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Introduction

Scientific and numerical computing is a booming field in research, engineering, and 

analytics. The revolution in the computer industry over the last several decades has 

provided new and powerful tools for computational practitioners. This has enabled 

computational undertakings of previously unprecedented scale and complexity. Entire 

fields and industries have sprung up as a result. This development is still ongoing, and 

it is creating new opportunities as hardware, software, and algorithms keep improving. 

Ultimately the enabling technology for this movement is the powerful computing 

hardware that has been developed in recent decades. However, for a computational 

practitioner, the software environment used for computational work is as important as, if 

not more important than, the hardware on which the computations are carried out. This 

book is about one popular and fast-growing environment for numerical computing: the 

Python programming language and its vibrant ecosystem of libraries and extensions for 

computational work.

Computing is an interdisciplinary activity that requires experience and expertise 

in both theoretical and practical subjects: a firm understanding of mathematics and 

scientific thinking is a fundamental requirement for effective computational work. 

Equally important is solid training in computer programming and computer science. 

The role of this book is to bridge these two subjects by introducing how scientific 

computing can be done using the Python programming language and the computing 

environment that has appeared around this language. In this book the reader is assumed 

to have some previous training in mathematics and numerical methods and basic 

knowledge about Python programming. The focus of the book is to give a practical 

introduction to computational problem-solving with Python. Brief introductions to the 

theory of the covered topics are given in each chapter, to introduce notation and remind 

readers of the basic methods and algorithms. However, this book is not a self-consistent 

treatment of numerical methods. To assist readers that are not previously familiar with 

some of the topics of this book, references for further reading are given at the end of each 

chapter. Likewise, readers without experience in Python programming will probably find 

it useful to read this book together with a book that focuses on the Python programming 

language itself.
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 How This Book Is Organized
The first chapter in this book introduces general principles for scientific computing 

and the main development environments that are available for work with computing in 

Python: the focus is on IPython and its interactive Python prompt, the excellent Jupyter 

Notebook application, and the Spyder IDE.

In Chapter 2, an introduction to the NumPy library is given, and here we also 

discuss more generally array-based computing and its virtues. In Chapter 3, we turn our 

attention to symbolic computing – which in many respects complements array-based 

computing – using the SymPy library. In Chapter 4, we cover plotting and visualization 

using the Matplotlib library. Together, Chapters 2 to 4 provide the basic computational 

tools that will be used for domain-specific problems throughout the rest of the book: 

numerics, symbolics, and visualization.

In Chapter 5, the topic of study is equation solving, which we explore with both 

numerical and symbolic methods, using the SciPy and SymPy libraries. In Chapter 6, we 

explore optimization, which is a natural extension of equation solving. Here we mainly 

work with the SciPy library and briefly with the cvxopt library. Chapter 7 deals with 

interpolation, which is another basic mathematical method with many applications of 

its own, and important roles in higher-level algorithms and methods. In Chapter 8, we 

cover numerical and symbolic integration. Chapters 5 to 8 cover core computational 

techniques that are pervasive in all types of computational work. Most of the methods 

from these chapters are found in the SciPy library.

In Chapter 9, we proceed to cover ordinary differential equations. Chapter 10 is 

a detour into sparse matrices and graph methods, which helps prepare the field for 

the following chapter. In Chapter 11, we discuss partial differential equations, which 

conceptually are closely related to ordinary differential equations, but require a different 

set of techniques that necessitates the introduction of sparse matrices, the topic of 

Chapter 10.

Starting with Chapter 12, we make a change of direction and begin exploring data 

analysis and statistics. In Chapter 12, we introduce the Pandas library and its excellent 

data analysis framework. In Chapter 13, we cover basic statistical analysis and methods 

from the SciPy stats package. In Chapter 14, we move on to statistical modeling, 

using the statsmodels library. In Chapter 15, the theme of statistics and data analysis 

is continued with a discussion of machine learning, using the scikit-learn library. In 

Chapter 16, we wrap up the statistics-related chapters with a discussion of Bayesian 

statistics and the PyMC library. Together, Chapters 12 to 16 provide an introduction to 

inTRoduCTion
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the broad field of statistics and data analytics: a field that has been developing rapidly 

within and outside of the scientific Python community in recent years.

In Chapter 17, we briefly return to a core subject in scientific computing: signal 

processing. In Chapter 18, we discuss data input and output, and several methods for 

reading and writing numerical data to files, which is a basic topic that is required for 

most types of computational work. In Chapter 19, the final regular chapter in this book, 

two methods for speeding up Python code are introduced, using the Numba and Cython 

libraries.

The Appendix covers the installation of the software used in this book. To install 

the required software (mostly Python libraries), we use the conda package manager. 

Conda can also be used to create virtual and isolated Python environments, which is an 

important topic for creating stable and reproducible computational environments. The 

Appendix also discusses how to work with such environments using the conda package 

manager.

 Source Code Listings
Each chapter in this book has an accompanying Jupyter Notebook that contains the 

chapter’s source code listings. These notebooks, and the data files required to run them, 

can be downloaded by clicking the Download Source Code button located at  

 www.apress.com/9781484242452.

inTRoduCTion
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CHAPTER 1

Introduction to Computing 
with Python
This book is about using Python for numerical computing. Python is a high-level, 

general-purpose interpreted programming language that is widely used in scientific 

computing and engineering. As a general-purpose language, Python was not specifically 

designed for numerical computing, but many of its characteristics make it well suited 

for this task. First and foremost, Python is well known for its clean and easy-to-read 

code syntax. Good code readability improves maintainability, which in general results in 

fewer bugs and better applications overall, but it also enables rapid code development. 

This readability and expressiveness are essential in exploratory and interactive 

computing, which requires fast turnaround for testing various ideas and models.

In computational problem-solving, it is, of course, important to consider the 

performance of algorithms and their implementations. It is natural to strive for 

efficient high- performance code, and optimal performance is indeed crucial for many 

computational problems. In such cases it may be necessary to use a low-level program 

language, such as C or Fortran, to obtain the best performance out of the hardware that 

runs the code. However, it is not always the case that optimal runtime performance is the 

most suitable objective. It is also important to consider the development  

time required to implement a solution to a problem in a given programming language  

or environment. While the best possible runtime performance can be achieved in a  

low-level programming language, working in a high-level language such as Python usually 

reduces the development time and often results in more flexible and extensible code.

These conflicting objectives present a trade-off between high performance and 

long development time and lower performance but shorter development time. See 

Figure 1-1 for a schematic visualization of this concept. When choosing a computational 

environment for solving a particular problem, it is important to consider this trade-off 

and to decide whether man-hours spent on the development or CPU-hours spent on 
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running the computations is more valuable. It is worth noting that CPU-hours are cheap 

already and are getting even cheaper, but man-hours are expensive. In particular, your 

own time is of course a very valuable resource. This makes a strong case for minimizing 

development time rather than the runtime of a computation by using a high-level 

programming language and environment such as Python and its scientific computing 

libraries.

Figure 1-1. Trade-off between low- and high-level programming languages. 
While a low-level language typically gives the best performance when a significant 
amount of development time is invested in the implementation of a solution to a 
problem, the development time required to obtain a first runnable code that solves 
the problem is typically shorter in a high-level language such as Python.

A solution that partially avoids the trade-off between high- and low-level languages 

is to use a multilanguage model, where a high-level language is used to interface 

libraries and software packages written in low-level languages. In a high-level scientific 

computing environment, this type of interoperability with software packages written in 

low-level languages (e.g., Fortran, C, or C++) is an important requirement. Python excels 

at this type of integration, and as a result, Python has become a popular “glue language” 

used as an interface for setting up and controlling computations that use code written 

in low-level programming languages for time-consuming number crunching. This is an 

Chapter 1  IntroduCtIon to ComputIng wIth python
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important reason for why Python is a popular language for numerical computing. The 

multilanguage model enables rapid code development in a high-level language while 

retaining most of the performance of low-level languages.

As a consequence of the multilanguage model, scientific and technical computing 

with Python involves much more than just the Python language itself. In fact, the Python 

language is only a piece of an entire ecosystem of software and solutions that provide a 

complete environment for scientific and technical computing. This ecosystem includes 

development tools and interactive programming environments, such as Spyder and 

IPython, which are designed particularly with scientific computing in mind. It also 

includes a vast collection of Python packages for scientific computing. This ecosystem 

of scientifically oriented libraries ranges from generic core libraries – such as NumPy, 

SciPy, and Matplotlib – to more specific libraries for particular problem domains. 

Another crucial layer in the scientific Python stack exists below the various Python 

modules: many scientific Python library interface, in one way or another; low-level 

high-performance scientific software packages, such as for example optimized LAPACK 

and BLAS libraries1 for low-level vector, matrix, and linear algebra routines; or other 

specialized libraries for specific computational tasks. These libraries are typically 

implemented in a compiled low-level language and can therefore be optimized and 

efficient. Without the foundation that such libraries provide, scientific computing with 

Python would not be practical. See Figure 1-2 for an overview of the various layers of the 

software stack for computing with Python.

1 For example, MKL, the Math Kernel Library from Intel, https://software.intel.com/en-us/
intel-mkl; openBLAS, https://www.openblas.net; or ATLAS, the Automatically Tuned Linear 
Algebra Software, available at http://math-atlas.sourceforge.net

Chapter 1  IntroduCtIon to ComputIng wIth python
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Tip the Scipy organization and its web site www.scipy.org provide a 
centralized resource for information about the core packages in the scientific 
python ecosystem, and lists of additional specialized packages, as well as 
documentation and tutorials. as such, it is a valuable resource when working 
with scientific and technical computing in python. another great resource is the 
Numeric and Scientific page on the official python wiki: http://wiki.python.
org/moin/NumericAndScientific.

Apart from the technical reasons for why Python provides a good environment for 

computational work, it is also significant that Python and its scientific computing libraries 

are free and open source. This eliminates economic constraints on when and how 

applications developed with the environment can be deployed and distributed by its users. 

Equally significant, it makes it possible for a dedicated user to obtain complete insight on 

how the language and the domain-specific packages are implemented and what methods 

are used. For academic work where transparency and reproducibility are hallmarks, this 

Environments

Python language

Python packages

System and system libraries

Figure 1-2. An overview of the components and layers in the scientific computing 
environment for Python, from a user’s perspective from top to bottom. Users 
typically only interact with the top three layers, but the bottom layer constitutes a 
very important part of the software stack.

Chapter 1  IntroduCtIon to ComputIng wIth python
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is increasingly recognized as an important requirement on software used in research. For 

commercial use, it provides freedom on how the environment is used and integrated into 

products and how such solutions are distributed to customers. All users benefit from the 

relief of not having to pay license fees, which may otherwise inhibit deployments on large 

computing environments, such as clusters and cloud computing platforms.

The social component of the scientific computing ecosystem for Python is another 

important aspect of its success. Vibrant user communities have emerged around the core 

packages and many of the domain-specific projects. Project-specific mailing lists, Stack 

Overflow groups, and issue trackers (e.g., on Github, www.github.com) are typically very 

active and provide forums for discussing problems and obtaining help, as well as a way of 

getting involved in the development of these tools. The Python computing community also 

organizes yearly conferences and meet-ups at many venues around the world, such as the 

SciPy (http://conference.scipy.org) and PyData (http://pydata.org) conference series.

 Environments for Computing with Python
There are a number of different environments that are suitable for working with 

Python for scientific and technical computing. This diversity has both advantages 

and disadvantages compared to a single endorsed environment that is common in 

proprietary computing products: diversity provides flexibility and dynamism that lends 

itself to specialization for particular use-cases, but on the other hand, it can also be 

confusing and distracting for new users, and it can be more complicated to set up a 

full productive environment. Here I give an orientation of common environments for 

scientific computing, so that their benefits can be weighed against each other and an 

informed decision can be reached regarding which one to use in different situations and 

for different purposes. The three environments discussed here are

• The Python interpreter or the IPython console to run code 

interactively. Together with a text editor for writing code, this 

provides a lightweight development environment.

• The Jupyter Notebook, which is a web application in which Python 

code can be written and executed through a web browser. This 

environment is great for numerical computing, analysis, and 

problem-solving, because it allows one to collect the code, the output 

produced by the code, related technical documentation, and the 

analysis and interpretation, all in one document.

Chapter 1  IntroduCtIon to ComputIng wIth python
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• The Spyder Integrated Development Environment, which can be 

used to write and interactively run Python code. An IDE such as 

Spyder is a great tool for developing libraries and reusable Python 

modules.

All of these environments have justified use-cases, and it is largely a matter of 

personal preference which one to use. However, I do in particular recommend exploring 

the Jupyter Notebook environment, because it is highly suitable for interactive and 

exploratory computing and data analysis, where data, code, documentation, and results 

are tightly connected. For development of Python modules and packages, I recommend 

using the Spyder IDE, because of its integration with code analysis tools and the Python 

debugger.

Python, and the rest of the software stack required for scientific computing with 

Python, can be installed and configured in a large number of ways, and in general the 

installation details also vary from system to system. In Appendix 1, we go through one 

popular cross-platform method to install the tools and libraries that are required for  

this book.

 Python
The Python programming language and the standard implementation of the Python 

interpreter are frequently updated and made available through new releases.2 Currently, 

there are two active versions of Python available for production use: Python 2 and 

Python 3. In this book we will work with Python 3, which by now has practically 

superseded Python 2. However, for some legacy applications, using Python 2 may still be 

the only option, if it contains libraries that have not been made compatible with Python 

3. It is also sometimes the case that only Python 2 is the available in institutionally 

provided environments, such as on high-performance clusters or universities’ computer 

systems. When developing Python code for such environments, it might be necessary 

to use Python 2, but otherwise, I strongly recommend using Python 3 in new projects. It 

should also be noted that support for Python 2 has now been dropped by many major 

2 The Python language and the default Python interpreter are managed and maintained by the 
Python Software Foundation: http://www.python.org.

Chapter 1  IntroduCtIon to ComputIng wIth python
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Python libraries, and the vast majority of computing-oriented libraries for Python now 

support Python 3. For the purpose of this book, we require version 2.7 or greater for the 

Python 2 series or Python 3.2 or greater for the preferred Python 3 series.

 Interpreter
The standard way to execute Python code is to run the program directly through the 

Python interpreter. On most systems, the Python interpreter is invoked using the python 

command. When a Python source file is passed as an argument to this command, the 

Python code in the file is executed.

$ python hello.py

Hello from Python!

Here the file hello.py contains the single line:

print("Hello from Python!")

To see which version of Python is installed, one can invoke the python command 

with the --version argument:

$ python --version

Python 3.6.5

It is common to have more than one version of Python installed on the same system. 

Each version of Python maintains its own set of libraries and provides its own interpreter 

command (so each Python environment can have different libraries installed). On many 

systems, specific versions of the Python interpreter are available through the commands 

such as, for example, python2.7 and python3.6. It is also possible to set up virtual 

python environments that are independent of the system-provided environments. This 

has many advantages and I strongly recommend to become familiar with this way of 

working with Python. Appendix A provides details of how to set up and work with these 

kinds of environments.
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In addition to executing Python script files, a Python interpreter can also be used 

as an interactive console (also known as a REPL: Read–Evaluate–Print–Loop). Entering 

python at the command prompt (without any Python files as argument) launches the 

Python interpreter in an interactive mode. When doing so, you are presented with a 

prompt:

$ python

Python 3.6.1 |Continuum Analytics, Inc.| (default, May 11 2017, 13:04:09)

[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.57)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>>

From here Python code can be entered, and for each statement, the interpreter 

evaluates the code and prints the result to the screen. The Python interpreter itself 

already provides a very useful environment for interactively exploring Python code, 

especially since the release of Python 3.4, which includes basic facilities such as a 

command history and basic autocompletion (not available by default in Python 2).

 IPython Console
Although the interactive command-line interface provided by the standard Python 

interpreter has been greatly improved in recent versions of Python 3, it is still in certain 

aspects rudimentary, and it does not by itself provide a satisfactory environment for 

interactive computing. IPython3 is an enhanced command-line REPL environment for 

Python, with additional features for interactive and exploratory computing. For example, 

IPython provides improved command history browsing (also between sessions), an 

input and output caching system, improved autocompletion, more verbose and helpful 

exception tracebacks, and much more. In fact, IPython is now much more than an 

enhanced Python command-line interface, which we will explore in more detail later  

in this chapter and throughout the book. For instance, under the hood IPython is a 

3 See the IPython project web page, http://ipython.org, for more information and its official 
documentation.
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client- server application, which separates the frontend (user interface) from the backend 

(kernel) that executes the Python code. This allows multiple types of user interfaces 

to communicate and work with the same kernel, and a user-interface application can 

connect multiple kernels using IPython’s powerful framework for parallel computing.

Running the ipython command launches the IPython command prompt:

$ ipython

Python 3.6.1 |Continuum Analytics, Inc.| (default, May 11 2017, 13:04:09)

Type 'copyright', 'credits' or 'license' for more information

IPython 6.4.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]:

Caution note that each Ipython installation corresponds to a specific version 
of python, and if you have several versions of python available on your system, 
you may also have several versions of Ipython as well. on many systems, Ipython 
for python 2 is invoked with the command ipython2 and for python 3 with 
ipython3, although the exact setup varies from system to system. note that here 
the “2” and “3” refer to the python version, which is different from the version of 
Ipython itself (which at the time of writing is 6.4.0).

In the following sections, I give a brief overview of some of the IPython features 

that are most relevant to interactive computing. It is worth noting that IPython is used 

in many different contexts in scientific computing with Python, for example, as a 

kernel in the Jupyter Notebook application and in the Spyder IDE, which are covered 

in more detail later in this chapter. It is time well spent to get familiar with the tricks 

and techniques that IPython offers to improve your productivity when working with 

interactive  computing.

 Input and Output Caching
In the IPython console, the input prompt is denoted as In [1]: and the corresponding 

output is denoted as Out [1]:, where the numbers within the square brackets are 

incremented for each new input and output. These inputs and outputs are called cells in 

IPython. Both the input and the output of previous cells can later be accessed through 
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the In and Out variables that are automatically created by IPython. The In and Out 

variables are a list and a dictionary, respectively, that can be indexed with a cell number. 

For instance, consider the following IPython session:

In [1]: 3 * 3

Out[1]: 9

In [2]: In[1]

Out[2]: '3 * 3'

In [3]: Out[1]

Out[3]: 9

In [4]: In

Out[4]: [", '3 * 3', 'In[1]', 'Out[1]', 'In']

In [5]: Out

Out[5]: {1: 9, 2: '3 * 3', 3: 9, 4: [", '3 * 3', 'In[1]', 'Out[1]', 'In', 'Out']}

Here, the first input was 3 * 3 and the result was 9, which later is available as In[1] 

and Out[1]. A single underscore _ is a shorthand notation for referring to the most 

recent output, and a double underscore __ refers to the output that preceded the most 

recent output. Input and output caching is often useful in interactive and exploratory 

computing, since the result of a computation can be accessed even if it was not explicitly 

assigned to a variable.

Note that when a cell is executed, the value of the last statement in an input cell 

is by default displayed in the corresponding output cell, unless the statement is an 

assignment or if the value is Python null value None. The output can be suppressed by 

ending the statement with a semicolon:

In [6]: 1 + 2

Out[6]: 3

In [7]: 1 + 2;    # output suppressed by the semicolon

In [8]: x = 1     # no output for assignments

In [9]: x = 2; x  #  these are two statements. The value of 'x' is shown in 

the output

Out[9]: 2

Chapter 1  IntroduCtIon to ComputIng wIth python



11

 Autocompletion and Object Introspection
In IPython, pressing the TAB key activates autocompletion, which displays a list of 

symbols (variables, functions, classes, etc.) with names that are valid completions of 

what has already been typed. The autocompletion in IPython is contextual, and it will 

look for matching variables and functions in the current namespace or among the 

attributes and methods of a class when invoked after the name of a class instance. For 

example, os.<TAB> produces a list of the variables, functions, and classes in the os 

module, and pressing TAB after having typed os.w results in a list of symbols in the os 

module that starts with w:

In [10]: import os

In [11]: os.w<TAB>

os.wait  os.wait3  os.wait4  os.waitpid  os.walk  os.write  os.writev

This feature is called object introspection, and it is a powerful tool for interactively 

exploring the properties of Python objects. Object introspection works on modules, 

classes, and their attributes and methods and on functions and their arguments.

 Documentation
Object introspection is convenient for exploring the API of a module and its member 

classes and functions, and together with the documentation strings, or “docstrings”, that 

are commonly provided in Python code, it provides a built-in dynamic reference manual 

for almost any Python module that is installed and can be imported. A Python object 

followed by a question mark displays the documentation string for the object. This is 

similar to the Python function help. An object can also be followed by two question 

marks, in which case IPython tries to display more detailed documentation, including 

the Python source code if available. For example, to display help for the cos function in 

the math library:

In [12]: import math

In [13]: math.cos?

Type:        builtin_function_or_method

String form: <built-in function cos>
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Docstring:

cos(x)

Return the cosine of x (measured in radians).

Docstrings can be specified for Python modules, functions, classes, and their 

attributes and methods. A well-documented module therefore includes a full API 

documentation in the code itself. From a developer’s point of view, it is convenient to be 

able to document a code together with the implementation. This encourages writing and 

maintaining documentation, and Python modules tend to be well documented.

 Interaction with the System Shell
IPython also provides extensions to the Python language that makes it convenient 

to interact with the underlying system. Anything that follows an exclamation mark 

is evaluated using the system shell (such as bash shell). For example, on a UNIX-like 

system, such as Linux or Mac OS X, listing files in the current directory can be done using

In[14]: !ls

file1.py    file2.py    file3.py

On Microsoft Windows, the equivalent command would be !dir. This method for 

interacting with the OS is a very powerful feature that makes it easy to navigate the file 

system and to use the IPython console as a system shell. The output generated by a 

command following an exclamation mark can easily be captured in a Python variable. 

For example, a file listing produced by !ls can be stored in a Python list using

In[15]: files = !ls

In[16]: len(files)

3

In[17] : files

['file1.py', 'file2.py', 'file3.py']

Likewise, we can pass the values of Python variables to shell commands by prefixing 

the variable name with a $ sign:

In[18]: file = "file1.py"

In[19]: !ls -l $file

-rw-r--r--  1 rob  staff 131 Oct 22 16:38 file1.py
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This two-way communication with the IPython console and the system shell can be 

very convenient when, for example, processing data files.

 IPython Extensions
IPython provides extension commands that are called magic functions in IPython 

terminology. These commands all start with one or two % signs.4 A single % sign is used 

for one-line commands, and two % signs are used for commands that operate on cells 

(multiple lines). For a complete list of available extension commands, type %lsmagic, 

and the documentation for each command can be obtained by typing the magic 

command followed by a question mark:

In[20]: %lsmagic?

Type:            Magic function

String form:     <bound method BasicMagics.lsmagic of <IPython.core.magics.

basic.BasicMagics object at 0x10e3d28d0>>

Namespace:       IPython internal

File:            /usr/local/lib/python3.6/site-packages/IPython/core/magics/

basic.py

Definition:     %lsmagic(self, parameter_s=")

Docstring:      List currently available magic functions.

 File System Navigation

In addition to the interaction with the system shell described in the previous section, 

IPython provides commands for navigating and exploring the file system. The 

commands will be familiar to UNIX shell users: %ls (list files), %pwd (return current 

working directory), %cd (change working directory), %cp (copy file), %less (show the 

content of a file in the pager), and %%writefile filename (write content of a cell to the 

file filename). Note that autocomplete in IPython also works with the files in the current 

4 When %automagic is activated (type %automagic at the IPython prompt to toggle this feature), the 
% sign that precedes the IPython commands can be omitted, unless there is a name conflict with 
a Python variable or function. However, for clarity, the % signs are explicitly shown here.
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working directory, which makes IPython as convenient to explore the file system as is the 

system shell. It is worth noting that these IPython commands are system independent 

and can therefore be used on both UNIX-like operating systems and on Windows.

 Running Scripts from the IPython Console

The command %run is an important and useful extension, perhaps one of the most 

important features of the IPython console. With this command, an external Python 

source code file can be executed within an interactive IPython session. Keeping a session 

active between multiple runs of a script makes it possible to explore the variables and 

functions defined in a script interactively after the execution of the script has finished.  

To demonstrate this functionality, consider a script file fib.py that contains the 

following code:

def fib(n):

    """

    Return a list of the first n Fibonacci numbers.

    """

    f0, f1 = 0, 1

    f = [1] * n

    for i in range(1, n):

        f[i] = f0 + f1

        f0, f1 = f1, f[i]

    return f

print(fib(10))

It defines a function that generates a sequence of n Fibonacci numbers and prints 

the result for n = 10 to the standard output. It can be run from the system terminal using 

the standard Python interpreter:

$ python fib.py

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
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It can also be run from an interactive IPython session, which produces the  

same output, but also adds the symbols defined in the file to the local namespace,  

so that the fib function is available in the interactive session after the %run command 

has been issued.

In [21]: %run fib.py

Out[22]: [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

In [23]: %who

fib

In [23]: fib(6)

Out[23]: [1, 1, 2, 3, 5, 8]

In the preceding example, we also made use of the %who command, which lists 

all defined symbols (variables and functions).5 The %whos command is similar, but 

also gives more detailed information about the type and value of each symbol, when 

applicable.

 Debugger

IPython includes a handy debugger mode, which can be invoked postmortem after 

a Python exception (error) has been raised. After the traceback of an unintercepted 

exception has been printed to the IPython console, it is possible to step directly into the 

Python debugger using the IPython command %debug. This possibility can eliminate 

the need to rerun the program from the beginning using the debugger or after having 

employed the common debugging method of sprinkling print statements into the code. 

If the exception was unexpected and happened late in a time-consuming computation, 

this can be a big time-saver.

To see how the %debug command can be used, consider the following incorrect 

invocation of the fib function defined earlier. It is incorrect because a float is passed to 

the function while the function is implemented with the assumption that the argument 

passed to it is an integer. On line 7 the code runs into a type error, and the Python 

interpreter raises an exception of the type TypeError. IPython catches the exception and 

5 The Python function dir provides a similar feature.
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prints out a useful traceback of the call sequence on the console. If we are clueless as 

to why the code on line 7 contains an error, it could be useful to enter the debugger by 

typing %debug in the IPython console. We then get access to the local namespace at  

the source of the exception, which can allow us to explore in more detail why the 

exception was raised.

In [24]: fib(1.0)

---------------------------------------------------------------------------

TypeError                                 Traceback (most recent call last)

<ipython-input-24-874ca58a3dfb> in <module>()

 ----> 1 fib.fib(1.0)

/Users/rob/code/fib.py in fib(n)

      5     """

      6     f0, f1 = 0, 1

 ----> 7     f = [1] * n

      8     for i in range(1, n):

      9         f[n] = f0 + f1

TypeError: can't multiply sequence by non-int of type 'float'

In [25]: %debug

> /Users/rob/code/fib.py(7)fib()

      6    f0, f1 = 0, 1

----> 7    f = [1] * n

      8     for i in range(1, n):

ipdb> print(n) 

1.0

■■ Tip type a question mark at the debugger prompt to show a help menu that 
lists available commands:

ipdb> ?

more information about the python debugger and its features is also available in 
the python Standard Library documentation: http://docs.python.org/3/
library/pdb.html.
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 Reset

Resetting the namespace of an IPython session is often useful to ensure that a program 

is run in a pristine environment, uncluttered by existing variables and functions. The 

%reset command provides this functionality (use the flag –f to force the reset). Using 

this command can often eliminate the need for otherwise common exit-restart cycles of 

the console. Although it is necessary to reimport modules after the %reset command has 

been used, it is important to know that even if the modules have changed since the last 

import, a new import after a %reset will not import the new module but rather reenable 

a cached version of the module from the previous import. When developing Python 

modules, this is usually not the desired behavior. In that case, a reimport of a previously 

imported (and since updated) module can often be achieved by using the reload 

function from IPython.lib.deepreload. However, this method does not always work, as 

some libraries run code at import time that is only intended to run once. In this case, the 

only option might be to terminate and restart the IPython interpreter.

 Timing and Profiling Code

The %timeit and %time commands provide simple benchmarking facilities that are 

useful when looking for bottlenecks and attempting to optimize code. The %timeit 

command runs a Python statement a number of times and gives an estimate of the 

runtime (use %%timeit to do the same for a multiline cell). The exact number of times 

the statement is ran is determined heuristically, unless explicitly set using the –n and –r  

flags. See %timeit? for details. The %timeit command does not return the resulting 

value of the expression. If the result of the computation is required, the %time or %%time 

(for a multiline cell) commands can be used instead, but %time and %%time only run the 

statement once and therefore give a less accurate estimate of the average runtime.

The following example demonstrates a typical usage of the %timeit and %time 

commands:

In [26]: %timeit fib(100)

100000 loops, best of 3: 16.9 μs per loop
In [27]: result = %time fib(100)

CPU times: user 33 μs, sys: 0 ns, total: 33 μs
Wall time: 48.2
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While the %timeit and %time commands are useful for measuring the elapsed 

runtime of a computation, they do not give any detailed information about what part 

of the computation takes more time. Such analyses require a more sophisticated code 

profiler, such as the one provided by Python standard library module cProfile.6 The 

Python profiler is accessible in IPython through the commands %prun (for statements) 

and %run with the flag –p (for running external script files). The output from the profiler 

is rather verbose and can be customized using optional flags to the %prun and %run -p 

commands (see %prun? for a detailed description of the available options).

As an example, consider a function that simulates N random walkers each taking M 

steps and then calculates the furthest distance from the starting point achieved by any of 

the random walkers:

In [28]: import numpy as np

In [29]: def random_walker_max_distance(M, N):

    ...:     """

    ...:      Simulate N random walkers taking M steps, and return the 

largest distance

    ...:     from the starting point achieved by any of the random walkers.

    ...:     """

    ...:     trajectories = [np.random.randn(M).cumsum() for _ in range(N)]

    ...:     return np.max(np.abs(trajectories))

Calling this function using the profiler with %prun results in the following output, 

which includes information about how many times each function was called and 

a breakdown of the total and cumulative time spent in each function. From this 

information we can conclude that in this simple example, the calls to the function  

np.random.randn consume the bulk of the elapsed computation time.

In [30]: %prun random_walker_max_distance(400, 10000)

   20008 function calls in 0.254 seconds

   Ordered by: internal time

6 Which can, for example, be used with the standard Python interpreter to profile scripts by 
running python -m cProfile script.py
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   ncalls  tottime  percall  cumtime  percall filename:lineno(function)

    10000    0.169    0.000    0.169    0.000  {method 'randn' of 'mtrand.

RandomState' objects}

    10000    0.036    0.000    0.036    0.000  {method 'cumsum' of 'numpy.

ndarray' objects}

        1    0.030    0.030    0.249    0.249  <ipython-input- 30>:18(random_

walker_max_distance)

        1    0.012    0.012    0.217    0.217  <ipython-input-30>: 

19(<listcomp>)

        1    0.005    0.005    0.254    0.254 <string>:1(<module>)

        1    0.002    0.002    0.002    0.002  {method 'reduce' of 'numpy.

ufunc' objects}

        1    0.000    0.000    0.254    0.254 {built-in method exec}

        1    0.000    0.000    0.002    0.002 _methods.py:25(_amax)

        1    0.000    0.000    0.002    0.002 fromnumeric.py:2050(amax)

        1    0.000    0.000    0.000    0.000  {method 'disable' of '_

lsprof.Profiler' objects}

 Interpreter and Text Editor as Development Environment

In principle, the Python or the IPython interpreter and a good text editor are all that are 

required for a full productive Python development environment. This simple setup is, 

in fact, the preferred development environment for many experienced programmers. 

However, in the following sections, we will look into the Jupyter Notebook and the 

integrated development environment Spyder. These environments provide richer 

features that improve productivity when working with interactive and exploratory 

computing applications.

 Jupyter
The Jupyter project7 is a spin-off from the IPython project that includes the Python 

independent frontends – most notably the notebook application which we discuss in 

more detail in the following section – and the communication framework that enables 

7 For more information about Jupyter, see http://jupyter.org.
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the separation of the frontend from the computational backends, known as kernels. 

Prior to the creation of the Jupyter project, the notebook application and its underlying 

framework were a part of the IPython project. However, because the notebook frontend 

is language agnostic – it can also be used with a large number of other languages, such as 

R and Julia – it was spun off a separate project to better cater to the wider computational 

community and to avoid a perceived bias toward Python. Now, the remaining role of 

IPython is to focus on Python-specific applications, such as the interactive Python 

console, and to provide a Python kernel for the Jupyter environment.

In the Jupyter framework, the frontend talks to computational backends known as 

kernels. The frontend can have multiple kernels registered, for example, for different 

programming languages, for different versions of Python, or for different Python 

environments. The kernel maintains the state of the interpreter and performs the actual 

computations, while the frontend manages how code is entered and organized and how 

the results of calculations are visualized to the user.

In this section, we will discuss the Jupyter QtConsole and Notebook frontends and 

give a brief introduction to some of their rich display and interactivity features, as well 

as the workflow organization that the notebook provides. The Jupyter Notebook is the 

Python environment for computation work that I generally recommend in this book,  

and the code listings in the rest of this book are understood to be read as if they are cells 

in a notebook.

 The Jupyter QtConsole
The Jupyter QtConsole is an enhanced console application that can serve as a substitute 

to the standard IPython console. The QtConsole is launched by passing the qtconsole 

argument to the jupyter command:

$ jupyter qtconsole

This opens up a new IPython application in a console that is capable of displaying 

rich media objects such as images, figures, and mathematical equations. The Jupyter 

QtConsole also provides a menu-based mechanism for displaying autocompletion 

results, and it shows docstrings for functions in a pop-up window when typing the 

opening  parenthesis of a function or a method call. A screenshot of the Jupyter 

Qtconsole is shown in Figure 1-3.
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 The Jupyter Notebook
In addition to the interactive console, Jupyter also provides the web-based notebook 

application that has made it famous. The notebook offers many advantages over 

a traditional development environment when working with data analysis and 

computational problem-solving. In particular, the notebook environment allows to 

write and to run code, to display the output produced by the code, and to document 

and interpret the code and the results: all in one document. This means that the entire 

analysis workflow is captured in one file, which can be saved, restored, and reused later 

on. In contrast, when working with a text editor or an IDE, the code, the corresponding 

data files and figures, and the documentation are spread out over multiple files in the file 

system, and it takes a significant effort and discipline to keep such a workflow organized.

The Jupyter Notebook features a rich display system that can show media such as 

equations, figures, and videos as embedded objects in the notebook. It is also possible 

to create user interface (UI) elements with HTML and JavaScript, using Jupyter’s widget 

system. These widgets can be used in interactive applications that connect the web 

Figure 1-3. A screenshot of the Jupyter QtConsole application
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application with Python code that is executed in the IPython kernel (on the server side). 

These and many other features of the Jupyter Notebook make it a great environment for 

interactive and literate computing, as we will see examples of throughout this book.

To launch the Jupyter Notebook environment, the notebook argument is passed to 

the jupyter command-line application.

$ jupyter notebook

This launches a notebook kernel and a web application that, by default, will serve 

up a web server on port 8888 on localhost, which is accessed using the local address 

http://localhost:8888/ in a web browser.8 By default, running jupyter notebook 

will open a dashboard web page in the default web browser. The dashboard lists 

all notebooks that are available in the directory from where the Jupyter Notebook 

was launched, as well as a simple directory browser that can be used to navigate 

subdirectories, relative to the location where the notebook server was launched, and to 

open notebooks from therein. Figure 1-4 shows a screenshot of a web browser and the 

Jupyter Notebook dashboard page.

8 This web application is by default only accessible locally from the system where the notebook 
application was launched.

Chapter 1  IntroduCtIon to ComputIng wIth python



23

Clicking the “New” button creates a new notebook and opens it in a new page in the 

browser (see Figure 1-5). A newly created notebook is named Untitled, or Untitled1, 

etc., depending on the availability of unused filenames. A notebook can be renamed by 

clicking the title field on the top of the notebook page. The Jupyter Notebook files are 

stored in a JSON file format using the filename extension ipynb. A Jupyter Notebook file 

is not pure Python code, but if necessary the Python code in a notebook can easily be 

extracted using either “File ➤ Download as ➤ Python” or the Jupyter utility nbconvert 

(see in the following section).

Figure 1-4. A screenshot of the Jupyter Notebook dashboard page
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 Jupyter Lab
Jupyter Lab is a new alternative development environment from the Jupyter project. 

It combines the Jupyter Notebook interface with a file browser, text editor, shell, and 

IPython consoles, in a web-based IDE-like environment; see Figure 1-6.

Figure 1-5. A newly created and empty Jupyter Notebook
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The Jupyter Lab environment consolidates the many advantages of the notebook 

environment and the strengths of traditional IDEs. Having access to shell consoles and 

text editors all within the same web frontend is also convenient when working on a 

Jupyter server that runs on a remote system, such as a computing cluster or in the cloud.

 Cell Types
The main content of a notebook, below the menu bar and the toolbar, is organized as 

input and output cells. The cells can be of several types, and the type of the selected 

cell can be changed using the cell-type drop-down menu in the toolbar (which initially 

displays “Code”). The most important types are

• Code: A code cell can contain an arbitrary amount of multiline 

Python code. Pressing Shift-Enter sends the code in the cell to 

the kernel process, where the kernel evaluates it using the Python 

interpreter. The result is sent back to the browser and displayed in the 

corresponding output cell.

Figure 1-6. The Jupyter Lab interface, which includes a file browser (left) and 
multitab notebook editor (right). The notebook displayed here shows code and 
output from an example in Chapter 11.
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• Markdown: The content of a Markdown cell can contain marked- 

up plain text, which is interpreted using the Markdown language 

and HTML. A Markdown cell can also contain LaTeX formatted 

equations, which are rendered in the notebook using the JavaScript- 

based LaTeX engine MathJax.

• Headings: Heading cells can be used to structure a notebook into 

sections.

• Raw: A raw text cell is displayed without any processing.

 Editing Cells
Using the menu bar and the toolbar, cells can be added, removed, moved up and down, 

cut and pasted, and so on. These functions are also mapped to keyboard shortcuts, 

which are convenient and time-saving when working with Jupyter Notebooks. The 

notebook uses a two-mode input interface, with an edit mode and a command mode. 

The edit mode can be entered by clicking a cell or by pressing the Enter key on the 

keyboard when a cell is in focus. Once in edit mode, the content of the input cell can be 

edited. Leaving the edit mode is done by pressing the ESC key or by using Shift-Enter to 

execute the cell. When in command mode, the up and down arrows can be used to move 

focus between cells, and a number of keyboard shortcuts are mapped to the basic cell 

manipulation actions that are available through the toolbar and the menu bar. Table 1-1 

summarizes the most important Jupyter Notebook keyboard shortcuts for the  

command mode.
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Table 1-1. A Summary of Keyboard Shortcuts in the Jupyter Notebook  

Command Mode

Keyboard Shortcut Description

b Create a new cell below the currently selected cell.

a Create a new cell above the currently selected cell.

d-d delete the currently selected cell.

1 to 6 heading cell of level 1 to 6.

x Cut currently selected cell.

c Copy currently selected cell.

v paste cell from the clipboard.

m Convert a cell to a markdown cell.

y Convert a cell to a code cell.

up Select previous cell.

down Select next cell.

enter enter edit mode.

escape exit edit mode.

Shift-enter run the cell.

h display a help window with a list of all available keyboard 

shortcuts.

0-0 restart the kernel.

i-i Interrupt an executing cell.

s Save the notebook.

While a notebook cell is being executed, the input prompt number is represented 

with an asterisk, In[*], and an indicator in the upper right corner of the page signals that 

the IPython kernel is busy. The execution of a cell can be interrupted using the menu 

option “Kernel ➤ Interrupt” or by typing i-i in the command mode (i.e., press the i key 

twice in a row).
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 Markdown Cells
One of the key features of the Jupyter Notebook is that code cells and output cells 

can be complemented with documentation contained in text cells. Text input cells 

are called Markdown cells. The input text is interpreted and reformatted using the 

Markdown markup language. The Markdown language is designed to be a lightweight 

typesetting system that allows text with simple markup rules to be converted to HTML 

and other formats for richer display. The markup rules are designed to be user-friendly 

and readable as is in plain-text format. For example, a piece of text can be made italics 

by surrounding it with asterisks, *text*, and it can be made bold by surrounding it 

with double asterisks, **text**. Markdown also allows creating enumerated and 

bulleted lists, tables, and hyper-references. An extension to Markdown supported by 

Jupyter is that mathematical expressions can be typeset in LaTeX, using the JavaScript 

LaTeX library MathJax. Taking full advantage of what Jupyter Notebooks offer includes 

generously documenting the code and resulting output using Markdown cells and the 

many rich display options they provide. Table 1-2 introduces basic Markdown and 

equation formatting features that can be used in a Jupyter Notebook Markdown cell.

Table 1-2. Summary of Markdown Syntax for Jupyter Notebook Markdown Cells

Function Syntax by Example

Italics *text*

Bold **text**

Strike-through ~~text~~

Fixed-width font `text`

urL [URL text](http://www.example.com)

new paragraph Separate the text of two paragraphs with an empty line.

Verbatim Lines that start with four blank spaces are displayed as is, without 

any further processing, using a fixed-width font. this is useful for 

code-like text segments.

␣␣␣␣def func(x):

␣␣␣␣    return x ** 2

(continued)
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Function Syntax by Example

table | A | B | C |

|---|---|---|

| 1 | 2 | 3 |

| 4 | 5 | 6 |

horizontal line a line containing three dashes is rendered as a horizontal line 

separator:

---

heading # Level 1 heading

## Level 2 heading

### Level 3 heading

. . .

Block quote Lines that start with a “>” are rendered as a block quote.

> Text here is indented and offset

> from the main text body.

unordered list * Item one

* Item two

* Item three

ordered list 1. Item one

2. Item two

3. Item three

Image ![Alternative text](image-file.png)9

or

![Alternative text](http://www.example.com/image.png)

Inline LateX equation $\LaTeX$

displayed LateX equation 

(centered and on a new line)

$$\LaTeX$$ or \begin{env}...\end{env} where env can be a 

LateX environment such as equation, eqnarray, align, etc.

Table 1-2. (continued)

9 The path/filename is relative to the notebook directory.
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Markdown cells can also contain HTML code, and the Jupyter Notebook interface 

will display it as rendered HTML. This is a very powerful feature for the Jupyter 

Notebook, but its disadvantage is that such HTML code cannot be converted to other 

formats, such as PDF, using the nbconvert tool (see later section in this chapter). 

Therefore, it is in general better to use Markdown formatting when possible and resort to 

HTML only when absolutely necessary.

More information about MathJax and Markdown is available at the projects web 

pages at www.mathjax.com and http://daringfireball.net/projects/markdown, 

respectively.

 Rich Output Display
The result produced by the last statement in a notebook cell is normally displayed in the 

corresponding output cell, just like in the standard Python interpreter or the IPython 

console. The default output cell formatting is a string representation of the object, 

generated, for example, by the __repr__ method. However, the notebook environment 

enables a much richer output formatting, as it in principle allows displaying arbitrary 

HTML in the output cell area. The IPython.display module provides several classes and 

functions that make it easy to programmatically render formatted output in a notebook. 

For example, the Image class provides a way to display images from the local file system 

or online resources in a notebook, as shown in Figure 1-7. Other useful classes from 

the same module are HTML, for rendering HTML code, and Math, for rendering LaTeX 

expressions. The display function can be used to explicitly request an object to be 

rendered and displayed in the output area.

Figure 1-7. An example of rich Jupyter Notebook output cell formatting, where an 
image has been displayed in the cell output area using the Image class
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An example of how HTML code can be rendered in the notebook using the HTML class 

is shown in Figure 1-8. Here we first construct a string containing HTML code for a table 

with version information for a list of Python libraries. This HTML code is then rendered 

in the output cell area by creating an instance of the HTML class, and since this statement 

is the last (and only) statement in the corresponding input cell, Jupyter will render the 

representation of this object in the output cell area.

For an object to be displayed in an HTML formatted representation, all we need to 

do is to add a method called _repr_hmtl_ to the class definition. For example, we can 

easily implement our own primitive version of the HTML class and use it to render the 

same HTML code as in the previous example, as demonstrated in Figure 1-9.

Figure 1-8. Another example of rich Jupyter Notebook output cell formatting, 
where an HTML table containing module version information has been rendered 
and displayed using the HTML class

Figure 1-9. Another example of how to render HTML code in the Jupyter 
Notebook, using a class that implements the _repr_hmtl_ method

Chapter 1  IntroduCtIon to ComputIng wIth python



32

Jupyter supports a large number of representations in addition to the _repr_hmtl_ 

shown in the preceding text, for example, _repr_png_, _repr_svg_, and _repr_latex_, 

to mention a few. The former two can be used to generate and display graphics in the 

notebook output cell, as used by, for example, the Matplotlib library (see the following 

interactive example and Chapter 4). The Math class, which uses the _repr_latex_ 

method, can be used to render mathematical formulas in the Jupyter Notebook. This is 

often useful in scientific and technical applications. Examples of how formulas can be 

rendered using the Math class and the _repr_latex_ method are shown in Figure 1-10.

Figure 1-10. An example of how a LaTeX formula is rendered using the Math class 
and how the _repr_latex_ method can be used to generate a LaTeX formatted 
representation of an object

Using the various representation methods recognized by Jupyter, or the convenience 

classes in the IPython.display module, we have great flexibility in shaping how results 

are visualized in the Jupyter Notebook. However, the possibilities do not stop there: an 

exciting feature of the Jupyter Notebook is that interactive applications, with two-way 

communication between the frontend and the backend kernel, can be created using, for 

example, a library of widgets (UI components) or directly with Javascript and HTML. For 

example, using the interact function from the ipywidgets library, we can very easily 

create an interactive graph that takes an input parameter that is determined from a UI 

slider, as shown in Figure 1-11.

Chapter 1  IntroduCtIon to ComputIng wIth python



33

In the example in Figure 1-11, we plot the distribution functions for the Normal 

distribution and the Poisson distribution, where the mean and the variance of 

the distributions are taken as an input from the UI object created by the interact 

function. By moving the slider back and forth, we can see how the Normal and Poisson 

distributions (with equal variance) approach each other as the distribution mean is 

increased and how they behave very differently for small values of the mean. Interactive 

Figure 1-11. An example of interactive application created using the IPython 
widget interact. The interact widget provides a slider UI element which allows 
the value of an input parameter to be changed. When the slider is dragged, the 
provided function is reevaluated, which in this case renders a new graph.
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graphs like this are a great tool for building intuition and for exploring computation 

problems, and the Jupyter Notebook is a fantastic enabler for this kind of investigations.10

 nbconvert
Jupyter Notebooks can be converted to a number of different read-only formats 

using the nbconvert application, which is invoked by passing nbconvert as the first 

argument to the jupyter command line. Supported formats include, among others, 

PDF and HTML. Converting Jupyter Notebooks to PDF or HTML is useful when sharing 

notebooks with colleagues or when publishing them online, when the reader does 

not necessarily need to run the code, but primarily view the results contained in the 

notebooks.

 HTML

In the notebook web interface, the menu option “File ➤ Download as ➤ HTML” can 

be used to generate an HTML document representing a static view of a notebook. An 

HTML document can also be generated from the command prompt using the nbconvert 

application. For example, a notebook called Notebook.ipynb can be converted to HTML 

using the command:

$ jupyter nbconvert --to html Notebook.ipynb

This generates an HTML page that is self-contained in terms of style sheets and 

JavaScript resources (which are loaded from public CDN servers), and it can be 

published as is online. However, image resources that are using Markdown or HTML tags 

are not included and must be distributed together with the resulting HTML file.

For public online publishing of Jupyter Notebooks, the Jupyter project provides a 

convenient web service called nbviewer, available at http://nbviewer.jupyter.org. 

By feeding it a URL to a public notebook file, the nbviewer application automatically 

10 For more information about how to create interactive applications using Jupyter and IPython 
widgets, see the documentation for the ipywidgets library https://ipywidgets.readthedocs.
io/en/latest.
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converts the notebook to HTML and displays the result. One of the many benefits of 

this method of publishing Jupyter Notebooks is that the notebook author only needs to 

maintain one file – the notebook file itself – and when it is updated and uploaded to its 

online location, the static view of the notebook provided by nbviewer is automatically 

updated as well. However, it requires publishing the source notebook at a publicly 

accessible URL, so it can only be used for public sharing.

Tip the Jupyter project maintains a wiki page that indexes many interesting 
Jupyter notebooks that are published online at http://github.com/jupyter/
jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks. these 
notebooks demonstrate many of Ipython’s and Jupyter’s more advanced features 
and can be a great resource for learning more about Jupyter notebooks as well as 
the many topics covered by those notebooks.

 PDF

Converting a Jupyter Notebook to PDF format requires first converting the notebook 

to LaTeX and then compiling the LaTeX document to PDF format. To be able to do 

the LaTeX to PDF conversion, a LaTeX environment must be available on the system 

(see Appendix A for pointers on how to install these tools). The nbconvert application 

can do both the notebook-to-LaTeX and the LaTeX-to-PDF conversions in one go, 

using the --to pdf argument (the --to latex argument can be used to obtain the 

intermediate LaTeX source):

$ jupyter nbconvert --to pdf Notebook.ipynb

The style of the resulting document can be specified using the --template name 

argument, where built-in templates include base, article, and report (these templates 

can be found in the nbconvert/templates/latex directory where Jupyter is installed). 

By extending one of the existing templates,11 it is easy to customize the appearance of 

11 The IPython nbconvert application uses the jinja2 template engine. See http://jinja.pocoo.org 
for more information and documentation of its syntax.
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the generated document. For example, in LaTeX it is common to include additional 

information about the document that is not available in Jupyter Notebooks, such as a 

document title (if different from the notebook filename) and the author of the document. 

This information can be added to a LaTeX document that is generated by the nbconvert 

application by creating a custom template. For example, the following template extends 

the built-in template article and overrides the title and author blocks:

((*- extends 'article.tplx' -*))

((* block title *)) \title{Document title} ((* endblock title *))

((* block author *)) \author{Author's Name} ((* endblock author *))

Assuming that this template is stored in a file called custom_template.tplx, 

the following command can be used to convert a notebook to PDF format using this 

customized template:

$ jupyter nbconvert --to pdf --template custom_template.tplx Notebook.ipynb

The result is LaTeX and PDF documents where the title and author fields are set as 

requested in the template.

 Python

A Jupyter Notebook in its JSON-based file format can be converted to a pure Python code 

using the nbconvert application and the python format:

$ jupyter nbconvert --to python Notebook.ipynb

This generates the file Notebook.py, which only contains executable Python code (or 

if IPython extensions were used in the notebook; a file that is executable with ipython). 

The noncode content of the notebook is also included in the resulting Python code file in 

the form of comments that do not prevent the file from being interpreted by the Python 

interpreter. Converting a notebook to pure Python code is useful, for example, when 

using the Jupyter Notebooks to develop functions and classes that need to be imported 

in other Python files or notebooks.
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 Spyder: An Integrated Development Environment
An integrated development environment is an enhanced text editor that also provides 

features such as integrated code execution, documentation, and debugging. Many 

free and commercial IDE environments have good support for Python-based projects. 

Spyder12 is an excellent free IDE that is particularly well suited for computing and data 

analysis using Python. The rest of this section focuses on Spyder and explores its features 

in more detail. However, there are also many other suitable IDEs. For example, Eclipse13 

is a popular and powerful multilanguage IDE, and the PyDev14 extension to Eclipse 

provides a good Python environment. PyCharm15 is another powerful Python IDE that 

has gained a significant popularity among Python developers recently, and the Atom 

IDE16 is yet another great option. For readers with previous experience with any of these 

tools, they could be a productive and familiar environment also for computational work.

However, the Spyder IDE was specifically created for Python programming and in 

particular for scientific computing with Python. As such it has features that are useful for 

interactive and exploratory computing: most notably, integration with the IPython console 

directly in the IDE. The Spyder user interface consists of several optional panes, which can 

be arranged in different ways within the IDE application. The most important panes are

• Source code editor

• Consoles for the Python and the IPython interpreters and the system 

shell

• Object inspector, for showing documentation for Python objects

• Variable explorer

• File explorer

• Command history

• Profiler

12 http://code.google.com/p/spyderlib
13 http://www.eclipse.org
14 http://pydev.org
15 http://www.jetbrains.com/pycharm
16 https://atom.io
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Each pane can be configured to be shown or hidden, depending on the user’s 

preferences and needs, using the “View ➤ Panes” menu option. Furthermore, panes 

can be organized together in tabbed groups. In the default layout, three pane groups are 

displayed: The left pane group contains the source code editor. The top-right pane group 

contains the variable explorer, the file explorer, and the object inspector. The bottom 

right pane group contains Python and IPython consoles.

Running the command spyder at the shell prompt launches the Spyder IDE. See 

Figure 1-12 for a screenshot of the default layout of the Spyder application.

Figure 1-12. A screenshot of the Spyder IDE application. The code editor is shown 
in the left panel, the top-right panel shows the object inspector (help viewer), and 
the bottom right panel shows an IPython console.

 Source Code Editor
The source code editor in Spyder supports code highlighting, intelligent autocompletion, 

working with multiple open files simultaneously, parenthesis matching, indentation 

guidance, and many other features that one would expect from a modern source code 
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editor. The added benefit from using an IDE is that code in the editor can be run – as a 

whole (shortcut F5) or a selection (shortcut F9) – in attached Python or IPython consoles 

with persistent sessions between successive runs.

In addition, the Spyder editor has very useful support for static code checking with 

pylint,17 pyflakes,18 and pep8,19 which are external tools that analyze Python source code 

and report errors such as undefined symbols, syntax errors, coding style violations, and 

more. Such warnings and errors are shown on a line-by-line basis as a yellow triangle 

with an exclamation mark in the left margin of the editor, next to the line number. Static 

code checking is extremely important in Python programming. Since Python is an 

interpreted and lazily evaluated language, simple bugs like undefined symbols may not 

be discovered until the offending code line is reached at runtime, and for rarely used 

code paths, sometimes such bugs can be very hard to discover. Real-time static code 

checking and coding style checks in the Spyder editor can be activated and deactivated 

in the “Editor” section of the preference windows (Python ➤ Preferences, in the menu 

on OS X, and Tools ➤ Preferences on Linux and Windows). In the Editor section,  

I recommend checking the “Code analysis” and “Style analysis” boxes in the “Code 

Introspection/Analysis” tab.

Tip the python language is versatile, and equivalent python source code can 
be written in a vast variety of styles and manners. however, a python coding style 
standard, pep8, has been put forward to encourage a uniform appearance of 
python code. I strongly recommend studying the pep8 coding style standard and 
complying to it in your code. the pep8 is described at  www.python.org/dev/
peps/pep-0008.

17 http://www.pylint.org
18 http://github.com/pyflakes/pyflakes
19 http://pep8.readthedocs.org
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 Consoles in Spyder
The integrated Python and IPython consoles can be used to execute a file that is being 

edited in the text editor window, or for running interactively typed Python code. When 

executing Python source code files from the editor, the namespace variables created 

in the script are retained in the IPython or Python session in the console. This is an 

important feature that makes Spyder an interactive-computing environment, in addition 

to a traditional IDE application, since it allows exploring the values of variables after 

a script has finished executing. Spyder supports having multiple Python and IPython 

consoles opened simultaneously, and, for example, a new IPython console can be 

launched through the “Consoles ➤ Open an IPython console” menu. When running a 

script from the editor, by pressing F5 or pressing the run button in the toolbar, the script 

is by default ran in the most recently activated console. This makes it possible to maintain 

different consoles, with independent namespaces, for different scripts or projects.

When possible, use the %reset command and the reload function to clear a 

namespace and reload updated modules. If that is insufficient, it is possible to restart the 

IPython kernel corresponding to an IPython console, or the Python interpreter, via the 

drop-down menu for the top-right icon in the console panel. Finally, a practical feature 

is that IPython console sessions can be exported as an HTML file by right-clicking the 

console window and selecting “Save as HTML/XML” in the pop-up menu.

 Object Inspector
The object inspector (Help pane) is a great aid when writing Python code. It can display 

richly formatted documentation strings for objects defined in source code created with 

the editor and for symbols defined in library modules that are installed on the system. The 

object text field at the top of the object inspector panel can be used to type the name of 

a module, function, or class for which to display the documentation string. Modules and 

symbols do not need to be imported into the local namespace to be able to display their 

docstrings using the object inspector. The documentation for an object in the editor or the 

console can also be opened in the object inspector by selecting the object with the cursor 

and using the shortcut Ctrl-i (Cmd-i on OS X). It is even possible to automatically display 

docstrings for callable objects when its opening left parenthesis is typed. This gives an 

immediate reminder of the arguments and their order for the callable object, which can 

be a great productivity booster. To activate this feature, navigate to the “Help” page in the 

“Preferences” window and check the boxes in the “Automatic connections” section.
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 Summary
In this chapter we introduced the Python environment for scientific and technical 

computing. This environment is, in fact, an entire ecosystem of libraries and tools 

for computing, which includes not only Python software but everything from low- 

level number crunching libraries up to graphical user interface applications and web 

applications. In this multilanguage ecosystem, Python is the language that ties it all 

together into a coherent and productive environment for computing. IPython is a core 

component of Python’s computing environment, and we briefly surveyed some of its 

most important features before covering the higher-level user environments provided 

by the Jupyter Notebook and the Spyder IDE. These are the tools in which the majority 

of exploratory and interactive computing is carried out. In the rest of this book, we focus 

on computing using Python libraries, assuming that we are working within one of the 

environments provided by IPython, the Jupyter Notebook, or Spyder.

 Further Reading
The Jupyter Notebook is a particularly rich platform for interactive computing, and it is 

also a very actively developed software. One of the most recent developments within the 

Jupyter Notebook is its widget system, which are user-interface components that can be 

used to create interactive interfaces within the browser that is displaying the notebook. 

In this book we just briefly touch upon Jupyter widgets, but it is a very interesting and 

rapidly developing part of the Jupyter project, and I do recommend exploring their 

potential applications for interactive computing. The Jupyter Notebook widgets, and 

many other parts of Jupyter, are documented through examples in Jupyter Notebook form 

that are available here: http://nbviewer.ipython.org/github/ipython/ipython/tree/

master/examples. There are also two interesting books on this topic (Rossant, Learning 

IPython for Interactive Computing and Data Visualization, 2013; Rossant, IPython 

Interactive Computing and Visualization Cookbook, 2014) that I highly recommend.
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CHAPTER 2

Vectors, Matrices, and  
Multidimensional Arrays
Vectors, matrices, and arrays of higher dimensions are essential tools in numerical 

computing. When a computation must be repeated for a set of input values, it is natural 

and advantageous to represent the data as arrays and the computation in terms of 

array operations. Computations that are formulated this way are said to be vectorized.1 

Vectorized computing eliminates the need for many explicit loops over the array 

elements by applying batch operations on the array data. The result is concise and more 

maintainable code, and it enables delegating the implementation of (e.g., elementwise) 

array operations to more efficient low-level libraries. Vectorized computations can 

therefore be significantly faster than sequential element-by-element computations. This 

is particularly important in an interpreted language such as Python, where looping over 

arrays element by element entails a significant performance overhead.

In Python’s scientific computing environment, efficient data structures for working 

with arrays are provided by the NumPy library. The core of NumPy is implemented in C 

and provides efficient functions for manipulating and processing arrays. At a first glance, 

NumPy arrays bear some resemblance to Python’s list data structure. But an important 

difference is that while Python lists are generic containers of objects, NumPy arrays are 

homogenous and typed arrays of fixed size. Homogenous means that all elements in the 

array have the same data type. Fixed size means that an array cannot be resized (without 

creating a new array). For these and other reasons, operations and functions acting on 

NumPy arrays can be much more efficient than those using Python lists. In addition to 

1 Many modern processors provide instructions that operate on arrays. These are also known as 
vectorized operations, but here vectorized refers to high-level array-based operations, regardless 
of how they are implemented at the processor level.
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the data structures for arrays, NumPy also provides a large collection of basic operators 

and functions that act on these data structures, as well as submodules with higher-level 

algorithms such as linear algebra and fast Fourier transform.

In this chapter we first look at the basic NumPy data structure for arrays and various 

methods to create such NumPy arrays. Next we look at operations for manipulating 

arrays and for doing computations with arrays. The multidimensional data array 

provided by NumPy is a foundation for nearly all numerical libraries for Python. 

Spending time on getting familiar with NumPy and developing an understanding of how 

NumPy works is therefore important.

NumPy The NumPy library provides data structures for representing a rich 
variety of arrays and methods and functions for operating on such arrays. NumPy 
provides the numerical backend for nearly every scientific or technical library for 
Python. It is therefore a very important part of the scientific Python ecosystem. At 
the time of writing, the latest version of NumPy is 1.14.2. More information about 
NumPy is available at www.numpy.org.

 Importing the Modules
In order to use the NumPy library, we need to import it in our program. By convention, 

the numPy module imported under the alias np, like so:

In [1]: import numpy as np

After this, we can access functions and classes in the numpy module using the np 

namespace. Throughout this book, we assume that the NumPy module is imported in 

this way.

 The NumPy Array Object
The core of the NumPy library is the data structures for representing multidimensional 

arrays of homogeneous data. Homogeneous refers to all elements in an array having 

the same data type.2 The main data structure for multidimensional arrays in NumPy 

2 This does not necessarily need to be the case for Python lists, which therefore can be 
heterogenous.
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is the ndarray class. In addition to the data stored in the array, this data structure also 

contains important metadata about the array, such as its shape, size, data type, and other 

attributes. See Table 2-1 for a more detailed description of these attributes. A full list of 

attributes with descriptions is available in the ndarray docstring, which can be accessed 

by calling help(np.ndarray) in the Python interpreter or np.ndarray? in an IPython 

console.

The following example demonstrates how these attributes are accessed for an 

instance data of the class ndarray:

In [2]: data = np.array([[1, 2], [3, 4], [5, 6]])

In [3]: type(data)

Out[3]: <class 'numpy.ndarray'>

In [4]: data

Out[4]: array([[1, 2],

               [3, 4],

               [5, 6]])

In [5]: data.ndim

Out[5]: 2

In [6]: data.shape

Out[6]: (3, 2)

In [7]: data.size

Out[7]: 6

Table 2-1. Basic Attributes of the ndarray Class

Attribute Description

Shape A tuple that contains the number of elements (i.e., the length) for each  

dimension (axis) of the array.

Size The total number elements in the array.

Ndim Number of dimensions (axes).

nbytes Number of bytes used to store the data.

dtype The data type of the elements in the array.
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In [8]: data.dtype

Out[8]: dtype('int64')

In [9]: data.nbytes

Out[9]: 48

Here the ndarray instance data is created from a nested Python list using the 

function np.array. More ways to create ndarray instances from data and from rules of 

various kinds are introduced later in this chapter. In the preceding example, the data is 

a two-dimensional array (data.ndim) of shape 3 × 2, as indicated by data.shape, and in 

total it contains six elements (data.size) of type int64 (data.dtype), which amounts to 

a total size of 48 bytes (data.nbytes).

 Data Types
In the previous section, we encountered the dtype attribute of the ndarray object. This 

attribute describes the data type of each element in the array (remember, since NumPy 

arrays are homogeneous, all elements have the same data type). The basic numerical 

data types supported in NumPy are shown in Table 2-2. Nonnumerical data types, such 

as strings, objects, and user-defined compound types, are also supported.

Table 2-2. Basic Numerical Data Types Available in NumPy

dtype Variants Description

int int8, int16, int32, int64 Integers

uint uint8, uint16, uint32, uint64 unsigned (nonnegative) integers

bool Bool Boolean (True or False)

float float16, float32, float64, float128 Floating-point numbers

complex complex64, complex128, complex256 Complex-valued floating-point numbers

For numerical work the most important data types are int (for integers), float (for 

floating-point numbers), and complex (for complex floating-point numbers). Each of 

these data types comes in different sizes, such as int32 for 32-bit integers, int64 for  

64-bit integers, etc. This offers more fine-grained control over data types than the 

 standard Python types, which only provides one type for integers and one type for floats. 
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It is usually not necessary to explicitly choose the bit size of the data type to work with, 

but it is often necessary to explicitly choose whether to use arrays of integers, floating-

point numbers, or complex values.

The following example demonstrates how to use the dtype attribute to generate 

arrays of integer-, float-, and complex-valued elements:

In [10]: np.array([1, 2, 3], dtype=np.int)

Out[10]: array([1, 2, 3])

In [11]: np.array([1, 2, 3], dtype=np.float)

Out[11]: array([ 1.,  2.,  3.])

In [12]: np.array([1, 2, 3], dtype=np.complex)

Out[12]: array([ 1.+0.j,  2.+0.j,  3.+0.j])

Once a NumPy array is created, its dtype cannot be changed, other than by creating 

a new copy with type-casted array values. Typecasting an array is straightforward and 

can be done using either the np.array function:

In [13]: data = np.array([1, 2, 3], dtype=np.float)

In [14]: data

Out[14]: array([ 1.,  2.,  3.])

In [15]: data.dtype

Out[15]: dtype('float64')

In [16]: data = np.array(data, dtype=np.int)

In [17]: data.dtype

Out[17]: dtype('int64')

In [18]: data

Out[18]: array([1, 2, 3])

or by using the astype method of the ndarray class:

In [19]: data = np.array([1, 2, 3], dtype=np.float)

In [20]: data

Out[20]: array([ 1.,  2.,  3.])

In [21]: data.astype(np.int)

Out[21]: array([1, 2, 3])
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When computing with NumPy arrays, the data type might get promoted from one 

type to another, if required by the operation. For example, adding float-valued and 

complex-valued arrays, the resulting array is a complex-valued array:

In [22]: d1 = np.array([1, 2, 3], dtype=float)

In [23]: d2 = np.array([1, 2, 3], dtype=complex)

In [24]: d1 + d2

Out[24]: array([ 2.+0.j,  4.+0.j,  6.+0.j])

In [25]: (d1 + d2).dtype

Out[25]: dtype('complex128')

In some cases, depending on the application and its requirements, it is essential to 

create arrays with data type appropriately set to, for example, int or complex. The default 

type is float. Consider the following example:

In [26]: np.sqrt(np.array([-1, 0, 1]))

Out[26]: RuntimeWarning: invalid value encountered in sqrt

         array([ nan,   0.,   1.])

In [27]: np.sqrt(np.array([-1, 0, 1], dtype=complex))

Out[27]: array([ 0.+1.j,  0.+0.j,  1.+0.j])

Here, using the np.sqrt function to compute the square root of each element in 

an array gives different results depending on the data type of the array. Only when the 

data type of the array is complex is the square root of –1 resulting in the imaginary unit 

(denoted as 1j in Python).

 Real and Imaginary Parts

Regardless of the value of the dtype attribute, all NumPy array instances have the attributes 

real and imag for extracting the real and imaginary parts of the array, respectively:

In [28]: data = np.array([1, 2, 3], dtype=complex)

In [29]: data

Out[29]: array([ 1.+0.j,  2.+0.j,  3.+0.j])

In [30]: data.real

Out[30]: array([ 1.,  2.,  3.])

In [31]: data.imag

Out[31]: array([ 0.,  0.,  0.])
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The same functionality is also provided by the functions np.real and np.imag, 

which also can be applied to other array-like objects, such as Python lists. Note that 

Python itself has support of complex numbers, and the imag and real attributes are also 

available for Python scalars.

 Order of Array Data in Memory
Multidimensional arrays are stored as contiguous data in memory. There is a freedom of 

choice in how to arrange the array elements in this memory segment. Consider the case 

of a two-dimensional array, containing rows and columns: one possible way to store 

this array as a consecutive sequence of values is to store the rows after each other, and 

another equally valid approach is to store the columns one after another. The former is 

called row-major format and the latter is column-major format. Whether to use row- 

major or column-major is a matter of conventions, and row-major format is used, for 

example, in the C programming language, and Fortran uses the column-major format. 

A NumPy array can be specified to be stored in row-major format, using the keyword 

argument order= 'C', and column-major format, using the keyword argument  

order= 'F', when the array is created or reshaped. The default format is row-major. 

The  'C' or  'F' ordering of NumPy array is particularly relevant when NumPy arrays are 

used in interfaces with software written in C and Fortran, which is often required when 

working with numerical computing with Python.

Row-major and column-major ordering are special cases of strategies for mapping 

the index used to address an element, to the offset for the element in the array’s memory 

segment. In general, the NumPy array attribute ndarray.strides defines exactly how 

this mapping is done. The strides attribute is a tuple of the same length as the number 

of axes (dimensions) of the array. Each value in strides is the factor by which the index 

for the corresponding axis is multiplied when calculating the memory offset (in bytes) 

for a given index expression.

For example, consider a C-order array A with shape (2, 3), which corresponds to 

a two-dimensional array with two and three elements along the first and the second 

dimensions, respectively. If the data type is int32, then each element uses 4 bytes, and 

the total memory buffer for the array therefore uses 2 × 3 × 4 = 24 bytes. The strides 

attribute of this array is therefore (4 × 3, 4 × 1) = (12, 4), because each increment of m in 

A[n, m] increases the memory offset with one item, or 4 bytes. Likewise, each increment 

of n increases the memory offset with three items or 12 bytes (because the second 
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dimension of the array has length 3). If, on the other hand, the same array were stored in 

'F' order, the strides would instead be (4, 8). Using strides to describe the mapping of 

array index to array memory offset is clever because it can be used to describe different 

mapping strategies, and many common operations on arrays, such as for example the 

transpose, can be implemented by simply changing the strides attribute, which can 

eliminate the need for moving data around in the memory. Operations that only require 

changing the strides attribute result in new ndarray objects that refer to the same data 

as the original array. Such arrays are called views. For efficiency, NumPy strives to create 

views rather than copies when applying operations on arrays. This is generally a good 

thing, but it is important to be aware of that some array operations result in views rather 

than new independent arrays, because modifying their data also modifies the data of the 

original array. Later in this chapter, we will see several examples of this behavior.

 Creating Arrays
In the previous section, we looked at NumPy’s basic data structure for representing 

arrays, the ndarray class, and we looked at the basic attributes of this class. In this 

section we focus on functions from the NumPy library that can be used to create ndarray 

instances.

Arrays can be generated in a number of ways, depending on their properties and 

the applications they are used for. For example, as we saw in the previous section, one 

way to initialize an ndarray instance is to use the np.array function on a Python list, 

which, for example, can be explicitly defined. However, this method is obviously limited 

to small arrays. In many situations it is necessary to generate arrays with elements that 

follow some given rule, such as filled with constant values, increasing integers, uniformly 

spaced numbers, random numbers, etc. In other cases we might need to create arrays 

from data stored in a file. The requirements are many and varied, and the NumPy library 

provides a comprehensive set of functions for generating arrays of various types. In this 

section we look in more detail at many of these functions. For a complete list, see the 

NumPy reference manual or the docstrings that are available by typing help(np) or using 

the autocompletion np.<TAB>. A summary of frequently used array-generating functions 

is given in Table 2-3. 
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Table 2-3. Summary of NumPy Functions for Generating Arrays

Function Name Type of Array

np.array Creates an array for which the elements are given by an array-like object, 

which, for example, can be a (nested) Python list, a tuple, an iterable 

sequence, or another ndarray instance.

np.zeros Creates an array with the specified dimensions and data type that is filled 

with zeros.

np.ones Creates an array with the specified dimensions and data type that is filled 

with ones.

np.diag Creates a diagonal array with specified values along the diagonal and 

zeros elsewhere.

np.arange Creates an array with evenly spaced values between the specified start, 

end, and increment values.

np.linspace Creates an array with evenly spaced values between specified start and 

end values, using a specified number of elements.

np.logspace Creates an array with values that are logarithmically spaced between the 

given start and end values.

np.meshgrid Generates coordinate matrices (and higher-dimensional coordinate arrays) 

from one-dimensional coordinate vectors.

np.fromfunction Creates an array and fills it with values specified by a given function, 

which is evaluated for each combination of indices for the given array size.

np.fromfile Creates an array with the data from a binary (or text) file. NumPy also 

provides a corresponding function np.tofile with which NumPy arrays 

can be stored to disk and later read back using np.fromfile.

np.genfromtxt,np.

loadtxt

Create an array from data read from a text file, for example, a comma-

separated value (CsV) file. The function np.genfromtxt also supports 

data files with missing values.

np.random.rand Generates an array with random numbers that are uniformly distributed 

between 0 and 1. other types of distributions are also available in the np.

random module.
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 Arrays Created from Lists and Other Array-Like Objects
Using the np.array function, NumPy arrays can be constructed from explicit Python 

lists, iterable expressions, and other array-like objects (such as other ndarray instances). 

For example, to create a one-dimensional array from a Python list, we simply pass the 

Python list as an argument to the np.array function:

In [32]: np.array([1, 2, 3, 4])

Out[32]: array([ 1,  2,  3, 4])

In [33]: data.ndim

Out[33]: 1

In [34]: data.shape

Out[34]: (4,)

To create a two-dimensional array with the same data as in the previous example, we 

can use a nested Python list:

In [35]: np.array([[1, 2], [3, 4]])

Out[35]: array([[1,  2],

              [3, 4]])

In [36]: data.ndim

Out[36]: 2

In [37]: data.shape

Out[37]: (2, 2)

 Arrays Filled with Constant Values
The functions np.zeros and np.ones create and return arrays filled with zeros and ones, 

respectively. They take, as first argument, an integer or a tuple that describes the number 

of elements along each dimension of the array. For example, to create a 2 × 3 array filled 

with zeros, and an array of length 4 filled with ones, we can use

In [38]: np.zeros((2, 3))

Out[38]: array([[ 0.,  0.,  0.],

                [ 0.,  0.,  0.]])

In [39]: np.ones(4)

Out[39]: array([ 1.,  1.,  1., 1.])
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Like other array-generating functions, the np.zeros and np.ones functions also 

accept an optional keyword argument that specifies the data type for the elements in the 

array. By default, the data type is float64, and it can be changed to the required type by 

explicitly specifying the dtype argument.

In [40]: data = np.ones(4)

In [41]: data.dtype

Out[41]: dtype('float64')

In [42]: data = np.ones(4, dtype=np.int64)

In [43]: data.dtype

Out[43]: dtype('int64')

An array filled with an arbitrary constant value can be generated by first creating 

an array filled with ones and then multiplying the array with the desired fill value. 

However, NumPy also provides the function np.full that does exactly this in one step. 

The following two ways of constructing arrays with ten elements, which are initialized to 

the numerical value 5.4 in this example, produces the same results, but using np.full is 

slightly more efficient since it avoids the multiplication.

In [44]: x1 = 5.4 * np.ones(10)

In [45]: x2 = np.full(10, 5.4)

An already created array can also be filled with constant values using the np.fill 

function, which takes an array and a value as arguments, and set all elements in the array 

to the given value. The following two methods to create an array therefore give the same 

results:

In [46]: x1 = np.empty(5)

In [47]: x1.fill(3.0)

In [48]: x1

Out[48]: array([ 3.,  3.,  3.,  3.,  3.])

In [49]: x2 = np.full(5, 3.0)

In [50]: x2

Out[50]: array([ 3.,  3.,  3.,  3.,  3.])
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In this last example, we also used the np.empty function, which generates an array 

with uninitialized values, of the given size. This function should only be used when the 

initialization of all elements can be guaranteed by other means, such as an explicit loop 

over the array elements or another explicit assignment. This function is described in 

more detail later in this chapter.

 Arrays Filled with Incremental Sequences
In numerical computing it is very common to require arrays with evenly spaced values 

between a starting value and ending value. NumPy provides two similar functions to 

create such arrays: np.arange and np.linspace. Both functions take three arguments, 

where the first two arguments are the start and end values. The third argument of  

np.arange is the increment, while for np.linspace it is the total number of points  

in the array.

For example, to generate arrays with values between 1 and 10, with increment 1,  

we could use either of the following:

In [51]: np.arange(0.0, 10, 1)

Out[51]: array([ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9.])

In [52]: np.linspace(0, 10, 11)

Out[52]: array([ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9.,  10.])

However, note that np.arange does not include the end value (10), while by default 

np.linspace does (although this behavior can be changed using the optional endpoint 

keyword argument). Whether to use np.arange or np.linspace is mostly a matter of 

personal preference, but it is generally recommended to use np.linspace whenever the 

increment is a noninteger.

 Arrays Filled with Logarithmic Sequences
The function np.logspace is similar to np.linspace, but the increments between the 

elements in the array are logarithmically distributed, and the first two arguments, for 

the start and end values, are the powers of the optional base keyword argument (which 

defaults to 10). For example, to generate an array with logarithmically distributed values 

between 1 and 100, we can use

In [53]: np.logspace(0, 2, 5)  # 5 data points between 10**0=1 to 10**2=100

Out[53]: array([ 1. , 3.16227766, 10. , 31.6227766 , 100.])
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 Meshgrid Arrays
Multidimensional coordinate grids can be generated using the function np.meshgrid. 

Given two one-dimensional coordinate arrays (i.e., arrays containing a set of coordinates 

along a given dimension), we can generate two-dimensional coordinate arrays using the 

np.meshgrid function. An illustration of this is given in the following example:

In [54]: x = np.array([-1, 0, 1])

In [55]: y = np.array([-2, 0, 2])

In [56]: X, Y = np.meshgrid(x, y)

In [57]: X

Out[57]: array([[-1,  0,  1],

                [-1,  0,  1],

                [-1,  0,  1]])

In [58]: Y

Out[58]: array([[-2, -2, -2],

                [ 0,  0,  0],

                [ 2,  2,  2]])

A common use-case of the two-dimensional coordinate arrays, like X and Y in this 

example, is to evaluate functions over two variables x and y. This can be used when 

plotting functions over two variables, as colormap plots and contour plots. For example, 

to evaluate the expression (x+y)2 at all combinations of values from the x and y arrays in 

the preceding section, we can use the two-dimensional coordinate arrays X and Y:

In [59]: Z = (X + Y) ** 2

In [60]: Z

Out[60]: array([[9, 4, 1],

                [1, 0, 1],

                [1, 4, 9]])

It is also possible to generate higher-dimensional coordinate arrays by passing 

more arrays as argument to the np.meshgrid function. Alternatively, the functions np.

mgrid and np.ogrid can also be used to generate coordinate arrays, using a slightly 

different syntax based on indexing and slice objects. See their docstrings or the NumPy 

documentation for details.
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 Creating Uninitialized Arrays
To create an array of specific size and data type, but without initializing the elements in 

the array to any particular values, we can use the function np.empty. The advantage of 

using this function, for example, instead of np.zeros, which creates an array initialized 

with zero-valued elements, is that we can avoid the initiation step. If all elements are 

guaranteed to be initialized later in the code, this can save a little bit of time, especially 

when working with large arrays. To illustrate the use of the np.empty function, consider 

the following example:

In [61]: np.empty(3, dtype=np.float)

Out[61]: array([  1.28822975e-231,   1.28822975e-231,   2.13677905e-314])

Here we generated a new array with three elements of type float. There is no 

guarantee that the elements have any particular values, and the actual values will vary 

from time to time. For this reason it is important that all values are explicitly assigned 

before the array is used; otherwise unpredictable errors are likely to arise. Often the 

np.zeros function is a safer alternative to np.empty, and if the performance gain is not 

essential, it is better to use np.zeros, to minimize the likelihood of subtle and hard-to-

reproduce bugs due to uninitialized values in the array returned by np.empty.

 Creating Arrays with Properties of Other Arrays
It is often necessary to create new arrays that share properties, such as shape and data 

type, with another array. NumPy provides a family of functions for this purpose: np.

ones_like, np.zeros_like, np.full_like, and np.empty_like. A typical use-case is 

a function that takes arrays of unspecified type and size as arguments and requires 

working arrays of the same size and type. For example, a boilerplate example of this 

situation is given in the following function:

def f(x):

    y = np.ones_like(x)

    # compute with x and y

    return y

At the first line of the body of this function, a new array y is created using np.ones_

like, which results in an array of the same size and data type as x, and filled with ones.
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 Creating Matrix Arrays
Matrices, or two-dimensional arrays, are an important case for numerical computing. 

NumPy provides functions for generating commonly used matrices. In particular, the 

function np.identity generates a square matrix with ones on the diagonal and zeros 

elsewhere:

In [62]: np.identity(4)

Out[62]: array([[ 1.,  0.,  0.,  0.],

                [ 0.,  1.,  0.,  0.],

                [ 0.,  0.,  1.,  0.],

                [ 0.,  0.,  0.,  1.]])

The similar function numpy.eye generates matrices with ones on a diagonal 

(optionally offset). This is illustrated in the following example, which produces matrices 

with nonzero diagonals above and below the diagonal, respectively:

In [63]: np.eye(3, k=1)

Out[63]: array([[ 0.,  1.,  0.],

                [ 0.,  0.,  1.],

                [ 0.,  0.,  0.]])

In [64]: np.eye(3, k=-1)

Out[64]: array([[ 0.,  0.,  0.],

                [ 1.,  0.,  0.],

                [ 0.,  1.,  0.]])

To construct a matrix with an arbitrary one-dimensional array on the diagonal, we 

can use the np.diag function (which also takes the optional keyword argument k to 

specify an offset from the diagonal), as demonstrated here:

In [65]: np.diag(np.arange(0, 20, 5))

Out[65]: array([[0,  0,  0,  0],

                [0,  5,  0,  0],

                [0,  0, 10,  0],

                [0,  0,  0, 15]])
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Here we gave a third argument to the np.arange function, which specifies the step 

size in the enumeration of elements in the array returned by the function. The resulting 

array therefore contains the values [0, 5, 10, 15], which is inserted on the diagonal of a 

two-dimensional matrix by the np.diag function.

 Indexing and Slicing
Elements and subarrays of NumPy arrays are accessed using the standard square bracket 

notation that is also used with Python lists. Within the square bracket, a variety of 

different index formats are used for different types of element selection. In general, the 

expression within the bracket is a tuple, where each item in the tuple is a specification of 

which elements to select from each axis (dimension) of the array.

 One-Dimensional Arrays
Along a single axis, integers are used to select single elements, and so-called slices are 

used to select ranges and sequences of elements. Positive integers are used to index 

elements from the beginning of the array (index starts at 0), and negative integers are 

used to index elements from the end of the array, where the last element is indexed  

with –1, the second to last element with –2, and so on.

Slices are specified using the : notation that is also used for Python lists. In this 

notation, a range of elements can be selected using an expression like m:n, which 

selects elements starting with m and ending with n − 1 (note that the nth element is 

not included). The slice m:n can also be written more explicitly as m : n : 1, where the 

number 1 specifies that every element between m and n should be selected. To select 

every second element between m and n, use m : n : 2, and to select every p elements, use 

m : n : p, and so on. If p is negative, elements are returned in reversed order starting from 

m to n+1 (which implies that m has to be larger than n in this case). See Table 2-4 for a 

summary of indexing and slicing operations for NumPy arrays.
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The following examples demonstrate index and slicing operations for NumPy arrays. 

To begin with, consider an array with a single axis (dimension) that contains a sequence 

of integers between 0 and 10:

In [66]: a = np.arange(0, 11)

In [67]: a

Out[67]: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10])

Note that the end value 11 is not included in the array. To select specific elements 

from this array, for example, the first, the last, and the 5th element, we can use integer 

indexing:

In [68]: a[0]  # the first element

Out[68]: 0

In [69]: a[-1] # the last element

Out[69]: 10

In [70]: a[4]  # the fifth element, at index 4

Out[70]: 4

Table 2-4. Examples of Array Indexing and Slicing Expressions

Expression Description

a[m] select element at index m, where m is an integer (start counting form 0).

a[-m] select the n th element from the end of the list, where n is an integer. The last 

element in the list is addressed as –1, the second to last element as –2, and so on.

a[m:n] select elements with index starting at m and ending at n − 1 (m and n are integers).

a[:] or 

a[0:-1]

select all elements in the given axis.

a[:n] select elements starting with index 0 and going up to index n − 1 (integer).

a[m:] or 

a[m:-1]

select elements starting with index m (integer) and going up to the last element in 

the array.

a[m:n:p] select elements with index m through n (exclusive), with increment p.

a[::-1] select all the elements, in reverse order.
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To select a range of element, say from the second to the second-to-last element, 

selecting every element and every second element, respectively, we can use index slices:

In [71]: a[1:-1]

Out[71]: array([1, 2, 3, 4, 5, 6, 7, 8, 9])

In [72]: a[1:-1:2]

Out[72]: array([1, 3, 5, 7, 9])

To select the first five and the last five elements from an array, we can use the slices :5 

and –5:, since if m or n is omitted in m:n, the defaults are the beginning and the end of the 

array, respectively.

In [73]: a[:5]

Out[73]: array([0, 1, 2, 3, 4])

In [74]: a[-5:]

Out[74]: array([6, 7, 8, 9, 10])

To reverse the array and select only every second value, we can use the slice ::-2, as 

shown in the following example:

In [75]: a[::-2]

Out[75]: array([10,  8,  6,  4,  2,  0]) 

 Multidimensional Arrays
With multidimensional arrays, element selections like those introduced in the previous 

section can be applied on each axis (dimension). The result is a reduced array where 

each element matches the given selection rules. As a specific example, consider the 

following two-dimensional array:

In [76]: f = lambda m, n: n + 10 * m

In [77]: A = np.fromfunction(f, (6, 6), dtype=int)

In [78]: A

Out[78]: array([[ 0,  1,  2,  3,  4,  5],

                [10, 11, 12, 13, 14, 15],

                [20, 21, 22, 23, 24, 25],

                [30, 31, 32, 33, 34, 35],

                [40, 41, 42, 43, 44, 45],

                [50, 51, 52, 53, 54, 55]])
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We can extract columns and rows from this two-dimensional array using a 

combination of slice and integer indexing:

In [79]: A[:, 1]  # the second column

Out[79]: array([ 1, 11, 21, 31, 41, 51])

In [80]: A[1, :]  # the second row

Out[80]: array([10, 11, 12, 13, 14, 15])

By applying a slice on each of the array axes, we can extract subarrays (submatrices 

in this two-dimensional example):

In [81]: A[:3, :3]  # upper half diagonal block matrix

Out[81]: array([[ 0,  1,  2],

                [10, 11, 12],

                [20, 21, 22]])

In [82]: A[3:, :3]  # lower left off-diagonal block matrix

Out[82]: array([[30, 31, 32],

                [40, 41, 42],

                [50, 51, 52]])

With element spacing other that 1, submatrices made up from nonconsecutive 

elements can be extracted:

In [83]: A[::2, ::2]  # every second element starting from 0, 0

Out[83]: array([[ 0,  2,  4],

                [20, 22, 24],

                [40, 42, 44]])

In [84]: A[1::2, 1::3]  # every second and third element starting from 1, 1

Out[84]: array([[11, 14],

                [31, 34],

                [51, 54]])

This ability to extract subsets of data from a multidimensional array is a simple but 

very powerful feature with many data processing applications.
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 Views
Subarrays that are extracted from arrays using slice operations are alternative views of 

the same underlying array data. That is, they are arrays that refer to the same data in the 

memory as the original array, but with a different strides configuration. When elements 

in a view are assigned new values, the values of the original array are therefore also 

updated. For example,

In [85]: B = A[1:5, 1:5]

In [86]: B

Out[86]: array([[11, 12, 13, 14],

                [21, 22, 23, 24],

                [31, 32, 33, 34],

                [41, 42, 43, 44]])

In [87]: B[:, :] = 0

In [88]: A

Out[88]: array([[ 0,  1,  2,  3,  4,  5],

                [10,  0,  0,  0,  0, 15],

                [20,  0,  0,  0,  0, 25],

                [30,  0,  0,  0,  0, 35],

                [40,  0,  0,  0,  0, 45],

                [50, 51, 52, 53, 54, 55]])

Here, assigning new values to the elements in an array B, which is created from 

the array A, also modifies the values in A (since both arrays refer to the same data 

in the memory). The fact that extracting subarrays results in views rather than new 

independent arrays eliminates the need for copying data and improves performance. 

When a copy rather than a view is needed, the view can be copied explicitly by using the 

copy method of the ndarray instance.

In [89]: C = B[1:3, 1:3].copy()

In [90]: C

Out[90]: array([[0, 0],

                [0, 0]])

In [91]: C[:, :] = 1  # this does not affect B since C is a copy of the 

view B[1:3, 1:3]

In [92]: C

ChAPTer 2  VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys 



63

Out[92]: array([[1, 1],

                [1, 1]])

In [93]: B

Out[93]: array([[0, 0, 0, 0],

                [0, 0, 0, 0],

                [0, 0, 0, 0],

                [0, 0, 0, 0]])

In addition to the copy attribute of the ndarray class, an array can also be copied 

using the function np.copy or, equivalently, using the np.array function with the 

keyword argument copy=True.

 Fancy Indexing and Boolean-Valued Indexing
In the previous section, we looked at indexing NumPy arrays with integers and slices, to 

extract individual elements or ranges of elements. NumPy provides another convenient 

method to index arrays, called fancy indexing. With fancy indexing, an array can be 

indexed with another NumPy array, a Python list, or a sequence of integers, whose 

values select elements in the indexed array. To clarify this concept, consider the 

following example: we first create a NumPy array with 11 floating-point numbers, and 

then index the array with another NumPy array (and Python list), to extract element 

numbers 0, 2, and 4 from the original array:

In [94]: A = np.linspace(0, 1, 11)

Out[94]: array([ 0. ,  0.1,  0.2,  0.3,  0.4,  0.5,  0.6,  0.7,  0.8,  0.9,  1. ])

In [95]: A[np.array([0, 2, 4])]

Out[95]: array([ 0. ,  0.2,  0.4])

In [96]: A[[0, 2, 4]]  # The same thing can be accomplished by indexing with a 

Python list

Out[96]: array([ 0. ,  0.2,  0.4])

This method of indexing can be used along each axis (dimension) of a 

multidimensional NumPy array. It requires that the elements in the array or list used for 

indexing are integers.
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Another variant of indexing NumPy arrays is to use Boolean-valued index arrays. In 

this case, each element (with values True or False) indicates whether or not to select the 

element from the list with the corresponding index. That is, if element n in the indexing 

array of Boolean values is True, then element n is selected from the indexed array. If the 

value is False, then element n is not selected. This index method is handy when filtering out 

elements from an array. For example, to select all the elements from the array A (as defined in 

the preceding section) that exceed the value 0.5, we can use the following combination of the 

comparison operator applied to a NumPy array and indexing using a Boolean-valued array:

In [97]: A > 0.5

Out[97]:  array([False, False, False, False, False, False, True, True, True, 

True, True], dtype=bool)

In [98]: A[A > 0.5]

Out[98]: array([ 0.6,  0.7,  0.8,  0.9,  1. ])

Unlike arrays created by using slices, the arrays returned using fancy indexing and 

Boolean-valued indexing are not views but rather new independent arrays. Nonetheless, 

it is possible to assign values to elements selected using fancy indexing:

In [99]: A = np.arange(10)

In [100]: indices = [2, 4, 6]

In [101]: B = A[indices]

In [102]: B[0] = -1  # this does not affect A

In [103]: A

Out[103]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [104]: A[indices] = -1  # this alters A

In [105]: A

Out[105]: array([ 0,  1, -1,  3, -1,  5, -1,  7,  8,  9])

and likewise for Boolean-valued indexing:

In [106]: A = np.arange(10)

In [107]: B = A[A > 5]

In [108]: B[0] = -1  # this does not affect A

In [109]: A

Out[109]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
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In [110]: A[A > 5] = -1  # this alters A

In [111]: A

Out[111]: array([ 0,  1,  2,  3,  4,  5, -1, -1, -1, -1])

A visual summary of different methods to index NumPy arrays is given in Figure 2-1. 

Note that each type of indexing we have discussed here can be independently applied to 

each dimension of an array.

Figure 2-1. Visual summary of indexing methods for NumPy arrays. These 
diagrams represent NumPy arrays of shape (4, 4), and the highlighted elements 
are those that are selected using the indexing expression shown above the block 
representations of the arrays.
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Table 2-5. Summary of NumPy Functions for Manipulating the Dimensions and 

the Shape of Arrays

Function/Method Description

np.reshape,

np.ndarray.reshape

reshape an N-dimensional array. The total number of elements must 

remain the same.

np.ndarray.flatten Creates a copy of an N-dimensional array, and reinterpret it as a  

one- dimensional array (i.e., all dimensions are collapsed into one).

np.ravel,

np.ndarray.ravel

Create a view (if possible, otherwise a copy) of an N-dimensional array 

in which it is interpreted as a one-dimensional array.

np.squeeze removes axes with length 1.

np.expand_dims, 

np.newaxis

Add a new axis (dimension) of length 1 to an array, where np.

newaxis is used with array indexing.

np.transpose,

np.ndarray.transpose, 

np.ndarray.T

Transpose the array. The transpose operation corresponds to reversing 

(or more generally, permuting) the axes of the array.

np.hstack stacks a list of arrays horizontally (along axis 1): for example, given a 

list of column vectors, appends the columns to form a matrix.

np.vstack stacks a list of arrays vertically (along axis 0): for example, given a list 

of row vectors, appends the rows to form a matrix.

np.dstack stacks arrays depth-wise (along axis 2).

np.concatenate Creates a new array by appending arrays after each other, along a 

given axis.

 Reshaping and Resizing
When working with data in array form, it is often useful to rearrange arrays and alter the 

way they are interpreted. For example, an N × N matrix array could be rearranged into a 

vector of length N2, or a set of one-dimensional arrays could be concatenated together 

or stacked next to each other to form a matrix. NumPy provides a rich set of functions of 

this type of manipulation. See Table 2-5 for a summary of a selection of these functions.

(continued)
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Reshaping an array does not require modifying the underlying array data; it only 

changes in how the data is interpreted, by redefining the array’s strides attribute. 

An example of this type of operation is a 2 × 2 array (matrix) that is reinterpreted as a 

1 × 4 array (vector). In NumPy, the function np.reshape, or the ndarray class method 

reshape, can be used to reconfigure how the underlying data is interpreted. It takes an 

array and the new shape of the array as arguments:

In [112]: data = np.array([[1, 2], [3, 4]])

In [113]: np.reshape(data, (1, 4))

Out[113]: array([[1, 2, 3, 4]])

In [114]: data.reshape(4)

Out[114]: array([1, 2, 3, 4])

It is necessary that the requested new shape of the array match the number of 

elements in the original size. However, the number of axes (dimensions) does not need 

to be conserved, as illustrated in the previous example, where in the first case, the 

new array has dimension 2 and shape (1, 4), while in the second case, the new array 

has dimension 1 and shape (4,). This example also demonstrates two different ways 

of invoking the reshape operation: using the function np.reshape and the ndarray 

method reshape. Note that reshaping an array produces a view of the array, and if an 

independent copy of the array is needed, the view has to be copied explicitly (e.g., using 

np.copy).

Function/Method Description

np.resize resizes an array. Creates a new copy of the original array, with the 

requested size. If necessary, the original array will be repeated to fill 

up the new array.

np.append Appends an element to an array. Creates a new copy of the array.

np.insert Inserts a new element at a given position. Creates a new copy of the 

array.

np.delete deletes an element at a given position. Creates a new copy of the array.

Table 2-5. (continued)
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The np.ravel (and its corresponding ndarray method) is a special case of reshape, 

which collapses all dimensions of an array and returns a flattened one-dimensional 

array with a length that corresponds to the total number of elements in the original 

array. The ndarray method flatten performs the same function but returns a copy 

instead of a view.

In [115]: data = np.array([[1, 2], [3, 4]])

In [116]: data

Out[116]: array([[1, 2],

                 [3, 4]])

In [117]: data.flatten()

Out[117]: array([ 1,  2,  3,  4])

In [118]: data.flatten().shape

Out[118]: (4,)

While np.ravel and np.flatten collapse the axes of an array into a one-dimensional 

array, it is also possible to introduce new axes into an array, either by using np.reshape 

or, when adding new empty axes, using indexing notation and the np.newaxis keyword 

at the place of a new axis. In the following example, the array data has one axis, so it 

should normally be indexed with a tuple with one element. However, if it is indexed with 

a tuple with more than one element, and if the extra indices in the tuple have the value 

np.newaxis, then the corresponding new axes are added:

In [119]: data = np.arange(0, 5)

In [120]: column = data[:, np.newaxis]

In [121]: column

Out[121]: array([[0],

                 [1],

                 [2],

                 [3],

                 [4]])

In [122]: row = data[np.newaxis, :]

In [123]: row

Out[123]: array([[0, 1, 2, 3, 4]])
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The function np.expand_dims can also be used to add new dimensions to an  

array, and in the preceding example, the expression data[:, np.newaxis] is  

equivalent to np.expand_dims(data, axis=1), and data[np.newaxis, :] is equivalent 

to np.expand_dims(data, axis=0). Here the axis argument specifies the location 

relative to the existing axes where the new axis is to be inserted.

We have up to now looked at methods to rearrange arrays in ways that do not affect 

the underlying data. Earlier in this chapter, we also looked at how to extract subarrays 

using various indexing techniques. In addition to reshaping and selecting subarrays, 

it is often necessary to merge arrays into bigger arrays, for example, when joining 

separately computed or measured data series into a higher-dimensional array, such as 

a matrix. For this task, NumPy provides the functions np.vstack, for vertical stacking of, 

for example, rows into a matrix, and np.hstack for horizontal stacking of, for example, 

columns into a matrix. The function np.concatenate provides similar functionality, but 

it takes a keyword argument axis that specifies the axis along which the arrays are to be 

 concatenated.

The shape of the arrays passed to np.hstack, np.vstack, and np.concatenate 

is important to achieve the desired type of array joining. For example, consider the 

following cases: say we have one-dimensional arrays of data, and we want to stack them 

vertically to obtain a matrix where the rows are made up of the one-dimensional arrays. 

We can use np.vstack to achieve this

In [124]: data = np.arange(5)

In [125]: data

Out[125]: array([0, 1, 2, 3, 4])

In [126]: np.vstack((data, data, data))

Out[126]: array([[0, 1, 2, 3, 4],

                 [0, 1, 2, 3, 4],

                 [0, 1, 2, 3, 4]])

If we instead want to stack the arrays horizontally, to obtain a matrix where the arrays 

are the column vectors, we might first attempt something similar using np.hstack:

In [127]: data = np.arange(5)

In [128]: data

Out[128]: array([0, 1, 2, 3, 4])

In [129]: np.hstack((data, data, data))

Out[129]: array([0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4])
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This indeed stacks the arrays horizontally, but not in the way intended here. To 

make np.hstack treat the input arrays as columns and stack them accordingly, we 

need to make the input arrays two-dimensional arrays of shape (1, 5) rather than 

one- dimensional arrays of shape (5,). As discussed earlier, we can insert a new axis by 

indexing with np.newaxis:

In [130]: data = data[:, np.newaxis]

In [131]: np.hstack((data, data, data))

Out[131]: array([[0, 0, 0],

                 [1, 1, 1],

                 [2, 2, 2],

                 [3, 3, 3],

                 [4, 4, 4]])

The behavior of the functions for horizontal and vertical stacking, as well as 

concatenating arrays using np.concatenate, is clearest when the stacked arrays have 

the same number of dimensions as the final array and when the input arrays are stacked 

along an axis for which they have length 1.

The number of elements in a NumPy array cannot be changed once the array has 

been created. To insert, append, and remove elements from a NumPy array, for example, 

using the function np.append, np.insert, and np.delete, a new array must be created 

and the data copied to it. It may sometimes be tempting to use these functions to grow 

or shrink the size of a NumPy array, but due to the overhead of creating new arrays and 

copying the data, it is usually a good idea to preallocate arrays with size such that they do 

not later need to be resized.

 Vectorized Expressions
The purpose of storing numerical data in arrays is to be able to process the data with 

concise vectorized expressions that represent batch operations that are applied to all 

elements in the arrays. Efficient use of vectorized expressions eliminates the need of 

many explicit for loops. This results in less verbose code, better maintainability, and 

higher-performing code. NumPy implements functions and vectorized operations 

corresponding to most fundamental mathematical functions and operators. Many 

of these functions and operations act on arrays on an elementwise basis, and binary 

operations require all arrays in an expression to be of compatible size. The meaning of 

ChAPTer 2  VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys 



71

compatible size is normally that the variables in an expression represent either scalars 

or arrays of the same size and shape. More generally, a binary operation involving two 

arrays is well defined if the arrays can be broadcasted into the same shape and size.

In the case of an operation between a scalar and an array, broadcasting refers to the 

scalar being distributed and the operation applied to each element in the array. When 

an expression contains arrays of unequal sizes, the operations may still be well defined if 

the smaller of the array can be broadcasted (“effectively expanded”) to match the larger 

array according to NumPy’s broadcasting rule: an array can be broadcasted over another 

array if their axes on a one-by-one basis either have the same length or if either of them 

have length 1. If the number of axes of the two arrays is not equal, the array with fewer 

axes is padded with new axes of length 1 from the left until the numbers of dimensions of 

the two arrays agree.

Two simple examples that illustrate array broadcasting are shown in Figure 2-2: a 

3 × 3 matrix is added to a 1 × 3 row vector and a 3 × 1 column vector, respectively, and 

in both cases the result is a 3 × 3 matrix. However, the elements in the two resulting 

matrices are different, because the way the elements of the row and column vectors are 

broadcasted to the shape of the larger array is different depending on the shape of the 

arrays, according to NumPy’s broadcasting rule.
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 Arithmetic Operations
The standard arithmetic operations with NumPy arrays perform elementwise 

operations. Consider, for example, the addition, subtraction, multiplication, and division 

of equal-sized arrays:

In [132]: x = np.array([[1, 2], [3, 4]])

In [133]: y = np.array([[5, 6], [7, 8]])

In [134]: x + y

Out[134]: array([[ 6,  8],

                 [10, 12]])

Figure 2-2. Visualization of broadcasting of row and column vectors into the 
shape of a matrix. The highlighted elements represent true elements of the arrays, 
while the light gray-shaded elements describe the broadcasting of the elements of 
the array of smaller size.

ChAPTer 2  VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys 



73

In [135]: y - x

Out[135]: array([[4, 4],

                 [4, 4]])

In [136]: x * y

Out[136]: array([[ 5, 12],

                 [21, 32]])

In [137]: y / x

Out[137]: array([[ 5.        ,  3.        ],

                 [ 2.33333333,  2.        ]])

In operations between scalars and arrays, the scalar value is applied to each element 

in the array, as one could expect:

In [138]: x * 2

Out[138]: array([[2, 4],

                 [6, 8]])

In [139]: 2 ** x

Out[139]: array([[ 2,  4],

                 [ 8, 16]])

In [140]: y / 2

Out[140]: array([[ 2.5,  3. ],

                 [ 3.5,  4. ]])

In [141]: (y / 2).dtype

Out[141]: dtype('float64')

Note that the dtype of the resulting array for an expression can be promoted if the 

computation requires it, as shown in the preceding example with division between an 

integer array and an integer scalar, which in that case resulted in an array with a dtype 

that is np.float64.

If an arithmetic operation is performed on arrays with incompatible size or shape, a 

ValueError exception is raised:

In [142]: x = np.array([1, 2, 3, 4]).reshape(2, 2)

In [143]: z = np.array([1, 2, 3, 4])

In [144]: x / z
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---------------------------------------------------------------------------

ValueError                                Traceback (most recent call last)

<ipython-input-144-b88ced08eb6a> in <module>()

----> 1 x / z

ValueError: operands could not be broadcast together with shapes (2,2) (4,)

Here the array x has shape (2, 2) and the array z has shape (4,), which cannot 

be broadcasted into a form that is compatible with (2, 2). If, on the other hand, z has 

shape (2,), (2, 1), or (1, 2), then it can broadcasted to the shape (2, 2) by effectively 

repeating the array z along the axis with length 1. Let’s first consider an example with an 

array z of shape (1, 2), where the first axis (axis 0) has length 1:

In [145]: z = np.array([[2, 4]])

In [146]: z.shape

Out[146]: (1, 2)

Dividing the array x with array z is equivalent to dividing x with an array zz that is 

constructed by repeating (here using np.concatenate) the row vector z to obtain an 

array zz that has the same dimensions as x:

In [147]: x / z

Out[147]: array([[ 0.5,  0.5],

                 [ 1.5,  1. ]])

In [148]: zz = np.concatenate([z, z], axis=0)

In [149]: zz

Out[149]: array([[2, 4],

                 [2, 4]])

In [150]: x / zz

Out[150]: array([[ 0.5,  0.5],

                 [ 1.5,  1. ]])

Let’s also consider the example in which the array z has shape (2, 1) and where the 

second axis (axis 1) has length 1:

In [151]: z = np.array([[2], [4]])

In [152]: z.shape

Out[152]: (2, 1)
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In this case, dividing x with z is equivalent to dividing x with an array zz that is 

constructed by repeating the column vector z until a matrix with the same dimension as 

x is obtained.

In [153]: x / z

Out[153]: array([[ 0.5 ,  1.  ],

                 [ 0.75,  1.  ]])

In [154]: zz = np.concatenate([z, z], axis=1)

In [155]: zz

Out[155]: array([[2, 2],

                 [4, 4]])

In [156]: x / zz

Out[156]: array([[ 0.5 ,  1.  ],

                 [ 0.75,  1.  ]])

In summary, these examples show how arrays with shape (1, 2) and (2, 1) are 

broadcasted to the shape (2, 2) of the array x when the operation x / z is performed. 

In both cases, the result of the operation x / z is the same as first repeating the smaller 

array z along its axis of length 1 to obtain a new array zz with the same shape as x and 

then performing the equal-sized array operation x / zz. However, the implementation 

of the broadcasting does not explicitly perform this expansion and the corresponding 

memory copies, but it can be helpful to think of the array broadcasting in these terms.

A summary of the operators for arithmetic operations with NumPy arrays is given 

in Table 2-6. These operators use the standard symbols used in Python. The result of an 

arithmetic operation with one or two arrays is a new independent array, with its own 

data in the memory. Evaluating complicated arithmetic expression might therefore 

trigger many memory allocation and copy operations, and when working with large 

arrays, this can lead to a large memory footprint and impact the performance negatively. 

In such cases, using inplace operation (see Table 2-6) can reduce the memory footprint 

and improve performance. As an example of inplace operators, consider the following 

two statements, which have the same effect:

In [157]: x = x + y

In [158]: x += y
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The two expressions have the same effect, but in the first case, x is reassigned to a 

new array, while in the second case, the values of array x are updated inplace. Extensive 

use of inplace operators tends to impair code readability, and inplace operators should 

therefore be used only when necessary.

 Elementwise Functions
In addition to arithmetic expressions using operators, NumPy provides vectorized 

functions for elementwise evaluation of many elementary mathematical functions 

and operations. Table 2-7 gives a summary of elementary mathematical functions in 

NumPy.3 Each of these functions takes a single array (of arbitrary dimension) as input 

and returns a new array of the same shape, where for each element the function has 

been applied to the corresponding element in the input array. The data type of the 

output array is not necessarily the same as that of the input array.

3 Note that this is not a complete list of the available elementwise functions in NumPy. See the 
NumPy reference documentations for comprehensive lists.

Table 2-6. Operators for Elementwise 

Arithmetic Operation on NumPy Arrays

Operator Operation

+, += Addition

-, -= subtraction

*, *= Multiplication

/, /= division

//, //= Integer division

**, **= exponentiation
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For example, the np.sin function (which takes only one argument) is used to 

compute the sine function for all values in the array:

In [159]: x = np.linspace(-1, 1, 11)

In [160]: x

Out[160]: array([-1. , -0.8, -0.6, -0.4, -0.2,  0. ,  0.2,  0.4,  0.6,  0.8,  1.])

In [161]: y = np.sin(np.pi * x)

In [162]: np.round(y, decimals=4)

Out[162]:  array([-0., -0.5878, -0.9511, -0.9511, -0.5878, 0., 0.5878, 0.9511, 

0.9511, 0.5878, 0.])

Here we also used the constant np.pi and the function np.round to round the values 

of y to four decimals. Like the np.sin function, many of the elementary math functions 

take one input array and produce one output array. In contrast, many of the mathematical 

operator functions (Table 2-8) operates on two input arrays returns one array:

In [163]: np.add(np.sin(x) ** 2, np.cos(x) ** 2)

Out[163]: array([ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.])

In [164]: np.sin(x) ** 2 + np.cos(x) ** 2

Out[164]: array([ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.])

Table 2-7. Selection of NumPy Functions for Elementwise Elementary 

Mathematical Functions

NumPy Function Description

np.cos, np.sin, np.tan Trigonometric functions.

np.arccos, np.arcsin, np.arctan Inverse trigonometric functions.

np.cosh, np.sinh, np.tanh hyperbolic trigonometric functions.

np.arccosh, np.arcsinh, np.arctanh Inverse hyperbolic trigonometric functions.

np.sqrt square root.

np.exp exponential.

np.log, np.log2, np.log10 logarithms of base e, 2, and 10, respectively.
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Note that in this example, np.add and the operator + are equivalent, and for normal 

use the operator should be used.

Occasionally it is necessary to define new functions that operate on NumPy arrays 

on an element-by-element basis. A good way to implement such functions is to express 

it in terms of already existing NumPy operators and expressions, but in cases when this 

is not possible, the np.vectorize function can be a convenient tool. This function takes 

a nonvectorized function and returns a vectorized function. For example, consider the 

following implementation of the Heaviside step function, which works for scalar input:

In [165]: def heaviside(x):

     ...:     return 1 if x > 0 else 0

In [166]: heaviside(-1)

Out[166]: 0

In [167]: heaviside(1.5)

Out[167]: 1

Table 2-8. Summary of NumPy Functions for Elementwise Mathematical 

Operations

NumPy Function Description

np.add, np.subtract, 

np.multiply, np.divide

Addition, subtraction, multiplication, and division of two NumPy 

arrays.

np.power raises first input argument to the power of the second input 

argument (applied elementwise).

np.remainder The remainder of division.

np.reciprocal The reciprocal (inverse) of each element.

np.real, np.imag, 

np.conj

The real part, imaginary part, and the complex conjugate of the 

elements in the input arrays.

np.sign, np.abs The sign and the absolute value.

np.floor, np.ceil, 

np.rint

Convert to integer values.

np.round rounds to a given number of decimals.
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However, unfortunately this function does not work for NumPy array input:

In [168]: x = np.linspace(-5, 5, 11)

In [169]: heaviside(x)

...

ValueError: The truth value of an array with more than one element is 

ambiguous. Use a.any() or a.all()

Using np.vectorize the scalar Heaviside function can be converted into a 

vectorized function that works with NumPy arrays as input:

In [170]: heaviside = np.vectorize(heaviside)

In [171]: heaviside(x)

Out[171]: array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])

Although the function returned by np.vectorize works with arrays, it will be 

relatively slow since the original function must be called for each element in the array. 

There are much better ways to implementing this particular function using arithmetic 

with Boolean-valued arrays, as discussed later in this chapter:

In [172]: def heaviside(x):

     ...:     return 1.0 * (x > 0)

Nonetheless, np.vectorize can often be a quick and convenient way to vectorize a 

function written for scalar input.

In addition to NumPy’s functions for elementary mathematical function, as 

summarized in Table 2-7, there are also numerous functions in NumPy for mathematical 

operations. A summary of a selection of these functions is given in Table 2-8.

 Aggregate Functions
NumPy provides another set of functions for calculating aggregates for NumPy arrays, 

which take an array as input and by default return a scalar as output. For example, 

statistics such as averages, standard deviations, and variances of the values in the input 

array, and functions for calculating the sum and the product of elements in an array, are 

all aggregate functions.
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A summary of aggregate functions is given in Table 2-9. All of these functions are 

also available as methods in the ndarray class. For example, np.mean(data) and data.

mean() in the following example are equivalent:

In [173]: data = np.random.normal(size=(15,15))

In [174]: np.mean(data)

Out[174]: -0.032423651106794522

In [175]: data.mean()

Out[175]: -0.032423651106794522

Table 2-9. NumPy Functions for Calculating Aggregates of NumPy Arrays

NumPy Function Description

np.mean The average of all values in the array.

np.std standard deviation.

np.var Variance.

np.sum sum of all elements.

np.prod Product of all elements.

np.cumsum Cumulative sum of all elements.

np.cumprod Cumulative product of all elements.

np.min, np.max The minimum/maximum value in an array.

np.argmin, np.argmax The index of the minimum/maximum value in an array.

np.all returns True if all elements in the argument array are nonzero.

np.any returns True if any of the elements in the argument array is nonzero.

By default, the functions in Table 2-9 aggregate over the entire input array. Using 

the axis keyword argument with these functions, and their corresponding ndarray 

methods, it is possible to control over which axis in the array aggregation is carried out. 

The axis argument can be an integer, which specifies the axis to aggregate values over. 

