
Neural Networks
for Electronics
Hobbyists

A Non-Technical Project-Based
Introduction
—
Richard McKeon

www.allitebooks.com

http://www.allitebooks.org

Neural Networks for
Electronics Hobbyists
A Non-Technical Project-Based

Introduction

Richard McKeon

www.allitebooks.com

http://www.allitebooks.org

Neural Networks for Electronics Hobbyists: A Non-Technical
Project-Based Introduction

ISBN-13 (pbk): 978-1-4842-3506-5 ISBN-13 (electronic): 978-1-4842-3507-2
https://doi.org/10.1007/978-1-4842-3507-2

Library of Congress Control Number: 2018940254

Copyright © 2018 by Richard McKeon

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natalie Pao
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-3506-5.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Richard McKeon
Prescott, Arizona, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3507-2
http://www.allitebooks.org

iii

About the Author ��vii

About the Technical Reviewer ���ix

Preface ��xi

Table of Contents

Chapter 1: Biological Neural Networks���1

Biological Computing: The Neuron ��2

What Did You Do to Me? ��9

Wetware, Software, and Hardware ��10

Wetware: The Biological Computer ��11

Software: Programs Running on a Computer ��13

Hardware: Electronic Circuits ��15

Applications ��16

Just Around the Corner ���17

Chapter 2: Implementing Neural Networks ��19

Architecture? ��19

A Variety of Models ���21

Our Sample Network ���22

The Input Layer ��23

The Hidden Layer ���23

The Output Layer ���24

Training the Network ���24

Summary���27

www.allitebooks.com

http://www.allitebooks.org

iv

Chapter 3: Electronic Components ���29

What Is XOR? ��29

The Protoboard��31

The Power Supply ���33

Inputs ��37

SPDT Switches ��38

Resistor Color Code ���40

LEDs���43

What Is a Voltage Divider? ��43

Adjusting Connection Weights ��45

Summing Voltages ��47

Op Amp Comparator ��48

Putting It All Together ��50

Parts List ���52

Summary���54

Chapter 4: Building the Network ��55

Do We Need a Neural Network? ��56

The Power Supply ���57

The Input Layer ���58

The Hidden Layer ��61

Installing potentiometers and Op Amps���63

Installing Input Signals to the Op Amps ���64

The Output Layer ���68

Installing Potentiometers and Op Amp Z ���69

Installing Inputs to Op Amp Z ���70

Finishing the Output Layer ��71

Table of ConTenTsTable of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

v

Testing the circuit ���73

Summary���73

Chapter 5: Training with Back Propagation ��75

The Back Propagation Algorithm ���78

Implementing the Back Propagation Algorithm ���81

Training Cycles ��83

Convergence ���91

Attractors and Trends ��92

What Is an Attractor? ���92

Attractors in Our Trained Networks ���94

Implementation ���97

Summary���98

Chapter 6: Training on Other Functions ��99

The OR Function ��101

The AND Function ��105

The General Purpose Machine ��112

Summary���114

Chapter 7: Where Do We Go from Here? ���115

Varying the Learning Rate ���115

Crazy Starting Values ��116

Apply the Back Propagation Rule Differently ��116

Feature Extraction ���117

Determining the Range of Values��117

Training on Different Logic Functions ���118

Try Using a Different Model ���119

Table of ConTenTsTable of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

vi

Build a Neural Network to Do Other Things ��119

Postscript ��120

Summary���121

 Appendix A: Neural Network Software, Simbrain �����������������������������123

 Appendix B: Resources ���133

 Neural Network Books ��134

 Chaos and Dynamic Systems ��135

Index ���137

Table of ConTenTsTable of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

vii

About the Author

Hi, I’m Rick McKeon. I am currently living in beautiful Prescott, Arizona.

Since retiring, I have been spending time pursuing my passion for writing,

playing music, and teaching. I am currently producing a series of books

on music, nature, and science. Some of my other interests include hiking,

treasure hunting, recreational mathematics, photography, and experimenting

with microcontrollers. Visit my website at www.rickmckeon.com.

www.allitebooks.com

http://www.rickmckeon.com/
http://www.allitebooks.org

ix

About the Technical Reviewer

Chaim Krause is first and foremost a #Geek. Other hashtags used to

define him are (in no particular order) #autodidact, #maker, #gamer,

#raver, #teacher, #adhd, #edm, #wargamer, #privacy, #liberty, #civilrights,

#computers, #developer, #software, #dogs, #cats, #opensource,

#technicaleditor, #author, #polymath, #polyglot, #american, #unity3d,

#javascript, #smartwatch, #linux, #energydrinks, #midwesterner,

#webmaster, #robots, #sciencefiction, #sciencefact, #universityofchicago,

#politicalscience, and #bipolar. He can always be contacted at

chaim@chaim.com and goes by the Nom de Net of Tinjaw.

www.allitebooks.com

https://chaim@chaim.com
http://www.allitebooks.org

xi

Preface

This book is for the layman and the electronics hobbyist who wants to

know a little more about neural networks. We start off with an interesting

nontechnical introduction to neural networks, and then we construct

an electronics project to give you some hands-on experience training a

network.

If you have ever tried to read a book about neural networks or even

just tried to watch a video on this topic, you know things can get really

technical really fast!

Almost immediately, you start to see strange mathematical symbols

and computer code that looks like gibberish to most of us! I have degrees

in mathematics and electrical engineering. I have taught math, and spent

a career designing electronic products. But most of the articles that I start

to read in this field just blow me away! Well, that’s what we hope to avoid

here. My goal is to give you an interesting and fun introduction to this

fascinating topic in an easy-to-understand, nontechnical way. If you want

to understand neural networks without calculus or differential equations,

this is the book for you!

There are no prerequisites. You don’t need an engineering degree,

and you don’t even need to understand high school math in order to

understand everything we are going to discuss. In this book, you won’t see

a single line of computer code.

For this project, we are going to take a hardware-based approach using

very simple electronic components. The project we are going to build

isn’t complicated, but it illustrates how back propagation can be used to

adjust connection strengths or “weights” and train a network. We do this

manually by adjusting potentiometers in the hidden layer.

www.allitebooks.com

http://www.allitebooks.org

xii

This network doesn’t learn automatically. We have to intervene with

a screwdriver. This is a tutorial for us to learn how adjusting connection

strengths between neurons results in a trained network. Now, how much

fun is that?

If you like to tinker around with components and build circuits on a

breadboard, you’re going to love this project! Who knows, if you enjoy this

brief introduction, you may want to pursue this amazing subject further!

Neural networks are modeled after biological computers like the

human brain. Instead of following a step-by-step set of instructions,

a neural network consists of a bunch of “neurons” that act together in

parallel—all at once—to produce an output!

So, instead of writing a program like you would for a conventional

computer with

 1. Fetch an instruction.

 2. Execute it.

 3. Fetch the next instruction.

 4. Execute it . . .

You “train” a neural network by showing it the input data and the

correct answer. You do this over and over again (maybe hundreds of

times), and leave it up to the network to figure out how to come up with

the right answer. During this training process, the network figures out how

to solve the problem, even when we don’t know how to solve it ourselves.

In fact, some of our best algorithms have come from figuring out how the

neural network did it.

That may seem impossible, but think about it: many of our best

products have been developed by observing nature. The natural world

has been around for millions of years, adapting and discovering solutions

to all kinds of problems. Modern computers operate so fast that they can

simulate thousands of generations of natural adaptation in just a few

minutes! As long as we don’t make this planet uninhabitable for humans,

PrefaCePrefaCe

xiii

we are on the verge of amazing technological discoveries! And the

application of neural networks is one of them.

I know it sounds crazy that we could build a machine that does stuff

we don’t know how to do ourselves, but the fact is that we work really hard

to go back and try to figure out how the network did it. It’s called “feature

extraction.” We delve deep into the “hidden layers” for hidden secrets.

This exciting field of study reminds me of the early days of exploration

when adventurers traveled in sailing ships to strange and exotic lands to

discover hidden mysteries. The age of discovery is not over. With today’s

technology, it’s really just beginning!

Are you getting excited to learn more?

Neural networks are great at pattern recognition and finding answers

even when the input data isn’t all that great. They can reliably find patterns

even when some of the input data is missing or damaged. Also, a neural

network can produce amazingly accurate results based on data it has never

seen before. In other words, it can “generalize.”

That may be hard to believe, but that’s what you and I do every day.

How do we do it?

We have a brain!

Your brain is a huge collection of very simple processing elements

called “neurons.” These neurons are interconnected like crazy. It’s hard to

imagine how many connections there are! But, no worries, we will see how

some of this stuff works even with just a few neurons.

Tips and Tricks When you see text set off like this, I am offering
some interesting tips to make your life easier or just a silly comment
to lighten things up.

I’m hoping this book will be an interesting and informative

introduction to neural networks, but it certainly is not comprehensive.

PrefaCePrefaCe

xiv

I’m also hoping this brief introduction will be enjoyable enough that

you will want to go on and learn more about this amazing technology!

I am always right here to help you along and answer questions.

No question is to simple or too basic, so shoot me an email at

rmckeon5@gmail.com.

OK, enough talk. Let’s get started!

PrefaCePrefaCe

https://rmckeon5@gmail.com

1© Richard McKeon 2018
R. McKeon, Neural Networks for Electronics Hobbyists,
https://doi.org/10.1007/978-1-4842-3507-2_1

CHAPTER 1

Biological Neural
Networks
“Is there intelligent life in outer space?” OK, that may be a little bit tongue

in cheek, but, think about it, maybe it is a valid question. How much

biological intelligence is there on earth? Where does it come from? And

how much greater can it be? Is it just a matter of “bigger brains” or more

complex neural networks inside our skulls?

Are there intelligent networks other than the human brain? How about

animal intelligence or even plant intelligence? Many of these nonhuman

networks share a surprising amount of DNA with humans. In fact,

scientists have sequenced the genome of the chimpanzee and found that

we share with them about 94% of the same DNA. Is that amazing, or what?

Think about the following:

 1. Dogs can learn to follow voice commands.

 2. Gorillas and chimps can learn sign language and

use it to communicate.

 3. Many birds use tools and can figure out complex

ways to get food without being taught.

2

Amazing Fact Scientists estimate that there are about 44 billion
neurons in the human brain and each one of them is connected to
thousands of other neurons! See Figure 1-1.

Here are some estimates of the number of neurons for other species:

• Fruit Fly: 100 thousand neurons

• Cockroach: One million neurons

• Mouse: 33 million neurons

• Cat: One billion neurons

• Chimpanzee: Three billion neurons

• Elephant: 23 billion neurons

So, is a neural network all it takes to develop intelligence? Many people

say yes.

Modern electronic neural networks are already performing amazing

feats of pattern recognition. The near future will almost certainly bring

huge advances in this area!

 Biological Computing: The Neuron
Here’s where it starts. Figure 1-1 is a graphical representation of a nerve cell

or “neuron.” Your brain has billions of these things—all interconnected!

Just because of the sheer number of neurons and how they are

interconnected, the study of the human brain gets complicated really fast!

Chapter 1 BiologiCal Neural NetworkS

3

The doctors studying the brain scan in Figure 1-2 are probably

looking for a specific, identifiable problem like a brain tumor. Even these

specialists don’t have all the answers about detailed brain function.

Figure 1-1. An individual neuron

Figure 1-2. Doctors study brain scan

Chapter 1 BiologiCal Neural NetworkS

4

In recent years, we have made great strides in understanding the

structure and electrical activity of the brain, but we still have a long way to

go! This is especially so when it comes to concepts like self-awareness and

consciousness. Where does that come from? Fortunately, for us to build

functioning networks that can accomplish practical tasks, we don’t need to

have all the answers.

Of course we want to understand every detail of how the brain works,

but even if simple and incomplete, today’s neural network simulations

can do amazing things! Just like you and me, neural networks can perform

very well in terms of pattern recognition and prediction even when given

partial or corrupted data. You are probably thinking, “This is more like

science fiction than science!” Believe me, I’m not making this stuff up.

So, how does a neuron work? Figure 1-3 gives us a few hints. A neuron

is a very complex cell, but basically they all operate the same way.

 1. The dendrites receive electrical impulses from

several other neurons.

 2. The cell body adds up all these signals and

determines what to do next. If there is enough

stimulation, it decides to fire a pulse down its axon.

 3. The axon has connections to several other neurons.

 4. And “the beat goes on,” so to speak.

Of course, I have left out some details, but that’s basically how it works.

We will talk about “weights,” “activation potentials,” “transfer functions,”

and stuff like that later (without getting too technical).

Chapter 1 BiologiCal Neural NetworkS

5

So, if you connect up all these neurons, what does it look like? Well,

not exactly like Figure 1-4, but it kind of gives you the idea. Biological

computers are highly interconnected.

Figure 1-3. Information flow

Chapter 1 BiologiCal Neural NetworkS

6

An interesting thing that is not shown in Figure 1-4 is that the neurons

are not directly connected or “hard-wired” to the others. Where these

connections take place, there is a little gap called a “synapse.” When a

neuron fires, it secretes a chemical into the synapse. These chemical

messengers are called “neurotransmitters.” Depending on the mix of

neurotransmitters in the synapse, the target cell will “get the message” either

pretty strongly or pretty weakly. What will the target neuron do? It will sum

up all these signals and decide whether or not to fire a pulse down its axon.

You can see that we are not exactly talking about electrons flowing

along a piece of copper wire. The equivalent thing in neurons is a chemical

exchange of ions. Is the concept of “ion exchange” more complicated

than electrons flowing in a wire? Not really. We actually don’t understand

electron flow all that well either; it’s just that we’re more used to hearing

about things that use electricity.

Figure 1-4. Interconnected neurons

Chapter 1 BiologiCal Neural NetworkS

7

When a person drinks alcohol or takes certain types of drugs,

guess what they are affecting. You guessed it! They are affecting the

neurotransmitters—the chemistry within the synapse.

When you go to the dentist and get a shot of Novocain to block the

pain, what is that Novocain doing? It’s preventing neurons from firing by

interfering with the chemical processes taking place. So, understanding

that brain activity is electrochemical makes this whole discussion a lot

more understandable.

Remember when I said we weren’t going to get too technical? Well,

that’s it for this discussion.

Congratulations! You just graduated from the “rick Mckeon
School of Brain Chemistry.”

Figure 1-5 may not be scientifically accurate, but it is a pretty picture,

and it graphically represents what happens in a synapse.

Chapter 1 BiologiCal Neural NetworkS

www.allitebooks.com

http://www.allitebooks.org

8

Given all these complex interconnections, something good is bound to

emerge, right? Well, it does, and that’s what makes this new field of study

so exciting!

how can behavior “emerge”? well, this is another fascinating
topic that we are just beginning to understand. without getting
too technical, let me just say that when many individuals interact,
an overall behavior can emerge that is more complex than any of
the individuals are capable of. how crazy is that? think about the
behavior of an ant colony, a flock of birds, or a school of fish. the
individuals use pretty simple rules to interact with each other, but the
overall behavior can be pretty complex.

Let me relate an interesting story from my music teacher days.

Figure 1-5. The synapse

Chapter 1 BiologiCal Neural NetworkS

9

 What Did You Do to Me?
I have taught guitar and banjo students for many years, and I am

continually amazed when learning takes place. I’m not amazed that

learning takes place, but I am at a loss to explain exactly what has

happened. When learning occurs some physical changes have taken

place in the brain. By this, I mean actual rewiring of neurons or chemical

changes in the synapses! And it happens quickly. That is why the brain is

called “plastic.”

