagiosGrapher

19.5.1 Installation

In addition to the RRDtools (in version 1.2, at least) and the program �
���
���	, NagiosGrapher requires a series of Perl modules: �"6, �"6!!����,
��������!!1�����,����, <���!!<
����,F���!!=�������,F���!!����,
"<, 6:!!8�����, 6����!!������, �:16U, 55<�, 1�������, >���!!8�5��,
>���!!#����, and $56!!/�����.

There are two alternatives for installing them, namely from the packages in-
cluded in the distribution or from CPAN. On Debian “Etch” and comparable
Debian-based systems, you have all the modules if you select the packages
�
�����	, �������, ��������
���, �����������������������, ������
��������, ����������, ������������, and ���
������� for installation.
In other distributions you must search for the above-mentioned modules,
preferably using the graphic package installer in the distribution. You can
see whether you have installed all the required modules by running ����
�������� after the ���	��
�� command. Installing each of the most cur-
rent module versions from the CPAN is done with the command ����
	������.

The NagiosGrapher sources can be obtained from NagiosExchange,13 and
they are unpacked into the directory &
��&�����&���:

linux:~ # cd /usr/local/src

linux:local/src # tar xvjf /path/to/NagiosGrapher-1.6.1.tar.bz2

...

linux:local/src # cd NagiosGrapher-1.6.1

linux:src/NagiosGrapher-1.6.1 # autoconf

The command �
�����	 generates a ���	��
�� script. Before you run
this, edit the file ���	�������
�, which provides various layouts. In the
NagiosGrapher documentation, this term means the definition of all instal-
lation paths that are required.

���	�������
� contains a series of distribution-dependent suggestions
that need to be changed in certain aspects in order to comply with the
conventions in this book. For this purpose it is best if you copy the section
that matches your distribution and rename it to ^#���
� ����������_
and modify a number of entries.14 For Debian “Etch,” the following entries
apply (the changed values are shown in bold print):

# config.layout

<Layout nagiosbook>

prefix: /usr/local/nagios

nagios_config: /etc/nagios

13 ������������	
��
�#��	�
����
��$6'(3
14 Starting from NagiosGrapher 1.7, the file �����
��	 ��� already contains the entry

J"	 ��� �	
��
����K.

427



19 Graphic Display of Performance Data

nagios_config_cgi: /etc/nagios/cgi.cfg

nagios_images: ${prefix}/share/images

nagios_images_logos: ${prefix}/share/images/logos

nagios_folder_cgi: ${prefix}/sbin

nagios_contribution: ${prefix}/contrib

perl_inc: ${prefix}/perl/lib

ng_config: /etc/nagios

ng_config_sub: ${ng_config}/ngraph.d

ng_daemon: /var/nagios_grapher

ng_srvext_file: /etc/nagios/serviceextinfo.cfg

ng_srvext_dir: /etc/nagios/serviceext

ng_interface_pipe: /var/nagios/rw/ngraph.pipe

ng_perffile_path: /var/nagios/

ng_logfile: /var/nagios/ngraph.log

ng_rrd: /var/lib/rrd/nagios_grapher

ng_rrd_font: /usr/share/fonts/truetype/ttf-dejavu/DejaVuSansCondensed

.ttf

ng_cgi: /nagios/cgi-bin

ng_logos: /nagios/images/logos

ng_pid_file: ${ng_daemon}/nagios_grapher.pid

init_script_dir: /etc/init.d

logrotate_conf_dir: /etc/logrotate.d

</Layout>

The path for the Perl modules defined in the parameter �������� corre-
sponds in this case to the directory suggested by Ton Voon for the Perl
module  �����!!��
��� (see page 561).

The new layout is included in the ���	��
�� script:

linux:src/NagiosGrapher-1.6.1 # ./configure --with-layout=nagiosbook

...

You can run ���� �������� to check whether all dependencies, especially
the ones for the Perl modules, have been met:

linux:src/NagiosGrapher-1.6.1 # make testdeps

/usr/bin/perl ./tools/testdeps.pl

Checking Data::Dumper ... found

...

Checking IO::Handle ... found

Checking URI::Escape ... found

Checking Calendar::Simple ... not installed!

make: *** [testdeps] Error 1

If an error occurs, as in this example, you must install the appropriate mod-
ule (here ��������!!1�����). This can be done from the CPAN with the
command

linux:src/NagiosGrapher-1.6.1 # make fixdeps

...

428



19.5 Automated to a Large Extent: NagiosGrapher

For Debian-based distributions, the package naming scheme is quite sim-
ple: The Perl module ��������!!1����� is turned into the package ����
��������������������, which is installed with ������� or �����
��:

linux:src/NagiosGrapher-1.6.1 # apt-get install libcalendar-simple-perl

...

Running ���� �������� again shows whether all requirements have now
been met.

An already installed NagiosGrapher is updated with ���� 
�����, since
the ���� �������, intended for a new installation, does not take account
of already existing configuration files and simply overwrites them.15 ����
������� creates all the necessary directories, ensures that the correct ac-
cess permissions are set, and copies all the files to where they should go:

linux:src/NagiosGrapher-1.6.1 # make install

mkdir -p /etc/nagios/serviceext

chown -R nagios /etc/nagios/serviceext

mkdir -p /var/lib/rrd/nagios_grapher

chown -R nagios /var/lib/rrd/nagios_grapher

...

=============================================================

Just a few steps to run the grapher ...

...

The output of ���� ends with some instructions on the configuration of
NagiosGrapher and of Nagios, which we will examine in more detail on
page 430 and page 443.

A core component of NagiosGrapher is the daemon �����������, which is
started via the startup script �����������
�� in &���&������:

linux:~ # /etc/init.d/nagios_grapher start

So that the daemon starts automatically on system start, corresponding
symlinks are set in distributions that use the system V init. On Debian/
Ubuntu this is done by the system script 
����������:

linux:~ # update-rc.d nagios_grapher defaults 98

OpenSUSE includes the script ������� for this purpose:

linux:~ # insserv nagios_grapher

15 Even when running �	�� ���	��, it doesn’t hurt for you to back up the configuration
files beforehand.

429



19 Graphic Display of Performance Data

In Fedora this task is performed by �
����	��:

linux:~ # chkconfig --add nagios_grapher

linux:~ # nagios on

19.5.2 Configuration

The configuration file �����
���	�

The configuration file �����
���	� contains a global ���	�� section with
paths and general settings. This is followed by an include instruction with
the parameter �	�����, which, as in Nagios, integrates all the configuration
files located in the directory specified. In contrast to Nagios, the configura-
tion files for NagiosGrapher all end in ���	�.

It can be seen even from a quick glance that the syntax complies with the
convention used by Nagios:

# /etc/nagios/ngraph.ncfg

define config {

interface file

perffile_path /var/nagios/

pipe /var/nagios/rw/ngraph.pipe

port 5667

buffer 1024

pidfile /var/nagios_grapher/nagios_grapher.pid

user nagios

group nagios

step 300

heartbeat AUTO

rrdpath /var/lib/rrd/nagios_grapher/

tmppath /tmp/nagiosgrapher/

fontfile /usr/share/fonts/truetype/ttf-dejavu/DejaVuSansCon

densed.ttf

serviceext_type MULTIPLE

serviceextinfo /etc/nagios/serviceextinfo.cfg

serviceext_path /etc/nagios/serviceext

url /nagios/cgi-bin/graphs.cgi

#notes_url /wiki/index.php/$HOSTNAME$#$SERVICEDESC$

notes_url

nagios_config /etc/nagios

cgi_config /etc/nagios/cgi.cfg

430



19.5 Automated to a Large Extent: NagiosGrapher

icon_image_tag dot.png’ border="0"></a><A TARGET="_blank" HREF="g

raphs.cgi?###URL###"><img src=’###IMAGESRC###’ ’

icon_image_src /nagios/images/logos/graph.png

icon_image_script /nagios/cgi-bin/rrd2-system.cgi?###URL###&start=-5

400&title=Actual&width=20&height=20&type=AVERAGE&only-graph=true

icon_image_static true

log_file /var/nagios/ngraph.log

log_level 1023

rrd_color_background ffffff

rrd_color_font 333333

rrd_color_arrow ff0000

rrd_color_frame ffffff

rrd_color_grid

rrd_color_canvas ffffff

rrd_color_shadea c0c0c0

rrd_color_shadeb c0c0c0

fe_use_browser_all false

fe_use_browser_for nagiosadmin

fe_use_browser_url false

fe_use_timefilter true

use_authentication true

...

}

# Includes

cfg_dir=/etc/nagios/ngraph.d

The ���	�� section contains the following parameters:

�����	���
This defines the type of connection to Nagios. Possible connections
are ����, �������, and 	���. For the ���� type, Nagios and the
����������� daemon communicate via a named pipe (see the ����
parameter); for the ������� type, Nagios sends the performance data
via the UDP transport protocol over a network socket (see parameter
����).

In contrast to the interface types just described, the 	��� type (avail-
able from version 1.7) makes use of the template mechanism,16 which
means that Nagios writes the performance data to a file which is pe-
riodically evaluated by the daemon �����������. This makes pos-
sible, for the first time, bulk processing of performance data, thus
saving resources. The default interface type is ���� up to version 1.6,
and 	��� from version 1.7.

16 See Section 19.1.1 on page 405

431



19 Graphic Display of Performance Data

���		�������

This defines the directory for the file to which Nagios writes all per-
formance data via the template mechanism.

����
This defines a named pipe to which Nagios writes data with the pro-
gram 	�	������� and from which the collector script �����������
reads them out again. The named pipe is created automatically by
���� ������� from version 1.6.1.

����
This specifies the UDP port for the ������� communication type.
The default is 2''C.

�
		��
This determines the size of the buffer for sending performance data
via UDP in bytes. The default is 1024 bytes.

���	���
This defines the file to which NagiosGrapher writes its own process
ID on starting.


���, ���
�
These define the user and group with whose permissions the daemon
����������� runs. Here it makes sense to specify the user and group
with whose permissions Nagios is working.

����
This defines the step size in seconds for the RRD database. All val-
ues recorded during this period are summarized by the RRDtools in
a single value. ���� therefore also describes the smallest time reso-
lution of data in the RRD database. The value only has an effect on
newly created RRD databases, and a modification made later on has
no effect on existing databases.


��������
The heartbeat defines a time period in seconds, during which the
RRD database always expects data. If no measured value at all arrives
during this period, NagiosGrapher generates an invalid entry (���,
not a number).

In order for valid entries to materialize in the above example, at least
one measured value must arrive every '++ seconds. Since the reso-
lution is '+ seconds, the database contains ten entries for the period
of the “heartbeat.” If one of these values is missing, NagiosGrapher
simply replaces it with the last valid one. If just one measured value
arrives in ten minutes, it will be recorded ten times in the database.

432



19.5 Automated to a Large Extent: NagiosGrapher

������

This specifies the directory for the RRD databases. It must be writable
for the user ������ and (along with the database files) readable for
the Web server user. The directory is created automatically during
the installation of NagiosGrapher.

������

This defines where NagiosGrapher temporarily saves internal XML
files.

	���	���
This specifies the font file for the font used by the RRDtools for label-
ing the graphics.

���������������
This describes how the ������������	� objects are created. With
the 16 "#/ type, NagiosGrapher writes everything to the file specified
in ������������	�.

Nagios 2.0 can also read directories recursively, and in this case it is
better to use the �$#>6�#/ type. Then NagiosGrapher creates a sep-
arate file for each host with the corresponding ������������	� ob-
ject. The directory is specified with the ��������������
parameter.
This must be made known to Nagios through the �	����� directive.


��
This contains the path to the CGI script ����
����� from the point
of view of the Web server (a path starting from the server root) or of
the browser (that is, the complete URL).

������
��
NagiosGrapher automatically generates ������������	� objects; it
is useful to also be able to set the parameter ������
�� (Section
16.4.2 from page 366), for example, to generate a service-related link
to a Wiki entry.

����������	��
This reveals to NagiosGrapher where the standard configuration file
of Nagios is located.

�������	��
This specifies the Nagios CGI configuration file. NagiosGrapher uses
this to find out who, apart from the contact groups, has the right to
query information on all hosts.

��������������
This parameter corresponds to the entry that is later to be found in
the ������������	� object as the ���������� parameter. In the
������������	�object, NagiosGrapher replaces the text AAA$5#AAA

433



19 Graphic Display of Performance Data

with the host and service names. The entry AAA6�."/15�AAA, on the
other hand, is replaced by NagiosGrapher with the contents of the
parameter ��������������.

Here the program outwits Nagios with a trick: ������� is a graphic
that is one pixel in size, which is invisible on the screen. To create a
second, visible icon, ����
����, around it, a hyperlink is set to the
CGI script ����
�����.

Normally if you click on an image specified in ����������, Nagios
will take you to the /������� ��	� page, and the graphic can be
reached at 
�� (Nagios: ������
��) only with another mouse click.
With the trick used here, you can do this directly.

The specification following �������������� must be written on a
single line. Figure 19.7 shows the icon ����
����, which is visi-
ble on the Nagios interface, thanks to the automatically generated
������������	� objects.

Figure 19.7:
The NagiosGrapher
icon (arrow) in the

Nagios Web interface
indicates a

time-related
evaluation for this

service

�����������������
This specifies whether the icon integrated in Figure 19.7 is generated
statically or dynamically. Possible values are ��
� (static icon) or
	���� (dynamically generated icon).

��������������
This specifies a static icon, which NagiosGrapher integrates into ����
����������.

�����������������
This defines a script that generates a mini-view of a graph rather than
a dynamic icon.

����	���
This defines the log file to which the NagiosGrapher writes infor-
mation. If you want log rotation, you have to set it up yourself, as
NagiosGrapher does not clean up automatically. Because Nagios re-
quries write permissions for the file, it is better stored in the Nagios
��� directory (in this case: &���&������).

434



19.5 Automated to a Large Extent: NagiosGrapher

���������
This parameter specifies what information the log file should contain.
Possible values are - (detected services and values), � (performance
data delivered by Nagios which has not been recognized by Nagios-
Grapher), 7 (program states), B (information on the ������������	�
object), -' (RRD actions), and *� (input which is read from the pipe).
For more extensive debugging, there are the values '7 (details of how
regular expressions are parsed) and -�B (advanced information on
how the configuration files are parsed).

If you want to log several of these information types, you just add
the relevant values together, so the most extensive output is obtained
with �22; page 445 shows an example of this. It is recommended that
you only use these log levels for debugging purposes, and you should
normally use + or 7.

����������;
The ��������� options bring color to the Web interface (Figure 19.8):
�����������������
�� defines the background color for the entire
image, ����������	��� the font color, ��������������� the color
of the arrow tips, ����������	���� the frame color for the keys,
�������������� the grid color, and ���������������� the back-
ground of the diagram itself. �����������
���� defines the colors
for the top and left of the frame, and �����������
���� does so
for the right and bottom of the frame. Colors are specified as RGB
values in hexadecimal notation, with a preceding A, as is the norm
for Web pages. Changes to these options take effect immediately the
next time the Web page is reloaded.

Figure 19.8:
The influence of the
����������L color
options

	��
��������������
From version 1.2, NagiosGrapher provides a method of switching
from the display of a specific service to that of other services for

435



19 Graphic Display of Performance Data

any host at all. To do this it integrates a selection window into the
����
����� display (see Figure 19.9).

The value - activates the pulldown menus 
��� and �������, + hides
them.

Figure 19.9:
Whether

NagiosGrapher shows
the ��
� and


������
 fields is
determined by the
����
������
��

parameters

	��
�����������	��
This option allows particular users to use the host/service selection.
Several users can be specified, separated by commas. So that only
the users specified here can see the selection fields for 
��� and
�������, 	��
�������������� must also be set to + at the same
time.

	��
�����������
��
This option allows the selection fields for 
��� and ������� to be in-

serted through the URL ����
�����0�������G-, provided the value
is -. This is not possible if the value is +.

	��
�������	�����
This controls whether the time selection via Start and End appears
in the browser menu (see Figure 19.9 on page 436). The value ��
�
displays the selection, 	���� hides it.


����
�
����������
This defines whether NagiosGrapher should take the result of authen-
tication by Nagios into account or not. The value ��
� allows the
observer only to access hosts and services for which he is responsible
as the contact. The value 	���� switches off authentication entirely,
so that everyone has access to everything.

436



19.5 Automated to a Large Extent: NagiosGrapher

The �	����� configuration parameter already mentioned on page 430 de-
fines a directory containing additional configuration files, in particular the
definition of the various graphs:

cfg_dir=/etc/nagios/ngraph.d

NagiosGrapher examines it recursively for configuration files of any name;
they just need to end in ���	�. The parameter must stand outside the
���	��\] block; there has to be an = sign between the parameter and the
value.

Configuring the graphics—the basic principle

�����
 objects are used to define what data is to be extracted and written to
an RRD database, but the objects also contain information on the display
form. Like Nagios, NagiosGrapher saves the information temporarily in
a cache file, which is why the data collection script ����������� must
be restarted after every change to a configuration file with &���&������&
�����������
�� �������. ����������� also updates the object cache
when this is done.

During its installation, NagiosGrapher provides a number of templates for
�����
 objects; these can be found in the subdirectories �������� and
����� below &���&������&�����
��&���������. These templates all
end in ���	���������� so that they are not considered by NagiosGrapher.
In order to use them, the file extension is renamed:

nagios@linux:nagios/ngraph.d$ cp \

templates/standard/check_ping.ncfg_disabled ./check_ping.ncfg

The example in �
�����������	����������, however, only works with
�
�������� and not with �
�������� (see page 111). So that NagiosG-
rapher can graphically display the average response time ��� (round trip
average) and the �� (packet loss) from the performance data of the �
����
���� plugin,

nagios@linux:libexec/nagios$ ./check_icmp -H linux01

OK - linux01: rta 96.387ms, lost 0%| rta=96.387ms;200.000;500.000;0; pl=

0%;40;80;;

the following �����
 objects are used:

# check_icmp.ncfg

...

# Ping Packet loss

define ngraph{

437



19 Graphic Display of Performance Data

service_name PING

graph_perf_regex pl=([0-9]*)%

graph_value Loss

graph_units %

graph_legend Packet Loss

graph_legend_eol none

page Packet Loss

rrd_plottype LINE2

rrd_color ff0000

}

# Ping RTA

define ngraph{

service_name PING

graph_perf_regex rta=([0-9]*\.[0-9]*)

graph_value RTA

graph_units ms

graph_legend Time to answer

page RTA

rrd_plottype AREA

rrd_color 00a000

}

������������
This consists of a regular expression,17 with which the NagiosGrapher
identifies the service to be displayed in the data passed on. If the
service description in service objects that use the same plugin is pro-
vided with the same prefix, one �����
 definition is enough for all:
<���� matches both <����
��, as well as <������� or <�������.
In order for this to work, the performance data must be structured
identically, which is always the case if the same plugin is used.

����
����	������
With this regular expression, NagiosGrapher finds the value being
searched for in the performance data. The pattern in the round
brackets must match the value itself.

If a plugin does not provide any performance data, you can use ����

���������� instead. The search pattern specified there is applied by
NagiosGrapher to the normal text output of the plugin.

����
����
�
The name of the variable in the RRD database must be unique for
each service and may not contain empty spaces or special characters
(exception: � is allowed).

����
�
����
This parameter defines the unit of the y axis.

17 Since we have a Perl script on our hands, this is, of course, a Perl regexp.

438



19.5 Automated to a Large Extent: NagiosGrapher

����
�������
This contains the key for the variables.

����
�����������
This determines whether and how a line break should be inserted into
the legend after the entry for these graphs. Possible values: ��	� (line
break, line is left-aligned), ���
� (line break, line is right-aligned),
������ (line break, line is centrally aligned), @
���	� (line break,
fully aligned), and ���� (no line break, left-aligned). You can append
to all values the number of empty spaces to be added, separated from
it by a colon: ����!�+ does not create a line break, but the entry is
followed by 20 empty spaces.

����
�����������
This defines a column width for the legend. Instead of formatting
this manually with empty spaces, using ����
�����������, this pa-
rameter specifies how wide the column for a legend entry should be.
Entries that are longer are truncated.

����
This optional parameter ensures that NagiosGrapher displays the vari-
ables in different diagrams if the standardization does not match. All
values which are to be used in a single graphic are given the same
���� entry. For the selection of the “page” to be displayed, the CGI
script contains its own ���� entry field (see Figure 19.10).

Figure 19.10:
The average response
time to pings,
represented by
NagiosGrapher

439



19 Graphic Display of Performance Data

For the two �
�������� outputs, it is recommended that the per-
centage of #���, which is in the value range from 0 to 100, be sepa-
rated from 5>., which can be several thousand milliseconds.

If you leave out the ���� parameter, both graphs—the one for ������
#��� and that for 5>.—are displayed in one graphic.

������������
This parameter defines which drawing function the RRDtools should
use:

#6 /-: simple line,

#6 /�: double line,

#6 /*: extra-fat line,

.5/.: filled out surface,

1>.�3: adds the current value to the previous one. In this case the
display (line or surface) depends on the previous value.

���������
This is the color of the graph in RGB hexadecimal notation (		���� ).

Figure 19.10 shows how NagiosGrapher displays the average response time
5>. for the �6 " service on the host ����-*. The respective output page
���� can be selected at the top of the Web form. In addition you can adjust
the ����
! and 
���
�! of an individual graphic, as well as the 5�	���

rate.

Starting with version 1.7, NagiosGrapher also has a zoom function: If you
click on one of the graphics in Figure 19.10, you can see it in greater detail.
You can select a time period in the diagram with the mouse, and NagiosG-
rapher will display the diagram for this period after the mouse button has
been released.

Advanced options of graphic reprocessing

You may not always want the measured values to be displayed directly. With
the CDEF feature of the RRDtools you can add new values that are calcu-
lated from the ones recorded.

As an example, we will use the output of the �
�������� plugin (section
7.1, page 158), which determines amount of a file system occupied:

DISK OK - free space: /usr 287 MB (19%);| /usr=1225MB;1359;1465;0;1511

The used space is shown as an dark grey area, the free capacity as a light
grey one. The performance data provides the current used space (-��2�=)

440



19.5 Automated to a Large Extent: NagiosGrapher

and uncritical warning limits, as well as the minimum and maximum (the
size of the file system). The capacity that is still free is determined as the
difference between the maximum and the current occupied space. In addi-
tion, the unit of MB is somewhat unfortunate: the graphic would show 10
GB as -+� MB. For this reason you first determine the value that the plugin
returns, so that you can then scale it as you wish:

# (1) readout current occupancy of hard drive space,

# but do not show it as a graphic

define ngraph{

service_name fs_

graph_perf_regex =([.].+)MB;[.].+;[.].+;[.].+;[.].+

graph_value disk_used

graph_units Bytes

graph_legend used space

rrd_plottype AREA

rrd_color 00a000

hide yes

}

The regular expression specified after ������������ matches all service
descriptions that start with 	�� (short for file system), that is, 	������,
	��
��, 	�����, 	�����, etc. The parameter 
��� ensures that the CGI
script does not show the graphs. Instead, NagiosGrapher just stores the
data in a database.

In the second step, the values determined are standardized with the RRD
feature �</F:

# (2) display used hard drive space in scaled form

define ngraph{

service_name fs_

type CDEF

graph_value DISK_USED

graph_legend used space

graph_calc disk_used,1024,1024,*,*
rrd_plottype AREA

rrd_color 666666

hide no

}

���� identifies the entry as a �</F definition, which calculates new values
from already existing ones. ����
����
� must be unique, which is why
the entry here is given its own name.

����
����� finally processes the data. This parameter expects the instruc-
tions in reverse Polish notation (RPN).18 In this, the values to be processed
are pushed, in turn, onto a stack, to be removed and operated on later.

18 An introduction to RPN can be found at ��������������������F����:��������
�������
����������������������	���������.

441



19 Graphic Display of Performance Data

Adding 2 + 3 is noted in RPN accordingly as �D*DK. In the example we mul-
tiply the variable defined on page 441, �����
���, by 10242 so that the
result is in bytes. 
��� �� now ensures that this value is displayed.

To display available space according to the same pattern, we first determine
the entire space available (��������), which NagiosGrapher should not
display, calculate the difference between �������� and the above �����

��� value, and convert the result to bytes:

# (3) defining the space available,

# but not displaying it in the graphic

define ngraph{

service_name fs_

graph_perf_regex =[.].+MB;[.].+;[.].+;[.].+;([.].+)

graph_value disk_max

graph_legend max space

rrd_plottype LINE2

rrd_color 0000a0

hide yes

}

# (4) calculate and display free space

define ngraph{

service_name fs_

type CDEF

graph_value DISK_MAX

graph_legend free space

rrd_plottype STACK

rrd_color CCCCCC

graph_calc disk_max,disk_used,-,1024,1024,*,*
hide no

}

The corresponding formula is (�������� –�����
���)×10242. The plot
type 1>.�3 ensures that the value determined from the previous �����
���
value is placed on top of this. Figure 19.11 shows a corresponding out-
put: The lower part of the screen represents the current used space on the
file system for the past six hours and the past day and week, and the top
part shows the remaining free hard drive space. The graph also contains a
monthly and a yearly view, not shown here.

At this point it should again be emphasized that with this definition, Na-
giosGrapher automatically records all services that begin with 	�� and are
matched by the search pattern, writes the data to an RRD database, and
generates a corresponding ������������	� entry, which appears auto-
matically in the Web interface after a Nagios reload (see Figure 19.7 on
page 434).

After changes have been made to the configuration file �����
���	�, the
file collector ����������� must also be restarted:

linux:~ # /etc/init.d/nagios_grapher restart

442



19.5 Automated to a Large Extent: NagiosGrapher

Figure 19.11:
Displaying the
calculated load data

Nagios configuration

Nagios passes on data for NagiosGrapher through the command interface,
that is, each individual result leads to an external command being started.
Correspondingly, the Nagios main configuration file contains the following
parameter:

# /etc/nagios/nagios.cfg

...

process_performance_data=1

service_perfdata_command=process-service-perfdata

...

The definition of the command object �������������������	����—
which is best achieved by creating a separate file with the name ��������
�����������	����������
��	�—depends on the interface type used.

443



19 Graphic Display of Performance Data

For �����	��� ����, the program 	�	������� is used, whereas for ������
	��� �������, NagiosGrapher requires the program 
����
�.

The definition of the command with 	�	������� is as follows:

# process_service_perfdata_ngraph.cfg

...

define command{

command_name process-service-perfdata

command_line /usr/local/nagios/contrib/fifo_write /var/nagios/rw/ngr

aph.pipe ’$HOSTNAME$\t$SERVICEDESC$\t$SERVICEOUTPUT$\t$SERVICEPERFDATA$\

n’ 3

}

...

�������������������	���� calls the script 	�	����������, which is
given three arguments as parameters: the named pipe, a string with the
performance details, and a timeout in seconds. The latter ensures that the
script aborts the action if the data cannot be written within three seconds.
The ������������ must, as usual, be writen on one line.

For the program 
����
�, the definition of the command is somewhat sim-
pler:

# process_service_perfdata_ngraph.cfg

...

define command{

command_name process-service-perfdata

command_line /usr/local/nagios/contrib/udpecho

}

...


����
� does not need any parameters: It retrieves the required informa-
tion from the environment variables  ."6:1�8:1> .�/, ."6:1�1/5H6�/�
</1�,  ."6:1�1/5H6�/:$>�$>, and  ."6:1�1/5H6�/�/5F<.>.. Nagios
has to make these available with �������������������������G- (see
page 592) so that 
����
� can provide NagiosGrapher with usable data.19

For the 	��� interface type, the command �������������������	����
has another meaning: It is not called for every check result, but rather
shifts the file into which Nagios writes all performance data via the tem-
plate mechanism:

# process_service_perfdata_ngraph.cfg

...

define command{

command_name process-service-perfdata

19 Environment macros are described in Section D.1.8 from page 631.

444



19.5 Automated to a Large Extent: NagiosGrapher

command_line mv /var/nagios/service-perfdata /var/nagios/service-per

fdata.$TIMET$

}

...

The current timestamp is simply appended to the file name �����������	�
����. The daemon ����������� searches for all files called ��������
���	��������������� from the specified directory and processes these.

What data is written to the file by Nagios is specified by �����������	����
�	������������ in ��������	�:

# /etc/nagios/nagios.cfg

...

service_perfdata_file_processing_command=process-service-perfdata

service_perfdata_file=/var/nagios/service-perfdata

service_perfdata_file_template=$HOSTNAME$\t$SERVICEDESC$\t$SERVICEOUTPUT

$\t$SERVICEPERFDATA$\t$TIMET$

service_perfdata_file_mode=a

service_perfdata_file_processing_interval=60

...

Compared to the variation with 	�	����������, Nagios now also passes on
a timestamp for each check. This is necessary because the data are not pro-
cessed immediately, but periodically at intervals of �����������	�����
	�����������������������—this is 60 seconds in our example.

If you want to squeeze a little more performance out of this, you can se-
lect a temporary file system such as &���&�
� for the �����������	����;
files. The file then is not written to the hard drive, but remains in the main
memory of the Nagios server.

As usual, changes to the Nagios configuration require a reload:

linux:~ # /etc/init.d/nagios reload

The success of this can be clearly observed in the log file if you set the
loglevel to 255 (see page 435).20 For the sake of clarity we will omit the
timestamp at the beginning of the line:

CFG: buffer => ’1024’

CFG: cgi_config => ’/etc/nagios/cgi.cfg’

...

PRG: Starting up collect2.pl (PID: 25003) ...

PRG: using UDP socket (port: 5667)

...

NET: got udp message from localhost:32783

20 In general: 2n −1 with n � 8

445



19 Graphic Display of Performance Data

PIPE: swobspace PING OK - 192.168.1.9: rta 0.104ms, lost 0% rt a

=0.104ms;200.000;500.000;0; pl=0%;20;60;;

REGEX: 2 blocks for ’PING’ found.

REGEX: graph_value=RTA

REGEX: output=perfdata

REGEX: regex=m/rta=([0-9]*[̇0-9]*)/i

REGEX: perfdata=rta=0.104ms;200.000;500.000;0; pl=0%;20;60;;

REGEX: match=0.104

REGEX: graph_value=Loss

REGEX: output=perfdata

REGEX: regex=m/.*pl=([0-9]*)/i

REGEX: perfdata=rta=0.104ms;200.000;500.000;0; pl=0%;20;60;;

REGEX: match=0

VALUES: [swobspace][PING]: RTA=0.104 Loss=0

RRD: rrdtool update /var/lib/rrd/nagios_grapher/swobspace/f66ffe61c885 d

e2d8b6d0c41ff444b39.rrd --template=RTA:Loss N:0.104:0

...

The label �5" identifies program states, such as the restart here. �6�/ re-
produces in full all the data taken from the named pipe (host name, service
description, plugin output, and performance data, each separated by a tab).
5/"/U shows how the search for matching entries takes place and how the
values are extracted from them. 55< reveals the commands performed with
������� and H.#$/1 shows the recognized values(�6 ").

19.6 Smooth Plotting with PNP

PNP is not PerfParse—with this recursive acronym, which is an allusion to
the PerfParse tool (not described in this book)—the authors of PNP, Jörg
Linge and Hendrik Bäcker, are clearly heralding the virtues of their own
tool for processing performance data: It is allegedly very easy to install (in
contrast to PerfParse) and can be used (almost) without configuration, yet
provides extensive configuration options for advanced usage.

Besides providing the usual graphs for a specific check, PNP also creates
an overview of all graphs belonging to one host. An AJAX-based input field
allows host names to be typed in. The names are auto-completed during
input, and a match list of alternative completions is displayed. The graphics
have a sophisticated appearance and can be exported to PDF format.

PNP takes the performance data directly from the area reserved for the
plugin output, that is, only plugins that display performance data in the
standard format can be used. In contrast to NagiosGrapher, no data can
be extracted from the normal text output. To compensate for this slight
limitation, PNP outputs the performance data for all plugins automatically.
If PNP does not recognize the plugin, it uses a generic template.

446



19.6 Smooth Plotting with PNP

On the PNP homepage21 you can find addresses of English mailing lists22

and a German-language forum, where you can, however, ask questions in
English.23 The English homepage is /cmdhttp://www.pnp4nagios.org/pnp/.

The following description refers to PNP version 0.4; older versions do not
have all the features described here.

19.6.1 Installation

The requirements for installation are quite minimal: Apache, Perl (with-
out any special modules), PHP4 from version 4.3.0 or PHP5, and all the
RRDtools.24 If possible you should install the Perl module RRDs from the
Perl package included with your distribution (e. g., ������������ in De-
bian). The Perl script �����������	�������, which forwards Nagios per-
formance data to PNP, then accesses the RRD databases directly, without
running an external program.

The PNP source code is downloaded from the homepage25 and is unpacked
appropriately in the directory &
��&�����&���:

linux:~ # cd /usr/local/src/

linux:local/src # tar xvzf /path/to/pnp-0.4.tar.gz

...

linux:local/src # cd pnp-0.4

linux:src/pnp-0.4 # ./configure --sysconfdir=/etc/pnp

...

Finally, ���� ��� compiles the necessary C programs, and ���� �������
installs PNP in full. In the ���	��
�� command, ��������	���G&���&���
allows for the later installation of the configuration examples in &���&���,
in accordance with the conventions used in this book. Other ���	��
��
options are shown with �&���	��
�� ��
���.

19.6.2 The standard configuration

During the installation of PNP a variety of data is placed in the configura-
tion directory (in this case &���&���), including ���	����
�, the config-
uration file for the Web interface. There you must first check to see if the
paths to ������� and to the performance data directory are correctly set:

21 ����������������	
��
���
�����
22 ����
�����
�
�
��������
�������	���	����
�����������	
��
��
��
 (gen-

erally on PNP usage) and ����
�����
�
�
��������
�������	���	����
������

�����	
��
������ (feature requests, bugs, patches, and the like)
23 ��������	
��
�����	�������������	������5��	����H32
24 ���������������������
�, see also page 421.
25 ����������������	
��
���
�����

447



19 Graphic Display of Performance Data

# /etc/pnp/config.php

...

$conf[’rrdtool’] = "/usr/bin/rrdtool"

$conf[’rrdbase’] = "/usr/local/nagios/share/perfdata"

...

&���&��� also contains example configurations for the data collector ����
��������	�������, in the files �����������	������	��������and ����
�	��������. Neither of these are absolutely essential: PNP also functions
correctly without any adjustments. But in order to use the data collector
you need to rename the files �����������	������	� and �����	� and
modify them accordingly. If the Perl module RRDs is installed, then it is
activated in the file �����������	������	�with $1/�55<1G-:

# /etc/pnp/process_perfdata.cfg

TIMEOUT = 5

USE_RRDs = 1

RRDPATH = /usr/local/nagios/share/perfdata

RRDTOOL = /usr/bin/rrdtool

CFG_DIR = /etc/pnp/

RRA_CFG = /etc/pnp/rra.cfg

RRA_STEP = 60

LOG_FILE = /var/nagios/pnp-perfdata.log

LOG_LEVEL = 0

The second change (here in bold type) to the sample file refers to the Nagios
directory for log files, which in this book is named &���&������.

�����	� is used as a template for the RRD databases to be newly created. If
an existing database is to be modified, it must be deleted; but then all exist-
ing data will be lost. The template is a good compromise between length of
storage and time resolution: This causes data with a time resolution of one
hour to be stored for up to four years, such an RRD database that is about
400 KB in size. Information on settings for RRD databases is provided by
the command ��� ���������.

In the directory &���&��� there is also the configuration file ������	� for
the Nagios Performance Data C Daemon ���� and a subdirectory �
����
�������� for so-called custom templates. Both will be discussed on page
453.

Adjusting the Nagios configuration

There are a number of ways in which Nagios can pass on performance data
to the PNP data collector �����������	�������. The simplest way is for
the system to run a separate program for each event, called �����������	�
��������. To do this, performance data processing is switched on in the
file &���&������&��������	�with the parameter �����������	�������

448



19.6 Smooth Plotting with PNP

�����, and the command to be executed is defined with �����������	�
������������:

# /etc/nagios/nagios.cfg

...

illegal_macro_output_chars=‘~$&|"<>

# -- perfdata

process_performance_data=1

service_perfdata_command=service-perfdata-pnp

...

The performance data of various plugins contains names that are set in sin-
gle quotes. So that these do not get lost in the plugin output, a single quote
may not be used in the parameter ���������������
��
���
���.26

The command �����������	�������� runs �����������	�������:

# /etc/nagios/global/commands/service-perfdata-pnp.cfg

define command{

command_name service-perfdata-pnp

command_line /usr/bin/perl /usr/local/nagios/libexec/process_perfdat

a.pl

}

The embedded Perl interpreter ePN (see Appendix G on page 669) cannot
execute this Perl script, which is why it is called explictly with &
��&���&
����. If ePN is not compiled into Nagios, you can leave out the &
��&���&
���� path.

The performance data is taken here by �����������	������� via the en-
vironment variable  ."6:1�1/5H6�/�/5F<.>., so that environment vari-
ables in general must not be switched off.27

19.6.3 The PNP Web interface

If you run 
���!&&���������	
�	&������&���&�������
� you will be
taken to the PNP overview page (see Figure 19.12). This displays the data of
the first host, in alphabetical order, that is found by PNP. The input field at
the top right is implemented with AJAX and shows a hit list, matching the
text entered so far, from which the desired host is selected. The accompa-
nying overview page presents all services in a 24-hour view.

This can also be accessed directly via 
���!&&��������	
�	&������&
���&�������
�0
���G�������� . If you replace �������� with ����+-,
you will arrive at the overview page for the host of that name (Figure 19.12).

26 Performance data is provided by the macro 4�!8M*C!B!8;�9.94; see page 628.
27 This has only been possible since Nagios 3.0, with the ��	�����������������	���


parameter (see page 592). More on environment variables in Section D.1.8 from page
631.

449



19 Graphic Display of Performance Data

Figure 19.12:
All services of

���#%' on one page

A mouse click on a service graph or on the accompanying link on the right
in the overview causes the selected display to be shown in a different time
resolution (Figure 19.13): four hours, one day, and (not shown) one week,
one month, and one year. The periods presented here by PNP are defined
in the configuration file ���	����
�:

$views[0]["title"] = "4 Hours";

$views[0]["start"] = ( 60*60*4 );

$views[1]["title"] = "24 Hours";

$views[1]["start"] = ( 60*60*24 );

$views[2]["title"] = "One Week";

$views[2]["start"] = ( 60*60*24*7 );

$views[3]["title"] = "One Month";

$views[3]["start"] = ( 60*60*24*30 );

$views[4]["title"] = "One Year";

$views[4]["start"] = ( 60*60*24*365 );

The specific ����� labels can be chosen freely, so you could also use text
in other languages. The images themselves cannot be localized, however.

450



19.6 Smooth Plotting with PNP

Figure 19.13:
System load in PNP:
host ���#%', service
�#���	�

The ����� details specify for how many seconds before a defined reference
point the graphic will begin. Normally the current time is used as a refer-
ence point, but this can also be selected using the calendar included. To do
this, you click the calendar icon (see Figure 19.14), select the end time after
Time with a mouse click, and then select the day. Selecting the time takes
some getting used to: One click increases the value displayed by one, and
holding down the

�

�

�

�
Shift key at the same time reduces the time value dis-

played. You can also hold down the left mouse button and drag the mouse
to the left to increase the value, or drag to the right to decrease it.

Figure 19.14:
PNP’s calendar
function

In order to display a specific service directly, just add the detail ���G��	�

������� to the URL, so that you have 
���!&&��������	
�	&������&
���&�������
�0
���G��������Y���G��	
������� .

451



19 Graphic Display of Performance Data

A particular feature of PNP is that each graphic can be addressed directly,
without using HTML or PHP pages. You require the two optional parame-
ters ������� and ����: 
���!&&��������	
�	&������&���&�������
�
0
���G����Y���G��	
�������Y�������G�����Y����G+. ������� can
currently handle only the value �����, and for ���� you enter the index
defined in ���	����
�: ����G+ refers to the time period that was defined
there with E�����Z+[ZJ�����J[ (so this is the default, with a four-hour
overview).

Integrating PNP into the Nagios Web interface

To display a single service directly from the Nagios Web interface, in Nagios
3 you need to integrate the following URL as �������
�� in the service
definition:

# Nagios 3

define service {

hostname hostname

service_description servicename

...

action_url /pnp/index.php?host=$HOSTNAME$&srv=$SERVICEDESC$

}

In Nagios 2.x you require the object ������������	� to achieve the same
purpose:

# Nagios 2.x

define serviceextinfo {

hostname hostname

service_description servicedesc

...

action_url /pnp/index.php?host=$HOSTNAME$&srv=$SERVICEDESC$

}

19.6.4 Bulk processing of performance data

The standard configuration discussed calls the command defined in ����
��������	������������ for each check. Since the embedded Perl inter-
preter ePN (see Appendix G on page 669) cannot execute �����������	�
�������, Nagios has to restart the Perl interpreter for every service whose
performance data is to be processed. This takes a toll on resources and,
depending on the capabilities of the host and the number of services to
be processed, has a negative influence on the performance of Nagios (to
measure Nagios performance, see Appendix F from page 653). Nagios then
really is brought to its knees, which means that the latency time that passes

452



19.6 Smooth Plotting with PNP

between the planned starting point and the actual start of a check increases
considerably, and Nagios’s timetable (the scheduling ) gets out of control.

One solution to this is offered by PNP’s bulk mode in combination with the
Nagios Performance Data C Daemon (NPCD).28 When this is used, Nagios
writes the performance data—formatted by templates (defined in ��������
���	�����	������������)—to a file that is regularly renamed by a com-
mand in �����������	�����	����������������������. NPCD now
runs the Perl script �����������	������� only once for each file.

�����������	�����	������������ defines the format in which the data
is written to the file specified in �����������	�����	���:29

# /etc/nagios/nagios.cfg

...

service_perfdata_file_template=DATATYPE::SERVICEPERFDATA\tTIMET::$TIMET$

\tHOSTNAME::$HOSTNAME$\tSERVICEDESC::$SERVICEDESC$\tSERVICEPERFDATA::$SE

RVICEPERFDATA$\tSERVICECHECKCOMMAND::$SERVICECHECKCOMMAND$\tHOSTSTATE::

$HOSTSTATE$\tHOSTSTATETYPE::$HOSTSTATETYPE$\tSERVICESTATE::$SERVICEST

ATE$\tSERVICESTATETYPE::$SERVICESTATETYPE$

service_perfdata_file=/var/nagios/service-perfdata

service_perfdata_file_mode=a

service_perfdata_file_processing_interval=30

service_perfdata_file_processing_command=service-perfdata-npcd

...

�����������	�����	�������� specifies how Nagios handles the file: The
value � stands for append. Thus Nagios appends new results to an already
existing file. Every 30 seconds (as specified in �����������	�����	����
�������������������) the File Processing Command �����������	���
������� starts. It shifts the file, renames it, and adds the current times-
tamp, using the Nagios macro E>6�/>E:

define command{

command_name service-perfdata-npcd

command_line /bin/mv /var/nagios/service-perfdata /var/nagios/perfsp

ool/service-perfdata-$TIMET$

}

Renaming and shifting doesn’t use up any time. So Nagios can immediately
resume its normal tasks and leave further processing of performance data
to the external NPCD daemon. NPCD has its own configuration file, in
������	�, which is copied during installation to the directory &���&���:

user=nagios

group=nagios

28 The C in the name alludes to the considerably faster performance speed of a C program
compared to a Perl script, for which Nagios has to restart the Perl interpreter each time.

29 This is just a single line, which has been line-wrapped here for display purposes.

453



19 Graphic Display of Performance Data

log_type=syslog

log_level=0

perfdata_spool_dir=/var/nagios/perfspool/

perfdata_file_run_cmd=/usr/local/nagios/libexec/process_perfdata.pl

perfdata_file_run_cmd_args=-b

npcd_max_threads=1

The first two entries specify with which user and which group membership
NPCD is to be started. The daemon can currently only log its work in the
syslog. Future versions should also allow this to be written to a separate
file. ���������G+ ensures that NPCD itself behaves quietly and passes on
all errors only to the syslog daemon.

The parameter ���	�������������� renames the directory to be moni-
tored. It must already exist; the NPCD does not create it automatically.
Thanks to the argument �� given in ���	�����	�����
����������, ����
��������	������� starts in bulk mode.

The NPCD installs itself during the “���� �������” command for PNP
to the directory &
��&�����&������&���. Running ���� ������������
causes an additional startup script to be placed in &���&������, in which
you have to check the path to the configuration file:

...

CONF=/etc/pnp/npcd.cfg

...

With the help of this, the daemon is started with the following command:

linux:~ # /etc/init.d/npcd start

Depending on your distribution, the init script in the �� directories is linked
to the relevant runlevel:

linux:~ # ln -s /etc/init.d/npcd.sh /etc/init.d/rc2.d/S99npcd

linux:~ # ln -s /etc/init.d/npcd.sh /etc/init.d/rc3.d/S99npcd

linux:~ # ln -s /etc/init.d/npcd.sh /etc/init.d/rc5.d/S99npcd

19.6.5 How should the graphic appear?

The appearance of PNP graphics is determined by templates. The examples
included are located in the directory &
��&�����&������&�
���&���&
��������������. You should not touch these, as they will be overwritten
at the next update. The directory ��������� is intended for some tem-
plates. PNP takes the name of the check that was defined in the ��������
���� and searches here for a matching template called ��������������
�.

454



19.6 Smooth Plotting with PNP

If PNP cannot find this either in �&��������� or in �&��������������, it
uses the default template ��	�
����
�.

Sometimes there is already a suitable template in �������������� (for ex-
ample, �
����������
� for the plugin �
��������), the name of which
does not match the command name (in the case of �
��������, we have
defined this as ������������ �
��������). Then you must create a sym-
link in �&��������� to the desired file:

linux:~ # cd /usr/local/nagios/share/pnp/templates

linux:pnp/templates # ln -s ../templates.dist/check_ping.php \

check_icmp.php

A simple template which can be used for all plugins that transmit a simple
response time is ����������
�:

<?php

#

# For all plugins that provide response times

# $Id: response.php 53 2006-06-07 07:16:50Z linge $

#

$opt[1] = "--vertical-label \"Response Time\" \

--title \"Response Time For $hostname / $serviced

esc\" ";

$def[1] = "DEF:var1=$rrdfile:$DS[1]:AVERAGE " ;

$def[1] .= "AREA:var1#00FF00:\"Response Times \" " ;

$def[1] .= "LINE1:var1#000000:\"\" " ;

$def[1] .= "GPRINT:var1:LAST:\"%3.4lg %s$UNIT[1] LAST \" ";

$def[1] .= "GPRINT:var1:MAX:\"%3.4lg %s$UNIT[1] MAX \" ";

$def[1] .= "GPRINT:var1:AVERAGE:\"%3.4lg %s$UNIT[1] AVERAGE \" ";

?>

The variable E���Z-[ defines the options for �������, and the variable
E��	Z-[ defines the RRD graph. If you want to create your own templates,
you will need to get involved with ������� in more detail. The definition of
a graphic is explained in detail by ��� �������
, and further information
can be found on the homepage.30

Custom Templates

PNP is based on the name of the defined command object. If this is not
informative enough, as in the case of ������������ �
��������, then so-
called custom templates in the directory &���&���&�
������������ are
used. These must contain the name of the original command, however,
which in our example is �
��������	�:

30 ���������������������
�

455



19 Graphic Display of Performance Data

#

# Adapt the Template if check_command should not be the PNP Template

#

# check_command check_nt!MEMUSE!80%!90%

# ________0__________| | | |

# ________1________________| | |

# ________2_____________________| |

# ________3________________________|

#

CUSTOM_TEMPLATE = 0,1

#

If �
������ is not given �/�$1/ as the first parameter, the actual command
for the plugin �
������, only this parameter will differentiate whether
memory usage or CPU load, for instance, is measured. The parameter
�$1>:��>/��#.>/puts together the command that PNP uses when search-
ing for templates: The example below puts together �
������ (entry num-
ber 0) and �/�$1/ (entry number 1). This means that PNP will search for a
template with the name �
��������/�$1/��
�. With �$1>:��>/��#.>/
G -, PNP would search for �/�$1/��
�. A suitable symlink is now set in
the directory �&���������:

linux:~ # cd /usr/local/nagios/share/pnp/templates

linux:pnp/templates # ln -s ../templates.dist/check_nt_mem.php\

check_nt_MEMUSE.php

19.7 Other Tools and the Limits of Graphic
Evaluation

Apart from the tools introduced here, 
���!&&�������������
��������&
provides further tools for the graphic evaluation of performance data. Many
of these are also based on the RRDtools and round-robin databases, the
consequence of which is that they are not much use for exact evaluations
over several years, just like the ones described here.

Several tools, such as the current APAN31 version, save their data in an SQL
database, thus enabling long-term statistics without data loss.

PerfParse32 is very extensive, and it stores data in a MySQL or PostgreSQL
database and also includes its own wide range of evaluation tools. Because
it uses various current libraries which are not included in every distribu-
tion, the installation hurdles are quite high. Nevertheless, those for whom

31 �������	�	��
������.
32 ������������	�
��
������

456



19.7 Other Tools and the Limits of Graphic Evaluation

the RRD-based tools do not offer enough should look to see if the PerfParse
tools can provide the missing functionality that is required.

For all the options it offers, the graphical display of Nagios performance
data also has its limits. If you check WAN connections with a ping to a
remote host and measure the average response time, all the pretty graphics
don’t mean much if the check interval is only every five minutes. You will
receive only a momentary snapshot every five minutes, which does not
provide any serious clues to the traffic load of the connection over a period
of time.

To be able to sensibly assess the load of a Unix computer reported by a
plugin every one, five, and 15 minutes, the check interval should be one
minute. Less critical data are such things as used hard drive space or tem-
perature. Equally noncritical is the display of network traffic, for which the
plugin displays the values as a counter. RRD-based tools can automati-
cally detect the difference between two measurements and display them;
it makes no difference here whether the check interval is one, two, or five
minutes; no data is lost.

If the measuring precision of Nagios leaves something to be desired, you
can deploy other tools in parallel, such as Cricket33 or Cacti.34 If the ex-
ternal tool—like Munin35 —works with RRD databases, you can check these
for critical values, so that they are included in the sophisticated Nagios no-
tification system. Alternatively the external tool can provide an interface
with which recorded data can be further processed. These can be passed
on as a passive test result to Nagios, for example using NSCA (see Chapter
14).

But an additional tool always has the disadvantage of adding to the con-
figuration effort. Whether this is justified, or whether Nagios performance
monitoring is sufficient, depends on the information required in a particu-
lar situation.

33 ���������������
��������
������
34 ������������	��������
35 ��������������������
�����������

457





Part IV

Special Applications





20 Ch
ap

te
r

Monitoring Windows Servers

You don’t always deal with a homogeneous server landscape consisting of
just Linux or Linux/Unix computers. As long as you are just monitoring
pure network services, operating systems make no difference. But if you
want to query local, non-network-capable resources, that is a different mat-
ter altogether.

With Unix-based systems such as Mac OS X, you can normally use the tools
described so far (local plugins, NRPE, NSCA). In Windows you have to find
other solutions. To some extent, local plugins can be run and/or compiled
in an environment emulating Unix (for example, Cygwin1 ).

Because of the different philosophies of the operating system families, there
are peculiarities as well, features in one operating system that are not com-
parable with anything in the other operating system. So although the Win-
dows event log fulfils much the same purpose as syslog in Unix, it is queried

1 ������������ 
��������

461



20 Monitoring Windows Servers

in a completely different way, seen from a technical point of view. Here you
cannot simply compile the Unix plugin in Windows and then use it.

One monitoring approach for Windows servers is to use SNMP, for which
Microsoft includes a native implementation that just needs to be installed.
Since the SNMP query of a Windows agent does not differ in principle from
that of other SNMP agents, we refer you to Chapter 11, page 227. The
Microsoft implementation, however, does not always work reliably where
the display of figures—particularly CPU load and hard drive space—is con-
cerned.

Figure 20.1:
�������� queries

local Windows
resources about the

NSClient mechanism.

But local Windows resources can also be queried if you install a service on
the Windows server that can be addressed over the network. Previously,
only a single tool was available, NSClient, but today you have a choice of
various programs: NSClient, NSClient++, OpMon Agent, or NC_Net. For all
of them, basic parameters such as CPU and hard disk load, memory usage
or Windows counters are queried with the �
������ plugin (see Figure
20.1), which is one of the standard Nagios plugins.

Figure 20.2:
���������� uses

the NRPE mechanism
to execute checks via
NSClient++, OpMon

Agent, and NRPE_NT.

In addition, NSClient++ and OpMon Agent support NRPE (see Chapter 10
from page 213). Querying the locally installed plugins is done by �
����
���� (Figure 20.2).

462



20.1 Agent-less Checks via WMI

NC_Net in turn allows passive checks, the results of which are sent to the
Nagios server by the NSCA (Chapter 14, page 299). If you query the data
with �
��������� (Figure 20.3) instead of the standard plugin �
������,
an extended set of commands is available (Section 20.3.3, page 480).

Figure 20.3:
����������� allows
passive checks.

Finally, there is also a purely NRPE service for Windows: NRPE_NT, which
is configured the same as in Unix. Due to the additional NRPE function-
ality of NSClient++ and OpMon Agent, however, this has lost some of its
significance.

20.1 Agent-less Checks via WMI

With Windows Management Instrumentation, or WMI for short, Microsoft
provides an interface that allows network-wide querying of system proper-
ties, assuming that the user doing the query has sufficient permissions. The
WMI query is made from a central Windows system; NRPE is used for com-
munication between the Nagios server and the WMI proxy (Figure 20.4).
Just a single Windows server is required, on which one NRPE service and
all the desired plugins are installed in the form of WMI scripts—although
to do this, you have to be familiar with the Microsoft WMI world.

Figure 20.4:
Using the WMI
interface with Nagios

463



20 Monitoring Windows Servers

Extensive configuration examples can be found at the NagiosExchange2 un-
der Categories | Check Plugins | Operating Systems | Windows | Windows NRPE,
for instance, under the entry wmi agentless plugins.3 We will not go into
further details of the WMI interface here.

20.2 Installing and Configuring the Additional
Services

In contrast to the WMI approach, the additional services NSClient, NS-
Client++, OpMon Agent, and NC_Net must be installed on every single
Windows server.

20.2.1 NSClient

NSClient, as the oldest package, has been widely tested and is in widespread
use, but it is no longer being actively developed. The last current version
is from October 2003; the package can be downloaded from the Nagios Ex-
change.4 It also runs in Windows NT, Windows 2000 and Windows XP.

For Windows 2003, in particular Windows 2003 R2, the original package is
no longer suitable, because numerous error messages in the form

PDH.dll Collect CPU - ERROR:...

land in the event log, which lengthens the execution time considerably.
At the NagiosExchange a recompiled version can be found in the package
����������������
����,5 which does not have this problem.

For the NSClient installation, you unpack the archive ����������+-����
or ����������������
����. This creates subdirectories named according
to the architecture: 4��� >7�=�� for Windows NT and 4������U��=�� for
Windows 2000 and higher. Copy the contents of the appropriate folder to
the directory �!L��������L 1������ and install NSClient from there as a
service:

C:\Programs\NSClient> pNSClient.exe /install

C:\Programs\NSClient> net start nsclient

2 ������������	
��
�#��	�
����

3 ������������	
��
�#��	�
����
�&&6$13
4 ������������	
��
�#��	�
����
��(6&3
5 ������������	
��
�#��	�
����
��(63%2

464



20.2 Installing and Configuring the Additional Services

Running � 1���������� &������� installs the service, and the switch
&
�������� removes the service again. You should make sure that the
operating system starts automatically using the services management.

NSClient has two parameters: ���� and ��������, with the defaults -�7B
(port) and ���� (password). The values can only be changed (with �������)
in the registry under 83/`�#:�.#��.�86 /L1:F>4.5/L 1������L�����.

20.2.2 NC_Net

NC_Net, by Tony Montibello, is one of the successors to NSClient, and its
calls are also compatible with NSClient. Thus, NSClient can simply be re-
placed with NC_Net on the Windows server, without the need to change
the Nagios configuration. Development on NC_Net is very active. The cur-
rent version at the time this book went to press, version 4.x, is based on the
DOT.NET framework, version 2.0. This is included by default only starting
from Windows Server 2003 R2, but even there it is not installed automati-
cally. For those who cannot or who don’t want to install the new framework,
the older NC_Net version 2.28 runs under DOT.NET 1.1 and is very stable
and well established.

NC_Net Version 2.28 is available on the NC_Net homepage,6 and all newer
versions can be found at SourceForge.7 Make sure that any previous version
installed is first uninstalled. Since NC_Net uses the Microsoft Installer, you
do this through the software administration utility. Even an NSClient that
might exist should be removed first.

Double clicking on the file  �� ������
����� installs the service, but
you should check in the service management that it really is running, and
whether or not �
������� is entered as the starting type.

NC_Net has the same parameters as NSClient, with �������� and ����,
but these can also be specified in the services management under �������
���� in the 1���� ���������� line:

port 4711 password password

20.2.3 NSClient++

NSClient++ combines two query methods. On one hand, it is compatible
with NSClient and can make queries as usual with �
������. On the other
hand, it contains a built-in NRPE service which can be configured and used

6 �����������
�	�����������+C�+��
7 �������
��������
�������������
�������

465



20 Monitoring Windows Servers

like NRPE_NT (see Chapter 20.4.1 from page 488). NSClient++ provides all
the NSClient functions via loadable modules, as well as other features such
as event log querying or WMI queries via NRPE. In contrast to NRPE_NT,
it is not essential to have external plugins for querying the CPU and hard
disk load if you are using the modules.

NSClient++ is being actively developed; the homepage8 provides not only
a download area and documentation in the form of a Wiki, but also a bug-
tracking system which allows you to report any errors and to make requests,
including tracing open tickets.

Installation

The current NSClient++ version can be downloaded as a zip file from the
homepage9 or from SourceForge.10 The contents of this file are unpacked,
for instance in <!L������� F����L �����L��������KK, and from there
they are installed as a service, and the program is started:

D:\Program Files\Nagios\nsclient++> NSClient++/install

D:\Program Files\Nagios\nsclient++> NSClient++/start

If you want to use the classical ��� ����� command instead of the admin-
istrative tools to start and stop the service, you need to know that it is called
���������� (and not ��������KK):

D:\> net start nsclientpp

D:\> net stop nsclientpp

Configuration

NSClient++ requires a configuration file  1����� located in the same direc-
tory where the NSClient++-EXE file resides. The  1����� included in the
distrubution needs to be edited in all cases.

This file is divided into a number of sections:

[modules]

; loadable modules

[Settings]

; general settings

[log]

; Logging and debugging

[NSClient]

8 ���������	���	������
���
��
���
9 ���������	���	������
���
��
���������	�


10 �������
��������
�������������
��
����
�

466



20.2 Installing and Configuring the Additional Services

; Parameters for NSClient-compatible queries

[Check System]

; Fine-tuning configuration for system checks (CPU, memory, ...)