In many cases the axis argument can also be a tuple of integers, which specifies multiple 

axes to aggregate over. The following example demonstrates how calling the aggregate 
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function np.sum on the array of shape (5, 10, 15) reduces the dimensionality of the 

array depending on the values of the axis argument:

In [176]: data = np.random.normal(size=(5, 10, 15))

In [177]: data.sum(axis=0).shape

Out[177]: (10, 15)

In [178]: data.sum(axis=(0, 2)).shape

Out[178]: (10,)

In [179]: data.sum()

Out[179]: -31.983793284860798

A visual illustration of how aggregation over all elements, over the first axis, and over 

the second axis of a 3 × 3 array is shown in Figure 2-3. In this example, the data array is 

filled with integers between 1 and 9:

In [180]: data = np.arange(1,10).reshape(3,3)

In [181]: data

Out[181]: array([[1, 2, 3],

                 [4, 5, 6],

                 [7, 8, 9]])

Figure 2-3. Illustration of array aggregation functions along all axes (left), the first 
axis (center), and the second axis (right) of a two-dimensional array of shape 3 × 3
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and we compute the aggregate sum of the entire array, over the axis 0, and over axis 1, 

respectively:

In [182]: data.sum()

Out[182]: 45

In [183]: data.sum(axis=0)

Out[183]: array([12, 15, 18])

In [184]: data.sum(axis=1)

Out[184]: array([ 6, 15, 24])

 Boolean Arrays and Conditional Expressions
When computing with NumPy arrays, there is often a need to compare elements in 

different arrays and perform conditional computations based on the results of such 

comparisons. Like with arithmetic operators, NumPy arrays can be used with the usual 

comparison operators, for example, >, <, >=, <=, ==, and !=, and the comparisons are 

made on an element-by-element basis. The broadcasting rules also apply to comparison 

operators, and if two operators have compatible shapes and sizes, the result of the 

comparison is a new array with Boolean values (with dtype as np.bool) that gives the 

result of the comparison for each element:

In [185]: a = np.array([1, 2, 3, 4])

In [186]: b = np.array([4, 3, 2, 1])

In [187]: a < b

Out[187]: array([ True,  True, False, False], dtype=bool)

To use the result of a comparison between arrays in, for example, an if statement, 

we need to aggregate the Boolean values of the resulting arrays in some suitable fashion, 

to obtain a single True or False value. A common use-case is to apply the np.all or np.

any aggregation functions, depending on the situation at hand:

In [188]: np.all(a < b)

Out[188]: False

In [189]: np.any(a < b)

Out[189]: True

In [190]: if np.all(a < b):
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    ...:  print("All elements in a are smaller than their corresponding 

element in b")

    ...: elif np.any(a < b):

    ...:  print("Some elements in a are smaller than their corresponding 

element in b")

    ...: else:

    ...:  print("All elements in b are smaller than their corresponding 

element in a")

Some elements in a are smaller than their corresponding element in b

The advantage of Boolean-valued arrays, however, is that they often make it possible 

to avoid conditional if statements altogether. By using Boolean-valued arrays in 

arithmetic expressions, it is possible to write conditional computations in vectorized 

form. When appearing in an arithmetic expression together with a scalar number, or 

another NumPy array with a numerical data type, a Boolean array is converted to a 

numerical- valued array with values 0 and 1 inplace of False and True, respectively.

In [191]: x = np.array([-2, -1, 0, 1, 2])

In [192]: x > 0

Out[192]: array([False, False, False,  True,  True], dtype=bool)

In [193]: 1 * (x > 0)

Out[193]: array([0, 0, 0, 1, 1])

In [194]: x * (x > 0)

Out[194]: array([0, 0, 0, 1, 2])

This is a useful property for conditional computing, such as when defining piecewise 

functions. For example, if we need to define a function describing a pulse of a given 

height, width, and position, we can implement this function by multiplying the height  

(a scalar variable) with two Boolean-valued arrays for the spatial extension of the pulse:

In [195]: def pulse(x, position, height, width):

    ...:     return height * (x >= position) * (x <= (position + width))

In [196]: x = np.linspace(-5, 5, 11)

In [197]: pulse(x, position=-2, height=1, width=5)

Out[197]: array([0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0])

In [198]: pulse(x, position=1, height=1, width=5)

Out[198]: array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
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In this example, the expression (x >= position) * (x <= (position + width)) is a 

multiplication of two Boolean-valued arrays, and for this case the multiplication operator 

acts as an elementwise AND operator. The function pulse could also be implemented 

using NumPy’s function for elementwise AND operations, np.logical_and:

In [199]: def pulse(x, position, height, width):

    ...:      return height * np.logical_and(x >= position, x <= (position + 

width))

There are also functions for other logical operations, such as NOT, OR, and XOR,  

and functions for selectively picking values from different arrays depending on a  

given condition np.where, a list of conditions np.select, and an array of indices  

np.choose. See Table 2-10 for a summary of such functions, and the following examples 

demonstrate the basic usage of some of these functions. The np.where function selects 

elements from two arrays (second and third arguments), given a Boolean-valued 

array condition (the first argument). For elements where the condition is True, the 

corresponding values from the array given as second argument are selected, and if the 

condition is False, elements from the third argument array are selected:

In [200]: x = np.linspace(-4, 4, 9)

In [201]: np.where(x < 0, x**2, x**3)

Out[201]: array([ 16.,   9.,   4.,   1.,   0.,   1.,   8.,  27.,  64.])

Table 2-10. NumPy Functions for Conditional and Logical Expressions

Function Description

np.where Chooses values from two arrays depending on the value 

of a condition array.

np.choose Chooses values from a list of arrays depending on the 

values of a given index array.

np.select Chooses values from a list of arrays depending on a list 

of conditions.

np.nonzero returns an array with indices of nonzero elements.

np.logical_and Performs an elementwise ANd operation.

np.logical_or, np.logical_xor elementwise or/Xor operations.

np.logical_not elementwise NoT operation (inverting).
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The np.select function works similarly, but instead of a Boolean-valued condition 

array, it expects a list of Boolean-valued condition arrays and a corresponding list of 

value arrays:

In [202]: np.select([x < -1, x < 2, x >= 2],

     ...:           [x**2  , x**3 , x**4])

Out[202]: array( [  16.,    9.,    4.,   -1.,    0.,    1.,   16.,   

81.,  256.])

The np.choose takes as a first argument a list or an array with indices that determine 

from which array in a given list of arrays an element is picked from:

In [203]: np.choose([0, 0, 0, 1, 1, 1, 2, 2, 2],

    ...:            [x**2,  x**3,  x**4])

Out[203]: array( [  16.,    9.,    4.,   -1.,    0.,    1.,   16.,   

81.,  256.])

The function np.nonzero returns a tuple of indices that can be used to index the 

array (e.g., the one that the condition was based on). This has the same results as 

indexing the array directly with abs(x) > 2, but it uses fancy indexing with the indices 

returned by np.nonzero rather than Boolean-valued array indexing.

In [204]: np.nonzero(abs(x) > 2)

Out[204]: (array([0, 1, 7, 8]),)

In [205]: x[np.nonzero(abs(x) > 2)]

Out[205]: array([-4., -3.,  3.,  4.])

In [206]: x[abs(x) > 2]

Out[206]: array([-4., -3.,  3.,  4.])

 Set Operations
The Python language provides a convenient set data structure for managing unordered 

collections of unique objects. The NumPy array class ndarray can also be used to 

describe such sets, and NumPy contains functions for operating on sets stored as 

NumPy arrays. These functions are summarized in Table 2-11. Using NumPy arrays to 

describe and operate on sets allows expressing certain operations in vectorized form. 

For example, testing if the values in a NumPy array are included in a set can be done 

using the np.in1d function, which tests for the existence of each element of its first 
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argument in the array passed as the second argument. To see how this works, consider 

the following example: first, to ensure that a NumPy array is a proper set, we can use the 

np.unique function, which returns a new array with unique values:

In [207]: a = np.unique([1, 2, 3, 3])

In [208]: b = np.unique([2, 3, 4, 4, 5, 6, 5])

In [209]: np.in1d(a, b)

Out[209]: array([False,  True,  True], dtype=bool)

Table 2-11. NumPy Functions for Operating on Sets

Function Description

np.unique Creates a new array with unique elements, where each value only appears 

once.

np.in1d Tests for the existence of an array of elements in another array.

np.intersect1d returns an array with elements that are contained in two given arrays.

np.setdiff1d returns an array with elements that are contained in one, but not the other, of 

two given arrays.

np.union1d returns an array with elements that are contained in either, or both, of two 

given arrays.

Here, the existence of each element in a in the set b was tested, and the result is a 

Boolean-valued array. Note that we can use the in keyword to test for the existence of 

single elements in a set represented as NumPy array:

In [210]: 1 in a

Out[210]: True

In [211]: 1 in b

Out[211]: False

To test if a is a subset of b, we can use the np.in1d, as in the previous example, 

together with the aggregation function np.all (or the corresponding ndarray method) :

In [212]: np.all(np.in1d(a, b))

Out[212]: False
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The standard set operations union (the set of elements included in either or both 

sets), intersection (elements included in both sets), and difference (elements included in 

one of the sets but not the other) are provided by np.union1d, np.intersect1d, and np.

setdiff1d, respectively:

In [213]: np.union1d(a, b)

Out[213]: array([1, 2, 3, 4, 5, 6])

In [214]: np.intersect1d(a, b)

Out[214]: array([2, 3])

In [215]: np.setdiff1d(a, b)

Out[215]: array([1])

In [216]: np.setdiff1d(b, a)

Out[216]: array([4, 5, 6])

 Operations on Arrays
In addition to elementwise and aggregation functions, some operations act on arrays 

as a whole and produce a transformed array of the same size. An example of this type of 

operation is the transpose, which flips the order of the axes of an array. For the special 

case of a two-dimensional array, i.e., a matrix, the transpose simply exchanges rows and 

columns:

In [217]: data = np.arange(9).reshape(3, 3)

In [218]: data

Out[218]: array([[0, 1, 2],

                 [3, 4, 5],

                 [6, 7, 8]])

In [219]: np.transpose(data)

Out[219]: array([[0, 3, 6],

                 [1, 4, 7],

                 [2, 5, 8]])
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The transpose function np.transpose also exists as a method in ndarray and as the 

special method name ndarray.T. For an arbitrary N-dimensional array, the transpose 

operation reverses all the axes, as can be seen from the following example (note that the 

shape attribute is used here to display the number of values along each axis of the array) :

In [220]: data = np.random.randn(1, 2, 3, 4, 5)

In [221]: data.shape

Out[221]: (1, 2, 3, 4, 5)

In [222]: data.T.shape

Out[222]: (5, 4, 3, 2, 1)

The np.fliplr (flip left-right) and np.flipud (flip up-down) functions perform 

operations that are similar to the transpose: they reshuffle the elements of an array so 

that the elements in rows (np.fliplr) or columns (np.flipud) are reversed, and the 

shape of the output array is the same as the input. The np.rot90 function rotates the 

elements in the first two axes in an array by 90 degrees, and like the transpose function, 

it can change the shape of the array. Table 2-12 gives a summary of NumPy functions for 

common array operations.

 Matrix and Vector Operations
We have so far discussed general N-dimensional arrays. One of the main applications of 

such arrays is to represent the mathematical concepts of vectors, matrices, and tensors, 

and in this use-case, we also frequently need to calculate vector and matrix operations 

Table 2-12. Summary of NumPy Functions for Array Operations

Function Description

np.transpose,

np.ndarray.transpose, 

np.ndarray.T

The transpose (reverse axes) of an array.

np.fliplr/np.flipud reverse the elements in each row/column.

np.rot90 rotates the elements along the first two axes by 90 degrees.

np.sort,

np.ndarray.sort

sort the elements of an array along a given specified axis (which 

default to the last axis of the array). The np.ndarray method sort 

performs the sorting in place, modifying the input array.

ChAPTer 2  VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys 



89

such as scalar (inner) products, dot (matrix) products, and tensor (outer) products. A 

summary of NumPy’s functions for matrix operations is given in Table 2-13.

Table 2-13. Summary of NumPy Functions for Matrix Operations

NumPy Function Description

np.dot Matrix multiplication (dot product) between two given arrays representing 

vectors, arrays, or tensors.

np.inner scalar multiplication (inner product) between two arrays representing vectors.

np.cross The cross product between two arrays that represent vectors.

np.tensordot dot product along specified axes of multidimensional arrays.

np.outer outer product (tensor product of vectors) between two arrays representing 

vectors.

np.kron Kronecker product (tensor product of matrices) between arrays representing 

matrices and higher-dimensional arrays.

np.einsum evaluates einstein’s summation convention for multidimensional arrays.

In NumPy, the * operator is used for elementwise multiplication. For two two- 

dimensional arrays A and B, the expression A * B therefore does not compute a matrix 

product (in contrast to many other computing environments). Currently there is no 

operator for denoting matrix multiplication,4 and instead the NumPy function np.dot 

is used for this purpose. There is also a corresponding method in the ndarray class. To 

compute the product of two matrices A and B, of size N × M and M × P, which results in a 

matrix of size N × P, we can use:

In [223]: A = np.arange(1, 7).reshape(2, 3)

In [224]: A

Out[224]: array([[1, 2, 3],

                 [4, 5, 6]])

In [225]: B = np.arange(1, 7).reshape(3, 2)

In [226]: B

4 Python recently adopted the @ symbol for denoting matrix multiplication, and as of Python 3.5, 
this operator is now available. However, at the time of writing, this operator is still not widely 
used. See http://legacy.python.org/dev/peps/pep-0465 for details.
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Out[226]: array([[1, 2],

                 [3, 4],

                 [5, 6]])

In [227]: np.dot(A, B)

Out[227]: array([[22, 28],

                 [49, 64]])

In [228]: np.dot(B, A)

Out[228]: array([[ 9, 12, 15],

                 [19, 26, 33],

                 [29, 40, 51]])

The np.dot function can also be used for matrix-vector multiplication (i.e., 

multiplication of a two-dimensional array, which represents a matrix, with a one-

dimensional array representing a vector) . For example,

In [229]: A = np.arange(9).reshape(3, 3)

In [230]: A

Out[230]: array([[0, 1, 2],

                 [3, 4, 5],

                 [6, 7, 8]])

In [231]: x = np.arange(3)

In [232]: x

Out[232]: array([0, 1, 2])

In [233]: np.dot(A, x)

Out[233]: array([5, 14, 23])

In this example, x can be either a two-dimensional array of shape (1, 3) or a one- 

dimensional array with shape (3,). In addition to the function np.dot, there is also a 

corresponding method dot in ndarray, which can be used as in the following example:

In [234]: A.dot(x)

Out[234]: array([5, 14, 23])
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Unfortunately, nontrivial matrix multiplication expressions can often become 

complex and hard to read when using either np.dot or np.ndarray.dot. For example, 

even a relatively simple matrix expression like the one for a similarity transform, 

A′ = BAB−1, must be represented with relatively cryptic nested expressions,5 such as 

either

In [235]: A = np.random.rand(3,3)

In [236]: B = np.random.rand(3,3)

In [237]: Ap = np.dot(B, np.dot(A, np.linalg.inv(B)))

or

In [238]: Ap = B.dot(A.dot(np.linalg.inv(B)))

To improve this situation, NumPy provides an alternative data structure to 

ndarray named matrix, for which expressions like A * B are implemented as matrix 

multiplication. It also provides some convenient special attributes, like matrix.I for the 

inverse matrix and matrix.H for the complex conjugate transpose of a matrix. Using 

instances of this matrix class, one can therefore use the vastly more readable expression:

In [239]: A = np.matrix(A)

In [240]: B = np.matrix(B)

In [241]: Ap = B * A * B.I

This may seem like a practical compromise, but unfortunately using the matrix class 

does have a few disadvantages, and its use is therefore often discouraged. The main 

objection against using matrix is that expression like A * B is then context dependent: 

that is, it is not immediately clear if A * B denotes elementwise or matrix multiplication, 

because it depends on the type of A and B, and this creates another code-readability 

problem. This can be a particularly relevant issue if A and B are user-supplied arguments 

to a function, in which case it would be necessary to cast all input arrays explicitly to 

matrix instances, using, for example, np.asmatrix or the function np.matrix (since 

there would be no guarantee that the user calls the function with arguments of type 

matrix rather than ndarray). The np.asmatrix function creates a view of the original 

array in the form of an np.matrix instance. This does not add much in computational 

costs, but explicitly casting arrays back and forth between ndarray and matrix does 

5 With the new infix matrix multiplication operator, this same expression can be expressed as the 
considerably more readable: Ap = B @ A @ np.linalg.inv(B).
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offset much of the benefits of the improved readability of matrix expressions. A related 

issue is that some functions that operate on arrays and matrices might not respect the 

type of the input and may return an ndarray even though it was called with an input 

argument of type matrix. This way, a matrix of type matrix might be unintentionally 

converted to ndarray, which in turn would change the behavior of expressions like  

A * B. This type of behavior is not likely to occur when using NumPy’s array and matrix 

functions, but it is not unlikely to happen when using functions from other packages. 

However, in spite of all the arguments for not using matrix matrices too extensively, 

personally I think that using matrix class instances for complicated matrix expressions is 

an important use-case, and in these cases, it might be a good idea to explicitly cast arrays 

to matrices before the computation and explicitly cast the result back to the ndarray 

type, following the pattern:

In [242]: A = np.asmatrix(A)

In [243]: B = np.asmatrix(B)

In [244]: Ap = B * A * B.I

In [245]: Ap = np.asarray(Ap)

The inner product (scalar product) between two arrays representing vectors can be 

computed using the np.inner function:

In [246]: np.inner(x, x)

Out[246]: 5

or, equivalently, using np.dot:

In [247]: np.dot(x, x)

Out[247]: 5

The main difference is that np.inner expects two input arguments with the same 

dimension, while np.dot can take input vectors of shape 1 × N and N × 1, respectively:

In [248]: y = x[:, np.newaxis]

In [249]: y

Out[249]: array([[0],

                 [1],

                 [2]])

In [250]: np.dot(y.T, y)

Out[250]: array([[5]])
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While the inner product maps two vectors to a scalar, the outer product performs the 

complementary operation of mapping two vectors to a matrix.

In [251]: x = np.array([1, 2, 3])

In [252]: np.outer(x, x)

Out[252]: array([[1, 2, 3],

                 [2, 4, 6],

                 [3, 6, 9]])

The outer product can also be calculated using the Kronecker product using the 

function np.kron, which, however, in contrast to np.outer, produces an output array of 

shape (M*P, N*Q) if the input arrays have shapes (M, N) and (P, Q), respectively. Thus, 

for the case of two one-dimensional arrays of length M and P, the resulting array has 

shape (M*P,) :

In [253]: np.kron(x, x)

Out[253]: array([1, 2, 3, 2, 4, 6, 3, 6, 9])

To obtain the result that corresponds to np.outer(x, x), the input array x must be 

expanded to shape (N, 1) and (1, N), in the first and second argument to np.kron, 

respectively:

In [254]: np.kron(x[:, np.newaxis], x[np.newaxis, :])

Out[254]: array([[1, 2, 3],

                 [2, 4, 6],

                 [3, 6, 9]])

In general, while the np.outer function is primarily intended for vectors as input, 

the np.kron function can be used for computing tensor products of arrays of arbitrary 

dimension (but both inputs must have the same number of axes). For example, to 

compute the tensor product of two 2 × 2 matrices, we can use:

In [255]: np.kron(np.ones((2,2)), np.identity(2))

Out[255]: array([[ 1.,  0.,  1.,  0.],

                 [ 0.,  1.,  0.,  1.],

                 [ 1.,  0.,  1.,  0.],

                 [ 0.,  1.,  0.,  1.]])
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In [256]: np.kron(np.identity(2), np.ones((2,2)))

Out[256]: array([[ 1.,  1.,  0.,  0.],

                 [ 1.,  1.,  0.,  0.],

                 [ 0.,  0.,  1.,  1.],

                 [ 0.,  0.,  1.,  1.]])

When working with multidimensional arrays, it is often possible to express common 

array operations concisely using Einstein’s summation convention, in which an implicit 

summation is assumed over each index that occurs multiple times in an expression. For 

example, the scalar product between two vectors x and y is compactly expressed as xnyn, 

and the matrix multiplication of two matrices A and B is expressed as AmkBkn. NumPy 

provides the function np.einsum for carrying out Einstein summations. Its first argument 

is an index expression, followed by an arbitrary number of arrays that are included in the 

expression. The index expression is a string with comma-separated indices, where each 

comma separates the indices of each array. Each array can have any number of indices. 

For example, the scalar product expression xnyn can be evaluated with np.einsum using 

the index expression "n,n", that is using np.einsum("n,n", x, y) :

In [257]: x = np.array([1, 2, 3, 4])

In [258]: y = np.array([5, 6, 7, 8])

In [259]: np.einsum("n,n", x, y)

Out[259]: 70

In [260]: np.inner(x, y)

Out[260]: 70

Similarly, the matrix multiplication AmkBkn can be evaluated using np.einsum and the 

index expression "mk,kn":

In [261]: A = np.arange(9).reshape(3, 3)

In [262]: B = A.T

In [263]: np.einsum("mk,kn", A, B)

Out[263]: array([[  5,  14,  23],

                 [ 14,  50,  86],

                 [ 23,  86, 149]])

In [264]: np.alltrue(np.einsum("mk,kn", A, B) == np.dot(A, B))

Out[264]: True
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The Einstein summation convention can be particularly convenient when dealing 

with multidimensional arrays, since the index expression that defines the operation 

makes it explicit which operation is carried out and along which axes it is performed.  

An equivalent computation using, for example, np.tensordot might require giving the 

axes along which the dot product is to be evaluated.

 Summary
In this chapter we have given a brief introduction to array-based programming with 

the NumPy library that can serve as a reference for the following chapters in this book. 

NumPy is a core library for computing with Python that provides a foundation for 

nearly all computational libraries for Python. Familiarity with the NumPy library and 

its usage patterns is a fundamental skill for using Python for scientific and technical 

computing. Here we started with introducing NumPy’s data structure for N-dimensional 

arrays – the ndarray object – and we continued by discussing functions for creating 

and manipulating arrays, including indexing and slicing for extracting elements from 

arrays. We also discussed functions and operators for performing computations with 

ndarray objects, with an emphasis on vectorized expressions and operators for efficient 

computation with arrays. Throughout the rest of this book, we will see examples 

of higher-level libraries for specific fields in scientific computing that use the array 

framework provided by NumPy.

 Further Reading
The NumPy library is the topic of several books, including the Guide to NumPy, by the 

creator of the NumPy T. Oliphant, available for free online at http://web.mit.edu/dvp/

Public/numpybook.pdf, and a series of books by Ivan Idris: Numpy Beginner’s Guide 

(2015), NumPy Cookbook (2012), and Learning NumPy Array (2014). NumPy is also 

covered in fair detail in McKinney (2013).
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CHAPTER 3

Symbolic Computing
Symbolic computing is an entirely different paradigm in computing compared to the 

numerical array-based computing introduced in the previous chapter. In symbolic 

computing software, also known as computer algebra systems (CASs), representations 

of mathematical objects and expressions are manipulated and transformed analytically. 

Symbolic computing is mainly about using computers to automate analytical 

computations that can in principle be done by hand with pen and paper. However, by 

automating the book-keeping and the manipulations of mathematical expressions using 

a computer algebra system, it is possible to take analytical computing much further than 

can realistically be done by hand. Symbolic computing is a great tool for checking and 

debugging analytical calculations that are done by hand, but more importantly it enables 

carrying out analytical analysis that may not otherwise be possible.

Analytical and symbolic computing is a key part of the scientific and technical 

computing landscape, and even for problems that can only be solved numerically (which 

is common, because analytical methods are not feasible in many practical problems), 

it can make a big difference to push the limits for what can be done analytically before 

resorting to numerical techniques. This can, for example, reduce the complexity or 

size of the numerical problem that finally needs to be solved. In other words, instead 

of tackling a problem in its original form directly using numerical methods, it may be 

possible to use analytical methods to simplify the problem first.

In the scientific Python environment, the main module for symbolic computing is 

SymPy (Symbolic Python). SymPy is entirely written in Python and provides tools for a 

wide range of analytical and symbolic problems. In this chapter we look in detail into 

how SymPy can be used for symbolic computing with Python.
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SymPy The Symbolic Python (SymPy) library aims to provide a full-featured 
computer algebra system (CAS). In contrast to many other CASs, SymPy is 
primarily a library, rather than a full environment. This makes SymPy well suited for 
integration in applications and computations that also use other Python libraries. 
At the time of writing, the latest version is 1.1.1. More information about SymPy 
is available at www.sympy.org and https://github.com/sympy/sympy/
wiki/Faq.

 Importing SymPy
The SymPy project provides the Python module named sympy. It is common to import 

all symbols from this module when working with SymPy, using from sympy import *, 

but in the interest of clarity and for avoiding namespace conflicts between functions 

and variables from SymPy and from other packages such NumPy and SciPy (see later 

chapters), here we will import the library in its entirety as sympy. In the rest of this book, 

we will assume that SymPy is imported in this way.

In [1]: import sympy

In [2]: sympy.init_printing()

Here we have also called the sympy.init_printing function, which configures 

SymPy’s printing system to display nicely formatted renditions of mathematical 

expressions, as we will see examples of such later in this chapter. In the Jupyter 

Notebook, this sets up printing so that the MathJax JavaScript library renders SymPy 

expressions, and the results are displayed on the browser page of the notebook.

For the sake of convenience and readability of the example codes in this chapter, we 

will also assume that the following frequently used symbols are explicitly imported from 

SymPy into the local namespace:

In [3]: from sympy import I, pi, oo
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Caution note that numPy and SymPy, as well as many other libraries, provide 
many functions and variables with the same name. but these symbols are rarely 
interchangeable. For example, numpy.pi is a numerical approximation of the 
mathematical symbol π, while sympy.pi is a symbolic representation of π. It is 
therefore important to not mix them up and use, for instance, numpy.pi in place 
of sympy.pi when doing symbolic computations, or vice versa. The same holds 
true for many fundamental mathematical functions, such as for example numpy.
sin vs. sympy.sin. Therefore, when using more than one package in computing 
with Python, it is important to consistently use namespaces.

 Symbols
A core feature in SymPy is to represent mathematical symbols as Python objects. In 

the SymPy library, for example, the class sympy.Symbol can be used for this purpose. 

An instance of Symbol has a name and set of attributes describing its properties and 

methods for querying those properties and for operating on the symbol object. A symbol 

by itself is not of much practical use, but symbols are used as nodes in expression trees 

to represent algebraic expressions (see next section). Among the first steps in setting up 

and analyzing a problem with SymPy is to create symbols for the various mathematical 

variables and quantities that are required to describe the problem.

The symbol name is a string, which optionally can contain LaTeX-like markup to 

make the symbol name display well in, for example, IPython’s rich display system. 

The name of a Symbol object is set when it is created. Symbols can be created in a few 

different ways in SymPy, for example, using sympy.Symbol, sympy.symbols, and sympy.

var. Normally it is desirable to associate SymPy symbols with Python variables with 

the same name or a name that closely corresponds to the symbol name. For example, 

to create a symbol named x, and binding it to the Python variable with the same name, 

we can use the constructor of the Symbol class and pass a string containing the symbol 

name as the first argument:

In [4]: x = sympy.Symbol("x")
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The variable x now represents an abstract mathematical symbol x of which very little 

information is known by default. At this point, x could represent, for example, a real 

number, an integer, a complex number, a function, as well as a large number of other 

possibilities. In many cases it is sufficient to represent a mathematical symbol with this 

abstract, unspecified Symbol object, but sometimes it is necessary to give the SymPy 

library more hints about exactly what type of symbol a Symbol object is representing. 

This may help SymPy to more efficiently manipulate or simplify analytical expressions. 

We can add on various assumptions that narrow down the possible properties of a 

symbol by adding optional keyword arguments to the symbol-creating functions, such 

as Symbol. Table 3-1 summarizes a selection of frequently used assumptions that can be 

associated with a Symbol class instance. For example, if we have a mathematical variable 

y that is known to be a real number, we can use the real=True keyword argument 

when creating the corresponding symbol instance. We can verify that SymPy indeed 

recognizes that the symbol is real by using the is_real attribute of the Symbol class:

In [5]: y = sympy.Symbol("y", real=True)

In [6]: y.is_real

Out[6]: True

If, on the other hand, we were to use is_real to query the previously defined symbol 

x, which was not explicitly specified to real, and therefore can represent both real and 

nonreal variables, we get None as a result:

In [7]: x.is_real is None

Out[7]: True

Note that the is_real returns True if the symbol is known to be real, False if the 

symbol is known to not be real, and None if it is not known if the symbol is real or not. 

Other attributes (see Table 3-1) for querying assumptions on Symbol objects work in the 

same way. For an example that demonstrates a symbol for which the is_real attribute is 

False, consider

In [8]: sympy.Symbol("z", imaginary=True).is_real

Out[8]: False
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Among the assumptions in Table 3-1, the most important ones to explicitly specify 

when creating new symbols are real and positive. When applicable, adding these 

assumptions to symbols can frequently help SymPy to simplify various expressions 

further than otherwise possible. Consider the following simple example:

In  [9]: x = sympy.Symbol("x")

In [10]: y = sympy.Symbol("y", positive=True)

In [11]: sympy.sqrt(x ** 2)

Out[11]: x 2

In [12]: sympy.sqrt(y ** 2)

Out[12]: y

Here we have created two symbols, x and y, and computed the square root of the 

square of that symbol using the SymPy function sympy.sqrt. If nothing is known about 

the symbol in the computation, then no simplification can be done. If, on the other hand,  

the symbol is known to be representing a positive number, then obviously y y2 = , and 

SymPy correctly recognizes this in the latter example.

Table 3-1. Selected Assumptions and Their Corresponding Keyword for Symbol 

Objects. For a complete list, see the docstring for sympy.Symbol

Assumption Keyword Arguments Attributes Description

real, imaginary is_real, is_

imaginary

Specify that a symbol represents a 

real or imaginary number.

positive, negative is_positive, 

is_negative

Specify that a symbol is positive or 

negative.

integer is_integer The symbol represents an integer.

odd, even is_odd, is_even The symbol represents an odd or 

even integer.

prime is_prime The symbol is a prime number and 

therefore also an integer.

finite, infinite is_finite, is_

infinite

The symbol represents a quantity 

that is finite or infinite.
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When working with mathematical symbols that represent integers, rather than say 

real numbers, it is also useful to explicitly specify this when creating the corresponding 

SymPy symbols, using, for example, the integer=True, or even=True or odd=True, if 

applicable. This may also allow SymPy to analytically simplify certain expressions and 

function evaluations, such as in the following example:

In [13]: n1 = sympy.Symbol("n")

In [13]: n2 = sympy.Symbol("n", integer=True)

In [13]: n3 = sympy.Symbol("n", odd=True)

In [14]: sympy.cos(n1 * pi)

Out[14]: cos(πn)
In [15]: sympy.cos(n2 * pi)

Out[15]: (–1)n

In [16]: sympy.cos(n3 * pi)

Out[16]: –1

To formulate a nontrivial mathematical problem, it is often necessary to define a 

large number of symbols. Using Symbol to specify each symbol one-by-one may become 

tedious, and for convenience, SymPy contains a function sympy.symbols for creating 

multiple symbols in one function call. This function takes a comma-separated string of 

symbol names, as well as an arbitrary set of keyword arguments (which apply to all the 

symbols), and it returns a tuple of newly created symbols. Using Python’s tuple unpacking 

syntax together with a call to sympy.symbols is a convenient way to create symbols:

In [17]: a, b, c = sympy.symbols("a, b, c", negative=True)

In [18]: d, e, f = sympy.symbols("d, e, f", positive=True)

 Numbers
The purpose of representing mathematical symbols as Python objects is to use them 

in expression trees that represent mathematical expressions. To be able to do this, we 

also need to represent other mathematical objects, such as numbers, functions, and 

constants. In this section we look at SymPy’s classes for representing number objects. 

All of these classes have many methods and attributes shared with instances of Symbol, 

which allows us to treat symbols and numbers on equal footing when representing 

expressions.
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For example, in the previous section, we saw that Symbol instances have attributes 

for querying properties of symbol objects, such as is_real. We need to be able to use the 

same attributes for all types of objects, including for example numbers such as integers 

and floating-point numbers, when manipulating symbolic expressions in SymPy. For this 

reason, we cannot directly use the built-in Python objects for integers, int, and floating- 

point numbers, float, and so on. Instead, SymPy provides the classes sympy.Integer 

and sympy.Float for representing integers and floating-point numbers within the SymPy 

framework. This distinction is important to be aware of when working with SymPy, but 

fortunately we rarely need to concern ourselves with creating objects of type sympy.

Integer and sympy.Float to representing specific numbers, since SymPy automatically 

promotes Python numbers to instances of these classes when they occur in SymPy 

expressions. However, to demonstrate this difference between Python’s built-in number 

types and the corresponding types in SymPy, in the following example, we explicitly 

create instances of sympy.Integer and sympy.Float and use some of their attributes to 

query their properties:

In [19]: i = sympy.Integer(19)

In [20]: type(i)

Out[20]: sympy.core.numbers.Integer

In [21]: i.is_Integer, i.is_real, i.is_odd

Out[21]: (True, True, True)

In [22]: f = sympy.Float(2.3)

In [23]: type(f)

Out[23]: sympy.core.numbers.Float

In [24]: f.is_Integer, f.is_real, f.is_odd

Out[24]: (False, True, False)

Tip We can cast instances of sympy.Integer and sympy.Float back to 
Python built-in types using the standard type casting int(i) and float(f).
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To create a SymPy representation of a number, or in general, an arbitrary expression, 

we can also use the sympy.sympify function. This function takes a wide range of inputs and 

derives a SymPy compatible expression, and it eliminates the need for specifying explicitly 

what types of objects are to be created. For the simple case of number input, we can use

In [25]: i, f = sympy.sympify(19), sympy.sympify(2.3)

In [26]: type(i), type(f)

Out[26]: (sympy.core.numbers.Integer, sympy.core.numbers.Float)

 Integer

In the previous section, we have already used the Integer class to represent integers. 

It’s worth pointing out that there is a difference between a Symbol instance with 

the assumption integer=True and an instance of Integer. While the Symbol with 

integer=True represents some integer, the Integer instance represents a specific 

integer. For both cases, the is_integer attribute is True, but there is also an attribute 

is_Integer (note the capital I), which is only True for Integer instances. In general, 

attributes with names in the form is_Name indicate if the object is of type Name, and 

attributes with names in the form is_name indicate if the object is known to satisfy 

the condition name. Thus, there is also an attribute is_Symbol that is True for Symbol 

instances.

In [27]: n = sympy.Symbol("n", integer=True)

In [28]: n.is_integer, n.is_Integer, n.is_positive, n.is_Symbol

Out[28]: (True, False, None, True)

In [29]: i = sympy.Integer(19)

In [30]: i.is_integer, i.is_Integer, i.is_positive, i.is_Symbol

Out[30]: (True, True, True, False)

Integers in SymPy are arbitrary precision, meaning that they have no fixed lower 

and upper bounds, which is the case when representing integers with a specific bit size, 

as, for example, in NumPy. It is therefore possible to work with very large numbers, as 

shown in the following examples:

In [31]: i ** 50

Out[31]: 8663234049605954426644038200675212212900743262211018069459689001
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In [32]: sympy.factorial(100)

Out[32]: 933262154439441526816992388562667004907159682643816214685929638952

175999932299156089414639761565182862536979208272237582511852109168640000000

00000000000000000

 Float

We have also already encountered the type sympy.Float in the previous sections. 

Like Integer, Float is arbitrary precision, in contrast to Python’s built-in float type 

and the float types in NumPy. This means that a Float can represent a float with an 

arbitrary number of decimals. When a Float instance is created using its constructor, 

there are two arguments: the first argument is a Python float or a string representing a 

floating-point number, and the second (optional) argument is the precision (number 

of significant decimal digits) of the Float object. For example, it is well known 

that the real number 0.3 cannot be represented exactly as a normal fixed bit-size 

floating-point number, and when printing 0.3 to 20 significant digits, it is displayed as 

0.2999999999999999888977698. The SymPy Float object can represent the real number 

0.3 without the limitations of floating-point numbers:

In [33]: "%.25f" % 0.3  # create a string representation with 25 decimals

Out[33]: '0.2999999999999999888977698'

In [34]: sympy.Float(0.3, 25)

Out[34]: 0.2999999999999999888977698

In [35]: sympy.Float('0.3', 25)

Out[35]: 0.3

However, note that to correctly represent 0.3 as a Float object, it is necessary to 

initialize it from a string ‘0.3’ rather than the Python float 0.3, which already contains a 

floating-point error.

 Rational

A rational number is a fraction p/q of two integers, the numerator p and the 

denominator q. SymPy represents this type of numbers using the sympy.Rational class. 

Rational numbers can be created explicitly, using sympy.Rational and the numerator 

and denominator as arguments:

In [36]: sympy.Rational(11, 13)

Out[36]: 11

13
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or they can be a result of a simplification carried out by SymPy. In either case, 

arithmetic operations between rational and integers remain rational.

In [37]: r1 = sympy.Rational(2, 3)

In [38]: r2 = sympy.Rational(4, 5)

In [39]: r1 * r2

Out[39]: 8

15
In [40]: r1 / r2

Out[40]:
5

6

 Constants and Special Symbols

SymPy provides predefined symbols for various mathematical constants and  

special objects, such as the imaginary unit i and infinity. These are summarized in 

Table 3- 2, together with their corresponding symbols in SymPy. Note in particular that 

the imaginary unit is written as I in SymPy.

 Functions

In SymPy, objects that represent functions can be created with sympy.Function. Like 

Symbol, this Function object takes a name as the first argument. SymPy distinguishes 

between defined and undefined functions, as well as between applied and unapplied 

functions. Creating a function with Function results in an undefined (abstract) and 

Table 3-2. Selected Mathematical Constants and Special Symbols and Their 

Corresponding Symbols in SymPy

Mathematical Symbol SymPy Symbol Description

 π sympy.pi ratio of the circumference to the diameter of a 

circle.

 e sympy.E The base of the natural logarithm, e =  exp (1).

 γ sympy.EulerGamma euler’s constant.

 i sympy.I The imaginary unit.

 ∞ sympy.oo Infinity.
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unapplied function, which has a name but cannot be evaluated because its expression, 

or body, is not defined. Such a function can represent an arbitrary function of arbitrary 

numbers of input variables, since it also has not yet been applied to any particular 

symbols or input variables. An unapplied function can be applied to a set of input 

symbols that represent the domain of the function by calling the function instance with 

those symbols as arguments.1 The result is still an unevaluated function, but one that 

has been applied to the specified input variables, and therefore has a set of dependent 

variables. As an example of these concepts, consider the following code listing where we 

create an undefined function f, which we apply to the symbol x, and another function g 

which we directly apply to the set of symbols x, y, z:

In [41]: x, y, z = sympy.symbols("x, y, z")

In [42]: f = sympy.Function("f")

In [43]: type(f)

Out[43]: sympy.core.function.UndefinedFunction

In [44]: f(x)

Out[44]: f(x)

In [45]: g = sympy.Function("g")(x, y, z)

In [46]: g

Out[46]: g(x,y,z)

In [47]: g.free_symbols

Out[47]: {x,y,z}

Here we have also used the property free_symbols, which returns a set of unique 

symbols contained in a given expression (in this case the applied undefined function g), 

to demonstrate that an applied function indeed is associated with a specific set of input 

symbols. This will be important later in this chapter, for example, when we consider 

derivatives of abstract functions. One important application of undefined functions is for 

specifying differential equations or, in other words, when an equation for the function is 

known, but the function itself is unknown.

In contrast to undefined functions, a defined function is one that has a specific 

implementation and can be numerically evaluated for all valid input parameters. It is 

possible to define this type of function, for example, by subclassing sympy.Function, 

1 Here it is important to keep in mind the distinction between a Python function, or callable 
Python object such as sympy.Function, and the symbolic function that a sympy.Function class 
instance represents.

ChAPTer 3  SyMbolIC CoMPuTIng



108

but in most cases it is sufficient to use the mathematical functions provided by SymPy. 

Naturally, SymPy has built-in functions for many standard mathematical functions 

that are available in the global SymPy namespace (see the module documentation 

for sympy.functions.elementary, sympy.functions.combinatorial, and sympy.

functions.special and their subpackages for comprehensive lists of the numerous 

functions that are available, using the Python help function). For example, the SymPy 

function for the sine function is available as sympy.sin (with our import convention). 

Note that this is not a function in the Python sense of the word (it is, in fact, a subclass of 

sympy.Function), and it represents an unevaluated sin function that can be applied to a 

numerical value, a symbol, or an expression.

In [48]: sympy.sin

Out[48]: sympy.functions.elementary.trigonometric.sin

In [49]: sympy.sin(x)

Out[49]: sin(x)

In [50]: sympy.sin(pi * 1.5)

Out[50]: –1

When applied to an abstract symbol, such as x, the sin function remains 

unevaluated, but when possible it is evaluated to a numerical value, for example, 

when applied to a number or, in some cases, when applied to expressions with certain 

properties, as in the following example:

In [51]: n = sympy.Symbol("n", integer=True)

In [52]: sympy.sin(pi * n)

Out[52]: 0

A third type of function in SymPy is lambda functions, or anonymous functions, 

which do not have names associated with them, but do have a specific function body 

that can be evaluated. Lambda functions can be created with sympy.Lambda:

In [53]: h = sympy.Lambda(x, x**2)

In [54]: h

Out[54]: x x� 2( )
In [55]: h(5)

Out[55]: 25

In [56]: h(1 + x)

Out[56]: (1 + x)2
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 Expressions
The various symbols introduced in the previous sections are the fundamental building 

blocks required to express mathematical expressions. In SymPy, mathematical 

expressions are represented as trees where leaves are symbols and nodes are class 

instances that represent mathematical operations. Examples of these classes are Add, 

Mul, and Pow for basic arithmetic operators and Sum, Product, Integral, and Derivative 

for analytical mathematical operations. In addition, there are many other classes for 

mathematical operations, which we will see more examples of later in this chapter.

Consider, for example, the mathematical expression 1+2x2+3x3. To represent this in 

SymPy, we only need to create the symbol x and then write the expression as Python 

code:

In [54]: x = sympy.Symbol("x")

In [55]: expr = 1 + 2 * x**2 + 3 * x**3

In [56]: expr

Out[56]: 3x3 + 2x2 + 1

Here expr is an instance of Add, with the subexpressions 1, 2*x**2, and 3*x**3. 

The entire expression tree for expr is visualized in Figure 3-1. Note that we do not need 

to explicitly construct the expression tree, since it is automatically built up from the 

expression with symbols and operators. Nevertheless, to understand how SymPy works, 

it is important to know how expressions are represented.

Figure 3-1. Visualization of the expression tree for 1 + 2*x**2 + 3*x**3
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The expression tree can be traversed explicitly using the args attribute, which all 

SymPy operations and symbols provide. For an operator, the args attribute is a tuple 

of subexpressions that are combined with the rule implemented by the operator class. 

For symbols, the args attribute is an empty tuple, which signifies that it is a leaf in the 

expression tree. The following example demonstrates how the expression tree can be 

explicitly accessed:

In [57]: expr.args

Out[57]: (1,2x2,3x3)

In [58]: expr.args[1]

Out[58]: 2x2

In [59]: expr.args[1].args[1]

Out[59]: x2

In [60]: expr.args[1].args[1].args[0]

Out[60]: x

In [61]: expr.args[1].args[1].args[0].args

Out[61]: ()

In the basic use of SymPy, it is rarely necessary to explicitly manipulate expression 

trees, but when the methods for manipulating expressions that are introduced in the 

following section are not sufficient, it is useful to be able to implement functions of your 

own that traverse and manipulate the expression tree using the args attribute.

 Manipulating Expressions
Manipulating expression trees is one of the main jobs for SymPy, and numerous 

functions are provided for different types of transformations. The general idea is 

that expression trees can be transformed between mathematically equivalent forms 

using simplification and rewrite functions. These functions generally do not change 

the expressions that are passed to the functions, but rather create a new expression 

that corresponds to the modified expression. Expressions in SymPy should thus be 

considered immutable objects (that cannot be changed). All the functions we consider 

in this section treat SymPy expressions as immutable objects and return new expression 

trees rather than modify expressions in place.
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 Simplification
The most desirable manipulation of a mathematical expression is to simplify it. This 

is perhaps and also the most ambiguous operation, since it is nontrivial to determine 

algorithmically if one expression appears simpler than another to a human being, 

and in general it is also not obvious which methods should be employed to arrive at a 

simpler expression. Nonetheless, black-box simplification is an important part of any 

CAS, and SymPy includes the function sympy.simplify that attempts to simplify a given 

expression using a variety of methods and approaches. The simplification function can 

also be invoked through the method simplify, as illustrated in the following example.

In [67]: expr = 2 * (x**2 - x) - x * (x + 1)

In [68]: expr

Out[68]: 2x2 – x(x+1)–2x

In [69]: sympy.simplify(expr)

Out[69]: x(x–3)

In [70]: expr.simplify()

Out[70]: x(x–3)

In [71]: expr

Out[71]: 2x2 – x(x+1)–2x

Note that here both sympy.simplify(expr) and expr.simplify() return new 

expression trees and leave the expression expr untouched, as mentioned earlier. In this 

example, the expression expr can be simplified by expanding the products, canceling 

terms, and then factoring the expression again. In general, sympy.simplify will attempt 

a variety of different strategies and will also simplify, for example, trigonometric and 

power expressions, as exemplified here:

In [72]: expr = 2 * sympy.cos(x) * sympy.sin(x)

In [73]: expr

Out[73]: 2 sin(x)cos(x)

In [74]: sympy.simplify(expr)

Out[74]: sin(2x)
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and

In [75]: expr = sympy.exp(x) * sympy.exp(y)

In [76]: expr

Out[76]: exp(x)exp(y)

In [77]: sympy.simplify(expr)

Out[77]: exp(x+y)

Each specific type of simplification can also be carried out with more specialized 

functions, such as sympy.trigsimp and sympy.powsimp, for trigonometric and power 

simplifications, respectively. These functions only perform the simplification that their 

names indicate and leave other parts of an expression in its original form. A summary 

of simplification functions is given in Table 3-3. When the exact simplification steps 

are known, it is in general better to rely on the more specific simplification functions, 

since their actions are more well defined and less likely to change in future versions of 

SymPy. The sympy.simplify function, on the other hand, relies on heuristic approaches 

that may change in the future and, as a consequence, produce different results for a 

particular input expression.

Table 3-3. Summary of Selected SymPy Functions for Simplifying Expressions

Function Description

sympy.simplify Attempt various methods and approaches to obtain a simpler form of a 

given expression.

sympy.trigsimp Attempt to simplify an expression using trigonometric identities.

sympy.powsimp Attempt to simplify an expression using laws of powers.

sympy.compsimp Simplify combinatorial expressions.

sympy.ratsimp Simplify an expression by writing on a common denominator.

 Expand
When the black-box simplification provided by sympy.simplify does not produce 

satisfying results, it is often possible to make progress by manually guiding SymPy 

using more specific algebraic operations. An important tool in this process is to expand 

expression in various ways. The function sympy.expand performs a variety of expansions, 
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depending on the values of optional keyword arguments. By default the function 

distributes products over additions, into a fully expanded expression. For example, a 

product of the type (x+1)(x+2) can be expanded to x2+3x+2 using

In [78]: expr = (x + 1) * (x + 2)

In [79]: sympy.expand(expr)

Out[79]: x2 + 3x + 2

Some of the available keyword arguments are mul=True for expanding products (as 

in the preceding example), trig=True for trigonometric expansions,

In [80]: sympy.sin(x + y).expand(trig=True)

Out[80]: sin(x)cos(y) + sin(y)cos(x)

log=True for expanding logarithms,

In [81]: a, b = sympy.symbols("a, b", positive=True)

In [82]: sympy.log(a * b).expand(log=True)

Out[82]: log(a) + log(b)

complex=True for separating real and imaginary parts of an expression,

In [83]: sympy.exp(I*a + b).expand(complex=True)

Out[83]: ieb sin(a) + eb cos(a)

and power_base=True and power_exp=True for expanding the base and the exponent 

of a power expression, respectively.

In [84]: sympy.expand((a * b)**x, power_base=True)

Out[84]: axbx

In [85]: sympy.exp((a-b)*x).expand(power_exp=True)

Out[85]: eiaxe–ibx

Calling the sympy.expand function with these keyword arguments set to True is 

equivalent to calling the more specific functions sympy.expand_mul, sympy.expand_

trig, sympy.expand_log, sympy.expand_complex, sympy.expand_power_base, and 

sympy.expand_power_exp, respectively, but an advantage of the sympy.expand function 

is that several types of expansions can be performed in a single function call.
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 Factor, Collect, and Combine
A common use pattern for the sympy.expand function is to expand an expression, let 

SymPy cancel terms or factors, and then factor or combine the expression again. The 

sympy.factor function attempts to factor an expression as far as possible and is in some 

sense the opposite to sympy.expand with mul=True. It can be used to factor algebraic 

expressions, such as

In [86]: sympy.factor(x**2 - 1)

Out[86]: (x – 1)(x + 1)

In [87]: sympy.factor(x * sympy.cos(y) + sympy.sin(z) * x)

Out[87]: x(sin(x) + cos(y))

The inverse of the other types of expansions in the previous section can be carried 

out using sympy.trigsimp, sympy.powsimp, and sympy.logcombine, for example

In [90]: sympy.logcombine(sympy.log(a) - sympy.log(b))

Out[90]: log
a

b
æ
è
ç

ö
ø
÷

When working with mathematical expressions, it is often necessary to have fine- 

grained control over factoring. The SymPy function sympy.collect factors terms that 

contain a given symbol or list of symbols. For example, x+y+xyz cannot be completely 

factorized, but we can partially factor terms containing x or y:

In [89]: expr = x + y + x * y * z

In [90]: expr.collect(x)

Out[90]: x(yz + 1) + y

In [91]: expr.collect(y)

Out[91]: x + y(xz + 1)

By passing a list of symbols or expressions to the sympy.collect function or to the 

corresponding collect method, we can collect multiple symbols in one function call. 

Also, when using the method collect, which returns the new expression, it is possible to 

chain multiple method calls in the following way:
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In [93]: expr = sympy.cos(x + y) + sympy.sin(x - y)

In [94]: expr.expand(trig=True).collect([sympy.cos(x),

    ...:                                  sympy.sin(x)]).collect(sympy.

cos(y) - sympy.sin(y))

Out[95]: (sin(x) + cos(x))(–sin(y) + cos(y))

 Apart, Together, and Cancel
The final type of mathematical simplification that we will consider here is the rewriting 

of fractions. The functions sympy.apart and sympy.together, which, respectively, 

rewrite a fraction as a partial fraction and combine partial fractions to a single fraction, 

can be used in the following way:

In [95]: sympy.apart(1/(x**2 + 3*x + 2), x)

Out[95]: -
+

+
+

1

2

1

1x x

In [96]: sympy.together(1 / (y * x + y) + 1 / (1+x))

Out[96]:
y

y x

+
+( )
1

1

In [97]: sympy.cancel(y / (y * x + y))

Out[97]:
1

1x +

In the first example, we used sympy.apart to rewrite the expression (x2+3x+2)−1 as 

the partial fraction -
+

+
+

1

2

1

1x x
, and we used sympy.together to combine the sum of 

fractions 1/(yx+y)+1/(1+x) into an expression in the form of a single fraction. In this 

example we also used the function sympy.cancel to cancel shared factors between 

numerator and the denominator in the expression y/(yx+y).

 Substitutions
The previous sections have been concerned with rewriting expressions using various 

mathematical identities. Another frequently used form of manipulation of mathematical 

expressions is substitutions of symbols or subexpressions within an expression. For 

example, we may want to perform a variable substitution and replace the variable x with y or 

replace a symbol with another expression. In SymPy there are two methods for carrying out 
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substitutions: subs and replace. Usually subs is the most suitable alternative, but in some 

cases replace provides a more powerful tool, which, for example, can make replacements 

based on wildcard expressions (see docstring for sympy.Symbol.replace for details).

In the most basic use of subs, the method is called in an expression, and the symbol 

or expression that is to be replaced (x) is given as the first argument, and the new symbol 

or the expression (y) is given as the second argument. The result is that all occurrences of 

x in the expression are replaced with y:

In [98]: (x + y).subs(x, y)

Out[98]: 2y

In [99]: sympy.sin(x * sympy.exp(x)).subs(x, y)

Out[99]: sin(yey)

Instead of chaining multiple subs calls when multiple substitutions are required, we 

can alternatively pass a dictionary as the first and only argument to subs that maps old 

symbols or expressions to new symbols or expressions:

In [100]: sympy.sin(x * z).subs({z: sympy.exp(y), x: y, sympy.sin: sympy.cos})

Out[100]: cos(yey)

A typical application of the subs method is to substitute numerical values in place  

of symbols, for numerical evaluation (see the following section for more details).  

A convenient way of doing this is to define a dictionary that translates the symbols to 

numerical values and pass this dictionary as the argument to the subs method. For 

example, consider

In [101]: expr = x * y + z**2 *x

In [102]: values = {x: 1.25, y: 0.4, z: 3.2}

In [103]: expr.subs(values)

Out[103]: 13.3
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 Numerical Evaluation
Even when working with symbolic mathematics, it is almost invariably sooner or later 

required to evaluate the symbolic expressions numerically, for example, when producing 

plots or concrete numerical results. A SymPy expression can be evaluated using either 

the sympy.N function or the evalf method of SymPy expression instances:

In [104]: sympy.N(1 + pi)

Out[104]: 4.14159265358979

In [105]: sympy.N(pi, 50)

Out[105]: 3.1415926535897932384626433832795028841971693993751

In [106]: (x + 1/pi).evalf(10)

Out[106]: x + 0.3183098862

Both sympy.N and the evalf method take an optional argument that specifies the 

number of significant digits to which the expression is to be evaluated, as shown in the 

previous example where SymPy’s multiprecision float capabilities were leveraged to 

evaluate the value of π up to 50 digits.

When we need to evaluate an expression numerically for a range of input values, we 

could in principle loop over the values and perform successive evalf calls, for example

In [114]: expr = sympy.sin(pi * x * sympy.exp(x))

In [115]: [expr.subs(x, xx).evalf(3) for xx in range(0, 10)]

Out[115]: [0,0.774,0.642,0.722,0.944,0.205,0.974,0.977,-0.870,-0.695]

However, this method is rather slow, and SymPy provides a more efficient method 

for doing this operation using the function sympy.lambdify. This function takes a set of 

free symbols and an expression as arguments and generates a function that efficiently 

evaluates the numerical value of the expression. The produced function takes the same 

number of arguments as the number of free symbols passed as the first argument to 

sympy.lambdify.

In [109]: expr_func = sympy.lambdify(x, expr)

In [110]: expr_func(1.0)

Out[110]: 0.773942685266709

Note that the function expr_func expects numerical (scalar) values as arguments, 

so we cannot, for example, pass a symbol as an argument to this function; it is strictly 

for numerical evaluation. The expr_func created in the previous example is a scalar 

ChAPTer 3  SyMbolIC CoMPuTIng



118

function and is not directly compatible with vectorized input in the form of NumPy 

arrays, as discussed in Chapter 2. However, SymPy is also able to generate functions that 

are NumPy-array aware: by passing the optional argument 'numpy' as the third argument 

to sympy.lambdify SymPy creates a vectorized function that accepts NumPy arrays as 

input. This is in general an efficient way to numerically evaluate symbolic expressions2 

for a large number of input parameters. The following code exemplifies how the SymPy 

expression expr is converted into a NumPy-array aware vectorized function that can be 

efficiently evaluated:

In [111]: expr_func = sympy.lambdify(x, expr, 'numpy')

In [112]: import numpy as np

In [113]: xvalues = np.arange(0, 10)

In [114]: expr_func(xvalues)

Out[114]:  array([ 0.        ,  0.77394269,  0.64198244,  0.72163867,   

0.94361635,

                   0.20523391,  0.97398794,  0.97734066, -0.87034418, 

-0.69512687])

This method for generating data from SymPy expressions is useful for plotting and 

many other data-oriented applications.

 Calculus
So far we have looked at how to represent mathematical expression in SymPy and 

how to perform basic simplification and transformation of such expressions. With 

this framework in place, we are now ready to explore symbolic calculus, or analysis, 

which is a cornerstone in applied mathematics and has a great number of applications 

throughout science and engineering. The central concept in calculus is the change of 

functions as input variables are varied, as quantified with derivatives and differentials, 

and accumulations of functions over ranges of input, as quantified by integrals. In this 

section we look at how to compute derivatives and integrals of functions in SymPy.

2 See also the ufuncity from the sympy.utilities.autowrap module and the theano_function 
from the sympy.printing.theanocode module. These provide similar functionality as sympy.
lambdify, but use different computational backends.
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 Derivatives
The derivative of a function describes its rate of change at a given point. In SymPy we can 

calculate the derivative of a function using sympy.diff or alternatively by using the diff 

method of SymPy expression instances. The argument to these functions is a symbol, 

or a number of symbols, with respect to which the function or the expression is to be 

derived. To represent the first-order derivative of an abstract function f (x) with respect  

to x, we can do

In [119]: f = sympy.Function('f')(x)

In [120]: sympy.diff(f, x)               # equivalent to f.diff(x)

Out[120]:
d

dx
f x( )

and to represent higher-order derivatives, all we need to do is to repeat the symbol x 

in the argument list in the call to sympy.diff or, equivalently, specify an integer as an 

argument following a symbol, which defines the number of times the expression should 

be derived with respect to that symbol:

In [117]: sympy.diff(f, x, x)

Out[117]:
d

dx
f x

2

2 ( )

In [118]: sympy.diff(f, x, 3)   # equivalent to sympy.diff(f, x, x, x)

Out[118]:
d

dx
f x

3

3 ( )

This method is readily extended to multivariate functions:

In [119]: g = sympy.Function('g')(x, y)

In [120]: g.diff(x, y)          # equivalent to sympy.diff(g, x, y)

Out[120]: ¶
¶ ¶

( )
2

x y
g x y,

In [121]: g.diff(x, 3, y, 2)    # equivalent to sympy.diff(g, x, x, x, y, y)

Out[121]:
¶

¶ ¶
( )

5

3 2x y
g x y,
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These examples so far only involve formal derivatives of undefined functions. 

Naturally, we can also evaluate the derivatives of defined functions and expressions, 

which result in new expressions that correspond to the evaluated derivatives. For 

example, using sympy.diff we can easily evaluate derivatives of arbitrary mathematical 

expressions, such as polynomials:

In [122]: expr = x**4 + x**3 + x**2 + x + 1

In [123]: expr.diff(x)

Out[123]: 4x3 + 3x2 + 2x+1

In [124]: expr.diff(x, x)

Out[124]: 2(6x2 + 3x + 1)

In [125]: expr = (x + 1)**3 * y ** 2 * (z - 1)

In [126]: expr.diff(x, y, z)

Out[126]: 6y(x + 1)2

as well as trigonometric and other more complicated mathematical expressions:

In [127]: expr = sympy.sin(x * y) * sympy.cos(x / 2)

In [128]: expr.diff(x)

Out[128]: y
x

xy
x

xycos cos sin sin
2

1

2 2
æ
è
ç

ö
ø
÷ ( ) - æ

è
ç

ö
ø
÷ ( )

In [129]: expr = sympy.special.polynomials.hermite(x, 0)

In [130]: expr.diff(x).doit()

Out[130]:
2 0

2
1
2

2
2

1
2

2 2

2
1
2

x
x

x

x x

p ppolygamma ,- +æ
è
ç

ö
ø
÷

- +æ
è
ç

ö
ø
÷

+
( )

- +æG G

log

èè
ç

ö
ø
÷

Derivatives are usually relatively easy to compute, and sympy.diff should be able to 

evaluate the derivative of most standard mathematical functions defined in SymPy.

Note that in these examples, calling sympy.diff on an expression directly results in 

a new expression. If we rather want to symbolically represent the derivative of a definite 

expression, we can create an instance of the class sympy.Derivative, passing the 

expression as the first argument, followed by the symbols with respect to the derivative 

that is to be computed:

In [131]: d = sympy.Derivative(sympy.exp(sympy.cos(x)), x)

In [132]: d
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Out[132]: d

dx
e xcos( )

This formal representation of a derivative can then be evaluated by calling the doit 

method on the sympy.Derivative instance:

In [133]: d.doit()

Out[133]: –ecos(x) sin(x)

This pattern of delayed evaluation is reoccurring throughout SymPy, and full control 

of when a formal expression is evaluated to a specific result is useful in many situations, 

in particular with expressions that can be simplified or manipulated while represented 

as a formal expression rather than after it has been evaluated.

 Integrals
In SymPy, integrals are evaluated using the function sympy.integrate, and formal 

integrals can be represented using sympy.Integral (which, as in the case with sympy.

Derivative, can be explicitly evaluated by calling the doit method). Integrals come 

in two basic forms: definite and indefinite, where a definite integral has specified 

integration limits and can be interpreted as an area or volume, while an indefinite 

integral does not have integration limits and denotes the antiderivative (inverse of the 

derivative of a function). SymPy handles both indefinite and definite integrals using the 

sympy.integrate function.

If the sympy.integrate function is called with only an expression as an argument, 

the indefinite integral is computed. On the other hand, a definite integral is computed 

if the sympy.integrate function additionally is passed a tuple in the form (x, a, b), 

where x is the integration variable and a and b are the integration limits. For a single- 

variable function f (x), the indefinite and definite integrals are therefore computed using

In [135]: a, b, x, y = sympy.symbols("a, b, x, y")

     ...: f = sympy.Function("f")(x)

In [136]: sympy.integrate(f)

Out[136]: ∫ f(x)dx

In [137]: sympy.integrate(f, (x, a, b))

Out[137]:
a

b

f x dxò ( )
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and when these methods are applied to explicit functions, the integrals are evaluated 

accordingly:

In [138]: sympy.integrate(sympy.sin(x))

Out[138]: –cos(x)

In [139]: sympy.integrate(sympy.sin(x), (x, a, b))

Out[139]: cos(a) – cos(b)

Definite integrals can also include limits that extend from negative infinity, and/or to 

positive infinite, using SymPy’s symbol for infinity oo:

In [139]: sympy.integrate(sympy.exp(-x**2), (x, 0, oo))

Out[139]:
p
2

In [140]: a, b, c = sympy.symbols("a, b, c", positive=True)

In [141]: sympy.integrate(a * sympy.exp(-((x-b)/c)**2), (x, -oo, oo))

Out[141]: pac

Computing integrals symbolically is in general a difficult problem, and SymPy will 

not be able to give symbolic results for any integral you can come up with. When SymPy 

fails to evaluate an integral, an instance of sympy.Integral, representing the formal 

integral, is returned instead.

In [142]: sympy.integrate(sympy.sin(x * sympy.cos(x)))

Out[142]: ∫sin(x cos(x))dx

Multivariable expressions can also be integrated with sympy.integrate. In the case 

of an indefinite integral of a multivariable expression, the integration variable has to be 

specified explicitly:

In [140]: expr = sympy.sin(x*sympy.exp(y))

In [141]: sympy.integrate(expr, x)

Out[141]: –e–ycos(xey)

In [142]: expr = (x + y)**2

In [143]: sympy.integrate(expr, x)

Out[143]:
x

x y xy
3

2 2

3
+ +
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By passing more than one symbol, or multiple tuples that contain symbols and their 

integration limits, we can carry out multiple integrations:

In [144]: sympy.integrate(expr, x, y)

Out[144]: x y x y xy3 2 2 3

3 2 3
+ +

In [145]: sympy.integrate(expr, (x, 0, 1), (y, 0, 1))

Out[145]:
7

6

 Series
Series expansions are an important tool in many disciplines in computing. With a series 

expansion, an arbitrary function can be written as a polynomial, with coefficients given 

by the derivatives of the function at the point around which the series expansion is 

made. By truncating the series expansion at some order n, the nth order approximation 

of the function is obtained. In SymPy, the series expansion of a function or an expression 

can be computed using the function sympy.series or the series method available 

in SymPy expression instances. The first argument to sympy.series is a function or 

expression that is to be expanded, followed by a symbol with respect to which the 

expansion is to be computed (it can be omitted for single-variable expressions and 

function). In addition, it is also possible to request a particular point around which the 

series expansions are to be performed (using the x0 keyword argument, with default 

x0=0), specifying the order of the expansion (using the n keyword argument, with default 

n=6) and specifying the direction from which the series is computed, i.e., from below or 

above x0 (using the dir keyword argument, which defaults to dir='+').

For an undefined function f(x), the expansion up to sixth order around x0=0 is 

computed using

In [147]: x, y = sympy.symbols("x, y")

In [148]: f = sympy.Function("f")(x)

In [149]: sympy.series(f, x)

Out[149]:
f x

d

dx
f x

x d

dx
f x

x d

dx
f x

x d

dx

x x x
0

2 6

24

0

2 2

2 0

3 3

3 0

4 4

4

( ) + ( ) + ( ) + ( )

+

= = =

ff x
x d

dx
f x x

x x
( ) + ( ) + ( )= =0

5 5

5 0

6

120
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To change the point around which the function is expanded, we specify the x0 

argument as in the following example:

In [147]: x0 = sympy.Symbol("{x_0}")

In [151]: f.series(x, x0, n=2)

Out[151]: f x x x
d

d
f x x x x

x0 0
1

1 0

2

0
1 0

( ) + -( ) ( ) + -( ) ®( )=x
x

x
 ;

Here we also specified n=2, to request a series expansion with only terms up to 

and including the second order. Note that the errors due to the truncated terms are 

represented by the order object  ¼( ) . The order object is useful for keeping track of the 

order of an expression when computing with series expansions, such as multiplying or 

adding different expansions. However, for concrete numerical evolution, it is necessary 

to remove the order term from the expression, which can be done using the method 

removeO:

In [152]: f.series(x, x0, n=2).removeO()

Out[152]: f x x x
d

d
f

x0 0
1

1
1 0

( ) + -( ) ( )
=x

x
x

While the expansions shown in the preceding text were computed for an unspecified 

function f(x), we can naturally also compute the series expansions of specific functions 

and expressions, and in those cases we obtain specific evaluated results. For example, 

we can easily generate the well-known expansions of many standard mathematical 

functions:

In [153]: sympy.cos(x).series()

Out[153]:1
2 24

2 4
6- + + ( )x x

x  

In [154]: sympy.sin(x).series()

Out[154]: x
x x

x- + + ( )
3 5

6

6 120


In [155]: sympy.exp(x).series()

Out[155]:1
2 6 24 120

2 3 4 5
6+ + + + + + ( )x

x x x x
x

In [156]: (1/(1+x)).series()

Out[156]:1 2 3 4 5 6- + - + - + ( )x x x x x x
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as well as arbitrary expressions of symbols and functions, which in general can also be 

multivariable functions:

In [157]: expr = sympy.cos(x) / (1 + sympy.sin(x * y))

In [158]: expr.series(x, n=4)

Out[158]:1
1

2

5

6 2
2 2 3

3
4- + -æ

è
ç

ö
ø
÷ + - +

æ

è
ç

ö

ø
÷ + ( )xy x y x

y y
x  

In [159]: expr.series(y, n=4)

Out[159]: cos cos cos
cos

x xy x x y x
x y x

y( ) - ( ) + ( ) - ( )
+ ( )2 2

3 3
45

6
  

 Limits
Another important tool in calculus is limits, which denotes the value of a function as 

one of its dependent variables approaches a specific value or as the value of the variable 

approaches negative or positive infinity. An example of a limit is one of the definitions of 

the derivative:

d

dx
f x

f x h f x

hh
( ) =

+( )- ( )
®
lim .

0

While limits are more of a theoretical tool and do not have as many practical 

applications as, say, series expansions, it is still useful to be able to compute limits using 

SymPy. In SymPy, limits can be evaluated using the sympy.limit function, which takes 

an expression, a symbol it depends on, as well as the value that the symbol approaches 

in the limit. For example, to compute the limit of the function sin(x)/x, as the variable x 

goes to zero, that is, limsin /
x

x x
®

( )
0

, we can use

In [161]: sympy.limit(sympy.sin(x) / x, x, 0)

Out[161]: 1

Here we obtained the well-known answer 1 for this limit. We can also use sympy.limit 

to compute symbolic limits, which can be illustrated by computing derivatives using the 

previous definition (although it is of course more efficient to use sympy.diff):

In [162]: f = sympy.Function('f')

     ...: x, h = sympy.symbols("x, h")

In [163]: diff_limit = (f(x + h) - f(x))/h
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In [164]: sympy.limit(diff_limit.subs(f, sympy.cos), h, 0)

Out[164]: –sin(x)

In [165]: sympy.limit(diff_limit.subs(f, sympy.sin), h, 0)

Out[165]: cos(x)

A more practical example of using limits is to find the asymptotic behavior as a 

function, for example, as its dependent variable approaches infinity. As an example, 

consider the function f(x) = (x2 − 3x)/(2x − 2), and suppose we are interested in the large-

x dependence of this function. It will be in the form f (x) → px+q, and we can compute 

p and q using sympy.limit as in the following:

In [166]: expr = (x**2 - 3*x) / (2*x - 2)

In [167]: p = sympy.limit(expr/x, x, sympy.oo)

In [168]: q = sympy.limit(expr - p*x, x, sympy.oo)

In [169]: p, q

Out[169]: 
1

2
1,-æ

è
ç

ö
ø
÷

Thus, the asymptotic behavior of f (x) as x becomes large is the linear function 

f (x) → x/2 − 1.

 Sums and Products
Sums and products can be symbolically represented using the SymPy classes sympy.

Sum and sympy.Product. They both take an expression as their first argument, and as 

a second argument, they take a tuple of the form (n, n1, n2), where n is a symbol 

and n1 and n2 are the lower and upper limits for the symbol n, in the sum or product, 

respectively. After sympy.Sum or sympy.Product objects have been created, they can be 

evaluated using the doit method:

In [171]: n = sympy.symbols("n", integer=True)

In [172]: x = sympy.Sum(1/(n**2), (n, 1, oo))

In [173]: x

Out[173]:
n n=

¥

å
1

2

1

In [174]: x.doit()

Out[174]: p
2

6
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In [175]: x = sympy.Product(n, (n, 1, 7))

In [176]: x

Out[176]: 
n

n
=
Õ

1

7

In [177]: x.doit()

Out[177]: 5040

Note that the sum in the previous example was specified with an upper limit of 

infinity. It is therefore clear that this sum was not evaluated by explicit summation, but 

was rather computed analytically. SymPy can evaluate many summations of this type, 

including when the summand contains symbolic variables other than the summation 

index, such as in the following example:

In [178]: x = sympy.Symbol("x")

In [179]:  sympy.Sum((x)**n/(sympy.factorial(n)), (n, 1, oo)).doit().

simplify()

Out[179]: ex – 1

 Equations
Equation solving is a fundamental part of mathematics with applications in nearly every 

branch of science and technology, and it is therefore immensely important. SymPy can 

solve a wide variety of equations symbolically, although many equations cannot be 

solved analytically even in principle. If an equation, or a system of equations, can be 

solved analytically, there is a good chance that SymPy is able to find the solution. If not, 

numerical methods might be the only option.

In its simplest form, equation solving involves a single equation with a single 

unknown variable, and no additional parameters: for example, finding the value of x that 

satisfies the second-degree polynomial equation x2+2x – 3 = 0. This equation is of course 

easy to solve, even by hand, but in SymPy we can use the function sympy.solve to find 

the solutions of x that satisfy this equation using

In [170]: x = sympy.Symbol("x")

In [171]: sympy.solve(x**2 + 2*x - 3)

Out[171]: [–3,1]
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That is, the solutions are x=-3 and x=1. The argument to the sympy.solve function 

is an expression that will be solved under the assumption that it equals zero. When this 

expression contains more than one symbol, the variable that is to be solved for must be 

given as a second argument. For example,

In [172]: a, b, c = sympy.symbols("a, b, c")

In [173]: sympy.solve(a * x**2 + b * x + c, x)

Out[173]:
1

2
4

1

2
42 2

a
b ac b

a
b ac b- + - +( ) - + - +( )é

ëê
ù
ûú

,

and in this case the resulting solutions are expressions that depend on the symbols 

representing the parameters in the equation.

The sympy.solve function is also capable of solving other types of equations, 

including trigonometric expressions:

In [174]: sympy.solve(sympy.sin(x) - sympy.cos(x), x)

Out[174]: -é
ëê

ù
ûú

3

4

p
,

and equations whose solution can be expressed in terms of special functions:

In [180]: sympy.solve(sympy.exp(x) + 2 * x, x)

Out[180]: - æ
è
ç

ö
ø
÷

é

ë
ê

ù

û
úLambertW

1

2

However, when dealing with general equations, even for a univariate case, it is not 

uncommon to encounter equations that are not solvable algebraically or which SymPy 

is unable to solve. In these cases SymPy will return a formal solution, which can be 

evaluated numerically if needed, or raise an error if no method is available for that 

particular type of equation:

In [176]: sympy.solve(x**5 - x**2 + 1, x)

Out[176]:  [RootOf(x5 – x2 + 1,0), RootOf(x5 – x2 + 1,1), RootOf(x5 – x2 + 1,2),  

RootOf(x5 – x2 + 1,3), RootOf(x5 – x2 + 1,4)]

In [177]: sympy.solve(sympy.tan(x) + x, x)

---------------------------------------------------------------------------

NotImplementedError                       Traceback (most recent call last)

...

NotImplementedError: multiple generators [x, tan(x)] No algorithms are 

implemented to solve equation x + tan(x)

ChAPTer 3  SyMbolIC CoMPuTIng



129

Solving a system of equations for more than one unknown variable in SymPy is a 

straightforward generalization of the procedure used for univariate equations. Instead of 

passing a single expression as the first argument to sympy.solve, a list of expressions that 

represents the system of equations is used, and in this case the second argument should 

be a list of symbols to solve for. For example, the following two examples demonstrate 

how to solve two systems that are linear and nonlinear equations in x and y, respectively:

In [178]: eq1 = x + 2 * y – 1

     ...: eq2 = x - y + 1

In [179]: sympy.solve([eq1, eq2], [x, y], dict=True)

Out[179]: x y: :-ì
í
î

ü
ý
þ

é

ë
ê

ù

û
ú

1

3

2

3
,

In [180]: eq1 = x**2 - y

     ...: eq2 = y**2 - x

In [181]: sols = sympy.solve([eq1, eq2], [x, y], dict=True)

In [182]: sols

Out[182]: 

x y x y x
i
y

i
x

i
: : : : : : :0 0 1 1

1

2

3

2

1

2

3

2

1 3
, , , , , ,{ } { } - + - -

ì
í
ï

îï

ü
ý
ï

þï

-( )22
4

1

2

3

2
,y

i
:- +

ì
í
ï

îï

ü
ý
ï

þï

é

ë

ê
ê
ê

ù

û

ú
ú
ú

Note that in both these examples, the function sympy.solve returns a list where each 

element represents a solution to the equation system. The optional keyword argument 

dict=True was also used, to request that each solution is returned in dictionary format, 

which maps the symbols that have been solved for to their values. This dictionary can 

conveniently be used in, for example, calls to subs, as in the following code that checks 

that each solution indeed satisfies the two equations:

In [183]:  [eq1.subs(sol).simplify() == 0 and eq2.subs(sol).simplify() == 0 

for sol in sols]

Out[183]: [True, True, True, True]
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 Linear Algebra
Linear algebra is another fundamental branch of mathematics with important 

applications throughout scientific and technical computing. It concerns vectors, vector 

spaces, and linear mappings between vector spaces, which can be represented as 

matrices. In SymPy we can represent vectors and matrices symbolically using the sympy.

Matrix class, whose elements can in turn be represented by numbers, symbols, or even 

arbitrary symbolic expressions. To create a matrix with numerical entries, we can, as in 

the case of NumPy arrays in Chapter 2, pass a Python list to sympy.Matrix:

In [184]: sympy.Matrix([1, 2])

Out[184]: 
1

2

é

ë
ê
ù

û
ú

In [185]: sympy.Matrix([[1, 2]])

Out[185]: 1 2[ ]
In [186]: sympy.Matrix([[1, 2], [3, 4]])

Out[186]:
1 2

3 4

é

ë
ê

ù

û
ú

As this example demonstrates, a single list generates a column vector, while a 

matrix requires a nested list of values. Note that unlike the multidimensional arrays 

in NumPy discussed in Chapter 2, the sympy.Matrix object in SymPy is only for up to 

two-dimensional arrays, i.e., vectors and matrices. Another way of creating new sympy.

Matrix objects is to pass as arguments the number of rows, the number of columns, and 

a function that takes the row and column index as arguments and returns the value of 

the corresponding element:

In [187]: sympy.Matrix(3, 4, lambda m, n: 10 * m + n)

Out[187]: 

0 1 2 3

10 11 12 13

20 21 22 23

é

ë

ê
ê
ê

ù

û

ú
ú
ú
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The most powerful features of SymPy’s matrix objects, which distinguish it from, 

for example, NumPy arrays, are of course that its elements themselves can be symbolic 

expressions. For example, an arbitrary 2x2 matrix can be represented with a symbolic 

variable for each of its elements:

In [188]: a, b, c, d = sympy.symbols("a, b, c, d")

In [189]: M = sympy.Matrix([[a, b], [c, d]])

In [190]: M

Out[190]: 
a b

c d

é

ë
ê

ù

û
ú

and such matrices can naturally also be used in computations, which then remains 

parameterized with the symbolic values of the elements. The usual arithmetic operators 

are implemented for matrix objects, but note that multiplication operator * in this case 

denotes matrix multiplication:

In [191]: M * M

Out[191]: 
a bc ab bd

ac cd bc d

2

2

+ +
+ +

é

ë
ê

ù

û
ú

In [192]: x = sympy.Matrix(sympy.symbols("x_1, x_2"))

In [194]: M * x

Out[194]:
ax bx

cx dx
1 2

1 2

+
+

é

ë
ê

ù

û
ú

In addition to arithmetic operations, many standard linear algebra operations on 

vectors and matrices are also implemented as SymPy functions and methods of the 

sympy.Matrix class. Table 3-4 gives a summary of the frequently used linear algebra- 

related functions (see the docstring for sympy.Matrix for a complete list), and SymPy 

matrices can also be used in an element-oriented fashion using indexing and slicing 

operations that closely resemble those discussed for NumPy arrays in Chapter 2.

As an example of a problem that can be solved with symbolic linear algebra using 

SymPy, but which is not directly solvable with purely numerical approaches, consider 

the following parameterized linear equation system:

x p y b+ = 1 ,

q x y b+ = 2 ,
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which we would like to solve for the unknown variables x and y. Here p, q, b1, and b2 are 

unspecified parameters. On matrix form, we can write these two equations as

1

1
1

2

p

q

x

y

b

b

æ

è
ç

ö

ø
÷
æ

è
ç

ö

ø
÷ =

æ

è
ç

ö

ø
÷.

With purely numerical methods, we would have to choose particular values of the 

parameters p and q before we could begin to solve this problem, for example, using an 

LU factorization (or by computing the inverse) of the matrix on the left-hand side of 

the equation. With a symbolic computing approach, on the other hand, we can directly 

proceed with computing the solution, as if we carried out the calculation analytically 

by hand. With SymPy, we can simply define symbols for the unknown variables and 

parameters and set up the required matrix objects:

In [195]: p, q = sympy.symbols("p, q")

In [196]: M = sympy.Matrix([[1, p], [q, 1]])

In [203]: M

Out[203]:
1

1

p

q

é

ë
ê

ù

û
ú

In [197]: b = sympy.Matrix(sympy.symbols("b_1, b_2"))

In [198]: b

Out[198]: b b1 2[ ]

and then use, for example, the LUsolve method to solve the linear equation system:

In [199]: x = M.LUsolve(b)

In [200]: x

Out[200]:

b
p b q b

pq

b q b

pq

1
1 2

1 2

1

1

-
- +( )
- +

- +
- +

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

Alternatively, we could also directly compute the inverse of the matrix M and multiply 

it with the vector b:

In [201]: x = M.inv() * b

In [202]: x
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Out[202]:
b

pq

pq

b p

pq

b q

pq

b

pq

1
2

1 2

1
1

1

1 1

- +
+

æ

è
ç

ö

ø
÷ - - +

-
- +

+
- +
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Table 3-4. Selected Functions and Methods for Operating on SymPy Matrices

Function/Method Description

transpose/T Compute the transpose of a matrix.

adjoint/H Compute the adjoint of a matrix.

trace Compute the trace (sum of diagonal elements) of a matrix.

det Compute the determinant of a matrix.

inv Compute the inverse of a matrix.

LUdecomposition Compute the lu decomposition of a matrix.

LUsolve Solve a linear system of equations in the form Mx = b, for the unknown  

vector x, using lu factorization.

QRdecomposition Compute the Qr decomposition of a matrix.

QRsolve Solve a linear system of equations in the form Mx = b, for the unknown  

vector x, using Qr factorization.

diagonalize Diagonalize a matrix M, such that it can be written in the form D = P −1MP, 

where D is diagonal.

norm Compute the norm of a matrix.

nullspace Compute a set of vectors that span the null space of a Matrix.

rank Compute the rank of a matrix.

singular_values Compute the singular values of a matrix.

solve Solve a linear system of equations in the form Mx = b.
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However, computing the inverse of a matrix is more difficult than performing the 

LU factorization, so if solving the equation Mx = b is the objective, as it was here, then 

using LU factorization is more efficient. This becomes particularly noticeable for larger 

equation systems. With both methods considered here, we obtain a symbolic expression 

for the solution that is trivial to evaluate for any parameter values, without having to 

recompute the solution. This is the strength of symbolic computing and an example of 

how it sometimes can excel over direct numerical computing. The example considered 

here could of course also be solved easily by hand, but as the number of equations 

and unspecified parameters grow, analytical treatment by hand quickly becomes 

prohibitively lengthy and tedious. With the help of a computer algebra system such as 

SymPy, we can push the limits of which problems that can be treated analytically.

 Summary
This chapter introduced computer-assisted symbolic computing using Python and the 

SymPy library. Although analytical and numerical techniques are often considered 

separately, it is a fact that analytical methods underpin everything in computing and 

are essential in developing algorithms and numerical methods. Whether analytical 

mathematics is carried by hand or using a computer algebra system such as SymPy, it is 

an essential tool for computational work. The approach that I would like to encourage is 

therefore the following: Analytical and numerical methods are closely intertwined, and 

it is often worthwhile to start analyzing a computational problem with analytical and 

symbolic methods. When such methods turn out to be unfeasible, it is time to resort to 

numerical methods. However, by directly applying numerical methods to a problem, 

before analyzing it analytically, it is likely that one ends up solving a more difficult 

computational problem than is really necessary.

 Further Reading
For a quick and short introduction to SymPy, see, for example, Lamy (2013). The official 

SymPy documentation also provides a great tutorial for getting started with SymPy, 

which is available at http://docs.sympy.org/latest/tutorial/index.html.

 Reference
Lamy, R. (2013). Instant SymPy Starter. Mumbai: Packt.
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CHAPTER 4

Plotting and Visualization
Visualization is a universal tool for investigating and communicating results of 

computational studies, and it is hardly an exaggeration to say that the end product of 

nearly all computations – be it numeric or symbolic – is a plot or a graph of some sort. 

It is when visualized in graphical form that knowledge and insights can be most easily 

gained from computational results. Visualization is therefore a tremendously important 

part of the workflow in all fields of computational studies.

In the scientific computing environment for Python, there are a number of high- 

quality visualization libraries. The most popular general-purpose visualization library 

is Matplotlib, which mainly focuses on generating static publication-quality 2D and 

3D graphs. Many other libraries focus on niche areas of visualization. A few prominent 

examples are Bokeh (http://bokeh.pydata.org) and Plotly (http://plot.ly), which 

both primarily focus on interactivity and web connectivity, Seaborn (http://stanford.

edu/~mwaskom/software/seaborn) which is a high-level plotting library which targets 

statistical data analysis and which is based on the Matplotlib library, and the Mayavi 

library (http://docs.enthought.com/mayavi/mayavi) for high-quality 3D visualization, 

which uses the venerable VTK software (http://www.vtk.org) for heavy-duty scientific 

visualization. It is also worth noting that other VTK-based visualization software, such as 

ParaView (www.paraview.org), is scriptable with Python and can also be controlled from 

Python applications. In the 3D visualization space, there are also more recent players, 

such as VisPy (http://vispy.org), which is an OpenGL-based 2D and 3D visualization 

library with great interactivity and connectivity with browser-based environments, such 

as the Jupyter Notebook.

The visualization landscape in the scientific computing environment for Python is 

vibrant and diverse, and it provides ample options for various visualization needs. In 

this chapter we focus on exploring traditional scientific visualization in Python using 

the Matplotlib library. With traditional visualization, I mean plots and figures that are 

commonly used to visualize results and data in scientific and technical disciplines, such 

as line plots, bar plots, contour plots, colormap plots, and 3D surface plots.

http://bokeh.pydata.org
http://plot.ly
http://stanford.edu/~mwaskom/software/seaborn
http://stanford.edu/~mwaskom/software/seaborn
http://docs.enthought.com/mayavi/mayavi
http://www.vtk.org
http://www.paraview.org
http://vispy.org
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Matplotlib Matplotlib is a Python library for publication-quality 2D and 3D 
graphics, with support for a variety of different output formats. At the time of 
writing, the latest version is 2.2.2. More information about Matplotlib is available 
at the project’s web site www.matplotlib.org. This web site contains detailed 
documentation and an extensive gallery that showcases the various types of 
graphs that can be generated using the Matplotlib library, together with the code 
for each example. This gallery is a great source of inspiration for visualization 
ideas, and I highly recommend exploring Matplotlib by browsing this gallery.

There are two common approaches to creating scientific visualizations: using 

a graphical user interface to manually build up graphs and using a programmatic 

approach where the graphs are created with code. Both approaches have their 

advantages and disadvantages. In this chapter we will take the programmatic approach, 

and we will explore how to use the Matplotlib API to create graphs and control every 

aspect of their appearance. The programmatic approach is a particularly suitable 

method for creating graphics for scientific and technical applications and in particular 

for creating publication-quality figures. An important part of the motivation for this 

is that programmatically created graphics can guarantee consistency across multiple 

figures, can be made reproducible, and can easily be revised and adjusted without 

having to redo potentially lengthy and tedious procedures in a graphical user interface.

 Importing Modules
Unlike most Python libraries, Matplotlib actually provides multiple entry points into the 

library, with different application programming interfaces (APIs). Specifically, it provides 

a stateful API and an object-oriented API, both provided by the module matplotlib.

pyplot. I strongly recommend to only use the object-oriented approach, and the 

remainder of this chapter will solely focus on this part of Matplotlib.1

1 Although the stateful API may be convenient and simple for small examples, the readability and 
maintainability of code written for stateful APIs scale poorly, and the context-dependent nature 
of such code makes it hard to rearrange or reuse. I therefore recommend to avoid it altogether 
and to only use the object-oriented API.
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To use the object-oriented Matplotlib API, we first need to import its Python 

modules. In the following we will assume that Matplotlib is imported using the following 

standard convention:

In [1]: %matplotlib inline

In [2]: import matplotlib as mpl

In [3]: import matplotlib.pyplot as plt

In [4]: from mpl_toolkits.mplot3d.axes3d import Axes3D

The first line is assuming that we are working in an IPython environment and more 

specifically in the Jupyter Notebook or the IPython QtConsole. The IPython magic 

command %matplotlib inline configures the Matplotlib to use the “inline” backend, 

which results in the created figures being displayed directly in, for example, the Jupyter 

Notebook, rather than in a new window. The statement import matplotlib as mpl 

imports the main Matplotlib module, and the import statement import matplotlib.

pyplot as plt, is for convenient access to the submodule matplotlib.pyplot that 

provides the functions that we will use to create new Figure instances.

Throughout this chapter we also make frequent use of the NumPy library, and as in 

Chapter 2, we assume that NumPy is imported using

In [5]: import numpy as np

and we also use the SymPy library, imported as:

In [6]: import sympy

 Getting Started
Before we delve deeper into the details of how to create graphics with Matplotlib, we 

begin here with a quick example of how to create a simple but typical graph. We also 

cover some of the fundamental principles of the Matplotlib library, to build up an 

understanding for how graphics can be produced with the library.

A graph in Matplotlib is structured in terms of a Figure instance and one or more 

Axes instances within the figure. The Figure instance provides a canvas area for drawing, 

and the Axes instances provide coordinate systems that are assigned to fixed regions of 

the total figure canvas; see Figure 4-1.
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A Figure can contain multiple Axes instances, for example, to show multiple panels 

in a figure or to show insets within another Axes instance. An Axes instance can manually 

be assigned to an arbitrary region of a figure canvas, or, alternatively, Axes instances can 

be automatically added to a figure canvas using one of several layout managers provided 

by Matplotlib. The Axes instance provides a coordinate system that can be used to plot 

data in a variety of plot styles, including line graphs, scatter plots, bar plots, and many 

other styles. In addition, the Axes instance also determines how the coordinate axes are 

displayed, for example, with respect to the axis labels, ticks and tick labels, and so on.  

In fact, when working with Matplotlib’s object-oriented API, most functions that are 

needed to tune the appearance of a graph are methods of the Axes class.

As a simple example for getting started with Matplotlib, say that we would like to 

graph the function y(x) = x3+5x2+10, together with its first and second derivatives, over 

the range x ∈ [−5, 2]. To do this we first create NumPy arrays for the x range and then 

compute the three functions we want to graph. When the data for the graph is prepared, 

we need to create Matplotlib Figure and Axes instances, then use the plot method of the 

Axes instance to plot the data, and set basic graph properties such as x and y axis labels,  

Figure 4-1. Illustration of the arrangement of a Matplotlib Figure instance and 
an Axes instance. The Axes instance provides a coordinate system for plotting, and 
the Axes instance itself is assigned to a region within the figure canvas. The figure 
canvas has a simple coordinate system where (0, 0) is the lower-left corner and 
(1,1) is the upper-right corner. This coordinate system is only used when placing 
elements, such as an Axes, directly on the figure canvas.
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using the set_xlabel and set_ylabel methods and generating a legend using the 

legend method. These steps are carried out in the following code, and the resulting 

graph is shown in Figure 4-2.

In [7]: x = np.linspace(-5, 2, 100)

   ...: y1 = x**3 + 5*x**2 + 10

   ...: y2 = 3*x**2 + 10*x

   ...: y3 = 6*x + 10

   ...:

   ...: fig, ax = plt.subplots()

   ...: ax.plot(x, y1, color="blue", label="y(x)")

   ...: ax.plot(x, y2, color="red", label="y'(x)")

   ...: ax.plot(x, y3, color="green", label="y”(x)")

   ...: ax.set_xlabel("x")

   ...: ax.set_ylabel("y")

   ...: ax.legend()

Here we used the plt.subplots function to generate Figure and Axes instances. 

This function can be used to create grids of Axes instances within a newly created Figure 

instance, but here it was merely used as a convenient way of creating a Figure and an 

Axes instance in one function call. Once the Axes instance is available, note that all 

the remaining steps involve calling methods of this Axes instance. To create the actual 

graphs, we use ax.plot, which takes as first and second arguments NumPy arrays with 

Figure 4-2. Example of a simple graph created with Matplotlib
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numerical data for the x and y values of the graph, and it draws a line connecting these 

data points. We also used the optional color and label keyword arguments to specify 

the color of each line and assign a text label to each line that is used in the legend. These 

few lines of code are enough to generate the graph we set out to produce, but as a bare 

minimum, we should also set labels on the x and y axes and if suitable add a legend for 

the curves we have plotted. The axis labels are set with ax.set_xlabel and ax.set_

ylabel methods, which takes as argument a text string with the corresponding label. The 

legend is added using the ax.legend method, which does not require any arguments in 

this case since we used the label keyword argument when plotting the curves.

These are the typical steps required to create a graph using Matplotlib. While 

this graph, Figure 4-2, is complete and fully functional, there is certainly room for 

improvements in many aspects of its appearance. For example, to meet publication or 

production standards, we may need to change the font and the fontsize of the axis labels, 

the tick labels, and the legend, and we should probably move the legend to a part of the 

graph where it does not interfere with the curves we are plotting. We might even want 

to change the number of axis ticks and label and add annotations and additional help 

lines to emphasize certain aspects of the graph and so on. With a few changes along 

these lines, the figure may, for example, appear like in Figure 4-3, which is considerably 

more presentable. In the remainder of this chapter, we look at how to fully control the 

appearance of the graphics produced using Matplotlib.

Figure 4-3. Revised version of Figure 4-2
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 Interactive and Noninteractive Modes
The Matplotlib library is designed to work well with many different environments and 

platforms. As such, the library does not only contain routines for generating graphs, but 

it also contains support for displaying graphs in different graphical environments. To 

this end, Matplotlib provides backends for generating graphics in different formats (e.g., 

PNG, PDF, Postscript, and SVG) and for displaying graphics in a graphical user interface 

using a variety of different widget toolkits (e.g., Qt, GTK, wxWidgets, and Cocoa for Mac 

OS X) that are suitable for different platforms.

Which backend to use can be selected in that Matplotlib resource file,2 or using the 

function mpl.use, which must be called right after importing matplotlib, before importing 

the matplotlib.pyplot module. For example, to select the Qt4Agg backend, we can use

import matplotlib as mpl

mpl.use('qt4agg')

import matplotlib.pyplot as plt

2 The Matplotlib resource file, matplotlibrc, can be used to set default values of many Matplotlib 
parameters, including which backend to use. The location of the file is platform dependent. For 
details, see http://matplotlib.org/users/customizing.html.

Figure 4-4. A screenshot of the Matplotlib graphical user interface for displaying 
figures, using the Qt4 backend on Mac OS X. The detailed appearance varies across 
platforms and backends, but the basic functionality is the same.
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The graphical user interface for displaying Matplotlib figures, as shown in Figure 4- 4,  

is useful for interactive use with Python script files or the IPython console, and it allows 

to interactively explore figures, for example, by zooming and panning. When using 

an interactive backend, which displays the figure in a graphical user interface, it is 

necessary to call the function plt.show to get the window to appear on the screen.  

By default, the plt.show call will hang until the window is closed. For a more interactive 

experience, we can activate interactive mode by calling the function plt.ion. This 

instructs Matplotlib to take over the GUI event loop and show a window for a figure as 

soon as it is created, returning the control flow to the Python or IPython interpreter. To 

have the changes to a figure take effect, we need to issue a redraw command using the 

function plt.draw. We can deactivate the interactive mode using the function plt.ioff, 

and we can use the function mpl.is_interactive to check if Matplotlib is in interactive 

or noninteractive mode.

While the interactive graphical user interfaces have unique advantages, when 

working the Jupyter Notebook or Qtconsole, it is often more convenient to display 

Matplotlib-produced graphics embedded directly in the notebook. This behavior is 

activated using the IPython command %matplotlib inline, which activates the “inline 

backend” provided by IPython. This configures Matplotlib to use a noninteractive 

backend to generate graphics images, which are then displayed as static images in, for 

example, the Jupyter Notebook. The IPython “inline backend” for Matplotlib can be 

fine-tuned using the IPython %config command. For example, we can select the output 

format for the generated graphics using the InlineBackend.figure_format option,3 

which, for example, we can set to ‘svg’ to generate SVG graphics rather than PNG files:

In [8]: %matplotlib inline

In [9]: %config InlineBackend.figure_format='svg'

With this approach the interactive aspect of the graphical user interface is lost 

(e.g., zooming and panning), but embedding the graphics directly in the notebook has 

many other advantages. For example, keeping the code that was used to generate a 

figure together with the resulting figure in the same document eliminates the need for 

rerunning the code to display a figure, and interactive nature of the Jupyter Notebook 

itself replaces some of the interactivity of Matplotlib’s graphical user interface.

3 For Max OS X users, %config InlineBackend.figure_format='retina' is another useful 
option, which improves the quality of the Matplotlib graphics when viewed on retina displays.
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When using the IPython inline backend, it is not necessary to use plt.show and plt.

draw, since the IPython rich display system is responsible for triggering the rendering 

and the displaying of the figures. In this book, I will assume that code examples are 

executed in the Jupyter Notebooks, and the calls to the function plt.show are therefore 

not in the code examples. When using an interactive backend, it is necessary to add this 

function call at the end of each example.

 Figure
As introduced in the previous section, the Figure object is used in Matplotlib to 

represent a graph. In addition to providing a canvas on which, for example, Axes 

instances can be placed, the Figure object also provides methods for performing actions 

on figures, and it has several attributes that can be used to configure the properties of a 

figure.

A Figure object can be created using the function plt.figure, which takes several 

optional keyword arguments for setting figure properties. In particular, it accepts the 

figsize keyword argument, which should be assigned to a tuple on the form (width, 

height), specifying the width and height of the figure canvas in inches. It can also 

be useful to specify the color of the figure canvas by setting the facecolor keyword 

argument.

Once a Figure is created, we can use the add_axes method to create a new 

Axes instance and assign it to a region on the figure canvas. The add_axes takes one 

mandatory argument: a list containing the coordinates of the lower-left corner and 

the width and height of the Axes in the figure canvas coordinate system, on the format 

(left, bottom, width, height).4 The coordinates and the width and height of the 

Axes object are expressed as fractions of total canvas width and height; see Figure 4-1. 

For example, an Axes object that completely fills the canvas corresponds to (0, 0, 1, 1),  

but this leaves no space for axis labels and ticks. A more practical size could be (0.1, 

0.1, 0.8, 0.8), which corresponds to a centered Axes instance that covers 80% of the 

width and height of the canvas. The add_axes method takes a large number of keyword 

arguments for setting properties of the new Axes instance. These will be described in 

more detail later in this chapter, when we discuss the Axes object in depth. However, 

4 An alternative to passing a coordinate and size tuple to add_axes is to pass an already existing 
Axes instance.
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one keyword argument that is worth to emphasize here is facecolor, with which we can 

assign a background color for the Axes object. Together with the facecolor argument of 

plt.figure, this allows selecting colors of both the canvas and the regions covered by 

Axes instances.

With the Figure and Axes objects obtained from plt.figure and fig.add_axes, 

we have the necessary preparations to start plotting data using the methods of the Axes 

objects. For more details on this, see the next section of this chapter. However, once the 

required plots have been created, there are more methods in the Figure objects that are 

important in the graph creation workflow. For example, to set an overall figure title, we 

can use suptitle, which takes a string with the title as argument. To save a figure to a 

file, we can use the savefig method. This method takes a string with the output filename 

as first argument, as well as several optional keyword arguments. By default, the output 

file format will be determined from the file extension of the filename argument, but we 

can also specify the format explicitly using the format argument. The available output 

formats depend on which Matplotlib backend is used, but commonly available options 

are PNG, PDF, EPS, and SVG formats. The resolution of the generated image can be 

set with the dpi argument. DPI stands for “dots per inch,” and since the figure size is 

specified in inches using the figsize argument, multiplying these numbers gives the 

output image size in pixels. For example, with figsize=(8, 6) and dpi=100, the size of 

the generated image is 800x600 pixels. The savefig method also takes some arguments 

that are similar to those of the plt.figure function, such as the facecolor argument. 

Note that even though the facecolor argument is used with plt.figure, it also needs 

to be specified with savefig for it to apply to the generated image file. Finally, the 

figure canvas can also be made transparent using the transparent=True argument to 

savefig. The following code listing illustrates these techniques, and the result is shown 

in Figure 4-5.

In [10]: fig = plt.figure(figsize=(8, 2.5), facecolor="#f1f1f1")

    ...:

    ...: # axes coordinates as fractions of the canvas width and height

    ...: left, bottom, width, height = 0.1, 0.1, 0.8, 0.8

    ...:  ax = fig.add_axes((left, bottom, width, height), 

facecolor="#e1e1e1")

    ...:

    ...: x = np.linspace(-2, 2, 1000)

    ...: y1 = np.cos(40 * x)
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    ...: y2 = np.exp(-x**2)

    ...:

    ...: ax.plot(x, y1 * y2)

    ...: ax.plot(x, y2, 'g')

    ...: ax.plot(x, -y2, 'g')

    ...: ax.set_xlabel("x")

    ...: ax.set_ylabel("y")

    ...:

    ...: fig.savefig("graph.png", dpi=100, facecolor="#f1f1f1")

 Axes
The Figure object introduced in the previous section provides the backbone of a 

Matplotlib graph, but all the interesting content is organized within or around Axes 

instances. We have already encountered Axes objects on a few occasions earlier in this 

chapter. The Axes object is central to most plotting activities with the Matplotlib library. 

It provides the coordinate system in which we can plot data and mathematical functions, 

and in addition it contains the axis objects that determine where the axis labels and the 

axis ticks are placed. The functions for drawing different types of plots are also methods 

of this Axes class. In this section we first explore different types of plots that can be drawn 

using Axes methods and how to customize the appearance of the x and y axes and the 

coordinate systems used with an Axes object.

Figure 4-5. Graph showing the result of setting the size of a figure with figsize, 
adding a new Axes instance with add_axes, setting the background colors of the 
Figure and Axes objects using facecolor, and finally saving the figure to file using 
savefig
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We have seen how new Axes instances can be added to a figure explicitly using the 

add_axes method. This is a flexible and powerful method for placing Axes objects at 

arbitrary positions, which has several important applications, as we will see later in 

the chapter. However, for most common use-cases, it is tedious to specify explicitly the 

coordinates of the Axes instances within the figure canvas. This is especially true when 

using multiple panels of Axes instances within a figure, for example, in a grid layout. 

Matplotlib provides several different Axes layout managers, which create and place 

Axes instances within a figure canvas following different strategies. Later in this chapter, 

we look into more detail of how to use such layout managers. However, to facilitate the 

forthcoming examples, we here briefly look at one of these layout managers: the plt.

subplots function. Earlier in this chapter, we already used this function to conveniently 

generate new Figure and Axes objects in one function call. However, the plt.subplots 

function is also capable of filling a figure with a grid of Axes instances, which is specified 

using the first and the second arguments, or alternatively with the nrows and ncols 

arguments, which, as the names imply, create a grid of Axes objects, with the given 

number of rows and columns. For example, to generate a grid of Axes instances in a 

newly created Figure object, with three rows and two columns, we can use

fig, axes = plt.subplots(nrows=3, ncols=2)

Here, the function plt.subplots returns a tuple (fig, axes), where fig is a Figure 

instance and axes is a NumPy array of size (nrows, ncols), in which each element is an 

Axes instance that has been appropriately placed in the corresponding figure canvas. At 

this point we can also specify that columns and/or rows should share x and y axes, using 

the sharex and sharey arguments, which can be set to True or False.

The plt.subplots function also takes two special keyword arguments fig_kw and 

subplot_kw, which are dictionaries with keyword arguments that are used when creating 

the Figure and Axes instances, respectively. This allows us to set and retain full control 

of the properties of the Figure and Axes objects with plt.subplots in a similar way as 

when directly using plt.figure and the make_axes method.

 Plot Types
Effective scientific and technical visualization of data requires a wide variety of graphing 

techniques. Matplotlib implements many types of plotting techniques as methods of 

the Axes object. For example, in the previous examples, we have already used the plot 

method, which draws curves in the coordinate system provided by the Axes object. 
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In the following sections, we explore some of Matplotlib’s plotting functions in more 

depth by using these functions in example graphs. A summary of commonly used 2D 

plot functions is shown in Figure 4-6. Other types of graphs, such as color maps and 3D 

graphs, are discussed later in this chapter. All plotting functions in Matplotlib expect data 

as NumPy arrays as input, typically as arrays with x and y coordinates as the first and 

second arguments. For details, see the docstrings for each method shown in Figure 4-6, 

using, for example, help(plt.Axes.bar).

 Line Properties
The most basic type of plot is the simple line plot. It may, for example, be used to depict 

the graph of a univariate function or to plot data as a function of a control variable. 

In line plots, we frequently need to configure properties of the lines in the graph, 

for example, the line width, line color, and line style (solid, dashed, dotted, etc.). In 

Matplotlib we set these properties with keyword arguments to the plot methods, such 

as plot, step, and bar. A few of these graph types are shown in Figure 4-6. Many of the 

plot methods have their own specific arguments, but basic properties such as colors 

and line width are shared among most plotting methods. These basic properties and the 

corresponding keyword arguments are summarized in Table 4-1.

Axes.plot

Axes.errorbar Axes.scatter Axes.fill_between Axes.quiver

Axes.step Axes.bar Axes.hist

Figure 4-6. Overview of selected 2D graph types. The name of the Axes method for 
generating each type of graph is shown together with the corresponding graph.
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To illustrate the use of these properties and arguments, consider the following code, 

which draws horizontal lines with various values of the line width, line style, marker 

symbol, color, and size. The resulting graph is shown in Figure 4-7.

Table 4-1. Basic Line Properties and Their Corresponding Argument Names for 

Use with the Matplotlib Plotting Methods

Argument Example Values Description

color A color specification can be a 

string with a color name, such as 

“red,” “blue,” etc., or a rgB color 

code on the form “#aabbcc.”

A color specification.

alpha Float number between 0.0 

(completely transparent) and 1.0 

(completely opaque).

The amount of transparency.

linewidth, lw Float number. The width of a line.

linestyle, ls “-” – solid

“--” – dashed

“:” – dotted

“.-” – dash-dotted

The style of the line, i.e., whether the 

line is to be drawn as a solid line or 

if it should be, for example, dotted or 

dashed.

marker +, o, * = cross, circle, star

s = square

. = small dot

1, 2, 3, 4, ... = triangle-shaped 

symbols with different angles.

each data point, whether or not it 

is connected with adjacent data 

points, can be represented with a 

marker symbol as specified with this 

argument.

markersize Float number. The marker size.

markerfacecolor Color specification (see in the 

preceding text).

The fill color for the marker.

markeredgewidth Float number. The line width of the marker edge.

markeredgecolor Color specification (see above). The marker edge color.

ChAPTer 4  PloTTIng AnD VIsuAlIzATIon



149

In [11]: x = np.linspace(-5, 5, 5)

    ...: y = np.ones_like(x)

    ...:

    ...: def axes_settings(fig, ax, title, ymax):

    ...:    ax.set_xticks([])

    ...:    ax.set_yticks([])

    ...:    ax.set_ylim(0, ymax+1)

    ...:    ax.set_title(title)

    ...:

    ...: fig, axes = plt.subplots(1, 4, figsize=(16,3))

    ...:

    ...: # Line width

    ...: linewidths = [0.5, 1.0, 2.0, 4.0]

    ...: for n, linewidth in enumerate(linewidths):

    ...:    axes[0].plot(x, y + n, color="blue", linewidth=linewidth)

    ...: axes_settings(fig, axes[0], "linewidth", len(linewidths))

    ...:

    ...: # Line style

    ...: linestyles = ['-', '-.', ':']

    ...: for n, linestyle in enumerate(linestyles):

    ...:    axes[1].plot(x, y + n, color="blue", lw=2, linestyle=linestyle)

    ...: # custom dash style

    ...: line, = axes[1].plot(x, y + 3, color="blue", lw=2)

    ...: length1, gap1, length2, gap2 = 10, 7, 20, 7

    ...: line.set_dashes([length1, gap1, length2, gap2])

    ...: axes_settings(fig, axes[1], "linetypes", len(linestyles) + 1)

    ...: # marker types

    ...: markers = ['+', 'o', '*', 's', '.', '1', '2', '3', '4']

    ...: for n, marker in enumerate(markers):

    ...:    # lw = shorthand for linewidth, ls = shorthand for linestyle

    ...:     axes[2].plot(x, y + n, color="blue", lw=2, ls='*', 

marker=marker)

    ...: axes_settings(fig, axes[2], "markers", len(markers))

    ...:
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    ...: # marker size and color

    ...:  markersizecolors = [(4, "white"), (8, "red"), (12, "yellow"),  

(16, "lightgreen")]

    ...:  for n, (markersize, markerfacecolor) in enumerate 

(markersizecolors):

    ...:    axes[3].plot(x, y + n, color="blue", lw=1, ls='-',

    ...:                 marker='o', markersize=markersize,

    ...:                  markerfacecolor=markerfacecolor, 

markeredgewidth=2)

    ...:  axes_settings(fig, axes[3], "marker size/color", len 

(markersizecolors))

In practice, using different colors, line widths and line styles are important tools for 

making a graph easily readable. In a graph with a large number of lines, we can use a 

combination of colors and line style to make each line uniquely identifiable, for example, 

via a legend. The line width property is best used to give emphasis to important lines. 

Consider the following example, where the function sin(x) is plotted together with its 

first few series expansions around x = 0, as shown in Figure 4-8.

In [12]:  # a symbolic variable for x, and a numerical array with specific 

values of x

    ...: sym_x = sympy.Symbol("x")

    ...: x = np.linspace(-2 * np.pi, 2 * np.pi, 100)

    ...:

    ...: def sin_expansion(x, n):

    ...:     """

    ...:     Evaluate the nth order Taylor. series expansion

Figure 4-7. Graphs showing the result of setting the line properties line width, line 
style, marker type and marker size, and color
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    ...:     of sin(x) for the numerical values in the array x.

    ...:     """

    ...:      return sympy.lambdify(sym_x, sympy.sin(sym_x).series(n=n+1).

removeO(), 'numpy')(x)

    ...:

    ...: fig, ax = plt.subplots()

    ...:

    ...: ax.plot(x, np.sin(x), linewidth=4, color="red", label='exact')

    ...:

    ...: colors = ["blue", "black"]

    ...: linestyles = [':', '-.', '--']

    ...: for idx, n in enumerate(range(1, 12, 2)):

    ...:     ax.plot(x, sin_expansion(x, n), color=colors[idx // 3],

    ...:             linestyle=linestyles[idx % 3], linewidth=3,

    ...:             label="order %d approx." % (n+1))

    ...:

    ...:  ax.set_ylim(-1.1, 1.1)

    ...: ax.set_xlim(-1.5*np.pi, 1.5*np.pi)

    ...:

    ...: # place a legend outsize of the Axes

    ...: ax.legend(bbox_to_anchor=(1.02, 1), loc=2, borderaxespad=0.0)

    ...: # make room for the legend to the right of the Axes

    ...: fig.subplots_adjust(right=.75)

Figure 4-8. Graph for sin(x) together with its Taylor series approximation of the 
few lowest orders
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 Legends
A graph with multiple lines may often benefit from a legend, which displays a label along 

each line type somewhere within the figure. As we have seen in the previous example, 

a legend may be added to an Axes instance in a Matplotlib figure using the legend 

method. Only lines with assigned labels are included in the legend (to assign a label to 

a line, use the label argument of, for example, Axes.plot). The legend method accepts 

a large number of optional arguments. See help(plt.legend) for details. Here we 

emphasize a few of the more useful arguments. In the example in the previous section, 

we used the loc argument, which allows to specify where in the Axes area the legend 

is to be added: loc=1 for upper-right corner, loc=2 for upper-left corner, loc=3 for the 

lower-left corner, and loc=4 for lower-right corner, as shown in Figure 4-9.

In the example of the previous section, we also used the bbox_to_anchor, with which 

help the legend can be placed at an arbitrary location within the figure canvas. The 

bbox_to_anchor argument takes the value of a tuple on the form (x, y), where x and y 

are the canvas coordinates within the Axes object. That is, the point (0, 0) corresponds 

to the lower-left corner, and (1, 1) corresponds to the upper-right corner. Note that x 

and y can be smaller than 0 and larger than 1 in this case, which indicates that the legend 

is to be placed outside the Axes area, as was used in the previous section.

By default all lines in the legend are shown in a vertical arrangement. Using the 

ncols argument, it is possible to split the legend labels into multiple columns, as 

illustrated in Figure 4-10.

Figure 4-9. Legend at different positions within an Axes instance, specified using 
the loc argument of the method legend
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 Text Formatting and Annotations
Text labels, titles, and annotations are important components in most graphs, and 

having full control of, for example, the font types and fontsizes that are used to render 

such texts is a basic requirement for producing publication-quality graphs. Matplotlib 

provides several ways of configuring font properties. The default values can be set in the 

Matplotlib resource file, and session-wide configuration can be set in the mpl.rcParams 

dictionary. This dictionary is a cache of the Matplotlib resource file, and changes to 

parameters within this dictionary are valid until the Python interpreter is restarted 

and Matplotlib is imported again. Parameters that are relevant to how text is displayed 

include, for example, 'font.family' and 'font.size'.

Tip Try print(mpl.rcParams) to get a list of possible configuration 
parameters and their current values. updating a parameter is as simple as 
assigning a new value to the corresponding item in the dictionary mpl.rcParams, 
for example, mpl.rcParams[‘savefig.dpi’] = 100. see also the mpl.rc 
function, which can be used to update the mpl.rcParams dictionary, and  
mpl.rcdefaults for restoring the default values.