Teaching banjo is so much fun because stuff like this happens all

the time! We may be working on a certain lick or musical phrase and the

student just isn’t getting it. His timing and accent are way off, and he just

can’t make it sound musical. We will go over it several times and I’ll say,

“Make it sound like this.” I’ll have him sing it rhythmically and say, “Now,

make the banjo sing it like that.” All of a sudden he can play it perfectly!

What the heck?

One time when this happened, the student was just as surprised as

I was and asked, “What did you do to me?” Amazing question, and a

hard one to answer! Learning has taken place. He couldn’t play the lick

no matter how hard he tried, but then he could, and he recognized the

difference. What happened? Something changed.

I don’t know exactly how it works, but learning has taken place, and

new neural connections have been formed or synaptic weights have

changed. Our brains are changing all the time. Even as we get older, we

can still learn new things. The saying that you “can’t teach an old dog new

tricks” is a folly. We are capable of learning new things until we draw our

last breath!

We’ll get more into the details of how (we think) learning takes place

when we talk about training neural networks.

Chapter 1 BiologiCal Neural NetworkS

10

 Wetware, Software, and Hardware
Artificial neural networks represent our attempt to mimic the amazing

capabilities of biological computers. Many of our existing technologies

have been inspired by nature. This is sometimes called “biomimicry”

because the solution we eventually come up with mimics the structure or

function of nature’s solution.

We recognize that there are lessons to be learned from nature. After

all, nature has been changing and adapting for millions of years. Why not

learn a few things from all that time and effort?

Think of things as diverse as the airplane, Velcro, distribution networks

resembling leaf veins, and antibacterial surfaces inspired by sharkskin.

Engineers often look to the natural world to see if nature has already

figured out a workable solution to the problem.

Also (kind of a philosophical question perhaps), think about the huge

advantage our ability to write things down and build a library of shared

knowledge gives us. Each person doesn’t have to learn everything all

over again from scratch. We draw on a shared database of knowledge that

doesn’t have to be rediscovered! That may seem like a trivial thing at first,

but it moves our species forward in a huge way!

We can’t actually create living biological computers (yet), but we are

learning to emulate them in hardware and software. And we are starting to

get good at it! Are you getting excited to see where this thing is going? Let’s

just do a quick comparison between nature’s neural networks and how

we try to simulate them in hardware and software. This will be just a quick

overview. In later chapters we will get more specific.

Chapter 1 BiologiCal Neural NetworkS

11

 Wetware: The Biological Computer
“Wetware” is what we call biological computers. How cool is that?

Are neurons really wet? Well, believe it or not, the human body is about

50% water! The numbers vary quite a bit depending on age and sex, but that’s

a pretty significant percentage. If you poke yourself with a sharp object (not

recommended) out will come blood. Blood is about 92% water by volume.

The problem with actual living biological neurons is that we can’t

manufacture them. Maybe one day, but not today. We are learning quite a

bit by studying animal brains—even at the individual neuron level, but we

can’t build living biological networks at this time. Is this getting to sound

a little bit like Star Trek bio-neural gel packs? Well, yesterday’s science

fiction is today’s science, and (you know what I’m going to say) today’s

science fiction is tomorrow’s science!

In wetware, how is the feedback and actual weight adjustment

accomplished? We don’t know. Will we ever know? At the current rate of

discovery in brain research, it is pretty likely, and indeed may not even be

too far off.

So, we do the best we can. We use biological networks (at least our

current limited understanding of them) to build hardware and software

systems that can perform similar functions. I mean, if you base your

simulation on a model that is known to be successful, your chances of

success should be pretty good, right?

Our options at this time are pretty limited. We can

 1. Write software that runs on a conventional

processor and try to emulate the way we think

neurons actually work.

 2. Produce hardware chips that contain electronic

circuits that mimic actual biological neurons.

 3. Try to combine these two approaches in a way that

makes economic sense.

Chapter 1 BiologiCal Neural NetworkS

12

If you know anything about semiconductor manufacturing, I’m sure

you realize that designing and setting up to manufacture a new chip takes

a huge investment. Would Intel or Motorola make this kind of investment if

the prospects for sales and profits were minimal? No way!

Software development for a product running on a PC can be very cost-

effective. So, who wins? Software emulation.

But, if the goal is to implement a product using an embedded neural

network, who wins? Hardware!

In real life, the program will probably be written in software and then

compiled and downloaded to an embedded microcontroller. So what am I

saying? It’s probably still going to be a software simulation. You can search

“till the cows come home” but today you probably won’t find much for

actual neural network “chips.”

Real-life technology advancement and product development depend

on several factors, the most important one being profit.

In this book, we will be building a neural network out of simple

electronic components, but the options available to us today are amazing.

Let me just mention a few:

 1. Large, general purpose computers and PCs are

hardware platforms capable of running a variety

of different applications on the same machine.

To accomplish a different task, you don’t need a

different machine, you just run a different program.

 2. Recently, small, inexpensive computers like the

Arduino and Raspberry Pi have become readily

available. These machines are easy to program and

are well supported by enthusiastic user groups. Also,

there are plenty of add-on peripherals available

to expand their functionality. Even young kids are

already doing amazing projects using these simple

machines.

Chapter 1 BiologiCal Neural NetworkS

13

 3. Special-purpose machines and products with

embedded controllers are more limited in scope,

but can be produced fairly inexpensively.

 4. As far as embedded systems go, we may spend a lot

of time and money writing software and getting it

working properly, and then we need to reduce the

hardware to a minimum so we can build it into your

toothbrush!

 Software: Programs Running on a Computer
As shown in Figure 1-6, we can emulate a neural network with software

running on a conventional sequential processor.

Figure 1-6. Software implementation

Chapter 1 BiologiCal Neural NetworkS

14

You might be thinking, “If we just write software running on a PC to

emulate a neural network, how is that different from any other program?”

Good question! These programs do not use step-by-step instructions that

tell the processor exactly how to get the right answer. Why not? Because

(many times) we don’t actually know how to solve the problem, but we do

know the desired results for a bunch of different inputs, and we know how

the program can change a few things to get better at producing the desired

results.

I know how strange that sounds, but hopefully these concepts will

become clear as we go along.

Note Neural networks can learn to do things that we don’t know
how to do!

That’s a theme that will run throughout this book—we have always built

tools that outperform us. Think about that great old blues tune “John Henry,”

about a man who beat the steam-powered hammer but died in the process,

or simple things like a pair of pliers. With a handheld calculator, you can

easily do computations that would be difficult using just pencil and paper.

The programs we write to “train” a network to get better and better at a

task involve the following steps:

 1. Let the program produce a result based on the inputs.

 2. Have it check its result against the correct answer

that we have provided (all the inputs and desired

results comprise the “training set”).

 3. Have it adjust the connection strengths between

neurons to improve its results.

 4. Have it repeat this process over and over until the

error gets really small for all possible inputs.

Chapter 1 BiologiCal Neural NetworkS

15

Because computers can do things really fast and don’t get tired, this

process can be repeated millions of times if necessary.

So, instead of us knowing everything up front, we write code that will

“learn” how to find the solution instead of writing code that we know will

produce the correct solution.

You may be wondering, “What type of a problem can’t we write a

straightforward program for?” Well, how about voice recognition in a

noisy environment or pattern recognition where some of the information

is missing? To write step-by-step programs for tasks like these can be very

difficult, but we can train a neural network to figure out how to solve the

problem.

 Hardware: Electronic Circuits
Figure 1-7 is a graphical representation of a hardware-based approach

to implementing neural networks. There are no actual components

shown. It’s just meant to get you thinking about a different approach to

implementing neural networks.

Figure 1-7. Hardware implementation

Chapter 1 BiologiCal Neural NetworkS

16

When we take a hardware-based or “components-based” approach

we are trying to build electronic circuits that actually function as neurons.

We build voltage summing circuits and transistor switches that can decide

whether or not to fire. This is amazing stuff! In Chapters 3 and 4, we’ll do

an interesting electronics project, and then in Chapter 5 we will try to

understand what we built.

 Applications
This technology is advancing so rapidly that we are seeing new

applications every day in fields as diverse as voice recognition, financial

forecasting, machine control, and medical diagnoses. Any activity that

requires pattern recognition is a prime target for the application of neural

networks—especially pattern recognition in noisy environments or where

some of the data is missing or corrupted. Tough problems like these can be

solved using neural networks.

Whatever you can imagine can probably be done by a trained neural

network. How about a machine that listens to the bearings in a commuter

train and can predict bearing failure before it occurs. How about a

machine that can predict earthquakes. Once you understand the typical

characteristics of these networks, you start to realize that the possibilities

are limitless!

As the technology matures and becomes more cost-effective, we will

see many more applications running on large standalone machines and as

embedded systems.

The amazing processing powers of neural networks running on large

machines is already mindboggling, but to me, it is even more exciting to

see neural networks becoming embedded in a wide variety of products.

When I say “embedded,” I mean the neural network performs a specific

function and is part of the product. It is small enough with low enough

power consumption and inexpensive enough to simply be one of the

Chapter 1 BiologiCal Neural NetworkS

17

components of the product. Years ago, who would have imagined that

there would be a computer in your car, your TV, or even in your watch! Can

you say “smart phone”?

Just keep up with the news or do a search on the Internet and you

will see new neural network and AI (artificial intelligence) applications

cropping up every day.

 Just Around the Corner
Maybe you have seen the movie Alpha Go. For the first time in history a

neural network–based computer has consistently beaten the best human

players in this complex game! For near-term advances I would especially

watch companies like Intel, Nvidia, and Google. Only our imaginations will

limit the possibilities!

OK, that’s a brief introduction to neural networks. I hope you are

excited to learn more.

Chapter 1 BiologiCal Neural NetworkS

19© Richard McKeon 2018
R. McKeon, Neural Networks for Electronics Hobbyists,
https://doi.org/10.1007/978-1-4842-3507-2_2

CHAPTER 2

Implementing Neural
Networks
OK, so now that we have had an introduction to neural networks in

Chapter 1—how can we actually build one and make it do something?

One of the ways to make a complex task more manageable is to take a

“top-down” approach. First we’ll look at the big picture in general terms,

and then we will be able to start implementing the details “from the

bottom up.”

To make sense of all this “top-down” and “bottom-up” stuff, let’s start

with the concept of architecture.

 Architecture?
The word “architecture” may seem pretty technical and confusing, but

it simply means how the different components are connected to each

other and how they interact. No big deal. We need some kind of a word to

describe it.

There is a big difference between the architecture of conventional

computers and neural networks. Even if the neural network consists of a

program running on a PC or a Mac, the approach is very different because

we are trying to model the architecture of the brain.

20

When writing a program for a conventional computer, we tell it

step- by- step exactly what to do. In other words, we need to know exactly

what has to be done before we can write the program. The computer just

follows our instructions, but it can execute those instructions millions of

times faster than we could by hand, and it never gets tired or has to have a

coffee break.

But for complicated, real-life problems with messy or missing data, we

may not even know how to solve the problem! Holy smokes! Nobody can

write a straightforward program for stuff like that.

When writing a program to simulate a neural network we don’t need

to know exactly how to solve the problem. We “train” the network by

giving it various inputs and the correct outputs. At first, the network’s

performance will be pretty awful—full of mistakes and wrong answers.

But we build in ways for it to make adjustments and “learn” to solve the

problem.

So, you can see that these two approaches are very different. Of course,

when the neural network is “component based” or running in hardware,

the physical architecture is even more different than software running on a

general purpose machine.

Figure 2-1 is just a symbolic representation of a neuron, but it helps us

to visualize “connection weights,” “summation,” and “transfer functions.”

I know all this sounds pretty strange, but we’ll take it one little step at a

time and have fun with it. No complicated formulas or “techspeak”; just

simple arithmetic like addition and subtraction. You can do this!

Chapter 2 ImplementIng neural networks

21

So, what Figure 2-1 is showing is that a neuron can receive several

different signals of varying strengths (weights) and sum them up. Then it

will decide whether to fire an outgoing pulse or not.

The “transfer function” can be complex or simple. For our purposes, it

will be a simple Yes/No decision.

 A Variety of Models
During the short history of neural network development, there has been

a huge—I mean HUGE—number of models proposed. It’s almost certain

that none of them actually represent exactly how the human brain operates,

but many of these models have shown remarkable success at pattern

recognition! It’s like the old saying, “Nothing succeeds like success.” Does

that apply here? Well yeah, I think so. Even though we don’t have all the

answers, we can build neural networks that perform amazing tasks!

Figure 2-1. The artificial neuron

Chapter 2 ImplementIng neural networks

22

This is a nontechnical introduction, so we are going to limit our

discussion to one simple “feed-forward” approach using “back propagation”

as the training algorithm. Believe me, this will be enough to keep you going

for a while!

I love the concept of “back propagation of errors” because it makes so

much sense. I mean, if someone is contributing to a wrong answer (feeding

you bad information), he needs to have his input reduced, and if someone

is contributing to the right answer (giving you good information), we want

to hear more from him, right?

 Our Sample Network
For this project, we are going to build a network to solve the XOR problem.

It is a simple problem, but complex enough to require a three- layer

network. We’ll talk a lot more about XOR and the actual network in

Chapter 3, but for now Figure 2-2 represents our three-layer network.

Figure 2-2. Our sample three-layer network

Chapter 2 ImplementIng neural networks

23

There are two inputs, two neurons in the hidden layer, and one output.

It’s called a “feed-forward” network because the signals are sent only

in the forward direction. There are some models that feed signals back

to previous layers, but we are going to keep it simple for this one. We will

use “back propagation of errors” to train the network, but that’s just for

training. In operation, all signals are only fed to the next layer.

 The Input Layer
The input layer receives signals from the outside world kind of like our

senses. Our eyes receive light from outside our bodies and convert it to

signals that get sent from the retina along the optic nerve to the visual

cortex in the back of our brain. It’s interesting to note that the signals

coming from our eyes aren’t actually light. In fact, we construct our

perception of the world entirely within our brain. All of the things we see,

hear, feel, taste, or smell are really just electrical activity in our brains.

I find this amazing! There is no light inside your head. It is completely

dark in there! Is that spooky or what!

our perception of the world is just electrical activity in our brain.
everything that seems so real to us is just activity based on signals
coming from various sensors. Could we have receptors that are
sensitive to other kinds of things? would they seem just as real? of
course they would! think about the possibilities!

 The Hidden Layer
The hidden layer gets its name from the fact that it only has connections to

other layers within the network. It has no connections to the outside world.

So it is “hidden” from the outside world. Depending on the complexity of

the task, a neural network may have several hidden layers. The network for

our project will have only one hidden layer with two neurons.

Chapter 2 ImplementIng neural networks

24

 The Output Layer
The output layer presents the results that the network has come up with

based on the inputs and the functioning of the previous layers. For this

project, there is just a single output that will be either ON or OFF. Many

networks have several outputs that present text or graphic information, or

produce signals for machine control.

 Training the Network
Believe it or not, the connections between neurons in your brain can

change. What? I mean the neurons can actually hook up differently. How

else can I say it? Some connections can actually be terminated and new

ones can be formed. Your brain can change! Did you ever think you had

this kind of stuff going on inside your head? It’s called “plasticity.” If you

want to get really technical, it’s called “neural plasticity.”