[NRPE]

; Parameters for NRPE

[NRPE Handlers]

; NRPE commands

Each section begins with a keyword in square brackets, and comment lines
start with a semicolon. The section Z���
���[ loads the individual mod-
ules. The following modules are currently available:

[modules]

FileLogger.dll

CheckDisk.dll

CheckSystem.dll

NSClientListener.dll

NRPEListener.dll

; SysTray.dll

; CheckHelpers.dll

; CheckWMI.dll

The internal module F���#��������� logs the work of NSClient++ to a file
and does not provide any checks.

�
���<�������checks the file size and hard disk usage, and �
���1������
��� checks the CPU, the memory, counters, uptime, and service and pro-
cess states.

 1������#����������� ensures compatibility with NSClient. If this mod-
ule is not loaded, queries with �
������will fail. The module  5�/#������
������ implements the NRPE service. This means you can choose whether
you use NSClient++ as an NSClient or as an NRPE_NT replacement, or
whether you use both functions at the same time.

1��>������� installs a systray icon on the server for access to NSClient++.

�
���8���������� is a test module that always provides a specific return
value (e. g., OK) and is not required for normal operation.

�
���4�6����provides queries for the WMI interface, but it is not yet com-
pletely finished.

The global section Z1�������[ contains settings that apply across sec-
tion boundaries, including the password parameters and ��������
����,
which are inherited by the sections Z 1������[ (page 468) and Z 5�/[
(page 493), unless these options are set differently there:

[Settings]

; obfuscated_password=Jw0KAUUdXlAAUwASDAAB

; password=secret-password

467



20 Monitoring Windows Servers

allowed_hosts=

use_file=1

��	
���������������, like ��������, is currently used only by the NS-
Client-compatible part of NSClient++, and not for NRPE. Both parame-
ters set the password for �
������. ��	
��������������� obscures this,
so that it does not appear in plain text in the INI file. However, this is
not real encryption. An ��	
��������������� is generated by running
��������KK &�������. This utility asks for a password, which it then dis-
plays in obscured form.11

The parameter ��������
���� controls which IP addresses may access
NSClient++. If it is left empty, there are no access restrictions. You can
specify several IP addresses by separating them with commas, but it is not
possible to use host names here.

Finally, 
���	��� controls whether the configuration file is to be used at
all (
���	���G-). If the value + is entered here, NSClient++ searches in the
registry for the settings. Configuration via the registry is currently still ex-
perimental, and it poses a security risk due to lack of sufficient protection,
and so we will not look at it in more detail.

The next section is devoted to logging:

[log]

debug=0

; file=NSC.log

date_mask=%Y-%m-%d %H:%M:%S

With ���
�G-, debugging—which is disabled by default, using the value
+—can be switched on. 	��� specifies the log file. If you omit this parame-
ter or (as shown here) comment it out, NSClient++ writes its error messages
to ������������, in the same directory in which the binary file lies. The
software does this even if debugging is switched off. With ��������� you
can specify the date format of the timestamp with which every log message
begins. This format corresponds to what is described in ��� ����.

The Z 1������[ section sets a number of options concerning compatibil-
ity with NSClient. Although nothing else can be configured here, NSClient
functions (see Chapter 20.3 from page 472) are only available if the  1�
������#����������� module, �
���<�������, and �
���1���������
(see page 467) have been loaded.12

The parameter ��������
���� overrides the setting in the Z1�������[
section. In this way, NSClient++ can use a configuration for working with
�
������ that is different from the one used for NRPE:

11 The algorithm used is not documented, hence the utility should be treated with mis-
trust.

12 The �!�,�! command (see page 476) thus requires the module C����� 
�������.

468



20.2 Installing and Configuring the Additional Services

[NSClient]

; allowed_hosts=

port=12489

; bind_to_address=

The ���� and ��������������� parameters specify the socket on which
NSClient++ accepts �
������ queries. The default for the port is 1248,
which regularly leads to problems on some Windows servers (e. g., Exchange
servers) (see also page 471). You should therefore change to a higher port
number (e. g., 12489).

��������������� specifies the IP address of the intended host, on which
the service will listen. This parameter is only needed if the computer has
more than one network interface and a specific IP address is to be set.

The Z�
��� 1�����[ section allows system checks to be fine-tuned. Nor-
mally you won’t need to configure anything here:

[Check System]

; CPUBufferSize=1h

; CheckResolution=10

��$=
		��1��� determines how long NSClient++ stores information on
the CPU load. The allowed value range starts at one second (-�), with a
maximum of ten weeks (-+�). To save data for a long period, however, you
need a large amount of memory. The default value of one hour is enough
for most purposes.

�
���5����
���� specifies the resolution of the stored measurement val-
ues in tenths of a second. The value -+ therefore means that a value is de-
termined every second. �
���5����
���� currently influences only CPU
measurement values.

Other parameters for the Z�
��� 1�����[ section are rarely required and
are documented in the Wiki.13

Configuration of the NRPE services in the two sections Z 5�/ 8�������[
and Z 5�/[ is dealt with in Section 20.4.3 from page 493, and the inter-
nal functions of NSClient++ that can be called via NRPE are described in
Section 20.4.4 from page 495.

20.2.4 OpMon Agent

OpMon Agent is nothing more than a further development of the original
NSClient code by the company OPServices.14 It can therefore be consid-
ered to be a succcessor to the NSClient program. Like its predecessor, the
software is published under the GNU Public License.

13 ���������	���	������
���
��
����������������	����
14 �������������
������
��������

469



20 Monitoring Windows Servers

To install it, you unpack the current zip file from 
���!&&���������������
������&���������& to �!L������� F����L �����L����������and en-
ter the following commands:

C:\Program Files\Nagios\opmonagent> opmonagent/install

C:\Program Files\Nagios\opmonagent> net startopmonagent

OpMon Agent also stores its configuration in an INI file. The original �����
���������� looks like this:

[OPMONAGENT]

enable=1

password=None

port=5667

allow_from=127.0.0.1,192.168.10.2,192.168.2.1

autodetect_counters=1

use_counters=W2K

max_connections=300

debuglevel=0

[NRPE]

enable=1

port=5666

command_timeout=60

allow_from=127.0.0.1,192.168.10.1,192.168.2.1

The NSClient functionality is configured in the Z:��: ."/ >[ section.
������G- allows queries via �
������, but if this parameter is set to +,
OpMon Agent ignores this.

�������� sets a password, and the value  ��� means that no password is
required. Otherwise, the password is written in plain text after the equals
sign.

5667 is entered here as the standard port, but if you want to use the usual
port 1248, you just change the entry and restart the service. ������	���
restricts access to specific hosts.

�
�����������
�����G- tries to automatically determine the exact name
of the Windows performance counter, depending on the language setting
of Windows and the exact Windows version. If you switch off this capabil-
ity with the value +, you must specify the name explicitly in 
�����
�����.
Possible values for this parameter are listed in the file ��
��������	, which
is located in the same directory as ��������������.

��������������� restricts the number of possible simultaneous connec-
tions. A ���
������ value larger than + switches on debugging.

In the future, it should be possible to configure the NRPE functions of Op-
Mon Agent, which will be introduced in a later version, in the Z 5�/[ sec-
tion. The current version of OpMon Agent at the time this book goes to
press, version 2.4, does not yet provide official support for NRPE.

470



20.2 Installing and Configuring the Additional Services

20.2.5 Rectifying problems with port 1248

All NSClient-compatible services work by default on port 1248. This can
sometimes turn out to be a problem, because Windows operating systems
work intensively with RPCs (Remote Procedure Calls). Here ports are as-
signed dynamically, starting at port 1025. Thus, under certain circum-
stances—for servers with many services or many simultaneous connec-
tions, for example—port 1248 is often already occupied when NSClient is
started as a service. For Exchange servers, this happens fairly often after a
reboot. You should therefore change to a high, unproblematic port number,
such as 12489.

If you are not installing Nagios for the first time but are working with an
existing installation, you may not be able to easily change the port for all
hosts to be monitored. For Nagios 2.x, there is no choice but to define a
separate command for every port used. With Nagios 3.0, this can be done
more elegantly. The solution is to use self-defined variables (see Section
H.2 from page 685). In the host template (see Section 2.11, page 75) the
value is now globally specified as the standard port (in the example shown
here, 1248):

define host{

name host_t

register 0

...

_NSCLIENT_PORT 1248

...

}

For hosts that have already been converted to the new port, you overwrite
the � 1�#6/ >��:5> variable with the new port:

define host{

host_name winsrv

use host_t

...

_NSCLIENT_PORT 12489

}

For all other hosts, the value defined in the template applies. The definition
of the command object takes into account the desired port by evaluating
the variable, as shown here:

define command{

command_name check_nt

command_line $USER1$/check_nt -H $HOSTADDRESS$ -p $_HOSTNSCLIENT_POR

T$ -v $ARG1$ $ARG2$

}

471



20 Monitoring Windows Servers

This means that for each newly converted host, only the variable needs to
be set in this way, and all the service definitions remain unchanged.

20.3 The �
������ Plugin

When installing the standard Nagios plugins, the �
������ plugin is au-
tomatically loaded to the hard drive. The checks that can be queried here
correspond to the function range of NSClient provided in NSClient, NS-
Client++, OpMon Agent, and NC_Net. To make use of the extensions of
NC_Net, you must download the extended source code (the file �
����
����) from 
���!&&�����
�����������& �� �� and compile it yourself.

The actual effect that the �
������ parameters have, described below, de-
pends on the command that is specified with the �� option:15 :

�8 ���	��� / ��
���G���	���
IP address or host name of the host on which the NSClient/NC_Net
is installed.

�� ������� / ����������G�������
The command to be executed.

�� ��	� / ������G��	�
This defines an alternative port for NSClient/NC_Net (see section
20.2.5 on page 471). The default is TCP port 1248.

�� ������	 / ���������G������	
This defines a warning limit. This option is not available for all com-
mands.

�� ������	 / ����������G������	
The critical limit option is also not available for all commands.

�� ��	�����	
This is used for passing parameters along, such as the drive for the
hard drive check or the process name when checking processes.

�� ������
When checking services or processes, you can specify several services
or processes simultaneously. Normally �
������ then only shows
the defective ones (�� 18:4F.6#). To have all of them displayed you
must specify 18:4.## as the ������ .

15 You can read about them in more detail on page 473.

472



20.3 The �
������ Plugin

�� ������	�
A password for authentication is only required if NC_Net or NSClient
starts the corresponding service with the password parameter.

�� ������� / �������
�G�������
After ������� seconds have elapsed, the plugin aborts the test and
returns the CRITICAL state. The default is -+ seconds.

20.3.1 Generally supported commands

For the commands introduced here, it makes no difference whether you
use NSClient, NSClient++, NC_Net or OpMon; they can be run with the
unpatched �
������.

Querying the client version

The version of the installed NSClient or NC_Net service is returned by run-
ning the command

check_nt -H address -v CLIENTVERSION

All other arguments are ignored:

nagios@linux:nagios/libexec$ ./check_nt -H winsrv -v CLIENTVERSION

NC_Net 2.21 03/13/05

The first edition of this book defined a separate command for each �
����
�� function. But this is not necessary at all, as Ethan Galstad has shown in
the online documentation for Nagios:16

define command{

command_name check_nt_nsclient

command_line $USER1$/check_nt -H $HOSTADDRESS$ -v $ARG1$ $ARG2$

}

For Nagios 3.0 with NSClient ports defined in a host-dependent fashion
(see Section 20.2.5, page 471), the command object �
������ would look
like this:

define command{

command_name check_nt

command_line $USER1$/check_nt -H $HOSTADDRESS$ -p$_HOSTNSCLIENT_POR

T$ -v $ARG1$ $ARG2$

}

16 ��������	
��
�
��������
���������
�1�%����������
�������
�����

473



20 Monitoring Windows Servers

The command line to be executed expects two arguments: The macro
E.5"-E expands in each case into the command to be called, and the con-
tents of E.5"�E are dependent on the respective command and may be
empty in certain circumstances:

define service{

host_name winsrv

service_description NSClient

check_command check_nt!CLIENTVERSION

...

}

The command �#6/ >H/516: does not have any other arguments, so the
second argument is simply left out.

This unassuming service is extremely useful in describing dependencies.
If NSClient/NC_Net fails on the Windows server, Nagios normally informs
the administrator of all services that may have failed. By querying �#6/ >�
H/516: , it becomes clear that the problem lies in the unavailability of
NSClient. If you define appropriate dependencies, Nagios can provide more
precise information.17 Here is an example for the NSClient application:

define servicedependency{

host_name winsrv

service_description NSClient

dependent_host_name winsrv

dependent_service_description Disks,Load,Memory

notification_failure_criteria c,u

execution_failure_criteria n

}

With  1������ as a master service on which the other services are depen-
dent, Nagios does not trouble the admins with messages from these other
services, as long as  1������ is in a CRITICAL or UNKNOWN state.

In Nagios 2.x you must set dependency objects for each host individually.
In Nagios 3.0 there are the same host dependencies: If you omit the entry
����������
��������, the dependency defined here applies to the same
host. This allows host groups to be used in a sensible manner:

# Nagios 3.0

define servicedependency{

hostgroup_name WINDOWS_SERVER

service_description NSClient

dependent_service_description Disks,Load,Memory

notification_failure_criteria c,u

execution_failure_criteria n

}

17 This problem is similar to one with NRPE, which was solved through the definition of
dependencies (see Section 12.6, page 285).

474



20.3 The �
������ Plugin

Here the <���� service in each case only depends on the  1������ service
of the same host. When using host groups in Nagios 2.x, <���� would be
dependent on all  1������ services on all hosts of the host group 46 <:41�
1/5H/5—and this is normally not what is wanted.

CPU load

How heavy the load is on the processor is revealed by the command ��$�
#:.<:

check_nt -H address -v CPULOAD -l interval,warning limit,critical_limit

It expects a triplet of parameters, separated by commas, consisting of the
length of the time interval that is to be averaged, in minutes, and the two
thresholds for the warning and critical limits in percent:

nagios@linux:nagios/libexec$ ./check_nt -H winsrv -v CPULOAD -l 5,80,90

CPU Load 10% (5 min average) | ’5 min avg Load’=10%;80;90;0;100

So ��$#:.<, with 2DB+D,+, forms the average over five minutes and issues
a warning if the value determined exceeds B+ percent. If there is over 90%
CPU load, the command returns CRITICAL.

The output here also contains additional performance data after the I sign,
which Nagios ignores in the Web interface. If you are interested in average
values over several intervals, you just add further triplet values following to
the first one:

nagios@linux:nagios/libexec$ ./check_nt -H winsrv -v CPULOAD \

-l 5,80,90,15,70,80

CPU Load 10% (5 min average) 10% (15 min average) | ’5 min avg Load’=10

%;80;90;0;100 ’15 min avg Load’=10%;70;80;0;100

In this example ��$#:.< checks two intervals: the past five minutes and
the past 15 minutes. In the second case there are deviating limit values.
The plugin always returns the more critical value; for example, it returns
CRITICAL if one interval issues CRITICAL and the other just a WARNING.

The service definition therefore looks like this:

define service{

host_name winsrv

service_description CPU Load

check_command check_nt!CPULOAD!-l 5,80,90,15,70,80

...

}

475



20 Monitoring Windows Servers

Main memory usage

When specifying the limit values, the command for monitoring the amount
of main memory used—in contrast to ��$#:.<—is based on the syntax of
“normal” Nagios plugins:

check_nt -H address -v MEMUSE -w integer -c integer

�/�$1/ returns the memory usage in percent. It should be remembered
that Windows refers here to the sum of memory and swap files, that is, the
entire available virtual memory. The command expects the warning and
critical limits as percentages, given without a percent sign:

nagios@linux:nagios/libexec$ ./check_nt -H winsrv -v MEMUSE \

-w 70 -c 90

Memory usage: total:4331.31Mb - used: 257.04Mb (6%) - free: 4074.27Mb (9

4%) | ’Memory usage’=257.04Mb;3031.91;3898.18;0.00;4331.31

On the example host, ������, only six percent of the virtual memory is
used. The fact that the physical size of the main memory itself (here: 256
MB) is already exceeded is not shown in the output.

It does not necessarily make sense, however, to request the memory usage
as in Unix: Windows regularly swaps program and data code from the main
memory, even when it still has spare reserves. In Unix, programs and data
land in the swap partition only if more space is required than is currently
free. In this respect the load of the entire virtual memory in Windows is the
more important parameter.

The command mentioned above is again packed into a service object:

define service{

host_name winsrv

service_description MEM Usage

check_command check_nt!MEMUSE!-w 70 -c 90

...

}

Hard drive capacity

The load on a file system is tested by $1/<<6131�.�/:

check_nt -H address -v USEDDISKSPACE -l drive letter -w integer -c integer

in Windows fashion, the file system is specified as drive letters, the limit
values in percent:

476



20.3 The �
������ Plugin

nagios@linux:nagios/libexec$ ./check_nt -H winsrv -v USEDDISKSPACE\

-l C -w 70 -c 80

C: - total: 4.00 Gb - used: 2.06 Gb (52%) - free 1.94 Gb (48%) | ’C: Use

d Space’=2.06Gb;2.80;3.20;0.00;4.00

nagios@linux:nagios/libexec$ echo $?

0

In the example, �
������ should issue a Warning if drive � is more than 70
percent full, and a CRITICAL if the load exceeds 80%. The current value lies
at 52 percent, so �
������ therefore returns an OK, which you can check
with ��
� E0.

The corresponding service object would look something like this:

define service{

host_name winsrv

service_description Disk_C

check_command check_nt!USEDDISKSPACE!-l C -w 70 -c 80

...

}

Uptime

How long ago the last reboot was performed is revealed by the command
$�>6�/:

check_nt -H address -v UPTIME

Defining a warning or critical limit is not possible, which is why such a
query is only for information purposes (the plugin returns either OK, or
UNKNOWN if it is used wrongly):

nagios@linux:nagios/libexec$ ./check_nt -H winsrv -v UPTIME

System Uptime - 17 day(s) 9 hour(s) 54 minute(s)

so the host ������ has already been running for 17 days. A suitable defini-
tion of the corresponding service object looks like this:

define service{

host_name winsrv

service_description UPTIME

check_command check_nt!UPTIME

...

}

477



20 Monitoring Windows Servers

Status of services

The current status of Windows services can be checked with 1/5H6�/1>.>/:

check_nt -H address -v SERVICESTATE -d SHOWALL -l service1,service2,...

The optional �� 18:4.## ensures that the output text lists all services. If
you leave this option out, the plugin provides information only on those
services that are not running.

To find the name of the service description to be specified for NSClient af-
ter the �� option is quite a challenge. It is not the display name which is
displayed by the services management (e.g., 5�
���� ��� 5.1), that is be-
ing sought, but the registry entry that corresponds to this. Accordingly you
search with the Registry editor ������� in the partial tree 83/`�#:�.#�
�.�86 /L1`1>/�L�
������������1��L1������� for the node with the
corresponding display name. It contains the service description being
sought, which in the case of 5�
���� ��� 5.1 is something like 5������
.�����.

If you use NC_Net, you have an easier task: the software accepts both the
service description and the display name, in which no distinction is made
between upper and lower case. The following two examples use the display
name:

nagios@linux:nagios/libexec$ ./check_nt -H winsrv1 -v SERVICESTATE \

-l "RemoteAccess"

RemoteAccess: Stopped

nagios@linux:nagios/libexec$ ./check_nt -H winsrv2 -v SERVICESTATE \

-l "Routing and RAS"

All services are running

In the first case the service name was used; in the second case, the display
name was used. The service first queried is not running, as the output
1������ shows, and �
������ returns � (CRITICAL) as the return value.
The service addressed with the second command is working, which is why
the plugin does not display it if the �� 18:4.## option is not given. The
return value here is + (OK). Several services (separated by commas) can also
be queried in a single query. The worst-case result here dictates the return
value. A matching service object looks something like this:

define service{

host_name winsrv

service_description Routing and RAS

check_command check_nt!SERVICESTATE!-l RemoteAccess

...

}

478



20.3 The �
������ Plugin

Status of processes

As with the services, �5:�1>.>/ monitors running processes:

check_nt -H address -v PROCSTATE -d SHOWALL -l process1,process2,...

The process name, which almost always ends in ����, is best determined in
the process list of the task manager; upper and lower case are also ignored
here:

nagios@linux:nagios/libexec$ ./check_nt -H winsrv -v PROCSTATE \

WinVNC.exe,winlogon.exe,notexist.exe

notexist.exe: not running

As with the services, you can also specify a list of several processes, sep-
arated by commas. Without �� 18:4.##, �5:�1>.>/ shows only those
processes that are not running, in this example, ������������. A cor-
responding service definition might look like this:

define service{

host_name winsrv

service_description WinVNC

check_command check_nt!PROCSTATE!-l winvnc.exe

...

}

Age of files

It is worth monitoring the time since the last modification of critical files
with F6#/."/, particularly for log files and other files that change regularly:

check_nt -H address -v FILEAGE -l path -w integer -c integer

F6#/."/ can be used to check the age of a file, for instance a log file to
which data should be written regularly. The file name is specified with
the full path, and backslashes must be written twice: �!LL�������. If the
thresholds, specified in minutes, are exceeded, the plugin issues a WARN-
ING or a CRITICAL. However, it gives the age of the file, by default, in epoch
seconds:18

nagios@linux:nagios/libexec$ ./check_nt -H winsrv -v FILEAGE \

-l "C:\\test.log" -w 1 -c 20

1113158517

nagios@linux:nagios/libexec$ echo $?

1

18 That is, in seconds elapsed since 01. 01. 1970.

479



20 Monitoring Windows Servers

The status can again be checked with ��
� E0. Here as well, the service
definition does not hold any secrets:

define service{

host_name winsrv

service_description Log file

check_command check_nt_fileage!C: xyz.log!60!1440

...

}

Querying Windows counters and instances

The duo of NSClient and �
������ provides two other functions: query-
ing Windows counters with �:$ >/5 and querying Windows performance
counter objects with 6 1>. �/1. Querying performance counters varies in
small details from service to service, however (such as using a double back-
slash rather than a single backslash in the counter name). For this rea-
son, we shall describe both in the discussion of the extended functions of
NC_Net from page 481. If you want to use counters with OpMon Agent,
NSClient, or NSClient++, we recommend that you take a look at the origi-
nal documentation of each service.

When using NSClient++, it is recommended that you use the internal func-
tion �
�����
����, which is described on page 501.

20.3.2 Advanced functions of NC_Net

NC_Net’s range of functions is expanding constantly; this chapter describes
the possibilities that go beyond NSClient for version 2.28. These can only
be used with the modified �
������ plugin. The extended version is based
on the original �
������ version 1.4.1. But it is possible that both plugins
will continue to be developed in different ways, and thus diverge.

We will therefore rename the NC_Net version to �
���������, so that
we can keep the two separate and run them at the same time. Thus,
�
������ examples in this book demonstrate functions that are available
for all NSClient-compatible services; if �
��������� is used, the NC_Net
functionality in combination with the extended plugin is available.

20.3.3 Installing the ����������
 plugin

�
��������� exists only in the source code; it consists of a single file that
unfortunately has the same name as the original plugin �
��������. The
file ends up on the hard drive during the installation of NC_Net, but it can
also be downloaded separately from 
���!&&�����
�����������&������.

480



20.3 The �
������ Plugin

The source can currently be compiled without problems only in combi-
nation with the entire Nagios plugin package (see Section 1.4, page 43).
To do this, you overwrite the existing file �
�������� in the subdirec-
tory ��
���� with the extended version. To be on the safe side, the old
�
������ binary should be renamed; then you run ���� �
������ to re-
compile the source file. Afterward, you copy the binary under the name
�
��������� to the ������� directory of Nagios, along with the other plu-
gins:

linux:~ # cp check_nt.c /usr/local/src/nagios-plugins-1.4/plugins

linux:~ # cd /usr/local/src/nagios-plugins-1.4/plugins

linux:nagios-plugins-1.4/plugins # mv check_nt check_nt_orig

linux:nagios-plugins-1.4/plugins # make check_nt

...

linux:nagios-plugins-1.4/plugins # mv check_nt check_ncnet

linux:nagios-plugins-1.4/plugins # cp check_ncnet \

/usr/local/nagios/libexec/.

Windows Performance Counter

Through so-called Performance Counters, Windows provides values for ev-
erything in the system that can be expressed in numbers: hard drive usage,
CPU usage, number of logins, number of terminal server sessions, the load
on the network interface, and many more things. �
��������� queries
these with the command / $��:$ >/5:

check_ncnet -H address -v ENUMCOUNTER -l category1,category2

If you omit the �� parameter, / $��:$ >/5 will display a list of all perfor-
mance counter categories:

nagios@linux:nagios/libexec$ ./check_ncnet -H winsrv -v ENUMCOUNTER

... Processor; ... Terminal services; .NET CLR loading procedure; tot

al RAS services; Process; ...

Otherwise, it shows all counters in the category specified with ��. Several
categories are separated with commas. The >������� �������� category
contains three counter objects in all:

nagios@linux:nagios/libexec$ ./check_ncnet -H winsrv -v ENUMCOUNTER \

-l Terminal services

Terminal Services: Total Sessions; Active Sessions; Inactive Sessions

481



20 Monitoring Windows Servers

nagios@linux:nagios/libexec$ ./check_ncnet -H winsrv -v ENUMCOUNTER \

-l "Terminal Services","Process"

Terminal Services: Total Sessions; Active Sessions; Inactive Sessions -

Process: % Processor Time; % User Time; % Privileged Time; Virtual Bytes

Peak; Virtual Bytes; Page Faults/sec; Working Set Peak; Working Set; ...

The precise object name is important for later use, in which the 9 sign (as,
for example, in 9 ��������� >���) is part of the name. If the counter
or category name contains spaces, you must remember to place it within
quotation marks when formulating the the request.

The description stored in the Windows Performance Counter objects are
shown, by the way, with the command / $��:$ >/5</1�.

Several counter categories contain instances, which you must specify when
querying a counter object. For this reason you should always check first,
using the 6 1>. �/1 function, whether the category you want works with
instances:

check_ncnet -H address -v INSTANCES -l category1,category2

For the terminal services, this is not the case:

nagios@linux:nagios/libexec$ ./check_ncnet -H winsrv -v INSTANCES \

-l "Terminal Services"

Terminal Services:

Typical categories with instances are ��������� or �������:

nagios@linux:nagios/libexec$ ./check_ncnet -H winsrv -v INSTANCES \

-l "Process"

Process: svchost#6,svchost,Idle,explorer,services,...

Here it becomes apparent what is meant by instances: Windows views every
running process as an instance in the ������� Performance Counter cate-
gory. As can be seen on page 481, the counter object (9 ��������� >���),
which contains the percentage use of processor time), is in this category. It
can be queried only for individual instances, such as for the �������� pro-
cess, or for all processes together. In case of the latter you specify �>����
instead of an instance.

In order to access a Windows Performance Counter, therefore, you always
need to give the following details:

\category\counter object

\category(instance)\counter object

482



20.3 The �
������ Plugin

The instance is specified only if the category has instances available. There
must be no space between the category name and the first bracket. The
corresponding query command is called �:$ >/5; the placeholder ���� is
replaced by the combination just described:

check_nt -H adresse -v COUNTER -l name,formatbeschreibung -w ganzzahl

-c ganzzahl

This function asks after the Windows Performance Counter object that is
specified after the �� option with its exact name. The warning and critical
limits given as integer values refer to the size measured: if an object is
involved that has a percentage figure (e.g., the processor load), just imagine
a percent sign added to it; the numbers of processes, sessions, etc., are just
values that are not specified in units.

The number of active sessions is checked with the .����� 1������� ob-
ject, for which there are no instances:

nagios@linux:nagios/libexec$ ./check_ncnet -H winsrv -v COUNTER \

-l "\Terminal Services\Active Sessions"

1

nagios@linux:nagios/libexec$ ./check_ncnet -H winsrv -v COUNTER \

-l "\Process(Idle)\% Processor Time"

98

Because the 6��� instance always looks at the difference between used
and spare processor load, so that the sum of the two is always 100 per-
cent, querying the �>���� pseudo-instance in the second example does
not make much sense.

Normally �:$ >/5 does not format its output. This can be changed by
following the object name with a description in the �����	 format,19 sep-
arated from it with a comma:

nagios@linux:nagios/libexec$ ./check_ncnet -H winsrv -v COUNTER \

-l "\Process(Idle)\% Processor Time","Idle Process: %.2f %%"

Idle Process Usage is: 54.00 % | ’Idle Process Usage is: %.2f %%’=54.000

000%;0.000000;0.000000;

Not only does this cause the output to be clearer, it also returns additional
performance data. A corresponding service definition might look like this:

define service{

host_name winsrv

service_description Terminal Sessions

check_command check_nt!COUNTER!-v "\Terminal Services\Active Sessions"

19 �	� 1 ������

483



20 Monitoring Windows Servers

-w 20 -c 30

...

}

Listing processes and services

To find out the names of processes, you can work your way through the Task
Manager—or have a list of all running processes displayed with / $��5:�
�/11:

nagios@linux:nagios/libexec$ ./check_ncnet -H winsrv -v ENUMPROCESS

System Idle Process; System; smss.exe; csrss.exe; winlogon.exe;

services.exe; lsass.exe; svchost.exe; svchost.exe; svchost.exe;

...

The equivalent command for listing all installed services is / $�1/5H6�/:

check_ncnet -H host -v ENUMSERVICE -l typ,short

The optional �� restricts the output to specific categories (see Table 20.1):

nagios@linux:nagios/libexec$ ./check_ncnet -H winsrv -v ENUMSERVICE

\ -l manual,short

ALG; AppMgmt; BITS; COMSysApp; dmadmin; EventSystem; HTTPFilter;

LPDSVC; MSIServer; Netman; Nla; NtFrs; NtLmSsp; NtmsSvc; RasAuto;

...

With the �
��� option, / $�1/5H6�/displays the service names as they are
entered in the registry; if you leave out the keyword, it shows the display
names.

Table 20.1:
Limiting options for

!+,��!8M*C!

Type Description

��� all services

�
����� all currently active services

������� all services which have been stopped

�
������� services starting automatically

���
�� services which must be started manually

�������� disabled services

484



20.3 The �
������ Plugin

Querying the Windows event log

With the /H/ >#:" command, the Windows Event Log can be queried:

check_ncnet -H adress -v EVENTLOG -w integer -c integer -l eventlog,

event_type,interval,source_filter,description_filter, id_filter

Using it does take some getting used to, however:20 the first three parame-
ters to follow �� select the events to be taken into account by type and by
time.

The placeholder �
������ is replaced with one of the three log areas
�����������,���
����, and ������ that you want to look at. If /H/ >#:"
is to include all three, you just specify ���; but you cannot choose only two
of the three areas.

For the �
��� ���� you can choose from �����, 4������, 6�	��������,
or ��� for all three.

In place of ����	
�� you specify a time interval in minutes: 2 limits the
selection to events which occurred in the last five minutes, for example;
-77+ stands for a whole day.

The last three parameters in effect work as filters with which specific results
can be determined from the preselection that all originate from a particular
source (the ���	��������	 placeholder), that contain a specific pattern in
their descriptions (����	������������	 ), or that have a specific event ID
(��������	 ).

Each of these filters consists of two parts: in the first an integer reveals how
many search patterns are to follow (formulated as regular expressions in
accordance with the .NET-5����� class), and then the actual filter entries
are specified, separated by commas. If one of the filters is not used, its
placeholder is replaced with a +, which searches for exactly zero search
patterns. A source filter which only looks for  �� �� events would be called
-D �� ��; if you want to search for  �� �� and ���	��� events, it would
be called �D �� ��D���	���.

�� ���D���D2D+D+D+ evaluates all entries from all event ranges from the
last five minutes. �� �����������D�����D-77+D+D+D+ determines all
events of the type �����, which occurred in the event range �����������
within the last 24 hours. With �� �����������D�����D'+D-D �� ��D+D+,
the time window is set to 60 minutes and filters the event source using
the string  �� ��. Finally �� �����������D���D'+D+D�D�����D����D+
searches the event description for two keywords: ����� and ����.

With the warning and critical limits you can specify how many matching
entries are needed before the plugin returns a WARNING or CRITICAL

20 According to his own comments, author Tony Montibello wanted to change the syntax
for defining services in version 2.25. But up to and including version 2.28, this resolu-
tion has not yet been implemented.

485



20 Monitoring Windows Servers

value. If you leave out these two parameters, Nagios shows OK as long
as no events occurred; otherwise, it shows CRITICAL.

The following example asks how many messages there were within the last
24 hours in the ������������ area:

nagios@linux:nagios/libexec$ ./check_ncnet -H winsrv -v EVENTLOG \

-l "Application,any,1440,0,0,0"

9 Errors with ID: 13001;2003;1010;6013;1111;262194;26;262194;26 LAST - I

D 262194;Not all data for the file "\Device\LanmanRedirector" were sa

ved. Possible causes are computer hardware or the network connection. P

lease specify a different file path.

The service we defined below searches for errors in all classes in the 1�����
area which occurred in the past five minutes. (When specifying the time
period you should generally ensure that it correlates with the time period
in ��������
������������.) The service examines the descriptions of the
entries found for the text ���� ����. The source and ID filters are not used
here:

define service{

host_name winsrv

service_description Eventlog data loss

check_command check_ncnet!EVENTLOG!-l System,any,5,0,1,data loss,0

is_volatile 1

normal_check_interval 5

max_check_attempts 1

...

}

Log files have the characteristic of pointing out a problem only once under
certain circumstances, even if the problem continues. You must therefore
ensure that Nagios immediately makes a notification the first time the event
occurs, and leaves out repeated tests and soft states. This can be achieved
with �����
������������ -: this immediately sets off a hard state, and
notification is given right away.

But if the hard state remains, this would mean in practice that new errors
might occur in the meantime (the next test after five minutes no longer
records the old states), while the state has not changed; the admin would
only be informed again after the ����	���������������� has expired.
For such cases, Nagios has available the ����������� parameter (see Sec-
tion 14.5.2, page 309), with which the system provides notification on every
single error.

Displaying and manipulating the NC_Net configuration

The / $��: F6" function displays the current settings of NC_Net in a read-
able form:

486



20.3 The �
������ Plugin

nagios@linux:nagios/libexec$ ./check_ncnet -H winsrv -v ENUMCONFIG

Date: 16.04.2005 18:15:10;

Version: NC_Net 2.21 03/13/05;

NC_Net Config Path: c:\Programs\shatter it\nc_net\config\;

Startup Config: c:\Programs\shatter it\nc_net\config\startup.cfg;

Debug Log: c:\Programs\shatter it\nc_net\config\deb.log;

...

Port: 1248;

Pass: None;

...

<��� shows the current query date, H������ the NC_Net version used.
 �� �� ���	�� ���
 describes the path to the configuration directory,
1����
� ���	�� the configuration file used. <��
� #�� specifies the log
file containing the debugging output, but only if the �`</=$" ��
� param-
eter is set in the configuration file. ���� reveals the port on which NC_Net
is listening, and ���� shows whether a password has been used for the
connection ( ���: no password).

There is also the command �: F6" to manipulate the configuration of the
NC_Net installation over the network. For reasons of security you should
use this for test purposes only, and otherwise keep the function switched
off. Accordingly you should keep the following default set in the configura-
tion file�����
���	�:

lock_passive_config true

lock_active_config true

This means that the configuration cannot be changed from the outside.

Other functions

NC_Net’s range of functions is growing all the time, and to describe all the
functions in detail would need a separate book. We’ll just mention a few
quite useful commands:

F5//<6131�.�/
The equivalent of $1/<<6131�.�/ (page 476) expects the free hard
drive capacity (instead of the used space) in percent for warning and
critical limits

4�6N$/5`
This function enables the SQL-capable WMI21 database to be queried,
which contains the .NET configuration data.

21 Short for Windows Management Instrumentation.

487



20 Monitoring Windows Servers

4�6�:$ >/5
Objects comparable to the Windows performance counters also exist
in the WMI area (only .NET); they can be queried with this.

Passive Checks
From version 2.0, NC_Net also supports passive checks based on the
NSCA mechanism (see Chapter 14, page 299). A short documentation
can be found in the included ���������	� file.

More information can be found in the file �������
���, included in the
installation, but it can also be viewed directly at 
���!&&�����
��������
���&������&	����&�������
���.

20.4 NRPE for Windows

Besides NRPE_NT (an NRPE daemon ported to Windows), NSClient++ and
now also OpMon Agent provide NRPE services. Its task is to execute plug-
ins on the target system if a particular test is only possible locally and no
suitable network protocol exists to query the resource concerned. As with
the Unix version (see Section 10 on page 213), the desired plugins must be
installed locally on the target system, apart from the daemon (in this case:
NRPE_NT) and the tests must be entered in a local configuration file.

NRPE can also be used for other purposes: once installed on the Windows
server, you can use the mechanism to run other scripts remotely, apart from
Nagios plugins. If you want Nagios to restart a service remotely through the
Eventhandler, this can be done just as easily with NRPE_NT.22

20.4.1 NRPE_NT, the classic tool

NRPE_NT can be used like the Nagios Remote Plugin Executor, introduced
in Chapter 10—in reality, this is just the Windows version of the same tool.
At the present time, however, it doesn’t look as if this tool will continue to
be actively developed.

The current zip archive from The Nagios Exchange, 23 SourceForge24 or

���!&&���������������&������ is unpacked to a suitable directory,
such as <!L��������L �����L�������:

D:\Programs\Nagios\nrpe_nt> unzip nrpe_nt.0.8-bin.zip

...

22 To execute scripts remotely on a Windows server, you can also use the Windows version
of the Secure Shell, a topic that is too large to go into in this book.

23 ������������	
��
�#��	�
����
�//6'1(
24 �������
��������
��������������
�������
����5
�������H21$1(

488



20.4 NRPE for Windows

It contains a subdirectory ���, in which are found the daemon  5�/� >�
���, two DLLs for using SSL (������*����� and ������*�����), an exam-
ple of a simple plugin script (��������), and the configuration file �����
�	�.

The service is installed from this directory with the command ������� ��,
after which it just needs to be started, either in the Windows services man-
ager or from the command line:

D:\Programs\Nagios\nrpe_nt\bin> nrpe_nt -i

D:\Programs\Nagios\nrpe_nt\bin> net start nrpe_nt

The configuration file ������	� is only slightly different from the Unix ver-
sion of NRPE 2.0 (see Section 10.3, page 218): only the directive ����
���
��� does not function in NRPE_NT.

The file in Windows also has the classical Unix text format,25 so either you
require a suitable editor (����������� is not sufficient) or you must edit it
in Linux and copy it afterwards to the test system.

Since there is no inet daemon in Windows, you must specify the port (stan-
dard: �����������G2''') and the hosts from which NRPE should be
addressed (you should only enter the Nagios server here; for example:
��������
����G-C��-C�-�,��)26 in ������	�. The parameters �����

��� and ��������
� have no meaning in Windows, and the other param-
eters correspond to those discussed in Section 10.3.

In the definition of executable commands (here for the included test plu-
gin) you must remember the Windows-typical syntax with hard drive letters
and backslashes:

command[check_cmd]=D:\Programs\Nagios\nrpe_nt\plugins\test.cmd

In this example the plugins are in a separate subdirectory called ��
����.
After changes to the configuration file you should always restart NRPE_NT:

D:\Programs\Nagios\nrpe_nt\bin> net stop nrpe_nt

D:\Programs\Nagios\nrpe_nt\bin> net start nrpe_nt

Function test

Before putting NRPE_NT into service, you should check whether it is func-
tioning correctly. To do this, run the plugin �
������ on the Nagios server
as the user ������, with just one host specification and no other parame-
ters:

25 The line break in Unix consists of only a line feed character, whereas Windows text files
have a line break consisting of the two characters carriage return and line feed.

26 This security measure, however, is restricted to a simple comparison of IP addresses.

489



20 Monitoring Windows Servers

nagios@linux:nagios/libexec$ ./check_nrpe -H winsrv

NRPE_NT v0.8/2.0

If the service has been correctly installed and configured, it will reply with
a version number. Another simple test is performed by the included �����
��� plugin. It provides a short text and ends with the return value -:

@echo off

echo hallo from cmd

exit 1

The command to be executed (defined in the previous section) is passed to
the plugin �
������ with the �� option:

nagios@linux:nagios/libexec$ ./check_nrpe -H winsrv -c check_cmd

hallo from cmd

nagios@linux:nagios/libexec$ echo $?

1

The return value, determined with ��
� E0, must be - in this case, since
the script exits with an ���� -.

20.4.2 Plugins for NRPE in Windows

A series of plugins can be found on the Internet that run in Windows and
are suitable for use with NRPE. The first port of call is the subcategory Check
Plugins | Operating Systems | Windows NRPE at the NagiosExchange.27 Some
of these are programs that are based on the same source code as their Unix
equivalents, which was just recompiled for Windows. However, the portings
also include Perl scripts that require Perl to be installed—and in most cases
the script language must be installed in Windows first.

The Cygwin plugins

In the Check Plugins | Windows28 category, The Nagios Exchange includes
the ��������
���� package for downloading. It consists of Nagios stan-
dard plugins, which have been compiled for Windows with the help of the
Cygwin Tools.29 The package is based on the somewhat older plugin version

27 ������������	
��
�#��	�
����
�+8B!�B��
��
�&&�%�����
28 ������������	
��
�#��	�
����
��(6&1.
29 The Cygwin tools contain a large number of GNU tools, including a compiler, li-

braries, and shells—all for Windows. This means that many Unix programs can be
ported to Windows directly. The necessary files normally require only the Cygwin DLL
(� 
���'����).

490



20.4 NRPE for Windows

1.3.1, but this is enough for most purposes. Apart from the executable plug-
ins (;����) the package also contains all the necessary DLLs. It is therefore
sufficient to unpack the zip archive into a directory:

D:\Tmp> unzip CygwinPlugins1-3-1.zip

D:\Tmp> dir NagPlug

check_dummy.exe check_ssh.exe check_udp.exe cygwin1.dll

check_http.exe check_tcp.exe cygcrypto-0.9.7.dll negate.exe

check_smtp.exe check_time.exe cygssl-0.9.7.dll urlize.exe

For the sake of simplicity, just copy the contents of the directory that is
created,  ����
�, to a separate plugin directory:

D:\Tmp\NagPlug> copy * D:\Programme\Nagios\plugins

The plugin functions in the same way as in Linux. Table 20.2 refers to the
corresponding sections in this book.

Table 20.2:
Cygwin Plugins for
NRPE_NT

Plugin Page Description

�
�����
������� 188 Test plugin

�
����
������� 119 Reachability of a Web site

�
������������ 113 Testing a mail server

�
������
���� 131 SSH availability

�
����������� 132 Generic plugin

�
������������ 178 Clock time comparison of two hosts

�
����
������ 135 Generic plugin

���������� 188 Negates the return value of a plugin


��������� 189 Turns the plugin output in the Nagios
Web interface into a link

As in Unix, each of the corresponding command definitions in the config-
uration file ������	� must be written on a single line:

command[check_web]=D:\Programme\nagios\plugins\check_http -H www.swobspa

ce.de

command[check_identd]=D:\Programme\nagios\plugins\check_tcp -H linux01 -

p 113

The first line checks whether a Web server is running on the HTTP standard
port 80 of the host ����������������. The second line tests whether an
������ daemon (TCP port 113) is active on the host ���
�+-.

In the event that version 1.3.1 of the plugins is too old, or if you are missing
plugins, you can also compile the plugins yourself under Windows in the

491



20 Monitoring Windows Servers

Cygwin environment if you have some basic knowledge of the development
of C programs and how to handle Makefiles. However, not all recompiled
plugins will function under Windows/Cygwin. For instance, �
��������
makes direct use of the network socket, whose construction in Windows is
quite different from that of the Unix socket; thus, the plugin will not work
in Windows unless changes are made to the code first. Notes on compiling
under Cygwin, along with an already compiled binary archive of the plugin
version 1.4.5, can be obtained at 
���!&&��������
�������	����&����&
�++C&+C&���������
�����	������������
�.

Perl plugins in Windows

Unfortunately the Cygwin plugins do not contain a �
�������� or �
����
����. You can use the Perl script �
����������� instead, which is avail-
able for download on The Nagios Exchange in the  ��������� category.30

It uses the Perl module  ��!!���� for the network connection. In con-
trast to �
�������, �
����������� sends several packets, so it can make
a more precise assessment of response times and packet losses.

An up-to-date and simple to install Perl for Windows can be obtained from
ActiveState31 . To download the Active Perl Free Distribution, no registration
is required, even if the download procedure would suggest otherwise. Of
the versions offered, you should use the latest Perl version (currently 5.8.7),
and only fall back on the older version 5.6.1 if this should cause problems.

The plugin script itself contains a =/"6 statement, which you must com-
ment out for use in Windows:

# BEGIN{

# push @INC, "/usr/lib/perl5/site_perl/...

# }

It sends a TCP echo request to port 7, alternatively you can also explicitly
set a different port by adding the following line after the  ��!!�����_���
statement:

$p->port = 80;

This would cause a TCP ping to port 80 (HTTP). So that NRPE_NT can
execute the script, you must explicitly start the Perl executable:

command[check_ping_eli02]=C:\Perl\bin\perl.exe D:\Programme\Nagios\plugi

ns\check_ping.pl --host 172.17.129.2 --loss 10,20 --rta 50,250

30 ������������	
��
�#��	�
����
�+��������
�31�%�����
31 �����������	�����
�	�������
������	�
�	
�
���
�
�������#5��H9�����B

���

492



20.4 NRPE for Windows

The command has been line-wrapped for the printed version, but in the
configuration file the whole command must be written on a single line.
With the ��
��� parameter you specify a host name which can be resolved
or an IP address, ������ is followed by a pair of values for the warning and
critical limits for packet loss in percent, separated by a comma, (so values
between 0 and 100 are possible here). The ����� option also demands a
threshold value pair as an argument, for the average response time in mil-
liseconds. Since this is a Perl script, it does not matter if these are specified
as integers or floating comma decimals.

20.4.3 NRPE with NSClient++

NSClient++ contains its own NRPE service, so you don’t need to install an
additional NRPE service when using it. It is activated by loading the li-
brary  5�/#����������� in the Z���
���[ section of the configuration
file  1����� (page 467). Configuration of the service is handled by the
Z 5�/[ and Z 5�/ 8�������[ sections. The first section contains the
NRPE base configuration, and the second one defines the checks to be per-
formed.

The default port in NRPE is port 5666, and the parameter ���������
�
�����, when set to -, allows arguments to be passed and corresponds to
the NRPE parameter ��������������� (page 219):

[NRPE]

port=5666

allow_arguments=1

allow_nasty_meta_chars=1

use_ssl=1

; bind_to_address=

; allowed_hosts=

command_timeout=10

performance_data=1

������������������
���G- allows the use of special characters |‘&><’
"\[]{} in �
�������� arguments. These are not allowed if the value + is
entered here instead of -. 
������ should only be switched off (that is, set
to +) if �
�������� cannot be compiled with SSL support.

The ��������������� und ��������
���� parameters allow for NRPE
settings that are different from the default. �������������
� interrupts
an external command to be executed after the time specified (in seconds),
but the timeout only has an effect on external commands. NRPE com-
mands based on internal functions are unaffected by this. Finally, the
���	������������ parameter controls whether or not performance data
should be returned. The default (value -) is to return it, and it is not re-
turned with the value +.

493



20 Monitoring Windows Servers

In the Z 5�/ 8�������[ section, the actual commands are defined. You
can use the same syntax used in NRPE or a short notation, in which the
keyword ������� is omitted entirely:

command[command_name]=command line

command_name=command line

Along with the usual plugin calls that make use of external plugins, there is
the command ��@���. This runs an internal function (which is described
in Section 20.4.4 from page 495):

[NRPE Handlers]

; --------------------------------------------

; external plugins

; --------------------------------------------

; NRPE-stylish:

;command[check_tcp]=C:\Plugins\check_tcp -H $ARG1$ -p $ARG2$

; shorter:

check_tcp=C:\Plugins\check_tcp -H $ARG1$ -p $ARG2$

;

check_smtp=C:\Plugins\check_smtp -H $ARG1$ -f wob@example.net

;

check_uptime=inject CheckUpTime ShowAll MinWarn=1d MinCrit=12h

In this example, �
����
����� calls the internal function �
���$�>���
by means of ��@���. If passing arguments via NRPE is allowed, you can
greatly simplify the definition of ��@��� commands:

check_inject=inject $ARG1$

Now you include the internal function, together with all required parame-
ters, as an argument when calling �
��������:

nagios@linux:nagios/libexec$ ./check_nrpe -H winsrv -ccheck_inject \

-a "checkUpTime ShowAll MinWarn=1d MinCrit=12h"

OK: uptime: 6d 7:19|’uptime’=544771000;86400000;43200000;

If you define the command object in Nagios just as generally, the exact for-
mulation of the command will be shifted entirely to the service definition:

define command{

command_name check_inject

command_line $USER1$/check_nrpe -u -H $HOSTADDRESS$ -c check_inject

-a "$ARG1$"

}

define service{

494



20.4 NRPE for Windows

host_name winsrv

service_description Uptime

check_command check_inject!checkUpTime ShowAll MinWarn=1d MinCr

it=12h

...

}

There is a security issue that should be pointed out here, however. If you
define �
������@���G��@��� E.5"-E as described above, then you are
opening a door to attackers who might be hoping for a buffer overflow in
the code of NSClient++. In that event, the client will be able to run any
command at all. You should therefore use this rather generous command
only in secure environments, and even then you should restrict the hosts
that are allowed to access NSClient++ via NRPE using ��������
����. On
the other hand, such a free definition makes life much easier during the
implementation phase, since you can try out all sorts of combinations and
checks on the command line without having to adjust the configuration file
 1����� to many hosts each time.

20.4.4 Internal NSClient++ functions

NSClient++ provides a series of internal functions that can be called by the
��@��� command via NRPE, and usually also with the plugin �
������.
These are stored in several loadable modules. Table 20.3 gives an overview
of which module is required for a particular function.

Table 20.3:
Internal functions of
the NSClient++
modules

Module Function

�
���<��� �
���F���1���,

�
���<����1���

CheckSystem �
�����$,

�
���$�>���,

�
���1������1����,

�
�������1����D

�
������,

�
�����
����

CheckEventLog �
���/����#��

CheckHelpers �
���.�����:3,

�
���.������56>6�.#,

�
���.�����4.5 6 ",

�
����
������

495



20 Monitoring Windows Servers

To use one of these functions with �
������, you only need to ensure that
the required modules are loaded in the Z���
���[ section. Calling via
NRPE and ��@��� provides additional configuration options, however.

Thus, for the hard disk load check with �
������, which uses the func-
tion �
���<����1��� internally, you can just have a warning and a critical
threshold displayed:

nagios@linux:nagios/libexec$ ./check_nt -H winsrv -vUSEDDISKSPACE \

-l C -w 80 -c 90

...

If, on the other hand, you access �
���<����1���directly, you may specify
higher and lower thresholds, and instead of using a hard drive letter, you
can use a UNC path (see page 497).

Many of the parameters listed below are optional, at least if you go by the
documentation in the Wiki. This convention does not seem to have been
uniformly adhered to, however. Performance data, for instance, is obtained
only if you specify a warning and a critical threshold. You can also omit
one or both thresholds and the call will still function; what is missing is the
performance data. The 1
��.�� and �������� parameters are optional,
provided that the function allows this.

For all other functions, you should test to see whether your configuration
really fulfills the desired purpose and whether NSClient++ works without
an error message before you deploy it in a production environment.

Checking file sizes with �
���F���1���

�
���F���1��� tests the size of individual files or directories:

CheckFileSize MaxWarn=size MaxCrit=size

MinWarn=size MinCrit=size

File=path:alias ShowAll

The last ones here are processed recursively. You can also test drives if you
specify F���G�!L;�;, for instance. The threshold parameters do require
size values to be given, however. If you want to monitor how full a drive is
in percent, you are better off using the command �
���<����1���.

When specifying the threshold size values you can include a suffix: = for
bytes, 3 for KB, � for MB, and " for GB (e.g., ���4���G�-,B�). A number
without a suffix specifies a size in bytes.

The syntax allows several files and/or directories to be given. In this case,
the F��� parameter follows the associated thresholds:

496



20.4 NRPE for Windows

user@linux:nagios/libexec$ ./check_nrpe -H 172.17.129.25 \

-c check_inject -a "CheckFileSize \

MaxWarn=500M MaxCrit=1024MFile=E:\Exchsvr\mdbdata_log\*.* \

MaxWarn=10G MaxCrit=30G File=F:\store02\priv2.edb

\

File=G:\store03\pub3.edb ShowAll"

WARNING: E:\Exchsvr\mdbdata_log\*.*: 77M,

F:\store02\priv2.edb: 11.4G > w

arning, G:\store03\pub3.edb: 3.09G|

’E:\Exchsvr\mdbdata_log\*.*’=80740352

;524288000;1073741824;

’F:\store02\priv2.edb’=12234989568;10737418240;322

12254720;

’G:\store03\pub3.edb’=3316719616;10737418240;32212254720;

When monitoring directories, it is not sufficient to give just the directory
names. Instead, as shown in the example for the directory /!L/��
���L
�����������L, you need to specify with ;�; that all the files and subdi-
rectories (together with their contents) contained in the directory must be
included in the calculation.

Of course, you can also use wildcards, for example, ;���� to find out the
total size of all files ending in ���� in a directory. The thresholds always
refer to the total of all files and directories specified in the corresponding
F��� parameter.

If there are several consecutive F��� specifications, the last thresholds that
were specified before them are used. 1
��.�� displays the statuses of all
files or directories specified, and if this parameter is not given, the display
contains only files and directories with an error state.

The display contains the full path of the file and directories tested, which
can become very confusing. �
���F���1��� therefore allows the optional
use of aliases. Calling

MaxWarn=500M MaxCrit=1024M File:TMP=C:\tmp\*.*

will display just the alias >�� instead of the full path:

OK: TMP: 0B|’TMP’=0;524288000;1073741824;

Checking how full drives are with �
���<����1���

�
���<����1��� checks how full drives are. The thresholds can be given
very flexibly here: You can either use the ;F��� parameters to determine
the remaining free drive space or the ;$��� parameters to establish the
used drive space:

497



20 Monitoring Windows Servers

CheckDriveSize MaxWarnFree=größe MaxCritFree=size

MinWarnFree=size Min

CritFree=size MaxWarnUsed=size

MaxCritUsed=size MinWarnUsed=size Min

CritUsed=size Drive=laufwerk FilterType=type

CheckAll CheckAllOthers Sho

wAll

When giving thresholds, you can again use sizes, or use the 9 suffix to obtain
percentages. In contrast to �
���F���1���, the suffixes for size parameters
must be written in lower case: � for bytes, � for KB, � for MB, and � for GB.

For the placeholder ���� you can use either the respective disk letter or
the UNC path of a network share: for example, <����GLL4��15HL�E. If
�
���.��:�
��� is specified, NSClient++ checks all hard disks that have
not been individually specified. �
���.�� deals with all drives, so the
<���� parameter can be omitted. An additional filter allows only certain
drive types to be considered: F�����>���GF6U/< restricts itself to all drives
that are permanently installed, while F�����>���G5/�:H.=#/ just consid-
ers removable drives. The filter F�����>���G�<5:� describes CD-ROM
drives, and F�����>���G5/�:>/ looks at all network drives. It is possible
to combine several filters:

CheckDriveSize CheckAll FilterType=FIXED FilterType=REMOTE

checks all permanently installed local drives and all connected network
drives.

Checking CPU load with �
�����$

�
�����$ checks the processor load in percent, and thresholds are given
here without the percentage sign:

CheckCPU warn=percentage crit=percentage

time=period ShowAll nsclient

The load is calculated over a period specified with the ���� parameter. If no
suffix is given, the period is in seconds, otherwise the suffixes � for weeks,
� for days, 
 for hours, � for minutes, and � for seconds are available. For
longer periods, you must make sure that the parameter ��
=
		��1��� in
the configuration file under Z�
���1�����[ has a sufficiently large value.
The default period is one hour.

To display the CPU load over several different time intervals all at once, you
can specify the ���� parameter multiple times:

CheckCPU warn=30 crit=80 time=1m time=5m time=15m

498



20.4 NRPE for Windows

1
��.�� influences the display of the plugin output (but not of the perfor-
mance data; these have been omitted below):

OK CPU Load ok.

OK: 1m: 2%, 5m: 2%, 15m: 2%

OK: 1m: average load 2%, 5m: average load 2%, 15m: average load 2%

The first line shows the output without 1
��.��, the second line shows it
with this parameter. Here �
�����$ displays the values for each time inter-
val individually. The third line demonstrates the parameter 1
��.��G����.
This does not give you more information, just more text.

The remaining parameter is ��������, which displays the output in the
style of the original NSClient and separates the details for the time intervals
with the Y sign: �Y�Y�. Performance data is not displayed when using this
parameter.

Determining the uptime with �
���$�>���

�
���$�>��� shows how much time has passed since the system was
started. As with �
�����$, the thresholds can be set using a suffix (�, �,

, �, �):

CheckUpTime MaxWarn=time MaxCrit=time

MinWarn=time MinCrit=time ShowAll

nsclient Alias=string

1
��.�� also displays the time even when there is no error state. ��������
changes the output to a simple value in seconds, without any other text.
With .����, the word $����� can be replaced with a different text:

OK: uptime: 1d 20:11

OK: Running_Time: 1d 20:12

The first line shows a normal output with 1
��.��; in the second line an
additional .����G5
������>��� has been set.

Activity check with �
���1������1����

�
���1������1���� checks whether services are active (�������) or not
(�������). You can either check one or more individually listed services or
use the �
���.�� switch, which checks all services for which the autostart
flag has been set and which should be running after every system start:

CheckServiceState service ShowFail CheckAll

exclude=servicename

CheckServiceState ShowFail ShowAll CheckAll exclude=servicename

499



20 Monitoring Windows Servers

Individual services can be explicitly checked for the desired state:

CheckServiceState MSExchangeSA=started MSSEARCH=stopped ShowFail

This call checks whether the �1/��
����1. service is running and the
�11/.5�8 service is not. If the state of either of the two services is dif-
ferent from what is specified, CRITICAL is displayed. 1
��F��� ensures
that only services with errors appear in the output.

�
���.�� normally includes all services with an autostart flag. Individual
services can be excluded from this with ����
��.

Monitoring processes with �
�������1����

�
�������1����checks the state of processes, and it functions in the same
way as �
���1������1����, except that here there are fewer options avail-
able:

CheckProcState ShowAll ShowFail

CheckProcState ShowFail prozess

For single processes you can again specify the desired state (�	�����G
������� or �	�����G�������); otherwise only 1
��.��will be left to con-
trol the output. 1
��F��� is the default and can be omitted.

Checking memory load with �
������

�
������ checks the load level of the memory. The ���� parameter is of
interest here:

CheckMem MaxWarn=size MaxCrit=size

MinWarn=size MinCrit=size ShowAll

type=typ

����G���� and ����G����� show the entire memory (physical plus swap)
and correspond to the value of �
������ �� �/�$1/. The difference be-
tween ���� and ����� lies only in the routine used: The former uses the
PDH library that is used by NSClient, and which originates from the days of
Windows NT, whereas the latter uses the newer routines of Windows 2000
and Windows 2003. ����G����
�� refers to the swap memory used, and
����G�
������ refers to the physical memory used.