It is also possible to set text properties on a case-to-case basis, by passing a set 

of standard keyword arguments to functions that create text labels in a graph. Most 

Matplotlib functions that deal with text labels, in one way or another, accept the keyword 

arguments summarized in Table 4-2 (this list is an incomplete selection of common 

arguments; see help(mpl.text.Text) for a complete reference). For example, these 

Figure 4-10. Legend displayed outside the Axes object and shown with four 
columns instead of the single one, here using ax.legend(ncol=4, loc=3, bbox_
to_anchor=(0, 1))
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arguments can be used with the method Axes.text, which create a new text label at a 

given coordinate. They may also be used with set_title, set_xlabel, set_ylabel, etc. 

For more information on these methods, see the next section.

In scientific and technical visualization, it is clearly important to be able to render 

mathematical symbols and expressions in text labels. Matplotlib provides excellent 

support for this through LaTeX markup within its text labels: any text label in Matplotlib 

can include LaTeX math by enclosing it within $ signs, for example, "Regular text: 

$f(x)=1-x^2$". By default, Matplotlib uses an internal LaTeX rendering, which supports 

a subset of LaTeX language. However, by setting the configuration parameter mpl.

rcParams["text.usetex"]=True, it is also possible to use an external full-featured 

LaTeX engine (if it is available on your system).

When embedding LaTeX code in strings in Python, there is a common stumbling 

block: Python uses \ as escape character, while in LaTeX it is used to denote the start 

of commands. To prevent the Python interpreter from escaping characters in strings 

containing LaTeX expressions, it is convenient to use raw strings, which are literal string 

expressions that are prepended with and an r, for example, r"$\int f(x) dx$" and 

r'$x_{\rm A}$'.

The following example demonstrates how to add text labels and annotations to a 

Matplotlib figure using ax.text and ax.annotate, as well as how to render a text label 

that includes an equation that is typeset in LaTeX. The resulting graph is shown in 

Figure 4-11.

In [13]: fig, ax = plt.subplots(figsize=(12, 3))

    ...:

    ...: ax.set_yticks([])

    ...: ax.set_xticks([])

    ...: ax.set_xlim(-0.5, 3.5)

    ...: ax.set_ylim(-0.05, 0.25)

    ...: ax.axhline(0)

    ...:

    ...: # text label

    ...: ax.text(0, 0.1, "Text label", fontsize=14, family="serif")

    ...:

    ...: # annotation

    ...: ax.plot(1, 0, "o")

    ...: ax.annotate("Annotation",
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    ...:             fontsize=14, family="serif",

    ...:             xy=(1, 0), xycoords="data",

    ...:           xytext=(+20, +50), textcoords="offset points",

    ...:            arrowprops=dict(arrowstyle="->", connectionstyle="arc3, 

rad=.5"))

    ...:

    ...: # equation

    ...:  ax.text(2, 0.1, r"Equation: $i\hbar\partial_t \Psi = \hat{H}\

Psi$", fontsize=14, family="serif")

    ...: 

Figure 4-11. Example demonstrating the result of adding text labels and 
annotations using ax.text and ax.annotation and including LaTeX formatted 
equations in a Matplotlib text label

Table 4-2. Summary of Selected Font Properties and the Corresponding Keyword 

Arguments

Argument Description

fontsize The size of the font, in points.

family or fontname The font type.

backgroundcolor Color specification for the background color of the text 

label.

color Color specification for the font color.

alpha Transparency of the font color.

rotation rotation angle of the text label.
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 Axis Properties
After having created Figure and Axes objects, the data or functions are plotted using 

some of the many plot functions provided by Matplotlib, and the appearance of lines and 

markers are customized – the last major aspect of a graph that remains to be configured 

and fine-tuned is the Axis instances. A two-dimensional graph has two axis objects: for 

the horizontal x axis and the vertical y axis. Each axis can be individually configured with 

respect to attributes such as the axis labels, the placement of ticks and the tick labels, 

and the location and appearance of the axis itself. In this section we look into the details 

of how to control these aspects of a graph.

 Axis Labels and Titles

Arguably the most important property of an axis, which needs to be set in nearly all cases, 

is the axis label. We can set the axis labels using the set_xlabel and set_ylabel methods: 

they both take a string with the label as first arguments. In addition, the optional labelpad 

argument specifies the spacing, in units of points, from the axis to the label. This padding 

is occasionally necessary to avoid overlap between the axis label and the axis tick labels. 

The set_xlabel and set_ylabel methods also take additional arguments for setting text 

properties, such as color, fontsize, and fontname, as discussed in detail in the previous 

section. The following code, which produces Figure 4- 12, demonstrates how to use the 

set_xlabel and set_ylabel methods and the keyword arguments discussed here.

In [14]: x = np.linspace(0, 50, 500)

    ...: y = np.sin(x) * np.exp(-x/10)

    ...:

    ...:  fig, ax = plt.subplots(figsize=(8, 2), subplot_kw={'facecolor': 

"#ebf5ff"})

    ...:

    ...: ax.plot(x, y, lw=2)

    ...:

    ...:  ax.set_xlabel ("x", labelpad=5, fontsize=18, fontname='serif', 

color="blue")

    ...:  ax.set_ylabel ("f(x)", labelpad=15, fontsize=18, fontname='serif', 

color="blue")

    ...: ax.set_title("axis labels and title example", fontsize=16,

    ...:              fontname='serif', color="blue")
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In addition to labels on the x and y axes, we can also set a title of an Axes object, 

using the set_title method. This method takes mostly the same arguments as set_

xlabel and set_ylabel, with the exception of the loc argument, which can be assigned 

to 'left', 'centered', to 'right', and which dictates that the title is to be left aligned, 

centered, or right aligned.

 Axis Range

By default, the range of the x and y axes of a Matplotlib is automatically adjusted to the 

data that is plotted in the Axes object. In many cases these default ranges are sufficient, 

but in some situations, it may be necessary to explicitly set the axis ranges. In such cases, 

we can use the set_xlim and set_ylim methods of the Axes object. Both these methods 

take two arguments that specify the lower and upper limit that is to be displayed on the 

axis, respectively. An alternative to set_xlim and set_ylim is the axis method, which, for 

example, accepts the string argument 'tight', for a coordinate range that tightly fit the 

lines it contains, and 'equal', for a coordinate range where one unit length along each axis 

corresponds to the same number of pixels (i.e., a ratio preserving coordinate system).

It is also possible to use the autoscale method to selectively turn on and off 

autoscaling, by passing True and False as first argument, for the x and/or y axis by 

setting its axis argument to 'x', 'y', or 'both'. The example below shows how to use 

these methods to control axis ranges. The resulting graphs are shown in Figure 4-13.

In [15]: x = np.linspace(0, 30, 500)

    ...: y = np.sin(x) * np.exp(-x/10)

    ...:

    ...:

    ...:  fig, axes = plt.subplots(1, 3, figsize=(9, 3), subplot_

kw={'facecolor': "#ebf5ff"})

Figure 4-12. Graph demonstrating the result of using set_xlabel and set_
ylabel for setting the x and y axis labels

ChAPTer 4  PloTTIng AnD VIsuAlIzATIon



158

    ...:

    ...: axes[0].plot(x, y, lw=2)

    ...: axes[0].set_xlim(-5, 35)

    ...: axes[0].set_ylim(-1, 1)

    ...: axes[0].set_title("set_xlim / set_y_lim")

    ...:

    ...: axes[1].plot(x, y, lw=2)

    ...: axes[1].axis('tight')

    ...: axes[1].set_title("axis('tight')")

    ...:

    ...: axes[2].plot(x, y, lw=2)

    ...: axes[2].axis('equal')

    ...: axes[2].set_title("axis('equal')")

 Axis Ticks, Tick Labels, and Grids

The final basic properties of the axis that remain to be configured are the placement of 

axis ticks and the placement and the formatting of the corresponding tick labels. The 

axis ticks are an important part of the overall appearance of a graph, and when preparing 

publication and production-quality graphs, it is often necessary to have detailed control 

over the axis ticks. Matplotlib module mpl.ticker provides a general and extensible 

tick management system that gives full control of the tick placement. Matplotlib 

distinguishes between major ticks and minor ticks. By default, every major tick has a 

corresponding label, and the distances between major ticks may be further marked with 

minor ticks that do not have labels, although this feature must be explicitly turned on. 

See Figure 4-14 for an illustration of major and minor ticks.

Figure 4-13. Graphs that show the result of using the set_xlim, set_ ylim, and 
axis methods for setting the axis ranges that are shown in a graph
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When approaching the configuration of ticks, the most common design target is to 

determine where the major tick with labels should be placed along the coordinate axis. 

The mpl.ticker module provides classes for different tick placement strategies. For 

example, the mpl.ticker.MaxNLocator can be used to set the maximum number ticks 

(at unspecified locations), the mpl.ticker.MultipleLocator can be used for setting 

ticks at multiples of a given base, and the mpl.ticker.FixedLocator can be used to 

place ticks at explicitly specified coordinates. To change ticker strategy, we can use the 

set_major_locator and the set_minor_locator methods in Axes.xaxis and Axes.

yaxis. These methods accept an instance of a ticker class defined in mpl.ticker or a 

custom class that is derived from one of those classes.

When explicitly specifying tick locations, we can also use the methods set_xticks 

and set_yticks, which accept a list of coordinates for where to place major ticks. In this 

case, it is also possible to set custom labels for each tick using the set_xticklabels and 

set_yticklabels, which expects lists of strings to use as labels for the corresponding 

ticks. If possible, it is a good idea to use generic tick placement strategies, for example, 

mpl.ticker.MaxNLocator, because they dynamically adjust if the coordinate range is 

changed, whereas explicit tick placement using set_xticks and set_yticks then would 

require manual code changes. However, when the exact placement of ticks must be 

controlled, then set_xticks and set_yticks are convenient methods.

The following code demonstrates how to change the default tick placement using 

combinations of the methods discussed in the previous paragraphs, and the resulting 

graphs are shown in Figure 4-15.

Figure 4-14. The difference between major and minor ticks
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In [16]: x = np.linspace(-2 * np.pi, 2 * np.pi, 500)

    ...: y = np.sin(x) * np.exp(-x**2/20)

    ...:

    ...: fig, axes = plt.subplots(1, 4, figsize=(12, 3))

    ...:

    ...: axes[0].plot(x, y, lw=2)

    ...: axes[0].set_title("default ticks")

    ...: axes[1].plot(x, y, lw=2)

    ...: axes[1].set_title("set_xticks")

    ...: axes[1].set_yticks([-1, 0, 1])

    ...: axes[1].set_xticks([-5, 0, 5])

    ...:

    ...: axes[2].plot(x, y, lw=2)

    ...: axes[2].set_title("set_major_locator")

    ...: axes[2].xaxis.set_major_locator(mpl.ticker.MaxNLocator(4))

    ...: axes[2].yaxis.set_major_locator(mpl.ticker.FixedLocator([-1, 0, 1]))

    ...: axes[2].xaxis.set_minor_locator(mpl.ticker.MaxNLocator(8))

    ...: axes[2].yaxis.set_minor_locator(mpl.ticker.MaxNLocator(8))

    ...:

    ...: axes[3].plot(x, y, lw=2)

    ...: axes[3].set_title("set_xticklabels")

    ...: axes[3].set_yticks([-1, 0, 1])

    ...: axes[3].set_xticks([-2 * np.pi, -np.pi, 0, np.pi, 2 * np.pi])

    ...:  axes[3].set_xticklabels([r'$-2\pi$', r'$-\pi$', 0, r'$\pi$',  

 r'$2\pi$'])

    ...:  x_minor_ticker = mpl.ticker.FixedLocator([-3 * np.pi / 2,  

-np.pi / 2, 0,

    ...:                                            np.pi / 2, 3 * np.pi / 2])

    ...: axes[3].xaxis.set_minor_locator(x_minor_ticker)

    ...: axes[3].yaxis.set_minor_locator(mpl.ticker.MaxNLocator(4))
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A commonly used design element in graphs is grid lines, which are intended as a 

visual guide when reading values from the graph. Grids and grid lines are closely related 

to axis ticks, since they are drawn at the same coordinate values, and are therefore 

essentially extensions of the ticks that span across the graph. In Matplotlib, we can turn 

on axis grids using the grid method of an axes object. The grid method takes optional 

keyword arguments that are used to control the appearance of the grid. For example, like 

many of the plot functions in Matplotlib, the grid method accepts the arguments color, 

linestyle, and linewidth, for specifying the properties of the grid lines. In addition, it 

takes argument which and axis that can be assigned values 'major', 'minor', or 'both', 

and 'x', 'y', or 'both', respectively. These arguments are used to indicate which ticks 

along which axis the given style is to be applied to. If several different styles for the grid 

lines are required, multiple calls to grid can be used, with different values of which and 

axis. For an example of how to add grid lines and how to style them in different ways, 

see the following example, which produces the graphs shown in Figure 4-16.

In [17]: fig, axes = plt.subplots(1, 3, figsize=(12, 4))

    ...: x_major_ticker = mpl.ticker.MultipleLocator(4)

    ...: x_minor_ticker = mpl.ticker.MultipleLocator(1)

    ...: y_major_ticker = mpl.ticker.MultipleLocator(0.5)

    ...: y_minor_ticker = mpl.ticker.MultipleLocator(0.25)

    ...:

    ...: for ax in axes:

    ...:     ax.plot(x, y, lw=2)

    ...:     ax.xaxis.set_major_locator(x_major_ticker)

    ...:     ax.yaxis.set_major_locator(y_major_ticker)

    ...:     ax.xaxis.set_minor_locator(x_minor_ticker)

    ...:     ax.yaxis.set_minor_locator(y_minor_ticker)

Figure 4-15. Graphs that demonstrate different ways of controlling the placement 
and appearance of major and minor ticks along the x axis and the y axis
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    ...:

    ...: axes[0].set_title("default grid")

    ...: axes[0].grid()

    ...:

    ...: axes[1].set_title("major/minor grid")

    ...:  axes[1].grid(color="blue", which="both", linestyle=':', 

linewidth=0.5)

    ...:

    ...: axes[2].set_title("individual x/y major/minor grid")

    ...:  axes[2].grid(color="grey", which="major", axis='x', linestyle='-', 

linewidth=0.5)

    ...:  axes[2].grid(color="grey", which="minor", axis='x', linestyle=':', 

linewidth=0.25)

    ...:  axes[2].grid(color="grey", which="major", axis='y', linestyle='-', 

linewidth=0.5)

In addition to controlling the tick placements, the Matplotlib mpl.ticker module 

also provides classes for customizing the tick labels. For example, the ScalarFormatter 

from the mpl.ticker module can be used to set several useful properties related 

to displaying tick labels with scientific notation, for displaying axis labels for large 

numerical values. If scientific notation is activated using the set_scientific method, 

we can control the threshold for when scientific notation is used with the set_

powerlimits method (by default, tick labels for small numbers are not displayed using 

the scientific notation), and we can use the useMathText=True argument when creating 

Figure 4-16. Graphs demonstrating the result of using grid lines
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the ScalarFormatter instance in order to have the exponents shown in math style rather 

than using code style exponents (e.g., 1e10). See the following code for an example of 

using scientific notation in tick labels. The resulting graphs are shown in Figure 4-17.

In [19]: fig, axes = plt.subplots(1, 2, figsize=(8, 3))

    ...:

    ...: x = np.linspace(0, 1e5, 100)

    ...: y = x ** 2

    ...:

    ...: axes[0].plot(x, y, 'b.')

    ...: axes[0].set_title("default labels", loc='right')

    ...:

    ...: axes[1].plot(x, y, 'b')

    ...: axes[1].set_title("scientific notation labels", loc='right')

    ...:

    ...: formatter = mpl.ticker.ScalarFormatter(useMathText=True)

    ...: formatter.set_scientific(True)

    ...: formatter.set_powerlimits((-1,1))

    ...: axes[1].xaxis.set_major_formatter(formatter)

    ...: axes[1].yaxis.set_major_formatter(formatter)

Figure 4-17. Graphs with tick labels in scientific notation. The left panel uses the 
default label formatting, while the right panel uses tick labels in scientific notation, 
rendered as math text.
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 Log Plots

In visualization of data that spans several orders of magnitude, it is useful to work 

with logarithmic coordinate systems. In Matplotlib, there are several plot functions for 

graphing functions in such coordinate systems, for example, loglog, semilogx, and 

semilogy, which use logarithmic scales for both the x and y axes, for only the x axis, and 

for only the y axis, respectively. Apart from the logarithmic axis scales, these functions 

behave similarly to the standard plot method. An alternative approach is to use the 

standard plot method and to separately configure the axis scales to be logarithmic 

using the set_xscale and/or set_yscale method with 'log' as first argument. These 

methods of producing log-scale plots are exemplified in the following section, and the 

resulting graphs are shown in Figure 4-18.

In [20]: fig, axes = plt.subplots(1, 3, figsize=(12, 3))

    ...:

    ...: x = np.linspace(0, 1e3, 100)

    ...: y1, y2 = x**3, x**4

    ...:

    ...: axes[0].set_title('loglog')

    ...: axes[0].loglog(x, y1, 'b', x, y2, 'r')

    ...:

    ...: axes[1].set_title('semilogy')

    ...: axes[1].semilogy(x, y1, 'b', x, y2, 'r')

    ...:

    ...: axes[2].set_title('plot / set_xscale / set_yscale')

    ...: axes[2].plot(x, y1, 'b', x, y2, 'r')

    ...: axes[2].set_xscale('log')

    ...: axes[2].set_yscale('log')

Figure 4-18. Examples of log-scale plots
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 Twin Axes

An interesting trick with axes that Matplotlib provides is the twin axis feature, which 

allows displaying two independent axes overlaid on each other. This is useful when 

plotting two different quantities, for example, with different units, within the same graph. 

A simple example that demonstrates this feature is shown as follows, and the resulting 

graph is shown in Figure 4-19. Here we use the twinx method (there is also a twiny 

method) to produce second Axes instance with shared x axis and a new independent  

y axis, which is displayed on the right side of the graph.

In [21]: fig, ax1 = plt.subplots(figsize=(8, 4))

    ...:

    ...: r = np.linspace(0, 5, 100)

    ...: a = 4 * np.pi * r ** 2  # area

    ...: v = (4 * np.pi / 3) * r ** 3  # volume

    ...:

    ...: ax1.set_title("surface area and volume of a sphere", fontsize=16)

    ...: ax1.set_xlabel("radius [m]", fontsize=16)

    ...:

    ...: ax1.plot(r, a, lw=2, color="blue")

    ...: ax1.set_ylabel(r"surface area ($m^2$)", fontsize=16, color="blue")

    ...: for label in ax1.get_yticklabels():

    ...:     label.set_color("blue")

    ...:

    ...: ax2 = ax1.twinx()

    ...: ax2.plot(r, v, lw=2, color="red")

    ...: ax2.set_ylabel(r"volume ($m^3$)", fontsize=16, color="red")

    ...: for label in ax2.get_yticklabels():

    ...:    label.set_color("red")
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 Spines

In all graphs generated so far, we have always had a box surrounding the Axes region. 

This is indeed a common style for scientific and technical graphs, but in some cases, for 

example, when representing schematic graphs, moving these coordinate lines may be 

desired. The lines that make up the surrounding box are called axis spines in Matplotlib, 

and we can use the Axes.spines attribute to change their properties. For example, we 

might want to remove the top and the right spines and move the spines to coincide with 

the origin of the coordinate systems.

The spines attribute of the Axes object is a dictionary with the keys right, left, 

top, and bottom that can be used to access each spine individually. We can use the 

set_color method to set the color to 'None' to indicate that a particular spine should 

not be displayed, and in this case, we also need to remove the ticks associated with that 

spine, using the set_ticks_position method of Axes.xaxis and Axes.yaxis (which 

accepts the arguments 'both', 'top', or 'bottom' and 'both', 'left', or 'right', 

respectively). With these methods we can transform the surrounding box to x and y 

coordinate axes, as demonstrated in the following example. The resulting graph is shown 

in Figure 4-20.

In [22]: x = np.linspace(-10, 10, 500)

    ...: y = np.sin(x) / x

    ...:

    ...: fig, ax = plt.subplots(figsize=(8, 4))

    ...:

    ...: ax.plot(x, y, linewidth=2)

    ...:

    ...: # remove top and right spines

Figure 4-19. Example of graphs with twin axes
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    ...: ax.spines['right'].set_color('none')

    ...: ax.spines['top'].set_color('none')

    ...:

    ...: # remove top and right spine ticks

    ...: ax.xaxis.set_ticks_position('bottom')

    ...: ax.yaxis.set_ticks_position('left')

    ...:

    ...: # move bottom and left spine to x = 0 and y = 0

    ...: ax.spines['bottom'].set_position(('data', 0))

    ...: ax.spines['left'].set_position(('data', 0))

    ...:

    ...: ax.set_xticks([-10, -5, 5, 10])

    ...: ax.set_yticks([0.5, 1])

    ...:

    ...: #  give each label a solid background of white, to not overlap with 

the plot line

    ...: for label in ax.get_xticklabels() + ax.get_yticklabels():

    ...:    label.set_bbox({'facecolor': 'white',

    ...:                    'edgecolor': 'white'})

Figure 4-20. Example of a graph with axis spines
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 Advanced Axes Layouts
So far, we have repeatedly used plt.figure, Figure.make_axes, and plt.subplots to 

create new Figure and Axes instances, which we then used for producing graphs. In 

scientific and technical visualization, it is common to pack together multiple figures 

in different panels, for example, in a grid layout. In Matplotlib there are functions 

for automatically creating Axes objects and placing them on a figure canvas, using a 

variety of different layout strategies. We have already used the plt.subplots function, 

which is capable of generating a uniform grid of Axes objects. In this section we explore 

additional features of the plt.subplots function and introduce the subplot2grid 

and GridSpec layout managers, which are more flexible in how the Axes objects are 

distributed within a figure canvas.

 Insets
Before diving into the details of how to use more advanced Axes layout managers, it 

is worth taking a step back and considering an important use-case of the very first 

approach we used to add Axes instances to a figure canvas: the Figure.add_axes 

method. This approach is well suited for creating so-called inset, which is a smaller 

graph that is displayed within the region of another graph. Insets are, for example, 

frequently used for displaying a magnified region of special interest in the larger graph or 

for displaying some related graphs of secondary importance.

In Matplotlib we can place additional Axes objects at arbitrary locations within 

a figure canvas, even if they overlap with existing Axes objects. To create an inset, we 

therefore simply add a new Axes object with Figure.make_axes and with the (figure 

canvas) coordinates for where the inset should be placed. A typical example of a graph 

with an inset is produced by the following code, and the graph that this code generates is 

shown in Figure 4-21. When creating the Axes object for the inset, it may be useful to use 

the argument facecolor='none', which indicates that there should be no background 

color, that is, that the Axes background of the inset should be transparent.

In [23]: fig = plt.figure(figsize=(8, 4))

    ...:

    ...: def f(x):

    ...:     return 1/(1 + x**2) + 0.1/(1 + ((3 - x)/0.1)**2)

    ...:
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    ...: def plot_and_format_axes(ax, x, f, fontsize):

    ...:     ax.plot(x, f(x), linewidth=2)

    ...:     ax.xaxis.set_major_locator(mpl.ticker.MaxNLocator(5))

    ...:     ax.yaxis.set_major_locator(mpl.ticker.MaxNLocator(4))

    ...:     ax.set_xlabel(r"$x$", fontsize=fontsize)

    ...:     ax.set_ylabel(r"$f(x)$", fontsize=fontsize)

    ...:

    ...: # main graph

    ...: ax = fig.add_axes([0.1, 0.15, 0.8, 0.8], facecolor="#f5f5f5")

    ...: x = np.linspace(-4, 14, 1000)

    ...: plot_and_format_axes(ax, x, f, 18)

    ...:

    ...: # inset

    ...: x0, x1 = 2.5, 3.5

    ...: ax.axvline(x0, ymax=0.3, color="grey", linestyle=":")

    ...: ax.axvline(x1, ymax=0.3, color="grey", linestyle=":")

    ...:

    ...: ax_insert = fig.add_axes([0.5, 0.5, 0.38, 0.42], facecolor='none')

    ...: x = np.linspace(x0, x1, 1000)

    ...: plot_and_format_axes(ax_insert, x, f, 14)

Figure 4-21. Example of a graph with an inset
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 Subplots
We have already used plt.subplots extensively, and we have noted that it returns a 

tuple with a Figure instance and a NumPy array with the Axes objects for each row and 

column that was requested in the function call. It is often the case when plotting grids of 

subplots that either the x or the y axis, or both, is shared among the subplots. Using the 

sharex and sharey arguments to plt.subplots can be useful in such situations, since it 

prevents the same axis labels to be repeated across multiple Axes.

It is also worth noting that the dimension of the NumPy array with Axes instances 

that is returned by plt.subplots is “squeezed” by default: that is, the dimensions with 

length 1 are removed from the array. If both the requested numbers of column and row 

are greater than one, then a two-dimensional array is returned, but if either (or both) the 

number of columns or rows is one, then a one-dimensional (or scalar, i.e., the only Axes 

object itself ) is returned. We can turn off the squeezing of the dimensions of the NumPy 

arrays by passing the argument squeeze=False to the plt.subplots function. In this 

case the axes variable in fig, axes = plt.subplots(nrows, ncols) is always a two- 

dimensional array.

A final touch of configurability can be achieved using the plt.subplots_adjust 

function, which allows to explicitly set the left, right, bottom, and top coordinates of the 

overall Axes grid, as well as the width (wspace) and height spacing (hspace) between 

Axes instances in the grid. See the following code, and the corresponding Figure 4-22, for 

a step-by-step example of how to set up an Axes grid with shared x and y axes and with 

adjusted Axes spacing.

In [24]: fig, axes = plt.subplots(2, 2, figsize=(6, 6), sharex=True, 

sharey=True, squeeze=False)

    ...:

    ...: x1 = np.random.randn(100)

    ...: x2 = np.random.randn(100)

    ...:

    ...: axes[0, 0].set_title("Uncorrelated")

    ...: axes[0, 0].scatter(x1, x2)

    ...:

    ...: axes[0, 1].set_title("Weakly positively correlated")

    ...: axes[0, 1].scatter(x1, x1 + x2)

    ...:
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    ...: axes[1, 0].set_title("Weakly negatively correlated")

    ...: axes[1, 0].scatter(x1, -x1 + x2)

    ...:

    ...: axes[1, 1].set_title("Strongly correlated")

    ...: axes[1, 1].scatter(x1, x1 + 0.15 * x2)

    ...:

    ...: axes[1, 1].set_xlabel("x")

    ...: axes[1, 0].set_xlabel("x")

    ...: axes[0, 0].set_ylabel("y")

    ...: axes[1, 0].set_ylabel("y")

    ...:

    ...:  plt.subplots_adjust(left=0.1, right=0.95, bottom=0.1, top=0.95, 

wspace=0.1, hspace=0.2)

Figure 4-22. Example graph using plt.subplot and plt.subplot_adjust
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 Subplot2grid
The plt.subplot2grid function is an intermediary between plt.subplots and 

gridspec (see the next section) that provides a more flexible Axes layout management 

than plt.subplots while at the same time being simpler to use than gridspec. In 

particular, plt.subplot2grid is able to create grids with Axes instances that span 

multiple rows and/or columns. The plt.subplot2grid takes two mandatory arguments: 

the first argument is the shape of the Axes grid, in the form of a tuple (nrows, ncols), 

and the second argument is a tuple (row, col) that specifies the starting position within 

the grid. The two optional keyword arguments colspan and rowspan can be used to 

indicate how many rows and columns the new Axes instance should span. An example 

of how to use the plt.subplot2grid function is given in Table 4-3. Note that each call  

to the plt.subplot2grid function results in one new Axes instance, in contrast to  

plt.subplots which creates all Axes instances in one function call and returns them in  

a NumPy array.

Table 4-3. Example of a Grid Layout Created with plt.subplot2grid and the 

Corresponding Code

Axes Grid Layout Code

ax0 = plt.subplot2grid((3, 3), (0, 0))

ax1 = plt.subplot2grid((3, 3), (0, 1))

ax2 = plt.subplot2grid((3, 3), (1, 0), 

colspan=2)

ax3 = plt.subplot2grid((3, 3), (2, 0), 

colspan=3)

ax4 = plt.subplot2grid((3, 3), (0, 2), 

rowspan=2)
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 GridSpec
The final grid layout manager that we cover here is GridSpec from the mpl.gridspec 

module. This is the most general grid layout manager in Matplotlib, and in particular 

it allows creating grids where not all rows and columns have equal width and height, 

which is not easily achieved with the grid layout managers we have used earlier in this 

chapter.

A GridSpec object is only used to specify the grid layout, and by itself it does not 

create any Axes objects. When creating a new instance of the GridSpec class, we must 

specify the number of rows and columns in the grid. Like for other grid layout managers, 

we can also set the position of the grid using the keyword arguments left, bottom, 

right, and top, and we can set the width and height spacing between subplots using 

wspace and hspace. Additionally, GricSpec allows specifying the relative width and 

heights of columns and rows using the width_ratios and height_ratios arguments. 

These should both be lists with relative weights for the size of each column and row 

in the grid. For example, to generate a grid with two rows and two columns, where the 

first row and column is twice as big as the second row and column, we could use mpl.

gridspec.GridSpec(2, 2, width_ratios=[2, 1], height_ratios=[2, 1]).

Once a GridSpec instance has been created, we can use the Figure.add_subplot 

method to create Axes objects and place them on a figure canvas. As argument to 

add_subplot, we need to pass an mpl.gridspec.SubplotSpec instance, which we can 

generate from the GridSpec object using an array-like indexing: for example, given a 

GridSpec instance gs, we obtain a SubplotSpec instance for the upper-left grid element 

using gs[0, 0] and for a SubplotSpec instance that covers the first row we use gs[:, 0] 

and so on. See Table 4-4 for concrete examples of how to use GridSpec and add_subplot 

to create Axes instance.
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 Colormap Plots
We have so far only considered graphs of univariate functions or, equivalently, two- 

dimensional data in x-y format. The two-dimensional Axes objects that we have used for 

this purpose can also be used to visualize bivariate functions, or three-dimensional data 

on x-y-z format, using so-called color maps (or heat maps), where each pixel in the Axes 

Table 4-4. Examples of How to Use the Subplot Grid Manager mpl.gridspec.

GridSpec

Axes Grid Layout Code

fig = plt.figure(figsize=(6, 4))

gs = mpl.gridspec.GridSpec(4, 4)

ax0 = fig.add_subplot(gs[0, 0])

ax1 = fig.add_subplot(gs[1, 1])

ax2 = fig.add_subplot(gs[2, 2])

ax3 = fig.add_subplot(gs[3, 3])

ax4 = fig.add_subplot(gs[0, 1:])

ax5 = fig.add_subplot(gs[1:, 0])

ax6 = fig.add_subplot(gs[1, 2:])

ax7 = fig.add_subplot(gs[2:, 1])

ax8 = fig.add_subplot(gs[2, 3])

ax9 = fig.add_subplot(gs[3, 2])

fig = plt.figure(figsize=(4, 4))

gs =  mpl.gridspec.GridSpec( 

2, 2,  

width_ratios=[4, 1],  

height_ratios=[1, 4],  

wspace=0.05, hspace=0.05)

ax0 = fig.add_subplot(gs[1, 0])

ax1 = fig.add_subplot(gs[0, 0])

ax2 = fig.add_subplot(gs[1, 1])
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area is colored according to the z value corresponding to that point in the coordinate 

system. Matplotlib provides the functions pcolor and imshow for these types of plots, and 

the contour and contourf functions graph data on the same format by drawing contour 

lines rather than color maps. Examples of graphs generated with these functions are 

shown in Figure 4-23.

To produce a colormap graph, for example, using pcolor, we first need to prepare 

the data in the appropriate format. While standard two-dimensional graphs expect 

one-dimensional coordinate arrays with x and y values, in the present case, we need to 

use two-dimensional coordinate arrays, as, for example, generated using the NumPy 

meshgrid function. To plot a bivariate function or data with two dependent variables, 

we start by defining one-dimensional coordinate arrays, x and y, that span the desired 

coordinate range or correspond to the values for which data is available. The x and y 

arrays can then be passed to the np.meshgrid function, which produces the required 

two-dimensional coordinate arrays X and Y. If necessary, we can use NumPy array 

computations with X and Y to evaluate bivariate functions to obtain a data array Z, as 

done in lines 1 to 3 in In [25] (see in the following section).

Once the two-dimensional coordinate and data arrays are prepared, they are easily 

visualized using, for example, pcolor, contour, or contourf, by passing the X, Y, and Z 

arrays as the first three arguments. The imshow method works similarly but only expects 

the data array Z as argument, and the relevant coordinate ranges must instead be set 

using the extent argument, which should be set to a list on the format [xmin, xmax, 

ymin, ymax]. Additional keyword arguments that are important for controlling the 

appearance of colormap graphs are vmin, vmax, norm, and cmap: the vmin and vmax can 

be used to set the range of values that are mapped to the color axis. This can equivalently 

be achieved by setting norm=mpl.colors.Normalize(vmin, vmax). The cmap argument 

Figure 4-23. Example graphs generated with pcolor, imshow, contour, and 
contourf
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specifies a color map for mapping the data values to colors in the graph. This argument 

can either be a string with a predefined colormap name or a colormap instance. The 

predefined color maps in Matplotlib are available in mpl.cm. Try help(mpl.cm) or try to 

autocomplete in IPython on the mpl.cm module for a full list of available color maps.5

The last piece required for a complete colormap plot is the colorbar element, which 

gives the viewer of the graph a way to read off the numerical values that different colors 

correspond to. In Matplotlib we can use the plt.colorbar function to attach a colorbar 

to an already plotted colormap graph. It takes a handle to the plot as first argument, 

and it takes two optional arguments ax and cax, which can be used to control where in 

the graph the colorbar is to appear. If ax is given, the space will be taken from this Axes 

object for the new colorbar. If, on the other hand, cax is given, then the colorbar will 

draw on this Axes object. A colorbar instance cb has its own axis object, and the standard 

methods for setting axis attributes can be used on the cb.ax object, and we can use, for 

example, the set_label, set_ticks, and set_ticklabels method in the same manner 

as for x and y axes.

The steps outlined in the previous paragraphs are shown in the following code, 

and the resulting graph is shown in Figure 4-24. The functions imshow, contour, 

and contourf can be used in a nearly similar manner, although these functions take 

additional arguments for controlling their characteristic properties. For example, the 

contour and contourf functions additionally take an argument N that specifies the 

number of contour lines to draw.

In [25]: x = y = np.linspace(-10, 10, 150)

    ...: X, Y = np.meshgrid(x, y)

    ...: Z = np.cos(X) * np.cos(Y) * np.exp(-(X/5)**2-(Y/5)**2)

    ...:

    ...: fig, ax = plt.subplots(figsize=(6, 5))

    ...:

    ...: norm = mpl.colors.Normalize(-abs(Z).max(), abs(Z).max())

    ...: p = ax.pcolor(X, Y, Z, norm=norm, cmap=mpl.cm.bwr)

    ...:

    ...: ax.axis('tight')

    ...: ax.set_xlabel(r"$x$", fontsize=18)

5 A nice visualization of all the available color maps is available at http://wiki.scipy.org/
Cookbook/Matplotlib/Show_colormaps. This page also describes how to create new color maps.
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    ...: ax.set_ylabel(r"$y$", fontsize=18)

    ...: ax.xaxis.set_major_locator(mpl.ticker.MaxNLocator(4))

    ...: ax.yaxis.set_major_locator(mpl.ticker.MaxNLocator(4))

    ...:

    ...: cb = fig.colorbar(p, ax=ax)

    ...: cb.set_label(r"$z$", fontsize=18)

    ...: cb.set_ticks([-1, -.5, 0, .5, 1])

 3D Plots
The colormap graphs discussed in the previous section were used to visualize data with 

two dependent variables by color-coding data in 2D graphs. Another way of visualizing 

the same type of data is to use 3D graphs, where a third axis z is introduced and the 

graph is displayed in a perspective on the screen. In Matplotlib, drawing 3D graphs 

requires using a different axes object, namely, the Axes3D object that is available from 

the mpl_toolkits.mplot3d module. We can create a 3D-aware Axes instance explicitly 

using the constructor of the Axes3D class, by passing a Figure instance as argument: 

ax = Axes3D(fig). Alternatively, we can use the add_subplot function with the 

projection='3d' argument:

ax = ax = fig.add_subplot(1, 1, 1, projection='3d')

Figure 4-24. Example using pcolor to produce a colormap graph
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or use plt.subplots with the subplot_kw={'projection': '3d'} argument:

fig, ax = plt.subplots(1, 1, figsize=(8, 6), subplot_kw={'projection': '3d'})

In this way, we can use all of the axes layout approaches we have previously used for 

2D graphs, if only we specify the projection argument in the appropriate manner. Note 

that using add_subplot, it is possible to mix axes objects with 2D and 3D projections 

within the same figure, but when using plt.subplots, the subplot_kw argument applies 

to all the subplots added to a figure.

Having created and added 3D-aware Axes instances to a figure, for example, using 

one of the methods described in the previous paragraph, the Axes3D class methods – 

such as plot_surface, plot_wireframe, and contour – can be used to plot data as 

surfaces in a 3D perspective. These functions are used in a manner that is nearly the 

same as how the color map was used in the previous section: these 3D plotting functions 

all take two-dimensional coordinate and data arrays X, Y, and Z as first arguments. Each 

function also takes additional parameters for tuning specific properties. For example, 

the plot_surface function takes the arguments rstride and cstride (row and column 

stride) for selecting data from the input arrays (to avoid data points that are too dense). 

The contour and contourf functions take optional arguments zdir and offset, which 

is used to select a projection direction (the allowed values are “x,” “y,” and “z”) and the 

plane to display the projection on.

In addition to the methods for 3D surface plotting, there are also straightforward 

generalizations of the line and scatter plot functions that are available for 2D axes, for 

example, plot, scatter, bar, and bar3d, which in the version that is available in the 

Axes3D class takes an additional argument for the z coordinates. Like their 2D relatives, 

these functions expect one-dimensional data arrays rather than the two-dimensional 

coordinate arrays that are used for surface plots.

When it comes to axes titles, labels, ticks, and tick labels, all the methods used for 2D 

graphs, as described in detail earlier in this chapter, are straightforwardly generalized 

to 3D graphs. For example, there are new methods set_zlabel, set_zticks, and 

set_zticklabels for manipulating the attributes of the new z axis. The Axes3D object 

also provides new class methods for 3D specific actions and attributes. In particular, the 

view_init method can be used to change the angle from which the graph is viewed, and 

it takes the elevation and the azimuth, in degrees, as first and second arguments.
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Examples of how to use these 3D plotting functions are given in the following 

section, and the produced graphs are shown in Figure 4-25.

In [26]:  fig, axes = plt.subplots(1, 3, figsize=(14, 4), subplot_

kw={'projection': '3d'})

    ...:

    ...: def title_and_labels(ax, title):

    ...:     ax.set_title(title)

    ...:     ax.set_xlabel("$x$", fontsize=16)

    ...:     ax.set_ylabel("$y$", fontsize=16)

    ...:     ax.set_zlabel("$z$", fontsize=16)

    ...:

    ...: x = y = np.linspace(-3, 3, 74)

    ...: X, Y = np.meshgrid(x, y)

    ...:

    ...: R = np.sqrt(X**2 + Y**2)

    ...: Z = np.sin(4 * R) / R

    ...:

    ...: norm = mpl.colors.Normalize(-abs(Z).max(), abs(Z).max())

    ...:

    ...:  p =  axes[0].plot_surface(X, Y, Z, rstride=1, cstride=1, 

linewidth=0, antialiased=False, norm=norm, cmap=mpl.cm.Blues)

    ...:                          

    ...: cb = fig.colorbar(p, ax=axes[0], shrink=0.6)

    ...: title_and_labels(axes[0], "plot_surface")

    ...:

    ...:  p = axes[1].plot_wireframe(X, Y, Z, rstride=2, cstride=2, 

color="darkgrey")

    ...: title_and_labels(axes[1], "plot_wireframe")

    ...:

    ...:  cset = axes[2].contour(X, Y, Z, zdir='z', offset=0, norm=norm, 

cmap=mpl.cm.Blues)

    ...:  cset = axes[2].contour(X, Y, Z, zdir='y', offset=3, norm=norm, 

cmap=mpl.cm.Blues)

    ...: title_and_labels(axes[2], "contour")
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 Summary
In this chapter, we have covered the basics of how to produce 2D and 3D graphics using 

Matplotlib. Visualization is one of the most important tools for computational scientists 

and engineers, both as an analysis tool while working on computational problems and 

for presenting and communicating computational results. Visualization is therefore an 

integral part of the computational workflow, and it is equally important to be able to 

quickly visualize and explore data and to be able to produce picture-perfect publication- 

quality graphs, with detailed control over every graphical element. Matplotlib is a great 

general-purpose tool for both exploratory visualization and for producing publication- 

quality graphics. However, there are limitations to what can be achieved with Matplotlib, 

especially with respect to interactivity and high-quality 3D graphics. For more 

specialized use-cases, I therefore recommend to also explore some of the other graphic 

libraries that are available in the scientific Python ecosystem, some of which was briefly 

mentioned at the beginning of this chapter.

 Further Reading
The Matplotlib is treated in books dedicated to the library, such as Tosi (2009) and 

Devert (2014), and in several books with a wider scope, for example, Milovanovi (2013) 

and McKinney (2013). For interesting discussions on data visualization and style guides 

and good practices in visualization, see, for example, Yau (2011) and J. Steele (2010).

Figure 4-25. 3D surface and contour graphs generated by using plot_surface, 
plot_wireframe, and contour
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CHAPTER 5

Equation Solving
In the previous chapters, we have discussed general methodologies and techniques, 

namely, array-based numerical computing, symbolic computing, and visualization. 

These methods are the cornerstones of scientific computing that make up a fundamental 

toolset we have at our disposal when attacking computational problems.

Starting from this chapter, we begin to explore how to solve problems from 

different domains of applied mathematics and computational sciences, using the basic 

techniques introduced in the previous chapters. The topic of this chapter is algebraic 

equation solving. This is a broad topic that requires the application of theory and 

approaches from multiple fields of mathematics. In particular, when discussing equation 

solving, we have to distinguish between univariate and multivariate equations (i.e., 

equations that contain one unknown variable or many unknown variables). In addition, 

we need to distinguish between linear and nonlinear equations. This classification is 

useful because solving equations of these different types requires applying different 

mathematical methods and approaches.

We begin with linear equation systems, which are tremendously useful and have 

important applications in every field of science. The reason for this universality 

is that linear algebra theory allows us to straightforwardly solve linear equations, 

while nonlinear equations are difficult to solve in general and typically require more 

complicated and computationally demanding methods. Because linear systems are 

readily solvable, they are also an important tool for local approximations of nonlinear 

systems. For example, by considering small variations from an expansion point, a 

nonlinear system can often be approximated by a linear system in the local vicinity of 

the expansion point. However, a linearization can only describe local properties, and 

for global analysis of nonlinear problems, other techniques are required. Such methods 

typically employ iterative approaches for gradually constructing an increasingly accurate 

estimate of the solution.
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In this chapter, we use SymPy for solving equations symbolically, when possible, 

and use the linear algebra module from the SciPy library for numerically solving 

linear equation systems. For tackling nonlinear problems, we will use the root-finding 

functions in the optimize module of SciPy.

SciPy SciPy is a Python library, the collective name of the scientific computing 
environment for Python, and the umbrella organization for many of the core 
libraries for scientific computing with Python. The library, scipy, is in fact rather 
a collection of libraries for high-level scientific computing, which are more or 
less independent of each other. The SciPy library is built on top of NumPy, which 
provides the basic array data structures and fundamental operations on such 
arrays. The modules in SciPy provide domain-specific high-level computation 
methods, such as routines for linear algebra, optimization, interpolation, 
integration, and much more. At the time of writing, the most recent version of SciPy 
is 1.1.0. See www.scipy.org for more information.

 Importing Modules
The SciPy module scipy should be considered a collection of modules that are selectively 

imported when required. In this chapter we will use the scipy.linalg module, for solving 

linear systems of equations, and the scipy.optimize module, for solving nonlinear 

equations. In this chapter we assume that these modules are imported as:

In [1]: from scipy import linalg as la

In [2]: from scipy import optimize

In this chapter we also use the NumPy, SymPy, and Matplotlib libraries introduced 

in the previous chapters, and we assume that those libraries are imported following the 

previously introduced convention:

In [3]: import sympy

In [4]: sympy.init_printing()

In [5]: import numpy as np

In [6]: import matplotlib.pyplot as plt
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To get the same behavior in both Python 2 and Python 3 with respect to integer 

division, we also include the following statement (which is only necessary in Python 2):

In [7]: from __future__ import division

 Linear Equation Systems
An important application of linear algebra is solving systems of linear equations. We 

have already encountered linear algebra functionality in the SymPy library, in Chapter 3.  

There are also linear algebra modules in the NumPy and SciPy libraries, numpy.linalg 

and scipy.linalg, which together provide linear algebra routines for numerical 

problems, that is, for problems that are completely specified in terms of numerical 

factors and parameters.

In general, a linear equation system can be written on the form

a x a x a x bn n11 1 12 2 1 1+ +¼+ = ,

a x a x a x bn n21 1 22 2 2 2+ +¼+ = ,

¼

a x a x a x bm m mn n m1 1 2 2+ +¼+ = .

This is a linear system of m equations in n unknown variables {x1, x2, …, xn}, where amn 

and bm are known parameters or constant values. When working with linear equation 

systems, it is convenient to write the equations in matrix form:
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or simply Ax = b, where A is a m × n matrix, b is a m × 1 matrix (or m-vector), and 

x is the unknown n × 1 solution matrix (or n-vector). Depending on the properties of 

the matrix A, the solution vector x may or may not exist, and if a solution does exist, it 

is not necessarily unique. However, if a solution exists, then it can be interpreted as an 

expression for the vector b as a linear combination of the columns of the matrix A, where 

the coefficients are given by the elements in the solution vector x.
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A system for which n < m is said to be underdetermined, because it has fewer 

equations than unknown and therefore cannot completely determine a unique solution. 

If, on the other hand, m > n, then the equations are said to be overdetermined. This will 

in general lead to conflicting constraints, resulting in that a solution does not exist.

 Square Systems
Square systems with m = n is an important special case. It corresponds to the situation 

where the number of equations equals the number of unknown variables, and it can 

therefore potentially have a unique solution. In order for a unique solution to exist, the 

matrix A must be nonsingular, in which case the inverse of A exists, and the solution can 

be written as x = A−1b. If the matrix A is singular, that is, the rank of the matrix is less than 

n, rank(A) < n, or, equivalently, if its determinant is zero, detA = 0, then the equation 

Ax = b can either have no solution or infinitely many solutions, depending on the right- 

hand side vector b. For a matrix with rank deficiency, rank(A) < n, there are columns 

or rows that can be expressed as linear combinations of other columns or vectors, and 

they therefore correspond to equations that do not contain any new constraints, and 

the system is really underdetermined. Computing the rank of the matrix A that defines a 

linear equation system is therefore a useful method that can tell us whether the matrix is 

singular or not and therefore whether there exists a solution or not.

When A has full rank, the solution is guaranteed to exist. However, it may or may 

not be possible to accurately compute the solution. The condition number of the matrix, 

cond(A), gives a measure of how well or poorly conditioned a linear equation system 

is. If the conditioning number is close to 1, if the system is said to be well conditioned (a 

condition number 1 is ideal), and if the condition number is large, the system is said to 

be ill-conditioned. The solution to an equation system that is ill-conditioned can have 

large errors. An intuitive interpretation of the condition number can be obtained from a 

simple error analysis. Assume that we have a linear equation system on the form Ax = b, 

where x is the solution vector. Now consider a small variation of b, say δb, which gives a 

corresponding change in the solution, δx, given by A(x+δx) = b+δb. Because of linearity 

of the equation, we have Aδx = δb. An important question to consider now is: how large 

is the relative change in x compared to the relative change in b? Mathematically we can 

formulate this question in terms of the ratios of the norms of these vectors. Specifically, 

we are interested in comparing ‖δx‖/‖x‖ and ‖δb‖/‖b‖, where ‖x‖ denotes the norm of 

x. Using the matrix norm relation ‖Ax‖ ≤ ‖A‖ ∙ ‖x‖, we can write
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A bound of the relative error in the solution x, given a relative error in the b vector, is 

therefore given by cond(A) ≡ ‖A−1‖ ∙ ‖A‖, which by definition is the condition number 

of the matrix A. This means that for linear equation systems characterized by a matrix A 

that is ill-conditioned, even a small perturbation in the b vector can give large errors in 

the solution vector x. This is particularly relevant in numerical solution using floating- 

point numbers, which are only approximations to real numbers. When solving a system 

of linear equations, it is therefore important to look at the condition number to estimate 

the accuracy of the solution.

The rank, condition number, and norm of a symbolic matrix can be computed in 

SymPy using the Matrix methods rank, condition_number, and norm, and for numerical 

problems, we can use the NumPy functions np.linalg.matrix_rank, np.linalg.

cond, and np.linalg.norm. For example, consider the following system of two linear 

equations:

 

2 3 4

5 4 3
1 2

1 2

x x

x x

+ =
+ =  

These two equations correspond to lines in the (x1,x2) plane, and their intersection is 

the solution to the equation system. As can be seen in Figure 5-1, which graphs the lines 

corresponding to the two equations, the lines intersect at (−1, 2).

Figure 5-1. Graphical representation of a system of two linear equations
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We can define this problem in SymPy by creating matrix objects for A and b and 

computing the rank, condition number, and norm of the matrix A using

In [8]: A = sympy.Matrix([[2, 3], [5, 4]])

In [9]: b = sympy.Matrix([4, 3])

In [10]: A.rank()

Out[10]: 2

In [11]: A.condition_number()

Out[11]: 
27 2 170

27 2 170

+

-

In [12]: sympy.N(_)

Out[12]: 7.58240137440151

In [13]: A.norm()

Out[13]: 3 6

We can do the same thing in NumPy/SciPy using NumPy arrays for A and b and 

functions from the np.linalg and scipy.linalg modules:

In [14]: A = np.array([[2, 3], [5, 4]])

In [15]: b = np.array([4, 3])

In [16]: np.linalg.matrix_rank(A)

Out[16]: 2

In [17]: np.linalg.cond(A)

Out[17]: 7.5824013744

In [18]: np.linalg.norm(A)

Out[18]: 7.34846922835

A direct approach to solving the linear problem is to compute the inverse of the 

matrix A and multiply it with the vector b, as used, for example, in the previous analytical 

discussions. However, this is not the most efficient computational method to find the 

solution vector x. A better method is LU factorization of the matrix A, such that A = LU and 

where L is a lower triangular matrix and U is an upper triangular matrix. Given L and U,  

the solution vector x can be efficiently constructed by first solving Ly = b with forward 

substitution and then solving Ux = y with backward substitution. Owning to the fact that  

L and U are triangular matrices, these two procedures are computationally efficient.
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In SymPy we can perform a symbolic LU factorization by using the LUdecomposition 

method of the sympy.Matrix class. This method returns new Matrix objects for the L and 

U matrices, as well as a row swap matrix. When we are interested in solving an equation 

system Ax = b, we do not explicitly need to calculate the L and U matrices, but rather we 

can use the LUsolve method, which performs the LU factorization internally and solves 

the equation system using those factors. Returning to the previous example, we can 

compute the L and U factors and solve the equation system using

In [19]: A = sympy.Matrix([[2, 3], [5, 4]])

In [20]: b = sympy.Matrix([4, 3])

In [21]: L, U, _ = A.LUdecomposition()

In [22]: L

Out[22]: 
1 0

5 2 1/

é

ë
ê

ù

û
ú

In [23]: U

Out[23]: 
2 3

0 7 2-
é

ë
ê

ù

û
ú/

In [24]: L * U

Out[24]: 
2 3

5 4

é

ë
ê

ù

û
ú

In [25]: x = A.solve(b); x  # equivalent to A.LUsolve(b)

Out[25]: 
-é

ë
ê

ù

û
ú
1

2

For numerical problems we can use the la.lu function form SciPy’s linear algebra module. 

It returns a permutation matrix P and the L and U matrices, such that A = PLU. Like with 

SymPy, we can solve the linear system Ax = b without explicitly calculating the L and U matrices 

by using the la.solve function, which takes the A matrix and the b vector as arguments. This 

is in general the preferred method for solving numerical linear equation systems using SciPy.

In [26]: A = np.array([[2, 3], [5, 4]])

In [27]: b = np.array([4, 3])

In [28]: P, L, U = la.lu(A)

In [29]: L

Out[29]: array([[ 1. ,  0. ],

                [ 0.4,  1. ]])
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In [30]: U

Out[30]: array([[ 5. ,  4. ],

                [ 0. ,  1.4]])

In [31]: P.dot(L.dot(U))

Out[31]: array([[ 2., 3.],

                [ 5., 4.]])

In [32]: la.solve(A, b)

Out[32]: array([-1.,  2.])

The advantage of using SymPy is of course that we may obtain exact results and 

we can also include symbolic variables in the matrices. However, not all problems 

are solvable symbolically, or it may give exceedingly lengthy results. The advantage 

of using a numerical approach with NumPy/SciPy, on the other hand, is that we are 

guaranteed to obtain a result, although it will be an approximate solution due to 

floating-point errors. See the following code (In [38]) for an example that illustrates the 

differences between the symbolic and numerical approaches and for an example that 

show numerical approaches can be sensitive for equation systems with large condition 

number. In this example we solve the equation system
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which for p = 1 is singular and for p in the vicinity of one is ill-conditioned. Using 

SymPy, the solution is easily found to be

In [33]: p = sympy.symbols("p", positive=True)

In [34]: A = sympy.Matrix([[1, sympy.sqrt(p)], [1, 1/sympy.sqrt(p)]])

In [35]: b = sympy.Matrix([1, 2])

In [36]: x = A.solve(b)

In [37]: x

Out[37]: 

2 1

1

1

p

p

p

p

-
-

-
-
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ç
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A comparison between this symbolic solution and the numerical solution is shown 

in Figure 5-2. Here the errors in the numerical solution are due to numerical floating- 

point errors, and the numerical errors are significantly larger in the vicinity of p = 1, 

where the system has a large condition number. Also, if there are other sources of errors 

in either A or b, the corresponding errors in x can be even more severe.

In [38]: # Symbolic problem specification

    ...: p = sympy.symbols("p", positive=True)

    ...: A = sympy.Matrix([[1, sympy.sqrt(p)], [1, 1/sympy.sqrt(p)]])

    ...: b = sympy.Matrix([1, 2])

    ...:

    ...: # Solve symbolically

    ...: x_sym_sol = A.solve(b)

    ...: Acond = A.condition_number().simplify()

    ...:

    ...: # Numerical problem specification

    ...: AA = lambda p: np.array([[1, np.sqrt(p)], [1, 1/np.sqrt(p)]])

    ...: bb = np.array([1, 2])

    ...: x_num_sol = lambda p: np.linalg.solve(AA(p), bb)

    ...:

    ...: #  Graph the difference between the symbolic (exact) and numerical 

results.

    ...: fig, axes = plt.subplots(1, 2, figsize=(12, 4))

    ...:

    ...: p_vec = np.linspace(0.9, 1.1, 200)

    ...: for n in range(2):

    ...:      x_sym = np.array([x_sym_sol[n].subs(p, pp).evalf() for pp in 

p_vec])

    ...:     x_num = np.array([x_num_sol(pp)[n] for pp in p_vec])

    ...:     axes[0].plot(p_vec, (x_num - x_sym)/x_sym, 'k')

    ...:  axes[0].set_title("Error in solution\n(numerical - symbolic)/

symbolic")

    ...: axes[0].set_xlabel(r'$p$', fontsize=18)

    ...:

    ...: axes[1].plot(p_vec, [Acond.subs(p, pp).evalf() for pp in p_vec])

    ...: axes[1].set_title("Condition number")

    ...: axes[1].set_xlabel(r'$p$', fontsize=18)
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 Rectangular Systems
Rectangular systems, with m ≠ n, can be either underdetermined or overdetermined. 

Underdetermined systems have more variables than equations, so the solution cannot 

be fully determined. Therefore, for such a system, the solution must be given in terms 

of the remaining free variables. This makes it difficult to treat this type of problem 

numerically, but a symbolic approach can often be used instead.

For example, consider the underdetermined linear equation system
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Here we have three unknown variables, but only two equations impose constraints 

on the relations between these variables. By writing this equation as Ax − b = 0, we can 

use the SymPy sympy.solve function to obtain a solution for x1 and x2 parameterized by 

the remaining free variable x3:

In [39]: x_vars = sympy.symbols("x_1, x_2, x_3")

In [40]: A = sympy.Matrix([[1, 2, 3], [4, 5, 6]])

In [41]: x = sympy.Matrix(x_vars)

In [42]: b = sympy.Matrix([7, 8])

In [43]: sympy.solve(A*x - b, x_vars)

Out[43]: x x x x1 3 2 319 3 2 20 3= - = - +{ }/ /,

Figure 5-2. Graph of the relative numerical errors (left) and condition number 
(right) as a function of the parameter p
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Here we obtained the symbolic solution x1 = x3 − 19/3 and x2 =  − 2x3+20/3, which 

defines a line in the three-dimensional space spanned by {x1, x2, x3}. Any point on this 

line therefore satisfies this underdetermined equation system.

On the other hand, if the system is overdetermined and has more equations than 

unknown variables, m > n, then we have more constraints than degrees of freedom, and 

in general there is no exact solution to such a system. However, it is often interesting to 

find an approximate solution to an overdetermined system. An example of when this 

situation arises is data fitting: say we have a model where a variable y is a quadratic 

polynomial in the variable x, so that y = A+Bx+Cx2, and that we would like to fit this 

model to experimental data. Here y is nonlinear in x, but y is linear in the three unknown 

coefficients A, B, and C, and this fact can be used to write the model as a linear equation 

system. If we collect data for m pairs x yi i i

m
,( ){ } =1

 of the variables x and y, we can write the 

model as an m × 3 equation system:

 

1

1

1 1
2

2

1x x

x x

A

B

C

y

ym m m

   

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

æ

è

ç
ç
ç

ö

ø

÷
÷
÷
=
æ

è

ç
ç
ç

ö

ø

÷
÷
÷
.

 

If m = 3, we can solve for the unknown model parameters A, B, and C, assuming the 

system matrix is nonsingular. However, it is intuitively clear that if the data is noisy and 

if we were to use more than three data points, we should be able to get a more accurate 

estimate of the model parameters.

However, for m > 3, there is in general no exact solution, and we need to introduce an 

approximate solution that gives the best fit for the overdetermined system Ax ≈ b. A 

natural definition of the best fit for this system is to minimize the sum of square errors, 

min ( )x ii

m
r

=å 1

2 , where r = b − Ax is the residual vector. This leads to the least square 

solution of the problem Ax ≈ b, which minimizes the distances between the data points 

and the linear solution. In SymPy we can solve for the least square solution of an 

overdetermined system using the solve_least_squares method, and for numerical 

problems, we can use the SciPy function la.lstsq.

The following code demonstrates how the SciPy la.lstsq method can be used 

to fit the example model considered in the preceding section, and the result is shown 

in Figure 5-3. We first define the true parameters of the model, and then we simulate 
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measured data by adding random noise to the true model relation. The least square 

problem is then solved using the la.lstsq function, which in addition to the solution 

vector x also returns the total sum of square errors (the residual r), the rank rank and the 

singular values sv of the matrix A. However, in the following example, we only use the 

solution vector x.

In [44]: # define true model parameters

    ...: x = np.linspace(-1, 1, 100)

    ...: a, b, c = 1, 2, 3

    ...: y_exact = a + b * x + c * x**2

    ...:

    ...: # simulate noisy data

    ...: m = 100

    ...: X = 1 - 2 * np.random.rand(m)

    ...: Y = a + b * X + c * X**2 + np.random.randn(m)

    ...:

    ...: # fit the data to the model using linear least square

    ...: A = np.vstack([X**0, X**1, X**2])  # see np.vander for alternative

    ...: sol, r, rank, sv = la.lstsq(A.T, Y)

    ...:

    ...: y_fit = sol[0] + sol[1] * x + sol[2] * x**2

    ...: fig, ax = plt.subplots(figsize=(12, 4))

    ...:

    ...: ax.plot(X, Y, 'go', alpha=0.5, label='Simulated data')

    ...:  ax.plot(x, y_exact, 'k', lw=2, label='True value $y = 1 + 2x + 

3x^2$')

    ...: ax.plot(x, y_fit, 'b', lw=2, label='Least square fit')

    ...: ax.set_xlabel(r"$x$", fontsize=18)

    ...: ax.set_ylabel(r"$y$", fontsize=18)

    ...: ax.legend(loc=2)
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A good fit of data to a model obviously requires that the model used to describe the 

data correspond well to the underlying process that produced the data. In the following 

example (In [45]), and in Figure 5-4, we fit the same data used in the previous example 

to linear model and to a higher-order polynomial model (up to order 15). The former 

case corresponds to underfitting, where we have used a too simple model for the data, 

and the latter case corresponds to overfitting, where we have used a too complex model 

for the data, and thus fit the model not only to the underlying trend but also to the 

measurement noise. Using an appropriate model is an important and delicate aspect of 

data fitting.

In [45]: # fit the data to the model using linear least square:

    ...: # 1st order polynomial

    ...: A = np.vstack([X**n for n in range(2)])

    ...: sol, r, rank, sv = la.lstsq(A.T, Y)

    ...: y_fit1 = sum([s * x**n for n, s in enumerate(sol)])

    ...:

    ...: # 15th order polynomial

    ...: A = np.vstack([X**n for n in range(16)])

    ...: sol, r, rank, sv = la.lstsq(A.T, Y)

    ...: y_fit15 = sum([s * x**n for n, s in enumerate(sol)])

    ...:

    ...: fig, ax = plt.subplots(figsize=(12, 4))

    ...: ax.plot(X, Y, 'go', alpha=0.5, label='Simulated data')

Figure 5-3. Linear least square fit
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    ...:  ax.plot(x, y_exact, 'k', lw=2, label='True value $y = 1 + 2x + 

3x^2$')

    ...:  ax.plot(x, y_fit1, 'b', lw=2, label='Least square fit [1st 

order]')

    ...:  ax.plot(x, y_fit15, 'm', lw=2, label='Least square fit [15th 

order]')

    ...: ax.set_xlabel(r"$x$", fontsize=18)

    ...: ax.set_ylabel(r"$y$", fontsize=18)

    ...: ax.legend(loc=2)

 Eigenvalue Problems
A special system of equations of great theoretical and practical importance is the 

eigenvalue equation Ax = λx, where A is a N × N square matrix, x is an unknown vector, 

and λ is an unknown scalar. Here x is an eigenvector and λ an eigenvalue of the matrix A. 

The eigenvalue equation Ax = λx closely resembles the linear equation system Ax = b, but 

note that here both x and λ are unknown, so we cannot directly apply the same techniques 

to solve this equation. A standard approach to solve this eigenvalue problem is to rewrite 

the equation as (A − Iλ)x = 0 and note that for there to exist a nontrivial solution, x ≠ 0, the 

matrix A − Iλ must be singular, and its determinant must be zero, det(A − Iλ) = 0. This gives 

a polynomial equation (the characteristic polynomial) of Nth order whose N roots give the 

N eigenvalues ln n

N{ } =1
. Once the eigenvalues are known, the equation (A − Iλn)xn = 0 can 

be solved for the nth eigenvector xn using standard forward substitution.

Figure 5-4. Graph demonstrating underfitting and overfitting of data using the 
linear least square method
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Both SymPy and the linear algebra package in SciPy contain solvers for eigenvalue 

problems. In SymPy, we can use the eigenvals and eigenvects methods of the Matrix 

class, which are able to compute the eigenvalues and eigenvectors of some matrices with 

elements that are symbolic expressions. For example, to compute the eigenvalues and 

eigenvectors of symmetric 2 × 2 matrix with symbolic elements, we can use

In [46]: eps, delta = sympy.symbols("epsilon, Delta")

In [47]: H = sympy.Matrix([[eps, delta], [delta, -eps]])

In [48]: H
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In [49]: H.eigenvals()
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The return value of the eigenvals method is a dictionary where each eigenvalue 

is a key, and the corresponding value is the multiplicity of that particular eigenvalue. 

Here the eigenvalues are - +e 2 2D  and e 2 2+D , each with multiplicity one. The 

return value of eigenvects is a bit more involved: a list is returned where each element 

is a tuple containing an eigenvalue, the multiplicity of the eigenvalue, and a list of 

eigenvectors. The number of eigenvectors for each eigenvalue equals the multiplicity. 

For the current example, we can unpack the value returned by eigenvects and verify that 

the two eigenvectors are orthogonal using, for example,

In [51]: (eval1, _, evec1), (eval2, _, evec2) = H.eigenvects()

In [52]: sympy.simplify(evec1[0].T * evec2[0])

Out[52]: [0]

Obtaining analytical expressions for eigenvalues and eigenvectors using these 

methods is often very desirable indeed, but unfortunately it only works for small 

matrices. For anything larger than a 3 × 3, the analytical expression typically becomes 

extremely lengthy and cumbersome to work with even using a computer algebra 

system such as SymPy. Therefore, for larger systems we must resort to a fully numerical 
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approach. For this we can use the la.eigvals and la.eig functions in the SciPy linear 

algebra package. Matrices that are either Hermitian or real symmetric have real-valued 

eigenvalues, and for such matrices, it is advantageous to instead use the functions 

la.eigvalsh and la.eigh, which guarantees that the eigenvalues returned by the 

function are stored in a NumPy array with real values. For example, to solve a numerical 

eigenvalue problem with la.eig, we can use

In [53]: A = np.array([[1, 3, 5], [3, 5, 3], [5, 3, 9]])

In [54]: evals, evecs = la.eig(A)

In [55]: evals

Out[55]: array([ 13.35310908+0.j,  -1.75902942+0.j,   3.40592034+0.j])

In [56]: evecs

Out[56]: array([[ 0.42663918,  0.90353276, -0.04009445],

                [ 0.43751227, -0.24498225, -0.8651975 ],

                [ 0.79155671, -0.35158534,  0.49982569]])

In [57]: la.eigvalsh(A)

Out[57]: array([ -1.75902942,   3.40592034,  13.35310908])

Since the matrix in this example is symmetric, we could use la.eigh and la.

eigvalsh, giving real-valued eigenvalue arrays, as shown in the cell Out[57] in the 

preceding code listing.

 Nonlinear Equations
In this section we consider nonlinear equations. Systems of linear equations, as considered 

in the previous sections of this chapter, are of fundamental importance in scientific 

computing because they are easily solved and can be used as important building blocks 

in many computational methods and techniques. However, in natural sciences and in 

engineering disciplines, many, if not most, systems are intrinsically nonlinear.

A linear function f (x) by definition satisfies additivity f (x+y) = f (x)+f (y) and 

homogeneity f (αx) = αf (x), which can be written together as the superposition principle 

f (αx+βy) = αf (x)+βf (y). This gives a precise definition of linearity. A nonlinear function, 

in contrast, is a function that does not satisfy these conditions. Nonlinearity is therefore 

a much broader concept, and a function can be nonlinear in many different ways. 

However, in general, an expression that contains a variable with a power greater that one 

is nonlinear. For example, x2+x+1 is nonlinear because of the x2 term.
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A nonlinear equation can always be written on the form f (x) = 0, where f (x) is a 

nonlinear function and we seek the value of x (which can be a scalar or a vector) such 

that f (x) is zero. This x is called the root of the function f (x), and equation solving is 

therefore often referred to as root finding. In contrast to the previous section of this 

chapter, in this section we need to distinguish between univariate equation solving and 

multivariate equations, in addition to single equations and system of equations.

 Univariate Equations
A univariate function is a function that depends only on a single variable f (x), where x 

is a scalar, and the corresponding univariate equation is on the form f (x) = 0. Typical 

examples of this type of equation are polynomials, such as x2 − x+1 = 0, and expressions 

containing elementary functions, such as x3 − 3 sin (x) = 0 and exp(x) − 2 = 0. Unlike for 

linear systems, there are no general methods for determining if a nonlinear equation has 

a solution, or multiple solutions, or if a given solution is unique. This can be understood 

intuitively from the fact that graphs of nonlinear functions correspond to curves that can 

intersect x = 0 in an arbitrary number of ways.

Because of the vast number of possible situations, it is difficult to develop a 

completely automatic approach to solving nonlinear equations. Analytically, only 

equations on special forms can be solved exactly. For example, polynomials of up to 4th 

order, and in some special cases also higher orders, can be solved analytically, and some 

equations containing trigonometric and other elementary functions may be solvable 

analytically. In SymPy we can solve many analytically solvable univariate and nonlinear 

equations using the sympy.solve function. For example, to solve the standard quadratic 

equation a+bx+cx2 = 0, we define an expression for the equation and pass it to the sympy.

solve function:

In [58]: x, a, b, c = sympy.symbols("x, a, b, c")

In [59]: sympy.solve(a + b*x + c*x**2, x)

Out[59]: [(-b + sqrt(-4*a*c + b**2))/(2*c), -(b + sqrt(-4*a*c + b**2))/(2*c)]

The solution is indeed the well-known formula for the solution of this equation. The 

same method can be used to solve some trigonometric equations:

In [60]: sympy.solve(a * sympy.cos(x) - b * sympy.sin(x), x)

Out[60]:  [-2*atan((b - sqrt(a**2 + b**2))/a), -2*atan((b +  

sqrt(a**2 + b**2))/a)]
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However, in general nonlinear equations are typically not solvable analytically. For 

example, equations that contain both polynomial expressions and elementary functions, 

such as sinx = x, are often transcendental and do not have an algebraic solution. If we 

attempt to solve such an equation using SymPy, we obtain an error in the form of an 

exception:

In [61]: sympy.solve(sympy.sin(x)-x, x)

...

NotImplementedError: multiple generators [x, sin(x)]

No algorithms are implemented to solve equation -x + sin(x)

In this type of situation, we need to resort to various numerical techniques. As a first 

step, it is often very useful to graph the function. This can give important clues about the 

number of solutions to the equation and their approximate locations. This information 

is often necessary when applying numerical techniques to find good approximations to 

the roots of the equations. For example, consider the following example (In [62]), which 

plots four examples of nonlinear functions, as shown in Figure 5-5. From these graphs, 

we can immediately conclude that the plotted functions, from left to right, have two, 

three, one, and a large number of roots (at least within the interval that is being graphed).

In [62]: x = np.linspace(-2, 2, 1000)

    ...: # four examples of nonlinear functions

    ...: f1 = x**2 - x - 1

    ...: f2 = x**3 - 3 * np.sin(x)

    ...: f3 = np.exp(x) - 2

    ...: f4 = 1 - x**2 + np.sin(50 / (1 + x**2))

    ...:

    ...: # plot each function

    ...: fig, axes = plt.subplots(1, 4, figsize=(12, 3), sharey=True)

    ...:

    ...: for n, f in enumerate([f1, f2, f3, f4]):

    ...:     axes[n].plot(x, f, lw=1.5)

    ...:     axes[n].axhline(0, ls=':', color='k')

    ...:     axes[n].set_ylim(-5, 5)

    ...:     axes[n].set_xticks([-2, -1, 0, 1, 2])

    ...:     axes[n].set_xlabel(r'$x$', fontsize=18)

    ...:
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    ...: axes[0].set_ylabel(r'$f(x)$', fontsize=18)

    ...:

    ...: titles = [r'$f(x)=x^2-x-1$', r'$f(x)=x^3-3\sin(x)$',

    ...:            r'$f(x)=\exp(x)-2$', r'$f(x)=\sin\left(50/(1+x^2)\

right)+1-x^2$']

    ...: for n, title in enumerate(titles):

    ...:     axes[n].set_title(title)

To find the approximate location of a root to an equation, we can apply one of the 

many techniques for numerical root finding, which typically applies an iterative scheme 

where the function is evaluated at successive points until the algorithm has narrowed in 

on the solution, to the desired accuracy. Two standard methods that illustrate the basic 

idea of how many numerical root-finding methods work are the bisection method and 

the Newton method.

The bisection method requires a starting interval [a, b] such that f (a) and f (b) have 

different signs. This guarantees that there is at least one root within this interval. In each 

iteration, the function is evaluated in the middle point m between a and b, and sign of 

the function is different at a and m, and then the new interval [a, b = m] is chosen for 

the next iteration. Otherwise the interval [a = m, b] is chosen for the next iteration. This 

guarantees that in each iteration, the function has a different sign at the two endpoints 

of the interval, and in each iteration the interval is halved and therefore converges 

toward a root of the equation. The following code example demonstrates a simple 

implementation of the bisection method with a graphical visualization of each step, as 

shown in Figure 5-6.

Figure 5-5. Graphs of four examples of nonlinear functions
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In [63]: # define a function, desired tolerance and starting interval [a, b]

    ...: f = lambda x: np.exp(x) - 2

    ...: tol = 0.1

    ...: a, b = -2, 2

    ...: x = np.linspace(-2.1, 2.1, 1000)

    ...:

    ...: # graph the function f

    ...: fig, ax = plt.subplots(1, 1, figsize=(12, 4))

    ...:

    ...: ax.plot(x, f(x), lw=1.5)

    ...: ax.axhline(0, ls=':', color='k')

    ...: ax.set_xticks([-2, -1, 0, 1, 2])

    ...: ax.set_xlabel(r'$x$', fontsize=18)

    ...: ax.set_ylabel(r'$f(x)$', fontsize=18)

    ...:

    ...: # find the root using the bisection method and visualize

    ...: # the steps in the method in the graph

    ...: fa, fb = f(a), f(b)

    ...:

    ...: ax.plot(a, fa, 'ko')

    ...: ax.plot(b, fb, 'ko')

    ...: ax.text(a, fa + 0.5, r"$a$", ha='center', fontsize=18)

    ...: ax.text(b, fb + 0.5, r"$b$", ha='center', fontsize=18)

    ...:

    ...: n = 1

    ...: while b - a > tol:

    ...:     m = a + (b - a)/2

    ...:     fm = f(m)

    ...:

    ...:     ax.plot(m, fm, 'ko')

    ...:     ax.text(m, fm - 0.5, r"$m_%d$" % n, ha='center')

    ...:     n += 1

    ...:

    ...:     if np.sign(fa) == np.sign(fm):
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    ...:         a, fa = m, fm

    ...:     else:

    ...:         b, fb = m, fm

    ...:

    ...: ax.plot(m, fm, 'r*', markersize=10)

    ...: ax.annotate("Root approximately at %.3f" % m,

    ...:             fontsize=14, family="serif",

    ...:             xy=(a, fm), xycoords='data',

    ...:             xytext=(-150, +50), textcoords='offset points',

    ...:              arrowprops=dict(arrowstyle="->", 

connectionstyle="arc3, rad=-.5"))

    ...:

    ...: ax.set_title("Bisection method")

Another standard method for root finding is Newton’s method, which converges 

faster than the bisection method discussed in the previous paragraph. While the 

bisection method only uses the sign of the function at each point, Newton’s method uses 

the actual function values to obtain a more accurate approximation of the nonlinear 

function. In particular, it approximates the function f (x) with its first-order Taylor 

expansion f (x+dx) = f (x)+dx f ′(x), which is a linear function whose root is easily found 

to be x – f (x)/f ′(x). Of course, this does not need to be a root of the function f(x), but in 

many cases it is a good approximation for getting closer to a root of f (x). By iterating this 

scheme, xk+1 = xk − f (xk)/f ′(xk), we may approach the root of the function. A potential 

problem with this method is that it fails if f ′(xk) is zero at some point xk. This special 

case would have to be dealt with in a real implementation of this method. The following 

Figure 5-6. Graphical visualization of how the bisection method works
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example (In [64]) demonstrates how this method can be used to solve for the root of 

the equation exp(x) − 2 = 0, using SymPy to evaluate the derivative of the function f (x), 

and Figure 5-7 visualizes the steps in this root-finding process.

In [64]: # define a function, desired tolerance and starting point xk

    ...: tol = 0.01

    ...: xk = 2

    ...:

    ...: s_x = sympy.symbols("x")

    ...: s_f = sympy.exp(s_x) - 2

    ...:

    ...: f = lambda x: sympy.lambdify(s_x, s_f, 'numpy')(x)

    ...: fp = lambda x: sympy.lambdify(s_x, sympy.diff(s_f, s_x), 'numpy')(x)

    ...:

    ...: x = np.linspace(-1, 2.1, 1000)

    ...:

    ...: # setup a graph for visualizing the root finding steps

    ...: fig, ax = plt.subplots(1, 1, figsize=(12, 4))

    ...: ax.plot(x, f(x))

    ...: ax.axhline(0, ls=':', color='k')

    ...:

    ...: #  iterate Newton's method until convergence to the desired 

tolerance has been reached

    ...: n = 0

    ...: while f(xk) > tol:

    ...:     xk_new = xk - f(xk) / fp(xk)

    ...:

    ...:     ax.plot([xk, xk], [0, f(xk)], color='k', ls=':')

    ...:     ax.plot(xk, f(xk), 'ko')

    ...:     ax.text(xk, -.5, r'$x_%d$' % n, ha='center')

    ...:     ax.plot([xk, xk_new], [f(xk), 0], 'k-')

    ...:

    ...:     xk = xk_new

    ...:     n += 1

    ...:

    ...: ax.plot(xk, f(xk), 'r*', markersize=15)
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    ...: ax.annotate("Root approximately at %.3f" % xk,

    ...:             fontsize=14, family="serif",

    ...:             xy=(xk, f(xk)), xycoords='data',

    ...:             xytext=(-150, +50), textcoords='offset points',

    ...:              arrowprops=dict(arrowstyle="->", 

connectionstyle="arc3, rad=-.5"))

    ...:

    ...: ax.set_title("Newtown's method")

    ...: ax.set_xticks([-1, 0, 1, 2])

A potential issue with Newton’s method is that it requires both the function values 

and the values of the derivative of the function in each iteration. In the previous 

example, we used SymPy to symbolically compute the derivatives. In an all-numerical 

implementation, this is of course not possible, and a numerical approximation of the 

derivative would be necessary, which would in turn require further function evaluations. 

A variant of Newton’s method that bypasses the requirement to evaluate function 

derivatives is the secant method, which uses two previous function evaluations to obtain 

a linear approximation of the function, which can be used to compute a new estimate of 

the root. The iteration formula for the secant method is x x f x
x x

f x f xk k k
k k

k k
+

-

-

= - ( ) -
( ) - ( )1

1

1

. 

This is only one example of the many variants and possible refinements on the basic idea 

of Newton’s method. State-of-the-art implementations of numerical root-finding 

functions typically use the basic idea of either the bisection method of Newton’s method 

or a combination of both but additionally use various refinement strategies, such as 

higher-order interpolations of the function to achieve faster convergence.

Figure 5-7. Visualization of the root-finding steps in Newton’s method for the 
equation exp(x) − 2 = 0
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The SciPy optimize module provides multiple functions for numerical root finding. 

The optimize.bisect and optimize.newton functions implement variants of bisection 

and Newton methods. The optimize.bisect takes three arguments: first a Python 

function (e.g., a lambda function) that represents the mathematical function for the 

equation for which a root is to be calculated and the second and third arguments are the 

lower and upper values of the interval for which to perform the bisection method. Note 

that the sign of the function has to be different at the points a and b for the bisection 

method to work, as discussed earlier. Using the optimize.bisect function, we can 

calculate the root of the equation exp(x) − 2 = 0 that we used in the previous examples, 

using

In [65]: optimize.bisect(lambda x: np.exp(x) - 2, -2, 2)

Out[65]: 0.6931471805592082

As long as f (a) and f (b) indeed have different signs, this is guaranteed to give a root 

within the interval [a, b]. In contrast, the function optimize.newton for Newton’s method 

takes a function as the first argument and an initial guess for the root of the function as 

the second argument. Optionally, it also takes an argument for specifying the derivative 

of the function, using the fprime keyword argument. If fprime is given, Newton’s 

method is used; otherwise the secant method is used instead. To find the root of the 

equation expx − 2 = 0, with and without specifying its derivative, we can use

In [66]: x_root_guess = 2

In [67]: f = lambda x: np.exp(x) – 2

In [68]: fprime = lambda x: np.exp(x)

In [69]: optimize.newton(f, x_root_guess)

Out[69]: 0.69314718056

In [70]: optimize.newton(f, x_root_guess, fprime=fprime)

Out[70]: 0.69314718056

Note that with this method, we have less control over which root is being computed, 

if the function has multiple roots. For instance, there is no guarantee that the root the 

function returns is the closest one to the initial guess; we cannot know in advance if the 

root is larger or smaller than the initial guess.

The SciPy optimize module provides additional functions for root finding. In 

particular, the optimize.brentq and optimize.brenth functions, which are variants of 

the bisection method, also work on an interval where the function changes sign. The 
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optimize.brentq function is generally considered the preferred all-around root-finding 

function in SciPy. To find a root of the same equation that we considered previously, 

using optimize.brentq and optimize.brenth functions, we can use

In [71]: optimize.brentq(lambda x: np.exp(x) - 2, -2, 2)

Out[71]: 0.6931471805599453

In [72]: optimize.brenth(lambda x: np.exp(x) - 2, -2, 2)

Out[72]: 0.6931471805599381

Note that these two functions take a Python function for the equation as the first 

argument and the lower and upper values of the sign-changing interval as the second 

and third arguments.

 Systems of Nonlinear Equations
In contrast to a linear system of equations, we cannot in general write a system of 

nonlinear equations as a matrix-vector multiplication. Instead we represent a system of 

multivariate nonlinear equations as a vector-valued function, for example, f : ℝN → ℝN, 

that takes an N-dimensional vector and maps it to another N-dimensional vector. 

Multivariate systems of equations are much more complicated to solve than univariate 

equations, partly because there are so many more possible behaviors. As a consequence, 

there is no method that strictly guarantees convergence to a solution, such as the 

bisection method for a univariate nonlinear equation, and the methods that do exist 

are much more computationally demanding than the univariate case, especially as the 

number of variables increases.

Not all methods that we previously discussed for univariate equation solving can 

be generalized to the multivariate case. For example, the bisection method cannot be 

directly generalized to a multivariate equation system. On the other hand, Newton’s 

method can be used for multivariate problems, and in this case its iteration formula 

is xk+1 = xk − Jf(xk)−1f (xk), where Jf (xk) is the Jacobian matrix of the function f (x), with 

elements [Jf (xk) ]ij = ∂fi(xk)/∂xj. Instead of inverting the Jacobian matrix, it is sufficient to 

solve the linear equation system Jf (xk)δxk =  − f (xk) and update xk using xk+1 = xk+δxk. Like 

the secant variants of the Newton method for univariate equation systems, there are also 

variants of the multivariate method that avoid computing the Jacobian by estimating it 

from previous function evaluations. Broyden’s method is a popular example of this type 

of secant updating method for multivariate equation systems. In the SciPy optimize 
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module, broyden1 and broyden2 provide two implementations of Broyden’s method 

using different approximations of the Jacobian, and the function optimize.fsolve 

provides an implementation of a Newton-like method, where optionally the Jacobian 

can be specified, if available. The functions all have a similar function signature: The first 

argument is a Python function that represents the equation to be solved, and it should 

take a NumPy array as the first argument and return an array of the same shape. The 

second argument is an initial guess for the solution, as a NumPy array. The optimize.

fsolve function also takes an optional keyword argument fprime, which can be used 

to provide a function that returns the Jacobian of the function f (x). In addition, all these 

functions take numerous optional keyword arguments for tuning their behavior (see the 

docstrings for details).

For example, consider the following system of two multivariate and nonlinear 

equations

 

y x x

y x

- - + =
+ - =
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which can be represented by the vector-valued function 

f ([x1, x2]) = [x2 − x1
3 − 2x1

2+1, x2+x1
2 − 1]. To solve this equation system using SciPy, we 

need to define a Python function for f ([x1, x2]) and call, for example, the optimize.fsolve 

using the function and an initial guess for the solution vector:

In [73]: def f(x):

    ...:     return [x[1] - x[0]**3 - 2 * x[0]**2 + 1, x[1] + x[0]**2 - 1]

In [74]: optimize.fsolve(f, [1, 1])

Out[74]: array([ 0.73205081,  0.46410162])

The optimize.broyden1 and optimize.broyden2 can be used in a similar manner. 

To specify a Jacobian for optimize.fsolve to use, we need to define a function that 

evaluates the Jacobian for a given input vector. This requires that we first derive the 

Jacobian by hand or, for example, using SymPy

In [75]: x, y = sympy.symbols("x, y")

In [76]: f_mat = sympy.Matrix([y - x**3 -2*x**2 + 1, y + x**2 - 1])

In [77]: f_mat.jacobian(sympy.Matrix([x, y]))

Out[77]: 
- -æ

è
ç

ö

ø
÷

3 4 1

2 1

2x x

x
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which we can then easily implement as a Python function that can be passed to the 

optimize.fsolve function:

In [78]: def f_jacobian(x):

    ...:     return [[-3*x[0]**2-4*x[0], 1], [2*x[0], 1]]

In [79]: optimize.fsolve(f, [1, 1], fprime=f_jacobian)

Out[79]: array([ 0.73205081,  0.46410162])

As with the Newton’s method for a univariate nonlinear equation system, the initial 

guess for the solution is important, and different initial guesses may result in different 

solutions that are found for the equations. There is no guarantee that any particular 

solution is found, although the proximity of the initial guess to the true solution often is 

correlated with convergence to that particular solution. When possible, it is often a good 

approach to graph the equations that are being solved, to give a visual indication of the 

number of solutions and their locations. For example, the following code demonstrates 

how three different solutions can be found to the equation systems we are considering 

here, by using different initial guesses with the optimize.fsolve function. The result is 

shown in Figure 5-8.

In [80]: def f(x):

    ...:     return [x[1] - x[0]**3 - 2 * x[0]**2 + 1,

    ...:             x[1] + x[0]**2 - 1]

    ...:

    ...: x = np.linspace(-3, 2, 5000)

    ...: y1 = x**3 + 2 * x**2 -1

    ...: y2 = -x**2 + 1

    ...:

    ...: fig, ax = plt.subplots(figsize=(8, 4))

    ...:

    ...: ax.plot(x, y1, 'b', lw=1.5, label=r'$y = x^3 + 2x^2 - 1$')

    ...: ax.plot(x, y2, 'g', lw=1.5, label=r'$y = -x^2 + 1$')

    ...:

    ...: x_guesses = [[-2, 2], [1, -1], [-2, -5]]

    ...: for x_guess in x_guesses:

    ...:     sol = optimize.fsolve(f, x_guess)

    ...:     ax.plot(sol[0], sol[1], 'r*', markersize=15)

    ...:
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    ...:     ax.plot(x_guess[0], x_guess[1], 'ko')

    ...:      ax.annotate( "", xy=(sol[0], sol[1]), xytext=(x_guess[0],  

x_guess[1]),

    ...:                 arrowprops=dict(arrowstyle="->", linewidth=2.5))

    ...:

    ...: ax.legend(loc=0)

    ...: ax.set_xlabel(r'$x$', fontsize=18)

By systematically solving the equation systems with different initial guesses, we 

can build a visualization of how different initial guesses converge to different solutions. 

This is done in the following code example, and the result is shown in Figure 5-9. 

This example demonstrates that even for this relatively simple example, the regions 

of initial guesses that converge to different solutions are highly nontrivial, and there 

are also missing dots which corresponds to initial guesses for which the algorithm 

fails to converge to any solution. Nonlinear equation solving is a complex task, 

and visualizations of different types can often be a valuable tool when building an 

understanding of the characteristics of a particular problem.

In [81]: fig, ax = plt.subplots(figsize=(8, 4))

    ...:

    ...: ax.plot(x, y1, 'k', lw=1.5)

    ...: ax.plot(x, y2, 'k', lw=1.5)

Figure 5-8. Graph of a system of two nonlinear equations. The solutions are 
indicated with red stars and the initial guess with a black dot and an arrow to the 
solution each initial guess eventually converged to.
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    ...:

    ...: sol1 = optimize.fsolve(f, [-2,  2])

    ...: sol2 = optimize.fsolve(f, [ 1, -1])

    ...: sol3 = optimize.fsolve(f, [-2, -5])

    ...: sols = [sol1, sol2, sol3]

    ...: for idx, s in enumerate(sols):

    ...:     ax.plot(s[0], s[1], colors[idx]+'*', markersize=15)

    ...:

    ...: colors = ['r', 'b', 'g']

    ...: for m in np.linspace(-4, 3, 80):

    ...:     for n in np.linspace(-15, 15, 40):

    ...:         x_guess = [m, n]

    ...:         sol = optimize.fsolve(f, x_guess)

    ...:         idx = (abs(sols - sol)**2).sum(axis=1).argmin()

    ...:         ax.plot(x_guess[0], x_guess[1], colors[idx]+'.')

    ...:

    ...: ax.set_xlabel(r'$x$', fontsize=18)

Figure 5-9. Visualization of the convergence of different initial guesses to different 
solutions. Each dot represents an initial guess, and its color encodes which solution 
it eventually converges to. The solutions are marked with correspondingly color- 
coded stars.
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 Summary
In this chapter we have explored methods for solving algebraic equations using the 

SymPy and SciPy libraries. Equation solving is one of the most elementary mathematical 

tools for computational sciences, and it is both an important component in many 

algorithms and methods and has direct applications in many problem-solving 

situations. In some cases, analytical algebraic solutions exist, especially for equations 

that are polynomials or contain certain combinations of elementary functions, and 

such equations can often be handled symbolically with SymPy. For equations with no 

algebraic solution, and for larger systems of equations, numerical methods are usually 

the only feasible approach. Linear equation systems can always be systematically 

solved, and for this reason there is an abundance of important applications for linear 

equation systems, be it for originally linear systems or as approximations to originally 

nonlinear systems. Nonlinear equation solving requires a different set of methods, and 

it is in general much more complex and computationally demanding compared to 

linear equation systems. In fact, solving linear equation systems is an important step 

in the iterative methods employed in many of the methods that exist to solve nonlinear 

equation systems. For numerical equation solving, we can use the linear algebra and 

optimization modules in SciPy, which provide efficient and well-tested methods for 

numerical root finding and equation solving of both linear and nonlinear systems.

 Further Reading
Equation solving is a basic numerical technique whose methods are covered in most 

introductory numerical analysis texts. A good example of a book that covers these 

topics is Heath (2001), and W.H. Press (2007) gives a practical introduction with 

implementation details.

 References
Heath, M. (2001). Scientific Computing. Boston: McGraw-Hill.

W.H. Press, S. T. (2007). Numerical Recipes: The Art of Scientific Computing (3rd ed.). 

Cambridge: Cambridge University Press.

ChAPTer 5  equATioN SolviNg



213
© Robert Johansson 2019 
R. Johansson, Numerical Python, https://doi.org/10.1007/978-1-4842-4246-9_6

CHAPTER 6

Optimization
In this chapter, we will build on Chapter 5 about equation solving and explore the related 

topic of solving optimization problems. In general, optimization is the process of finding 

and selecting the optimal element from a set of feasible candidates. In mathematical 

optimization, this problem is usually formulated as determining the extreme value 

of a function on a given domain. An extreme value, or an optimal value, can refer to 

either the minimum or maximum of the function, depending on the application and 

the specific problem. In this chapter we are concerned with the optimization of real- 

valued functions of one or several variables, which optionally can be subject to a set of 

constraints that restricts the domain of the function.

The applications of mathematical optimization are many and varied, and so are the 

methods and algorithms that must be employed to solve optimization problems. Since 

optimization is a universally important mathematical tool, it has been developed and 

adapted for use in many fields of science and engineering, and the terminology used to 

describe optimization problems varies between fields. For example, the mathematical 

function that is optimized may be called a cost function, loss function, energy function, 

or objective function, to mention a few. Here we use the generic term objective function.

Optimization is closely related to equation solving because at an optimal value of 

a function, its derivative, or gradient in the multivariate case, is zero. The converse, 

however, is not necessarily true, but a method to solve optimization problems is to 

solve for the zeros of the derivative or the gradient and test the resulting candidates 

for optimality. This approach is not always feasible though, and often it is required to 

take other numerical approaches, many of which are closely related to the numerical 

methods for root finding that was covered in Chapter 5.

In this chapter we discuss using SciPy’s optimization module optimize for nonlinear 

optimization problems, and we will briefly explore using the convex optimization library 

cvxopt for linear optimization problems with linear constraints. This library also has 

powerful solvers for quadratic programming problems.
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cvxopt  The convex optimization library cvxopt provides solvers for linear and 
quadratic optimization problems. At the time of writing, the latest version is 1.1.9. 
For more information, see the project’s web site http://cvxopt.org. Here we 
use this library for constrained linear optimization.

 Importing Modules
Like in the previous chapter, here we use the optimize module from the SciPy library. 

Here we assume that this module is imported in the following manner:

In [1]: from scipy import optimize

In the later part of this chapter, we also look at linear programming using the cvxopt 

library, which we assume to be imported in its entirety without any alias:

In [2]: import cvxopt

For basic numerics, symbolics, and plotting, here we also use the NumPy, SymPy, 

and Matplotlib libraries, which are imported and initialized using the conventions 

introduced in earlier chapters:

In [3]: import matplotlib.pyplot as plt

In [4]: import numpy as np

In [5]: import sympy

In [6]: sympy.init_printing()

 Classification of Optimization Problems
Here we restrict our attention to mathematical optimization of real-valued functions, 

with one or more dependent variables. Many mathematical optimization problems can 

be formulated in this way, but a notable exception is optimization of functions over 

discrete variables, for example, integers, which is beyond the scope of this book.

A general optimization problem of the type considered here can be formulated as a 

minimization problem, minx f x( ) , subject to sets of m equality constraints g(x) = 0 and 

p inequality constraints h(x) ≤ 0. Here f(x) is a real-valued function of x, which can be a 
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scalar or a vector x = (x0, x1, …, xn)T, while g(x) and h(x) can be vector-valued functions: 

f : ℝn ⟶ ℝ, g : ℝn ⟶ ℝm and h : ℝn ⟶ ℝp. Note that maximizing f (x) is equivalent to 

minimizing –f (x), so without loss of generality, it is sufficient to consider only 

minimization problems.

Depending on the properties of the objective function f (x) and the equality and 

inequality constraints g(x) and h(x), this formulation includes a rich variety of problems. 

A general mathematical optimization on this form is difficult to solve, and there are 

no efficient methods for solving completely generic optimization problems. However, 

there are efficient methods for many important special cases, and in optimization it is 

therefore important to know as much as possible about the objective functions and the 

constraints in order to be able to solve a problem.

Optimization problems are classified depending on the properties of the functions 

f (x), g(x), and h(x). First and foremost, the problem is univariate or one dimensional if x 

is a scalar, x ∈ ℝ, and multivariate or multidimensional if x is a vector, x ∈ ℝn. For high- 

dimensional objective functions, with larger n, the optimization problem is harder and 

more computationally demanding to solve. If the objective function and the constraints 

all are linear, the problem is a linear optimization problem, or linear programming 

problem.1 If either the objective function or the constraints are nonlinear, it is a 

nonlinear optimization problem, or a nonlinear programming problem. With respect 

to constraints, important subclasses of optimization are unconstrained problems, and 

those with linear and nonlinear constraints. Finally, handling equality and inequality 

constraints requires different approaches.

As usual, nonlinear problems are much harder to solve than linear problems, 

because they have a wider variety of possible behaviors. A general nonlinear problem 

can have both local and global minima, which turns out to make it very difficult to find 

the global minima: iterative solvers may often converge to local minima rather than 

the global minima or may even fail to converge altogether if there are both local and 

global minima. However, an important subclass of nonlinear problems that can be 

solved efficiently is convex problems, which is directly related to the absence of strictly 

local minima and the existence of a unique global minimum. By definition, a function 

is convex on an interval [a, b] if the values of the function on this interval lie below the 

line through the endpoints (a, f (a)) and (b, f (b)). This condition, which can be readily 

generalized to the multivariate case, implies a number of important properties, such as 

1 For historical reasons optimization problems are often referred to as programming problems, 
which are not related to computer programming.
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the existence of a unique minimum on the interval. Because of strong properties like 

this one, convex problems can be solved efficiently even though they are nonlinear. 

The concepts of local and global minima, and convex and nonconvex functions, are 

illustrated in Figure 6-1.

Whether the objective function f (x) and the constraints g(x) and h(x) are continuous 

and smooth are properties that have very important implications for the methods and 

techniques that can be used to solve an optimization problem. Discontinuities in these 

functions, or their derivatives or gradients, cause difficulties for many of the available 

methods of solving optimization problems, and in the following, we assume that these 

functions are indeed continuous and smooth. On a related note, if the function itself is 

not known exactly, but contains noise due to measurements or for other reasons, many 

of the methods discussed in the following may not be suitable.

Optimization of continuous and smooth functions are closely related to nonlinear 

equation solving, because extremal values of a function f  (x) correspond to points 

where its derivative, or gradient, is zero. Finding candidates for the optimal value 

of f (x) is therefore equivalent to solving the (in general nonlinear) equation system 

∇f (x) = 0. However, a solution to ∇f (x) = 0, which is known as a stationary point, does 

not necessarily correspond to a minimum of f (x); it can also be maximum or a saddle 

point; see Figure 6-2. Candidates obtained by solving ∇f (x) = 0 should therefore be tested 

for optimality. For unconstrained objective functions, the higher-order derivatives, or 

Hessian matrix

H x
f x

x xf ij
i j
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Figure 6-1. Illustration of a convex function (left) and a nonconvex function 
(right) with a global minimum and two local minima
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for the multivariate case, can be used to determine if a stationary point is a local 

minimum or not. In particular if the second-order derivative is positive, or the Hessian 

positive definite, when evaluated at stationary point x∗, then x∗ is a local minimum. 

Negative second-order derivative, or negative definite Hessian, corresponds to a local 

maximum, and a zero second-order derivative, or an indefinite Hessian, corresponds to 

saddle point.

Algebraically solving the equation system ∇f (x) = 0 and testing the candidate 

solutions for optimality is therefore one possible strategy for solving an optimization 

problem. However, it is not always a feasible method. In particular, we may not have 

an analytical expression for f (x) from which we can compute the derivatives, and the 

resulting nonlinear equation system may not be easy to solve, especially not to find all of 

its roots. For such cases, there are alternative numerical optimization approaches, some 

of which have analogs among the root-finding methods discussed in Chapter 5. In the 

remaining part of this chapter, we explore the various classes of optimization problems 

and how such problems can be solved in practice using available optimization libraries 

for Python.

 Univariate Optimization
Optimization of a function that only depends on a single variable is relatively easy. In 

addition to the analytical approach of seeking the roots of the derivative of the function, 

we can employ techniques that are similar to the root-finding methods for univariate 

functions, namely, bracketing methods and Newton’s method. Like the bisection 

method for univariate root finding, it is possible to use bracketing and iteratively refine 

an interval using function evaluations alone. Refining an interval [a, b] that contains 

a minimum can be achieved by evaluating the function at two interior points x1 and 

Figure 6-2. Illustration of different stationary points of a one-dimensional 
function
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x2, x1 < x2, and selecting [x1, b] as new interval if f (x1) > f (x2), and [a, x2] otherwise. This 

idea is used in the golden section search method, which additionally uses the trick of 

choosing x1 and x2 such that their relative positions in the [a, b] interval satisfy the golden 

ratio. This has the advantage of allowing to reuse one function evaluation from the 

previous iteration and thus only requiring one new function evaluation in each iteration 

but still reducing the interval with a constant factor in each iteration. For functions with 

a unique minimum on the given interval, this approach is guaranteed to converge to an 

optimal point, but this is unfortunately not guaranteed for more complicated functions. 

It is therefore important to carefully select the initial interval, ideally relatively close to 

an optimal point. In the SciPy optimize module, the function golden implements the 

golden search method.

As the bisection method for root finding, the golden search method is a 

(relatively) safe but a slowly converging method. Methods with better convergence 

can be constructed if the values of the function evaluations are used, rather than 

only comparing the values to each other (which is similar to using only the sign of 

the functions, as in the bisection method). The function values can be used to fit a 

polynomial, for example, a quadratic polynomial, which can be interpolated to find a 

new approximation for the minimum, giving a candidate for a new function evaluation, 

after which the process can be iterated. This approach can converge faster but is riskier 

than bracketing and may not converge at all or may converge to local minima outside the 

given bracket interval.

Newton’s method for root finding is an example of a quadratic approximation 

method that can be applied to find a function minimum, by applying the method 

to the derivative rather than the function itself. This yields the iteration formula 

xk+1 = xk − f ′(xk)/f ′′(xk), which can converge quickly if started close to an optimal point 

but may not converge at all if started too far from the optimal value. This formula also 

requires evaluating both the derivative and the second-order derivative in each iteration. 

If analytical expressions for these derivatives are available, this can be a good method. 

If only function evaluations are available, the derivatives may be approximated using an 

analog of the secant method for root finding.

A combination of the two previous methods is typically used in practical 

implementations of univariate optimization routines, giving both stability and fast 

convergence. In SciPy’s optimize module, the brent function is such a hybrid method, 

and it is generally the preferred method for optimization of univariate functions with 

SciPy. This method is a variant of the golden section search method that uses inverse 

parabolic interpolation to obtain faster convergence.
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Instead of calling the optimize.golden and optimize.brent functions directly, 

it is convenient to use the unified interface function optimize.minimize_scalar, 

which dispatches to the optimize.golden and optimize.brent functions depending 

on the value of the method keyword argument, where the currently allowed options 

are 'Golden', 'Brent', or 'Bounded'. The last option dispatches to optimize.

fminbound, which performs optimization on a bounded interval, which corresponds 

to an optimization problem with inequality constraints that limit the domain of 

objective function f (x). Note that the optimize.golden and optimize.brent functions 

may converge to a local minimum outside the initial bracket interval, but optimize.

fminbound would in such circumstances return the value at the end of the allowed range.

As an example for illustrating these techniques, consider the following classic 

optimization problem: Minimize the area of a cylinder with unit volume. Here, suitable 

variables are the radius r and height h of the cylinder, and the objective function is 

f ([r, h]) = 2πr2+2πrh, subject to the equality constraint g([r, h]) = πr2h − 1 = 0. As this 

problem is formulated here, it is a two-dimensional optimization problem with an 

equality constraint. However, we can algebraically solve the constraint equation for 

one of the dependent variables, for example, h = 1/πr2, and substitute this into the 

objective function to obtain an unconstrained one-dimensional optimization problem: 

f (r) = 2πr2+2/r. To begin with, we can solve this problem symbolically using SymPy, 

using the method of equating the derivative of f (r) to zero:

In [7]: r, h = sympy.symbols("r, h")

In [8]: Area = 2 * sympy.pi * r**2 + 2 * sympy.pi * r * h

In [9]: Volume = sympy.pi * r**2 * h

In [10]: h_r = sympy.solve(Volume - 1)[0]

In [11]: Area_r = Area.subs(h_r)

In [12]: rsol = sympy.solve(Area_r.diff(r))[0]

In [13]: rsol

Out[13]: 
2

2

2 3

3

/

p
In [14]: _.evalf()

Out[14]: 0.541926070139289
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Now verify that the second derivative is positive and that rsol corresponds to a 

minimum:

In [15]: Area_r.diff(r, 2).subs(r, rsol)

Out[15]: 12π

In [16]: Area_r.subs(r, rsol)

Out[16]: 3 23 p

In [17]: _.evalf()

Out[17]: 5.53581044593209

For simple problems this approach is often feasible, but for more realistic problems, 

we typically need to resort to numerical techniques. To solve this problem using SciPy’s 

numerical optimization functions, we first define a Python function f that implements 

the objective function. To solve the optimization problem, we then pass this function to, 

for example, optimize.brent. Optionally we can use the brack keyword argument to 

specify a starting interval for the algorithm:

In [18]: def f(r):

    ...:     return 2 * np.pi * r**2 + 2 / r

In [19]: r_min = optimize.brent(f, brack=(0.1, 4))

In [20]: r_min

Out[20]: 0.541926077256

In [21]: f(r_min)

Out[21]: 5.53581044593

Instead of calling optimize.brent directly, we could use the generic interface 

for scalar minimization problems optimize.minimize_scalar. Note that to specify a 

starting interval in this case, we must use the bracket keyword argument:

In [22]: optimize.minimize_scalar(f, bracket=(0.1, 4))

Out[22]:  nit: 13

          fun: 5.5358104459320856

            x: 0.54192606489766715

         nfev: 14

All these methods give that the radius that minimizes the area of the cylinder is 

approximately 0.54 (the exact result from the symbolic calculation is 2 22 3 3/ / p ) and a 

minimum area of approximately 5.54 (the exact result is 3 23 p ). The objective function 
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that we minimized in this example is plotted in Figure 6-3, where the minimum is 

marked with a red star. When possible, it is a good idea to visualize the objective function 

before attempting a numerical optimization, because it can help in identifying a suitable 

initial interval or a starting point for the numerical optimization routine.

 Unconstrained Multivariate Optimization
Multivariate optimization is significantly harder than the univariate optimization 

discussed in the previous section. In particular, the analytical approach of solving 

the nonlinear equations for roots of the gradient is rarely feasible in the multivariate 

case, and the bracketing scheme used in the golden search method is also not directly 

applicable. Instead we must resort to techniques that start at some point in the 

coordinate space and use different strategies to move toward a better approximation 

of the minimum point. The most basic approach of this type is to consider the gradient 

∇f (x) of the objective function f (x) at a given point x. In general, the negative of the 

gradient, −∇f (x), always points in the direction in which the function f (x) decreases the 

most. As minimization strategy, it is therefore sensible to move along this direction for 

some distance αk and then iterate this scheme at the new point. This method is known as 

the steepest descent method, and it gives the iteration formula xk+1 = xk − αk∇f(xk), where 

αk is a free parameter known as the line search parameter that describes how far along 

the given direction to move in each iteration. An appropriate αk can, for example, be 

selected by solving the one-dimensional optimization problem ak k k kf x f xmin - Ñ ( )( )a .  

This method is guaranteed to make progress and eventually converge to a minimum 

Figure 6-3. The surface area of a cylinder with unit volume as a function of the 
radius r
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of the function, but the convergence can be quite slow because this method tends to 

overshoot along the direction of the gradient, giving a zigzag approach to the minimum. 

Nonetheless, the steepest descent method is the conceptual basis for many multivariate 

optimization algorithms, and with suitable modifications, the convergence can be  

speed up.

Newton’s method for multivariate optimization is a modification of the steepest 

descent method that can improve convergence. As in the univariate case, Newton’s 

method can be viewed as a local quadratic approximation of the function, which when 

minimized gives an iteration scheme. In the multivariate case, the iteration formula 

is x x H x f xk k f k k+
-= - ( )Ñ ( )1
1 , where compared to the steepest descent method, the 

gradient has been replaced with the gradient multiplied from the left with the inverse 

of Hessian matrix for the function.2 In general this alters both the direction and the 

length of the step, so this method is not strictly a steepest descent method and may 

not converge if started too far from a minimum. However, when close to a minimum, it 

converges quickly. As usual there is a trade-off between convergence rate and stability. 

As it is formulated here, Newton’s method requires both the gradient and the Hessian of 

the function.

In SciPy, Newton’s method is implemented in the function optimize.fmin_ncg. This 

function takes the following arguments: a Python function for the objective function, a 

starting point, a Python function for evaluating the gradient, and (optionally) a Python 

function for evaluating the Hessian. To see how this method can be used to solve an 

optimization problem, we consider the following problem: minx f x( )  where the 

objective function is f (x) = (x1 − 1)4+5(x2 − 1)2 − 2x1x2. To apply Newton’s method, we 

need to calculate the gradient and the Hessian. For this particular case, this can easily 

be done by hand. However, for the sake of generality, in the following we use SymPy to 

compute symbolic expressions for the gradient and the Hessian. To this end, we begin 

by defining symbols and a symbolic expression for the objective function, and then use 

the sympy.diff function for each variable to obtain the gradient and Hessian in symbolic 

form:

In [23]: x1, x2 = sympy.symbols("x_1, x_2")

In [24]: f_sym = (x1-1)**4 + 5 * (x2-1)**2 - 2*x1*x2

In [25]: fprime_sym = [f_sym.diff(x_) for x_ in (x1, x2)]

2 In practice, the inverse of the Hessian does not need to be computed, and instead we can solve 
the linear equation system Hf (xk)yk =  − ∇f(xk) and use the integration formula xk+1 = xk+yk.
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In [26]: # Gradient

    ...: sympy.Matrix(fprime_sym)

Out[26]: 
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In [27]:  fhess_sym = [[f_sym.diff(x1_, x2_) for x1_ in (x1, x2)] for x2_ in 

(x1, x2)]

In [28]: # Hessian

    ...: sympy.Matrix(fhess_sym)

Out[28]: 
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Now that we have a symbolic expression for the gradient and the Hessian, we can 

create vectorized functions for these expressions using sympy.lambdify.

In [29]: f_lmbda = sympy.lambdify((x1, x2), f_sym, 'numpy')

In [30]: fprime_lmbda = sympy.lambdify((x1, x2), fprime_sym, 'numpy')

In [31]: fhess_lmbda = sympy.lambdify((x1, x2), fhess_sym, 'numpy')

However, the functions produced by sympy.lambdify take one argument for each 

variable in the corresponding expression, and the SciPy optimization functions expect a 

vectorized function where all coordinates are packed into one array. To obtain functions 

that are compatible with the SciPy optimization routines, we wrap each of the functions 

generated by sympy.lambdify with a Python function that rearranges the arguments:

In [32]: def func_XY_to_X_Y(f):

    ...:     """

    ...:     Wrapper for f(X) -> f(X[0], X[1])

    ...:     """

    ...:     return lambda X: np.array(f(X[0], X[1]))

In [33]: f = func_XY_to_X_Y(f_lmbda)

In [34]: fprime = func_XY_to_X_Y(fprime_lmbda)

In [35]: fhess = func_XY_to_X_Y(fhess_lmbda)

Now the functions f, fprime, and fhess are vectorized Python functions on the form 

that, for example, optimize.fmin_ncg expects, and we can proceed with a numerical 

optimization of the problem at hand by calling this function. In addition to the functions 

that we have prepared from SymPy expressions, we also need to give a starting point for 

the Newton method. Here we use (0, 0) as the starting point.
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In [36]: x_opt = optimize.fmin_ncg(f, (0, 0), fprime=fprime, fhess=fhess)

         Optimization terminated successfully.

              Current function value: -3.867223

              Iterations: 8

              Function evaluations: 10

              Gradient evaluations: 17

              Hessian evaluations: 8

In [37]: x_opt

Out[37]: array([ 1.88292613,  1.37658523])

The routine found a minimum point at (x1, x2) = (1.88292613, 1.37658523), and 

diagnostic information about the solution was also printed to standard output, including 

the number of iterations and the number of function, gradient, and Hessian evaluations 

that were required to arrive at the solution. As usual it is illustrative to visualize the 

objective function and the solution (see Figure 6-4):

In [38]: fig, ax = plt.subplots(figsize=(6, 4))

    ...: x_ = y_ = np.linspace(-1, 4, 100)

    ...: X, Y = np.meshgrid(x_, y_)

    ...: c = ax.contour(X, Y, f_lmbda(X, Y), 50)

    ...: ax.plot(x_opt[0], x_opt[1], 'r*', markersize=15)

    ...: ax.set_xlabel(r"$x_1$", fontsize=18)

    ...: ax.set_ylabel(r"$x_2$", fontsize=18)

    ...: plt.colorbar(c, ax=ax)

Figure 6-4. Contour plot of the objective function f(x) = (x1 − 1)4+5(x2 − 1)2 − 2x1x2.  
The minimum point is marked by a red star.
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In practice, it may not always be possible to provide functions for evaluating both 

the gradient and the Hessian of the objective function, and often it is convenient with a 

solver that only requires function evaluations. For such cases, several methods exist to 

numerically estimate the gradient or the Hessian or both. Methods that approximate the 

Hessian are known as quasi-Newton methods, and there are also alternative iterative 

methods that completely avoid using the Hessian. Two popular methods are the 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) and the conjugate gradient methods, which 

are implemented in SciPy as the functions optimize.fmin_bfgs and optimize.fmin_cg. 

The BFGS method is a quasi-Newton method that can gradually build up numerical 

estimates of the Hessian, and also the gradient, if necessary. The conjugate gradient 

method is a variant of the steepest descent method and does not use the Hessian, and 

it can be used with numerical estimates of the gradient obtained from only function 

evaluations. With these methods, the number of function evaluations that are required 

to solve a problem is much larger than for Newton’s method, which on the other hand 

also evaluates the gradient and the Hessian. Both optimize.fmin_bfgs and optimize.

fmin_cg can optionally accept a function for evaluating the gradient, but if not provided, 

the gradient is estimated from function evaluations.

The preceding problem given, which was solved with the Newton method, can also 

be solved using the optimize.fmin_bfgs and optimize.fmin_cg, without providing a 

function for the Hessian:

In [39]: x_opt = optimize.fmin_bfgs(f, (0, 0), fprime=fprime)

         Optimization terminated successfully.