Not only can the actual connections change, there is a process that

adjusts the amount of influence that a neuron has on other neurons. This

may sound like science fiction, and you’re probably thinking, “You gotta be

kidding me.”

Wherever neurons are connected to each other, they have a “synapse."

That’s a little gap or junction that the electrical signals have to cross over

before they can affect the next neuron (kind of like how lightning strikes

travel from clouds to ground).

So, are you ready for this? It might be really easy for the signal to jump

across this gap, or it might be hard. Networks get trained by adjusting the

“weight” or how easy it is to jump the gap. When a neuron has contributed

to the wrong answer, the algorithm says, “We don’t want to hear from you

so much.” Pretty harsh, I know, but that’s the way it works. It’s all part of the

learning process called “back propagation of errors.” It’s like, “Those of you

who did good get rewarded and those of you who did bad get sent to the

back of the room.”

Chapter 2 ImplementIng neural networks

25

Now, those neurons that contributed most to the correct answer have

their connections reinforced or strengthened. It’s like saying, “You did

good. We want to hear more from you.”

The networks we build today are called “artificial neural networks”

because they merely “simulate” or “imitate” the workings of actual

biological networks.

During the 1980s, neural networks were a hot topic and several

companies started producing neural chips. They were usually 1024 × 1024

arrays of neurons that could be trained using a development system. That

effort dropped off rapidly and everything reverted back to software that

emulated neural networks and ran on conventional processors. OK, so it’s

got to have the potential to make money before anyone will invest in it.

In the next three chapters, we are going to build a network on a

solderless breadboard and train it to perform the XOR logic function. The

completed network will look something like Figure 2-3. This figure is not

an actual schematic, just a graphical representation. We’ll get into the

actual components in Chapter 3.

Chapter 2 ImplementIng neural networks

26

Just to whet your appetite, Figure 2-4 is a sneak preview of the

completed project:

Figure 2-3. Diagram of our completed project

Chapter 2 ImplementIng neural networks

27

 Summary
These first two chapters have been a high-level introduction to this

exciting field. Now it’s time to get down to the “nuts and bolts.” OK, not

really nuts and bolts—more like “wires and components.” But in any case,

I hope you are excited and ready to get out a breadboard, gather up some

components, and start building a neural network!

Figure 2-4. Sneak preview of our completed project

Chapter 2 ImplementIng neural networks

29© Richard McKeon 2018
R. McKeon, Neural Networks for Electronics Hobbyists,
https://doi.org/10.1007/978-1-4842-3507-2_3

CHAPTER 3

Electronic
Components
In this chapter, we are going to introduce the electronic components that

we’ll be using to build our hardware-based neural network to solve the XOR

problem (not that it’s a “problem” it’s just a logic function). If you like to

dabble with electronic projects, I think you will have some fun with this one.

But, even if you have never done a project like this before, don’t be

afraid to give it a try! It’s all pretty simple, and we’ll take it one little step at

a time. There are no high voltages, so don’t worry about getting shocked or

burning the house down. We will be powering the entire project with just a

couple of 9-volt batteries.

Who knows, you might get interested in this kind of stuff and discover
a new hobby!

 What Is XOR?
The XOR function is used in many electronic applications. Figure 3-1

compares the OR and XOR functions. On the left-hand side of each truth

table A and B are the inputs, and on the right-hand side is the output.

Let’s say that “0” means false, and “1” means true.

30

For the OR function, if either input is true or both inputs are true, then

the output is true. This is called “Inclusive OR” because it includes the

possibility of both inputs being true.

The XOR function excludes the possibility of both inputs being true, so

it is called “Exclusive OR.”

In everyday language, we use the word “or” quite a bit. We might say,

“Next summer I’m either going to the beach or to the mountains.” In that

statement it’s understood that I’ll be going to one place or the other, but

not both. This is an example of the exclusive OR.

If the store clerk says, “We take cash or credit” he is using the inclusive

OR because either cash or credit will work.

Now, here’s the interesting thing about this simple function. It is

“nonlinear” and if a neural network is going to solve it, there needs to be

a hidden layer. A problem is nonlinear if a given input value can result in

different output values depending on what the other inputs are doing.

Figure 3-1. OR and XOR functions

Chapter 3 eleCtroniC Components

31

For example:

If input A is TRUE and input B is FALSE, then the output is TRUE, but

If input A is TRUE and input B is also TRUE,

Then the output is FALSE.

So, here’s a brief description of the components that we’ll be using to

implement this network in hardware.

ONLY BUY QUALITY PARTS!

We buy parts from all over the world and there is a huge difference in

quality! the voltage regulators i originally purchased for this project were

inexpensive, but dropped out of regulation with the least amount of load.

You want everything in this project to be solid. the whole concept of training

a network by adjusting weights (voltages) depends on those weights being

reliable and consistent. i buy almost everything from www.amazon.com

because they make it so easy. the regulators i found to be reliable came from

stmicroelectronics.

also, make sure the parts you purchase have leads with the size and spacing

that are compatible with a breadboard. Don’t buy switches with big solder lugs.

 The Protoboard
Building our circuit on a “protoboard” will allow us to make electrical

connections (and change them if necessary) quickly and easily without

having to make permanent solder connections. It’s called a “protoboard”

because we use it as a “prototyping board.” It is often called a “solderless

breadboard.”

It’s amazing that such a useful component with hundreds of built-in

connection points can be available so inexpensively. That’s what mass

production does for us!

Chapter 3 eleCtroniC Components

http://www.amazon.com/

32

Figure 3-2 shows the protoboard we will use in this project.

Figure 3-2. The protoboard

All of the components that we will use in this project have leads that

are the right size to plug directly into the protoboard and make good

contact. You can purchase jumper wires for making interconnections or

simply make your own using 22 AWG solid (not stranded but solid) wire.

Premade jumper wires are convenient, but I like to make my own so they

will be the right length and keep the project nice and clean (OK, so I’m a

clean freak).

We will use the long horizontal buses (four of them) as our power rails

and the shorter vertical buses to mount components. We’ll talk more about

the protoboard as we start to build the circuit.

You will notice that this particular breadboard has the power buses

split in half. This could add some versatility, but I jumpered them so they

would run the entire length of the board. Also, I jumpered the two inside

busses that we will be using as ground rails. So, for this project we will have

power rails for +5V, -5V, and ground.

Chapter 3 eleCtroniC Components

33

 The Power Supply
As shown in Figure 3-3, the power supply for this project uses two 9V

batteries. The reason for using two instead of just one is that we need both

positive and negative voltages. This way we can have both “excitatory” and

“inhibitory” neurons. In biological neural networks, excitatory neurons

secrete neurotransmitters that tend to encourage the target neuron to fire and

inhibitory neurons do the opposite. So, we have a “bipolar” (+5V and -5V)

power supply. If a person exhibits bipolar behavior, that can be a bad

thing, but for our power supply that’s a good thing.

Figure 3-3. Battery clips

Chapter 3 eleCtroniC Components

34

Notice how the battery clips are wired. I spliced on some jumper wires

to the battery clip leads by stripping the insulation off and soldering them

together. Then I put a short piece of “heat-shrink” tubing over each joint

just to keep the exposed wires from touching anything. If you don’t have

heat-shrink tubing, you can simply wrap some tape around them.

To ensure the supply voltages are stable even under varying load

conditions, we will use a +5V regulator (7805) and a -5V regulator (7905)

instead of just running straight off the battery terminals. This project

doesn’t draw much current, so we can run directly off the voltage

regulators.

ABOUT VOLTAGE REGULATORS

the purpose of a voltage regulator is to provide a solid, stable voltage that

will not change under varying load conditions. a quality voltage regulator will

give you power rails that don’t change. But each regulator has a “tolerance” or

accuracy relating to the “nominal” or stated value. the main thing is stability.

the voltage regulators i am using for this project give a positive rail of 5.04V

(that’s extremely accurate) and a negative rail of -5.14V (not as accurate, but

still within 5% of the nominal voltage). so, if your exact voltage readings differ

a little bit from mine, no big deal.

Chapter 3 eleCtroniC Components

35

When wiring up these regulators, be careful to observe their “pin out.”

The function of each pin is different between the two of them, as shown in

Figure 3-4.

Figure 3-4. Voltage regulators

Chapter 3 eleCtroniC Components

36

Figure 3-5 is a schematic of the power supply. See how we get both +5V

and -5V?

Figure 3-5. The power supply

Chapter 3 eleCtroniC Components

37

 Inputs
For the XOR function, there are two inputs called “A” and “B.” They can

have logic values of 0 or 1. In this circuit, the logic value 0 (False) is -5V and

the logic value 1 (True) is +5V.

Figure 3-6. Completed power supply

Figure 3-6 shows the completed power supply connected to the

prototyping board.

Chapter 3 eleCtroniC Components

38

 SPDT Switches
To present these inputs to the network we use a couple of SPDT switches.

SPDT means “Single Pole Double Throw.” The center contact of the switch

can be connected to one side or the other, but not both at the same time.

These switches are available in many different packages. For this project,

we are using a pair of slide switches. As shown in Figure 3-7, when the

slider is to the left the center contact is connected to the left contact, and

when the slider is to the right the center contact is connected to the right

contact. The contacts on these switches have the right size and spacing to

plug directly into the protoboard.

Figure 3-7. SPDT switches

Chapter 3 eleCtroniC Components

39

When the switch is in the up position, we are presenting +5V to the

input and also to the LED and its current-limiting resistor. When the switch

is in the down position, we are presenting -5V to the Input and the LED

will be off because it is “reverse biased.” See how that works?

Figure 3-8. Inputs

When we present a logic value of 1 (+5V), we want to light an LED

(light-emitting diode) as a visual indicator. When we present a logic value of

0 (-5V), we want the LED to be turned off. Does that seem like a challenging

task? Well, actually it’s pretty easy. Figure 3-8 shows how it works.

Chapter 3 eleCtroniC Components

www.allitebooks.com

http://www.allitebooks.org

40

We use a 470-ohm resistor to limit current through the LED. Where

does that value come from? This particular LED will be bright enough

with around 6mA of current, and its forward voltage drop is about 2V. This

means the resistor is dropping the rest of the supply voltage or about

3V. Applying Ohm’s Law we see

R = V/I = 3V/6mA = 500 ohms

So we are pretty close at 470 ohms.

 Resistor Color Code
Resistors usually don’t have their values written on them. Instead, they use

a system of colored bands to tell the value and the tolerance. The tolerance

means how accurate the stated value really is. For this project, we don’t

need precision resistors; 5% tolerance will do. This means that the actual

value of the resistor is not more than 5% away from the stated value. For

example, our 470-ohm resistor with a 5% tolerance will be somewhere

between 446 ohms and 494 ohms. The tolerance values are usually pretty

conservative. As you can see from Figure 3-9, the actual measured value

was 461 ohms.

Chapter 3 eleCtroniC Components

41

Figure 3-9. Actual value of 470-ohm resistor

So, how does this color-coding system work? There are four bands on

the resistor. The first three tell its value and the last one tells the tolerance

or accuracy. The first two bands you read like regular numbers and the

third one tells how many zeros to add on. For example, our 470-ohm

resistor has yellow, violet, and brown bands. So, that means 4 then 7 with

one zero added on (Figure 3-10).

Chapter 3 eleCtroniC Components

42

Figure 3-10. Color bands for 470-ohm resistor

Table 3-1. Color Values

Color Code Tolerance

Black 0 Gold 5%

Brown 1 silver 10%

red 2 none 20%

orange 3

Yellow 4

Green 5

Blue 6

Violet 7

Grey 8

White 9

Table 3-1 summarizes what the colors represent.

Chapter 3 eleCtroniC Components

43

 LEDs
The LED has two connections called “anode” and “cathode.” The anode is

the positive side, and the cathode is the negative side. It’s easy to tell the

cathode because it is the shorter leg and there is a little flat spot on the rim

on that side. You can use Figure 3-11 to help you identify the anode and

cathode.

Figure 3-11. LED

 What Is a Voltage Divider?
“Voltage divider” is another one of those terms that seems mysterious, but

is really very simple.

When current flows through a resistor it is going to drop some voltage

from one side to the other. That’s just how Ohm’s Law works.

Chapter 3 eleCtroniC Components

44

So, how much voltage is dropped? Figure 3-12 shows three different

arrangements of resistors placed across the terminals of a power supply.

Figure 3-12. Voltage divider

The arrangement on the left-hand side shows a single resistor placed

between the positive and negative terminals of the supply. Obviously it will

drop the entire voltage. Measuring with a voltmeter across the resistor is

the same as measuring directly across the supply.

The middle diagram shows two resistors in series across the supply.

One of them will drop some of the supply voltage and the other one will

drop the rest. How much each resistor drops depends on its value. With

the same current flowing through both resistors (it has nowhere else to go),

the one with the higher resistance will drop the most. Again, according to

Ohm’s Law the voltage will be equal to the current times the resistance. So

for any given current, the voltage measured across it will get bigger as the

resistance gets bigger.

V = I x R

What would you measure if the two resistors were the same? You

guessed it—half the supply voltage!

Chapter 3 eleCtroniC Components

45

Figure 3-13. Adjusting weights

The diagram on the right shows a potentiometer across the supply.

Now, a pot (like in potentiometer, not as in marijuana) is a special kind

of resistor. It has a “wiper” as one of its connections that can contact the

resistor anywhere along its length. In this way, we can measure the voltage

potential all along the resistor. Depending on where the wiper is, we would

measure a voltage equal to the entire power supply voltage all the way

down to 0V.

 Adjusting Connection Weights
Using a potentiometer as shown on the right-hand side of Figure 3-12,

we can adjust the voltage or “weight” of an input. Figure 3-13 shows

how it is done.

Chapter 3 eleCtroniC Components

46

When the input switch is in the up position, we will be presenting +5V

to the potentiometer, and the adjusted input will be between +5V and

ground (0V).

When the switch is down, we will be presenting -5V to the potentiometer,

and the adjusted input will be between -5V and ground (0V).

Potentiometers come in many different physical sizes and shapes.

I chose the potentiometer shown in Figure 3-14 because its small footprint

on the breadboard gives more room for wiring. Also, it is a “10-turn pot,”

which means that it takes ten complete revolutions for the wiper to go from

one end to the other. This gives us loads of accuracy and stability!

Figure 3-14. Potentiometer

Chapter 3 eleCtroniC Components

47

 Summing Voltages
Each neuron needs to sum the input signals it is receiving, and then make

a decision what to do next based on their combined value. For this project,

the neurons are receiving either two or three inputs.

 1. Hidden layer neuron X receives signals from inputs

A, B, and the bias voltage (VB).

 2. Hidden layer neuron Y receives signals from inputs

A and B.

 3. Output neuron Z receives signals from hidden layer

neurons X and Y.

To simulate how a biological cell would sum these signals, we will use a

simple voltage divider network as shown in Figure 3-15. This kind of circuit

is sometimes called a “passive averager.” If all of the resistors are the same

value, the average will be

Vout with two resistors = (V1+V2)/2 or

Vout with three resistors = (V1+V2+V3)/3

In other words, the average is simply the sum of the voltages divided by

how many there are.