The output of �
������ only provides details of the entire memory avail-
able if there is an error state; for the OK state, only what is actually used of
the specified category is shown.

500



20.4 NRPE for Windows

As with �
���F���1���, suffixes for thresholds are written in upper case
for this function: =, 3, �, and ". Specifying percentages with the suffix 9 is
also allowed.

Checking the performance counter with �
�����
����

With �
�����
���� you can query Windows performance counters that
record nearly all the parameters that Windows has to offer:

CheckCounter MaxWarn=number MaxCrit=number

MinWarn=number MinCrit=number ShowAll

Averages=value Counter=countername

With .�������G��
�, �
�����
���� calculates averages for performance
counters, which on their own do not provide averages. The value 	����
switches this off, so that the query takes less time. The .�������parameter
has no influence on performance counters that Windows already provides
as an average.

The trick lies in finding the right performance counter. One starting point
is the performance monitor itself, which is started in Windows via the
���	���program. If you insert a new performance counter in this for view-
ing, you will be shown all available objects (the performance counter cate-
gories) and performance indicators. All available counters are also shown
by NSClient++ when it is run directly from the command line. Because of
the large number of counters, it is best to redirect the output to a text file:

C:\Programme\Nagios\nsclient++> nsclient++CheckSystem listpdh > All.txt

�
�����
���� takes as thresholds only whole numbers, since counters
generally do not have units. This function allows an alias for the counter to
be specified (see page 497):

CheckCounter "Counter:Logins=\Terminal services\Active

sessions" MaxWarn=2

0 MaxCrit=30 ShowAll

The quotation marks are important here. You must ensure that the param-
eter itself is within the quotation marks. If an alias is specified, NSClient++
replaces the performance counter in the output with the alias:

OK: Login: 1|’Login’=1;20;30;

501



20 Monitoring Windows Servers

Evaluating log entries with CheckEventLog

�
���/����#�� searches through the event log for specific events and is-
sues a WARNING or CRITICAL if the number of entries found exceeds the
respective threshold. The function is very powerful and complex—and, re-
grettably, is not very easy to understand:

CheckEventLog file=��
 filter=value truncate=number

MaxWarn=number MaxCrit=

number descriptions filtermodetype=string

The Windows event log has various log files: for applications themselves
(	���G.����������), for security aspects (	���G1��
����), and for sy-
stem parameters (	���G1�����). There are some additional ones for do-
main controllers. If you want to search for events in more than one log file,
you just repeat the 	��� parameter:

file=Application file=Security file=System

The first 	����� parameter is used as a switch that is combined with fil-
ter expressions that are listed later on. 	�����G�� includes all events that
match the actual filter expression, 	�����G�
� excludes such events.
	�����G��� demands that all filter expressions match the event (logical
AND), but for 	�����G���, one single match (logical OR) is sufficient.

Writing the filter expression itself takes some getting used to: It starts with
the keyword 	�����—an unfortunate choice, because the same keyword
has already been used. This is followed by a mode: K or � ensure that the
event is counted if the filter matches, whereas � excludes the event. For K,
if the filter does not match, the event is excluded, even if 	�����G��� is
used and another filter expression demands that it be counted.

The mode is followed by the filter type. �����>��� describes whether an
error or piece of information is involved (possible values for this are �����,
�������, ��	�, �
���1
�����, and �
���F���
��):

filter+eventType==warning

This expression includes all events in which the event type matches �����
���. The plus sign ensures that this filter is taken into account whatever
the case, even if 	�����G��� has been set.

The �����1�
��� filter type specifies the source of the event (for example
�����,  �������, or 1������ ������� �������). The following example
searches for all events for which the source contains the partial string 3��:

filter.eventSource=substr:KCC

502



20.4 NRPE for Windows

The ��������� and ������� filter types refer to time details: ���������
stands for the time at which the event entry was generated, ������� for
the time at which the event was written to the log file:

filter-generated=>2d

This expression excludes all events that are more than two days old.

The ������� filter type refers to the text for the event entry and allows
filtering according to text content:

filter.message=regexp:(hans|lisa)

Here a regular expression searches for events containing either the text

��� or ����.

With the �����6< filter type you can filter according to the event number:

filter.eventID==7031

There is also the �������� type, which is intended to filter according to the
event priority. Since the author does not know of a suitable use for this, we
will not look at it in any more detail.

It is not immediately clear when you need to write G for a filter expres-
sion and when GG is needed. For expressions with purely text arguments
(�����1�
���, �������), a single equals sign is sufficient. For all other
expressions which also allow a comparison, a relation symbol is part of the
expression itself: G�������, GC+*-, _�� in the examples just mentioned.
Together with the equals sign belonging to the filter type, this then looks
like a double equals sign or a “greater than or equal to” sign—but this is not
the case, there is no “greater than or equal to.”

The following example searches in the 1����� log file for crashes of the
NSClient++ service:

user@linux:nagios/libexec$ ./check_nrpe -H 172.17.133.10 \

-c check_inject -a ’CheckEventLog \

file=System filter=in filter=all filter.eventID==7031 \

filter.generated=<1d filter.message=substr:NSClientpp \

MaxWarn=1 MaxCrit=2 descriptions’

Service Control Manager(error, 7031, error)[NSClientpp (Nagios) 0.2.7 20

07-03-06, 1, 60000, 1, Starten Sie den Dienst neu., ], : 1 > warning|’’=

1;1;2;

Because of 	�����G�� 	�����G���, all filter expressions must match si-
multaneously. The event number being looked for is 7031, the event should
not be older than one day, and it should contain the substring  1��������

503



20 Monitoring Windows Servers

in the text. If this is found, the test returns a WARNING, and if two or more
matching events are found, the return value is CRITICAL. The ��������
����� switch here ensures that not only the name of the source, but the
entire text is displayed. In addition, there is the ��
�����parameter, which
restricts the entire output that is returned to �
��������.

When using �
���/����#��, the expression “practice makes perfect” ap-
plies. If you filter too unspecifically, so that �
���/����#�� has to pro-
cess too many event entries, strange side effects may occur. The mes-
sage $ 3 :4 !  � 
������ 	�� �
�� ������� is sometimes shown, al-
though the reason for this is actually a buffer overflow. In case of doubt,
you should switch on debugging for NSClient++ (don’t forget to stop/start)
and examine the log file, which is in the same directory as the executable
program and the INI file, for relevant error entries. Further information on
�
���/����#�� is contained in the Wiki.32 .

The debug functions �
���.�����:3, �
���.�����4.5 6 ", and
�
���.������56>6�.#

The functions �
���.�����:3,�
���.�����4.5 6 ", and �
���.������
�56>6�.# are used for debugging purposes and always return the same sta-
tus. Their use is relatively simple: The chosen debugging function is simply
inserted in front of a normally defined function, such as �
���F���1���:

CheckAlwaysOK CheckFileSize ...

Summarizing several checks with �
����
������

If several checks need to be summarized into one single check, �
����
�
������ is used:

CheckMultiple command=CheckFileSize ... command=CheckUpTime ... command=...

All individual checks are written one after another, each beginning with
�������G. Quotation marks in the style of �������GJJ are not required.
The highest error value that occurs in the individual checks is returned as
the result.

32 ���������	���	������
���
��
��������C����!����"�
�C����!����"�


504



21 Ch
ap

te
r

Monitoring Room Temperature
and Humidity

There are a number of sensors for monitoring room temperature and hu-
midity. Most of them are integrated into the network as independent net-
work devices, and are normally addressed via SNMP.

But you have to spend at least three hundred dollars on your first sensor.
Searching for a cheaper and modular system, the author finally came across

���!&&����������
������&; it has met all his requirements until now.

The fact that this chapter is restricted to this sensor is not meant to detract
from other systems, but is down to the fact that this topic alone would be
enough for a separate book.

505



21 Monitoring Room Temperature and Humidity

21.1 Sensors and Software

A complete monitoring system for physical data normally consists of three
components: a sensor (for temperature or humidity, for example), an ad-
apter to connect to the serial or parallel port of a PC, and software to query
the sensor.1

There are adapters for the PCMeasure system in variations from one to
four sensors, which can be operated simultaneously. For the power supply
the adapters need an available USB interface; alternatively a separate “USB
power supply” is available. Instead of the adapter solution, there is also
an optionally available Ethernet box with four sensor connections, which is
somewhat more expensive, that can be expanded to accept 12 sensors.

The measurement querying software PCMeasure is available for both Linux
and Windows.2 Some features are exclusive to the Windows version, which
is why it is slightly more expensive. For use with Nagios, the Linux version
is totally sufficient, since only the measurement values are transmitted over
a simple network protocol.

The sensors themselves are interesting: as well as those for temperature
and humidity (as well as combinations of the two) there is also a contact
sensor, a smoke and water alarm, a movement detector, and voltage de-
tectors. These are normally connected with a twisted-pair cable (RJ45 con-
nector); according to the FAQ,3 they can be used up to 100 meters from the
adapter or Ethernet box, provided you have good cables, that is, throughout
a building.

21.1.1 The �����	��� software for Linux

The tar archive ������
���������with the Linux software is unpacked in
its own directory, such as &
��&�����&������
��. The configuration file
������
��7���
���	� is also installed here. The port entries in this file
need to be adjusted so that only those ports are listed to which a sensor is
actually connected:

[ports]

com1.1=01

���- stands for the first serial port; if you are using the first parallel port
instead, the entry before the period is ���-. The digit following the port

1 The PCMeasure Web site showed the following prices as of February 2008: simple tem-
perature sensor 30101, $ 36; serial single-port adapter 30201 $ 51; Linux software, $ 38
(Windows: $ 53).

2 The access data for the download comes with the invoice.
3 ���������������	
���������	0����

506



21.2 The Nagios Plugin �
����������
������

refers to the adapter slot used by the sensor, so depending on how many
adapters you have, this is a number from - to 7. The = sign is followed by
the sensor type: +- stands for a temperature sensor, +* for a humidity sen-
sor. An additional humidity sensor on the second slot of the same adapter
would then be addressed as ���-��G+*.

The query program ������
�� requires the configuration file to be speci-
fied as an argument:

linux:local/pcmeasure # ./pcmeasure ./pcmeasure4linux.cfg

It runs as a daemon in the background and only ends if it is terminated
with ����. In principle, any user can start it who has read permissions for
the corresponding interface.

21.1.2 The query protocol

The software opens TCP port 4000 by default and accepts requests from the
network. The protocol used is quite simple: you send a text in the format

pcmeasure.interface.slot<CR><LF>

(that is, with a DOS line ending) and you receive a response in the format

port;valid=validity;value=value;...

The validity placeholder is replaced by a - for a valid value or + for an
invalid one. The port specification complies with the internal numbering
system: ���-�- corresponds to ����-, ���-�- to ����-*. Whether every-
thing functions correctly or not can be tested with ������:

user@linux:~$ telnet localhost 4000

Trying 127.0.0.1...

Connected to localhost.

Escape character is ’^]’.

pcmeasure.com1.1

port13;valid=1;value=22.59;counter0=10627;counter1=14373;

Connection closed by foreign host.

The current temperature in this example is 22.59 °C, and the value is valid.

21.2 The Nagios Plugin �
����������
������

The plugin �
����������
������4 allows a single sensor to be queried
across a network. In exceptional cases—when measuring air pressure, for

4 ������������	
��
�#��	�
����
�&%63/3

507



21 Monitoring Room Temperature and Humidity

example—one call may also query two sensors. The plugin replaces �
����
������
����� and uses the Perl module  �����!!��
��� to correctly rep-
resent the thresholds (see Section 24.1.5, page 557). The older �
�������
����
����� is still available under the same link, but is no longer main-
tained by the author.

Apart from the usual standard options, �
 (online help), �� (timeout), �H
(displays the version), and �� (verbose, additional information when look-
ing for errors), �
����������
������ has the following options:

�8 ���	��� / ��
���G���	���
This is the host name or IP address of the measuring computer on
which the software is running and to which the sensors are con-
nected, or the IP address or host name of the Ethernet box.

�1 �����	 / ��������G�����	
This switch defines the sensor, such as ���-�- or ���-�� (see above).
When querying air pressure values, you need two sensors, which are
separated by a comma when specified: ��������G���-�-D���-��.

�� ��	� / ������G��	�
This specifies an alternative TCP port for the software or for the Eth-
ernet box. The default is port 4000.

�� ��	������� / ���������G��	�������
If the measured value lies outside the warning range specified here
(e.g., �� -B�+!���+, see Section 24.1.5 from page 557), �
�������
����
������ sets off a warning.

�� ��	������ / ����������G��	������
This defines the critical threshold; see ��.

�> �����	 ���� / ������G�����	 ����
This specifies the sensor type for sensors with special requirements.
Types currently implemented are ����
�����,��������� (this needs
two sensors to be specified in ��������), and �������� (the default).

�5 ���� / ��������������G����
This option specifies the round-robin database to save measured val-
ues independently of Nagios. The file must be writable for the user
������. If this is missing, the plugin will create it again.

In order to work with a round-robin database (see page 408) you need
the Perl module 55<� used by the plugin, from the RRDtools.5 The
plugin automatically detects whether or not the module is available.
If it is missing, it does not save the data separately.

5 ���������������������
�

508



21.2 The Nagios Plugin �
����������
������

In the following example the plugin asks for the temperature of the sensor
connected to the host with the IP address -,��-'B�-�-,,:

nagios@linux:nagios/libexec$ ./check_pcmeasure2.pl -H 192.168.1.199 \

-S com1.1 -w 18.0:22.0 -c 16.0:24.0

WARNING: Value com1.1: 23.5 |value=23.5;18.0:22.0;16.0:24.0;

Since the measured value lies above the warning limit of 22.0 °C, but below
the critical limit of 24 °C, there is a WARNING. The interval details corre-
spond to those in the figure on page 558.

The corresponding Nagios command can be specified with or without a
round-robin database:

define command{

command_name check_temp_max

command_line $USER1$/check_pcmeasure2.pl -H $HOSTADDRESS$ -S $ARG1$

-w $ARG2$ -c $ARG3$

}

define command{

command_name check_temp_max_rrd

command_line $USER1$/check_pcmeasure2.pl -H $HOSTADDRESS$ -S $ARG1$

-w $ARG2$ -c $ARG3$ -R $ARG4$

}

Without a RRD, you only need to specify the maximum and critical warning
limits, apart from the sensor details. In the second example the RRD file
predefined in E.5"7E saves the measured data. The following service uses
the file &���&���&���&��������
������������-���� for this purpose:

define service{

host_name linux01

service_description Room temperature

max_check_attempts 1

normal_check_interval 2

check_command check_temp_max_rrd!com1.1!18.0:22.0!16.0:24.0!/var/lib

/rrd/temperatur-serverroom1.rrd

...

}

With �����
������������ set to -, Nagios does not repeat the query in
case of an error at intervals of �������
������������. Instead the tem-
perature is measured constantly every two minutes.

Since room temperatures normally change very slowly, you could use a
��������
������������ of five minutes. If you choose larger measur-
ing intervals, you can set �����
������������ to a value greater than
- and repeat the measurement at shorter intervals in case of errors (e.g.,
�������
������������ -).

509





22 Ch
ap

te
r

Monitoring SAP Systems

There are several ways of monitoring an SAP system. The simplest is just
to check the ports on which the corresponding SAP services are running.
Normally these are TCP ports 3200/3300 for system number ++, 3201/3301
for system number +- etc. This can be done with the generic plugin de-
scribed in Section 6.7.1, page 132. But it is possible that no user is able to
log in even though the port is reachable, because SAP-internal services fail,
making it impossible to work with the system.

To really test the complex interaction of various SAP components, you re-
quire a program that communicates on an application layer with the SAP
system. There are two alternatives here: the more simple one uses the pro-
gram �����	�, which queries the available information without a direct
login—like the SAP-GUI at the start. With somewhat more effort you can
communicate with the SAP system over an SAP standard interface. This
is no use, however, unless you have an SAP login with corresponding per-
missions. With the Computing Center Management System (CCMS), SAP

511



22 Monitoring SAP Systems

provides its own internal monitoring system, which can also be queried
with the RFC1 interface, and which can be put to excellent use in Nagios,
with the right plugins.

22.1 Checking without a Login: �����	�

The program �����	� is part of an optional software package for the devel-
opment of client-side RFC interfaces. The Linux version which you require,
5F��:�>�7'��1.5, can be obtained either at 	��!&&	����������&�
�&
���
����&�������&, or you can log in to the SAP Service Marketplace at

���!&&���������������& (a password is required for this) and use the
search help there to look for the keyword 5F��1<3. Information is also pro-
vided by the SAP notes 413708 (at present the current RFC library), 27517
(installation of the RFC SDK), and 212876 (the new archiving tool SAPCAR).

22.1.1 Installation

SAP has its own archiving format in which the precompiled software is
stored. To unpack programs you require the program 1.��.5, which can
also be obtained through the FTP link mentioned or through the SAP Ser-
vice Marketplace. It is operated in a way similar to tar:

linux:~ # mkdir /usr/local/sap

linux:~ # cd /usr/local/sap

linux:local/sap # /path/to/SAPCAR -xvf RFC_OPT_46C.SAR

SAPCAR: processing archive RFC_OPT_46C.SAR

x rfcsdk

x rfcsdk/bin

x rfcsdk/bin/sapinfo

...

The data contained in the archive lands in its own subdirectory, �	����.
If you run 1.��.5 without any parameters, a short operating manual is
displayed.

22.1.2 First test

The program �����	� can be tested now without further configuration. To
do this you require the so-called connect string ; if the connection is running
through an SAP gateway, this is a string such as &8&�������������������
���&1&*�,C&8&�������������������� ; without a gateway you simply
specify an IP address or a host name that can be resolved, instead of this

1 Remote Function Call.

512



22.1 Checking without a Login: �����	�

complex expression. In case of doubt, the administrator responsible for
the SAP system will reveal the exact connect string. In addition you must
specify the system number,2 in this example, +-:

nagios@linux:~$ cd /usr/local/sap/rfcsdk/bin

nagios@linux:rfcsdk/bin$ ./sapinfo ashost=10.128.254.13 sysnr=01

SAP System Information

-----------------------------------------------

Destination p10ap013_P10_01

Host p10ap013

System ID P10

Database P10

DB host P10DB012

DB system ORACLE

SAP release 620

SAP kernel release 640

RFC Protokoll 011

Characters 1100 (NON UNICODE PCS=1)

Integers LIT

Floating P. IE3

SAP machine id 560

Timezone 3600

The output provides various information on the SAP installation, includ-
ing the SAP release ('�+), the SAP system ID (�-+), the host on which the
database is located, and the database system used, which in this case is
Oracle.

With the ��
��� parameter you query a specific application server. For a
message server, �����	� requires the following details:

nagios@linux:rfcsdk/bin$ ./sapinfo r3name=P10 mshost=10.128.254.12 \

group=ISH

The �*���� parameter specifies the SAP system ID, ��
��� defines the IP
address of the server, and ���
� describes the logon group. As long as
the �$=#6� group exists, you can leave this parameter out, and then the
default, �$=#6�, will be used.

If the query ends with an error message such as

ERROR service ’sapmsP10’ unknown

2 The SAP administrator will also know this.

513



22 Monitoring SAP Systems

then the definition of the ������-+ service is missing for the Nagios server3

in &���&��������:

sapmsP10 3600/tcp

For the port you define the TCP port on which the message server is run-
ning. Which one this is depends on the particular SAP installation; the
standard port is *'++.

22.1.3 The plugin ������	���	�

The plugin �
���������
, a shell script based on �����	�, is included
in the standard Nagios Plugins package, but it is in the ������� directory
and is not automatically installed. You can copy it manually to the plugin
directory:

linux:~ # cp /usr/local/src/nagios-plugins-1.4/contrib/check_sap.sh \

/usr/local/nagios/libexec/.

Then you look in the plugin for the variable �����	���� and adjust the
path for �����	�:

sapinfocmd=’/usr/local/sap/rfcsdk/bin/sapinfo’

If the plugin �����	� is not found at the location given here, �
���������

will write an error message to STDERR, but if no error occurrs, you will re-
ceive an OK message on STDOUT and the return value +:

./check_sap.sh: line 79: /usr/sap/rfcsdk/bin/sapinfo: No such file or di

rectory

OK - SAP server available.

Like �����	�, the plugin can be run in two ways: with the argument �� it
queries an application server, and with ��, a message server. The second
argument in each case is the connect string, and if no SAP gateway is used,
then it is the IP address or the host name of the host to be queried:

check_sap.sh as connect_string system_number

check_sap.sh ms connect_string SID logon_group

The first variation demands the two-digit system number of the application
server as the third parameter, the counting of which starts at ++:

3 Instead of B'%, the appropriate system ID will always be shown here.

514



22.1 Checking without a Login: �����	�

nagios@linux:nagios/libexec$ ./check_sap.sh as 10.128.254.13 01

OK - SAP server p10ap013_P10_01 available.

This means that the application server running on the host -+�-�B��27�-*
is available.

When the message server is queried, the plugin displays the application ser-
ver belonging to the specified login group (given as the fourth argument).
If this information is missing, it determines the application server for the
�$=#6� group.

For a message server, you specify the SAP system ID (SID), for example,
�-+,4 instead of the system number:

nagios@linux:nagios/libexec$ ./check_sap.sh ms 10.128.254.12 P10 ISH

OK - SAP server p10ap014_P10_02 available.

In this example the message server running on -+�-�B��27�-� detects
�-+��+-7��-+�+� as the application server for the logon group 618 and
also reveals that this is reachable.

The following two command definitions assume that it is sufficient to use
the IP address, and that no SAP connect string is required:

define command{

command_name check_sap_as

command_line $USER1$/check_sap.sh as $HOSTADDRESS$ $ARG1$

}

define command{

command_name check_sap_ms

command_line $USER1$/check_sap.sh ms $HOSTADDRESS$ $ARG1$ $ARG2$

}

If this is not the case, the ������������ for querying an application server
could look like this:

$USER1$/check_sap.sh as /H/sapgw/S/3297/H/$HOSTADDRESS$ $ARG1$

The following service definition can be used for all application servers:

define service{

service_description SAP_AS

host_name sap01

check_command check_sap_as!00

...

}

4 The first instance of this has the system number 00, the second one, 01, etc.

515



22 Monitoring SAP Systems

Since there is only a single message server in an SAP system, it makes more
sense to define a separate service for each logon group. The following ex-
ample shows this for the group 618:

define service{

service_description SAP_MS_ISH

host_name sap09

check_command check_sap_ms!P10!ISH

...

}

In this way you can test whether a user may log in without actually logging
in. If there are interruptions between the database and the application
server that make it impossible to log in, �����	� provides a correspond-
ing error message after a timeout. The author was able to observe several
times that �����	� and �
���������
 reported an error in such a situa-
tion, while the TCP port-only test of the application server, �
�������, re-
turned an OK, although no user could log in any longer. So �
���������
,
even without a login, provides more reliable information than a port-only
check.

22.1.4 More up to date and written in Perl: ������	�����

�
���������
 is not only getting on in years, it is apparently also no longer
maintained, so once in a blue moon you just have to put up with the fact
that it returns an OK, even when there is an error. The author of this book
has therefore written his own version of the plugin in Perl and made this
available on NagiosExchange.5 As befits a reputable Perl plugin, it uses the
Perl module  �����!!��
��� (more on this in Section 24.2 from page 560),
parses the command line with "�����!!#��� (Section 25.1, page 565), and
includes integrated online help.

The plugin �
���������� also uses �����	� (Section 22.1) and has the
following options:

����
���G����������	���
Tests the application server. A connect string (page 512) must be
specified, which in the simplest case is the IP address of the applica-
tion server. The test needs an SAP system number to be given at the
same time, with �����������.

����
���G����������	���
Tests the message server. A connect string is expected, as with
����
���, and you also need to specify at least the SAP-SID of the

5 ������������	
��
�#��	�
����
�$'6/��

516



22.1 Checking without a Login: �����	�

system (e. g., �-+). The test uses a logon group, and the default is
�$=#6�. If this is not available in the SAP system, you must specify
the group in question with �����
�.

�����������G������������	
Defines the system number for the test of an application server. Nor-
mally the system number begins counting upwards from 00 for the
first application server. In case of doubt, you should ask your SAP
administrator for the correct system number.

��������G���
Defines the SAP-SID for the overall system for the test of the message
server. In case of doubt, you should also ask your SAP administrator
about this parameter.

�����
�G����� �	���
Defines the logon group that is to be used for the test of the message
server. This must exist in the SAP system, otherwise the message
server test will fail. The default is �$=#6�.

�������	�G���������������
Specifies the path to the program �����	�. The default is &
��&���
���&���&�	����&���&�����	�.

�
 / ��
���
Displays the online help.

�H / ���������
Shows the version and the license conditions of the plugin (GPLv2).

�� / ���������
Increases the verbosity of the plugin. This option can be given several
times, to make the output increasingly extensive.

The following example tests an application server with the SAP system
number ++:

nagios@linux:nagios/libexec$ ./check_sap.pl--ashost=10.128.254.12 \

--sap-sysnr=00

CHECKSAP OK - system p10db012_P10_00 available

To test the message server you require the SID instead of the system num-
ber and, in our case, a logon group as well, since the default logon group
�$=#6� does not exist in the �-+ system:

nagios@linux:nagios/libexec$ ./check_sap.pl--mshost=10.128.254.12 \

--sap-id=P10 --group=ISH

CHECKSAP OK - system p10ap014_P10_02 available

517



22 Monitoring SAP Systems

In contrast to the example given for �
���������
, the definition of the
command is kept very general:

define command{

command_name check_sap

command_line $USER1$/check_sap.pl $ARG1$

}

Because of E.5"-E, a single command definition is sufficient for all checks,
whether for application or message server, whether with or without an SAP
connect string. The definition of the service for the test of an application
server then looks like this:

define service{

service_description SAP_AS

host_name sap01

check_command check_sap!--ashost=$HOSTADDRESS$--sap-sysnr=00

...

}

The service obtains the IP address of the host from the accompanying host
definition via the E8:1>.<<5/11E macro, so that the service definition
works for an entire host group if you define the name of the host group
with 
������
������ instead of 
��������. If an SAP connect string is
required, you replace E8:1>.<<5/11Ewith the connect string:

check_sap!--ashost=/H/sapgw/S/3297/H/$HOSTADDRESS$ --sap-sysnr=00

In an SAP system there is just one message server, therefore the service
check only makes sense for this one host. If there are several different
logon groups, you define a separate service for each of these. The following
example shows this for the group 618:

define service{

service_description SAP_MS_ISH

host_name sap00

check_command check_sap!--mshost=$HOSTADDRESS$--sap-id=P10 -

-group=ISH

...

}

Here it is also possible to add a connect string that might be required.

518



22.2 Monitoring with SAP’s Own Monitoring System CCMS

22.2 Monitoring with SAP’s Own Monitoring
System CCMS

With SAP’s own Computing Center Management System framework (CCMS),
not only SAP systems, but also external applications can be monitored.
Here local agents collect data from each of the hosts, which, since Release
R/3 4.6C,6 can be queried from a central component. The data examined
includes not only SAP-specific features such as SAP buffers or batch jobs,
but also operating system data such as memory and CPU usage, or disk
IO and swapping. Even information on the database used or the average
response times of applications can be queried.

The data of the CCMS can also be queried externally through RFC (Remote
Function Calls, a standard SAP interface). Corresponding libraries for Unix
and Windows platforms, with which a Linux program, for example, can
query information from the CCMS over the network, are provided by SAP.

22.2.1 A short overview over the alert monitor

Within the SAP world you gain access to this data through the CCMS Alert
Monitor (transaction RZ20) (Figure 22.1). The illustration shows so-called
monitor connections that categorize various information in groups.

Figure 22.1:
The SAP CCMS Alert
Monitor

6 Central evaluation was not possible in earlier releases.

519



22 Monitoring SAP Systems

SAP provides several monitor collections with preconfigured values in its
distribution. A trained SAP administrator can create and operate moni-
tors at any time. We shall restrict ourselves here to the monitor collection
1.� ���1 ������� >�������� and focus on the Dialog Overview monitor
(Figure 22.2).

The dialog response times specified there (accessible through the moni-
tor attribute <����� 5������� >���) provide a measurable equivalent for
performance problems corresponding to what the user feels is a “slow sy-
stem.” This value specifies the average processing time of a transaction
(without network transmission time and without the time needed to ren-
der the information in the GUI of the client).

Figure 22.2:
The SAP CCMS
monitor dialog

Overview

The monitor attribute  ������ >��� reveals how much time the system
needs to send data during a dialog stage from the client (the SAP GUI) to
the SAP system and back again.

For each of the attributes, the monitor shows which context defined in the
SAP system—normally, which SAP instance—is involved in the measured
values specified. Most measurement parameters have a warning and a crit-
ical limit. If the value lies beneath the warning limit, the monitor displays
the line in green; for monochrome devices the color is listed as text. If the
warning limit is exceeded, ������ is shown, and if the critical limit is ex-
ceeded, ���. If an entry of a partial tree lies outside the green limit, the
monitor also sets the overlying nodes to yellow or red, so that the admin-
istrator can see that something is not right, even when the menus are not
open.

520



22.2 Monitoring with SAP’s Own Monitoring System CCMS

You do not normally need to worry about the thresholds. The settings con-
figured by SAP are sensible and should only be changed if there is a sound
reason to do so.

The Nagios plugins for the CCMS query, described in Section 22.2.4 (page
525), return the status defined in the CCMS: OK if the traffic light is on
green, WARNING for yellow, and CRITICAL for red. The thresholds are
therefore set by the SAP system, and not by Nagios.

If you want to find out more about CCMS, we refer you to the documenta-
tion at

���!&&���������������&���������� (password required). There SAP
provides detailed information on the installation and operation of CCMS.
The SAP online help also has an extensive range of information available.
If you just want a short summary of the subject and are more interested in
the way the Nagios plugins work, you can find two informative PDF docu-
ments at 
���!&&�������������
��������&�����27�+�
��� under the
keyword 1.� ���1.

22.2.2 Obtaining the necessary SAP usage permissions for
Nagios7

Retrieving information from the CCMS is done through RFC (Remote Func-
tion Calls), which requires a login on the SAP side. Luckily the user only
needs a minimal set of permissions.

A new role is set up in the role generator (transaction PFCG) with a name
that conforms to the company-internal conventions. It is not given any
transaction assignment in the menu.

Figure 22.3:
For access from
Nagios you require
these SAP
authorization objects

7 This section is intended for SAP authorization administrators. If you do not maintain
SAP authorizations yourself, you can skip this section.

521



22 Monitoring SAP Systems

When maintaining permissions, the following permission objects are added
manually: 1�5F�, 1�U�6�#:", and 1�U�6��5:< (see also Figure 22.3).

Whether these permissions are sufficient or not can be tested with the plu-
gin �
������������ described in Section 22.2.4, page 525 �
��������
����. If a function group (such as 1.#") is missing from the permission
object 1�5F�, the plugin shows name of this in plain text in the error mes-
sage.

The login data is stored on the Nagios server in the file &���&������&
�������	�. When doing this, various target hosts (called RFC destinations
in SAP) can be configured simultaneously. Such a login configuration for a
target system is called an RFC template in the language of the CCMS plugins
(Section 22.2.4, page 525). It has the following form:

[LOGIN_template]

LOGIN=-d target -u user -p password -c client-id -h address

-s system_number

The complete #:"6 definition must be written on a single line, and it is
essential that it contain the following details:

�� ��	���
This is the name of the SAP system, also referred to as SID or system
ID.

�
 ���	 �� ������	�
These parameters state the SAP user and corresponding password.
Remember that a newly created dialog user has to change his or her
password on first logon.

In addition, there are problems with upper/lower case on some sys-
tems: In some cases the password must be written entirely in capitals.

If the login is to work later on, the password may not contain the A
sign. Which special characters are allowed seems to depend on the
system settings. Here you just have to experiment a bit, if necessary.
If you have problems, it is best to start with a very simple password,
so that errors of this type can be ruled out.

�� ���������
This is the three digit client ID.

�
 ���	���
The host name of the host on which the named user should log in.
This must resolve to an IP address.

�� ������������	
The SAP system number. The first SAP instance is normally ++, then
increased incrementally.

522



22.2 Monitoring with SAP’s Own Monitoring System CCMS

Below, the ���	 with the password ���	�� should login from the client
with the ID +�+ to the host �-+��+-*whose SAP installation has the system
number +-:

[LOGIN_P10]

LOGIN=-d P10 -u user -p secret -c 020 -h p10ap013 -s 01

The RFC template name in square brackets consists of the text #:"6 � and
the SAP system ID (SID). The RFC template defined here belongs to the SAP
system �-+.

22.2.3 Monitors and templates

The interface provided by SAP that is used by the plugins is available in
a simple and an extendable variant. Only additional functions enable all
information from the CCMS to be retrieved, which is why we are omitting
the description of the simple interface.8

For the extended interface, templates define the monitor data to be used.
These are stored on the Nagios server in the file &���&������&�������	�
and have the following format:

[TEMPLATE_name]

DESCRIPTION=description

MONI_SET_NAME=monitor collection

MONI_NAME=name_of_the_monitor

PATTERN_0=SID\context\monitor_object\attribute

The placeholders written in italics are replaced as follows:

����
This is the name with which the plugins address the template. The
name may consist of digits, letters, and the characters � and �. When
it is called by the plugin, the name must be written in lower case,
irrespective of whether it is called >/1>, >���, or ����, for example.
If you are having problems with alphanumerical names, it is better to
select template names consisting of two digits when you are getting
started, e. g., ++, +-, and so on.

����	������
A freely selectable, simple text.

������	 ����������
This is the name of the monitor, set exactly as it is in the CCMS (in-
cluding upper/lower case and spaces).

8 Information on this is provided by the PDF documents mentioned on page 521.

523



22 Monitoring SAP Systems

������������������	
The name of the monitor must also match the SAP name exactly.

�������
This pattern filters out the desired values from those contained in the
monitor. In most cases you specify the identifier for the SAP instance,
such as �-+��+-*��-+�+- (�-+��+-* is the host name, �-+ the SID
of the SAP system, and +- is the system number).

������	�������
This is the name of the desired monitor object, for example <�����.
Unfortunately the term demanded here rarely corresponds to the one
shown in the SAP GUI. It is best to determine it using �.>>/5 �+G;,
as described below.

���	�����
This is the variable to be queried. Each monitor object may con-
tain severable variables. <�����, for example, has, apart from the
5�������>��� variable, the F������� ��>��� variable, which re-
veals the average processing time of a transaction, restricted to the
network transmission time and processing time on the client.

The challenge here is in specifying the filter in �.>>/5 �+. It must exactly
match the SAP-internal names, and these are not identical to the terms that
are displayed in the CCMS Alert Monitor (Transaction RZ20).

It is best to start with �.>>/5 �+G;, which ensures that the entire tree
appears. We shall call the template for this simply ++:

[TEMPLATE_00]

DESCRIPTION=Dialog response time

MONI_SET_NAME=SAP CCMS Monitor Templates

MONI_NAME=Dialog Overview

PATTERN_0=*

With this entry in &���&������&�������	� you query the complete list of
all monitor entries, in this case those of the system with the ID �-+, using
the �
������������ plugin:

nagios@linux:nagios/libexec$ ./check_sap_cons 00 P10

...

P10 p10ap013_P10_01 Dialog ResponseTime 262 msec

P10 p10ap014_P10_02 Dialog ResponseTime 61 msec

P10 p10db012_P10_00 Dialog ResponseTime 11 msec

...

The entries contain the following information—with items separated by
spaces:

524



22.2 Monitoring with SAP’s Own Monitoring System CCMS

SID context monitor_object attribute value

The information for the �-+ system queried above first gives the SAP in-
stance, such as �-+��+-*��-+�+-, then the monitor object (<�����) and
the attribute (5�������>���) together with values. In the SAP GUI (Figure
22.2) this latter is called <����� 5������� >���, and since each empty
space is significant, this is a completely different name.

In a template that is only interested in the response time of the instance
�-+��+-7��-+�+�, the �.>>/5 �+ is defined as follows:

PATTERN_0=P10\p10ap014_P10_02\Dialog\ResponseTime

If you want to query all the entries of a query level, you must use the wild-
card ;. The following example defines templates for the dialog response
time, the network response time, and the average CPU load for all instances
of the system �-+:

[TEMPLATE_00]

DESCRIPTION=Dialog response time

MONI_SET_NAME=SAP CCMS Monitor Templates

MONI_NAME=Dialog Overview

PATTERN_0=P10\*\Dialog\ResponseTime

[TEMPLATE_01]

DESCRIPTION=network response time

MONI_SET_NAME=SAP CCMS Monitor Templates

MONI_NAME=Dialog Overview

PATTERN_0=P10\*\Dialog\FrontEndNetTime

[TEMPLATE_10]

DESCRIPTION=System load in five-minute average

MONI_SET_NAME=SAP CCMS Monitor Templates

MONI_NAME=Operating System

PATTERN_0="P10\*\CPU\5minLoadAverage"

22.2.4 The CCMS plugins

SAP demonstrates the use of the RFC interface to the CCMS with the CCMS
plugins for SuSE. In Debian you can convert the RPM package �������
��
��������������+�C�*9 to a tar file with �����, or alternatively you
can obtain the source RPM from a SuSE FTP mirror10 and compile the
source code yourself. This will give you the plugins listed in Table 22.1.

9 It can be found at ��������������
��������, for example, if you search there for
�	
��
����
��
�
	�����
.

10 e.g., ���������3�
��
������������#�
�
������
�
����
�����������"�D���

�	���� ���
��
������
�
���32&��	
��
����
��
�
	�����
�%�/�1�'�1��32&

����

525



22 Monitoring SAP Systems

Table 22.1:
The SAP-CCMS

plugins

Plugin Description

�
������� Output of the monitor data in HTML for-
mat

�
������������ Ditto, but without HTML formatting and
without hyperlinks for the output on the
command line

�
���������������� Dialog response time and number of
logged-in users on a particular applica-
tion server (requires CCMS Ping11 )

�
��������������������� Ditto, as text output without HTML
markup

�
���������
������ HTML-formatted output of data of a
monitor template, which returns more
than one value

�
���������
�������
� Output of multiple values with simple
HTML formatting, without hyperlinks, in
contrast to �
���������
������

�
�������������� Shows the application servers of the SAP
system and their states (requires CCMS
Ping)

�
������������������� Like �
��������������, only without
HTML formatting

The plugins that end in _cons are especially suitable for test purposes: they
simply pass the data on to the command line, without further formatting.
The output of the others contains HTML formatting for a Nagios version
modified by SAP; with Nagios 2.0 they usually lead to an incorrect view and
are therefore useless.

Individual values are best retrieved with �
������������. For Nagios 2.x
the monitor definition must then really return only one single value. The
remaining ones would be returned on additional lines, ignored by Nagios
2.x.

If you are using Nagios from version 3.0 onward, you can certainly formu-
late the monitor definition in such a way that �
������������ returns
several values. Although the Web interface will only display the first line
of these, the extended view, with �����	�����, will show the rest of the
output up to a length of 8 KB (see Figure 22.4).

11 As components of the CCMS monitoring system, CCMS Ping monitors the availability
of the application server belonging to the SAP system.

526



22.2 Monitoring with SAP’s Own Monitoring System CCMS

Figure 22.4:
������
	�����


with a multiple-line
output in Nagios 3.0.

If Nagios 2.x is to display several return values, it is best to use �
��������
�
�������
�, which provides these values with some HTML formatting
elements that also work with Nagios 2.x. This causes all results to appear in
the Web interface as well.

All plugins demand two arguments: �
�������, �
������������, �
����
�����
������, and �
���������
�������
� first require the name of
the monitor template from the file &���&������&�������	�, such as ++,
++����-*, +-, or -+ (see page 523), followed by the name of the RFC tem-
plates, as defined in &���&������&�������	� (in the examples in this
book we use the system ID �-+).

For �
��������������/�
�������������������and �
�������������
����/�
�������������������, the first argument changes: instead of the
monitor template, �
��������������demands the system ID (here, �-+),
and �
���������������� demands the SAP instance, consisting of the
host name, the SID, and the system number (for example, �-+��-*��-+�+-).

First steps with �
������������

The plugin �
������������ is probably best suited to your first attempts.
Only after this has worked for you properly on the command line should
you move on to the actual Nagios configuration. The example on page
524 already showed how you determine the dialog response time with the
monitor template ++, and the following example queries the network time
which the SAP GUI requires till the result of the transaction appears in the
SAP GUI, using the monitor template +-:

nagios@linux:nagios/libexec$ ./check_sap_cons 01 P10

P10 p10ap013_P10_01 Dialog FrontEndNetTime 383 msec

P10 p10ap014_P10_02 Dialog FrontEndNetTime 673 msec

P10 p10db012_P10_00 Dialog FrontEndNetTime 1491 msec

The definitions in the two templates can be found in Section 22.2.3 on page
523. In both examples, �
������������ returns multiple values, only the
first line of which would be noticed by Nagios in the Web interface and in
notifications. If the instance �-+��+-7��-+�+� displayed a critical status,

527



22 Monitoring SAP Systems

but �-+��+-*��-+�+- did not, the plugin would return a CRITICAL, but
the Web interface would only present the first line (like the notification),
which would not give any reason to worry. This means that the admin
would not see the very thing that has set off the critical state.

If �
������������ only returns error messages instead of the data you
want, there could be several reasons for this. In the following example the
login fails:

nagios@linux:nagios/libexec$ ./check_sap_cons 00 P10

<== RfcLastError

FUNCTION: SXMI_LOGON

RFC operation/code SYSTEM_FAILURE

ERROR/EXCEPTION

key :

status :

message : User account not in validity date

internal:

<== RfcClose

The reason is given in the �������! field: the user currently does not have
a valid account. If the following message were to be found there

message : User 910WOB has no RFC authorization for function group SXMI .

this would mean that the user ,-+4:= does not have the necessary permis-
sion in the authorization object 1�5F�. In order to grant it, that user should
be assigned to the function group 1U�6.

The plugins record such RFC error messages in the file �����	� in the cur-
rent working directory. If Nagios runs the plugin, then it will generate this
file in the Nagios home directory (&
��&�����&������, if you have fol-
lowed the installation description in this book).

In the next case the login works perfectly, but the plugin does not return
any values:

nagios@linux:nagios/libexec$ ./check_sap_cons 01 P10

No information gathered! System up?

The error here lies in the monitor definition: often the name of the monitor
set or the monitor is written wrongly, or the pattern does not match the
monitor used. The intersection of monitor and pattern is then empty, and
SAP also does not warn explicitly if the monitor or monitor set do not even
exist.

Checking multiple values with �
���������
�������
�

If Nagios is to represent multiple queried values in the Web interface, you
should use �
���������
�������
�:

528



22.2 Monitoring with SAP’s Own Monitoring System CCMS

nagios@linux:nagios/libexec$ ./check_sap_mult_no_thr 00 P10

<table>

<tr><td CLASS=’statusOK’>P10 p10ap013_P10_01 <br>

Dialog ResponseTime 785 msec</td></tr>

<tr><td CLASS=’statusOK’>P10 p10ap014_P10_02 <br>

Dialog ResponseTime 352 msec</td></tr>

<tr><td CLASS=’statusOK’>P10 p10db012_P10_00 <br>

Dialog ResponseTime 22 msec</td></tr>

</table>

The output is given in a single line, which we have reformatted manually
here so that it can be more easily read. With the HTML code, the plugin
ensures that each value (thanks to the �#.11 specifications) is shown on
a separate line in the color matching its status. The status of the Nagios
service changes to CRITICAL if at least one measured value is critical. Such
a case is shown in Figure 22.5.

Figure 22.5:
������
	�������������

uses HTML markups
which Nagios 2.0
also understands

In this case as well you should remember that Nagios 2.x altogether pro-
cesses no more than 300 bytes of the plugin output, and cuts off the rest.
For HTML-formatted output, not only is information then missing, there
are also side effects in the table layout in the Web interface. In case of
doubt, you must share the test among several service checks. Starting with
Nagios 3.0, this problem generally no longer occurs, as the limit of 8 KB for
the plugin output is also usually sufficient to display extensive output.

In the definition of the Nagios command objects, the host name, excep-
tionally, does not play a role for the CCMS plugins. This means that the
E8:1>.<<5/11Emacro is not used:

define command{

command_name check_sap_ccms

command_line $USER1$/check_sap_mult_no_thr $ARG1$ $ARG2$

}

If you request several values simultaneously, they will normally belong to
different hosts. This means that services can only be assigned to a host
in one-to-one single value queries. Nevertheless, Nagios expects a specific
host in the service definition:

define service{

service_description SAP Dialog Response Time

529



22 Monitoring SAP Systems

host_name sap01

check_command check_sap_ccms!00!P10

...

}

22.2.5 Performance optimization

Since the monitor always transmits all the data it has available over the RFC
interface, filtering always takes place on the client side through the plugin.
For this reason it is not recommended that you query single values from a
large monitor one after another: this consumes considerable resources.

You should either have a single service provide all the values,12 or you
should define a separate monitor yourself containing precisely those val-
ues you would like to test. This latter method is recommended by SAP.

If you want to check several monitors, or even single values of the monitor
one after the other, you should keep an eye on the necessary network band-
width. Within a local network this is normally not a problem, but it can
place a considerable burden on narrow-bandwidth long-distance connec-
tions (ISDN, simple VPNs). In such cases you should measure the network
traffic when starting operation, so that you can increase the check intervals
accordingly in case of problems.

12 Using a plugin predestined for the output of multiple values.

530



23 Ch
ap

te
r

Processing Events with the
EventDB

Events are fundamentally different from the other, usual host and service
states in Nagios. The check of a service in a critical state returns a CRITICAL
until the state of the service changes, irrespective of the number of checks
and the repeat interval. An event, on the other hand, occurs only once, for
instance in the form of a syslog entry or an SNMP trap.

If the events of an uninterruptible power supply (UPS) are logged via syslog
to a log file, the message that the UPS has switched to battery because
the voltage supply has failed will appear there only once. If you now test
regularly whether a corresponding entry occurred within the last half hour,
simple log file checks will not announce a match after this time has expired,
so they will return an OK, since there is no critical event. But the UPS is
still in a critical state. The critical state only really ends when the message
arrives that the voltage supply has been restored.

531



23 Processing Events with the EventDB

Monitoring via SNMP traps comes close to the desired behavior: An alarm
trap announces the failure of the voltage supply, the state of the service is
set to CRITICAL, a subsequent OK trap announces the restoration of the
voltage supply, and the state changes back to OK.

Events can be integrated into Nagios in various ways. A simple syslog inte-
gration is described in Section 14.5 from page 306, and another processing
method for SNMP traps, also kept very simple, is dealt with in Section 14.6
from page 312. For Windows events it is often sufficient to test whether
a specific event has occurred in the past 12 to 24 hours. The check can
be made with NSClient++ and the module �
���/����#�� (Section 20.4.4,
page 502), for instance.

The procedure described in this chapter goes a little further. All events are
collected in an event database. An administrator processes all these events
and sets an acknowledge via a Web interface. Nagios now checks via plugin
whether a defined number of events is exceeded for a specific group, so
that the administrator will have to act—to set acknowledges and undertake
further action, if necessary.

A similar approach is taken by �������1 (formerly SNMPTT Web Frontend,
not to be confused with the SNMPTT GUI2 ). ������� is specialized for
SNMP traps and is integrated directly into the Nagios Web interface. For
reasons of space, we will not go into a detailed description here.

23.1 How the EventDB Works

The EventDB of NETWAYS3 basically consists of four components: a syslog
connection, which collects the events, a MySQL database to save the events,
a Web interface for interactive processing, and a Nagios plugin, which con-
nects the EventDB to Nagios. Figure 23.1 shows a diagram of the setup.

A central syslog service—��������� is used because of its more flexible
configuration—collects events from various sources. There are various soft-
ware packages available for the integration of Windows event logs, one of
which is described in Section 23.6 (page 545). The SNMP trap daemon in-
stalled on the syslog server, ��������� (Section 14.6.1, page 312), is able to
pass the traps it receives on to the syslog. To provide more meaningful and
readable messages from the cryptic OIDs, the SNMP Trap Translator (SN-
MPTT) is on hand to help out the ���������, and this is described briefly
in Section 23.7 from page 546.

��������� allows existing events to be arranged in a self-defined format
and to be sent to a named pipe. From this a daemon reads the incoming

1 ������������	
��	����
�
2 �������
������
���
��������
������
3 ���������������	 
����

532



23.2 Installation

events and writes them to a MySQL database. Via a Web interface (Fig-
ure 23.2, page 539) the administrator confirms processed events with ac-
knowledges. Nagios uses a plugin to test whether there are one or more
non-confirmed entries for a specific event and informs the administrator
accordingly about the notification functions.

It should also be mentioned that the EventDB is ideal for processing sys-
log entries, even when Nagios is not used at all. The Web interface of the
EventDB provides a simple but effective interface that can be used to search
the database quickly and easily for a particular event or for similar events,
especially when events of the same type are collected from a large number
of hosts.

Figure 23.1:

 
��
��
 collects
data from various
sources and writes
these to a named
pipe. A separate
daemon reads the
events from this and
writes them to the
database. From this
they can be queried
via Web interface or
via Nagios plugin.

23.2 Installation

The current version of the EventDB can be obtained from NagiosExchange,4

and the contents of the tar archive are unpacked in the directory &
��&
�����&���:

linux:~ # cd /usr/local/src

linux:local/src # tar xvzf /pfad/eventdb.tgz

eventdb/

eventdb/plugin/

eventdb/plugin/check_eventdb.pl

eventdb/agenten/

eventdb/agenten/syslog-ng/

eventdb/agenten/syslog-ng/syslog-ng2mysql

eventdb/agenten/syslog-ng/syslog-ng.conf

4 ������������	
��
�#��	�
����
�1&6''$(

533



23 Processing Events with the EventDB

eventdb/agenten/syslog-ng/syslog-ng2mysql.pl

...

eventdb/db/

eventdb/db/create_tables.sql

eventdb/webinterface/

eventdb/webinterface/index.php

...

eventdb/cleanup/

eventdb/cleanup/eventdb-clean_database.sh

eventdb/cleanup/rotate_eventdb.sh

...

The Nagios plugin is located in the ��
��� subdirectory. The subdirectory
������� contains the integration with ���������. In �� there is a MySQL
script that creates the necessary tables in the database. The ��������	���
directory contains the Web interface for the EventDB

23.2.1 Installation requirements

A prerequisite for the EventDB is ��������� in at least version 1.9.1, since
the template mechanism required is only implemented from this version
onward. For the database you require a current MySQL-5.0 server (in-
cluded in the Debian package ���%���������2�+, for example), and for
the �������������%����daemon written in Perl, the module <=<!!��1N#
(in Debian, the package ����������%������).

The Web interface is implemented in PHP 5. This requires, along with Apa-
che 2, the PHP-5 module for this server version (in Debian �������
���
�����
�2) and the PHP5-MySQL package (in Debian, �
�2����%�).

An automatic installation routine that checks that all required packages are
present is not included in EventDB.

If the SNMPTT, to be described later in Section 23.7, is to be integrated,
then you will also require the daemons ����� and ���������, as well as
the accompanying client programs. Debian provides these programs in the
packages ����� and ����. The SNMP trap translator requires SNMP Perl
(in Debian, included in the package ������������), which must not be
confused with  ��!!1 ��.

23.2.2 Preparing the MySQL database

After the installation of the MySQL-5 server package for the respective dis-
tribution, you set up the database ������� and the database user �������:

linux:~ # mysql -p

mysql> CREATE DATABASE eventdb;

534



23.2 Installation

Query OK, 1 row affected (0.01 sec)

mysql> GRANT SELECT,INSERT,UPDATE,DELETE ON eventdb.* TO \

’eventdb’@’localhost’ IDENTIFIED by ’mypassword’;

Query OK, 0 rows affected (0.00 sec)

mysql> quit

Bye

The "5. > command gives ������� the necessary permissions to work
with the event database; instead of the password set here, you use your
own, secure password. Then you change to the directory where the source
code has been unpacked (in this case, &
��&�����&���&�������) and set
up the necessary tables with the script ���������������%� from the sub-
directory ��:

linux:~ # cd /usr/local/src/eventdb

linux:src/eventdb # mysql -p eventdb < db/create_tables.sql

If no errors occur when doing this, the prompt will appear, without any
other output. What has been created by the script can then be displayed
with �
�� ������ and �������� ��������� :

user@linux:~$ mysql -u eventdb -p eventdb

mysql> show tables;

+-------------------+

| Tables_in_eventdb |

+-------------------+

| comments |

| events |

+-------------------+

2 rows in set (0.00 sec)

mysql> describe events;

+--------------+---------------------+------+-----+---------------------+

| Field | Type | Null | Key | Default |

+--------------+---------------------+------+-----+---------------------+

| uid | int(11) | NO | PRI | NULL |

| type | varchar(50) | NO | MUL | |

| host | varchar(50) | NO | MUL | |

| facility | varchar(50) | NO | MUL | |

| priority | varchar(20) | NO | MUL | |

| level | varchar(10) | NO | | |

| tag | varchar(10) | NO | | |

| program | varchar(50) | NO | | |

| datetime | datetime | NO | | 0000-00-00 00:00:00 |

| message | blob | NO | MUL | |

| acknowledged | tinyint(1) unsigned | NO | | 0 |

+--------------+---------------------+------+-----+---------------------+

11 rows in set (0.00 sec)

535



23 Processing Events with the EventDB

The MySQL command �
�� ������ shows the tables created. All events
are saved in ������. The �������� table is just an auxiliary table, which
is used for comments that the administrator might make when setting ac-
knowledges.

23.2.3 Sending events to the database with 	�	�
����

The configuration of ��������� has already been described in Section 14.5
from page 306, which is why we will deal here only with the adjustments for
the EventDB. In order for the syslog daemon to be able to pass on data to
the EventDB, we need suitable destinations and a log entry that uses these.
To make the configuration more clear we will write our own template to the
file �������������	, which formats the output and which is referenced in
the definition of the two destinations ��������� and �	��������:

template t_eventdb {

template("$HOST\t$FACILITY\t$PRIORITY\t$LEVEL\t$TAG\t$YEAR-$MONTH-$DAY

\t$HOUR:$MIN:$SEC\t$PROGRAM\t$MSG\n");

template_escape(no);

};

destination d_eventdb {

pipe("/var/run/syslog-ng.pipe" template(t_eventdb));

};

destination df_eventdb {

file("/var/log/eventdb" template(t_eventdb));

};

In the >." variable there is a non-documented combination of EF.�6#6>`
and E�56:56>`, that is, of the type of program to be logged (daemon, au-
thorization tool, kernel, cron daemon, printer, and so on; see also ��� *
������) and the significance of the message. E8:1> is a placeholder for
the computer, E`/.5�E�: >8�E<.` for the date, E8:$5!E�6 !E1/� for the
time, E�5:"5.� for the program for which the message applies, and E�1"
for the log message itself.

The #/H/# variable is actually unnecessary, since it contains the same value
as �56:56>`. The database layout demands both values, however, which is
why they must be specified. The entire template definition must be writ-
ten on one line in the configuration file �������������	; it is only line-
wrapped here for printing purposes.

The destination ��������� is a named pipe that is fed with the data of the
template. The destination �	�������� is used for debugging purposes and
can be used as a substitute or in parallel when you are searching for errors.
The data here ends up in a normal log file. Since the same template is used,
it produces exactly the same text as is contained in the named pipe.

536



23.2 Installation

The only things missing now are a source, a filter, and a log entry:

source local {

unix-stream("/dev/log");

internal();

};

source remote {

udp( ip(0.0.0.0) port(514) );

};

filter f_warn {

level(warn .. alert);

};

log {

source(local); source(remote);

filter(f_warn);

destination(d_eventdb);

# destination(df_eventdb);

};

The source ����� reads all local and system-internal events that arrive at
the ���������, but no kernel events. ������ describes the classic method
of receiving packets from remote syslog daemons via UDP port 514. The
filter 	����� covers all events that have a priority (or level) of at least ����.
Finally, ��� writes events from the two sources that are matched by the
filter, to the destination ���������.

The configuration shown uses &���&�
�&��������������as a named pipe.
Debian-based systems delete the contents of the directory &���&�
� when
the system is booted, however. For this reason the named pipe must be
newly created at each system start. The startup script included with Event-
DB, �������������%� in the directory �������&���������, has been do-
ing this since version 2007-11-30; for older installations you should add the
following two lines at the beginning of the script:

FIFO="/var/run/syslog-ng.pipe"

test -p $FIFO || mkfifo $FIFO

Then you copy the script to &���&������ and ensure, depending on the
distribution, that it is run automatically on system start, and certainly be-
fore &���&������&���������.

The Perl daemon �������������%���� is also located in the subdirec-
tory �������&���������. In this script you need to change the variables
E��
��� and E������ to match your own MySQL installation:

my $db = "eventdb";

my $dbhost = "localhost";

537



23 Processing Events with the EventDB

my $dbuser = "eventdb";

my $dbpass = "mypasswd";

my $dbtable = "events";

Then you copy the file to &
��&�����&����, where the init script expects
it to be. With

linux:~ # /etc/init.d/syslog-ng2mysql start

linux:~ # /etc/init.d/syslog-ng restart

you restart the Perl daemon and perform a restart of the syslog daemon.

An initial overview of whether events end up in the database can be ob-
tained by entering a simple ������ ; command on the ������ table:

user@linux:~$ mysql -u eventdb -p eventdb

mysql> select * from events;

...

If nothing happens here, you can use the ������ program to test whether
the syslog daemon is writing entries at all to the log files (for further infor-
mation, see ��� ������):

user@linux:~$ logger -p daemon.warn "hallo wob"

If no entries appear, despite the syslog working correctly, you should enable
the destination �	�������� and check to see if the output of the template
appears correctly formatted.

23.3 Using the Web Interface

The Web interface for the EventDB consists of a single PHP file, �������
�,
which is included in the tarfile in the subdirectory ��������	���. It ac-
cesses the database directly and therefore requires details of the database,
such as user and password. You should check (and change) the following
four lines of the file accordingly:

// Database

cset(’db.user’, ’eventdb’);

cset(’db.pass’, ’mypasswd’);

cset(’db.host’, ’localhost’);

cset(’db.name’, ’eventdb’);

Then you copy �������
� to the (previously created) directory &
��&�����
&������&�
���&�������. The Web interface, as shown in Figure 23.2, can

538



23.3 Using the Web Interface

then be reached via the URL 
���!&&���������	
�	&������&�������&
�������
�.

The Web interface is roughly divided into three areas: the selection window
at the top, which allows data to be selectively filtered, the event display
in the middle, and a third section which allows acknowledges to be com-
mented.

Figure 23.2:
The Web interface
for the EventDB
allows certain entries
to be selected, and
the administrator
can also set
acknowledges for
each event via the
Web interface.