             Current function value: -3.867223

             Iterations: 10

             Function evaluations: 14

             Gradient evaluations: 14

In [40]: x_opt

Out[40]: array([ 1.88292605,  1.37658523])

In [41]: x_opt = optimize.fmin_cg(f, (0, 0), fprime=fprime)

         Optimization terminated successfully.

             Current function value: -3.867223

             Iterations: 7

             Function evaluations: 17

             Gradient evaluations: 17
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In [42]: x_top

Out[42]: array([ 1.88292613,  1.37658522])

Note that here, as shown in the diagnostic output from the optimization solvers in 

the preceding section, the number of function and gradient evaluations is larger than 

for Newton’s method. As already mentioned, both of these methods can also be used 

without providing a function for the gradient as well, as shown in the following example 

using the optimize.fmin_bfgs solver:

In [43]: x_opt = optimize.fmin_bfgs(f, (0, 0))

         Optimization terminated successfully.

             Current function value: -3.867223

             Iterations: 10

             Function evaluations: 56

             Gradient evaluations: 14

In [44]: x_opt

Out[44]: array([ 1.88292604,  1.37658522])

In this case the number of function evaluations is even larger, but it is clearly 

convenient to not have to implement functions for the gradient and the Hessian.

In general, the BFGS method is often a good first approach to try, in particular if 

neither the gradient nor the Hessian is known. If only the gradient is known, then the 

BFGS method is still the generally recommended method to use, although the conjugate 

gradient method is often a competitive alternative to the BFGS method. If both the 

gradient and the Hessian are known, then Newton’s method is the method with the 

fastest convergence in general. However, it should be noted that although the BFGS and 

the conjugate gradient methods theoretically have slower convergence than Newton’s 

method, they can sometimes offer improved stability and can therefore be preferable. 

Each iteration can also be more computationally demanding with Newton’s method 

compared to quasi-Newton methods and the conjugate gradient method, and especially 

for large problems, these methods can be faster in spite of requiring more iterations.

The methods for multivariate optimization that we have discussed so far all 

converge to a local minimum in general. For problems with many local minima, this 

can easily lead to a situation when the solver easily gets stuck in a local minimum, 

even if a global minimum exists. Although there is no complete and general solution 

to this problem, a practical approach that can partially alleviate this problem is to 

use a brute force search over a coordinate grid to find a suitable starting point for an 
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iterative solver. At least this gives a systematic approach to find a global minimum within 

given coordinate ranges. In SciPy, the function optimize.brute can carry out such a 

systematic search. To illustrate this method, consider the problem of minimizing the 

function 4 sin xπ+6 sin yπ+(x − 1)2+(y − 1)2, which has a large number of local minima. 

This can make it tricky to pick a suitable initial point for an iterative solver. To solve this 

optimization problem with SciPy, we first define a Python function for the objective 

function:

In [45]: def f(X):

   ...:      x, y = X

   ...:       return (4 * np.sin(np.pi * x) + 6 * np.sin(np.pi * y)) +  

(x - 1)**2 + (y - 1)**2

To systematically search for the minimum over a coordinate grid, we call optimize.

brute with the objective function f as the first parameter and a tuple of slice objects as 

the second argument, one for each coordinate. The slice objects specify the coordinate 

grid over which to search for a minimum value. Here we also set the keyword argument 

finish=None, which prevents the optimize.brute from automatically refining the best 

candidate.

In [46]:  x_start = optimize.brute(f, (slice(-3, 5, 0.5),  

slice(-3, 5, 0.5)), finish=None)

In [47]: x_start

Out[47]: array([ 1.5,  1.5])

In [48]: f(x_start)

Out[48]: −9.5

On the coordinate grid specified by the given tuple of slice objects, the optimal 

point is (x1, x2) = (1.5, 1.5), with corresponding objective function minimum −9.5. This 

is now a good starting point for a more sophisticated iterative solver, such as optimize.

fmin_bfgs:

In [49]: x_opt = optimize.fmin_bfgs(f, x_start)

         Optimization terminated successfully.

              Current function value: -9.520229

              Iterations: 4

              Function evaluations: 28

              Gradient evaluations: 7
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In [50]: x_opt

Out[50]: array([ 1.47586906,  1.48365788])

In [51]: f(x_opt)

Out[51]: −9.52022927306

Here the BFGS method gave the final minimum point (x1, x2) = (1.47586906, 1.48365788), 

with the minimum value of the objective function −9.52022927306. For this type of 

problem, guessing the initial starting point easily results in that the iterative solver 

converges to a local minimum, and the systematic approach that optimize.brute 

provides is frequently useful.

As always, it is important to visualize the objective function and the solution when 

possible. The following two code cells plot a contour graph of the current objective 

function and mark the obtained solution with a red star (see Figure 6-5). As in the 

previous example, we need a wrapper function for reshuffling the parameters of the 

objective function because of the different conventions of how the coordinated vectors 

are passed to the function (separate arrays and packed into one array, respectively).

In [52]: def func_X_Y_to_XY(f, X, Y):

    ...:     """

    ...:     Wrapper for f(X, Y) -> f([X, Y])

    ...:     """

    ...:     s = np.shape(X)

    ...:     return f(np.vstack([X.ravel(), Y.ravel()])).reshape(*s)

In [53]: fig, ax = plt.subplots(figsize=(6, 4))

    ...: x_ = y_ = np.linspace(-3, 5, 100)

    ...: X, Y = np.meshgrid(x_, y_)

    ...: c = ax.contour(X, Y, func_X_Y_to_XY(f, X, Y), 25)

    ...: ax.plot(x_opt[0], x_opt[1], 'r*', markersize=15)

    ...: ax.set_xlabel(r"$x_1$", fontsize=18)

    ...: ax.set_ylabel(r"$x_2$", fontsize=18)

    ...: plt.colorbar(c, ax=ax)
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In this section, we have explicitly called functions for specific solvers, for example, 

optimize.fmin_bfgs. However, like for scalar optimization, SciPy also provides a 

unified interface for all multivariate optimization solver with the function optimize.

minimize, which dispatches out to the solver-specific functions depending on the value 

of the method keyword argument (remember, the univariate minimization function that 

provides a unified interface is optimize.scalar_minimize). For clarity, here we have 

favored explicitly calling functions for specific solvers, but in general it is a good idea to 

use optimize.minimize, as this makes it easier to switch between different solvers.  

For example, in the previous example, where we used optimize.fmin_bfgs in the 

following way,

In [54]: x_opt = optimize.fmin_bfgs(f, x_start)

we could just as well have used

In [55]: result = optimize.minimize(f, x_start, method= 'BFGS')

In [56]: x_opt = result.x

The optimize.minimize function returns an instance of optimize.OptimizeResult 

that represents the result of the optimization. In particular, the solution is available via 

the x attribute of this class.

Figure 6-5. Contour plot of the objective function f(x) = 4 sin xπ+6 sin yπ+(x − 1)2+ 
(y − 1)2. The minimum is marked with a red star.
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 Nonlinear Least Square Problems
In Chapter 5 we encountered linear least square problems and explored how they can be 

solved with linear algebra methods. In general, a least square problem can be viewed as 

an optimization problem with the objective function g r rii

mb b b( ) = ( ) = ( )=å 2 2

0
,  

where r(β) is a vector with the residuals ri(β) = yi − f (xi, β) for a set of m observations 

(xi, yi). Here β is a vector with unknown parameters that specifies the function f (x, β). If 

this problem is nonlinear in the parameters β, it is known as a nonlinear least square 

problem, and since it is nonlinear, it cannot be solved with the linear algebra techniques 

discussed in Chapter 5. Instead, we can use the multivariate optimization techniques 

described in the previous section, such as Newton’s method or a quasi-Newton method. 

However, this nonlinear least square optimization problem has a specific structure, and 

several methods that are tailored to solve this particular optimization problem have 

been developed. One example is the Levenberg-Marquardt method, which is based on 

the idea of successive linearizations of the problem in each iteration.

In SciPy, the function optimize.leastsq provides a nonlinear least square solver 

that uses the Levenberg-Marquardt method. To illustrate how this function can be 

used, consider a nonlinear model on the form f (x, β) = β0+β1 exp (−β2x2) and a set of 

observations (xi, yi). In the following example, we simulate the observations with random 

noise added to the true values, and we solve the minimization problem that gives the 

best least square estimates of the parameters β. To begin with, we define a tuple with 

the true values of the parameter vector β and a Python function for the model function. 

This function, which should return the y value corresponding to a given x value, takes 

as first argument the variable x, and the following arguments are the unknown function 

parameters:

In [57]: beta = (0.25, 0.75, 0.5)

In [58]: def f(x, b0, b1, b2):

    ...:    return b0 + b1 * np.exp(-b2 * x**2)

Once the model function is defined, we generate randomized data points that 

simulate the observations.

In [59]: xdata = np.linspace(0, 5, 50)

In [60]: y = f(xdata, *beta)

In [61]: ydata = y + 0.05 * np.random.randn(len(xdata))
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With the model function and observation data prepared, we are ready to start solving 

the nonlinear least square problem. The first step is to define a function for the residuals 

given the data and the model function, which is specified in terms of the yet-to-be 

determined model parameters β.

In [62]: def g(beta):

    ...:     return ydata - f(xdata, *beta)

Next we define an initial guess for the parameter vector and let the optimize.

leastsq function solve for the best least square fit for the parameter vector:

In [63]: beta_start = (1, 1, 1)

In [64]: beta_opt, beta_cov = optimize.leastsq(g, beta_start)

In [65]: beta_opt

Out[65]: array([ 0.25733353,  0.76867338,  0.54478761])

Here the best fit is quite close to the true parameter values (0.25, 0.75, 0.5), as defined 

earlier. By plotting the observation data and the model function for the true and fitted 

function parameters, we can visually confirm that the fitted model seems to describe the 

data well (see Figure 6-6).

In [66]: fig, ax = plt.subplots()

    ...: ax.scatter(xdata, ydata, label='samples')

    ...: ax.plot(xdata, y, 'r', lw=2, label='true model')

    ...: ax.plot(xdata, f(xdata, *beta_opt), 'b', lw=2, label='fitted model')

    ...: ax.set_xlim(0, 5)

    ...: ax.set_xlabel(r"$x$", fontsize=18)

    ...: ax.set_ylabel(r"$f(x, \beta)$", fontsize=18)

    ...: ax.legend()
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The SciPy optimize module also provides an alternative interface to nonlinear least 

square fitting, through the function optimize.curve_fit. This is a convenience wrapper 

around optimize.leastsq, which eliminates the need to explicitly define the residual 

function for the least square problem. The previous problem could therefore be solved 

more concisely using the following:

In [67]: beta_opt, beta_cov = optimize.curve_fit(f, xdata, ydata)

In [68]: beta_opt

Out[68]: array([ 0.25733353,  0.76867338,  0.54478761])

 Constrained Optimization
Constraints add another level of complexity to optimization problems, and they require a 

classification of their own. A simple form of constrained optimization is the optimization 

where the coordinate variables are subject to some bounds. For example: minx f x( )  

subject to 0 ≤ x ≤ 1. The constraint 0 ≤ x ≤ 1 is simple because it only restricts the range 

of the coordinate without dependencies on the other variables. This type of problems can 

be solved using the L-BFGS-B method in SciPy, which is a variant of the BFGS method we 

used earlier. This solver is available through the function optimize.fmin_l_bgfs_b or via 

optimize.minimize with the method argument set to 'L-BFGS-B'. To define the coordinate 

boundaries, the bound keyword argument must be used, and its value should be a list of 

tuples that contain the minimum and maximum value of each constrained variable. If the 

minimum or maximum value is set to None, it is interpreted as an unbounded.

Figure 6-6. Nonlinear least square fit to the function f(x, β) = β0+β1 exp (−β2x2) 
with β = (0.25, 0.75, 0.5)
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As an example of solving a bounded optimization problem with the L-BFGS-B 

solver, consider minimizing the objective function f (x) = (x1 − 1)2 − (x2 − 1)2 subject to 

the constraints 2 ≤ x1 ≤ 3 and 0 ≤ x2 ≤ 2. To solve this problem, we first define a Python 

function for the objective functions and tuples with the boundaries for each of the two 

variables in this problem, according to the given constraints. For comparison, in the 

following code, we also solve the unconstrained optimization problem with the same 

objective function, and we plot a contour graph of the objective function where the 

unconstrained and constrained minimum values are marked with blue and red stars, 

respectively (see Figure 6-7).

In [69]: def f(X):

    ...:     x, y = X

    ...:     return (x - 1)**2 + (y - 1)**2

In [70]: x_opt = optimize.minimize(f, [1, 1], method='BFGS').x

In [71]: bnd_x1, bnd_x2 = (2, 3), (0, 2)

In [72]: x_cons_opt = optimize.minimize(f, [1, 1], method='L-BFGS-B',

    ...:                                 bounds=[bnd_x1, bnd_x2]).x

In [73]: fig, ax = plt.subplots(figsize=(6, 4))

    ...: x_ = y_ = np.linspace(-1, 3, 100)

    ...: X, Y = np.meshgrid(x_, y_)

    ...: c = ax.contour(X, Y, func_X_Y_to_XY(f, X, Y), 50)

    ...: ax.plot(x_opt[0], x_opt[1], 'b*', markersize=15)

    ...: ax.plot(x_cons_opt[0], x_cons_opt[1], 'r*', markersize=15)

    ...: bound_rect = plt.Rectangle((bnd_x1[0], bnd_x2[0]),

    ...:                             bnd_x1[1] - bnd_x1[0], bnd_x2[1] -  

bnd_x2[0], facecolor="grey")

    ...: ax.add_patch(bound_rect)

    ...: ax.set_xlabel(r"$x_1$", fontsize=18)

    ...: ax.set_ylabel(r"$x_2$", fontsize=18)

    ...: plt.colorbar(c, ax=ax)
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Constraints that are defined by equalities or inequalities that include more than 

one variable are somewhat more complicated to deal with. However, there are general 

techniques also for this type of problems. For example, using the Lagrange multipliers, it 

is possible to convert a constrained optimization problem to an unconstrained problem 

by introducing additional variables. For example, consider the optimization problem 

minx f x( )  subject to the equality constraint g(x) = 0. In an unconstrained optimization 

problem, the gradient of f (x) vanishes at the optimal points, ∇f (x) = 0. It can be shown 

that the corresponding condition for constrained problems is that the negative gradient 

lies in the space supported by the constraint normal, i.e., -Ñ ( ) = ( )f x xg
TlJ . Here Jg(x) 

is the Jacobian matrix of the constraint function g(x) and λ is the vector of Lagrange 

multipliers (new variables). This condition arises from equating to zero the gradient of 

the function Λ(x, λ) = f (x)+λTg(x), which is known as the Lagrangian function. Therefore, 

if both f (x) and g(x) are continuous and smooth, a stationary point (x0, λ0) of the function 

Λ(x, λ) corresponds to an x0 that is an optimum of the original constrained optimization 

problem. Note that if g(x) is a scalar function (i.e., there is only one constraint), then the 

Jacobian Jg(x) reduces to the gradient ∇g(x).

To illustrate this technique, consider the problem of maximizing the volume of a 

rectangle with sides of length x1, x2, and x3, subject to the constraint that the total surface 

area should be unity: g(x) = 2x1x2+2x0x2+2x1x0 − 1 = 0. To solve this optimization problem 

Figure 6-7. Contours of the objective function f(x), with the unconstrained (blue 
star) and constrained minima (red star). The feasible region of the constrained 
problem is shaded in gray.
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using Lagrange multipliers, we form the Lagrangian Λ(x) = f (x)+λg(x) and seek the 

stationary points for ∇Λ(x) = 0. With SymPy, we can carry out this task by first defining 

the symbols for the variables in the problem, then constructing expressions for f (x), g(x), 

and Λ(x),

In [74]: x = x0, x1, x2, l = sympy.symbols("x_0, x_1, x_2, lambda")

In [75]: f = x0 * x1 * x2

In [76]: g = 2 * (x0 * x1 + x1 * x2 + x2 * x0) - 1

In [77]: L = f + l * g

and finally computing ∇Λ(x) using sympy.diff and solving the equation ∇Λ(x) = 0 using 

sympy.solve:

In [78]: grad_L = [sympy.diff(L, x_) for x_ in x]

In [79]: sols = sympy.solve(grad_L)

In [80]: sols
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This procedure gives two stationary points. We could determine which one 

corresponds to the optimal solution by evaluating the objective function for each case. 

However, here only one of the stationary points corresponds to a physically acceptable 

solution: since xi is the length of a rectangle side in this problem, it must be positive. 

We can therefore immediately identify the interesting solution, which corresponds to 

the intuitive result x x x0 1 2

6

6
= = =  (a cube). As a final verification, we evaluate the 

constraint function and the objective function using the obtained solution:

In [81]: g.subs(sols[0])

Out[81]: 0

In [82]: f.subs(sols[0])

Out[82]: 6

36

This method can be extended to handle inequality constraints as well, and there 

exist various numerical methods of applying this approach. One example is the 

method known as sequential least square programming, abbreviated as SLSQP, which 

is available in the SciPy as the optimize.slsqp function and via optimize.minimize 

CHApTer 6  OpTimizATiOn



236

with method='SLSQP'. The optimize.minimize function takes the keyword argument 

constraints, which should be a list of dictionaries that each specifies a constraint. 

The allowed keys (values) in this dictionary are type ('eq' or 'ineq'), fun (constraint 

function), jac (Jacobian of the constraint function), and args (additional arguments 

to constraint function and the function for evaluating its Jacobian). For example, the 

constraint dictionary describing the constraint in the previous problem would be 

dict(type='eq', fun=g).

To solve the full problem numerically using SciPy’s SLSQP solver, we need to define 

Python functions for the objective function and the constraint function:

In [83]: def f(X):

    ...:     return -X[0] * X[1] * X[2]

In [84]: def g(X):

    ...:     return 2 * (X[0]*X[1] + X[1] * X[2] + X[2] * X[0]) - 1

Note that since the SciPy optimization functions solve minimization problems, and 

here we are interested in maximization, the function f is here the negative of the original 

objective function. Next we define the constraint dictionary for g(x) = 0 and finally call 

the optimize.minimize function

In [85]: constraint = dict(type='eq', fun=g)

In [86]:  result = optimize.minimize(f, [0.5, 1, 1.5], method='SLSQP', 

constraints=[constraint])

In [87]: result

Out[87]:  status: 0

         success: True

            njev: 18

            nfev: 95

             fun: -0.068041368623352985

               x: array([ 0.40824187,  0.40825127,  0.40825165])

         message: 'Optimization terminated successfully.'

             jac: array([-0.16666925, -0.16666542, -0.16666527,  0.])

             nit: 18

In [88]: result.x

Out[88]: array([ 0.40824187,  0.40825127,  0.40825165])
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As expected, the solution agrees well with the analytical result obtained from the 

symbolic calculation using Lagrange multipliers.

To solve problems with inequality constraints, all we need to do is to set type='ineq' 

in the constraint dictionary and provide the corresponding inequality function. To 

demonstrate minimization of a nonlinear objective function with a nonlinear inequality 

constraint, we return to the quadratic problem considered previously but in this case 

with inequality constraint g(x) = x1 − 1.75 − (x0 − 0.75)4 ≥ 0. As usual, we begin by 

defining the objective function and the constraint function, as well as the constraint 

dictionary:

In [89]: def f(X):

    ...:     return (X[0] - 1)**2 + (X[1] - 1)**2

In [90]: def g(X):

    ...:     return X[1] - 1.75 - (X[0] - 0.75)**4

In [91]: constraints = [dict(type='ineq', fun=g)]

Next, we are ready to solve the optimization problem by calling the optimize.minimize 

function. For comparison, here we also solve the corresponding unconstrained problem.

In [92]: x_opt = optimize.minimize(f, (0, 0), method='BFGS').x

In [93]:  x_cons_opt = optimize.minimize(f, (0, 0), method='SLSQP', 

constraints=constraints).x

To verify the soundness of the obtained solution, we plot the contours of the 

objective function together with a shaded area representing the feasible region (where 

the inequality constraint is satisfied). The constrained and unconstrained solutions are 

marked with a red and a blue star, respectively (see Figure 6-8).

In [94]: fig, ax = plt.subplots(figsize=(6, 4))

In [95]: x_ = y_ = np.linspace(-1, 3, 100)

    ...: X, Y = np.meshgrid(x_, y_)

    ...: c = ax.contour(X, Y, func_X_Y_to_XY(f, X, Y), 50)

    ...: ax.plot(x_opt[0], x_opt[1], 'b*', markersize=15)

    ...: ax.plot(x_, 1.75 + (x_-0.75)**4, 'k-', markersize=15)

    ...: ax.fill_between(x_, 1.75 + (x_-0.75)**4, 3, color='grey')

    ...: ax.plot(x_cons_opt[0], x_cons_opt[1], 'r*', markersize=15)

    ...:
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    ...: ax.set_ylim(-1, 3)

    ...: ax.set_xlabel(r"$x_0$", fontsize=18)

    ...: ax.set_ylabel(r"$x_1$", fontsize=18)

    ...: plt.colorbar(c, ax=ax)

For optimization problems with only inequality constraints, SciPy provides an 

alternative solver using the constrained optimization by linear approximation (COBYLA) 

method. This solver is accessible either through optimize.fmin_cobyla or optimize.

minimize with method='COBYLA'. The previous example could just as well have been 

solved with this solver, by replacing method='SLSQP' with method='COBYLA'.

 Linear Programming
In the previous section, we considered methods for very general optimization problems, 

where the objective function and constraint functions all can be nonlinear. However, 

at this point it is worth taking a step back and considering a much more restricted type 

of optimization problem, namely, linear programming, where the objective function 

is linear and all constraints are linear equality or inequality constraints. The class of 

problems is clearly much less general, but it turns out that linear programming has 

many important applications, and they can be solved vastly more efficiently than general 

nonlinear problems. The reason for this is that linear problems have properties that 

enable completely different methods to be used. In particular, the solution to a linear 

Figure 6-8. Contour plot of the objective function with the feasible region of the 
constrained problem shaded gray. The red and blue stars are the optimal points in 
the constrained and unconstrained problems, respectively.
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optimization problem must necessarily lie on a constraint boundary, so it is sufficient 

to search the vertices of the intersections of the linear constraint functions. This can be 

done efficiently in practice. A popular algorithm for this type of problems is known as 

simplex, which systematically moves from one vertex to another until the optimal vertex 

has been reached. There are also more recent interior point methods that efficiently 

solve linear programming problems. With these methods, linear programming problems 

with thousands of variables and constraints are readily solvable.

Linear programming problems are typically written in the so-called standard form: 

minx
Tc x  where Ax ≤ b and x ≥ 0. Here c and x are vectors of length n, and A is a m × n 

matrix and b a m-vector. For example, consider the problem of minimizing the function 

f (x) =  − x0+2x1 − 3x2, subject to the three inequality constraints x0+x1 ≤ 1, −x0+3x1 ≤ 2, 

and −x1+x2 ≤ 3. On the standard form, we have c = (−1, 2, −3), b = (1, 2, 3), and

 

A = -
-

æ

è

ç
ç
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1 3 0

0 1 1

.

 

To solve this problem, here we use the cvxopt library, which provides the linear 

programming solver with the cvxopt.solvers.lp function. This solver expects as 

arguments the c, A, and b vectors and matrix used in the standard form introduced 

in the preceding text, in the given order. The cvxopt library uses its own classes for 

representing matrices and vectors, but fortunately they are interoperable with NumPy 

arrays via the array interface3 and can therefore be cast from one form to another using 

the cvxopt.matrix and np.array functions. Since NumPy array is the de facto standard 

array format in the scientific Python environment, it is sensible to use NumPy array as far 

as possible and only convert to cvxopt matrices when necessary, i.e., before calling one 

of the solvers in cvxopt.solvers.

To solve the stated example problem using the cvxopt library, we therefore first 

create NumPy arrays for the A matrix and the c and b vectors and convert them to cvxopt 

matrices using the cvxpot.matrix function:

In [96]: c = np.array([-1.0, 2.0, -3.0])

In [97]: A = np.array([[ 1.0, 1.0, 0.0],

                       [-1.0, 3.0, 0.0],

                       [ 0.0, -1.0, 1.0]])

3 For details, see http://docs.scipy.org/doc/numpy/reference/arrays.interface.html.
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In [98]: b = np.array([1.0, 2.0, 3.0])

In [99]: A_ = cvxopt.matrix(A)

In [100]: b_ = cvxopt.matrix(b)

In [101]: c_ = cvxopt.matrix(c)

The cvxopt compatible matrices and vectors c_, A_, and b_ can now be passed to the 

linear programming solver cvxopt.solvers.lp:

In [102]: sol = cvxopt.solvers.lp(c_, A_, b_)

         Optimal solution found.

In [103]: sol

Out[103]: {'dual infeasibility': 1.4835979218054372e-16,

           'dual objective': -10.0,

           'dual slack': 0.0,

           'gap': 0.0,

           'iterations': 0,

           'primal infeasibility': 0.0,

           'primal objective': -10.0,

           'primal slack': -0.0,

           'relative gap': 0.0,

           'residual as dual infeasibility certificate': None,

           'residual as primal infeasibility certificate': None,

           's': <3x1 matrix, tc='d'>,

           'status': 'optimal',

           'x': <3x1 matrix, tc='d'>,

           'y': <0x1 matrix, tc='d'>,

           'z': <3x1 matrix, tc='d'>}

In [104]: x = np.array(sol['x'])

In [105]: x

Out[105]: array([[ 0.25],

                [ 0.75],

                [ 3.75]])

In [106]: sol['primal objective']

Out[106]: -10.0
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The solution to the optimization problem is given in terms of the vector x, which in 

this particular example is x = (0.25, 0.75, 3.75), which corresponds to the f(x) value −10. 

With this method and the cvxopt.solvers.lp solver, linear programming problems with 

hundreds or thousands of variables can readily be solved. All that is needed is to write 

the optimization problem on the standard form and create the c, A, and b arrays.

 Summary
Optimization – to select the best option from a set of alternatives – is fundamental in 

many applications in science and engineering. Mathematical optimization provides 

a rigorous framework for systematically treating optimization problems, if they can 

be formulated as a mathematical problem. Computational methods for optimization 

are the tools with which such optimization problems are solved in practice. In a 

scientific computing environment, optimization therefore plays a very important role. 

For scientific computing with Python, the SciPy library provides efficient routines 

for solving many standard optimization problems, which can be used to solve a vast 

variety of computational optimization problems. However, optimization is a large 

field in mathematics, requiring a different array of methods for solving different types 

of problems, and there are several optimization libraries for Python that provide 

specialized solvers for specific types of optimization problems. In general, the SciPy 

optimize module provides good and flexible general-purpose solvers for a wide variety 

of optimization problems, but for specific types of optimization problems, there are also 

many specialized libraries that provide better performance or more features. An example 

of such a library is cvxopt, which complements the general-purpose optimization 

routines in SciPy with efficient solvers for linear and quadratic problems.

 Further Reading
For an accessible introduction to optimization, with more detailed discussions of the 

numerical properties of several of the methods introduced in this chapter, see, for 

example, Heath (2002). For a more rigorous and in-depth introduction to optimization, 

see, for example, E.K.P. Chong (2013). A thorough treatment of convex optimization is 

given by the creators of the cvxopt library in the excellent book (S. Boyd, 2004), which is 

also available online at http://stanford.edu/~boyd/cvxbook.
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CHAPTER 7

Interpolation
Interpolation is a mathematical method for constructing a function from a discrete set of 

data points. The interpolation function, or interpolant, should exactly coincide with the 

given data points, and it can also be evaluated for other intermediate input values within 

the sampled range. There are many applications of interpolation: A typical use-case that 

provides an intuitive picture is the plotting of a smooth curve through a given set of data 

points. Another use-case is to approximate complicated functions, which, for example, 

could be computationally demanding to evaluate. In that case, it can be beneficial to 

evaluate the original function only at a limited number of points and use interpolation to 

approximate the function when evaluating it for intermediary points.

Interpolation may at a first glance look a lot like least square fitting, which we saw 

already in both Chapter 5 (linear least square) and Chapter 6 (nonlinear least square). 

Indeed, there are many similarities between interpolation and curve fitting with least 

square methods, but there are also important conceptual differences that distinguish 

these two methods: In least square fitting, we are interested in approximately fitting 

a function to data points in manner that minimizes the sum of square errors, using 

many data points and an overdetermined system of equations. In interpolation, on the 

other hand, we require a function that exactly coincides with the given data points and 

only uses the number of data points that equals the number of free parameters in the 

interpolation function. Least square fitting is therefore more suitable for fitting a large 

number of data points to a model function, and interpolation is a mathematical tool for 

creating a functional representation for a given minimum number of data points. In fact, 

interpolation is an important component in many mathematical methods, including some 

of the methods for equation solving and optimization that we used in Chapters 5 and 6.

Extrapolation is a concept that is related to interpolation. It refers to evaluating 

the estimated function outside of the sampled range, while interpolation only refers 

to evaluating the function within the range that is spanned by the given data points. 

Extrapolation can often be riskier than interpolation, because it involves estimating a 
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function in a region where it has not been sampled. Here we are only concerned with 

interpolation. To perform interpolation in Python, we use the polynomial module from 

NumPy and the interpolate module from SciPy.

 Importing Modules
Here we will continue with the convention of importing submodules from the SciPy 

library explicitly. In this chapter we need the interpolate module from SciPy, and 

also the polynomial module from NumPy, which provides functions and classes for 

polynomials. We import these modules as follows:

In [1]: from scipy import interpolate

In [2]: from numpy import polynomial as P

In addition, we also need the rest of the NumPy library, the linear algebra module 

linalg from SciPy, and the Matplotlib library for plotting:

In [3]: import numpy as np

In [4]: from scipy import linalg

In [5]: import matplotlib.pyplot as plt

 Interpolation
Before we dive into the details of how to perform interpolation with NumPy and SciPy, 

we first state the interpolation problem in mathematical form. For notational brevity, here 

we only consider one-dimensional interpolation, which can be formulated as follows: 

for a given set of n data point x yi i i

n
,( ){ } =1

, find a function f (x) such that f (xi) = yi, for 

i ∈ [1, n]. The function f(x) is known as the interpolant, and it is not unique. In fact, there 

are an infinite number of functions that satisfy the interpolation criteria. Typically we 

can write the interpolant as a linear combination of some basis functions ϕj(x), such that 

f x c xj jj

n( ) = ( )=å f
1

, where cj are unknown coefficients. Substituting the given data points 

into this linear combination results in a linear equation system for the unknown coefficients: 

c x yj j i ij

n f ( ) ==å .
1

 This equation system can be written on explicit matrix form as

 

f f f
f f f

f f f

1 1 2 1 1

1 2 2 2 2

1 2

x x x

x x x

x x x

n

n

n n n

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

�
�

� � � �
� nn n n

c

c

c

y

y

y( )

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

1

2

1

2

� �
,

 

Chapter 7  InterpolatIon



245

or in a more compact implicit matrix form as Φ(x)c = y, where the elements of the matrix 

Φ(x) are {Φ(x)}ij = ϕj(xi). Note that here the number of basis functions is the same as the 

number of data points, and Φ(x) is therefore a square matrix. Assuming that this matrix 

has full rank, we can solve for the unique c-vector using the standard methods discussed 

in Chapter 5. If the number of data points is larger than the number of basis functions, 

then the system is overdetermined, and in general there is no solution that satisfies the 

interpolation criteria. Instead, in this situation it is more suitable to consider a least 

square fit than an exact interpolation; see Chapter 5.

The choice of basis functions affects the properties of the resulting equation system, 

and a suitable choice of basis depends on the properties of the data that is fitted. 

Common choices of basis functions for interpolation are various types of polynomials, 

for example, the power basis ϕi(x) = xi − 1, or orthogonal polynomials such as Legendre 

polynomials ϕi(x) = Pi − 1(x), Chebyshev polynomials ϕi(x) = Ti − 1(x), or piecewise 

polynomials. Note that in general f (x) is not unique, but for n data points, there is a 

unique interpolating polynomial of order n − 1, regardless of which polynomial basis 

we use. For power basis ϕi(x) = xi − 1, the matrix Φ(x) is the Vandermonde matrix, which 

we already have seen applications of in least square fitting in Chapter 5. For other 

polynomial bases, Φ(x) are generalized Vandermonde matrices, for which each basis 

defines the matrix of the linear equation system that has to be solved in the interpolation 

problem. The structure of the Φ(x) matrix is different for different polynomial bases, 

and its condition number and the computational cost of solving the interpolation 

problem vary correspondingly. Polynomials thus play an important role in interpolation, 

and before we can start to solve interpolation problems, we need a convenient way of 

working with polynomials in Python. This is the topic of the following section.

 Polynomials
The NumPy library contains the submodule polynomial (here imported as P), which 

provides functions and classes for working with polynomials. In particular, it provides 

implementations of many standard orthogonal polynomials. These functions and classes 

are useful when working with interpolation, and we therefore review how to use this 

module before looking at polynomial interpolation.
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Note there are two modules for polynomials in numpy: numpy.poly1d and 
numpy.polynomial. there is a large overlap in functionality in these two 
modules, but they are not compatible with each other (specifically, the coordinate 
arrays have reversed order in the two representations). the numpy.poly1d 
module is older and has been superseded by numpy.polynomial, which is now 
recommended for new code. here we only focus on numpy.polynomial, but it is 
worth being aware of numpy.poly1d as well.

The np.polynomial module contains a number of classes for representing 

polynomials in different polynomial bases. Standard polynomials, written in the usual 

power basis {xi}, are represented with the Polynomial class. To create an instance of 

this class, we can pass a coefficient array to its constructor. In the coefficient array, the 

ith element is the coefficient of xi. For example, we can create a representation of the 

polynomial 1+2x+3x2 by passing the list [1, 2, 3] to the Polynomial class:

In [6]: p1 = P.Polynomial([1, 2, 3])

In [7]: p1

Out[7]: Polynomial([ 1.,  2.,  3.], domain=[-1,  1], window=[-1,  1])

Alternatively, we can also initialize a polynomial by specifying its roots using the 

class method P.Polynomial.fromroots. The polynomial with roots at x =  − 1 and x = 1, 

for example, can be created using:

In [8]: p2 = P.Polynomial.fromroots([-1, 1])

In [9]: p2

Out[9]: Polynomial([-1.,  0.,  1.], domain=[-1.,  1.], window=[-1.,  1.])

Here, the result is the polynomial with the coefficient array [-1, 0, 1], which 

corresponds to −1+x2. The roots of a polynomial can be computed using the roots 

method. For example, the roots of the two previously created polynomials are

In [10]: p1.roots()

Out[10]: array([-0.33333333-0.47140452j, -0.33333333+0.47140452j])

In [11]: p2.roots()

Out[11]: array([-1.,  1.])
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As expected, the roots of the polynomial p2 are x =  − 1 and x = 1, as was requested 

when it was created using the fromroots class method.

In the preceding examples, the representation of a polynomial is on the form 

Polynomial([-1., 0., 1.], domain=[-1., 1.], window=[-1., 1.]). The first of 

the lists in this representation is the coefficient array. The second and third lists are 

the domain and window attributes, which can be used to map the input domain of a 

polynomial to another interval. Specifically, the input domain interval [domain[0], 

domain[1]] is mapped to the interval [window[0], window[1]] through a linear 

transformation (scaling and translation). The default values are domain=[-1, 1] and 

window=[-1, 1], which correspond to an identity transformation (no change). The 

domain and window arguments are particularly useful when working with polynomials 

that are orthogonal with respect to a scalar product that is defined on a specific interval. 

It is then desirable to map the domain of the input data onto this interval. This is 

important when interpolating with orthogonal polynomials, such as the Chebyshev or 

Hermite polynomials, because performing this transformation can vastly improve the 

conditioning number of the Vandermonde matrix for the interpolation problem.

The properties of a Polynomial instance can be directly accessed using the coeff, 

domain, and window attributes. For example, for the p1 polynomial defined in the 

preceding example, we have

In [12]: p1.coef

Out[12]: array([ 1.,  2.,  3.])

In [13]: p1.domain

Out[13]: array([-1,  1])

In [14]: p1.window

Out[14]: array([-1,  1])

A polynomial that is represented as a Polynomial instance can easily be evaluated 

at arbitrary values of x by calling the class instance as a function. The x variable can be 

specified as a scalar, a list, or an arbitrary NumPy array. For example, to evaluate the 

polynomial p1 at the points x = {1.5, 2.5, 3.5}, we simply call the p1 class instance with an 

array of x values as the argument:

In [15]: p1(np.array([1.5, 2.5, 3.5]))

Out[15]: array([ 10.75,  24.75,  44.75])
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Instances of Polynomial can be operated on using the standard arithmetic operators 

+, -, *, /, and so on. The // operator is used for polynomial division. To see how this 

works, consider the division of the polynomial p1(x) = (x − 3)(x − 2)(x − 1) with the 

polynomial p2(x) = (x − 2). The answer, which is obvious when written in the factorized 

form, is (x − 3)(x − 1). We can compute and verify this using NumPy in the following 

manner: first create Polynomial instances for the p1 and p2, and then use the // operator 

to compute the polynomial division.

In [16]: p1 = P.Polynomial.fromroots([1, 2, 3])

In [17]: p1

Out[17]:  Polynomial([ -6.,  11.,  -6.,   1.], domain=[-1.,  1.], 

window=[-1.,  1.])

In [18]: p2 = P.Polynomial.fromroots([2])

In [19]: p2

Out[19]: Polynomial([-2.,  1.], domain=[-1.,  1.], window=[-1.,  1.])

In [20]: p3 = p1 // p2

In [21]: p3

Out[21]: Polynomial([ 3., -4.,  1.], domain=[-1.,  1.], window=[-1.,  1.])

The result is a new polynomial with coefficient array [3, -4, 1], and if we compute 

its roots, we find that they are 1 and 3, so this polynomial is indeed (x − 3)(x − 1):

In [22]: p3.roots()

Out[22]: array([ 1.,  3.])

In addition to the Polynomial class for polynomials in the standard power basis, 

the polynomial module also has classes for representing polynomials in Chebyshev, 

Legendre, Laguerre, and Hermite bases, with the names Chebyshev, Legendre, 

Laguerre, Hermite (Physicists’), and HermiteE (Probabilists’), respectively. For example, 

the Chebyshev polynomial with coefficient list [1, 2, 3], that is, the polynomial 

1T0(x)+2T1(x)+3T2(x), where Ti(x) is the Chebyshev polynomial of order i, can be created 

using:

In [23]: c1 = P.Chebyshev([1, 2, 3])

In [24]: c1

Out[24]: Chebyshev([ 1.,  2.,  3.], domain=[-1,  1], window=[-1,  1])
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and its roots can be computed using the roots attribute:

In [25]: c1.roots()

Out[25]: array([-0.76759188,  0.43425855])

All the polynomial classes have the same methods, attributes, and operators as the 

Polynomial class discussed above, and they can all be used in the same manner. For 

example, to create the Chebyshev and Legendre representations of the polynomial with 

roots x =  − 1 and x = 1, we can use the fromroots attribute, in the same way as we did 

previously with the Polynomial class:

In [26]: c1 = P.Chebyshev.fromroots([-1, 1])

In [27]: c1

Out[27]:  Chebyshev([-0.5,  0. ,  0.5], domain=[-1.,  1.], 

window=[-1.,  1.])

In [28]: l1 = P.Legendre.fromroots([-1, 1])

In [29]: l1

Out[29]:  Legendre([-0.66666667,  0.   ,  0.66666667], domain=[-1.,  1.], 

window=[-1.,  1.])

Note that the same polynomials, here with the roots at x =  − 1 and x = 1 (which is 

a unique polynomial), have different coefficient arrays when represented in different 

bases, but when evaluated at specific values of x, the two gives the same results (as 

expected):

In [30]: c1(np.array([0.5, 1.5, 2.5]))

Out[30]: array([-0.75,  1.25,  5.25])

In [31]: l1(np.array([0.5, 1.5, 2.5]))

Out[31]: array([-0.75,  1.25,  5.25]) 

 Polynomial Interpolation
The polynomial classes discussed in the previous section all provide useful functions 

for polynomial interpolation. For instance, recall the linear equation for the polynomial 

interpolation problem: Φ(x)c = y, where x and y are vectors containing the xi and yi data 

points and c is the unknown coefficient vector. To solve the interpolation problem, we 

need to first evaluate the matrix Φ(x) for a given basis and then solve the resulting linear 
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equation system. Each of the polynomial classes in polynomial conveniently provides 

a function for computing the (generalized) Vandermonde matrix for the corresponding 

basis. For example, for polynomials in the power basis, we can use np.polynomial.

polynomial.polyvander; for polynomials in the Chebyshev basis, we can use the 

corresponding np.polynomial.chebyshev.chebvander function; and so on. See the 

docstrings for np.polynomial and its submodules for the complete list of generalized 

Vandermonde matrix functions for the various polynomial bases.

Using the abovementioned functions for generating the Vandermonde matrices, we 

can easily perform a polynomial interpolation in different bases. For example, consider 

the data points (1, 1), (2, 3), (3, 5), and (4, 4). We begin with creating NumPy array for the 

x and y coordinates for the data points.

In [32]: x = np.array([1, 2, 3, 4])

In [33]: y = np.array([1, 3, 5, 4])

To interpolate a polynomial through these points, we need to use a polynomial of 

third degree (number of data points minus one). For interpolation in the power basis, we 

seek the coefficient ci such that f x c x c x c x c x c xi
i

i
( ) = = + + +-
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1
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1
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1

4
,  and to find 

this coefficient, we evaluate the Vandermonde matrix and solve the interpolation 

equation system:

In [34]: deg = len(x) - 1

In [35]: A = P.polynomial.polyvander(x, deg)

In [36]: c = linalg.solve(A, y)

In [37]: c

Out[37]: array([ 2. , -3.5,  3. , -0.5])

The sought coefficient vector is [2, -3.5, 3, -0.5], and the interpolation polynomial 

is thus f (x) = 2 − 3.5x+3x2 − 0.5x3. Given the coefficient array c, we can now create a 

polynomial representation that can be used for interpolation:

In [38]: f1 = P.Polynomial(c)

In [39]: f1(2.5)

Out[39]: 4.1875
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To perform this polynomial interpolation in another polynomial basis, all that we 

need to change is the name of the function that was used to generate the Vandermonde 

matrix A in the previous example. For example, to interpolate using the Chebyshev basis 

polynomials, we can do: 

In [40]: A = P.chebyshev.chebvander(x, deg)

In [41]: c = linalg.solve(A, y)

In [42]: c

Out[42]: array([ 3.5  , -3.875,  1.5  , -0.125])

As expected, the coefficient array has different values in this basis, and the interpolation  

polynomial in the Chebyshev basis is f (x) = 3.5T0(x) − 3.875T1(x)+1.5T2(x) − 0.125T3(x). 

However, regardless of the polynomial basis, the interpolation polynomial is unique, and 

evaluating the interpolant will always result in the same values:

In [43]: f2 = P.Chebyshev(c)

In [44]: f2(2.5)

Out[44]: 4.1875

We can demonstrate that the interpolation with the two bases indeed results in the 

same interpolation function by plotting the f1 and f2 together with the data points (see 

Figure 7-1):

In [45]:  xx = np.linspace(x.min(), x.max(), 100)  # supersampled [x[0],  

x[-1]] interval

In [45]: fig, ax = plt.subplots(1, 1, figsize=(12, 4))

    ...: ax.plot(xx, f1(xx), 'b', lw=2, label='Power basis interp.')

    ...: ax.plot(xx, f2(xx), 'r--', lw=2, label='Chebyshev basis interp.')

    ...: ax.scatter(x, y, label='data points')

    ...: ax.legend(loc=4)

    ...: ax.set_xticks(x)

    ...: ax.set_ylabel(r"$y$", fontsize=18)

    ...: ax.set_xlabel(r"$x$", fontsize=18)
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While interpolation with different polynomial bases is convenient due to the 

functions for the generalized Vandermonde matrices, there is an even simpler and better 

method available. Each polynomial class provides a class method fit that can be used 

to compute an interpolation polynomial.1 The two interpolation functions that were 

computed manually in the previous example could therefore instead be computed in the 

following manner: using the power basis and its Polynomial class, we obtain:

In [46]: f1b = P.Polynomial.fit(x, y, deg)

In [47]: f1b

Out[47]:  Polynomial([ 4.1875,  3.1875, -1.6875, -1.6875],  

domain=[ 1.,  4.], window=[-1.,  1.])

and by using the class method fit from the Chebyshev class instead, we obtain:

In [48]: f2b = P.Chebyshev.fit(x, y, deg)

In [49]: f2b

Out[49]:  Chebyshev([ 3.34375 ,  1.921875, -0.84375 , -0.421875],  

domain=[ 1.,  4.], window=[-1.,  1.])

Note that with this method, the domain attribute of the resulting instances are 

automatically set to the appropriate x values of the data points (in this example, the input 

range is [1, 4]), and the coefficients are adjusted accordingly. As mentioned previously, 

mapping the interpolation data into the range that is most suitable for a specific basis 

1 If the requested polynomial degree of the interpolant is smaller than the number of data points 
minus one, then a least square fit is computed rather than an exact interpolation.

Figure 7-1. Polynomial interpolation of four data points, using power basis and 
the Chebyshev basis
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can significantly improve the numerical stability of the interpolation. For example, using 

the Chebyshev basis with x values that are scaled such that x ∈ [−1, 1], rather than the 

original x values in the previous example, reduces the condition number from almost 

4660 to about 1.85:

In [50]: np.linalg.cond(P.chebyshev.chebvander(x, deg))

Out[50]: 4659.7384241399586

In [51]: np.linalg.cond(P.chebyshev.chebvander((2*x-5)/3.0, deg))

Out[51]: 1.8542033440472896

Polynomial interpolation of a few data points is a powerful and useful mathematical 

tool, which is an important part of many mathematical methods. When the number 

of data points increases, we need to use increasingly high-order polynomials for 

exact interpolation, and this is problematic in several ways. To begin with, it becomes 

increasingly demanding to both determine and evaluate the interpolant for increasing 

polynomial order. However, a more serious issue is that high-order polynomial 

interpolation can have undesirable behavior between the interpolation points. 

Although the interpolation is exact at the given data points, a high-order polynomial 

can vary wildly between the specified points. This is famously illustrated by polynomial 

interpolation of Runge’s function f (x) = 1/(1+25x2) using evenly spaced sample points 

in the interval [−1, 1]. The result is an interpolant that nearly diverges between the data 

points near the end of the interval.

To illustrate this behavior, we create a Python function runge that implements 

Runge’s function, and a function runge_interpolate that interpolates an nth order 

polynomial, in the power basis, to the Runge’s function at evenly spaced sample points:

In [52]: def runge(x):

    ...:     return 1/(1 + 25 * x**2)

In [53]: def runge_interpolate(n):

    ...:     x = np.linspace(-1, 1, n + 1)

    ...:     p = P.Polynomial.fit(x, runge(x), deg=n)

    ...:     return x, p
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Next we plot Runge’s function together with the 13th and 14th order polynomial 

interpolations, at supersampled x values in the [−1, 1] interval. The resulting plot is 

shown in Figure 7-2.

In [54]: xx = np.linspace(-1, 1, 250)

In [55]: fig, ax = plt.subplots(1, 1, figsize=(8, 4))

    ...: ax.plot(xx, runge(xx), 'k', lw=2, label="Runge's function")

    ...: # 13th order interpolation of the Runge function

    ...: n = 13

    ...: x, p = runge_interpolate(n)

    ...: ax.plot(x, runge(x), 'ro')

    ...: ax.plot(xx, p(xx), 'r', label='interp. order %d' % n)

    ...: # 14th order interpolation of the Runge function

    ...: n = 14

    ...: x, p = runge_interpolate(n)

    ...: ax.plot(x, runge(x), 'go')

    ...: ax.plot(xx, p(xx), 'g', label='interp. order %d' % n)

    ...:

    ...: ax.legend(loc=8)

    ...: ax.set_xlim(-1.1, 1.1)

    ...: ax.set_ylim(-1, 2)

    ...: ax.set_xticks([-1, -0.5, 0, 0.5, 1])

    ...: ax.set_ylabel(r"$y$", fontsize=18)

    ...: ax.set_xlabel(r"$x$", fontsize=18)

Figure 7-2. The Runge’s function together with two high-order polynomial 
interpolations
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We note that in Figure 7-2, the interpolants exactly agree with Runge’s function at 

the sample points, but between these points they oscillate wildly near the ends of the 

interval. This is an undesirable property of an interpolant, and it defeats the purpose of 

the interpolation. A solution to this problem is to use piecewise low-order polynomials 

when interpolating with a large number of data points. In other words, instead of fitting 

all the data points to a single high-order polynomial, a different low-order polynomial is 

used to describe each subinterval bracketed by two consecutive data points. This is the 

topic of the following section.

 Spline Interpolation
For a set of n data points {xi, yi}, there are n − 1 subintervals [xi, xi+1] in the full range of 

the data [x0, xn − 1]. An interior data point that connects two such subintervals is known 

as a knot in the terminology of piecewise polynomial interpolation. To interpolate the 

n data points using piecewise polynomials of degree k on each of the subintervals, we 

must determine (k+1)(n − 1) unknown parameters. The values at the knots give 2(n − 1) 

equations. These equations, by themselves, are only sufficient to determine a piecewise 

polynomial of order one, i.e., a piecewise linear function. However, additional equations 

can be obtained by requiring that also derivatives and higher-order derivatives are 

continuous at the knots. This condition ensures that the resulting piecewise polynomial 

has a smooth appearance.

A spline is a special type of piecewise polynomial interpolant: a piecewise 

polynomial of degree k is a spline if it is continuously differentiable k − 1 times. The most 

popular choice is the third-order spline, k = 3, which requires 4(n − 1) parameters. For 

this case, the continuity of two derivatives at the n − 2 knots gives 2(n − 2) additional 

equations, bringing the total number of equations to 2(n − 1)+2(n − 2) = 4(n − 1) − 2. 

There are therefore two remaining undetermined parameters, which must be 

determined by other means. A common approach is to additionally require that the 

second-order derivatives at the endpoints are zero (resulting in the natural spline). This 

gives two more equations, which closes the equation system.

The SciPy interpolate module provides several functions and classes for 

performing spline interpolation. For example, we can use the interpolate.interp1d 

function, which takes x and y arrays for the data points as first and second arguments. 
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The optional keyword argument kind can be used to specify the type and order of 

the interpolation. In particular, we can set kind=3 (or, equivalently, kind='cubic') to 

compute the cubic spline. This function returns a class instance that can be called like 

a function and which can be evaluated for different values of x using function calls. An 

alternative spline function is interpolate.InterpolatedUnivariateSpline, which 

also takes x and y arrays as the first and second arguments, but which uses the keyword 

argument k (instead of kind) to specify the order of the spline interpolation.

To see how the interpolate.interp1d function can be used, consider again 

Runge’s function, and we now want to interpolate this function with a third-order spline 

polynomial. To this end, we first create NumPy arrays for the x and y coordinates of the 

sample points. Next we call the interpolate.interp1d function with kind=3 to obtain 

the third-order spline for the given data:

In [56]: x = np.linspace(-1, 1, 11)

In [57]: y = runge(x)

In [58]: f_i = interpolate.interp1d(x, y, kind=3)

To evaluate how good this spline interpolation is (here represented by the class 

instance f_i), we plot the interpolant together with the original Runge’s function and the 

sample points. The result is shown in Figure 7-3. 

In [59]: xx = np.linspace(-1, 1, 100)

In [60]: fig, ax = plt.subplots(figsize=(8, 4))

    ...: ax.plot(xx, runge(xx), 'k', lw=1, label="Runge's function")

    ...: ax.plot(x, y, 'ro', label='sample points')

    ...: ax.plot(xx, f_i(xx), 'r--', lw=2, label='spline order 3')

    ...: ax.legend()

    ...: ax.set_xticks([-1, -0.5, 0, 0.5, 1])

    ...: ax.set_ylabel(r"$y$", fontsize=18)

    ...: ax.set_xlabel(r"$x$", fontsize=18)
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Here we used 11 data points and a spline of the third order. We note that the 

interpolant agrees very well with the original function in Figure 7-3. Typically spline 

interpolation of order three or less does not suffer from the same type of oscillations that 

we observed with high-order polynomial interpolation, and normally it is sufficient to 

use splines of order three if we have a sufficient number of data points.

To illustrate the effect of the order of a spline interpolation, consider the problem of 

interpolating the data (0, 3), (1, 4), (2, 3.5), (3, 2), (4, 1), (5, 1.5), (6, 1.25), and (7, 0.9) with 

splines of increasing order. We first define the x and y arrays, and then loop over the 

required spline orders, computing the interpolation and plotting it for each order:

In [61]: x = np.array([0, 1, 2, 3, 4, 5, 6, 7])

In [62]: y = np.array([3, 4, 3.5, 2, 1, 1.5, 1.25, 0.9])

In [63]: xx = np.linspace(x.min(), x.max(), 100)

In [64]: fig, ax = plt.subplots(figsize=(8, 4))

    ...: ax.scatter(x, y)

    ...:

    ...: for n in [1, 2, 3, 5]:

    ...:     f = interpolate.interp1d(x, y, kind=n)

    ...:     ax.plot(xx, f(xx), label='order %d' % n)

    ...:

    ...: ax.legend()

    ...: ax.set_ylabel(r"$y$", fontsize=18)

    ...: ax.set_xlabel(r"$x$", fontsize=18)

Figure 7-3. Runge’s function with a third-order Spline interpolation using 11 data 
points
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From the spline interpolation shown in Figure 7-4, it is clear that spline order two or 

three already provides a rather good interpolation, with relatively small errors between 

the original function and the interpolant function. For higher-order splines, the same 

problem as we saw for high-order polynomial interpolation resurfaces. In practice, it is 

therefore often suitable to use third-order spline interpolation.

 Multivariate Interpolation
Polynomial and spline interpolations can be straightforwardly generalized to 

multivariate situations. In analogy with the univariate case, we seek a function whose 

values are given at a set of specified points and that can be evaluated for intermediary 

points within the sampled range. SciPy provides several functions and classes for 

multivariate interpolation, and in the following two examples, we explore two of the 

most useful functions for bivariate interpolation: the interpolate.interp2d and 

interpolate.griddata functions, respectively. See the docstring for the interpolate 

module and its reference manual for further information on other interpolation options.

We begin by looking at interpolate.interp2d, which is a straightforward 

generalization of the interp1d function that we previously used. This function takes 

the x and y coordinates of the available data points as separate one-dimensional 

arrays, followed by a two-dimensional array of values for each combination of x and y 

coordinates. This presumes that the data points are given on a regular and uniform grid 

of x and y coordinates.

Figure 7-4. Spline interpolations of different orders
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To illustrate how the interp2d function can be used, we simulate noisy 

measurements by adding random noise to a known function, which in the following 

example is taken to be f(x, y) =  exp (−(x+1/2)2 − 2(y+1/2)2) −  exp (−(x − 1/2)2 −  

2(y − 1/2)2). To form an interpolation problem, we sample this function at 10 points 

in the interval [−2, 2], along the x and y coordinates, and then add a small normal-

distributed noise to the exact values. We first create NumPy arrays for the x and y 

coordinates of the sample points and define a Python function for f (x, y):

In [65]: x = y = np.linspace(-2, 2, 10)

In [66]: def f(x, y):

    ...:      return np.exp(-(x + .5)**2 - 2*(y + .5)**2) -  

np.exp(-(x - .5)**2 - 2*(y - .5)**2)

Next we evaluate the function at the sample points and add the random noise to 

simulate uncertain measurements:

In [67]: X, Y = np.meshgrid(x, y)

In [68]: # simulate noisy data at fixed grid points X, Y

    ...: Z = f(X, Y) + 0.05 * np.random.randn(*X.shape)

At this point, we have a matrix of data points Z with noisy data, which is associated 

with exactly known and regularly spaced coordinates x and y. To obtain an interpolation 

function that can be evaluated for intermediary x and y values, within the sampled 

range, we can now use the interp2d function:

In [69]: f_i = interpolate.interp2d(x, y, Z, kind='cubic')

Note that here x and y are one-dimensional arrays (of length 10), and Z is a two- 

dimensional array of shape (10, 10). The interp2d function returns a class instance, 

here f_i, that behaves as a function that we can evaluate at arbitrary x and y coordinates 

(within the sampled range). A supersampling of the original data, using the interpolation 

function, can therefore be obtained in the following way:

In [70]: xx = yy = np.linspace(x.min(), x.max(), 100)

In [71]: ZZi = f_i(xx, yy)

In [72]: XX, YY = np.meshgrid(xx, yy)
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Here, XX and YY are coordinate matrices for the supersampled points, and the 

corresponding interpolated values are ZZi. These can, for example, be used to plot 

a smoothed function describing the sparse and noisy data. The following code plots 

contours of both the original function and the interpolated data. See Figure 7-5 for the 

resulting contour plot.

In [73]: fig, axes = plt.subplots(1, 2, figsize=(12, 5))

    ...: # for reference, first plot the contours of the exact function
    ...: c = axes[0].contourf(XX, YY, f(XX, YY), 15, cmap=plt.cm.RdBu)
    ...: axes[0].set_xlabel(r"$x$", fontsize=20)
    ...: axes[0].set_ylabel(r"$y$", fontsize=20)
    ...: axes[0].set_title("exact / high sampling")
    ...: cb = fig.colorbar(c, ax=axes[0])
    ...: cb.set_label(r"$z$", fontsize=20)
    ...: #  next, plot the contours of the supersampled interpolation of the 

noisy data
    ...: c = axes[1].contourf(XX, YY, ZZi, 15, cmap=plt.cm.RdBu)
    ...: axes[1].set_ylim(-2.1, 2.1)
    ...: axes[1].set_xlim(-2.1, 2.1)
    ...: axes[1].set_xlabel(r"$x$", fontsize=20)
    ...: axes[1].set_ylabel(r"$y$", fontsize=20)
    ...: axes[1].scatter(X, Y, marker='x', color='k')
    ...: axes[1].set_title("interpolation of noisy data / low sampling")

    ...: cb = fig.colorbar(c, ax=axes[1])

    ...: cb.set_label(r"$z$", fontsize=20)

Figure 7-5. Contours of the exact function (left) and a bivariate cubic spline 
interpolation (right) of noisy samples from the function on a regular grid (marked 
with crosses)
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With relatively sparsely spaced data points, we can thus construct an approximation 

of the underlying function by using the interpolate.interp2d to compute the 

bivariate cubic spline interpolation. This gives a smoothed approximation for the 

underplaying function, which is frequently useful when dealing with data obtained 

from measurements or computations that are costly, in time or other resources. For 

higher-dimensional problems, there is a function interpolate.interpnd, which is a 

generalization to N-dimensional problems.

Another common situation that requires multivariate interpolation occurs when 

sampled data is given on an irregular coordinate grid. This situation frequently arises 

(e.g., in experiments or other data collection processes) when the exact values at which 

the observations are collected cannot be directly controlled. To be able to easily plot and 

analyze such data with existing tools, it may be desirable to interpolate it onto a regular 

coordinate grid. In SciPy we can use the interpolate.griddata for exactly this task. This 

function takes as first argument. a tuple of one-dimensional coordinate vectors (xdata, 

ydata) for the data values zdata, which are passed to the function in matrix form as third 

argument. The fourth argument is a tuple (X, Y) of coordinate vectors or coordinate 

matrices for the new points at which the interpolant is to be evaluated. Optionally, we 

can also set the interpolation method using the method keyword argument ('nearest', 

'linear', or 'cubic'):

In [74]: Zi = interpolate.griddata((xdata, ydata), zdata, (X, Y), 

method='cubic')

To demonstrate how to use the interpolate.griddata function for 

interpolating data at unstructured coordinate points, we take the function 

f (x, y) =  exp (−x2 − y2) cos 4x sin 6y and randomly select sampling points in the interval 

[−1, 1] along the x and y coordinates. The resulting {xi, yi, zi} data is then interpolated and 

evaluated on a supersampled regular grid spanning the x, y ∈ [−1, 1] region. To this end, 

we first define a Python function for f (x, y) and then generate the randomly sampled 

data:

In [75]: def f(x, y):

    ...:     return np.exp(-x**2 - y**2) * np.cos(4*x) * np.sin(6*y)

In [76]: N = 500

In [77]: xdata = np.random.uniform(-1, 1, N)

In [78]: ydata = np.random.uniform(-1, 1, N)

In [79]: zdata = f(xdata, ydata)
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To visualize the function and the density of the sampling points, we plot a scatter plot 

for the sampling locations overlaid on a contour graph of f(x, y). The result is shown in 

Figure 7-6.

In [80]: x = y = np.linspace(-1, 1, 100)

In [81]: X, Y = np.meshgrid(x, y)

In [82]: Z = f(X, Y)

In [83]: fig, ax = plt.subplots(figsize=(8, 6))

    ...: c = ax.contourf(X, Y, Z, 15, cmap=plt.cm.RdBu);

    ...: ax.scatter(xdata, ydata, marker='.')

    ...: ax.set_ylim(-1,1)

    ...: ax.set_xlim(-1,1)

    ...: ax.set_xlabel(r"$x$", fontsize=20)

    ...: ax.set_ylabel(r"$y$", fontsize=20)

    ...: cb = fig.colorbar(c, ax=ax)

    ...: cb.set_label(r"$z$", fontsize=20)

From the contour graph and scatter plots in Figure 7-6, it appears that the randomly 

chosen sample points cover the coordinate region of interest fairly well, and it is 

plausible that we should be able to reconstruct the function f(x, y) relatively accurately 

by interpolating the data. Here we would like to interpolate the data on the finely spaced 

Figure 7-6. Exact contour plot of a randomly sampled function. The 500 sample 
points are marked with black dots.
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(supersampled) regular grid described by the X and Y coordinate arrays. To compare 

different interpolation methods, and the effect of increasing number of sample points, 

we define the function z_interpolate that interpolates the given data points with the 

nearest data point, a linear interpolation, and a cubic spline interpolation:

In [84]: def z_interpolate(xdata, ydata, zdata):

    ...:      Zi_0 = interpolate.griddata((xdata, ydata), zdata, (X, Y), 

method='nearest')

    ...:      Zi_1 = interpolate.griddata((xdata, ydata), zdata, (X, Y), 

method='linear')

    ...:      Zi_3 = interpolate.griddata((xdata, ydata), zdata, (X, Y), 

method='cubic')

    ...:     return Zi_0, Zi_1, Zi_3

Finally we plot a contour graph of the interpolated data for the three different 

interpolation methods applied to three subsets of the total number of sample points that 

use 50, 150, and all 500 points, respectively. The result is shown in Figure 7-7.

In [85]:  fig, axes = plt.subplots(3, 3, figsize=(12, 12), sharex=True, 

sharey=True)

    ...:

    ...: n_vec = [50, 150, 500]

    ...: for idx, n in enumerate(n_vec):

    ...:      Zi_0, Zi_1, Zi_3 = z_interpolate(xdata[:n], ydata[:n], 

zdata[:n])

    ...:     axes[idx, 0].contourf(X, Y, Zi_0, 15, cmap=plt.cm.RdBu)

    ...:     axes[idx, 0].set_ylabel("%d data points\ny" % n, fontsize=16)

    ...:     axes[idx, 0].set_title("nearest", fontsize=16)

    ...:     axes[idx, 1].contourf(X, Y, Zi_1, 15, cmap=plt.cm.RdBu)

    ...:     axes[idx, 1].set_title("linear", fontsize=16)

    ...:     axes[idx, 2].contourf(X, Y, Zi_3, 15, cmap=plt.cm.RdBu)

    ...:     axes[idx, 2].set_title("cubic", fontsize=16)

    ...: for m in range(len(n_vec)):

    ...:     axes[idx, m].set_xlabel("x", fontsize=16)
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Figure 7-7 shows that it is possible to reconstruct a function fairly well from 

interpolation of unstructured samples, as long as the region of interest is well covered. 

In this example, and quite generally for other situations as well, it is clear that the cubic 

spline interpolation is vastly superior to nearest-point and linear interpolation, and 

although it is more computationally demanding to compute the spline interpolation, it is 

often worthwhile.

Figure 7-7. Bivariate interpolation of randomly sampled values, for increasing 
interpolation order (left to right) and increasing number of sample points (top to 
bottom)
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 Summary
Interpolation is a fundamental mathematical tool that has significant applications 

throughout scientific and technical computing. In particular, interpolation is a crucial 

part of many mathematical methods and algorithms. It is also a practical tool in itself, 

which is useful when plotting or analyzing data that are obtained from experiments, 

observations, or resource-demanding computations. The combination of the NumPy 

and SciPy libraries provides good coverage of numerical interpolation methods, in one 

or more independent variables. For most practical interpolation problems that involve 

a large number of data points, cubic spline interpolation is the most useful technique, 

although polynomial interpolation of low degree is most commonly used as a tool in 

other numerical methods (such as root finding, optimization, numerical integration). In 

this chapter we have explored how to use NumPy’s polynomial and SciPy’s interpolate 

modules to perform interpolation on given datasets with one and two independent 

variables. Mastering these techniques is an important skill of a computational scientist, 

and I encourage further exploring the content in scipy.interpolate that was not 

covered here by studying the docstrings for this module and its many functions and 

classes.

 Further Reading
Interpolation is covered in most texts on numerical methods, and for a more 

thorough theoretical introduction to the subject, see, for example, J. Stoer (1992) or 

Hamming (1987).

 References
Hamming, R. (1987). Numerical Methods for Scientists and Engineers. New York: Dover 

Publications.

J. Stoer, R. B. (1992). Introduction to Numerical Analysis. New York: Springer.
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CHAPTER 8

Integration
In this chapter we cover different aspects of integration, with the main focus on 

numerical integration. For historical reasons, numerical integration is also known 

as quadrature. Integration is significantly more difficult than its inverse operation – 

differentiation – and while there are many examples of integrals that can be calculated 

analytically, in general we have to resort to numerical methods. Depending on the 

properties of the integrand (the function being integrated) and the integration limits, 

it can be easy or difficult to numerically compute an integral. Integrals of continuous 

functions and with finite integration limits can in most cases be computed efficiently 

in one dimension, but integrable functions with singularities or integrals with infinite 

integration limits are examples of cases that can be difficult to handle numerically, even 

in a single dimension. Two-dimensional integrals (double integrals) and higher-order 

integrals can be numerically computed with repeated single-dimension integration or 

using methods that are multidimensional generalizations of the techniques used to solve 

single-dimensional integrals. However, the computational complexity grows quickly 

with the number of dimensions to integrate over, and in practice such methods are 

only feasible for low-dimensional integrals, such as double integrals or triple integrals. 

Integrals of higher dimension than that often require completely different techniques, 

such as Monte Carlo sampling algorithms.

In addition to numerical evaluation of integrals with definite integration limits, 

which gives a single number as a result, integration also has other important 

applications. For example, equations where the integrand of an integral is the unknown 

quantity are called integral equations, and such equations frequently appear in science 

and engineering applications. Integral equations are usually difficult to solve, but they 

can often be recast into linear equation systems by discretizing the integral. However, we 

do not cover this topic here, but we will see examples of this type of problem in  

Chapter 10. Another important application of integration is integral transforms, which 
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are techniques for transforming functions and equations between different domains. 

At the end of this chapter, we briefly discuss how SymPy can be used to compute some 

integral transforms, such as Laplace transforms and Fourier transforms.

To carry out symbolic integration, we can use SymPy, as briefly discussed in 

Chapter 3, and to compute numerical integration, we mainly use the integrate module 

in SciPy. However, SymPy (through the multiple-precision library mpmath) also have 

routines for numerical integration, which complement those in SciPy, for example, by 

offering arbitrary-precision integration. In this chapter we look into both these options 

and discuss their pros and cons. We also briefly look at Monte Carlo integrations using 

the scikit-monaco library.

Scikit-monaco Scikit-monaco is a small and recent library that makes Monte 
Carlo integration convenient and easily accessible. At the time of writing, the 
most recent version of scikit-monaco is 0.2.1. See http://scikit- monaco.
readthedocs.org for more information.

 Importing Modules
In this chapter we require, as usual, the NumPy and the Matplotlib libraries for basic 

numerical and plotting support, and on top of that, we use the integrate module from 

SciPy, the SymPy library, and the arbitrary-precision math library mpmath. Here we 

assume that these modules are imported as follows:

In [1]: import numpy as np

In [2]: import matplotlib.pyplot as plt

   ...: import maplotlib as mpl

In [3]: from scipy import integrate

In [4]: import sympy

In [5]: import mpmath

In addition, for nicely formatted output from SymPy, we also need to set up its 

printing system:

In [6]: sympy.init_printing()
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 Numerical Integration Methods
Here we are concerned with evaluating definite integrals on the form I f f x x

a

b

( ) = ( )ò d ,  

with given integration limits a and b. The interval [a, b] can be finite, semi-infinite 

(where either a =  − ∞ or b = ∞), or infinite (where both a =  − ∞ and b = ∞). The 

integral I(f) can be interpreted as the area between the curve of the integrand f(x) and 

the x axis, as illustrated in Figure 8-1.

A general strategy for numerically evaluating an integral I(f), on the form given 

above, is to write the integral as a discrete sum that approximates the value of the 

integral:

 
I f w f x r

i

n

i i n( ) = ( ) +
=
å

1

 .
 

Here wi are the weights of n evaluations of f (x) at the points xi ∈ [a, b], and rn is 

the residual due to the approximation. In practice we assume that rn is small and can 

be neglected, but it is important to have an estimate of rn to known how accurately 

the integral is approximated. This summation formula for I(f) is known as an n-point 

quadrature rule, and the choice of the number of points n, their locations in [a, b], 

and the weight factors wi influence the accuracy and the computational complexity 

of its evaluation. Quadrature rules can be derived from interpolations of f (x) on the 

interval [a, b]. If the points xi are evenly spaced in the interval [a, b], and a polynomial 

interpolation is used, then the resulting quadrature rule is known as a Newton-Cotes 

Figure 8-1. Interpretation of an integral as the area between the curve of the 
integrand and the x axis, where the area is counted as positive where f(x) > 0 
(green/light) and negative otherwise (red/dark)
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quadrature rule. For instance, approximating f(x) with a zeroth-order polynomial 

(constant value) using the midpoint value x0 = (a+b)/2, we obtain

 a

b

a

b

f x x f
a b

x b a f
a b

ò ò( ) »
+æ

è
ç

ö
ø
÷ = -( ) +æ

è
ç
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÷d d

2 2
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This is known as the midpoint rule, and it integrates polynomials of up to order 

one (linear functions) exactly, and it is therefore said to be of polynomial degree one. 

Approximating f(x) by a polynomial of degree one, evaluated at the endpoints of the 

interval, results in

 a

b

f x x
b a

f a f bò ( ) »
- ( )+ ( )( )d
2

.
 

This is known as the trapezoid rule, and it is also of polynomial degree one. Using an 

interpolation polynomial of second order results in Simpson’s rule,
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which uses function evaluations at the endpoints and the midpoint. This method is 

of polynomial degree three, meaning that it integrates exactly polynomials up to order 

three. The method of arriving at this formula can easily be demonstrated using SymPy: 

First we define symbols for the variables a, b, and x, as well as the function f.

In [7]: a, b, X = sympy.symbols("a, b, x")

In [8]: f = sympy.Function("f")

Next we define a tuple x that contains the sample points (the endpoints and 

the middle point of the interval [a, b]) and a list w of weight factors to be used in the 

quadrature rule, corresponding to each sample point:

In [9]: x = a, (a+b)/2, b  # for Simpson's rule

In [10]: w = [sympy.symbols("w_%d" % i) for i in range(len(x))]
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Given x and w, we can now construct a symbolic expression for the quadrature rule:

In [11]: q_rule = sum([w[i] * f(x[i]) for i in range(len(x))])

In [12]: q_rule

Out[12]: w f a w f
a b

w f b0 1 22 2
( )+ +æ

è
ç

ö
ø
÷+ ( )

To compute the appropriate values of the weight factors wi, we choose the 

polynomial basis functions fn
n

n
x x( ) ={ }

=0

2
 for the interpolation of f(x), and here we use 

the sympy.Lambda function to create symbolic representations for each of these basis 

functions:

In [13]: phi = [sympy.Lambda(X, X**n) for n in range(len(x))]

In [14]: phi

Out[14]: x x x x x� � �1 2( ) ( ) ( )éë ùû, ,

The key to finding the weight factors in the quadrature expression (Out[12]) is that 

the integral 

a

b

n x xò ( )f d  can be computed analytically for each of the basis functions ϕn(x). 

By substituting the function f(x) with each of the basis functions ϕn(x) in the quadrature 

rule, we obtain an equation system for the unknown weight factors:
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These equations are equivalent to requiring that the quadrature rule exactly 

integrates all the basis functions and therefore also (at least) all functions that are 

spanned by the basis. This equation system can be constructed with SymPy using

In [15]: eqs = [q_rule.subs(f, phi[n]) - sympy.integrate(phi[n](X), (X, a, b))

    ...:        for n in range(len(phi))]

In [16]: eqs
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Solving this linear equation system gives analytical expressions for the weight 

factors,

In [17]: w_sol = sympy.solve(eqs, w)

In [18]: w_sol

Out[18]: w
a b

w
a b

w
a b
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2

3

2

3 6 6
: : :- + - + - +ì

í
î

ü
ý
þ

, ,

and by substituting the solution into the symbolic expression for the quadrature rule, we 

obtain

In [19]: q_rule.subs(w_sol).simplify()

Out[19]: - -( ) ( )+ ( )+ +æ
è
ç

ö
ø
÷

æ

è
ç

ö

ø
÷

1

6
4

2 2
a b f a f b f

a b

We recognize this result as Simpson’s quadrature rule given in the preceding section. 

Choosing different sample points (the x tuple in this code) results in different quadrature 

rules.

Higher-order quadrature rules can similarly be derived using higher-order 

polynomial interpolation (more sample points in the [a, b] interval). However, 

high-order polynomial interpolation can have undesirable behavior between the 

sample points, as discussed in Chapter 7. Rather than using higher-order quadrature 

rules, it is therefore often better to divide the integration interval [a, b] into 

subintervals [a = x0, x1],[x1, x2],…,[xN − 1, xN = b] and use a low-order quadrature rule in 

each of these subintervals. Such methods are known as composite quadrature rules. 

Figure 8-2 shows the three lowest-order Newton-Cotes quadrature rules for the function 

f (x) = 3+x+x2+x3+x4 on the interval [−1, 1] and the corresponding composite quadrature 

rules with four subdivisions of the original interval.
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An important parameter that characterizes composite quadrature rules is the 

subinterval length h = (b − a)/N. Estimates for the errors in an approximate quadrature 

rule, and the scaling of the error with respect to h, can be obtained from Taylor series 

expansions of the integrand and the analytical integration of the term in the resulting 

series. An alternative technique is to simultaneously consider quadrature rules of 

different orders or of different subinterval lengths h. The difference between two such 

results can often be shown to give estimates of the error, and this is the basis for how 

many quadrature routines produce an estimate of the error in addition to the estimate of 

the integral, as we will see in the examples in the following section.

We have seen that the Newton-Cotes quadrature rules use evenly spaced sample 

points of the integrand f (x). This is often convenient, especially if the integrand is 

obtained from measurements or observations at prescribed points, and cannot be 

evaluated at arbitrary points in the interval [a, b]. However, this is not necessarily 

the most efficient choice of quadrature nodes, and if the integrand is given as a 

function that easily can be evaluated at arbitrary values of x ∈ [a, b], then it can be 

advantageous to use quadrature rules that do not use evenly spaced sample points. 

An example of such a method is Gaussian quadrature, which also uses polynomial 

interpolation to determine the values of the weight factors in the quadrature rule but 

Figure 8-2. Visualization of quadrature rules (top panel) and composite 
quadrature rules (bottom panel) of orders zero (the midpoint rule), one (the 
trapezoid rule), and two (Simpson’s rule)
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where the quadrature nodes xi are chosen to maximize order of polynomials that can 

be integrated exactly (the polynomial degree) given a fixed number of quadrature 

points. It turns out that choices xi that satisfy these criteria are the roots of different 

orthogonal polynomials, and the sample points xi are typically located at irrational 

locations in the integration interval [a, b]. This is typically not a problem for numerical 

implementations, but practically it requires that the function f (x) is available to 

be evaluated at arbitrary points that are decided by the integration routine, rather 

than given as tabulated or precomputed data at regularly spaced x values. Gaussian 

quadrature rules are typically superior if f (x) can be evaluated at arbitrary values, but 

for the reason just mentioned, the Newton-Cotes quadrature rules also have important 

use-cases when the integrand is given as tabulated data.

 Numerical Integration with SciPy
The numerical quadrature routines in the SciPy integrate module can be categorized 

into two types: routines that take the integrand as a Python function and routines that 

take arrays with samples of the integrand at given points. The functions of the first type 

use Gaussian quadrature (quad, quadrature, fixed_quad), while functions of the second 

type use Newton-Cotes methods (trapz, simps, and romb).

The quadrature function is an adaptive Gaussian quadrature routine that is 

implemented in Python. The quadrature repeatedly calls the fixed_quad function, for 

Gaussian quadrature of fixed order, with increasing order until the required accuracy is 

reached. The quad function is a wrapper for routines from the FORTRAN library 

QUADPACK, which has superior performance in terms of speed and has more features 

(such as support for infinite integration limits). It is therefore usually preferable to use 

quad, and in the following, we use this quadrature function. However, all these functions 

take similar arguments and can often be replaced with each other. They take as a first 

argument the function that implements the integrand, and the second and third 

arguments are the lower and upper integration limits. As a concrete example, consider the 

numerical evaluation of the integral 

-

-ò
1

1
2

e xx d . To evaluate this integral using SciPy’s quad 

function, we first define a function for the integrand and then call the quad function:

In [20]: def f(x):

    ...:     return np.exp(-x**2)

In [21]: val, err = integrate.quad(f, -1, 1)
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In [22]: val

Out[22]: 1.493648265624854

In [23]: err

Out[23]: 1.6582826951881447e−14

The quad function returns a tuple that contains the numerical estimate of the 

integral, val, and an estimate of the absolute error, err. The tolerances for the absolute 

and the relative errors can be set using the optional epsabs and epsrel keyword 

arguments, respectively. If the function f takes more than one variable, the quad routine 

integrates the function over its first argument. We can optionally specify the values of 

additional arguments by passing those values to the integrand function via the keyword 

argument args to the quad function. For example, if we wish to evaluate 

-

- -( )ò
1

1
2 2

ae xx b c/ d  

for the specific values of the parameters a = 1, b = 2, and c = 3, we can define a function 

for the integrand that takes all these additional arguments and then specify the values of 

a, b, and c by passing args=(1, 2, 3) to the quad function:

In [24]: def f(x, a, b, c):

    ...:     return a * np.exp(-((x - b)/c)**2)

In [25]: val, err = integrate.quad(f, -1, 1, args=(1, 2, 3))

In [26]: val

Out[26]: 1.2763068351022229

In [27]: err

Out[27]: 1.4169852348169507e−14

When working with functions where the variable we want to integrate over is not the 

first argument, we can reshuffle the arguments by using a lambda function. For example, 

if we wish to compute the integral 
0

5

0ò ( )J x xd ,  where the integrand J0(x) is the zeroth- 

order Bessel function of the first kind, it would be convenient to use the function jv from 

the scipy.special module as integrand. The function jv takes the arguments v and x 

and is the Bessel function of the first kind for the real-valued order v and evaluated at x. 

To be able to use the jv function as integrand for quad, we therefore need to reshuffle the 

arguments of jv. With a lambda function, we can do this in the following manner:

In [28]: from scipy.special import jv

In [29]: f = lambda x: jv(0, x)

In [30]: val, err = integrate.quad(f, 0, 5)
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In [31]: val

Out[31]: 0.7153119177847678

In [32]: err

Out[32]: 2.47260738289741e−14

With this technique we can arbitrarily reshuffle arguments of any function and 

always obtain a function where the integration variable is the first argument, so that the 

function can be used as integrand for quad.

The quad routine supports infinite integration limits. To represent integration limits 

that are infinite, we use the floating-point representation of infinity, float('inf'), 

which is conveniently available in NumPy as np.inf. For example, consider the integral 

-¥

¥
-òe xx2d . To evaluate it using quad, we can do

In [33]: f = lambda x: np.exp(-x**2)

In [34]: val, err = integrate.quad(f, -np.inf, np.inf)

In [35]: val

Out[35]: 1.7724538509055159

In [36]: err

Out[36]: 1.4202636780944923e−08

However, note that the quadrature and fixed_quad functions only support finite 

integration limits.

With a bit of extra guidance, the quad function is also able to handle many integrals 

with integrable singularities. For example, consider the integral 
-
ò
1

1 1

x
xd . The integrand 

diverges at x = 0, but the value of the integral does not diverge, and its value is 4. Naively 

trying to compute this integral using quad may fail because of the diverging integrand:

In [37]: f = lambda x: 1/np.sqrt(abs(x))

In [38]: a, b = -1, 1

In [39]: integrate.quad(f, a, b)

Out[39]: (inf, inf)

In situations like these, it can be useful to graph the integrand to get insights into 

how it behaves, as shown in Figure 8-3.

In [40]: fig, ax = plt.subplots(figsize=(8, 3))

    ...: x = np.linspace(a, b, 10000)

    ...: ax.plot(x, f(x), lw=2)
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    ...: ax.fill_between(x, f(x), color='green', alpha=0.5)

    ...: ax.set_xlabel("$x$", fontsize=18)

    ...: ax.set_ylabel("$f(x)$", fontsize=18)

    ...: ax.set_ylim(0, 25)

    ...: ax.set_xlim(-1, 1)

In this case the evaluation of the integral fails because the integrand diverges exactly 

at one of the sample points in the Gaussian quadrature rule (the midpoint). We can 

guide the quad routine by specifying a list of points that should be avoided using the 

points keyword arguments, and using points=[0] in the current example allows quad to 

correctly evaluate the integral:

In [41]: integrate.quad(f, a, b, points=[0])

Out[41]: (4.0,5.684341886080802e−14)

 Tabulated Integrand
We have seen that the quad routine is suitable for evaluating integrals when the 

integrand is specified using a Python function that the routine can evaluate at arbitrary 

points (which is determined by the specific quadrature rule). However, in many 

situations we may have an integrand that is only specified at predetermined points, 

such as evenly spaced points in the integration interval [a, b]. This type of situation can 

occur, for example, when the integrand is obtained from experiments or observations 

that cannot be controlled by the particular integration routine. In this case we can use a 

Newton-Cotes quadrature, such as the midpoint rule, trapezoid rule, or Simpson’s rule 

that were described earlier in this chapter.

Figure 8-3. Example of a diverging integrand with finite integral (green/shaded 
area) that can be computed using the quad function
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In the SciPy integrate module, the composite trapezoid rule and Simpson’s rule are 

implemented in the trapz and simps functions. These functions take as first argument 

an array y with values of the integrand at a set of points in the integration interval, and 

they optionally take as second argument an array x that specifies the x values of the 

sample points, or alternatively the spacing dx between each sample (if uniform). Note 

that the sample points do not necessarily need to be evenly spaced, but they must be 

known in advance.

To see how to evaluate an integral of a function that is given by sampled values, let’s 

evaluate the integral 
0

2

ò x xd by taking 25 samples of the integrand in the integration 

interval [0, 2], as shown in Figure 8-4:

In [42]: f = lambda x: np.sqrt(x)

In [43]: a, b = 0, 2

In [44]: x = np.linspace(a, b, 25)

In [45]: y = f(x)

In [46]: fig, ax = plt.subplots(figsize=(8, 3))

    ...: ax.plot(x, y, 'bo')

    ...: xx = np.linspace(a, b, 500)

    ...: ax.plot(xx, f(xx), 'b-')

    ...: ax.fill_between(xx, f(xx), color='green', alpha=0.5)

    ...: ax.set_xlabel(r"$x$", fontsize=18)

    ...: ax.set_ylabel(r"$f(x)$", fontsize=18)

Figure 8-4. Integrand given as tabulated values marked with dots. The integral 
corresponds to the shaded area.
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To evaluate the integral, we can pass the x and y arrays to the trapz or simps 

methods. Note that the y array must be passed as the first argument:

In [47]: val_trapz = integrate.trapz(y, x)

In [48]: val_trapz

Out[48]: 1.88082171605

In [49]: val_simps = integrate.simps(y, x)

In [50]: val_simps

Out[50]: 1.88366510245

The trapz and simps functions do not provide any error estimates, but for this 

particular example, we can compute the integral analytically and compare to the 

numerical values computed with the two methods:

In [51]: val_exact = 2.0/3.0 * (b-a)**(3.0/2.0)

In [52]: val_exact

Out[52]: 1.8856180831641267

In [53]: val_exact - val_trapz

Out[53]: 0.00479636711328

In [54]: val_exact - val_simps

Out[54]: 0.00195298071541

Since all the information we have about the integrand is the given sample points, we 

also cannot ask either of trapz or simps to compute more accurate solutions. The only 

options for increasing the accuracy are to increase the number of sample points (which 

might be difficult if the underlying function is not known) or possibly to use a higher- 

order method.

The integrate module also provides an implementation of the Romberg method 

with the romb function. The Romberg method is a Newton-Cotes method but one that 

uses Richardson extrapolation to accelerate the convergence of the trapezoid method; 

however this method does require that the sample points are evenly spaced and also that 

there are 2n+1 sample points, where n is an integer. Like the trapz and simps methods, 

romb takes an array with integrand samples as first argument, but the second argument 

must (if given) be the sample-point spacing dx:
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In [55]: x = np.linspace(a, b, 1 + 2**6)

In [56]: len(x)

Out[56]: 65

In [57]: y = f(x)

In [58]: dx = x[1] - x[0]

In [59]: val_exact - integrate.romb(y, dx=dx)

Out[59]: 0.000378798422913

Among the SciPy integration functions that we have discussed here, simps is perhaps 

the most useful one overall, since it provides a good balance between ease of use (no 

constraints on the sample points) and relatively good accuracy.

 Multiple Integration
Multiple integrals, such as double integrals 

a

b

c

d

f x y x yòò ( ), d d  and triple integrals 

a

b

c

d

e

f

f x y z x y zòòò ( ), , d d d , can be evaluated using the dblquad and tplquad functions from the 

SciPy integrate module. Also, integration over n variables ∫…∫Df (x)dx, over some 

domain D, can be evaluated using the nquad function. These functions are wrappers 

around the single-variable quadrature function quad, which is called repeatedly along 

each dimension of the integral.

Specifically, the double integral routine dblquad can evaluate integrals on the form

 a

b

g x

h x

f x y x yò ò
( )

( )

( ), d d ,
 

and it has the function signature dblquad(f, a, b, g, h), where f is a Python function 

for the integrand, a and b are constant integration limits along the x dimension, and g 

and f are Python functions (taking x as argument) that specify the integration limits 

along the y dimension. For example, consider the integral 

0

1

0

1
2 2

òò - -e x yx y d d . To evaluate this 

we first define the function f for the integrand and graph the function and the 

integration region, as shown in Figure 8-5:

In [60]: def f(x, y):

    ...:     return np.exp(-x**2 - y**2)

In [61]: fig, ax = plt.subplots(figsize=(6, 5))
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    ...: x = y = np.linspace(-1.25, 1.25, 75)

    ...: X, Y = np.meshgrid(x, y)

     ...:  c = ax.contour(X, Y, f(X, Y), 15, cmap=mpl.cm.RdBu, vmin=-1, 

vmax=1)

     ...: bound_rect = plt.Rectangle((0, 0), 1, 1, facecolor="grey")

    ...: ax.add_patch(bound_rect)

    ...: ax.axis('tight')

    ...: ax.set_xlabel('$x$', fontsize=18)

    ...: ax.set_ylabel('$y$', fontsize=18)

In this example the integration limits for both the x and y variables are constants, but 

since dblquad expects functions for the integration limits for the y variable, we must also 

define the functions h and g, even though in this case they only evaluate to constants 

regardless of the value of x.

In [62]: a, b = 0, 1

In [63]: g = lambda x: 0

In [64]: h = lambda x: 1

Figure 8-5. Two-dimensional integrand as contour plot with integration region 
shown as a shaded area
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Now, with all the arguments prepared, we can call dblquad to evaluate the integral:

In [65]: integrate.dblquad(f, a, b, g, h)

Out[65]: (0.5577462853510337, 6.1922276789587025e−15)

Note that we could also have done the same thing a bit more concisely, although 

slightly less readable, by using inline lambda function definitions:

In [66]:  integrate.dblquad(lambda x, y: np.exp(-x**2-y**2), 0, 1, lambda  

x: 0, lambda x: 1)

Out[66]: (0.5577462853510337, 6.1922276789587025e−15)

Because g and h are functions, we can compute integrals with x-dependent integration 

limits along the y dimension. For example, with g(x) = x − 1 and h(x) = 1 − x, we obtain:

In [67]: integrate.dblquad(f, 0, 1, lambda x: -1 + x, lambda x: 1 - x)

Out[67]: (0.7320931000008094, 8.127866157901059e−15)

The tplquad function can compute integrals on the form

 a

b

g x

h x

q x y

r x y

f x y z x y zò ò ò
( )

( )

( )

( )

( )
,

,

, , d d d ,
 

which is a generalization of the double integral expression computed with dblquad. It 

additionally takes two Python functions as arguments, which specifies the integration 

limits along the z dimension. These functions take two arguments, x and y, but note that 

g and h still only take one argument (x). To see how tplquad can be used, consider the 

generalization of the previous integral to three variables: 
0

1

0

1

0

1
2 2 2

òòò - - -e x y zx y z d d d .
  

We compute this integral using a similar method compared to the dblquad example. 

That is, we first define functions for the integrand and the integration limits and the call 

to the tplquad function:

In [68]: def f(x, y, z):

    ...:    return np.exp(-x**2-y**2-z**2)

In [69]: a, b = 0, 1

In [70]: g, h = lambda x: 0, lambda x: 1

In [71]: q, r = lambda x, y: 0, lambda x, y: 1

In [72]: integrate.tplquad(f, 0, 1, g, h, q, r)

Out[72]: (0.4165383858866382, 4.624505066515441e−15)
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For an arbitrary number of integrations, we can use the nquad function. It also takes 

the integrand as a Python function as the first argument. The integrand function should 

have the function signature f(x1, x2, ..., xn). In contrast to dplquad and tplquad, 

the nquad function expects a list of integration limit specifications, as the second 

argument. The list should contain a tuple with integration limits for each integration 

variable or a callable function that returns such a limit. For example, to compute the 

integral that we previously computed with tplquad, we could use

In [73]: integrate.nquad(f, [(0, 1), (0, 1), (0, 1)])

Out[73]: (0.4165383858866382, 8.291335287314424e−15)

For increasing number of integration variables, the computational complexity of a 

multiple integral grows quickly, for example, when using nquad. To see this scaling trend, 

consider the following generalized version of the integrand studied with dplquad and 

tplquad.

In [74]: def f(*args):

    ...:    """

    ...:    f(x1, x2, ... , xn) = exp(-x1^2 - x2^2 - ... – xn^2)

    ...:    """

    ...:    return np.exp(-np.sum(np.array(args)**2))

Next, we evaluate the integral for varying number of dimensions (ranging from 1 up 

to 5). In the following examples, the length of the list of integration limits determines 

the number of the integrals. To see a rough estimate of the computation time, we use the 

IPython command %time:

In [75]: %time integrate.nquad(f, [(0,1)] * 1)

CPU times: user 398 μs, sys: 63 μs, total: 461 μs
Wall time: 466 μs
Out[75]: (0.7468241328124271,8.291413475940725e−15)

In [76]: %time integrate.nquad(f, [(0,1)] * 2)

CPU times: user 6.31 ms, sys: 298 μs, total: 6.61 ms
Wall time: 6.57 ms

Out[76]: (0.5577462853510337,8.291374381535408e−15)
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In [77]: %time integrate.nquad(f, [(0,1)] * 3)

CPU times: user 123 ms, sys: 2.46 ms, total: 126 ms

Wall time: 125 ms

Out[77]: (0.4165383858866382,8.291335287314424e−15)

In [78]: %time integrate.nquad(f, [(0,1)] * 4)

CPU times: user 2.41 s, sys: 11.1 ms, total: 2.42 s

Wall time: 2.42 s

Out[78]: (0.31108091882287664,8.291296193277774e−15)

In [79]: %time integrate.nquad(f, [(0,1)] * 5)

CPU times: user 49.5 s, sys: 169 ms, total: 49.7 s

Wall time: 49.7 s

Out[79]: (0.23232273743438786,8.29125709942545e−15)

Here we see that increasing the number of integrations from one to five increases 

the computation time from hundreds of microseconds to nearly a minute. For an even 

larger number of integrals, it may become impractical to use direct quadrature routines, 

and other methods, such as Monte Carlo sampling techniques, can often be superior, 

especially if the required precision is not that high. Monte Carlo integration is a simple 

but powerful technique that is based on sampling the integrand at randomly selected 

points in the domain of the integral and gradually forming an estimate of the integral. 

Due to the stochastic nature of the algorithm, the conversion rate is typically relatively 

slow, and it is difficult to achieve very high accuracy. However, Monte Carlo integration 

scales very well with dimensionality, and it is often a competitive method for high- 

dimensional integrals.

To compute an integral using Monte Carlo sampling, we can use the mcquad function 

from the skmonaco library (known as scikit-monaco). As first argument it takes a Python 

function for the integrand, as second argument it takes a list of lower integration limits, 

and as third argument it takes a list of upper integration limits. Note that the way the 

integration limits are specified is not exactly the same as for the quad function in SciPy’s 

integrate module. We begin by importing the skmonaco (scikit-monaco) module:

In [80]: import skmonaco

Once the module is imported, we can use the skmonaco.mcquad function for 

performing a Monte Carlo integration. In the following example, we compute the same 

integral as in the previous example using nquad:
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In [81]:  %time val, err = skmonaco.mcquad(f, xl=np.zeros(5), xu=np.ones(5), 

npoints=100000)

CPU times: user 1.43 s, sys: 100 ms, total: 1.53 s

Wall time: 1.5 s

In [82]: val, err

Out[82]: (0.231322502809, 0.000475071311272)

While the error is not comparable to the result given by nquad, the computation 

time is much shorter. By increasing the number of sample points, which we can specify 

using the npoints argument, we can increase the accuracy of the result. However, the 

convergence of Monte Carlo integration is very slow, and it is most suitable when high 

accuracy is not required. However, the beauty of Monte Carlo integration is that its 

computational complexity is independent of the number of integrals. This is illustrated 

in the following example, which computes a ten-variable integration at the same time 

and with comparable error level as the previous example with a five-variable integration:

In [83]: %time val, err = skmonaco.mcquad(f, xl=np.zeros(10), xu=np.

ones(10), npoints=100000)

CPU times: user 1.41 s, sys: 64.9 ms, total: 1.47 s

Wall time: 1.46 s

In [84]: val, err

Out[84]: (0.0540635928549, 0.000171155166006)

 Symbolic and Arbitrary-Precision Integration
In Chapter 3, we already saw examples of how SymPy can be used to compute definite 

and indefinite integrals of symbolic functions, using the sympy.integrate function. For 

example, to compute the integral 
-
ò -
1

1
22 1 x xd , we first create a symbol for x and define 

expressions for the integrand and the integration limits a =  − 1 and b = 1,

In [85]: x = sympy.symbols("x")

In [86]: f = 2 * sympy.sqrt(1-x**2)

In [87]: a, b = -1, 1
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after which we can compute the closed-form expression for the integral using

In [88]: val_sym = sympy.integrate(f, (x, a, b))

In [89]: val_sym

Out[89]: π

For this example, SymPy is able to find the analytic expression for the integral: π.  

As pointed out earlier, this situation is the exception, and in general we will not be 

able to find an analytical closed-form expression. We then need to resort to numerical 

quadrature, for example, using SciPy’s integrate.quad, as discussed earlier in this 

chapter. However, the mpmath library,1 which is closely integrated with SymPy, provides 

an alternative implementation of numerical quadrature, using arbitrary-precision 

computations. With this library, we can evaluate an integral to arbitrary precision, without 

being restricted to the limitations of floating-point numbers. However, the downside is, of 

course, that arbitrary-precision computations are significantly slower than floating-point 

computations. But when we require precision beyond what the SciPy quadrature functions 

can provide, this multiple-precision quadrature provides a solution.

For example, to evaluate the integral 
-
ò -
1

1
22 1 x xd  to a given precision,2 we can use 

the mpmath.quad function, which takes a Python function for the integrand as first 

argument, and the integration limits as a tuple (a, b) as second argument. To specify 

the precision, we set the variable mpmath.mp.dps to the required number of accurate 

decimal places. For example, if we require 75 accurate decimal places, we set

In [90]: mpmath.mp.dps = 75

The integrand must be given as a Python function that uses math functions from 

the mpmath library to compute the integrand. From a SymPy expression, we can create 

such a function using sympy.lambdify with 'mpmath' as third argument, which indicates 

that we want an mpmath compatible function. Alternatively, we can directly implement a 

Python function using the math functions from the mpmath module in SymPy, which in 

this case would be f_mpmath = lambda x: 2 * mpmath.sqrt(1 - x**2). However, here 

we use sympy.lambdify to automate this step:

In [91]: f_mpmath = sympy.lambdify(x, f, 'mpmath')

1 For more information about the multiprecision (arbitrary precision) math library mpmath, see 
the project’s web page at http://mpmath.org.

2 Here we deliberately choose to work with an integral that has a known analytical value, so that 
we can compare the multiprecision quadrature result with the known exact value.
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Next we can compute the integral using mpmath.quad and display the resulting value:

In [92]: val = mpmath.quad(f_mpmath, (a, b))

In [93]: sympy.sympify(val)

Out[93]:  3.1415926535897932384626433832795028841971693993751058209749445923

0781640629

To verify that the numerically computed value is accurate to the required number of 

decimal places (75), we compare the result with the known analytical value (π). The error 

is indeed very small:

In [94]: sympy.N(val_sym, mpmath.mp.dps+1) - val

Out[94]:   6.908934844075555700309081490240319656892800291549025108 

01896277613487344253e−77

This level of precision cannot be achieved with the quad function in SciPy’s 

integrate module, since it is limited by the precision of floating-point numbers.

The mpmath library’s quad function can also be used to evaluate double and triple 

integrals. To do so, we only need to pass to it an integrand function that takes multiple 

variables as arguments, and pass tuples with integration limits for each integration 

variable. For example, to compute the double integral

 0

1

0

1
2 2

òò ( ) ( ) - -cos cosx y e x yx y d d
 

and the triple integral

 0

1

0

1

0

1
2 2 2

òòò ( ) ( ) ( ) - - -cos cos cosx y z e x y zx y z d d d
 

to 30 significant decimals (this example cannot be solved symbolically with SymPy), we 

could first create SymPy expressions for the integrands, and then use sympy.lambdify to 

create the corresponding mpmath expressions:

In [95]: x, y, z = sympy.symbols("x, y, z")

In [96]: f2 = sympy.cos(x) * sympy.cos(y) * sympy.exp(-x**2 - y**2)

In [97]:  f3 = sympy.cos(x) * sympy.cos(y) * sympy.cos(z) * sympy.

exp(-x**2 - y**2 - z**2)

In [98]: f2_mpmath = sympy.lambdify((x, y), f2, 'mpmath')

In [99]: f3_mpmath = sympy.lambdify((x, y, z), f3, 'mpmath')
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The integrals can then be evaluated to the desired accuracy by setting mpmath.

mp.dps and calling mpmath.quad:

In [100]: mpmath.mp.dps = 30

In [101]: mpmath.quad(f2_mpmath, (0, 1), (0, 1))

Out[101]: mpf('0.430564794306099099242308990195783')

In [102]: res = mpmath.quad(f3_mpmath, (0, 1), (0, 1), (0, 1))

In [103]: sympy.sympify(res)

Out[103]: 0.282525579518426896867622772405

Again, this gives access to levels of accuracy that is beyond what scipy.integrate.

quad can achieve, but this additional accuracy comes with a hefty increase in 

computational cost. Note that the type of the object returned by mpmath.quad is a 

multiprecision float (mpf). It can be cast into a SymPy type using sympy.sympify.

 Line Integrals
SymPy can also be used to compute line integrals on the form ∫C f (x, y)ds, where C is 

a curve in the x–y plane, using the line_integral function. This function takes the 

integrand, as a SymPy expression, as first argument, a sympy.Curve instance as second 

argument, and a list of integration variables as third argument. The path of the line 

integral is specified by the Curve instance, which describes a parameterized curve for 

which the x and y coordinates are given as a function of an independent parameter, say t. 

To create a Curve instance that describes a path along the unit circle, we can use:

In [104]: t, x, y = sympy.symbols("t, x, y")

In [105]: C = sympy.Curve([sympy.cos(t), sympy.sin(t)], (t, 0, 2 * sympy.pi))

Once the integration path is specified, we can easily compute the corresponding 

line integral for a given integrand using line_integral. For example, with the integrand 

f (x, y) = 1, the result is the circumference of the unit circle:

In [106]: sympy.line_integrate(1, C, [x, y])

Out[106]: 2π

The result is less obvious for a nontrivial integrand, such as in the following example 

where we compute the line integral with the integrand f (x, y) = x2y2:

In [107]: sympy.line_integrate(x**2 * y**2, C, [x, y])

Out[107]: π/4
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 Integral Transforms
The last application of integrals that we discuss in this chapter is integral transforms. 

An integral transform is a procedure that takes a function as input and outputs 

another function. Integral transforms are the most useful when they can be computed 

symbolically, and here we explore two examples of integral transforms that can be 

performed using SymPy: the Laplace transform and the Fourier transform. There are 

numerous applications of these two transformations, but the fundamental motivation 

is to transform problems into a form that is more easily handled. It can, for example, 

be a transformation of a differential equation into an algebraic equation, using Laplace 

transforms, or a transformation of a problem from the time domain to the frequency 

domain, using Fourier transforms.

In general, an integral transform of a function f (t) can be written as

 

T u K t u f t tf

t

t

( ) = ( ) ( )ò
1

2

, d ,
 

where Tf(u) is the transformed function. The choice of the kernel K(t, u) and the 

integration limits determine the type of integral transform. The inverse of the integral 

transform is given by

 

f u K u t T u u
u

u

f( ) = ( ) ( )ò -

1

2

1 , d ,
 

where K−1(u, t) is the kernel of the inverse transform. SymPy provides functions for 

several types of integral transform, but here we focus on the Laplace transform
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and the Fourier transform

 
F e f t tf

i tw
p

w( ) = ( )
-¥

¥
-ò

1

2
d ,

 

with the inverse transform

 
f t e F di t

f( ) = ( )
-¥

¥

ò
1

2p
w ww .

 

With SymPy, we can perform these transforms with the sympy.laplace_transform 

and sympy.fourier_transform, respectively, and the corresponding inverse transforms 

can be computed with the sympy.inverse_laplace_transform and sympy.inverse_

fourier_transform. These functions take a SymPy expression for the function to 

transform as first argument, and the symbol for independent variable of the expression 

to transform as second argument (e.g., t), and as third argument they take the symbol 

for the transformation variable (e.g., s). For example, to compute the Laplace transform 

of the function f (t) =  sin (at), we begin by defining SymPy symbols for the variables a, t, 

and s and a SymPy expression for the function f (t):

In [108]: s = sympy.symbols("s")

In [109]: a, t = sympy.symbols("a, t", positive=True)

In [110]: f = sympy.sin(a*t)

Once we have SymPy objects for the variables and the function, we can call the 

laplace_transform function to compute the Laplace transform:

In [111]: sympy.laplace_transform(f, t, s)

Out[111]: (
a

a s2 2+
,−∞, 0<Rs )

By default, the laplace_transform function returns a tuple containing the resulting 

transform; the value A from convergence condition of the transform, which takes the 

form A s<R ; and lastly additional conditions that are required for the transform to be 

well defined. These conditions typically depend on the constraints that are specified 

when symbols are created. For example, here we used positive=True when creating the 

symbols a and t, to indicate that they represent real and positive numbers. Often we are 

only interested in the transform itself, and we can then use the noconds=True keyword 

argument to suppress the conditions in the return result:
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In [112]: F = sympy.laplace_transform(f, t, s, noconds=True)

In [113]: F

Out[113]: 
a

a s2 2+

The inverse transformation can be used in a similar manner, except that we need to 

reverse the roles of the symbols s and t. The Laplace transform is a unique one-to-one 

mapping, so if we compute the inverse Laplace transform of the previously computed 

Laplace transform, we expect to recover the original function:

In [114]: sympy.inverse_laplace_transform(F, s, t, noconds=True)

Out[114]: sin(at)

SymPy can compute the transforms for many elementary mathematical functions 

and for a wide variety of combinations of such functions. When solving problems 

using Laplace transformations by hand, one typically searches for matching functions 

in reference tables with known Laplace transformations. Using SymPy, this process 

can conveniently be automated in many, but not all, cases. The following examples 

show a few additional examples of well-known functions that one finds in Laplace 

transformation tables. Polynomials have simple Laplace transformation:

In [115]:  [sympy.laplace_transform(f, t, s, noconds=True) for f in  

[t, t**2, t**3, t**4]]

Out[115]: [
1
2s
,

2
3s
,

6
4s
,
24
5s
]

and we can also compute the general result with an arbitrary integer exponent:

In [116]: n = sympy.symbols("n", integer=True, positive=True)

In [117]: sympy.laplace_transform(t**n, t, s, noconds=True)

Out[117]: 
G n

sn
+( )
+

1
1

The Laplace transform of composite expressions can also be computed, as in the 

following example which computes the transform of the function f (t) = (1 − at)e−at:

In [118]:  sympy.laplace_transform((1 - a*t) * sympy.exp(-a*t), t, s, 

noconds=True)

Out[118]: 
s

a s+( )2
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The main application of Laplace transforms is to solve differential equations, 

where the transformation can be used to bring the differential equation into a purely 

algebraic form, which can then be solved and transformed back to the original domain 

by applying the inverse Laplace transform. In Chapter 9 we will see concrete examples of 

this method. Fourier transforms can also be used for the same purpose.

The Fourier transform function, fourier_tranform, and its inverse, inverse_

fourier_transform, are used in much the same way as the Laplace transformation 

functions. For example, to compute the Fourier transform of f t e at( ) = - 2

, we would first 

define SymPy symbols for the variables a, t, and ω, and the function f(t), and then 

compute the Fourier transform by calling the sympy.fourier_transform function:

In [119]: a, t, w = sympy.symbols("a, t, omega")

In [120]: f = sympy.exp(-a*t**2)

In [121]: F = sympy.fourier_transform(f, t, w)

In [122]: F

Out[122]: p p w/ /ae a- 2 2

As expected, computing the inverse transformation for F recovers the original 

function:

In [123]: sympy.inverse_fourier_transform(F, w, t)

Out[123]: e
at- 2

SymPy can be used to compute a wide range of Fourier transforms symbolically, but 

unfortunately it does not handle well transformations that involve Dirac delta functions, 

in either the original function or the resulting transformation. This currently limits its 

usability, but nonetheless, for problems that do not involve Dirac delta functions, it is a 

valuable tool.

 Summary
Integration is one of the fundamental tools in mathematical analysis. Numerical 

quadrature, or numerical evaluation of integrals, has important applications in many 

fields of science, because integrals that occur in practice often cannot be computed 

analytically and expressed as a closed-form expression. Their computation then 

requires numerical techniques. In this chapter we have reviewed basic techniques and 
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methods for numerical quadrature and introduced the corresponding functions in the 

SciPy integrate module that can be used for the evaluation of integrals in practice. 

When the integrand is given as a function that can be evaluated at arbitrary points, we 

typically prefer Gaussian quadrature rules. On the other hand, when the integrand is 

defined as a tabulated data, the simpler Newton-Cotes quadrature rules can be used. 

We also studied symbolic integration and arbitrary-precision quadrature, which can 

complement floating-point quadrature for specific integrals that can be computed 

symbolically or when additional precision is required. As usual, a good starting point 

is to begin to analyze a problem symbolically, and if a particular integral can be solved 

symbolically by finding its antiderivative, that is generally the most desirable situation. 

When symbolic integration fails, we need to resort to numerical quadrature, which 

should first be explored with floating-point-based implementations, like the ones 

provided by the SciPy integrate module. If additional accuracy is required, we can fall 

back on arbitrary-precision quadrature. Another application of symbolic integration is 

integral transformation, which can be used to transform problems, such as differential 

equations, between different domains. Here we briefly looked at how to perform Laplace 

and Fourier transforms symbolically using SymPy, and in the following chapter, we 

continue to explore this for solving certain types of differential equations.

 Further Reading
Numerical quadrature is discussed in many introductory textbooks on numerical 

computing, such as Heath (2002) and J. Stoer (1992). Detailed discussions on many 

quadrature methods, together with example implementations, are available in W. H. 

Press (2002). The theory of integral transforms, such as the Fourier transform and the 

Laplace transform, is introduced; see, for example, Folland (1992).
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CHAPTER 9

Ordinary Differential 
Equations
Equations wherein the unknown quantity is a function, rather than a variable, and that 

involve derivatives of the unknown function, are known as differential equations. An 

ordinary differential equation is a special case where the unknown function has only one 

independent variable with respect to which derivatives occur in the equation. If, on the 

other hand, derivatives of more than one variable occur in the equation, then it is known 

as a partial differential equation, and that is the topic of Chapter 11. Here we focus on 

ordinary differential equations (in the following abbreviated as ODEs), and we explore 

both symbolic and numerical methods for solving this type of equations in this chapter. 

Analytical closed-form solutions to ODEs often do not exist, but for many special types 

of ODEs, there are analytical solutions, and in those cases, there is a chance that we can 

find solutions using symbolic methods. If that fails, we must as usual resort to numerical 

techniques.

Ordinary differential equations are ubiquitous in science and engineering, as well 

as in many other fields, and they arise, for example, in studies of dynamical systems. 

A typical example of an ODE is an equation that describes the time evolution of a 

process where the rate of change (the derivative) can be related to other properties of 

the process. To learn how the process evolves in time, given some initial state, we must 

solve, or integrate, the ODE that describes the process. Specific examples of applications 

of ODEs are the laws of mechanical motion in physics, molecular reactions in chemistry 

and biology, and population modeling in ecology, just to mention a few.

In this chapter we will explore both symbolic and numerical approaches to solving 

ODE problems. For symbolic methods we use the SymPy module, and for numerical 

integration of ODEs, we use functions from the integrate module in SciPy.
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 Importing Modules
Here we require the NumPy and Matplotlib libraries for basic numerical and plotting 

purposes, and for solving ODEs, we need the SymPy library and SciPy’s integrate 

module. As usual, we assume that these modules are imported in the following manner:

In [1]: import numpy as np

In [2]: import matplotlib.pyplot as plt

In [3]: from scipy import integrate

In [4]: import sympy

For nicely displayed output from SymPy, we need to initialize its printing system:

In [5]: sympy.init_printing()

 Ordinary Differential Equations
The simplest form of an ordinary differential equation is 

dy x

dx
f x y x

( )
= ( )( ), , where 

y(x) is the unknown function and f (x,y(x)) is known. It is a differential equation because 

the derivative of the unknown function y(x) occurs in the equation. Only the first 

derivative occurs in the equation, and it is therefore an example of a first- order ODE. 

More generally, we can write an ODE of nth order in explicit form as 

d y

dx
f x y

dy

dx

d y

dx

n

n

n

n
= ¼

æ

è
ç

ö

ø
÷

-

-, , , ,
1

1 , or in implicit form as F x y
dy

dx

d y

dx

n

n
, , , ,¼

æ

è
ç

ö

ø
÷ = 0 , 

where f and F are known functions.

An example of a first-order ODE is Newton’s law of cooling 
dT t

dt
k T t Ta

( )
= - ( )-( ) ,  

which describes the temperature T(t) of a body in a surrounding with temperature Ta. 

The solution to this ODE is T(t) = T0+(T0 − Ta)e−kt, where T0 is the initial temperature of 

the body. An example of a second-order ODE is Newton’s second law of motion F = ma, 

or more explicitly F x t m
d x t

dt
( )( ) = ( )2

2
.  This equation describes the position x(t) of 

an object with mass m, when subjected to a position-dependent force F(x(t)). To 

completely specify a solution to this ODE, we would, in addition to finding its general 

solution, also have to give the initial position and velocity of the object. Similarly, the 

general solution of an nth order ODE has n free parameters that we need to specify, for 

example, as initial conditions for the unknown function and n − 1 of its derivatives.
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An ODE can always be rewritten as a system of first-order ODEs. Specifically, the nth 

order ODE on the explicit form 
d y

dx
g x y

dy

dx

d y

dx

n

n

n

n
= ¼

æ

è
ç

ö

ø
÷

-

-, , , ,
1

1  can be written in the 

standard form by introducing n new functions y1 = y, y
dy

dx2 = , …, y
d y

dxn

n

n
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-

-

1

1
. This gives 

the following system of first-order ODEs
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which also can be written in a more compact vector form: 
d

dx
x f x xy y( ) = ( )( ), . 