We’ll talk more about the neuron’s “threshold value” and “transfer

function” in the next section.

Figure 3-15. Voltage summing circuit

Chapter 3 eleCtroniC Components

48

 Op Amp Comparator
For this project, the op amp comparators are the components that simulate

the neurons. We will be using CA3130 op amps. The circuits are really basic

with just a few external components. Here’s what we do:

 1. We tie two of its pins to the positive and negative

power rails,

 2. We make a two-resistor voltage divider for the

“activation threshold,” and

 3. We present the voltage from our summing circuit as

the input.

 4. That’s it!

HERE’S HOW THE OP AMP COMPARATORS WORK:

if pin 3 is higher than pin 2, the output will be hiGh.

if pin 3 is lower than pin 2, the output will be loW

So, just like actual neurons in the brain, these op amp comparators

determine if the incoming signals warrant them firing. They only produce

two different outputs because they swing from rail to rail.

Neuron Y is a little different from the other two. I’m calling it an

“inhibitory” neuron because we are feeding the input signal to the

inverting (-) input on pin 2 and presenting the threshold voltage on the

non-inverting (+) input on pin 3.

So what’s the thing about “threshold value” and “transfer function”?

This could be pretty complex, but the way we are implementing them it’s

quite simple. As shown in Figure 3-16:

Chapter 3 eleCtroniC Components

49

 1. For the threshold value, we will use a simple two-

resistor voltage divider. To get a threshold of +0.9V,

we will make the bottom resistor 22K and the top

resistor 100K.

 2. The transfer function is just the op amp deciding

whether to turn ON or OFF. That’s why in this

configuration it is called a “comparator.” It’s just

comparing two inputs.

Figure 3-16. Op amp comparator

Chapter 3 eleCtroniC Components

50

Divide 22K by the total resistance of 122K to get what percentage of the total

resistance the 22K resistor is.

that turns out to be 0.18 or 18%.

then multiply 0.18 times 5V and you get +0.9V.

 Putting It All Together
OK, we’ve discussed all the individual components. Now it’s time to hook

them all up and build a neural network!

Figure 3-17 shows the complete schematic for this project. Don’t be

overwhelmed by this schematic. I know it looks pretty busy, but in the

next chapter we will build this thing one step at a time on the breadboard,

and then we’ll walk through the back propagation training algorithm one

“training cycle” at a time. With each training cycle, we will reduce the error

in the system, and eventually our network will perform the XOR function

perfectly!

SO HOW DOES THAT 22K OHM/100K OHM COMBINATION GIVE
US A +0.9V THRESHOLD?

Chapter 3 eleCtroniC Components

51

This approach is manual and crude, but the goal is to get in there

at the nitty-gritty level and experience how adjusting weights makes a

difference.

When you finish this project, you will be “the first kid on your block”

to have built a neural network in hardware! Give yourself a pat on the

back! (Unless you have arthritis in your shoulders. Then just take another

Aleve).

Figure 3-17. Schematic for the XOR project

Chapter 3 eleCtroniC Components

52

 Parts List
Here’s a summary of the parts required for this project.

 1. Solderless breadboard (protoboard). Make sure

you get a high-quality protoboard. There is a big

difference in the quality and reliability of these

breadboards! I’m telling you this from experience

(bad experiences). Protoboards are great, and they

allow for quick and easy connections, BUT if the

reliability of those connections is questionable the

whole project will be flaky and unreliable. After all,

the breadboard is the backbone of the entire project.

For this project, I used a Velleman SD12N.

 2. Jumpers. These are convenient, but not really

necessary. I prefer to make my own jumpers using a

pair of wire strippers to cut and strip 22 AWG solid

(not stranded, but solid) wire. This way you can

make them the right length. That makes things clean

and neat on the protoboard. My motto is, “Simple

is good.” It’s nice to use different color jumpers for

different functions. If you have wire in red, blue,

yellow, and black, that would be great.

 3. 9-volt batteries (2×)

 4. 9-volt battery clips (2×)

 5. 7805 +5V voltage regulator (1×)

 6. 7905 -5V voltage regulator (1×)

 7. 100K-ohm potentiometers (with leads that can plug

into the protoboard) for adjusting weights (7×)

Chapter 3 eleCtroniC Components

53

 8. 100K-ohm resistors for the summing networks and

threshold voltage dividers (10×)

 9. CA3130 op amp (3×)

 10. LEDs (3×)

 11. 470-ohm current-limiting resistors for the LEDs (3×)

 12. 22K-ohm resistor for the threshold voltage divider

(3×).

 13. Voltmeter. You will need an inexpensive voltmeter

to measure and adjust voltages as part of the back

propagation training cycles. It will be convenient if

you make up leads of 22-gauge solid wire that you

can stick in the breadboard connections. This way

you can be “hands-free” as you adjust weights with a

small screwdriver.

 14. Wire strippers. Only necessary if you are going to

make your own jumper wires. I highly recommend

that you do!

 15. Small long-nose pliers. These are not necessary,

but believe me, they make it a lot easier to get into

tight spots on the protoboard. You want to make this

project easy and fun.

 16. Small screwdriver for adjusting the pots. I got so

frustrated with my little flat-bladed screwdriver

slipping off the adjustment screw! So I slipped a little

piece of heat shrink tubing over the end. It sticks out

only a fraction of an inch, but voila! Problem solved.

Chapter 3 eleCtroniC Components

54

 Summary
In this chapter, we have discussed the various components that will go into

our neural network. Each component is pretty simple by itself, but when

we get the entire network assembled and trained it will be able to solve

the XOR problem. In Chapter 4 we will take it step-by-step and assemble

the network, and in Chapter 5 we will train it using the back propagation

algorithm.

Chapter 3 eleCtroniC Components

55© Richard McKeon 2018
R. McKeon, Neural Networks for Electronics Hobbyists,
https://doi.org/10.1007/978-1-4842-3507-2_4

CHAPTER 4

Building the Network
Now we are going to build a three-layered neural network using simple

electronic components. This network will have two inputs, two neurons

in the hidden layer, and a single output. That might sound a little

intimidating, but I have included plenty of step-by-step instructions

together with photographs and drawings, so hopefully everything will go

smoothly. We’ll take it one layer at a time, including

 1. Power supply

 2. Input layer

 3. Hidden layer and

 4. Output layer

Note This circuit probably doesn’t resemble how the brain actually
functions at all. You can’t get inside your head with a screwdriver
and adjust things, but it is based on a model of what we think might
be happening in the brain. Also, it makes for a good discussion of
training using the back propagation algorithm. And it works!

56

 Do We Need a Neural Network?
Certainly we don’t need to build a neural network just to perform the XOR

function. We can buy a 14-pin chip that has four XOR gates on it (CD4070)

for $0.21.

So, the purpose of this project is not just to build an XOR gate, but to

demonstrate how adjusting the weights in the hidden layer of a neural

network can train it to perform this function.

OK, let’s put this thing together and see if we can make it work.

Just to make it easier to see what’s going on, I suggest using different

color jumper wires for different functions as follows:

 1. Red for connecting to +5V.

 2. Black for connecting to GND.

 3. Blue for connecting to -5V.

 4. Yellow for signal wires.

The color choices are pretty arbitrary. Those are just the colors of

22-gauge solid wire I had on hand.

ChApTer 4 Building The neTwork

57

 The Power Supply
Chapter 3 gives a fairly detailed explanation of how to wire up the power

supply, so I won’t elaborate on it too much here. When finished, the

completed power supply should look something like Figure 4-1.

Notice that the +9V and -9V wires from the batteries go directly to

the voltage regulator inputs, and the outputs from the regulators go to

the power rails. For this project, I chose to use the top rail as the +5V bus

and the bottom rail as the -5V bus. We use the two inside rails as ground

Figure 4-1. Completed power supply

ChApTer 4 Building The neTwork

58

buses. One thing that doesn’t show in the photograph is a jumper wire

connecting the ground buses at the other end of the breadboard. It does

show in the drawing.

Once you have the power supply wired up, go ahead and check it with

a voltmeter. On the power rails, you should measure something close to

+5V and -5V with respect to ground.

If everything checks out, congratulations! You’re good to go! If not,

double-check your wiring. There’s no sense in going forward until you

have a solid power source.

 The Input Layer
Now it’s time to install the input switches and indicator LEDs.

A COUPLE OF SUGGESTIONS FOR YOUR CONVENIENCE:

 1. Many times you can use the component leads to connect

without using jumper wires. For example, the cathodes of the

leds can plug directly onto the ground bus and the 470-ohm

resistors can connect directly to the center post of the SpdT

switches and to the led anodes. no jumpers required!

 2. To keep the space around the switches clear, i trimmed the

leads on the 470-ohm resistors and laid them flat.

 3. if you make up a set of leads for your voltmeter out of 22-ga

solid wire, it will make getting at the connection points a lot

easier.

ChApTer 4 Building The neTwork

59

Use Figure 4-2 as a reference to wire the SPDT switches as follows:

 1. Jumper the left side to the +5V rail.

 2. Jumper the right side to the -5V rail.

 3. Connect the LED anode (long lead) to the center

connection via a 470- ohm resistor.

 4. Connect the LED cathode (short lead) to the ground

rail.

I trimmed the leads of the LEDs and resistors just to keep them from

sticking up too far. You can still tell the LED cathode by the flat spot on the

rim. Many times I don’t trim leads because I plan to reuse the components

in another project, but this breadboard is going to be on the front cover of

the book, so I wanted it to look good.

Figure 4-2. Schematic for input switches

ChApTer 4 Building The neTwork

60

Notice in Figure 4-3 that input switch A is on the top and input B is on

the bottom.

Figure 4-3. Input switches and indicator LEDs

ChApTer 4 Building The neTwork

61

Test your input layer to see if the LEDs turn ON and OFF. Also, measure

the input voltage at the center contact of both switches in each position.

You should read +5V for ON and -5V for OFF.

 The Hidden Layer
All three layers are necessary, but the hidden layer is where the intelligence

and the mystery lie! Figure 4-4 shows how we can

 1. Adjust the bias voltage and weights from inputs A

and B by using potentiometers RB, R1, R2, R3, and

R4.

 2. Sum those adjusted weights and present them as V5

and V6 to the neurons (op amps) X and Y.

 3. Produce threshold voltages.

 4. Wire up the remaining pins of the op amps.

ChApTer 4 Building The neTwork

62

As you wire up each component, keep in mind that the vertical

connections on the breadboard are all common, so you can use really

short jumpers to connect to the power buses. I always like to use the

shortest possible jumper. This keeps the board cleaned up and easy to

follow.

Figure 4-4. Hidden layer schematic

ChApTer 4 Building The neTwork

63

Your actual component placement and wire routing may differ
somewhat from what you see in these diagrams. That’s ok. The
purpose for the Fritzing diagrams is to help make things clear and
easily identifiable. Therefore, i don’t have wires running on top of
each other or resistors plugged in at oddball angles, but on your
breadboard you can use lots of little tricks to simplify the wiring.

Here’s a step-by-step plan for wiring the hidden layer: Figure 4-5 shows

how to install the potentiometers and hidden layer op amps, and Figure 4-6

completes the hidden layer.

 Installing potentiometers and Op Amps

 1. Install potentiometers RB, R1, R2, R3, and R4 on the

protoboard.

 2. Install op amps X and Y (CA3130) on the

protoboard. Install them with the notch facing to the

left, which means that pin 1 will be on the bottom.

 3. Connect Input A (center contact of switch A) to one

side of R1 and R3.

 4. Connect the other side of R1 and R3 to ground.

 5. Connect Input B (center contact of switch B) to one

side of R2 and R4.

 6. Connect the other side of R2 and R4 to ground.

 7. Connect one side of RB to the +5V rail and the other

side to ground.

ChApTer 4 Building The neTwork

64

 Installing Input Signals to the Op Amps

 1. Connect 100K resistors to the center contact of

RB, R1, and R2 and connect their other lead to a

common point. This will be V5, which is the input

signal to neuron X. Jumper that common point to

pin 3 of neuron X.

 2. Connect 100K resistors to the center contact of R3

and R4 and connect their other lead to a common

point. This will be V6, which is the input signal to

neuron Y. Jumper that common point to pin 2 of

neuron Y. (You’ll notice that we are connecting

to pin 2 instead of pin 3 because neuron Y will be

inhibitory.)

 3. Jumper pin 7 of both op amps to 5V.

Figure 4-5. Install potentiometers and op amps

ChApTer 4 Building The neTwork

65

 4. To create a +0.9V offset for the threshold on pin 2 of

the op amp X, tie a 22K resistor from ground to pin 2

and a 100K resistor from pin 2 to +5V.

 5. To create a +0.9V offset for the threshold on pin 3 of

the op amp Y, tie a 22K resistor from ground to pin 3

and a 100K resistor from pin 3 to +5V.

 6. Jumper pin 4 of both op amps to -5V.4. The output of

each op amp will be on pin 6.

Figure 4-7 shows the completed hidden layer.

Figure 4-7. Completed hidden layer

Figure 4-6. Input signals to hidden layer completing the hidden layer

ChApTer 4 Building The neTwork

66

Let’s test our circuit to see if we have the hidden layer wired up

correctly. We are going to measure the range of voltages possible by

adjusting the potentiometer wipers from end to end. These ranges are

shown in Tables 4-1 through 4-4.

It is important to perform this test. The first time I did it the voltage

ranges were wrong. Turns out I had made a mistake in the wiring!

To understand the following ranges, keep in mind that our summation

circuit adds the voltages and divides by how many there are.

Because we are running ten-turn pots from one end to the other, an
electric screwdriver comes in really handy!

Table 4-1. Testing Hidden Layer with A=0 and B=0

A=0, B=0

VB V1 V2 V5

+5V to gnd -5.V to gnd -5V to gnd -3.33V to +1.67V

1. when VB, V1, and V2 are at their most positive, we have 5V divided by 3 = 1.67V2.

2. when VB, V1, and V2 are at their most negative, we have -10V divided by 3 = -3.33V

V3 V4 V6

-5V to gnd -5V to gnd -5V to gnd

1. when V3 and V4 are at their most positive, we have 0V divided by 2 = 0V

2. when V3 and V4 are at their most negative, we have -10V divided by 2 = -5V

ChApTer 4 Building The neTwork

67

Table 4-2. Testing Hidden Layer with A=1 and B=0

A=1, B=0

VB V1 V2 V5

+5V to gnd +5V to gnd -5V to gnd -1.67V to +3.33V

1. when VB, V1, and V2 are at their most positive, we have 10V divided by 3 = 3.33V

2. when VB, V1, and V2 are at their most negative, we have -5V divided by 3 = -1.67V

V3 V4 V6

+5V to gnd -5V to gnd -2.5V to +2.5V

1. when V3 and V4 are at their most positive, we have 5V divided by 2 = 2.5V

2. when V3 and V4 are at their most negative, we have -5V divided by 2 = -2.5V

Table 4-3. Testing Hidden Layer with A=0 and B=1

A=0, B=1

VB V1 V2 V5

+5V to gnd -5V to gnd +5V to gnd -1.67V to +3.33V

1. when VB, V1, and V2 are at their most positive, we have 10V divided by 3 = 3.33V

2. when VB, V1, and V2 are at their most negative, we have -5V divided by 3 = -1.67V

V3 V4 V6

-5V to gnd +5V to gnd -2.5V to +2.5V

1. when V3 and V4 are at their most positive, we have 5V divided by 2 = 2.5V

2. when V3 and V4 are at their most negative, we have -5V divided by 2 = -2.5V

ChApTer 4 Building The neTwork

68

Now, once you have gone through this exercise, look at the schematic

and figure out where these numbers come from.