The selection filter Type refers to the event source, which is normally syslog.
If SNMP traps are being processed, another type, snmptrap, is included.
With Host you specify the system of origin of the event by means of the host
details in the syslog entries. The selection options for Facility and Priority
also correspond to the naming convention used in syslog (see page 536).

If you set a check mark for Display acknowledged items, too, the Web inter-
face will display all events. Normally you will just see the events for which
there are no acknowledges.

Of more interest is the Text box in the center: At the top you can enter sim-
ple patterns. If you are looking for all the entries of the program ��
��, for
example, you just enter ��
��; here. Distinction is made between upper
and lower case. More options are provided by regular expressions, which

539



23 Processing Events with the EventDB

can be specified in the second line: The entry (����I����I�������)
searches for all entries in which either ����, ���� or ������� occur. The
Regexp search is considerably slower, however. A check mark for String not
exists negates the previous selection.

The option Message is empty can only be used on its own. It ignores all the
other settings in the Text box and displays all events that do not contain
any message text.

The Display box affects the presentation. You can select different sorting
methods, and define the number of entries to be displayed. The default
of �+ entries is too low for many purposes. If the Web interface displays a
larger number by default, you should change the following line in the file
�������
� accordingly:

cset(’page.maxrows’, 20);

The data range shows normal syslog entries, together with the number of
the dataset in the database in the ID column. For an acknowledgement, you
can put a check mark in front of the entry, enter a comment in the lower
section if necessary, and select the acknowledge button. Confirmed entries
disappear when the Web page is reloaded.

If you want to confirm all entries shown simultaneously, select the rev
header of the first table column, which inverts the current state of the se-
lection fields. A subsequent acknowledge via the button confirms all entries
at the same time.

The person responsible for an acknowledge is listed in the Author line. Once
the user has logged in to the Web server, his user name will be given au-
tomatically there; otherwise, AnonymousGnome will appear as the author.
This entry can be overwritten as you please.

23.3.1 Preselection of the filter with URL parameters

Specific parameters can be passed on to the Web interface through a URL
so that a preselection is already made for the call:

http://nagios-server/nagios/eventdb/index.php?host[0]=swobspace

This example calls all non-confirmed entries assigned to the host �����
�����. The entries for a multiple selection are represented by the Web
interface as an array, which is why it must be specified in square brackets
for the parameters 
���, ����, 	�������, and ��������. The entries for
multiple hosts are queried with a consecutive index: �������
�0
���Z+[G
���������Y
���Z-[G������� or �������
�0
���Z+[G�������Y
���Z
-[G���������—the order of the menu entries in the Web interface does
not have to match that of the indices.

540



23.3 Using the Web Interface

The following CGI parameters can be specified, separated from one another
by Y:

����Z�����[G����
corresponds to the Type filter.


���Z�����[G����
ensures that the selection is in the Host field.

	�������Z�����[G��������
selects the Facility entry.

��������Z�����[G�	��	���
corresponds to the Priority selection.

�������G�����	�
the placeholder �����	� is replaced by the expression that you would
write in the Message box. Special characters must first be compiled in
HTML-compatible code. Thus, ;=�� >��; is turned into 9�.=��9�+>
��9�.:5

event.php?message=%2ABad%20TCP%2A

������G	�����	����	������
allows a regular search expression to be given. As with �������, spe-
cial characters must also be given in an HTML-compatible form.

����������G
����
also displays confirmed entries when set to ��
�. The default is the
opposite value, 	����.

�����������������G
����
simulates setting the check mark in front of String not exists: the
value ��
� negates the ������� and ������ selection. The opposite
value, 	����, is the default.

��������������G
����
when set to ��
�, shows only entries with an empty message. Here
the default is also 	����.

�����G��	����
enables the sorting order to be defined: .1� for ascending, </1� for
descending.

�������G�	���	���
defines the field by which sorting should be done: ��������, ������
���, 
���, 	�������, or 
�� (database index).

5 A special character is converted to N followed by its hexadecimal value: a space corre-
sponds to 20, a L, to 2A; see �	� 	
���.

541



23 Processing Events with the EventDB

�����������G�����	
defines the number of rows to be displayed.

23.4 The Nagios Plugin for the EventDB

Querying the EventDB from Nagios is done with the plugin �
����������
����� in the subdirectory ��
���, which is copied to the directory &
��&
�����&������&�������&. It has the following options:

����G�������������
The name of the EventDB. This is only specified if it is different from
the default �������.

���������G��������������
The event table in the database. The default ������ is rarely changed.

����
���G������������	
This parameter must always be given, since ���� is set by default for
the database user.

������������G���������������	�
The same applies for the password for this user.

����
���G�������������
Details of the host on which the database is running. The default is
set to �����
���.

�8 �������� / ��
���G��������
Host from which the message in the syslog really originates.

�� �	��	��� / ����������G�	��	���
The desired syslog priority (or level), for example �������, ���, or
����. For other information, see ��� * ������.

�	 �������� / ��	�������G��������
The syslog facility to be queried, such as ����, ������, or �
�
 (see
also ��� * ������).

�� ���� / ���������G����
The event text for which the plugin should look. It starts with the
name of the program from which the message originates. If you are
looking for entries from the program �����, you enter �� a�����;P.
As wildcards, ; (shell syntax) and 9 (SQL syntax) can be used equiva-
lently; the plugin replaces ; with 9.

�� ���� / ������G����
Event type, usually ������.

542



23.4 The Nagios Plugin for the EventDB

�� �	���� / �������G�	����
Text placed in front of the plugin output in order to better identify a
specific check.

�� ������	 / ���������G������	
If the plugin finds at least integer matches it will issue a WARNING.

�� ������	 / ����������G������	
If the plugin finds at least integer matches it will issue a CRITICAL.

The following plugin call looks for all error messages with the priority ���
from the ������ facility that originate from the ����� and contain any type
of message text. If the plugin finds one entry, it should issue a WARNING;
if it find two or more, it should issue a CRITICAL:

nagios@linux:nagios/libexec$ ./check_eventdb.pl --dbuser=eventdb \

--dbpassword=secret --facility daemon --priority err -m "snmpd%" \

-w 1 -c 2 --label=syslog-snmpd

CRITICAL: syslog-snmpd 6 matches found!|matches=6

������� prefixes the actual result to the ������������ text, so that the
statement can be more easily interpreted.

The command definition is kept really simple, due to the fact that the actual
logic is stored in the service definition. The entire ������������ must, as
before, be written in a single line:

define command {

command_name check_eventdb

command_line $USER1$/check_eventdb.pl --dbuser=eventdb --dbpass=$USER

9$ $ARG1$

}

Database user and password are firmly joined together here. So that no
password is visible at this point, we use the macro E$1/5,E from the re-
sources file (see page 601). All other parameters are specified by the service
definition for E.5"-E, for example, as follows:

define service {

host_name nagios

service_description syslog_snmpd

check_command check_eventdb!--facility daemon --priority err -m

"snmpd%" -w 1 -c 2 --label=syslog-snmpd

...

}

543



23 Processing Events with the EventDB

23.5 Maintenance

The MySQL database can, under some circumstances—depending on the
number of connected systems and events passed on by the syslog—fill up
very quickly. Then it is time to clean up. To do this you need to find all
the entries that are older than a certain date, test whether an acknowledge
exists for them, and delete them. The following 1/#/�> statement demon-
strates the principle:

user@linux:~$ mysql -u eventdb -p eventdb

mysql> SELECT * FROM events WHERE datetime < ’2007-11-16’

-> AND acknowledged;

The date is stored by MySQL in the format 



������ ��!��!�� , which
is why a simple string comparison works. If an admin has confirmed an en-
try, the ������������ field will contain the value -. The following simple
cleanup script deletes all confirmed entries that are more than two weeks
old:

#!/bin/bash

OLDDATE=‘date --date ’-2 weeks’ "+%Y-%m-%d %H:%M:%S"‘

MYSQL="mysql --user=eventdb --passwordmypassword eventdb"

$MYSQL --execute="DELETE FROM events WHERE datetime < ’$OLDDATE’ AND ackn

owledged;"

$MYSQL --execute="optimize table events;"

The script is run daily via cron, but not before it has been thoroughly tested.
If you want to archive data before it is deleted, you need to export it prior
to the </#/>/ statement. To do this, you add the SQL statement 6 >:
:$>F6#/ to the 1/#/�> command introduced above, between 1/#/�> ;
and F5:�. This saves data to a text file, with tabs as separators, as shown
below:

SELECT *
INTO OUTFILE ’/var/backups/eventdb/$OLDDATE.txt’

FIELDS TERMINATED BY ’\t’

FROM events WHERE datetime < ’2007-11-16’ AND acknowledged;

The EventDB tarfile contains the two example scripts ��������������
����������
 and ����������������
 in the �����
� subdirectory,
which essentially call the functions just described. You should neverthe-
less carefully consider how you are going to clean up the database, and
modify and test the scripts accordingly.

544



23.6 Sending Windows Events to Syslog

23.6 Sending Windows Events to Syslog

In order to integrate Windows systems into a syslog environment, you need
a service that reads out the Windows event log and sends this on via the
syslog protocol to the central Syslog server. This task is performed by
the freely available and easy-to-install ������ tool (an abbreviation of the
project name Eventlog to Syslog), from the homepage of the Engineering
Computer Network of Purdue University.6 The Web page provides two
binary packages for download, one for 32-bit and one for 64-bit systems
(�����������*�����or �����������'7����), along with the source code.

The files ���������� and ���������� contained in the package are copied
to the subdirectory ������*� of the system root of the Windows server
(usually �!L4������L������*�). The service is then installed and acti-
vated with the command

C:\Windows\system32> evtsys -i -h syslogserver

C:\Windows\system32> net start evtsys

If the current ������ version is to be installed on a system on which the
service is already running, you must first de-install the old version entirely:

C:\Windows\system32> net stop evtsys

C:\Windows\system32> evtsys -u

������ sends all event log entries without exception to the central syslog
server. Messages go the ������ facility, and possible priorities are ������,
�������, and ���.

In all cases you should make use of the extensive filter options of the ����
������ on the syslog server, since the security messages from a single do-
main controller alone may total 1,000 or more entries per hour, even in
small environments!

If you want to filter event log entries first on the Windows side, you will
need to use other services. One tool that is free, but also rather old, and
which may not work faultlessly from Windows 2003 R2 onward, is NTsys-
log.7 You will also find various commercial solutions on the Internet that
can be purchased.

Another filter option for Windows is provided by the Nagios EventLog Agent
for Windows, ���������, by Steve Shipway,8 which is also available on Na-
giosExchange.9 But this is not compatble with the EventDB, since data is
sent via NSCA to the Nagios server.

6 ����
�����
�������
������������!C+�8�
�����
���������
�,+*-����
 
�
7 ���������
 
��
�
��������
������
8 �����������
����
����	 ���
�
����	������	
��
�����
9 ������������	
��
�#��	�
����
��(6$$'

545



23 Processing Events with the EventDB

All services that provide filtering on the Windows side have one disadvan-
tage: Unknown events may, under certain circumstances, not even end up
in the syslog and must be individually supplemented in the configuration.
Provided that the central syslog server can cope with the flood of data, the
approach with a central filter is easier to maintain.

23.7 Making the Incomprehensible Legible with
SNMPTT

The SNMP Trap Translator (SNMPTT)10 translates numerical object iden-
tifiers, which are difficult to understand, to readable text by means of the
accompanying MIB.11 To install this, you unpack the SNMPTT sources from
Sourceforge12 to &
��&�����&���:

linux:local/src # tar xvzf /pfad/snmptt_1.2.tgz

linux:local/src # cd snmptt_1.2

linux:src/snmptt_1.2 # cp snmptt snmptthandler snmpttconvertmib /usr/

sbin/.

linux:src/snmptt_1.2 # chmod +x /usr/sbin/snmptt*
linux:src/snmptt_1.2 # cp snmptt.ini /etc/snmp/.

The files ������, ������
������, and ���������������� contained in
the archive are copied to &
��&���� and made executable with �
���. The
configuration file ���������� is copied to the directory &���&����, which
was set up during the installation of the ����� package.

SNMP traps are accepted by the ���������. In order for this to forward
them to ������, the following is entered in the �������������	 configu-
ration file:

# /etc/snmp/snmptrapd.conf

traphandle default /usr/sbin/snmptt

So that all traps are forwarded to ������, the file may contain only this de-
fault rule. ������ accepts the object identifier in a numerical form, which
is why ��������� needs to be started with the �:� option. Depending on
the distribution, the ��������� startup script may need to be adjusted. For
Debian the file &���&��	�
��&����� is modified accordingly:

# /etc/default/snmpd (Debian)

...

10 �����������
��������
�
11 For SNMP, see Chapter 11 from page 227; SNMP traps were described in Section 14.6

from page 312.
12 �����������
��������
�������������
�
�����

546



23.7 Making the Incomprehensible Legible with SNMPTT

TRAPDRUN=yes

TRAPDOPTS=’-Lsd -On -p /var/run/snmptrapd.pid’

The �#�� option logs all traps for debugging purposes in parallel via syslog.
This should be switched off later on, by replacing �#�� with ��.

23.7.1 The configuration file 	���

����

To describe all the parameters of the central SNMPTT configuration file
&���&����&���������� would go beyond the scope of this book. We will
just look at the sections and options that can be checked and which might
need to be adjusted:

[General]

mode = standalone

net_snmp_perl_enable = 1

mibs_environment = ALL

...

[Logging]

log_enable = 1

log_system_enable = 1

unknown_trap_log_enable = 1

syslog_enable = 1

syslog_level = warning

...

[TrapFiles]

snmptt_conf_files = <<END

/etc/snmp/snmptt/snmptt.conf

/etc/snmp/snmptt/messbox.conf

END

The setting ����G��������� in the Z"������[ section states that the
��������� calls ������ directly. With ����G������, SNMPTT runs as a
separate daemon. ��������������������G- enables the use of the Perl
module SNMP, which translates OIDs into meaningful text. Since the de-
fault + disables the module, this parameter certainly needs to be changed.
����������������G.## integrates all installed MIBs. These must be free
of errors, however, which is normally the case for MIBs installed from the
distribution (for Debian, in the package ������������).

The parameter ����������	�	���� in the Z>���F����[ section contains
a list of configuration files that translate incoming SNMP traps and set off
actions, if necessary. These are obtained from the MIB belonging to the
device—how this is done is explained in Section 23.7.2.

The three variables ����������G-,�����������������G-, and 
�������
���������������G- in the Z#������[ section ensure that SNMPTT logs
its activities to &���&���&������;, which is very useful when searching

547



23 Processing Events with the EventDB

for errors. By logging unknown traps, with 
����������������������G-,
you can see why SNMPTT does not translate a trap that it has received
(for example, perhaps it contains OIDs other than those intended from the
configuration file obtained from the MIB).

The two �������; parameters forward translated traps to the syslog dae-
mon here with the syslog priority ������� so that the data will then appear
in the EventDB.

The parameters allowed in ���������� and in the device-dependent con-
figuration files are documented in detail on the SNMPTT homepage.13

23.7.2 Converting MIBs

The included program ���������������� converts existing MIBs into a
configuration file which can be used by SNMPTT. The translator only trans-
lates files that are explicitly listed in configuration files which have been
integrated with ����������	�	����.

���������������� uses �������������, so before using this you should
check that the actual translation program works properly. To do this, run
������������� �� .##without any other parameters. An online help will
appear, starting with the following lines:

USAGE: snmptranslate [OPTIONS] OID [OID]...

No other error message should appear before this line; if one does, this
means that the MIBs are not correctly installed. If the MIBs were installed
directly from the distribution, no errors should occur.

The conversion process—depending on the quality of the MIB—ranges from
very simple (for correctly formed MIBs) to almost impossible (for MIBs with
many errors). A flawless MIB is provided by Debian, for example, in the
file �	�-'�B�$�1����. This distribution stores the MIBs in the directory
&
��&�
���&����&����.

Before you start looking for and installing MIBs from other sources, you
should test the conversion with a “clean” MIB. The already mentioned UPS-
MIB is converted as follows to an SNMPTT configuration file:

user@linux:~$ /usr/sbin/snmpttconvertmib \

--in=/usr/share/snmp/mibs/rfc1628-UPS.mib \

--out=rfc1628-UPS.conf

....

Done

Total translations: 4

13 �����������
��������
����
�
������
����

548



23.7 Making the Incomprehensible Legible with SNMPTT

Successful translations: 4

Failed translations: 0

No error should appear in the summary at the end of the output, as is the
case here. The contents of the new configuration file now appear as follows:

EVENT upsTrapOnBattery .1.3.6.1.2.1.33.2.1 "Status Events" CRITICAL

FORMAT UPS On Battery - Utility Power Failure: The UPS is operating on ba

ttery power (Minutes Remaining=%0 Seconds on Battery=$1)

...

The two decisive entries here are /H/ > and F:5�.>. The first contains
the status (here: CRITICAL) together with the OID, while F:5�.> defines
the text with which a corresponding event is described in the syslog, and
thus in the EventDB. More information can be found in the ConvertMIB
documentation on the SNMPTT homepage.14

14 �����������
��������
����
�
����������������
����

549





Part V

Development





24 Ch
ap

te
r

Writing Your Own Plugins

Plugins are independent programs—called by Nagios—that perform a check
and return the result in standardized form. If there is neither a standard
plugin for the task you want to perform, nor something appropriate in Cat-
egories | Check Plugins on NagiosExchange,1 then the best solution is for
you to write a plugin yourself.

The plugin needs only to be executable on the command line, and to return
a short text output for the admin and a standardized return value. If you
want to make it available on the Internet as well, you need to comply with
various guidelines so that it will be widely used and accepted without the
need for extensive support.

There is no restriction in theory on the programming language used. Exotic
programming languages do restrict portability to other systems and plat-
forms, however, and script languages need to be interpreted, so scripted

1 ������������	
��
�#��	�
����
�C�����B��
��
�$'�%�����

553



24 Writing Your Own Plugins

plugins require more time to execute than compiled ones. But this should
not stop anyone from using the language of his or her choice where rapid
implementation is more important than portability and speed of execu-
tion. But if you are planning to run 2,000 or more checks at five-minute
intervals using a script language, you will be forced to tackle the issue of
performance.

Below we will be using the Perl programming language. This exists on al-
most every Unix system, and the many small tasks that a plugin has to per-
form, requiring simple text output, are within the classical domain of this
script language. There are also numerous ready-made modules available
via the CPAN,2 which you can use to deal with emerging tasks in a modular
fashion. There remains the problem of the drag on performance caused by
the script language. However, with ePN, Nagios has its own integrated Perl
interpreter, which considerably improves performance. A separate chapter
is devoted to this, from page 669.

The central hub used when developing a Nagios plugin with Perl is the
Perl module  �����!!��
��� by Tom Voon, which really simplifies con-
crete programming in many aspects. The module ���!!$���� is also used,
which enables man pages embedded in the source code of the plugin to be
formatted as online help.

24.1 Programming Guidelines for Plugins

Even if you just want to quickly throw something together, you will ulti-
mately make life easier for yourself if you keep to the official Developer
Guidelines3 right from the beginning, as you will seldom be the only per-
son involved with the resulting plugin.

The Developer Guidelines currently do not provide an option for processing
multiple-line output with Nagios 3.0. The new Application Programming
Interface (API) for Nagios 3 plugins is described on the Nagios homepage.4

24.1.1 Return values

Nagios expects from a plugin a standardized return value from + to *, which
describes the current state of the check performed. The differentiation be-
tween the values + (OK) and � (CRITICAL) is almost always defined by the
adminstrator when defining the individual check via warning and critical
thresholds—only for a few plugins does the plugin itself specify the thresh-
olds.

2 �������������	����

3 ��������	
��
���
�
��������
����������������
��������
�����
4 ��������	
��
�
��������
���������
�1�%����
��	�������

554



24.1 Programming Guidelines for Plugins

The return value * (UNKNOWN) is reserved for errors in operating the plu-
gin (the wrong setting for options, nonexistent options) or internal plugin
errors that may prevent the plugin from carrying out its work. The Devel-
opment Guidelines cite the example here of a network socket which the
plugin would like to open, but the call fails. Normal timeouts, on the other
hand, should not be answered with UNKNOWN. There are certainly plugins
which return WARNING when there is a timeout and only return CRITICAL
if a specific threshold has been exceeded. In many cases CRITICAL makes
more sense for a general timeout, since this can normally be interpreted as
service xyz won’t work.

Table 24.1 summarizes the return values and their meanings, arranged by
service and host checks. For host checks, Nagios has the states OK, DOWN,
and UNREACHABLE, where the difference between DOWN and UNREACH-
ABLE reflects only the spatial arrangement: Is the failed host itself involved,
or a host that lies behind a failed host? This is why it makes sense to dis-
tinguish only between return values for state ok (+) and error state (�).

Table 24.1:
Return values for
Nagios plugins

Status Service Check Host Check

0 OK UP

1 WARNING UP or DOWN/UNREACHABLE5

2 CRITICAL DOWN/UNREACHABLE

3 UNKNOWN DOWN/UNREACHABLE

How the return value 1 is handled in Nagios 3.0 depends on the parameter

��������������
�����
������ (page 605): if this is set to -, the return
value - means DOWN/UNREACHABLE, otherwise Nagios will evaluate the
host as UP.

24.1.2 Information for the administrator on the standard
output

Nagios expects a text on the standard output that informs the administrator
—in the Web interface, for instance—about the current state. This output
should keep to specific form, however:

TYPE_OF_CHECK STATUS - text information

In practice this looks something like what is shown in the following three
examples:

5 See text

555



24 Writing Your Own Plugins

SMTP OK - 0 second response time

CHECKSAP OK - system p10db012_P10_00 available

PROCS WARNING: 4 processes with command name ’pppoe’

The Web interface shows the return value itself only indirectly via the color,
and the text contains the current state in a legible form. The contents of
the text output should otherwise be based on what will provide the admin-
istrator with the most information for the check specifically carried out.

There are considerable differences between Nagios 2.x and Nagios 3.0 with
respect to the requirements of the text output. For Nagios 2.x the text must
be in one line, as shown in the examples. It will only process the first line
of a multiple-line output. The entire text, including the performance data
(we will discuss this on page 559) may not exceed a length of 300 bytes.

Nagios 3.0 processes output of up to a maximum length of 8192 bytes, and
the output may contain several lines. The multiple-line format is described
in Section 8.5.1 on page 193.

If you are programming a plugin that makes use of the advantages of Na-
gios 3.0 (multiple lines, text longer than 300 bytes), you need to realize that
this plugin can only be used with limitations in Nagios 2.x. You should
therefore carefully consider whether the multiple-line output format is the
right approach for the specific problem. Remember that you can summa-
rize the results of several individual checks with the �
�����
��� plugin
(see Section 8.5, page 191) and in this way reduce the number of individual
checks performed—to optimize performance, say—without missing out on
detailed text information. However, an individual check always provides
just one return value, which in this case is a collective result. Another ap-
proach would be to start the test via a script and cron, and pass on individ-
ual results to Nagios as passive checks.

For this reason, it is recommended that you do without multiple-line output
for general plugins and comply with the limitations of Nagios 2.x.

24.1.3 Onboard online help?

Classic Nagios plugins, including the core plugins, do not include separate
man pages but are self-documenting : Help is obtained by calling with the
switches �
 or ��
���. This does not mean that there cannot be any other
documentation, but the integrated help shold be be complete and all exist-
ing options described in detail, so that the plugin can be used without any
further documentation.

Some plugins provide just a short help text with �
 and the complete help
text with ��
���. In this case, the output of �
 should indicate that more
information can be retrieved with the long form.

556



24.1 Programming Guidelines for Plugins

The help text should also be adjusted to the width of a normal terminal
and not exceed 80 characters in length. It is quite often the case that an
administrator is in the server room trying to solve a problem, faced with a
simple console.

The help should always be written in English. For localization purposes,
that is, output in different languages, ������� can be used. This tool trans-
lates text to be displayed using a simple file-based database. If no text ex-
ists for the target language, ������� displays the untranslated text, so it
behaves in an error-tolerant manner. Further information can be found in
the man page or info page for �������.

For Perl scripts, ��� ����������6 is a good starting point. For a concrete
application, we recommend the Perl module >���!!<�����, which con-
siderably simplifies localization.

24.1.4 Reserved options

The programming guidelines provide options that have the same meaning
for all plugins. The most important of these are listed in Table 6.2 on page
108.

In addition there are several reserved options which are sometimes as-
signed twice in the short form. Thus, �
 can stand for a user name (��
���),
but also for a URL (��
��). The option �� in turn allows a TCP or UDP
port (������) to be specified, but also a password (����������). The user
name can also be passed on with �� or ���������, and the password (in
more general terms, the authentication string, which can also be a Kerberos
realm) with �� or ���
�
����������.

The fact that these options may have two different meanings is rather un-
fortunate, and is presumably for historical reasons. In case of doubt you
should steer clear of such double assignments and use only the long form
of the option whose meaning is clear. Many GNU and other Open Source
programs behave in a similar fashion (e.g., ���, �����, . . . ). The main thing
here is that a reserved option is not used for another purpose. The reserved
option ��/������
����, for instance, only makes sense in combination
with SNMP queries. If the plugin has nothing to do with SNMP, you should
not misuse it for other purposes.

24.1.5 Specifying thresholds

Thresholds determine whether a plugin returns OK or an error value (WARN-
ING, CRITICAL). Thresholds always specify a range according to the pattern
�	��!�� .

6 ����������������������
��������	�������

557



24 Writing Your Own Plugins

The exclusion principle here takes some getting used to. A warning thresh-
old in the form �� -+!�+ means that a value within the specified range
does not lead to a WARNING. The warning state includes all values from
−∞ to and including 9 and from 21 to ∞.

The interaction between warning and critical thresholds can best be ex-
plained by means of an example. Suppose Nagios is monitoring the tem-
perature in the server room. Normally the temperature should lie between
18◦C and 22◦C. In each case, two degrees Centigrade above and below this
range is set as the tolerance range, for which a WARNING should be shown.
Below 16◦C and above 24◦C, Nagios should report a CRITICAL state.

Converted into thresholds, the scenario sketched in Figure 24.1 should look
like this: �� -B!�� �� -'!�7. The temperatures between 22◦C and 24◦C
are not critical, but are only covered by the warning range. The temperature
range above 24◦C covers both threshold intervals, and there the stronger
error value (CRITICAL) predominates.

Figure 24.1:
What happens with

the thresholds ��
'2�$$ �� '&�$�?

To negate a value range, you just place a X in front of it: �� X-+!�+ now
ensures that a WARNING will be shown if the value determined is larger or
equal to 10 and smaller or equal to 20. If the start value equals 0, this can be
left out: �� �+ has the same effect as �� +!�+. An infinite final value does
not need to be specified, but the colon after the start value must remain in
place: �� -+!. The tilde (?) stands for negative infinity, and no provision
is made for a separate sign for infinity (see Table 24.2).

Table 24.2:
Special syntax for

specifying thresholds

Threshold Area covered

��� +!���

���	�& ���	�!∞
?!��� −∞!���

X���	�!��� not ���	�!���

24.1.6 Timeout

A plugin may not always perform its task in a reasonable amount of time.
For instance, it may use �	 to access a volume mounted via NFS, the host

558



24.1 Programming Guidelines for Plugins

of which is not currently available. Or, a firewall may reject the network
packets from a network plugin, and the plugin was not designed to no-
tice this. However, Nagios would like to receive a sensible reply from its
plugins at some point in time; if any type of checks are hanging around
in limbo somewhere, this consumes unnecessary resources and can really
cause chaos for the Nagios scheduler.

Each plugin should therefore cancel its actions after a preset time—normally
ten seconds—and return a corresponding error result to Nagios. The option
�� (�������
�) enables a different timeout value to be specified when a
plugin is called.

A modified timeout makes sense, for instance, if a plugin is run indirectly
via NRPE (see Chapter 10 from page 213). The timeout of �
��������,
which Nagios is running directly, should sensibly be somewhat longer than
the timeout for the plugin itself, so that �
�������� does not cancel the
execution without learning something about the real cause.

24.1.7 Performance data

Performance data present result values in a standardized form, described
from page 404, which enables these values to be processed automatically
by external programs. They come after the normal text output, separated
by the I sign.

As long as the plugin finds numerical values, it should always display these
values as performance data. If an external program can process such data
automatically, there is little configuration work for the administrator. There
are some external programs that can, if necessary, fish out information from
the normal text output, but because of the lack of standardization, this is
always associated with extra work—and not every Nagios admin can han-
dle Perl-compatible regular expressions perfectly. For this reason, every
plugin programmer should always include performance data provided that
the specific application allows this.

24.1.8 Copyright

A plugin should be furnished with a clear copyright notice that names the
license and the author. For plugins written in languages that are compiled
(such as C), the two items are stored in separate text files so that this infor-
mation is not lost when the plugin is later distributed in binary form. The
standard approach is to have one �:�`6 " file containing the complete li-
cense in question (for example, the GNU Public License) and an .$>8:51
file with the names of the authors.

For plugins written in script languages, it is sufficient to have the copyright

559



24 Writing Your Own Plugins

notice in the source code itself, since the plugin is normally distributed in
a readable form.

It is also useful to provide a brief output of the copyright when displaying
the version number with the option ���������.

If the plugin is based on already existing code, or if individuals have been
involved in the form of patches or suggestions, the Developer Guidelines
require the files .�3 :4#/<"/�/ >1 and >8. 31. The first one is used if
the code originally had a different author (or if parts of code are recycled),
and the latter includes the names of those who have made contributions in
the form of patches and sometimes in the form of important ideas.

24.2 The Perl Module ����������
���

If you want to create plugins in Perl with as little effort as possible, while at
the same time conforming to the programming guidelines, the Perl module
 �����!!��
��� is at hand to provide support to developers. We will in-
troduce it here in version 0.21 from October 2007. In this version the main
functions are well developed and should not undergo any major changes,
apart from the message functions, which are still marked as being experi-
mental.

This object-oriented module contains constants and variables to represent
states; exit functions that use not only a Nagios-compatible exit code, but
also the same formatting; and functions for testing thresholds and for the
correct output of performance data. In addition, it provides functions for
parsing the command line, as well as an integrated help function. On this
last point, the module deviates from the standard Perl convention: There
is already an extensive module for the command line with "�����!!#���,
and for online help, Perl provides the Perl Online Documentation (POD).

24.2.1 Installation

 �����!!��
��� is one of the core plugins, but it can alternatively be in-
stalled via the CPAN. This anchors the module in the system in such a way
that Perl finds it automatically. But the module does cause other modules
to be installed as well, which is not always desirable on a certified system.

After the installation of the core plugins,  �����!!��
��� can be found
in its own directory, together with all dependent modules. The existing
Perl installation is not affected by this, but Perl does not find the module
automatically in this way. Any plugins based on this must explicitly set the
path to the base directory of the module themselves.

560



24.2 The Perl Module ����������
���

The method using the CPAN

The CPAN installation command for  �����!!��
��� checks existing de-
pendencies and at the same time installs any modules required:

linux:~ # perl -MCPAN -e ’install Nagios::Plugin’

...

In some circumstances, modules that you have previously installed will be
updated. If you are running ���� ����. for the first time, Perl will ask a
number of questions that are answered interactively—apart from the selec-
tion of the download server, the suggested defaults can be used.

Together with the core plugins

Starting with version 1.4.10, the ���������
����; tar archive also con-
tains the Perl module. It is included in the installation if you use the
�����������������
��� switch (see Section 1.4, page 43) when running
the ���	��
�� command. The module is installed to the directory &
��&
�����&������&����, complying with the conventions used in this book.

In order for a plugin to be able to find the module, you must explicitly set
the path, via 
�� ���. In his FAQ,7 Ton Voon recommends using the Perl
module F���=��:

use FindBin;

use lib "$FindBin::Bin/../perl/lib";

use Nagios::Plugin;

F���=�� is a component of the Perl distribution and finds the path to the
directory from which the plugin was called. In accordance with our con-
ventions, this is the directory &
��&�����&������&�������. This path
is queried with the variable EF���=��!!=��, and 
�� ��� then integrates
the Nagios-specific Perl directory relative to this directory. Whether the
Linux distributions will set up a Perl directory with an identical relative
path remains to be seen. As long as you install the core plugins yourself,
the three-line command will work as intended.

If  �����!!��
��� cannot be found in the path specified, Perl will search
through all other standard paths. In this way the module will be found if it
originates from the CPAN or (in the future) from distribution packages.

7 ������������	
��
���
��
���
��	0��������������	
��
����
�������

561





25 Ch
ap

te
r

Determining File and
Directory Sizes

For a specific example of a Perl plugin, we will look at �
�����
���.1 It
is used to determine the size of specified files or directories and to check
whether the total size lies within preset thresholds. To do this, it calls the
system program �
:

user@linux:~$ du -cs /var/spool /var/log

26524 /var/spool

745640 /var/log

772164 total

1 The plugin is available on the author’s homepage at �����������#�
���
�	�������
�������
��	
��
�������	
��
����
��
�����.

563



25 Determining File and Directory Sizes

When used with the �� option, �
 does not list all the individual subdirec-
tories but just shows the total size. �� adds up individual values to reach a
total size.

At the beginning, the plugin generates a new ���  �����!!��
��� object
with the ��� constructor so that it can make use of the functions of the
module:

#!/usr/bin/perl -w

use strict;

use warnings;

use FindBin;

use lib "$FindBin::Bin/../perl/lib";

use Nagios::Plugin;

my $np = Nagios::Plugin->new(shortname => "CHECK_DU");

Various parameters can be used here. �
������� contains the short name
of the check to be performed, which will be later prefixed to all outputs:2

CHECK_DU OK - check size: 1128 kByte | size=1128kB;;

The contents of the first line after AO define the interpreter to be run, which
is Perl. The option �� and the following 
�� ��������—which both ensure
extensive output, provided that Perl objects to something in the script—
are duplicated here intentionally. In Perl versions prior to 5.6, there is no

�� �������� parameter, so you must comment out the statement and
use ��. To make sure that no one forgets this, �� is included from the
beginning. The instruction 
�� ������ enforces a strict syntactical check
and forces the programmer to pre-declare all variables. Many simple errors
are avoided when this is used.

The core function of the plugin is constructed in a relatively simple manner:

open ( OUT, "LANG=C /usr/bin/du -cs $what 2>&1 |" )

or $np->nagios_die( "can’t start /usr/bin/du" );

while (<OUT>) {

print "$_" if ($verbose);

chomp $_;

$denied++ if ( /Permission denied/i );

if ( /^(\d+)\s+total$/i ) {

$size = $1;

last;

}

}

close (OUT);

2 Other parameters are required for the online help functions of the module, which we
will not use here. We will use the module B����,
	
� instead.

564



25.1 Splitting up the Command Line With  �������!���

���� calls the program �
 and handles the output as if this came from an
opened file. If the call fails, ���������� from the module  �����!!��
���
terminates execution of the plugin and issues an error message. Before the
�
 program is called, #. "G� explicitly sets the language to the English
default, so that the texts displayed by �
 do not depend on the specific
environment.

The �
��� loop reads the output line for line and checks whether all direc-
tories can be evaluated. If ���������� ������ appears in the text of the
output, the plugin makes a note of this in the variable E������, which at
the end contains the number of nonreadable directories. If E������� does
not equal zero, the plugin sends all lines received by �
 to STDOUT for de-
bugging purposes. �
��� removes the end of line from the just-processed
line called in E�.

From the line reporting the total size—identified by the text ����� at the
end of the line of output—the plugin extracts the displayed number using
the regular expression in the parentheses. This amount is what E- now
contains. If there is a match, ���� terminates the �
��� loop, and then the
����� function closes the file handle correctly.

25.1 Splitting up the Command Line With
������������

The module "�����!!#��� provides a function, "��:������, that sim-
plifies the fragmentation of the command line in the style of many GNU
programs:

use Getopt::Long qw(:config no_ignore_case bundling);

GetOptions(

"P|path=s" => \$what,

"w|warning=s" => \$warn_threshold,

"c|critical=s" => \$crit_threshold,

"t|timeout=s" => \$timeout,

"h|help" => \$help,

"V|version" => \$printversion,

"v|verbose+" => \$verbose,

"d|debug:+" => \$debug,

) or die_with_help;

The instruction %�(!���	�� ��������������)configures the behavior of
"��:������ so that a distinction is made between upper and lower case.
%�(!���	�� �
������) allows short options to be combined, as is normal
for older Unix and GNU programs; instead of �� �� ��, the user can write
����.

565



25 Determining File and Directory Sizes

In the "��:������ option, you enumerate all the options of the plugin
and pass a reference to a variable for each option. The variables used in
the call of "��:������ had to be pre-declared because of the 
�� ������
parameter (e. g., with �� E�
�� G Tb). This stores the arguments that have
been passed on the command line with the corresponding option. The
string on the left side defines under what name the option can be called.
An option listed as

"P|path|directory=s"

can be called as �� ���� , �����
 ���� , �����
G���� , and also as
�����������G���� . All long forms can also be abbreviated, as long as
the abbreviation is unambiguous. Examples of this are ���	 ���� , ����
���� , or �����G���� .

The instruction G� at the end states that the argument, which in this case
is of the type string (�), must follow the option. Alternatives are � (inte-
ger), � (Perl integer, i.e., including octal and hexadecimal numbers), and 	
(floating-point decimal). If a colon is used instead of the equals sign, the
argument is optional.

A plus sign following the option name, as in �I�������K, allows the op-
tion to be specified multiple times on the command line. Each time it is
used, the variable is incremented. If the user selects the option ���������,
E������� will contain the value -, but if he selects ��������� ���������
(or ��������� ��), it will contain �, and so on. If you include the plus
sign in combination with the colon (e. g., �I���
�!K), the user can assign
an integer to the variable when running the command: �����
�G2 sets the
variable E���
� to 2. If he calls just �����
�, E���
� will only have the
value -.

When calling "��:������ you should always check to see whether an error
occurs, for instance through an error condition. In Perl this is written as
follows:

GetOptions(...) or die_with_help;

In case of error, the Developer Guidelines demand that the reason for ter-
mination must be specified, along with a short online help. For this, we
need to use the Perl Online Documentation and the module ���!!$����.

25.2 The Perl Online Documentation

The Perl Online Documentation (POD) is a simple markup language, which
is based on conventional man pages. It enables you to include the doc-

566



25.2 The Perl Online Documentation

umentation for a Perl script in the script itself. The command �������
��	��� provides this ready-formatted:3

#!/usr/bin/perl -w

=head1 NAME

check_du.pl - Nagios plugin for checking size of directories and files

=head1 SYNOPSIS

check_du.pl -P path/pattern [-v] [-w warning_threshold] [-c critical_th

reshold]

check_du.pl [-h|-V]

=head1 OPTIONS

=over 4

=item -P|--path=expression

Path expression for calculating size. May be a shell expression like

/var/log/*.log

=item -w|--warning=threshold

threshold can be max (warn if < 0 or > max), min:max (warn if < min or >

max), min: (warn if < min), or @min:max (warn if >= min and <= max). All

values must be integer.

=item -c|--critical=threshold

see --warning for explanation of threshold format

...

=cut

... perlcode ...

=head1 AUTHOR

...

=cut

Each instruction begins with an equals sign as the first character in the
line, as can be seen in the headings G
���- to G
���7. The lines before
and after an instruction are kept empty.

The instruction G���� 7 starts a listing with an indentation of four char-
acters, in which only G���� may be used as a POD instruction. G�
� ends

3 The complete text is contained in the plugin ����������� at �����������#�


���
�	��������������
��	
��
�������	
��
����
��
����� .

567



25 Determining File and Directory Sizes

the inserted documentation, after which you can continue with normal Perl
code.

A Perl script may contain as many POD sections as you wish. Usually the
important ones are set at the beginning of the script, and less important
ones, such as the details for 1// .#1:-, .$>8:5- or =$"1 for the man pages,
are placed at the end.

Apart from ������� there are programs such as ����
���, ���������,
�������, ��������, and ����
����, which display the inline documenta-
tion in other formats. It should be pointed out, however, that POD basically
displays an inline man page, and a man page converted to HTML will still
have the appearance of a man page.

The individual sections of a man page are described by ��� ���; important
ones are  .�/, 1` :�161, </1�56�>6: ,:�>6: 1, F6#/1, 1// .#1:, =$"1,
and .$>8:5. If the plugin requires more extensive documentation, you can
add your own sections. Syntax and construction of the POD format are
described in detail by ��� �������, while ��� ������� explains how the
embedded help can be extracted.

25.2.1 The module �
��� 	���

���!!$���� as a component of the Perl core distribution displays the in-
line documentation either in full or in extracts, and ends the script with a
predefined exit code:

pod2usage(

-msg => $message_text,

-exitval => $exit_status ,

-verbose => $verbose ,

-output => $filehandle ,

);

You can specify an additional text, such as a note on the incorrect use of
the plugin, with the switch ����, which is displayed before the inline doc-
umentation.

�������� determines the return code with which the script ends. For a
Nagios plugin, the constant UNKNOWN, which is imported with  �����!!
��
���, should always be used here.

�������� defines the amount of documentation displayed. With the value
+, ����
���� generates a short usage message. For �������� G_ - the
output includes the sections 1` :�161, :�>6: 1, and .5"$�/ >1, and for
�������� G_ � it includes the entire documentation. A special role is
played by the value ,,. This is used, together with the ��������� switch,
to specify which sections will be shown:

568



25.2 The Perl Online Documentation

-verbose => 99,

-sections => "NAME|SYNOPSIS|OPTIONS|AUTHOR",

Individual sections are separated with a I sign. The switch ��
��
� finally
defines where the information should end up—to STDOUT for verbose val-
ues of + or - and to STDERR for for � and higher. For the output of the
complete online help you should therefore set this explicitly (otherwise the
user would first have to redirect STDERR to STDOUT in order to be able to
see the help):

-output => \*STDOUT,

In the plugin you first check whether the "��:������ fails, for example
because an invalid option has been specified. In case of an error, the in-
struction following ��—in this case ����
����—is executed:

GetOptions( ...

) or pod2usage(

-exitval => UNKNOWN,

-verbose => 0,

-msg => "*** unknown option or argument found ***",

);

The return value is then UNKNOWN, since the plugin is used incorrectly.
�������� is set to +, since a brief usage message is sufficient in this case.
���� explains more precisely to the user what he has done wrong; this
message is placed before the usage message.

If the user requests the online help, the entire help text contained in the
plugin is displayed:

pod2usage(

-verbose => 2,

-exitval => UNKNOWN,

-output => \*STDOUT,

) if ( $help );

Because ����
���� normally uses STDERR here, ��
��
� explicitly en-
sures that the output goes to STDOUT.

To display the version number, ����
���� can also be used. Many GNU
programs include copyright information along with the version number.
To do this, you create a POD section G
���- #6�/ 1/ and output this with
������� G_ ,,:

=head1 LICENSE

569



25 Determining File and Directory Sizes

This program is free software; you can redistribute it and/or

modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2

of the License, or (at your option) any later version.

...

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,

MA 02110-1301, USA.

=cut

...

pod2usage(

-msg => "\n$0 -- version: $version\n",

-verbose => 99,

-sections => "NAME|LICENSE",

-output => STDOUT,

-exitval => UNKNOWN,

) if ( $printversion );

Since the output for this verbose level goes to STDERR, you also use ��
��
�
� here to ensure that the output goes to STDOUT. The  .�/ and #6�/ 1/
sections may be located in the plugin file either before or after the �����

���� call.

If the plugin expects mandatory details—in our case, the path to the di-
rectory subtree whose total size should be determined—the parameter is
checked for existing values:

pod2usage(

-msg => "*** no path/pattern specified ***",

-verbose => 0,

-exitval => UNKNOWN,

) unless $what;

If the user calls the plugin without the �����
 option, the variable E�
��
will remain empty and ����
���� will issue a corresponding message.

25.3 Determining Thresholds

The format of the thresholds, which was discussed in Section 24.1.5, page
557, is not easy to parse, which is why the functions from the module
 �����!!��
��� are a welcome help:

$np->set_thresholds(

warning => $warn_threshold,

570



25.4 Implementing Timeouts

critical => $crit_threshold,

);

$result = $np->check_threshold($size);

$np->nagios_exit($result, "check size: $size kByte");

The method �����
���
���� has the task of setting the thresholds for the
 �����!!��
��� instance E��. E������
���
��� and E������
���
���
contain the details that the user passed on to the options ��������� and
���������� on the command line.

�
�����
���
��� compares the thresholds with the total size of the direc-
tory in E���� and stores the return code in the variable E���
�� (either
OK, WARNING, or CRITICAL). This can be used right away in the function
�����������.  �����!!��
���does all the work of parsing and checking.

25.4 Implementing Timeouts

To implement a hard timeout, the function �����() is available in C, Perl,
and other programming languages, which normally calls the system func-
ton of the same name (see ��� � �����). For the Perl �����() function,
the timeout is specified in seconds:

# ... GetOptions ...

alarm($timeout);

# ... core code ...

alarm(0);

# ... end

The �����(E�����
�) call starts the alarm function, the argument + for
the second call stops it again. The first call should be used before time-
intensive processing steps, in network-based plugins before opening sock-
ets, and similar situations where a long delay may occur. A good place is
after the command line has been processed via "��:������.

At the end of the plugin it is recommended that you reset the alarm. This
may not be necessary for standalone programs, but if the Perl plugin is run-
ning in the Embedded Perl interpreter, some undesired side effects could
result if this step is not taken. By explicitly stopping the alarm, you are
certainly on the safe side.

What happens if the alarm is set off, which means that the timeout has
expired? Perl checks whether an accompanying signal handler is installed,
and executes it if this is the case. It is recommended that you make use
of this possibility and install your own signal handler, so that the plugin
behaves in compliance with the Developer Guidelines:

571



25 Determining File and Directory Sizes

$SIG{ALRM} = sub {

$np->nagios_die("Timeout reached");

}

The signal handler—an anonymous subroutine—is assigned the variable
E16"\.#5�]. The subroutine calls the function ���������� from the  ��
����!!��
���module. In case of a timeout, the plugin will terminate and
send back the return code UNKNOWN with a suitable error message.

25.5 Displaying Performance Data

Displaying performance data with  �����!!��
��� is just as simple as
processing thresholds. All you need to do is run the function �������	����
with a few parameters, and the rest is handled by ����������� automati-
cally:

$np->add_perfdata(

label => "size",

value => $size,

uom => "kB",

threshold => $np->threshold(),

);

The parameter ����� defines the name of the variable. ���
� contains
the measured value, 
�� defines the unit of measurements, in this case
KB. �
���
��� expects a threshold object, which is generated with the
function �
���
���(). The thresholds must already have been set, with
�����
���
����.

The output is shown automatically when ����������� is run, provided
that the performance data were defined before the first ����������� call.

The  �����!!��
��� package also contains the module  �����!!��
���
!!���	�������, which provides a parser for performance data in ������
���	������(), which splits up a performance data string. If you are pro-
gramming addons in Perl that process performance data, you can save
yourself a lot of work with this function.

25.6 Configuration Files for Plugins

A simple plugin can always be configured entirely on the command line.
But if you need to incorporate more complex defaults, or if parameters
should not appear as arguments in the process list, a configuration file may
be of use. The module  �����!!��
��� enables you to access configu-
ration files in a simple manner—one reason certainly being to encourage

572



25.6 Configuration Files for Plugins

plugin programmers to use a uniform format, since this would consider-
ably simplify configuration work for the Nagios admin, who no longer has
to get used to different formats for every plugin.

 �����!!��
���provides an interface for the module ���	��!!>���. The
file format corresponds to that of the INI files:

rootproperty=10.0

[math]

pi=3.1415

euler=2.78

A section begins with an entry in square brackets, in this example Z���
[.
Everything written before this (in the example here, the variable �����
��������) is referred to as root property. Instructions are given according
to the pattern ��	�����	G
���� . Lines beginning with A and b are com-
ments; spaces before and after the equals sign are allowed and are simply
ignored. More information is provided by the man page ��� ���	��!!
>���.

Access to the configuration file is made through a ���	�� object from the
module  �����!!��
���!!���	��, which is generated using the ����()
method:

$Config = Nagios::Plugin::Config->read(’/etc/nagios/myplugin.ini’);

my $rootproperty = $Config->{_}->{rootproperty};

my $pi = $Config->{math}->{pi};

my $euler = $Config->{math}->{euler};

At the same time, ����() reads in the configuration file specified. If you
omit the path details and call ����() without parameters, the module will
search for various configuration files. The exact listing of the search paths
is contained in the man page ���  �����!!��
���!!���	��.

Although it is conceivable that a single configuration file might be used for
all plugins, for reasons of maintenance it is recommended that you set up
a separate configuration file for each plugin, each containing an example.

Configuration parameters in the Z���
[ section are now addressed via the
construct

$Config->{math}->{pi};

and for the root properties, � is used as a section delimiter:

$Config->{_}->{rootproperty};

573





26 Ch
ap

te
r

Monitoring Oracle with the
Instant Client

If a specific task requires you to manipulate the STDIN and read the STD-
OUT of the external program at the same time, another tool is needed, in
the form of the module 6��!!:����.

The following chapter will not introduce any finished plugins, but illus-
trate how you can build your own Oracle plugin, using an example that
monitors Oracle. Some plugins do already exist for this DBMS, such as
�
����������, one of the standard Nagios plugins, or �
�����������
�����������1 by Mathias Kettner. But both of them require the normal
Oracle client, and most non-Oracle administrators will be out of their depth
attempting to install it.

1 ��������	���	
�������������	
��
����
��
�����.

575



26 Monitoring Oracle with the Instant Client

Luckily there is an easier solution: For some time now, Oracle has been
offering an instant client, which drastically reduces the installation work:
unpack the zip files, set the variables, and the installation is finished—the
command-line tool �%���
� can be used immediately. The latter can be
used in a plugin—just like the Perl script introduced in this chapter does,
which sends a request to the Oracle database using �%���
� and evaluates
the response.

26.1 Installing the Oracle Instant Client

Even though the instant client has been available only since Oracle version
10g, it can be used just as well with older Oracle databases such as 8i or 9i.
The software is available in the form of zip files at the Oracle homepage,2

provided you have previously registered on the Web site of the company.
When downloading, you are asked some additional questions on export
conditions.

Although the software costs nothing, you must observe Oracle’s license
terms. If your Oracle database is licensed on a CPU basis, you do not need
to worry about additional access by another user (Nagios).

For �%���
� you require two zip files,3 �����������������������
�*��
-+�-�+�*���� and ���������������%���
�����
�*��-+�-�+�*����.

The ������������������� package, some 31 MB in size, contains all the
necessary libraries, and the ���������������%���
� included, only 320
KB in size, contains a short documentation (5/.<F5:��6��
��) as well as
the client itself with a further library. It does not matter for the installation
where the files are unpacked; in this case we will use &
��&�����&������:

linux:~ # mkdir /usr/local/oracle

linux:~ # cd /usr/local/oracle

linux:local/oracle # unzip instantclient-basic-linux32-10.1.0.3.zip

Archive: instantclient-basic-linux32-10.1.0.3.zip

inflating: instantclient10_1/classes12.jar

...

linux:local/oracle # unzip instantclient-sqlplus-linux32-10.1.0.3.zip

Archive: instantclient-sqlplus-linux32-10.1.0.3.zip

inflating: instantclient10_1/READFROM_IC.htm

inflating: instantclient10_1/glogin.sql

inflating: instantclient10_1/libsqlplus.so

inflating: instantclient10_1/sqlplus

2 �������������	����������������
 �
����	��������������
�	���������
3 Apart from the Linux version introduced here on Intel x86-32 systems, the client is also

available for Linux x86-64, Linux Itanium, MAC OS-X, HP-UX (32- and 64-bit, for both
PA-RISC and Itanium), Solaris SPARC (32- and 64-bit), Solaris x86-32, AIX 5L (32- and
64-bit), and HP Tru64 UNIX.

576



26.2 Establishing a Connection to the Oracle Database

This creates a subdirectory �������������-+�-, containing all the required
files. After setting two environment variables, the instant client is ready for
use:

LD_LIBRARY_PATH=/usr/local/oracle/instantclient10_1

SQLPATH=/usr/local/oracle/instantclient10_1

#<�#6=5.5`��.>8 ensures first that all shared libraries from the instant
client directory are taken into account when programs are run, before the
libraries installed system-wide are loaded. 1N#�.>8 reveals to �%���
�
where it needs to look for the file ��������%�. This file makes a number of
default settings for accessing the Oracle database, and no adjustments are
necessary for our purposes.

26.2 Establishing a Connection to the Oracle
Database

�%���
� requires the following details to make contact with the database:

sqlplus user/password@//host/database

The placeholder 
��� is replaced by a user who exists in the database, and
the password is followed by a forward slash. After the X&& sign comes the
host name or IP address, followed by the name of the database to which
�%���
� should make a connection. In the following example we will use
the database </�::

user@linux:~$ sqlplus wob/password@//192.168.1.9/DEMO

SQL*Plus: Release 10.1.0.3.0 - Production on Sat Aug 13 14:12:52 2005

...

SQL> quit

Disconnected from Oracle8i Release 8.1.7.0.0 - Production

JServer Release 8.1.7.0.0 - Production

On the connect you are shown the version of the instant client used (here:
-+�-�+�*�+) as well as a note on the version of the Oracle database used,
in this case B�-�C�+�+. The %
�� command terminates the connection.
If the password is wrong, or if the user does not exist, Oracle explicitly
requests the user to enter both again.

577



26 Monitoring Oracle with the Instant Client

26.3 A Wrapper Plugin for � ���
�

To query an Oracle database, �%���
� is given the appropriate SQL state-
ment via standard input and receives a reply via the standard output:

user@linux:~$ echo "select trash from nothing" |\

sqlplus -i wob/password@//192.168.1.9/DEMO

select trash from nothing

*
ERROR at line 1:

ORA-00942: table or view does not exist

The switch �� (silent) prevents the output of things like version and copy-
right, and restricts the reply to the really interesting part. If the query fails,
as above, the text merely points out the error that has occurred. �%���
�
itself only returns an error status as a return value if the error occurred
when using the client itself, otherwise it just returns OK (command exe-
cuted). This is why �%���
� cannot be used directly by Nagios. Instead,
a wrapper must be written around the actual query which evaluates the
reply of the database, which in the above example generates a CRITICAL
return value appropriate for Nagios from the /55:5 reply, and adds a short
one-line reply.

�%���
� can in principle be run with any scripting language that enables
the text response to be interpreted. Since this is one of the strengths of
Perl, we shall use this language for the wrapper plugin—but it could also be
written in a shell like Bash; the basic principle is always the same.

26.3.1 How the wrapper works

The wrapper plugin is constructed on the following lines:

sql-statement | sqplus arguments | output_processing

�%���
� receives an SQL statement on the standard input, and the plugin
retrieves the result from the standard output. Wrappers can be built around
(almost) any program which does not provide sensible return values, but
“hides” the result in text.

Perl itself does not provide a direct way of checking standard input and
output at the same time. But Perl would not be Perl if there were not a
module created specifically for this purpose. 6��!!:����4 fullfils exactly
this purpose:

4 The module is included in the standard package of Perl 5.8.

578



26.3 A Wrapper Plugin for �"���
�

use IPC::Open2;

open2(*READFROM, *WRITETO, program, list_of_arguments);

print WRITETO "instruction_via_standard_input\n";

while (<READFROM>) {

processed_standard_output;

}

close(READFROM);

close(WRITETO);

The routine ����� requires two file handles. Their names, 456>/>: and
5/.<F5:�, describe the interaction from the point of view of the wrapper,
and seen from ����� its behavior is exactly the opposite: ����� reads from
its standard input (456>/>:) and writes to its output (5/.<F5:�), where no
distinction is made between standard output and error output. The third
argument is a program with its complete path, followed by any number of
arguments for the program, each separated from the next by a comma.

With the 456>/>: file handle, the desired commands are sent with �����.
Each line for �%���
� should end here with a correct end-of-line (Perl:
’L�’). With the �
��� (^5/.<F5:�_) construction, Perl reads line by line
from the standard (or error) output until there are no more lines. Then
�����() closes the two file handles.

Using 6��!!:���� can cause problems, however: it is conceivable that the
program used (in our case, �%���
�) gets blocked, because it continues
processing a part of the input only after it has written something. If the
plugin only processes the output once all the input is completed, you have
the classic situation of a deadlock. For this reason you must make sure
there are no blocks when reading and writing. Luckily the danger of this
happening in our simple application is minimal.

26.3.2 The Perl plugin in detail

A good Perl script starts with the instructions 
�� ������ and 
�� �����
����. Then all variables must be declared, and in other ways Perl is very
particular with syntax.5

#!/usr/bin/perl -w

use strict;

use warnings;

5 Some programmers get very irritated, especially at the start, because Perl reacts very
pettily with �
� 
�����. Without this instruction, variables do not need to be de-
clared. One single typing error in a variable name is sometimes sufficient to keep you
searching for hours to find out why the value at a certain position is always %.

579



26 Monitoring Oracle with the Instant Client

use IPC::Open2;

my $ipath = "/usr/local/oracle/instantclient10_1";

my $sqlplus = "$ipath/sqlplus";

my $connectstring = "wob/password@//192.168.1.9/DEMO";

# -- Set environment variables

$ENV{’LD_LIBRARY_PATH’} = $ipath;

$ENV{’SQLPATH’} = $ipath;

E����
 contains the path to the directory in which the instant client is
located, and E�%���
� has the absolute path to the program �%���
�. The
connect string was already explained above. With the hash 9/ H, the script
sets the two required environment variables. Hash entries are referenced
by Perl with E/ H\P
�	����� ����P].

The database query statement is defined for this example in a variable:

# -- SQL-Statement

my $select = "SELECT table_name FROM all_tables ";

$select .= " where table_name = ’VERSION’;";

The instruction �G appends the following text to that already existing in
E������. The SQL statement therefore selects, from the Oracle system ta-
ble ����������, which contains all the names of existing tables, the col-
umn ����������, in this case with an additional restriction to the table
name H/516: .

In the next step the plugin opens the standard input and output with the
routine �����:

# -- open2 with error processing

eval {

open2(*READFROM, *WRITETO, $sqlplus, "-s", $connectstring);

};

if ($@) {

die "Error in open2: $!\n$@\n";

}

The �%���
� switch �� prevents unnecessary connect output. For ade-
quate error processing, we embed the ����� command in an ���� envi-
ronment: since ����� aborts directly if there is an error, the programmer
would otherwise have no chance to display a sensible error message. If it is
needed, the error output is obtained in the ���� environment through EX.
The ��� function outputs this and aborts the execution of the Perl script.

The only thing remaining now is to send the SQL statement, with �����
456>/>:, to �%���
� (afterwards we close down the standard input 456>/�
>:, to be on the safe side) and evaluate the output:

580



26.3 A Wrapper Plugin for �"���
�

# -- Write instruction

print WRITETO $select;

close(WRITETO);

# -- Process reply

while (<READFROM>) {

print $_;

}

�
��� ^5/.<F5:�_ reads the output line by line. The contents of the cur-
rent line are contained in E�. With your first attempts, we recommend that
you have the output of all lines displayed with ����� E�b so that you can
determine whether everything is working.