This canonical form is particularly useful for numerical solutions of ODEs, and it is 

common that numerical methods for solving ODEs take the function f = (f1, f2, …, fn), 

which in the current case is f = (y2, y3, …, g), as the input that specifies the ODE. 

For example, the second-order ODE for Newton’s second law of motion, F x m
d x

dt
( ) =

2

2
, 

can be written on the standard form using y = = =é
ëê

ù
ûú

y x y
dx

dt

T

1 2, ,  giving 
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If the functions f1, f2,…, fn are all linear, then the corresponding system of ODEs can be 

written on the simple form 
d

dx
A x x x

y x
y r

( )
= ( ) ( )+ ( ) , where A(x) is an n × n matrix and 

r(x) is an n-vector that only depends on x. In this form, the r(x) is known as the source 

term, and the linear system is known as homogeneous if r(x) = 0 and nonhomogeneous 

otherwise. Linear ODEs are an important special case that can be solved, for example, 

using eigenvalue decomposition of A(x). Likewise, for certain properties and forms of 

the function f (x, y(x)), there may be known solutions and special methods for solving the 

corresponding ODE problem, but there is no general method for an arbitrary f (x, y(x)), 

other than approximate numerical methods.

In addition to the properties of the function f (x, y(x)), the boundary conditions for 

an ODE also influence the solvability of the ODE problem, as well as which numerical 

approaches are available. Boundary conditions are needed to determine the values of the 

integration constants that appear in a solution. There are two main types of boundary 
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conditions for ODE problems: initial value conditions and boundary value conditions. 

For initial value problems, the value of the function and its derivatives are given at a 

starting point, and the problem is to evolve the function forward in the independent 

variable (e.g., representing time or position) from this starting point. For boundary value 

problems, the value of the unknown function, or its derivatives, is given at fixed points. 

These fixed points are frequently the endpoints of the domain of interest. In this chapter 

we mostly focus on initial value problem, and methods that are applicable to boundary 

value problems are discussed in Chapter 10 on partial differential equations.

 Symbolic Solution to ODEs
SymPy provides a generic ODE solver sympy.dsolve, which is able to find analytical 

solutions to many elementary ODEs. The sympy.dsolve function attempts to 

automatically classify a given ODE, and it may attempt a variety of techniques to find 

its solution. It is also possible to give hints to the dsolve function, which can guide it to 

the most appropriate solution method. While dsolve can be used to solve many simple 

ODEs symbolically, as we will see in the following, it is worth keeping in mind that most 

ODEs cannot be solved analytically. Typical examples of ODEs where one can hope to 

find a symbolic solution are ODEs of first or second order or linear systems of first-order 

ODEs with only a few unknown functions. It also helps greatly if the ODE has special 

symmetries or properties, such as being separable, having constant coefficients, or is in a 

special form for which there exist known analytical solutions. While these types of ODEs 

are exceptions and special cases, there are many important applications of such ODEs, 

and for these cases SymPy’s dsolve can be a very useful complement to traditional 

analytical methods. In this section we will explore how to use SymPy and its dsolve 

function to solve simple but commonly occurring ODEs.

To illustrate the method for solving ODEs with SymPy, we begin with a simple 

problem and gradually look at more complicated situations. The first example is the 

simple first-order ODE for Newton’s cooling law, 
dT t

dt
k T t Ta

( )
= - ( )-( ) , with the initial 

value T(0) = T0. To approach this problem using SymPy, we first need to define symbols 

for the variables t, k, T0, and Ta, and to represent the unknown function T(t), we can use a 

sympy.Function object:

In [6]: t, k, T0, Ta = sympy.symbols("t, k, T_0, T_a")

In [7]: T = sympy.Function("T")
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Next, we can define the ODE very naturally by simply creating a SymPy expression 

for the left-hand side of the ODE when written on the form 
dT t

dt
k T t Ta

( )
+ ( )-( ) = 0.  

Here, to represent the function T(t), we can now use the Sympy function object T. 

Applying the symbol t to it, using the function call syntax T(t), results in an applied 

function object that we can take derivatives of using either sympy.diff or the diff 

method on the T(t) expression:

In [8]: ode = T(t).diff(t) + k*(T(t) - Ta)

In [9]: sympy.Eq(ode)

Out[9]: k T T t
dT t

dta- + ( )( )+ ( )
= 0

Here we used sympy.Eq to display the equation including the equality sign  

and a right-hand side that is zero. Given this representation of the ODE, we can directly 

pass it to sympy.dsolve, which will attempt to automatically find the general solution of 

the ODE.

In [10]: ode_sol = sympy.dsolve(ode)

In [11]: ode_sol

Out[11]: T t C e Tkt
a( ) = +-

1

For this ODE problem, the sympy.dsolve function indeed finds the general solution, 

which here includes an unknown integration constant C1 that we have to determine 

from the initial conditions of the problem. The return value from the sympy.dsolve is 

an instance of sympy.Eq, which is a symbolic representation of an equality. It has the 

attributes lhs and rhs for accessing the left-hand side and the right-hand side of the 

equality object:

In [12]: ode_sol.lhs

Out[12]: T(t)

In [13]: ode_sol.rhs

Out[13]: C1e–kt + Ta

Once the general solution has been found, we need to use the initial conditions 

to find the values of the yet-to-be-determined integration constants. Here the initial 

condition is T(0) = T0. To this end, we first create a dictionary that describes the initial 

condition, ics = {T(0): T0}, that we can use with SymPy’s subs method to apply the 
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initial condition to the solution of the ODE. This results in an equation for the unknown 

integration constant C1:

In [14]: ics = {T(0): T0}

In [15]: ics

Out[15]: {T(0): T0}

In [16]: C_eq = ode_sol.subs(t, 0).subs(ics)

In [17]: C_eq

Out[17]: T0 = C1 + Ta

In the present example, the equation for C1 is trivial to solve, but for the sake of 

generality, here we solve it using sympy.solve. The result is a list of solutions (in this 

case a list of only one solution). We can substitute the solution for C1 into the general 

solution of the ODE problem to obtain the particular solution that corresponds to the 

given initial conditions:

In [18]: C_sol = sympy.solve(C_eq)

In [19]: C_sol

Out[19]: [{C1:T0 – Ta}]

In [20]: ode_sol.subs(C_sol[0])

Out[20]: T(t) = Ta + (T0 – Ta)e–kt

By carrying out these steps, we have completely solved the ODE problem 

symbolically, and we obtained the solution T(t) = Ta+(T0 − Ta)e−kt. The steps 

involved in this process are straightforward, but applying the initial conditions and 

solving for the undetermined integration constants can be slightly tedious, and it 

is worthwhile to collect these steps in a reusable function. The following function 

apply_ics is a basic implementation that generalizes these steps to a differential 

equation of arbitrary order.

In [21]: def apply_ics(sol, ics, x, known_params):

   ....:     """

   ....:      Apply the initial conditions (ics), given as a dictionary on

   ....:      the form ics = {y(0): y0, y(x).diff(x).subs(x, 0): yp0, ...},

   ....:      to the solution of the ODE with independent variable x.

   ....:      The undetermined integration constants C1, C2, ... are extracted
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   ....:      from the free symbols of the ODE solution, excluding symbols in

   ....:      the known_params list.

   ....:      """

   ....:      free_params = sol.free_symbols - set(known_params)

   ....:       eqs = [(sol.lhs.diff(x, n) - sol.rhs.diff(x, n)) 

.subs(x, 0).subs(ics) for n in range(len(ics))]

   ....:      sol_params = sympy.solve(eqs, free_params)

   ....:      return sol.subs(sol_params)

With this function, we can more conveniently single out a particular solution to 

an ODE that satisfies a set of initial conditions, given the general solution to the same 

ODE. For our previous example, we get

In [22]: ode_sol

Out[22]: T(t) = C1e–kt + Ta
In [23]: apply_ics(ode_sol, ics, t, [k, Ta])

Out[23]: T(t) = Ta + (T0 – Ta)e–kt

The example we looked at so far is almost trivial, but the same method can be used 

to approach any ODE problem, although there is of course no guarantee that a solution 

will be found. As an example of a slightly more complicated problem, consider the ODE 

for a damped harmonic oscillator, which is a second-order ODE on the form 

d x t

dt

dx t

dt
x t

2

2 0 0
22 0

( )
+

( )
+ ( ) =gw w ,  where x(t) is the position of the oscillator at time t, 

ω0 is the frequency for the undamped case, and γ is the damping ratio. We first define 

the required symbols and construct the ODE and then ask SymPy to find the general 

solution by calling sympy.dsolve:

In [24]:  t, omega0, gamma= sympy.symbols("t, omega_0, gamma", 

positive=True)

In [25]: x = sympy.Function("x")

In [26]:  ode = x(t).diff(t, 2) + 2 * gamma * omega0 * x(t).diff(t) + 

omega0**2 * x(t)

In [27]: sympy.Eq(ode)

Out[27]: 
d x t

dt

dx t

dt
x t

2

2 0 0
22 0

( )
+

( )
+ ( ) =gw w

In [28]: ode_sol = sympy.dsolve(ode)
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In [29]: ode_sol

Out[29]: x t C e C e
t t

( ) = +
- - -( ) - + -( )

1

1

2

10
2

0
2w g g w g g

Since this is a second-order ODE, there are two undetermined integration constants 

in the general solution. We need to specify initial conditions for both the position x(0) 

and the velocity 
dx t

dt
t

( )
=0

 to single out a particular solution to the ODE. To do this we 

create a dictionary with these initial conditions and apply it to the general ODE solution 

using apply_ics:

In [30]: ics = {x(0): 1, x(t).diff(t).subs(t, 0): 0}

In [31]: ics

Out[31]: x
dx t

dt
t

0 1 0
0

( ) ( )ì
í
ï

îï

ü
ý
ï

þï=

: :,

In [32]: x_t_sol = apply_ics(ode_sol, ics, t, [omega0, gamma])

In [33]: x_t_sol

Out[33]: x t e e
t t

( ) = -
-

+
æ

è
çç

ö

ø
÷÷

+
-

+
æ

è
çç

ö

ø
÷÷

- - -( )g

g

g

g

w g g w

2 1

1

2 2 1

1

22

1

2

0
2

0 -- + -( )g g 2 1

This is the solution for the dynamics of the oscillator for arbitrary values of t, ω0,  

and γ, where we used the initial condition x(0) = 1 and 
dx t

dt
t

( )
=

=0

0 . However, 

substituting γ = 1, which corresponds to critical damping, directly into this expression 

results in a division by zero error, and for this particular choice of γ, we need to be careful 

and compute the limit where γ → 1.

In [34]: x_t_critical = sympy.limit(x_t_sol.rhs, gamma, 1)

In [35]: x_t_critical

Out[35]: 
w

w
0 1

0

t

e t

+

Finally, we plot the solutions for ω0 = 2π and a sequence of different values of the 

damping ratio γ:

In [36]: fig, ax = plt.subplots(figsize=(8, 4))

    ...: tt = np.linspace(0, 3, 250)

    ...: w0 = 2 * sympy.pi

    ...: for g in [0.1, 0.5, 1, 2.0, 5.0]:

    ...:     if g == 1:
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    ...:         x_t = sympy.lambdify(t, x_t_critical.subs({omega0: w0}), 'numpy')

    ...:     else:

    ...:          x_t = sympy.lambdify(t, x_t_sol.rhs.subs({omega0: w0, 

gamma: g}), 'numpy')

    ...:     ax.plot(tt, x_t(tt).real, label=r"$\gamma = %.1f$" % g)

    ...: ax.set_xlabel(r"$t$", fontsize=18)

    ...: ax.set_ylabel(r"$x(t)$", fontsize=18)

    ...: ax.legend()

The solution to the ODE for the damped harmonic oscillator is graphed in  

Figure 9-1. For γ < 1, the oscillator is underdamped, and we see oscillatory solutions. For 

γ > 1 the oscillator is overdamped and decays monotonically. The crossover between 

these two behaviors occurs at the critical damping ratio γ = 1.

The two examples of ODEs we have looked at so far could both be solved exactly  

by analytical means, but this is far from always the case. Even many first-order ODEs 

cannot be solved exactly in terms of elementary functions. For example, consider 

dy x

dx
x y x

( )
= + ( )2 , which is an example of an ODE that does not have any closed-form 

solution. If we try to solve this equation using sympy.dsolve, we obtain an approximate 

solution, in the form of a power series:

In [37]: x = sympy.symbols("x")

In [38]: y = sympy.Function("y")

In [39]: f = y(x)**2 + x

Figure 9-1. Solutions to the ODE for a damped harmonic oscillator, for a sequence 
of damping ratios
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In [40]: sympy.Eq(y(x).diff(x), f)

Out[40]: 
dy x

dx
x y x

( )
= + ( )2

In [41]: sympy.dsolve(y(x).diff(x) - f)

Out[41]: y x C C x C x
C

x
C

C x

C C

( ) = + + +( ) + + +( )

+ +( )+

1 1 1
2 1 3 1

1
4

1
2

1

1

2
2 1

7

6 12
5

1

60
45 220 31

5 6C x x+( ) + ( )

For many other types of equations, SymPy outright fails to produce any solution at 

all. For example, if we attempt to solve the second-order ODE 
d y x

dx
x y x

2

2

2( )
= + ( ) ,  

we obtain the following error message:

In [42]: sympy.Eq(y(x).diff(x, x), f)

Out[42]: 
d y x

dx
x y x

2

2

2( )
= + ( )

In [43]: sympy.dsolve(y(x).diff(x, x) - f)

---------------------------------------------------------------------------

...

NotImplementedError: solve: Cannot solve -x - y(x)**2 + Derivative(y(x), x, x)

This type of result can mean that there actually is no analytical solution to the ODE 

or, just as likely, simply that SymPy is unable to handle it.

The dsolve function accepts many optional arguments, and it can frequently make a 

difference if the solver is guided by giving hints about which methods should be used to 

solve the ODE problem at hand. See the docstring for sympy.dsolve for more information 

about the available options.

 Direction Fields
A direction field graph is a simple but useful technique to visualize possible solutions 

to arbitrary first-order ODEs. It is made up of short lines that show the slope of the 

unknown function on a grid in the x–y plane. This graph can be easily produced  

because the slope of y(x) at arbitrary points of the x–y plane is given by the definition 

of the ODE:
dy x

dx
f x y x

( )
= ( )( ), . That is, we only need to iterate over the x and y values 

on the coordinate grid of interest and evaluate f (x, y(x)) to know the slope of y(x) at that 

point. The reason why the direction field graph is useful is that smooth and continuous 
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curves that tangent the slope lines (at every point) in the direction field graph are possible 

solutions to the ODE.

The following function plot_direction_field produces a direction field graph for a 

first-order ODE, given the independent variable x, the unknown function y(x), and the 

right-hand side function f(x, y(x)). It also takes optional ranges for the x and y axes (x_lim 

and y_lim, respectively) and an optional Matplotlib axis instance to draw the graph on.

 In [44]:  def plot_direction_field(x, y_x, f_xy, x_lim=(-5, 5),  

y_lim=(-5, 5), ax=None):

    ...:     f_np = sympy.lambdify((x, y_x), f_xy, 'numpy')

    ...:     x_vec = np.linspace(x_lim[0], x_lim[1], 20)

    ...:     y_vec = np.linspace(y_lim[0], y_lim[1], 20)

    ...:

    ...:     if ax is None:

    ...:         _, ax = plt.subplots(figsize=(4, 4))

    ...:

    ...:     dx = x_vec[1] - x_vec[0]

    ...:     dy = y_vec[1] - y_vec[0]

    ...:

    ...:     for m, xx in enumerate(x_vec):

    ...:         for n, yy in enumerate(y_vec):

    ...:             Dy = f_np(xx, yy) * dx

    ...:             Dx = 0.8 * dx**2 / np.sqrt(dx**2 + Dy**2)

    ...:             Dy = 0.8 * Dy*dy / np.sqrt(dx**2 + Dy**2)

    ...:             ax.plot([xx - Dx/2, xx + Dx/2],

    ...:                     [yy - Dy/2, yy + Dy/2], 'b', lw=0.5)

    ...:     ax.axis('tight')

    ...:     ax.set_title(r"$%s$" %

    ...:                  (sympy.latex(sympy.Eq(y(x).diff(x), f_xy))),

    ...:                  fontsize=18)

    ...:     return ax

With this function we can produce the direction field graphs for the ODEs on the 

form 
dy x

dx
f x y x

( )
= ( )( ), . For example, the following code generates the direction field 

graphs for f (x, y(x)) = y(x)2+x, f (x, y(x)) =  − x/y(x), and f (x, y(x)) = y(x)2/x. The result is 

shown in Figure 9-2.
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In [45]: x = sympy.symbols("x")

In [46]: y = sympy.Function("y")

In [47]: fig, axes = plt.subplots(1, 3, figsize=(12, 4))

    ...: plot_direction_field(x, y(x), y(x)**2 + x, ax=axes[0])

    ...: plot_direction_field(x, y(x), -x / y(x), ax=axes[1])

    ...: plot_direction_field(x, y(x), y(x)**2 / x, ax=axes[2])

Figure 9-2. Direction fields for three first-order differential equations

The direction lines in the graphs in Figure 9-2 suggest how the curves that are 

solutions to the corresponding ODE behave, and direction field graphs are therefore 

a useful tool for visualizing solutions to ODEs that cannot be solved analytically. To 

illustrate this point, consider again the ODE 
dy x

dx
x y x

( )
= + ( )2 with the initial condition 

y(0) = 0, which we previously saw can be solved inexactly as an approximate power 

series. Like before, we solve this problem again by defining the symbol x and the 

function y(x), which we in turn use to construct and display the ODE:

In [48]: x = sympy.symbols("x")

In [49]: y = sympy.Function("y")

In [50]: f = y(x)**2 + x

In [51]: sympy.Eq(y(x).diff(x), f)

Out[51]: 
dy x

dx
x y x

( )
= + ( )2
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Now we want to find the specific power-series solution that satisfies the initial 

condition, and for this problem, we can specify the initial condition directly using the ics 

keyword argument to the dsolve function1:

In [52]: ics = {y(0): 0}

In [53]: ode_sol = sympy.dsolve(y(x).diff(x) - f, ics=ics)

In [54]: ode_sol

Out[54]: y x
x x

x( ) = + + ( )
2 5

6

2 20


Plotting the solution together with the direction field for the ODE is a quick and 

simple way to get an idea of the validity range of the power-series approximation. The 

following code plots the approximate solution and the direction field (Figure 9-3, left 

panel). A solution with extended validity range is also obtained by repeatedly solving the 

ODE with initial conditions at increasing values of x, taken from a previous power-series 

solution (Figure 9-3, right panel).

In [55]: fig, axes = plt.subplots(1, 2, figsize=(8, 4))

    ...: # left panel

    ...: plot_direction_field(x, y(x), f, ax=axes[0])

    ...: x_vec = np.linspace(-3, 3, 100)

    ...:  axes[0].plot(x_vec, sympy.lambdify(x, ode_sol.rhs.removeO()) 

(x_vec), 'b', lw=2)

    ...: axes[0].set_ylim(-5, 5)

    ...:

    ...: # right panel

    ...: plot_direction_field(x, y(x), f, ax=axes[1])

    ...: x_vec = np.linspace(-1, 1, 100)

    ...:  axes[1].plot(x_vec, sympy.lambdify(x, ode_sol.rhs.removeO()) 

(x_vec), 'b', lw=2)

    ...: # iteratively resolve the ODE with updated initial conditions

    ...: ode_sol_m = ode_sol_p = ode_sol

    ...: dx = 0.125

    ...: # positive x

1 In the current version of SymPy, the ics keyword argument is only recognized by the power-
series solver in dsolve. Solvers for other types of ODEs ignore the ics argument and hence the 
need for the apply_ics function we defined and used earlier in this chapter.
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    ...: for x0 in np.arange(1, 2., dx):

    ...:     x_vec = np.linspace(x0, x0 + dx, 100)

    ...:     ics = {y(x0): ode_sol_p.rhs.removeO().subs(x, x0)}

    ...:     ode_sol_p = sympy.dsolve(y(x).diff(x) - f, ics=ics, n=6)

    ...:      axes[1].plot(x_vec, sympy.lambdify(x, ode_sol_p.rhs.removeO())

(x_vec), 'r', lw=2)

    ...: # negative x

    ...: for x0 in np.arange(-1, -5, -dx):

    ...:     x_vec = np.linspace(x0, x0 - dx, 100)

    ...:     ics = {y(x0): ode_sol_m.rhs.removeO().subs(x, x0)}

    ...:     ode_sol_m = sympy.dsolve(y(x).diff(x) - f, ics=ics, n=6)

    ...:      axes[1].plot(x_vec, sympy.lambdify(x, ode_sol_m.rhs.removeO())

(x_vec), 'r', lw=2)

In the left panel of Figure 9-3, we see that the approximate solution curve aligns well 

with the direction field lines near x = 0 but starts to deviate for ∣x ∣  ≳ 1, suggesting that 

the approximate solution is no longer valid. The solution curve shown in the right panel 

aligns better with the direction field throughout the plotted range. The blue (dark gray) 

curve segment is the original approximate solution, and the red (light gray) curves are 

continuations obtained from resolving the ODE with an initial condition sequence that 

starts where the blue (dark gray) curves end.

Figure 9-3. Direction field graph of the ODE 
dy x

dx
y x x

( )
= ( ) +2

, with the fifth- 

order power-series solutions around x = 0 (left), and consecutive power-series 
expansions around x between −5 and 2, with a 0.125 spacing (right)
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 Solving ODEs Using Laplace Transformations
An alternative to solving ODEs symbolically with SymPy’s “black-box” solver2 dsolve 

is to use the symbolic capabilities of SymPy to assist in a more manual approach to 

solving ODEs. A technique that can be used to solve certain ODE problems is to Laplace 

transform the ODE, which for many problems results in an algebraic equation that is 

easier to solve. The solution to the algebraic equation can then be transformed back 

to the original domain with an inverse Laplace transform, to obtain the solution to the 

original problem. The key to this method is that the Laplace transform of the derivative 

of a function is an algebraic expression in the Laplace transform of the function itself: 

 ¢( )éë ùû = ( )éë ùû ( )y t s y t y– 0 . However, while SymPy is good at Laplace transforming many 

types of elementary functions, it does not recognize how to transform derivatives of an 

unknown function. But defining a function that performs this task easily amends this 

shortcoming.

For example, consider the following differential equation for a driven harmonic 

oscillator:

d

dt
y t

d

dt
y t y t t

2

2
2 10 2 3( )+ ( )+ ( ) = sin .

To work with this ODE, we first create SymPy symbols for the independent variable 

t and the function y(t) and then use them to construct the symbolic expression for the 

ODE:

In [56]: t = sympy.symbols("t", positive=True)

In [57]: y = sympy.Function("y")

In [58]:  ode = y(t).diff(t, 2) + 2 * y(t).diff(t) + 10 * y(t) - 2 * sympy.

sin(3*t)

In [59]: sympy.Eq(ode)

Out[59]: 10 2 3 2 0
2

2
y t t

d

dt
y t

d

dt
y t( )- ( )+ ( )+ ( ) =sin

2 Or “white-box” solver, since SymPy is open source and the inner workings of dsolve are readily 
available for inspection.
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Laplace transforming this ODE should yield an algebraic equation. To pursue this 

approach using SymPy and its function sympy.laplace_transform, we first need to create 

a symbol s, to be used in the Laplace transformation. At this point we also create a 

symbol Y for later use.

In [60]: s, Y = sympy.symbols("s, Y", real=True)

Next we proceed to Laplace transform the unknown function y(t), as well as the 

entire ODE equation:

In [61]: L_y = sympy.laplace_transform(y(t), t, s)

In [62]: L_y

Out[62]: t y t s( )éë ùû( )  

In [63]: L_ode = sympy.laplace_transform(ode, t, s, noconds=True)

In [64]: sympy.Eq(L_ode)

Out[64]: 10 2
62

2
  t t ty t s

d

dt
y t s

d

dt
y t s( )éë ùû( )+ ( )é

ëê
ù
ûú
( )+ ( )é

ë
ê

ù

û
ú( )-

ss2 9
0

+
=

When Laplace transforming the unknown function y(t), we get the 

undetermined result t y t s( )éë ùû( ) , which is to be expected. However, applying sympy.

laplace_transform on a derivative of y(t), such as 
d

dt
y t( ) , results in the unevaluated 

expression, t
d

dt
y t s( )é

ëê
ù
ûú
( ) . This is not the desired result, and we need to work around 

this issue to obtain the sought-after algebraic equation. The Laplace transformation of 

the derivative of an unknown function has a well-known form that involves the Laplace 

transform of the function itself, rather than its derivatives: for the nth derivative of a 

function y(t), the formula is

 t

n

n
n

t
m

n
n m

m

m

d

dt
y t s s y t s s

d

dt
y t( )é

ë
ê

ù

û
ú( ) = ( )éë ùû( )- (

=

-
- -å

0

1
1 ))

=t 0

.

By iterating through the SymPy expression tree for L_ode, and replacing the 

occurrences of t
n

n

d

dt
y t s( )é

ë
ê

ù

û
ú( )  with expressions of the form given by this formula,  
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we can obtain the algebraic form of the ODE that we seek. The following function takes 

a Laplace- transformed ODE and performs the substitution of the unevaluated Laplace 

transforms of the derivatives of y(t):

In [65]: def laplace_transform_derivatives(e):

    ...:     """

    ...:     Evaluate laplace transforms of derivatives of functions

    ...:     """

    ...:     if isinstance(e, sympy.LaplaceTransform):

    ...:         if isinstance(e.args[0], sympy.Derivative):

    ...:             d, t, s = e.args

    ...:             n = len(d.args) - 1

    ...:             return ((s**n) * sympy.LaplaceTransform(d.args[0], t, s) -

    ...:                      sum([s**(n-i) * sympy.diff(d.args[0], t, i-1).

subs(t, 0) for i in range(1, n+1)]))

    ...:

    ...:     if isinstance(e, (sympy.Add, sympy.Mul)):

    ...:         t = type(e)

    ...:          return t(*[laplace_transform_derivatives(arg) for arg in 

e.args])

    ...:

    ...:     return e

Applying this function on the Laplace-transformed ODE equation, L_ode, yields:

In [66]: L_ode_2 = laplace_transform_derivatives(L_ode)

In [67]: sympy.Eq(L_ode_2)

Out[67]: s y t s s y t s sy

y t s y

t t

t

2 2 0

10 2 0

 



( )éë ùû( ) + ( )éë ùû( ) - ( )

+ ( )éë ùû( ) - ( )) - ( ) -
+

=
=

d

dt
y t

st 0
2

6

9
0
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To simplify the notation, we now substitute the expression t y t s( )éë ùû( )  for the 

symbol Y:

In [68]: L_ode_3 = L_ode_2.subs(L_y, Y)

In [69]: sympy.Eq(L_ode_3)

Out[69]: s Y sY sy Y y
d

dt
y t

st

2

0
2

2 0 10 2 0
6

9
0+ - ( )+ - ( )- ( ) -

+
=

=

At this point we need to specify the boundary conditions for the ODE problem. 

Here we use y(0) = 1 and y’(t) = 0, and after creating a dictionary that contains these 

boundary conditions, we use it to substitute the values into the Laplace-transformed 

ODE equation:

In [70]: ics = {y(0): 1, y(t).diff(t).subs(t, 0): 0}

In [71]: ics

Out[71]: y
d

dt
y t

t

0 1 0
0

( ) ( )ì
í
î

ü
ý
þ=

: :,

In [72]: L_ode_4 = L_ode_3.subs(ics)

In [73]: sympy.Eq(L_ode_4)

Out[74]: Ys Ys Y s
s

2
2

2 10 2
6

9
0+ + - - -

+
=

This is an algebraic equation that can be solved for Y:

In [75]: Y_sol = sympy.solve(L_ode_4, Y)

In [76]: Y_sol

Out[76]: 
s s s

s s s s

3 2

4 3 2

2 9 24

2 19 18 90

+ + +
+ + + +

é

ë
ê

ù

û
ú

The result is a list of solutions, which in this case contains only one element. 

Performing the inverse Laplace transformation on this expression gives the solution to 

the original problem in the time domain:

In [77]: y_sol = sympy.inverse_laplace_transform(Y_sol[0], s, t)

In [78]: sympy.simplify(y_sol)

Out[78]: 
1

111
6 3 6 3 43 3 147 3

e
t t e t t

t
tsin cos sin cos-( ) + +( )

Chapter 9  Ordinary differential equatiOns



313

This technique of Laplace transforming an ODE, solving the corresponding algebraic 

equation, and inverse Laplace transforming the result to obtain the solution to the 

original problem can be applied to solve many important ODE problems that arise in, 

for example, electrical engineering and process control applications. Although these 

problems can be solved by hand with the help of Laplace transformation tables, using 

SymPy has the potential of significantly simplifying the process.

 Numerical Methods for Solving ODEs
While some ODE problems can be solved with analytical methods, as we have seen in 

the examples in the previous sections, it is much more common with ODE problems that 

cannot be solved analytically. In practice, ODE problems are therefore mainly solved 

with numerical methods. There are many approaches to solving ODEs numerically, and 

most of them are designed for problems that are formulated as a system of first-order 

ODEs on the standard form3 
d x

dx
f x x

y
y

( )
= ( )( ), , where y(x) is a vector of unknown 

functions of x. SciPy provides functions for solving this kind of problems, but before we 

explore how to use those functions, we briefly review the fundamental concepts and 

introduce the terminology used for the numerical integration of ODE problems.

The basic idea of many numerical methods for ODEs is captured in Euler method. 

This method can, for example, be derived from a Taylor series expansion of y(x) around 

the point x

 
y x h y x

dy x

dx
h

d y x

dx
h+( ) = ( )+ ( )

+
( )

+¼
1

2

2

2
2 ,  

where for notational simplicity, we consider the case when y(x) is a scalar function. 

By dropping terms of second order or higher, we get the approximate equation 

y(x+h) ≈ y(x)+f (x, y(x))h, which is accurate to first order in the stepsize h. This equation 

can be turned into an iteration formula by discretizing the x variables, x0, x1, …, xk, 

choosing the stepsize hk = xk+1 − xk, and denoting yk = y(xk). The resulting iteration 

formula yk+1 ≈ yk+f (xk, yk)hk is known as the forward Euler method, and it is said to be an 

explicit form because given the value of the yk, we can directly compute yk+1 using the 

3 Recall that any ODE problem can be written as a system of first-order ODEs on this standard 
form.
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formula. The goal of the numerical solution of an initial value problem is to compute 

y(x) at some points xn, given the initial condition y(x0) = y0. An iteration formula like the 

forward Euler method can therefore be used to compute successive values of yk, starting 

from y0. There are two types of errors involved in this approach: First, the truncation of 

the Taylor series gives an error that limits the accuracy of the method. Second, using 

the approximation of yk given by the previous iteration when computing yk+1 gives an 

additional error that may accumulate over successive iterations and that can affect the 

stability of the method.

An alternative form, which can be derived in a similar manner, is the backward Euler 

method, given by the iteration formula yk+1 ≈ yk+f(xk+1, yk+1)hk. This is an example of a 

backward differentiation formula (BDF), which is implicit, because yk+1 occurs on both 

sides of the equation. To compute yk+1, we therefore need to solve an algebraic equation 

(e.g., using Newton’s method, see Chapter 5). Implicit methods are more complicated to 

implement than explicit methods, and each iteration requires more computational work. 

However, the advantage is that implicit methods generally have larger stability region 

and better accuracy, which means that larger stepsize hk can be used while still obtaining 

an accurate and stable solution. Whether explicit or implicit methods are more efficient 

depends on the particular problem that is being solved. Implicit methods are often 

particularly useful for stiff problems, which loosely speaking are ODE problems that 

describe dynamics with multiple disparate timescales (e.g., dynamics that includes both 

fast and slow oscillations).

There are several methods to improve upon the first-order Euler forward and 

backward methods. One strategy is to keep higher-order terms in the Taylor series 

expansion of y(x+h), which gives higher-order iteration formulas that can have better 

accuracy, such as the second-order method y y x f x y h y x hk k k k k k k+ + +» ( ) + ( ) + ¢¢( )1 1 1
21

2
, . 

However, such methods require evaluating higher-order derivatives of y(x), which may 

be a problem if f (x, y(x)) is not known in advance (and not given in symbolic form). 

Ways around this problem include approximating the higher-order derivatives using 

finite-difference approximations of the derivatives or sampling the function f (x, y(x)) 

at intermediary points in the interval [xk, xk+1]. An example of this type of method is the 

well-known Runge-Kutta method, which is a single-step method that uses additional 

evaluations of f (x, y(x)). The most well-known Runge-Kutta method is the fourth-order 

scheme
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where
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Here, k1 to k4 are four different evaluations of the ODE function f(x, y(x)) that are used 

in the explicit formula for yk+1 given in the preceding text. The resulting estimate of yk+1 is 

accurate to fourth order, with an error of fifth order. Higher-order schemes that use more 

function evaluations can also be constructed. By combining two methods of different 

orders, it can be possible to also estimate the error in the approximation. A popular 

combination is the Runge-Kutta fourth- and fifth-order schemes, which results in a 

fourth-order accurate method with error estimates. It is known as RK45 or the Runge-

Kutta-Fehlberg method. The Dormand-Prince method is another example of a higher-

order method, which additionally uses adaptive stepsize control. For example, the 8-5-3 

method combines third- and fifth-order schemes to produce an eighth-order method. 

An implementation of this method is available in SciPy, which we will see in the next 

section.

An alternative method is to use more than one previous value of yk to compute yk+1. 

Such methods are known as multistep methods and can in general be written in the form

 
y a y h b f x yk s

n

s

n k n
n

s

n k n k n+
=

-

+
=

+ += + ( )å å
0

1

0
, .

 

With this formula, to compute yk+s, the previous s values of yk and f (xk, yk) are used 

(known as an s-step method). The choices of the coefficients an and bn give rise to 

different multistep methods. Note that if bs = 0, then the method is explicit, and if bs ≠ 0, 

it is implicit.

For example, b0 = b1 = … = bs − 1 = 0 gives the general formula for an s-step BDF 

formula, where an and bn are chosen to maximize the order of the accuracy by requiring 

that the method is exact for polynomials up to as high order as possible. This gives an 

equation system that can be solved for the unknown coefficients an and bn. For example, 
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the one-step BDF method with b1 = a0 = 1 reduces to the backward Euler method, yk+1 = 

yk+hf (xk+1, yk+1), and the two-step BDF method, yk+2 = a0yk+a1yk+1+hb2f (xk+2, yk+2), when 

solved for the coefficients (a0, a1, and b2), becomes y y y hf x yk k k k k+ + + += - + + ( )2 1 2 2

1

3

4

3

2

3 , . 

Higher- order BDF methods can also be constructed. SciPy provides a BDF solver that is 

recommended for stiff problems, because of its good stability properties.

Another family of multistep methods is the Adams methods, which result  

from the choice a0 = a1 = … = as − 2 = 0 and as − 1 = 1, where again the remaining  

unknown coefficients are chosen to maximize the order of the method. Specifically,  

the explicit methods with bs = 0 are known as Adams-Bashforth methods, and the 

implicit methods with bs ≠ 0 are known as Adams-Moulton methods. For example, the 

one-step Adams-Bashforth and Adams-Moulton methods reduce to the forward and 

backward Euler methods, respectively, and the two-step methods are 
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respectively. Higher-order explicit and implicit methods can also be constructed in this 

way. Solvers using these Adams methods are also available in SciPy.

In general explicit methods are more convenient to implement and less 

computational demanding to iterate than implicit methods, which in principle requires 

solving (a potentially nonlinear) equation in each iteration with an initial guess for 

the unknown yk+1. However, as mentioned earlier, implicit methods often are more 

accurate and have superior stability properties. A compromise that retains some of the 

advantages of both methods is to combine explicit and implicit methods in the following 

way: first compute yk+1 using an explicit method, and then use this yk+1 as an initial guess 

for solving the equation for yk+1 given by an implicit method. This equation does not 

need to be solved exactly, and since the initial guess from the explicit method should be 

quite good, it could be sufficient with a small number of iterations, using, for example, 

Newton’s method. Methods like these, where the result from an explicit method is 

used to predict yk+1 and an implicit method is used to correct the prediction, are called 

predictor- corrector methods.

Finally, an important technique that is employed by many advanced ODE solvers 

is adaptive stepsize or stepsize control: the accuracy and stability of an ODE are strongly 

related to the stepsize hk used in the iteration formula for an ODE method, and so is the 

computational cost of the solution. If the error in yk+1 can be estimated together with the 

computation of yk+1 itself, then it is possible to automatically adjust the stepsize hk so that 

the solver uses large economical stepsizes when possible and smaller stepsizes when 
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required. A related technique, which is possible with some methods, is to automatically 

adjust the order of the method, so that a lower-order method is used when possible and 

a higher-order method is used when necessary. The Adams methods are examples of 

methods where the order can be changed easily.

There exist a vast variety of high-quality implementations of ODE solvers, and rarely 

should it be necessary to reimplement any of the methods discussed here. In fact, doing 

so would probably be a mistake, unless it is for educational purposes or if one’s primary 

interest is research on methods for numerical ODE solving. For practical purposes, it is 

advisable to use one of the many highly tuned and thoroughly tested ODE suites that 

already exist, most of which are available for free and as open source and packaged into 

libraries such as SciPy. However, there are a large number of solvers to choose from, and 

to be able to make an informed decision on which one to use for a particular problem, 

and to understand many of their options, it is important to be familiar with the basic 

ideas and methods and the terminology that is used to discuss them.

 Numerical Integration of ODEs Using SciPy
After the review of numerical methods for solving ODEs given in the previous section, 

we are now ready to explore the ODE solvers that are available in SciPy and how to use 

them. The integrate module of SciPy provides two ODE solver interfaces: integrate.

odeint and integrate.ode. The odeint function is an interface to the LSODA solver 

from ODEPACK,4 which automatically switches between an Adams predictor-corrector 

method for nonstiff problems and a BDF method for stiff problems. In contrast, the 

integrate.ode class provides an object-oriented interface to a number of different 

solvers: the VODE and ZVODE solvers5 (ZVODE is a variant of VODE for complex-valued 

functions), the LSODA solver, and dopri5 and dop853 which are fourth- and eighth- 

order Dormand-Prince methods (i.e., types of Runge-Kutta methods) with adaptive 

stepsize. While the object-oriented interface provided by integrate.ode is more 

flexible, the odeint function is in many cases simpler and more convenient to use. In the 

following we look at both these interfaces, starting with the odeint function.

4 More information about ODEPACK is available at http://computation.llnl.gov/casc/
odepack.

5 The VODE and ZVODE solvers are available at netlib: http://www.netlib.org/ode.
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The odeint function takes three mandatory arguments: a function for evaluating the 

right-hand side of the ODE on the standard form, an array (or scalar) that specifies the 

initial condition for the unknown functions, and an array with values of the independent 

variable where an unknown function is to be computed. The function for the right-hand 

side of the ODE takes two mandatory arguments and an arbitrary number of optional 

arguments. The required arguments are the array (or scalar) for the vector y(x) as first 

argument and the value of x as second argument. For example, consider again the scalar 

ODE y′(x) = f (x, y(x)) = x+y(x)2. To be able to plot the direction field for this ODE again, 

this time together with a specific solution obtained by numerical integration using 

odeint, we first define the SymPy symbols required to construct a symbolic expression 

for f (x, y(x)):

In [79]: x = sympy.symbols("x")

In [80]: y = sympy.Function("y")

In [81]: f = y(x)**2 + x

To be able to solve this ODE with SciPy’s odeint, we first and foremost need to define 

a Python function for f (x, y(x)) that takes Python scalars or NumPy arrays as input. From 

the SymPy expression f, we can generate such a function using sympy.lambdify with the 

'numpy' argument6:

In [82]: f_np = sympy.lambdify((y(x), x), f)

Next we need to define the initial value y0 and a NumPy array with the discrete 

values of x for which to compute the function y(x). Here we solve the ODE starting at 

x = 0 in both the positive and negative directions, using the NumPy arrays xp and xm, 

respectively. Note that to solve the ODE in the negative direction, we only need to create 

a NumPy array with negative increments. Now that we have set up the ODE function 

f_np, initial value y0, and array of x coordination, for example, xp, we can integrate the 

ODE problem by calling integrate.odeint(f_np, y0, xp):

In [83]: y0 = 0

In [84]: xp = np.linspace(0, 1.9, 100)

In [85]: yp = integrate.odeint(f_np, y0, xp)

6 In this particular case, with a scalar ODE, we could also use the 'math' argument, which 
produces a scalar function using functions from the standard math library, but more frequently 
we will need array-aware functions, which we obtain by using the 'numpy' argument to sympy.
lambdify.
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In [86]: xm = np.linspace(0, -5, 100)

In [87]: ym = integrate.odeint(f_np, y0, xm)

The results are two one-dimensional NumPy arrays ym and yp, of the same length 

as the corresponding coordinate arrays xm and xp (i.e., 100), which contain the solution 

to the ODE problem at the specified points. To visualize the solution, we next plot the 

ym and yp arrays together with the direction field for the ODE. The result is shown in 

Figure 9-4. It is apparent that the solution aligns with (tangents) the lines in the direction 

field at every point in the graph, as expected.

In [88]: fig, ax = plt.subplots(1, 1, figsize=(4, 4))

    ...: plot_direction_field(x, y(x), f, ax=ax)

    ...: ax.plot(xm, ym, 'b', lw=2)

    ...: ax.plot(xp, yp, 'r', lw=2)

In the previous example, we solved a scalar ODE problem. More often we are 

interested in vector-valued ODE problems (systems of ODEs). To see how we can solve 

that kind of problems using odeint, consider the Lotka-Volterra equations for the 

dynamics of a population of predator and prey animals (a classic example of coupled 

ODEs). The equations are x′(t) = ax − bxy and y′(t) = cxy − dy, where x(t) is the number 

of prey animals and y(t) is the number of predator animals, and the coefficients a, b, c, 

Figure 9-4. The direction field of the ODE y′(x) = x+y(x)2 and the specific solution 
that satisfies y(0) = 0
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and d describe the rates of the processes in the model. For example, a is the rate at which 

prey animals are born, and d is the rate at which predators die. The b and c coefficients 

are the rates at which predators consume prey and the rate at which the predator 

population grows at the expense of the prey population, respectively. Note that this is a 

nonlinear system of ODEs, because of the xy terms.

To solve this problem with odeint, we first need to write a function for the right-hand 

side of the ODE in vector form. For this case we have f(t, [x, y]T) = [ax − bxy, cxy − dy]T, 

which we can implement as a Python function in the following way:

In [89]: a, b, c, d = 0.4, 0.002, 0.001, 0.7

In [90]: def f(xy, t):

    ...:     x, y = xy

    ...:     return [a * x - b * x * y, c * x * y - d * y]

Here we have also defined variables and values for the coefficients a, b, c, and d. 

Note that here the first argument of the ODE function f is an array containing the current 

values of x(t) and y(t). For convenience, we first unpack these variables into separate 

variables x and y, which makes the rest of the function easier to read. The return value 

of the function should be an array, or list, that contains the values of the derivatives of 

x(t) and y(t). The function f must also take the argument t, with the current value of the 

independent coordinate. However, t is not used in this example. Once the f function is 

defined, we also need to define an array xy0 with the initial values x(0) and y(0) and an 

array t for the points at which we wish to compute the solution to the ODE. Here we use 

the initial conditions x(0) = 600 and y(0) = 400, which corresponds to 600 prey animals 

and 400 predators at the beginning of the simulation.

In [91]: xy0 = [600, 400]

In [92]: t = np.linspace(0, 50, 250)

In [93]: xy_t = integrate.odeint(f, xy0, t)

In [94]: xy_t.shape

Out[94]: (250,2)

Calling integrate.odeint(f, xy0, t) integrates the ODE problem and returns an 

array of shape (250, 2), which contains x(t) and y(t) for each of the 250 values in t. The 

following code plots the solution as a function of time and in phase space. The result is 

shown in Figure 9-5.
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In [95]: fig, axes = plt.subplots(1, 2, figsize=(8, 4))

    ...: axes[0].plot(t, xy_t[:,0], 'r', label="Prey")

    ...: axes[0].plot(t, xy_t[:,1], 'b', label="Predator")

    ...: axes[0].set_xlabel("Time")

    ...: axes[0].set_ylabel("Number of animals")

    ...: axes[0].legend()

    ...: axes[1].plot(xy_t[:,0], xy_t[:,1], 'k')

    ...: axes[1].set_xlabel("Number of prey")

    ...: axes[1].set_ylabel("Number of predators")

In the previous two examples, the function for the right-hand side of the ODE was 

implemented without additional arguments. In the example with the Lotka-Volterra 

equation, the function f used globally defined coefficient variables. Rather than using 

global variables, it is often convenient and elegant to implement the f function in such 

a way that it takes arguments for all its coefficient or parameters. To illustrate this point, 

let’s consider another famous ODE problem: the Lorenz equations, which are the 

following system of three coupled nonlinear ODEs, x′(t) = σ(y − x), y′(t) = x(ρ − z) − y, 

and z′(t) = xy − βz. These equations are known for their chaotic solutions, which 

sensitively depend on the values of the parameters σ, ρ, and β. If we wish to solve these 

equations for different values of these parameters, it is useful to write the ODE function 

so that it additionally takes the values of these variables as arguments. In the following 

Figure 9-5. A solution to the Lotka-Volterra ODE for predator-prey populations, 
as a function of time (left) and in phase space (right)
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implementation of f, the three arguments sigma, rho, and beta, for the correspondingly 

named parameters, have been added after the mandatory y(t) and t arguments:

In [96]: def f(xyz, t, sigma, rho, beta):

    ...:     x, y, z = xyz

    ...:     return [sigma * (y - x),

    ...:             x * (rho - z) - y,

    ...:             x * y - beta * z]

Next, we define variables with specific values of the parameters, the array with t 

values to compute the solution for, and the initial conditions for the functions x(t), y(t), 

and z(t).

In [97]: sigma, rho, beta = 8, 28, 8/3.0

In [98]: t = np.linspace(0, 25, 10000)

In [99]: xyz0 = [1.0, 1.0, 1.0]

This time when we call integrate.odeint, we need to also specify the args 

argument, which needs to be a list, tuple, or array with the same number of elements 

as the number of additional arguments in the f function we defined in the preceding 

section. In this case there are three parameters, and we pass a tuple with the values 

of these parameters via the args argument when calling integrate.odeint. In the 

following we solve the ODE for three different sets of parameters (but the same initial 

conditions).

In [100]: xyz1 = integrate.odeint(f, xyz0, t, args=(sigma, rho, beta))

In [101]: xyz2 = integrate.odeint(f, xyz0, t, args=(sigma, rho, 0.6*beta))

In [102]: xyz3 = integrate.odeint(f, xyz0, t, args=(2*sigma, rho, 0.6*beta))

The solutions are stored in the NumPy arrays xyz1, xyz2, and xyz3. In this case these 

arrays have the shape (10000, 3), because the t array have 10000 elements and there 

are three unknown functions in the ODE problem. The three solutions are plotted in 3D 

graphs in the following code, and the result is shown in Figure 9-6. With small changes in 

the system parameters, the resulting solutions can vary greatly.

In [103]: from mpl_toolkits.mplot3d.axes3d import Axes3D

In [104]: fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(12, 4),

     ...:                                     subplot_kw={'projection':'3d'})
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      ...:  for ax, xyz, c in [(ax1, xyz1, 'r'), (ax2, xyz2, 'b'),  

(ax3, xyz3, 'g')]:

     ...:     ax.plot(xyz[:,0], xyz[:,1], xyz[:,2], c, alpha=0.5)

     ...:     ax.set_xlabel('$x$', fontsize=16)

     ...:     ax.set_ylabel('$y$', fontsize=16)

     ...:     ax.set_zlabel('$z$', fontsize=16)

     ...:     ax.set_xticks([-15, 0, 15])

     ...:     ax.set_yticks([-20, 0, 20])

     ...:     ax.set_zticks([0, 20, 40])

The three examples we have looked at so far all use the odeint solver. This function 

takes a large number of optional arguments that can be used to fine-tune the solver, 

including options for the maximum number of allowed steps (hmax) and the maximum 

order for the Adams (mxordn) and BDF (mxords) methods, just to mention a few. See the 

docstring of odeint for further information.

Figure 9-6. The dynamics for the Lorenz ODE, for three different sets of 
parameters

The alternative to odeint in SciPy is the object-oriented interface provided by the 

integrate.ode class. Like with the odeint function, to use the integrate.ode class, we 

first need to define the right-hand side function for the ODE and define the initial state 

array and an array for the values of the independent variable at which we want to compute 

the solution. However, one small but important difference is that while the function for 

f (x, y(x)) to be used with odeint had to have the function signature f(y, x, ...), the 

corresponding function to be used with integrate.ode must have the function signature 

f(x, y, ...) (i.e., the order of x and y is reversed).
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The integrate.ode class can work with a collection of different solvers, and it has 

specific options for each solver. The docstring of integrate.ode describes the available 

solvers and their options. To illustrate how to use the integrate.ode interface, we first 

look at the following sets of coupled second-order ODEs:

m x t x t k x k x x11 1 1 1 2 2 11 0¢¢( ) + ¢ ( ) + - -( ) =g ,

m x t x t k x x2 22 2 2 2 1 0¢¢ ( ) + ¢ ( ) + -( ) =g .

These equations describe the dynamics of two coupled springs, where x1(t) and x2(t) 

are the displacements of two objects, with masses m1 and m2, from their equilibrium 

positions. The object at x1 is connected to a fixed wall via a spring with spring constant 

k1 and connected to the object at x2 via a spring with spring constant k2. Both objects 

are subject to damping forces characterized by γ1 and γ2, respectively. To solve this kind 

of problem with SciPy, we first have to write it in standard form, which we can do by 

introducing y0(t) = x1(t), y t x t11 ( ) = ¢ ( ) ,  y2(t) = x2(t), and y t x t23 ( ) = ¢ ( ) , which results in 

four coupled first-order equations:
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The first task is to write a Python function that implements the function f(t, y(t)), 

which also takes the problem parameters as additional arguments. In the following 

implementation, we bunch all the parameter into a tuple that is passed to the function as 

a single argument and unpack on the first line of the function body:

In [105]: def f(t, y, args):

     ...:     m1, k1, g1, m2, k2, g2 = args

     ...:      return [y[1], - k1/m1 * y[0] + k2/m1 * (y[2] - y[0]) -  

g1/m1 * y[1],

     ...:             y[3], - k2/m2 * (y[2] - y[0]) - g2/m2 * y[3]]

The return value of the function f is a list of length 4, whose elements are the 

derivatives of the ODE functions y0(t) to y3(t). Next we create variables with specific 

values for the parameters and pack them into a tuple args that can be passed to the 
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function f. Like before, we also need to create arrays for the initial condition y0 and for 

the t values that we want to compute the solution to the ODE, t.

In [106]: m1, k1, g1 = 1.0, 10.0, 0.5

In [107]: m2, k2, g2 = 2.0, 40.0, 0.25

In [108]: args = (m1, k1, g1, m2, k2, g2)

In [109]: y0 = [1.0, 0, 0.5, 0]

In [110]: t = np.linspace(0, 20, 1000)

The main difference between using integrate.odeint and integrate.ode starts at 

this point. Instead of calling the odeint function, we now need to create an instance of 

the class integrate.ode, passing the ODE function f as an argument:

In [111]: r = integrate.ode(f)

Here we store the resulting solver instance in the variable r. Before we can start 

using it, we need to configure some of its properties. At a minimum, we need to set the 

initial state using the set_initial_value method, and if the function f takes additional 

arguments, we need to configure those using the set_f_params method. We can 

also select solver using set_integrator method, which accepts the following solver 

names as the first argument: vode, zvode, lsoda, dopri5, and dop853. Each solver takes 

additional optional arguments. See the docstring for integrate.ode for details. Here we 

use the LSODA solver and set the initial state and the parameters to the function f:

In [112]: r.set_integrator('lsoda');

In [113]: r.set_initial_value(y0, t[0]);

In [114]: r.set_f_params(args);

Once the solver is created and configured, we can start solving the ODE step by step 

by calling r.integrate method, and the status of the integration can be queried using the 

method r.successful (which returns True as long as the integration is proceeding fine). We 

need to keep track of which point to integrate to, and we need to store results by ourselves:

In [115]: dt = t[1] - t[0]

     ...: y = np.zeros((len(t), len(y0)))

     ...: idx = 0

     ...: while r.successful() and r.t < t[-1]:

     ...:     y[idx, :] = r.y

     ...:     r.integrate(r.t + dt)

     ...:     idx += 1

Chapter 9  Ordinary differential equatiOns



326

This is arguably not as convenient as simply calling the odeint, but it offers extra 

flexibility that sometimes is exactly what is needed. In this example we stored the 

solution in the array y for each corresponding element in t, which is similar to what 

odeint would have returned. The following code plots the solution, and the result is 

shown in Figure 9-7.

In [116]: fig = plt.figure(figsize=(10, 4))

     ...: ax1 = plt.subplot2grid((2, 5), (0, 0), colspan=3)

     ...: ax2 = plt.subplot2grid((2, 5), (1, 0), colspan=3)

     ...: ax3 = plt.subplot2grid((2, 5), (0, 3), colspan=2, rowspan=2)

     ...: # x_1 vs time plot

     ...: ax1.plot(t, y[:, 0], 'r')

     ...: ax1.set_ylabel('$x_1$', fontsize=18)

     ...: ax1.set_yticks([-1, -.5, 0, .5, 1])

     ...: # x2 vs time plot

     ...: ax2.plot(t, y[:, 2], 'b')

     ...: ax2.set_xlabel('$t$', fontsize=18)

     ...: ax2.set_ylabel('$x_2$', fontsize=18)

     ...: ax2.set_yticks([-1, -.5, 0, .5, 1])

     ...: # x1 and x2 phase space plot

     ...: ax3.plot(y[:, 0], y[:, 2], 'k')

     ...: ax3.set_xlabel('$x_1$', fontsize=18)

     ...: ax3.set_ylabel('$x_2$', fontsize=18)

     ...: ax3.set_xticks([-1, -.5, 0, .5, 1])

     ...: ax3.set_yticks([-1, -.5, 0, .5, 1])

     ...: fig.tight_layout()
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In addition to providing a Python function for the ODE function f (t, y(t)), we can 

also provide a Python function that computes the Jacobian matrix for a given t and 

y(t). The solver can, for example, use the Jacobian to solve more efficiently the system 

of equations that arise in implicit methods. To use a Jacobian function jac, like the 

one defined below for the current problem, we need to pass it to the integrate.ode 

class when it is created, together with the f function. If the Jacobian function jac takes 

additional arguments, those also have to be configured using the set_jac_params 

method in the resulting integrate.ode instance:

In [117]: def jac(t, y, args):

     ...:     m1, k1, g1, m2, k2, g2 = args

     ...:     return [[0, 1, 0, 0],

     ...:             [- k1/m2 - k2/m1, - g1/m1 * y[1], k2/m1, 0],

     ...:             [0, 0, 1, 0],

     ...:             [k2/m2, 0, - k2/m2, - g2/m2]]

In [118]: r = integrate.ode(f, jac)

In [119]: r.set_jac_params(args);

Python functions for both f (t, y(t)) and its Jacobian can conveniently be generated 

using SymPy’s lambdify, provided that the ODE problem first can be defined as a  

SymPy expression. This symbolic-numeric hybrid approach is a powerful method for 

solving ODE problems. To illustrate this approach, consider the rather complicated 

system of two coupled second-order and nonlinear ODEs for a double pendulum.  

Figure 9-7. The solution of the ODE for two coupled damped oscillators

Chapter 9  Ordinary differential equatiOns



328

The equations of motion for the angular deflection, θ1(t) and θ2(t), for the first and the 

second pendulum, respectively, are7

 
m m l t m l t m l t1 2 1 1 2 2 2 1 2 2 2 2

2

1+( ) ¢¢( ) + ¢¢( ) -( ) + ¢ ( )( ) -q q q q q qcos sin qq q2 1 2 1 0( ) + +( ) =g m m sin ,

m l t m l m l t m g2 2 2 2 1 1 1 2 2 1 1

2

1 2 2¢¢( ) + ¢¢ -( ) - ¢( )( ) -( ) +q q q q q q qcos sin ssin .q2 0=

The first pendulum is attached to a fixed support, and the second pendulum is 

attached to the first pendulum. Here m1 and m2 are the masses and l1 and l2 the lengths 

of the first and second pendulums, respectively. We begin by defining SymPy symbols 

for the variables and the functions in the problem and then constructing the ode 

expressions:

In [120]: t, g, m1, l1, m2, l2 = sympy.symbols("t, g, m_1, l_1, m_2, l_2")

In [121]:  theta1, theta2 = sympy.symbols("theta_1, theta_2", cls=sympy.

Function)

In [122]: ode1 = sympy.Eq((m1+m2)*l1 * theta1(t).diff(t,t) +

     ...:                  m2*l2 * theta2(t).diff(t,t) * sympy.

cos(theta1(t)-theta2(t)) +

     ...:                  m2*l2 * theta2(t).diff(t)**2 * sympy.

sin(theta1(t)-theta2(t)) +

     ...:                 g*(m1+m2) * sympy.sin(theta1(t)))

     ...: ode1
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In [123]: ode2 = sympy.Eq(m2*l2 * theta2(t).diff(t,t) +

     ...:                  m2*l1 * theta1(t).diff(t,t) * sympy.

cos(theta1(t)-theta2(t)) -

     ...:                  m2*l1 * theta1(t).diff(t)**2 * sympy.

sin(theta1(t) - theta2(t)) +

     ...:                 m2*g * sympy.sin(theta2(t)))

     ...: ode2

7 See http://scienceworld.wolfram.com/physics/DoublePendulum.html for details.
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Now ode1 and ode2 are SymPy expressions for the two second-order ODE equations. 

Trying to solve these equations with sympy.dsolve is fruitless, and to proceed we need 

to use a numerical method. However, the equations as they stand here are not in a form 

that is suitable for numerical solution with the ODE solvers that are available in SciPy. 

We first have to write the system of two second-order ODEs as a system of four first-order 

ODEs on the standard form. Rewriting the equations on the standard form is not difficult 

but can be tedious to do by hand. Fortunately we can leverage the symbolic capabilities 

of SymPy to automate this task. To this end we need to introduce new functions 

y1(t) = θ1(t) and y t t2 1( ) = ¢( )q  and y3(t) = θ2(t) and y t t4 2( ) = ¢ ( )q  and rewrite the ODEs in 

terms of these functions. By creating a dictionary for the variable change, and using the 

SymPy function subs to perform the substitution using this dictionary, we can easily 

obtain the equations for ¢ ( )y t2  and ¢ ( )y t4 :

In [124]:  y1, y2, y3, y4 = sympy.symbols("y_1, y_2, y_3, y_4", cls=sympy.

Function)

In [125]: varchange = {theta1(t).diff(t, t): y2(t).diff(t),

     ...:              theta1(t): y1(t),

     ...:              theta2(t).diff(t, t): y4(t).diff(t),

     ...:              theta2(t): y3(t)}

In [126]: ode1_vc = ode1.subs(varchange)

In [127]: ode2_vc = ode2.subs(varchange)

We also need to introduce two more ODEs for ¢ ( )y t1  and ¢ ( )y t3 :

In [128]: ode3 = y1(t).diff(t) - y2(t)

In [129]: ode4 = y3(t).diff(t) - y4(t)

At this point we have four coupled first-order ODEs for the functions y1 to y4. It only 

remains to solve for the derivatives of these functions to obtain the ODEs in standard 

form. We can do this using sympy.solve:
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In [130]: y = sympy.Matrix([y1(t), y2(t), y3(t), y4(t)])

In [131]:  vcsol = sympy.solve((ode1_vc, ode2_vc, ode3, ode4), y.diff(t), 

dict=True)

In [132]: f = y.diff(t).subs(vcsol[0])

Now f is SymPy expression for the ODE function f (t, y(t)). We can display the ODEs 

using sympy.Eq(y.diff(t), f), but the result is rather lengthy, and in the interest 

of space, we do not show the output here. The main purpose of constructing f here is 

to convert it to a NumPy-aware function that can be used with integrate.odeint or 

integrate.ode. The ODEs are now on a form that we can create such a function using 

sympy.lambdify. Also, since we have a symbolic representation of the problem so far, it 

is easy to also compute the Jacobian and create a NumPy-aware function for it too. When 

using sympy.lambdify to create functions for odeint and ode, we have to be careful to 

put t and y in the correct order in the tuple that is passed to sympy.lambdify. Here we 

will use integrate.ode, so we need a function with the signature f(t, y, *args), and 

thus we pass the tuple (t, y) as first argument to sympy.lambdify, and we wrap the 

resulting function with a lambda function in order to be able to receive the additional 

argument args, which is not used in the SymPy expression.

In [133]: params = {m1: 5.0, l1: 2.0, m2: 1.0, l2: 1.0, g: 10.0}

In [134]: _f_np = sympy.lambdify((t, y), f.subs(params), 'numpy')

In [135]: f_np = lambda _t, _y, *args: _f_np(_t, _y)

In [136]: jac = sympy.Matrix([[fj.diff(yi) for yi in y] for fj in f])

In [137]: _jac_np = sympy.lambdify((t, y), jac.subs(params), 'numpy')

In [138]: jac_np = lambda _t, _y, *args: _jac_np(_t, _y)

Here we have also substituted specific values of the system parameters before calling 

sympy.lambdify. The first pendulum is made twice as long and five times as heavy as 

the second pendulum. With the functions f_np and jac_np, we are now ready to solve 

the ODE using integrate.ode in the same manner as in the previous examples. Here we 

take the initial state to be θ1(0) = 2 and θ2(0) = 0, and with the derivatives zero to zero, and 

we solve for the time interval [0, 20] with 1000 steps:

In [139]: y0 = [2.0, 0, 0, 0]

In [140]: tt = np.linspace(0, 20, 1000)

In [141]: r = integrate.ode(f_np, jac_np).set_initial_value(y0, tt[0])

In [142]: dt = tt[1] - tt[0]
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     ...: yy = np.zeros((len(tt), len(y0)))

     ...: idx = 0

     ...: while r.successful() and r.t < tt[-1]:

     ...:     yy[idx, :] = r.y

     ...:     r.integrate(r.t + dt)

     ...:     idx += 1

The solution to the ODEs is now stored in the array yy, which have the shape 

(1000, 4). When visualizing this solution, it is more intuitive to plot the positions of the 

pendulums in the x – y plane rather than their angular deflections. The transformations 

between the angular variables θ1 and θ2 and x and y coordinates are x1 = l1 sin θ1, 

y1 = l1 cos θ1, x2 = x1+l2 sin θ2, and y2 = y1+l2 cos θ2:

In [143]: theta1_np, theta2_np = yy[:, 0], yy[:, 2]

In [144]: x1 = params[l1] * np.sin(theta1_np)

     ...: y1 = -params[l1] * np.cos(theta1_np)

     ...: x2 = x1 + params[l2] * np.sin(theta2_np)

     ...: y2 = y1 - params[l2] * np.cos(theta2_np)

Finally we plot the dynamics of the double pendulum as a function of time and in 

the x–y plane. The result is shown in Figure 9-8. As expected, pendulum 1 is confined 

to move on a circle (because of its fixed anchor point), while pendulum 2 have a much 

more complicated trajectory.

In [145]: fig = plt.figure(figsize=(10, 4))

     ...: ax1 = plt.subplot2grid((2, 5), (0, 0), colspan=3)

     ...: ax2 = plt.subplot2grid((2, 5), (1, 0), colspan=3)

     ...: ax3 = plt.subplot2grid((2, 5), (0, 3), colspan=2, rowspan=2)

     ...:

     ...: ax1.plot(tt, x1, 'r')

     ...: ax1.plot(tt, y1, 'b')

     ...: ax1.set_ylabel('$x_1, y_1$', fontsize=18)

     ...: ax1.set_yticks([-3, 0, 3])

     ...:

     ...: ax2.plot(tt, x2, 'r')

     ...: ax2.plot(tt, y2, 'b')

     ...: ax2.set_xlabel('$t$', fontsize=18)
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     ...: ax2.set_ylabel('$x_2, y_2$', fontsize=18)

     ...: ax2.set_yticks([-3, 0, 3])

     ...:

     ...: ax3.plot(x1, y1, 'r')

     ...: ax3.plot(x2, y2, 'b', lw=0.5)

     ...: ax3.set_xlabel('$x$', fontsize=18)

     ...: ax3.set_ylabel('$y$', fontsize=18)

     ...: ax3.set_xticks([-3, 0, 3])

     ...: ax3.set_yticks([-3, 0, 3])

 Summary
In this chapter we have explored various methods and tools for solving ordinary 

differential equations (ODEs) using the scientific computing packages for Python. ODEs 

show up in many areas of science and engineering – in particular in modeling and the 

description of dynamical systems – and mastering the techniques to solve ODE problems 

is therefore a crucial part of the skillset of a computational scientist. In this chapter, we 

first looked at solving ODEs symbolically using SymPy, either with the sympy.dsolve 

function or using a Laplace transformation method. The symbolic approach is often a 

good starting point, and with the symbolic capabilities of SymPy, many fundamental 

ODE problems can be solved analytically. However, for most practical problems, there 

is no analytical solution, and the symbolic methods are then doomed to fail. Our 

remaining option is then to fall back on numerical techniques. Numerical integration 

Figure 9-8. The dynamics of the double pendulum
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of ODEs is a vast field in mathematics, and there exist numerous reliable methods for 

solving ODE problems. In this chapter we briefly reviewed methods for integrating 

ODEs, with the intent to introduce the concepts and ideas behind the Adams and BDF 

multistep methods that are used in the solvers provided by SciPy. Finally, we looked at 

how the odeint and ode solvers, available through the SciPy integrate module, can 

be used by solving a few example problems. Although most ODE problems eventually 

require numerical integration, there can be great advantages in using a hybrid symbolic- 

numerical approach, which uses features from both SymPy and SciPy. The last example 

of this chapter is devoted to demonstrating this approach.

 Further Reading
An accessible introduction to many methods for numerically solving ODE problems 

is given in Heath (2002). For a review of ordinary differential equations with code 

examples, see Chapter 11 in Numerical Recipes (W.H. Press 2007). For a more detailed 

survey of numerical methods for ODEs, see, for example, (Kendall Atkinson (2009). 

The main implementations of ODE solvers that are used in SciPy are the VODE and 

LSODA solvers. The original source code for these methods is available from netlib at 

www.netlib.org/ode/vode.f and www.netlib.org/odepack, respectively. In addition 

to these solvers, there is also a well-known suite of solvers called sundials, which is 

provided by the Lawrence Livermore National Laboratory and available at http://

computation.llnl.gov/casc/sundials/main.html. This suite also includes solvers 

of differential-algebraic equations (DAEs). A Python interface for the sundials solvers 

is provided by the scikit.odes library, which can be obtained from http://github.

com/bmcage/odes. The odespy library also provides a unified interface to many different 

ODE solvers. For more information about odespy, see the project’s web site at http://

hplgit.github.io/odespy/doc/web/index.html.
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CHAPTER 10

Sparse Matrices 
and Graphs
We have already seen numerous examples of arrays and matrices being the essential 

entities in many aspects of numerical computing. So far we have represented arrays 

with the NumPy ndarray data structure, which is a heterogeneous representation that 

stores all the elements of the array that it represents. In many cases, this is the most 

efficient way to represent an object such as a vector, matrix, or a higher-dimensional 

array. However, notable exceptions are matrices where most of the elements are zeros. 

Such matrices are known as sparse matrices, and they occur in many applications, for 

example, in connection networks (such as circuits) and in large algebraic equation 

systems that arise, for example, when solving partial differential equations (see Chapter 11  

for examples).

For matrices that are dominated by elements that are zero, it is inefficient to store all 

the zeros in the computer’s memory, and it is more suitable to store only the nonzero 

values with additional information about their locations. For nonsparse matrices, 

known as dense matrices, such a representation is less efficient than storing all values 

consecutively in the memory, but for large sparse matrices, it can be vastly superior.

There are several options for working with sparse matrices in Python. Here we 

mainly focus on the sparse matrix module in SciPy, scipy.sparse, which provides a 

feature-rich and easy-to-use interface for representing sparse matrices and carrying out 

linear algebra operations on such objects. Another option is PySparse1, which provides 

similar functionality. For very large-scale problems, the PyTrilinos2 and PETSc3 packages 

1 http://pysparse.sourceforge.net
2 http://trilinos.org/packages/pytrilinos
3 See http://www.mcs.anl.gov/petsc and https://bitbucket.org/petsc/petsc4py for its 
Python bindings.

http://pysparse.sourceforge.net
http://trilinos.org/packages/pytrilinos
http://www.mcs.anl.gov/petsc
https://code.google.com/p/petsc4py
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have powerful parallel implementations of many sparse matrix operations. However, 

using these packages requires more programming, and they have a steeper learning 

curve and are more difficult to install and set up. For most basic use-cases, SciPy’s 

sparse module is the most suitable option or at least a suitable starting point.

Toward the end of the chapter, we also briefly explore representing and processing 

graphs, using the SciPy sparse.csgraph module and the NetworkX library. Graphs 

can be represented as adjacency matrices, which in many applications are very sparse. 

Graphs and sparse matrices are therefore closely connected topics.

 Importing Modules
The main module that we work with in this chapter is the sparse module in SciPy 

library. We assume that this module is included under the name sp, and in addition we 

need to explicitly import its submodule linalg, to make this module accessible through 

sp.linalg.

In [1]: import scipy.sparse as sp

In [2]: import scipy.sparse.linalg

We also need the NumPy library, which we, as usual, import under the name np, and 

the Matplotlib library for plotting:

In [3]: import numpy as np

In [4]: import matplotlib.pyplot as plt

And in the last part of this chapter, we use the networkx module, which we import 

under the name nx:

In [5]: import networkx as nx

 Sparse Matrices in SciPy
The basic idea of sparse matrix representation is to avoid storing the excessive amount of 

zeros in a sparse matrix. In dense matrix representation, where all elements of an array 

are stored consecutively, it is sufficient to store the values themselves, since the row and 

column indices for each element are known implicitly from the position in the array. 

However, if we store only the nonzero elements, we clearly also need to store the row 

and column indices for each element. There are numerous approaches to organizing 
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the storage of the nonzero elements and their corresponding row and column indices. 

These approaches have different advantages and disadvantages, for example, in terms 

how easy it is to create the matrices and, perhaps more importantly, how efficiently they 

can be used in implementations of mathematical operations on the sparse matrices. A 

summary and comparison of sparse matrix formats that are available in the SciPy sparse 

module is given in Table 10-1.

Table 10-1. Summary and Comparison of Methods to Represent Sparse Matrices

Type Description Pros Cons

Coordinate list

(COO, sp.coo_

matrix)

nonzero values are stored 

in a list together with their 

row and column.

Simple to construct 

and efficient to add 

new elements.

inefficient element 

access. not suitable for 

mathematical operations, 

such as matrix 

multiplication.

List of lists

(LiL, sp.lil_matrix)

Stores a list of column 

indices for nonzero 

elements for each 

row and a list of the 

corresponding values.

Supports slicing 

operations.

not ideal for 

mathematical operations.

dictionary of keys

(dOK, sp.dok_

matrix)

nonzero values are stored 

in a dictionary with a tuple 

of (row, column) as key.

Simple to construct 

and fast to add, 

remove and access 

elements.

not ideal for 

mathematical operations.

diagonal matrix

(dia, sp.dia_matrix)

Stores lists of diagonals of 

the matrix.

efficient for 

diagonal matrices.

not suitable for 

nondiagonal matrices.

Compressed sparse 

column (CSC, sp.

csc_matrix) and 

compressed sparse row 

(CSr, sp.csr_matrix)

Stores the values together 

with arrays with column 

or row indices.

relatively 

complicated to 

construct.

efficient matrix-vector 

multiplication.

Block-sparse matrix

(BSr, cp.bsr_matrix)

Similar to CSr, but for 

sparse matrices with 

dense submatrices.

efficient for their 

specific intended 

purpose.

not suitable for general- 

purpose use.
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A simple and intuitive approach for storing sparse matrices is to simply store lists 

with column indices and row indices together with the list of nonzero values. This format 

is called coordinate list format, and it is abbreviated as COO in SciPy. The class sp.

coo_matrix is used to represent sparse matrices in this format. This format is particularly 

easy to initialize. For instance, with the matrix

A =

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

0 1 0 0

0 0 0 2

0 0 3 0

4 0 0 0

,

we can easily identify the nonzero values [A01 = 1, A13 = 2, A22 = 3, A30 = 4] and their 

corresponding rows [0, 1, 2, 3] and columns [1, 3, 2, 0] (note that here we have used 

Python’s zero-based indexing). To create a sp.coo_matrix object, we can create lists (or 

arrays) for the values, row indices, and column indices and pass them to sp.coo_matrix. 

Optionally, we can also specify the shape of the array using the shape argument, which 

is useful when the nonzero elements do not span the entire matrix (i.e., if there are 

columns or rows containing only zeros, so that the shape cannot be correctly inferred 

from the row and column arrays):

In [6]: values = [1, 2, 3, 4]

In [7]: rows = [0, 1, 2, 3]

In [8]: cols = [1, 3, 2, 0]

In [9]: A = sp.coo_matrix((values, (rows, cols)), shape=[4, 4])

In [10]: A

Out[10]: <4x4 sparse matrix of type '<type 'numpy.int64'>'

              with 4 stored elements in Coordinate format>

The result is a data structure that represents the sparse matrix. All sparse matrix 

representations in SciPy’s sparse module share several common attributes, many of 

which are derived from NumPy’s ndarray object. Examples of such attributes are size, 

shape, dtype, and ndim, and common to all sparse matrix representations are the nnz 

(number of nonzero elements) and data (the nonzero values) attributes:

In [11]: A.shape, A.size, A.dtype, A.ndim

Out[11]: ((4, 4), 4, dtype('int64'), 2)

In [12]: A.nnz, A.data

Out[12]: (4, array([1, 2, 3, 4]))

Chapter 10  SparSe MatriCeS and GraphS



339

In addition to the shared attributes, each type of sparse matrix representation also 

has attributes that are specific to its way of storing the positions for each nonzero value. 

For the case of sp.coo_matrix objects, there are row and col attributes for accessing the 

underlying row and column arrays:

In [13]: A.row

Out[13]: array([0, 1, 2, 3], dtype=int32)

In [14]: A.col

Out[14]: array([1, 3, 2, 0], dtype=int32)

There are also a large number of methods available for operating on sparse matrix 

objects. Many of these methods are for applying mathematical functions on the matrix, 

for example, elementwise math methods like sin, cos, arcsin, etc.; aggregation methods 

like min, max, sum, etc.; mathematical array operators such as conjugate (conj) and 

transpose (transpose), etc.; and dot for computing the dot product between sparse 

matrices or a sparse matrix and a dense vector (the * operator also denotes matrix 

multiplication for sparse matrices). For further details, see the docstring for the sparse 

matrix classes (summarized in Table 10-1). Another important family of methods is used 

to convert sparse matrices between different formats: for example, tocoo, tocsr, tolil, 

etc. There are also methods for converting a sparse matrix to NumPy ndarray and NumPy 

matrix objects (i.e., dense matrix representations): toarray and todense, respectively.

For example, to convert the sparse matrix A from COO format to CSR format, and to a 

NumPy array, respectively, we can use the following:

In [15]: A.tocsr()

Out[15]: <4x4 sparse matrix of type '<type 'numpy.int64'>'

         with 4 stored elements in Compressed Sparse Row format>

In [16]: A.toarray()

Out[16]: array([[0, 1, 0, 0],

                [0, 0, 0, 2],

                [0, 0, 3, 0],

                [4, 0, 0, 0]])

The obvious way to access elements in a matrix, which we have used in numerous 

different contexts so far, is using the indexing syntax, for example, A[1,2], as well as 

the slicing syntax, for example, A[1:3, 2], and so on. We can often use this syntax with 

sparse matrices too, but not all representations support indexing and slicing, and if it is 

supported, it may not be an efficient operation. In particular, assigning values to zero- 
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valued elements can be a costly operation, as it may require to rearrange the underlying 

data structures, depending on which format is used. To incrementally add new elements 

to a sparse matrix, the LIL (sp.lil_matrix) format is a suitable choice, but this format is 

on the other hand not suitable for arithmetic operations.

When working with sparse matrices, it is common to face the situation that 

different tasks – such as construction, updating, and arithmetic operations – are most 

efficiently handled in different formats. Converting between different sparse formats is 

relatively efficient, so it is useful to switch between different formats in different parts 

of an application. Efficient use of sparse matrices therefore requires an understanding 

of how different formats are implemented and what they are suitable for. Table 10-1 

briefly summarizes the pros and cons of the sparse matrix formats available in SciPy’s 

sparse module, and using the conversion methods, it is easy to switch between different 

formats. For a more in-depth discussion of the merits of the various formats, see the 

“Sparse Matrices”4 section in the SciPy reference manual.

For computations, the most important sparse matrix representations in SciPy’s 

sparse module are the CSR (Compressed Sparse Row) and CSC (Compressed Sparse 

Column) formats, because they are well suited for efficient matrix arithmetic and linear 

algebra applications. Other formats, like COO, LIL, and DOK, are mainly used for 

constructing and updated sparse matrices, and once a sparse matrix is ready to be used 

in computations, it is best to convert it to either CSR or CSC format, using the tocsr or 

tocsc methods, respectively.

In the CSR format, the nonzero values (data) are stored along with an array that 

contains the column indices of each value (indices) and another array that stores the 

offsets of the column index array of each row (indptr). For instance, consider the matrix

A =

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

1 2 0 0

0 3 4 0

0 0 5 6

7 0 8 9

,

Here the nonzero values are [1, 2, 3, 4, 5, 6, 7, 8, 9] (data), and the column indices 

corresponding to the nonzero values in the first row are [0, 1], the second row [1, 2], the 

third row [2, 3], and the fourth row [0, 2, 3]. Concatenating all of these column index lists 

gives the indices array [0, 1, 1, 2, 2, 3, 0, 2, 3]. To keep track of which row entries in this 

4 http://docs.scipy.org/doc/scipy/reference/sparse.html
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column index array correspond to, we can store the starting position in for each row 

in a second array. The column indices of the first row are elements 0 to 1, the second 

row elements 2 to 3, the third row elements 4 to 5, and finally the fourth row elements 

6 to 9. Collecting the starting indices in an array gives [0, 2, 4, 6]. For convenience in 

the implementation, we also add at the end of this array the total number of nonzero 

elements, which results in the indptr array [0, 2, 4, 6, 9]. In the following code, we create 

a dense NumPy array corresponding to the matrix A, convert it to a CSR matrix using sp.

csr_matrix, and then display the data, indices, and indptr attributes:

In [17]: A = np.array([[1, 2, 0, 0], [0, 3, 4, 0], [0, 0, 5, 6], [7, 0, 8, 9]])

    ...: A

Out[17]: array([[1, 2, 0, 0],

                [0, 3, 4, 0],

                [0, 0, 5, 6],

                [7, 0, 8, 9]])

In [18]: A = sp.csr_matrix(A)

In [19]: A.data

Out[19]: array([1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=int64)

In [20]: A.indices

Out[20]: array([0, 1, 1, 2, 2, 3, 0, 2, 3], dtype=int32)

In [21]: A.indptr

Out[21]: array([0, 2, 4, 6, 9], dtype=int32)

With this storage scheme, the nonzero elements in the row with index i are stored 

in the data array between index indptr[i] and indptr[i+1]-1, and the column indices 

for these elements are stored at the same indices in the indices array. For example, 

the elements in the third row, with index i=2, starts at indptr[2]=4 and ends at 

indptr[3]-1=5, which gives the element values data[4]=5 and data[5]=6 and column 

indices indices[4]=2 and indices[5]=3. Thus, A[2, 2] = 5 and A[2, 3] = 6 (in zero-index- 

based notation):

In [22]: i = 2

In [23]: A.indptr[i], A.indptr[i+1]-1

Out[23]: (4, 5)

In [24]: A.indices[A.indptr[i]:A.indptr[i+1]]

Out[24]: array([2, 3], dtype=int32)

In [25]: A.data[A.indptr[i]:A.indptr[i+1]]
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Out[25]: array([5, 6], dtype=int64)

In [26]: A[2, 2], A[2,3]  # check

Out[26]: (5, 6)

While the CSR storage method is not as intuitive as COO, LIL, or DOK, it turns out 

that it is well suited for use in the implementation of matrix arithmetic and for linear 

algebra operations. Together with the CSC format, it is therefore the main format for use 

in sparse matrix computations. The CSC format is essentially identical to CSR, except 

that instead of column indices and row pointers, row indices and column pointers are 

used (i.e., the role of columns and rows is reversed).

 Functions for Creating Sparse Matrices
As we have seen in the examples earlier in this chapter, one way of constructing sparse 

matrices is to prepare the data structures for a specific sparse matrix format and pass 

these to the constructor of the corresponding sparse matrix class. While this method 

is sometimes suitable, it is often more convenient to compose sparse matrices from 

predefined template matrices. The sp.sparse module provides a variety of functions for 

generating such matrices, for example, sp.eye for creating diagonal sparse matrices with 

ones on the diagonal (optionally offset from the main diagonal), sp.diags for creating 

diagonal matrices with a specified pattern along the diagonal, sp.kron for calculating 

the Kronecker (tensor) product of two sparse matrices, and bmat, vstack, and hstack, 

for building sparse matrices from sparse block matrices, and by stacking sparse matrices 

vertically and horizontally, respectively.

For example, in many applications sparse matrices have a diagonal form. To create a 

sparse matrix of size 10 × 10 with a main diagonal and an upper and lower diagonal, we 

can use three calls to sp.eye, using the k argument to specify the offset from the main 

diagonal:

In [27]: N = 10

In [28]: A = sp.eye(N, k=1) - 2 * sp.eye(N) + sp.eye(N, k=-1)

In [29]: A

Out[29]: <10x10 sparse matrix of type '<class 'numpy.float64'>'

                   with 28 stored elements in Compressed Sparse Row format>
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By default the resulting object is sparse matrix in the CSR format, but using the 

format argument, we can specify any other sparse matrix format. The value of the format 

argument should be a string such as 'csr', 'csc', 'lil', etc. All functions for creating 

sparse matrices in sp.sparse accept this argument. For example, in the previous 

example, we could have produced the same matrix using sp.diags, by specifying the 

pattern [1, –2, 1] (the coefficients to the sp.eye functions in the previous expression), 

and the corresponding offsets from the main diagonal [1, 0, –1]. If we additionally 

want the resulting sparse matrix in CSC format, we can set format='csc':

In [30]: A = sp.diags([1, -2, 1], [1, 0, -1], shape=[N, N], format='csc')

In [31]: A

Out[31]: <10x10 sparse matrix of type '<class 'numpy.float64'>'

                   with 28 stored elements in Compressed Sparse Column format>

The advantages of using sparse matrix formats rather than dense matrices only 

manifest themselves when working with large matrices. Sparse matrices are by their 

nature therefore large, and hence it can be difficult to visualize a matrix by, for example, 

printing its elements in the terminal. Matplotlib provides the function spy, which is a 

useful tool for visualizing the structure of a sparse matrix. It is available as a function 

in pyplot module or as a method for Axes instances. When using it on the previously 

defined A matrix, we obtain the results shown in Figure 10-1.

In [32]: fig, ax = plt.subplots()

    ...: ax.spy(A)
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Sparse matrices are also often associated with tensor product spaces. For such 

cases we can use the sp.kron function to compose a sparse matrix from its smaller 

components. For example, to create a sparse matrix for the tensor product between A 

and the matrix

B =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

0 1 0

1 0 1

0 1 0

,

we can use sp.kron(A, B):

In [33]: B = sp.diags([1, 1], [-1, 1], shape=[3,3])

In [34]: C = sp.kron(A, B)

In [35]: fig, (ax_A, ax_B, ax_C) = plt.subplots(1, 3, figsize=(12, 4))

    ...: ax_A.spy(A)

    ...: ax_B.spy(B)

    ...: ax_C.spy(C)

For comparison, we also plotted the sparse matrix structure of A, B, and C, and the 

result is shown in Figure 10-2. For more detailed information on ways to build sparse 

matrices with the sp.sparse module, see its docstring and the “Sparse Matrices” section 

in the SciPy reference manual.

Figure 10-1. Structure of the sparse matrix with nonzero elements only on the two 
diagonals closest to the main diagonal and the main diagonal itself
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 Sparse Linear Algebra Functions
The main application of sparse matrices is to perform linear algebra operations on large 

matrices that are intractable or inefficient to treat using dense matrix representations. 

The SciPy sparse module contains a module linalg that implements many linear 

algebra routines. Not all linear algebra operations are suitable for sparse matrices, and in 

some cases the behavior of the sparse matrix version of operations needs to be modified 

compared to the dense counterparts. Consequently, there are a number of differences 

between the sparse linear algebra module scipy.sparse.linalg and the dense linear 

algebra module scipy.linalg. For example, the eigenvalue solvers for dense problems 

typically compute and return all eigenvalues and eigenvectors. For sparse matrices this 

is not manageable, because storing all eigenvectors of a sparse matrix A of size N × N 

usually amounts to storing a dense matrix of size N × N. Instead, sparse eigenvalue 

solvers typically give a few eigenvalues and eigenvectors, for example, those with the 

smallest or largest eigenvalues. In general, for sparse matrix methods to be efficient, 

they must retain the sparsity of matrices involved in the computation. An example of an 

operation where the sparsity usually is not retained is the matrix inverse, and it should 

therefore be avoided when possible.

 Linear Equation Systems
The most important application of sparse matrices is arguably to solve linear equation 

system on the form Ax = b, where A is a sparse matrix and x and b are dense vectors.  

The SciPy sparse.linalg module has both direct and iterative solver for this type of 

Figure 10-2. The sparse matrix structures of two matrices A (left) and B (middle) 
and their tensor product (right)
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problem (sp.linalg.spsolve) and methods to factor a matrix A, using, for example,  

LU factorization (sp.linalg.splu) and incomplete LU factorization (sp.linalg.spilu). 

For example, consider the problem Ax = b where A is the tridiagonal matrix considered 

in the preceding text and b is a dense vector filled with negative ones (see Chapter 11 

for a physical interpretation of this equation). To solve this problem for the system size 

10 × 10, we first create the sparse matrix A and the dense vector b:

In [36]: N = 10

In [37]: A = sp.diags([1, -2, 1], [1, 0, -1], shape=[N, N], format='csc')

In [38]: b = -np.ones(N)

Now, to solve the equation system using the direct solver provided by SciPy,  

we can use:

In [39]: x = sp.linalg.spsolve(A, b)

In [40]: x

Out[40]: array([  5.,   9.,  12.,  14.,  15.,  15.,  14.,  12.,   9.,   5.])

The solution vector is a dense NumPy array. For comparison, we can also solve 

this problem using dense direct solver in NumPy np.linalg.solve (or, similarly, using 

scipy.linalg.solve). To be able to use the dense solver, we need to convert the sparse 

matrix A to a dense array using A.todense():

In [41]: np.linalg.solve(A.todense(), b)

Out[41]: array([  5.,   9.,  12.,  14.,  15.,  15.,  14.,  12.,   9.,   5.])

As expected, the result agrees with what we obtained from the sparse solver. For 

small problems like this one, there is not much to gain using sparse matrices, but for 

increasing system size, the merits of using sparse matrices and sparse solvers become 

apparent. For this particular problem, the threshold system size beyond which using 

sparse methods outperforms dense methods is approximately N = 100, as shown in 

Figure 10-3. While the exact threshold varies from problem to problem, as well as 

hardware and software versions, this behavior is typical for problems where the matrix A 

is sufficiently sparse5.

5 For a discussion of techniques and methods to optimize Python code, see Chapter 21.
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An alternative to the spsolve interface is to explicitly compute the LU factorization 

using sp.sparse.splu or sp.sparse.spilu (incomplete LU factorization). These 

functions return an object that contains the L and U factors and that has a method that 

solves LUx = b for a given vector b. This is of course particularly useful when the Ax = b 

has to be solved for multiple vectors b. For example, the LU factorization of the matrix A 

used previously is computed using:

In [42]: lu = sp.linalg.splu(A)

In [43]: lu.L

Out[43]: <10x10 sparse matrix of type '<class 'numpy.float64'>'

                    with 20 stored elements in Compressed Sparse Column format>

In [44]: lu.U

Out[44]: <10x10 sparse matrix of type '<class 'numpy.float64'>'

                    with 20 stored elements in Compressed Sparse Column format>

Once the LU factorization is available, we can efficiently solve the equation LUx = b 

using the solve method for the lu object:

In [45]: x = lu.solve(b)

In [46]: x

Out[46]: array([  5.,   9.,  12.,  14.,  15.,  15.,  14.,  12.,   9.,   5.])

Figure 10-3. Performance comparison between sparse and dense methods to solve 
the one-dimensional Poisson problem as a function of problem size
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An important consideration that arises with sparse matrices is that the LU 

factorization of A may introduce new nonzero elements in L and U compared to the 

matrix A and therefore make L and U less sparse. Elements that exist in L or U, but 

not in A, are called fill-ins. If the amount of fill-ins is large, the advantage of using 

sparse matrices may be lost. While there is no complete solution to eliminate fill-ins, 

it is often possible to reduce fill-in by permuting the rows and columns in A, so that 

the LU factorization takes the form PrAPc = LU, where Pr and Pc are row and column 

permutation matrices, respectively. Several such methods for permutations methods are 

available. The spsolve, splu, and spilu functions all take the argument permc_spec, 

which can take the values NATURAL, MMD_ATA, MMD_AT_PLUS_A, or COLAMD, which indicates 

different permutation methods that are built into these methods. The object returned 

by splu and spilu accounts for such permutations, and the permutation vectors are 

available via the perm_c and perm_r attributes. Because of these permutations, the 

product of lu.L and lu.U is not directly equal to A, and to reconstruct A from lu.L and 

lu.U, we also need to undo the row and column permutations:

In [47]: def sp_permute(A, perm_r, perm_c):

    ...:     """ permute rows and columns of A """

    ...:     M, N = A.shape

    ...:     # row permutation matrix

    ...:     Pr = sp.coo_matrix((np.ones(M), (perm_r, np.arange(N)))).tocsr()

    ...:     # column permutation matrix

    ...:     Pc = sp.coo_matrix((np.ones(M), (np.arange(M), perm_c))).tocsr()

    ...:     return Pr.T * A * Pc.T

In [48]: lu.L * lu.U - # != 0

Out[48]: <10x10 sparse matrix of type '<class 'numpy.float64'>'

                   with 8 stored elements in Compressed Sparse Column format>

In [49]: sp_permute(lu.L * lu.U, lu.perm_r, lu.perm_c) - A  # == 0

Out[49]: <10x10 sparse matrix of type '<class 'numpy.float64'>'

                   with 0 stored elements in Compressed Sparse Column format>

By default, the direct sparse linear solver in SciPy uses the SuperLU6 package. An 

alternative sparse matrix solver that also can be used in SciPy is the UMFPACK7 package, 

although this package is not bundled with SciPy and requires that the scikit-umfpack 

6 http://crd-legacy.lbl.gov/~xiaoye/SuperLU/
7 http://faculty.cse.tamu.edu/davis/suitesparse.html
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Python library is installed. If scikit-umfpack is available, and if the use_umfpack 

argument to the sp.linalg.spsolve function is True, then the UMFPACK is used instead 

of SuperLU. Whether SuperLU or UMFPACK gives better performance varies from problem 

to problem, so it is worth having both installed and testing both for any given problem.

The sp.spsolve function is an interface to direct solvers, which internally performs 

matrix factorization. An alternative approach is to use iterative methods that originate 

in optimization. The SciPy sparse.linalg module contains several functions for the 

iterative solution of sparse linear problems: for example, bicg (biconjugate gradient 

method), bicgstab (biconjugate gradient stabilized method), cg (conjugate gradient), 

gmres (generalized minimum residual), and lgmres (loose generalized minimum 

residual method). All of these functions (and a few others) can be used to solve the 

problem Ax = b by calling the function with A and b as arguments, and they all return a 

tuple (x, info) where x is the solution and info contains additional information about 

the solution process (info=0 indicates success, and it is positive for convergence error 

and negative for input error). For example:

In [50]: x, info = sp.linalg.bicgstab(A, b)

In [51]: x

Out[51]: array([  5.,   9.,  12.,  14.,  15.,  15.,  14.,  12.,   9.,   5.])

In [52]: x, info = sp.linalg.lgmres(A, b)

In [53]: x

Out[53]: array([  5.,   9.,  12.,  14.,  15.,  15.,  14.,  12.,   9.,   5.])

In addition, each iterative solver takes its own solver-dependent arguments. See the 

docstring for each function for details. Iterative solver may have an advantage over direct 

solvers for very large problems, where direct solvers may require excessive memory 

usage due to undesirable fill-ins. In contrast, iterative solvers only require to evaluate 

sparse matrix-vector multiplications and therefore do not suffer from fill-in problems, 

but on the other hand, they might have slow convergence for many problems, especially 

if not properly preconditioned.

 Eigenvalue Problems

Sparse eigenvalue and singular-value problems can be solved using the sp.linalg.eigs 

and sp.linalg.svds functions, respectively. For real symmetric or complex Hermitian 

matrices, the eigenvalues (which in this case are real) and eigenvectors can also be 

computed using sp.linalg.eigsh. These functions do not compute all eigenvalues 
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or singular values, but rather compute a given number of eigenvalues and vectors (the 

default is six). Using the keyword argument k with these functions, we can define how 

many eigenvalues and vectors should be computed. Using the which keyword argument, 

we can specify which k values are to be computed. The options for eigs are the largest 

magnitude LM, smallest magnitude SM, largest real part LR, smallest real part SR, largest 

imaginary part LI, and smallest imaginary part SI. For svds only LM and SM are available.

For example, to compute the lowest four eigenvalues for the sparse matrix of the 

one-dimensional Poisson problem (of system size 10x10), we can use sp.linalg.

eigs(A, k=4, which='LM'):

In [54]: N = 10

In [55]: A = sp.diags([1, -2, 1], [1, 0, -1], shape=[N, N], format='csc')

In [56]: evals, evecs = sp.linalg.eigs(A, k=4, which='LM')

In [57]: evals

Out[57]:  array([-3.91898595+0.j, -3.68250707+0.j, -3.30972147+0.j, 

-2.83083003+0.j])

The return value of sp.linalg.eigs (and sp.linalg.eigsh) is a tuple (evals, 

evecs) whose first element is an array of eigenvalues (evals), and the second element 

is an array (evecs) of shape N × k, whose columns are the eigenvectors corresponding to 

the k eigenvalues in evals. Thus, we expect that the dot product between A and a column 

in evecs is equal to the same column in evecs scaled by the corresponding eigenvalue in 

evals. We can directly confirm that this is indeed the case:

In [58]: np.allclose(A.dot(evecs[:,0]), evals[0] * evecs[:,0])

Out[58]: True

For this particular example, the sparse matrix A is symmetric, so instead of sp.

linalg.eigs, we could use sp.linalg.eigsh, and in doing so we obtain an eigenvalue 

array with real-valued elements:

In [59]: evals, evecs = sp.linalg.eigsh(A, k=4, which='LM')

In [60]: evals

Out[60]: array([-3.91898595, -3.68250707, -3.30972147, -2.83083003])

By changing the argument which='LM' (for largest magnitude) to which='SM' 

(smallest magnitude), we obtain a different set of eigenvalues and vector (those with the 

smallest magnitude).
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In [61]: evals, evecs = sp.linalg.eigs(A, k=4, which='SM')

In [62]: evals

Out[62]:  array([-0.08101405+0.j, -0.31749293+0.j, -0.69027853+0.j, 

-1.16916997+0.j])

In [63]: np.real(evals).argsort()

Out[63]: array([3, 2, 1, 0])

Note that although we requested and obtained the four eigenvalues with the smallest 

magnitude in the previous example, those eigenvalues and vectors are not necessarily 

sorted within each other (although they are in this particular case). Obtaining sorted 

eigenvalues is often desirable, and this is easily achieved with a small but convenient 

wrapper function that sorts the eigenvalues using NumPy’s argsort method. Here we 

give such a function, sp_eigs_sorted, which returns the eigenvalues and eigenvectors 

sorted by the real part of the eigenvalue.

In [64]: def sp_eigs_sorted(A, k=6, which='SR'):

    ...:     """ compute and return eigenvalues sorted by the real part """

    ...:     evals, evecs = sp.linalg.eigs(A, k=k, which=which)

    ...:     idx = np.real(evals).argsort()

    ...:     return evals[idx], evecs[idx]

In [65]: evals, evecs = sp_eigs_sorted(A, k=4, which='SM')

In [66]: evals

Out[66]:  array([-1.16916997+0.j, -0.69027853+0.j, -0.31749293+0.j, 

-0.08101405+0.j])

As a less trivial example using sp.linalg.eigs and the wrapper function sp_

eigs_sorted, consider the spectrum of lowest eigenvalues of the linear combination 

(1 − x)M1+xM2 of random sparse matrices M1 and M2. We can use the sp.rand function 

to generate two random sparse matrices, and by repeatedly using sp_eigs_sorted to 

find the smallest 25 eigenvalues of the (1 − x)M1+xM2 matrix for different values of x, we 

can build a matrix (evals_mat) that contains the eigenvalues as a function of x. Below we 

use 50 values of x in the interval [0, 1]:

In [67]: N = 100

In [68]: x_vec = np.linspace(0, 1, 50)

In [69]: M1 = sp.rand(N, N, density=0.2)
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In [70]: M2 = sp.rand(N, N, density=0.2)

In [71]:  evals_mat = np.array([sp_eigs_sorted((1-x)*M1 + x*M2, k=25)[0] for 

x in x_vec])

Once the matrix evals_mat of eigenvalues as a function of x is computed, we can 

plot the eigenvalue spectrum. The result is shown in Figure 10-4, which is a complicated 

eigenvalue spectrum due to the randomness of the matrices M1 and M2.

In [72]: fig, ax = plt.subplots(figsize=(8, 4))

    ...: for idx in range(evals_mat.shape[1]):

    ...:     ax.plot(x_vec, np.real(evals_mat[:,idx]), lw=0.5)

    ...: ax.set_xlabel(r"$x$", fontsize=16)

    ...: ax.set_ylabel(r"eig.vals. of $(1-x)M_1+xM_2$", fontsize=16)

Figure 10-4. The spectrum of the lowest 25 eigenvalues of the sparse matrix 
(1 − x)M1+xM2, as a function of x, where M1 and M2 are two random matrices

 Graphs and Networks
Representing graphs as adjacency matrices is another important application of sparse 

matrices. In an adjacency matrix, an element describes which nodes in a graph are 

connected to each other. Consequently, if each node is only connected to a small set of 

other nodes, the adjacency matrix is sparse. The csgraph module in the SciPy sparse 

module provides functions for processing such graphs, including methods for traversing 

a graph using different methods (e.g., breadth-first and depth-first traversals) and for 

computing shortest paths between nodes in a graph, and so on. For more information 

about this module, refer to its docstring: help(sp.csgraph).
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For a more comprehensive framework for working with graphs, there is the 

NetworkX Python library. It provides utilities for creating and manipulating undirected 

and directed graphs and also implements many graph algorithms, such as finding 

minimum paths between nodes in a graph. Here we assume that the Networkx library 

is imported under the name nx. Using this library, we can, for example, create an 

undirected graph by initiating an object of the class nx.Graph. Any hashable Python 

object can be stored as nodes in a graph object, which makes it a very flexible data 

structure. However, in the following examples, we only use graph objects with integers 

and strings as node labels. See Table 10-2 for a summary of functions for creating graphs 

and for adding nodes and edges to graph objects.

Table 10-2. Summary of Objects and Methods for Basic Graph Construction Using 

NetworkX

Object/Method Description

nx.Graph Class for representing undirected graphs.

nx.DiGraph Class for representing directed graphs.

nx.MultiGraph Class for representing undirected graphs with support for multiple edges.

nx.MultiDiGraph Class for representing directed graphs with support for multiple edges.

add_node add a node to the graph. expects a node label (e.g., a string, or in general a 

hashable object) as argument.

add_nodes_from adds multiple nodes. expects a list (or iterable) of node labels as argument.

add_edge add an edge. expects two node arguments as arguments and creates an 

edge between those nodes.

add_edges_from adds multiple edges. expects a list (or iterable) of tuples of node labels.

add_weighted_

edges_from

adds multiple edges with weight factors. expects a list (or iterable) of tuples 

each containing two node labels and the weight factor.
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For example, we can create a simple graph with node data that are integers using  

nx.Graph(), and the add_node method, or add_nodes_from to add multiple nodes in one 

go. The nodes method returns an iterator object for the nodes, called a NodeView:

In [73]: g = nx.Graph()

In [74]: g.add_node(1)

In [75]: g.nodes()

Out[75]: NodeView((1,))

In [76]: g.add_nodes_from([3, 4, 5])

In [77]: g.nodes()

Out[77]: NodeView((1, 3, 4, 5))

To connect nodes we can add edges, using add_edge. We pass the labels  

of the two nodes we want to connect as arguments. To add multiple edges, we can use 

add_edges_from and pass to it a list of tuples of nodes to connect. The edges method 

returns an iterator object for the edges, called EdgeView:

In [78]: g.add_edge(1, 2)

In [79]: g.edges()

Out[79]: EdgeView([(1, 2)])

In [80]: g.add_edges_from([(3, 4), (5, 6)])

In [81]: g.edges()

Out[81]: EdgeView([(1, 2), (3, 4), (5, 6)])

To represent edges between nodes that have weights associated with them (e.g., a 

distance), we can use add_weighted_edges_from, to which we pass a list of tuples that 

also contains the weight factor for each edge, in addition to the two nodes. When calling 

the edges method, we can additionally give argument data=True to indicate that also the 

edge data should be included in the resulting view.

In [82]: g.add_weighted_edges_from([(1, 3, 1.5), (3, 5, 2.5)])

In [83]: g.edges(data=True)

Out[83]: EdgeDataView([(1, 2, {}),

                       (1, 3, {'weight': 1.5}),

                       (3, 4, {}),

                       (3, 5, {'weight': 2.5}),

                       (5, 6, {})])
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Note that if we add edges between nodes that do not yet exist in the graph, they are 

seamlessly added. For example, in the following code, we add a weighted edge between 

nodes 6 and 7. Node 7 does not previously exist in the graph, but when adding an edge to 

it, it is automatically created and added to the graph:

In [84]: g.add_weighted_edges_from([(6, 7, 1.5)])

In [85]: g.nodes()

Out[85]: NodeView((1, 3, 4, 5, 2, 6, 7))

In [86]: g.edges()

Out[86]: EdgeView([(1, 2), (1, 3), (3, 4), (3, 5), (5, 6), (6, 7)])

With these basic fundamentals in place, we are already prepared to look at a more 

complicated example of a graph. In the following we will build a graph from a dataset 

stored in a JSON file called tokyo-metro.json (available together with the code listings), 

which we load using the Python standard library module json8:

In [87]: import json

In [88]: with open("tokyo-metro.json") as f:

    ...:      data = json.load(f)

The result of loading the JSON file is a dictionary data that contains metro line 

descriptions. For each line, there is a list of travel times between stations (travel_times), 

a list of possible transfer points to other lines (transfer), as well as the line color:

In [89]: data.keys()

Out[89]: dict_keys(['C', 'T', 'N', 'F', 'Z', 'M', 'G', 'Y', 'H'])

In [90]: data["C"]

Out[90]: {'color': '#149848',

          'transfers': [['C3', 'F15'], ['C4', 'Z2'], ...],

          'travel_times': [['C1', 'C2', 2], ['C2', 'C3', 2], ...]}

Here the format of the travel_times list is [['C1', 'C2', 2], ['C2', 'C3', 2], ...],  

indicating that it takes 2 minutes to travel between the stations C1 and C2, and 2 minutes 

to travel between C2 and C3, etc. The format of the transfers list is [['C3', 'F15'], ...],  

indicating that it is possible to transfer from the C line to the F line at station C3 to  

station F15. The travel_times and transfers are directly suitable for feeding to  

8 For more information about the JSON format and the json module, see Chapter 18.
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add_weighed_edges_from and add_edges_from, and we can therefore easily create a 

graph for representing the metro network by iterating over each metro line dictionary 

and call these methods:

In [91]: g = nx.Graph()

     ...: for line in data.values():

    ...:     g.add_weighted_edges_from(line["travel_times"])

    ...:     g.add_edges_from(line["transfers"])

The line transfer edges do not have edge weights, so let’s first mark all transfer edges 

by adding a new Boolean attribute transfer to each edge:

In [92]: for n1, n2 in g.edges():

    ...:     g[n1][n2]["transfer"] = "weight" not in g[n1][n2]

Next, for plotting purposes, we create two lists of edges containing transfer edges and on-

train edges, and we also create a list with colors corresponding to each node in the network:

In [93]: on_foot = [e for e in g.edges() if g.get_edge_data(*e)["transfer"]]

In [94]:  on_train = [e for e in g.edges () if not g.get_edge_data(*e)

["transfer"]]

In [95]: colors = [data[n[0].upper()]["color"] for n in g.nodes()]

To visualize the graph, we can use the Matplotlib-based drawing routines in the 

Networkx library: we use nx.draw to draw each node, nx.draw_networkx_labels to  

draw the labels to the nodes, and nx.draw_network_edges to draw the edges. We call 

nx.draw_network_edges twice, with the edge lists for transfers (on_foot) and on-train 

(on_train) connections, and color the links as blue and black, respectively, using the 

edge_color argument. The layout of the graph is determined by the pos argument to 

the drawing functions. Here we used the graphviz_layout function from  networkx.

drawing.nx_agraph to lay out the nodes. All drawing functions also accept a Matplotlib 

axes instance via the ax argument. The resulting graph is shown in Figure 10-5.

In [96]: fig, ax = plt.subplots(1, 1, figsize=(14, 10))

    ...: pos = nx.drawing.nx_agraph.graphviz_layout(g, prog="neato")

    ...: nx.draw(g, pos, ax=ax, node_size=200, node_color=colors)

    ...: nx.draw_networkx_labels(g, pos=pos, ax=ax, font_size=6)
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    ...: nx.draw_networkx_edges(g, pos=pos, ax=ax, edgelist=on_train, width=2)

    ...:  nx.draw_networkx_edges(g, pos=pos, ax=ax, edgelist=on_foot, edge_

color="blue")

Figure 10-5. Network graph for the Tokyo Metro stations

Once the network has been constructed, we can use the many graph algorithms 

provided by the NetworkX library to analyze the network. For example, to compute the 

degree (i.e., the number of connections to a node) of each node, we can use the degree 

method (here the output is truncated at ... to save space):

In [97]: g.degree()

Out[97]:  DegreeView({'Y8': 3,  'N18': 2,  'M24': 2,  'G15': 3,  'C18': 3,   

'N13': 2, ... })
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For this graph, the degree of a node can be interpreted as the number of connections 

to a station: the more metro lines that connect at a station, the higher the degree of the 

corresponding node. We can easily search for the most highly connected station in the 

network by using the degree method and the max function to find the highest degree 

in the network. Next we iterate over the result of the degree method and select out the 

nodes with the maximal degree (which is 6 in this network):

In [98]: d_max = max(d for (n, d) in g.degree())

In [99]: [(n, d) for (n, d) in g.degree() if d == d_max]

Out[99]: [('N7', 6), ('G5', 6), ('Y16', 6), ('M13', 6), ('Z4', 6)]

The result tells us that the most highly connected stations are station numbers 7 on 

the N line, 5 on the G line, and so on. All these lines intercept at the same station (the 

Nagatachou station). We can also compute the closest path between two points in the 

network using nx.shortest_path. For example, the optimal traveling route (assuming 

no waiting time and instantaneous transfer) for traveling between Y24 and C19 is

In [100]: p = nx.shortest_path(g, "Y24", "C19")

In [101]: p

Out[101]: ['Y24', 'Y23', 'Y22', 'Y21', 'Y20', 'Y19', 'Y18', 'C9', 'C10', 'C11',

           'C12', 'C13', 'C14', 'C15', 'C16', 'C17', 'C18', 'C19']

Given a path on this form, we can also directly evaluate the travel time by summing 

up the weight attributes of neighboring nodes in the path:

In [102]: np.sum([g[p[n]][p[n+1]]["weight"]

     ...:         for n in range(len(p)-1) if "weight" in g[p[n]][p[n+1]]])

Out[102]: 35

The result suggests that it takes 35 minutes to travel from Y24 to C19. Since the 

transfer nodes do not have a weight associated with them, the train transfers are 

effectively assumed to be instantaneous. It may be reasonable to assume that a train 

transfer takes about 5 minutes, and to take this into account in the shortest path and 

travel time computation, we can update the transfer nodes and add a weight of 5 to 

each of them. To do this we create a copy of the graph using the copy method and iterate 

through the edges and update those with transfer attribute set to True:

In [103]: h = g.copy()

In [104]: for n1, n2 in h.edges():

Chapter 10  SparSe MatriCeS and GraphS



359

     ...:     if h[n1][n2]["transfer"]:

     ...:         h[n1][n2]["weight"] = 5

Recomputing the path and the traveling time with the new graph gives a more 

realistic estimate of the traveling time:

In [105]: p = nx.shortest_path(h, "Y24", "C19")

In [106]: p

Out[106]:  ['Y24', 'Y23', 'Y22', 'Y21', 'Y20', 'Y19', 'Y18', 'C9', 'C10', 

'C11', 'C12', 'C13', 'C14', 'C15', 'C16', 'C17', 'C18', 'C19']

In [107]: np.sum([h[p[n]][p[n+1]]["weight"] for n in range(len(p)-1)])

Out[107]: 40

With this method, we can of course compute the optimal path and travel time 

between arbitrary nodes in the network. As another example, we also compute the 

shortest path and traveling time between Z1 and H16 (32 minutes):

In [108]: p = nx.shortest_path(h, "Z1", "H16")

In [109]: np.sum([h[p[n]][p[n+1]]["weight"] for n in range(len(p)-1)])

Out[109]: 32

The NetworkX representation of a graph can be converted to an adjacency matrix in 

the form of a SciPy sparse matrix using the nx.to_scipy_sparse_matrix, after which we 

can also analyze the graph with the routines in the sp.csgraph module. As an example 

of this, we convert the Tokyo Metro graph to an adjacency matrix and compute its 

reverse Cuthill-McKee ordering (using sp.csgraph.reverse_cuthill_mckee, which 

is a reordering that reduces the maximum distance of the matrix elements from the 

diagonal) and permute the matrix with this ordering. We plot the result of both matrices 

using Matplotlib’s spy function, and the result is shown in Figure 10-6.

In [110]: A = nx.to_scipy_sparse_matrix(g)

In [111]: A

Out[111]: <184x184 sparse matrix of type '<class 'numpy.int64'>'

                       with 486 stored elements in Compressed Sparse  

Row format>

In [112]: perm = sp.csgraph.reverse_cuthill_mckee(A)

In [113]: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))

     ...: ax1.spy(A, markersize=2)

     ...: ax2.spy(sp_permute(A, perm, perm), markersize=2)
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 Summary
In this chapter we have briefly introduced common methods of storing sparse matrices 

and reviewed how these can be represented using the sparse matrix classes in the SciPy 

sparse module. We also reviewed the sparse matrix construction functions available 

in the SciPy sparse module and the sparse linear algebra routines available in sparse.

linalg. To complement the linear algebra routines built into SciPy, we also discussed 

briefly the scikit.umfpack extension package, which makes the UMFPACK solver 

available to SciPy. The sparse matrix library in SciPy is versatile and very convenient 

to work with, and because it uses efficient low-level libraries for linear algebra routines 

(SuperLU or UMFPACK), it also offers good performance. For large-scale problems that 

require parallelization to distribute the workload to multiple cores or even multiple 

computers, the PETSc and Trilinos frameworks, which both have Python interfaces, 

provide routes for using sparse matrices and sparse linear algebra with Python in 

high-performance applications. We also briefly introduced graph representations and 

processing using the SciPy sparse.csgraph and NetworkX libraries.

Figure 10-6. The adjacency matrix of the Tokyo metro graph (left) and the same 
after RCM ordering (right)
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 Further Reading
A good and accessible introduction to sparse matrices and direct solvers for sparse linear 

equation systems is given in Davis (2006). A fairly detailed discussion of sparse matrices 

and methods is also given in W. H. Press (2007). For a thorough introduction to network 

and graph theory, see Newman (2010).
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CHAPTER 11

Partial Differential 
Equations
Partial differential equations (PDEs) are multivariate differential equations where 

derivatives of more than one dependent variable occur. That is, the derivatives in the 

equation are partial derivatives. As such they are generalizations of ordinary differential 

equations, which were covered in Chapter 9. Conceptually, the difference between 

ordinary and partial differential equations is not that big, but the computational 

techniques required to deal with ODEs and PDEs are very different, and solving PDEs 

is typically much more computationally demanding. Most techniques for solving PDEs 

numerically are based on the idea of discretizing the problem in each independent 

variable that occurs in the PDE, thereby recasting the problem into an algebraic form. 