 The Output Layer
Now we’ll finish building our network by wiring up the output layer. Refer

to Figure 4-8 as we add the output layer to the breadboard.

Table 4-4. Testing Hidden Layer with A=1 and B=1

A=1, B=1

VB V1 V2 V5

+5V to gnd +5V to gnd +5V to gnd +5V to gnd

1. when VB, V1, and V2 are at their most positive, we have 15V divided by 3 = 5V

2. when VB, V1, and V2 are at their most negative, we have 0V divided by 3 = 0V

V3 V4 V6

+5V to gnd +5V to gnd +5V to gnd

1. when V3 and V4 are at their most positive, we have 10V divided by 2 = 5V

2. when V3 and V4 are at their most negative, we have 0V divided by 2 = 0V

ChApTer 4 Building The neTwork

69

Here’s a step-by-step plan for completing the output layer: Figure 4-9

shows the potentiometers and op amp Z, and Figure 4-10 shows how to

wire the inputs to op amp Z.

 Installing Potentiometers and Op Amp Z

 1. Install potentiometers R7 and R8 on the protoboard.

 2. Install op amp Z (CA3130) on the protoboard. Install

it with the notch facing to the left, which means that

pin 1 will be on the bottom.

 3. Connect the Output from X (on pin 6) to one side of R7.

 4. Connect the other side of R7 to ground.

 5. Connect the Output from Y (on pin 6) to one side of R8.

 6. Connect the other side of R8 to ground.

Figure 4-8. The output layer

ChApTer 4 Building The neTwork

www.allitebooks.com

http://www.allitebooks.org

70

 Installing Inputs to Op Amp Z

 1. Connect 100K resistors to the center contact of R7

and R8 and connect their other lead to pin 3 of op

amp Z. This will be the input V9 to neuron Z. You

can do this using just the resistor leads themselves.

No jumpers required.

 2. Jumper pin 7 of op amp Z to 5V.

Figure 4-10. Installing inputs to op amp Z

Figure 4-9. Installing potentiometers and op amp Z

ChApTer 4 Building The neTwork

71

 Finishing the Output Layer

 1. To create a +0.9V offset for the threshold on pin 2,

tie a 22K resistor from ground to pin 2 and a 100K

resistor from pin 2 to +5V. You can do this on the

protoboard using just the resistors themselves. No

jumper wires required.

 2. Jumper pin 4 of op amp Z to -5V.

 3. Connect the LED cathode to the ground bus and its

anode to pin 6 via a 470-ohm resistor.

Figure 4-11 shows the completed circuit installed on the breadboard.

Figure 4-11. Completed circuit

ChApTer 4 Building The neTwork

72

Figure 4-11. (continued)

ChApTer 4 Building The neTwork

73

 Testing the circuit
Now that we have the network built we can test it on the XOR function.

Guess what—it probably won’t work! It doesn’t know how to produce the

right output for each of the four different combinations of inputs. Why not?

It hasn’t been trained.

Now the fun begins! In Chapter 5 we are going to train the network to

recognize the XOR function, and we are going to make some interesting

observations regarding weight values.

 Summary
Congratulations! You have built a neural network out of electronic

components! In Chapter 5, we are going to train this network to solve

the XOR function. The approach that we are going to take in training

the network is pretty “manual” in that we actually adjust the weights by

tweaking potentiometers with a screwdriver. It doesn’t get more manual

than that!

A real biological network, like your brain, can make its own

adjustments automatically—no screwdriver required. But we will adhere

to the back propagation algorithm, and the network does eventually get

trained. Without following the algorithm, I wouldn’t know how to adjust

the weights to make it perform properly, so the network really does learn to

do something that I don’t know how to do!

I hope you are excited to see what happens as we train our network.

ChApTer 4 Building The neTwork

75© Richard McKeon 2018
R. McKeon, Neural Networks for Electronics Hobbyists,
https://doi.org/10.1007/978-1-4842-3507-2_5

CHAPTER 5

Training with Back
Propagation
What does it mean to “train” a neural network? The network model we are

using “learns” or gets better at its task by adjusting its connection strengths.

We will strengthen those signals that tend to contribute to a right answer,

and weaken those signals that tend toward a wrong answer. We do this by

adjusting the potentiometer that lies in the path of each signal. It’s kind

of like changing the conductive environment in a neuron’s synapse. To

accomplish this, we will simply increase or decrease the voltage in question

by 0.2V. That’s our method of implementing back propagation of errors.

Pretty crude, I know, but it makes for a good simulation of the process.

Note The only way our training will be valid is if we stick strictly to
the training algorithm. What this implies is that we are not going to
intervene in the training process; we are simply going to follow the
training algorithm as defined!

So, get out your voltmeter and your screwdriver, and let’s work through

these training cycles together.

The “back propagation of errors” algorithm is very well known, and

everyone implements it in software. In this project, we will implement it in

hardware. At first, the weights are just random, so it’s no wonder the output

76

neuron behaves randomly. As the network learns, the analog weights of

the hidden layer have to somehow start to represent the function, right?

Later in the chapter, we will talk a little bit about the concept of

“feature extraction.” Can we learn something about the network by looking

at the hidden layer weights and their changes as we go through several

training cycles? We’ll look a little closer at this interesting question in the

“Attractors and Trends” section.

Figure 5-1 is not a real schematic; it’s a simplified diagram to help

us visualize what’s happening as we walk through the manual steps of

training our network. It shows the important voltages (weights) that will be

modified during the training process.

Figure 5-1. Training with back propagation

ChapTer 5 Training WiTh BaCk propagaTion

77

Things to notice about Figure 5-1:

 1. The outputs from A and B only have two states. They

are binary as in the XOR truth table. If we measure

them with a voltmeter, 1 = true = +5V and 0 = false = -5V.

 2. It’s easy to see if an input is a “1” or a “0” because

the LED will be lit or not.

 3. The bias voltage VB is analog and can vary between

+5V and GND.

 4. The output from Z is binary as in the truth table. The

LED will be lit for “true” and not lit for “false.”

 5. V5 is the sum of the bias voltage VB, V1, and V2.

All three of these voltages can be adjusted using

potentiometers.

 6. A similar thing can be said for V6 and V9.

 7. The summation voltages (V5, V6, and V9) to neurons

X, Y, and Z are analog. We call these “activation

voltages” because if they are greater than the

“threshold voltage” for that neuron, the neuron will

turn ON (+5V). If they are less than the thresholds,

the neurons will turn OFF (-5V).

 8. Don’t be concerned if the op amps don’t exactly

swing from rail to rail. Under load, their internal

resistance may cause them to be less than the rail

voltage. The main thing is if they are ON or OFF. So

if their output voltages are not exactly +5V or -5V,

don’t sweat it.

ChapTer 5 Training WiTh BaCk propagaTion

78

 The Back Propagation Algorithm
When we talk about neural networks, we speak in terms of physical layers

like input layer, hidden layers, and output layer, but I see this project as

consisting of conceptual layers too (OK, maybe a little philosophical).

 1. At the application layer, we want to get the LEDs to

light up like in the truth table.

 2. At the logical layer, we design a schematic based on

a neural network model.

 3. At the physical layer, we build the circuit out of

electronic components and train it by tweaking its

weights.

 4. At the intellectual layer, we sit back and think,

“Wow, this is interesting stuff!”

It may seem a little bit counterintuitive that either switch A or B in the

ON position could turn the output ON, but both switches ON could turn

the output OFF. So how does that happen? I think the answer lies in the

fact that Y is an inhibitory neuron.

DON’T WORRY: IT WILL WORK!

after several unsuccessful training cycles, i started to get concerned that the

network wasn’t actually training, and started to wonder, “Can a network with

this specific architecture actually solve the Xor problem? if it can’t, i’m just

wasting my time tweaking the weights!” So, just to set your mind at ease, do

the following. Set both inputs a and B oFF and set your weights up like this:

VB = 4.06V, V1 = -1.11V, V2 = -1.71V, V3 = -2.72V,

V4 = -1.42V, V7 = -1.03V, and V8 = 2.18V.

ChapTer 5 Training WiTh BaCk propagaTion

79

My negative rail (-5.14V) might be a little bit lower than yours, but these settings

should be pretty close. it may take a little tweaking, but it won’t take you long

to get the weights dialed in so that the four different input combinations yield

correct outputs. once you realize that the network actually can work, you can

proceed with confidence, knowing that you are not wasting your time.

As I was just messing around adjusting weights I started to realize that

I was actually using back propagation, only without the formal algorithm. I

would think, “OK, we’re almost there. How can I get X to turn ON? What do

I have to adjust? I want to change this weight without affecting others too

much.” And, “You have to get this voltage just a little bit higher. Which pots

affect it, and which way do they have to go?” Eventually I found the right

combination of weights and bias.

Just to bolster your confidence, Figures 5-2 through 5-5 show the

trained network solving XOR for the four possible input combinations.

Figure 5-2. Trained XOR network: 000

ChapTer 5 Training WiTh BaCk propagaTion

80

Figure 5-3. Trained XOR network: 101

Figure 5-4. Trained XOR network: 011

ChapTer 5 Training WiTh BaCk propagaTion

81

 Implementing the Back Propagation Algorithm
Here’s a summary of back propagation:

 1. If it works, don’t mess with it.

 2. If it doesn’t work, make some adjustments.

So, the algorithm we are going to use says the following:

 1. If a signal contributes to a correct answer, it should

be strengthened.

 2. If a signal tends to cause a wrong answer, it should

be weakened.

Figure 5-5. Trained XOR network: 110

ChapTer 5 Training WiTh BaCk propagaTion

82

 3. If the output is correct, leave it alone. It’s kind of like

the old saying, “If it works, don’t fix it.”

 4. If we want to turn Z ON, we want X and Y ON. If we

want to turn Z OFF, we want X and Y OFF. (Keep in

mind that we are using the inverting input for Y.)

KEEP IT SIMPLE!

Technically, we could go crazy computing all kinds of equations and using the

“C word” (calculus), but forget all that! We are going to use a simple process

based on the back propagation algorithm.

We are going to use a 0.2V correction factor when the output is wrong and just

leave it alone if it is working. if some of the weights are quite far from the ideal

solution, a 0.2V correction may take awhile, but let’s start with a conservative

learning rate.

How do we strengthen or weaken a signal? We adjust the

potentiometers to include more or less resistance in its path. Looking back

at Figure 5-1, we can see that moving the wiper of a potentiometer toward

the top (toward the signal driving it) will reduce the amount of resistance

in the path, therefore strengthening it. Moving the wiper down will

introduce more resistance and weaken the effect of the signal. As we adjust

the weight, the voltmeter will show the voltage increasing or decreasing.

So that we are not too aggressive and overcorrect, we will use an

adjustment of 0.2V. If we used a larger correction factor, we would have a

faster learning rate, but if we overcorrect, the network might not train at

all! In other words, we might not be able to find the happy mixture that

satisfies all four combinations of input values for A and B.

This will make a lot more sense as you start working your way through

the training cycles and see the effect you are having on the numbers.

ChapTer 5 Training WiTh BaCk propagaTion

83

 Training Cycles
Tables 5-1 through 5-6 summarize the training cycles or “epochs” required

to train the network starting with randomized weights. Each training cycle

consists of presenting the network with the four different combinations

of inputs A and B, and then using a 0.2V correction factor to adjust the

weights in the following order:

 1. VB, V1, and V2

 2. V3 and V4

 3. V7 and V8

Each weight will affect the overall performance of the network, so it

may take a few training cycles before the network performs satisfactorily.

During each training cycle, I will make some observations to help us

understand what is happening as the network learns. Make sure you do

the same. Making some comments adds a lot to the experience and your

understanding.

During training, here are a few things to keep in mind:

 1. The threshold voltage for all neurons is 0.9V. In

order to turn a neuron ON, the activation voltage

must be greater than 0.9V. This will tell you which

direction to adjust the signals feeding that neuron.

 2. The values in the table for the neurons X, Y, and

Z are logic values, not the actual voltage on their

outputs (pin 6). 0 = OFF and 1 = ON.

 3. The cells in the table that are shaded are the weights

that we can adjust. All of the others are recorded just

to help us understand how the training is coming

along.

ChapTer 5 Training WiTh BaCk propagaTion

84

Note For your convenience, i have included a blank Training Table as a
Microsoft Word document on my web site at rickmckeon.com/neural.html.
also, i have included a blank table in this book. Feel free to photocopy it.

OK, let’s do some training. For this first training session, I am going

to start with random values but will keep them fairly close to what I know

works. In the next session we will get a little more adventurous. Keep in mind

that my voltage values might be a little bit different from yours depending on

the exact value of your power supply rails and resistor tolerances.

Table 5-1. Details for Network #1, Training Cycle #1

Network #1, Training Cycle #1

a=0, B=0

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

1 1.23 -0.50 3.00 0 0.41 3.75 -0.50 -2.00 1 -1.86 -1.50 -2.25

Comments:

1. a quick check of all four input combinations reveals that a=0, B=0 is the only

input combination that gives an incorrect output. So we will adjust weights by 0.2V

to move the network closer to turning Z oFF.

2. First, we adjust VB, V1, and V2 (VB goes to 3.55V, V1 goes to -0.70V, and V2 goes to -2.20V).

3. next, we adjust V3 and V4 to get closer to turning Y oFF. This means increasing

their voltage. (V3 goes to -1.30V and V4 goes to -2.05V).

4. Then, we adjust V7 and V8 (V7 goes to -0.70V and V8 goes to 2.80V). Z is still on

but V9 had dropped to 1.03V. That’s getting pretty close to the threshold of 0.9V.

5. a check of the other input combinations reveals that they are all still working

properly. So for the next training cycle, we will start with a=0, B=0.

adjusted to:

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

1 1.03 -0.70 2.80 0 0.20 3.55 -0.70 -2.20 1 -1.67 -1.30 -2.05

ChapTer 5 Training WiTh BaCk propagaTion

85

Table 5-2. Details for Network #1, Training Cycle #2

Network #1, Training Cycle #2

a=0, B=0

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

1 1.03 -0.70 2.80 0 0.20 3.75 -0.70 -2.20 1 -1.67 -1.30 -2.05

Comments:

1. Z is on so we are going to adjust weights to move us closer to the 0.9V

threshold that will turn Z oFF.

2. We start by adjusting VB, V1, and V2 (VB goes to 3.55V, V1 goes to -0.90V, and V2

goes to -2.40V).

3. next, we adjust V3 and V4 (V3 goes to -1.10V and V4 goes to -1.85V).

4. Finally, we adjust V7 and V8 (V7 goes to -0.90V and V8 goes to 2.60V). Z turned

off while adjusting V8.

5. a check of the other input combinations reveals that now a=1, B=0 is not

producing the right output, so we will go next to a=1, B=0 to continue training.

adjusted to:

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

0 0.84 -0.90 2.60 0 0.07 3.55 -0.90 -2.40 1 -1.46 -1.10 -1.85

a=1, B=0

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

0 0.84 -0.90 2.60 0 0.78 3.63 1.01 -2.25 1 -0.42 -1.10 -1.85

Comments:

1. First, we adjust VB, V1, and V2 (VB goes to 3.83V, V1 goes to 1.21V, and V2 goes

to -2.05V). While adjusting V1, Z turned on.