If this is the case, the actual logic can be expanded: if the table name sought
exists in the database, Oracle first displays the column header, then (sepa-
rated by 
��
���) the actual contents, that is, the name of the table being
sought:

TABLE_NAME

------------------------------

VERSION

If such a table does not exist in the database, the response is:

no rows selected

If an error occurs in the query, perhaps because the column sought, ������
����, is missing or the table ���������� does not exist, �%���
� returns
a message containing the keyword /55:5, as in the initial example on page
578.

The �
��� loop now looks like this:

# -- Process response

while (<READFROM>) {

if ( /^VERSION/i ) {

print "OK - Table VERSION found\n";

exit 0;

} elsif (/no rows selected/i) {

print "WARNING - Table VERSION not found\n";

exit 1;

} elsif (/ERROR/i) {

print "CRITICAL - SQL-Statement failed\n";

exit 2;

}

}

close(READFROM);

print "UNKNOWN - unknown response\n";

exit 3;

581



26 Monitoring Oracle with the Instant Client

The search instruction &cH/516: &� contains two special features: the � at
the end ensures that the comparison ignores upper or lower case. The c at
the beginning ensures that the text H/516: must stand at the beginning of
the line. If the SQL statement sent by Oracle was incorrect, the error mes-
sage repeats this first—but then the text H/516: is not at the beginning of
the line.

If the plugin finds the sought table name H/516: in the response sent, an
OK text message is displayed and it terminates with the return value +.

If the database issues �� ���� �������� or even an /55:5, however, the
script feeds Nagios a corresponding reply and terminates with ���� and the
corresponding return value. If none of the three search patterns match, a
return value must also be accounted for; otherwise the script will end with
the status +, and Nagios will announce: “Everything in order.” Here we
take advantage of the $ 3 :4 status, which is actually reserved for error
processing for the plugin.

Armed with this background knowledge, it should not be too difficult to
write your own Oracle plugin. Its use here is not restricted to read access:
provided you have write permissions for the user in question, you can just
as well formulate SQL statements with UPDATE, INSERT, or DELETE, and
evaluate the answer.

582



Appendixes





A Ap
pe

nd
ix

An Overview of the Nagios
Configuration Parameters

Nagios contains two independent main configuration files: ��������	�
controls operation of the Nagios daemon, �����	� configures the Web in-
terface. Both files should be located in the Nagios configuration directory,
which is normally &���&������.

��������	� specifies a series of further configuration database and log
files, and their functions for the respective parameter will be briefly de-
scribed in the following reference. The notation ⇒��������� refers to the
description of the ��������� in the configuration file currently being dis-
cussed.

585



A An Overview of the Nagios Configuration Parameters

Unless specified otherwise, parameters may have either the value + (dis-
abled) or - (enabled). If a parameter has a default value, this is specified
accordingly. For some path details, the standard value is defined by op-
tions during compiling. The values listed in this case correspond to the
paths used in the book (see Table 1.1, page 40).

For some parameters there are no defaults. If these are missing from the
configuration, Nagios does not provide the corresponding function (so, for
example, without the �	����� parameter, Nagios ignores the object defini-
tions stored in separate directories).

Depending on the version of Nagios you’re using, not all parameters will
always be available. (Nagios 2.x) denotes those limited to Nagios 2.x, while
(Nagios 3.0) denotes those that have been added in Nagios 3.0.

A.1 The Main Configuration File ��������	�

���������������
�����
����
Global switch for passive host checks; the value + suppresses them.
Even though passive host checks are allowed according to �������
�	�, this feature must be explicitly enabled when defining the host
object. Default value:

���������������
�����
����G-

������������������������
����
Global switch for passive service checks. Even though the value -
allows corresponding tests, this feature must be explicitly enabled
when defining the service object. Default value:

������������������������
����G-

�����������	���
������������ (Nagios 3.0)
Adds the latency, specified in seconds, to the fixed freshness inter-
val. An upcoming freshness check (see Section 13.4 from page 295) is
delayed by this time before it is run. Example:

�����������	���
������������G-2

The default is + (no additional delay).

�����������
The e-mail address of the administrator responsible for the Nagios
server, to which you have access through the macro E.<�6 /�.6#E.
If there is no explicit configuration of a contact object, Nagios will
not send an e-mail to this address. Example (no default value):

�����������G������

586



A.1 The Main Configuration File ��������	�

�����������
Pager number, SMS number, or e-mail address for a pager gateway/
SMS gateway through which the administrator of the Nagios server
can be reached. Accessible through the macro E.<�6 �."/5E. Ex-
ample (no default value):

�����������G����������

��������������
��
������
Specifies whether Nagios writes status information from hosts, ser-
vices, and its own programs for the time interval ⇒����
��
������
�������� in a block to the ⇒����
��	���. The value 0 means Na-
gios updates this file immediately after every event. Default value:

��������������
��
������G-

Nagios 3.0 works fundamentally according to the first method, which
is why the parameter is omitted.

�
�������
��
����
����
With this experimental feature, Nagios spreads tests equally over the
time period, to avoid peaks. This can considerably reduce perfor-
mance and in particular is of no use if Nagios is already struggling to
keep on schedule because of poor performance. Normally this option
should be switched off. Default value:

�
�������
��
����
����G+

�
�������
��
�������������
In the intervals specified here, Nagios distributes tests which are to be
executed in the next �
�������
��
����������� seconds, so that
there is an equal load. Default value:

�
�������
��
�������������G*+

�
�������
��
�����������
All tests that are to take place in the next number of seconds specified
here are rescheduled by Nagios so that they are spread equally over
this time period. Checks specified for a future time that lie outside
this interval are not (yet) taken into account. Experimental feature;
use only in exceptional cases! Default value:

�
�������
��
�����������G-B+

����������
�� (Nagios 3.0)
This parameter integrates the specified event broker module (see Sec-
tion 17.1 from page 376) during the system start. Apart from the full
path, you can also specify the module-specific arguments. The fol-
lowing example integrates the NDO event broker module (see also
Section 17.4.4, page 386):

587



A An Overview of the Nagios Configuration Parameters

����������
��G&
��&�����&������&���&�������*��� ���	���
	���G&���& ������&��������	�

The module-specific argument ���	���	��� provides the path for
its configuration file. To integrate several modules, just specify the
parameter ����������
�� for each module separately.

���
���
�����
����
������ (Nagios 3.0)
Specifies the time in seconds in which Nagios recycles the result of
a host check. Nagios does not repeat the test within this time frame
but considers the cached result of the last check to still be up to date.
This saves time and resources. Example:

���
���
�����
����
������G*+

The value + switches off caching; the default is -2. How large this
value should be depends on circumstances. Large values take con-
siderable strain off Nagios, but then there is a danger that the values
may become obsolete and will no longer be valid.

���
������������
����
������ (Nagios 3.0)
Like ⇒���
���
�����
����
������, but Nagios uses cached ser-
vice check results only for dependencies. This parameter therefore
only has an effect on performance if there is a very large number of
service dependency checks. Example:

���
������������
����
������G*+

The value + switches off caching; the default is -2.

�	�����
The directory in which the configuration files containing object def-
initions are located. Nagios searches through it recursively for con-
figuration files with the extension ��	�. Files with other names are
ignored, so that you can place help files in this directory, such as a
CSV file from which host definitions are generated automatically by
a script. To integrate individual files ⇒�	��	���. The directive may
be specified as often as you want (see also Section 2.1, page 55). Ex-
ample (no default value set):

�	�����G&���&������&�������

�	��	���
Integrates a single file with object definitions. More on this in Section
2.1, page 55. The directive can be specified as often as you want.
Example (no default value set):

�	��	���G&���&������&�
�������������	�

Nagios 3.0 allows relative paths to be set, starting from the directory
in which the file ��������	� is located.

588



A.1 The Main Configuration File ��������	�

�
���������������������
Enables the interface for external commands. Necessary for passive
checks or if commands are to be executed through the Web interface.
More on this in Section 13.1, page 292. Default value:

�
���������������������G+

�
����	������
�����
���� (Nagios 3.0)
Starting with Nagios 3.0, this parameter adds the host pendant to
the ⇒�
����	������
������������� that already existed in Na-
gios 2.x.

�
����	������
�������������
If the results of a service check are not received after a certain time,
this is referred to as an orphaned service. Since Nagios only resched-
ules service checks if a result exists, it could be the case that a service
is never again tested. Normally this only happens if a running service
check is terminated manually from outside.

If there is a suspicion that such orphaned services have occurred, you
should set �
����	������
������������� to - for debugging pur-
poses. This is then confirmed if Nagios writes a corresponding error
entry to the log file. Whether this is justified or not can easily be seen
in the Web interface: you can have all services displayed indepen-
dently of their status, and sorted by the last test time, in ascending
order. Normally the execution of an active check should not be longer
ago than specified in ��������
������������. Default value:

�
����	������
�������������G+

�
����
����	���
����
Allows a passive host check to be tested actively if no check result has
arrived for a long time. If Nagios considers the test result to be too
old, ⇒
����	���
������
������������ steps in. More on fresh-
ness checking in Section 13.4, page 295. Default value:

�
����
����	���
����G-

�
�������
������
 (Nagios 3.0)
The path in which check results are cached in file form from Nagios
3.0. There should be no other files in this directory, since Nagios reg-
ularly empties it. Each Nagios instance requires a separate directory.
Example:

�
�������
������
G&���&������&�
������
���

�
�������
����������	��%
���� (Nagios 3.0)
Reaper processes gather in check results and process these for Na-
gios. �
�������
����������	��%
���� defines in seconds the in-
terval at which these processes are started. A short interval increases

589



A An Overview of the Nagios Configuration Parameters

the system load; a long interval could lead to delays in the Nagios
scheduling. Example:

�
�������
����������	��%
����G2

The parameter replaces ⇒���������������	��%
���� from Nagios
2.x.

�
������������	���
����
The service equivalent to �
����
����	���
����. The time after
which Nagios considers the test result to be too old is defined by the
parameter ⇒��������	���
������
������������. Default value:

�
������������	���
����G-

�
������������	��������� (Nagios 3.0)
Nagios normally starts two sub-processes when service or host checks
are performed. This is not necessary but is intended to make the sy-
stem more robust against plugin calls that crash. Default:

�
������������	���������G-

The parameter 
���������������������������� (page 605) sets
the value + (just one sub-process); �
������������	���������G-
activates this, despite the fact that 
����������������������
������ is set.

���������
������������
Defines the time interval in which Nagios tests the External Com-
mand File (see Section 13.1, page 292) for new entries. For this to
happen at all, ⇒�
���������������������must be enabled.

A simple number as the value refers to the time unit specified by
⇒��������������
 (normally 60 seconds, so that - stands for one
minute). The value �- means that Nagios tests the interface as often
as possible. If the number is supplemented (without a space) with
the unit �, seconds can also be explicitly specified.

The interval dependent on passive checks may not be too large, since
the operating system in the External Command File, a named pipe,
can normally only save 4 KB. Default value:

���������
������������G�-

��������	���
The named pipe that serves as an External Command File. It should
only be writable for the user ������ and the group ������ (see also
Section 13.1, page 292). Default value:

��������	���G&���&������&��&����������

��������	��� (Nagios 2.x)
File in which Nagios stores the comments, which can be specified
through the Web interface. Default value:

590



A.1 The Main Configuration File ��������	�

��������	���G&���&������&������������

This parameter has been removed in Nagios 3.0; comments are now
stored in the file ����
�����.

�����	�����
The date format that Nagios displays in the Web interface or uses
in the date and time macro. Possible values are 
� (��&��&����
��!��!�� ), �
�� (��&��&���� ��!��!�� ),���B'+- (����������
��!��!�� ), and ����������B'+- (����������>��!��!�� ). De-
fault value:

�����	�����G
�

���������	��� (Nagios 2.x)
File in which the downtime details are saved, which can be speci-
fied through the Nagios Web interface for hosts and/or services (see
Section 16.3, page 359). Default value:

���������	���G&���&������&������������

This parameter has been removed in Nagios 3.0; comments are now
stored in the file ����
�����.

���
��	��� (Nagios 3.0)
For Nagios 2.x, debugging still had to be activated when compil-
ing (for instance, with �&���	��
�� ���������</=$".##; see ����
	��
�� ��
���). In Nagios 3.0 this can normally be configured in
��������	�. ���
��	��� defines the file to which the debugging
output is written. Example:

���
��	���G&���&������&���
�����

���
������� (Nagios 3.0)
This defines what information is logged. The parameter has the fol-
lowing values, which can also be combined:

�- all information

+ switches off debugging

- Start/end of function calls

� Information on the configuration

7 Information on processes

B Scheduling details

-' Host and service checks

*� Messages

'7 Event broker

591



A An Overview of the Nagios Configuration Parameters

Example:

���
�������G�-

���
����������� (Nagios 3.0)
Defines the level of verbosity when debugging: The value + provides
only basic information, while - information is slightly more detailed.
The value � provides much more detailed information that is gener-
ally only of interest to developers. Default:

���
�����������G-

�������������������� (Nagios 3.0)
Switches on the Embedded Perl Interpreter (Appendix G from page
669), provided it has been built in. In Nagios 2.x a built-in Interpreter
is always active, whereas Nagios 3.0 allows this to be set with this
parameter. Example:

��������������������G-

switches on the Interpreter, the value + switches it off. The default is
- if the Interpreter has been built in, otherwise +.

������������������������� (Nagios 3.0)
Nagios standard macros, such as E8:1>.<<5/11E (see Section D.1.8,
page 631) can (even in Nagios 2.x) be accessed as environment vari-
ables. In Nagios 3.0 the number of available macros has increased so
drastically that to process them in large environments would lead to
performance problems. Default:

�������������������������G-

The value + switches off this mechanism.

�������������
�������
Globally switches the option on (or off) to work with event handlers
for service and host checks. More on this in Appendix C, page 619.
Default value:

�������������
�������G-

�������	�������������
Defines whether Nagios is generally able to detect continually chang-
ing states (flap detection, more on this in Appendix B, page 611). De-
fault value:

�������	�������������G+

�����������	��������
Defines whether Nagios can send notifications. Switching off this fea-
ture normally only makes sense on the central hosts of a distributed

592



A.1 The Main Configuration File ��������	�

installation, which themselves cannot generate notifications, and in-
stead forward their test results to a central Nagios instance (see Chap-
ter 15 from page 317). Default value:

�����������	��������G-

������������������
����������������
���� (Nagios 3.0)
Nagios 3.x caches host check results if a corresponding time frame is
given with ⇒���
���
�����
����
������. The parameter ������
������������
����������������
���� uses caching not only to
decide between DOWN and UNREACHABLE for unreachable hosts,
but also for host dependency checks, provided some have been de-
fined (see Section 12.6.2, page 289).

��������������������������������������
���� (Nagios 3.0)
If this parameter is enabled (value -), service checks will use cached
results to resolve dependencies instead of peforming the checks again.
There is more on service dependency checks in Section 12.6.1, page
285.

��������������������
The event broker as a new interface in Nagios 2.0 allows third parties
to add some features to Nagios in the form of loadable modules, for
example to save test results to a database instead of to a file. One ap-
plication that uses the event broker interface is the NDOutils (Chap-
ter 17 from page 375). Possible values are + (switched off) and �-
(accept all broker modules). Default value:

��������������������G+

������
������������
�
The time after which Nagios terminates the event handlers which
have not yet finished. Default value:

������
������������
�G*+

����
���
�����
����
Enables/disables active host checks globally. This is only worth switch-
ing off in distributed environments with a central Nagios instance
that only accepts passive results from other Nagios servers (see Chap-
ter 15, page 317). Default value:

����
���
�����
����G-

����
������������
����
Like ����
���
�����
����, but for service checks. Default value:

����
������������
����G-

������������������
		�������� (Nagios 3.0)
Specifies the maximum number of external commands that the ex-
ternal command file interface (Section 13.1 from page 292) can store

593



A An Overview of the Nagios Configuration Parameters

temporarily. If the buffer is not large enough, some results might be
lost. Default:

������������������
		��������G7+,'

	�����
������������������ (Nagios 3.0)
Nagios normally clears up sub-processes from the memory, but the
parameter 
����������������������������G- (see page 605)
switches off this behavior by default. With

	�����
������������������G-

you can reactivate the cleaning up process, despite 
������������
�����������������G- being set.

�������
����������
������
Defines a global host event handler, in addition to the host-specific
event handlers defined with ������
������. For this, both the global
parameter ⇒�������������
������� as well as the parameter
������
�������������� must be enabled in the host definition.
Nagios executes the global event handler, a normal command object,
before the host-specific one. Example (no default value set):

�������
����������
������G��������������������������

���������������������
������
The service-specific equivalent to �������
����������
������.
Apart from ⇒�������������
�������, the parameter ������
����
����������� in the service definition must also be enabled. Exam-
ple (no default value set):

���������������������
������G����������������������


��
�
����	�����
���
���
Upper limit of flap detection for host checks. Details are given in
Appendix B, page 611. Default value:


��
�
����	�����
���
���G*+�+


��
���������	�����
���
���
Upper limit of flap detection for service checks (see Appendix B). De-
fault value:


��
���������	�����
���
���G*+�+


�����
���������
�
Time in seconds after which Nagios aborts a host check if this has not
yet returned a result. Default value:


�����
���������
�G*+


����	���
������
������������
Interval between two freshness checks in seconds. Default value:


����	���
������
������������G'+

594



A.1 The Main Configuration File ��������	�


�����������
�������������
��
Controls how Nagios processes host checks after a restart. A sophisti-
cated procedure aims to prevent Nagios in this situation from execut-
ing all tests simultaneously, and thus overloading the server. Possible
values are: � (smart, intelligent, automatic distribution of the host
checks), � (no, all checks start simultaneously), � (dumb, Nagios pro-
cesses the tests at intervals of seconds), and an interval specified in
seconds, in the format ���� . Default value:


�����������
�������������
��G�


�������	������������
A Nagios command object that should check the performance data
after every host check. Requires the ⇒�����������	������������
parameter to be set.

This parameter only makes sense in a few cases, since Nagios exe-
cutes host checks only if necessary, and therefore at very irregular
intervals. It is used if performance data are to be processed without
a template (Section 19.1, page 404). Example (no default value set):


�������	������������G��������
�������	����


�������	�����	���
Specifies a file or named pipe through which Nagios forwards perfor-
mance data from host checks via a template mechanism to an exter-
nal program (see Chapter 19, page 403). ⇒�����������	��������
���� must be set. Example (no default value set):


�������	�����	���G&���&
�������	����


�������	�����	��������
Defines how data is passed on to the file ⇒
�������	�����	���.
Possible values are � (append to a normal file) or � (write to a new
file), and for Nagios 3.0 also � (non blocking write), which is particu-
larly useful for pipes. Example (no default value set):


�������	�����	��������G�


�������	�����	����������������������
Nagios command object that is called after host performance data is
passed on to the ⇒
�������	�����	��� interface. The parameter
is only used with the template mechanism and is optional. Programs
such as ���	���� (Section 19.3, page 415) have their own daemon
that permanently reads data from the interface. Example (no default
value set):


�������	�����	����������������������G��������
����
���	�����	���

595



A An Overview of the Nagios Configuration Parameters


�������	�����	�����������������������
If this interval—specified in seconds—is larger than +, the command
belonging to it (⇒
�������	�����	����������������������) is
run periodically at these intervals. + ensures that it is not used. Ex-
ample (no default value set):


�������	�����	�����������������������G+


�������	�����	������������
Describes the output format of the performance data. The Nagios
macros and format details in it, such as L� (tabulator) or L� (linefeed)
are replaced in the output. More on the use of templates in Section
19.1, page 404. Example (no default value set):


�������	�����	������������GE>6�/>EL�E8:1> .�/EL�E8:1>�
/U/�$>6: >6�/EL�LE8:1>:$>�$>EL�E8:1>�/5F<.>.E

���������������
��
���
���
Lists characters that are discarded when macros are substituted for
notifications, to avoid problems such as interpretation by the shell.
The parameter has no influence on the substitution of macros in host
or service definitions. Example (no default value set):

���������������
��
���
���GdeEYIfJ^_

����������@����������
���
Specifies impermissible characters in the names of Nagios objects. It
is recommended that at least the characters listed in the following
example be specified (no default value set):

����������@����������
���GdeOE9gY;IfJ^_0D()G

��������������

Defines the time unit in seconds to which time details in object def-
initions (such as with ��������
������������ or �������
����
��������) refer. If ��������������
 is '+ seconds, the time spec-
ification is 2 five minutes. You should only change the default of
60 seconds if there is good reason to do so. ��������������
 has
no influence on time parameters in ��������	�, however. Default
value:

��������������
G'+

�����	���
Specifies a lock file for the Nagios daemon containing the process ID
(PID) of the daemon running. Is required for start/stop purposes.
Default value:

�����	���G&���&������&�����������

596



A.1 The Main Configuration File ��������	�

�������
�������

The archive directory for rotating Nagios log files. Evaluations are
based on the archive files copied there. If one of the files is deleted,
the information contained in it is lost. Nagios uses the directory only
if log rotation is enabled with the ⇒����������������
�� parame-
ter. Default value:

�������
�������
G&���&������&���
����

����������
�������
Should event handler actions appear in the log file? The parameter is
used primarily to search for errors. Default value:

����������
�������G-

���������������������
Should Nagios log external commands (see Section 13.1, page 292) in
the log file? Default value:

���������������������G-

����	���
The central log file. Apart from errors and problems, it also retains all
events. All history evaluations use this file. For log rotation, Nagios
provides a separate mechanism, with ⇒����������������
��, and
you should not use external programs here. Default value:

����	���G&���&������&����������

����
�����������
Specifies whether Nagios should log host check repeats because of
an error state. This is absolutely essential if event handlers (see Ap-
pendix C, page 619) are used which are to react to soft states. Default
value:

����
�����������G+

������������������
Specifies whether the start state of services and hosts should appear
in the log file when the Nagios system is started. Default value:

������������������G+

��������	��������
Defines whether Nagios should also log notifications in the log file.
Default value:

��������	��������G-

�������������
����
Specifies whether Nagios should log passive checks in the log file.
Default value:

�������������
����G-

597



A An Overview of the Nagios Configuration Parameters

����������������
��
Defines whether the log file ⇒����	��� should be saved periodically
to the archive ⇒�������
�������
. Log rotating should always be
left to Nagios itself, rather than any external programs, or otherwise
the software will have difficulties in evaluating history data. Possible
values are � (none, no archiving), 
 (hourly, at the beginning of each
hour), � (daily, each day at 00:00 hours), � (weekly, at midnight from
Saturday to Sunday), and � (monthly, the first day of each month at
00:00 hours). Default:

����������������
��G�

�������������������
Should Nagios log the repeat of a service check because of a soft state
error? This is useful for debugging when developing event handlers,
but otherwise it is best to leave this out. Default value:

�������������������G+

����
����	�����
���
���
Lower limit for flap detection for hosts checks. Details are described
in Appendix B, page 611. Default value:

����
����	�����
���
���G�+�+

������������	�����
���
���
Like ����
����	�����
���
���, but for service checks. Default
value:

������������	�����
���
���G�+�+

�����
�������
���	������� (Nagios 3.0)
Defines the maximum age of a check result file in seconds, which
the Reaper process from the directory �
�������
������
 still pro-
cesses. Older files are discarded. Example:

�����
�������
���	�������G-B++

Check results are only processed here if the accompanying file is not
older than 30 minutes. A value of + ignores the age of the result files.

�����
�������
�������������� (Nagios 3.0)
Restricts the runtime of an individual Reaper process to the time in
seconds specified. Example:

�����
�������
��������������G-+

Here the Reaper process is canceled after 10 seconds. Check results
left over are processed by the next reaper process.

��������
�������
����
Specifies how many checks Nagios may execute simultaneously. The
value + allows an unlimited number. A restriction through a value

598



A.1 The Main Configuration File ��������	�

larger than zero may, under unfavorable circumstances, lead to the
test not being executed in time. Default value:

��������
�������
����G+

�������
��	�������� (Nagios 3.0)
Limits the size of the debugging file to the value specified in bytes.
Example:

�������
��	��������G�+7B+++

If the size exceeds the given value, Nagios adds the ending ���� to
the file. If a file already exists with the same name, it will be deleted.
You must therefore make provision for twice the size specified here,
since there could be two files (with and without the suffix ����) with
the maximum size at the same time.

����
�����
����������
At what time interval (in minutes) should Nagios have started all host
checks after a restart? Prevents all tests from being executed simulta-
neously, which would overload the Nagios server. Default value:

����
�����
����������G*+

�������������
����������
Like ����
�����
����������, but for service checks. Default value:

�������������
����������G*+

����������
�
The group with whose permissions the Nagios daemon runs. Default
value (is defined during compilation):

����������
�G������

�������
���
The user with whose permissions the Nagios daemon runs. Default
value (is defined during compilation):

�������
���G������

����	�������������
�
After how many seconds should Nagios abort the attempt to deliver a
notification? Some actions, such as sending an SMS message, require
a certain amount of time, since the system first waits for confirmation
from the recipient. The value should therefore not be too low. Default
value:

����	�������������
�G*+

��@�������
��	���
The file in which Nagios stores all objects after it starts. Since the Web
interface uses this file, the normal configuration files with the object

599



A An Overview of the Nagios Configuration Parameters

definitions can be edited while Nagios is running, without jeopardiz-
ing the functionality of the Web interface. Default value:

��@�������
��	���G&���&������&��@��������
�

������������
����
Defines in general whether host check results are forwarded to a cen-
tral Nagios instance. If the parameter is enabled, the command de-
fined in ⇒������������ is run. This is used in distributed environ-
ments; a description can be found in Chapter 15, page 317. Default
value:

������������
����G+

��������������������
Defines in general whether service check results should be forwarded
to a central Nagios instance. If the parameter is enabled, the com-
mand defined in ⇒�
���������� is used. This feature is used in
distributed environments (see Chapter 15, page 317). Default value:

��������������������G+

��
���������
Defines the obsessive compulsive host processor, a Nagios command
object that forwards all host check results in a distributed environ-
ment to a central instance (see Chapter 15, page 317). Example (no
default value set):

��
���������G��������������������������

��
�������
�
Defines the timeout for the ⇒��
���������. After this time has ex-
pired, Nagios aborts the execution of the command. Default value:

��
�������
�G-2

������������
Specifies the command object that, as the obsessive compulsive ser-
vice processor, should forward all service check results in a distributed
environment to a central instance (see Chapter 15, page 317). Exam-
ple (no default value set):

������������G��������������������������

����������
�
The timeout for the ⇒������������. After the time specified here
has expired, Nagios aborts the execution of the command. Default
value:

����������
�G-2

600



A.1 The Main Configuration File ��������	�

��������
�����
�����������	� (Nagios 3.0)
Normally, the results of passive host checks are always regarded as
hard states. With

��������
�����
�����������	�G-

the same behavior can be set for active host checks. Assigning soft
or hard states can now be regulated by the parameter �����
����
�������� from the host definition.

���	����������
�
Defines after how many seconds a performance command (⇒
����
���	������������,⇒�����������	������������,⇒
�������	�
�����	����������������������, or ⇒�����������	�����	����
������������������) should be aborted. Default value:

���	����������
�G2

������
�����@����	��� (Nagios 3.0)
Starting with Nagios 3.0, it is possible to carry out reading and check-
ing the configuration even before a Nagios restart and to cache the
result in the file specified with ������
�����@����	��� (see Sec-
tion H.8 from page 690). Example:

������
�����@����	���G&���&������&��@�����������
�

�����������	������������
Switches on processing of performance data. This parameter should
be enabled only if performance data really is evaluated. Otherwise it
only uses up resources on the Nagios server. Default value:

�����������	������������G+

����
����	���
The configuration file containing the definitions of the (maximum
of 32) E$1/5xE macros. E$1/5-E normally specifies the path to the
Nagios plugins. Otherwise you could save passwords here, for exam-
ple, which should not be readable in the normal Nagios configuration
files. The file must then be protected from all external access, and
only the user ������ should be able to read it. Example (no default
value set):

����
����	���G&���&������&����
�����	�

���������������	��������
Determines whether Nagios will save current states to a file on shut-
down (⇒����������������	���) and read these again when it
starts. Default value:

���������������	��������G+

601



A An Overview of the Nagios Configuration Parameters

����������
��������������
Every how many minutes should Nagios store current state informa-
tion in the ⇒����������������	���? With a value of +, the sy-
stem only saves information if Nagios is shut down. The parameter
⇒���������������	�������� must be enabled for this. Default
value:

����������
��������������G'+

���������
���������
�
Number of seconds after which Nagios aborts a service check if this
has not returned a result by then. Default value:

���������
���������
�G'+

��������	���
������
������������
Interval between two freshness checks in seconds. Default value:

��������	���
������
������������G'+

���������������
�������������
��
Controls how Nagios processes service checks after a restart. An
“intelligent” procedure should prevent them from all starting at the
same time, to avoid putting an unnecessary load on the server. Pos-
sible values are � (smart, automatic distribution), � (no, start all tests
simultaneously!), � (dumb, one second interval between checks), as
well as an explicitly specified interval in seconds, in the form x�xx.
Default value:

���������������
�������������
��G�

�������������������	�����
Prevents the checks accumulating for a specific host from being ex-
ecuted at the same time (⇒��������
�������
����, 598), through
Nagios distributing the planned checks for all hosts “intelligently”
over a period of time. Possible values are � (smart, automatic distri-
bution) or an integer larger than 0. With a value of -, Nagios does not
carry out any distribution, with a value of 7, Nagios initially plans ev-
ery fourth service check (that is, from the amount of intended checks,
the 1st, 5th, 9th, etc.), then the following number (that is, the 2nd,
6th, 10th, etc.), and so on. The test sequence is shown by the 1������
<����� item in the Web interface. In case of doubt, the default value
can be left as it is:

�������������������	�����G�

�����������	������������
The Nagios command object that is run after each service check to
process performance data. A requirement for this is that ⇒��������
���	������������must be set.

602



A.1 The Main Configuration File ��������	�

The parameter is used if the performance data is to be processed
without a template (Section 19.1, page 404). Example (no default
value set):

�����������	������������G�������������������	����

�����������	�����	���
Path to the file or named pipe through which Nagios forwards per-
formance data from service checks via a template mechanism to an
external program. This only works if ⇒�����������	������������
is set. More on processing performance data in Chapter 19, page 403.
Example (no default value set):

�����������	�����	���G&���&�����������	����

�����������	�����	��������
Defines the mode in which data is passed on to ⇒�����������	����
�	���. Possible values are � (append to a normal file), � (write to a
new file) and in Nagios 3.0 � as well (non-blocking write), which is
useful for pipes. Example (no default value):

�����������	�����	��������G�

�����������	�����	����������������������
A command object that is executed after Nagios has passed on service
performance data to the ⇒�����������	�����	���. The parame-
ter is optional and is only used together with the template mech-
anism. As long as programs that further process the data, such as
���	���� (Section 19.3, page 415), include their own service that per-
manently reads out the �����������	�����	���, you can manage
without defining a command for reading out. See also Chapter 19,
page 403. Example (no default value set):

�����������	�����	����������������������G��������
�����������	�����	���

�����������	�����	�����������������������
Interval in seconds in which the command defined in ⇒��������
���	�����	���������������������� is periodically run. Setting
the value + ensures that it is never used. Example (no default value
set):

�����������	�����	�����������������������G+

�����������	�����	������������
The output format for performance data; Nagios macros and format
details such as L� (tabulator) or L� (linefeed) are substituted in the
output. See also Section 19.1, page 404. Example (no default value
set):

603



A An Overview of the Nagios Configuration Parameters

�����������	�����	������������GE>6�/>EL�E8:1> .�/EL�
E1/5H6�/</1�EL�E1/5H6�//U/�$>6: >6�/EL�E1/5H6�/#.>/ �`E
L�E1/5H6�/:$>�$>EL�E1/5H6�/�/5F<.>.E

���������������	��%
���� (Nagios 2.x)
Every how many seconds should Nagios process accumulated service
test results? Default value:

���������������	��%
����G-+

In Nagios 3.0 the corresponding parameter is called ⇒�
�������
��
��������	��%
���� and influences not only service checks but also
host checks.

����������
Pause in seconds for which Nagios waits before searching again in
the scheduling queue for checks to be performed. Default value:

����������G+�2

����������������	���
The file in which Nagios stores status information on shutdown, and
from which the information is read in again when Nagios is started.
This is used only if the ⇒���������������	�������� parameter is
set. Default value:

����������������	���G&���&������&�������������

����
��	���
Path to the file in which Nagios saves all current status values and
from which the Web interface retrieves them. Default value:

����
��	���G&���&������&����
�����

����
��
��������������
At what interval should Nagios store status values in the file ⇒����
�
�	���? If ⇒��������������
��
������ is not set, the system ig-
nores this parameter and immediately writes the status values to this
file (not recommended). Default value:

����
��
��������������G'+

�����	���
Path to a temporary file that Nagios uses if necessary, and deletes
each time when it no longer requires it. Default value:

�����	���G&���&������&����	���

��������
 (Nagios 3.0)
A directory in which Nagios may store temporary files. The directory
should be emptied regularly. Example:

��������
G&���

604



A.1 The Main Configuration File ��������	�

������������������
�����
���� (Nagios 3.0)
Determines whether Nagios should translate the result of a passive
host check from a topological perspective to DOWN or UNREACH-
ABLE. The default is “no”:

������������������
�����
����G+

Passive host checks are often used in distributed environments, and
Nagios does not have all the information concerning the topologi-
cal structure of these environments. In that case, the default makes
sense. The value 1 switches the translation to DOWN or UNREACH-
ABLE.


��������������
�����
������
Nagios makes a number of assumptions in deciding whether un-
reachable hosts are DOWN or UNREACHABLE. If this parameter is
set to the value -, Nagios is very particular in the host check and
in some circumstances may perform considerably more individual
checks. Although the result will be more precise, this puts quite a
strain on the system. This parameter should only be set if there are
problems in detecting failed hosts. Default:


��������������
�����
������G+


��������������������������� (Nagios 3.0)
Automatically runs all Perl scripts in the Embedded Perl Interpreter,
provided the script itself does not contain an explicit instruction to
avoid the Interpreter. More on this in Section G.2, page 672.


���������������������������� (Nagios 3.0)
This parameter covers a number of settings intended to improve the
performance of Nagios in large environments. The following entry
switches it on:


����������������������������G-

There is more on this in Section F.2.7, page 667.


��������������
���
Defines whether the wildcards ; (any character) and 0 (a single char-
acter) are allowed in object definitions. If you want to work with
regular expressions, ⇒
�����
�������������
��� must be used.
Default value:


��������������
���G+


�������������������������
Should changes to the parameters ⇒�����������	��������, ⇒���
�����	�������������, ⇒�������������
�������, ⇒����
���
���������
���� and ⇒������������������������
���� on the

605



A An Overview of the Nagios Configuration Parameters

Web interface survive a Nagios restart? Only works if ⇒�����������
�
����	�������� is enabled. Default value:


�������������������������G-


��������������
��
�������	�
Should Nagios save current scheduling information on shutdown so
it can read it in again when it restarts? You can temporarily disable
the parameter if you are adding a large number of tests; otherwise it
is sensible to keep it enabled. Default value:


��������������
��
�������	�G-


���������
Ensures logging of all Nagios activities in the syslog. Default value:


���������G-


����������� (Nagios 3.0)
Explicitly sets a time zone for Nagios. Normally, Nagios uses the time
zone of the system on which it is running. This parameter is only
required if several instances for different time zones are being run on
one host. Example:


�����������G/
����&=�����

The relative path for the desired zone information file is specified,
usually in &
��&���&������	� or &
��&�
���&������	�.


�����
�������������
���
In contrast to ⇒
��������������
���, allows the use of real regular
expressions in accordance with the POSIX standard.1 Default value:


�����
�������������
���G+

A.2 CGI Configuration in �����	�

A.2.1 Authentication parameters

Through the contact and the contact group, Nagios allocates responsibili-
ties to users from which permissions for the Web interface can likewise be
inferred: each contact may normally only see those hosts and services for
which he is also responsible. This is why the name of the Web login must
match the contact name.

The parameters listed below work around this concept to some extent. They
are not intended to solve problems, however, caused by contact and Web
user names not matching.

1 See �	� / ��
�#.

606



A.2 CGI Configuration in �����	�

cmduse_authentication
Determines whether you normally need to log in to the Web interface.
Like the user name, the contact name is always used; how you store
passwords is described in Section 1.5, page 47.

In general you should never permit this authentication, but if you
do, you should make sure that the interface for external commands
(Section 13.1, page 292) is switched off completely. Default:


����
�
����������G-

�
�
�������	�������
������������
Allows the users specified here to run commands through the Web in-
terface for all hosts, without them belonging to the appropriate con-
tact group. Example (no default value set):

�
�
�������	�������
������������G�����������

�
�
�������	�������
����
Allows the users specified here to look at all host information, irre-
spective of their actual responsibility. Example (no default value set):

�
�
�������	�������
����G�����������D�
���

�
�
�������	�����������������������
Allows the users defined here to run commands for all services via
the Web interface, independently of membership of contact groups.
Example (no default value set):

�
�
�������	�����������������������G�����������

�
�
�������	���������������
Allows the users specified to view all service information, irrespective
of their own permissions. Example (no default value set):

�
�
�������	���������������G�����������D�
���

�
�
�������	������	��
���������	��������
Enables the users specified to view all configuration data via the Web
interface. This should be reserved for the Nagios administrators. Ex-
ample (no default value set):

�
�
�������	������	��
���������	��������G�����������D
@���

�
�
�������	������������������
Allows the specified users to shut down or restart Nagios via the Web
interface. Normally, nobody has this authorization. Example (no de-
fault value set):

�
�
�������	������������������G�����������

607



A An Overview of the Nagios Configuration Parameters

�
�
�������	������������	��������
Allows the specified users to view Nagios process information. Nor-
mally, nobody may do this. Example (no default value set):

�
�
�������	������������	��������G�����������D�
�����D
@���

A.2.2 Other Parameters

�������
��������� (Nagios 3.0)
Sets the HTML tag ������ for an action URL (see page 366). The
default is �����, which opens a new window:

�������
���������G�����

��	�
�������
���������
�
Defines the layout for the status map. Possible values are + (coordi-

nates defined through a 
��������	� object), - (the user must move
by mouse click from one layer to the next one), � (compressed tree—
somewhat confusing, because branches cut across each other in the
picture), * (balanced tree, the branches are displayed so that there
are no crossovers in the graphic—clearer, but requires much space),
7 (circular representation, with Nagios at the center: hosts that can
be reached directly2 are shown in the inner circle, while on other cir-
cles are located those hosts that can be reached from hosts already
entered in the graphic), 2 (circular, like 7; the area around the host
is marked in color—gray for OK, red for DOWN or UNREACHABLE;
Figure A.27 on page 346 shows an example), and ' (circular; the hosts
are shown as balloons). The settings can also be changed in the Web
interface without the need to adjust the configuration file each time,
which makes it easier to try things out. Example:

��	�
�������
���������
�G2

��	�
�������
���������
�
Determines the layout for the VRML representation of the status page
through ����
��������. Possible values are +, �, *, and 7; the cor-
responding appearance is based on the values of the same name for
⇒��	�
�������
���������
�. Example:

��	�
�������
���������
�G7

��	�
���
��������
Name of a guest user who may use the Web pages without authenti-
cation. You should only use this parameter if the Web server is pro-
tected from unauthorized access, and you should look closely at what

2 That is, without the “diversion” via �	����
.

608



A.2 CGI Configuration in �����	�

permissions this user is allocated through the contact groups. Exam-
ple (no default value set):

��	�
���
��������G�
���

����������
�������������� (Nagios 3.0)
Activates integration of the Splunk tool, a search engine for log files.3

�������
�������� (Nagios 3.0)
The value - disables HTML formatting in the plugin output:

�������
��������G- Corresponding formatting thus has no effect.
The default is +, which causes HTML formatting to be passed on.

������
�
������� (Nagios 3.0)
For various CGI actions, such as setting acknowledgements, an au-
thor name is specified. With the setting

������
�
��������G- this can no longer be changed (the default
is the user logged in).

��������	���	���
The Nagios main configuration file. Default value:

��������	���	���G&���&������&��������	�

������
��������� (Nagios 3.0)
Sets the HTML tag ������ for Notes URLs (see page 366). The default
is �����, which opens a new window:

������
���������G�����

�
�������
�������

Path in the file system that leads to the Nagios directory for docu-
mentation and images. See also ⇒
���
�������
. Default value:

�
�������
�������
G&
��&�����&������&�
���

��	���
�����
Specifies at what intervals the Web page is automatically updated.
Default value:

��	���
�����G'+

���
���
�� (Nagios 3.0)
Defines the URL for the Splunk search engine. Example:

���
���
��G
���!&&-�C�+�+�-!B+++&

The parameter ⇒����������
�������������� (page 609) must also
be enabled for this.

3 �����������
����������

609



A An Overview of the Nagios Configuration Parameters

����
������������
��������
The background image for the status map display. Example (no de-
fault value set):

����
������������
��������G���������
������

����
���������
��
A file with its own VRML objects used in the VRML representation.
The path is specified relative to ⇒
�����
����������
. Example
(no default value set):

����
���������
��G�����������


���
�������

The logical path to the Nagios documents and images from the point
of view of the browser, starting from the document root of the Web
server. If you use this path in a URL, you will be taken to the Nagios
start page. Default value:


���
�������
G&������


����������������� (Nagios 3.0)
How should hosts and services be displayed in the Web interface if
no check has yet taken place for this?


�����������������G- shows unchecked hosts and services with
the state PENDING; the value + can be left as it is.

610



B Ap
pe

nd
ix

Rapidly Alternating States:
Flapping

If the state of a host or service keeps on changing over and over, Nagios in-
undates the administrator with a flood of problem and recovery messages,
which can not only be very irritating but also distract the administrator’s
attention from other, perhaps more urgent problems.

With a special mechanism, Nagios quickly recognizes alternating states and
can inform the administrator of these selectively. The Nagios documenta-
tion refers to such alternating states as state flapping and to their detection
as flap detection.

Whether these alternating states involve hosts or services has no influence
on the detection mechanism itself. The differences are more to be found

611



B Rapidly Alternating States: Flapping

in the nature of host and service checks: Nagios carries out service checks
periodically, and therefore regularly. In this way the system continuously
receives new information on the current status. Regular host checks only
make sense from Nagios 3.0 onward (see Section H.7 from page 689). In
Nagios 2.x, host checks generally take place only if needed, so Nagios has
to obtain the appropriate information in other ways.

B.1 Flap Detection with Services

To detect alternating states you need a complete list of all states that oc-
curred during the last service checks. For this purpose Nagios stores the
last 21 test results for each service and then overwrites the oldest value in
each case in the memory. In these 21 states, a maximum of 20 changes can
occur.

Figure B.1 shows an example. The x-axis numbers the possible alternat-
ing states in each case from 1 to 20, and the heads of the arrow indicate
alternating states that have actually occurred.

Figure B.1:
Nagios saves the last

21 states to detect
frequently

alternating states.
This service changed

its state twelve times

In the period specified, the state of the system shown changed 12 times out
of a possible 20, which as a percentage is 60 percent. At 0 percent, not one
alternation state has taken place, and 100% means that the service really
was in a different state every time it was recorded.

When determining the percentage value, Nagios assigns less significance to
older changes of state than to more recent ones. Accordingly it weights the
oldest change in state at - in Figure B.1 with 0.8, and the most recent at �+
with 1.2. From left to right, the factor increases each time by approx. 0.02,1

resulting in a linear progression.

This weighting does not have any major effects on the end result in this
example: for Figure B.1, this results in 62.21 percent (instead of 60), a slight
shift, since the state in the second half changed more often. If there was
only a single change of state at �+, the weighting would have the most

1 (1.2-0.8)/19 = 0.0211

612



B.1 Flap Detection with Services

effect: instead of 5% (that is, one change out of a possible 20) this would
result in 5 * 1.2 = 6 percent.

Using threshold values which can be defined—two for services, two for
hosts—Nagios defines whether a service or host is “flapping”. Both the up-
per and lower limits are specified as percentages. If the detected change
state exceeds the upper threshold, Nagios categorizes the service as flap-
ping. This has consequences: Nagios logs the event in the log file, adds
a nonpermanent comment,2 and stops any notifications concerning this
from being sent.

If the percentage value falls below the lower limit, the system undoes this
step; that is, the comment disappears, notifications are sent again, and the
result also appears in the log file.

B.1.1 Nagios configuration

Flap detection is configured at two locations: in the central configuration
file and in the definition of the service object. In ��������	� the feature is
switched on generally with the parameter �������	�������������, and
global limit values are also defined here, which will always apply if nothing
else is defined for the service in question:

# /etc/nagios/nagios.cfg

...

enable_flap_detection=1

low_service_flap_threshold=5.0

high_service_flap_threshold=20.0

...

The value - set here for �������	������������� enables flap detection,
and + switches it off.

The lower limit ������������	�����
���
��� lies at 5 percent in this
case, the upper 
��
���������	�����
���
��� limit at 20. This means
that Nagios categorizes a service as flapping if the history saved detects at
least five changes in state (more than four out of a possible 20).3 The lower
five percent limit corresponds to one change in state. To drop below this,
all 21 states must be identical.4

In the definition of a service object, you have another chance to decide
whether flap detection is desired in this case. You also have an option to
specify threshold values for this service that differ from the global settings:

2 Nonpermanent comments disappear after the monitoring system is restarted, but per-
manent ones remain.

3 If the changes in state took place recently, the weighting would ensure that four changes
in state would already be enough to exceed the 20 percent limit.

4 If a single change of state takes place in the first half, the weighting results in a value of
less than 5 percent.

613



B Rapidly Alternating States: Flapping

define service{

host_name linux01

service_description NTP

...

flap_detection_enabled 1

low_flap_threshold 5.0

high_flap_threshold 20.0

...

}

The value - in 	��������������������� switches on the feature for this
service, and + (the default) switches it off. The two limit values ����	����
�
���
��� and 
��
�	�����
���
��� define the limit values that over-
ride the globally defined values. If they are set to +, or are omitted, the
global thresholds will apply.

Starting with Nagios 3.0, the parameter 	���������������������enables
only specified states to be taken into account when detecting changes in
states. Possible values are � (OK), � (WARNING), � (CRITICAL), and 
 (UN-
KNOWN). The default is

flap_detection_options u,w,c,u

If the values are restricted to �D�, only WARNING and CRITICAL play a role
in detection; the other states are ignored. Nagios 3.0 also saves states when
flap detection is switched off globally and introduces a corresponding new
message type. More on this in Appendix H.4 from page 687.

B.1.2 The history memory and the chronological progression
of the changes in state

Since the history only saves hard states and soft recovery, the sections on
the x-axis cannot be allocated so easily on a chronological basis, because
the intervals between possible changes of state are not equal. Assuming
that the service object has the following definitions:

max_check_attempts 3

normal_check_interval 5

retry_check_interval 1

Nagios checks the service two more times after a change in state from OK
to WARNING has taken place, before the service changes to the hard state
WARNING (state 1 in Figure B.1 on page 612). Since the last check, which
returned OK, a total of seven minutes5 has elapsed, since the two soft states
after five and six minutes are not included in the history.

5 5 + 2 * 1 = 7

614



B.1 Flap Detection with Services

If the next service check, as in Figure B.1, again detects a WARNING (i.e.,
the state does not change this time), then only five minutes elapse this
time between states 1 and 2. The x-axis therefore only illustrates time in a
linear form in exceptional circumstances—if no change of state occurs, for
example.

B.1.3 Representation in the Web interface

Services that Nagios categorizes as flapping are visible in the Web interface
at three points: in the summaries generated by ������� (Section 16.2.4,
page 345) and ����
����� (Section 16.2.1, page 334), as well as on the
information page created by �����	����� (Section 16.2.2, page 339).

The quickest way to get there is through ������� (Figure B.2): a link in the
���������� F���
��� section marked by � 1������� F������� takes
you to the status overview of services which continually change their state.
The status overview shown in Figure B.3 can also be opened directly with
����
�����0
���G���Y�����G������Y������������G-+�7.

������������G-+�7 describes all services that Nagios categorizes as flap-
ping. �����G������ provides a detailed view (in contrast to ��������, as
can be seen in Figure B.10 on page 334), and 
���G��� includes all hosts.

Figure B.2:
�	���
� notes
changing states in
section ���������


;�	����


In the status view in Figure B.3, a white field with several horizontal gray
bars moving to and fro reveal that a flapping service is involved. At the
same time a white speech bubble denotes the existence of a comment on
this (generated automatically by Nagios).

Figure B.3:
Animated horizontal
bars denote flapping
states

615



B Rapidly Alternating States: Flapping

If you click in the status view on the flapping icon next to the service in
question, �����	����� generates additional information on the service
(Figure B.4), showing the changes in state in percent next to the flapping
category, depicted by a red bar labeled with YES.

Figure B.4:
B������ ��	��

C�	�
�� reveals how
often the hard state

changed, as a
percentage

The page also contains the nonpermanent comment generated by Nagios
(Figure B.5), which points out that the sending of messages has been
stopped until the status of the service becomes stable again. It disappears,
therefore, when Nagios is restarted.

Figure B.5:
With this comment,

Nagios categorizes a
service as flapping

B.2 Flap Detection for Hosts

Nagios tries to detect changing states of a host in two ways: in the host
check itself (either in the context of the active check from Nagios 3.0 or in
on-demand checks), and also if a service check for a host was performed,
the last flap detection of which took place some time ago. When Nagios
next performs a service check to detect a changing state is determined by
the average value for all service check intervals.

616



B.2 Flap Detection for Hosts

Regular host checks are also not necessary from Nagios 3.0 onward, and
recent versions of Nagios manage perfectly well without them. For reasons
of performance, they really should be avoided in Nagios 2.x (Section 4.2,
page 95). By making use of a trick to perform service checks only when
required, Nagios compensates for the fact that regular host check results
are missing. If at least one service check returns an OK, Nagios concludes
from this that the host is also reachable and is in an OK state. The results
of flap detection are stored by Nagios in the history.

The same flap detection mechanism is used for hosts as for services. So the
difference is only in how Nagios determines the corresponding data basis.

Whether flap detection is desired for hosts is revealed by the central config-
uration file ��������	� and the definition of the host objects. The global
parameter �������	�������������, which applies equally to hosts and
services, must be set to -:

# /etc/nagios/nagios.cfg

enable_flap_detection=1

low_host_flap_threshold=5.0

high_host_flap_threshold=20.0

The threshold parameters for hosts include 
��� in their names, but they
have the same effect as their ������� equivalents.6

For the host object itself, detection is switched on with 	��������������
������� - and off with +:

define host{

host_name linux01

...

flap_detection_enabled 1

low_flap_threshold 5.0

high_flap_threshold 20.0

}

The optional parameters ����	�����
���
��� and 
��
�	�����
���
�
��� allow for host-specific thresholds. If these are omitted, the global
threshold values are used.

As for service checks, Nagios from 3.0 onward also has the additional 	����
�����������������parameter here. Possible values in the host definition
are � (OK), � (DOWN), and 
 (UNREACHABLE). Only the states specified for
the parameter are used in flap detection, and if this parameter is not given,
then all possible states are used.

6 See page 613.

617





C Ap
pe

nd
ix

Event Handlers

If the state of a host or service alternates between OK and error states, you
can use an event handler to run any programs you want. You can make
use of this if a service fails, for example, and you want Nagios to try and
restart it. This provides an opportunity to solve minor problems without
the administrator needing to intervene.

Use of the event handlers is not just restricted to self-healing, however: with
an appropriate script you can just as easily log current values or the event
itself in a database. But there are more suitable methods for doing this,
described in Section 19.1, page 404. A failed printer service serves as an
example here of using an event handler for self-healing. In this example
the printer service ��� is used, but this method can be applied in general
to any service for which a start-stop script is available.

619



C Event Handlers

C.1 Execution Times for the Event Handler

The following parameters in the service definition ensure that Nagios tests
the service under normal circumstances every five minutes, but in cases of
error, every two minutes:

normal_check_interval 5

retry_check_interval 2

max_check_attempts 4

An error state becomes hard after four tests leading to the same result.

Figure C.1:
When does Nagios

run the event
handler?

Figure C.1 shows an example of the change of the ��� service from an OK
state to CRITICAL, and back again. After 10 minutes test No. 2 detects that
the service is no longer available. The soft state that results causes Nagios
to examine ��� more closely at two-minute intervals (checks No. 3, 4, and
5). Test No. 5 returns a CRITICAL for the fourth time, causing Nagios to
categorize this as a hard state and to go back to the normal, five-minute
test interval. In check No. 7 the service is functioning again, and the state
changes from CRITICAL to OK (for hard state, see Section 4.3, page 96.).

Event handlers are carried out by Nagios for soft error states (in checks
No. 2, 3, 4), the first time a hard error state occurs (in check No. 5), and in
the resetting of the OK state after an error (irrespective of whether this is a
hard or soft recovery).

Since hard error states lead to the administrator being notified, it is recom-
mended that the repair attempt is moved to the time of the soft error states.
If it succeeds at this point in time, the administrator is spared these minor
details. Ideally the service will be running again before a user even notices
that it has failed.

The fact that Nagios only executes the event handler when a hard error
state first occurs prevents periodic attempts at repair that do not lead to

620



C.2 Defining the Event Handler in the Service Definition

the desired result after all (if the attempt had succeeded, no further hard
error states would have occurred).

C.2 Defining the Event Handler in the Service
Definition

Although Nagios executes the event handler for every event, it does not
have to carry out an action each time. In our example the handler should
attempt to reset the printer service on the third soft error state (check No. 4)
and on the first hard error state (check No. 5), and do nothing at all the other
execution times.

For this purpose, the service definition is modified as follows:

define service{

host_name printserver

service_description LPD

...

event_handler restart-lpd

...

}

The ������
������ parameter expects a Nagios command object that will
run the handler script:

define command{

command_name restart-lpd

command_line $USER1$/eventhandler/restart-lpd.sh $SERVICESTATE$ $SER

VICESTATETYPE$ $SERVICEATTEMPT$

}

In this example it is called �������������
 and is not located directly in
the Nagios plugin directory &
��&�����&������&�������, but in a subdi-
rectory called &
��&�����&������&�������&�����
������, as suggested
in the Nagios documentation. The script receives three macros as pa-
rameters: the current state E1/5H6�/1>.>/E (OK, WARNING, CRITICAL,
or UNKNOWN), the state type E1/5H6�/1>.>/>`�/E (1:F>, or 8.5<), and
the number of the current (possibly repeated) attempt E1/5H6�/.>>/��>E
(e.g., * if the test is being performed for the third time). If the event handler
is to be used for host checks, then the macros E8:1>1>.>/E, E8:1>1>.>/�
>`�/E, and E8:1>.>>/��>E are used instead.

621



C Event Handlers

C.3 The Handler Script

The actual treatment of the error—depending on the current event—is dealt
with by the script defined in the command definition. So that we can con-
centrate on the essential aspects in this context, we shall assume that ��� is
installed on the Nagios server itself. This enables the service to be restarted
locally, without the need for a remote shell such as the Secure Shell.

The script �������������
 checks to see exactly what event is involved,
using the macros passed on to it, and either does nothing at all or tries to
restart ���:

#!/bin/bash

# /usr/local/nagios/libexec/eventhandlers/restart-lpd.sh

# $1 = Status, $2 = status type, $3 = attempt

case $1 in

OK)

;;

WARNING)

;;

CRITICAL)

if [ $2 == "HARD" ] || [[ $2 == "SOFT" && $3 -eq 3 ]]; then

echo "Restarting lpd service"

/usr/bin/sudo /etc/init.d/lpd restart

fi

;;

UNKNOWN)

;;

esac

exit 0

The ���� statement first checks to see what state exists. Only if it is CRIT-
ICAL will the script do anything; it does not carry out any action for other
states. If the service is in a critical state, either the state type must be 8.5<
or (II) a corresponding soft state must occur for the third time in suc-
cession, so that �������������
 can execute the ��� init script with the
argument �������.1

The script is executed with the permissions of the user ������, who may
neither stop nor restart system services. This is why �
�� is used, which
provides temporary ���� permissions exclusively for the start-up script
&���&������&���, just for this user. The corresponding configuration can
be found in the file &���&�
�����, but if it is edited then you must use the
program ���
�� rather than a standard editor (this checks the configura-
tion file for syntax errors when it is saved):

1 If you want to get to know Bash programming more closely, we can recommend the
excellent Advanced Bash-Scripting Guide (������������������
�"�B�	�
�����) by
Mendel Cooper.

622



C.4 Things to Note When Using Event Handlers

linux:~ # visudo

Then you add the following line to the configuration file:

nagios nagsrv=(root) NOPASSWD: /etc/init.d/lpd

In plain language this means: the user ������ may run the command
&���&������&��� on the host ������. The command is run as the user
����, but no password is required for this.

C.4 Things to Note When Using Event Handlers

If you restart a service that is already in a soft error state as described here,
the administrator will not receive any notification as long as the action was
successful. Although the log file records the restart, it will scarcely be no-
ticed unless you search the log file explicitly for such events. This means
that the administrator will seldom investigate the cause of the service fail-
ure.

You should therefore bear in mind that eliminating the problem is the best
solution, and that a restart is only second best. Like air bags in automo-
biles, the event handler should just be regarded as an additional security
measure, and should certainly not represent the primary method of han-
dling errors. If you carry out the restart only when a hard error state occurs,
the administrator is confronted with the problem through the notification
mechanism.

In addition, not every service is suitable for an automatic restart. With
OpenLDAP in versions before 2.1.17, a problem occurred sporadically in
the replication through ��
���, which left behind a corrupted replication
file. Although the replication service could be restarted, it died again after
a short time. To really get the replication up and running again, you would
have to repair the replication file manually.

You should always remember this example and never have complete faith
in self-healing. In the worst case, restarting a service repeatedly and with-
out thought could lead to loss of data, which might be rectified only by
retrieving data from the backups.

623





D Ap
pe

nd
ix

Macros

Macros are the salt in the Nagios soup, for without them each service would
have to be defined individually for each host and each command defined
separately for each host and each service. They are identified by the dol-
lar signs surrounding them: E���	�E. We will look at the definition of a
command with the plugin �
����
��� (see Section 6.4.2, page 119):

define command{

command_name check_http

command_line $USER1$/check_http -H $HOSTADDRESS$ $ARG1$

}

The definition contains three different macros: the user macro E$1/5-E,
defined in the file ����
�����	� (see Section 2.14, page 79), as well as
E8:1>.<<5/11E and E.5"-E. The 32 possible user macros E$1/5-E to

625



D Macros

E$1/5*�E are like constants that you use to record information, such as
the path to the plugin directory (normally in E$1/5-E) or even passwords
that should not appear in the normal configuration. The file ����
�����	�
may then be readable only for the user ������.

The second macro, E8:1>.<<5/11E, is a so-called standard macro, which
is replaced by the host address of the host definition before the command
is run:

define host{

host_name linux01

address 192.0.2.1

...

}

define service{

host_name linux01

service_description HTTP

check_command check_http!-u test.html

...