This usually results in very large-scale linear algebra problems. Two common techniques 

for recasting PDEs into algebraic form are the finite-difference methods (FDMs), where 

the derivatives in the problem are approximated with their finite-difference formula, 

and the finite-element methods (FEMs), where the unknown function is written as 

linear combination of simple basis functions that can be differentiated and integrated 

easily. The unknown function is described by a set of coefficients for the basis functions 

in this representation, and by a suitable rewriting of the PDEs, we can obtain algebraic 

equations for these coefficients.

With both FDMs and FEMs, the resulting algebraic equation system is usually very 

large, and in the matrix form, such equation systems are usually very sparse. Both FDM 

and FEM therefore heavily rely on sparse matrix representation for the algebraic linear 

equations, as discussed in Chapter 10. Most general-purpose frameworks for PDEs are 

based on FEM, or some variant thereof, as this method allows for solving very general 

problems on complicated problem domains.
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Solving PDE problems can be far more resource demanding compared to other 

types of computational problems that we have covered so far (e.g., compared to ODEs). 

It can be resource demanding partly because of the number of points required to 

discretize a region of space scale exponentially with the number of dimensions. If a one- 

dimensional problem requires 100 points to describe, a two-dimensional problem with 

similar resolution requires 1002 = 104 points, and a three-dimensional problem requires 

1003 = 106 points. Since each point in the discretized space corresponds to an unknown 

variable, it is easy to imagine that PDE problems can result in very large equation 

systems. Defining PDE problems programmatically can also be complicated. One reason 

for this is that the possible forms of a PDE vastly outnumber the more limited possible 

forms of ODEs. Another reason is geometry: while an interval in one-dimensional space 

is uniquely defined by two points, an area in two-dimensional problems and a volume 

in three-dimensional problems can have arbitrarily complicated geometries enclosed 

by curves and surfaces. To define the problem domain of a PDE and its discretization in 

a mesh of coordinate points can therefore require advanced tools, and there is a large 

amount of freedom in how boundary conditions can be defined as well. In contrast to 

ODE problems, there is no standard form on which any PDE problem can be defined.

For these reasons, the PDE solvers for Python are only available through libraries 

and frameworks that are specifically dedicated to PDE problems. For Python, there are 

at least three significant libraries for solving PDE problems using the FEM method: the 

FiPy library, the SfePy library, and the FEniCS library. All of these libraries are extensive 

and feature-rich, and going into the details of using either of these libraries is beyond 

the scope of this book. Here we can only give a brief introduction to PDE problems 

and survey prominent examples of PDE libraries that can be used from Python and 

go through a few examples that illustrate some of the features of one of these libraries 

(FEniCS). The hope is that this can give the reader who is interested in solving PDE 

problems with Python a bird’s-eye overview of the available options and some useful 

pointers on where to look for further information.

 Importing Modules
For basic numerical and plotting usage, in this chapter too, we require the NumPy and 

Matplotlib libraries. For 3D plotting we need to explicitly import the mplot3d module 

from the Matplotlib toolkit library mpl_toolkits. As usual, we assume that these 

libraries are imported in the following manner:
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In [1]: import numpy as np

In [2]: import matplotlib.pyplot as plt

In [3]: import matplotlib as mpl

In [4]: import mpl_toolkits.mplot3d

We also use the linalg and the sparse modules from SciPy, and to use the linalg 

submodule of the sparse module, we also need to import it explicitly:

In [5]: import scipy.sparse as sp

In [6]: import scipy.sparse.linalg

In [7]: import scipy.linalg as la

With these imports, we can access the dense linear algebra module as la, while 

the sparse linear algebra module is accessed as sp.linalg. Furthermore, later in this 

chapter, we will also use the FEniCS FEM framework, and we require that its dolfin and 

mshr libraries be imported in the following manner:

In [8]: import dolfin

In [9]: import mshr

 Partial Differential Equations
The unknown quantity in a PDE is a multivariate function, here denoted as u. In 

an N-dimensional problem, the function u depends on n-independent variables: 

u(x1, x2, …, xn). A general PDE can formally be written as
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so on. Here F is a known function that describes the form of the PDE, and Ω is the 

domain of the PDE problem. Many PDEs that occur in practice only contain up to 

second-order derivatives, and we typically deal with problems in two or three spatial 

dimensions and possibly time. When working with PDEs, it is common to simplify the 
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notation by denoting the partial derivatives with respect to an independent variable x 

using the subscript notation: u
u

xx =
¶
¶

. Higher-order derivatives are denoted with 

multiple indices: u
u

xxx =
¶
¶

2

2
, u

u

x yxy =
¶
¶ ¶

2

, and so on. An example of a typical PDE is the 

heat equation, which in a two-dimensional Cartesian coordinate system takes the form 

ut = α(uxx+uyy). Here the function u = u(t, x, y) describes the temperature at the spatial 

point (x, y) at time t, and α is the thermal diffusivity coefficient.

To fully specify a particular solution to a PDE, we need to define its boundary 

conditions, which are known values of the function or a combination of its derivatives 

along the boundary of the problem domain Ω, as well as the initial values if the problem 

is time-dependent. The boundary is often denoted as Γ or ∂Ω, and in general different 

boundary conditions can be given for different parts of the boundary. Two important 

types of boundary conditions are Dirichlet boundary conditions, which specify the value 

of the function at the boundary, u(x) = h(x) for x ∈ ΓD, and Neumann boundary 

conditions, which specify the normal derivative on the boundary, 
¶ ( )
¶

= ( )u
g

x

n
x  for 

x ∈ ΓN, where n is the outward normal from the boundary. Here h(x) and g(x) are 

arbitrary functions.

 Finite-Difference Methods
The basic idea of the finite-difference method is to approximate the derivatives that 

occur in a PDE with their finite-difference formulas on a discretized space. For example, 

the finite-difference formula for the ordinary derivative 
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Similarly, we can also construct finite-difference formulas for higher-order derivatives, 

such as the second-order derivative 
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the discretization of the continuous variable x into discrete points is fine enough, these 

finite-difference formulas can give good approximations of the derivatives. Replacing 
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derivatives in an ODE or PDE with their finite-difference formulas recasts the equations 

from differential equations to algebraic equations. If the original ODE or PDE is linear, 

the algebraic equations are also linear and can be solved with standard linear algebra 

methods.

To make this method more concrete, consider the ODE problem uxx =  − 5 in the 

interval x ∈ [0, 1] and with boundary conditions u(x = 0) = 1 and u(x = 1) = 2, which, for 

example, arises from the steady-state heat equation in one dimension. In contrast to the 

ODE initial value problem considered in Chapter 9, this is a boundary value problem 

because the value of u is specified at both x = 0 and x = 1. The methods for initial 

value problems are therefore not applicable here. Instead we can treat this problem 

by dividing the interval [0, 1] into discrete points xn, and the problem is then to find 

the function u(xn) = un at these points. Writing the ODE problem in finite-difference 

form gives an equation (un − 1 − 2un+un+1)/Δx2 =  − 5 for every interior point n and the 

boundary conditions u0 = 1 and uN+1 = 2. Here the interval [0, 1] is discretized into N+2 

evenly spaced points, including the boundary points, with separation Δx = 1/(N+1). 

Since the function is known at the two boundary points, there are N unknown variables 

un corresponding to the function values at the interior points. The set of equations 

for the interior points can be written in a matrix form as Au = b, where u = [u1, …, uN]T, 
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Here the matrix A describes the coupling of the equations for un to values at 

neighboring points due to the finite-difference formula that was used to approximate the 

second-order derivative in the ODE. The boundary values are included in the b vector, 

which also contains the constant right-hand side of the original ODE (the source term). 

At this point, we can straightforwardly solve the linear equation system Au = b for the 

unknown vector of u and thereby obtain the approximate values of the function u(x) at 

the discrete points {xn}.
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In Python code, we can set up and solve this problem in the following way: First, 

we define variables for the number of interior points N, the values of the function at the 

boundaries u0 and u1, as well as the spacing between neighboring points dx.

In [10]: N = 5

In [11]: u0, u1 = 1, 2

In [12]: dx = 1.0 / (N + 1)

Next we construct the matrix A as described in the preceding section. For this we can 

use the eye function from NumPy, which creates a two-dimensional array with ones on 

the diagonal or on the upper or lower diagonal that is shifted from the main diagonal by 

the number given by the argument k.

In [13]: A = (np.eye(N, k=-1) - 2 * np.eye(N) + np.eye(N, k=1)) / dx**2

In [14]: A

Out[14]: array([[-72.,  36.,   0.,   0.,   0.],

                [ 36., -72.,  36.,   0.,   0.],

                [  0.,  36., -72.,  36.,   0.],

                [  0.,   0.,  36., -72.,  36.],

                [  0.,   0.,   0.,  36., -72.]])

Next we need to define an array for the vector b, which corresponds to the source 

term –5 in the differential equation, as well as the boundary condition. The boundary 

conditions enter into the equations via the finite-difference expressions for the 

derivatives of the first and the last equation (for u1 and uN), but these terms are missing 

from the expression represented by the matrix A and must therefore be added to the 

vector b.

In [15]: b = -5 * np.ones(N)

    ...: b[0] -= u0 / dx**2

    ...: b[N-1] -= u1 / dx**2

Once the matrix A and the vector b are defined, we can proceed to solve the equation 

system using the linear equation solver from SciPy (we could also use the one provided 

by NumPy, np.linalg.solve).

In [16]: u = la.solve(A, b)
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This completes the solution of this ODE problem. To visualize the solution, here 

we first create an array x that contains the discrete coordinate points for which we have 

solved the problem, including the boundary points, and we also create an array U that 

combines the boundary values and the interior points in one array. The result is then 

plotted and shown in Figure 11-1.

In [17]: x = np.linspace(0, 1, N+2)

In [18]: U = np.hstack([[u0], u, [u1]])

In [19]: fig, ax = plt.subplots(figsize=(8, 4))

    ...: ax.plot(x, U)

    ...: ax.plot(x[1:-1], u, 'ks')

    ...: ax.set_xlim(0, 1)

    ...: ax.set_xlabel(r"$x$", fontsize=18)

    ...: ax.set_ylabel(r"$u(x)$", fontsize=18)

Figure 11-1. Solution to the second-order ODE boundary value problem 
introduced in the text

The finite-difference method can easily be extended to higher dimensions by using 

the finite-difference formula along each discretized coordinate. For a two-dimensional 

problem, we have a two-dimensional array u for the unknown interior function values, 

and when using the finite differential formula, we obtain a system of coupled equations 

for the elements in u. To write these equations on the standard matrix-vector form, we 

can rearrange the u array into a vector and assemble the corresponding matrix A from 

the finite-difference equations.
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As an example, consider the following two-dimensional generalization of the 

previous problem: uxx+uyy = 0, with the boundary conditions u(x = 0) = 3, u(x = 1) =  − 1, 

u(y = 0) =  − 5, and u(y = 1) = 5. Here there is no source term, but the boundary 

conditions in a two-dimensional problem are more complicated than in the one- 

dimensional problem we solved earlier. In finite-difference form, we can write the 

PDE as (um − 1,n − 2um,n+um+1,n)/Δx2+(um,n − 1 − 2um,n+um,n+1)/Δy2 = 0. If we divide the x 

and y intervals into N interior points (N+2 points including the boundary points), then 

D Dx y
N

= =
+
1

1
,  and u is an NxN matrix. To write the equation on the standard form 

Av = b, we can rearrange the matrix u by stacking its rows or columns into a vector of 

size N 2 × 1. The matrix A is then of size N 2 × N 2, which can be very big if we need to use 

a fine discretization of the x and y coordinates. For example, using 100 points along 

both x and y gives an equation system that has 104 unknown values umn, and the matrix 

A has 1004 = 108 elements. Fortunately, since the finite-difference formula only couples 

neighboring points, the matrix A turns out to be very sparse, and here we can benefit 

greatly from working with sparse matrices, as we will see in the following.

To solve this PDE problem with Python and the finite-element method, we start 

by defining variables for the number of interior points and the values along the four 

boundaries of the unit square:

In [20]: N = 100

In [21]: u0_t, u0_b = 5, -5

In [22]: u0_l, u0_r = 3, -1

In [23]: dx = 1. / (N+1)

We also computed the separation dx between the uniformly spaced coordinate 

points in the discretization of x and y (assumed equal). Because the finite-difference 

formula couples both neighboring rows and columns, it is slightly more involved to 

construct the matrix A for this example. However, a relatively direct approach is to first 

define the matrix A_1d that corresponds to the one-dimensional formula along one of the 

coordinates (say x or the index m in um,n). To distribute this formula along each row, we 

can take the tensor product of the identity matrix of size N × N with the A_1d matrix. The 

result describes all derivatives along the m-index for all indices n. To cover the terms that 

couple the equation for um,n to um,n+1 and um,n − 1, that is, the derivatives along the index 

n, we need to add diagonals that are separated from the main diagonal by N positions. 

In the following we perform these steps to construct A using the eye and kron functions 

from the scipy.sparse module. The result is a sparse matrix A that describes the finite-

difference equation system for the two-dimensional PDE we are considering here:
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In [24]: A_1d = (sp.eye(N, k=-1) + sp.eye(N, k=1) - 4 * sp.eye(N))/dx**2

In [25]: A =  sp.kron(sp.eye(N), A_1d) + (sp.eye(N**2, k=-N) + sp.eye(N**2, 

k=N))/dx**2

In [26]: A

Out[26]: <10000x10000 sparse matrix of type '<type 'numpy.float64'>'

          with 49600 stored elements in Compressed Sparse Row format>

The printout of A shows that it is a sparse matrix with 108 elements with 49600 

nonzero elements, so that only 1 out of about 2000 elements is nonzero, and A is indeed 

very sparse. To construct the vector b from the boundary conditions, it is convenient to 

create a N × N array of zeros and assign the boundary condition to edge elements of this 

array (which are the corresponding elements in u that are coupled to the boundaries,  

i.e., the interior points that are neighbors to the boundary). Once this N × N array is 

created and assigned, we can use the reshape method to rearrange it into a N 2 × 1 vector 

that can be used in the Av = b equation:

In [27]: b = np.zeros((N, N))

     ...: b[0, :] += u0_b   # bottom

    ...: b[-1, :] += u0_t  # top

    ...: b[:, 0] += u0_l   # left

    ...: b[:, -1] += u0_r  # right

    ...: b = - b.reshape(N**2) / dx**2

When the A and b arrays are created, we can proceed to solve the equation system for 

the vector v and use the reshape method to arrange it back into the N × N matrix u:

In [28]: v = sp.linalg.spsolve(A, b)

In [29]: u = v.reshape(N, N)

For plotting purposes, we also create a matrix U that combines the u matrix with the 

boundary conditions. Together with the coordinate matrices X and Y, we then plot a 

colormap graph and a 3D surface view of the solution. The result is shown in Figure 11-2.

In [30]: U = np.vstack([np.ones((1, N+2)) * u0_b,

    ...:                 np.hstack([np.ones((N, 1)) * u0_l, u, np.ones 

((N, 1)) * u0_r]),

    ...:                np.ones((1, N+2)) * u0_t])

In [31]: x = np.linspace(0, 1, N+2)
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In [32]: X, Y = np.meshgrid(x, x)

 In [33]: fig = plt.figure(figsize=(12, 5.5))

    ...: cmap = mpl.cm.get_cmap('RdBu_r')

    ...:

    ...: ax = fig.add_subplot(1, 2, 1)

    ...: c = ax.pcolor(X, Y, U, vmin=-5, vmax=5, cmap=cmap)

    ...: ax.set_xlabel(r"$x_1$", fontsize=18)

    ...: ax.set_ylabel(r"$x_2$", fontsize=18)

    ...:

    ...: ax = fig.add_subplot(1, 2, 2, projection='3d')

    ...:  p = ax.plot_surface(X, Y, U, vmin=-5, vmax=5, rstride=3, cstride=3,

    ...:                     linewidth=0, cmap=cmap)

    ...: ax.set_xlabel(r"$x_1$", fontsize=18)

    ...: ax.set_ylabel(r"$x_2$", fontsize=18)

    ...: cb = plt.colorbar(p, ax=ax, shrink=0.75)

    ...: cb.set_label(r"$u(x_1, x_2)$", fontsize=18)

As mentioned in the preceding section, FDM methods result in matrices A that are 

very sparse, and using sparse matrix data structures, such as those provided by scipy.

sparse, can give significant performance improvements compared to using dense 

Figure 11-2. The solution to the two-dimensional heat equation with Dirichlet 
boundary conditions defined in the text
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NumPy arrays. To illustrate in concrete terms the importance of using sparse matrices 

for this type of problems, we can compare the time required for solving of the Av = b 

equation using the IPython command %timeit, for the two cases where A is a sparse and 

a dense matrix:

In [34]: A_dense = A.todense()

In [35]: %timeit la.solve(A_dense, b)

1 loops, best of 3: 10.8 s per loop

In [36]: %timeit sp.linalg.spsolve(A, b)

10 loops, best of 3: 31.9 ms per loop

From these results, we see that using sparse matrices for the present problem results 

in a speedup of several orders of magnitude (in this particular case, we have a speedup 

of a factor 10.8/0.0319 ≈ 340).

The finite-difference method that we used in the last two examples is a powerful 

and relatively simple method for solving ODE boundary value problems and PDE 

problems with simple geometries. However, it is not so easily adapted to problems on 

more complicated domains or problems on nonuniform coordinate grids. For such 

problems finite-element methods are typically more flexible and convenient to work 

with, and although FEMs are conceptually more complicated than FDMs, they can be 

computationally efficient and adapt well to complicated problem domains and more 

involved boundary conditions.

 Finite-Element Methods
The finite-element method is a powerful and universal method for converting PDEs into 

algebraic equations. The basic idea of this method is to represent the domain on which 

the PDE is defined with a finite set of discrete regions, or elements, and to approximate 

the unknown function as a linear combination of basis functions with local support on 

each of these elements (or on a small group of neighboring elements). Mathematically, 

this approximation solution, uh, represents a projection of the exact solution u in the 

function space V (e.g., continuous real-valued functions) onto a finite subspace Vh ⊂ V 

that is related to the discretization of the problem domain. If Vh is a suitable subspace of 

V, then it can be expected that uh can be a good approximation to u.
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To be able to solve the approximate problem on the simplified function space Vh, 

we can first rewrite the PDE from its original formulation, which is known as the strong 

form, to its corresponding variational form, also known as the weak form. To obtain 

the weak form, we multiply the PDE with an arbitrary function v and integrate over the 

entire problem domain. The function v is called a test function, and it can in general be 

defined on function space V�  that differs from V and Vh.

For example, consider the steady-state heat equation (also known as the Poisson 

equation) that we solved using the FDM earlier in this chapter: the strong form of 

this equation is −Δu(x) = f (x), where we have used the vector operator notation. By 

multiplying this equation with a test function v and integrating over the domain x ∈ Ω, 

we obtain the weak form:

 
- =ò ò
W W

Duv x f v xd d .
 

Since the exact solution u satisfies the strong form, it also satisfies the weak form of 

the PDE for any reasonable choice of v. The reverse does not necessarily hold true, but 

if a function uh, which is called a trial function in this context, satisfies the weak form 

for a large class of suitably chosen test functions v, then it is plausible that it is a good 

approximation to the exact solution u.

To treat this problem numerically, we first need to make the transition from the 

infinite-dimensional function spaces V and V�  to approximate finite-dimensional 

function spaces Vh and V h
� :

 
- =ò ò
W W

Du v x fv xh h hd d ,
 

where uh ∈ Vh and v Vh hÎ� .  The key point here is that Vh and V h
�  are finite 

dimensional, so we can use a finite set of basis functions {ϕi} and f� i{ }  that spans 

the function spaces Vh and V h
� ,  respectively, to describe the functions uh and vh. In 

particular, we can express uh as a linear combination of the basis functions that span its 

function space, uh =  ∑ Uiϕi. Inserting this linear combination in the weak form of the 

PDE and carrying out the integrals and differential operators on the basis functions, 

instead of directly over terms in the PDE, yields a set of algebraic equations.
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To obtain an equation system on the simple form AU = b, we also must write 

the weak form of the PDE on bilinear form with respect to the uh and vh functions 

a(uh, vh) = L(vh), for some functions a and L. This is not always possible, but for the 

current example of the Poisson equation, we can obtain this form by integrating by parts:

 
- = Ñ - Ñ Ñ( ) = Ñ - Ñò
W W W W ¶W
ò ò ò òD Ñ Ñu v x u v x u v x u v x uh h h h h h h h hd d d d· · ·   ·· n( )v dh G,

 

where in the second equality we have also applied Gauss’ theorem to convert the second 

term to an integral over the boundary ∂Ω of the domain Ω. Here n is the outward normal 

vector of the boundary ∂Ω. There is no general method for rewriting a PDE on the strong 

form to weak form, and each problem will have to be approached on a case- by- case 

basis. However, the technique used here, to integrate by part and rewrite the resulting 

integrals using integral identities, can be used for many frequently occurring PDEs.

To reach the bilinear form that can be approached with standard linear algebra 

methods, we also have to deal with the boundary term in the preceding weak form 

equation. To this end, assume that the problem satisfies the Dirichlet boundary 

condition on a part of ∂Ω denoted ΓD and Neumann boundary conditions on the 

remaining part of ∂Ω, denoted ΓN: {u = h, x ∈ ΓD} and {∇u ∙ n = g, x ∈ ΓN}. Not all boundary 

conditions are of Dirichlet or Neumann type, but together these cover many physically 

motivated situations.

Since we are free to choose the test functions vh, we can let vh vanish on the part of 

the boundary that satisfies Dirichlet boundary conditions. In this case we obtain the 

following weak form of the PDE problem:

 W W G
ò ò òÑ Ñ = +u v x fv x g v dh h h h·  d d

N

G.
 

If we substitute the function uk for its expression as a linear combination of basis 

functions, and substitute the test function with one of its basis functions, we obtain an 

algebraic equation:

 

å Ñ Ñ = +ò ò òU x f x g dj j i i i

W W G

f f f f·  � � �d d
N

G.
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If there are N basis functions in Vk, then there are N unknown coefficients Ui, and we 

need N-independent test functions f� i  to obtain a closed equation system. This equation 

system is on the form AU = b with A xij j i= Ñ Ñò
W

f f· � d  and b f x g di i i= +ò ò
W G

f f� �d
N

G.  

Following this procedure we have therefore converted the PDE problem into a system of 

linear equations that can be readily solved using techniques discussed in previous 

chapters.

In practice, a very large number of basis functions can be required to obtain a good 

approximation to the exact solution, and the linear equation system generated by FEMs 

is therefore often very large. However, the fact that each basis function has support only at 

one or a few nearby elements in the discretization of the problem domain ensures that the 

matrix A is sparse, which makes it tractable to solve rather large-scale FEM problems. We also 

note that an important property of the basis functions ϕi and f� i  is that it should be easy to 

compute the derivatives and integrals of the expression that occurs in the final weak form of 

the problem, so that the matrix A and vector b can be assembled efficiently. Typical examples 

of basis functions are low-order polynomial functions that are nonzero only within a single 

element. See Figure 11-3 for a one-dimensional illustration of this type of basis function, 

where the interval [0, 6] is discretized using five interior points, and a continuous function 

(black solid curve) is approximated as a piecewise linear function (dashed red/light-gray 

line) by suitably weighted triangular basic functions (blue/dark-gray solid lines).

Figure 11-3. An example of possible basis functions (blue/dark-gray lines), with 
local support, for the one-dimensional domain [0, 6]

When using FEM software for solving PDE problems, it is typically required to 

convert the PDE to weak form by hand and if possible rewrite it on the bilinear form 

a(u, v) = L(v). It is also necessary to provide a suitable discretization of the problem 

domain. This discretization is called a mesh, and it is usually made up of triangular 

partitioning (or their higher-order generalizations) of the total domain. Meshing an 

intricate problem domain can in itself be a complicated process, and it may require 

using sophisticated software especially dedicated for mesh generation. For simple 

geometries there are tools for programmatically generating meshes, and we will see 

examples of this in the following section.
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Once a mesh is generated and the PDE problem is written on a suitable weak form, 

we can feed the problem into a FEM framework, which then automatically assembles 

the algebraic equation system and applies suitable sparse equation solvers to find the 

solution. In this processes, we often have a choice of what type of basis functions to use, 

as well as which type of solver to use. Once the algebraic equation is solved, we can 

construct the approximation solution to the PDE with the help of the basis functions, 

and we can, for example, visualize the solution or post-process it in some other fashion.

In summary, solving a PDE using FEM typically involves the following steps:

 1. Generate a mesh for the problem domain.

 2. Write the PDE on weak form.

 3. Program the problem in the FEM framework.

 4. Solve the resulting algebraic equations.

 5. Post-process and/or visualize the solution.

In the following section, we will review available FEM frameworks that can be used 

with Python and then look at a number of examples that illustrate some of the key steps 

in the PDE solution process using FEM.

 Survey of FEM Libraries
For Python there are at least three significant FEM packages: FiPy, SfePy, and FEniCS. 

These are all rather full-featured frameworks, which are capable of solving a wide 

range of PDE problems. Technically, the FiPy library is not a FEM software, but rather 

a finite-volume method (FVM) software, but the gist of this method is quite similar to 

FEM. The FiPy framework can be obtained from http://www.ctcms.nist.gov/fipy. 

The SfePy library is a FEM software that takes a slightly different approach to define 

PDE problems, in that it uses Python files as configuration files for its FEM solver, 

rather programmatically setting up a FEM problem (although this mode of operation 

is technically also supported in SfePy). The SfePy library is available from http://

sfepy.org. The third major framework for FEM with Python is FEniCS, which is written 

for C++ and Python. The FEniCS framework is my personal favorite when it comes to 

FEM software for Python, as it provides an elegant Python interface to a powerful FEM 

engine. Like FDM problem, FEM problems typically result in very large-scale equation 

systems that require using sparse matrix techniques to solve efficiently. A crucial part 
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of a FEM framework is therefore to efficiently solve large-scale linear and nonlinear 

systems, using sparse matrices representation and direct or iterative solvers that work 

on sparse systems, possibly using parallelization. Each of the frameworks mentioned in 

the preceding section supports multiple backends for such low-level computations. For 

example, many FEM frameworks can use the PETSc and Trilinos frameworks.

Unfortunately we are not able to explore in depth how to use either of these FEM 

frameworks here, but in the following section, we will look at solving example problems 

with FEniCS and thereby introduce some of its basic features and usage. The hope is 

that the examples can give a flavor of how it is to work with FEM problems in Python 

and provide a starting point for the readers interested in learning more about FEM with 

Python.

 Solving PDEs Using FEniCS
In this section we solve a series of increasingly complicated PDEs using the FEniCS 

framework, and in the process, we introduce the workflow and a few of the main features 

of this FEM software. For a thorough introduction to the FEniCS framework, see the 

documentation at the project web sites and the official FEniCS book (Anders Logg, 2012).

FEniCS feniCs is a highly capable feM framework that is made up of a 
collection of libraries and tools for solving pDe problem. Much of feniCs is 
programmed in C++, but it also provides an official python interface. Because 
of the complexity of the many dependencies of the feniCs libraries to external 
low-level numerical libraries, feniCs is usually packaged and installed as an 
independent environment, although it can also be installed using conda on some 
platforms. for more information about the feniCs, see the project’s web site at 
http://fenicsproject.org. at the time of writing, the most recent version is 
2018.1.0.

The Python interface to FEniCS is provided by a library named dolfin. For mesh 

generation we will also use the mshr library. In the following code, we assume that these 

libraries are imported in their entirety, as shown in the beginning of this chapter. For a 

summary of the most important functions and classes from these libraries, see Table 11- 1  

and Table 11-2.
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Table 11-1. Summary of Selected Functions and Classes in the dolfin Library

Function/Class Description Example

parameters Dictionary holding configuration 

parameters for the feniCs framework.

dolfin.parameters 

["reorder_dofs_serial"]

RectangleMesh object for generating a rectangular 2D 

mesh.

mesh = dolfin.

RectangularMesh(dolfin.

Point(0, 0),dolfin.Point 

(1, 1), 10, 10)

MeshFunction function defined over a given mesh. dolfin.

MeshFunction("size_t", 

mesh, mesh.topology().

dim()-1)

FunctionSpace object for representing a function space. V = dolfin.

FunctionSpace(mesh, 

'Lagrange', 1)

TrialFunction object for representing a trial function 

defined in a given function space.

u  = dolfin.

TrialFunction(V)

TestFunction object for representing a test function 

defined in a given function space.

v = dolfin.TestFunction(V)

Function object for representing unknown 

functions appearing in the weak form  

of a pDe.

u_sol = dolfin.Function(V)

Constant object for representing a fixed constant. c = dolfin.Constant(1.0)

Expression representation of a mathematical 

expression in terms of the spatial 

coordinates.

dolfin.

Expression("x[0]*x[0] + 

x[1]*x[1]")

DirichletBC object for representing Dirichlet-type 

boundary conditions.

dolfin.DirichletBC(V, u0, 

u0_boundary)

Equation object for representing an equation,  

for example, generated by using the == 

operator with other feniCs objects.

a == L

(continued)
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Table 11-1. (continued)

Function/Class Description Example

inner symbolic representation of the inner 

product.

dolfin.inner(u, v)

nabla_grad symbolic representation of the gradient 

operator.

dolfin.nabla_grad(u)

dx symbolic representation of the volume 

measure for integration.

f*v*dx

ds symbolic representation of a line 

measure for integration.

g_v * v * dolfin.ds(0, 

domain=mesh, subdomain_

data=boundary_parts)

assemble assemble the algebraic equations by 

carrying out the integrations over the 

basis functions.

A = dolfin.assemble(a)

solve solve an algebraic equation. dolfin.solve(A, u_sol.

vector(), b)

plot plot a function or expression. dolfin.plot(u_sol)

File Write a function to a file that can be 

opened with visualization software such 

as paraView.

dolfin.File('u_sol.pvd')  

<< u_sol

refine refine a mesh by splitting a selection of 

the existing mesh elements into smaller 

pieces.

mesh = dolfin.refine 

(mesh, cell_markers)

AutoSubDomain representation of a subset of a 

domain, selected from all elements by 

the indicator function passed to it as 

argument.

dolfin.AutoSubDomain 

(v_boundary_func)
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Before we proceed to use FEniCS and the dolfin Python library, we need to set two 

configuration parameters via the dolfin.parameters dictionary to obtain the behavior 

that we need in the following examples:

In [37]: dolfin.parameters["reorder_dofs_serial"] = False

In [38]: dolfin.parameters["allow_extrapolation"] = True

To get started with FEniCS, we begin by reconsidering the steady-state heat 

equation in two dimensions that we already solved earlier in this chapter using the 

FDM. Here we consider the problem uxx+uyy = f, where f is a source function. To begin 

with we will assume that the boundary conditions are u(x = 0, y) = u(x = 1, y) = 0 and 

u(x, y = 0) = u(x, y = 1) = 0. In later examples we will see how to define Dirichlet and 

Neumann boundary conditions.

The first step in the solution of a PDE with FEM is to define a mesh that describes the 

discretization of the problem domain. In the current example, the problem domain is the 

unit square x,y ∈ [0, 1]. For simple geometries like this, there are functions in the dolfin 

library for generating the mesh. Here we use the RectangleMesh function, which as first 

two arguments takes the coordinate points (x0, y0) and (x1, y1), represented as  dolfin.

Point instances, where (x0, y0) is the coordinates of the lower-left corner of the rectangle 

and (x1, y1) of the upper-right corner. The fifth and sixth arguments are the numbers of 

Table 11-2. Summary of Selected Functions and Classes in the mshr and dolfin 

Library

Function/Class Description

dolfin.Point representation of a coordinate point.

mshr.Circle representation of a geometrical object with the shape of a circle, which can be 

used to compose 2D domain.

mshr.Ellipse representation of a geometrical object with the shape of an ellipse.

mshr.

Rectangle

representation of a domain defined by a rectangle in 2D.

mshr.Box representation of a domain defined by a box in 3D.

mshr.Sphere representation of a domain defined by a sphere in 3D.

mshr.

generate_mesh

Generate a mesh from a domain composed of geometrical objects, such as 

those listed in the preceding section.
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elements along the x and y directions, respectively. The resulting mesh object is viewed 

in a Jupyter Notebook via its rich display system (here we generate a less fine mesh for 

the purpose of displaying the mesh structure), as shown in Figure 11-4:

In [39]: N1 = N2 = 75

In [40]: mesh =  dolfin.RectangleMesh(dolfin.Point(0, 0), dolfin.Point 

(1, 1), N1, N2)

In [41]:  dolfin.RectangleMesh(dolfin.Point(0, 0), dolfin.Point(1, 1), 10, 10)   

# for display

This mesh for the problem domain is the key to the discretization of the problem into a 

form that can be treated using numerical methods. The next step is to define a representation 

of the function space for the trial and the test functions, using the dolfin.FunctionSpace 

class. The constructor of this class takes at least three arguments: a mesh object, the name of 

the type of basis function, and the degree of the basis function. For our purposes we will use 

the Lagrange type of basis functions of degree one (linear basis functions):

In [42]: V = dolfin.FunctionSpace(mesh, 'Lagrange', 1)

Once the mesh and the function space objects are created, we need to create objects 

for the trial function uh and the test function vh, which we can use to define the weak 

form of the PDE of interest. In FEniCS, we use the dolfin.TrialFunction and dolfin.

TestFunction classes for this purpose. They both require a function space object as first 

argument to their constructors:

In [43]: u = dolfin.TrialFunction(V)

In [44]: v = dolfin.TestFunction(V)

Figure 11-4. A rectangular mesh generated using dolfin.RectangleMesh
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The purpose of defining representations of the function space V and the trial and test 

functions u and v is to be able to construct a representation of a generic PDE on the weak 

form. For the steady-state heat equation that we are studying here, the weak form was 

shown in the previous section to be (in the absence of Neumann boundary conditions)

 W W
ò òÑ Ñ =u v x fv x· d d .

 

To arrive at this form usually requires rewriting and transforming by hand the direct 

integrals over the PDE, typically by performing integration by parts. In FEniCS, the PDE 

itself is defined using the integrands that appear in the weak form, including the integral 

measure (i.e., the dx). To this end, the dolfin library provides a number of functions 

acting on the trial and test function objects v and u that are used to represent operations 

on these function that commonly occur in the weak form of a PDE. For example, in the 

present case, the integrand of the left-hand side integral is ∇u ∙ ∇v dx. To represent this 

expression, we need a symbolic representation of the inner product, the gradients of 

u and v, and the integration measure dx. The names for these functions in the dolfin 

library are inner, nabla_grad, and dx, respectively, and using these functions we can 

create a representation of a(u, v) = ∇u ∙ ∇v dx that the FEniCS framework understands 

and can work with:

In [45]:  a = dolfin.inner(dolfin.nabla_grad(u), dolfin.nabla_grad(v)) * 

dolfin.dx

Likewise, for the right-hand side, we need a representation of b(v) = fv dx. At this 

point, we need to specify an explicit form of f (the source term in the original PDF) to be 

able to proceed with the solution of the problem. Here we look at two types of functions: 

f = 1 (a constant) and f = x2+y2 (a function of x and y). To represent f = 1, we can use the 

dolfin.Constant object. It takes as its only argument the value of the constant that it 

represents:

In [46]: f1 = dolfin.Constant(1.0)

In [47]: L1 = f1 * v * dolfin.dx

If f is a function of x and y, we instead need to use the dolfin.Expression object to 

represent f. The constructor of this object takes a string as first argument that contains 

an expression that corresponds to the function. This expression must be defined in 
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C++ syntax, since the FEniCS framework automatically generates and compiles a C++ 

function for efficient evaluation of the expression. In the expression we have access to 

a variable x, which is an array of coordinates at a specific point, where x is accessed as 

x[0], y as x[1], and so on. For example, to write the expression for f(x, y) = x2+y2, we 

can use "x[0]*x[0] + x[1]*x[1]". Note that because we need to use C++ syntax in 

this expression, we cannot use the Python syntax x[0]**2. The Expression class also 

takes the keyword argument degree that specifies the degree of the basis function or, 

alternatively, the keyword argument element that describes the finite elements, which, 

for example, can be obtained using the ufl_element method of the function space  

object V.

In [48]: f2 = dolfin.Expression("x[0]*x[0] + x[1]*x[1]", degree=1)

In [49]: L2 = f2 * v * dolfin.dx

At this point we have defined symbolic representations of the terms that occur in the 

weak form of the PDE. The next step is to define the boundary conditions. We begin with 

a simple uniform Dirichlet-type boundary condition. The dolfin library contains a class 

DirichletBC for representing this type of boundary conditions. We can use this class to 

represent arbitrary functions along the boundaries of the problem domain, but in this 

first example, consider the simple boundary condition u = 0 on the entire boundary. To 

represent the constant value on the boundary (zero in this case), we can again use the 

dolfin.Constant class.

In [50]: u0 = dolfin.Constant(0)

In addition to the boundary condition value, we also need to define a function (here 

called u0_boundary) that is used to select different parts of the boundary when creating 

an instance of the DirichletBC class. This function takes two arguments: a coordinate 

array x and a flag on_boundary that indicates if a point is on the physical boundary of 

the mesh, and it should return True if the point x belongs to the boundary and False 

otherwise. Since this function is evaluated for every vertex in the mesh, by customizing 

the function, one could pin down the function value at arbitrary parts of the problem 

domain to specific values or expressions. However, here we only need to select all the 

points that are on the physical boundary, so we can simply let the u0_boundary function 

return the on_boundary argument.

In [51]: def u0_boundary(x, on_boundary):

    ...:      return on_boundary

Chapter 11  partial Differential equations



385

Once we have an expression for the value on the boundary, u0, and a function for 

selecting the boundary from the mesh vertices, u0_boundary, we can, with the function 

space object V, finally create the DirichletBC object:

In [52]: bc = dolfin.DirichletBC(V, u0, u0_boundary)

This completes the specification of the PDE problem, and our next step is to convert 

the problem into an algebraic form, by assembling the matrix and vector from the weak 

form representations of the PDE. We can do this explicitly using the dolfin.assemble 

function:

In [53]: A = dolfin.assemble(a)

In [54]: b = dolfin.assemble(L1)

In [55]: bc.apply(A, b)

which results in a matrix A and vector b that define the algebraic equation system for 

the unknown function. Here we have also used the apply method of the DirichletBC 

class instance bc, which modifies the A and b objects in such a way that the boundary 

condition is accounted for in the equations.

To finally solve the problem, we need to create a function object for storing the 

unknown solution and call the dolfin.solve function, providing the A matrix and the b 

vector, as well as the underlying data array of a Function object. We can obtain the data 

array for a Function instance by calling the vector method on the object.

In [56]: u_sol1 = dolfin.Function(V)

In [57]: dolfin.solve(A, u_sol1.vector(), b)

Here we named the Function object for the solution u_sol1, and the call to dolfin.

solve function solves the equation system and fills in the values in the data array of the 

u_sol1 object. Here we solved the PDE problem by explicitly assembling the A and b 

matrices and passing the results to the dolfin.solve function. These steps can also be 

carried out automatically by the dolfin.solve function, by passing a dolfin.Equation 

object as first argument to the function, the Function object for the solution as second 

argument, and a boundary condition (or list of boundary conditions) as third argument. 

We can create the Equation object using, for example, a == L2:

In [58]: u_sol2 = dolfin.Function(V)

In [59]: dolfin.solve(a == L2, u_sol2, bc)
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This is slightly more concise than that of the method we used to find u_sol1 using 

the equivalence of a == L1, but in some cases when a problem needs to be solved for 

multiple situations, it can be useful to use explicit assembling of the matrix A and/or the 

vector b, so it is worthwhile to be familiar with both methods.

With the solution available as a FEniCS Function object, there are a number ways we 

can proceed with post-processing and visualizing the solution. A straightforward way to 

plot the solution is to use the built-in dolfin.plot function, which can be used to plot 

mesh objects, function objects, as well as several other types of objects (see the docstring 

for dolfin.plot for more information). For example, to plot the solution u_sol2, we 

simply call dolfin.plot(u_sol2). The resulting graph window is shown in Figure 11-5.

In [60]: dolfin.plot(u_sol2)

Using dolfin.plot is a good way of quickly visualizing a solution or a grid, but for 

better control of the visualization, it is often necessary to export the data and plot it in 

dedicated visualization software, such as ParaView1. To save the solutions u_sol1 and u_

sol2 in a format that can be opened with ParaView, we can use the dolfin.File object 

to generate PVD files (collections of VTK files) and append objects to the file using the << 

operator, in a C++ stream-like fashion:

In [61]: dolfin.File('u_sol1.pvd') << u_sol1

1 http://www.paraview.org

Figure 11-5. A graph of the mesh function u_sol2, produced by the plot function 
in the dolfin library
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We can also add multiple objects to a PVD file using this method:

In [62]: f = dolfin.File('u_sol_and_mesh.pvd')

    ...: f << mesh

    ...: f << u_sol1

    ...: f << u_sol2

Exporting data for FEniCS objects to files that can be loaded and visualized with 

external visualization software is a method that benefits from the many advantages of 

powerful visualization software, such as interactivity, parallel processing, and high level 

of control of the visualizations, just to mention a few. However, in many cases it might be 

preferable to work within, for example, the Jupyter Notebook also for visualization of the 

solutions and the mesh. For relatively simple problems in one, two, and, to some extent, 

three dimensions, we can use Matplotlib to visualize meshes and solution functions 

directly. To be able to use Matplotlib, we need to obtain a NumPy array with data 

corresponding to the FEniCS function object. There are several ways to construct such 

arrays. To begin with, the FEniCS function object can be called like a function, with an 

array (list) of coordinate values:

In [63]: u_sol1([0.21, 0.67])

Out[63]: 0.0466076997781351

This allows us to evaluate the solution at arbitrary points within the problem 

domain. We can also obtain the values of a function object like u_sol1 at the mesh 

vertices as a FEniCS vector using the vector method, which in turn can be converted 

to a NumPy array using the np.array function. The resulting NumPy arrays are flat 

(one-dimensional), and for the case of a two-dimensional rectangular mesh (like in the 

current example), it is sufficient to reshape the flat array to obtain a two-dimensional 

array that can be plotted with, for example, the pcolor, contour, or plot_surface 

functions from Matplotlib. In the following we follow these steps to convert the 

underlying data of the u_sol1 and u_sol2 function objects to NumPy arrays, which then 

is plotted using Matplotlib. The result is shown in Figure 11-6.

In [64]: u_mat1 = np.array(u_sol1.vector()).reshape(N1+1, N2+1)

In [65]: u_mat2 = np.array(u_sol2.vector()).reshape(N1+1, N2+1)

In [66]: X, Y = np.meshgrid(np.linspace(0, 1, N1+2), np.linspace(0, 1, N2+2))

In [67]: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))

    ...:
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    ...: c = ax1.pcolor(X, Y, u_mat1, cmap=mpl.cm.get_cmap('Reds'))

    ...: cb = plt.colorbar(c, ax=ax1)

    ...: ax1.set_xlabel(r"$x$", fontsize=18)

    ...: ax1.set_ylabel(r"$y$", fontsize=18)

    ...: cb.set_label(r"$u(x, y)$", fontsize=18)

    ...: cb.set_ticks([0.0, 0.02, 0.04, 0.06])

    ...:

    ...: c = ax2.pcolor(X, Y, u_mat2, cmap=mpl.cm.get_cmap('Reds'))

    ...: cb = plt.colorbar(c, ax=ax2)

    ...: ax1.set_xlabel(r"$x$", fontsize=18)

    ...: ax1.set_ylabel(r"$y$", fontsize=18)

    ...: cb.set_label(r"$u(x, x)$", fontsize=18)

    ...: cb.set_ticks([0.0, 0.02, 0.04])

The method used to produce Figure 11-6 is simple and convenient, but it only 

works for rectangular meshes. For more complicated meshes, the vertex coordinates 

are not organized in a structural manner, and a simple reshaping of the flat array data 

is not sufficient. However, the Mesh object that represents the mesh for the problem 

domain contains a list of the coordinates for each vertex. Together with values from a 

Function object, these can be combined into a form that can be plotted with Matplotlib 

triplot and tripcolor functions. To use these plot functions, we first need to create a 

Triangulation object from the vertex coordinates for the mesh:

Figure 11-6. The solution of the steady-state heat equation on the unit square, 
with source terms f = 1 (left) and f = x2+y2 (right), subject to the condition that the 
function u(x, y) is zero on the boundary
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In [68]: coordinates = mesh.coordinates()

    ...: triangles = mesh.cells()

    ...:  triangulation = mpl.tri.Triangulation(coordinates[:, 0], 

coordinates[:, 1], triangles)

With the triangulation object defined, we can directly plot the array data for FEniCS 

functions using triplot and tripcolor, as shown in the following code. The resulting 

graph is shown in Figure 11-7.

In [69]: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4))

    ...: ax1.triplot(triangulation)

    ...: ax1.set_xlabel(r"$x$", fontsize=18)

    ...: ax1.set_ylabel(r"$y$", fontsize=18)

    ...: cmap = mpl.cm.get_cmap('Reds')

    ...:  c = ax2.tripcolor(triangulation, np.array(u_sol2.vector()), 

cmap=cmap)

    ...: cb = plt.colorbar(c, ax=ax2)

    ...: ax2.set_xlabel(r"$x$", fontsize=18)

    ...: ax2.set_ylabel(r"$y$", fontsize=18)

    ...: cb.set_label(r"$u(x, y)$", fontsize=18)

    ...: cb.set_ticks([0.0, 0.02, 0.04])

Figure 11-7. The same as Figure 11-6, except that this graph was produced with 
Matplotlib’s triangulation functions. The mesh is plotted to the left and the solution 
of the PDE to the right
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To see how we can work with more complicated boundary conditions, consider 

again the heat equation, this time without a source term uxx+uyy = 0, but with the 

following boundary conditions: u(x = 0) = 3, u(x = 1) =  − 1, u(y = 0) =  − 5, and 

u(y = 1) = 5. This is the same problem as we solved with the FDM method earlier in 

this chapter. Here we solve this problem again using FEM. We begin, as in the previous 

example, by defining a mesh for the problem domain, the function space, and trial and 

test function objects:

In [70]: V = dolfin.FunctionSpace(mesh, 'Lagrange', 1)

In [71]: u = dolfin.TrialFunction(V)

In [72]: v = dolfin.TestFunction(V)

Next we define the weak form of the PDE. Here we set f = 0 using a dolfin.Constant 

object to represent f:

In [73]: a =  dolfin.inner(dolfin.nabla_grad(u), dolfin.nabla_grad(v)) * 

dolfin.dx

In [74]: f = dolfin.Constant(0.0)

In [75]: L = f * v * dolfin.dx

Now it remains to define the boundary conditions according to the given specification. 

In this example we do not want a uniform boundary condition that applies to the entire 

boundary, so we need to use the first argument to the boundary selection function that is 

passed to the DirichletBC class, to single out different parts of the boundary. To this end, 

we define four functions that select the top, bottom, left, and right boundaries:

In [76]: def u0_top_boundary(x, on_boundary):

    ...:     # on boundary and y == 1 -> top boundary

    ...:     return on_boundary and abs(x[1]-1) < 1e-5

In [77]: def u0_bottom_boundary(x, on_boundary):

    ...:     # on boundary and y == 0 -> bottom boundary

    ...:     return on_boundary and abs(x[1]) < 1e-5

In [78]: def u0_left_boundary(x, on_boundary):

    ...:     # on boundary and x == 0 -> left boundary

    ...:     return on_boundary and abs(x[0]) < 1e-5

In [79]: def u0_right_boundary(x, on_boundary):

    ...:     # on boundary and x == 1 -> left boundary

    ...:     return on_boundary and abs(x[0]-1) < 1e-5
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The values of the unknown function at each of the boundaries are simple constants 

that we can represent with instances of dolfin.Constant. Thus, we can create instances 

of DirichletBC for each boundary, and the resulting objects are collected in a list bcs:

In [80]: bc_t = dolfin.DirichletBC(V, dolfin.Constant(5), u0_top_boundary)

    ...:  bc_b = dolfin.DirichletBC(V, dolfin.Constant(-5), u0_bottom_

boundary)

    ...: bc_l = dolfin.DirichletBC(V, dolfin.Constant(3), u0_left_boundary)

    ...:  bc_r = dolfin.DirichletBC(V, dolfin.Constant(-1), u0_right_

boundary)

In [81]: bcs = [bc_t, bc_b, bc_r, bc_l]

With this specification of the boundary conditions, we can continue to solve the PDE 

problem by calling dolfin.solve. The resulting vector converted to a NumPy array is 

used for plotting the solution using Matplotlib’s pcolor function. The result is shown 

in Figure 11-8. By comparing to the result from the corresponding FDM computation, 

shown in Figure 11-2, we can conclude that the two methods indeed give the same 

results.

In [82]: u_sol = dolfin.Function(V)

In [83]: dolfin.solve(a == L, u_sol, bcs)

In [84]: u_mat = np.array(u_sol.vector()).reshape(N1+1, N2+1)

In [85]: x = np.linspace(0, 1, N1+2)

    ...: y = np.linspace(0, 1, N1+2)

    ...: X, Y = np.meshgrid(x, y)

In [86]: fig, ax = plt.subplots(1, 1, figsize=(8, 6))

    ...:  c = ax.pcolor(X, Y, u_mat, vmin=-5, vmax=5, cmap=mpl.cm.get_

cmap('RdBu_r'))

    ...: cb = plt.colorbar(c, ax=ax)

    ...: ax.set_xlabel(r"$x_1$", fontsize=18)

    ...: ax.set_ylabel(r"$x_2$", fontsize=18)

    ...: cb.set_label(r"$u(x_1, x_2)$", fontsize=18)
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So far we have used FEM to solve the same kind of problems that we also solved 

with FDM, but the true strength of FEM becomes apparent first when PDE problem with 

more complicated problem geometries is considered. As an illustration of this, consider 

the heat equation on a unit circle perforated by five smaller circles, one centered at the 

origin and the other four smaller circles, as shown in the mesh figure below. To generate 

meshes for geometries like this one, we can use the mshr library that is distributed with 

FEniCS. It provides geometric primitives (Point, Circle, Rectangle, etc.) that can be 

used in algebraic (set) operations to compose mesh for the problem domain of interest. 

Here we first create a unit circle, centered at (0, 0), using mshr.Circle, and subtract from 

it other Circle objects corresponding to the part of the mesh that should be removed. 

The resulting mesh is shown in Figure 11-9.

In [87]: r_outer = 1

    ...: r_inner = 0.25

    ...: r_middle = 0.1

    ...: x0, y0 = 0.4, 0.4

In [88]: domain = mshr.Circle(dolfin.Point(.0, .0), r_outer) \

    ...:     - mshr.Circle(dolfin.Point(.0, .0), r_inner) \

    ...:     - mshr.Circle(dolfin.Point( x0,  y0), r_middle) \

    ...:     - mshr.Circle(dolfin.Point( x0, -y0), r_middle) \

    ...:     - mshr.Circle(dolfin.Point(-x0,  y0), r_middle) \

    ...:     - mshr.Circle(dolfin.Point(-x0, -y0), r_middle)

In [89]: mesh = mshr.generate_mesh(domain, 10)

Figure 11-8. The steady-state solution to the heat equation with different Dirichlet 
boundary condition on each of the sides of the unit square
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A physical interpretation of this mesh is that the geometry is a cross section of five 

pipes through a block of material, where, for example, the inner pipe carries a hot fluid 

and the outer pipes a cold fluid for cooling the material block (e.g., an engine cylinder 

surrounded by cooling pipes). With this interpretation in mind, we set the boundary 

condition of the inner pipe to a high value, u x y
x y r0 2 2 2 10,

outer
( ) =

+ =
, and the smaller 

surrounding pipes to a lower value, u x y
x x y y r0

0
2

0
2 2 0,

inner
( ) =

-( ) + -( ) =
, where (x0, y0) is the center 

of each of the smaller pipes. We leave the outer boundary unspecified, which is 

equivalent to the special case of a Neumann boundary condition: 
¶ ( )
¶

=
u x
n

0 . As before, 

we define functions for singling out vertices on the boundary. Since we have different 

boundary conditions on different boundaries, here too we need to use the coordinate 

argument x to determine which vertices belong to which boundary.

In [90]: def u0_inner_boundary(x, on_boundary):

    ...:     x, y = x[0], x[1]

    ...:      return on_boundary and abs(np.sqrt(x**2 + y**2) - r_inner)  

< 5e-2

In [91]: def u0_middle_boundary(x, on_boundary):

    ...:     x, y = x[0], x[1]

    ...:     if on_boundary:

    ...:         for _x0 in [-x0, x0]:

    ...:             for _y0 in [-y0, y0]:

Figure 11-9. A mesh object generated by the mshr library
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    ...:                  if abs(np.sqrt((x-_x0)**2 + (y-_y0)**2) - r_

middle) < 5e-2:

    ...:                     return True

    ...:     return False

In [92]: bc_inner =  dolfin.DirichletBC(V, dolfin.Constant(10), u0_inner_

boundary)

    ...: bc_middle =  dolfin.DirichletBC(V, dolfin.Constant(0), u0_middle_

boundary)

In [93]: bcs = [bc_inner, bc_middle]

Once the mesh and boundary conditions are specified, we can proceed as usual with 

defining the function space and the trial and test functions and constructing the weak 

form representation of the PDE problem:

In [94]: V = dolfin.FunctionSpace(mesh, 'Lagrange', 1)

In [95]: u = dolfin.TrialFunction(V)

In [96]: v = dolfin.TestFunction(V)

In [97]: a =  dolfin.inner(dolfin.nabla_grad(u), dolfin.nabla_grad(v)) * 

dolfin.dx

In [98]: f = dolfin.Constant(0.0)

In [99]: L = f * v * dolfin.dx

In [100]: u_sol = dolfin.Function(V)

Solving and visualizing the problem also follows the same pattern as before. The 

result of plotting the solution is shown in Figure 11-10.

In [101]: dolfin.solve(a == L, u_sol, bcs)

In [102]: coordinates = mesh.coordinates()

     ...: triangles = mesh.cells()

     ...: triangulation = mpl.tri.Triangulation(

     ...:     coordinates[:, 0], coordinates[:, 1], triangles)

In [103]: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4))

     ...: ax1.triplot(triangulation)

     ...: ax1.set_xlabel(r"$x$", fontsize=18)

     ...: ax1.set_ylabel(r"$y$", fontsize=18)

     ...: c = ax2.tripcolor(

     ...:      triangulation, np.array(u_sol.vector()), cmap=mpl.cm.get_

cmap("Reds"))
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     ...: cb = plt.colorbar(c, ax=ax2)

     ...: ax2.set_xlabel(r"$x$", fontsize=18)

     ...: ax2.set_ylabel(r"$y$", fontsize=18)

     ...: cb.set_label(r"$u(x, y)$", fontsize=18)

     ...: cb.set_ticks([0.0, 5, 10, 15])

Problems with this kind of geometry are difficult to treat with FDM methods but can 

be handled with relative ease using FEM. Once we obtain a solution for a FEM problem, 

even for intricate problem boundaries, we can also with relative ease post-process the 

solution function in other ways than plotting it. For example, we might be interested 

in the value of the function along one of the boundaries. For instance, in the current 

problem, it is natural to look at the temperature along the outer radius of the problem 

domain, for example, to see how much the exterior temperature of the body decreases 

due to the four cooling pipes. In order to do this kind of analysis, we need a way of singling 

out the boundary values from the u_sol object. We can do this by defining an object that 

describes the boundary (here using dolfin.AutoSubDomain) and applying it to a new 

Function object that is used as a mask for selecting the desired elements from the u_sol 

and from mesh.coordinates(). In the following we call this mask function mask_outer.

In [104]: outer_boundary = dolfin.AutoSubDomain(

     ...:      lambda x, on_bnd: on_bnd and abs(np.sqrt(x[0]**2 + x[1]**2) - 

r_outer) < 5e-2)

In [105]: bc_outer = dolfin.DirichletBC(V, 1, outer_boundary)

In [106]: mask_outer = dolfin.Function(V)

Figure 11-10. The solution to the heat equation on a perforated unit circle
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In [107]: bc_outer.apply(mask_outer.vector())

In [108]: u_outer = u_sol.vector()[mask_outer.vector() == 1]

In [109]: x_outer = mesh.coordinates()[mask_outer.vector() == 1]

With these steps we have created the mask for the outer boundary condition and 

applied it to u_sol.vector() and mesh.coordinates() and thereby obtained the 

function values and the coordinates for the outer boundary points. Next we plot the 

boundary data as a function of the angle between the (x, y) point and the x axis. The 

result is shown in Figure 11-11.

In [110]: phi = np.angle(x_outer[:, 0] + 1j * x_outer[:, 1])

In [111]: order = np.argsort(phi)

In [112]: fig, ax = plt.subplots(1, 1, figsize=(8, 4))

     ...: ax.plot(phi[order], u_outer[order], 's-', lw=2)

     ...: ax.set_ylabel(r"$u(x,y)$ at $x^2+y^2=1$", fontsize=18)

     ...: ax.set_xlabel(r"$\phi$", fontsize=18)

     ...: ax.set_xlim(-np.pi, np.pi)

The accuracy of the solution to a PDE computed with FEM is intimately connected 

to the element sizes in the mesh that represent the problem domain: a finer mesh gives 

a more accurate solution. However, increasing the number of elements in the mesh also 

makes the problem more computationally demanding to solve. Thus, there is a trade- 

off between the accuracy of the mesh and the available computational resources that 

must be considered. An important tool for dealing with this trade-off is a mesh with 

Figure 11-11. Temperature distribution along the outer boundary of the 
perforated unit circle
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nonuniformly distributed elements. With such a mesh, we can use smaller elements 

where the unknown function is expected to change in value quickly and fewer elements 

in less interesting regions. The dolfin library provides a simple way to refine a mesh, 

using the dolfin.refine function. It takes a mesh as first argument, and if no other 

arguments are given, it uniformly refines the mesh and returns a new mesh. However, 

the dolfin.refine function also accepts an optional a second argument that describes 

which parts of the mesh should be refined. This argument should be an instance of a 

Boolean-valued dolfin.MeshFunction, which acts as a mask that flags which elements 

(cells) should be divided. For example, consider a mesh for the unit circle less the part 

in the quadrant where x > 0 and y < 0. We can construct a mesh for this geometry using 

mshr.Circle and mshr.Rectangle:

In [113]: domain = mshr.Circle(dolfin.Point(.0, .0), 1.0) \

     ...:     -  mshr.Rectangle(dolfin.Point(0.0, -1.0), dolfin.Point(1.0, 0.0))

In [114]: mesh = mshr.generate_mesh(domain, 10)

The resulting mesh is shown in the left part of Figure 11-12. It is often desirable to 

use meshes with finer structure near sharp corners in the geometry. For this example, 

it is reasonable to attempt to refine the mesh around the edge near the origin. To do 

this we need to create an instance of dolfin.MeshFunction; initialize all its elements to 

False, using the set_all method; iterate through the elements and mark those ones in 

the vicinity of the origin as True; and finally call the dolfin.refine function with the 

mesh and the MeshFunction instance as arguments. We can do this repeatedly until a 

sufficiently fine mesh is obtained. In the following we iteratively call dolfin.refine, 

with a decreasing number of cells marked for splitting:

In [115]: refined_mesh = mesh

     ...: for r in [0.5, 0.25]:

     ...:       cell_markers = dolfin.MeshFunction("bool", refined_mesh, dim=2)

     ...:      cell_markers.set_all(False)

     ...:      for cell in dolfin.cells(refined_mesh):

     ...:          if cell.distance(dolfin.Point(.0, .0)) < r:

     ...:               # mark cells within a radius r from the origin to be split

     ...:              cell_markers[cell] = True

     ...:      refined_mesh = dolfin.refine(refined_mesh, cell_markers)
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The resulting mesh refined_mesh is a version of the original mesh that has finer 

element partitioning near the origin. The following code plots the two meshes for 

comparison, and the result is shown in Figure 11-12.

In [116]: def mesh_triangulation(mesh):

     ...:     coordinates = mesh.coordinates()

     ...:     triangles = mesh.cells()

     ...:      triangulation = mpl.tri.Triangulation(coordinates[:, 0], 

coordinates[:, 1], 

     ...:     return triangulation

In [117]: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))

     ...:

     ...: ax1.triplot(mesh_triangulation(mesh))

     ...: ax2.triplot(mesh_triangulation(refined_mesh))

     ...:

     ...: # hide axes and ticks

     ...: for ax in [ax1, ax2]:

     ...:     for side in ['bottom','right','top','left']:

     ...:         ax.spines[side].set_visible(False)

     ...:         ax.set_xticks([])

     ...:         ax.set_yticks([])

     ...:         ax.xaxis.set_ticks_position('none')

     ...:         ax.yaxis.set_ticks_position('none')

     ...:

     ...: ax.set_xlabel(r"$x$", fontsize=18)

     ...: ax.set_ylabel(r"$y$", fontsize=18)
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Refining a mesh using dolfin.refine is a practical technique for improving simple 

meshes that are constructed using expressions of geometrical primitives, like the one 

we have used in this chapter. As a final example of using FEniCS, we consider another 

example of the steady-state heat equation, using this refined mesh for the three-quarters 

of the unit circle, where we impose Neumann boundary conditions on the vertical 

and horizontal boundaries along the missing quarter of the unit circle: for the vertical 

edge, we assume an outflux of heat described by ∇u ∙ n =  − 2, x = 0, y < 0, and through 

the horizontal edge, we assume an influx of heat described by ∇u ∙ n = 1, x  > 0, y = 0, 

while the outer radial boundary is assumed to be described by the Dirichlet boundary 

condition u(x, y) = 0, x2+y2 = 1.

We begin, as usual, by creating objects for the function space, the test function, and 

the trial function:

In [118]: mesh = refined_mesh

In [119]: V = dolfin.FunctionSpace(mesh, 'Lagrange', 1)

In [120]: u = dolfin.TrialFunction(V)

In [121]: v = dolfin.TestFunction(V)

For problems with Neumann boundary conditions, we need to include the boundary 

condition in the weak form of the PDE. Recall that the weak form for the Poisson equation 

is 
W W G
ò ò òÑ Ñ = +u v x fv x g v d· d d

N

G , so compared to the earlier examples, we need to  

account for the additional term 
GN

ò g v dG , which is an integral over the boundary with 

Figure 11-12. The original and the refined meshes for three-quarters of the  
unit circle
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Neumann boundary condition. To represent the integral measure for this integral in the 

weak form specification, we can use dolfin.ds, but to be able to distinguish different parts 

of the boundary, we first need to mark the boundary parts. One way to do this in FEniCS is 

to use a dolfin.MeshFunction object and assign to it a unique integer value for each 

distinct part of the boundary. To do this we first create a dolfin.MeshFunction instance:

In [122]: boundary_parts = dolfin.MeshFunction("size_t", mesh,  mesh.

topology().dim()-1)

Next we define a function for selecting boundary points and a dolfin.

AutoSubDomain instance that is initialized from the boundary selection function. The 

AutoSubDomain instance can then be used to mark the corresponding cells in the 

MeshFunction (here called boundary_parts) with an identifying integer value. The 

following lines of code perform these steps for the vertical edge of the mesh, where x = 0 

and y < 0:

In [121]: def v_boundary_func(x, on_boundary):

     ...:     """ the vertical edge of the mesh, where x = 0 and y < 0 """

     ...:     x, y = x[0], x[1]

     ...:     return on_boundary and abs(x) < 1e-4 and y < 0.0

In [122]: v_boundary = dolfin.AutoSubDomain(v_boundary_func)

In [123]: v_boundary.mark(boundary_parts, 0)

We repeat the same procedure for the horizontal edge of the mesh, where y = 0 and x > 0:

In [124]: def h_boundary_func(x, on_boundary):

     ...:     """ the horizontal edge of the mesh, where y = 0 and x > 0 """

     ...:     x, y = x[0], x[1]

     ...:     return on_boundary and abs(y) < 1e-4 and x > 0.0

In [125]: h_boundary = dolfin.AutoSubDomain(h_boundary_func)

In [126]: h_boundary.mark(boundary_parts, 1)

We can also use the same method to define Dirichlet boundary conditions. Here we 

mark the part of the boundary that is described by the Dirichlet boundary condition and 

then use it in the creation of the dolfin.DirichletBC object:

In [127]: def outer_boundary_func(x, on_boundary):

     ...:     x, y = x[0], x[1]

     ...:     return on_boundary and abs(x**2 + y**2-1) < 1e-2
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In [128]: outer_boundary = dolfin.AutoSubDomain(outer_boundary_func)

In [129]: outer_boundary.mark(boundary_parts, 2)

In [130]: bc = dolfin.DirichletBC(V, dolfin.Constant(0.0), boundary_parts, 2)

Once the boundaries are marked, we can proceed to create the weak form of the 

PDE. Since we use partitioned boundary here, we need to specify the domain and 

subdomain arguments to the integral measures dolfin.dx and dolfin.ds, using the mesh 

and boundary_parts objects.

In [131]: dx = dolfin.dx(domain=mesh, subdomain_data=boundary_parts)

In [132]: a = dolfin.inner(dolfin.nabla_grad(u), dolfin.nabla_grad(v)) * dx

In [133]: f = dolfin.Constant(0.0)

In [134]: g_v = dolfin.Constant(-2.0)

In [135]: g_h = dolfin.Constant(1.0)

In [136]: L = f * v * dolfin.dx(domain=mesh, subdomain_data=boundary_parts)

In [137]: L += g_v * v * dolfin.ds(0, domain=mesh, subdomain_data=boundary_parts)

In [138]: L += g_h * v * dolfin.ds(1, domain=mesh, subdomain_data=boundary_parts)

In the last two code cells, we have added new terms for the Neumann boundary 

conditions for the vertical and the horizontal edges in the mesh. These parts of the 

boundary are denoted by integers 0 and 1, respectively, as defined in the preceding 

section, and these integers are passed as an argument to the dolfin.ds to select 

integration over different parts of the boundaries.

In [139]: u_sol = dolfin.Function(V)

In [140]: dolfin.solve(a == L, u_sol, bc)

Once the representation of the weak form of the PDE is defined, we can go ahead 

and solve the problem using dolfin.solve, as we have done in earlier examples. 

Finally we plot the solution using Matplotlib’s triangulation plot functions. The results 

are shown in Figure 11-13. From the graph we can see that, as expected, the solution 

has more structure near the edge at the origin. Using a mesh with smaller elements in 

this region is therefore a good way to obtain sufficient resolution in this region without 

inflicting excessive computational cost by using a uniformly fine-structured mesh.
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In [141]: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4))

     ...: triangulation = mesh_triangulation(mesh)

     ...: ax1.triplot(triangulation)

     ...: ax1.set_xlabel(r"$x$", fontsize=18)

     ...: ax1.set_ylabel(r"$y$", fontsize=18)

     ...:

     ...: data = np.array(u_sol.vector())

     ...: norm = mpl.colors.Normalize(-abs(data).max(), abs(data).max())

     ...:  c = ax2.tripcolor(triangulation, data, norm=norm, cmap=mpl.

cm.get_cmap("RdBu_r"))

     ...: cb = plt.colorbar(c, ax=ax2)

     ...: ax2.set_xlabel(r"$x$", fontsize=18)

     ...: ax2.set_ylabel(r"$y$", fontsize=18)

     ...: cb.set_label(r"$u(x, y)$", fontsize=18)

     ...: cb.set_ticks([-.5, 0, .5])

The examples we have explored in this section are merely a few simple 

demonstrations of the types of problems that the FEniCS framework can be used for. 

There are a vast number of features in FEniCS that we have not even been able to 

mention here. For the reader who is particularly interested in solving PDE problems, 

I recommend studying the FEniCS book (Anders Logg, 2012) and the many example 

applications that it contains. In particular, important aspects of solving PDEs with FEM 

that we have not been able to discuss here are nontrivial Neumann boundary conditions 

Figure 11-13. Solution to the heat equation on a quarter of the unit circle with 
Neumann and Dirichlet boundary conditions
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(which need to be included in the formulation of weak form of the PDE), PDEs for 

vector-valued functions, higher-dimensional PDE problems (e.g., the heat equation in 

three dimensions), and time-dependent PDE problems. All of these topics, and many 

others, are well supported in the FEniCS framework.

 Summary
In this chapter we briefly surveyed methods for solving partial differential equations 

(PDEs) and how these methods can be employed within the scientific Python 

environment. Specifically, we introduced the finite-difference method (FDM) and the 

finite-element method (FEM) for solving PDE problems and used these methods to solve 

several example problems. The advantage of FDM is its simplicity, and for problems 

where it is easily applicable (simple problem domains, uniform discretization, etc.), it 

is a very practical method. For more complicated PDE problems, for example, where 

the problem domain is more complex, FEM is generally more suitable. However, the 

mathematical theory of the FEM is more involved, and the implementation is far more 

technical. While there are a number of advanced FEM frameworks that can be used from 

Python, in this chapter we focused on one prominent example: the FEniCS framework. 

FEniCS is a full-featured FEM software that can be used for a wide range of PDE 

problem. With the examples considered here, we have only scraped the surface of what 

can be achieved with the software. However, the hope is that the examples studied in this 

chapter give a general sense of the workflow when solving PDE problems with FEM and 

when using the FEniCS software in particular.

 Further Reading
While we have discussed FDM and FEM in this chapter, there are also other successful 

and useful methods for numerically solving PDEs. For instance, the finite-volume 

method (FVM) is a variant of the FEM method that is often used for fluid dynamics 

calculations, as well as in other fields. The Python library FiPy provides a framework for 

solving PDE problems using this method, and a theoretical introduction to the method 

is given in, for example, Wesseling (2009). The theoretical background information 

about the FDM and FEM that is given in this chapter is very brief indeed, and it merely 

serves to introduce the terminology and notation used here. For serious work with the 

Chapter 11  partial Differential equations



404

FDM, and in particular the FEM method, it is important to thoroughly understand the 

fundamentals of these methods. Good introductions to FDM and FEM are given in, 

for example, Gockenbach (2011), Gockenbach (2006), Johnson (2009), and LeVeque 

(2007). The FEniCS book (Logg, 2012), which is available for free online from the FEniCS 

project’s web site (http://fenicsproject.org), also contains a nice introduction to the 

FEM method, in addition to a detailed documentation of the FEniCS software itself.
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CHAPTER 12

Data Processing 
and Analysis
In the last several chapters, we have covered the main topics of traditional scientific 

computing. These topics provide a foundation for most computational work. Starting 

with this chapter, we move on to explore data processing and analysis, statistics, and 

statistical modeling. As the first step in this direction, we look at the data analysis library 

pandas. This library provides convenient data structures for representing series and 

tables of data and makes it easy to transform, split, merge, and convert data. These are 

important steps in the process1 of cleansing raw data into a tidy form that is suitable for 

analysis. The Pandas library builds on top of NumPy and complements it with features 

that are particularly useful when handling data, such as labeled indexing, hierarchical 

indices, alignment of data for comparison and merging of datasets, handling of missing 

data, and much more. As such, the pandas library has become a de facto standard 

library for high-level data processing in Python, especially for statistics applications. 

The pandas library itself contains only limited support for statistical modeling (namely, 

linear regression). For more involved statistical analysis and modeling, there are other 

packages available, such as statsmodels, patsy, and scikit-learn, which we cover in 

later chapters. However, also for statistical modeling with these packages, pandas can 

still be used for data representation and preparation. The pandas library is therefore a 

key component in the software stack for data analysis with Python.

1 Also known as data munging or data wrangling
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Pandas The pandas library is a framework for data processing and analysis 
in Python. At the time of writing, the most recent version of Pandas is 0.23.4. For 
more information about the pandas library, and its official documentation, see the 
project’s web site at http://pandas.pydata.org.

The main focus of this chapter is to introduce basic features and usage of the pandas 

library. Toward the end of the chapter, we also briefly explore the statistical visualization 

library Seaborn, which is built on top of Matplotlib. This library provides quick and 

convenient graphing of data represented as pandas data structure (or NumPy arrays). 

Visualization is a very important part of exploratory data analysis, and the Pandas library 

itself also provides functions for basic data visualization (which also builds on top of 

Matplotlib). The Seaborn library takes this further, by providing additional statistical 

graphing capabilities and improved styling: the Seaborn library is notable for generating 

good-looking graphics using default settings.

Seaborn The Seaborn library is a visualization library for statistical graphics. 
It builds on Matplotlib and provides easy-to-use functions for common statistical 
graphs. At the time of writing, the most recent version of Seaborn is 0.8.1. For 
more information about Seaborn, and its official documentation, see the project’s 
web site at: http://stanford.edu/~mwaskom/software/seaborn.

 Importing Modules
In this chapter we mainly work with the pandas library, which we assume is imported 

under the name pd:

In [1]: import pandas as pd

We also require NumPy and Matplotlib, which we import as usual in the following 

way:

In [2]: import numpy as np

In [3]: import matplotlib.pyplot as plt
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For more aesthetically pleasing appearance of Matplotlib figures produced by the 

pandas library, we select a style that is suitable for statistical graphs using the function 

mpl.style.use:

In [4]: import matplotlib as mpl

   ...: mpl.style.use('ggplot')

Later in this chapter, we will also require to import the seaborn module, which we 

will import under the name sns:

In [5]: import seaborn as sns

 Introduction to Pandas
The main focus of this chapter is the pandas library for data analysis, and we begin here 

with an introduction to this library. The pandas library mainly provides data structures 

and methods for representing and manipulating data. The two main data structures 

in Pandas are the Series and DataFrame objects, which are used to represent data 

series and tabular data, respectively. Both of these objects have an index for accessing 

elements or rows in the data represented by the object. By default, the indices are 

integers starting from zero, like NumPy arrays, but it is also possible to use any sequence 

of identifiers as index.

 Series
The merit of being able to index a data series with labels rather than integers is apparent 

even in the simplest of examples: Consider the following construction of a Series 

object. We give the constructor a list of integers, to create a Series object that represents 

the given data. Displaying the object in IPython reveals the data of the Series object 

together with the corresponding indices:

In [6]: s = pd.Series([909976, 8615246, 2872086, 2273305])

In [7]: s

Out[7]: 0     909976

        1     8615246

        2     2872086

        3     2273305

        dtype: int64

ChAPTer 12  DATA ProCessing AnD AnAlysis



408

The resulting object is a Series instance with the data type (dtype) int64, and 

the elements are indexed by the integers 0, 1, 2, and 3. Using the index and values 

attributes, we can extract the underlying data for the index and the values stored in the 

series:

In [8]: list(s.index)

Out[8]: RangeIndex(start=0, stop=4, step=1)

In [9]: s.values

Out[9]: array([ 909976, 8615246, 2872086, 2273305], dtype=int64)

While using integer-indexed arrays or data series is a fully functional representation 

of the data, it is not descriptive. For example, if the data represents the population of four 

European capitals, it is convenient and descriptive to use the city names as indices rather 

than integers. With a Series object this is possible, and we can assign the index attribute 

of a Series object to a list with new indices to accomplish this. We can also set the name 

attribute of the Series object, to give it a descriptive name:

In [10]: s.index = ["Stockholm", "London", "Rome", "Paris"]

In [11]: s.name = "Population"

In [12]: s

Out[12]: Stockholm     909976

         London       8615246

         Rome         2872086

         Paris        2273305

         Name: Population, dtype: int64

It is now immediately obvious what the data represents. Alternatively, we can also set 

the index and name attributes through keyword arguments to the Series object when it 

is created:

In [13]: s = pd.Series([909976, 8615246, 2872086, 2273305], name="Population",

    ...:               index=["Stockholm", "London", "Rome", "Paris"])

While it is perfectly possible to store the data for the populations of these cities 

directly in a NumPy array, even in this simple example, it is much clearer what the 

data represent when the data points are indexed with meaningful labels. The benefits 

of bringing the description of the data closer to the data are even greater when the 

complexity of the dataset increases.
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We can access elements in a Series by indexing with the corresponding index (label) 

or directly through an attribute with the same name as the index (if the index label is a 

valid Python symbol name):

In [14]: s["London"]

Out[14]: 8615246

In [15]: s.Stockholm

Out[15]: 909976

Indexing a Series object with a list of indices gives a new Series object with a subset 

of the original data (corresponding to the provided list of indices):

In [16]: s[["Paris", "Rome"]]

Out[16]: Paris    2273305

         Rome     2872086

         Name: Population, dtype: int64

With a data series represented as a Series object, we can easily compute its 

descriptive statistics using the Series methods count (the number of data points), 

median (calculate the median), mean (calculate the mean value), std (calculate the 

standard deviation), min and max (minimum and maximum values), and the quantile 

(for calculating quantiles):

In [17]: s.median(), s.mean(), s.std()

Out[17]: (2572695.5, 3667653.25, 3399048.5005155364)

In [18]: s.min(), s.max()

Out[18]: (909976, 8615246)

In [19]: s.quantile(q=0.25), s.quantile(q=0.5), s.quantile(q=0.75)

Out[19]: (1932472.75, 2572695.5, 4307876.0)

All of the preceding data are combined in the output of the describe method, which 

provides a summary of the data represented by a Series object:

In [20]: s.describe()

Out[20]: count          4.000000

         mean     3667653.250000

         std      3399048.500516

         min       909976.000000

         25%      1932472.750000
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         50%      2572695.500000

         75%      4307876.000000

         max      8615246.000000

         Name: Population, dtype: float64

Using the plot method, we can quickly and easily produce graphs that visualize 

the data in a Series object. The pandas library uses Matplotlib for plotting, and we can 

optionally pass a Matplotlib Axes instance to the plot method via the ax argument. The 

type of the graph is specified using the kind argument (valid options are line, hist, bar, 

barh, box, kde, density, area, and pie).

In [21]: fig, axes = plt.subplots(1, 4, figsize=(12, 3))

    ...: s.plot(ax=axes[0], kind='line', title='line')

    ...: s.plot(ax=axes[1], kind='bar', title='bar')

    ...: s.plot(ax=axes[2], kind='box', title='box')

    ...: s.plot(ax=axes[3], kind='pie', title='pie')

Figure 12-1. Examples of plot styles that can be produced with Pandas using the 
Series.plot method

 DataFrame
As we have seen in the previous examples, a pandas Series object provides a 

convenient container for one-dimensional arrays, which can use descriptive labels for 

the elements and which provides quick access to descriptive statistics and visualization. 

For higher-dimensional arrays (mainly two-dimensional arrays, or tables), the 

corresponding data structure is the Pandas DataFrame object. It can be viewed as a 

collection of Series objects with a common index.
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There are numerous ways to initialize a DataFrame. For simple examples, the easiest 

way is to pass a nested Python list or dictionary to the constructor of the DataFrame 

object. For example, consider an extension of the dataset we used in the previous 

section, where, in addition to the population of each city, we also include a column that 

specifies which state each city belongs to. We can create the corresponding DataFrame 

object in the following way:

In [22]: df = pd.DataFrame([[909976, "Sweden"],

    ...:                    [8615246, "United Kingdom"],

    ...:                    [2872086, "Italy"],

    ...:                    [2273305, "France"]])

In [23]: df

Out[23]:

0 1

0 909976 Sweden

1 8615246 United Kingdom

2 2872086 Italy

3 2273305 France

The result is a tabular data structure with rows and columns. Like with a Series 

object, we can use labeled indexing for rows by assigning a sequence of labels to the 

index attribute, and, in addition, we can set the columns attribute to a sequence of labels 

for the columns:

In [24]: df.index = ["Stockholm", "London", "Rome", "Paris"]

In [25]: df.columns = ["Population", "State"]

In [26]: df

Out[26]:

Population State

Stockholm 909976 Sweden

London 8615246 United Kingdom

Rome 2872086 Italy

Paris 2273305 France
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The index and columns attributes can also be set using the corresponding keyword 

arguments to the DataFrame object when it is created:

In [27]: df = pd.DataFrame([[909976, "Sweden"],

    ...:                    [8615246, "United Kingdom"],

    ...:                    [2872086, "Italy"],

    ...:                    [2273305, "France"]],

    ...:                   index=["Stockholm", "London", "Rome", "Paris"],

    ...:                   columns=["Population", "State"])

An alternative way to create the same data frame, which sometimes can be more 

convenient, is to pass a dictionary with column titles as keys and column data as values:

In [28]: df = pd.DataFrame({"Population": [909976, 8615246, 2872086, 2273305],

    ...:                     "State": ["Sweden", "United Kingdom", "Italy", 

"France"]},

    ...:                   index=["Stockholm", "London", "Rome", "Paris"])

As before, the underlying data in a DataFrame can be obtained as a NumPy array 

using the values attribute and the index and column arrays through the index and 

columns attributes, respectively. Each column in a data frame can be accessed using 

the column name as attribute (or, alternatively, by indexing with the column label,  

e.g., df["Population"]):

In [29]: df.Population

Out[29]: Stockholm     909976

         London       8615246

         Rome         2872086

         Paris        2273305

         Name: Population, dtype: int64

The result of extracting a column from a DataFrame is a new Series object, which we 

can process and manipulate with the methods discussed in the previous section. Rows of a 

DataFrame instance can be accessed using the loc indexer attribute. Indexing this attribute 

also results in a Series object, which corresponds to a row of the original data frame:

In [30]: df.loc["Stockholm"]

Out[30]: Population    909976

         State         Sweden

         Name: Stockholm, dtype: object
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Passing a list of row labels to the loc indexer results in a new DataFrame that is a 

subset of the original DataFrame, containing only the selected rows:

In [31]: df.loc[["Paris", "Rome"]]

Out[31]:

Population State

Paris 2273305 France

Rome 2872086 Italy

The loc indexer can also be used to select both rows and columns simultaneously, 

by first passing a row label (or a list thereof) and second a column label (or a list 

thereof). The result is a DataFrame, a Series, or an element value, depending on the 

number of columns and rows that are selected:

In [32]: df.loc[["Paris", "Rome"], "Population"]

Out[32]: Paris    2273305

         Rome     2872086

         Name: Population, dtype: int64

We can compute descriptive statistics using the same methods as we already used 

for Series objects. When invoking those methods (mean, std, median, min, max, etc.) for a 

DataFrame, the calculation is performed for each column with numerical data types:

In [33]: df.mean()

Out[33]: Population    3667653.25

         dtype: float64

In this case, only one of the two columns has a numerical data type (the one named 

Population). Using the DataFrame method info and the attribute dtypes, we can obtain 

a summary of the content in a DataFrame and the data types of each column:

In [34]: df.info()

<class 'pandas.core.frame.DataFrame'>

Index: 4 entries, Stockholm to Paris

Data columns (total 2 columns):

Population    4 non-null int64

State         4 non-null object

dtypes: int64(1), object(1)
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memory usage: 96.0+ bytes

In [35]: df.dtypes

Out[35]: Population     int64

         State         object

         dtype: object

The real advantages of using pandas emerge when dealing with larger and more complex 

datasets than the examples we have used so far. Such data can rarely be defined as explicit 

lists or dictionaries, which can be passed to the DataFrame initializer. A more common 

situation is that the data must be read from a file or some other external sources. The pandas 

library supports numerous methods for reading data from files of different formats. Here 

we use the read_csv function to read in data and create a DataFrame object from a CSV file.2 

This function accepts a large number of optional arguments for tuning its behavior. See the 

docstring help(pd.read_csv) for details. Some of the most useful arguments are header 

(specifies which row, if any, contains a header with column names), skiprows (number of 

rows to skip before starting to read data, or a list of line numbers of lines to skip), delimiter 

(the character that is used as a delimiter between column values), encoding (the name of the 

encoding used in the file, e.g., utf-8), and nrows (number of rows to read). The first and only 

mandatory argument to the pd.read_csv function is a filename or a URL to the data source. 

For example, to read in a dataset stored in a file called european_cities.csv,3 of which the 

first five lines are shown in the following code, we can simply call pd.read_csv("european_

cities.csv"), since the default delimiter is "," and the header is by default taken from the 

first line. However, we could also write out all these options explicitly:

In [36]: !head –n 5 european_cities.csv

Rank,City,State,Population,Date of census

1,London, United Kingdom,"8,615,246",1 June 2014

2,Berlin, Germany,"3,437,916",31 May 2014

3,Madrid, Spain,"3,165,235",1 January 2014

4,Rome, Italy,"2,872,086",30 September 2014

In [37]: df_pop = pd.read_csv("european_cities.csv",

    ...:                      delimiter=",", encoding="utf-8", header=0)

2 CSV, or comma-separated values, is a common text format where rows are stored in lines and 
columns are separated by a comma (or some other text delimiter). See Chapter 18 for more 
details about this and other file formats.

3 This dataset was obtained from the Wiki page: http://en.wikipedia.org/wiki/
Largest_cities_of_the_European_Union_by_population_within_city_limits
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This dataset is similar to the example data we used earlier in this chapter, but here 

there are additional columns and many more rows for other cities. Once a dataset is read 

into a DataFrame object, it is useful to start by inspecting the summary given by the info 

method, to begin forming an idea of the properties of the dataset.

In [38]: df_pop.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 105 entries, 0 to 104

Data columns (total 5 columns):

Rank              105 non-null int64

City              105 non-null object

State             105 non-null object

Population        105 non-null object

Date of census    105 non-null object

dtypes: int64(1), object(4) memory usage: 4.9+ KB

Here we see that there are 105 rows in this dataset and that it has five columns. Only 

the Rank column is of a numerical data type. In particular, the Population column is 

not yet of numeric data type because its values are of the format "8,615,246" and is 

therefore interpreted as string values by the read_csv function. It is also informative 

to display a tabular view of the data. However, this dataset is too large to display in full, 

and in situations like this, the head and tail methods are handy for creating a truncated 

dataset containing the first few and last few rows, respectively. Both of these functions 

take an optional argument that specifies how many rows to include in the truncated 

DataFrame. Note also that df.head(n) is equivalent to df[:n], where n is an integer.

In [39]: df_pop.head()

Out[39]:

Rank City State Population Date of census

0 1 London United Kingdom 8,615,246 1 June 2014

1 2 Berlin Germany 3,437,916 31 May 2014

2 3 Madrid Spain 3,165,235 1 January 2014

3 4 Rome Italy 2,872,086 30 September 2014

4 5 Paris France 2,273,305 1 January 2013
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Displaying a truncated DataFrame gives a good idea of how the data look like and 

what remains to be done before the data is ready for analysis. It is common to have 

to transform columns in one way or another and to reorder the table by sorting by a 

specific column or by ordering the index. In the following we explore some methods 

for modifying DataFrame objects. First of all, we can create new columns and update 

columns in a DataFrame simply by assigning a Series object to the DataFrame indexed 

by the column name, and we can delete columns using the Python del keyword.

The apply method is a powerful tool to transform the content in a column. It creates 

and returns a new Series object for which a function passed to apply has been applied 

to each element in the original column. For example, we can use the apply method to 

transform the elements in the Population column from strings to integers, by passing a 

lambda function that removes the "," characters from the strings and casts the results 

to an integer. Here we assign the transformed column to a new column with the name 

NumericPopulation. Using the same method, we also tidy up the State values by 

removing extra white spaces in its elements using the string method strip.

In [40]: df_pop["NumericPopulation"] = df_pop.Population.apply(

    ...:     lambda x: int(x.replace(",", "")))

In [41]: df_pop["State"].values[:3]  # contains extra white spaces

Out[41]: array([' United Kingdom', ' Germany', ' Spain'], dtype=object)

In [42]: df_pop["State"] = df_pop["State"].apply(lambda x: x.strip())

In [43]: df_pop.head()

Out[43]:

Rank City State Population Date of census NumericPopulation

0 1 London United 

Kingdom

8,615,246 1 June 2014 8615246

1 2 Berlin Germany 3,437,916 31 May 2014 3437916

2 3 Madrid Spain 3,165,235 1 January 2014 3165235

3 4 Rome Italy 2,872,086 30 September 

2014

2872086

4 5 Paris France 2,273,305 1 January 2013 2273305
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Inspecting the data types of the columns in the updated DataFrame confirms that the 

new column NumericPopulation is indeed of integer type (while the Population column 

is unchanged):

In [44]: df_pop.dtypes

Out[44]: Rank                int64

         City               object

         State              object

         Population         object

         Date of census     object

         NumericPopulation   int64

         dtype: object

We may also need to change the index to one of the columns of the DataFrame. In the 

current example, we may want to use the City column as index. We can accomplish this 

using the set_index method, which takes as argument the name of the column to use as 

index. The result is a new DataFrame object, and the original DataFrame is unchanged. 

Furthermore, using the sort_index method, we can sort the data frame with respect to 

the index:

In [45]: df_pop2 = df_pop.set_index("City")

In [46]: df_pop2 = df_pop2.sort_index()

In [47]: df_pop2.head()

Out[47]:

City Rank State Population Date of census NumericPopulation

Aarhus 92 Denmark 326,676 1 October 2014 326676

Alicante 86 Spain 334,678 1 January 2012 334678

Amsterdam 23 Netherlands 813,562 31 May 2014 813562

Antwerp 59 Belgium 510,610 1 January 2014 510610

Athens 34 Greece 664,046 24 May 2011 664046
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The sort_index method also accepts a list of column names, in which case a 

hierarchical index is created. A hierarchical index uses tuples of index labels to address 

rows in the data frame. We can use the sort_index method with the integer-valued 

argument level, to sort the rows in a DataFrame according to the nth level of the 

hierarchical index, where level=n. In the following example, we create a hierarchical 

index with State and City as indices, and we use the sort_index method to sort by the 

first index (State):

In [48]: df_pop3 = df_pop.set_index(["State", "City"]).sort_index(level=0)

In [49]: df_pop3.head(7)

Out[49]:

State City Rank Population Date of census

Austria Vienna 7 1794770 1 January 2015

Belgium Antwerp 59 510610 1 January 2014

Brussels 16 1175831 1 January 2014

Bulgaria Plovdiv 84 341041 31 December 2013

Sofia 14 1291895 14 December 2014

Varna 85 335819 31 December 2013

Croatia Zagreb 24 790017 31 March 2011

A DataFrame with a hierarchical index can be partially indexed using only its zeroth- 

level index (df3.loc["Sweden"]) or completely indexed using a tuple of all hierarchical 

indices (df3.loc[("Sweden", "Gothenburg")]):

In [50]: df_pop3.loc["Sweden"]

Out[50]:

City Rank Population Date of census NumericPopulation

Gothenburg 53 528,014 31 March 2013 528014

Malmö 102 309,105 31 March 2013 309105

Stockholm 20 909,976 31 January 2014 909976
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In [51]: df_pop3.loc[("Sweden", "Gothenburg")]

Out[51]: Rank                            53

         Population                 528,014

         Date of census       31 March 2013

         NumericPopulation           528014

         Name: (Sweden, Gothenburg), dtype: object

If we want to sort by a column rather than the index, we can use the sort_values 

method. It takes a column name, or a list of column names, with respect to which the 

DataFrame is to be sorted. It also accepts the keyword argument ascending, which is a 

Boolean or a list of Boolean values that specifies whether the corresponding column is to 

be sorted in ascending or descending order:

In [52]: df_pop.set_index("City").sort_values(["State", "NumericPopulation"],

    ...:                                       ascending=[False, True]).head()

Out[52]:

City Rank State Population Date of 

census

NumericPopulation

Nottingham 103 United 

Kingdom

308,735 30 June 2012 308735

Wirral 97 United 

Kingdom

320,229 30 June 2012 320229

Coventry 94 United 

Kingdom

323,132 30 June 2012 323132

Wakefield 91 United 

Kingdom

327,627 30 June 2012 327627

Leicester 87 United 

Kingdom

331,606 30 June 2012 331606
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With categorical data such as the State column, it is frequently of interest to 

summarize how many values of each category a column contains. Such counts can be 

computed using the value_counts method (of the Series object). For example, to count 

the number of cities each country has on the list of the 105 largest cities in Europe, we 

can use:

In [53]: city_counts = df_pop.State.value_counts()

In [54]: city_counts.head()

Out[54]: Germany           19

         United Kingdom    16

         Spain             13

         Poland            10

         Italy             10

         dtype: int64

In this example, we see from the results that the state with the largest number of 

cities in the list is Germany, with 19 cities, followed by the United Kingdom with 16 

cities, and so on. A related question is how large the total population of all cities within 

a state is. To answer this type of question, we can proceed in two ways: First, we can 

create a hierarchical index using State and City and use the sum method to reduce the 

DataFrame along one of the indices. In this case, we want to sum over all entries within 

the index level State, so we can use sum(level="State"), which eliminates the City 

index. For presentation we also sort the resulting DataFrame in descending order of the 

column NumericPopulation:

In [55]:  df_pop3 = df_pop[["State", "City", "NumericPopulation"]].set_

index(["State", "City"])

In [56]:  df_pop4 = df_pop3.sum(level="State").sort_

values("NumericPopulation", ascending=False)

In [57]: df_pop4.head()

Out[57]:
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State NumericPopulation

United Kingdom 16011877

Germany 15119548

Spain 10041639

Italy 8764067

Poland 6267409

Second, we can obtain the same results using the groupby method, which allows 

us to group rows of a DataFrame by the values of a given column, and apply a reduction 

function on the resulting object (e.g., sum, mean, min, max, etc.). The result is a new 

DataFrame with the grouped-by column as index. Using this method we can compute the 

total population of the 105 cities, grouped by state, in the following way:

In [58]: df_pop5 = (df_pop.drop("Rank", axis=1)

    ...:                  .groupby("State").sum()

    ...:                   .sort_values("NumericPopulation", 

ascending=False))

Note that here we also used the drop method to remove the Rank column (hence the 

axis=1, use axis=0 to drop rows) from the DataFrame (since it is not meaningful 

to aggregate the rank by summation). Finally, we use the plot method of the Series 

object to plot bar graphs for the city count and the total population. The results are 

shown in Figure 12-2.

In [59]: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))

     ...: city_counts.plot(kind='barh', ax=ax1)

    ...: ax1.set_xlabel("# cities in top 105")

    ...: df_pop5.NumericPopulation.plot(kind='barh', ax=ax2)

    ...: ax2.set_xlabel("Total pop. in top 105 cities")
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 Time Series
Time series are a common form of data in which a quantity is given, for example, at 

regularly or irregularly spaced timestamps or for fixed or variable time spans (periods). 

In pandas, there are dedicated data structures for representing these types of data. 

Series and DataFrame can have both columns and indices with data types describing 

timestamps and time spans. When dealing with temporal data, it is particularly useful 

to be able to index the data with time data types. Using pandas time-series indexers, 

DatetimeIndex and PeriodIndex, we can carry out many common date, time, period, 

and calendar operations, such as selecting time ranges and shifting and resampling of 

the data points in a time series.

To generate a sequence of dates that can be used as an index in a pandas Series 

or DataFrame objects, we can, for example, use the date_range function. It takes the 

starting point as a date and time string (or, alternatively, a datetime object from the 

Python standard library) as a first argument, and the number of elements in the range 

can be set using the periods keyword argument:

In [60]: pd.date_range("2015-1-1", periods=31)

Out[60]: <class 'pandas.tseries.index.DatetimeIndex'>

         [2015-01-01, ..., 2015-01-31]

         Length: 31, Freq: D, Timezone: None

Figure 12-2. The number of cities in the list of the top 105 most populated cities in 
Europe (left) and the total population in those cities (right), grouped by state
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To specify the frequency of the timestamps (which defaults to one day), we can use 

the freq keyword argument, and instead of using periods to specify the number of 

points, we can give both starting and ending points as date and time strings (or datetime 

objects) as the first and second arguments. For example, to generate hourly timestamps 

between 00:00 and 12:00 on 2015-01-01, we can use:

In [61]: pd.date_range("2015-1-1 00:00", "2015-1-1 12:00", freq="H")

Out[61]: <class 'pandas.tseries.index.DatetimeIndex'>

         [2015-01-01 00:00:00, ..., 2015-01-01 12:00:00]

         Length: 13, Freq: H, Timezone: None

The date_range function returns an instance of DatetimeIndex, which can be used, 

for example, as an index for a Series or DataFrame object:

In [62]: ts1 =  pd.Series(np.arange(31), index=pd.date_range("2015-1-1", 

periods=31))

In [63]: ts1.head()

Out[63]: 2015-01-01    0

         2015-01-02    1

         2015-01-03    2

         2015-01-04    3

         2015-01-05    4

         Freq: D, dtype: int64

The elements of a DatetimeIndex object can, for example, be accessed using 

indexing with date and time strings. An element in a DatetimeIndex is of the type 

Timestamp, which is a pandas object that extends the standard Python datetime object 

(see the datetime module in the Python standard library).

In [64]: ts1["2015-1-3"]

Out[64]: 2

In [65]: ts1.index[2]

Out[65]: Timestamp('2015-01-03 00:00:00', offset='D')

In many aspects, a Timestamp and datetime object are interchangeable, and the 

Timestamp class has, like the datetime class, attributes for accessing time fields such 

as year, month, day, hour, minute, and so on. However, a notable difference between 

Timestamp and datetime is that Timestamp stores a timestamp with nanosecond 

resolution, while a datetime object only uses microsecond resolution.
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In [66]: ts1.index[2].year, ts1.index[2].month, ts1.index[2].day

Out[66]: (2015, 1, 3)

In [67]: ts1.index[2].nanosecond

Out[67]: 0

We can convert a Timestamp object to a standard Python datetime object using the 

to_pydatetime method:

In [68]: ts1.index[2].to_pydatetime()

Out[68]: datetime.datetime(2015, 1, 3, 0, 0)

and we can use a list of datetime objects to create pandas time series:

In [69]: import datetime

In [70]: ts2 = pd.Series(np.random.rand(2),

    ...:                  index=[datetime.datetime(2015, 1, 1), datetime.

datetime(2015, 2, 1)])

In [71]: ts2

Out[71]: 2015-01-01    0.683801

         2015-02-01    0.916209

         dtype: float64

Data that is defined for sequences of time spans can be represented using Series 

and DataFrame objects that are indexed using the PeriodIndex class. We can construct 

an instance of the PeriodIndex class explicitly by passing a list of Period objects and 

then specify it as index when creating a Series or DataFrame object:

In [72]: periods = pd.PeriodIndex([pd.Period('2015-01'),

    ...:                           pd.Period('2015-02'),

    ...:                           pd.Period('2015-03')])

In [73]: ts3 = pd.Series(np.random.rand(3), index=periods)

In [74]: ts3

Out[74]: 2015-01    0.969817

         2015-02    0.086097

         2015-03    0.016567

         Freq: M, dtype: float64

In [75]: ts3.index

Out[75]: <class 'pandas.tseries.period.PeriodIndex'>

         [2015-01, ..., 2015-03]

         Length: 3, Freq: M
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We can also convert a Series or DataFrame object indexed by a DatetimeIndex 

object to a PeriodIndex using the to_period method (which takes an argument that 

specifies the period frequency, here 'M' for month):

In [76]: ts2.to_period('M')

Out[76]: 2015-01    0.683801

         2015-02    0.916209

         Freq: M, dtype: float64

In the remaining part of this section we explore select features of pandas time 

series through examples. We look at the manipulation of two time series that contain 

sequences of temperature measurements at given timestamps. We have one dataset 

for an indoor temperature sensor and one dataset for an outdoor temperature sensor, 

both with observations approximately every 10 minutes during most of 2014. The two 

data files, temperature_indoor_2014.tsv and temperature_outdoor_2014.tsv, are 

TSV (tab-separated values, a variant of the CSV format) files with two columns: the first 

column contains UNIX timestamps (seconds since Jan 1, 1970), and the second column 

is the measured temperature in degree Celsius. For example, the first five lines in the 

outdoor dataset are

In [77]: !head -n 5 temperature_outdoor_2014.tsv

1388530986    4.380000

1388531586    4.250000

1388532187    4.190000

1388532787    4.060000

1388533388    4.060000

We can read the data files using read_csv by specifying that the delimiter between 

columns is the TAB character: delimiter="\t". When reading the two files, we also 

explicitly specify the column names using the names keyword argument, since the files in 

this example do not have header lines with the column names.

In [78]: df1 = pd.read_csv('temperature_outdoor_2014.tsv', delimiter="\t",

    ...:                   names=["time", "outdoor"])

In [79]: df2 = pd.read_csv('temperature_indoor_2014.tsv', delimiter="\t",

    ...:                   names=["time", "indoor"])

Once we have created DataFrame objects for the time-series data, it is informative to 

inspect the data by displaying the first few lines:
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In [80]: df1.head()

Out[80]:

time outdoor

0 1388530986 4.38

1 1388531586 4.25

2 1388532187 4.19

3 1388532787 4.06

4 1388533388 4.06

The next step toward a meaningful representation of the time-series data is to 

convert the UNIX timestamps to date and time objects using to_datetime with the 

unit="s" argument. Furthermore, we localize the timestamps (assigning a time zone) 

using tz_localize and convert the time zone attribute to the Europe/Stockholm time 

zone using tz_convert. We also set the time column as index using set_index:

In [81]: df1.time = (pd.to_datetime(df1.time.values, unit="s")

    ...:               .tz_localize('UTC').tz_convert('Europe/Stockholm'))

In [82]: df1 = df1.set_index("time")

In [83]: df2.time = (pd.to_datetime(df2.time.values, unit="s")

    ...:               .tz_localize('UTC').tz_convert('Europe/Stockholm'))

In [84]: df2 = df2.set_index("time")

In [85]: df1.head()

Out[85]:

time outdoor

2014-01-01 00:03:06+01:00 4.38

2014-01-01 00:13:06+01:00 4.25

2014-01-01 00:23:07+01:00 4.19

2014-01-01 00:33:07+01:00 4.06

2014-01-01 00:43:08+01:00 4.06
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Displaying the first few rows of the data frame for the outdoor temperature dataset 

shows that the index now indeed is a date and time object. As we will see examples of 

such in the following, having the index of a time series represented as proper date and 

time objects (in contrast to using, e.g., integers representing the UNIX timestamps) 

allows us to easily perform many time-oriented operations. Before we proceed to explore 

the data in more detail, we first plot the two time series to obtain an idea of how the data 

looks like. For this we can use the DataFrame.plot method, and the results are shown 

in Figure 12-3. Note that there is data missing for a part of August. Imperfect data is a 

common problem, and handling missing data in a suitable manner is an important part 

of the mission statement of the pandas library.

In [86]: fig, ax = plt.subplots(1, 1, figsize=(12, 4))

    ...: df1.plot(ax=ax)

    ...: df2.plot(ax=ax)

Figure 12-3. Plot of the time series for indoor and outdoor temperature

It is also illuminating to display the result of the info method of the DataFrame 

object. Doing so tells us that there are nearly 50000 data points in this dataset and that it 

contains data points starting at 2014-01-01 00:03:06 and ending at 2014-12-30 23:56:35:

In [87]: df1.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 49548 entries, 2014-01-01 00:03:06+01:00 to 2014-12-30 

23:56:35+01:00

Data columns (total 1 columns):

outdoor    49548 non-null float64

dtypes: float64(1) memory usage: 774.2 KB
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A common operation on time series is to select and extract parts of the data. For 

example, from the full dataset that contains data for all of 2014, we may be interested in 

selecting out and analyzing only the data for the month of January. In pandas, we can 

accomplish this in a number of ways. For example, we can use Boolean indexing of a 

DataFrame to create a DataFrame for a subset of the data. To create the Boolean indexing 

mask that selects the data for January, we can take advantage of the pandas time-series 

features that allow us to compare the time-series index with string representations of a 

date and time. In the following code, the expressions like df1.index >= "2014-1-1", 

where df1.index is a time DateTimeIndex instance, result in a Boolean NumPy array 

that can be used as a mask to select the desired elements.

In [88]: mask_jan = (df1.index >= "2014-1-1") & (df1.index < "2014-2- 1")

In [89]: df1_jan = df1[mask_jan]

In [90]: df1_jan.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 4452 entries, 2014-01-01 00:03:06+01:00 to 2014-01-31 

23:56:58+01:00

Data columns (total 1 columns):

outdoor    4452 non-null float64

dtypes: float64(1) memory usage: 69.6 KB

Alternatively, we can use slice syntax directly with date and time strings:

In [91]: df2_jan = df2["2014-1-1":"2014-1-31"]

The results are two DataFrame objects, df1_jan and df2_jan, that contain data only 

for the month of January. Plotting this subset of the original data using the plot method 

results in the graph shown in Figure 12-4.

In [92]: fig, ax = plt.subplots(1, 1, figsize=(12, 4))

    ...: df1_jan.plot(ax=ax)

    ...: df2_jan.plot(ax=ax)
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Like the datetime class in Python’s standard library, the Timestamp class that is used 

in pandas to represent time values has attributes for accessing fields such as year, month, 

day, hour, minute, and so on. These fields are particularly useful when processing time 

series. For example, if we wish to calculate the average temperature for each month of 

the year, we can begin by creating a new column month, which we assign to the month 

field of the Timestamp values of the DatetimeIndex indexer. To extract the month field 

from each Timestamp value, we first call reset_index to convert the index to a column 

in the data frame (in which case the new DataFrame object falls back to using an integer 

index), after which we can use the apply function on the newly created time column.4

In [93]: df1_month = df1.reset_index()

In [94]: df1_month["month"] = df1_month.time.apply(lambda x: x.month)

In [95]: df1_month.head()

Out[95]:

time outdoor month

0 2014-01-01 00:03:06+01:00 4.38 1

1 2014-01-01 00:13:06+01:00 4.25 1

2 2014-01-01 00:23:07+01:00 4.19 1

3 2014-01-01 00:33:07+01:00 4.06 1

4 2014-01-01 00:43:08+01:00 4.06 1

4 We can also directly use the month method of the DatetimeIndex index object, but for the sake of 
demonstration, we use a more explicit approach here.

Figure 12-4. Plot of the time series for indoor and outdoor temperature for a 
selected month (January)
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Next, we can group the DataFrame by the new month field and aggregate the grouped 

values using the mean function for computing the average within each group.

In [96]: df1_month = df1_month.groupby("month").aggregate(np.mean)

In [97]: df2_month = df2.reset_index()

In [98]: df2_month["month"] = df2_month.time.apply(lambda x: x.month)

In [99]: df2_month = df2_month.groupby("month").aggregate(np.mean)

After having repeated the same process for the second DataFrame (indoor 

temperatures), we can combine df1_month and df2_month into a single DataFrame using 

the join method:

In [100]: df_month = df1_month.join(df2_month)

In [101]: df_month.head(3)

Out[101]:

time outdoor indoor

1 -1.776646 19.862590

2 2.231613 20.231507

3 4.615437 19.597748

In only a few lines of code, we have here leveraged some of the many data processing 

capabilities of pandas to transform and compute with the data. It is often the case that 

there are many different ways to combine the tools provided by pandas to do the same, 

or a similar, analysis. For the current example, we can do the whole process in a single 

line of code, using the to_period and groupby methods and the concat function (which 

like join combines DataFrame into a single DataFrame):

In [102]:  df_month = pd.concat([df.to_period("M").groupby(level=0).mean() 

for df in [df1, df2]],

     ...:                      axis=1)

In [103]: df_month.head(3)
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Out[103]:

time outdoor indoor

2014-01 -1.776646 19.862590

2014-02 2.231613 20.231507

2014-03 4.615437 19.597748

To visualize the results, we plot the average monthly temperatures as a bar plot and a 

boxplot using the DataFrame method plot. The result is shown in Figure 12-5.

In [104]: fig, axes = plt.subplots(1, 2, figsize=(12, 4))

     ...: df_month.plot(kind='bar', ax=axes[0])

     ...: df_month.plot(kind='box', ax=axes[1])

Finally, a very useful feature of the pandas time-series objects is the ability to up- 

and down-sample the time series using the resample method. Resampling means 

that the number of data points in a time series is changed. It can be either increased 

(up-sampling) or decreased (down-sampling). For up-sampling, we need to choose a 

method for filling in the missing values, and for down-sampling we need to choose a 

method for aggregating multiple sample points between each new sample point. The 

resample method expects as first argument a string that specifies the new period of data 

points in the resampled time series. For example, the string H represents a period of 

Figure 12-5. Average indoor and outdoor temperatures per month (left) and a 
boxplot for monthly indoor and outdoor temperature (right)
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one hour, the string D one day, the string M one month, and so on.5 We can also combine 

these in simple expressions, such as 7D, which denotes a time period of seven days. 

The resample method returns a resampler object for which we can invoke aggregation 

methods such as mean and sum, in order to obtain the resampled data.

To illustrate the use of the resample method, consider the previous two time series with 

temperature data. The original sampling frequency is roughly 10 minutes, which amounts to 

a lot of data points over a year. For plotting purposes, or if we want to compare the two time 

series, which are sampled at slightly different timestamps, it is often necessary to down-

sample the original data. This can give less busy graphs and regularly spaced time series 

that can be readily compared to each other. In the following code, we resample the outdoor 

temperature time series to four different sampling frequencies and plot the resulting time 

series. We also resample both the outdoor and indoor time series to daily averages that we 

subtract to obtain the daily average temperature difference between indoors and outdoors 

throughout the year. These types of manipulations are very handy when dealing with time 

series, and it is one of the many areas in which the pandas library really shines.

In [105]: df1_hour = df1.resample("H").mean()

In [106]: df1_hour.columns = ["outdoor (hourly avg.)"]

In [107]: df1_day = df1.resample("D").mean()

In [108]: df1_day.columns = ["outdoor (daily avg.)"]

In [109]: df1_week = df1.resample("7D").mean()

In [110]: df1_week.columns = ["outdoor (weekly avg.)"]

In [111]: df1_month = df1.resample("M").mean()

In [112]: df1_month.columns = ["outdoor (monthly avg.)"]

In [113]: df_diff =  (df1.resample("D").mean().outdoor - df2.resample("D").

mean().indoor)

In [114]: fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 6))

     ...: df1_hour.plot(ax=ax1, alpha=0.25)

     ...: df1_day.plot(ax=ax1)

     ...: df1_week.plot(ax=ax1)

     ...: df1_month.plot(ax=ax1)

     ...: df_diff.plot(ax=ax2)

     ...: ax2.set_title("temperature difference between outdoor and indoor")

     ...: fig.tight_layout()

5 There are a large number of available time-unit codes. See the sections on “Offset aliases” and 
“Anchored offsets” in the Pandas reference manual for details.
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As an illustration of up-sampling, consider the following example where we 

resample the data frame df1 to a sampling frequency of 5 minutes, using three different 

aggregation methods (mean, ffill for forward-fill, and bfill for back-fill). The original 

sample frequency is approximately 10 minutes, so this resampling is indeed up- 

sampling. The result is three new data frames that we combine into a single DataFrame 

object using the concat function. The first five rows in the data frame are also shown 

in the following example. Note that every second data point is a new sample point, 

and depending on the value of the aggregation method, those values are filled (or not) 

according to the specified strategies. When no fill strategy is selected, the corresponding 

values are marked as missing using the NaN value.

In [115]: pd.concat(

     ...:      [df1.resample("5min").mean().rename(columns={"outdoor": 

'None'}),

     ...:       df1.resample("5min").ffill().rename(columns={"outdoor": 

'ffill'}),

     ...:       df1.resample("5min").bfill().rename(columns={"outdoor": 

'bfill'})],

     ...:      axis=1).head()

Figure 12-6. Outdoor temperature, resampled to hourly, daily, weekly, and 
monthly averages (top). Daily temperature difference between outdoors and 
indoors (bottom)
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Out[115]:

time None ffill bfill

2014-01-01 00:00:00+01:00 4.38 4.38 4.38

2014-01-01 00:05:00+01:00 NaN 4.38 4.25

2014-01-01 00:10:00+01:00 4.25 4.25 4.25

2014-01-01 00:15:00+01:00 NaN 4.25 4.19

2014-01-01 00:20:00+01:00 4.19 4.19 4.19

 The Seaborn Graphics Library
The Seaborn graphics library is built on top of Matplotlib, and it provides functions 

for generating graphs that are useful when working with statistics and data analysis, 

including distribution plots, kernel-density plots, joint distribution plots, factor plot, 

heatmaps, facet plots, and several ways of visualizing regressions. It also provides 

methods for coloring data in graphs and numerous well-crafted color palettes. The 

Seaborn library is created with close attention to the aesthetics of the graphs it produces, 

and the graphs generated with the library tend to be both good looking and informative. 

The Seaborn library distinguishes itself from the underlying Matplotlib library in that it 

provides polished higher-level graph functions for a specific application domain, namely, 

statistical analysis and data visualization. The ease with which standard statistical graphs 

can be generated with the library makes it a valuable tool in exploratory data analysis.

To get started using the Seaborn library, we first set a style for the graphs it produces 

using the sns.set function. Here we choose to work with the style called darkgrid, 

which produces graphs with a gray background (also try the whitegrid style).