2. a quick check of the other input combinations reveals that the network is trained!

3. next follows a summary of all parameters for the four input combinations.

(continued)

ChapTer 5 Training WiTh BaCk propagaTion

86

Network #1, Training Cycle #2

adjusted to:

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

3.83 1.21

Summary of parameters for Trained network #1

a=0, B=0

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

0 0.83 -0.91 2.60 0 0.08 3.74 -1.06 -2.40 1 -1.46 -1.08 -1.85

a=1, B=0

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

1 1.98 1.15 2.83 1 0.92 3.84 1.21 -2.24 1 -0.43 0.80 -1.66

a=0, B=1

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

1 2.09 1.34 2.84 1 2.00 3.97 -0.74 2.77 1 0.39 -0.83 1.61

a=1, B=1

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

0 -0.88 0.88 -2.66 1 2.85 4.07 1.53 2.95 0 1.43 1.07 1.81

Table 5-2. (continued)

OK, this is pretty strange. I started with the values shown in Table 5-3

thinking they were random and different from any I had used before. Well,

a quick check revealed the network performed as if it had already been

trained on the XOR function! Just a lucky guess!

ChapTer 5 Training WiTh BaCk propagaTion

87

Table 5-4 is a summary of parameters for “trained” network #2.

Table 5-4. Summary of Parameters for “Trained” Network #2

Summary of Parameters for Trained Network #2

a=0, B=0

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

0 0.50 -1.50 2.50 0 0.15 3.00 -1.50 -1.00 1 -2.49 -3.00 -2.00

a=1, B=0

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

1 2.45 2.03 2.89 1 1.38 3.21 1.77 -0.81 1 0.57 2.57 -1.42

a=0, B=1

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

1 2.45 2.03 2.89 1 0.99 3.14 -1.33 1.18 1 -0.63 -2.64 1.37

a=1, B=1

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

0 -0.55 1.45 -2.56 1 2.22 3.35 1.94 1.38 0 2.44 2.94 1.96

Table 5-3. Random Weights Perform Like a Trained Network

Network #2 Initial Values for A=0, B=0

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

-1.50 2.50 3.00 -1.50 -1.00 -3.00 -2.00

ChapTer 5 Training WiTh BaCk propagaTion

88

Tables 5-5 and 5-6 summarize the adjustments necessary to train

network #3.

Table 5-5. Details for Network #3, Training Cycle #1

Network #3, Training Cycle #1

a=0, B=0

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

0 0.61 -2.00 3.25 0 0.64 2.50 -1.50 -2.50 1 -0,16 -2.00 -2.25

Comments:

1. a quick check reveals that a=1, B=0 gives an incorrect result, but the other

input combinations work. So we will start training with a=1, B=0.

a=1, B=0

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

0 0.61 -2.00 3.25 0 0.64 2.73 1.50 -2.27 1 -0.16 1.53 -1.86

Comments:

1. Z is oFF but V9 is at 0.61V. That’s not too far away from the threshold of

0.9V. We will start by adjusting VB, V1, and V2 (VB goes to 2.93V, V1 goes to 1.70V,

and V2 goes to -2.07V).

2. even though Y is already on, we will stick with the rule and strengthen lower V3

and V4 (V3 goes to 1.33V and V4 goes to -2.06V).

3. next we adjust V7 and V8 (V7 goes to -1.80V and V8 goes to 3.45V). Z did not

turn on with these adjustments, so we will need at least one more training cycle.

4. a check of the other input combinations reveals that they work fine, so we will

go directly to a=1, B=0 for the next pass.

adjusted to:

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

0 0.83 -1.80 3.45 0 0.85 2.93 1.70 -2.07 1 -0.37 1.33 -2.06

ChapTer 5 Training WiTh BaCk propagaTion

89

Table 5-6. Details for Network #3, Training Cycle #2

Network #3, Training Cycle #2

a=1, B=0

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

0 0.83 -1.80 3.45 0 0.85 2.93 1.70 -2.07 1 -0.37 1.33 -2.06

Comments:

1. Z is oFF, so we start by adjusting VB, V1, and V2 (VB goes to 3.13V, V1 goes to

1.90V, and V2 goes to -1.87V).

2. While adjusting VB, neuron Z came on. a quick check of all input combinations

revealed that the network is trained!

adjusted to:

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

3.13

Summary of parameters for Trained network #3

a=0, B=0

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

0 0.83 -1.77 3.46 0 -0.35 2.92 -1.64 -2.32 1 -2.09 -1.80 -2.39

a=1, B=0

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

1 2.94 2.12 3.79 1 0.91 3.14 1.73 -2.08 1 -0.38 1.31 -2.08

a=0, B=1

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

1 3.17 2.54 3.82 1 1.49 3.24 -1.28 2.51 1 0.31 -1.35 2.00

a=1, B=1

Z V0 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

0 -0.91 1.72 -3.56 1 2.77 3.46 2.10 2.78 0 2.04 1.79 2.34

ChapTer 5 Training WiTh BaCk propagaTion

90

Table 5-7 is a blank training sheet for your use.

Table 5-7. Blank Training Table

Training Cycle #

a=0, B=0

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

Comments:

adjusted to:

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

a=1, B=0

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

Comments:

adjusted to:

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

a=0, B=1

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

Comments:

(continued)

ChapTer 5 Training WiTh BaCk propagaTion

91

 Convergence
What is convergence? It’s when all of the different weights converge or get

to a place where the network starts to give the right answer every time for

all possible inputs. This is the happy place!

As you work your way through the training cycles, you can see this

happening. This is why it’s good to make lots of comments in the training

table. You can write down things that you think might be happening,

especially when you think the next training cycle might get you there. This

is part of becoming familiar with the process! It’s your table and it’s your

network, so have some fun and write lots of comments. You can always

clean it up later. This is a learning process: for the network and for you!

Training Cycle #

adjusted to:

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

a=1, B=1

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

Comments:

adjusted to:

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

Table 5-7. (continued)

ChapTer 5 Training WiTh BaCk propagaTion

92

 Attractors and Trends
Now let’s look at the activation voltages for our trained networks and see if

we can notice any trends.

 What Is an Attractor?
Without getting too technical, let me just say that an attractor is a set of

values that a system seems to be attracted to. It’s like there is some unseen

force that is pulling the parameters toward those certain values. If you drop

a glass of water, what happens? Probably it will crash to the floor, making

a big mess. In this case, gravity is the attractor and the big mess is the

destination.

If you look at a topo map, you will observe watershed areas where the

raindrops flow down into different streams and lakes. Here again, gravity

is the attracting force and the lakes are the destinations. This discussion

could get a lot more complex with “local minimums,” “global minimums,”

and so on, but let’s leave it at that for now.

Here’s a little more technical example. Sometimes we solve equations

by guessing at the answer and then working an algorithm like the Newton

Method over and over again to give us successive approximations that

get closer and closer to the actual answer. If you were to see this process

displayed as a colored graph, you would see the plot attracted toward the

answer (or answers). Figure 5-6 is a plot using this method to solve a third-

degree equation. OK, I said this was a little more technical.

ChapTer 5 Training WiTh BaCk propagaTion

93

To solve the XOR problem, each of our activation voltages appear to be

attracted to a small range of values. When starting with different initial values,

the activation voltages may be somewhat different from each other, but we

can spot a trend. What produces this strange force? I think it has to do with the

architecture of our network and the problem we are asking it to solve. If we

were training on a different logic function, we would see different attractors.

By the way, that would be another great project! Train this same

network on the OR function or the AND function and see where the

activation voltages go. In Appendix A, we will investigate other common

logic functions, and we’ll even train on some arbitrary patterns. You may

be surprised what the activation values have to show!

WARNING!

if you get interested in dynamical systems and attractors, you will end up

spending an inordinate amount of time and energy pursuing that passion!

Figure 5-6. Attractors for a third-degree equation

ChapTer 5 Training WiTh BaCk propagaTion

94

 Attractors in Our Trained Networks
With just a quick look at Figures 5-7 through 5-9 you will see some overall

patterns. It doesn’t take much to do a little bit of “feature extraction.”

Each figure shows the activation voltages for neurons X, Y, and Z for

the four different combinations of input values.

V9 is the “biggie” because it is the signal that turns neuron Z ON or

OFF. The activation threshold for each neuron is 0.9V. In the charts, it is

just below the 1V line. Notice that V9 is below the threshold for AB=00 and

AB=11. In each case for AB=00, it is just barely below the threshold, and

for AB=11 it is quite a bit below. Where does that come from? How does

it happen? Now, I was the one operating the screwdriver, but I was just

blindly following the back propagation algorithm.

From the graphs (and also from the tables above them) you can see

whether X and Y are turned ON or OFF.

In all three figures, you will notice that V5 and V6 rise from AB=00 to

AB=11. This is a distinct trend, again based on the training algorithm. For

input AB=11, X is ON and Y is OFF (we are using the inverting input for Y).

It appears that Y has much more influence than X. Where does that come

from? I would say from the ratio of V7 and V8. If you look at V7 and V8 in

the training tables, you will see that V8 is always quite a bit larger on the

negative side than V7 is on the positive side for this input.

Now that you have trained the network several times, you may have

some ideas to share. I would love to hear your insights. Send me an email

at rmckeon5@gmail.com.

ChapTer 5 Training WiTh BaCk propagaTion

95

Figure 5-7. Activation values for network #1

ChapTer 5 Training WiTh BaCk propagaTion

96

Figure 5-8. Activation values for network #2

Figure 5-9. Activation values for network #3

ChapTer 5 Training WiTh BaCk propagaTion

97

 Implementation
When you implement a neural network, you take a trained network and do

one of the following:

 1. Compile the program into machine language and

download it to a microcontroller unit (MCU) that

can reside in a product.

 2. Burn the trained network into a neural network chip

that is just one component of the product.

 3. Run the trained network on a large computer system.

In any case, the training is over and now it doesn’t need to learn any

more. It just performs the function it has been trained to do.

The next step in the evolution of neural networks is for them to

become more like human beings. Think about it. We perform the functions

that we already know how to do but we also continue to learn new things at

the same time.

Of course we would not take the trained network that we build for this

project and implement it in hardware. The CA4070 integrated circuit has four

XOR gates on board and it only cost about $0.21. But many other sophisticated

functions have been implemented as neural networks in real products.

Here’s the interesting thing about implementation. There are thousands

of neural networks out there performing important tasks of pattern

recognition in every environment imaginable! They are being used in

medical applications, security systems, trend forecasting, and even in stock

market predictions. These networks need to be accurate and cost- effective.

Accurate means well trained, and cost-effective means that we need to

reduce the support costs. In other words, once a network has been trained

to perform a specific function, the hardware and software costs can be

minimized.

The neural network may have been trained by running software on

a PC or larger computer, but once trained, the runtime program can be

ChapTer 5 Training WiTh BaCk propagaTion

98

compiled and downloaded to a small, inexpensive microcontroller unit.

The computer that the neural network was developed on does not need to

be part of the product.

Hardware-based neural networks are slow in coming, but we are

seeing some progress in that arena. Hopefully, we will start to see neural

network chips and development systems become commonplace soon.

When that happens, the same argument will apply. The trained neural

network chip will become just another component in the product. The

development system can be reused to develop other applications but will

not need to be part of the product itself. How exciting is that? And right

now in the year 2018, we are witnessing an explosion of concepts and

products in this exciting field. Now, that’s something to be excited about!

 Summary
What an adventure!

I hope you have found the training process for your network to

be interesting and even fascinating. Maybe some things worked out

differently than you expected.

I know all the details of the process might have seemed tedious at

first, but we have immersed ourselves in the training a network. You have

been through the process at the nitty-gritty level. I’m telling you, when we

start to see neural network chips become commonplace, you will have a

jumpstart in understanding.

In Chapter 6 we will reflect on where we have come from, and some

of the exciting possibilities for future projects. In fact, we will demonstrate

that this network is really a general purpose machine by training on

some other patterns. What’s the difference between a known and valued

logic function like AND or NAND and some arbitrary set of input and

output values? Well, really not all that much. Maybe you will discover an

application for some arbitrary transformation, who knows! If so, I would

love to hear about your discoveries.

ChapTer 5 Training WiTh BaCk propagaTion

99© Richard McKeon 2018
R. McKeon, Neural Networks for Electronics Hobbyists,
https://doi.org/10.1007/978-1-4842-3507-2_6

CHAPTER 6

Training on Other
Functions

100

We have seen how our three-layer network can perform the XOR

function. In this chapter, we will train the same network to perform a

few other tasks of pattern recognition by simply adjusting its connection

weights. Figure 6-1 shows the truth tables for several important logic

functions. Let’s try training our network on a few of them.

Figure 6-1. Common logic functions

Chapter 6 training on other FunCtions

101

 The OR Function
The OR function is similar to the XOR function except that it produces a

logic 1 or true in the case where both inputs are true. Because it includes

this possibility, we call it the “inclusive OR.” The XOR function excludes

this possibility, so it is called the “exclusive OR.”

Since the network is already trained on XOR, let’s start there. We will

follow the back propagation algorithm and train it to recognize the OR

function. We’ll use a 0.2V correction factor and do the following:

 1. If a signal contributes to a correct answer, it should

be strengthened.

 2. If a signal tends to cause a wrong answer, it should

be weakened.

 3. If the output is correct, leave it alone. It’s kind of like

the old saying, “If it works, don’t fix it.”

Each training cycle consists of presenting the network with the four

different combinations of inputs A and B, and then using a 0.2V correction

factor to adjust the weights.

Table 6-1 summarizes the details of the training process for the OR

function. Remember, it’s good to make lots of notes and try to understand

how the network is learning, because we are starting with the network

already trained on XOR we will go directly to A=1, B=1 to start the training.

Chapter 6 training on other FunCtions

102

Table 6-1. Training on the OR Function

Training on the OR Function

a=1, B=1

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

0 -0.88 0.87 -2.66 1 2.84 4.07 1.53 2.94 0 1.42 1.06 1.81

Comments:

1. X is already on, so we will strengthen its output by increasing V7 by 0.2V to 1.07V.

2. Y is LoW (keep in mind that Y is an inhibitory neuron), so we want to get its input

signal V6 closer to the threshold of 0.9V. therefore, we will adjust V3 down to 0.86V

and V4 down to 1.61V. this brought V6 down to 1.22V.

3. Y is still LoW, so we will bring V8 up to -2.46. adjusting V7 and V8 brought V9 up

to -0.68V.

4. a check of the other input switch combinations reveals that they all still produce

correct outputs for the or function, so we will continue training with a=1, B=1.

adjusted to:

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

0 -0.68 1.07 -2.46 1 2.84 4.07 1.53 2.94 0 1.22 0.86 1.61

a=1, B=1

1. X is on, so we will strengthen its output by increasing V7 to 1.27V.

2. Y is LoW, so we want to get his input signal closer to the threshold of

0.9V. therefore we will adjust V3 down to 0.66V and V4 down to 1.41V. this brought

V6 down to 1.02V. (We’re getting closer to the 0.9V threshold that will cause Y to go

high.)