}

If the service ���
�+-b8>>� calls the command �
����
���, the com-
mand will obtain the host address from the parameter �������. However,
standard macros can provide not only the contents of a parameter from an
object definition, as in this case, but also dynamic values that can change.
Examples include the state of a host (e.g., E8:1>1>.>/E), the output of a
plugin (e.g., E1/5H6�/:$>�$>E), and system information, such as the start
time of Nagios or the current time, or information on the configuration or
static values.

The E.5"�E macros contain the command line arguments in sequence.
These appear in the service definition after the exclamation mark following
the command �
����
���. The exclamation mark is also used as a sep-
arator between the individual arguments. In this way, spaces can be used
within an argument, as in the example here (�
 �����
���), without any
problem whatsoever.

Nagios can handle two other groups of macros: on-demand and custom
macros. On-demand macros (see Section D.2 on page 632) are extended
standard macros that are used to access values belonging to an external
object: for example, E8:1>.<<5/11!���
�+�E returns the IP address of
���
�+�, irrespective of whether we are in the host or service definition of
���
�+- or ���
�+7.

Custom macros, also referred to as user-defined variables, were only intro-
duced in Nagios 3.0. The definition of host, service, and contact objects
is now supplemented with definitions you can make yourself, in whatever
manner you like. Section D.3 from page 633 deals with these custom macros
in more detail.

626



D.1 Standard Macros

D.1 Standard Macros

It would go beyond the scope of this book to describe all the available
macros. The description below concentrates on the most important ones.
A complete list is given in a tabular overview in the online documentation.1

Not all macros can be used everywhere. For this reason the tables provide
information on the contexts in which each one is applicable. Normally this
can be deduced with a bit of common sense. A service macro does not
belong in a host check or a host notification, and likewise, a notification
macro has no place in a host or service check. A value (such as a host state)
which first has to be found is of course not yet available while it is being
identified (that is, during the host check).

Macros can basically be used in the following actions: for host and service
checks, for host and service notifications, when running event handlers
(Appendix C, page 619) or the OCSP/OHCP commands (Chapter 15, page
317), and also when processing performance data with the accompanying
commands (Section 19.1.1, page 405 and Section 19.1.2, page 407).

D.1.1 Host macros

Table D.1:
Selected host macros

Macro Description

E8:1> .�/E Host name from the 
�������� parameter for
the host definition

E8:1>.#6.1E Alias from the ����� parameter for the host def-
inition

E8:1>.<<5/11E IP address or FQDN from the host definition pa-
rameter

E8:1>1>.>/E State as text: UP, DOWN, UNREACHABLE

E8:1>1>.>/6<E State in numerical form: + (UP), - (DOWN), �
(UNREACHABLE)

E8:1>1>.>/>`�/E 8.5<, 1:F>

E8:1>:$>�$>E The first line of the text output of the host check

E8:1>#: ":$>�$>E
(Nagios 3.0)

Long text of the host check, if this provides
multiple-line information

E8:1>�/5F<.>.E Performance data from the host check

1 Nagios 2.x: ��������	
��
�
��������
���������
�$�%��	���
�����;
Nagios 3.0: ��������	
��
�
��������
���������
�1�%��	�����
������

627



D Macros

Table D.1 documents the most important macros in connection with hosts.
The macros E8:1> .�/E, E8:1>.#6.1E, and E8:1>.<<5/11E provide in-
formation from the host definition itself, so they are static. E8:1>1>.>/6<E
and E8:1>1>.>/E do not give the return value of the plugin—- (OK) or
� (CRITICAL)—but the result after the topological evaluation by Nagios.
E8:1>1>.>/>`�/E defines whether Nagios really has completed the check
(hard state) or whether the check is to be repeated (soft state).

D.1.2 Service macros

Table D.2 presents selected service macros.

Table D.2:
Selected macros for

services

Macro Description

E1/5H6�/</1�E Name of the service, taken from the pa-
rameter ������������������� from the
service definition

E1/5H6�/1>.>/E The state in text form: OK, WARNING,
CRITICAL, UNKNOWN

E1/5H6�/1>.>/6<E The state numerically: + (OK), - (WARN-
ING), � (CRITICAL), * (UNKNOWN)

E1/5H6�/1>.>/>`�/E 8.5<, 1:F>

E1/5H6�/:$>�$>E The first line of the text output of the plu-
gin during the service check

E1/5H6�/#: ":$>�$>E
(Nagios 3.0)

The long text of the service check, if this
provides multiple-line output

E1/5H6�/�/5F<.>.E Performance data of the service check

D.1.3 Group macros

The host group macros described in Table D.3 are provided by Nagios for
service and contact groups as well. The string 8:1> in the macro name is
replaced accordingly by 1/5H6�/ or �: >.�>.

The macros E8:1>"5:$� .�/E and E8:1>"5:$� .�/1E are always con-
nected to the host. The same applies for the equivalent 1/5H6�/"5:$�
(connected to a service) and �: >.�>"5:$� macros (connected to a con-
tact). Whereas E8:1>"5:$� .�/E always returns the first host group of
the associated host, E8:1>"5:$� .�/1E displays a complete, comma-sep-
arated list of all host groups of which the host is a member.

628



D.1 Standard Macros

Table D.3:
Selected group
macros

Macro Description

E8:1>"5:$� .�/E Name of the first host group

E8:1>"5:$� .�/1E Comma-separated list of all host
groups to which the associated host
belongs

E8:1>"5:$�.#6.1E Alias of the host group

E8:1>"5:$��/�=/51E Members of the host group

In contrast, the macros E8:1>"5:$�.#6.1E and E8:1>"5:$��/�=/51E re-
fer to a host group. However, now there are no activities using a host group
as a reference point.2 So what is the purpose of these macros? They can be
implemented as on-demand macros (see Section D.2 from page 632). For
example, E8:1>"5:$��/�=/51!#��
�Edisplays a list of all members of the
#��
� host group.

On the other hand, if the macro is run in a “normal” context, Nagios iden-
tifies the first host group specified in the host definition and assesses the
accompanying value. The same applies for service and contact groups.

D.1.4 Contact macros

The macros listed in Table D.4 reference all the parameters in the respective
contact definition.

Table D.4:
Selected contact
macros

Macro Parameter to be read out

E�: >.�> .�/E ������������

E�: >.�>.#6.1E �����

E�: >.�>/�.6#E �����

E�: >.�>�."/5E Parameter ����� of the contact

E�: >.�>.<<5/11�E One of six possible contact addresses,
where � is a digit between - and '3

2 It is possible to run commands for a host group from the Web interface, but Nagios
always resolves these into single actions for each host.

3 The exact contents of 4CD+.9C.9��8!���4 are specified by the Nagios administrator.
Anything goes: other telephone numbers, e-mail addresses, or even Granny’s phone
number.

629



D Macros

D.1.5 Notification macros

Table D.5 shows a selection of macros for notifications.

Table D.5:
Selected macros for

notifications

Macro Description

E :>6F6�.>6: >`�/E Notification type (for values, see
text)

E :>6F6�.>6: 5/�6�6/ >1E
(Nagios 3.0)

Comma-separated list of all recipi-
ents

E8:1> :>6F6�.>6:  $�=/5E
(Nagios 3.0)

Notification counter

E1/5H6�/ :>6F6�.>6:  $�=/5E
(Nagios 3.0)

Notification counter

E :>6F6�.>6: >`�/Edescribes the type of notification. For Nagios 2.x the
notification types are �5:=#/�, 5/�:H/5`, .�3 :4#/<"/�/ >, F#.��6 "�
1>.5>, and F#.��6 "1>:�. Nagios 3.0 also has F#.��6 "<61.=#/<, as well
as <:4 >6�/1>.5>, <:4 >6�// <, and <:4 >6�/�. �/##/<.

The macro E :>6F6�.>6: 5/�6�6/ >1E is only available from Nagios 3.0;
it contains a comma-separated list of all recipients of the notification that
has just been sent. Also new in this version are the two macros E8:1> :>6�
F6�.>6:  $�=/5E and E1/5H6�/ :>6F6�.>6:  $�=/5E. These contain
the incremented number of the last sent message, which is important for
escalation management. Acknowledge messages are ignored in this case,
as are flapping messages or messages on planned maintenance periods. As
soon as the state of the host or service is again OK, this counter is reset to
0, and in the event of an error, counting starts again from the beginning.

D.1.6 Macros to specify time and date

The output of the date macro from Table D.6 depends on the date form
specified in the parameter �����	����� (page 591).

Table D.6:
Selected macros for

details of the date

Macro Example

E#: "<.>/>6�/E 1� �, <�� -C!�*!�� �/> �++C

E18:5><.>/>6�/E �++C�-���, -C!�*!��

E<.>/E �++C�-���,

E>6�/E -C!�*!��

E>6�/>E --,B,722B,

630



D.1 Standard Macros

E#: "<.>/>6�/Eoutputs a format also provided by the ���� program with-
out any parameters. The examples for E18:5><.>/>6�/E and E<.>/E cor-
respond to the �����	�����G���B'+- setting. With the value �����	���
���G
�, the date would be written here as -�&�,&�++C. E>6�/E contains
only the time, whereas E>6�/>E shows the epoch time (seconds elapsed
since 01.01.1970).

D.1.7 Statistics macros

If you use the macros shown in Table D.7 in notifications, the macro in
each case will show the number of hosts or services for which the contact
to whom the notification is sent is responsible. This means that different
recipients may receive different figures for the same notification.

Table D.7:
Selected macros for
statistical purposes

Macro Description

E>:>.#8:1>1$�E Number of hosts in UP state

E>:>.#8:1>1<:4 E Number of hosts in DOWN state

E>:>.#8:1>1$ 5/.�8.=#/E Number of hosts in UNREACHABLE state

E>:>.#1/5H6�/1:3E Number of services in OK state

E>:>.#1/5H6�/1�56>6�.#E Number of services in CRITICAL state

E>:>.#1/5H6�/14.5 6 "E Number of services in WARNING state

E>:>.#1/5H6�/1$ 3 :4 E Number of services in UNKNOWN state

E>:>.#1/5H6�/�5:=#/�1E Total number of services with problems

D.1.8 Using standard macros about the environment

All standard macros can be provided by Nagios as environment variables,
if required. The variable name here is derived from the name of the macro
without the dollar sign, to which the prefix  ."6:1� is added. The macro
E8:1>.<<5/11E thus converts to the environment variable  ."6:1�8:1>�
.<<5/11. Among the on-demand macros (see next section), the host and
service macros are not available as environment variables for reasons of se-
curity, and the same goes for the E$1/5�E macros, since these could con-
tain sensitive information such as passwords.

Providing these environment variables takes a great deal of time. You should
therefore consider whether you can do without them altogether in Nagios
3.0 (see the parameters 
����������������������������, page 605, and
�������������������������, page 592). In Nagios 2.x the environment
variable cannot be switched off.

631



D Macros

Instead of accessing the Nagios environment variable directly from an ex-
ternal script, as in the following example,

#!/bin/bash

# badscript

HOST=$NAGIOS_HOSTADDRESS

...

which is called as follows,

define command{

command_line $USER1$/badscript

...

}

as an alternative, you could pass on the contents of the macro to the script
explicitly as an argument:

define command{

command_line $USER1$/goodscript $HOSTADDRESS$

...

}

Then you can manage without the Nagios environment variable in the
script itself:

#!/bin/bash

# goodscript

HOST=$1

...

���������� retrieves the relevant value from the command line, with E-.

D.2 On-Demand Macros

On-demand macros—which have existed since Nagios 2.0—reference the
same contents as standard macros do. The subtle difference between them
lies in the context of what they reference. Whereas standard macros re-
fer exclusively to the host, service, or contact object currently being used,
on-demand macros enable access to values from any external objects you
please:

$HOSTADDRESS:linux01$

$HOSTSTATE:switch05$

632



D.3 Macros for User-defined Variables

The macros are the same as standard macros, but their names include the
name of the host to which the reference is made. The colon is used as a
separator. For services, the service name also needs to be specified, again
separated with another colon:

$SERVICESTATE:switch05:PING$

$SERVICESTATE::NRPE$

If the host field is left empty, the macro refers to the host in whose con-
text the macro is called. If, for instance, you are checking the disk us-
age via NRPE on the host ���
�+- with the service <���� NRPE, then
the standard macro E1/5H6�/1>.>/E will return the state of the service
���
�+-b<����, whereas the on-demand macro E1/5H6�/1>.>/!! 5�/E
will display the state of the service ���
�+-b 5�/. An appropriate script
can take into account the dependency here between the service  5�/ and
an NRPE-based check such as <����.

For contact objects, the external reference point is a contact in each case:

$CONTACTNAME:gregor$

$CONTACTEMAIL:smith$

In addition to this, there are also on-demand macros for host, service, and
contact groups, and in each case the reference point is the group con-
cerned.

D.3 Macros for User-defined Variables

Starting from Nagios 3.0, you can specify your own macros in host, service,
and contact definitions. These macros, called custom macros in Nagios
jargon, are treated like normal standard macros, and their names begin
with an underscore to make them more easily identifiable:

define host {

host_name linux01

...

_NSCLIENT_PORT 12489

_ASSETID 734287

}

define service {

host_name linux01

service_description HTTP

...

_HTTP_PORT 8080

}

define contact {

633



D Macros

contact_name wob

...

_DEPARTMENT 41ZBV

}

They are addressed with a prefixed object type:

$_HOSTNSCLIENT_PORT$

$_HOSTASSETID$

$_SERVICEHTTP_PORT$

$_CONTACTDEPARTMENT$

The macro again starts with an underscore, but the underscore supplied in
the definition is omitted. This is difficult to read. If you want to use the
underscore as a separator, for instance between 8:1> and  1�#6/ >��:5>,
the custom macro must begin with a double underscore. Thus,

define host {

host_name linux01

...

__NSCLIENT_PORT 12489

__ASSETID 734287

}

turns into

$_HOST_NSCLIENT_PORT$

$_HOST_ASSETID$

In the definition of a custom macro, upper and lower case are not distin-
guished, but when the macro is called it is always written in capitals. Be-
sides providing abbreviations for content used mainly for documentation
purposes, such as .11/>6< or </�.5>�/ >, such user-defined macros can
also be used to neatly define commands.

For example, if you are monitoring a Windows environment with the NS-
Client mechanism, a service is installed on the host being monitored that
listens to a specific port (Section 20.2.1, page 464). Under certain circum-
stances you will be forced to change the standard port. If you now have
several servers with different ports, you must tell the plugin on which port
it is to run the query.

One method would be to also include the port as an argument for each ser-
vice definition, or to define a second command with a permanently stored,
alternative port. However, if the port on the target system is now changed,
the entire service definition of the target system must be modified.

A more elegant solution is to store the port, as above, as a custom macro
in the host definition and to evaluate the custom macro in the command.

634



D.4 Macro Contents: Not Everything Is Allowed

This solution, which unfortunately works only in Nagios 3.0, is described
for the NSClient service in Section 20.2.5 from page 471, and an equivalent
example for NRPE can be found in Section H.2 from page 685.

D.4 Macro Contents: Not Everything Is Allowed

A number of macros contain values that were not defined within the Na-
gios configuration or defined by Nagios itself, but which originate from
external programs. These include macros that record the plugin output
(E8:1>:$>�$>E, E#: "8:1>:$>�$>E, E8:1>�/5F<.>.E), and the corres-
ponding macros for services. Via the Web interface, the administrator can
pass on values to Nagios through acknowledgments, which can be read out
from the macros E8:1>.�3.$>8:5E, E8:1>.�3�:��/ >E, and the equiva-
lent service macros.

To guard against the possibility that these macros might contain damaging
code, which might trigger a buffer overflow or enable other mischievous
things, Nagios removes “dangerous” lines. What these are is defined by the
parameter ����������@����������
��� (page 596):

illegal_object_name_chars=‘~$^&’<>

The Nagios administrator can change these, but he must be aware that
fewer characters means a higher potential of risk.

635





E Ap
pe

nd
ix

Single Sign-On for the Nagios
Web Interface

For the login to the Web interface, Nagios takes the user who has authen-
ticated himself to the Web server, usually Apache. In principle it makes no
difference how this authentication comes about, but the name of the con-
tact must match the user name passed on to the CGI programs from the
Web server. Nagios is quite tolerant in terms of its name conventions here.
Even user names such as ���X/U.��#/� /> or /U.��#/&��� are possible.
This is enabled by single sign-on (SSO), which means that users only need
to log on a single time. Ideally, all applications should accept the authenti-
cation that has already been performed, and the user will not be asked for
a password every time.

637



E Single Sign-On for the Nagios Web Interface

Security experts have been busy discussing the pros and cons1 of single
sign-on, but it is very popular with users. We will therefore not go into the
disscussion on security.

Single sign-on, in combination with the Nagios Web interface, means that
the user is automatically authenticated from the browser when the Nagios
CGI programs are called, and a password is no longer required. Of course,
what is described here can also be used for other Web pages—this could be
the NagVis, PNP, or a Wiki. There are hardly any limits to the opportunities
for using single sign-on.

This chapter describes the use of two alternative Apache modules for Apa-
che 2 that enable a single sign-on scenario. As the authentication server, a
running Active Directory in Windows 2003 is required.2 On the client side,
the browser used must support the selected HTTP authentication proce-
dure. Microsoft Internet Explorer and Firefox are both suitable for this.

The Apache module �����
�
����� uses Kerberos directly, and could
therefore be used in an exclusively Linux environment (without Active Di-
rectory). Since the author himself does not have a production Kerberos en-
vironment with Linux clients available, we will not deal with this topic here.
If you are running a fully functional Kerberos environment in Linux/Unix,
you should find it easy to modify the �����
�
����� section to your envi-
ronment.

The Apache module �����
�
�������������makes use of ������
�
, a
program that is a component of Samba 3.0. It therefore requires a complete
Samba installation, and the server must be a member of an Active Directory
domain.

E.1 HTTP Authentication for Single Sign-On

Microsoft has supported single sign-on via Web browser for some time now.
The original procedure was based on (NT LAN Manager (NTLM), a protocol
that is also used in networks, for example when logging in to a domain or
when accessing network drives. Here the client sends a so-called type 1
message containing the host and domain names of the client. The server
replies with an NTLM challenge (an NTLM type 2 message), and the client
completes authentication with a type 3 message, which in turn sends back
to the server not only the client name and domain, but also the challenge,
which has been encrypted with the client’s password. The procedure is
Microsoft-specific and was never published as a standard. Nevertheless,

1 ������������������	���
���������
���
�
����
2 The scenario described may also work with Windows 2000, but the author was not able

to test this. Nevertheless, there are certainly differences in the Kerberos implementation
between Windows 2000 and Windows 2003, which probably require adjustments to the
procedure descrbed here.

638



E.1 HTTP Authentication for Single Sign-On

Firefox is able to use it. The HTTP authentication–related descriptions of
the NTLM protocol can also be found on the Internet.3

Microsoft will soon replace the NTLM-based authentication with a newer,
Kerberos-based authentication. With Windows Server 2008, NTLM will no
longer be available for HTTP authentication, at least on the server side.

The successor to this has already been in practical use for some time. It uses
a generic interface called Generic Security Services Application Program In-
terface (GSSAPI). For HTTP authentication, as well as GSSAPI, a mechanism
called SPNEGO (Simple and Protected Negotiate) is used, through which
concrete authentication is negotiated. Microsoft describes the HTTP au-
thentication in an informal Request for Comment, RFC 4559.4 This also
discusses the NTLM procedure. The SPNEGO, used for the newer variation,
is described in RFC 4178.5

The SPNEGO procedure is somewhat shorter than the NTLM authentica-
tion and is closer to the HTTP authentication methods =���� and <�����.
First, the client requests a protected page with the command "/>. The ser-
ver replies with the status code 7+- (Unauthorized) and includes the pos-
sible authentication procedures:

HTTP/1.1 401 Authorization Required

...

WWW-Authenticate: Negotiate

WWW-Authenticate: NTLM

WWW-Authenticate: Basic realm="Nagios Monitoring"

...

The server in this example provides a choice of three procedures:  ������
��� stands for the Kerberos-based SPNEGO procedure,  >#� stands for the
older NTLM authentication, and =���� refers to the classic user password
method in which the authentication data are transmitted in plain text. It
is now up to the client to decide on one of the three procedures. The
client—here an instance of Microsoft Internet Explorer 6.0—selects the se-
cure Kerberos-based procedure:

GET /nagios/index.html HTTP/1.1

...

Authorization: Negotiate YIIIlwYGKwYBBQUCoIIIizCCCIegJDA...

After the HTTP header field .
�
��������� comes the keyword  ������
���, followed by the Base64-encoded authentication data. If this is success-

3 ����������������	�����������
��	�����	������������, in more detail at
��������	��������
��������
���������������

4 �����������
��
���������������33(�����
5 �����������
��
���������������'/2�����

639



E Single Sign-On for the Nagios Web Interface

ful, the server replies in turn with the HTTP code �++ (OK), and the HTTP
header also contains authentication data,6 which the client processes:

HTTP/1.1 200 OK

...

WWW-Authenticate: Negotiate oYGeMIGbo...

If successful, the browser will display the HTTP page it has received. The
negotiate procedure is shown in a somewhat simplified form here, and
it is possible that the server sends back a 7+- code (Unauthorized) with
the 444�.
�
��������field after it receives the .
�
��������� packet of
the client, because further authentication data is required. The client then
sends another .
�
��������� header entry, as requested. This is repeated
until the server answers with �++ :3.

E.2 Kerberos Authentication with �����
�
�����

The module �����
�
����� integrates Apache into an existing Kerberos
environment and allows authentication through two procedures: simple
authentication with the =���� method or the negotiation procedure SP-
NEGO, described in RFC 4559.

Both procedures are shown in Figure E.1. For an authentication via negoti-
ate (only Kerberos v5), the client fetches a ticket from the Kerberos server
(1), which it forwards to the Web server (2). The Web server in turn sends
the ticket via the Kerberos protocol to the Kerberos server for inspection
(3). What is not shown is the response of the Web server to the client if
authentication is successful (or if it fails).

Figure E.1:
����	��������

allows full authen-
tication via Kerberos,

via SPNEGO. With
the E	
�� procedure,

communication
between Web server
and Kerberos server

also runs via the
Kerberos protocol.

6 In general, Kerberos provides authentication on both sides, so the server must also
authenticate itself with the client.

640



E.2 Kerberos Authentication with �����
�
�����

With the =���� authentication the client sends a user/password pair in
plain text to the Web server (4). The server for its part, however, transmits
the authentication data via the Kerberos protocol to the Kerberos server
(5)—which doen’t alter the fact that the authentication between the Web
server and client takes place without protection. It is essential that SSL
encryption is used here. The Web server itself has a permanent ticket for
the HTTP service so that it can communicate with the Kerberos server in
the first place.

E.2.1 Installation

The module is available at SourceForge,7 where you can also find some
notes on the installation and a little documentation. Modern distributions
include the module as a package, which has the advantage that you don’t
need to worry about the dependencies of other packages—the installer au-
tomatically installs the required software. In Debian “Etch” the module is
called �������
��������
�
�����. You should have at least version 5.3,
since earlier versions have some minor bugs, especially when working with
Microsoft Internet Explorer 6.0.8

To carry out the configuration, the programs ����� and ����� are also re-
quired, and in Debian “Etch” these can be found in the package ���2�
���
(and not in ���2��������!). One more note on Kerberos itself: The de-
scription in this book is based on the Kerberos implementation of the Mas-
sachusetts Institute of Technology (MIT), which is also used in Microsoft
Windows.

E.2.2 Creating a service ticket for Apache

To participate in the Kerberos procedure, Apache requires a service ticket
with a quite specific realm:

HTTP/fqdn@EXAMPLE.NET

This consists of the protocol, in this case 8>>�, the fully qualified do-
main name (FQDN), and the realm of the domain. The protocol and the
domain realm must be written in capitals, and the FQDN must exactly
match the name with which the Web server is addressed later on. Other-
wise, the client will refuse to work during the negotiate procedure. Below,
������������������will be used as the FQDN, and the domain controller
has the name ��+-������������.

7 ����������	��������
��������
������
8 Even if the negotiation procedure was being used at browser startup, a password win-

dow pops up after a while and the IE switches back to E	
�� authentication.

641



E Single Sign-On for the Nagios Web Interface

The Kerberos implementation in Windows 2003 requires that the service
ticket is bound to one user. To do this, a user is set up (in the example,
���������) who does not need to have any special permissions. To cre-
ate a ticket manually, you need the support tools in an Active Directory
environment, which are best installed on a domain controller. After the in-
stallation, you change to the directory where the support tools are located
and create the service ticket with the program ������:

C:\> cd \Programs\Support Tools

C:\Programs\Support Tools> ktpass -princ HTTP/nagios.example.net@EXAMP

LE.NET -mapuser webnagios@example.net -pass ***** -out c:\temp\webnagios

http.keytab

Targeting domain controller: dc01.example.net

Successfully mapped HTTP/nagios.example.net

to webnagios. Key created. Output keytab to

c:\temp\webnagioshttp.keytab: Keytab version:

0x502 keysize 81 HTTP/nagios.example.net@EXAMPLE.NET

ptype 1 (KRB5_NT_PRINCIPAL) vno 3 etype 0x3 (DES-CBC-MD5)

keylength 8 (0x7fc42302a7342952) Account webnagios has

been set for DES-only encryption.

The ticket is then copied to a directory, preferably in the Apache installa-
tion, for example to &���&����
��&�������.

E.2.3 Kerberos configuration

&���&���2����	 is used as the configuration file for Kerberos:

# /etc/krb5.conf

[libdefaults]

default_realm = EXAMPLE.NET

[realms]

EXAMPLE.NET = {

kdc = dc01.example.net:88

kdc = dc02.example.net:88

admin_server = dc01.example.net

}

The Z�����	�
���[ section basically defines the defaults. It is important
here that the domain realm is written in upper case. In the Z������[ sec-
tion, the individual realms are defined with their respective servers. The
parameter ��� describes Kerberos servers that act as a key service (all do-
main controllers in the Active Directory), and ������������ is the Ker-
beros master (normally the first domain controller in the Active Directory).
It must be possible to resolve the name specified here into an IP address,
which can be tested with a ���� to the FQDN given here.

642



E.2 Kerberos Authentication with �����
�
�����

To see if Kerberos is working, it is best to use the program �����, which—if
successful—will obtain a valid ticket from the Kerberos server:

linux:~ # kinit administrator@EXAMPLE.NET

Password for administrator@EXAMPLE.NET: ******

����� requires a valid account as an argument, and it is important that
the domain after the user name is written in upper case. If the password
is correct and everything works, ����� will have no output. The ticket
obtained can now be shown, with �����:

linux:~ # klist

Ticket cache: FILE:/tmp/krb5cc_0

Default principal: administrator@EXAMPLE.NET

Valid starting Expires Service principal

08/26/07 14:31:47 08/27/07 00:31:49 krbtgt/EXAMPLE.NET@EXAMPLE.NET

renew until 08/27/07 14:31:47

Kerberos 4 ticket cache: /tmp/tkt0

klist: You have no tickets cached

E.2.4 Apache configuration

You must make sure that Apache really does load the module �����
�
�
���� when it starts. When installing through a distribution, the module
is already preconfigured. In Debian “Etch” the accompanying #������
��
directive can be found in the file &���&����
��&��������������&�
�
�
���������:

LoadModule auth_kerb_module /usr/lib/apache2/modules/mod_auth_kerb.so

For activation, Debian uses the command �������, which basically does
nothing more than place a symlink in the directory &���&����
��&�����
�������&, pointing to the configuration file:

linux:~ # a2enmod auth_kerb

Module auth_kerb installed; run /etc/init.d/apache2 force-reload to

enable.

To be able to use Kerberos for authentication, you need to modify the Apa-
che configuration file &���&����
��&���	��&����������	, which was
described in Section 1.5.3 (page 49):

643



E Single Sign-On for the Nagios Web Interface

<Directory "/usr/local/nagios">

AllowOverride None

Order allow,deny

Allow from all

# -- Authentification

AuthType Kerberos

AuthName "Nagios Monitoring"

KrbAuthRealms EXAMPLE.NET

Krb5Keytab /etc/apache2/keytabs/webnagioshttp.keytab

KrbMethodK5Passwd on

KrbMethodNegotiate on

KrbSaveCredentials off

require valid-user

</Directory>

.
�
>��� specifies that Kerberos should be used. With .
�
 ��� the au-
thentication is given a name, which is displayed in the =���� authentica-
tion. 3��.
�
5����� describes one or more domain realms, and if there
are several, they are separated by spaces.

The service ticket generated on the domain controller is specified under
3��23�����. 3�����
��32������ ��, apart from the negotiate proce-
dure, allows simple authentication using a password, in which the browser
sends the password via =���� authentication to the Web server. With
3�����
�� �������� �� the negotiate procedure is switched on, and a
completely closed Kerberos circuit is established. Then 3��1����������
����� determines whether received authentication data are to be cached,
in case other CGI applications should use these automatically. This is not
necessary for our purposes, which is why we switch it off with the �		 op-
tion. Finally, ��%
��� ������
��� ensures that only valid users can gain
access. A more detailed configuration, such as specifying a group or indi-
vidual users, is not necessary, because Nagios manages its users itself and
needs only the name of the authenticated user.

E.2.5 Definition of a Nagios contact

To be able to use single sign-on in Nagios, you now just need to adapt the
name of the contact to the new, authenticated Web user ���	X'()*� :

define contact{

use template-contact-webuser

contact_name wob@EXAMPLE.NET

alias wob@EXAMPLE

contactgroups admins

email w.barth@example.net

}

644



E.3 Single Sign-On with �����
�
�������������

The contact definition (see Section 2.7 on page 70) assumes that a template
(see Section 2.11 on page 75) exists with the name �����������������
���
���.

When modifying the authentication and the name change connected with
this, you must also modify the CGI configuration file �����	� (see Ap-
pendix A.2 from page 606), if this is to explicitly contain entered users in
the �
�
�������; parameters.

E.3 Single Sign-On with �����
�
�������������

The Apache module �����
�
�������������uses the program originally
developed for Squid, ������
�
, for authentication, and so one of its re-
quirements is a Samba server installation in which the server itself is a
member of an Active Directory domain. ������
�
 uses ������� and
therefore offers smooth integration into an existing Active Directory.

The module has three methods available for authentication: NTLM, Nego-
tiate (SPNEGO), and the =���� authentication. In Summer 2007 there were
still problems with Negotiate. Developed originally for a proxy, the method
did not quite fit the needs of a Web server and therefore was not used.
At the time of writing, NTLM and =���� authentication remain, but this
may change after this book is published. NTLM works very well, whereby
������
�
 also allows the selection of a specific group. But you should
also bear in mind that Microsoft is discontinuing NTLM for HTTP authen-
tication with Windows Server 2008.

E.3.1 Installation

The module is still very new. It has the version number 0.0.0 and can only
be obtained in the source code from Subversion9 or from corresponding

������� directories.10 Some documentation, in addition to the included
5/.<�/, can be found at SourceForge.11

For the installation you change to the directory where the source code has
been unpacked:

linux:~ # cd /usr/local/src/mod_auth_ntlm_winbind

linux:src/mod_auth_ntlm_winbind # autoconf

...

linux:src/mod_auth_ntlm_winbind # ./configure

9 
�� �� 
�����
��	����
	��	���
��������������������	����������������

����	����������������
10 �������
	��	���
��������	������������������	�����������������
11 �������	���	��
��������
����������	��������������������

645



E Single Sign-On for the Nagios Web Interface

...

linux:src/mod_auth_ntlm_winbind # apxs2 -DAPACHE2 -c -i mod_auth_ntlm_ \

winbind.c

...

�
�����	 generates a ���	��
�� file, which is then run to query the spe-
cific system parameters. The classic ���� b ���� �������usually doesn’t
work; luckily, there is no more work involved in running the Apache exten-
sion tool ����� directly, which knows the precise settings of the installed
Apache environment. The option �� compiles the C file specified, and ��
installs the result to the directory where the other dynamically loadable
modules are located.

For Debian there is an Apache configuration file in the form of the file
�
�
������������������ in the subdirectory ������, which automati-
cally loads the module when Apache is started:

LoadModule auth_ntlm_winbind_module /usr/lib/apache2/modules/mod_auth_nt

lm_winbind.so

This file is copied to the directory &���&����
��&��������������, and it
is activated with ������� �
�
�������������.

For other distributions the entry shown is entered in the file in which the
dynamic modules are loaded, and the path to the module directory is ad-
justed accordingly. Then Apache is started again:

linux: # /etc/init.d/apache2 stop; /etc/init.d/apache2 start

A simple restart will not be sufficient in most cases.

E.3.2 Preparing Samba

So that �����
�
������������� can perform its services, the server on
which Apache is running must be included in the Active Directory domain
as the Samba server. To do this, you need a current Samba-3 server pack-
age. The installation is best performed using the on-board resources of the
distribution.

For the domain membership, Kerberos (as described in Section E.2.3 from
page 642) must be completely configured, and in addition you need a valid
administrator ticket for access to the domain, obtained using �����. If
Samba is used only for the Apache module, a very simple Samba configu-
ration is sufficient:

# /etc/samba/smb.conf (Minimalkonfiguration)

[global]

646



E.3 Single Sign-On with �����
�
�������������

workgroup = EXAMPLE

realm = EXAMPLE.NET

security = ads

password server = dc01.example.net dc02.example.net

encrypt passwords = yes

idmap uid = 10000-20000

idmap gid = 10000-20000

winbind enum users = yes

winbind enum groups = yes

winbind separator = /

# winbind use default domain = yes

hosts allow = 127.0.0.1

�������
� and ����� correspond to the NetBIOS domain names and the
fully written-out domain name of the Active Directory domain. For �����,
it is again important that you write the name in capitals. ���
����G���
describes the membership in an Active Directory domain. For the password
server you must give at least one, and preferably two, domain controllers;
������� ��������� G ��� is mandatory.

The parameters �����; and ������� ��
�; map Windows users and
groups to Unix users and groups. For the ������� ��������� you should
select a Unix-compatible character, normally &, to separate the domain
from the user name, as in /U.��#/&���. If this results in problems with
applications, however, you can replace this character with another one,
provided that Nagios can handle it. Here 
���� ����� allows access only
from the local host.

The parameter ������� 
�� ��	�
�� ������ defines whether a miss-
ing domain should be replaced automatically by the default domain from
�������
�. Then the domain can be omitted in the =���� authentication.
At the same time, �����
�
������������� removes the domain name in
the HTTP user. Users are treated differently, depending on the domain
membership: Users from external domains are assigned to the HTTP user
F:5/6" &���	 , whereas users from the same domain are assigned only to
���	 (without a domain in front). If you are just using a single domain, you
can set the parameter to ���, and you will no longer need to worry about a
possible prefixed domain.

Access to the domain is achieved with the Samba command ��� ��� @���:

linux:~ # net ads join -U administrator@EXAMPLE.NET

administrator’s password: ******
Using short domain name -- EXAMPLE

Joined ’NAGIOS’ to realm ’EXAMPLE.NET’

After successfully joining, it is essential that you restart both Samba and
Winbind:

647



E Single Sign-On for the Nagios Web Interface

linux:~ # /etc/init.d/samba restart

linux:~ # /etc/init.d/winbind restart

You can test whether everything is working properly with ����	� ��. The
command runs an encrypted RPC call, which is only possible if the server
really is a member in the domain:

linux:~ # wbinfo -t

checking the trust secret via RPC calls succeeded

If you still want to play around a bit with Winbind, you can display all users
displayed with ����	� �
 and all groups with ����	� ��. When run for
the first time after being started, it will take a while until the two programs
display anything.

For authentication, Apache calls the program ������
�
 with the permis-
sions under which the Web server is running. In Debian this is the user
�������� from the group ��������. With his permissions, ������
�

tries to access the directory &���&���&�����&�������������������&.
This must belong to the user ���� and be readable for the user under which
Apache is running, and otherwise nobody else may access the directory:

user@linux:~$ chgrp www-data /var/lib/samba/winbindd_privileged

user@linux:~$ chmod 750 /var/lib/samba/winbindd_privileged

user@linux:~$ ls -ld /var/lib/samba/winbindd_privileged

drwxr-x--- 2 root www-data 4096 Aug 26 17:51 /var/lib/samba/winbindd_pri

vileged/

If the access permissions are incorrectly set, ������
�
 will refuse its ser-
vices.

E.3.3 Apache configuration

The module �����
�
������������� requires only a few entries in the
Apache configuration file &���&����
��&���	��&����������	, since the
overwhelming part of the configuration takes place in Kerberos and Samba.
The file ����������	, described in Section 1.5.3 (page 49), is changed as
follows:

<Directory "/usr/local/nagios">

AllowOverride None

Order allow,deny

Allow from all

AuthName "Nagios Monitoring"

648



E.3 Single Sign-On with �����
�
�������������

# -- NTLM

AuthType NTLM

NTLMAuth on

NTLMAuthHelper "/usr/bin/ntlm_auth --helper-protocol=squid-2.5-ntlmssp"

# -- Basic

NTLMBasicAuth on

NTLMBasicAuthoritative on

PlaintextAuthHelper "/usr/bin/ntlm_auth --helper-protocol=squid-2.5-bas

ic"

NTLMBasicRealm "Nagios Monitoring (Basic)"

# -- Negotiate

# AuthType Negotiate

# NegotiateAuth on

# NegotiateAuthHelper "/usr/bin/ntlm_auth --helper-protocol=gss-spnego"

require valid-user

</Directory>

Only three parameters are needed for NTLM authentication: .
�
>��� se-
lects the authentication module,  >#�.
�
 �� activates the NTLM proce-
dure, and  >#�.
�
8����� defines the specific call of ������
�
. Here
the protocol �%
�����2�������� is used, which was originally intended
for Squid.

The =���� authentication, in which the browser sends user and password
in plain text to the Web server, also requires a Basic Realm to be specified
in the form of the parameter  >#�=����5����. The value of the param-
eter  >#�=����.
�
��������� controls whether a failed attempt (User
not found) can then be answered (��) or whether further authentication
modules—if they exist—should be queried (�		).

If it does not really functon properly, the negotiation procedure should not
be configured under any circumstances. If the Web server offers negoti-
ation along with the other procedures, the browser will always choose to
negotiate. The authentication is then bound to fail.

By the way, with the ������
�
 parameter ����%
�����������
����	,
membership in a particular group can be forced. &
��&���&������
�

����%
�����������
����	G/U.��#/&������ returns OK only if the user
who is authenticating himself is a member of the group ������. The sepa-
rator & corresponds to the value of ������� ��������� given in �������	.

E.3.4 Defining a Nagios contact

In the definition of the contact, the setting ������� 
�� ��	�
�� ������
in the Samba configuration file �������	must be taken into account. If the

649



E Single Sign-On for the Nagios Web Interface

value �� is given there (or if the parameter is not given at all), the contact
name will always consist of the domain, written in capitals, the �������
���������, and the user name:

define contact{

use template-contact-webuser

contact_name EXAMPLE/wob

...

}

On the other hand, if ������� 
�� ��	�
�� ������ is set to ���, the do-
main is omitted for users in the domain to which the Nagios server belongs.
For users in external domains, the naming convention with the prefixed do-
main is retained.

E.4 Mozilla Firefox as a Web Client

Configuring the Mozilla Web browser in Windows XP is very simple, pro-
vided that the workstation is a member in the Active Directory domain.
With the address ���
�!���	�� you can call up the current configura-
tion in Firefox and enter ��������� as the filter (see Figure E.2). In the
�������������������
�
���
�����
��� parameter you enter all hosts
or domains for which an automatic login should take place. Multiple en-
tries are separated by spaces or commas. If a target host or its domain is
not in the list, Firefox will certainly ask for the user name and password.
These are transmitted in plain text, however, which is why you should pre-
fer automatic login in all cases.

Figure E.2:
Single sign-on via

SPNEGO/Kerberos is
enabled in the

Firefox settings
under

����������
���	��

In Linux you can also authenticate yourself with Firefox automatically via
the negotiation procedure. You need only a valid user ticket to do this.

650



E.5 Microsoft Internet Explorer as a Web Client

As long as the Linux workstation logins are not already actively processed
via Kerberos, it is enough just to obtain the ticket manually with �����.
In addition the file &���&���2����	 must be configured as described in
Section E.2.3 from page 642. As a normal user, you fetch the ticket with the
realm of the corresponding Windows user:

user@linux:~$ kinit myuser@EXAMPLE.NET

Password for myuser@EXAMPLE.NET: ******

Afterward, you can check with ����� to see whether you really have re-
ceived a ticket. This is usually only valid for eight hours. After the time has
expired, you must fetch a new ticket, because without a valid ticket Firefox
will announce itself again with the user/password query.

E.4.1 Firefox and NTLM

Along with the SPNEGO/Kerberos procedure, Firefox is also capable of per-
forming authentication via NTLM. To do this, you enter the desired do-
mains or hosts in the parameter ���������
��������������
�
���
���
���
���. In Windows XP, everything else runs automatically.

In Linux, NTLM authentication is normally not available, since a Linux
client cannot authenticate itself via NTLM to a Windows domain in the
Active Directory. But there is also a solution here: the NTLM Authorization
Proxy Server �������12 allows even Linux clients to take part in an NTLM-
based Web authentication. A description of this would go beyond the scope
of this book, however.

E.5 Microsoft Internet Explorer as a Web Client

Microsoft Internet Explorer can handle both the SPNEGO/Kerberos and the
NTLM authentication procedures. For reasons of security, however, Inter-
net Explorer does not always immediately provide information on account
data. You should therefore enter the Nagios host in the security settings
under Trusted Sites, using exactly the same URL that it will be called with
later on (Figure E.3).

12 �����������	�
�
��������
������

651



E Single Sign-On for the Nagios Web Interface

Figure E.3:
How to add hosts for

trusted sites in
Internet Explorer

In addition you should check, in Custom Level, whether the user name and
password really need to be transmitted for the level selected (Figure E.4).
After the changes, it does not do any harm to restart Internet Explorer.

Figure E.4:
When updating the

trustworthy sites,
Automatic logon
with current user

name and password
must be checked

652



F Ap
pe

nd
ix

Tips on Optimizing Performance

It is very difficult to describe, in general terms, a Nagios installation that
performs well. Nagios should perform checks immediately, that is, it should
have a small latency time for host and service checks. This is the difference
between the planned and actual execution times of the check. If this is
an hour or more, you can certainly talk about disastrous performance. On
the other hand, latency of less than a second represents very good perfor-
mance. In between these extremes, the borders between acceptable and
unacceptable are somewhat hazy.

The latency time of host and service checks can be measured objectively.
Other, more subjective impressions are more difficult to evaluate. Doggedly
working on the command line of the host, a really high system load, or a
long time lag for a page to be displayed when the Nagios Web interface is
called: whether such things are regarded as performance problems or can
be tolerated, depends on what your specific requirements are. If the Web

653

mounir
Typewriter
For More eBooks Or Request, Support hill0 & Purchase a Premium Here in My Blog Thanks & Enjoy!
https://avxhm.se/blogs/hill0



F Tips on Optimizing Performance

interface always needs more than ten seconds to display even just a few
services, this is certainly not acceptable for interactive use. A load of 40 on
a powerful 4-CPU machine may not be a problem, while a load of 10 on a
less powerful system may already be catastrophic.

Of course, the capacity of the host system on which Nagios is installed also
heavily influences the overall performance. A very slow RAID system, for
instance, could slow down Nagios considerably if Nagios wants to write a
large number of check results to the RAID within a short period of time,
and the NDOUtils simultaneously want to save all events to a database. If
the latency values of Nagios are within tolerance, there is no reason from
the perspective of Nagios to change the configuration of the RAID system.

So that we can better distinguish between individual qualities, we will in-
troduce two concepts here. A performance indicator is a measure of the ob-
jective performance of Nagios. The latency time of service and host checks
is by far the best choice for a performance indicator. As soon as anything
at all starts creating problems for Nagios, this nearly always manifests itself
directly in the latency.

Problem indicators, on the other hand, are parameters which may point
to a possible problem, but whose absolute values alone does not allow a
judgment to be made about the actual performance. These may be system
measurements, such as a high CPU load or permanent swapping of the host
on which Nagios is running, or they may be internal Nagios measurements,
such as a permanently full queue for the results of external commands (see
Section F.2.6 on page 666).

F.1 Internal Statistics of Nagios

Nagios displays a short version of the performance indicators in the so-
called tactical overview of the Web interface, at the top right, (see Figure
on page 346), and a slightly more detailed version via �����	����� (see
Figure on page 341). In addition, the command-line program ����������
shows individual performance values or a summary of all data.

F.1.1 The command-line tool ����
	
�
	

���������� is installed automatically during the Nagios installation and
is located in the same directory as the main ������ program itself (in our
case: &
��&�����&������&���). It requires, as a parameter, the main con-
figuration file ��������	�, along with the path to it, in order to display all
values in Nagios 2.x. (For Nagios 3.0 this is not necessary.)

user@linux:~$ /usr/local/nagios/bin/nagiostats -c /etc/nagios/nagios.cfg

Nagios Stats 3.0b3

654



F.1 Internal Statistics of Nagios

Copyright (c) 2003-2007 Ethan Galstad (www.nagios.org)

Last Modified: 08-30-2007

License: GPL

CURRENT STATUS DATA

------------------------------------------------------

Status File: /var/nagios/status.dat

Status File Age: 0d 0h 0m 5s

Status File Version: 3.0b3

Program Running Time: 1d 23h 26m 57s

Nagios PID: 8184

Used/High/Total Command Buffers: 0 / 1 / 4096

Total Services: 1997

Services Checked: 1997

Services Scheduled: 1995

Services Actively Checked: 1995

Services Passively Checked: 2

Total Service State Change: 0.000 / 30.260 / 0.040 %

Active Service Latency: 0.000 / 2.233 / 0.361 sec

Active Service Execution Time: 0.063 / 20.081 / 0.518 sec

Active Service State Change: 0.000 / 7.630 / 0.011 %

Active Services Last 1/5/15/60 min: 308 / 1417 / 1922 / 1944

Passive Service State Change: 26.250 / 30.260 / 28.255 %

Passive Services Last 1/5/15/60 min: 0 / 0 / 0 / 0

Services Ok/Warn/Unk/Crit: 1904 / 61 / 5 / 27

Services Flapping: 2

Services In Downtime: 0

Total Hosts: 166

Hosts Checked: 166

Hosts Scheduled: 166

Hosts Actively Checked: 166

Host Passively Checked: 0

Total Host State Change: 0.000 / 0.000 / 0.000 %

Active Host Latency: 0.000 / 1.527 / 0.638 sec

Active Host Execution Time: 0.066 / 0.537 / 0.155 sec

Active Host State Change: 0.000 / 0.000 / 0.000 %

Active Hosts Last 1/5/15/60 min: 52 / 148 / 166 / 166

Passive Host State Change: 0.000 / 0.000 / 0.000 %

Passive Hosts Last 1/5/15/60 min: 0 / 0 / 0 / 0

Hosts Up/Down/Unreach: 166 / 0 / 0

Hosts Flapping: 0

Hosts In Downtime: 0

Active Host Checks Last 1/5/15 min: 59 / 209 / 622

Scheduled: 54 / 154 / 475

On-demand: 5 / 43 / 108

Parallel: 59 / 198 / 584

Serial: 0 / 0 / 0

Cached: 0 / 12 / 39

655



F Tips on Optimizing Performance

Passive Host Checks Last 1/5/15 min: 0 / 0 / 0

Active Service Checks Last 1/5/15 min: 345 / 2148 / 6342

Scheduled: 345 / 2148 / 6342

On-demand: 0 / 0 / 0

Cached: 0 / 0 / 0

Passive Service Checks Last 1/5/15 min: 0 / 0 / 0

External Commands Last 1/5/15 min: 0 / 0 / 0

The program first provides information on the evaluated status file and
the Nagios version. The details of the ������� =
		��� in the second
paragraph are of more interest. If the command buffer becomes full, Na-
gios will have problems processing commands via the interface for external
commands. All passive checks will suffer from this (see Section F.2.6).

The next two blocks provide values on host and service checks. Many of
them are of a purely informative nature. If the right column contains sev-
eral values, as for the two performance indicators .����� 1������ #��
����� and .����� 8��� #������ (shown here in bold type), without the
page on left offering any explanation of this, then these are the minimum
and maximum values and a mean value.

You should keep an eye on the two problem indicators .����� 8��� /��
��
���� >��� and .����� 1������ /���
���� >���. Long execution
times for host checks due to failed hosts certainly have a negative influence
on Nagios’s performance. With a standard timeout of 10 seconds for plug-
ins, average values of more than 30 seconds are rather ominous, assuming
that long timeouts were not configured explicitly. Although long execution
times for service checks usually have no significant effect on performance,
they nevertheless reveal that something is not right.

The details for .�����&������� 8���&1������ �
���� #��� -&2&
-2 ��� in the final information block provide statistics that describe how
the current check results were determined. The details under 1�
��
���
deal with the checks planned regularly by Nagios, and the :�������� lines
deal with tests executed while taking account of current circumstances. For
hosts, these include checks made due to failed hosts, and, for services, tests
triggered by dependencies. If a test can be avoided because of an already
existing and relatively up-to-date value, this is listed in the ���
�� line.

For host checks, the statistic in the line 1����� also reveals how many tests
were executed in series in accordance with the inefficient old host check
logic. The line �������� deals with host checks executed in parallel and
also shows the values for regularly planned and executed host checks. Ac-
tive host checks can contribute in Nagios 3.0 to an improvement in perfor-
mance. In Nagios 2.x you should leave them out if possible. The improve-
ments in the host check logic are described in Section H.7 on page689.

656



F.1 Internal Statistics of Nagios

The 5-minute average resource of .����� 1������ �
���� #��� gives
information on the activities of Nagios rather than on the absolute number
of service checks: 10,000 service checks with a check interval of 20 minutes
result in just 2,500 checks in the 5-minute average, but 1,000 checks with a
check interval of just 1 minute lead to 5,000 in the 5-minute average.

The absolute number of all checks therefore does not mean a lot. The
crucial issue is how many checks Nagios carries out per time unit: 2,500
service checks in 5 minutes results in an average of 8.33 checks per second.
This means that Nagios starts 8.33 checks every second and at the same
time has to gather and process the results of 8.33 other checks, forward any
performance data to an external program, and then it might even have to
wait for each check to be handed over. If the NDOUtils are used in addition
(see Chapter 17, page 375), the system also passes on results to the event
broker.

Determining single values

���������� also displays selected values, with the options ������ and
������G
�	������ . What values are available here can be seen by running
���������� �
:

user@linux:~$ /usr/local/nagios/bin/nagiostats -h

...

NUMACTSVCCHECKSxM number of total active service checks

occuring in last 1/5/15 minute

...

xxxACTSVCLAT MIN/MAX/AVG active service check latency (ms).

...

Here, the � in  $�.�>1H��8/�31�� is replaced with the desired time period
in minutes: -, 2, -2, or '+:

user@linux:~$ /usr/local/nagios/bin/nagiostats -c /etc/nagios/nagios.cfg\

--mrtg --data=NUMACTSVCCHECKS5M

2195

With ���.�>1H�#.>, ���������� behaves in a similar manner; now ��� is
replaced by �6 (Minimum), �.U (Maximum), or .H" (mean value). Multi-
ple target values are separated by commas:

user@linux:~$ /usr/local/nagios/bin/nagiostats -c /etc/nagios/nagios.cfg\

--mrtg --data=MINACTSVCLAT,MAXACTSVCLAT,AVGCTSVCLAT

0

934

203

657



F Tips on Optimizing Performance

The output here is given in milliseconds, and each value has its own line.
The average latency time for service checks is therefore 0.203 seconds, and
the maximum, 0.934 seconds. The switch ������ indicates that this output
is intended primarily for processing by MRTG, as will be seen in the next
section. Individual output of performance indicators is also very useful
when you are writing your own plugins. We will look at this in Section F.1.3
from page 660.

F.1.2 Showing Nagios performance graphically

The Multi Router Traffic Grapher (MRTG)1 was originally developed to rep-
resent the bandwidth of active network components in graphical form.
MRTG always displays two measured values in a graphic, one as a green
area, the other as a blue line. When representing network bandwidths,
these are normally for incoming and outgoing traffic. Nagios uses MRTG to
display the values delivered by ����������.

Usually the best way to install MRTG is from the package of the same name
provided by the distribution you are using. The sources can be found on
the homepage.2

MRTG is run by cron every five minutes. Debian includes the ready-made
cron table &���&������&����; the tool expects its configuration to be in
&���&������	�. The file provided by Debian contains just two global set-
tings:

# Global configuration

WorkDir: /var/www/mrtg

WriteExpires: Yes

4���<�� specifies the directory in which MRTG should save the current
graphics, and 4����/������ creates additional Expire files for Apache.
This parameter can be omitted, however.

To these two lines you simply append the configuration file ������	� in-
cluded by Nagios in the �&����������	�� directory of the source code.

Finally, you use the program ����������, which is also part of the MRTG
package, to generate the overview page shown in Figure F.1:

linux:~ # indexmaker /etc/mrtg.cfg > /var/www/mrtg/index.html

1 ��������������
���
�
2 ��������������
���
�

658



F.1 Internal Statistics of Nagios

Figure F.1:
MRTG overview page
for the Nagios
performance
indicators

If you click on one of the graphics on this page, a detailed view will appear
that displays the graphs in different time resolutions, as shown in Figure
F.2 (daily, weekly, monthly, and annually).

Figure F.2:
Detail view for the
latency time for
service checks

The graphical display of the check latencies over the course of time allows
you to see at a glance whether a high latency is a isolated event, part of a
trend, or a permanent problem. The view in Figure F.2 clearly shows that

659



F Tips on Optimizing Performance

the measures taken on Saturday afternoon3 have had a positive effect (see
weekly graphic). Instead of 20–80 seconds, the service check latency now
lies at values below one second.

The accompanying online documentation4 contains more detailed links for
each individual graphic, with links to the documentation of various param-
eters that can be used to influence the indicators shown in each graphic.

F.1.3 A plugin to monitor latency

What could be more appropriate than to have Nagios monitor its own per-
formance and, if necessary, use the notification system? To do this, you can
query the latency values with ���������� or use the plugin �
��������
to query the performance data already collected through MRTG.

We will choose the first method here and provide the latency time for ser-
vice checks as a passive check result for Nagios. The shell script intended
for this purpose is run via cron independently of the Nagios scheduling. A
plugin actively run by Nagios may in some circumstances return no results,
or only irregular ones, if the Nagios schedule has become totally messed up
because of performance problems. The script looks like this:

#!/bin/bash

# Attention: thresholds in milliseconds

WARN=20000

CRIT=60000

TIMESTAMP=‘date +%s‘

CMDFILE=’/var/nagios/rw/nagios.cmd’

LATENCY=‘/usr/local/nagios/bin/nagiostats \

--config=/etc/nagios/nagios.cfg \

--mrtg --data=AVGACTSVCLAT‘

if [ $LATENCY < $WARN ]; then

STATUS=0; INFO="OK"

elif [ $LATENCY < $CRIT ]; then

STATUS=1; INFO="WARNING"

else

STATUS=2; INFO="CRITICAL"

fi

CMD="PROCESS_SERVICE_CHECK_RESULT"

OUTCMD="[%lu] $CMD;nagios-server;Service Latency;$STATUS;"

OUTINFO="$INFO Service Latency = ${LATENCY}ms "

3 Namely, enlarging the free memory that Linux uses for file system caching, in order to
improve I/O performance for the MySQL database used by the NDOUtils and the overall
file system accesses.

4 ��������	
��
�
��������
���������
�1�%����

�	��
�����

660



F.1 Internal Statistics of Nagios

OUTPERF="svclat=$LATENCY;$WARN;$CRIT;\n"

printf "${OUTCMD}${OUTINFO}|${OUTPERF}" $TIMESTAMP > $CMDFILE

First ����������determines the current value for average service latencies
(.H".�>1H�#.>). The script saves the result in the variable #.>/ �` and
decides, using the thresholds in 4.5 and �56>, whether it should return
OK, WARNING, or CRITICAL.

:$>��<, :$>6 F:, and :$>�/5F compose the command that is passed on to
the interface for external commands (see also Section 13.1, page 292). It be-
gins with the timestamp in square brackets. The command �5:�/11�1/5�
H6�/��8/�3�5/1$#> is followed by the host name and the service name
1������ #������, the status, and the actual output, including perfor-
mance data. In Nagios 3.0 it is better to omit the detail of the configuration
file, with �����	��, because ���������� will otherwise begin its output
with an additional info line that only interferes with the script:

NEW VALUE: /etc/nagios/nagios.cfg

In Nagios 2.x, however, you need to specify the configuration file. So that
the cron daemon runs the script at regular intervals, a ������ file is created
in the directory &���&������ containing the following line:

*/3 * * * * nagios /usr/local/nagios/libexec/passive/check_svc_latency.sh

> /dev/null

All that is missing now is an appropriately defined service:

# -- service latency check

define service{

host_name nagios-server

service_description Service-Latenz

active_checks_enabled 0

passive_checks_enabled 1

check_freshness 0

check_command check_dummy!3!active check, should not happen!

max_check_attempts 3

flap_detection_enabled 0

use template-service

}


�������� and �������������������must match the corresponding de-
tals in the script. Active checks are switched off, passive ones enabled. So
that Nagios doesn’t perform a check itself at some point, �
����	���
����
must be set to + (see also Section 13.4, page 295). The definition here uses
a service template defined somewhere else (see also Section 2.11, page 75).

661



F Tips on Optimizing Performance

After a reload, Nagios accepts the information from the script and processes
it. If you use PNP to process the performance data (Section 19.6, page
446), you should make sure that Nagios includes the name of the check
command (in this case, �
�����
���). If you want to use a different name,
you need to specify the performance label ������ in the script:

OUTPERF="check_svc_latency::check_svc_latency::svclat=$LATENCY;$WARN;

$CRIT;"

PNP accepts labels in the form �	����	!!�������������!!����� , from
which the tool extracts the name between the double colons (in this case,
�
���������������), so that it can use it as the plugin name. This trick
normally works for all passive checks.

F.2 Measures for Improving Performance

If performance is subjectively poor and the latency of the service check
lies permanently in the red zone, then you need to act. But where do you
start? Trying things out is preferable to studying the problem, and there are
no patent recipes. Normally you will lose sight of the overall picture very
quickly if you try making small adjustments here and there. You should
therefore always change just one parameter at a time and give Nagios time
to adjust to the new state of affairs. Depending on the system, the number
of checks to be performed in the five-minute average, and other indicators,
sometimes a few minutes is enough to notice changes using ����������
or MRTG, but at other times even half an hour may not be long enough if
the latency has built up over a longer period of time.

The following sections deal with various problem zones in Nagios that could
be the cause of poor performance.

F.2.1 Service checks: as often as necessary, as few as possible

Would you use a cannon to shoot at sparrows? Surely not. Apart from the
fact that you would ordinarily never shoot at sparrows, even if you had to,
you would never use such an oversized weapon as a cannon. Likewise,
what is the proper choice for the intervals for your service checks? Why
check the usage of a hard drive every 60 seconds, unless you or a colleague
will react within a few minutes to a warning threshold being overstepped?
Maybe an interval of five to ten minutes will do the job just as well. And
if the typical growth rate of the data stored in the file system lies at five
percent per week, then a check interval of 15 minutes is certainly enough.