In [116]: sns.set(style="darkgrid")

Importing seaborn and setting a style for the library alters the default settings 

for how Matplotlib graphs appear, including graphs produced by the pandas library. 

For example, consider the following plot of the previously used indoor and outdoor 

temperature time series. The resulting graph is shown in Figure 12-7, and although 

the graph was produced using the pandas DataFrame method plot, using the sns.set 

function has changed the appearance of the graph (compare with Figure 12-3).
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In [117]: df1 = pd.read_csv('temperature_outdoor_2014.tsv', delimiter="\t",

     ...:                   names=["time", "outdoor"])

     ...: df1.time = (pd.to_datetime(df1.time.values, unit="s")

     ...:               .tz_localize('UTC').tz_convert('Europe/Stockholm'))

     ...: df1 = df1.set_index("time").resample("10min").mean()

In [118]: df2 = pd.read_csv('temperature_indoor_2014.tsv', delimiter="\t",

     ...:                   names=["time", "indoor"])

     ...: df2.time = (pd.to_datetime(df2.time.values, unit="s")

     ...:               .tz_localize('UTC').tz_convert('Europe/Stockholm'))

     ...: df2 = df2.set_index("time").resample("10min").mean()

In [119]: df_temp = pd.concat([df1, df2], axis=1)

In [120]: fig, ax = plt.subplots(1, 1, figsize=(8, 4))

     ...: df_temp.resample("D").mean().plot(y=["outdoor", "indoor"], ax=ax)

Figure 12-7. Time-series plot produced by Matplotlib using the Pandas library, 
with a plot style that is set up by the Seaborn library

The main strength of the Seaborn library, apart from generating good-looking 

graphics, is its collection of easy-to-use statistical plots. Examples of these are the 

kdeplot and distplot, which plot a kernel-density estimate plot and a histogram 

plot with a kernel-density estimate overlaid on top of the histogram, respectively. For 

example, the following two lines of code produce the graph shown in Figure 12-8. The 

solid blue and green lines in this figure are the kernel-density estimate that can also be 

graphed separately using the function kdeplot (not shown here).
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In [121]: sns.distplot(df_temp.to_period("M")["outdoor"]["2014-04"].

dropna().values, bins=50);

     ...: sns.distplot(df_temp.to_period("M")["indoor"]["2014-04"].

dropna().values, bins=50);

The kdeplot function can also operate on two-dimensional data, showing a contour 

graph of the joint kernel-density estimate. Relatedly, we can use the jointplot function 

to plot the joint distribution for two separate datasets. In the following example, we use 

the kdeplot and jointplot to show the correlation between the indoor and outdoor 

data series, which are resampled to hourly averages before visualized (we also drop 

missing values using dropna method, since the functions from the seaborn module do 

not accept arrays with missing data). The results are shown in Figure 12-9.

In [122]: sns.kdeplot(df_temp.resample("H").mean()["outdoor"].dropna().values,

     ...:              df_temp.resample("H").mean()["indoor"].dropna().

values, shade=False)

In [123]: with sns.axes_style("white"):

     ...:     sns.jointplot(df_temp.resample("H").mean()["outdoor"].values,

     ...:                    df_temp.resample("H").mean()["indoor"].values, 

kind="hex")

Figure 12-8. The histogram (bars) and kernel-density plots (solid lines) for the 
subset of the indoor and outdoor datasets that corresponds to the month of April
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The seaborn library also provides functions for working with categorical data. A 

simple example of a graph type that is often useful for datasets with categorical variables 

is the standard boxplot for visualizing the descriptive statistics (min, max, median, and 

quartiles) of a dataset. An interesting twist on the standard boxplot is violin plot, in 

which the kernel-density estimate is shown in the width of boxplot. The boxplot and 

violinplot functions can be used to produce such graphs, as shown in the following 

example, and the resulting graph is shown in Figure 12-10.

In [124]: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))

     ...: sns.boxplot(df_temp.dropna(), ax=ax1, palette="pastel")

     ...: sns.violinplot(df_temp.dropna(), ax=ax2, palette="pastel")

Figure 12-9. Two-dimensional kernel-density estimate contours (left) and the joint 
distribution for the indoor and outdoor temperature datasets (right). The outdoor 
temperatures are shown on the x axis and the indoor temperatures on the y axis.

Figure 12-10. A boxplot (left) and violin plot (right) for the indoor and outdoor 
temperature datasets
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As a further example of violin plots, consider the outdoor temperature dataset 

partitioned by the month, which can be produced by passing the month field of the 

index of the data frame as a second argument (used to group the data into categories). 

The resulting graph, which is shown in Figure 12-11, provides a compact and informative 

visualization of the distribution of temperatures for each month of the year.

In [125]: sns.violinplot(x=df_temp.dropna().index.month,

     ...:                y=df_temp.dropna().outdoor, color="skyblue");

Figure 12-11. Violin plot for the outdoor temperature grouped by month

Heatmaps are another type of graph that is handy when dealing with categorical 

variables, especially for variables with a large number of categories. The Seaborn library 

provides the function heatmap for generating this type of graphs. For example, working 

with the outdoor temperature dataset, we can create two categorical columns month and 

hour by extracting those fields from the index and assigning them to new columns in 

the data field. Next we can use the pivot_table function in pandas to pivot the columns 

into a table (matrix) where two selected categorical variables constitute the new index 

and columns. Here we pivot the temperature dataset so that the hours of the day are the 

columns and the months of the year are the rows (index). To aggregate the multiple data 

points that fall within each hour-month category, we use aggfunc=np.mean argument to 

compute the mean of all the values:
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In [126]: df_temp["month"] = df_temp.index.month

     ...: df_temp["hour"] = df_temp.index.hour

In [127]: table =  pd.pivot_table(df_temp, values='outdoor', 

index=['month'], columns=['hour'],

     ...:                        aggfunc=np.mean)

Once we have created a pivot table, we can visualize it as a heatmap using the 

heatmap function in Seaborn. The result is shown in Figure 12-12.

In [128]: fig, ax = plt.subplots(1, 1, figsize=(8, 4))

     ...: sns.heatmap(table, ax=ax)

Figure 12-12. A heatmap of the outdoor temperature data grouped by the hour of 
the day and month of the year

The Seaborn library contains much more statistical visualization tools than what we 

have been able to survey here. However, I hope that looking at a few examples of what 

this library can do illustrates the essence of the Seaborn library – that it is a convenient 

tool for statistical analysis and exploration of data, which is able to produce many 

standard statistical graphs with a minimum of effort. In the following chapters, we will 

see further examples of applications of the Seaborn library.
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 Summary
In this chapter we have explored data representation and data processing using the 

Pandas library, and we briefly surveyed the statistical graphics tools provided by the 

Seaborn visualization library. The Pandas library provides the backend of much of data 

wrangling done with Python. It achieves this by adding a higher-level abstraction layer in 

the data representation on top of NumPy arrays, with additional methods for operating 

on the underlying data. The ease with which data can be loaded, transformed, and 

manipulated makes it an invaluable part of the data processing workflow in Python. The 

pandas library also contains basic functions for visualizing the data that is represented by 

its data structures. Being able to quickly visualize data represented as Pandas series and 

data frames is an important tool in exploratory data analytics as well as for presentation. 

The Seaborn library takes this a step further and provides a rich collection of statistical 

graphs that can be produced often with a single line of code. Many functions in the 

Seaborn library can operate directly on Pandas data structures.

 Further Reading
A great introduction to the Pandas library is given by the original creator of the library 

in McKinney (2013), and it is also a rather detailed introduction to NumPy. The Pandas 

official documentation, available at http://pandas.pydata.org/pandas-docs/stable, 

also provides an accessible and very detailed description of the features of the library. 

Another good online resource for learning Pandas is http://github.com/jvns/pandas- 

cookbook. For data visualization, we have looked at the Seaborn library in this chapter, 

and it is well described in the documentation available on its web site. With respect to 

higher-level visualization tools, it is also worth exploring the ggplot library for Python, 

http://ggplot.yhathq.com, which is an implementation based on the renowned The 

Grammar of Graphics (L. Wilkinson, 2005). This library is also closely integrated with the 

Pandas library, and it provides statistical visualization tools that are convenient when 

analyzing data. For more information about visualization in Python, see, for example, 

Vaingast (2014).
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CHAPTER 13

Statistics
Statistics has long been a field of mathematics that is relevant to practically all applied 

disciplines of science and engineering, as well as business, medicine, and other 

fields where data is used for obtaining knowledge and making decisions. With the 

recent proliferation of data analytics, there has been a surge of renewed interest in 

statistical methods. Still, computer-aided statistics has a long history, and it is a field 

that traditionally has been dominated by domain-specific software packages and 

programming environments, such as the S language, and more recently its open source 

counterpart: the R language. The use of Python for statistical analysis has grown rapidly 

over the last several years, and by now there is a mature collection of statistical libraries 

for Python. With these libraries Python can match the performance and features of 

domain-specific languages in many areas of statistics, albeit not all, while also providing 

the unique advantages of the Python programming language and its environment. The 

Pandas library that we discussed in Chapter 12 is an example of a development within 

the Python community that was strongly influenced by statistical software, with the 

introduction of the data frame data structure to the Python environment. The NumPy and 

SciPy libraries provide computational tools for many fundamental statistical concepts, and 

higher-level statistical modeling and machine learning are covered by the statsmodels 

and scikit-learn libraries, which we will see more of in the following chapters.

In this chapter we focus on fundamental statistical applications using Python and in 

particular the stats module in SciPy. Here we discuss computing descriptive statistics, 

random numbers, random variables, distributions, and hypothesis testing. We defer 

more involved statistical modeling and machine-learning applications to the following 

chapters. Some fundamental statistical functions are also available through the NumPy 

library, such as its functions and methods for computing descriptive statistics and its 

module for generating random numbers. The SciPy stats module builds on top of 

NumPy and, for example, provides random number generators with more specialized 

distributions.
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 Importing Modules
In this chapter we mainly work with the stats module in SciPy, and following the 

convention to selectively import modules from SciPy, we here assume that this module, 

as well as the optimize module, is imported in the following way:

In [1]: from scipy import stats

   ...: from scipy import optimize

In addition, as usual we also require the NumPy and the Matplotlib libraries:

In [2]: import numpy as np

In [3]: import matplotlib.pyplot as plt

and for statistical graphs and styling, we use the Seaborn library:

In [4]: import seaborn as sns

In [5]: sns.set(style="whitegrid")

 Review of Statistics and Probability
We begin with a brief review of statistics, in order to introduce some of the key concepts 

and the notation that we use in this and the following chapters. Statistics deals 

with the collection and analysis of data for the purpose of gaining insights, drawing 

conclusions, and supporting decision-making. Statistical methods are necessary when 

we have incomplete information about a phenomenon. Typically we have incomplete 

information because we are unable to collect data from all members of a population 

or if there is uncertainty in observations that we make (e.g., due to measurement 

noise). When we are unable to survey an entire population, a randomly chosen sample 

can be studied instead, and we can use statistical methods and compute descriptive 

statistics (parameters such as the mean and the variances) to make inferences about the 

properties of the entire population (also called sample space) in a systematic manner 

and with controlled risks of error.

Statistical methods are built on the foundation provided by probability theory, 

with which we can model uncertainty and incomplete information using probabilistic, 

random variables. For example, with randomly selected samples of a population, we can 

hope to obtain representative samples whose properties can be used to infer properties 

of the entire population. In probability theory, each possible outcome for an observation 
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is given a probability, and the probability for all possible outcomes constitutes the 

probability distribution. Given the probability distribution, we can compute the 

properties of the population, such as its mean and variance, but for randomly selected 

samples, we only know the expected, or average, results.

In statistical analysis it is important to distinguish between population and sample 

statistics. Here we denote parameters of the population with Greek symbols and 

parameters of a sample with the corresponding population symbol with the added 

subscript x (or the symbol that is used to represent the sample). For example, the mean 

and the variance of a population are denoted with μ and σ2, and the mean and the 

variance of a sample x are denoted as μx and s x
2 . Furthermore, we denote variables 

representing a population (random variables) with capital letters, for example, X, and 

a set of sample elements is denoted with a lowercase letter, for example, x. A bar over 

a symbol denotes the average or mean, m = =
=
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have replaced the population mean μ with the sample mean μx and divided the sum with 

n − 1 rather than n. The reason for this is that one degree of freedom has been eliminated 

from the sample set when calculating the sample mean μx, so when computing the 

sample variance, only n − 1 degrees of freedom remains. Consequently, the way to 

compute the variance for a population and a sample is slightly different. This is reflected 

in functions we can use to compute these statistics in Python.

In Chapter 2 we have already seen that we can compute descriptive statistics for 

data using NumPy functions or the corresponding ndarray methods. For example, to 

compute the mean and the median of a dataset, we can use the NumPy functions mean 

and median:

In [6]: x = np.array([3.5, 1.1, 3.2, 2.8, 6.7, 4.4, 0.9, 2.2])

In [7]: np.mean(x)

Out[7]: 3.1
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In [8]: np.median(x)

Out[8]: 3.0

Similarly, we can use min and max functions or ndarray methods to compute the 

minimum and maximum values in the array:

In [9]: x.min(), x.max()

Out[9]: (0.90, 6.70)

To compute the variance and the standard deviation for a dataset, we use the var 

and std methods. By default the formula for the population variance and standard 

deviation is used (i.e., it is assumed that the dataset is the entire population).

In [10]: x.var()

Out[10]: 3.07

In [11]: x.std()

Out[11]: 1.7521415467935233

However, to change this behavior, we can use the argument ddof (delta degrees of 

freedom). The denominator in the expression for the variance is the number of elements 

in the array minus ddof, so to calculate the unbiased estimate of the variance and 

standard deviation from a sample, we need to set ddof=1:

In [12]: x.var(ddof=1)

Out[12]: 3.5085714285714293

In [13]: x.std(ddof=1)

Out[13]: 1.8731181032095732

In the following sections, we look into more detail on how to use NumPy and 

SciPy’s stats module to generate random numbers, represent random variables and 

distributions, and test hypotheses.

 Random Numbers
The Python standard library contains the module random, which provides functions for 

generating single random numbers with a few basic distributions. The random module 

in the NumPy module provides similar functionality but offers functions that generate 
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NumPy arrays with random numbers, and it has support for a wider selection of probability 

distributions. Arrays with random numbers are often practical for computational purposes, 

so here we focus on the random module in NumPy, and later also the higher-level functions 

and classes in scipy.stats, which build on top of and extend NumPy.

Earlier in this book, we have already used np.random.rand, which generates 

uniformly distributed floating-point numbers in the half-open interval [0, 1) (i.e., 0.0 is 

a possible outcome, but 1.0 is not). In addition to this function, the np.random module 

also contains a large collection of other functions for generating random numbers that 

cover different intervals, have different distributions, and take values of different types 

(e.g., floating-point numbers and integers). For example, the randn function produces 

random numbers that are distributed according to the standard normal distribution (the 

normal distribution with mean 0 and standard deviation 1), and the randint function 

generates uniformly distributed integers between a given low (inclusive) and high 

(exclusive) value. When the rand and randn functions are called without any arguments, 

they produce a single random number:

In [14]: np.random.rand()

Out[14]: 0.532833024789759

In [15]: np.random.randn()

Out[15]: 0.8768342101492541

However, passing the shape of the array as arguments to these functions produces 

arrays of random numbers. For example, here we generate a vector of length 5 using 

rand by passing a single argument 5 and a 2 × 4 array using randn by passing 2 and 4 

as arguments (higher-dimensional arrays are generated by passing the length of each 

dimension as arguments):

In [16]: np.random.rand(5)

Out[16]: array([ 0.71356403,  0.25699895,  0.75269361,  0.88387918,  0.15489908])

In [17]: np.random.randn(2, 4)

Out[17]: array([[ 3.13325952,  1.15727052,  1.37591514,  0.94302846],

                [ 0.8478706 ,  0.52969142, -0.56940469,  0.83180456]])
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To generate random integers using randint (see also random_integers), we need 

to either provide the upper limit for the random numbers (in which case the lower limit 

is implicitly zero) or provide both the lower and upper limits. The size of the generated 

array is specified using the size keyword arguments, and it can be an integer or a tuple 

that specifies the shape of a multidimensional array:

In [18]: np.random.randint(10, size=10)

Out[18]: array([0, 3, 8, 3, 9, 0, 6, 9, 2, 7])

In [19]: np.random.randint(low=10, high=20, size=(2, 10))

Out[19]: array([[12, 18, 18, 17, 14, 12, 14, 10, 16, 19],

                [15, 13, 15, 18, 11, 17, 17, 10, 13, 17]])

Note that the randint function generates random integers in the half-open interval 

[low, high). To demonstrate that the random numbers produced by rand, randn, and 

randint, indeed, are distributed differently, we can plot the histograms of say 10000 

random numbers produced by each function. The result is shown in Figure 13-1. We 

note that the distributions for rand and randint appear uniform but have different 

ranges and types, while the distribution of the numbers produced by randn resembles a 

Gaussian curve centered at zero, as expected.

In [20]: fig, axes = plt.subplots(1, 3, figsize=(12, 3))

    ...: axes[0].hist(np.random.rand(10000))

    ...: axes[0].set_title("rand")

    ...: axes[1].hist(np.random.randn(10000))

    ...: axes[1].set_title("randn")

     ...:  axes[2].hist(np.random.randint(low=1, high=10, size=10000), 

bins=9, align='left')

    ...: axes[2].set_title("randint(low=1, high=10)")
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In statistical analysis, it is often necessary to generate a unique list of integers. This 

corresponds to sampling (randomly selecting) items from a set (population) without 

replacement (so that we do not get the same item twice). From the NumPy random 

module, we can use the choice function to generate this type of random numbers. As the 

first argument, we can either provide a list (or array) with the values in the population or 

an integer that corresponds to the number of elements in the population. As the second 

argument, we give the number of values that are to be sampled. Whether the values are 

to be sampled with or without replacement can be specified using the replace keyword 

argument, which takes the Boolean values True or False. For example, to sample five 

unique (without replacement) items from the set of integers between 0 (inclusive) and 

10 (exclusive), we can use

In [21]: np.random.choice(10, 5, replace=False)

Out[21]: array([9, 0, 5, 8, 1])

When working with random number generation, it can be useful to seed the random 

number generator. The seed is a number that initializes random number generator 

to a specific state, so that once it has been seeded with a specific number, it always 

generates the same sequence of random numbers. This can be useful when testing and 

for reproducing previous results and occasionally in applications that require reseeding 

the random number generator (e.g., after having forked a process). To seed the random 

number generator in NumPy, we can use the seed function, which takes an integer as 

argument:

In [22]: np.random.seed(123456789)

In [23]: np.random.rand()

Out[23]: 0.532833024789759

Figure 13-1. Distributions for 10000 random numbers generated by the rand, 
randn, and randint functions in NumPy’s random module
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Note that after having seeded the random number generator with a specific number, 

here 123456789, the following calls to the random number generators always produce 

the same results:

In [24]: np.random.seed(123456789); np.random.rand()

Out[24]: 0.532833024789759

The seed of the random number generator is a global state of the np.random module. 

A finer level of control of the state of the random number generator can be achieved 

by using the RandomState class, which optionally takes a seed integer as argument to 

its initializer. The RandomState object keeps tracks of the state of the random number 

generator and allows maintaining several independent random number generators in 

the same program (which can be useful, e.g., when working with threaded applications). 

Once a RandomState object has been created, we can use methods of this object to 

generate random numbers. The RandomState class has methods that correspond to the 

functions that are available in np.random module. For example, we can use the method 

randn of the RandomState class to generate standard normal distributed  

random numbers:

In [25]: prng = np.random.RandomState(123456789)

In [26]: prng.randn(2, 4)

Out[26]: array([[ 2.212902,    2.1283978,   1.8417114,   0.08238248],

                [ 0.85896368, -0.82601643,  1.15727052,  1.37591514]])

Similarly, there are methods, rand, randint, rand_integers, and choice, which 

also correspond to the functions in the np.random module with the same name. It is 

considered good programming practice to use a RandomState instance rather than 

directly using the functions in the np.random module, because it avoids relying on 

a global state variable and improves the isolation of the code. This is an important 

consideration when developing library functions that use random numbers, but is 

perhaps less important in smaller applications and calculations.

In addition to the fundamental random number distributions we have looked at so 

far (discrete and continuous uniform distributions, randint and rand, and the standard 

normal distribution, randn), there are also functions, and RandomState methods, for 

a large number of probability distributions that occur in statistics. To mention just a 

few, there is the continuous χ2 distribution (chisquare), the Student’s t distribution 

(standard_t), and the F distribution (f):
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In [27]: prng.chisquare(1, size=(2, 2))

Out[27]: array([[ 0.78631596,  0.19891367],

                [ 0.11741336,  2.8713997 ]])

In [28]: prng.standard_t(1, size=(2, 3))

Out[28]: array([[ 0.39697518, -0.19469463,  1.15544019],

                [-0.65730814, -0.55125015,  0.13578694]])

In [29]: prng.f(5, 2, size=(2, 4))

Out[29]: array([[  0.45471421,  17.64891848,   1.48620557,   2.55433261],

                [  1.21823269,   3.47619315,   0.50835525,   0.70599655]])

and the discrete binomial distribution (binomial) and the Poisson distribution (poisson):

In [30]: prng.binomial(10, 0.5, size=10)

Out[30]: array([4, 5, 6, 7, 3, 5, 7, 5, 4, 5])

In [31]: prng.poisson(5, size=10)

Out[31]: array([3, 5, 5, 5, 0, 6, 5, 4, 6, 3])

For a complete list of available distribution functions, see the docstrings for the np.

random module, help(np.random), and the RandomState class. While it is possible to use 

the functions in np.random and methods in RandomState to draw random numbers from 

many different statistical distribution functions, when working with distributions there 

is a higher-level interface in the scipy.stats module that combines random number 

sampling with many other convenient functions for probability distributions. In the 

following section, we explore this in more detail.

 Random Variables and Distributions
In probability theory, the set of possible outcomes of a random process is called the 

sample space. Each element in the sample space (i.e., an outcome of an experiment 

or an observation) can be assigned a probability, and the probabilities of all possible 

outcomes define the probability distribution. A random variable is a mapping from the 

sample space to the real numbers or to integers. For example, the possible outcomes of 

a coin toss are head and tail, so the sample space is {head, tail}, and a possible random 

variable takes the value 0 for head and 1 for tail. In general there are many ways to 

define random variables for the possible outcomes of a given random process. Random 

variables are a problem-independent representation of a random process. It is easier 
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to work with random variables because they are described by numbers instead of 

outcomes from problem-specific sample spaces. A common step in statistical problem- 

solving is therefore to map outcomes to numerical values and figure out the probability 

distribution of those values.

Consequently, a random variable is characterized by its possible values and its 

probability distribution, which assigns a probability for each possible value. Each 

observation of the random variable results in a random number, and the distribution 

of the observed values are described by the probability distribution. There are two 

main types of distributions, discrete and continuous distributions, which are integer 

valued and real valued, respectively. When working with statistics, dealing with random 

variables is of central importance, and in practice this often means working with 

probability distributions. The SciPy stats module provides classes for representing 

random variables with a large number of probability distributions. There are two base 

classes for discrete and continuous random variables: rv_discrete and rv_continuous. 

These classes are not used directly, but rather used as base classes for random variables 

with specific distributions, and define a common interface for all random variable 

classes in SciPy stats. A summary of selected methods for discrete and continuous 

random variables is given in Table 13-1.

Table 13-1. Selected Methods for Discrete and Continuous Random Variables in 

the SciPy stats Module

Methods Description

pdf/pmf probability distribution function (continuous) or probability mass function 

(discrete).

cdf Cumulative distribution function.

sf Survival function (1 – cdf).

ppf percent-point function (inverse of cdf).

moment Noncentral moments of nth order.

stats Statistics of the distribution (typically the mean and variance, sometimes 

additional statistics).

(continued)
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There are a large number of classes for the discrete and continuous random variable 

in the SciPy stats module. At the time of writing, there are classes for 13 discrete 

and 98 continuous distributions, and these include the most commonly encountered 

distributions (and many less common). For a complete reference, see the docstring for 

the stats module: help(stats). In the following we explore some of the more common 

distributions, but the usage of all the other distributions follows the same pattern.

The random variable classes in the SciPy stats module have several use-cases. They 

are both representations of the distribution, which can be used to compute descriptive 

statistics and for graphing, and they can be used to generate random numbers following 

the given distribution using the rvs (random variable sample) method. The latter  

use- case is similar to what we used the np.random module for earlier in this chapter.

As a demonstration of how to use the random variable classes in SciPy stats, 

consider the following example where we create a normal distributed random variable 

with mean 1.0 and standard deviation 0.5:

In [32]: X = stats.norm(1, 0.5)

Now X is an object that represents a random variable, and we can compute 

descriptive statistics of this random variable using, for example, the mean, median, std, 

and var methods:

In [33]: X.mean()

Out[33]: 1.0

Methods Description

fit Fit distribution to data using a numerical maximum likelihood optimization (for 

continuous distributions).

expect expectation value of a function with respect to the distribution.

interval the endpoints of the interval that contains a given percentage of the distribution 

(confidence interval).

rvs random variable samples. takes as argument the size of the resulting array of 

samples.

mean, median, 

std, var

Descriptive statistics: mean, median, standard deviation, and the variance of the 

distribution.

Table 13-1. (continued)
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In [34]: X.median()

Out[34]: 1.0

In [35]: X.std()

Out[35]: 0.5

In [36]: X.var()

Out[36]: 0.25

Noncentral moments of arbitrary order can be computed with the moment method:

In [37]: [X.moment(n) for n in range(5)]

Out[37]: [1.0, 1.0, 1.25, 1.75, 2.6875]

And we can obtain a distribution-dependent list of statistics using the stats method 

(here, for a normal distributed random variable, we get the mean and the variance):

In [38]: X.stats()

Out[38]: (array(1.0), array(0.25))

We can evaluate the probability distribution function, the cumulative distribution 

function, the survival function, etc., using the methods pdf,  cdf, sf, etc. These all take a 

value, or an array of values, at which to evaluate the function:

In [39]: X.pdf([0, 1, 2])

Out[39]: array([ 0.10798193,  0.79788456,  0.10798193])

In [40]: X.cdf([0, 1, 2])

Out[40]: array([ 0.02275013,  0.5,         0.97724987])

The interval method can be used to compute the lower and upper values of x 

such that a given percentage of the probability distribution falls within the interval 

(lower, upper). This method is useful for computing confidence intervals and for 

selecting a range of x values for plotting:

In [41]: X.interval(0.95)

Out[41]: (0.020018007729972975, 1.979981992270027)

In [42]: X.interval(0.99)

Out[42]: (-0.28791465177445019, 2.2879146517744502)
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To build intuition for the properties of a probability distribution, it is useful to graph 

it, together with the corresponding cumulative probability function and the percent- 

point function. To make it easier to repeat this for several distributions, we first create a 

function plot_rv_distribution that plots the result of pdf or pmf, the cdf and sf, and 

ppf methods of the SciPy stats random variable objects, over an interval that contains 

99.9% of the probability distribution function. We also highlight the area that contains 

95% of the probability distribution using the fill_between drawing method:

In [43]: def plot_rv_distribution(X, axes=None):

    ...:      """Plot the PDF or PMF, CDF, SF and PPF of a given random 

variable"""

    ...:     if axes is None:

    ...:         fig, axes = plt.subplots(1, 3, figsize=(12, 3))

    ...:

    ...:     x_min_999, x_max_999 = X.interval(0.999)

    ...:     x999 = np.linspace(x_min_999, x_max_999, 1000)

    ...:     x_min_95, x_max_95 = X.interval(0.95)

    ...:     x95 = np.linspace(x_min_95, x_max_95, 1000)

    ...:

    ...:     if hasattr(X.dist, "pdf"):

    ...:         axes[0].plot(x999, X.pdf(x999), label="PDF")

    ...:         axes[0].fill_between(x95, X.pdf(x95), alpha=0.25)

    ...:     else:

    ...:          # discrete random variables do not have a pdf method, 

instead we use pmf:

    ...:         x999_int = np.unique(x999.astype(int))

    ...:         axes[0].bar(x999_int, X.pmf(x999_int), label="PMF")

    ...:     axes[1].plot(x999, X.cdf(x999), label="CDF")

    ...:     axes[1].plot(x999, X.sf(x999), label="SF")

    ...:     axes[2].plot(x999, X.ppf(x999), label="PPF")

    ...:

    ...:     for ax in axes:

    ...:         ax.legend()

Next we use this function to graph a few examples of distributions: the normal 

distribution, the F distribution, and the discrete Poisson distribution. The result is shown 

in Figure 13-2.
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In [44]: fig, axes = plt.subplots(3, 3, figsize=(12, 9))

     ...: X = stats.norm()

    ...: plot_rv_distribution(X, axes=axes[0, :])

    ...: axes[0, 0].set_ylabel("Normal dist.")

    ...: X = stats.f(2, 50)

    ...: plot_rv_distribution(X, axes=axes[1, :])

    ...: axes[1, 0].set_ylabel("F dist.")

    ...: X = stats.poisson(5)

    ...: plot_rv_distribution(X, axes=axes[2, :])

    ...: axes[2, 0].set_ylabel("Poisson dist.") 

Figure 13-2. Examples of probability distribution functions (PDF) or probability 
mass functions (PMFs), cumulative distribution functions (CDF), survival 
functions (SF), and percent-point functions (PPF) for a normal distribution (top), 
an F distribution (middle), and a Poisson distribution (bottom)
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In the examples so far, we have initiated an instance of a random variable class 

and computed statistics and other properties using method calls. An alternative way 

to use the random variable classes in SciPy’s stats module is to use class methods, for 

example, stats.norm.mean, and pass the distribution parameters as arguments (often 

loc and scale, as in this example for normally distributed values):

In [45]: stats.norm.stats(loc=2, scale=0.5)

Out[45]: (array(2.0), array(0.25))

which gives the same result as first creating an instance and then calling the 

corresponding method:

In [46]: stats.norm(loc=1, scale=0.5).stats()

Out[46]: (array(1.0), array(0.25))

Most methods in the rv_discrete and rv_continuous classes can be used as class 

methods in this way.

So far we have only looked at properties of the distribution function of random 

variables. Note that although a distribution function describes a random variable, the 

distribution itself is fully deterministic. To draw random numbers that are distributed 

according to the given probability distribution, we can use the rvs (random variable 

sample) method. It takes as argument the shape of the required array (can be an integer 

for a vector or a tuple of dimension lengths for a higher-dimensional array). Here we use 

rvs(10) to generate a one-dimensional array with ten values:

In [47]: X = stats.norm(1, 0.5)

In [48]: X.rvs(10)

Out[48]: array([2.106451,    2.0641989,   1.9208557,  1.04119124,  1.42948184,

                0.58699179,  1.57863526,  1.68795757, 1.47151423,  1.4239353 ])

To see that the resulting random numbers indeed are distributed according to the 

corresponding probability distribution function, we can graph a histogram of a large 

number of samples of a random variable and compare it to the probability distribution 

function. Again, to be able to do this easily for samples of several random variables, we 

create a function plot_dist_samples for this purpose. This function uses the interval 

method to obtain a suitable plot range for a given random variable object.
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In [49]: def plot_dist_samples(X, X_samples, title=None, ax=None):

    ...:      """ Plot the PDF and histogram of samples of a continuous 

random variable"""

    ...:     if ax is None:

    ...:          fig, ax = plt.subplots(1, 1, figsize=(8, 4))

     ...:

    ...:     x_lim = X.interval(.99)

    ...:     x = np.linspace(*x_lim, num=100)

     ...:

    ...:     ax.plot(x, X.pdf(x), label="PDF", lw=3)

    ...:     ax.hist(X_samples, label="samples", normed=1, bins=75)

    ...:     ax.set_xlim(*x_lim)

    ...:     ax.legend()

    ...:

    ...:     if title:

    ...:         ax.set_title(title)

    ...:     return ax

Note that in this function we have used the tuple unpacking syntax *x_lim, which 

distributes the elements in the tuple x_lim to different arguments for the function. In this 

case it is equivalent to np.linspace(x_lim[0], x_lim[1], num=100).

Next we use this function to visualize 2000 samples of three random variables with 

different distributions: here we use the Student’s t distribution, the χ2 distribution, 

and the exponential distribution, and the results are shown in Figure 13-3. Since 2000 

is a fairly large sample, the histogram graphs of the samples coincide well with the 

probability distribution function. With an even larger number of samples, the agreement 

can be expected to be even better.

In [50]: fig, axes = plt.subplots(1, 3, figsize=(12, 3))

    ...: N = 2000

    ...: # Student's t distribution

    ...: X = stats.t(7.0)

    ...: plot_dist_samples(X, X.rvs(N), "Student's t dist.", ax=axes[0])

    ...: # The chisquared distribution

    ...: X = stats.chi2(5.0)

    ...: plot_dist_samples(X, X.rvs(N), r"$\chi^2$ dist.", ax=axes[1])
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    ...: # The exponential distribution

    ...: X = stats.expon(0.5)

    ...: plot_dist_samples(X, X.rvs(N), "exponential dist.", ax=axes[2]) 

The opposite of drawing random samples from a known distribution function is to fit 

given probability distribution with unknown parameters to a set of data points. In such 

a fit, we typically wish to optimize the unknown parameters such that the likelihood of 

observing the given data is maximized. This is called a maximum likelihood fit. Many of 

the random variable classes in the SciPy stats module implements the method fit that 

performs such a fitting to given data. As a first example, consider drawing 500 random 

samples from the χ2 distribution with five degrees of freedom (df=5) and then refitting 

the random variables to the χ2 distribution using the fit method.

In [51]: X = stats.chi2(df=5)

In [52]: X_samples = X.rvs(500)

In [53]: df, loc, scale = stats.chi2.fit(X_samples)

In [54]: df, loc, scale

Out[54]: (5.2886783664198465, 0.0077028130326141243, 0.93310362175739658)

In [55]: Y = stats.chi2(df=df, loc=loc, scale=scale)

The fit method returns the maximum likelihood parameters of the distribution, 

for the given data. We can pass on those parameters to the initializer of the stats.chi2 

to create a new random variable instance Y. The probability distribution of Y should 

resemble the probability distribution of the original random variable X. To verify this we 

can plot the probability distribution functions for both random variables. The resulting 

graph is shown in Figure 13-4.

Figure 13-3. Probability distribution function (PDF) together with histograms of 
2000 random samples from the Student’s t distribution (left), the χ2 distribution 
(middle), and the exponential distribution (right)
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In [56]:  fig, axes = plt.subplots(1, 2, figsize=(12, 4))

    ...: x_lim = X.interval(.99)

    ...: x = np.linspace(*x_lim, num=100)

    ...:

    ...: axes[0].plot(x, X.pdf(x), label="original")

    ...: axes[0].plot(x, Y.pdf(x), label="recreated")

    ...: axes[0].legend()

    ...:

    ...: axes[1].plot(x, X.pdf(x) - Y.pdf(x), label="error")

    ...: axes[1].legend()

In this section we have explored how to use random variable objects from the SciPy 

stats model to describe random variables with various distributions and how they can 

be used to compute properties of the given distributions, as well as generating random 

variable samples and performing maximum likelihood fitting. In the following section, 

we see how to further use these random variable objects for hypothesis testing.

 Hypothesis Testing
Hypothesis testing is a cornerstone of the scientific method, which requires that claims 

are investigated objectively and that a claim is rejected or accepted on the basis of factual 

observations. Statistical hypothesis testing has a more specific meaning. It is a systematic 

methodology for evaluating if a claim, or a hypothesis, is reasonable or not, on the basis 

Figure 13-4. Original and recreated probability distribution function (left) and 
the error (right), from a maximum likelihood fit of 500 random samples of the 
original distribution
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of data. As such it is an important application of statistics. In this methodology, we 

formulate the hypothesis in terms of a null hypothesis, H0, which represents the currently 

accepted state of knowledge, and an alternative hypothesis, HA, which represents a 

new claim that challenges the current state of knowledge. The null hypothesis and the 

alternative hypothesis must be mutually exclusive and complementary, so that one and 

only one of the hypotheses is true.

Once H0 and HA are defined, the data that support the test must be collected, for 

example, through measurements, observations, or a survey. The next step is to find a 

test statistics that can be computed from the data and whose probability distribution 

function can be found under the null hypothesis. Next we can evaluate the data by 

computing the probability (the p-value) of obtaining the observed value of the test 

statistics (or a more extreme one) using the distribution function that is implied by the 

null hypothesis. If the p-value is smaller than a predetermined threshold, known as 

the significance level, and denoted by α (typically 5% or 1%), we can conclude that the 

observed data is unlikely to have been described by the distribution corresponding to 

the null hypothesis. In that case, we can therefore reject the null hypothesis in favor of 

the alternative hypothesis. The steps for carrying out a hypothesis test are summarized 

in the following list:

 1. Formulate the null hypothesis and the alternative hypothesis.

 2. Select a test statistics such that its sampling distribution under the 

null hypothesis is known (exactly or approximately).

 3. Collect data.

 4. Compute the test statistics from the data and calculate its p-value 

under the null hypothesis.

 5. If the p-value is smaller than the predetermined significance level 

α, we reject the null hypothesis. If the p-value is larger, we fail to 

reject the null hypothesis.

Statistical hypothesis testing is a probabilistic method, which means that we 

cannot be certain in the decision to reject or not to reject the null hypothesis. There 

can be two types of error: we can mistakenly reject the null hypothesis when in reality 

it should not be rejected, and we can fail to reject the null hypothesis when it should be 

rejected. These are called type I and type II errors, respectively. By choosing the required 

significance level, we can balance the trade-off between these two types of error.
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In general, the most challenging step in the method outlined in the preceding 

section is to know the sampling distribution of the test statistics. Fortunately many 

hypothesis tests fall in a few standard categories for which the probability distributions 

are known. A brief summary and overview of common hypothesis test cases and the 

corresponding distribution of their test statistics are given in Table 13-2. For motivations 

for why each of these tests is suitable for stated situations, and the full set of conditions 

for the validity of the tests, see statistics textbooks such as Wasserman (2004) or Rice 

(1995). The docstring for each listed functions in the SciPy stats module also contains 

further information about each test.

Table 13-2. Summary of Common Hypothesis Test Cases with the Corresponding 

Distributions and SciPy Functions

Null Hypothesis Distributions SciPy Functions for 
Test

test if the mean of a population is a given 

value.

Normal distribution (stats.

norm), or Student’s t 
distribution (stats.t)

stats.

ttest_1samp

test if the means of two random variables 

are equal (independent or paired samples).

Student’s t distribution

(stats.t)

stats.ttest_ind, 

stats.ttest_rel

test goodness of fit of a continuous 

distribution to data.

Kolmogorov-Smirnov 

distribution

stats.kstest

test if categorical data occur with given 

frequency (sum of squared normally 

distributed variables).

χ2 distribution (stats.chi2) stats.chisquare

test for the independence of categorical 

variables in a contingency table.

χ2 distribution (stats.chi2) stats.chi2_

contingency

test for equal variance in samples of two or 

more variables.

F distribution (stats.f) stats.barlett,

stats.levene

test for noncorrelation between two 

variables.

Beta distribution (stats.beta, 

stasts.mstats.betai)

stats.pearsonr, 

stats.spearmanr

test if two or more variables have the same 

population mean (aNOVa – analysis of 

variance) .

F distribution stats.f_oneway, 

stats.kruskal
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In the following we also look at examples of how the corresponding functions in 

SciPy stats module can be used to carry out steps 4 and 5 in the preceding procedure 

given: computing a test statistic and the corresponding p-value.

For example, a common null hypothesis is a claim that the mean μ of a population 

is a certain value μ0. We can then sample the population and use the sample mean x  

to form a test statistic z
x

n
=

-m
s

0

/
, where n is the sample size. If the population is large 

and the variance σ is known, then it is reasonable to use assume that the test statistic is 

normally distributed. If the variance is unknown, we can substitute σ2 with the sample 

variance s x
2 . The test statistic then follows the Student’s t distribution, which in the limit 

of a large number of samples approaches the normal distribution. Regardless of which 

distribution we end up using, we can compute a p-value for the test statistics using the 

given distribution.

As an example of how this type of hypothesis test can be carried out using the 

functions provided by the SciPy stats module, consider a null hypothesis that claims 

that a random variable X has mean μ0 = 1. Given samples of X, we then wish to test if the 

sampled data is compatible with the null hypothesis. Here we simulate the samples by 

drawing 100 random samples from a distribution slightly different than that claimed by 

the null hypothesis (using μ = 0.8):

In [57]: mu0, mu, sigma = 1.0, 0.8, 0.5

In [58]: X = stats.norm(mu, sigma)

In [59]: n = 100

In [60]: X_samples = X.rvs(n)

Given the sample data, X_samples, next we need to compute a test statistic. If the 

population standard deviation σ is known, as in this example, we can use z
x

n
=

-m
s

0

/
, 

which is normally distributed.

In [61]: z = (X_samples.mean() - mu0)/(sigma/np.sqrt(n))

In [62]: z

Out[62]: -2.8338979550098298

If the population variance is not known, we can use the sample standard deviation 

instead: t
x

nx

=
-m

s /
. However, in this case, the test statistics t follows the Student’s t 

distribution instead rather than the normal distribution. To compute t in this case, 
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we can use the NumPy method std with the ddof=1 argument to compute the sample 

standard deviation:

In [63]: t = (X_samples.mean() - mu0)/(X_samples.std(ddof=1)/np.sqrt(n))

In [64]: t

Out[64]: -2.9680338545657845

In either case we get a test statistics that we can compare with the corresponding 

distribution to obtain a p-value. For example, for a normal distribution, we can use a 

stats.norm instance to represent a normal distributed random variable, and with its ppf 

method, we can look up the statistics value that corresponds to a certain significance 

level. For a two-sided hypothesis test of significance level 5% (2.5% on each side), the 

statistics threshold is

In [65]: stats.norm().ppf(0.025)

Out[65]: -1.9599639845400545

Since the observed statistics is about -2.83, which is smaller than the threshold value 

–1.96 for a two-sided test with significance level 5%, we have sufficient grounds to reject 

the null hypothesis in this case. We can explicitly compute the p-value for the observed 

test statistics using the cdf method (multiplied by two for a two-sided test). The resulting 

p-value is indeed rather small, which supports the rejection of the null hypothesis:

In [66]: 2 * stats.norm().cdf(-abs(z))

Out[66]: 0.0045984013290753566

If we would like to use the t distribution, we can use the stats.t class instead of 

stats.norm. After computing the sample mean, x , only n − 1 degrees of freedom (df)  

remains in the sample data. The number of degrees of freedom is an important 

parameter for the t distribution, which we need to specify when we create the random 

variable instance:

In [67]: 2 * stats.t(df=(n-1)).cdf(-abs(t))

Out[67]: 0.0037586479674227209

The p-value is again very small, suggesting that we should reject the null hypothesis. 

Instead of explicitly carrying out these steps (computing the test statistics, then 

computing the p-value), there are built-in functions in SciPy’s stats module for carrying 

out many common tests, as summarized in Table 13-2. For the test we have used here, 

we can directly compute the test statistics and the p-value using the stats.ttest_1samp 

function:
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In [68]: t, p = stats.ttest_1samp(X_samples, mu)

In [69]: t

Out[69]: -2.9680338545657841

In [70]: p

Out[70]: 0.0037586479674227209

Again we see that the p-value is very small (the same value as in the preceding text) 

and that we should reject the null hypothesis. It is also illustrative to plot the distribution 

corresponding to the null hypothesis, together with the sampled data (see Figure 13-5):

In [71]: fig, ax = plt.subplots(figsize=(8, 3))

    ...: sns.distplot(X_samples, ax=ax)

    ...: x = np.linspace(*X.interval(0.999), num=100)

    ...: ax.plot(x, stats.norm(loc=mu, scale=sigma).pdf(x))

For another example, consider a two-variable problem, where the null hypothesis 

states that the population means of two random variables are equal (e.g., corresponding 

to independent subjects with and without treatment). We can simulate this type of test 

by creating two random variables with normal distribution, with a randomly chosen 

population means. Here we select 50 samples for each random variable.

In [72]: n, sigma = 50, 1.0

In [73]: mu1, mu2 = np.random.rand(2)

In [74]: X1 = stats.norm(mu1, sigma)

In [75]: X1_sample = X1.rvs(n)

In [76]: X2 = stats.norm(mu2, sigma)

In [77]: X2_sample = X2.rvs(n)

Figure 13-5. Distribution function according to the null hypothesis (light green) 
and the sample estimated distribution function (dark blue)
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We are interested in evaluating if the observed samples provide sufficient evidence 

that the two population means are not equal (rejecting the null hypothesis). For this 

situation, we can use the t test for two independent samples, which is available in SciPy 

stats.ttext_ind, which returns the test statistics and the corresponding p-value:

In [78]: t, p = stats.ttest_ind(X1_sample, X2_sample)

In [79]: t

Out[79]: -1.4283175246005888

In [80]: p

Out[80]: 0.15637981059673237

Here the p-value is about 0.156, which is not small enough to support rejecting the 

null hypothesis that the two means are different. In this example the two population 

means are indeed different:

In [81]: mu1, mu2

Out[81]: (0.24764580637159606, 0.42145435527527897)

However, the particular samples drawn from these distributions did not statistically 

prove that these means are different (an error of type II). To increase the power of the 

statistical test, we would need to increase the number of samples from each random 

variable.

The SciPy stats module contains functions for common types of hypothesis testing 

(see the summary in Table 13-2), and their use closely followed what we have seen in 

the examples in this section. However, some tests require additional arguments for 

distribution parameters. See the docstrings for each individual test function for details.

 Nonparametric Methods
So far we have described random variables with distributions that are completely 

determined by a few parameters, such as the mean and the variance for the normal 

distributions. Given the sampled data, we can fit a distribution function using maximum 

likelihood optimization with respect to the distribution parameters. Such distribution 

functions are called parametric, and statistical methods based on such distribution 

functions (e.g., a hypothesis test) are called parametric methods. When using those 

methods, we make a strong assumption that the sampled data is indeed described by 

the given distribution. An alternative approach to constructing a representation of an 
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unknown distribution function is kernel-density estimation (KDE), which can be viewed 

as a smoothened version of the histogram of the sampled data (see, e.g., Figure 13-6). 

In this method, the probability distribution is estimated by a sum of the kernel function 

centered at each data point f̂ x
n

K
x x

i

n
i( ) = -æ

è
ç

ö
ø
÷

=
å1

0· bw bw
, where bw is a free parameter 

known as the bandwidth and K is the kernel function (normalized so that it integrates to 

unity). The bandwidth is an important parameter that defines a scale for the influence 

of each term in the sum. A too broad bandwidth gives a featureless estimate of the 

probability distribution, and a too small bandwidth gives a noisy overly structured 

estimate (see the middle panel in Figure 13-6). Different choices of kernel functions are 

also possible. A Gaussian kernel is a popular choice, because of its smooth shape with 

local support, and it is relatively easy to perform computations with.

In SciPy’s the KDE method using a Gaussian kernel is implemented in the function 

stats.kde.gaussian_kde. This function returns a callable object that behaves as, 

and can be used as, a probability distribution function. For example, consider a set of 

samples, X_samples, drawn from a random variable X with unknown distribution (here 

simulated using the χ2 distribution with five degrees of freedom):

In [82]: X = stats.chi2(df=5)

In [83]: X_samples = X.rvs(100)

To compute the kernel-density estimate for the given data, we call the function 

stats.kde.guassian_kde with the array of sample points as argument:

In [84]: kde = stats.kde.gaussian_kde(X_samples)

Figure 13-6. Histogram (left), kernel-density estimation of the distribution 
function (middle), and both a histogram and the kernel-density estimate in the 
same graph (right)
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By default, a standard method for computing a suitable bandwidth is used, which 

often gives acceptable results. However, if we wish, we could also specify a function 

for computing the bandwidth, or directly setting the bandwidth, using the bw_method 

argument. To set a smaller bandwidth, we can, for example, use

In [85]: kde_low_bw = stats.kde.gaussian_kde(X_samples, bw_method=0.25)

The gaussian_kde function returns an estimate of the distribution function, which 

we, for example, can graph or use for other applications. Here we plot a histogram of the 

data and the two kernel-density estimates (with default and explicitly set bandwidth). 

For reference, we also plot the true probability distribution function for the samples. The 

result is shown in Figure 13-6.

In [86]: x = np.linspace(0, 20, 100)

In [87]: fig, axes = plt.subplots(1, 3, figsize=(12, 3))

    ...: axes[0].hist(X_samples, normed=True, alpha=0.5, bins=25)

    ...: axes[1].plot(x, kde(x), label="KDE")

    ...: axes[1].plot(x, kde_low_bw(x), label="KDE (low bw)")

    ...: axes[1].plot(x, X.pdf(x), label="True PDF")

    ...: axes[1].legend()

    ...: sns.distplot(X_samples, bins=25, ax=axes[2])

The seaborn statistical graphics library provides a convenient function for plotting 

both a histogram and the kernel-density estimation for a set of data: distplot. A graph 

produced by this function is shown in the right panel of Figure 13-6.

Given kernel-density estimate, we can also use it to generate new random numbers 

using the resample method, which takes the number of data points as arguments:

In [88]: kde.resample(10)

Out[88]: array([[1.75376869,  0.5812183,  8.19080268,  1.38539326,  7.56980335,

                1.16144715,  3.07747215,  5.69498716,  1.25685068,  9.55169736]])

The kernel-density estimate object does not directly contain methods for computing 

the cumulative distribution functions (CDF) and its inverse, the percent-point function 

(PPF). But there are several methods for integrating the kernel-density estimate of the 

probability distribution function. For example, for a one-dimensional KDE, we can use 

the integrate_box_1d to obtain the corresponding CDF:
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In [89]: def _kde_cdf(x):

    ...:     return kde.integrate_box_1d(-np.inf, x)

In [90]: kde_cdf = np.vectorize(_kde_cdf)

and can use the SciPy optimize.fsolve function to find the inverse (the PPF):

In [91]: def _kde_ppf(q):

     ...:      return optimize.fsolve(lambda x, q: kde_cdf(x) - q, kde.

dataset.mean(), args=(q,))[0]

    ...:                            

In [92]: kde_ppf = np.vectorize(_kde_ppf)

With the CDF and PPF for the kernel-density estimate, we can, for example, perform 

statistical hypothesis testing and compute confidence intervals. For example, using the 

kde_ppf function defined in the preceding section, we can compute an approximate 90% 

confidence interval for the mean of the population from which the sample was collected:

In [93]: kde_ppf([0.05, 0.95])

Out[93]: array([  0.39074674,  11.94993578])

As illustrated with this example, once we have a KDE that represents the probability 

distribution for a statistical problem, we can proceed with many of the same methods as 

we use in parametric statistics. The advantage of nonparametric methods is that we do 

not necessarily need to make assumptions about the shape of the distribution function. 

However, because nonparametric methods use less information (weaker assumptions) 

than parametric methods, their statistical power is lower. Therefore, if we can justify 

using a parametric method, then that is usually the best approach. Nonparametric 

methods offer a versatile generic approach that we can fall back on when parametric 

methods are not feasible.

 Summary
In this chapter we have explored how NumPy and the SciPy stats module can be used 

in basic statistical applications, including random number generation, for representing 

random variables and probability distribution functions, maximum likelihood fitting of 

distributions to data, and using probability distributions and test statistics for hypothesis 

testing. We also briefly looked at kernel-density estimation of an unknown probability 
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distribution, as an example of a nonparametric method. The concepts and methods 

discussed in this chapter are fundamental building blocks for working with statistics, and 

the computational tools introduced here also provide a foundation for many statistical 

applications. In the following chapters, we build on what has been discussed here and 

explore statistical modeling and machine learning in more depth.

 Further Reading
Good introductions to the fundamentals of statistics and data analysis are given in Rice 

(1995) and Wasserman (2004). A computationally oriented introduction to statistics 

is given in Dalgaard (2008), which, although it uses the R language, is relevant for 

statistics in Python too. There are also free online resources about statistics, for example, 

OpenIntro Statistics, which is available from www.openintro.org/stat/textbook.php.
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CHAPTER 14

Statistical Modeling
In the previous chapter, we covered basic statistical concepts and methods. In this 

chapter we build on the foundation laid out in the previous chapter and explore statistical 

modeling, which deals with creating models that attempt to explain data. A model can 

have one or several parameters, and we can use a fitting procedure to find the values of the 

parameter that best explains the observed data. Once a model has been fitted to data, it 

can be used to predict the values of new observations, given the values of the independent 

variables of the model. We can also perform statistical analysis on the data and the fitted 

model and try to answer questions such as if the model accurately explains the data, 

which factors in the model are more relevant (predictive) than others, and if there are 

parameters that do not contribute significantly to the predictive power of the model.

In this chapter we mainly use the statsmodels library. It provides classes and 

functions for defining statistical models and fitting them to observed data, for calculating 

descriptive statistics, and for carrying out statistical tests. The statsmodels library has 

some overlap with the SciPy stats module that we covered in the previous chapter, but 

it is mostly an extension of what is available in SciPy1. In particular, the main focus of the 

statsmodels library is on fitting models to data rather than probability distributions and 

random variables, for which in many cases it relies on the SciPy stats.

statsmodels The statsmodels library provides a rich set of functionality related 
to statistical tests and statistical modeling, including linear regression, logistic 
regression, and time-series analysis. For more information about the project 
and its documentation, see the project’s web page at http://statsmodels.
sourceforge.net. At the time of writing, the latest version of statsmodels is 0.9.0.

1 The statsmodels library originally started as a part of the SciPy stats module but was later 
moved to a project on its own. The SciPy stats library remains an important dependency for 
statsmodels.

http://statsmodels.sourceforge.net
http://statsmodels.sourceforge.net
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The statsmodels library is closely integrated with the Patsy library, which allows us to 

write statistical models as simple formulas. The Patsy library is one of the dependencies 

of the statsmodels library but can also be used with other statistical libraries as well, 

such as scikit-learn that will be discussed in Chapter 15. However, here we will introduce 

the Patsy library in the context of using it together with the statsmodels library.

patsy The patsy library provides features for defining statistical models 
with a simple formula language inspired by statistical software such as R. The 
patsy library is designed to be a companion library for statistical modeling 
packages, such as statsmodels. For more information about the project and its 
documentation, see the web page at http://patsy.readthedocs.org. At the 
time of writing, the most recent version of Patsy is 0.5.0.

 Importing Modules
In this chapter we work extensively with the statsmodels library. This library encourages 

an import convention that is slightly different than other libraries we have used so far: 

It provides api modules that collect the publically accessible symbols that the library 

provides. Here we assume that the statsmodels.api is imported under the name 

sm, and statsmodels.formula.api is imported as the name smf. We also require the 

statsmodels.graphics.api module to be imported as the name smg:

In [1]: import statsmodels.api as sm

In [2]: import statsmodels.formula.api as smf

In [3]: import statsmodels.graphics.api as smg

Since the statsmodels library internally uses the Patsy library, it is normally not 

necessary to access this library’s functions directly. However, here we directly use Patsy 

for demonstration purposes, and we therefore need to import the library explicitly:

In [4]: import patsy

As usual, we also require the Matplotlib, NumPy, and Pandas libraries to be imported as

In [5]: import matplotlib.pyplot as plt

In [6]: import numpy as np

In [7]: import pandas as pd
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and the SciPy stats module as

In [8]: from scipy import stats

 Introduction to Statistical Modeling
In this chapter we consider the following type of problem: For a set of response 

(dependent) variables Y and explanatory (independent) variables X, we wish to find 

a mathematical relationship (model) between Y and X. In general, we can write a 

mathematical model as a function Y = f (X). Knowing the function f (X) would allow us to 

compute the value of Y for any of values X. If we do not know the function f (X), but we 

have access to data for observations {yi, xi}, we can parameterize the function f (X) and 

fit the values of the parameters to the data. An example of a parameterization of f (X) is 

the linear model f (X) = β0+β1X, where the coefficients β0 and β1 are the parameters of the 

model. Typically we have many more data points than the number of free parameters 

in the model. In such cases we can, for example, use a least square fit that minimizes 

the norm of the residual r = Y − f (X), although other minimization objective functions 

can also be used2, for example, depending on the statistical properties of the residual r. 

So far we have described a mathematical model. The essential component that makes a 

model statistical is that the data {yi, xi} has an element of uncertainty, for example, due 

to measurement noise or other uncontrolled circumstances. The uncertainty in the data 

can be described in the model as random variables: For example, Y = f (X)+ε, where ε 

is a random variable. This is a statistical model because it includes random variables. 

Depending on how the random variables appear in the model and what distributions the 

random variables follow, we obtain different types of statistical models, which each may 

require different approaches to analyze and solve.

A typical situation where a statistical model can be used is to describe the 

observations yi in an experiment, where xi is a vector with control knobs that are 

recorded together with each observation. An element in xi may or may not be relevant 

for predicting the observed outcome yi, and an important aspect of statistical modeling 

is to determine which explanatory variables are relevant. It is of course also possible that 

there are relevant factors that are not included in the set of explanatory variables xi, but 

which influence the outcome of the observation yi. In this case, it might not be possible 

2 We will see examples of this later in Chapter 15, when we consider regularized regression.
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to accurately explain the data with the model. Determining if a model accurately 

explains the data is another essential aspect of statistical modeling.

A widely used statistical model is Y = β0 + β1 X + ε, where β0 and β1 are model 

parameters and ε is normally distributed with zero mean and variance σ2: ε~N(0, σ2). 

This model is known as simple linear regression if X is a scalar, multiple linear regression 

if X is a vector, and multivariate linear regression if Y is a vector. Because the residual 

ε is normally distributed, for all these cases, the model can be fitted to data using 

ordinary least squares (OLS). Relaxing the condition that the elements in Y, in the case of 

multivariate linear regression, must be independent and normally distributed with equal 

variance gives rise to variations of the model that can be solved with methods known as 

generalized least squares (GLS) and weighted least squares (WLS). All methods for solving 

statistical models typically have a set of assumptions that one has to be mindful of when 

applying the models. For standard linear regression, the most important assumption is 

that the residuals are independent and normally distributed.

The generalized linear model is an extension of the linear regression model that 

allows the errors in the response variable to have distributions other than the normal 

distribution. In particular, the response variable is assumed to be a function of a 

linear predictor and where the variance of the response variable can be a function of 

the variable’s value. This provides a broad generalization of the linear model that is 

applicable in many situations. For example, this enables modeling important types of 

problems where the response variable takes discrete values, such as binary outcomes of 

count values. The errors in the response variables of such models may follow different 

statistical distributions (e.g., the binomial and/or the Poisson distribution). Examples 

of these types of models include logistic regression for binary outcomes and Poisson 

regression for positive integer outcomes.

In the following sections, we will explore how statistical models of these types can be 

defined and solved using the Patsy and statsmodels libraries.

 Defining Statistical Models with Patsy
Common to all statistical modeling is that we need to make assumptions about the 

mathematical relation between the response variables Y and explanatory variables X.  

In the vast majority of cases, we are interested in linear models, such that Y can be 

written as a linear combination of the response variables X, or functions of the response 
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variables, or models that have a linear component. For example, Y = α1X1 + … + αnXn,  

Y = α1X + α2X 2 … + αnXn, and Y = α1 sin X1 + α2 cos X2 are all examples of such linear 

models. Note that for the model to be linear, we only need the relation to be linear with 

respect to the unknown coefficients α and not necessarily in the known explanatory 

variables X. In contrast, an example of a nonlinear model is Y =  exp (β0 + β1X), since 

in this case Y is not a linear function with respect to β0 and β1. However, this model is 

log-linear in the sense that taking the logarithm of the relation yields a linear model: 
�Y X= +b b0 1  for �Y Y= log . Problems that can be transformed into a linear model in this 

manner are the type of problems that can be handled with the generalized linear model.

Once the mathematical form of the model has been established, the next step is often 

to construct the so-called design matrices y and X such that the regression problem can 

be written in matrix form as y = Xβ + ε, where y is the vector (or matrix) of observations, 

β is a vector of coefficients, and ε is the residual (error). The elements Xij of the design 

matrix X are the values of the (functions of) explanatory variables corresponding to each 

coefficient βj and observation yi. Many solvers for statistical models in statsmodels and 

other statistical modeling libraries can take the design matrices X and y as input.

For example, if the observed values are y = [1, 2, 3, 4, 5] with two independent 

variables with corresponding values x1 = [6, 7, 8, 9, 10] and x2 = [11, 12, 13, 14, 15], and 

if the linear model under consideration is Y = β0 + β1X1 + β2X2 + β3X1X2, then the design 

matrix for the right-hand side is X = [1, x1, x2, x1x2]. We can construct this design matrix 

using the NumPy vstack function:

In [9]: y = np.array([1, 2, 3, 4, 5])

In [10]: x1 = np.array([6, 7, 8, 9, 10])

In [11]: x2 = np.array([11, 12, 13, 14, 15])

In [12]: X = np.vstack([np.ones(5), x1, x2, x1*x2]).T

In [13]: X

Out[13]: array([[   1.,    6.,   11.,   66.],

                [   1.,    7.,   12.,   84.],

                [   1.,    8.,   13.,  104.],

                [   1.,    9.,   14.,  126.],

                [   1.,   10.,   15.,  150.]])
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Given the design matrix X and observation vector y, we can solve for the unknown 

coefficient vector β, for example, using least square fit (see Chapters 5 and 6):

In [14]: beta, res, rank, sval = np.linalg.lstsq(X, y)

In [15]: beta

Out[15]: array([ -5.55555556e-01, 1.88888889e+00, -8.88888889e-01, -1.33226763e-15])

These steps are the essence of statistical modeling in its simplest form. However, 

variations and extensions to this basic method make statistical modeling a field in its 

own right and call for computational frameworks such as statsmodels for systematic 

analysis. For example, although constructing the design matrix X was straightforward 

in this simple example, it can be tedious for more involved models and if we wish to be 

able to easily change how the model is defined. This is where the Patsy library enters 

the picture. It offers a convenient (although not necessarily intuitive) formula language 

for defining a model and automatically constructing the relevant design matrices. 

To construct the design matrix for a Patsy formula, we can use the patsy.dmatrices 

function. It takes the formula as a string as the first argument and a dictionary-like object 

with data arrays for the response and explanatory variables as the second argument. 

The basic syntax for the Patsy formula is "y ~ x1 + x2 + ...", which means that y 

is a linear combination of the explanatory variables x1 and x2 (explicitly including an 

intercept coefficient). For a summary of the Patsy formula syntax, see Table 14-1.

As an introductory example, consider again the linear model Y = β0 + β1X1+ β2X2 + β3X1X2  

that we used earlier. To define this model with Patsy, we can use the formula "y ~ 1 

+ x1 + x2 + x1*x2". Note that we leave out coefficients in the model formula, as it is 

implicitly assumed that each term in the formula has a model parameter as a coefficient. 

In addition to specifying the formula, we also need to create a dictionary data that maps 

the variable names to the corresponding data arrays:

In [16]: data = {"y": y, "x1": x1, "x2": x2}

In [17]: y, X = patsy.dmatrices("y ~ 1 + x1 + x2 + x1*x2", data)

The result is two arrays y and X, which are the design matrices for the given data 

arrays and the specified model formula:

In [18]: y

Out[18]: DesignMatrix with shape (5, 1)

ChAPTeR 14  STATiSTiCAl Modeling



477

           y

           1

           2

           3

           4

           5

         Terms:

           'y' (column 0)

In [19]: X

Out[19]: DesignMatrix with shape (5, 4)

           Intercept  x1  x2  x1:x2

                   1   6  11     66

                   1   7  12     84

                   1   8  13    106

                   1   9  14    126

                   1  10  15    150

           Terms:

             'Intercept' (column 0)

             'x1' (column 1)

             'x2' (column 2)

             'x1:x2' (column 3)

These arrays are of type DesignMatrix, which is a Patsy-supplied subclass of the 

standard NumPy array, which contains additional metadata and an altered printing 

representation.

In [20]: type(X)

Out[20]: patsy.design_info.DesignMatrix

Note that the numerical values of the DesignMatrix array are equal to those of the 

explicitly constructed array that we produced earlier using vstack.

As a subclass of the NumPy ndarray, the arrays of type DesignMatrix are fully 

compatible with code that expects NumPy arrays as input. However, we can also 

explicitly cast a DesignMatrix instance into an ndarray object using the np.array 

function, although this normally should not be necessary.

ChAPTeR 14  STATiSTiCAl Modeling



478

In [21]: np.array(X)

Out[21]: array([[   1.,    6.,   11.,   66.],

                [   1.,    7.,   12.,   84.],

                [   1.,    8.,   13.,  104.],

                [   1.,    9.,   14.,  126.],

                [   1.,   10.,   15.,  150.]])

Alternatively, we can set the return_type argument to "dataframe", in which case 

the patsy.dmatrices function returns design matrices in the form of Pandas DataFrame 

objects. Also note that since DataFrame objects behave as dictionary-like objects, so we 

can use data frames to specify the model data as the second argument to the patsy.

dmatrices function.

In [22]: df_data = pd.DataFrame(data)

In [23]:  y, X = patsy.dmatrices("y ~ 1 + x1 + x2 + x1:x2", df_data, return_

type="dataframe")

In [24]: X

Out[24]:

Intercept x1 x2 x1:x2

0 1 6 11 66

1 1 7 12 84

2 1 8 13 104

3 1 9 14 126

4 1 10 15 150

With the help of Patsy, we have now automatically created the design matrices 

required for solving a statistical model, using, for example, the np.linalg.lstsq 

function (as we saw an example earlier), or using one of the many statistical model 

solvers provided by the statsmodels library. For example, to perform an ordinary linear 

regression (OLS), we can use the class OLS from the statsmodels library instead of using 

the lower-level method np.linalg.lstsq. Nearly all classes for statistical models in 

statsmodels take the design matrices y and X as the first and second arguments and 
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return a class instance that represents the model. To actually fit the model to the data 

encoded in the design matrices, we need to invoke the fit method, which returns a 

result object that contains fitted parameters (among other attributes):

In [25]: model = sm.OLS(y, X)

In [26]: result = model.fit()

In [27]: result.params

Out[27]: Intercept   -5.555556e-01

         x1           1.888889e+00

         x2          -8.888889e-01

         x1:x2       -8.881784e-16

         dtype: float64

Note that the result is equivalent to the least square fitting that we computed earlier 

in this chapter. Using the statsmodels formula API (the module that we imported as smf), 

we can directly pass the Patsy formula for the model when we create a model instance, 

which completely eliminates the need for first creating the design matrices. Instead of 

passing y and X as arguments, we then pass the Patsy formula and the dictionary-like 

object (e.g., a Pandas data frame) that contains the model data.

In [28]: model = smf.ols("y ~ 1 + x1 + x2 + x1:x2", df_data)

In [29]: result = model.fit()

In [30]: result.params

Out[30]: Intercept   -5.555556e-01

         x1           1.888889e+00

         x2          -8.888889e-01

         x1:x2       -8.881784e-16

         dtype: float64

The advantage of using statsmodels instead of explicitly constructing NumPy 

arrays and calling the NumPy least square model is, of course, that much of the 

process is automated in statsmodels, which makes it possible to add and remove 

terms in the statistical model without any extra work. Also, when using statsmodels, 

we have access to a large variety of linear model solvers and statistical tests for 

analyzing how well the model fits the data. For a summary of the Patsy formula 

language, see Table 14-1.
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Now that we have seen how a Patsy formula can be used to construct design 

matrices, or be used directly with one of the many statistical model classes from 

statsmodels, we briefly return to the syntax and notational conventions for Patsy 

formulae before we continue and look in more detail on different statistical models 

that are available in the statsmodels library. As mentioned in the preceding text, and 

Table 14-1. Simplified Summary of the Patsy Formula Syntax. For a complete 

specification of the formula syntax, see the Patsy documentation at http://patsy.

readthedocs.org/en/latest

Syntax Example Description

lhs ~ rhs y ~ x

(Equivalent to y ~ 

1 + x)

The ~ character is used to separate the left-hand side 

(containing the dependent variables) and the right-

hand side (containing the independent variables) of a 

model equation.

var * var x1*x2

(Equivalent to 

x1+x2+x1*x2)

An interaction term that implicitly contains all its 

lower-order interaction terms.

var + var + 

...

x1 + x2 + ...

(Equivalent to y ~ 

1 + x1 + x2)

The addition sign is used to denote the union of terms.

var:var x1:x2 The colon character denotes a pure interaction term 

(e.g., x1 ∙ x2).

f(expr) np.log(x), 

np.cos(x+y)

Arbitrary Python functions (often numPy functions) 

can be used to transform terms in the expression. The 

expression for the argument of a function is interpreted 

as an arithmetic expression rather than the set-like 

formula operations that are otherwise used in Patsy.

I(expr) I(x+y) I is a Patsy-supplied identity function that can be 

used to escape arithmetic expression so that they are 

interpreted as arithmetic operations.

C(var) C(x), C(x, Poly) Treat the variable x as a categorical variable, and 

expand its values into orthogonal dummy variables.

ChAPTeR 14  STATiSTiCAl Modeling

http://patsy.readthedocs.org/en/latest
http://patsy.readthedocs.org/en/latest


481

summarized in Table 14-1, the basic syntax for a model formula has the form “LHS ~ 

RHS”. The ~ character is used to separate the left-hand side (LHS) and the right-hand 

side (RHS) of the model equation. The LHS specifies the terms that constitute the 

response variables, and the RHS specifies the terms that constitute the explanatory 

variables. The terms in the LHS and RHS expressions are separated by + or – signs, but 

these should not be interpreted as arithmetic operators, but rather as set-union and 

set-difference operators. For example, a+b means that both a and b are included in the 

model, and -a means that the term a is not included in the model. An expression of the 

type a*b is automatically expanded to a + b + a:b, where a:b is the pure interaction 

term a ∙ b.

As a concrete example, consider the following formula and the resulting right-hand 

side terms (which we can extract from the design_info attribute using the term_names 

attribute):

In [31]: from collections import defaultdict

In [32]: data = defaultdict(lambda: np.array([]))

In [33]: patsy.dmatrices("y ~ a", data=data)[1].design_info.term_names

Out[33]: ['Intercept', 'a']

Here the two terms are Intercept and a, which correspond to constant and a linear 

dependence on a. By default Patsy always includes the intercept constant, which in the 

Patsy formula also can be written explicitly using y ~ 1 + a. Including the 1 in the Patsy 

formula is optional.

In [34]: patsy.dmatrices("y ~ 1 + a + b", data=data)[1].design_info.term_names

Out[34]: ['Intercept', 'a', 'b']

In this case we have one more explanatory variable (a and b), and here the intercept 

is explicitly included in the formula. If we do not want to include the intercept in the 

model, we can use the notation -1 to remove this term:

In [35]: patsy.dmatrices("y ~ -1 + a + b", data=data)[1].design_info.term_names

Out[35]: ['a', 'b']
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Expressions of the type a * b are automatically expanded to include all lower-order 

interaction terms:

In [36]: patsy.dmatrices("y ~ a * b", data=data)[1].design_info.term_names

Out[36]: ['Intercept', 'a', 'b', 'a:b']

Higher-order expansions work too:

In [37]: patsy.dmatrices("y ~ a * b * c", data=data)[1].design_info.term_names

Out[37]: ['Intercept', 'a', 'b', 'a:b', 'c', 'a:c', 'b:c', 'a:b:c']

To remove a specific term from a formula, we can write the term preceded by the 

minus operator. For example, to remove the pure third-order interaction term a:b:c 

from the automatic expansion of a*b*c, we can use

In [38]:  patsy.dmatrices("y ~ a * b * c - a:b:c", data=data)[1].design_

info.term_names

Out[38]: ['Intercept', 'a', 'b', 'a:b', 'c', 'a:c', 'b:c']

In Patsy, the + and - operators are used for set-like operations on sets of terms; if 

we need to represent the arithmetic operations, we need to wrap the expression in a 

function call. For convenience, Patsy provides an identity function with the name I 

that can be used for this purpose. To illustrate this point, consider the following two 

examples, which show the resulting terms for y ~ a + b and y ~ I(a + b):

In [39]: data = {k: np.array([]) for k in ["y", "a", "b", "c"]}

In [40]: patsy.dmatrices("y ~ a + b", data=data)[1].design_info.term_names

Out[40]: ['Intercept', 'a', 'b']

In [41]: patsy.dmatrices("y ~ I(a + b)", data=data)[1].design_info.term_names

Out[41]: ['Intercept', 'I(a + b)']

Here the column in the design matrix that corresponds to the term with the name 

I(a+b) is the arithmetic sum of the arrays for the variables a and b. The same trick must 

be used if we want to include terms that are expressed as a power of a variable:

In [42]: patsy.dmatrices("y ~ a**2", data=data)[1].design_info.term_names

Out[42]: ['Intercept', 'a']

In [43]: patsy.dmatrices("y ~ I(a**2)", data=data)[1].design_info.term_names

Out[43]: ['Intercept', 'I(a ** 2)']
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The notation I(...) that we used here is an example of a function call notation. We 

can apply transformations of the input data in a Patsy formula by including arbitrary 

Python function calls in the formula. In particular, we can transform the input data array 

using functions from NumPy:

In [44]:  patsy.dmatrices("y ~ np.log(a) + b", data=data)[1].design_info.

term_names

Out[44]: ['Intercept', 'np.log(a)', 'b']

Or we can even transform variables with arbitrary Python functions:

In [45]: z = lambda x1, x2: x1+x2

In [46]: patsy.dmatrices("y ~ z(a, b)", data=data)[1].design_info.term_names

Out[46]: ['Intercept', 'z(a, b)']

So far we have considered models with numerical response and explanatory 

variables. Statistical modeling also frequently includes categorical variables, which 

can take a discrete set of values that do not have a meaningful numerical order (e.g., 

“Female” or “Male”; type “A”, ”B”, or ”C”; etc.). When using such variables in a linear 

model, we typically need to recode them by introducing binary dummy variables. In a 

patsy formula any variable that does not have a numerical data type (float or int) will 

be interpreted as a categorical variable and automatically encoded accordingly. For 

numerical variables, we can use the C(x) notation to explicitly request that a variable x 

should be treated as a categorical variable.

For example, compare the following two examples that show the design matrix for 

the formula "y ~ - 1 + a" and "y ~ - 1 + C(a)", which corresponds to models where 

a is a numerical and categorical explanatory variable, respectively:

In [48]: data = {"y": [1, 2, 3], "a": [1, 2, 3]}

In [48]: patsy.dmatrices("y ~ - 1 + a", data=data, return_type="dataframe")[1]

Out[48]:

a

0 1

1 2

2 3
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For a numerical variable, the corresponding column in the design matrix simply 

corresponds to the data vector, while for a categorical variable C(a) new binary-valued 

columns with a mask-like encoding of individual values of the original variable are 

added to the design matrix:

In [49]:  patsy.dmatrices("y ~ - 1 + C(a)", data=data, return_

type="dataframe")[1]

Out[49]:

C(a)[1] C(a)[2] C(a)[3]

0 1 0 0

1 0 1 0

2 0 0 1

Variables with nonnumerical values are automatically interpreted and treated as 

categorical values:

In [50]: data = {"y": [1, 2, 3], "a": ["type A", "type B", "type C"]}

In [51]:  patsy.dmatrices("y ~ - 1 + a", data=data, return_type="dataframe")[1]

Out[51]:

a[type A] a[type B] a[type C]

0 1 0 0

1 0 1 0

2 0 0 1

The default type of encoding of categorical variables into binary-valued 

treatment fields can be changed and extended by the user. For example, to encode 

the categorical variables with orthogonal polynomials instead of treatment 

indicators, we can use C(a, Poly):

In [52]: patsy.dmatrices("y ~ - 1 + C(a, Poly)", data=data, return_

type="dataframe")[1]
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Out[52]:

C(a, Poly).Constant C(a, Poly).Linear C(a, Poly).Quadratic

0 1 -7.071068e-01 0.408248

1 1 -5.551115e-17 -0.816497

2 1 7.071068e-01 0.408248

The automatic encoding of categorical variables by Patsy is a very convenient aspect 

of Patsy formula, which allows the user to easily add and remove both numerical and 

categorical variables in a model. This is arguably one of the main advantages of using the 

Patsy library to define model equations.

 Linear Regression
The statsmodels library supports several types of statistical models that are applicable 

in varying situations, but nearly all follow the same usage pattern, which makes it easy 

to switch between different models. Statistical models in statsmodels are represented 

by model classes. These can be initiated given the design matrices for the response and 

explanatory variables of a linear model or given a Patsy formula and a data frame (or 

another dictionary-like object). The basic workflow when setting up and analyzing a 

statistical model with statsmodels includes the following steps:

 1. Create an instance of a model class, for example, using model = 

sm.MODEL(y, X) or model = smf.model(formula, data), where 

MODEL and model are the name of a particular model, such as OLS, 

GLS, Logit, etc. Here the convention is that uppercase names 

are used for classes that take design matrices as arguments and 

lowercase names for classes that take Patsy formulas and data 

frames as arguments.

 2. Creating a model instance does not perform any computations. To 

fit the model to the data, we must invoke the fit method, result = 

model.fit(), which performs the fit and returns a result object that 

has methods and attributes for further analysis.

 3. Print summary statistics for the result object returned by the 

fit method. The result object varies in content slightly for each 

statistical model, but most models implement the method 
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summary, which produces a summary text that describes the result 

of the fit, including several types of statistics that can be useful 

for judging if the statistical model successfully explains the data. 

Viewing the output from the summary method is usually a good 

starting point when analyzing the result of a fitting process.

 4. Post-process the model fit results: in addition to the summary 

method, the result object also contains methods and attributes 

for obtaining the fitted parameters (params), the residual for the 

model and the data (resid), the fitted values (fittedvalues), and a 

method for predicting the value of the response variables for new 

independent variables (predict).

 5. Finally, it may be useful to visualize the result of the fitting, for 

example, with the Matplotlib and Seaborn graphics libraries, 

of using some of the many graphing routines that are directly 

included in the statsmodels library (see the statsmodels.

graphics module).

To demonstrate this workflow with a simple example, in the following we consider 

fitting a model to generate data whose true value is y = 1 + 2x1 + 3x2 + 4x1x2. We begin with 

storing the data in a Pandas data frame object:

In [53]: N = 100

In [54]: x1 = np.random.randn(N)

In [55]: x2 = np.random.randn(N)

In [56]: data = pd.DataFrame({"x1": x1, "x2": x2})

In [57]: def y_true(x1, x2):

    ...:     return 1  + 2 * x1 + 3 * x2 + 4 * x1 * x2

In [58]: data["y_true"] = y_true(x1, x2)

Here we have stored the true value of y in the y_true column in the DataFrame object 

data. We simulate a noisy observation of y by adding a normal distributed noise to the 

true values and store the result in the y column:

In [59]: e = 0.5 * np.random.randn(N)

In [60]: data["y"] = data["y_true"] + e
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Now, from the data we know that we have two explanatory variables, x1 and x2, in 

addition to the response variable y. The simplest possible model we can start with is the 

linear model Y = β0 + β1x1 + β2x2, which we can define with the Patsy formula "y ~ x1 + x2".  

Since the response variable is continuous, it is a good starting point to fit the model to 

the data using ordinary linear squares, for which we can use the smf.ols class.

In [61]: model = smf.ols("y ~ x1 + x2", data)

In [62]: result = model.fit()

Remember that ordinary least square regression assumes that the residuals of the 

fitted model and the data are normally distributed. However, before analyzing the 

data, we might not know if this condition is satisfied or not. Nonetheless, we can start 

by fitting the data to the model and investigate the distribution of the residual using 

graphical methods and statistical tests (with the null hypothesis that the residuals are 

indeed normally distributed). A lot of useful information, including several types of test 

statistics, can be displayed using the summary method:

In [63]: print(result.summary())

                            OLS Regression Results 

===========================================================================

Dep. Variable:                      y   R-squared:                    0.380

Model:                            OLS   Adj. R-squared:               0.367

Method:                 Least Squares   F-statistic:                  29.76

Date:                Wed, 22 Apr 2015   Prob (F-statistic):        8.36e-11

Time:                        22:40:33   Log-Likelihood:             -271.52

No. Observations:                 100   AIC:                          549.0

Df Residuals:                      97   BIC:                          556.9

Df Model:                           2

Covariance Type:            nonrobust 

===========================================================================

                 coef    std err          t      P>|t|      [95.0% Conf. Int.]

------------------------------------------------------------------------------

Intercept      0.9868      0.382      2.581      0.011         0.228     1.746

x1             1.0810      0.391      2.766      0.007         0.305     1.857

x2             3.0793      0.432      7.134      0.000         2.223     3.936   

===========================================================================

Omnibus:                       19.951   Durbin-Watson:                   1.682
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Prob(Omnibus):                  0.000   Jarque-Bera (JB):               49.964

Skew:                          -0.660   Prob(JB):                     1.41e-11

Kurtosis:                       6.201   Cond. No.    1.32 

===========================================================================

Warnings: [1] Standard errors assume that the covariance matrix of the 

errors is correctly specified.

The output produced by the summary method is rather verbose, and a detailed 

description of all the information provided by this method is beyond the scope of 

this treatment. Instead, here we only focus on a few key indicators. To begin with, the 

R-squared value is a statistic that indicates how well the model fits the data. It can take 

values between 0 and 1, where an R-squared statistic of 1 corresponds to a perfect fit. 

The R-squared value of 0.380 reported in the preceding summary method is rather poor, 

and it indicates that we need to refine our model (which is expected, since we left out 

the interaction term x1 ∙ x2). We can also explicitly access the R-squared statistic from the 

result object using the rsquared attribute.

In [64]: result.rsquared

Out[64]: 0.38025383255132539

Furthermore, the coef column in the middle of the table provides the fitted model 

parameters. Assuming that the residuals indeed are normally distributed, the std err 

column provides an estimate of the standard errors for the model coefficients, and the t 

and P>|t| columns are the t-statistics and the corresponding p-value for the statistical 

test with the null hypothesis that the corresponding coefficient is zero. Therefore, while 

keeping in mind that this analysis assumes that the residuals are normally distributed, 

we can look for the columns with small p-values and judge which explanatory variables 

have coefficients that are very likely to be different from zero (meaning that they have a 

significant predictive power).

To investigate whether the assumption of normal distributed errors is justified, we 

need to look at the residuals of the model fit to the data. The residuals are accessible via 

the resid attribute of the result object:

In [65]: result.resid.head()

Out[65]: 0    -3.370455

         1    -11.153477

         2    -11.721319

         3    -0.948410
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         4    0.306215

         dtype: float64

Using these residuals, we can check for normality using the normaltest function 

from the SciPy stats module:

In [66]: z, p = stats.normaltest(result.fittedvalues.values)

In [67]: p

Out[67]: 4.6524990253009316e-05

For this example the resulting p-value is indeed very small, suggesting that we 

can reject the null hypothesis that the residuals are normally distributed (i.e., we can 

conclude that the assumption of normal distributed residuals is violated). A graphical 

method to check for normality of a sample is to use the qqplot from the statsmodels.

graphics module. The QQ-plot, which compares the sample quantiles with the 

theoretical quantiles, should be close to a straight line if the sampled values are indeed 

normally distributed. The following function call to smg.qqplot produces the QQ-plot 

shown in Figure 14-1:

In [68]: fig, ax = plt.subplots(figsize=(8, 4))

    ...: smg.qqplot(result.resid, ax=ax)

Figure 14-1. QQ-plot of a linear model with two explanatory variables without 
any interaction term
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As can be seen in Figure 14-1, the points in the QQ-plot significantly deviate from 

a linear relation, suggesting that the observed residuals are unlikely to be a sample of a 

normal distributed random variable. In summary, these indicators provide evidence that 

the model that we used is not sufficient and that we might need to refine the model. We 

can include the missing interaction term by adding it to the Patsy formula and repeat the 

steps from the previous analysis:

In [69]: model = smf.ols("y ~ x1 + x2 + x1*x2", data)

In [70]: result = model.fit()

In [71]: print(result.summary())

                            OLS Regression Results 

===========================================================================

Dep. Variable:                      y   R-squared:                       0.963

Model:                            OLS   Adj. R-squared:                  0.961

Method:                 Least Squares   F-statistic:                     821.8

Date:                Tue, 21 Apr 2015   Prob (F-statistic):           2.69e-68

Time:                        23:52:12   Log-Likelihood:                -138.39

No. Observations:                 100   AIC:                             284.8

Df Residuals:                      96   BIC:                             295.2

Df Model:                           3

Covariance Type:            nonrobust  

===========================================================================

                 coef    std err          t      P>|t|      [95.0% Conf. Int.]

------------------------------------------------------------------------------

Intercept      1.1023      0.100     10.996      0.000         0.903     1.301

x1             2.0102      0.110     18.262      0.000         1.792     2.229

x2             2.9085      0.095     30.565      0.000         2.720     3.097

x1:x2          4.1715      0.134     31.066      0.000         3.905     4.438 

==============================================================================

Omnibus:                        1.472   Durbin-Watson:                   1.912

Prob(Omnibus):                  0.479   Jarque-Bera (JB):                0.937

Skew:                           0.166   Prob(JB):                        0.626

Kurtosis:                       3.338   Cond. No.                         1.54 

==============================================================================

Warnings: [1] Standard errors assume that the covariance matrix of the 

errors is correctly specified.
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In this case we can see that the R-squared statistic is significantly higher, 0.963, 

indicating a nearly perfect correspondence between the model and the data.

In [72]: result.rsquared

Out[72]: 0.96252198253140375

Note that we can always increase the R-squared statistic by introducing more 

variables, but we want to make sure that we do not add variables with low predictive 

power (small coefficient and high corresponding p-value), since it would make the 

model susceptible to overfitting, and as usual we require that the residuals be normally 

distributed. Repeating the normality test and the QQ-plot from the previous analysis 

with the updated model results in a relatively high p-value (0.081) and a relatively linear 

QQ-plot (see Figure 14-2). This suggests that in this case the residuals could very well be 

normally distributed (as we know they are, by design, in this example).

In [73]: z, p = stats.normaltest(result.fittedvalues.values)

In [74]: p

Out[74]: 0.081352587523644201

In [75]: fig, ax = plt.subplots(figsize=(8, 4))

    ...: smg.qqplot(result.resid, ax=ax)

Figure 14-2. QQ-plot of a linear model with two explanatory variables with an 
interaction term
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Once we are satisfied with the fit of the model, we can extract the model coefficients 

from the result object using the params attribute.

In [76]: result.params

Out[76]: Intercept    1.102297

         x1           2.010154

         x2           2.908453

         x1:x2        4.171501

         dtype: float64

Also, we can predict the values of new observations using the predict method, 

which takes as argument a NumPy array or DataFrame object with values of the 

independent variables (x1 and x2 in this case). For example, since the current problem 

has only two independent variables, we can visualize the predictions of the model as a 

contour plot. To this end, we first construct a DataFrame object with the x1 and x2 values 

for which we want to predict the y-value using the fitted model.

In [77]: x = np.linspace(-1, 1, 50)

In [78]: X1, X2 = np.meshgrid(x, x)

In [79]: new_data = pd.DataFrame({"x1": X1.ravel(), "x2": X2.ravel()})

Using the predict method of the result object obtained from the fitting of the 

model, we can compute the predicted y values for the new set of values of the response 

variables.

In [80]: y_pred = result.predict(new_data)

The result is a NumPy array (vector) with the same length as the data vectors X1.

ravel() and X2.ravel(). To be able to plot the data using the Matplotlib contour 

function, we first resize the y_pred vector to a square matrix.

In [81]: y_pred.shape

Out[81]: (2500,)

In [82]: y_pred = y_pred.values.reshape(50, 50)

The contour graphs of the true model and the fitted model are shown in Figure 14-3, 

which demonstrate that the agreement of the model fitted to the 100 noisy observations 

of y is sufficient to reproduce the function rather accurately in this example.
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In [83]: fig, axes = plt.subplots(1, 2, figsize=(12, 5), sharey=True)

    ...: def plot_y_contour(ax, Y, title):

    ...:     c = ax.contourf(X1, X2, Y, 15, cmap=plt.cm.RdBu)

    ...:     ax.set_xlabel(r"$x_1$", fontsize=20)

    ...:     ax.set_ylabel(r"$x_2$", fontsize=20)

    ...:     ax.set_title(title)

    ...:     cb = fig.colorbar(c, ax=ax)

    ...:     cb.set_label(r"$y$", fontsize=20)

    ...:

    ...: plot_y_contour(axes[0], y_true(X1, X2), "true relation")

    ...: plot_y_contour(axes[1], y_pred, "fitted model")

In the example we have looked at here, we used the ordinary least square (ols) 

method to fit the model to the data. Several other options are also available, such as 

the robust linear model (rlm) that is suitable if there are significant outliers in the 

observations, and variants of the generalized linear model that is suitable, for example, 

if the response variable can take only discrete values. This is the topic of the following 

section. In the following chapter, we will also see examples of regularized regression, 

where the minimization objective is modified not only to minimize the square of the 

residuals but also, for example, to penalize large coefficients in the model.

Figure 14-3. The true relation and fit of the correct model to 100 samples from the 
true relation with normally distributed noise
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 Example Datasets
When working with statistical methods, it is helpful to have example datasets to 

explore. The statsmodels package provides an interface for loading example datasets 

from an extensive dataset repository3 of the R statistical software. The module sm.

datasets contains a function get_rdataset that can be used to load datasets listed on 

the page http://vincentarelbundock.github.io/Rdatasets/datasets.html. The 

get_rdataset function takes the name of the dataset and optionally also the name of a 

package (grouping of datasets).

For example, to load a dataset named Icecream from the package Ecdat, we can use

In [84]: dataset = sm.datasets.get_rdataset("Icecream", "Ecdat")

The result is a data structure with the dataset and metadata describing the dataset. 

The name of the dataset is given by the title attribute, and the __doc__ attribute 

contains an explanatory text describing the dataset (too long to display here):

In [85]: dataset.title

Out[85]: 'Ice Cream Consumption'

The data in the form of a Pandas DataFrame object is accessible via the data 

attribute:

In [86]: dataset.data.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 30 entries, 0 to 29

Data columns (total 4 columns):

cons      30 non-null float64

income    30 non-null int64

price     30 non-null float64

temp      30 non-null int64

dtypes: float64(2), int64(2)

memory usage: 1.2 KB

From the output given by the DataFrame method info, we can see that the Icecream 

dataset contains four variables: cons (consumption), income, price, and temp 

(temperature). Once a dataset is loaded, we can explore it and fit it to statistical models 

3 See http://vincentarelbundock.github.io/Rdatasets.
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following the usual procedures. For example, to model the consumption as a linear 

model with price and temperature as independent variables, we can use

In [87]: model = smf.ols("cons ~ -1 + price + temp", data=dataset.data)

In [88]: result = model.fit()

The result object can be analyzed using descriptive statistics and statistical tests, for 

example, starting with printing the output from the summary method, as we have seen 

before. We can also take a graphical approach and plot regression graphs, for example, 

using the plot_fit function in the smg module (see also the regplot function in the 

seaborn library):

In [89]: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))

     ...: smg.plot_fit(result, 0, ax=ax1)

    ...: smg.plot_fit(result, 1, ax=ax2)

From the regression plots shown in Figure 14-4, we can conclude that in this 

Icecream dataset the consumption seems linearly correlated to the temperature but 

has no clear dependence on the price (probably because the range of prices is rather 

small). Graphical tools such as plot_fit can be a useful tool when developing statistical 

models.

Figure 14-4. Regression plots for the fit of the consumption vs. price and 
temperature in the Icecream dataset
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 Discrete Regression
Regression with discrete dependent variables (e.g., binary outcomes) requires different 

techniques than the linear regression model that we have seen so far. The reason is that 

linear regression requires that the response variable is a normally distributed continuous 

variable, which cannot be used directly for a response variable that has only a few 

discrete possible outcomes, such as binary variables or variables taking positive integer 

values. However, using a suitable transformation, it is possible to map a linear predictor 

to an interval that can be interpreted as a probability of different discrete outcomes. 

For example, in the case of binary outcomes, one popular transformation is the logistic 

function log(p/(1 − p)) = β0 + β ∙ x, or p = (1 + exp (−β0 − β1 ∙ x))−1, which maps x ∈ [−∞, ∞] 

to p ∈ [0, 1]. In other words, the continuous or discrete feature vector x is mapped via 

the model parameters β0 and β1 and the logistic transformation onto a probability p. If 

p < 0.5, it can be taken to predict that y = 0, and p ≥ 0.5 can be taken to predict y = 1. This 

procedure, which is known as logistic regression, is an example of a binary classifier. We 

will see more about classifiers in Chapter 15 about machine learning.

The statsmodels library provides several methods for discrete regression, including 

the Logit class,4 the related Probit class (which uses a cumulative distribution function 

of the normal distribution rather than the logistic function to transform the linear 

predictor to the [0, 1] interval), the multinomial logistic regression class MNLogit (for 

more than two categories), and the Poisson regression class Poisson for Poisson-

distributed count variables (positive integers).

 Logistic Regression
As an example of how to perform a logistic regression with statsmodels, we first load a 

classic dataset using the sm.datasets.get_rdataset function, which contains sepal 

and petal lengths and widths for a sample of Iris flowers, together with a classification 

of the species of the flower. Here we will select a subset of the dataset corresponding to 

two different species and create a logistic model for predicting the type of species from 

the values of the petal length and width. The info method gives a summary of which 

variables contained in the dataset:

4 Logistic regression belongs to the class of model that can be viewed as a generalized linear 
model, with the logistic transformation as link function, so we could alternatively use sm.GLM or 
smf.glm.
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In [90]: df = sm.datasets.get_rdataset("iris").data

In [91]: df.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 150 entries, 0 to 149

Data columns (total 5 columns):

Sepal.Length    150 non-null float64

Sepal.Width     150 non-null float64

Petal.Length    150 non-null float64

Petal.Width     150 non-null float64

Species         150 non-null object

dtypes: float64(4), object(1)

memory usage: 7.0+ KB

To see how many unique types of species are present in the Species column, we can 

use the unique method for the Pandas series that is returned when extracting the column 

from the data frame object:

In [92]: df.Species.unique()

Out[92]: array(['setosa', 'versicolor', 'virginica'], dtype=object)

This dataset contains three different types of species. To obtain a binary variable that 

we can use as the response variable in a logistic regression, here we focus only on the 

data for the two species versicolor and virginica. For convenience we create a new data 

frame, df_subset, for the subset of the dataset corresponding to those species:

In [93]:  df_subset = df[df.Species.isin(["versicolor", "virginica"])].

copy()

To be able to use logistic regression to predict the species using the other variables as 

independent variables, we first need to create a binary variable that corresponds to the 

two different species. Using the map method of the Pandas series object, we can map the 

two species names into binary values 0 and 1.

In [94]:  df_subset.Species = df_subset.Species.map({"versicolor": 1, 

"virginica": 0})

We also need to rename the columns with names that contain period characters 

to names that are valid symbol names in Python (e.g., by replacing the “.” characters 

with “_”), or else Patsy formulas that include these column names will be interpreted 
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incorrectly. To rename the columns in a DataFrame object, we can use the rename 

method and pass a dictionary with name translations as the columns argument:

In [95]: df_subset.rename(columns={"Sepal.Length": "Sepal_Length",

    ...:                           "Sepal.Width": "Sepal_Width",

    ...:                           "Petal.Length": "Petal_Length",

    ...:                            "Petal.Width": "Petal_Width"}, 

inplace=True)

After these transformations we have a DataFrame instance that is suitable for use in a 

logistic regression analysis:

In [96]: df_subset.head(3)

Out[96]:

Sepal_Length Sepal_Width Petal_Length Petal_Width Species

50 7.0 3.2 4.7 1.4 1

51 6.4 3.2 4.5 1.5 1

52 6.9 3.1 4.9 1.5 1

To create a logistic model that attempts to explain the value of the Species variable 

with Petal_length and Petal_Width as independent variables, we can create an 

instance of the smf.logit class and use the Patsy formula "Species ~ Petal_Length + 

Petal_Width":

In [97]: model = smf.logit("Species ~ Petal_Length + Petal_Width", data=df_

subset)

As usual, we need to call the fit method of the resulting model instance to actually fit the 

model to the supplied data. The fit is performed with maximum likelihood optimization.

In [98]: result = model.fit()

Optimization terminated successfully.

          Current function value: 0.102818

          Iterations 10

As for regular linear regression, we can obtain a summary of the fit of the model to 

the data by printing the output produced by the summary method of the result object. In 

particular, we can see the fitted model parameters with an estimate for its z-score and 
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the corresponding p-value, which can help us judge whether an explanatory variable is 

significant or not in the model.

In [99]: print(result.summary())

                           Logit Regression Results 

===========================================================================

Dep. Variable:                Species   No. Observations:                  100

Model:                          Logit   Df Residuals:                       97

Method:                           MLE   Df Model:                            2

Date:                Sun, 26 Apr 2015   Pseudo R-squ.:                  0.8517

Time:                        01:41:04   Log-Likelihood:                -10.282

converged:                       True   LL-Null:                       -69.315 

LLR p-value:                 2.303e- 26   

===========================================================================

                  coef    std err         z      P>|z|      [95.0% Conf. Int.]

------------------------------------------------------------------------------

Intercept      45.2723     13.612     3.326      0.001        18.594    71.951

Petal_Length   -5.7545      2.306     -2.496     0.013       -10.274    -1.235

Petal_Width   -10.4467      3.756     -2.782     0.005       -17.808    -3.086 

===========================================================================

The result object for logistic regression also provides the method get_margeff, 

which returns an object that also implements a summary method that outputs 

information about the marginal effects of each explanatory variable in the model.

In [100]: print(result.get_margeff().summary())

        Logit Marginal Effects

=====================================

Dep. Variable:                Species

Method:                          dydx

At:                           overall   

===========================================================================

                  dy/dx   std err         z      P>|z|      [95.0% Conf. Int.]

------------------------------------------------------------------------------

Petal_Length    -0.1736      0.052     -3.347     0.001       -0.275    -0.072

Petal_Width     -0.3151      0.068     -4.608     0.000       -0.449    -0.181 

===========================================================================

ChAPTeR 14  STATiSTiCAl Modeling



500

When we are satisfied with the fit of the model to the data, we can, for example, 

use it to predict the value of the response variable for new values of the explanatory 

variables. For this we can use the predict method in the result object produced by the 

model fitting, and to it we need to pass a data frame object with the new values of the 

independent variables.

In [101]: df_new = pd.DataFrame({"Petal_Length": np.random.randn(20)*0.5 + 5,

     ...:                    "Petal_Width": np.random.randn(20)*0.5 + 1.7})

In [102]: df_new["P-Species"] = result.predict(df_new)

The result is an array with probabilities for each observation to correspond to the 

response y = 1, and by comparing this probability to the threshold value 0.5, we can 

generate predictions for the binary value of the response variable:

In [103]: df_new["P-Species"].head(3)

Out[103]: 0    0.995472

          1    0.799899

          2    0.000033

          Name: P-Species, dtype: float64

In [104]: df_new["Species"] = (df_new["P-Species"] > 0.5).astype(int)

The intercept and the slope of the line in the plane spanned by the coordinates 

Petal_Width and Petal_Length that define the boundary between a point that is 

classified as y = 0 and y = 1, respectively, can be computed from the fitted model 

parameters. The model parameters can be obtained using the params attribute of the 

result object:

In [105]: params = result.params

     ...: alpha0 = -params['Intercept']/params['Petal_Width']

     ...: alpha1 = -params['Petal_Length']/params['Petal_Width']

Finally, to access the model and its predictions for new data points, we plot a scatter 

plot of the fitted (squares) and predicted (circles) data where data corresponding to the 

species virginica is coded with blue (dark) color, and the species versicolor is coded with 

green (light) color. The result is shown in Figure 14-10.

In [106]: fig, ax = plt.subplots(1, 1, figsize=(8, 4))

     ...:  # species virginica

     ...: ax.plot(df_subset[df_subset.Species == 0].Petal_Length.values,
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     ...:          df_subset[df_subset.Species == 0].Petal_Width.values, 

's', label='virginica')

      ...: ax.plot(df_new[df_new.Species == 0].Petal_Length.values,

     ...:         df_new[df_new.Species == 0].Petal_Width.values,

     ...:          'o', markersize=10, color="steelblue", label='virginica 

(pred.)')

     ...:

     ...: # species versicolor

     ...: ax.plot(df_subset[df_subset.Species == 1].Petal_Length.values,

     ...:          df_subset[df_subset.Species == 1].Petal_Width.values, 

's', label='versicolor')

     ...: ax.plot(df_new[df_new.Species == 1].Petal_Length.values,

     ...:         df_new[df_new.Species == 1].Petal_Width.values,

     ...:          'o', markersize=10, color="green", label='versicolor 

(pred.)')

     ...:

     ...: # boundary line

     ...: _x = np.array([4.0, 6.1])

     ...: ax.plot(_x, alpha0 + alpha1 * _x, 'k')

     ...: ax.set_xlabel('Petal length')

     ...: ax.set_ylabel('Petal width')

     ...: ax.legend()

Figure 14-5. The result of a classification of Iris species using Logit regression with 
petal length and width and independent variables
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 Poisson Model
Another example of discrete regression is the Poisson model, which can describe a process 

where the response variable is a success count for many attempts that each has a low 

probability of success. The Poisson model is also an example of a model that can be treated 

with the generalized linear model, using the natural logarithm as the link function. To see 

how we can fit data to a Poisson model using the statsmodels library, we will analyze another 

interesting dataset from the R dataset repository: The discoveries dataset contains counts 

of the number of great discoveries between 1860 and 1959. Because of the nature of the 

data, it is reasonable to assume that the counts might be Poisson distributed. To explore 

this hypothesis, we begin with loading the dataset using the sm.datasets.get_rdataset 

function and display the first few values to obtain an understanding of the format of the data.

In [107]: dataset = sm.datasets.get_rdataset("discoveries")

In [108]:  df = dataset.data.set_index("time").rename(columns={"values": 

"discoveries"})

In [109]: df.head(10).T

Out[109]:

time 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869

discoveries 5 3 0 2 0 3 2 3 6 1

Here we can see that the dataset contains integer counts in the discoveries series 

and that the first few years in the series have on average a few great discoveries. To 

see if this is typical data for the entire series, we can plot a bar graph of the number of 

discoveries per year, as shown in Figure 14-6.

In [109]: fig, ax = plt.subplots(1, 1, figsize=(16, 4))

     ...: df.plot(kind='bar', ax=ax)

Figure 14-6. The number of great discoveries per year
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Judging from Figure 14-6, the number of great discoveries seems to be relatively 

constant over time, although a slightly declining trend might be noticeable. Nonetheless, 

the initial hypothesis that the number of discoveries might be Poisson distributed does 

not look immediately unreasonable. To explore this hypothesis more systematically, 

we can fit the data to a Poisson process, for example, using the smf.poisson class and 

the Patsy formula "discoveries ~ 1", which means that we model the discoveries 

variable with only an intercept coefficient (the Poisson distribution parameter).

In [110]: model = smf.poisson("discoveries ~ 1", data=df)

As usual we have to call the fit method to actually perform the fit of the model to 

the supplied data:

In [111]: result = model.fit()

Optimization terminated successfully.

          Current function value: 2.168457

          Iterations 7

The summary method of the result objects displays a summary of model fit and 

several fit statistics.

In [112]: print(result.summary())

                          Poisson Regression Results 

==============================================================================

Dep. Variable:            discoveries   No. Observations:                  100

Model:                        Poisson   Df Residuals:                       99

Method:                           MLE   Df Model:                            0

Date:                Sun, 26 Apr 2015   Pseudo R-squ.:                   0.000

Time:                        14:51:41   Log-Likelihood:                -216.85

converged:                       True   LL-Null:                       -216.85 

LLR p-value:                       nan 

==============================================================================

                 coef    std err          z      P>|z|      [95.0% Conf. Int.]

------------------------------------------------------------------------------

Intercept      1.1314      0.057     19.920      0.000         1.020     1.243 

==============================================================================
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The model parameters, available via the params attribute of the result object, are 

related to the λ parameter of the Poisson distribution via the exponential function (the 

inverse of the link function):

In [113]: lmbda = np.exp(result.params)

Once we have the estimated λ parameter of the Poisson distribution, we can, for 

example, compare the histogram of the observed count values with the theoretical 

counts, which we can obtain from a Poisson-distributed random variable from the SciPy 

stats library.

In [114]: X = stats.poisson(lmbda)

In addition to the fit parameters, we can also obtain estimated confidence intervals 

of the parameters using the conf_int method:

In [115]: result.conf_int()

Out[115]:

0 1

Intercept 1.020084 1.242721

To assess the fit of the data to the Poisson distribution, we also create random 

variables for the lower and upper bounds of the confidence interval for the model 

parameter:

In [116]: X_ci_l = stats.poisson(np.exp(result.conf_int().values)[0, 0])

In [117]: X_ci_u = stats.poisson(np.exp(result.conf_int().values)[0, 1])

Finally, we graph the histogram of the observed counts with the theoretical 

probability mass functions for the Poisson distributions corresponding to the fitted 

model parameter and its confidence intervals. The result is shown in Figure 14-7.

In [118]:  v, k = np.histogram(df.values, bins=12, range=(0, 12), 

normed=True)

In [119]: fig, ax = plt.subplots(1, 1, figsize=(12, 4))

     ...:  ax.bar(k[:-1], v, color="steelblue",  align='center', 

label='Discoveries per year')

     ...:  ax.bar(k-0.125, X_ci_l.pmf(k), color="red", alpha=0.5, 

align='center', width=0.25,
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     ...:        label='Poisson fit (CI, lower)')

     ...:  ax.bar(k, X.pmf(k), color="green",  align='center', width=0.5, 

label='Poisson fit')

     ...:  ax.bar(k+0.125, X_ci_u.pmf(k), color="red",  alpha=0.5, 

align='center', width=0.25,

     ...:        label='Poisson fit (CI, upper)')

     ...: ax.legend()

Figure 14-7. Comparison of histograms of the number of great discoveries per 
year and the probability mass function for the fitted Poisson model

The result shown in Figure 14-7 indicates that the dataset of great discoveries is not 

well described by a Poisson process, since the agreement between Poisson probability 

mass function and the observed counts deviates significantly. The hypothesis that the 

number of great discoveries per year is a Poisson process must therefore be rejected. 

A failure to fit a mode to a given dataset is of course a natural part of the statistical 

modeling process, and although the dataset turned out not to be Poisson distributed 

(perhaps because years with a large and small number of great discovers tend to be 

clustered together), we still have gained insight by the failed attempt to model it as such. 

Because of the correlations between the number of discoveries at any given year and its 

recent past, a time-series analysis such as discussed in the following section could be a 

better approach.
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 Time Series
Time-series analysis is an important field in statistical modeling that deals with 

analyzing and forecasting future values of data that is observed as a function of time. 

Time-series modeling differs in several aspects from the regular regression models 

that we have looked at so far. Perhaps most importantly, a time series of observations 

typically cannot be considered as a series of independent random samples from a 

population. Instead there is often a rather strong component of correlation between 

observations that are close to each other in time. Also, the independent variables in 

a time-series model are the past observations of the same series, rather than a set of 

distinct factors. For example, while a regular regression can describe the demand for a 

product as a function of its price, in a time-series model it is typical to attempt to predict 

the future values from the past observations. This is a reasonable approach when there 

are autocorrelations such as trends in the time series under consideration (e.g., daily or 

weekly cycles, or steady increasing trends, or inertia in the change of its value). Examples 

of time series include stock prices, and weather and climate observations, and many 

other temporal processes in nature and in economics.

An example of a type of statistical model for time series is the autoregressive (AR) 

model, in which a future value depends linearly on p previous values: 

Y Yt
n

p

n t n t= + +
=

-åb b e0
1

,  where β0 is a constant and βn,1 ≤ n ≤ N are the coefficients that 

define the AR model. The error εt is assumed to be white noise without autocorrelation. 

Within this model, all autocorrelation in the time series should therefore be captured by 

the linear dependence on the p previous values. A time series which depends linearly on 

only one previous value (in a suitable unit of time) can be fully modeled with an AR 

process with p=1, denoted as AR(1), and a time series that depends linearly on two 

previous values can be modeled by an AR(2) process, and so on. The AR model is a 

special case of the ARMA model, a more general model that also includes a moving 

average (MA) of q previous residuals of the series: Y Yt
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where the model parameters θn are the weight factors for the moving average. This model 

is known as the ARMA model and is denoted by ARMA(p, q), where p is the number of 

autoregressive terms and q is the number of moving-average terms. Many other models 

for time-series model exist, but the AR and ARMA capture the basic ideas that are 

fundamental to many time-series applications.
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The statsmodels library has a submodule dedicated to time-series analysis: sm.tsa, 

which implements several standard models for time-series analysis, as well as graphical 

and statistical analysis tools for exploring properties of time-series data. For example, 

let’s revisit the time series with outdoor temperature measurements used in Chapter 12  

and say that we want to predict the hourly temperature for a few days into the future 

based on previous observations using an AR model. For concreteness, we will take the 

temperatures measured during the month of March and predict the hourly temperature 

for the first 3 days of April. We first load the dataset into a Pandas DataFrame object:

In [120]:  df = pd.read_csv("temperature_outdoor_2014.tsv", header=None, 

delimiter="\t", names=["time", "temp"])

     ...: df.time = pd.to_datetime(df.time, unit="s")

     ...: df = df.set_index("time").resample("H").mean()

For convenience we extract the observations for March and April and store them in 

new DataFrame objects, df_march and df_april, respectively:

In [121]: df_march = df[df.index.month == 3]

In [122]: df_april = df[df.index.month == 4]

Here we will attempt to model the time series of the temperature observations using 

the AR model, and an important condition for its applicability is that it is applied to 

a stationary process, which does not have autocorrelation or trends other than those 

explained by the terms in the model. The function plot_acf in the smg.tsa model is a 

useful graphical tool for visualizing autocorrelation in a time series. It takes an array of 

time-series observations and graphs the autocorrelation with increasing time delay on 

the x axis. The optional lags argument can be used to determine how many time steps 

are to be included in the plot, which is useful for long time series and when we only 

wish to see the autocorrelation for a limited number of time steps. The autocorrelation 

functions for the temperature observations and its first-, second-, and third-order 

differences are generated and graphed using the plot_acf function in the following 

code, and the resulting graph is shown in Figure 14-8.

In [123]: fig, axes = plt.subplots(1, 4, figsize=(12, 3))

     ...: smg.tsa.plot_acf(df_march.temp, lags=72, ax=axes[0])

     ...:  smg.tsa.plot_acf(df_march.temp.diff().dropna(), lags=72, 

ax=axes[1])
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     ...:  smg.tsa.plot_acf(df_march.temp.diff().diff().dropna(), lags=72, 

ax=axes[2])

     ...:  smg.tsa.plot_acf(df_march.temp.diff().diff().diff().dropna(), 

lags=72, ax=axes[3])

Figure 14-8. Autocorrelation function for temperature data at increasing order of 
differentiation, from left to right

We can see a clear correlation between successive values in the time series in 

the leftmost graph of Figure 14-8, but for increasing order, differencing of the time 

series reduces the autocorrelation significantly. Suggesting that while each successive 

temperature observation is strongly correlated with its preceding value, such 

correlations are not as strong for the higher-order changes between the successive 

observations. Taking the difference of a time series is often a useful way of detrending it 

and eliminating correlation. The fact that taking differences diminishes the structural 

autocorrelation suggests that a sufficiently high-order AR model might be able to model 

the time series.

To create an AR model for the time series under consideration, we can use the sm.

tsa.AR class. It can, for example, be initiated with Pandas series that is indexed by 

DatetimeIndex or PeriodIndex (see the docstring of AR for alternative ways of pass time-

series data to this class):

In [124]: model = sm.tsa.AR(df_march.temp)

When we fit the model to the time-series data, we need to provide the order of the AR 

model. Here, since we can see a strong autocorrelation with a lag of 24 periods (24 hours) 

in Figure 14-8, we must at least include terms for 24 previous terms in the model. To be 

on the safe side, and since we aim to predict the temperature for 3 days, or 72 hours, here 

we choose to make the order of the AR model correspond to 72 hours as well:

In [125]: result = model.fit(72)
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An important condition for the AR process to be applicable is that the residuals of the 

series are stationary (no remaining autocorrelation and no trends). The Durbin-Watson 

statistical test can be used to test for stationary in a time series. It returns a value between 

0 and 4, and values close to 2 correspond to time series that do not have remaining 

autocorrelation. We can also use the plot_acf function to graph the autocorrelation 

function for the residuals and to verify that the there is no significant autocorrelation.

In [126]: sm.stats.durbin_watson(result.resid)

Out[126]: 1.9985623006352975

We can also use the plot_acf function to graph the autocorrelation function for the 

residual and verify that the there is no significant autocorrelation.