3. Z is still LoW, so we will bring V8 up to -2.26V. adjusting V7 and V8 brought V9

up to -0.48V.

4. a check of the other input switch combinations reveals that they are still

producing the correct outputs, so we will continue with a=1, B=1.

(continued)

Chapter 6 training on other FunCtions

103

Table 6-1. (continued)

It’s interesting to note that throughout the training process, we never

adjusted RB, R1, or R2. Therefore, the inputs to neuron X remained

the same and it stayed ON throughout the training. Following the back

propagation protocol, we did strengthen the output from X on each pass,

but the major trigger event happened as we were adjusting R4. This

brought V6 down below the threshold for neuron Y (inhibitory neuron)

and allowed its output to go HIGH.

At that point, a quick check of all the input switch combinations

revealed that the network was trained. With a correction value of 0.2V, it

only took three passes to achieve convergence.

Training on the OR Function

adjusted to:

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

0 -0.48 1.27 -2.26 1 2.84 4.07 1.53 2.94 0 1.02 0.66 1.41

a=1, B=1

1. X is on, so we will strengthen its output by increasing V7 to 1.47V.

2. Y is LoW, so we want to get its input signal closer to the threshold of

0.9V. therefore we will adjust V3 down to 0.46V and V4 down to 1.21V. this

brought V6 down to 0.83V (below the threshold) and neuron Y went high, causing

V9 to jump to 2.27V, turning the output LeD on.

3. a check of the other input switch combinations reveals that the network is

trained on the or function!

adjusted to:

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

1 2.27 1.47 2.59 1 2.84 4.07 1.53 2.94 1 0.83 0.46 1.21

Chapter 6 training on other FunCtions

104

Figure 6-2 shows how the activation values V5, V6, and V9 changed

during training.

Table 6-2 summarizes the parameters for the network trained on the

OR function.

Table 6-2. Summary of Parameters for the Network Trained on the

OR Function

Summary of Parameters for the OR Function

a=0, B=0

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

0 0.33 -1.51 2.18 0 0.09 3.74 -1.06 -2.40 1 -0.84 -0.47 -1.23

a=0, B=1

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

1 2.27 1.98 2.59 1 1.99 3.95 -0.74 2.77 1 0.38 -0.37 1.13

a=1, B=0

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

1 2.27 1.98 2.55 1 0.91 3.82 1.21 -2.24 1 -0.40 0.36 -1.17

a=1, B=1

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

1 2.27 1.98 2.59 1 2.84 4.07 1.53 2.94 1 0.83 0.46 1.21

Chapter 6 training on other FunCtions

105

Figure 6-2. Activation values during training on OR

Let’s try the AND function next.

 The AND Function
The AND function requires that both inputs be true in order for the output

to be true. In the truth table, you will notice that this occurs only once

for the four combinations of inputs. Just to randomize things a little bit,

we will start with all of the potentiometers somewhere near their center

position. That is what gives us the initial conditions shown in Table 6-3.

Also, just by accident, starting with those initial conditions the network

performs like it was trained on the XOR function. Therefore, we will start

training with A=0, B=1.

Chapter 6 training on other FunCtions

106

Table 6-3. Training on the AND Function

Training on the AND Function

a=0, B=1

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

1 3.02 3.02 3.03 1 1.04 2.70 -1.88 2.22 1 -0.18 -2.15 1.99

Comments:

1. Z is on, but for this input we need it to be oFF. outputs for both X and Y are high,

so we will start by bringing VB down to 2.50V, V1 down to -2.08V, and V2 down to

2.02V. adjusting these three weights brought V5 down to 0.80V and the output LeD

turned oFF.

2. a=1, B=0 still gives a 1 on the output, so we’ll go there next.

adjusted to:

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

0 -0.04 -2.50 2.42 0 0.81 2.50 -2.08 2.02 1 -0.07 -2.15 1.99

a=1, B=0

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

1 3.02 3.03 3.04 1 1.11 2.55 2.44 -1.66 1 0.09 2.23 -2.05

Comments:

1. Z is on but we need it to be oFF, outputs for both X and Y are high, so we will

start by bringing VB down to 2.35V, V1 down to 2.24V, and V2 down to -1.86V.

adjusting these three weights brought V5 down to 0.89V, which turned X oFF, and

the output LeD turned oFF.

2. now a=0, B=0, a=0, B=1, and a=1, B=0 all give correct outputs. next we will

go to a=1, B=1.

(continued)

Chapter 6 training on other FunCtions

107

Training on the AND Function

adjusted to:

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

0 -0.03 -2.50 2,42 0 0.89 2.35 2.24 -1.89 1 0.01 2.07 -2.05

a=1, B=1

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

0 -0.03 2.43 -2.49 1 2.61 2.71 2.59 2.56 0 2.53 2.57 2.51

Comments:

1. Z is oFF, but we want it on. V9=-0.03V, which is not too far from the 0.9V

threshold required to turn it on.

2. X is already on, so we will strengthen its output by raising V7 to 2.63V. this

brought V9 up to 0.08V (closer to the required threshold of 0.9V).

3. Y is LoW, so we will adjust V3 to 2.37V and V4 to 2.31V. this won’t change V6

all that much, but we are just following the back propagation algorithm. these

adjustments brought V6 down to 2.32V. also, we reduced V8 to -2.29V, and that

brought V9 up to 0.18V.

4. the other input combinations still give correct outputs, so we will continue

training on a=1, B=1.

5. training is going slowly, so let’s try a correction factor of 0.4V.

adjusted to:

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

0 0.18 2.63 -2.29 1 2.61 2.69 2.59 2.56 0 2.32 2.37 2.31

a=1, B=1

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

0 0.18 2.63 -2.29 1 2.61 2.69 2.59 2.56 0 2.32 2.37 2.31

Table 6-3. (continued)

(continued)

Chapter 6 training on other FunCtions

108

Table 6-3. (continued)

(continued)

Training on the AND Function

Comments:

1. Z is still oFF, but we want it on. V9=0.18V, which is not very far from the 0.9V

threshold required to turn it on.

2. X is already on so we will strengthen its output by raising V7 to 3.03V. this

brought V9 up to 0.48V (closer to the required threshold of 0.9V.0).

3. Y is LoW, so we will adjust V3 to 1.97V and V4 to 1.91V. this won’t change V6

all that much, but we are just following the back propagation algorithm. these

adjustments brought V6 down to 1.93V. also, we reduced V8 to -1.89V, and that

brought V9 up to 0.58V.

4. a quick check of the other input combinations reveals that they are still

producing the correct oFF output, so we will continue training a=1, B=1 with a

0.4V correction factor.

adjusted to:

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

0 0.57 3.03 -1.89 1 2.61 3.44 -1.01 2.34 0 1.93 1.97 1.91

a=1, B=1

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

0 0.57 3.03 -1.89 1 2.61 3.44 -1.01 2.34 0 1.93 1.97 1.91

Chapter 6 training on other FunCtions

109

Table 6-3. (continued)

Training on the AND Function

Comments:

1. Z is still oFF, but we want it on. V9=0.57V, which is pretty close to the 0.9V

threshold required to turn it on.

2. X is already on, so we will strengthen its output by raising V7 to 3.43V. this

brought V9 up to 0.78V (closer to the required threshold of 0.9V).

3. Y is LoW, so we will adjust V3 to 1.57V and V4 to 1.51V. these adjustments

brought V6 down to 1.51V. also, we reduced V8 to -1.45V. When we reached

-1.61V on V8, the output LeD came on. a quick check of all input switch

combinations revealed that the network was trained on the anD function!

Wow! it took several training cycles, but the network did eventually learn to

produce the anD function!

adjusted to:

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

1 0.90 3.43 -1.45 1 2.61 2.69 2.59 2.56 0 1.51 1.57 1.51

Chapter 6 training on other FunCtions

110

Note after a few passes it looked like we were training pretty
slowly, so i got frustrated (impatient) and bumped the correction
factor up to 0.4V. after that, it only took two more passes for the
network to become trained.

An interesting point is that once the network became trained on the

AND function, neuron Y was still producing a LOW output. (One of my

secret goals was to get it to produce a HIGH output so it would turn on

neuron Z, but I was wrong! The network knew how to solve the problem

when I didn’t). So one of the amazing things about neural networks is that

the knowledge is distributed throughout the network. This is also one of

the properties that makes them so robust!

Table 6-4 summarizes the parameters for the network trained on the

AND function.

Chapter 6 training on other FunCtions

111

Table 6-4. Summary of Parameters for the Network Trained

on the AND Function

Summary of Parameters for the AND Function

a=0, B=0

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

0 -0.99 -3.54 1.54 0 -0.83 1.98 -2.25 -2.23 1 -1.54 -1.56 -1.54

a=0, B=1

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

0 -0.99 -3.54 1.54 0 0.88 2.33 -1.90 2.19 1 -0.03 -1.30 1.23

a=1, B=0

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

0 -0.99 -3.54 1.54 0 0.88 2.33 2.22 -1.87 1 0.00 1.26 -1.28

a=1, B=1

Z V9 V7 V8 X V5 VB V1 V2 Y V6 V3 V4

1 0.89 3.45 -1.61 1 2.60 2.68 2.59 2.55 0 1.51 1.53 1.51

Chapter 6 training on other FunCtions

112

Figure 6-3 shows how the activation values V5, V6, and V9 changed

during training.

Figure 6-3. Activation values during training on AND

 The General Purpose Machine
So far, we have seen that our network can be trained on XOR, OR, and

AND. There are many more combinations of inputs and outputs that this

network can associate. How many? Well, if you think about the different

outputs as just a combination of four binary bits (1’s and 0’s), then the

possible number of combinations is 16. Where does that come from?

Table 6-5 shows the possible number of combinations of four binary bits

together with their decimal equivalents.

Chapter 6 training on other FunCtions

113

Table 6-5. Number of Possible Combinations of Four Binary Digits

Binary Number Decimal Equivalent Number of Combinations

0000 0 1

0001 1 2

0010 2 3

0011 3 4

0100 4 5

0101 5 6

0110 6 7

0111 7 8

1000 8 9

1001 9 10

1010 10 11

1011 11 12

1100 12 13

1101 13 14

1110 14 15

1111 15 16

So what am I getting at? If this simple three-layer network really is a

general purpose machine, it should be able to associate (solve) any of the

16 possible combinations. A few of them are well-known logic functions,

but any one of them could turn out to be a useful association in real-life

commercial products.

Chapter 6 training on other FunCtions

114

 Summary
In this chapter, we have discovered that our simple three-layer network

can perform many different functions depending on how it is trained.

What we have built is a pretty simple network. How can we extend its

functionality? By adding more inputs, outputs, and hidden layers, and

also by implementing more sophisticated architectures (there are many!).

I suspect that we will soon see an explosion of neural network hardware

and development systems! Even as a hobbyist, you can take part in this

revolution.

In Appendix A, we are going to have a look at a free, open source neural

network software simulator called Simbrain. And then in Appendix B, I’ll

point you to some resources that will keep you motivated as you travel

along this exciting path.

Chapter 6 training on other FunCtions

115© Richard McKeon 2018
R. McKeon, Neural Networks for Electronics Hobbyists,
https://doi.org/10.1007/978-1-4842-3507-2_7

CHAPTER 7

Where Do We Go
from Here?
I hope you have enjoyed this brief introduction to neural networks. If this

book has sparked your interest, the journey is not over. It’s just beginning!

There are countless free online resources, and a quick search will reveal

plenty of beginning-level (and advanced) books to purchase. In Appendix B,

I list a few of my favorite resources. This exciting field could easily turn into

a lifelong study. You will never run out of interesting books, articles, and

videos because new advances are being made every day!

In this chapter, I am going to suggest a few more projects to experiment

with using the network we have already constructed. In Appendix A, we’ll

have a look at a free software neural network simulator. In this book, we have

focused on a hardware-based approach, but there are plenty of free, open

source software programs available. The one we will look at is called Simbrain.

So, let’s have a look at some of the other experiments you can perform

with our current project.

 Varying the Learning Rate
We used a 0.2V correction factor that resulted in trained networks with

just a few training cycles. Could we do even better with a larger correction

factor? (Actually, in Chapter 6, when I got impatient with our progress,

I bumped the correction factor to 0.4V with good effect.)

116

You would think that a higher learning rate would train the network

faster, but there is a chance of overcorrecting. In that case, the network

might not converge at all.

Also, you would think that a lower learning rate would cause the

network to be more stable and learn more reliably, but it might require a

lot more training cycles to reach convergence.

Give some different correction factors a try and record your results. I

would love to hear your observations. What did you learn about training?

 Crazy Starting Values
We were pretty conservative in our choice of initial conditions. Can this

network eventually learn to solve the XOR function no matter what the

initial weights are?

An interesting experiment would to choose an “outlier” or a value that

is really extreme and see if the process eventually brings it under control

and trains properly. Maybe it would take a lot more training cycles, or

maybe the attractors in the system aren’t strong enough to overcome

this value. The error in the system might get stuck in a “local minimum”

instead of being eliminated altogether. Put it to a test and see what

happens.

 Apply the Back Propagation Rule Differently
Our application of back propagation used a pretty straightforward

approach. Perhaps you may have some ideas about how to apply it

differently or more effectively. Here are some things you might try:

 1. Change the learning rate for each training cycle.

Start with a large correction factor and reduce it

with each training cycle.

Chapter 7 Where Do We Go from here?

117

 2. Use a different correction factor for the hidden layer

than you used for the output layer.

 3. Try eliminating the bias voltage on neuron X and

see if you can still get the network to learn.

 4. Don’t strengthen good signals; just reduce bad

signals that contributed to a wrong answer.

 5. Don’t weaken bad signals; just strengthen good

signals or signals that contributed to a correct

output.

 6. Does this sound a little bit like trying different

approaches to child- rearing?

 Feature Extraction
Can we learn something by looking at the weights in the hidden layer of a

trained network? How about the path or “orbit” that the weights took while

the network was being trained?

When we look for patterns in the hidden layer, we are doing “feature

extraction.” In other words, we are asking: “What do these features mean?”

 Determining the Range of Values
As we saw in Figures 5-7 through 5-9, the range of weights and activation

signals in a trained network can vary quite a bit depending on initial

conditions. It appears that the important factor is their relationship to each

other, not their actual value. Will these values always fall within a certain

range? A neuron (op amp comparator) won’t turn ON unless its activation

signal is above the threshold, so that creates a built-in restriction.

Chapter 7 Where Do We Go from here?

118

 Training on Different Logic Functions
There are many logic functions to investigate. Figure 7-1 shows some

common ones. Use this same network to train on different functions. Can

it learn any arbitrary combination of inputs vs. outputs?

As you train on these different functions, observe what is happening

with the weights. Plot the activation signals for the four possible input

combinations as we did for the XOR function.

Figure 7-1. Common logic functions

Chapter 7 Where Do We Go from here?

119

 Try Using a Different Model
There have been other models proposed for solving the XOR problem.

One of them uses a single neuron in the hidden layer. The inputs are

connected to the hidden layer and also to the output layer as shown in

Figure 7-2. Can a three-layer network always solve the XOR function?

 Build a Neural Network to Do Other Things
If you have some experience with electronic projects, you may want to

expand on this project. The possibilities are endless! Here are a few ideas:

 1. Replace slide switches A and B with photo diodes

and put a power transistor on the output to control a

motor for clockwise and counterclockwise rotation.