If you install security patches only once per day and non-critical security
updates just once per week, it is of little use to check the relevant version

662



F.2 Measures for Improving Performance

status every five minutes. And why check virus signatures every fifteen
minutes if you only download them every two hours? Do you react imme-
diately after the first alarm, or only if no update has been performed for
several hours?

These are not just academic questions—they are intended to make you
think. There are certainly situations in which a service needs to be checked
once per minute, for instance when compliance with Service Level Agree-
ments is concerned, and the contract penalties for outages are calculated
on a per-minute basis. But this is no reason to test other services every
minute if a fifteen-minute check would be sufficient. The bottom line is
check as often as necessary, but as little as possible.

Start with an average check interval of 5 minutes. For less critical or static
services, you can extend the interval to 10, 15, 30, or 60 minutes, or perhaps
even more. Only if it is absolutely essential should you lower the interval
below the 5-minute limit—and do it selectively for individual checks. 2,000
service checks, performed on average every two minutes, generate about
the same load as 5,000 service checks with an average interval of 5 minutes.
This small difference of 3 minutes can be a real problem for Nagios.

F.2.2 Processing performance data intelligently

Processing performance data can, under unfavorable conditions, be a real
performance killer.

For the template mechanism, in which Nagios first has to format perfor-
mance data and then write them to a file, and have these files processed
at regular intervals by an external command (Section 19.1.1, page 405), the
internal Nagios logic stops when the command is called. Nagios expects
a confirmation when the program called has finished its work. If the ex-
ternal program requires some time to do its task, it is easy to work out
that calling an external command directly for each individual check result
(Section 19.1.2, page 407) can put a considerable strain on Nagios. The
template mechanism can provide relief here. If 400 check results are wait-
ing each minute (2,000 checks in the 5-minute average) and Nagios calls
the external command for the template mechanism every 30 seconds, this
will process some 200 results in one go. Although this will take somewhat
longer than an external program that processes just one single result, 199
program starts are no longer needed.

With a large number of check results, this may still not be enough, because
Nagios also waits here every 30 seconds for the external program and waits
until it has terminated.

To keep this pause as brief as possible, you can make use of the bulk mode
in PNP (Section 19.6, page 446): then Nagios just moves the file with the
cached results to a special directory every 30 seconds. This happens with-

663



F Tips on Optimizing Performance

out any time loss. Full responsibility for processing the external data is
given to a daemon that Nagios does not have to control. Details of this are
described in Section 19.6.4 from page 452.

Another aspect of intelligent processing is to record performance data only
where they are evaluated and required. An example of the opposite would
be to send performance data for all checks to a tool such as NagiosGrapher
(Section 19.5, page 426) and then discard the data not required on the side
of the collector daemon �����������. Processing performance data for
required services is switched on with �����������	�����G- in the service
definition.

F.2.3 Avoiding plugins in interpreted languages

The standard plugins for Nagios were written predominantly in C and C++,
and there are good reasons for this. Admittedly, it is usually easier to write a
plugin in a script language; however, a plugin in an interpreted language is
checked for correct syntax each time it is run, then interpreted at runtime,
and finally executed.

Not only that, every time such a plugin is called, the relevant interpreter is
started. With a compiled plugin, one does not have to put up with all of this.
Syntax checking and the compiling process only take place once, and the
result can be executed directly, without the additional support of another
program, such as an interpreter, which is not exactly small. Considering the
many hundreds of thousands of calls that are made during the lifetime of
an interpreted plugin, you are looking at resource commitments that could
really be used for more sensible purposes.

This is not to fundamentally question the use of interpreted languages in
general. For certain purposes, it is simply easier to implement a plugin
into a script language. But you should not be surprised at the resources
that will be needed if you perform 5,000 service checks in the 5-minute
average exclusively with interpreted plugins. Then simple PC hardware will
certainly not suffice for the Nagios server.

There is an almost perfect solution if you want to use Perl plugins: Na-
gios’s built-in Perl interpreter (see Appendix G from page 669). Although
not all Perl plugins will run under this, the majority do, which considerably
reduces strain on the Nagios server.

F.2.4 Optimizing host checks

One performance factor that should not be underestimated is the way in
which Nagios executes a host check. Sometimes considerable time can be
lost here, regardless of the Nagios version.

664



F.2 Measures for Improving Performance

For host checks, a �
�������� or �
�������� is normally used (see page
111). Older �
�������� versions wait for an ICMP echo reply or wait for
the timeout. It does not evaluate “6��� 8��� $�����
����” messages, so
that time is lost unnecessarily. �
�������� uses a special host detection
mode if it is run under the name �
����
��� (see page 111). This causes
the check to be interrupted immediately if an 6��� 8��� $�����
����
message arrives.

Newer versions of �
�������� and �
�������� take the ICMP error mes-
sage into account, even without a special prompt. Version 1.4.11 of the
Nagios plugins does have a faulty �
��������, however. If you run it as
�
����
���, it will not detect the ICMP error message immediately and
requires more time than necessary. Nagios 2.x calls all host checks in se-
ries, or one after the other. If a central network node should fail, it checks
several hundred hosts in many setups. If the host check for unreachable
hosts is only interrupted after ten seconds, it will take a huge amount of
time until Nagios has checked all hosts. The length of a host check in case
of error is of considerable significance here. You could, if need be, use
a shorter timeout, but then you run the risk of false alarms, if a network
connection with narrow bandwidth is overloaded at that moment, for in-
stance, and the response times are longer than the reduced timeout. The
evaluation of ICMP error messages is much safer here. The catastrophic
performance, with hundreds of failed hosts due to the serial checks, will
still remain, however—an important reason to change to Nagios 3.0 in large
environments.

Whereas it is usually better in Nagios 2.x to do without active host checks,
in Nagios 3.0 these may help in certain circumstances to improve per-
formance, if you can have the check results cached with the parameters
���
���
�����
����
������ and ���
������������
����
������
(see page 588) for the interval specified. If an on-demand check occurs,
this will not even be run if the existing result is sufficiently up to date.

Whether active host checks really do improve performance must be tested
in individual cases by means of ����������. If the number of cached
host checks is relatively small in comparison to the number of on-demand
checks, caching will not be of much use. You could increase the ���
���

�����
����
������—the interval for caching—but then you run the risk
of using old results that are no longer relevant. It is best to try out different
time horizons and observe the latency. As a comparison, you should try
turning off caching altogether, with ���
���
�����
����
������G+.

In connection with host checks, Nagios 3.0 also has the parameter ���
���������
�����
����. If this is set to the value - (and therefore active),
Nagios will be very exact in its checking, but it needs time to do this. In
normal operation you should therefore always make sure that the system
makes more sensible assumptions for host checks with �����������
����
�
����G+ and so does not test hosts with scrupulous precision.

665



F Tips on Optimizing Performance

F.2.5 The matter of the Reaper

Nagios 3.0 stores the check results in a directory intended for just this pur-
pose, specified by the parameter �
�������
������
 (see page 589). The
Reaper (this is the “harvesting machine” of the Nagios core) retrieves these
regularly.

Two parameters control the procedure: �
�������
����������	��%
���
��5 specifies the interval, in seconds, at which the Reaper searches the
directory for new results (see page 589). If the interval is increased, it is
possible that latency times may also increase. You should only change the
default of 2 seconds to a lower value, and only do this if a large number
of checks are waiting and Nagios never really empties the directory for the
check results.

The second parameter, �����
�������
��������������, interrupts ac-
tivities after the time specified, so that Nagios is not held up for ages by the
Reaper. The default here is *+ seconds (see page 598).

In Nagios 2.x only the parameter ���������������	��%
���� (page 604)
is available, and moreover Nagios does not store check results in file form,
but in a message queue.

At this point we ought to mention that the Reaper has only a limited in-
fluence on performance. Provided that you keep the defaults of the two
parameters unchanged, changing the parameter �
�������
����������
	��%
���� will not solve any problems that have arisen elsewhere. Nev-
ertheless, if you are running out of ideas as to what else you can try, it is
certainly worthwhile to change this setting. In any case, you should moni-
tor the check latency times graphically. If there are no changes, you should
go back to the defaults.

F.2.6 Preferring passive checks

Instead of getting Nagios to actively start each check individually, you can
also use external applications and forward check results as passive checks
to Nagios. The external application—even if this is just a cron job—relieves
strain on Nagios in several areas, including scheduling. Nagios needs only
to accept the result and sort it accordingly.

In a number of cases you can even go a step further and do without a
regular check, for instance if a UPS sends an SNMP trap when there is a
power failure, which Nagios processes as a passive check (see Section 14.6,
page 312).

Passive check results are cached by Nagios. By default there are 4096 so-
called Command Buffer Slots available for this. Each buffer slot accepts just

5 In Nagios 2.x the parameter is called 
���������	�������0���� , see page 604.

666



F.2 Measures for Improving Performance

one external command. If this maximum has almost been reached, you
should certainly enlarge the value with the parameter �����������������
�
		�������� (see page 593), whether or not you have concrete perfor-
mance problems. One report on the buffer slots used is provided by ������
�����; its values are best displayed by MRTG on the time axis (see Section
F.1.2). Too few buffer slots will certainly lead to a loss in performance.

F.2.7 Optimizing large Nagios environments

For very large environments, Nagios has available the parameter 
��������
�������������������� (page 605). If this is set to -, Nagios optimizes a
number of processes that can be very time-intensive, especially in large
environments. Thus the system does without explicit memory release for
child processes. leaving this task entirely to the operating system.

Normally Nagios starts checks via a two-pronged fork so that it can de-
fend itself against crashes and other abnormalities when the plugin is run.
Checks are then performed not as child processes, but as grandchild pro-
cesses. The two-pronged fork leaves cleaning up after grandchild processes
to the operating system. If, instead of this, Nagios is happy with a simple
fork (with 
����������������������������G-), it will have to look after
all the cleaning up work for all check processes, because these are now run-
ning directly as child processes. But in return the system load is reduced,
because only half as many processes need to be started. This generally
improves performance.

As a third measure, Nagios switches off the envivronment variables for sum-
mary macros (Section D.1.7, page 631). It takes up a great deal of time to
make these available.

The parameter ������������������������� (page 592) goes even further
—with the value +, Nagios in general no longer makes available the content
of macros as environment variables (see Section D.1.8 from page 631).

The macros can be used as normal within the Nagios configuration, but
now external scripts can no longer access them implicitly. Switching this
off saves considerable resources, especially in large environments, and in
many cases the environment variables are not needed at all.

F.2.8 Optimizing the NDOUtils database

The NDOUtils take advantage of the possibility of writing all information
which is at the disposal of Nagios to an external database, via the event bro-
ker (Chapter 17 from page 375). The parameter ��������������������
controls which data Nagios passes on here. The default is �-, which means
that any information available is passed on.

667



F Tips on Optimizing Performance

From a performance point of view, this is quite a bad choice. If you just
require selected data—such as the results of host and service checks—you
should pass on only this information. Everything else consumes unneces-
sary resources and influences performance without providing any benefits
in return. Further information, including possible values for the parameter
��������������������, is given in Section 17.1 from page 376.

668



G Ap
pe

nd
ix

The Embedded Perl Interpreter

Perl is an interpreted scripting language. When a Perl script is started, it is
read by the Perl interpreter, checked for errors, transformed into executable
code only at runtime, and finally executed. Programs in languages such as
C or C++ are checked for errors, compiled only once, and saved as binary
code that can be run directly. Here the checking and compilation process
takes place just once—before the program is run for the first time—whereas
a Perl script is checked and compiled each time it is run. This takes place
at an astounding speed, but it still takes time.

But things get worse—for each script, no matter how small it is, the heavy-
weight Perl interpreter is loaded every time. It’s as if, in order to add two
numbers together, you needed to switch on your PC, wait until you can log
in, then run a spreadsheet program in which you can finally enter the two
numbers.

669



G The Embedded Perl Interpreter

What if you want to continue using the spreadsheet? Well, then the com-
puter must be turned on and the spreadsheet program must be installed
and running so you can enter your numbers. Transferring the analogy to
Nagios scripts, this means that an instance of the Perl interpreter must al-
ready be running on the Nagios server—and preferably this instance should
be used for all plugins, so that each plugin can be executed immediately
when it is called. This is precisely what the Embedded Perl interpreter,
which is embedded into Nagios, does. The technique is not new; the Apa-
che module �������� works in the same way.

However, the Embedded Perl interpreter does have one slight drawback:
It makes more demands of a Perl script than the normal Perl interpreter
does. Not every plugin that runs on the command line without problems
will work under the embedded interpreter. It is often a matter of small de-
tails. Debugging is very difficult with this interpreter, and even with simple
errors, it is not easy to localize them and adjust the plugin accordingly. But
you should not be put off by this, because in Nagios 3.x the interpreter can
be selectively switched off, and in Nagios 2.x a trick can be used to bypass
it.

A quick note on terminology: In the official Nagios documentation, ePN
stands for Embedded Perl Nagios, that is, Nagios with a Perl interpreter
compiled into it. In general usage, the term means the integrated Perl in-
terpreter itself. This is how we use the term in this book as well. Either way,
Nagios is needed in order to use it.

G.1 Requirements of an ePN-capable Plugin

Many primitive errors can be avoided from the beginning if you use the
pragmas 
�� ������ and 
�� ��������:

#!/usr/bin/perl

use strict;

use warnings;

...


�� ������ treats the code very precisely and forces the predefinition of
all variables (e. g., �� E���b). 
�� ��������displays extended error infor-
mation, which greatly simplifies the search for the line or statement causing
the error. For Perl versions prior to 5.6, 
�� �������� does not exist, and
you must use the �� switch, for example in the first line of the script:

#!/usr/bin/perl -w

...

670



G.1 Requirements of an ePN-capable Plugin

Detailed information on pragmas can be found in ��� *���� ������ and
��� *���� ��������, as well as the corresponding Perldoc pages on the
Internet.1

To obtain a better understanding of the following notes, you must be aware
of two things. On one hand, the plugin is loaded just once into the inter-
preter, so initialization sequences are performed explicitly only the very fist
time it is run. On the other hand, the interpreter embeds the Perl code into
other Perl code. Thus the end of the plugin code itself is not the end of the
complete Perl code executed for this plugin. Actions that refer implicitly
to the end of the respective script therefore sometimes generate undesired
side effects, and you should take notice of the following tips:

If possible, make do without =/"6 !
In a =/"6 statement you normally include statements that initialize
values or should, for one reason or another, be executed before the
rest of the code. ePN runs this section only the very first time the
plugin is executed. Statements that must be executed every time a
plugin is called will come to nothing. It is therefore better to leave
out the =/"6 section altogether.

Define an explicit exit code!
A normal Perl script always ends (provided you do not explicitly spec-
ify an exit code) with the exit code +. This does not work with the ePN,
since other code is run after the script code. Although such plugins
return an OK when run on the command line (without ePN), they
return UNKNOWN under ePN.

Make do without ��<.>.�� or ��/ <�� sections!
Both instructions explicitly terminate the execution of the Perl code.
In ePN this is not the case, however. For this reason you must leave
out such instructions. For example, instead of the ��<.>.��, section
you could use a Here instruction:

my $data = <<DATA;

a 1 30

b 2 40

c 7 80

...

DATA

Do not misuse lexical variables as global variables!
Lexical variables such as �� E���
� define values required locally.
You should therefore not access these directly from subroutines. Store
the corresponding values as global values instead:

1 ����������������������
�
���������� and
����������������������
��	����

�����

671



G The Embedded Perl Interpreter

use vars qw($value);

It is better still to pass on the variable as a reference:

$result = &mysub( \$value );

Terminate all actions and functions!
The Embedded Perl Interpreter also stumbles over small details. To
cite an example, consider POD documentation integrated into the
script (see Section 25.2, page 566): Normally the documentation sec-
tion is completed with G�
�. At the end of the Perl script, Perl en-
sures an implicit end, so that a documentation section not finished
with G�
� at the end of the script will not cause a problem on the
command line. But ePN appends Perl code to this, so that omitting
G�
� always leads to an error.

This error pattern also recurs in other contexts, so that you should
make a habit of always explicitly cleaning up. If the plugin opens a
file, it must also explicitly close it.

More information is provided by the Nagios online documentation2 and the
�������� Users Guide.3 For errors that occur exclusively with the ePN, the
included mini-version is of help, and is described in Section G.3 on page
674.

G.2 Using ePN

In order to use the Embedded Perl interpreter, this feature must be com-
piled into Nagios. This suffices for Nagios 2.x, but for Nagios 3.0 you must
also set parameters in the main configuration file ��������	�. In addition,
Nagios 3.0 allows each individual Perl plugin to activate or to switch off the
Embedded Perl interpreter.

G.2.1 Compiling ePN

The interpreter is integrated during the ���	��
�� call, with the switch
����������������������. In Nagios 2.x you should also use the option
�����
��������
�, which ensures that the interpreter caches scripts that
have already been loaded, thus speeding them up if they are run again.
Nagios 3.0 sets this implicitly if ���������������������� is specified.

Caching in Nagios 2.x has one drawback: In some circumstances Nagios
will not recognize changes made later on to a Perl script. The only remedy

2 ��������	
��
�
��������
���������
�1�%�������
��
�����
3 �����������	�	������
����
�'�%�
�����

672



G.2 Using ePN

here is a reload or a restart of Nagios. On a development system, which is
only used to develop or test plugins, it certainly makes sense to do without
caching. On production Nagios systems, however, the benefits of caching
cannot be overlooked. In Nagios 3.0, the Perl interpreter takes account of
changes to the script and reloads these if required.

G.2.2 Interpreter-specific parameters in ����
	����

Starting from Nagios 3.0, parameters in the main configuration file ���
������	� determine whether the Embedded Perl interpreter is used or not:

# /etc/nagios.cfg

...

enable_embedded_perl=1

use_embedded_perl_implicitly=1

...

��������������������G- enables the general use of the interpreter, and
the value + switches it off. The second parameter is used for fine-tuning.

���������������������������G- automatically switches on the inter-
preter for each plugin, provided the plugin itself does not contain any fur-
ther instructions (see next section). The value + switches ePN off for the
time being, and then each plugin must decide for itself whether to use it or
not.

G.2.3 Disabling ePN on a per-plugin basis

In Nagios 3.0, the parameter 
��������������������������� is supple-
mented with an instruction that can be set within every plugin:

#!/usr/bin/perl -w

# nagios: -epn

...

The text A ������! K��� or ���� must appear within the first ten lines.
With K��� the plugin is executed in the ePN environment, and with ���� it
is not. This explicit detail in the plugin has the highest priority. Only if the
instruction is missing does Nagios 3.0 use the parameter 
������������
���������������.

In many cases, existing Perl plugins will work in ePN. We therefore recom-
mend that you use the setting 
���������������������������G-. For
plugins that cause problems, you can explicitly switch off the use of the
interpreter with ����.

673



G The Embedded Perl Interpreter

In Nagios 2.x there is no option to switch the Embedded Interpreter on or
off at runtime or in the plugin. Once it has been compiled into Nagios, it is
always active. But there is a workaround that you can use when defining a
command, by prefixing &
��&���&���� to the actual command line:

define command{

command_name check_disk

command_line /usr/bin/perl $USER1$/check_disk.pl $ARG1$

}

Thus, for the plugin �
�����������, the normal Perl interpreter is started
each time the plugin is run, and ePN is sidestepped.

G.3 The Testing Tool ������������

In its source code, Nagios includes two utilities that simulate an ePN en-
vironment, which considerably simplifies searching for errors: ��������
and the more recent ������������. They are not absolutely identical in
behavior to ePN, but this involves only a small number of exotic scenar-
ios. In general the following applies: If a Nagios plugin does not run in the
mini-interpreter, it won’t run in the ePN either.

The two programs are located in the subdirectory �&������� of the source
code and are not installed automatically. If you want to use them, run

linux:nagios/contrib # make mini_epn

...

linux:nagios/contrib # make new_mini_epn

...

but under no circumstances should you run ���� �������! The Makefile
in this directory does not take into account the defaults for paths and may
change the access permissions for directories such as &��� and &���. The
programs must be executed in the directory in which the file �-��� is lo-
cated. During the basic installation of Nagios, this is copied to &
��&�����&
������&���, and so these two programs are also copied there:

linux:nagios/contrib # cp mini_epn new_mini_epn /usr/local/nagios/bin/.

In the �&������� directory itself there is an obsolete �-���, which should
not be used. The up-to-date �-��� installed by Nagios is located in the
main directory of the source code.

In order to run the mini-interpreter, you change, as the user ������, to the
directory &
��&�����&������&��� and run the program without parame-
ters:

674



G.3 The Testing Tool ������������

user@linux:nagios$ ~cd /usr/local/nagios/bin

user@linux:nagios$ nagios/bin./new_mini_epn

plugin command line:

You are taken to a simple comand line from which you can run plugins. You
should always include the full path to the plugin:

plugin command line: /usr/local/nagios/libexec/check_file_age -f /etc/ho

sts

embedded perl plugin return code and output was: 2 & FILE_AGE CRITICAL:

/etc/hosts is 3718127 seconds old and 2671 bytes

The mini-interpreter displays the return code, along with the actual output
of the plugin after the Y character.

If one mini-interpreter does not find an error, you should try the other one
out, as it is possible that it may react differently in this special case. In
addition, you should always run the interpreter with the permissions of the
user under which Nagios is running (in this book, this is ������), to rule
out problems with access permissions from the start.

The mini-interpreter caches the executed plugin just like its big brother
does and is not aware at runtime of any changes made to the plugin. If you
have made changes to the plugin, you should restart the mini-interpreter,
otherwise you may be searching in vain for an error at the wrong spot.

675





H Ap
pe

nd
ix

What’s New in Nagios 3.0?

Nagios 3.0 presents a series of improvements and innovations compared
to the 2.x versions.1 Much of this is not noticeable from the outside, and
the configuration is also nearly identical; normally Nagios 3.0 will also start
with a functioning Nagios-2.x configuration. None of the new configuration
parameters are absolutely essential.

Some parameters were renamed, and Nagios 3.0 complains on startup that
a parameter contained in the configuration has been removed, then sets the
new variable to a sensible value. The objects 
��������	� and ��������
�����	� are considered to be obsolete, but can still be used, at least in
version 3.0.

1 See also ��������	
��
�
��������
���������
�1�%���	�
��������.

677



H What’s New in Nagios 3.0?

Apart from the configuration, the internal logic has been improved in many
places. For instance the changed way of running host checks has led to
significantly higher performance, especially for very large installations.

H.1 Changes in Object Definitions

Nagios 3.0 now allows floating point decimals when specifying check and
notification intervals. The new parameter �
������������ G ��2, which
replaces the ��������
������������, determines that Nagios will per-
form a check every two-and-a-half time units. The time unit itself is de-
fined by ��������������
 in the main configuration file ��������	� (see
page 596). With the default of 60 seconds, a �
������������ of ��2 cor-
responds to 150 seconds.

H.1.1 The �
	
 object

Aliases are no longer absolutely essential in Nagios 3.0. If this detail is
missing in the host definition, the host name is used automatically. 
���
objects can make use of the following options from version 3.0:

define host {

...

display_name display_name

contacts contacts

first_notification_delay number

flap_detection_options o,d,u

notification_options d,u,r,f,s

initial_state o,d,u

retry_interval number

...

}

������������
Defines an alternative name that should appear later in the Web in-
terface and other future user interfaces. The CGI programs of Nagios
3.0 do not yet use this parameter. The default is 
��������.

��������
Nagios 3.0 now allows individual contacts to be specified directly in
the host definition. Until now you could only enter contact groups
here, so you always had to first define a specific contact group for
each individual contact. You can still use contact groups and specify
them together with individual contacts.

678



H.1 Changes in Object Definitions

	���������	�������������
Delay the sending of the first notification (in Nagios time units, de-
fined by the new parameter ��������������
; see page 596). Nor-
mally Nagios sends a notification immediately after a error turns into
a hard state. In order for the first notification to be sent only af-
ter a certain time has elapsed, you previously had to use the esca-
lation mechanism (see Section 12.5, page 282). With the parameter
	���������	������������� this can now be done more easily.

	���������������������
With 	���������������������, certain states of flap detection (Sec-
tion B, page 611) can be ruled out.

Possible values are � (OK), 
 (UNREACHABLE), and � (DOWN). If
you exclude the OK states with 	��������������������� �, Nagios
will only take into account the change between UNREACHABLE and
DOWN.

����	���������������
If the new value � is specified, Nagios will send a notification if a
maintenance interval (see Section 16.3 from page 359) is started, fin-
ished, or canceled.

�������������
Sets the initial state of the host. Normally Nagios assumes that this
is UP (������������� �). � sets the initial state to DOWN, 
 to
UNREACHABLE.

��������������
After how many time units will an active host check be repeated if
�����
������������ is larger than 1? There is more on the new
features for host checks in Section H.7.

Extended host information

The objects 
��������	� and ������������	� are considered obsolete,
but are still evaluated by Nagios 3.0. When checking the configuration, as
well as on restarting, Nagios issues a corresponding warning. Later Nagios
versions will no longer support this object type.

Additional information for the Web interfaces (see Section 16.4.1 from page
363) are now defined directly in the host (or service):

define host {

...

# -- extended host information

notes free text

notes_url url

679



H What’s New in Nagios 3.0?

action_url url

icon_image image file

icon_image_alt free text

vrml_image image file

statusmap_image image file

2d_coords x,y

3d_coords x,y,z

}

H.1.2 The 	������ object

The innovations for the service object are essentially the same as those for
the host object. The parameters 	���������������������, ����	����
������������, and �������������are now assigned the values � (WARN-
ING) and � (CRITICAL) instead of the host states DOWN and UNREACH-
ABLE:

define service {

...

display_name display_name

contacts contacts

first_notification_delay number

flap_detection_options o,c,w,u

notification_options w,u,c,r,f,s

initial_state o,d,u

check_interval number

retry_interval number

...

# -- extended service information

notes free text

notes_url url

action_url url

icon_image image file

icon_image_alt free text

vrml_image image file

statusmap_image image file

2d_coords x,y

3d_coords x,y,z

}

The three parameters �����������
��, ����	����������������, and
����	�������������� are no longer mandatory in Nagios 3.0. If they are
omitted, they are taken from the 
��� object. The parameter ����� is also
optional, and if it is not set, the name is taken from �������������������.

The parameter �������������
���, which in Nagios 2.0 is set by default to
- and can be altered to prevent parallel service checks, is dropped entirely
in Nagios 3.0; service checks here are always performed in parallel.

680



H.1 Changes in Object Definitions

The parameters ��������
������������ and �������
������������
were renamed to �
������������ and ��������������, in order to use
the same identifier as for the host definition. The old name remains valid
so that Nagios does not show an error message.

H.1.3 Group objects

With the parameters 
������
���������, ����������
���������, and
����������
��������� you can now also define groups of the same type
as members of a group, and thus form hierarchies:

define hostgroup {

hostgroup_members host groups

...

notes free text

notes_url url

action_url url

}

define servicegroup {

servicegroup_members service groups

...

notes free text

notes_url url

action_url url

}

define contactgroup {

contactgroup_members contact groups

...

}

Extended group information for the group types 
������
� and ��������
���
� allows additional information to be stored, in a similar way as for
host and service definitions. ����� here is a simple text which is displayed
on the page with the extended status information (see Section 16.2.2 on
page 339). The two URLs point to external Web pages, for instance so that
a Wiki can be integrated for the purpose of online documentation.

H.1.4 The �
�
��
 object

The value � (none) for the parameters 
��������	����������������and
������������	���������������� switches off notifications completely.
This can also be achieved with a separate on/off function via the interface
for external commands (Section 13.1, page 292), which requires the new pa-
rameters 
��������	���������������� and ������������	���������
�������:

681



H What’s New in Nagios 3.0?

define contact {

host_notifications_enabled value

service_notifications_enabled value

can_submit_commands value

...

}

They can be set to - (on) or + (off). �����
������������� controls
whether a contact may only view his hosts and services, or whether he can
run commands for them via the Web interface. In Nagios 2.0 every user who
has access to hosts and services may do this. The default is - (commands
are allowed), + allows only viewing.

H.1.5 Time definitions

Periods of time can be defined much more flexibly in Nagios 3.0 than was
previously the case:

define timeperiod {

timeperiod_name veryspecial

2007-12-23 00:00-24:00

april 1 00:00-24:00

day 1 00:00-24:00

monday 2 may 00:00-24:00

monday 3 00:00-24:00

monday 00:00-24:00

2007-12-01 - 2009-04-01 / 3 00:00-24:00

...

exclude timeperiod_name1,timeperiod_name2,...

}

Whereas Nagios 2.x allows only single weekdays to be defined, you can now
also specify an ISO date (�++C�-���*), the first day of a specific month
(����� -), the first day of each month (��� -), the second Monday in May
(������ � ���), or every third Monday in the month (������ *). Inter-
vals are also allowed here, consisting of two time specifications separated
by a � sign. In addition, time periods independent of the month or day
of the week are possible: �++C�-��+- � �++,�+7�+- & * describes evey
third day from 01. 12. 2007 to 01. 04. 2009.

The parameter ����
�� rules out the time periods that follow (themselves
also ���������� objects).

More information on defining times can be found in Section 2.10 from page
74.

682



H.1 Changes in Object Definitions

H.1.6 Dependency descriptions

There is a new parameter for the objects 
�������������and ����������
�������� called �����������������, which defines how long dependen-
cies are valid. An object of the type ���������� is specified as the value. If
this parameter is missing, dependencies are unrestricted in time:

define hostdependency {

dependency_period timeperiod_name

...

}

define servicedependency {

dependency_period timeperiod_name

...

}

So-called Same-Host Dependencies are also new; these are �������������
������� that refer to the same host. In this case the parameter ���������
�
�������� is simply omitted:

define servicedependency {

host_name linux

service_description Disk_Usage

dependent_service_description NRPE

...

}

The <����$���� service therefore depends on the  5�/ service on the
same host.

If the parameter 
�������� is replaced with 
������
������, the same
dependency can be defined for an entire host group. In Nagios 2.x this is not
possible. If you defined ����������
������
������, the <����$����
services for all hosts of the group would be dependent on all the  5�/ ser-
vices for these hosts, which would be counterproductive in many cases.

H.1.7 Escalation objects

As with the host and service definition, it is also possible starting with Na-
gios 3.0 to specify individual contacts instead of a whole contact group for
host and service escalations, by means of ��������:

define hostescalation {

contacts contact

...

}

683



H What’s New in Nagios 3.0?

define serviceescalation {

contacts contact

...

}

H.1.8 Inheritance

It was already possible in Nagios 2.x to define templates for objects and
for the actual object to inherit the properties of the template. Multiple
inheritance is now possible in Nagios 3.0, and an inheritance can also
be selectively suppressed. In the following example, the two templates

������������� and 
���������� are inherited by the host ���
�+-:

define host {

name host_generic_t

register 0

#

check_period 24x7

max_check_attempts 3

check_interval 10

retry_interval 2

...

hostgroups ALL_HOSTS

}

define host {

name host_site_t

register 0

#

check_interval 5

retry_interval 1

...

parents switch01

hostgroups HAMBURG

}

define host {

host_name linux01

use host_site_t,host_generic_t

...

parents null

hostgroups +LINUX

}

The parameters �
������������and ��������������are defined in both
templates. In this case the first template to be defined (
����������) is
used, and the result appears as follows:

define host {

host_name linux01

684



H.2 Variable and Macros

check_period 24x7

max_check_attempts 3

check_interval 5

retry_interval 1

...

hostgroups HAMBURG,LINUX

}

Both check intervals originate from the template 
����������. The value
���� for ������� suppresses the inheritance; a value defined in the tem-
plates is not carried over, and the parameter is not set.

Equally new is the option of combining a specified value with the value
from the template. The plus sign in 
������
�� carries over the value
from the template and adds the specified value to this. Until now, inherited
values were completely overwritten by an object. The defaults from the
templates, however, can only be combined with the values specified in the
object for standard parameters containing a list in text form (for example,

������
��, ����������
��, �����������
��).

For �����������
��within escalations, there is an additional variation of
the plus sign. If the enclosing escalation object does not define a contact
group whose properties can be inherited, the accompanying host (for host
escalations) or service definition (for service escalations) is used. The three
parameters �����������
��, ����	����������������, and ����	����
����������� are inherited from the host object automatically by the ser-
vice object, so that their definition there is no longer mandatory.

The online documentation included in Nagios uses a more complex exam-
ple to describe multiple inheritance.2

H.2 Variable and Macros

You can define your own variables in the objects 
���, �������, and ����
����. The names of these always begin with an underscore and are inher-
ited like normal variables:

define host {

host_name linux01

use host_site_t,host_generic_t

...

_NRPE_PORT 5666

}

The variable � 5�/��:5> is accessed with E�8:1> 5�/��:5>E, which
means that the object type (8:1>, 1/5H6�/, or �: >.�>) is added after the

2 ����������	���
���	
��
����
��������������	��������

685



H What’s New in Nagios 3.0?

underscore. This is slightly unfortunate, as it is more difficult to read. The
macro created can be used elsewhere, for example in the definition of a
command:

define command {

command_name check_nrpe

command_line $USER1$/check_nrpe -H $HOSTADDRESS$ -p $_HOSTNRPE_PORT$

-c $ARG1$

}

Macros allow access to configuration data, states, and check results. In Na-
gios 3.0 the macro E :>6F6�.>6:  $�=/5E, which contains the number of
notifications sent for the current state, has been removed. It has been re-
placed by the host- and service-specific macros E8:1> :>6F6�.>6:  $��
=/5E and E1/5H6�/ :>6F6�.>6:  $�=/5E.

The list of available macros has grown considerably. Some new ones are
E#: "8:1>:$>�$>E and E#: "1/5H6�/:$>�$>E, for example, which con-
tain the extended plugin output of multiple-line plugin results (see Section
H.10 and Section 8.5.1, page 193).

The macros E8:1> :>6F6�.>6: 6<E,E1/5H6�/ :>6F6�.>6: 6<E,E8:1>�
/H/ >6<E, E1/5H6�//H/ >6<E,E#.1>8:1>/H/ >6<E, and E#.1>1/5H6�/�
/H/ >6<E assign to each event a unique identification number that has
been added in Nagios 3.0.

E8:1><61�#.` .�/E and E1/5H6�/<61�#.` .�/E return the ��������
���� set in the host and service definition.

Also of interest are the new macros that enable the last state to be accessed:
E#.1>8:1>1>.>/E and E#.1>8:1>1>.>/6<E give the previous host state,
and E#.1>1/5H6�/1>.>/E and E#.1>1/5H6�/1>.>/6<E are used for the
previous service state. The ;6< macros provide the numerical value (e. g., �
for the critical state of services), and the other two provide the correspond-
ing text (e. g., WARNING for services and DOWN for hosts).

Macros can usually also be read out via the environment, but the increased
number of macros has an effect on performance. If you don’t access Nagios
macros through environment variables, it is therefore better to switch this
feature off entirely in Nagios 3.0:

enable_environment_macros=0

How you can use macros is described in Appendix D on page 625. The
complete list of all macros can be found in the online documentation.3

The change log for Nagios 3.04 will tell you which of these are new.

3 ��������	
��
�
��������
���������
�1�%��	�����
������
4 ��������	
��
�
��������
���������
�1�%���	�
��������

686



H.3 Downtime, Comments, and Acknowledgments

H.3 Downtime, Comments, and Acknowledgments

Comments and maintenance intervals are now saved together with other
information in the status and retention file. These special files and the
accompanying parameters ���������	��� and ��������	��� have been
removed from Nagios 3.0. With an upgrade from Nagios 2.x to this version
you can keep any existing comments and maintenance intervals—how to
do this is described in Section H.13.

A further change involves the commenting of acknowledgments. Until now,
non-persistent acknowledgments were deleted with every restart. In Nagios
3.0 they now survive; the system deletes the comment for an acknowledg-
ment only when the problem has been rectified, so that the service or host
status is OK.

H.4 Rapidly Changing States

Nagios 3.0 now records the state history even when flap detection is
switched off. If you switch this on globally, with �������	�������������
(see page 592), Nagios will test all hosts and services immediately for flap-
ping.

For globally switched off flap detection, Nagios logs flapping states to the
log file and sends messages of the notification type FLAPPINGDISABLED, if
you have specified 	 (flapping) in the ����	��������������� in the host
or service definition.

Whereas Nagios 2.x still recorded every change in state, in Nagios 3.0 the
parameter 	��������������������� (see Section H.1.1, page 679) allows
this to be restricted to certain states. Only the states specified are then
included in the calculation of the change in state.

H.5 External Commands

The list of external commands has grown larger in Nagios 3.0, so that con-
siderably more things can be set through the relevant interface (see Section
13.1, page 292.).

Of special interest here is the command �5:�/11�F6#/, which is passed a
file that itself contains external commands. This allows for the bulk pro-
cessing of passive checks:

PROCESS_FILE;path/to/file;number

687



H What’s New in Nagios 3.0?

�5:�/11�F6#/ requires the full path to the file that is to be processed. The
second argument determines whether the file is kept after processing (+) or
deleted (a value not equal to +).

Two other new commands allow you to make your own notifications. No-
tifications actually have a fixed type (�5:=#/�, 5/�:H/5`, .�3 :4#/<"/,
etc.; see Table 12.1 on page 277), which is queried via the macro E :>6F6�
�.>6: >`�/E. The so-called Custom Notifications, in contrast, are of the
type �$1>:� and allow notifications outside the otherwise strict rules. This
means that broadcasts—messages to all—are also possible:

SEND_CUSTOM_SVC_NOTIFICATION;host;service;options;author;comment

SEND_CUSTOM_HOST_NOTIFICATION;host;options;author;comment

Instead of the options placeholder, you specify a bitmask, which controls
the behavior of the two commands. The value + means “no option set.” -
ensures a broadcast message to all normal contacts and to those who are
added during an escalation. � forces the message to be sent, regardless of
whether notifications are switched on or off for the host, service, or con-
tact, and ignores any time window that may be set. Finally, the value 7
increments the notification counter, and the message is then counted in
the escalation procedure. Normally a Custom Notification is not counted.

A complete description of all external commands is provided on the de-
veloper pages of the Nagios homepage.5 The Web interface there enables
a selective search to be made for commands that are allowed in a specific
Nagios version or deal with a certain topic (for example, services, hosts,
scheduled downtime (maintenance window), notifications).

H.6 Embedded Perl

Handling the Embedded Perl Interpreter (see Appendix G from page 669) is
also easier in Nagios 3.0. It can be switched on or off with the param-
eter ������������������� in the main configuration file ��������	�.
The parameter 
��������������������������� controls whether a plu-
gin should implicitly use the activated interpreter if there are no instruc-
tions to the contrary (see also Section G.2 from page 672). In Nagios 2.x
there was only the option of switching the interpreter on or off when com-
piling the Nagios system.

If the switch �����
�������������� is enabled, the ���	��
�� script of
Nagios 3.0 automatically uses the switch �����
��������
� as well. If
Nagios detects that something has changed in the script to be executed, it
will reload the script. In version 2.x you had to restart Nagios with the Perl
cache switched on.

5 ������������	
��
���
����������������#����	�����	��
�����	����
�����

688



H.7 A New Logic for Host Checks

H.7 A New Logic for Host Checks

Nagios 2.x performs host checks serially, so it waits for the results of the
individual check before checking other hosts in the direct vicinity to find
out if the first host is DOWN or UNREACHABLE (see the figure on page 94).
In contrast, Nagios 3.0 works in parallel here, provided that the parame-
ter �����
������������ for the host to be checked is larger than -. For
�����
������������G- the system behaves as in version 2.x.

In some cases this strongly influence performance, so you should always
set a value larger than - in Nagios 3.0. Running host checks in parallel
also means that a check result will sometimes get lost, since Nagios no
longer waits until the result for every single check is available. The param-
eter �
����	������
�����
���� now ensures that Nagios will deal with
orphaned checks.

Active host checks can even improve performance in certain environments,
if the equally new feature of check caching is used. Here Nagios accesses the
result of a recently performed check, provided that this can be considered
to be up to date. This means that the system saves a considerable amount
of time in host checks for failed services, in resolving the topology for failed
hosts, and for forward-looking dependency checks (see last section). For
service checks, caching only plays a role for service dependencies.

How large the time horizon for caching should be is defined for host checks
by the parameter ���
���
�����
����
������ (see also page 588) and
for service checks by the parameter ���
������������
����
������
(page 588). The default is 15 seconds in each case, and the value + switches
caching off entirely.

The larger the time interval in which Nagios caches results, the more of-
ten Nagios accesses the cache without actually performing the check itself.
However, this does have a crucial disadvantage: The cached result may be
obsolete. Therefore, you always need to compromise between obsolete re-
sults and taking the strain off Nagios. You will have to decide for yourself
how large the time interval for caching should be. Again, the preferred
method is to measure the latency times of service checks, which are a good
indication of the performance of Nagios. If there is no visible difference
over a long period of time between a caching time of 30 seconds and one of
60 seconds, it is better to select the shorter period, since you will be work-
ing with more up-to-date results in this case. How you measure the latency
times of checks is described in Section F.1.3 from page 660.

Whether or not active host checks in combination with check caching lead
to an improvement in performance can also be tested with ����������
(Section F.1.1, page 654). The program displays the number of cached host
checks whose results have been reused by Nagios in the last minute, in the
last five minutes, and in the last fifteen minutes.

689



H What’s New in Nagios 3.0?

In distributed environments, or for redundant Nagios installations, the per-
spective is sometimes altered: Nagios server A has a different topological
view of the network than Nagios server B. The result of a host check that
server A sends to server B as a passive check result may in some cases no
longer match. What is categorized by server A as UNREACHABLE may be
a failed host in the DOWN state from the perspective of server B. The pa-
rameter ������������������
�����
���� (page 604) enables Nagios to
reclassify passive host checks that it has been sent.

To achieve greater fine-tuning, passive host checks may now also accept a
soft state if you set the parameter �����
������������ in the host defi-
nition to a value larger than - and enable the parameter ��������
����
�
�����������	� (page 600) in the main configuration file. Until now,
passive host checks were always “hard.”

H.8 Restart

When you start Nagios, it rechecks the configuration each time for errors
and dependencies. Depending on the specific environment, this can be
very quick, or it may last a long time, during which Nagios will not operate.
In Nagios 3.0 there is an option to disconnect this test from the restart and
instead save the result in a separate temporary file. When Nagios starts, it
will read this file, and the otherwise usual processing of objects is left out
at this point. Whether this is worthwhile or not is revealed by ������ ��:

nagios@linux:~$ /usr/local/nagios/bin/nagios -s /etc/nagios/nagios.cfg

OBJECT CONFIG PROCESSING TIMES

(* = Potential for precache savings with -u option)

----------------------------------

Read: 0.019277 sec

Resolve: 0.001001 sec *
Recomb Contactgroups: 0.000737 sec *
Recomb Hostgroups: 0.003890 sec *
Dup Services: 0.005938 sec *
Recomb Servicegroups: 0.048659 sec *
Duplicate: 0.001527 sec *
Inherit: 0.005602 sec *
Recomb Contacts: 0.000001 sec *
Sort: 0.030277 sec *
Register: 0.010132 sec

Free: 0.001831 sec

============

TOTAL: 0.128874 sec * = 0.097634 sec (75.76%)

estimated savings

CONFIG VERIFICATION TIMES

(* = Potential for speedup with -x option)

690



H.9 Performance Optimization

----------------------------------

Object Relationships: 0.013131 sec

Circular Paths: 0.002341 sec *
Misc: 0.001032 sec

============

TOTAL: 0.016504 sec * = 0.002341 sec (14.2%)

estimated savings

The times marked with ; are saved with this precaching procedure. In this
example, 75 percent of the startup time is occupied with processing the
defined objects, but in absolute terms, this is just a tenth of a second and
so is hardly worth mentioning.

If there is real potential for savings, precaching is turned on with the fol-
lowing steps:

nagios@linux:~$ /usr/local/nagios/bin/nagios -vp /etc/nagios/nagios.cfg

nagios@linux:~$ /etc/init.d/nagios stop

nagios@linux:~$ /usr/local/nagios/bin/nagios -udx /etc/nagios/nagios.cfg

The first call uses the options �� to check the configuration and �� to cache
the processed objects in a separate file. The file is defined in ��������	�
with the parameter ������
�����@����	��� (page 601). Then Nagios is
stopped in the second step.

The third step is to start the system with the options �
��. The option �

reads the contents of the precaching file, and �� starts Nagios as a daemon,
as normal. �� prevents the test for circular dependencies, but assumes that
this call is always based on a tested configuration, like the one generated in
step 1. Whether the option �� really saves time or not can be seen in the ex-
ample above from the line ����
��� ���
� in the �: F6" H/56F6�.>6: 
>6�/1 section.

H.9 Performance Optimization

Besides performance optimizations that are not externally visible, Nagios
3.0 includes a number of parameters intended to improve performance in
large installations. The most important of these is �������������������
������ (page 667).

The improvement of performance in an existing environment is dealt with
in Appendix F from page 653.

691



H What’s New in Nagios 3.0?

H.10 Extended Plugin Output

Nagios 3.0 is finally capable of processing multi-line plugin output. The
total length of the output must not exceed 8 KB—but you must also make
sure that all the transmission paths are compatible for such an amount of
data. NRPE currently still needs to be adjusted in the source code (page
194); the plugin �
���������
 from the standard plugins in version 1.4.10
(page 206) can deal with the 8 KB.

The format of the extended and muti-line outputs are described in Sec-
tion 8.5.1 (page 193), and an example of the use of the extended format is
provided by the plugin �
�����
��� (Section 8.5 from page 191).

H.11 CGI

The Nagios Web interface has also undergone some interesting changes.
Some new parameters have been added to the configuration file �����	�
(Section A.2, page 606). ������
�
�������� prevents the user name,
which is included if you set an acknowledgement or a comment on a host
or service, from being changed. Instead the user name specified by the user
when authenticating himself to the Web server is used. Each registered user
is thus an authenticated user.

�������
�������� determines whether HTML formatting in the plugin
output is used (value +) or whether Nagios removes it (value -). In order to
link it with �������
�� (page 366) and ������
�� (page 366), there is now
an additional option to specify a target window, with �������
���������
and ������
���������.

With the CGI program ����
����� (Section 16.2.1, page 334) you can now
select hard and soft states via 
�������� and ������������ as well. This
is particularly useful when using NagVis (Section 18, page 389), since NagVis
by default only displays hard error states.

H.12 Miscellaneous

One of the improvements that does not fit into any of the above sections is
the parameter 
����������� (page 606), with which you can set the time
zone independently of the time zone set on the Nagios server. This is only
necessary if several Nagios instances are running on a single machine.

The parameter �����������	���
������������ (see page 586) delays
freshness checks (see Section 13.4, page 295), normally using a time pe-
riod specified in seconds, in case Nagios has to wait too long for a result for
passive checks.

692



H.13 Upgrade from Nagios 2.x to 3.0

The directives �	��	��� and �	����� (page 588) can now also handle
relative paths. The base directory is the directory containing the file ���
������	�.

The parameter ��������
 allows a temporary directory to be specified ex-
plicitly (in Nagios 2.x the temporary space consists of only a single file,
defined in the parameter �����	���).

Nagios 3.0 now allows multiple-line instructions in all configuration files.
An instruction that is continued on the following line must end with a back-
slash L.

H.13 Upgrade from Nagios 2.x to 3.0

If you already have a running Nagios-2.x environment, you can change over
to Nagios 3.0 with little effort. The existing configuration will usually run
unchanged.

Nagios 3.0 is very particular when testing, however. It is quite possible
that a so far undiscovered error—one tolerated or ignored by Nagios 2.0—
will prevent Nagios 3.0 from starting. It is therefore a good idea to test
your configuration before upgrading. To do this, you run the installation
as described in Section 1.2 on page 39 with ���	��
�� and ���� ���, but
without running ���� �������. You will obtain an executable Nagios-3.0
binary in the ���� subdirectory, which you can use to test the existing con-
figuration from the source code directory:

linux:src/nagios-3.0 # ./base/nagios -v /etc/nagios/nagios.cfg

...

If Nagios finds an error here, this error will prevent the start of the new
Nagios version if it is not eliminated. At some points Nagios 3.0 will give
warnings and information about the new features, but these do not stand
in the way of a restart.

Nevertheless, there are a few small details that you should attend to before
Nagios 3.0 goes into operation. The parameter ���������������	��%
���
�� is now called �
�������
����������	��%
���� (page 589); it is sim-
ply renamed in ��������	�. ��������������
��
������ is removed al-
together, so it is commented out in ��������	�.

The macro E :>6F6�.>6:  $�=/5Ewas sensibly split up into a host- and a
service-specific macro (E8:1> :>6F6�.>6:  $�=/5E and E1/5H6�/ :>6�
F6�.>6:  $�=/5E). Commands and scripts that use the macro must be
adjusted to ensure that they work correctly.

In order to retain the maintenance intervals and comments from the no
longer used files specified in ���������	��� and ��������	��� (in this

693



H What’s New in Nagios 3.0?

book, ������������and ������������), you must stop Nagios, save them,
and then remove the Info block at the beginning from them, since this may
occur only once in the new file, specified in ����������	���:

info {

created=1144429286

version=2.0

}

Then the contents of the two files are copied to the end of the retention file,
which here in this book is the file &���&������&�������������:

linux:~ # /etc/init.d/nagios stop

linux:~ # cd /var/nagios

linux:var/nagios # cat comments.dat downtime.dat >> retention.dat

Now the three remaining installation steps are performed (see page 42):

linux:src/nagios-3.0 # make install

...

linux:src/nagios-3.0 # make install-init

...

linux:src/nagios-3.0 # make install-commandmode

...

694



Index

Symbols
###IMAGESRC### 434
###URL### 433
$USER1$ 73
$USERx$ macros 79
24x7 64, 68, 74, 270
2d_coords 365
3D display, monitored computer see statuswrl.cgi
3d_coords 365

A
accept_passive_service_checks 605
accept_passive_host_checks 586
accept_passive_service_checks 586
access control see authentication
accounts, creating 209
acknowledgement 332, 343

via cellphone 350
as a display criterion for status.cgi 337
display in NagVis 389
displaying in the Web interface 345
in Nagios 3.0 687
reading out via macro 635
setting for EventDB 540
shown in NagVis 400
via WAP 350

action_url 364, 366, 452, 692
action_url_target 608, 692
active host checks see host check, active
additional information, adding to Nagios Web page

61
additional_freshness_latency 586, 692
address 63, 277, 627

access via macro 627
admin_email 586
admin_pager 586

age monitoring
of a file see check_file_age
of a Windows file 479–480

agent (SNMP) 228
aggregate_status_updates 587, 693
aggressive_host_checks 665
alias 63, 65, 70, 72, 277

reading out via macro 627, 629
Alias (Apache) 48
alternating states see flapping
Amavis, monitoring 113
AND link, for check_multi 200
Apache

configuration 47–48
file 39
for NagVis 396

homepage 51
setting the environment variable 78
single sign-on with mod_auth_kerb 643–644
single sign-on with mod_auth_ntlm_winbind
645–649

Apache 1.3, and Nagios 47
Apache 2.0, and Nagios 47
Apache 2.2, and Nagios 47
APAN 456
APC UPS, monitoring 149, 150, 182–183
apcupsd 149, 182–183
apxs2 646
$ARG1$ 73
$ARG2$ 73
arguments, for check commands 73
ARGx macros 626

$ARG1$ 625
arrow color (NagiosGrapher) 435
AS/400, querying system load 263
ash programming 622

695



Index

asynchronous events, processing 292
authentication

configuring the NET-SNMP snmpd 240–242
in NagiosGrapher 436
in SNMP 233–234, 240–242
switching on/off at the Web interface 78

author, of plugins 559
authorized_for_all_host_commands 607
authorized_for_all_hosts 79, 607
authorized_for_all_service_commands 607
authorized_for_all_services 79, 607
authorized_for_configuration_information 351, 607
authorized_for_system_commands 607
authorized_for_system_information 607
auto_reschedule_checks 587
auto_rescheduling_interval 587
auto_rescheduling_window 587
autoupdatefreq (NagVis parameters) 394
avail.cgi 329, 351–353, 360
availability report see avail.cgi
availability states 96

B
backend (NagVis parameters) 394, 395, 398
backendtype (NagVis parameters) 395
background color

of NagiosGrapher diagrams 435
of NagiosGrapher interface 435

background image, for NagVis 389, 397
backup, monitoring 292
base (NagVis parameters) 395
batch processing see bulk processing
BB see Big Brother
BEGIN (Perl), and the ePN 671
Big Brother 29
booting see system start, see system start
broadcast notifications 688
broker_module (nagios.cfg parameters) 377, 386
broker_module (nagios.cfg-Parameter) 587
browser refresh, configuring 78
buffer (NagiosGrapher) 432
buffer size

adjusting for check_by_ssh 194
adjusting for NRPE 194
for check_multi 194

buffer_file (file) 384
bulk mode (PNP) 452, 454, 663
bulk processing

external commands 687

of performance data 452–454
business process monitoring

with addon 203
with check_multi 199–203

C
cached_host_check_horizon 588, 665, 689
cached_service_check_horizon 588, 665, 689
caching

of check results see check caching
of checks see check caching
of the Nagios self-test see precaching

Cacti 29, 457
allback functions 376
can_submit_commands 71, 682
CCMS 519–530

plugins 525–530
CD-ROM see CheckDriveSize
CDEF 441
cell phone

as a display device for Nagios 350
number for SMS see pager

certificate
testing the lifespan 123
testing the time span 134
Web server testing 101

cfg_file 588
cfg_dir 55, 321, 430, 437, 588, 692
cfg_file 55, 692
CGI configuration 77–79
CGI programs

avail.cgi see avail.cgi
calling your own 126 see action_url
cmd.cgi see cmd.cgi
config.cgi see config.cgi
extinfo.cgi see extinfo.cgi
histogram.cgi see histogram.cgi
history.cgi see history.cgi
interaction with Nagios 327
notifications.cgi see notifications.cgi
outages.cgi see outages.cgi
showlog.cgi see showlog.cgi
status.cgi see status.cgi
statusmap.cgi see statusmap.cgi
statuswml.cgi see statuswml.cgi
statuswrl.cgi see statuswrl.cgi
summary.cgi see summary.cgi
tac.cgi see tac.cgi
trends.cgi see trends.cgi

696



Index

working with Nagios 104
CGI scripts see CGI programs
cgi.cfg 54, 55, 77–79, 329, 347, 351, 606–610

effects of single sign-on 645
cgi_config (NagiosGrapher) 433
change of state, continual see flapping
check latency see latency time
check_disk 220
check_http, testing the lifespan of a certificate 123
check_icmp, evaluating performance data with Na-

giosGrapher 437
check_service_freshness 590
check_snmp_cpfw 260
check_tcp

for monitoring POP3 and IMAP 113
warning limit 133

check_ups 150
check_users 177
CheckAlwaysCRITICAL (NSClient+ function) 495,

504
CheckAlwaysOK (NSClient+ function) 495, 504
CheckAlwaysWARNING (NSClient+ function) 495,

504
check_apc 182–183
check_by_ssh 102, 131, 205–208

adjusting buffer size 194
check caching 689
check_cluster 189–191

installation 45
check_command 63, 67
checkcommands.cfg 111, 112, 276
CheckCounter (NSClient+ function) 495, 501
CheckCPU (NSClient+ function) 495, 498
check_dhcp 146–149
check_dig 129–130
check_disk 158–221

evaluating performance data graphically 414
evaluating performance data with NagiosGrapher
440–443

CheckDisk.dll 467
check_dns 128–129
CheckDriveSize (NSClient+ function) 495–497
check_du.pl 563–573
check_dummy 188, 294, 310

for Windows 491
check_eventdb.pl 542–543
CheckEventLog (NSClient+ function) 495, 502, 532
check_external_commands 293, 588
check_file_age 181

CheckFileSize (NSClient+ function) 495, 496
check_for_orphaned_hosts 589, 689
check_for_orphaned_services 589
check_freshness 296, 661

and notification_failure_criteria 287
check_ftp 119
check-iftraffic 257–259
CheckHelpers.dll 467
check_host 111, 665
check-host-alive 63
check_host_freshness 589
check_http 101, 119, 125

critical limit value 120
reaction to a Web server redirect 121
regular expressions in queries 121
specifying user and password for the test 121
testing SSL connection 123
warning limit 120
for Windows 491

check_icmp 83, 109, 112, 455
vs. check_ping 109
critical limit 109
evaluating performance data with Nagiosgraph
412
evaluating performance data with NagiosGrapher
440
as a host check 111–112
host entry 109
options 109, 110
performance data 198
from a performance perspective 665
as a service check 111
test 46–47, 110
use with negate 188
warning limit 109
and Windows 492

check_ifoperstatus 103, 254–255
check_ifstatus 103, 252–253
check_imap 115
check_interval 68, 96, 678, 680
check_latency 660–662
check_ldap 143–146
check_load 162–163
check_log 167–176
check_log2 169
check_logfiles 170–176
check_mailq 180
CheckMem (NSClient+ function) 495, 500
check_mrtg 660

697



Index

check_multi 191–203
CheckMultiple (NSClient+ function) 495, 504
check_mysql 142–143
check_nagios 183–184
check_ncnet

vs. check_nt 463
installation 480–481

check_nrpe 462
changing the buffer size 194
for monitoring NRPE 286
and PNP 455
running plugins on third-party computers 220,
222–223

check_nt 462, 472–487
vs. check_ncnet 463
query of NSClient+ fails 467
use of internal NSClient+ functions 495

check_ntp 177–178
check_ntp_peer 154–156
check_ntp_time, vs. check_ntp_peer 154
check_oracle 136, 575
check_oracle_writeaccess 575
check_oracle_writeaccess.sh 137
check_pcmeasure2.pl 507–509
check_period 64, 68

vs. notification_period 64
check_pgsql 137, 139–140
check_ping

vs. check_icmp 109
as performance killer 665
and Nagiosgrapher 437
and Windows 492

Checkpoint firewall, monitoring 260
check_pop 115
check_procs 163–167
CheckProcState (NSClient+ function) 495, 500
check_result_path 589, 666
check_result_reaper_frequency 589, 666, 693
checks, on-demand 92, 95
check_sap 514, 526
check_sap.pl 516–518
check_sap.sh 516
check_sap_cons 524, 526–528
check_sap_instance 526
check_sap_instance_cons 526
check_sap_multiple 526
check_sap_mult_no_thr 526–530
check_sap_system 526
check_sap_system_cons 526

check_sensors 185–186
CheckServiceState (NSClient+ function) 495, 499
check_simap 115
check_smtp 101, 113, 115

critical limit 114
warning limit 114
for Windows 491

check_snmp 103, 246–251
check_snmp_cpfw 260
check_snmp_disk 256–257
check_snmp_env 260
check_snmp_int 260
check_snmp_load 260, 262–264
check_snmp_mem 260
check_snmp_proc 256–257
check_snmp_process 260
check_snmp_storage 259–262
check_snmp_vrrp 260
check_snmp_win 260
check_spop 115
check_squid 125–127
check_ssh 131–132

for Windows 491
check_swap 162
CheckSystem.dll 467
check_tcp 102, 132, 135

critical limit value 116
to check SAP 511
for FTP monitoring 119
to monitor SAP 516
for POP and IMAP monitoring 116–118
using SSL 134
warning limit 116
for Windows 491

check_time 178–179
for Windows 491

check_traffic 257
check_udp 102, 135–136

for Windows 491
check_ups 149, 151–154
CheckUpTime (NSClient+ function) 495, 499
checkuptime (NSClient+ function) 494
CheckWMI.dll 467
child_process_fork_twice 590
chmod 209
chown 209
Cisco components, querying system load 263
Cisco switches, monitoring 260
CLIENTVERSION (NSClient/NC_Net command)