Figure 7-2. Single neuron in the hidden layer

Chapter 7 Where Do We Go from here?

120

 2. Use the principles discussed here to build a network

with a completely different architecture (different

number of layers, different number of neurons in

each layer, a more sophisticated task to solve).

 Postscript
I’m sure you realize that the approach we have taken here is not the most

efficient for simply designing a circuit to do something. This has been

a tutorial and a project just to get you thinking about hardware-based

approaches to neural networks. When neural network chips become

readily available (which I’m sure they will), you will already have a lot of

experience and some knowledge about how they work at a low level.

Note Low-level is not bad. It’s good! Investigating things at the
machine level gives you a deeper understanding.

It’s like in the old days when we used to write programs by hand on

coding sheets using op codes or assembler language. When higher-level

languages and compilers came along, they were vastly more efficient,

but I’m still glad for having learned about machine language (1’s and 0’s)

written in hex, having to build address decoders with external hardware,

understanding timing diagrams, using external EEPROMs to store the

program, and stuff like that.

TALK TO ME

I would love to hear about your projects and what you are doing as

“the adventure Continues.”

Send me an email at rmckeon5@gmail.com.

Chapter 7 Where Do We Go from here?

http://agilemanifesto.org/

121

 Summary
We started out discussing neural networks in general terms, and then we

got pretty specific by building a three-layer network from simple parts.

I hope our construction project helped to solidify some of the general

concepts.

The adventure is not over. It can continue for as long as you want!

This has been a brief introduction, but the journey has just begun. The

adventure of advancing technology belongs to everyone, not just to a few

select engineers. Who knows what interesting questions (or answers) you

may come up with! My adventures in science and music have convinced

me that “The Joy Is in the Journey.” I took the photograph in Figure 7-3 on

one of my hiking adventures in the Sierra Nevada Mountains of California.

It depicts my view of life as an ongoing adventure.

Figure 7-3. The joy is in the journey

Chapter 7 Where Do We Go from here?

123© Richard McKeon 2018
R. McKeon, Neural Networks for Electronics Hobbyists,
https://doi.org/10.1007/978-1-4842-3507-2

APPENDIX A

 Neural Network
Software, Simbrain
The focus throughout this book has been on a hardware

(components)-based approach to neural networks, but there are many

colorful and intuitive software packages available that you might find

interesting and fun to experiment with. Also, unless you are looking for a

high-end professional program, they are usually free or inexpensive.

Just learning to use one of these programs is an education in itself! You

will become familiar with

 1. Neural network terminology

 2. Network models

 3. Learning methods

 4. Collecting and preparing data for analysis

 5. Possible applications you might not have even

thought of yet

A quick search on the Internet will yield lots of neural network simulators.

Download a few of them (especially the free ones or ones that have a free trial

period) and play around with them. If you find one that you don’t like or the

learning curve seems too steep, simply delete it from your computer. One

that I think is worth spending some time with is called Simbrain.

https://doi.org/10.1007/978-1-4842-3507-2

124

Simbrain is a free, open source, neural network simulator. It is written

in Java and runs on Windows, Mac OS X, and Linux. The interface is

colorful, easy to use, and intuitive. Simbrain is supported by a large user

community, and there are lots of tutorials available on the Simbrain web

site and on YouTube. Their overarching design goal is to make neural

networks available to as wide an audience as possible, and to educate the

layperson about neural networks. Visit the Simbrain home page at

www.simbrain.net to see what it’s all about and download the program.

Note Simbrain is not perfect and it is still evolving, but it is a lot
of fun to experiment with, and there is an active user community
contributing to its development. I know you will learn a lot about
neural networks simply by experimenting with its available network
models and implementation strategies. Figure A-1 shows the
Simbrain home page.

Figure A-1. Simbrain home page

AppendIx A neurAl network SoFtwAre, SImbrAIn

http://www.simbrain.net

125

OK, once you have downloaded and installed the program, let’s build

a simple network. We’ll build a three-layer pattern-matching network with

four inputs, five neurons in the hidden layer, and four output neurons. To

get this project up and trained quickly, we will pretty much use the defaults

for everything.

Table A-1 shows the training set. In each case the input pattern has

only one neuron turned ON and it will be matched to an output pattern

with a different neuron turned ON.

Table A-1. Training Set

Input Pattern Output Pattern

1000 0001

0100 0010

0010 0100

0001 1000

Open Simbrain and click “New Network.” Then click Insert/Insert

Network/Backprop, as shown in Figure A-2.

AppendIx A neurAl network SoFtwAre, SImbrAIn

126

Once the network opens, change the number of inputs and outputs to

four and just accept all other defaults (Figure A-3).

Figure A-3. Specify the number of neurons in each layer

Figure A-2. Creating a new back propagation network

AppendIx A neurAl network SoFtwAre, SImbrAIn

127

Then, I like to drag and drop the neurons to show the network

horizontally (just my preference). Don’t worry about moving the neurons;

they will stay in the appropriate layer and their connections will remain

intact. I also like to double-click each neuron and give it a label. In this

case, the label is simply the neuron number. Once you do that, your

network should look like Figure A-4.

Figure A-4. Network displayed horizontally from left to right

Double-click the Backprop tab in the upper left-hand corner of the

network to open the training dialog box. Under the Input data tab, enter

the input data (Figure A-5).

AppendIx A neurAl network SoFtwAre, SImbrAIn

128

Then, under the Target data tab, enter the desired target pattern for

each output (Figure A-6).

Figure A-6. Target data tab

Figure A-5. Input data tab

AppendIx A neurAl network SoFtwAre, SImbrAIn

129

Next, click the play button under the Train tab. The error should drop

to zero almost immediately (Figure A-7). If it doesn’t, hit the randomize

button. Once the error goes to zero (or almost zero), hit the stop button to

stop the training.

Figure A-7. The network should train very quickly

Then open the Validate Input Data tab and verify one row at a time

that the network is, in fact, trained. Click the single step button to move to

the next row. Figures A-8 through A-11 show the trained network one row

at a time.

AppendIx A neurAl network SoFtwAre, SImbrAIn

130

Figure A-9. Second row

Figure A-8. First row

AppendIx A neurAl network SoFtwAre, SImbrAIn

131

Figure A-11. Fourth row

Figure A-10. Third row

AppendIx A neurAl network SoFtwAre, SImbrAIn

133© Richard McKeon 2018
R. McKeon, Neural Networks for Electronics Hobbyists,
https://doi.org/10.1007/978-1-4842-3507-2

 APPENDIX B

Resources

There is a wealth of information available for learning more about neural

networks. A quick search on the Internet will bring you hundreds of

tutorial articles and web site addresses. A search on www.amazon.com for

“neural networks” will bring up over 6,000 books! Many of them (probably

most) are quite technical, but a quick look at their covers and descriptions

will tell you if they are right for you.

https://doi.org/10.1007/978-1-4842-3507-2
http://www.amazon.com/

134

Also, a search on YouTube for “neural networks” will bring up loads of

excellent video tutorials. There are even online courses from recognized

universities.

Some of my favorite books are ones that I bought several years ago.

Back in the 1990s, a lot of new and exciting things were happening, and a

lot of people were writing introductory-level books. Below I list a few of my

favorites. All of these books are written with the layman and the hobbyist

in mind.

Note regarding online reviews: You will see both good and bad reviews

for each of these books. Keep in mind that everyone has an opinion, and

sometimes those with the strongest opinions are the least qualified to

judge. For the most part I can see where the reviewers are coming from,

but I personally like each of these recommended books. None of them will

answer all of your questions, but they all contain some valuable insights.

 Neural Network Books
These books deal specifically with neural networks.

Lawrence, Jeannette. Introduction to Neural Networks: Design, Theory,

and Applications. Nevada City, CA: California Scientific Software Press, 1994.

Caudill, Maureen, and Charles Butler. Naturally Intelligent Systems.

Cambridge, MA: MIT Press, 2000.

Lovine, John. Understanding Neural Networks: The Experimenter’s

Guide. Copenhagen: SI, 2012.

De Wilde, Philippe. Neural Network Models: Theory and Projects.

Berlin: Springer, 1997.

Rietman, Ed. Experiments in Artificial Neural Networks. Blue Ridge

Summit, PA: TAB Books Inc., 1988.

Allman, William F. Apprentices of Wonder: Inside the Neural Network

Revolution. New York: Bantam Books, 1989.

Appendix B ResouRces

135

 Chaos and Dynamic Systems
These books are not specifically about neural networks, but if you are

interested in neural networks, I bet you will enjoy the following.

Gleick, James. Chaos: Making a New Science. New York: Penguin

Books, 2008.

Peterson, Ivars. The Mathematical Tourist: Snapshots of Modern

Mathematics. New York: W.H. Freeman and Company, 2001.

Devaney, Robert L. Chaos, Fractals, and Dynamics: Computer

Experiments in Mathematics. Menlo Park, CA: Addison-Wesley Publishing

Company, 2000.

Johnson, Steven. Emergence: The Connected Lives of Ants, Brains, Cities,

and Software. New York: Scribner, 2012.

Waldrop, M. Mitchell. Complexity: The Emerging Science at the Edge of

Order and Chaos. New York: Simon & Schuster, 1992.

Briggs, John, and F. David Peat. Turbulent Mirror: An Illustrated Guide to

Chaos Theory and the Science of Wholeness. New York: Harper & Row, 2000.

McKeon, Rick. Underlying Patterns. CreateSpace.

Johnson, Neil. Simply Complexity: A Clear Guide to Complexity Theory.

Oxford: Oneworld Publications, 2012.

Strogatz, Steven. SYNC: How Order Emerges from Chaos in the

Universe, Nature, and Daily Life. New York: Hyperion, 2012.

Appendix B ResouRces

137© Richard McKeon 2018
R. McKeon, Neural Networks for Electronics Hobbyists,
https://doi.org/10.1007/978-1-4842-3507-2

Index

A
AND function

activation values, 112
summary of

parameters, 110–112
training process, 105–109

Artificial neural networks, see
Neural networks

Attractor
third-degree equation, 93
trained networks, 94–96

B
Back propagation algorithm

conceptual layers, 78
implementation, 81–82
OR function, 101–103
physical layers, 78
rule, 116
XOR network, 79–81

Binary digits, 112–113
Biological neural networks

applications, 16
brain scan, 3
graphical representation, 2

information flow, 5
interconnected neurons, 6
synapse, 8

C, D
Circuit testing, 73
Convergence, 91
Correction factor (0.2V),

101–103, 115

E
Electronic components

adjusting weights, 45
LEDs, 43
op amp comparator, 48–49
potentiometer, 45
power supply

battery clips, 33
voltage regulators, 35

protoboard, 31–32
resistor color code, 40–42
SPDT switches, 38–39
summing voltages, 47
voltage divider, 43–44

https://doi.org/10.1007/978-1-4842-3507-2

138

F
Feature extraction, 94, 117
Feed-forward network, 23

G
General purpose machine, 112–113

H, I
Hardware-based neural networks, 98
Hardware, electronic circuits, 15
Hidden layer, installation

input signals to op amps, 64–65
potentiometers and

op amps, 63–64
schematic, 62
testing, 66–68

J, K
Jumpers, 52

L, M
Learning rate, 116
Light-emitting diode (LEDs), 43

N
Neural networks

architecture, 19–21
chips, 98
hardware, electronic circuits, 15

models, 21
software, 13–15
three-layered network

(see Three-layered neural
network)

trained network, 97
wetware, biological computers, 11
XOR, 22–24, 51

Neural plasticity, 24
Neuron

artificial, 21
symbolic representation, 20

O
Op amp comparator, 48–49
OR function

activation values, 104
exclusive/inclusive, 101
summary of parameters, 104
training process, 101–102
0.2V correction factor, 101–103
and XOR functions, 30

P, Q
Plasticity, 24
Potentiometer, 45–46
Protoboard, 31–32

R
Range of values, 117
Resistor color code, 40–42

Index

139

S
Simbrain software

home page, 124
input data table, 128
neurons, layer, 126
new back propagation

network, 126
row trained network, 129–131
target data table, 128
training set, 125
Train tab, 129

Single Pole Double Throw (SPDT)
switches, 38–39

Small long-nose pliers, 53
Solderless breadboard, 52
Starting values, 116

T, U
Three-layered neural network

hidden layer, installation
input signals to op amps, 64–65
potentiometers and op

amps, 63–64
schematic, 62
testing, 66–68

input layer
schematic, input switches, 59
SPDT switches, 59
switches and indicator

LEDs, 60
output layer

breadboard, 68–69
inputs to op amp Z, 70

installation circuit, 71
potentiometers and

op amp Z, 69–70
power supply, 57–58

Trained networks
attractors, 94–96
back propagation, 76–77
neural network

implementation, 97
parameters, 87
random weights, 87
XOR, 79–81

Training cycles, 83
Training table, 90–91
Transfer function, 21, 48

V
0.2V correction factor, 101–103, 115
Voltage divider, 43–44
Voltage summing circuit, 47
Voltmeter, 53

W
Wetware, 11
Wire strippers, 53

X, Y, Z
XOR function, 29, 56

with four input
combinations, 118

single neuron
in hidden layer, 119

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Preface
	Chapter 1: Biological Neural Networks
	Biological Computing: The Neuron
	What Did You Do to Me?
	Wetware, Software, and Hardware
	Wetware: The Biological Computer
	Software: Programs Running on a Computer
	Hardware: Electronic Circuits

	Applications
	Just Around the Corner

	Chapter 2: Implementing Neural Networks
	Architecture?
	A Variety of Models
	Our Sample Network
	The Input Layer
	The Hidden Layer
	The Output Layer

	Training the Network
	Summary

	Chapter 3: Electronic Components
	What Is XOR?
	The Protoboard
	The Power Supply
	Inputs
	SPDT Switches
	Resistor Color Code
	LEDs

	What Is a Voltage Divider?
	Adjusting Connection Weights
	Summing Voltages
	Op Amp Comparator
	Putting It All Together
	Parts List
	Summary

	Chapter 4: Building the Network
	Do We Need a Neural Network?
	The Power Supply
	The Input Layer
	The Hidden Layer
	Installing potentiometers and Op Amps
	Installing Input Signals to the Op Amps

	The Output Layer
	Installing Potentiometers and Op Amp Z
	Installing Inputs to Op Amp Z
	Finishing the Output Layer

	Testing the circuit
	Summary

	Chapter 5: Training with Back Propagation
	The Back Propagation Algorithm
	Implementing the Back Propagation Algorithm

	Training Cycles
	Convergence
	Attractors and Trends
	What Is an Attractor?
	Attractors in Our Trained Networks

	Implementation
	Summary

	Chapter 6: Training on Other Functions
	The OR Function
	The AND Function
	The General Purpose Machine
	Summary

	Chapter 7: Where Do We Go from Here?
	Varying the Learning Rate
	Crazy Starting Values
	Apply the Back Propagation Rule Differently
	Feature Extraction
	Determining the Range of Values
	Training on Different Logic Functions
	Try Using a Different Model
	Build a Neural Network to Do Other Things
	Postscript
	Summary

	Appendix A: Neural Network Software, Simbrain
	Appendix B: Resources
	Neural Network Books
	Chaos and Dynamic Systems

	Index