698



Index

473–474
clock times, restricting actions 74
cluster

monitoring 45
testing 110, 189, 191

cmd.cgi 328, 329, 343–345, 359, 367
collect2.pl 429, 432, 437, 445
colors, in NagiosGrapher 435
comma-separated list see CSV
command (object) 61, 72–73
command buffer slots see external_command_buffer_slots
command object

for e-mail notification see notify-by-email
for evaluating performance data 406, 407

command_check_interval 590
command_file 590
commands

defining to be run in SNMP queries 243
for notification see notification command

commands.cfg 54
comment_file 590, 687, 694
comments

in configuration files 56
deleting on problem hosts 332
looking at for hosts 340
looking at for services 340
maintaining on problem hosts 331, 343
nonpermanent 613, 616

community (SNMP) 233
configuring for snmpd 240
default values 236
plugin option 557
specifying in check_snmp 247

compilation 42
computer

defining see host (object)
dependencies see hostdependency (ob-

ject)
excluding from notification 270
grouping see host group (object)
monitor all of a user 79
monitoring in different network segments see
network topology
overview of all 87
overview of individual 87
overview of individual 88
recommended configuration file 56
shutdown during power failure 182
states 64

computer address, defining see address
computer name, defining see host_name
CONFIG (NC_Net command) 487
config.cgi 329, 351
config.ini.php 393–396

disabling the GD library 392
config.layout 427
config.php 450
configuration 53–79

checking 81
for use with Nagiosgraph 411
for using Nagiosgraph 410
for using Perf2rrd 417–418
NagVis 393–396
of the NDOUtils 383
overview of all objects 329
testing 83

configuration changes, applying 84
configuration directory 39
configuration files

cgi.cfg see cgi.cfg
checkcommands.cfg see checkcommands.cfg,
misccommands.cfg
for check_logs.pl 169
for computer 56
main configuration file 609
Nagios 2.x 55
Nagios 3.0 55
nagios.cfg see nagios.cfg
for Nagiosgraph see map and nagiosgraph.conf
nrpe.cfg see nrpe.cfg, drraw.conf
for NSCA see nsca.cfg

clients see send_nsca.cfg
for PCMeasure query software see pcmea-
sure4linux.cfg
for plugins 572–573
object-related 55
resource.cfg see resource.cfg
for services 56
for snmpd see snmpd.conf
for snmptrapd see snmptrapd.conf
syslog-ng see syslog-ng.conf

configure command
for Nagios 40, 47
for NRPE 215, 220
for NSCA 300

configuring, the NDOUtils 387
contact (object) 60, 70–72, 274

changes in Nagios 3.x 681–682

699



Index

defining external notification programs 275
defining notification states 272
defining notification times 273
disabling 58
for single sign-on 644–645
self-defined variables 685–686

contact group (object) 60, 72, 271
changes in Nagios 3.x 681
macros see group macros

contact groups 28
contact persons see contact (object)

and user names for the Web interface 50
contact sensor 506
$CONTACTADDRESSn$ 629
$CONTACTALIAS$ 629
$CONTACTEMAIL$ 629
$CONTACTGROUPALIAS$ 629
$CONTACTGROUPMEMBERS$ 629
contactgroup_members 72, 681
$CONTACTGROUPNAME$ 629
$CONTACTGROUPNAMES$ 629
contact_groups 64, 69, 680, 685
contact macros 629
$CONTACTNAME$ 629
contact_name 70

reading out via macro 629
$CONTACTPAGER$ 629
contacts 678
Cortona 349
count (check_multifunction) 201
counter 404
COUNTER (NC_Net command) 483–484
CPU load

caused by a program 164
checking 163, 165
memory duration (NSClient+) 469
monitoring in Windows 483
of an SAP instance 525
testing 102, 162

via SNMP 245, 246, 260, 262–264
in the UCD-SNMP-MIB 239
on Windows computers 475

CPU runtime, of program monitoring 164
CPU temperature, testing via SNMP 250
CPU load

monitoring in Windows 467, 498
resolution of measured values (NSClient+) 469

CPULOAD (NSClient/NC_Net command) 475
crashed computer see DOWN (state)

Cricket 457
CRITICAL (state) 26, 27, 67, 96, 105, 108, 555

as a display criterion for status.cgi 337
displaying in NagVis 389
force/suppress notification 269
macro 278
marking in the Web interface 87
negating return value 188
resetting manually see error states
return value 168, 188, 296, 554

critical limit see threshold
check_apc 182
check_by_ssh 205, 207
check_dig 129, 130
check_disk 158
check_file_age 181
check_http 119, 120
check_icmp 109
check_iftraffic 257
check_ldap 143, 145
check_load 162
check_mailq 180
check_nt 472
check_ntp 177
check_pgsql 137
check_procs 163, 164
check_smtp 113
check_snmp 246
check_snmp_load 262
check_squid 125, 127
check_swap 162
check_tcp 116
check_ups 152
check_users 177
CPULOAD 475
in performance data 179
specifying 108

critical threshold
check_apc 182–183
check_file_age 181
check_iftraffic 258
check_load 163
check_mailq 180
check_nt 472
check_ntp 178
check_pgsql 139
check_snmp 247, 251
check_snmp in lm-sensors 250
check_snmp_load 263

700



Index

check_tcp 133
check_time 179
check_users 177
CPULOAD 475
detail of performance data 179

cron
as a performance accelerator 666
for Nagios self-monitoring 183, 184
used to run service checks 104

CSMA/CD 232
CSV, availability data as 351
custom notifications 688
custom templates (PNP) 455
custom macros 633
custom macros 626, 635
Cygwin 461

plugins 490–492
tools 490

D
Daemon Tools 419
data backup see backup
databases

creating for NDOutils 382
monitoring 136–143, 575–582
NDOUtils update 383
optimizing NDOutils 667
saving Nagios data in see NDOUtils
and service dependencies 289
tables for NDOUtils 382
testing 27

$DATE$ 630
date macros 630
date_format 58, 591

effect on macros 630
dbhost (NagVis parameters) 395
dbinstancename (NagVis parameters) 395
dbname (NagVis parameters) 395
db_name (ndo2db parameters) 385
dbpass (NagVis parameters) 395
dbport (NagVis parameters) 395
db_port (ndo2db parameters) 385
dbprefix (NagVis parameters) 395
db_prefix (ndo2db parameters) 385, 395
db_servertype (ndo2db parameters) 385
dbuser (NagVis parameters) 395
ddraw 420–426
Debian

NDOUtils installation 380

NET-SNMP 235
NRPE installation 214
smsclient installation 279

debug_file 591
debugging, internal NSClient+ functions 504
debug_level 591
debug_verbosity 592
default.php (PNP) 455
default_statusmap_layout 78, 608
default_statuswrl_layout 78, 347, 608
default_user_name 608
delivery number, for SMS see pager
Department of Defense 229
dependencies

between computers see hostdependency (ob-
ject)
between NSClient/NC_Net and monitored ser-
vices 474
between services see servicedependency (object)
circular 83
implied 288

dependency_period 683
dependend_host_name 683
development packages 38
DHCP, monitoring see check_dhcp
dig, to monitor name servers see check_dig
directory, monitoring size (Windows) 496
display_name 678
distributed monitoring 104, 291, 299, 317–324
DNS, monitoring 127–130

name servers see check_dig
documentation 53

linking on hosts in Nagios 364
DOWN (state) 64, 94, 96, 269

as display criterion for status.cgi 336
macro 277
marking in the Web interface 87
return value 555

downtime
flexible length 360
for hosts 361
in Nagios 3.0 687
planned see maintenance period
planning 362
scheduling 359
for services 361–362
taking into account for messages 269

downtime_file 591, 687, 694
drive, checking drive size see CheckDriveSize

701



Index

drive capacity see hard drive capacity
drraw.conf 421–422
DSL connection, warning limit for ping 106
du see check_du.pl
dummy plugin see check_dummy

E
e-mail 71, 276, 277

reading out via macro 629
e-mail address

for notifications see e-mail
specifying of the admin in NET-SNMP 242

e-mail delivery command see notify-by-email
e-mail server testing see SMTP
editor

NagVis 391, 394, 396–400
egrep

excluding comments and empty lines 78
embedded Perl 40, 669–675

and alarm() 571
in Nagios 3.0 673, 688
and timeouts 571

enable_event_handlers 605
enable_flap_detection 617
enable_notifications 592
enable_embedded_perl 592, 673, 688
enable_environment_macros 444, 449, 592, 667, 686
enable_event_handlers 592
enable_flap_detection 592, 605, 613
enable_notifications 268, 605
enable_predictive_host_dependency_checks 593
enable_predictive_service_dependency_checks 593
enable_splunk_integration 609
encryption, NSCA 302
ENUMCONFIG (NC_Net command) 486–487
ENUMCOUNTER (NC_Net command) 481–482
ENUMCOUNTERDESC (NC_Net command) 482
ENUMPROCESS (NC_Net command) 484
ENUMSERVICE (NC_Net command) 484
environment variables see variables
EPN see Embedded Perl
epoch seconds 479
error messages 83

in NSClient installation 464
interval see notification_interval
restricting number of 95

error states, resetting manually 310–312
escalation management 28, 282–285

for computers see hostescalation (object)

for services see serviceescalation (object)
escape_html_tags 609, 692
Ethernet 232
event broker 42, 593
event handler 619–623

vs. OCSP and OCHP 317
event log see Windows event log
Event Broker see NEB

API 378
NDOUtils configuration 383–385

event_broker_options 377, 593, 667
EventDB 531–549
event_handler_timeout 593
EVENTLOG (NC_Net command) 485–486
EventLog Agent for Windows see nagevtlog
Eventlog to Syslog see evtsys
events

as histogram 353
processing 531–549
showing graphically see histogram.cgi

evtsys 545
Exchange for Nagios addons 102

addons for managing maintenance times 359
logos and icons 365
NagiosGrapher 427
network plugins 125
NRPE plugins for Windows 490
NSClient 464
Oracle plugin 137
ping plugin for Windows 492
proxy test 125
SNMP plugins 255
Squid test 125

Exchange Server
monitoring 113
and port 1248 469

execute_service_checks 605
execute_host_checks 593
execute_service_checks 593
Exim, monitoring mail queue 180
exit code see return value
export, of data from Nagios 378
External Command File 292
external_command_buffer_slots 593, 667
extinfo.cgi 193, 329, 331, 339–342, 359, 615, 616

adding additional information 363

F
failed logins, monitoring on 168

702



Index

failure
of partial networks 329
of subnetworks 345

fans, monitoring of switches 260
Fast Ethernet interface, monitoring traffic 258
Fedora, NRPE installation 214
fe_use_browser_all (NagiosGrapher) 435
fe_use_browser_for (NagiosGrapher) 436
fe_use_browser_url (NagiosGrapher) 436
fe_use_timefilter (NagiosGrapher) 436
FHS 41
FIFO 292
fifo_write.pl 432, 444
file

changing owner see chown
changing permissions see chmod
monitoring modification date see check_file_age
monitoring size (Windows) 467
monitoring via SNMP 239
size monitoring see check_file_age

FILE2SOCK 379
FILEAGE (NSClient/NC_Net command) 479–480
FileLogger.dll 467
file_rotation_command (ndomod parameters) 384
file_rotation_interval (ndomod parameters) 384
file_rotation_timeout (ndomod parameters) 384
Filesystem Hierarchy Standard see FHS
Firefox, single sign-on via 650–651
firewall, environments indirect tests in 225, 287
First Level Support, informing of problems 282
first_notification_delay 271, 678
flap detection see flapping
flap_detection_enabled 614, 617
flap_detection_options 679, 680, 687
flapping (state) 64, 269, 278, 611–617, 679, 687

as a display criterion for status.cgi 337
host 616–617
with services 612, 616

font color (NagiosGrapher) 435
fontfile (NagiosGrapher) 433
format, configuration files for plugins 573
Foundry switches, monitoring 260
free_child_process_memory 594
FREEDISKSPACE (NC_Net command) 487
freeWRL 349
frequency, of a state representing graphically see his-

togram.cgi
freshness mechanism 287, 295–297, 692

accounting for latency 586

FTP, monitoring 118–119

G
gettext 557
global_host_event_handler 594
global_service_event_handler 594
graphics

adding to Nagios Web page 61
addressing directly in PNP 452

green (state) 26
grid color (NagiosGrapher) 435
group (NagiosGrapher) 432
group macros 628, 629
groupadd 209
groups, creating 209

H
hard drive capacity

checking 158
checking with SNMP 248
displaying graphically 414
monitoring with SNMP 260
testing 102, 162

on Windows computers 476–477, 487
with SNMP 244–245, 256, 259, 262

of Windows hosts displaying graphically 414
hard recovery 97
hard state 63, 68, 92, 96, 267, 614

as evaluation criterion for NagVis 391, 394, 399
macro 628

header files see development packages
health check see lm-sensors
heartbeat (NagiosGrapher) 432
help, online (plugins) 78, 556–557
Help Desk, informing of problems 282
high_flap_threshold 617
high_host_flap_threshold 594, 617
high_service_flap_threshold 594, 613
histogram.cgi 329, 353–354
history.cgi 329, 354–355
hitlist, problematic hosts 357
host 26

excluding from notification 681
host (object) 59, 62–65

changes in Nagios 3.x 678–680
extended information 362–366
host-specific variables 471
self-defined variables 685–686

host check 26, 46, 63, 94

703



Index

active 95, 291
beyond reachability tests 112
with check_icmp 111–112
optimizing 664
passive 291–295, 311, 488, 666, 690
vs. ping service 66, 83, 95
resetting error state manually see error states

host dependencies 285
host dependency (object) 289
host group

display in NagVis 390
downtime for all services of 361
inserting into NagVis map 398
macros see group macros
showing in the status display 334
viewing in the NDOUtils database 387

host group (object) 59, 65–66, 77
applying with NRPE 223, 224
changes in Nagios 3.x 681
selecting for status display 334

host macros 628
host MIB 238
host name

defining see host_name
defining (plugin option) 108

host_name 277
$HOSTACKAUTHOR$ 635
$HOSTACKCOMMENT$ 635
$HOSTADDRESS$ 73, 111, 625, 627
$HOSTALIAS$ 627
host_check_timeout 594
hostdependency (object) 61

changes in Nagios 3.x 683
hostescalation (object) 61, 283, 284

changes in Nagios 3.x 683–685
$HOSTEVENTID$ 686
hostextinfo (object) 61, 347, 362–366, 677

changes in Nagios 3.x 679
host_freshness_check_interval 594
hostgroup_name 67
$HOSTGROUPALIAS$ 629
$HOSTGROUPMEMBERS$ 629
hostgroup_members 681
$HOSTGROUPNAME$ 629
hostgroup_name 65, 77
$HOSTGROUPNAMES$ 629
hostgroups (configuration parameter) 63
host_inter_check_delay_method 594
$HOSTLONGOUTPUT$ 627

host macros 627
$HOSTNAME$ 627
host_name 63, 67, 76, 363

access via macro 627
host_notification_commands 71
$HOSTNOTIFICATIONID$ 686
$HOSTNOTIFICATIONNUMBER$ 630, 686, 693
host_notification_options 71
host_notification_period 70
host_notifications_enabled 681
host_notifications_options 681
host-notify-by-email 275, 277–278
host-notify-by-sms 275
host objects

host-specific variables 685–686
viewing in the NDOUtils database 387

$HOSTOUTPUT$ 193, 627, 635
$HOSTPERFDATA$ 193, 627, 635
host_perfdata_command 407, 595
host_perfdata_file 595
host_perfdata_file_mode 595
host_perfdata_file_processing_command 595
host_perfdata_file_processing_interval 595
host_perfdata_file_template 596
hosts

availability statistics see avail.cgi
extensive information on individual 339

$HOSTSTATE$ 626, 627
$HOSTSTATEID:*$ 190
$HOSTSTATEID$ 627
$HOSTSTATETYPE$ 627
htmlbase (NagVis parameters) 395
htmlcgi (NagVis parameters) 395
htpasswd 50, 70
HTTP

header, manipulating 101
monitoring 118–125
testing 101

humidity, monitoring 505–509

I
I2C 185
icon, adding your own in the Web interface see

icon_image
icon_image 364
icon_image_alt 365
icon_image_script (NagiosGrapher) 434
icon_image_src (NagiosGrapher) 434
icon_image_static (NagiosGrapher) 434

704



Index

icon_image_tag (NagiosGrapher) 433
icons (NagVis parameters) 394
ident daemon see identd
identd 138

monitoring 491
illegal_macro_output_chars 449, 596
illegal_object_name_chars 596, 635
IMAP

monitoring 113, 115–118
via SSL/TLS 115–118

IMAP3S see IMAP via SSL/TLS
imprecision, in SNMP see rounding up
increase in performance see performance optimiza-

tion
indirect checks 206, 224–225, 287
inetd

configuration for NRPE 217, 304
function check for NRPE 218

inheritance 684–685
of dependencies 287

init script 43, 84
initial_state 679, 680
inject 494–504
installation 37–45, 292

check_ncnet 480–481
drraw 420
isapinfo 512
Nagiosgraph 408
NagVis 391–393
NC_Net 465
NDOUtils 380–383
NRPE 214–216
NRPE_NT 488–489
NSCA 300–301
NSClient 464–465
Perf2rrd 416
PNP 447
RRDtools 421

instance_name (ndomod parameters) 384, 395
INSTANCES (NC_Net command) 482
instant client (Oracle) see Oracle
interface

between Nagios and NDOUtils see NEB
for external commands 28, 49, 101, 104, 208,
292–293, 299, 343–345, 661, 687

interface (NagiosGrapher) 431
and service_perfdata_command 443–445

Internet services, testing 101–102
Internet Standard Management Framework 228

interval
between error messages see notification_interval
between error notifications see notifica-
tion_interval
between service checks 68

interval check 270, 273
interval_length 596, 678
IP address

defining see address
defining (plugin option) 108

IPv4 stipulating 108
check_http 123

IPv6 stipulating 108
check_http 123

ISDN
connection, warning limit for ping 106
sending SMS via 280

ISO (organization) 229
is_volatile 309, 311, 316, 486

J
jitter 154, 156

K
Kerberos 639–644

configuration for single sign-on 642–643
and time synchronization 178

L
language

of plugin output 557
setting for NagVis 394

language (NagVis parameters) 394
large_installation_tweaks 691
$LASTHOSTEVENTID$ 686
$LASTHOSTSTATE$ 686
$LASTHOSTSTATEID$ 686
$LASTSERVICEEVENTID$ 686
$LASTSERVICESTATE$ 686
$LASTSERVICESTATEID$ 686
latency time 653–662, 666

for checks 452
for freshness -checks 586
for service checks 658

layout
NagiosGrapher 427
Nuvola 368–373

LDAP see OpenLDAP
monitoring see check_ldap

705



Index

legend (NagiosGrapher)
column width 439
line break 439

libraries, required for compiling 38
license, of plugins 559
limit see critical limit, warning limit
limit value, critical 108

check_by_ssh 207
lm-sensors 184–186

information in the UCD-SNMP-MIB 239
reading out information via SNMP 250
specifying thresholds 250
temperature query via SNMP 250

load, of a network interface see check-iftraffic
load distribution 192
load status, of a UPS 182
localhost.cfg 54, 74
localization, of plugins 557
lock_author_names 609, 692
lock_file 596
log file entries

configuring for NSClient+ 468
generating 405–407
graphical overview of see showlog.cgi
incomplete 351
for NSCA 302

log files
evaluating see syslog
evaluating Windows event log 485–486, 502
filtering after states see history.cgi
for NagiosGrapher 434, 445
importing old to the NDO database 379
monitoring see check_log
monitoring the Nagios log file see check_nagios
PIPE entry 446
PRG entry 446
REGEX entry 446
RRD entry 446
seach engine 609
search engine 609
VALUES entry 446

log_file (NagiosGrapher) 434
LOG2NDO 379
log_archive_path 596
logcheck 307
log_event_handlers 597
log_external_commands 597
log_file 597
logger 172

log_host_retries 597
log_initial_state 354
log_initial_states 597
logins, failed see failed logins
log_level (NagiosGrapher) 435, 445
log_notifications 597
log_passive_checks 597
log_rotation_method 355, 597
log_service_retries 598
$LONGDATETIME$ 630
$LONGHOSTOUTPUT$ 193, 635, 686
$LONGSERVICEOUTPUT$ 193, 686
low_service_flap_threshold 598
low_flap_threshold 614, 617
low_host_flap_threshold 598, 617
low_service_flap_threshold 613
lpd, restarting automatically on failure 619–623

M
Mac OS X, monitoring 461
macros 73, 79, 277–278, 625–635, 686

$ADMINEMAIL$ 586
$ADMINPAGER$ 587
$HOSTATTEMPT$ 621
$HOSTSTATETYPE$ 621
$HOSTSTATE$ 621
$SERVICEATTEMPT$ 621
$SERVICESTATETYPE$ 621
$SERVICESTATE$ 621
$USERx$ see $USERx$ macros
and performance 667
contact 629
custom 626, 633–635
for statistical purposes 631
group 628–629
host 627–628
notification 630
on-demand 190, 626, 629, 632–633
service 628
standard 626–632
state see state macros
to specify date 630
to specify time 630
used in e-mail delivery 277

mail queue, monitoring see check_mailq, see
check_mailq

mail server testing see SMTP
mailing lists, nagiosplug-help 45
main configuration file see nagios.cfg

706



Index

main memory
in the Host Resources MIB 238
monitoring with SNMP 259–262
testing on Windows computers 476
usage monitoring 164

main_config_file 78, 609
maintenance window

addons for maintenance 359
display in the Web interface 337, 342
for hosts 360
sending notification 679
status 65

make options 42, 54
all 42
install 42
install-commandmode 42
install-config 42
install-init 43, 84

man page, for plugins 566–568
Management Information Base see MIB
management nodes (SNMP) see nodes
manager (SNMP) 228
manufacturer MIB 251
map 408, 412–415
map (NagVis) 390, 396–400
maplocktime (NagVis parameters) 394
max_check_attempts 63, 67, 68, 97, 267, 614, 620,

689, 690
in connection with log file monitoring 167
representation Web interface 87

max_check_result_file_age 598
max_check_result_reaper_time 598, 666
max_concurrent_checks 598
max_debug_file_size 599
max_eventhandlers_age (ndo2db parameters) 385
max_hostchecks_age (ndo2db parameters) 385
max_host_check_spread 84, 599
max_servicechecks_age (ndo2db parameters) 385
max_service_check_spread 84, 599
max_systemcommands_age (ndo2db parameters)

385
max_timedevents_age (ndo2db parameters) 385
maxtimewithoutupdate (NagVis parameters) 395
mbrowse 237
measured values, displaying over time 29
measuring temperature, as a host check 112
members 65, 70, 77
memory

checking for Windows computers 467

checking for Windows hosts see CheckMem
monitoring 165

MEMUSE (NSClient/NC_Net command) 476
messages 63

stopping see notifications_enabled
MIB 228

of the manufacturer 251
MIB-II 231–233, 238
Microsoft Exchange Server 113
Microsoft Windows see Windows
misccommands.cfg 276, 320
modification date, of a file monitoring see

check_file_age
monitoring temperature, of switches 260
Montibello, Tony 465
movement detector 506
Mozilla Firefox see Firefox
MRTG 29, 259, 658–660
MTA, monitoring see check_smtp
Munin 29
MySQL

creating a database 141
monitoring 141–143
preparing for use with NDOUtils 381–383
standard port 385
starting in network mode 141
version for use with NDOUtils 380

N
nagcmd (group) 38
nagevtlog 545
Nagios

monitoring see self-monitoring
reload 417
restarting see restart
stopping 340

nagios (group) 38
nagios (program) 81–83

start via start script 84
nagios (user) 38

read permissions when using check_log 168
Nagios Exchange see Exchange for Nagios addons
Nagios Remote Plugin Executor see NRPE
Nagios Service Check Acceptor see NSCA
nagios-snmp-plugins 256–257
nagios.cfg 54–62, 268, 367, 586–606

activating freshness checking 295
allowing passive host checks 294
configuration for Nagiosgraph 410

707



Index

defining time unit 62
ePN parameters 673
flap detection 613, 617
integrating NEB modules 377
loading Event Broker module 386
log rotation 355
NDOUtils configuration 383
passive service checks 293
processing performance data 405–407
switching on OCSP/OCHP 318
switching on processing of external commands
293

NAGIOS_CGI_CONFIG (environment variable) 78
nagios_config (NagiosGrapher) 433
Nagiosgraph 404, 408–415

debug level 410
delimiter 407

nagiosgraph.conf 409–410
NagiosGrapher 404, 426–446

configuration 430–446
installation 427–430

nagios_grapher (start script) 429, 437
nagios_group 599
NAGIOS_HOSTNAME 444
NAGIOS_SERVICEDESC 444
NAGIOS_SERVICEOUTPUT 444
NAGIOS_SERVICEPERFDATA 444, 449
nagiostats 654–658

using in plugins 660–662
nagios_user 599
nagtrap 532
NagVis 376, 378, 389–401

configuration 393–396
database permissions 382
installation 391–393
ndo2db configuration 386
obsolete status data 396
problems with Nagios <3.0b1 396
required Broker data 378
without authentication 396

Name server see DNS
named pipe 104, 292, 590

creating a 417
for NagiosGrapher 432
for NSCA 302
problems with Nagios 2.0 beta 420

navigation area 328
customizing 338

NC_Net 462, 465, 472, 488

changing configuration 487
defining the Performance Counter 482
installation 465
listing services 484
monitoring age of a file 479–480
monitoring processes 479
monitoring processor load 483
monitoring uptime 477
monitoring Windows services 478
polling the Performance Counter 481
querying client version 473–474
querying configuration 486–487
querying event log 485–486
querying Performance Counter 483–484
querying process list 484
querying WMI database 487
testing CPU load 475
testing hard drive capacity 476–477, 487
testing main memory 476

ndo2db
configuration file see ndo2db.cfg
starting 386

ndo2db.cfg 383, 385–386
ndo2db daemon 378
ndo2db_group (ndo2db parameters) 385
ndo2db_user (ndo2db parameters) 385
ndomod 378, see Event Broker
ndomod.cfg 383–385
NDOUtils 375–387

distributed databases 396
installation 380–383
optimizing database 667

NEB 376–378
API 378

negate 188–189
for Windows 491

negation, of threshold details 558
.NET, querying configuration data 487
NET-SNMP 234, 246, 312

configuration see snmpd.conf
defining system and local information 242
plugins specialized in ~ 256
special features in the check_snmp_load call 263

NET-SNMPD 103
netstat 218
network, detecting outages 94
network connection, slow warning limits 106
network interfaces

monitoring via SNMP 103, 251

708



Index

testing load see check-iftraffic
network outages 94
network segments 93
network services, testing 101–102
network share, checking drive size (Windows) see

CheckDriveSize
network topology

accounting for 65
taking into account 27–95

network traffic, observing see check-iftraffic
Network UPS Tools 149–154
new_mini_epn 674–675
ngraph (object) 437–440
ngraph.ncfg 430–440
nmbd, monitoring 163
nodes 231
nodes (SNMP) 229
Nokia-VRRP cluster, monitoring 260
normal_check_attempts 68
normal_check_interval 68, 96, 341, 614, 678, 680
notes 363
notes_url (Nagios) 364, 366, 434, 692
notes_url (NagiosGrapher) 433
notes_url_target 609, 692
notification

commands 71
macros 630
preventing 65
self-made 688

notification command 71
defining 275–282

notification_interval 64, 68, 270, 273, 282, 680, 685
for escalation 284

$NOTIFICATIONNUMBER$ 686, 693
notification_options 64, 69, 679, 680, 687

in case of escalation 284
in connection with check_log 168

notification_period 64, 68, 270, 273, 282, 680, 685
in case of escalation 284

$NOTIFICATIONRECIPIENTS$ 630
notifications 28, 265–290

as a display criterion for status.cgi 337
commands 71, 275
globally switching on and off 344
graphic overview see notifications.cgi
looking at sent see notifications.cgi
periodic see interval check
preventing 340
stopping in general see enable_notifications

switching off for hosts of a group 339
time interval see notification_interval

notifications.cgi 329, 355–356
notifications_enabled 269
notification_timeout 599
$NOTIFICATIONTYPE$ 278, 630, 688
notify-by-email 275, 276, 278
notify-by-sms 275, 281–282
NPCD 448, 453
npcd.cfg 448, 453
NRPE 102–103, 213–225

adjusting buffer size 194
buffer size adjusting 194
example of service dependencies 285
and timeouts 559
for Windows see NRPE_NT, 488

with NSClient+ 465, 467
function test 218, 221–222
monitoring 286
with NSClient+ 493
with OpMon Agent 470

nrpe.cfg 215, 218–221
for Windows 489, 491

NRPEListener.dll 467
NRPE_NT 463, 488

configuration 489
installation 488–489
replacing with NSClient+ 467

NSC.ini 466–469, 493–495
NSCA 104, 291, 299–316

client configuration 304–305
configuring the Nagios server 301–304
daemon 299
encryption 302
installation 300–301
processing SNMP traps 312
testing functionality 306

nsca.cfg 301–303
NSClient 101, 464–465

installation 464–465
monitoring the age of a file 479–480
monitoring processes 479
monitoring uptime 477
monitoring Windows services 478
querying the client version 473–474
querying performance counters 480
and service dependencies 289
testing CPU load 475
testing hard drive capacity 476–477

709



Index

testing main memory 476
NSClient+ 465–469, 493–495

internal functions 495–504
NRPE 493–504
querying performance counter 501

NSClientListener.dll 467
nsclientpp 466
nslookup, to check name services see check_dns
NTLM 638
NTP

for monitoring system time see check_ntp
monitoring server 154–156

ntpq 154
NTsyslog 545
nut 150
Nuvola (layout) 368–373

O
object 59–62
object definitions

displaying see config.cgi
for Nagios 2.10 54
for Nagios 3.0 54

object identifier see OID
object types 59–61
object_cache_file 599
obsessive commands 317
obsess_over_hosts 318, 319, 600
obsess_over_services 318, 319, 323, 600
OCHP 317–321
ochp_command 318, 600
ochp_timeout 318, 600
OCSP 317–321
ocsp_command 318, 600
ocsp_timeout 318, 600
offset (for NTP) 154
OID 230

converting to legible text see SNMPTT
querying 235–237

OK (state) 27, 67, 96, 105, 555
displaying in NagVis 389
macro 278
negating return value 188
return value 188, 554, 555

on-demand checks 92, 95
on-demand macros 190, 626, 629, 632, 633
onlyhardstates (NagVis parameters) 394, 399
OpenLDAP

monitoring 164

restart by event handler 623
OpenNMS 312
OpenSSH 206
OpenVRML 349
operating status, of a network interface testing 254
OpMon Agent 469–470
opmonagent.ini 470
OR link, for check_multi 200
Oracle

instant client 576–577
monitoring 136, 137, 575–582

orphaned service 589
outages, detecting in network 94
outages.cgi 329, 350
output (ndomod parameters) 384
output_buffer_items (ndomod parameters) 384
output_type (ndomod parameters) 384

P
p1.pl 674
pager 276
parallelize_check 680
parents 65, 83, 93, 289, 361
passive mode

check_by_ssh 208
passive_host_checks_are_soft 600, 690
password

in SNMP 234
obscuring (NSClient+) 468
setting for check_nt (NSClient+) 468
specification in plugins 557

password file, for logging in to the Web front end see
htpasswd

PCAnywhere, monitoring 134
PCmeasure (sensor query program) 507
PCmeasure4linux.cfg 506
PDH error message, during NSClient installation 464
PENDING (state) 610

as criterion for service dependencies 287
as display criterion for status.cgi 336–337

Perf2rrd 415–420
perfdata_timeout 601
perffile_path (NagiosGrapher) 432
Performance Counter 481

defining 481–482
querying 482–484

Performance Counter instances 482
performance data 107, 118, 403–457, 559

displaying with Nagios::Plugin 572

710



Index

format 404
for overall system 346
processing intelligently 663
processing through an external command 407
separating string 572
processing via template 405–407

performance data processing, switcing on see pro-
cess_performance_data

performance problems, of Nagios revealing 341
performance counter

determining 480
querying 501

performance optimization 653–668, 691
PerfParse 446
periodic notification see interval check
Perl 669

developing plugins in 553–573, 670–672
Embedded see Embedded Perl
ICP::Open2 module 578
modules, installing 45
plugins for Windows 492–493
searching in ~ 412
for Windows 492

Perl script, as a plugin 27, 553–573, 670–672
permissions, changing on file see chmod
PerParse 456
PHP, disabling the GD library 392
physical_html_path 78, 609
pidfile (NagiosGrapher) 432
ping 46, 63, 66, 83, 108

check for Windows 492–493
warning limits 106

PIPE (log entry) 446
pipe (NagiosGrapher) 432
plugin 99, 101–103, 107

configuration files 572–573
developing as shell script 660–662
developing in Perl 553–573, 672
executing via SSH 102
generic 102, 132–136
help 556–557
local 102
multi-line output 692
multiple-line output 193
Oracle 578–582
return value 554–555
running via NRPE see NRPE
running via SSH 102, 205–211
service-specific vs. generic 101–102

timeout 558–559, 571–572
wrapper 578–582
writing your own 553, 660–662

plugins 27
check_icmp see check_icmp
developing in Perl 670
directory 73
documentation 107
downwards compatibility 30
echo, getting return value 168, 188, 256, 477, 480,
490
help 107
installation 43–45
manipulating output 189
negating output see negate
for network services 108–154
path to 79
performance data 107
return status 105
return value 96, 188
running through SSH 488
for special tasks 187
specifying host name 108
specifying IP address 108
standard options 108, 185
states 27, 96
testing 45–47
timeout 106, 108
version information 108
writing your own 575

PNP 446–456, 662
addressing graphic directly 452
batch processing of performance data 452–454
defining time period 451
and extended performance output 198–199

pNSClient.exe 464
POD 566–568
POP3

monitoring 113, 115–118
via SSL/TLS 115–118

POP3S see POP3 via SSL/TLS
port

MySQL 385
problems with NSClient & Co. 471, 634
specification in plugins 557

port (NagiosGrapher) 432
port scan, as a host check 112
Postfix, monitoring mail queue 180
PostgreSQL

711



Index

creating a database 137
creating a database user 137
monitoring 137–140
starting in network mode 137
testing database 27

postponing, tests 342
power failure, shutdown computer 182
power supply, monitoring for switches 260
precached_object_file 601, 691
precaching, of the Nagios self-test 691
PRG (log entry) 446
printer service, restarting automatically on failure

619–623
priority, of states in NagVis 390
problem, taking on 332
PROCESS_HOST_CHECK_RESULT 305
process_performance_data 407
PROCESS_SERVICE_CHECK_RESULT 305
processes

information in the host MIB 238
listing in Windows 484
monitoring see check_procs

in Windows 479
via SNMP 256, 260

specifying, to be monitored via SNMP 243
PROCESS_FILE 687
PROCESS_HOST_CHECK_RESULT 292, 295
processor load see CPU load
process_perfdata.cfg 448
process_perfdata.pl 447–449, 453
process_perfdata_command 407
process_performance_data 405, 410, 448, 601
PROCESS_SERVICE_CHECK_RESULT 104, 292, 294,

661
PROCSTATE (NSClient/NC_Net command) 479
programming

plugins in Perl 553, 573, 670
plugins as shell scripts 660–662

proxy, monitoring see Squid
pseudo-tests, for freshness checks 296
public-key login 208

Q
QMail, monitoring mail queue 180
questionable status see WARNING (state)
queues, on mail server see mail queue

R
RAM see memory

ranking list see hitlist
Reaper 666
reboot see restart
recognizeservices (NagVis parameters) 394, 399
reconnect_interval (ndomod parameters) 384
reconnect_warning_interval (ndomod parameters)

385
recovery

after error 97
notification 168
state 64, 269

red (state) 26
redirect, reaction of the check_http plugin 121
redundant systems, testing 189–191
refresh_rate 78, 609
refreshtime (NagVis parameters) 394
REGEX (log entry) 446
regexps see regular expressions
registry

changing NSClient parameters 465
managing NSClient+ parameters 468

regular expressions
allowing + in nagios.cfg 606
in check_http 121
in check_logs.pl 170
in check_snmp 247, 248, 250
with egrep 219
in event log 485
in Nagiosgraph 412
in NagiosGrapher 438, 441
in Perl 412

reload, of the system 84
repeat see test repeat
replay attacks, on NSCA 302
rescheduling, automatic 270, 274, 275
resource.cfg 54, 55, 73, 79, 249, 626
resource_file 601
response.php (PNP template) 455
responsible person see contact (object)
restart

failed services 619
of Nagios server 340, 367

retain_nonstatus_information 368
retain_state_information 354, 367, 601
retain_status_information 368
retention 367–368
retention_file 694
retention_update_interval 183, 601
retry_check_interval 68, 97, 614, 620, 680

712



Index

retry_interval 68, 96, 679, 680
return status, of plugins 105
return value

forcing the defined see check_dummy
of plugins determining with echo 168, 188, 256,
477, 480

return value
of Perl plugins 671
of plugins 554–555

reverse Polish notation see RPN
RFCs

1065–1067 (SNMP) 233
1155 (Internet namespace) 231
1155–1157 (SNMP) 233
1212 (format of an MIB) 231
1213 (MIB-II) 238
1901–1908 (SNMPv2c) 233
1905 (SNMPv2) 233
2790 (Host-MIB) 238
3410 (SNMP) 229
3411 (SNMP) 229
3411–3418 (SNMPv3) 233
3414 (USM) 234
3415 (VACM) 234

root property 573
round-robin archive 423
round-robin database 408

to assess network traffic 257
creating with Perf2rrd see Perf2rrd
evaluating graphically see ddraw
for sensor data 508

rounding up, in SNMP 249
router, monitoring network interfaces 251
RPN 441
RRA see round-robin archive
rra.cfg 448
RRD see round-robin database
RRD (log entry) 446
rrd_color_* (NagiosGrapher) 435
rrdpath (NagiosGrapher) 433
RRDs (Perl module), using with PNP 448
RRDtools 420, 447

CDEF see CDEF
configuration for PNP 455
installation 421

RSH 102

S
Samba, monitoring 163

same host dependency 289, 683
SAP

CCMS plugins see CCMS plugins
detecting application server 515, 526
interface for Nagios plugins 523–525
monitoring 511–530
monitoring system see CCMS
querying application server 513–515
querying message server 513–515

SAP instance 524, 527
SAPCAR 512
sapinfo 511–518
scheduled downtime (status) 65
scheduling 84, 453, 559
ScriptAlias (Apache) 47
search, in the Web interface 87
search engine, for log files 609
Second Level Support, informing of problems 282
Secure Shell see SSH, see SSH
segment limits, defining for a network 93
self-healing, through event handlers 619
self-monitoring 164, 183
SELinux 48–49
SEND_CUSTOM_HOST_NOTIFICATION 688
SEND_CUSTOM_SVC_NOTIFICATION 688
Sendmail, monitoring mail queue 180
send_nsca 104, 299, 304–306, 319

using with syslog-ng 309
send_nsca.cfg 304–305
sensors, monitoring see lm-sensors
service (object) 60, 66–69, 76–77

changes in Nagios 3.x 680–681
extended information 362, 366
self-defined variables 685–686

service check 26, 99–104
active 291
active preventing 293
active switching 343
command used 67
direct 101–102
vs. host check 612
via NRPE see NRPE
passive 291–294, 311, 488
passive as a display criterion for status.cgi 337
reachability 111
resetting error state manually see error states
via SSH 102

service checks
active 100

713



Index

via cronjobs 104
passive 101, 104
via NSCA 104
via SMTP 103–104

service dependencies 285–289
service dependency (object) 285–289
service group

display in NagVis 390
macros see group macros
showing, in the status display 334
viewing in the NDOUtils database 387

service group (object) 60, 69–70
changes in Nagios 3.x 681
selecting for status display 334

service groups 67
service objects, viewing in the NDOUtils database

387
service check

via cron jobs 666
frequency 662
passive 660, 666

service_check_timeout 602
servicedependency (object) 61

changes in Nagios 3.x 683
in NSClient/NC_Net 474

$SERVICEDESC$ 628
service_description 67, 680

access via macro 628
serviceescalation (object) 61, 283–285

changes in Nagios 3.x 683–685
$SERVICEEVENTID$ 686
serviceextinfo (object) 61, 362, 366, 452, 677

changes in Nagios 3.x 679
generating with NagiosGrapher 426, 433
integrating ddraw graphics into Nagios 425
for Nagiosgraph 411

serviceext_type (NagiosGrapher) 433
service_freshness_check_interval 602
$SERVICEGROUPALIAS$ 629
$SERVICEGROUPMEMBERS$ 629
servicegroup_members 70, 681
$SERVICEGROUPNAME$ 629
servicegroup_name 70
$SERVICEGROUPNAMES$ 629
service_inter_check_delay_method 602
service_interleave_factor 602
$SERVICELONGOUTPUT$ 628
service macros 628
service_notification_commands 71

$SERVICENOTIFICATIONID$ 686
$SERVICENOTIFICATIONNUMBER$ 630, 686, 693
service_notification_options 71
service_notification_period 71
service_notifications_enabled 681
service_notifications_options 681
$SERVICEOUTPUT$ 193, 626, 628
$SERVICEPERFDATA$ 193, 628
service_perfdata_command 410, 449, 602

dependent on the Nagios interface 443
independency of the Nagios interface 445

service_perfdata_file 603
service_perfdata_file_mode 453, 603
service_perfdata_file_processing_command 418,

453, 603
service_perfdata_file_processing_interval 453, 603
service_perfdata_file_template 453, 603
service-perfdata-pnp (command) 448
service_reaper_frequency 604, 666, 693
services

availability statistics see avail.cgi
defining dependences see servicedependency
(object)
defining NRPE in /etc/~ 216
detailed information on individual 339
excluding from notification 270, 681
grouping see service group (object)
including in status calculation (NagVis) 390, 394
including status calculation (NagVis) 399
listing in Windows 484
monitor all of a user 79
overview of all 87
overview of defective 87
overview of faulty 86
password definitions in 79
recommended configuration file 56
test commands see service check
test interval 68
to be monitored see service (object)
volatile see volatile services
Windows see Windows services

$SERVICESTATE$ 628
SERVICESTATE (NSClient/NC_Net command) 478
$SERVICESTATEID:*$ 190
$SERVICESTATEID$ 628
$SERVICESTATETYPE$ 628
shell script

as a plugin 27
developing plugins in the form of 660, 662

714



Index

shell scripting see bash programming
$SHORTDATETIME$ 630
show_context_help 78
showlog.cgi 329, 356
signal handler, in plugins 571
single sign-on 637–652
size

of a file monitoring see check_file_age
monitoring for a directory (Windows) 496
monitoring for a file (Windows) 467, 496

sleep_time 604
slurpd, monitoring 164
SMBus 185
smoke alarm 506
SMS

delivery address see pager
as a notification medium 278–282
notification program 278

smsclient 278–282
installation 279–280

smssend 278
SMTP 26, 103–104, 113–115

test of mail server restrictions 115
testing 101

SNMP 227–264
authentication see authentication
converting OIDs to legible text see SNMPTT
defining protocol version for check_snmp 248
generic Nagios plugin see check_snmp
and precision see rounding up
Nagios plugins 246–264
querying OIDs 235–237
RFCs 229, 231, 233–234, 238
and service dependencies 289
testing several network interfaces simultaneously
252
in Windows 462

SNMP management systems, in comparison to Na-
gios 312

SNMP traps 228
processing 292
processing with Nagios 312–316

snmpd 238–246
configuration see snmpd.conf
traps sent by default 313

snmpd.conf 240–246, 313
snmpget 235

as a utility for check_snmp 247
snmpgetnext 235

snmptrapd 312–313, 532, 546
snmptrapd.conf 312

integrating SNMPTT 546
SNMP traps 532
SNMPTT 532, 534, 546–549

Web front end 532
snmptt.ini 547–548
SNMPv1 233

as security model in the snmpd configuration
240

SNMPv2c 233
as security model in the snmpd configuration
240

SNMPv3 233
security model in the snmpd configuration 240

snmpwalk 235–236, 239
socket_name (ndo2db parameters) 385
socket_type (ndo2db parameters) 385
soft recovery 97
soft state 63, 68, 92, 96, 267

accounting for, in frequency statistics 354
after RECOVERY 354
ignoring in NagVis 391, 394, 399
macro 628

source code, download 39
Splunk 609
splunk_url 609
SPNEGO 639, 640
spreading 84
sqlplus (Oracle) 576–577
Squid

cache manager 125, 126
configuring to use check_squid 126
monitoring 123–127

SSH
compatibility problems in heterogeneous envi-
ronments 205
generating key pairs 208
monitoring see check_ssh
running plugins through 102, 205–211, 488
using in event handler scripts 622

SSL
capabilities, Web server testing 101
check_pop, check_imap 117
SSL connection, Web server testing 123
via STARTTLS see STARTTLS
using for the test (check_tcp) 134

SSO see single sign-on
standard macros 627–632

715



Index

start script 84
STARTTLS 117

and check_tcp 134
testing, in POP And IMAP connections 117

STARTTLS (check_smtp) 114
state, confirm see acknowledgement
state flapping see flapping
state macros 686
state type 621
state_retention_file 367, 604
states

hard and soft 92
of hosts and services 96–98

statistical macros 631
statistics, availability of hosts and services see

avail.cgi
status, oscillating see flapping
status display, in the Web interface see status.cgi
status flags, monitoring processes with specific 165
status macros 621
status values

of host checks 190
of service checks 190

status.cgi 328, 334–338, 615, 692
Nuvola style 368
output style 334

status.dat 591
status_file 604
statusmap.cgi 328, 346–348

user defined map layout 365
using individual icons 365

statusmap_background_image 609
statusmap_image 365
status_update_interval 604
statuswml.cgi 328, 350
statuswrl.cgi 328, 348–350, 365, 608
statuswrl_include 610
step (NagiosGrapher) 432
stop light states 26
storage space see hard drive capacity
stratum 154
style, Nuvola see Nuvola
sudo 622
summary.cgi 329, 357–358
summary macros 667
SuSE

NET-SNMP 234
NRPE installation 214
smsclient installation 279

swap area, usage in Unix vs. Windows 476
swap partition, testing 206
swap space

in the Host Resources MIB 238
monitoring with SNMP 259–262
testing 102, 162
in the UCD-SNMP-MIB 239

switched-off computer see DOWN (state)
switches, monitoring 227
symlinks, for the start script 84
syslog

integrating into Nagios 306–312
logging of NSCA 302
logging Windows events in 545–546
sending events to database 536, 538

syslog-ng see syslog
documentation 307

syslog-ng.conf 307
system information, storing in SNMP 242
system load see CPU load
system start 43, 84
system time

checking with NTP see check_ntp
checking with the time protocol see check_time
monitoring 177–179

SysTray.dll 467
Systray icon, for NSClient+ 467

T
tac.cgi 329, 345–346, 615
TCP wrapper, using with NRPE 217, 220
tcp_port (ndomod parameters) 384
telephone number, for SMS see pager
temperature

monitoring 505–509
testing via SNMP 250

temp_file 604, 693
templates 75–76, 684

for distributed monitoring 321–324
for drraw 426
for hosts 471
for PNP 454–456
for processing performance data 405–407
self-defined variables 471
to retrieve SAP monitoring data 523–525

temp_path 604, 693
test

NSClient+- module 467
of Perl plugins 674–675

716



Index

of the NSCA 306
test plugin see check_dummy
test repeat, defining number see max_check_attempts
tests, postponing 342
threshold 557, 572

critical (check_dig) 128
critical (check_disk) 158
critical (check_eventdb.pl) 543
critical (check_ntp_peer) 155, 156
critical (check_pcmeasure) 508
negating 558
parsing details of 570–571
value, critical (check_ntp_peer) 156

$TIME$ 630
time, system see system time
time axis, of states that have occurred see trends.cgi
time details 62
time macros 630
time object see timeperiod (object)
time period

defining 74–75
defining for display (PNP) 451
for messages 270
for monitoring see check_period
for notification 60, 64, 70–71, 273

time protocol
for monitoring system time see check_time

time unit 62
timeout

implementing 571–572
plugin 106, 108, 558–559
return value 555

timeperiod (object) 60, 64, 74–75
changes in Nagios 3.x 682

timeperiods.cfg 74
$TIMET$ 630
time zone, defining 692
TLS see SSL
tmppath (NagiosGrapher) 433
Token Ring, vs. CSMA/CD (Ethernet) 232
topology see network topology
$TOTALHOSTSDOWN$ 631
$TOTALHOSTSUNREACHABLE$ 631
$TOTALHOSTSUP$ 631
$TOTALSERVICEPROBLEMS$ 631
$TOTALSERVICESCRITICAL$ 631
$TOTALSERVICESOK$ 631
$TOTALSERVICESUNKNOWN$ 631
$TOTALSERVICESWARNING$ 631

traffic see network traffic
traffic light states 67
translate_passive_host_checks 604, 690
traps see SNMP traps
trends.cgi 329, 358–359

U
UCD-SNMP-MIB 238
UCD-SNMP 234
UDP services, monitoring see check_udp
udpecho 444
uninterruptible power supply see UPS
Unix socket, as NDOUtils interface 378
UNKNOWN (state) 27, 96, 106, 555

color in the Web interface 351
as a display criterion for status.cgi 337
displaying in NagVis 389
displaying in the Web interface 346
force/suppress notification 269
macro 278
return value 188, 555

UNREACHABLE (state) 27, 64, 65, 94, 269
as display criterion for status.cgi 336
macro 277
return value 555

UP (state) 94, 96
as a display criterion for status.cgi 336–337
macro 277

upgrade, to Nagios 3.0 693–694
UPS 149

check load 182
checking load status 182
monitoring 149–154, 182–183, 531
SNMP capability 227

upsd 150
upsmon 150
uptime 162

checking for Windows computers 467
checking for Windows hosts 499
testing for Windows computers 477
testing for Windows hosts 494, 495

UPTIME (NSClient/NC_Net command) 477
URL, adding to Nagios Web page 61
url (NagiosGrapher) 433
url_html_path 78, 610
urlize 189

for Windows 491
use_retained_scheduling_info 606
use_aggressive_host_checking 555, 605

717



Index

use_authentication (Nagios) 78, 606
use_authentication (NagiosGrapher) 436
USEDDISKSPACE (NSClient/NC_Net command)

476–477
usedgdlibs (NagVis parameters) 392
use_embedded_perl_implicitly 605, 673, 688
use_large_installation_tweaks 605, 667
use_pending_states 610
users

creating 209
logged in, monitoring number of 177
NagiosGrapher 432

user account, creating see creating user
user permissions, changing on file see chmod
useradd 209
use_regexp_matching 605
use_retained_program_state 605
$USERx$ macros 601, 625, 631

$USER1$ 625
use_syslog 606
use_timezone 606, 692
use_true_regexp_matching 606
USV, monitoring 666

V
VALUES (log entry) 446
variables

for NagiosGrapher 444
macros as environment 592, 631
self-defined 471, 685–686
switching off environment 449, 686

as a performance brake 667
user-defined 626, 633–635

volatile services 167, 309–310
voltage detector 506
VRML display, monitored computer see statuswrl.cgi
VRML-capable browser 348
vrml_image 365
VRRP 260

W
WAP

access to Nagios see statuswml.cgi
Nagios via 350

WARNING (state) 26, 27, 96, 105, 555
as a display criterion for status.cgi 337
displaying in NagVis 389
force/suppress notification 269
macro 278

marking in the Web interface 87
resetting manually see error states
return value 188

warning limit
check_apc 182–183
check_by_ssh 207
check_dig 128, 130
check_disk 158
check_file_age 181
check_http 120
check_icmp 109
check_iftraffic 258
check_ldap 144
check_load 163
check_mailq 180
check_nt 472
check_ntp 178
check_pgsql 139
check_procs 164
check_smtp 114
check_snmp 247, 251
check_snmp in lm-sensors query 250
check_snmp_load 263
check_squid 127
check_swap 162
check_tcp 116, 133
check_time 179
check_ups 152
check_users 177
CPULOAD 475
in performance data 179
in plugin output 107
for slow network connections 106
specifying 108

warning threshold
check_disk 158
check_eventdb.pl 543
check_ntp_peer 155, 156
check_pcmeasure 508

water alarm 506
Web front end see Web interface
Web interface 28, 85–88, 327–368, 375–387

adding NagVis maps 401
adding PNP 452
configuration 47–51
context-dependent help 78
displaying host groups 59
general overview 85, 329
granting a user access to everything 79

718



Index

of Nagios 3.0 692
overview of all hosts and services 87
overview of defective services 87
overview of faulty services 86
for PNP 449
representation of flapping services 615–616
representing service groups 60
search options 87
showing a single host 87
showing virtual hosts as links 120
single sign-on 637–652
starting 48
switching authentication on/off 78
welcome screen 85

Web proxy, monitoring see Squid
Web server

specifying user and password for the test 121
testing see HTTP
testing the lifespan of a certificate 123

Web users, determining 393
weekdays, restricting actions 74
Windows

event log 461
listing processes 484
listing services 484
monitoring 461–504
monitoring processes 500
NRPE see NRPE_NT, 488
Performance Counter see Performance Counter

querying event log 485–486
querying WMI database 487
server, monitoring 101
services, monitoring 478
SNMP 260, 462

Windows events
monitoring 532
sending to Syslog 545–546

WMI 463
WMI database, querying 467, 487
WMICOUNTER (NC_Net command) 488
WMIQUERY (NC_Net command) 487
WML see statuswml.cgi
worker, in NagVis 389
WUI (NagVis) 391, 396–400

settings 394

X
xinetd

configuration for NRPE 216
configuration for NSCA 303

Y
yaps 278
yellow (state) 26

Z
zombies, checking system for 165
zoom (NagiosGrapher) 440

719







N A G I O S
 2 N D  E D I T I O N

N A G I O S
2 N D  E D I T I O N

S Y S T E M  A N D  N E T W O R K  M O N I T O R I N G

W O L F G A N G  B A R T H

“This book is incredibly detailed…I don’t think I 
could have gone into that much detail if I wrote 
a book myself. Kudos!”
—Ethan Galstad, main developer, Nagios

Cove
rs

NAGIOS

3.0

www.nostarch.com

TH E  F I N EST  I N  G E E K  E NTE RTA I N M E NT™

SHELVE IN:
SYSTEM

 ADM
INISTRATION

$59.95 ($59.95 CDN)

N O  M O R E  
N E T W O R K  

M O N I T O R I N G  
M I G R A I N E S !

N O  M O R E  
N E T W O R K  

M O N I T O R I N G  
M I G R A I N E S !

      “ I  LAY  F LAT .”

Th is book uses RepKover — a durab le b ind ing that won’t snap shut.

Good system administrators recognize problems long 
before anyone asks, “Hey, is the Internet down?” Nagios, 
an open source system and network monitoring tool, has 
emerged as the most popular solution for sys admins in 
organizations of all sizes. It’s robust but also complex, 
and Nagios: System and Network Monitoring, 2nd 
Edition, updated to address Nagios 3.0, will help you 
take full advantage of this program. 

Nagios, which runs on Linux and most *nix variants, can 
be configured to continuously monitor network services 
such as SMTP, POP3, HTTP, NNTP, SSH, and FTP. It can 
also supervise host resources (processor load, disk and 
memory usage, running processes, log files, and so on) 
and environmental factors, such as temperature and 
humidity. This book is your guide to getting the most out 
of this versatile and powerful monitoring tool.

Inside Nagios, you’ll learn how to:

• Install and configure the Nagios core, all standard 
plugins, and selected third-party plugins

• Configure the notification system to alert you of 
ongoing problems—and to alarm others in case of 
a serious crisis

• Program event handlers to take automatic action when 
trouble occurs

• Write Perl plugins to customize Nagios for your 
unique needs

• Quickly understand your Nagios data using graphing 
and visualization tools

• Monitor Windows servers, SAP systems, and Oracle 
databases

The book also includes a chapter that highlights the 
differences between Nagios versions 2 and 3 and 
gives practical migration and compatibility tips. Nagios: 
System and Network Monitoring, 2nd Edition is a great 
starting point for configuring and using Nagios in your 
own environment.

A B O U T  T H E  A U T H O R

Wolfgang Barth has written several books for profes-
sional network administrators, including The Firewall 
Book (Suse Press), Network Analysis (Suse Press), and 
Backup Solutions with Linux (Open Source Press). He is 
a professional system administrator with considerable 
experience using Nagios.

B
A

R
T

H
N

A
G

IO
S

2
N

D
 E

D
IT

IO
N

N
A

G
IO

S
2

N
D

 E
D

IT
IO

N


	Contents
	Foreword to the Second Edition
	Information Sources on the Internet
	Introduction
	About This Book
	Note of Thanks
	PART I: From Source Code to a Running Installation
	1: Installation
	2: Nagios Configuration
	3: Startup

	PART II: In More Detail...
	4: Nagios Basics
	5: Service Checks and How They Are Performed
	6: Plugins for Network Services
	7: Testing Local Resources
	8: Plugins for Special Tasks
	9: Executing Plugins via SSH
	10: The Nagios Remote Plugin Executor (NRPE)
	11: Collecting Information Relevant for Monitoring with SNMP
	12: The Nagios Notification System
	13: Passive Tests with the External Command File
	14: The Nagios Service Check Acceptor (NSCA)
	15: Distributed Monitoring

	PART III: The Web Interface and Other Ways to Visualize Nagios Data
	16: The Classical Web Interface
	17: Flexible Web Interface with the NDOUtils
	18: NagVis
	19: Graphic Display of Performance Data

	PART IV: Special Applications
	20: Monitoring Windows Servers
	21: Monitoring Room Temperature and Humidity
	22: Monitoring SAP Systems
	23: Processing Events with the EventDB

	PART V: Development
	24: Writing Your Own Plugins
	25: Determining File and Directory Sizes
	26: Monitoring Oracle with the Instant Client

	Appendixes
	A: An Overview of the Nagios Configuration Parameters
	B: Rapidly Alternating States: Flapping
	C: Event Handlers
	D: Macros
	E: Single Sign-On for the Nagios Web Interface
	F: Tips on Optimizing Performance
	G: The Embedded Perl Interpreter
	H: What's New in Nagios 3.0?

	Index