In [127]: fig, ax = plt.subplots(1, 1, figsize=(8, 3))

     ...: smg.tsa.plot_acf(result.resid, lags=72, ax=ax)

Figure 14-9. Autocorrelation plot for the residual from the AR(72) model for the 
temperature observations

The Durbin-Watson statistic close to 2 and the absence of autocorrelation in 

Figure 14-9 suggest that the current model successfully explains the fitted data. We can 

now proceed to forecast the temperature for future dates using the predict method in 

the result object returned by the model fit method:

In [128]: temp_3d_forecast = result.predict("2014-04-01", "2014-04-4")

Next we graph the forecast (red) together with the previous 3 days of temperature 

observations (blue) and the actual outcome (green), for which the result is shown in 

Figure 14-10:
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In [129]: fig, ax = plt.subplots(1, 1, figsize=(12, 4))

     ...:  ax.plot(df_march.index.values[-72:], df_march.temp.values[-72:], 

label="train data")

     ...:  ax.plot(df_april.index.values[:72], df_april.temp.values[:72], 

label="actual outcome")

     ...:  ax.plot(pd.date_range("2014-04-01", "2014-04-4", freq="H").values,  

temp_3d_forecast, label="predicted outcome")

      ...:

     ...: ax.legend()

The agreement of the predicted temperature and the actual outcome shown in 

Figure 14-10 is rather good. However, this will of course not always be the case, as the 

temperature cannot be forecasted based solely on previous observations. Nonetheless, 

within a period of a stable weather system, the hourly temperature of a day may be 

accurately forecasted with an AR model, accounting for the daily variations and other 

steady trends.

In addition to the basic AR model, statsmodels also provides the ARMA 

(autoregressive moving average) and ARIMA (autoregressive integrated moving average) 

models. The usage patterns for these models are similar to that of the AR model we have 

used here, but there are some differences in the details. Refer to the docstrings for sm.

tsa.ARMA and sm.tsa.ARIMA classes and the official statsmodels documentation for 

further information.

Figure 14-10. Observed and predicted temperatures as a function of time
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 Summary
In this chapter we have briefly surveyed statistical modeling and introduced basic 

statistical modeling features of the statsmodels library and model specification using 

Patsy formulas. Statistical modeling is a broad field, and we only scratched the surface 

of what the statsmodels library can be used for in this chapter. We began with an 

introduction of how to specify statistical models using the Patsy formula language, which 

we used in the section on “Linear Regression” for response variables that are continuous 

(regular linear regression) and discrete (logistic and nominal regression). After having 

covered linear regression, we briefly looked at time-series analysis, which requires 

slightly different methods compared to linear regression because of the correlations 

between successive observations that naturally arise in time series. There are many 

aspects of statistical modeling that we did not touch upon in this introduction, but the 

basics of linear regression and time-series modeling that we did cover here should 

provide a background for further explorations. In Chapter 15 we continue with machine 

learning, which is a topic that is closely related to statistical modeling in both motivation 

and methods.

 Further Reading
Excellent and thorough introductions to statistical modeling are given in G. James 

(2013), which is also available for free at www-bcf.usc.edu/~gareth/ISL/index.html, 

and in M. Kuhn (2013). An accessible introduction to time-series analysis is given in 

R.J. Hyndman (2013), which is also available for free online at www.otexts.org/fpp.
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CHAPTER 15

Machine Learning
In this chapter we explore machine learning. This topic is closely related to statistical 

modeling, which we considered in Chapter 14, in the sense that both deal with using 

data to describe and predict outcomes of uncertain or unknown processes. However, 

while statistical modeling emphasizes the model used in the analysis, machine learning 

sidesteps the model part and focuses on algorithms that can be trained to predict the 

outcome of new observations. In other words, the approach taken in statistical modeling 

emphasizes understanding how the data is generated, by devising models and tuning 

their parameters by fitting to the data. If the model is found to fit the data well and if it 

satisfies the relevant model assumptions, then the model gives an overall description 

of the process, and it can be used to compute statistics with known distributions and 

for evaluating statistical tests. However, if the actual data is too complex to be explained 

using available statistical models, this approach has reached its limits. In machine 

learning, on the other hand, the actual process that generates the data, and potential 

models thereof, is not central. Instead, the observed data and the explanatory variables 

are the fundamental starting point of a machine-learning application. Given data, 

machine-learning methods can be used to find patterns and structure in the data, 

which can be used to predict the outcome of new observations. Machine learning 

therefore does not provide an understanding of how data was generated, and because 

fewer assumptions are made regarding the distribution and statistical properties of the 

data, we typically cannot compute statistics and perform statistical tests regarding the 

significance of certain observations. Instead, machine learning puts a strong emphasis 

on the accuracy with which new observations are predicted.

Although there are significant differences in the fundamental approach taken in 

statistical modeling and machine learning, many of the mathematical methods that are 

used are closely related or sometimes even the same. In the course of this chapter, we are 

going to recognize several methods that we used in Chapter 14 on statistical modeling, 

but they will be employed with a different mindset and with slightly different goals.
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In this chapter we give a brief introduction to basic machine-learning methods, 

and we survey how such methods can be used in Python. The focus is on machine- 

learning methods that have broad application in many fields of scientific and technical 

computing. The most prominent and comprehensive machine-learning library for 

Python is scikit-learn, although there are several alternative and complementary 

libraries as well: for example, TensorFlow, Keras, PyTorch, to mention a few. In this 

chapter we exclusively use the scikit-learn library, which provides implementations of 

the most common machine-learning algorithm. However, readers that are particularly 

interested in machine learning are encouraged to also explore the other libraries 

mentioned in the preceding text as well.

Scikit-learn The scikit-learn library contains a comprehensive collection 
of machine-learning-related algorithms, including regression, classification, 
dimensionality reduction, and clustering. For more information about the project and 
its documentation, see the project’s web page at http://scikit-learn.org.  
At the time of writing, the latest version of scikit-learn is 0.19.2.

 Importing Modules
In this chapter we work with the scikit-learn library, which provides the sklearn Python 

module. With the sklearn module, here we use the same import strategy as we use with 

the SciPy library: that is, we explicitly import modules from the library that we need for 

our work. In this chapter we use the following modules from the sklearn library:

In [1]: from sklearn import datasets

In [2]: from sklearn import model_selection

In [3]: from sklearn import linear_model

In [4]: from sklearn import metrics

In [5]: from sklearn import tree

In [6]: from sklearn import neighbors

In [7]: from sklearn import svm

In [8]: from sklearn import ensemble

In [9]: from sklearn import cluster
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For plotting and basic numerics, we also require the Matplotlib and NumPy libraries, 

which we import in the usual manner:

In [10]: import matplotlib.pyplot as plt

In [11]: import numpy as np

We also use the Seaborn library for graphics and figure styling:

In [12]: import seaborn as sns

 Brief Review of Machine Learning
Machine learning is a topic in the artificial intelligence field of computer science. 

Machine learning can be viewed as including all applications where feeding training 

data into a computer program makes it able to perform a given task. This is a very broad 

definition, but in practice, machine learning is often associated with a much more 

specific set of techniques and methods. Here we take a practical approach and explore 

by example several basic methods and key concepts in machine learning. Before we get 

started with specific examples, we begin with a brief introduction of the terminology and 

core concepts.

In machine learning, the process of fitting a model or an algorithm to observed data 

is known as training. Machine-learning applications can often be classified into either 

of two types: supervised and unsupervised learning, which differ in the type of data the 

application is trained with. In supervised learning, the data includes feature variables 

and known response variables. Both feature and response variables can be continuous 

or discrete. Preparing such data typically requires manual effort and sometimes even 

expert domain knowledge. The application is thus trained with handcrafted data, 

and the training can therefore be viewed as supervised machine learning. Examples 

of applications include regression (prediction of a continuous response variable) 

and classification (prediction of a discrete response variable), where the value of the 

response variable is known for the training dataset, but not for new samples.

In contrast, unsupervised learning corresponds to situations where machine- 

learning applications are trained with raw data that is not labeled or otherwise manually 

prepared. An example of unsupervised learning is clustering of data into groups, or 

in other words, grouping of data into suitable categories. In contrast to supervised 

classification, it is typical for unsupervised learning that the final categories are not 
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known in advance, and the training data therefore cannot be labeled accordingly. It may 

also be the case that the manual labeling of the data is difficult or costly, for example, 

because the number of samples is too large. It goes without saying that unsupervised 

machine learning is more difficult and limited in what it can be used for than supervised 

machine learning, and supervised machine learning therefore should be preferred 

whenever possible. However, unsupervised machine learning can be a powerful tool 

when creating labeled training datasets is not possible.

There is naturally much more complexity to machine learning than suggested 

by the basic types of problems outlined in the preceding text, but these concepts are 

recurring themes in many machine-learning applications. In this chapter we look at a 

few examples of basic machine-learning techniques that demonstrate several central 

concepts of machine learning. Before we do so, we briefly introduce common machine- 

learning terminology that we will refer to in the following sections:

• Cross-validation is the practice of dividing the available data into 

training data and testing data (also known as validation data), where 

only the training data is used to train the machine-learning model 

and where the test data allows the trained application to be tested 

on previously unseen data. The purpose of this is to measure how 

well the model predicts new observations and to limit problems 

with overfitting. There are several approaches to dividing the 

data into training and testing datasets. For example, one extreme 

approach is to test all possible ways to divide the data (exhaustive 

cross-validation) and use an aggregate of the result (e.g., average, 

or the minimum value, depending on the situation). However, for 

large datasets, the number of possible combinations of train and test 

data becomes extremely large, making exhaustive cross-validation 

impractical. Another extreme is to use all but one sample in the 

training set, and the remaining sample in the training set (leave- 

one- out cross-validation), and to repeat the training-test cycle for all 

combinations in which one sample is chosen from the available data. 

A variant of this method is to divide the available data into k groups 

and perform a leave-one-out cross-validation with the k groups of 

datasets. This method is known as k-fold cross-validation and is a 

popular technique that often is used in practice. In the scikit-learn 

library, the module sklearn.model_selection contains functions for 

working with cross-validation.
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• Feature extraction is an important step in the preprocessing stage 

of a machine-learning problem. It involves creating suitable feature 

variables and the corresponding feature matrices that can be 

passed to one of many machine-learning algorithms implemented 

in the scikit-learn library. The scikit-learn module sklearn.

feature_extraction plays a similar role in many machine-learning 

applications as the Patsy formula library does in statistical modeling, 

especially for text- and image-based machine-learning problems. 

Using methods from the sklearn.feature_extraction module, we 

can automatically assemble feature matrices (design matrices) from 

various data sources.

• Dimensionality reduction and feature selection are techniques that 

are frequently used in machine-learning applications where it is 

common to have a large number of explanatory variables (features), 

many of which may not significantly contribute to the predictive 

power of the application. To reduce the complexity of the model, it 

is then often desirable to eliminate less useful features and thereby 

reduce the dimensionality of the problem. This is particularly 

important when the number of features is comparable to or larger 

than the number of observations. The scikit-learn modules sklearn.

decomposition and sklearn.feature_selection contain functions 

for reducing the dimensionality of a machine-learning problem: 

for example, principal component analysis (PCA) is a popular 

technique for dimensionality reduction that works by performing a 

singular-value decomposition of the feature matrix and keeping only 

dimensions that correspond to the most significant singular vectors.

In the following sections, we look at how scikit-learn can be used to solve examples 

of machine-learning problems using the techniques discussed in the preceding text. 

Here we work with generated data and built-in datasets. Like the statsmodels library, 

scikit-learn comes with a number of built-in datasets that can be used for exploring 

machine-learning methods. The datasets module in sklearn provides three groups of 

functions for loading built-in datasets (with prefix load_, e.g., load_boston), for fetching 

external datasets (with prefix fetch_, e.g., fetch_californa_housing), and finally for 

generating datasets from random numbers (with prefix make_, e.g., make_regression).

ChApTer 15  MAChine LeArning



518

 Regression
Regression is a central part of machine learning and statistical modeling, as we 

already saw in Chapter 14. In machine learning, we are not so concerned with how 

well the regression model fits the data, but rather care about how well it predicts new 

observations. For example, if we have a large number of features and less number of 

observations, we can typically fit the regression perfectly to the data without it being 

very useful for predicting new values. This is an example of overfitting: A small residual 

between the data and regression model is not a guarantee that the model is able to 

accurately predict future observations. In machine learning, a common method to deal 

with this problem is to partition the available data into a training dataset and a testing 

dataset that is used for validating the regression results against previously unseen data.

To see how fitting a training dataset and validating the result against a testing dataset 

can work out, let’s consider a regression problem with 50 samples and 50 features, out of 

which only 10 features are informative (linearly correlated with the response variable). 

This simulates a scenario when we have 50 known features, but it turns out that only 10 

of those features contribute to the predictive power of the regression model. The make_

regression function in the sklearn.datasets module generates data of kind:

In [13]:  X_all, y_all = datasets.make_regression(n_samples=50,  

n_features=50, n_informative=10)

The result is two arrays, X_all and y_all, of shapes (50, 50) and (50,), 

corresponding to the design matrices for a regression problem with 50 samples and 50 

features. Instead of performing a regression on the entire dataset (and obtain a perfect fit 

because of the small number of observations), here we split the dataset into two equal size 

datasets, using the train_test_split function from sklearn.model_selection module. 

The result is a training dataset X_train, y_train, and a testing dataset X_test, y_test:

In [14]: X_train, X_test, y_train, y_test = \

    ...:     model_selection.train_test_split(X_all, y_all, train_size=0.5)

In scikit-learn, ordinary linear regression can be carried out using the 

LinearRegression class from the sklearn.linear_model module, which is comparable 

with the statsmodels.api.OLS from the statsmodels library. To perform a regression, we 

first create a LinearRegression instance:

In [15]: model = linear_model.LinearRegression()
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To actually fit the model to the data, we need to invoke the fit method, which takes 

the feature matrix and the response variable vector as the first and second arguments:

In [16]: model.fit(X_train, y_train)

Out[16]:  LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, 

normalize=False)

Note that compared to the OLS class in statsmodels, the order of the feature matrix and 

response variable vector is reversed, and in statsmodels the data is specified when the class 

instance is created instead of when calling the fit method. Also, in scikit-learn calling the 

fit method does not return a new result object, but the result is instead stored directly 

in the model instance. These minor differences are small inconveniences when working 

interchangeably with the statsmodels and scikit-learn modules and worth taking note of.1

Since the regression problem has 50 features and we only trained the model with 

25 samples, we can expect complete overfitting that perfectly fits the data. This can be 

quantified by computing the sum of squared errors (SSEs) between the model and the 

data. To evaluate the model for a given set of features, we can use the predict method, 

from which we can compute the residuals and the SSE:

In [17]: def sse(resid):

    ...:     return np.sum(resid**2)

In [18]: resid_train = y_train - model.predict(X_train)

    ...: sse_train = sse(resid_train)

    ...: sse_train

Out[18]: 8.1172209425431673e-25

As expected, for the training dataset, the residuals are all essentially zero, due to 

the overfitting allowed by having twice as many features as data points. This overfitted 

model is, however, not at all suitable for predicting unseen data. This can be verified by 

computing the SSE for our test dataset:

In [19]: resid_test = y_test - model.predict(X_test)

    ...: sse_test = sse(resid_test)

    ...: sse_test

Out[19]: 213555.61203039082

1 In practice it is common to work with both statsmodels and scikit-learn, as they in many respects 
complement each other. However, in this chapter we focus solely on scikit-learn.
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The result is a very large SSE value, which indicates that the model does not do a 

good job at predicting new observations. An alternative measure of the fit of a model 

to a dataset is the R-squared score (see Chapter 14), which we can compute using the 

score method. It takes a feature matrix and response variable vector as arguments and 

computes the score. For the training dataset, we obtain, as expected, an r-square score of 

1.0, but for the testing dataset, we obtain a low score:

In [20]: model.score(X_train, y_train)

Out[20]: 1.0

In [21]: model.score(X_test, y_test)

Out[21]: 0.31407400675201746

The big difference between the scores for the training and testing datasets once again 

indicates that the model is overfitted.

Finally, we can also take a graphical approach and plot the residuals of the training 

and testing datasets and visually inspect the values of the coefficients and the residuals. 

From a LinearRegression object, we can extract the fitted parameters using the coef_ 

attribute. To simplify repeated plotting of the training and testing residuals and the 

model parameters, here we first create a function plot_residuals_and_coeff for 

plotting these quantities. We then call the function with the result from the ordinary 

linear regression model trained and tested on the training and testing datasets, 

respectively. The result is shown in Figure 15-1, and it is clear that there is a large 

difference in the magnitude of the residuals for the test and the training datasets, for 

every sample.

In [22]: def plot_residuals_and_coeff(resid_train, resid_test, coeff):

    ...:    fig, axes = plt.subplots(1, 3, figsize=(12, 3))

    ...:    axes[0].bar(np.arange(len(resid_train)), resid_train)

    ...:    axes[0].set_xlabel("sample number")

    ...:    axes[0].set_ylabel("residual")

    ...:    axes[0].set_title("training data")

    ...:    axes[1].bar(np.arange(len(resid_test)), resid_test)

    ...:    axes[1].set_xlabel("sample number")

    ...:    axes[1].set_ylabel("residual")

    ...:    axes[1].set_title("testing data")

    ...:    axes[2].bar(np.arange(len(coeff)), coeff)

    ...:    axes[2].set_xlabel("coefficient number")
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    ...:    axes[2].set_ylabel("coefficient")

    ...:    fig.tight_layout()

    ...:    return fig, axes

In [23]:  fig, ax = plot_residuals_and_coeff(resid_train, resid_test,  

model.coef_)

The overfitting in this example happens because we have too few samples, and 

one solution could be to collect more samples until overfitting is no longer a problem. 

However, this may not always be practical, as collecting observations may be expensive, 

and because in some applications, we might have a very large number of features. For 

such situations it is desirable to be able to fit a regression problem in a way that avoids 

overfitting as much as possible (at the expanse of not fitting the training data perfectly), 

so that the model can give meaningful predictions for new observations.

Regularized regression is one possible solution to this problem. In the following we 

look at a few different variations of regularized regression. In ordinary linear regression, 

the model parameters are chosen such that the sum of squared residuals is minimized. 

Viewed as an optimization problem, the objective function is therefore min ,b bX y-
2

2
 

where X is the feature matrix, y is the response variables, and β is the vector of model 

parameters and where ‖∙‖2 denotes the L2 norm. In regularized regression, we add a 

penalty term in the objective function of the minimization problem. Different types 

of penalty terms impose different types of regularization on the original regression 

problem. Two popular regularizations are obtained by adding the L1 or L2 norms of the 

parameter vector to the minimization objective function, minb b a bX y- +{ }2

2

1
 and 

min .b b a bX y- +{ }2

2

2

2
 These are known as LASSO and Ridge regression, respectively. 

Figure 15-1. The residual between the ordinary linear regression model and the 
training data (left), the model and the test data (middle), and the values of the 
coefficients for the 50 features (right)
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Here α is a free parameter that determines the strength of the regularization. Adding 

the L2 norm b
2

2
 favors model parameter vectors with smaller coefficients, and adding 

the L1 norm ‖β‖1 favors a model parameter vectors with as few nonzero elements as 

possible. Which type of regularization is more suitable depends on the problem at hand: 

when we wish to eliminate as many features as possible, we can use L1 regularization 

with LASSO regression, and when we wish to limit the magnitude of the model 

coefficients, we can use L2 regularization with Ridge regression.

With scikit-learn, we can perform Ridge regression using the Ridge class from 

the sklearn.linear_model module. The usage of this class is almost the same as the 

LinearRegression class that we used in the preceding text, but we can also give the value 

of the α parameter that determines the strength of the regularization as an argument 

when we initialize the class. Here we chose the value α = 2.5. A more systematic 

approach to choosing α is introduced later in this chapter.

In [24]: model = linear_model.Ridge(alpha=2.5)

To fit the regression model to the data, we again use the fit method, passing the 

training feature matrix and response variable as arguments:

In [25]: model.fit(X_train, y_train)

Out[25]: Ridge(alpha=2.5, copy_X=True, fit_intercept=True, max_iter=None,

               normalize=False, solver='auto', tol=0.001)

Once the model has been fitted to the training data, we can compute the model 

predictions for the training and testing datasets and compute the corresponding SSE 

values:

In [26]: resid_train = y_train - model.predict(X_train)

    ...: sse_train = sse(resid_train)

    ...: sse_train

Out[26]: 178.50695164950841

In [27]: resid_test = y_test - model.predict(X_test)

    ...: sse_test = sse(resid_test)

    ...: sse_test

Out[27]: 212737.00160105844
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We note that the SSE of the training data is no longer close to zero, but there is a 

slight decrease in the SSE for the testing data. For comparison with ordinary regression, 

we also plot the training and testing residuals and the model parameters using the 

function plot_residuals_and_coeff that we defined in the preceding text. The result is 

shown in Figure 15-2.

In [28]:  fig, ax = plot_residuals_and_coeff(resid_train, resid_test,  

model.coef_)

Similarly, we can perform the L1-regularized LASSO regression using the Lasso class 

from the sklearn.linear_model module. It also accepts the value of the α parameter as an 

argument when the class instance is initialized. Here we choose α = 1.0 and perform the 

fitting of the model to the training data and the computation of the SSE for the training 

and testing data in the same way as described previously:

In [29]: model = linear_model.Lasso(alpha=1.0)

In [30]: model.fit(X_train, y_train)

Out[30]: Lasso(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=1000,

                normalize=False, positive=False, precompute=False, random_

state=None,

               selection='cyclic', tol=0.0001, warm_start=False)

In [31]: resid_train = y_train - model.predict(X_train)

    ...: sse_train = sse(resid_train)

    ...: sse_train

Figure 15-2. The residual between the Ridge-regularized regression model and 
the training data (left), the model and the test data (middle), and the values of the 
coefficients for the 50 features (right)
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Out[31]: 309.74971389531891

In [32]: resid_test = y_test - model.predict(X_test)

    ...: sse_test = sse(resid_test)

    ...: sse_test

Out[32]: 1489.1176065002333

Here we note that while the SSE of the training data increased compared to that of 

the ordinary regression, the SSE for the testing data decreased significantly. Thus, by 

paying a price in terms of how well the regression model fits the training data, we have 

obtained a model with significantly improved ability to predict the testing dataset. For 

comparison with the earlier methods, we graph the residuals and the model parameters 

once again with the plot_residuals_and_coeff function. The result is shown in Figure 15- 3.  

In the rightmost panel of this figure, we see that the coefficient profile is significantly 

different from those shown in Figure 15-1 and Figure 15-2, and the coefficient vector 

produced with the LASSO regression contains mostly zeros. This is a suitable method for 

the current data because in the beginning, when we generated the dataset, we choose 

50 features out of which only 10 are informative. If we suspect that we might have a large 

number of features that might not contribute much in the regression model, using the L1 

regularization of the LASSO regression can thus be a good approach to try.

In [33]:  fig, ax = plot_residuals_and_coeff(resid_train, resid_test,  

model.coef_)

Figure 15-3. The residual between the LASSO-regularized regression model and 
the training data (left), the model and the test data (middle), and the values of the 
coefficients for the 50 features (right)

The values of α that we used in the two previous examples using Ridge and LASSO 

regression were chosen arbitrarily. The most suitable value of α is problem dependent, 

and for every new problem, we need to find a suitable value using trial and error. The 

scikit-learn library provides methods for assisting this process, as we will see in the 
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following text, but before we explore those methods, it is instructive to look at how the 

regression model parameters and the SSE for the training and testing datasets depend 

on the value of α for a specific problem. Here we focus on LASSO regression, since it was 

seen to work well for the current problem, and we repeatedly solve the same problem 

using different values for the regularization strength parameter α while storing the values 

of the coefficients and SSE values in NumPy arrays.

We begin by creating the required NumPy arrays. We use np.logspace to create a 

range of α values that span several orders of magnitude:

In [34]: alphas = np.logspace(-4, 2, 100)

In [35]: coeffs = np.zeros((len(alphas), X_train.shape[1]))

In [36]: sse_train = np.zeros_like(alphas)

In [37]: sse_test = np.zeros_like(alphas)

Next we loop through the α values and perform the LASSO regression for each value:

In [38]: for n, alpha in enumerate(alphas):

    ...:     model = linear_model.Lasso(alpha=alpha)

    ...:     model.fit(X_train, y_train)

    ...:     coeffs[n, :] = model.coef_

    ...:     sse_train[n] = sse(y_train - model.predict(X_train))

    ...:     sse_test[n] = sse(y_test - model.predict(X_test))

Finally, we plot the coefficients and the SSE for the training and testing datasets 

using Matplotlib. The result is shown in Figure 15-4. We can see in the left panel of 

this figure that a large number coefficients are nonzero for very small values of α. This 

corresponds to the overfitting regime. We can also see that when α is increased above a 

certain threshold, many of the coefficients collapse to zero, and only a few coefficients 

remain nonzero. In the right panel of the figure, we see that while the SSE for the training 

set is steadily increasing with increasing α, there is also a sharp drop in the SSE for the 

testing dataset. This is the sought-after effect in LASSO regression. However, for too large 

values of α, all coefficients converge to zero and the SSEs for both the training and testing 

datasets become large. Therefore, there is an optimal region of α that prevents overfitting 

and improves the model’s ability to predict unseen data. While these observations are 

not universally true, a similar pattern can be seen for many problems.
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In [39]: fig, axes = plt.subplots(1, 2, figsize=(12, 4), sharex=True)

    ...: for n in range(coeffs.shape[1]):

    ...:     axes[0].plot(np.log10(alphas), coeffs[:, n], color='k', lw=0.5)

    ...:

    ...: axes[1].semilogy(np.log10(alphas), sse_train, label="train")

    ...: axes[1].semilogy(np.log10(alphas), sse_test, label="test")

    ...: axes[1].legend(loc=0)

     ...:

    ...: axes[0].set_xlabel(r"${\log_{10}}\alpha$", fontsize=18)

    ...: axes[0].set_ylabel(r"coefficients", fontsize=18)

    ...: axes[1].set_xlabel(r"${\log_{10}}\alpha$", fontsize=18)

    ...: axes[1].set_ylabel(r"sse", fontsize=18)

The process of testing a regularized regression with several values of α can be carried 

out automatically using, for example, the RidgeCV and LassoCV classes. These variants 

of the Ridge and LASSO regression internally perform a search for the optimal α using 

a cross-validation approach. By default, a k-fold cross-validation with k = 3 is used, 

although this can be changed using the cv argument to these classes. Because of the 

built-in cross-validation, we do not need to explicitly divide the dataset into training and 

testing datasets, as we have done previously.

To use the LASSO method with an automatically chosen α, we simply create an 

instance of LassoCV and invoke its fit method:

Figure 15-4. The coefficients (left) and the sum of squared errors (SSEs) for the 
training and testing datasets (right), for LASSO regression as a function of the 
logarithm of the regularization strength parameter α
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In [40]: model = linear_model.LassoCV()

In [41]: model.fit(X_all, y_all)

Out[41]:  LassoCV( alphas=None, copy_X=True, cv=None, eps=0.001,  

 fit_intercept=True, max_iter=1000, n_alphas=100, n_jobs=1, 

normalize=False, positive=False, precompute='auto', 

random_state=None, selection='cyclic', tol=0.0001, 

verbose=False)

The value of regularization strength parameter α selected through the cross- 

validation search is accessible through the alpha_ attribute:

In [42]: model.alpha_

Out[42]: 0.13118477495069433

We note that the suggested value of α agrees reasonably well with what we might 

have guessed from Figure 15-4. For comparison with the previous method, we also 

compute the SSE for the training and testing datasets (although both were used for 

training in the call to LassoCV.fit) and graph the SSE values together with the model 

parameters, as shown in Figure 15-5. By using the cross-validated LASSO method, we 

obtain a model that predicts both the training and testing datasets with relatively high 

accuracy, and we are no longer as likely to suffer from the problem of overfitting, in spite 

of having few samples compared to the number of features2.

In [43]: resid_train = y_train - model.predict(X_train)

    ...: sse_train = sse(resid_train)

    ...: sse_train

Out[43]: 66.900068715063625

In [44]: resid_test = y_test - model.predict(X_test)

    ...: sse_test = sse(resid_test)

    ...: sse_test

Out[44]: 966.39293785448456

In [45]:  fig, ax = plot_residuals_and_coeff(resid_train, resid_test,  

model.coef_)

2 However, note that we can never be sure that a machine-learning application does not suffer 
from overfitting before we see how the application performs on new observations, and a 
repeated reevaluation of the application on a regular basis is a good practice.
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Finally, yet another type of popular regularized regression, which combines 

the L1 and L2 regularization of the LASSO and Ridge methods, is known as 

elastic-net regularization. The minimization objective function for this method is 

minb b ar b a r bX y- + + -( ){ }2

2

1 2

2
1 , where the parameter ρ (l1_ratio in scikit-learn)  

determines the relative weight of the L1 and L2 penalties and thus how much the 

method behaves like the LASSO and Ridge methods. In scikit-learn, we can perform an 

elastic-net regression using the ElasticNet class, to which we can give explicit values of 

the α (alpha) and ρ (l1_ratio) parameters, or the cross-validated version ElasticNetCV, 

which automatically finds suitable values of the α and ρ parameters:

In [46]: model = linear_model.ElasticNetCV()

In [47]: model.fit(X_train, y_train)

Out[47]:  ElasticNetCV( alphas=None, copy_X=True, cv=None, eps=0.001, 

fit_intercept=True, l1_ratio=0.5, max_iter=1000, 

n_alphas=100, n_jobs=1, normalize=False, 

positive=False, precompute='auto', random_state=None, 

selection='cyclic', tol=0.0001, verbose=0)

The value of regularization parameters α and ρ suggested by the cross- validation 

search is available through the alpha_ and l1_ratio attributes:

In [48]: model.alpha_

Out[48]: 0.13118477495069433

In [49]: model.l1_ratio

Out[49]: 0.5

Figure 15-5. The residuals of the LASSO-regularized regression model with cross- 
validation for the training data (left) and the testing data (middle). The values of 
the coefficients for the 50 features are also shown (right).
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For comparison with the previous method, we once again compute the SSE and plot 

the model coefficients, as shown in Figure 15-6. As expected with ρ = 0.5, the result has 

characteristics of both LASSO regression (favoring a sparse solution vector with only 

a few dominating elements) and Ridge regression (suppressing the magnitude of the 

coefficients).

In [50]: resid_train = y_train - model.predict(X_train)

    ...: sse_train = sse(resid_train)

    ...: sse_train

Out[50]: 2183.8391729391255

In [51]: resid_test = y_test - model.predict(X_test)

    ...: sse_test = sse(resid_test)

    ...: sse_test

Out[51]: 2650.0504463382508

In [52]:  fig, ax = plot_residuals_and_coeff(resid_train, resid_test,  

model.coef_)

 Classification
Like regression, classification is a central topic in machine learning. In Chapter 14, about 

statistical modeling, we already saw examples of classification, where we used a logistic 

regression model to classify observations into discrete categories. Logistic regression 

is also used in machine learning for the same task, but there are also a wide variety of 

alternative algorithms for classification, such as nearest neighbor methods, support 

vector machines (SVM), decision trees, and Random Forest methods. The scikit-learn 

Figure 15-6. The residuals of the elastic-net regularized regression model with 
cross-validation for the training data (left) and the testing data (middle). The 
values of the coefficients for the 50 features are also shown (right).
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library provides a convenient unified API that allows all these different methods to be 

used interchangeably for any given classification problems.

To see how we can train a classification model with a training dataset and test 

its performance on a testing datasets, let’s once again look at the Iris dataset, which 

provides features for Iris flower samples (sepal and petal width and height), together 

with the species of each sample (setosa, versicolor, and virginica). The Iris dataset 

that is included in the scikit-learn library (as well as in the statsmodels library) is a 

classic dataset that is commonly used for testing and demonstrating machine-learning 

algorithms and statistical models. Here we revisit the problem of classifying the species 

of a flower sample given its sepal and petal width and height (see also Chapter 14). First, 

to load the dataset, we call the load_iris function in the datasets module. The result is 

a container object (called a Bunch object in the scikit-learn jargon) that contains the data 

as well as metadata.

In [53]: iris = datasets.load_iris()

In [54]: type(iris)

Out[54]: sklearn.datasets.base.Bunch

For example, descriptive names of the features and target classes are available 

through the feature_names and target_names attributes:

In [55]: iris.target_names

Out[55]: array(['setosa', 'versicolor', 'virginica'], dtype='|S10')

In [56]: iris.feature_names

Out[56]:  ['sepal length (cm)',  'sepal width (cm)',  'petal length (cm)',   

'petal width (cm)']

and the actual dataset is available through the data and target attributes:

In [57]: iris.data.shape

Out[57]: (150, 4)

In [58]: iris.target.shape

Out[58]: (150,)

We begin by splitting the dataset into a training and testing part, using the train_

test_split function. There we chose to include 70% of the samples in the training set, 

leaving the remaining 30% for testing and validation:
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In [59]: X_train, X_test, y_train, y_test = \

    ...:       model_selection.train_test_split(iris.data, iris.target, 

train_size=0.7)

The first step in training a classifier and performing classification tasks using scikit- 

learn is to create a classifier instance. There are, as mentioned in the preceding text and 

demonstrated in the following, numerous classifiers available. We begin with a logistic 

regression classifier, which is provided by the LogisticRegression class in the linear_

model module:

In [60]: classifier = linear_model.LogisticRegression()

The training of the classifier is carried out by calling the fit method of the classifier 

instance. The arguments are the design matrices for the feature and target variables. 

Here we use the training part of the Iris dataset arrays that was created for us when 

loading the dataset using the load_iris function. If the design matrices are not 

already available, we can use the same techniques that we used in Chapter 14: that is, 

constructing the matrices by hand using NumPy functions or using the Patsy library to 

automatically construct the appropriate arrays. We can also use the feature extraction 

utilities in the feature_extraction module in the scikit-learn library.

In [61]: classifier.fit(X_train, y_train)

Out[61]: LogisticRegression( C=1.0, class_weight=None, dual=False,  

fit_intercept=True, intercept_scaling=1, 

max_iter=100, multi_class='ovr', penalty='l2', 

random_state=None, solver='liblinear', 

tol=0.0001, verbose=0)

Once the classifier has been trained, we can immediately start using it for predicting 

the class for new observations using the predict method. Here we apply this method to 

predict the class for the samples assigned to the testing dataset so that we can compare 

the predictions with the actual values.

In [62]: y_test_pred = classifier.predict(X_test)

The sklearn.metrics module contains helper functions for assisting in the analysis 

of the performance and accuracy of classifiers. For example, the classification_

report function, which takes arrays of actual values and the predicted values, returns 

a tabular summary of the informative classification metrics related to the rate of false 

negatives and false positives:

ChApTer 15  MAChine LeArning



532

In [63]: print(metrics.classification_report(y_test, y_test_pred))

             precision    recall  f1-score   support

          0       1.00      1.00      1.00        13

          1       1.00      0.92      0.96        13

          2       0.95      1.00      0.97        19

avg / total       0.98      0.98      0.98        45

The so-called confusion matrix, which can be computed using the confusion_

matrix function, also presents useful classification metrics in a compact form: The 

diagonals correspond to the number of samples that are correctly classified for each level 

of the category variable, and the off-diagonal elements are the number of incorrectly 

classified samples. More specifically, the element Cij of the confusion matrix C is the 

number of samples of category i that were categorized as j. For the current data, we 

obtain the confusion matrix:

In [64]: metrics.confusion_matrix(y_test, y_test_pred)

Out[64]: array([[13  0  0]

                [ 0 12  1]

                [ 0  0 19]])

This confusion matrix shows that all elements in the first and third class were 

classified correctly, but one element of the second class was mistakenly classified as 

class three. Note that the elements in each row of the confusion matrix sum up to the 

total number of samples for the corresponding category. In this testing sample, we have 

13 elements each in the first and second class and 19 elements of the third class, as also 

can be seen by counting unique values in the y_test array:

In [65]: np.bincount(y_test)

Out[65]: array([13, 13, 19])

To perform a classification using a different classifier algorithm, all we need to do is 

to create an instance of the corresponding classifier class. For example, to use a decision 

tree instead of logistic regression, we can use the DesicisionTreeClassifier class from 

the sklearn.tree module. Training the classifier and predicting new observations is 

done in exactly the same way for all classifiers:

In [66]: classifier = tree.DecisionTreeClassifier()

    ...: classifier.fit(X_train, y_train)

    ...: y_test_pred = classifier.predict(X_test)
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    ...: metrics.confusion_matrix(y_test, y_test_pred)

Out[66]: array([[13,  0,  0],

                [ 0, 12,  1],

                [ 0,  1, 18]])

With the decision tree classifier, the resulting confusion matrix is somewhat different, 

corresponding to one additional misclassification in the testing dataset.

Other popular classifiers that are available in scikit-learn include the nearest 

neighbor classifier KNeighborsClassifier from the sklearn.neighbors module, the 

support vector classifier (SVC) from the sklearn.svm module, and the Random Forest 

classifier RandomForestClassifier from the sklearn.ensemble module. Since they 

all have the same usage pattern, we can programmatically apply a series of classifiers 

on the same problem and compare their performance (on this particular problem), for 

example, as a function of the training and testing sample sizes. To this end, we create a 

NumPy array with training size ratios, ranging from 10% to 90%:

In [67]: train_size_vec = np.linspace(0.1, 0.9, 30)

Next we create a list of classifier classes that we wish to apply:

In [68]: classifiers = [tree.DecisionTreeClassifier,

    ...:                neighbors.KNeighborsClassifier,

    ...:                svm.SVC,

    ...:                ensemble.RandomForestClassifier]

and an array in which we can store the diagonals of the confusion matrix as a function of 

training size ratio and classifier:

In [69]:  cm_diags = np.zeros((3, len(train_size_vec), len(classifiers)), 

dtype=float)

Finally, we loop over each training size ratio and classifier, and for each combination, 

we train the classifier, predict the values of the testing data, compute the confusion 

matrix, and store its diagonal divided by the ideal values in the cm_diags array:

In [70]: for n, train_size in enumerate(train_size_vec):

    ...:     X_train, X_test, y_train, y_test = \

    ...:         model_selection.train_test_split(iris.data, iris.target,

    ...:                                           train_size=train_size)
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    ...:     for m, Classifier in enumerate(classifiers):

    ...:         classifier = Classifier()

    ...:         classifier.fit(X_train, y_train)

    ...:         y_test_p = classifier.predict(X_test)

    ...:          cm_diags[:, n, m] = metrics.confusion_matrix(y_test,  

y_test_p).diagonal()

    ...:         cm_diags[:, n, m] /= np.bincount(y_test)

The resulting classification accuracy for each classifier, as a function of training size 

ratio, is plotted and shown in Figure 15-7.

In [71]: fig, axes = plt.subplots(1, len(classifiers), figsize=(12, 3))

     ...: for m, Classifier in enumerate(classifiers):

    ...:      axes[m].plot(train_size_vec, cm_diags[2, :, m], label=iris.

target_names[2])

    ...:      axes[m].plot(train_size_vec, cm_diags[1, :, m], label=iris.

target_names[1])

    ...:      axes[m].plot(train_size_vec, cm_diags[0, :, m], label=iris.

target_names[0])

    ...:      axes[m].set_title(type(Classifier()).__name__)

    ...:     axes[m].set_ylim(0, 1.1)

    ...:     axes[m].set_ylabel("classification accuracy")

    ...:     axes[m].set_xlabel("training size ratio")

    ...:     axes[m].legend(loc=4)

Figure 15-7. Comparison of classification accuracy of four different classifiers
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In Figure 15-7, we see that classification error is different for each model, but for this 

particular example, they have comparable performance. Which classifier is best depends 

on the problem at hand, and it is difficult to give any definite answer to which one is 

more suitable in general. Fortunately, it is easy to switch between different classifiers 

in scikit-learn and therefore effortless to try a few different classifiers for a given 

classification problem. In addition to the classification accuracy, another important 

aspect is the computational performance and scaling to larger problems. For large 

classification problems, with many features, decision tree methods such as Randomized 

Forest are often a good starting point.

 Clustering
In the two previous sections, we explored regression and classification, which both are 

examples of supervised learning, since the response variables are given in the dataset. 

Clustering is a different type of problem that also is an important topic in machine 

learning. It can be thought of as a classification problem where the classes are unknown, 

which makes clustering an example of unsupervised learning. The training dataset for a 

clustering algorithm contains only the feature variables, and the output of the algorithm 

is an array of integers that assign each sample to a cluster (or class). This output array 

corresponds to the response variable in a supervised classification problem.

The scikit-learn library implements a large number of clustering algorithms that 

are suitable for different types of clustering problems and for different types of datasets. 

Popular general-purpose clustering methods include the K-means algorithm, which 

groups the samples into clusters such that the within-group sum of square deviation 

from the group center is minimized, and the mean-shift algorithm, which clusters the 

samples by fitting the data to density functions (e.g., Gaussian functions).

In scikit-learn, the sklearn.cluster module contains several clustering algorithms, 

including the K-means algorithm KMeans and the mean-shift algorithm MeanShift, 

just to mention a few. To perform a clustering task with one of these methods, we first 

initialize an instance of the corresponding class and train it with a feature-only dataset 

using the fit method, and we finally obtain the result of the clustering by calling the 

predict method. Many clustering algorithms require the number of clusters as an 

input parameter, which we can specify using the n_clusters parameter when the class 

instance is created.
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As an example of clustering, consider again the Iris dataset that we used in the 

previous section, but now we will not use the response variable, which was used in 

supervised classification, but instead we attempt to automatically discover a suitable 

clustering of the samples using the K-means method. We begin by loading the Iris data, 

as before, and store the feature and target data in the variables X and y, respectively:

In [72]: X, y = iris.data, iris.target

With the K-means clustering method, we need to specify how many clusters we want 

in the output. The most suitable number of clusters is not always obvious in advance, 

and trying clustering with a few different numbers of clusters is often necessary. 

However, here we know that the data corresponds to three different species of Iris 

flowers, so we use three clusters. To perform the clustering, we create an instance of 

Kmeans class, using the n_clusters argument to set the number of clusters.

In [73]: n_clusters = 3

In [74]: clustering = cluster.KMeans(n_clusters=n_clusters)

To actually perform the computation, we call the fit method with the Iris feature 

matrix as an argument:

In [75]: clustering.fit(X)

Out[75]: KMeans( copy_x=True, init='k-means++', max_iter=300, n_clusters=3, 

n_init=10, n_jobs=1, precompute_distances='auto',  

random_state=None, tol=0.0001, verbose=0) 

The clustering result is available through the predict method, to which we also pass 

a feature dataset that optionally can contain features of new samples. However, not all 

the clustering methods implemented in scikit-learn support predicting clusters for a 

new sample. In this case, the predict method is not available, and we need to use the 

fit_predict method instead. Here, we use the predict method with the training feature 

dataset to obtain the clustering result:

In [76]: y_pred = clustering.predict(X)
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The result is an integer array of the same length and the number of samples in 

the training dataset. The elements in the array indicate which group (from 0 up to n_

samples- 1) each sample is assigned to. Since the resulting array y_pred is long, we only 

display every eighth element in the array using the NumPy stride indexing ::8.

In [77]: y_pred[::8]

Out[77]:  array([1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0], 

dtype=int32)

We can compare the obtained clustering with the supervised classification of the Iris 

samples:

In [78]: y[::8]

Out[78]: array([0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2])

There seems to be a good correlation between the two, but the output of the 

clustering has assigned different integer values to the groups than what was used in the 

target vector in the supervised classification. To be able to compare the two arrays with 

metrics such as the confusion_matrix function, we first need to rename the elements so 

that the same integer values are used for the same group. We can do this operation with 

NumPy array manipulations:

In [79]: idx_0, idx_1, idx_2 = (np.where(y_pred == n) for n in range(3))

In [80]: y_pred[idx_0], y_pred[idx_1], y_pred[idx_2] = 2, 0, 1

In [81]: y_pred[::8]

Out[81]:  array([0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2], 

dtype=int32)

Now that we represent the corresponding groups with the same integers, we can 

summarize the overlaps between the supervised and unsupervised classification of the 

Iris samples using the confusion_matrix function:

In [82]: metrics.confusion_matrix(y, y_pred)

Out[82]: array([[50,  0,  0],

                [ 0, 48,  2],

                [ 0, 14, 36]])
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This confusion matrix indicates that the clustering algorithm was able to correctly 

identify all samples corresponding to the first species as a group of its own, but due to 

the overlapping samples in the second and third groups, those could not be completely 

resolved as different clusters. For example, 2 elements from group one were assigned to 

group two, and 14 elements from group two were assigned to group one.

The result of the clustering can also be visualized, for example, by plotting scatter 

plots for each pair of features, as we do in the following. We loop over each pair of 

features and each cluster and plot a scatter graph for each cluster using different colors 

(orange, blue, and green, displayed as different shades of gray in Figure 15-8), and we 

also draw a red square around each sample for which the clustering does not agree with 

the supervised classification. The result is shown in Figure 15-8.

In [83]: N = X.shape[1]

     ...:  fig, axes = plt.subplots(N, N, figsize=(12, 12), sharex=True, 

sharey=True)

    ...: colors = ["coral", "blue", "green"]

    ...: markers = ["^", "v", "o"]

    ...: for m in range(N):

    ...:     for n in range(N):

    ...:         for p in range(n_clusters):

    ...:             mask = y_pred == p

    ...:             axes[m, n].scatter(X[:, m][mask], X[:, n][mask], s=30,

    ...:                                 marker=markers[p], color=colors[p], 

alpha=0.25)

    ...:         for idx in np.where(y != y_pred):

    ...:             axes[m, n].scatter(X[idx, m], X[idx, n], s=30,

    ...:                                 marker="s", edgecolor="red", 

facecolor=(1,1,1,0))

    ...:     axes[N-1, m].set_xlabel(iris.feature_names[m], fontsize=16)

    ...:     axes[m, 0].set_ylabel(iris.feature_names[m], fontsize=16)
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The result of the clustering of the Iris samples in Figure 15-8 shows that the 

clustering does a remarkably good job at recognizing which samples belong to distinct 

groups. Of course, because of the overlap in the features for classes shown in blue (dark 

gray) and green (medium gray) in the graph, we cannot expect that any unsupervised 

clustering algorithm can fully resolve the various groups in the dataset, and some 

deviation from the supervised response variable is therefore expected.

Figure 15-8. The result of clustering, using the K-means algorithm, of the Iris 
dataset features
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 Summary
In this chapter we have given an introduction to machine learning using Python. We 

began with a brief review and summary of the subject and its terminology and continued 

with introducing the Python library scikit-learn which we applied in three different 

types of problems that are fundamental topics in machine learning: First we revisited 

regression, from the point of view of machine learning, followed by classification, 

and finally we considered an example of clustering. The first two of these topics are 

examples of supervised machine learning, while the clustering method is an example 

of unsupervised machine learning. Beyond what we have been able to cover here, 

there are many more methods and problem domains covered by the broad subject of 

machine learning. For example, an important part of machine learning that we have not 

touched upon in this brief introduction is text-based problems. The scikit-learn contains 

an extensive module (sklearn.text) with tools and method for processing text-based 

problems, and the Natural Language Toolkit (www.nltk.org) is a powerful platform for 

working with and processing data in the form of human language text. Image processing 

and computer vision is another prominent problem domain in machine learning, which, 

for example, can be treated with OpenCV (http://opencv.org) and its Python bindings. 

Other examples of big topics in machine learning are neural networks and deep learning, 

which have received much attention in recent years. The readers who are interested in 

such methods are recommended to explore the TensorFlow (www.tensorflow.org) and 

Keras libraries (http://keras.io).

 Further Reading
Machine learning is a part of the computer science field of artificial intelligence, which 

is a broad field with numerous techniques, methods, and applications. In this chapter, 

we have only been able to show examples of a few basic machine-learning methods, 

which nonetheless can be useful in many practical applications. For a more thorough 

introduction to machine learning, see T. Hastie (2013), and for introductions to machine 

learning specific to the Python environment, see, for example, R. Garreta (2013), 

Hackeling (2014), and L. Pedro Coelho (2015).
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CHAPTER 16

Bayesian Statistics
In this chapter, we explore an alternative interpretation of statistics – Bayesian statistics – 

and the methods associated with this interpretation. Bayesian statistics, in contrast to 

the frequentist’s statistics that we used in Chapter 13 and Chapter 14, treats probability 

as a degree of belief rather than as a measure of proportions of observed outcomes. 

This different point of view gives rise to distinct statistical methods that we can use in 

problem-solving. While it is generally true that statistical problems can in principle be 

solved using either frequentist or Bayesian statistics, there are practical differences that 

make these two approaches to statistics suitable for different types of problems.

Bayesian statistics is based on Bayes’ theorem, which relates conditional and 

unconditional probabilities. Bayes’ theorem is a fundamental result in probability 

theory, and it applies to both the frequentist’s and the Bayesian interpretation of 

statistics. In the context of Bayesian inference, unconditional probabilities are used 

to describe the prior knowledge of a system, and Bayes’ theorem provides a rule for 

updating this knowledge after making new observations. The updated knowledge is 

described by a conditional probability, which is conditioned on the observed data. 

The initial knowledge of a system is described by the prior probability distribution, and 

the updated knowledge, conditioned on the observed data, is the posterior probability 

distribution. In problem- solving with Bayesian statistics, the posterior probability 

distribution is the unknown quantity that we seek, and from it we can compute 

expectation values and other statistical quantities for random variables of interest. 

Although Bayes’ theorem describes how to compute the posterior distribution from 

the prior distribution, for most realistic problems, the calculations involve evaluating 

high-dimensional integrals that can be prohibitively difficult to compute, both 

analytically and numerically. This has until recently hindered Bayesian statistics from 

being widely used in practice. However, with the advent of computational statistics, 

and the development of efficient simulation methods that allows us to sample directly 

from the posterior distributions (rather than directly compute it), Bayesian methods 
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are becoming increasingly popular. The methods that enable us to sample from the 

posterior distribution are, first and foremost, the so-called Markov chain Monte 

Carlo (MCMC) methods. Several alternative implementations of MCMC methods are 

available. For instance, traditional MCMC methods include Gibbs sampling and the 

Metropolis-Hastings algorithm, and more recent methods include Hamiltonian and No-

U-Turn algorithms. In this chapter we explore how to use several of these methods.

Statistical problem-solving with Bayesian inference methods is sometimes known as 

probabilistic programming. The key steps in probabilistic programming are as follows:

(1) Create a statistical model. (2) Sample from the posterior 

distribution for the quantity of interest using an MCMC method. 

(3) Use the obtained posterior distribution to compute properties 

of interest for the problem at hand and make inference decisions 

based on the obtained results. In this chapter we explore how to 

carry out these steps from within the Python environment, with 

the help of the PyMC library.

PyMc The PyMC library, currently known as PyMC3, provides a framework 
for doing probabilistic programming – that is, solving statistical problems using 
simulation with Bayesian methods. At the time of writing, the latest official release 
is version 3.4.1. For more information about the project, see the web page at 
http://docs.pymc.io.

 Importing Modules
In this chapter we mainly work with the pymc3 library, which we import in the following 

manner:

In [1]: import pymc3 as mc

We also require NumPy, Pandas, and Matplotlib for basic numerics, data analytics, 

and plotting, respectively. These libraries are imported following the usual convention:

In [2]: import numpy as np

In [3]: import pandas as pd

In [4]: import matplotlib.pyplot as plt

ChAPTer 16  BAyesiAn sTATisTiCs

http://docs.pymc.io


545

For comparison to non-Bayesian statistics, we also use the stats module from SciPy, 

the statsmodels library, and the Seaborn library for visualization:

In [5]: from scipy import stats

In [6]: import statsmodels.api as sm

In [7]: import statsmodels.formula.api as smf

In [8]: import seaborn as sns

 Introduction to Bayesian Statistics
The foundation of Bayesian statistics is Bayes’ theorem, which gives a relation between 

unconditioned and conditional probabilities of two events A and B:

 P A B P B P B A P A| |( ) ( ) = ( ) ( ),  

where P(A) and P(B) are the unconditional probabilities of event A and B and where 

P(A| B) is the conditional probability of event A given that event B is true and P(B| A) is 

the conditional probability of B given that A is true. Both sides of the preceding equation 

are equal to the probability that both A and B are true: P(A ∩ B). In other words, Bayes’ 

rule states the probability that both A and B are equal to the probability of A times the 

probability of B given that A is true, P(A)P(B| A) or, equivalently, the probability of B 

times the probability of A given that B is true: P(B)P(A| B).

In the context of Bayesian inference, Bayes’ rule is typically employed for the situation 

when we have a prior belief about the probability of an event A, represented by the 

unconditional probability P(A), and wish to update this belief after having observed an 

event B. In this language, the updated belief is represented by the conditional probability 

of A given the observation B: P(A| B), which we can compute using Bayes’ rule:

 
P A B

P B A P A

P B
|

|( ) = ( ) ( )
( )

.
 

Each factor in this expression has a distinct interpretation and a name: P(A) is 

the prior probability of event A, and P(A| B) is the posterior probability of A given the 

observation B. P(B| A) is the likelihood of observing B given that A is true, and the 

probability of observing B regardless of A, P(B), is known as model evidence and can be 

considered as a normalization constant (with respect to A).
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In statistical modeling we are typically interested in a set of random variables X 

that are characterized by probability distributions with certain parameters θ. After 

collecting data for the process that we are interested in modeling, we wish to infer the 

values of the model parameters from the data. In the frequentist’s statistical approach, 

we can maximize the likelihood function given the observed data and obtain estimators 

for the model parameters. The Bayesian approach is to consider the unknown model 

parameters θ as random variables in their own right and use Bayes’ rule to derive 

probability distributions for the model parameters θ. If we denote the observed data as 

x, we can express the probability distribution for θ given the observed data x using Bayes’ 

rule as

 
p x

p x p

p x

p x p

p x p d
q

q q q q
q q q

|
| |

|
( ) = ( ) ( )

( )
=

( ) ( )
ò ( ) ( )

.
 

The second equality in this equation follows from the law of total probability, 

p(x) =  ∫ p(x| θ)p(θ)dθ. Once we have computed the posterior probability distribution 

p(θ| x) for the model parameters, we can, for example, compute expectation values of 

the model parameters and obtain a result that is similar to the estimators that we can 

compute in a frequentist’s approach. In addition, when we have an estimate of the 

full probability distribution for p(θ| x), we can also compute other quantities, such as 

credibility intervals, and marginal distributions for certain model parameters in the case 

when θ is multivariate. For example, if we have two model parameters, θ = (θ1, θ2), but 

are interested only in θ1, we can obtain the marginal posterior probability distribution 

p(θ1| x) by integrating the joint probability distribution p(θ1, θ2| x) using the expression 

obtained from Bayes’ theorem:

 
p x p x d

p x p d

p x p
q q q q

q q q q q
q q1 1 2 2

1 2 1 2 2

1 2

| |
| ,

|
( ) = ò ( ) =

ò ( ) ( )
ò ò ( )

,
,

, qq q q q1 2 1 2,( )d d
.

 

Here note that the final expression contains integrals over the known likelihood 

function p(x| θ1,θ2) and the prior distribution p(θ1, θ2), so we do not need to know 

the joint probability distribution p(θ1,θ2| x) to compute the marginal probability 

distribution p(θ1| x). This approach provides a powerful and generic methodology for 

computing probability distributions for model parameters and successively updating 

the distributions once new data becomes available. However, directly computing p(θ| x), 

or the marginal distributions thereof, requires that we can write down the likelihood 
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function p(x| θ) and the prior distribution p(θ) and that we can evaluate the resulting 

integrals. For many simple but important problems, it is possible to analytically compute 

these integrals and find the exact closed-form expressions for the posterior distribution. 

Textbooks, such as Gelman (2013), provide numerous examples of problems that 

are exactly solvable in this way. However, for more complicated models, with prior 

distributions and likelihood functions for which the resulting integrals are not easily 

evaluated, or for multivariate statistical models, for which the resulting integrals can be 

high-dimensional, both exact and numerical evaluation may be unfeasible.

It is primarily for models that cannot be solved with exact methods that we can 

benefit from using simulation methods, such as Markov chain Monte Carlo, which 

allows us to sample the posterior probability distribution for the model parameters and 

thereby construct an approximation of the joint or marginal posterior distributions, or 

directly evaluating integrals, such as expectation values. Another important advantage 

of simulation- based methods is that the modeling process can be automated. Here 

we exclusively focus on Bayesian statistical modeling using Monte Carlo simulation 

methods. For a thorough review of the theory, and many examples of analytically 

solvable problems, see the references given at the end of this chapter. In the remaining 

part of this chapter, we explore the definition of statistical models and sampling of their 

posterior distribution with the PyMC library as a probabilistic programming framework.

Before we proceed with computational Bayesian statistics, it is worth taking a 

moment to summarize the key differences between the Bayesian approach and the 

classical frequentist’s approach that we used in earlier chapters: In both approaches  

to statistical modeling, we formulate the models in terms of random variables.  

A key step in the definition of a statistical model is to make assumptions about the 

probability distributions for the random variables that are defined in the model. In 

parametric methods, each probability distribution is characterized by a small number 

of parameters. In the frequentist’s approach, those model parameters have some 

specific true values, and observed data is interpreted as random samples from the 

true distributions. In other words, the model parameters are assumed to be fixed, and 

the data is assumed to be stochastic. The Bayesian approach takes the opposite point 

of view: The data is interpreted as fixed, and the model parameters are described as 

random variables. Starting from a prior distribution for the model parameters, we 

can then update the distribution to account for observed data and in the end obtain 

a probability distribution for the relevant model parameters, conditioned on the 

observed data.
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 Model Definition
A statistical model is defined in terms of a set of random variables. The random variables 

in a given model can be independent or, more interestingly, dependent on each other. 

The PyMC library provides classes for representing random variables for a large number 

of probability distributions: For example, an instance of mc.Normal can be used to 

represent a normal distributed random variable. Other examples are mc.Bernoulli for 

representing discrete Bernoulli-distributed random variables, mc.Uniform for uniformly 

distributed random variables, mc.Gamma for Gamma-distributed random variables, and 

so on. For a complete list of available distributions, see dir(mc.distributions) and 

the docstrings for each available distribution for information on how to use them. It 

is also possible to define custom distributions using the mc.DensityDist class, which 

takes a function that specifies the logarithm of the random variable’s probability density 

function.

In Chapter 13 we saw that the SciPy stats module also contains classes for 

representing random variables. Like the random variable classes in SciPy stats, we 

can use the PyMC distributions to represent random variables with fixed parameters. 

However, the essential feature of the PyMC random variables is that the distribution 

parameters, such as the mean μ and variance σ2 for a random variable following the 

normal distribution  m s, 2( ) , can themselves be random variables. This allows us to 

chain random variables in a model and to formulate models with a hierarchical structure 

in the dependencies between random variables that occur in the model.

Let’s start with the simplest possible example. In PyMC, models are represented by 

an instance of the class mc.Model, and random variables are added to a model using the 

Python context syntax: Random variable instances that are created within the body of 

a model context are automatically added to the model. Say that we are interested in a 

model consisting of a single random variable that follows the normal distribution with 

the fixed parameters μ = 4 and σ = 2. We first define the fixed model parameters and then 

create an instance of mc.Model to represent our model.

In [9]: mu = 4.0

In [10]: sigma = 2.0

In [11]: model = mc.Model()

Next, we can attach random variables to the model by creating them within the 

model context. Here, we create a random variable X within the model context, which is 

activated using a with model statement:
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In [12]: with model:

    ...:     mc.Normal('X', mu, tau=1/sigma**2)

All random variable classes in PyMC take as first argument the name of the variable. 

In the case of mc.Normal, the second argument is the mean of the normal distribution, 

and the third argument tau is the precision τ = 1/σ2, where σ2 is the variance. 

Alternatively, we can use the sd keyword argument to specify the standard deviation 

rather than the precision: mc.Normal('X', mu, sd=sigma).

We can inspect which random variables exist in a model using the vars attribute. 

Here we have only one random variable in the model:

In [13]: model.vars

Out[13]: [X]

To sample from the random variables in the model, we use the mc.sample function, 

which implements the MCMC algorithm. The mc.sample function accepts many 

arguments, but at a minimum, we need to provide the number of samples as the first 

argument and, as the second argument, a step class instance, which implements 

an MCMC step. Optionally we can also provide a starting point as a dictionary with 

parameter values from which the sampling is started, using the start keyword 

argument. For the step method, here we use an instance of the Metropolis class, which 

implements the Metropolis-Hastings step method for the MCMC sampler1. Note that we 

execute all model-related code within the model context:

In [14]: start = dict(X=2)

In [15]: with model:

    ...:     step = mc.Metropolis()

    ...:     trace = mc.sample(10000, start=start, step=step)

[-----------------100%-----------------] 10000 of 10000 complete in 1.6 sec

With these steps, we have sampled 10000 values from the random variable defined 

within the model, which in this simple case is only a normal distributed random 

variable. To access the samples, we can use the get_values method of the trace object 

returned by the mc.sample function:

In [16]: X = trace.get_values("X")

1 See also the Slice, HamiltonianMC, and NUTS samplers, which can be used more or less 
interchangeably.
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The probability density function (PDF) for a normal distributed is, of course, known 

analytically. Using SciPy stats module, we can access the PDF using the pdf method 

of the norm class instance for comparing to the sampled random variable. The sampled 

values and the true PDF for the present model are shown in Figure 16-1.

In [17]: x = np.linspace(-4, 12, 1000)

In [18]: y = stats.norm(mu, sigma).pdf(x)

In [19]: fig, ax = plt.subplots(figsize=(8, 3))

    ...: ax.plot(x, y, 'r', lw=2)

    ...: sns.distplot(X, ax=ax)

    ...: ax.set_xlim(-4, 12)

    ...: ax.set_xlabel("x")

    ...: ax.set_ylabel("Probability distribution")

With the mc.traceplot function, we can also visualize the MCMC random walk 

that generated the samples, as shown in Figure 16-2. The mc.traceplot function 

automatically plots both the kernel-density estimate and the sampling trace for every 

random variable in the model.

In [20]: fig, axes = plt.subplots(1, 2, figsize=(8, 2.5), squeeze=False)

    ...: mc.traceplot(trace, ax=axes)

    ...: axes[0, 0].plot(x, y, 'r', lw=0.5)

Figure 16-1. The probability density function for the normal distributed random 
variable (red/thick line) and a histogram from 10000 MCMC samples
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As a next step in building more complex statistical models, consider again a model 

with a normal distributed random variable X ~ m s, 2( ) , but where parameters μ and σ 

themselves are random variables. In PyMC, we can easily create dependent variables by 

passing them as an argument when creating other random variables. For example, with 

m ~ 3 1, ( )  and s ~ , 0 1, ( )  we can create the dependent random variable X using 

the following model specification:

In [21]: model = mc.Model()

In [22]: with model:

    ...:     mean = mc.Normal('mean', 3.0)

    ...:     sigma = mc.HalfNormal('sigma', sd=1.0)

    ...:     X = mc.Normal('X', mean, sd=sigma)

Here we have used the mc.HalfNormal to represent the random variable s ~ , 0 1, ( )  

and the mean and standard deviation arguments to the mc.Normal class for X are random 

variable instances rather than fixed model parameters. As before we can inspect which 

random variables a model contains using the vars attribute.

In [23]: model.vars

Out[23]: [mean, sigma_log__, X]

Note that here the pymc3 library represents the sigma variable with a log-transformed 

variable sigma_log__, as a mean to handle the half-normal distribution. Nonetheless, 

we can still directly access the sigma variable from the model, as will be shown in the 

following text.

Figure 16-2. Left panel: the density kernel estimate (blue/thick line) of the 
sampling trace and the normal probability distribution (red/thin line). Right 
panel: the MCMC sampling trace
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When the complexity of the model increases, it may no longer be straightforward 

to select a suitable starting point for the sampling process explicitly. The mc.find_MAP 

function can be used to find the point in the parameter space that corresponds to the 

maximum of the posterior distribution, which can serve as a good starting point for the 

sampling process.

In [24]: with model:

    ...:     start = mc.find_MAP()

In [25]: start

Out[25]: {'X': array(3.0), 'mean': array(3.0),

          'sigma': array(0.70710674), 'sigma_log__': array(-0.34657365)}

As before, once the model is specified, and a starting point is computed, we can 

sample from the random variables in the model using the mc.sample function, for 

example, using mc.Metropolis as an MCMC sampling step method:

In [26]: with model:

    ...:     step = mc.Metropolis()

    ...:     trace = mc.sample(100000, start=start, step=step)

[-----------------100%-----------------] 100000 of 100000 complete in 53.4 

sec

For example, to obtain the sample trace for the sigma variable, we can use get_

values('sigma'). The result is a NumPy array that contains the sample values, and from 

it, we can compute further statistics, such as its sample mean and standard deviation:

In [27]: trace.get_values('sigma').mean()

Out[27]: 0.80054476153369014

The same approach can be used to obtain the samples of X and compute statistics 

from them:

In [28]: X = trace.get_values('X')

In [29]: X.mean()

Out[29]: 2.9993248663922092

In [30]: trace.get_values('X').std()

Out[30]: 1.4065656512676457
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The trace plot for the current model, created using the mc.traceplot, is shown in 

Figure 16-3, where we have used the varnames argument to mc.traceplot to explicitly 

select which random variables to plot.

In [31]: fig, axes = plt.subplots(3, 2, figsize=(8, 6), squeeze=False)

    ...: mc.traceplot(trace, varnames=['mean', 'sigma', 'X'], ax=axes)

 Sampling Posterior Distributions
So far we have defined models and sampled from models that only contain random 

variables without any references to observed data. In the context of Bayesian models, 

these types of random variables represent the prior distributions of the unknown model 

parameters. In the previous examples, we have therefore used the MCMC method 

Figure 16-3. Kernel density estimates (left) and MCMC random sampling trace 
(right), for the three random variables: mean, sigma, and X
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to sample from the prior distributions of the model. However, the real application of 

the MCMC algorithm is to sample from the posterior distribution, which represents 

the probability distribution for the model variables after having updated the prior 

distribution to account for the effect of observations.

To condition the model on observed data, all we need to do is to add the data using 

the observed keyword argument when the corresponding random variable is created 

within the model: For example, mc.Normal('X', mean, 1/sigma**2, observed=data) 

indicates that the random variable X has been observed to take the values in the 

array data. Adding observed random variables to a model automatically results in 

that subsequent sampling using mc.sample samples the posterior distribution of the 

model, appropriately conditioned on the observed data according to Bayes’ rule and 

the likelihood function implied by the distribution selected for the observed data. For 

example, consider the model we used in the preceding text, with a normal distributed 

random variable X whose mean and standard deviation are random variables. Here we 

simulate the observations for X by drawing samples from a normally distributed random 

variable with μ = 2.5 and σ = 1.5 using the norm class from the SciPy stats module:

In [32]: mu = 2.5

In [33]: s = 1.5

In [34]: data = stats.norm(mu, s).rvs(100)

The data is feed into the model by setting the keyword argument observed=data 

when the observed variable is created and added to the model:

In [35]: with mc.Model() as model:

    ...:     mean = mc.Normal('mean', 4.0, 1.0) # true 2.5

    ...:      sigma = mc.HalfNormal('sigma', 3.0 * np.sqrt(np.pi/2))  

# true 1.5

    ...:     X = mc.Normal('X', mean, 1/sigma**2, observed=data)

A consequence of providing observed data for X is that it is no longer considered as 

a random variable in the model. This can be seen from inspecting the model using the 

vars attribute, where X is now absent:

In [36]: model.vars

Out[36]: [mean, sigma_log_]
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Instead, in this case, X is a deterministic variable that is used to construct the 

likelihood function that relates the priors, represented by mean and sigma, to the 

posterior distribution for these random variables. Like before, we can find a suitable 

starting point for the sampling process using the mc.find_MAP function. After creating  

an MCMC step instance, we can sample the posterior distribution for the model using 

mc.sample:

In [37]: with model:

    ...:     start = mc.find_MAP()

    ...:     step = mc.Metropolis()

    ...:     trace = mc.sample(100000, start=start, step=step)

[-----------------100%-----------------] 100000 of 100000 complete in 36.1 

sec

The starting point that was calculated using mc.find_MAP maximizes the likelihood 

of the posterior given the observed data, and it provides an estimate of the unknown 

parameters of the prior distribution:

In [38]: start

Out[38]: {'mean': array(2.5064940359768246), 'sigma_log': 

array(0.394681633456101)}

However, to obtain estimates of the distribution of these parameters (which are 

random variables in their own right), we need to carry out the MCMC sampling using 

the mc.sample function, as done in the preceding text. The result of the posterior 

distribution sampling is shown in Figure 16-4. Note that the distributions for the mean 

and sigma variables are closer to the true parameter values, μ = 2.5 and σ = 1.5, than to 

the prior guesses of 4.0 and 3.0, respectively, due to the influence of the data and the 

corresponding likelihood function.

In [38]: fig, axes = plt.subplots(2, 2, figsize=(8, 4), squeeze=False)

    ...: mc.traceplot(trace, varnames=['mean', 'sigma'], ax=axes)

ChAPTer 16  BAyesiAn sTATisTiCs



556

To calculate statistics and estimate quantities using the samples from the posterior 

distributions, we can access arrays containing the samples using the get_values 

method, which takes the name of the random variable as argument. For example, in the 

following code, we compute estimates of the mean of the two random variables in the 

model and compare to the corresponding true values for the distributions that the data 

points were drawn from:

In [39]: mu, trace.get_values('mean').mean()

Out[39]: (2.5, 2.5290001218008435)

In [40]: s, trace.get_values('sigma').mean()

Out[40]: (1.5, 1.5029047840092264)

The PyMC library also provides utilities for analyzing and summarizing the statistics 

of the marginal posterior distributions obtained from the mc.sample function. For 

example, the mc.forestplot function visualizes the mean and credibility intervals 

(i.e., an interval within which the true parameter value is likely to be) for each random 

variable in a model. The result of visualizing the samples for the current example using 

the mc.forestplot function is shown in Figure 16-5:

In [41]: mc.forestplot(trace, varnames=['mean', 'sigma'])

Figure 16-4. The MCMC sampling trace of the posterior distribution for mean and 
sigma
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Similar information can also be presented in text form using the mc.summary 

function, which, for example, includes information such as the mean, standard 

deviation, and posterior quantiles.

In [42]: mc.summary(trace, varnames=['mean', 'sigma'])

mean:

   Mean             SD               MC Error         95% HPD interval

   -------------------------------------------------------------------

   2.472            0.143            0.001            [2.195, 2.757]

   Posterior quantiles:

   2.5            25             50             75             97.5

   |--------------|==============|==============|--------------|

   2.191          2.375          2.470          2.567          2.754

sigma:

   Mean             SD               MC Error         95% HPD interval

   -------------------------------------------------------------------

   1.440            0.097            0.001            [1.256, 1.630]

   Posterior quantiles:

   2.5            25             50             75             97.5

   |--------------|==============|==============|--------------|

   1.265          1.372          1.434          1.501          1.643

Figure 16-5. A forest plot for the two parameters, mean and sigma, which show 
their credibility intervals
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 Linear Regression
Regression is one of the most basic tools in statistical modeling, and we have already 

seen examples of linear regression within the classical statistical formalism, for example, 

in Chapters 14 and 15. Linear regression can also be approached with Bayesian methods 

and treated as a modeling problem where we assign prior probability distributions 

to the unknown model parameters (slopes and intercept) and compute the posterior 

distribution given the available observations. To be able to compare the similarities and 

differences between Bayesian linear regression and the frequentist’s approach to the 

same problem, using, for example, the methods from Chapter 14, here we begin with 

a short analysis of a linear regression problem using the statsmodels library. Next, we 

proceed to analyze the same problem with PyMC.

As example data for performing a linear regression analysis, here we use a dataset 

that contains the height and weight for 200 men and women, which we can load using 

the get_rdataset function from the datasets module in the statsmodels library:

In [42]: dataset = sm.datasets.get_rdataset("Davis", "carData")

For simplicity, to begin with, we work only with the subset of the dataset that 

corresponds to male subjects, and to avoid having to deal with outliers, we filter out all 

subjects with a weight that exceeds 110 kg. These operations are readily performed using 

Pandas methods for filtering data frames using Boolean masks:

In [43]: data = dataset.data[dataset.data.sex == 'M']

In [44]: data = data[data.weight < 110]

The resulting Pandas data frame object data contains several columns:

In [45]: data.head(3)

Out[45]:

sex weight height repwt repht

0 M 77 182 77 180

3 M 68 177 70 175

5 M 76 170 76 165
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Here we focus on a linear regression model for the relationship between the weight 

and height columns in this dataset. Using the statsmodels library and its model for 

ordinary least square regression and the Patsy formula language, we create a statistical 

model for this relationship in a single line of code:

In [46]: model = smf.ols("height ~ weight", data=data)

To actually perform the fitting of the specified model to the observed data, we use 

the fit method of the model instance:

In [47]: result = model.fit()

Once the model has been fitted and the model result object has been created, we can 

use the predict method to compute the predictions for new observations and for plotting 

the linear relation between the height and weight, as shown in Figure 16-6.

In [48]: x = np.linspace(50, 110, 25)

In [49]: y = result.predict({"weight": x})

In [50]: fig, ax = plt.subplots(1, 1, figsize=(8, 3))

    ...: ax.plot(data.weight, data.height, 'o')

    ...: ax.plot(x, y, color="blue")

    ...: ax.set_xlabel("weight")

    ...: ax.set_ylabel("height")

Figure 16-6. Height vs. weight, with a linear model fitted using ordinary least 
square
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The linear relation shown in Figure 16-6 summarizes the main result of performing 

a linear regression on this dataset. It gives the best fitting line, described by specific 

values of the model parameters (intercept and slope). Within the frequentist’s approach 

to statistics, we can also compute numerous statistics, for example, p-values for various 

hypotheses, such as the hypotheses that a model parameter is zero (no effect).

The end result of a Bayesian regression analysis is the posterior distribution for the 

marginal distributions for each model parameter. From such marginal distributions, we 

can compute the mean estimates for the model parameters, which roughly correspond 

to the model parameters obtained from a frequentist’s analysis. We can also compute 

other quantities, such as the credibility interval, which characterizes the uncertainty 

in the estimate. To model the height vs. weight using a Bayesian model, we can use a 

relation such as height intercept weight,~ +( )b s 2 , where intercept, β, and σ are 

random variables with unknown distributions and parameters. We also need to give 

prior distributions to all stochastic variables in the model. Depending on the application, 

the exact choice of prior can be a sensitive issue, but when there is a lot of data to fit, it 

is normally sufficient to use reasonable initial guesses. Here we simply start with priors 

that represent broad distributions for all the model parameters.

To program the model in PyMC, we use the same methodology as earlier in this 

chapter: First, we create random variables for the stochastic components of the model 

and assign them to distributions with specific parameters that represent the prior 

distributions. Next, we create a deterministic variable that are functions of the stochastic 

variables, but with observed data attached to it using the observed keyword argument, 

as well as in the expression for the expected value of the distribution of the heights 

(height_mu).

In [51]: with mc.Model() as model:

    ...:     sigma = mc.Uniform('sigma', 0, 10)

    ...:     intercept = mc.Normal('intercept', 125, sd=30)

    ...:     beta = mc.Normal('beta', 0, sd=5)

    ...:     height_mu = intercept + beta * data.weight

    ...:      mc.Normal('height', mu=height_mu, sd=sigma, observed=data.

height)

    ...:      predict_height = mc.Normal('predict_height', mu=intercept + 

beta * x, sd=sigma, shape=len(x))
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If we want to use the model for predicting the heights at specific values of weights, 

we can also add an additional stochastic variable to the model. In the preceding model 

specification, the predict_height variable is an example of this. Here x is the NumPy 

array with values between 50 and 110 that was created earlier. Because it is an array, we 

need to set the shape attribute of the mc.Normal class to the corresponding length of the 

array. If we inspect the vars attribute of the model, we now see that it contains the two 

model parameters (intercept and beta), the distribution of the model errors (sigma), and 

the predict_height variable for predicting the heights at specific values of weight from the 

x array:

In [52]: model.vars

Out[52]: [sigma_interval, intercept, beta, predict_height]

Once the model is fully specified, we can turn to the MCMC algorithm to sample 

the marginal posterior distributions for the model, given the observed data. Like before, 

we can use mc.find_MAP to find a suitable starting point. Here we use an alternative 

sampler, mc.NUTS (No-U-Turn Sampler), which is a new and powerful sampler that has 

been added to version 3 of PyMC.

In [53]: with model:

    ...:     start = mc.find_MAP()

    ...:     step = mc.NUTS()

    ...:     trace = mc.sample(10000, step, start=start)

[-----------------100%-----------------]  10000 of 10000 complete in 43.1 sec

The result of the sampling is stored in a trace object returned by mc.sample. We 

can visualize the kernel density estimate of the probability distribution and the MCMC 

random walk traces that generated the samples using the mc.traceplot function. Here we 

again use the varnames argument to explicitly select which stochastic variables in the 

model to show in the trace plot. The result is shown in Figure 16-7.

In [54]: fig, axes = plt.subplots(2, 2, figsize=(8, 4), squeeze=False)

    ...: mc.traceplot(trace, varnames=['intercept', 'beta'], ax=axes)

ChAPTer 16  BAyesiAn sTATisTiCs



562

The values of the intercept and coefficient in the linear model that most closely 

correspond to the results from the statsmodels analysis in the preceding text are 

obtained by computing the mean of the traces for the stochastic variables in the 

Bayesian model:

In [55]: intercept = trace.get_values("intercept").mean()

In [56]: intercept

Out[56]: 149.97546241676989

In [57]: beta = trace.get_values("beta").mean()

In [58]: beta

Out[58]: 0.37077795098761318

The corresponding result from the statsmodels analysis is obtained by accessing the 

params attribute in the result class returned by the fit method (see the preceding text):

In [59]: result.params

Out[59]: Intercept    152.617348

         weight         0.336477

         dtype: float64

Figure 16-7. Distribution and sampling trace of the linear model intercept and 
beta coefficient
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By comparing these values for the intercepts and the coefficients, we see that the two 

approaches give similar results for the maximum likelihood estimates of the unknown 

model parameters. In the statsmodels approach, to predict the expected height for a 

given weight, say 90 kg, we can use the predict method to get a specific height:

In [60]: result.predict({"weight": 90}).values

Out[60]: array([ 182.90030002])

The corresponding result in the Bayesian model is obtained by computing the mean 

for the distribution of the stochastic variable predict_height, for the given weight:

In [61]: weight_index = np.where(x == 90)[0][0]

In [62]: trace.get_values("predict_height")[:, weight_index].mean()

Out[62]: 183.33943635274935

Again, the results from the two approaches are comparable. In the Bayesian model, 

however, we have access to an estimate of the full probability distribution of the height 

at every modeled weight. For example, we can plot a histogram and the kernel density 

estimate of the probability distribution for the weight 90 kg using the distplot function 

from the Seaborn library, which results in the graph shown in Figure 16-8:

In [63]: fig, ax = plt.subplots(figsize=(8, 3))

     ...:  sns.distplot(trace.get_values("predict_height")[:, weight_index], 

ax=ax)

    ...: ax.set_xlim(150, 210)

    ...: ax.set_xlabel("height")

    ...: ax.set_ylabel("Probability distribution")

Figure 16-8. Probability distribution for prediction of the height for the weight 90 kg
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Every sample in the MCMC trace represents a possible value of the intercept and 

coefficients in the linear model that we wish to fit the observed data. To visualize the 

uncertainty in the mean intercept and coefficient that we can take as estimates of the 

final linear model parameters, it is illustrative to plot the lines corresponding to each 

sample point, along with the data as a scatter plot and the lines that correspond to the 

mean intercept and slope. This results in a graph like the one shown in Figure 16-9. The 

spread of the lines represents the uncertainty in the estimate of the height for a given 

weight. The spread tends to be larger toward the edges where fewer data points are 

available and tighter in the middle of a cloud of data points.

In [64]: fig, ax = plt.subplots(1, 1, figsize=(8, 3))

    ...: for n in range(500, 2000, 1):

    ...:     intercept = trace.get_values("intercept")[n]

    ...:     beta = trace.get_values("beta")[n]

    ...:      ax.plot(x, intercept + beta * x, color='red', lw=0.25, 

alpha=0.05)

    ...: intercept = trace.get_values("intercept").mean()

    ...: beta = trace.get_values("beta").mean()

    ...:  ax.plot(x, intercept + beta * x, color='k', label="Mean Bayesian 

prediction")

    ...: ax.plot(data.weight, data.height, 'o')

    ...: ax.plot(x, y, '--', color="blue", label="OLS prediction")

    ...: ax.set_xlabel("weight")

    ...: ax.set_ylabel("height")

    ...: ax.legend(loc=0)

Figure 16-9. Height vs. weight, with linear fits using OLS and a Bayesian 
model
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In the linear regression problem we have looked at here, we explicitly defined the 

statistical model and the stochastic variables included in the model. This illustrates 

the general steps that are required for analyzing statistical models using the Bayesian 

approach and the PyMC library. For generalized linear model, however, the PyMC 

library provides a simplified API that creates the model and the required stochastic 

variables for us. With the mc.glm.GLM.from_formula function, we can define a 

generalized linear model using Patsy formula (see Chapter 14) and provide the data 

using a Pandas data frame. This automatically takes care of setting up the model. With 

the model setup using mc.glm.glm, we can proceed to sample from the posterior 

distribution of the model using the same methods as before.

In [65]: with mc.Model() as model:

    ...:     mc.glm.GLM.from_formula('height ~ weight', data)

    ...:     step = mc.NUTS()

    ...:     trace = mc.sample(2000, step)

[-----------------100%-----------------] 2000 of 2000 complete in 99.1 sec

The result of the sampling of the GLM model, as visualized by the mc.traceplot 

function, is shown in Figure 16-10. In these trace plots, sd corresponds to the sigma 

variable in the explicit model definition used in the preceding text, and it represents the 

standard error of the residual of the model and the observed data. In the traces, note 

how the sample requires a few hundred samples before it reaches a steady level. The 

initial transient period does not contribute samples with the correct distribution, so 

when using the samples to compute estimates, we should exclude the samples from the 

initial period.

In [66]: fig, axes = plt.subplots(3, 2, figsize=(8, 6), squeeze=False)

    ...:  mc.traceplot(trace, varnames=['Intercept', 'weight', 'sd'], 

ax=axes)
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With the mc.glm.glm we can create and analyze linear models using Bayesian 

statistics in almost the same way as we define and analyze a model using the 

frequentist’s approach with statsmodels. For the simple example studied here, 

the regression analysis with both statistical approaches gives similar results, and 

neither methods are much more suitable than the other. However, there are practical 

differences that depending on the situation can favor one or the other. For example, 

with the Bayesian approach, we have access to estimates of the full marginal posterior 

distributions, which can be useful for computing statistical quantities other than the 

mean. However, performing MCMC on simple models like the one considered here is 

significantly more computationally demanding than carrying out ordinary least square 

fitting. The real advantages of the Bayesian methods arise when analyzing complicated 

models in high dimensions (many unknown model parameters). In such cases, defining 

appropriate frequentist’s models can be difficult and solving the resulting models 

Figure 16-10. Sample trace plot for a Bayesian GLM model defined using the  
mc.glm module
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challenging. The MCMC algorithm has the very attractive property that it scales well 

to high-dimensional problems and can therefore be highly competitive for complex 

statistical models. While the model we have considered here all are simple, and can 

easily be solved using a frequentist’s approach, the general methodology used here 

remains unchanged, and creating more involved models is only a matter of adding more 

stochastic variables to the model.

As a final example, we illustrate that the same general procedure can be used also 

when the complexity of the Bayesian model is increased. We return to the height and 

weight dataset, but instead of selecting only the male subject, here we consider an 

additional level in the model which accounts for the gender of the subject so that both 

males and females can be modeled with potentially different slopes and intercepts. 

In PyMC we can create a multilevel model by using the shape argument to specify the 

dimension for each stochastic variable that is added to the model, as shown in the 

following example.

We begin by preparing the dataset. Here we again restrict our analysis to subjects 

with weight less than 110 kg, to eliminate outliers, and we convert the sex column to a 

binary variable where 0 represents male and 1 represents female.

In [67]: data = dataset.data.copy()

In [68]: data = data[data.weight < 110]

In [69]: data["sex"] = data["sex"].apply(lambda x: 1 if x == "F" else 0)

Next, we define the statistical model, which we here take to be height~N(intercepti + 

βi weight, σ2), where i is an index that takes the value 0 for male subjects and 1 for female 

subjects. When creating the stochastic variables for intercepti and βi, we indicate the 

multilevel structure by specifying shape=2 (since in this case, we have two levels: male 

and female). The only other difference compared to the previous model definition is that 

we also need to use an index mask when defining the expression for height_mu, so that 

each value in data.weight is associated with the correct level.

In [70]: with mc.Model() as model:

    ...:     intercept_mu, intercept_sigma = 125, 30

    ...:     beta_mu, beta_sigma = 0, 5

    ...:

    ...:      intercept = mc.Normal('intercept', intercept_mu, sd=intercept_

sigma, shape=2)

    ...:     beta = mc.Normal('beta', beta_mu, sd=beta_sigma, shape=2)
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    ...:     error = mc.Uniform('error', 0, 10)

     ...:

    ...:     sex_idx = data.sex.values

    ...:     height_mu = intercept[sex_idx] + beta[sex_idx] * data.weight

     ...:

    ...:      mc.Normal('height', mu=height_mu, sd=error, observed=data.

height)

Inspecting the model variables using the vars attribute object shows that we again 

have three stochastic variables in the model: intercept, beta, and error. However, in 

contrast to the earlier model, here intercept and beta both have two levels.

In [71]: model.vars

Out[71]: [intercept, beta, error_interval]

The way we invoke the MCMC sampling algorithm is identical to the earlier 

examples in this chapter. Here we use the NUTS sampler and collect 5000 samples:

In [72]: with model:

    ...:     start = mc.find_MAP()

    ...:     step = mc.NUTS()

    ...:     trace = mc.sample(5000, step, start=start)

[-----------------100%-----------------] 5000 of 5000 complete in 64.2 sec

We can also, like before, use the mc.traceplot function to visualize the result of 

the sampling. This allows us to quickly form an idea of the distribution of the model 

parameters and to verify that the MCMC sampling has produced sensible results. The 

trace plot for the current model is shown in Figure 16-11, and unlike earlier examples, 

here we have multiple curves in the panels for the intercept and beta variables, 

reflecting their multilevel nature: the blue (dark) lines show the results for the male 

subjects, and the green (light) lines show the result for the female subjects.

In [73]: mc.traceplot(trace, figsize=(8, 6))
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Using the get_values method of the trace object, we can extract the sampling 

data for the model variables. Here the sampling data for intercept and beta are two- 

dimensional arrays with shape (5000, 2): the first dimension represents each sample, 

and the second dimension represents the level of the variable. Here we are interested in 

the intercept and the slope for each gender, so we take the mean along the first axis (all 

samples):

In [74]:  intercept_m, intercept_f = trace.get_values('intercept').

mean(axis=0)

In [75]: beta_m, beta_f = trace.get_values('beta').mean(axis=0)

Figure 16-11. Kernel density estimates of the probability distributions of the 
model parameters and the MCMC sampling traces for each variable in the 
multilevel model for height vs. weight
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By averaging over both dimensions, we can also get the intercept and the slope that 

represent the entire dataset, where male and female subjects are grouped together:

In [76]: intercept = trace.get_values('intercept').mean()

In [77]: beta = trace.get_values('beta').mean()

Finally, we visualize the results by plotting the data as scatter plots and drawing the 

lines corresponding to the intercepts and slopes that we obtained for male and female 

subjects, as well as the result from grouping all subjects together. The result is shown in 

Figure 16-12.

In [78]: fig, ax = plt.subplots(1, 1, figsize=(8, 3))

    ...: mask_m = data.sex == 0

    ...: mask_f = data.sex == 1

    ...:  ax.plot(data.weight[mask_m], data.height[mask_m], 'o', 

color="steelblue",

    ...:         label="male", alpha=0.5)

    ...:  ax.plot(data.weight[mask_f], data.height[mask_f], 'o', 

color="green",

    ...:         label="female", alpha=0.5)

    ...: x = np.linspace(35, 110, 50)

    ...:  ax.plot(x, intercept_m + x * beta_m, color="steelblue", 

label="model male group")

    ...:  ax.plot(x, intercept_f + x * beta_f, color="green", label="model 

female group")

    ...:  ax.plot(x, intercept + x * beta, color="black", label="model both 

groups")

     ...:

    ...: ax.set_xlabel("weight")

    ...: ax.set_ylabel("height")

    ...: ax.legend(loc=0)
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The regression lines are shown in Figure 16-12, and the distribution plots shown 

in Figure 16-11 indicate that the model is improved by taking account for different 

intercepts and slopes for male and female subjects. In a Bayesian model with PyMC, 

changing the underlying model used in the analysis is only a matter of adding stochastic 

variables to the model, defining how they are related to each other and assigning a prior 

distribution for each stochastic variable. The MCMC sampling required to actually solve 

the model is independent of the model details. This is one of the most attractive aspects 

of Bayesian statistical modeling. For instance, in the multilevel model considered in the 

preceding text, instead of specifying the priors for the intercept and slope variables as 

independent probability distributions, we could relate the distribution parameters of the 

priors to another stochastic variable and thereby obtain a hierarchical Bayesian model, 

where the model parameters describing the distribution of the intercept and the slope 

for each level are drawn from a common distribution. Hierarchical models have many 

uses and are one of the many applications where Bayesian statistics excel.

 Summary
In this chapter, we have explored Bayesian statistics using computational methods 

provided by the PyMC library. The Bayesian approach to statistics is distinct from 

classical frequentist’s statistics in several fundamental viewpoints. From a practical, 

computational point of view, Bayesian methods are often very demanding to solve 

exactly. In fact, computing the posterior distribution for a Bayesian model exactly is 

often prohibitively expensive. However, what we often can do is to apply powerful and 

Figure 16-12. The height vs. weight for male (dark/blue) and female (light/green) 
subjects
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efficient sampling methods that allow us to find an approximate posterior distribution 

using simulations. The key role of a Bayesian statistics framework is to allow us to define 

statistical models and then apply sampling methods to find an approximate posterior 

distribution for the model. Here, we have employed the PyMC library as a Bayesian 

modeling framework in Python. We briefly explored defining statistical models in terms 

of stochastic variables with given distributions and the simulation and sampling of the 

posterior distribution for those models using the MCMC methods implemented in the 

PyMC library.

 Further Reading
For accessible introductions to the theory of Bayesian statistics, see Kruschke (2014) 

and Downey (2013). A more technical discussion is given in Gelman (2013). A 

computationally oriented introduction to Bayesian methods with Python is given in 

Probabilistic Programming and Bayesian Methods for Hackers, which is available for 

free online at http://camdavidsonpilon.github.io/Probabilistic-Programming- 

and-Bayesian-Methods-for-Hackers. An interesting discussion about the differences 

between the Bayesian and frequentist’s approaches to statistics, with examples written 

in Python, is given in VanderPlas (2014), which is also available at http://arxiv.org/

pdf/1411.5018.pdf.
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CHAPTER 17

Signal Processing
In this chapter we explore signal processing, which is a subject with applications in 

diverse branches of science and engineering. A signal in this context can be a quantity 

that varies in time (temporal signal) or as a function of space coordinates (spatial 

signal). For example, an audio signal is a typical example of a temporal signal, while an 

image is a typical example of a spatial signal in two dimensions. In reality, signals are 

often continuous functions, but in computational applications, it is common to work 

with discretized signals, where the original continuous signal is sampled at discrete 

points with uniform distances. The sampling theorem gives rigorous and quantitative 

conditions for when a continuous signal can be accurately represented by a discrete 

sequence of samples.

Computational methods for signal processing play a central role in scientific 

computing not only because of their widespread application but also because there 

exist very efficient computational methods for important signal-processing problems. In 

particular, the fast Fourier transform (FFT) is an important algorithm for many signal- 

processing problems, and moreover it is perhaps one of the most important numerical 

algorithms in all of computing. In this chapter we explore how FFTs can be used in 

spectral analysis, but beyond this basic application, there is also broad usage of FFT 

both directly and indirectly as a component in other algorithms. Other signal-processing 

methods, such as convolution and correlation analysis, and linear filters also have 

widespread applications, in particular in engineering fields such as control theory.

In this chapter we discuss spectral analysis and basic applications of linear filters, 

using the fftpack and signal modules in the SciPy library.
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 Importing Modules
In this chapter, we mainly work with the fftpack and signal modules from the SciPy 

library. As usual with modules from the SciPy library, we import the modules using the 

following pattern:

In [1]: from scipy import fftpack

In [2]: from scipy import signal

We also use the io.wavefile module from SciPy to read and write WAV audio files in 

one of the examples. We import this module in the following way:

In [3]: import scipy.io.wavfile

In [4]: from scipy import io

For basic numerics and graphics, we also require the NumPy, Pandas, and Matplotlib 

libraries:

In [5]: import numpy as np

In [6]: import pandas as pd

In [7]: import matplotlib.pyplot as plt

In [8]: import matplotlib as mpl

 Spectral Analysis
We begin this exploration of signal processing by considering spectral analysis. Spectral 

analysis is a fundamental application of Fourier transforms, which is a mathematical 

integral transform that allows us to take a signal from the time domain – where it is 

described as a function of time – to the frequency domain, where it is described as 

a function of frequency. The frequency-domain representation of a signal is useful 

for many purposes, for example, extracting features such as dominant frequency 

components of a signal, applying filters to signals, and solving differential equations  

(see Chapter 9), just to mention a few.
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 Fourier Transforms
The mathematical expression for the Fourier transform F(v) of a continuous signal f(t) is1
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and the inverse Fourier transform is given by
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Here F(v) is the complex-valued amplitude spectrum of the signal f (t), and v is 

the frequency. From F(v) we can compute other types of spectrum, such as the power 

spectrum |F(v)|2. In this formulation f (t) is a continuous signal with infinite duration. In 

practical applications we are often more interested in approximating f (t) using a finite 

number of samples from a finite duration of time. For example, we might sample the 

function f (t) at N uniformly spaced points in the time interval t ∈ [0, T], resulting in a 

sequence of samples that we denote (x0, x1, …, xN). The continuous Fourier transform 

shown in the preceding text can be adapted to the discrete case: the discrete Fourier 

transform (DFT) of a sequence of uniformly spaced samples is
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and similarly we have the inverse DFT

 
x

N
X en

k

N

k
ink N=

=

-

å1

0

1
2p / ,

 

where Xk is the discrete Fourier transform of the samples xn and k is a frequency bin 

number that can be related to a real frequency. The DFT for a sequence of samples can 

be computed very efficiently using the algorithm known as fast Fourier transform (FFT).  

1 There are several alternative definitions of the Fourier transform, which vary in the coefficient in 
the exponent and the normalization of the transform integral.
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The SciPy fftpack module2 provides implementations of the FFT algorithm. The 

fftpack module contains FFT functions for a variety of cases: see Table 17-1 for a 

summary. Here we focus on demonstrating the usage of the fft and ifft functions and 

several of the helper functions in the fftpack module. However, the general usage is 

similar for all FFT functions in Table 17-1.

Note that the DFT takes discrete samples as input and outputs a discrete frequency 

spectrum. To be able to use DFT for processes that are originally continuous, we first 

must reduce the signals to discrete values using sampling. According to the sampling 

theorem, a continuous signal with bandwidth B (i.e., the signal does not contain 

frequencies higher than B) can be completely reconstructed from discrete samples with 

2 There is also an implementation of FFT in the fft module in NumPy. It provides mostly the 
same functions as scipy.fftpack, which we use here. As a general rule, when SciPy and NumPy 
provide the same functionality, it is generally preferable to use SciPy if available and fallback to 
the NumPy implementation when SciPy is not available.

Table 17-1. Summary of Selected Functions from the fftpack Module in SciPy. 

For detailed usage of each function, including their arguments and return values, 

see their docstrings which are available using, for example,  help(fftpack.fft).

Function Description

fft, ifft general FFt and inverse FFt of a real- or complex-valued signal. the resulting 

frequency spectrum is complex valued.

rfft, irfft FFt and inverse FFt of a real-valued signal.

dct, idct the discrete cosine transform (DCt) and its inverse.

dst, idst the discrete sine transform (DSt) and its inverse.

fft2, ifft2, 

fftn, ifftn

the two-dimensional and the n-dimensional FFt for complex-valued signals and 

their inverses.

fftshift, 

ifftshift, 

rfftshift, 

irfftshift

Shift the frequency bins in the result vector produced by fft and rfft, 

respectively, so that the spectrum is arranged such that the zero-frequency 

component is in the middle of the array.

fftfreq Calculate the frequencies corresponding to the FFt bins in the result returned by fft.
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sampling frequency fs ≥ 2B. This is a very important result in signal processing because 

it tells us under what circumstances we can work with discrete instead of continuous 

signals. It allows us to determine a suitable sampling rate when measuring a continuous 

process, since it is often possible to know or approximately guess the bandwidth of a 

process, for example, from physical arguments. While the sampling rate determines the 

maximum frequency we can describe with a discrete Fourier transform, the spacing of 

samples in frequency space is determined by the total sampling time T or equivalently 

from the number of samples points once the sampling frequency is determined, T = N/fs.

As an introductory example, consider a simulated signal with pure sinusoidal 

components at 1 Hz and at 22 Hz, on top of a normal-distributed noise floor. We begin by 

defining a function signal_samples that generates noisy samples of this signal:

In [9]: def signal_samples(t):

   ...:      return (2 * np.sin(2 * np.pi * t) + 3 * np.sin(22 * 2 *  

np.pi * t) + 2 * np.random.randn(*np.shape(t)))

We can get a vector of samples by calling this function with an array with sample 

times as argument. Say that we are interested in computing the frequency spectrum of 

this signal up to frequencies of 30 Hz. We then need to choose the sampling frequency  

fs = 60 Hz, and if we want to obtain a frequency spectrum with a resolution of ∆f = 0.01 Hz,  

we need to collect at least N = fs/∆f = 6000 samples, corresponding to a sampling period 

of T = N/fs = 100 seconds:

In [10]: B = 30.0

In [11]: f_s = 2 * B

In [12]: delta_f = 0.01

In [13]: N = int(f_s / delta_f); N

Out[13]: 6000

In [14]: T = N / f_s; T

Out[14]: 100.0

Next we sample the signal function at N uniformly spaced points in time by first 

creating an array t that contains the sample times and then using it to evaluate the 

signal_samples function:

In [15]: t = np.linspace(0, T, N)

In [16]: f_t = signal_samples(t)
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The resulting signal is plotted in Figure 17-1. The signal is rather noisy, both when 

viewed over the entire sampling time and when viewed for a shorter period of time, and 

the added random noise mostly masks the pure sinusoidal signals when viewed in the 

time domain.

In [17]: fig, axes = plt.subplots(1, 2, figsize=(8, 3), sharey=True)

    ...: axes[0].plot(t, f_t)

    ...: axes[0].set_xlabel("time (s)")

    ...: axes[0].set_ylabel("signal")

    ...: axes[1].plot(t, f_t)

    ...: axes[1].set_xlim(0, 5)

    ...: axes[1].set_xlabel("time (s)")

To reveal the sinusoidal components in the signal, we can use the FFT to compute 

the spectrum of the signal (or in other words, its frequency-domain representation). We 

obtain the discrete Fourier transform of the signal by applying the fft function to the 

array of discrete samples, f_t:

In [18]: F = fftpack.fft(f_t)

The result is an array F, which contains the frequency components of the spectrum 

at frequencies that are determined by the sampling rate and the number of samples. 

When computing these frequencies, it is convenient to use the helper function fftfreq, 

Figure 17-1. Simulated signal with random noise. Full signal to the left and zoom 
into early times on the right
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which takes the number of samples and the time duration between successive samples 

as parameters and returns an array of the same size as F that contains the frequencies 

corresponding to each frequency bin.

In [19]: f = fftpack.fftfreq(N, 1.0/f_s)

The frequency bins for the amplitude values returned by the fft function contain 

both positive and negative frequencies, up to the frequency that corresponds to half the 

sampling rate, fs/2. For real-valued signals, the spectrum is symmetric at positive and 

negative frequencies, and we are for this reason often only interested in the positive- 

frequency components. Using the frequency array f, we can conveniently create a mask 

that can be used to extract the part of the spectrum that corresponds to the frequencies 

we are interested in. Here we create a mask for selecting the positive-frequency 

components:

In [20]: mask = np.where(f >= 0)

The spectrum for the positive-frequency components is shown in Figure 17-2. The 

top panel contains the entire positive-frequency spectrum and is plotted on a log scale 

to increase the contrast between the signal and the noise. We can see that there are 

sharp peaks near 1 Hz and 22 Hz, corresponding to the sinusoidal components in the 

signal. These peaks clearly stand out from the noise floor in the spectrum. In spite of the 

noise concealing the sinusoidal components in the time-domain signal, we can clearly 

detect their presence in the frequency-domain representation. The lower two panels in 

Figure 17-2 show magnifications of the two peaks at 1 Hz and 22 Hz, respectively.

In [21]: fig, axes = plt.subplots(3, 1, figsize=(8, 6))

    ...: axes[0].plot(f[mask], np.log(abs(F[mask])), label="real")

    ...: axes[0].plot(B, 0, 'r*', markersize=10)

    ...: axes[0].set_ylabel("$\log(|F|)$", fontsize=14)

    ...: axes[1].plot(f[mask], abs(F[mask])/N, label="real")

    ...: axes[1].set_xlim(0, 2)

    ...: axes[1].set_ylabel("$|F|/N$", fontsize=14)

    ...: axes[2].plot(f[mask], abs(F[mask])/N, label="real")

    ...: axes[2].set_xlim(21, 23)

    ...: axes[2].set_xlabel("frequency (Hz)", fontsize=14)

    ...: axes[2].set_ylabel("$|F|/N$", fontsize=14)
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 Frequency-Domain Filter

Just like we can compute the frequency-domain representation from the time-domain 

signal using the FFT function fft, we can compute the time-domain signal from the 

frequency-domain representation using the inverse FFT function ifft. For example, 

applying the ifft function to the F array will reconstruct the f_t array. By modifying 

the spectrum before we apply the inverse transform, we can realize frequency-domain 

filters. For example, selecting only frequencies below 2 Hz in the spectrum amounts to 

applying a 2 Hz low-pass filter, which suppresses high-frequency components in the 

signal (higher than 2 Hz in this case):

In [22]: F_filtered = F * (abs(f) < 2)

In [23]: f_t_filtered = fftpack.ifft(F_filtered)

Computing the inverse FFT for the filtered signal results in a time-domain signal 

where the high-frequency oscillations are absent, as shown in Figure 17-3. This simple 

example summarizes the essence of many frequency-domain filters. Later in this 

Figure 17-2. Spectrum of the simulated signal with frequency components at 1 Hz 
and 22 Hz
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chapter, we explore in more detail some of the many types of filters that are commonly 

used in signal-processing analysis.

In [24]: fig, ax = plt.subplots(figsize=(8, 3))

    ...: ax.plot(t, f_t, label='original')

    ...: ax.plot(t, f_t_filtered.real, color="red", lw=3, label='filtered')

    ...: ax.set_xlim(0, 10)

    ...: ax.set_xlabel("time (s)")

    ...: ax.set_ylabel("signal")

    ...: ax.legend()

 Windowing
In the previous section, we directly applied the FFT to the signal. This can give 

acceptable results, but it is often possible to further improve the quality and the contrast 

of the frequency spectrum by applying a so-called window function to the signal before 

applying the FFT. A window function is a function that when multiplied with the signal 

modulates its magnitude so that it approaches zero at the beginning and the end of the 

sampling duration. There are many possible functions that can be used as a window 

function, and the SciPy signal module provides implementations of many common 

window functions, including the Blackman function, the Hann function, the Hamming 

function, Gaussian window functions (with variable standard deviation), and the Kaiser 

window function.3 These functions are all plotted in Figure 17-4. This graph shows that 

while all of these window functions are slightly different, the overall shape is very similar.

3 Several other window functions are also available. See the docstring for the scipy.signal 
module for a complete list.

Figure 17-3. The original time-domain signal and the reconstructed signal after 
applying a low-pass filter to the frequency-domain representation of the signal
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In [25]: fig, ax = plt.subplots(1, 1, figsize=(8, 3))

    ...: N = 100

    ...: ax.plot(signal.blackman(N), label="Blackman")

    ...: ax.plot(signal.hann(N), label="Hann")

    ...: ax.plot(signal.hamming(N), label="Hamming")

    ...: ax.plot(signal.gaussian(N, N/5), label="Gaussian (std=N/5)")

    ...: ax.plot(signal.kaiser(N, 7), label="Kaiser (beta=7)")

    ...: ax.set_xlabel("n")

    ...: ax.legend(loc=0)

The alternative window functions all have slightly different properties and objectives, 

but for the most part, they can be used interchangeably. The main purpose of window 

functions is to reduce spectral leakage between nearby frequency bins, which occur 

in discrete Fourier transform computation when the signal contains components with 

periods that are not exactly divisible with the sampling period. Signal components with 

such frequencies can therefore not fit a full number of cycles in the sampling period, and 

since discrete Fourier transform assumes that signal is period, the resulting discontinuity 

at the period boundary can give rise to spectral leakage. Multiplying the signal with a 

window function reduces this problem. Alternatively, we could also increase the number 

of sample points (increase the sampling period) to obtain a higher frequency resolution, 

but this might not always be practical.

Figure 17-4. Example of commonly used window functions
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To see how we can use a window function before applying the FFT to a time-series 

signal, let’s consider the outdoor temperature measurements that we looked at in 

Chapter 12. First, we use the Pandas library to load the dataset and resample it to evenly 

spaced hourly samples, using fillna method to aggregate the elements.

In [26]: df = pd.read_csv('temperature_outdoor_2014.tsv', delimiter="\t",

    ...:                  names=["time", "temperature"])

In [27]: df.time = (pd.to_datetime(df.time.values, unit="s").

    ...:               tz_localize('UTC').tz_convert('Europe/Stockholm'))

In [28]: df = df.set_index("time")

In [29]: df = df.resample("H").ffill()

In [30]:  df = df[(df.index >= "2014-04-01")*(df.index < "2014-06- 01")].

dropna()

Once the Pandas data frame has been created and processed, we exact the 

underlying NumPy arrays to be able to process the time-series data using the fftpack 

module.

In [31]: time = df.index.astype('int64')/1.0e9

In [32]: temperature = df.temperature.values

Now we wish to apply a window function to the data in the array temperature before 

we compute the FFT. Here we use the Blackman window function, which is a window 

function that is suitable for reducing spectral leakage. It is available as the blackman 

function in the signal module in SciPy. As the argument to the window function, we 

need to pass the length of the sample array, and it returns an array of that same length:

In [33]: window = signal.blackman(len(temperature))

To apply the window function, we simply multiply it with the array containing the 

time-domain signal and use the result in the subsequent FFT computation. However, 

before we proceed with the FFT for the windowed temperature signal, we first plot the 

original temperature time series and the windowed version. The result is shown in 

Figure 17-5. The result of multiplying the time series with the window function is a signal 

that approaches zero near the sampling period boundaries, and it can be viewed as a 

periodic function with smooth transitions between period boundaries, and as such the 

FFT of the windowed signal has better-behaved properties.
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In [34]: temperature_windowed = temperature * window

In [35]: fig, ax = plt.subplots(figsize=(8, 3))

    ...: ax.plot(df.index, temperature, label="original")

    ...: ax.plot(df.index, temperature_windowed, label="windowed")

    ...: ax.set_ylabel("temperature", fontsize=14)

    ...: ax.legend(loc=0)

After having prepared the windowed signal, the rest of the spectral analysis proceeds 

as before: we can use the fft function to compute the spectrum and the fftfreq 

function to calculate the frequencies corresponding to each frequency bin.

In [36]: data_fft_windowed = fftpack.fft(temperature_windowed)

In [37]: f = fftpack.fftfreq(len(temperature), time[1]-time[0])

Here we also select the positive frequencies by creating a mask array from the array 

f and plot the resulting positive-frequency spectrum as shown in Figure 17-6. The 

spectrum in Figure 17-6 clearly shows peaks at the frequency that corresponds to 1 day 

(1/86400 Hz) and its higher harmonics (2/86400 Hz, 3/86400 Hz, etc.).

In [38]: mask = f > 0

In [39]: fig, ax = plt.subplots(figsize=(8, 3))

    ...: ax.set_xlim(0.000005, 0.00004)

    ...: ax.axvline(1./86400, color='r', lw=0.5)

    ...: ax.axvline(2./86400, color='r', lw=0.5)

Figure 17-5. Windowed and original temperature time-series signal
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    ...: ax.axvline(3./86400, color='r', lw=0.5)

    ...: ax.plot(f[mask], np.log(abs(data_fft_windowed[mask])), lw=2)

    ...: ax.set_ylabel("$\log|F|$", fontsize=14)

    ...: ax.set_xlabel("frequency (Hz)", fontsize=14)

To get the most accurate spectrum from a given set of samples, it is generally 

advisable to apply a window function to the time-series signal before applying an 

FFT. Most of the window functions available in SciPy can be used interchangeably, 

and the choice of window function is usually not critical. A popular choice is the 

Blackman window function, which is designed to minimize spectral leakage. For 

more details about the properties of different window functions, see, for example, 

Chapter 9 (Smith, 1999).

 Spectrogram
As a final example in this section on spectral analysis, here we analyze the spectrum of 

an audio signal that was sampled from a guitar.4 First we load sampled data from the 

guitar.wav file using the io.wavefile.read function from the SciPy library:

In [40]: sample_rate, data = io.wavfile.read("guitar.wav")

4 The data used in this example was obtained from https://www.freesound.org/people/
guitarguy1985/sounds/52047.

Figure 17-6. Spectrum of the windowed temperature time series. The dominant 
peak occurs at the frequency corresponding to a 1-day period and its higher 
harmonics.
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The io.wavefile.read function returns a tuple containing the sampling rate, 

sample_rate, and a NumPy array containing the audio intensity. For this particular file, 

we get the sampling rate of 44.1 kHz, and the audio signal was recorded in stereo, which is 

represented by a data array with two channels. Each channel contains 1181625 samples:

In [41]: sample_rate

Out[41]: 44100

In [42]: data.shape

Out[42]: (1181625, 2)

Here we will only be concerned with analyzing a single audio channel, so we form 

the average of the two channels to obtain a mono-channel signal:

In [43]: data = data.mean(axis=1)

We can calculate the total duration of the audio recording by dividing the number 

of samples with the sampling rate. The result suggests that the recording is about 26.8 

seconds.

In [44]: data.shape[0] / sample_rate

Out[44]: 26.79421768707483

It is often the case that we like to compute the spectrum of a signal in segments 

instead of the entire signal at once, for example, if the nature of the signal varies in time 

on a long timescale but contains nearly periodic components on a short timescale. This 

is particularly true for music, which can be considered nearly period on short timescales 

from the point of view of human perception (subsecond timescales) but which varies 

on longer timescales. In the case of the guitar sample, we would therefore like to apply 

the FFT on a sliding window in the time-domain signal. The result is a time-dependent 

spectrum, which is often visualized as an equalizer graph on music equipment and 

applications. Another approach is to visualize the time-dependent spectrum using a 

two-dimensional heatmap graph, which in this context is known as a spectrogram. In the 

following we compute the spectrogram of the guitar sample.

Before we proceed with the spectrogram visualization, we first calculate the 

spectrum for a small part of the sample. We begin by determining the number of 

samples to use from the full sample array. If we want to analyze for 0.5 seconds at the 

time, we can use the sampling rate to compute the number of samples to use:

In [45]: N = int(sample_rate/2.0) # half a second -> 22050 samples
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Next, given the number of samples and the sampling rate, we can compute the 

frequencies f for the frequency bins for the result of the forthcoming FFT calculation, as 

well as the sampling times t for each sample in the time-domain signal. We also create 

a frequency mask for selecting positive frequencies smaller than 1000 Hz, which we will 

use later on to select a subset of the computed spectrum.

In [46]: f = fftpack.fftfreq(N, 1.0/sample_rate)

In [47]: t = np.linspace(0, 0.5, N)

In [48]: mask = (f > 0) * (f < 1000)

Next, we exact the first N samples from the full sample array data and apply the fft 

function on it:

In [49]: subdata = data[:N]

In [50]: F = fftpack.fft(subdata)

The time- and frequency-domain signals are shown in Figure 17-7. The time-domain 

signal in the left panel is zero in the beginning before the first guitar string is plucked. 

The frequency-domain spectrum shows several dominant frequencies that correspond 

to the different tones produced by the guitar.

In [51]: fig, axes = plt.subplots(1, 2, figsize=(12, 3))

    ...: axes[0].plot(t, subdata)

    ...: axes[0].set_ylabel("signal", fontsize=14)

    ...: axes[0].set_xlabel("time (s)", fontsize=14)

    ...: axes[1].plot(f[mask], abs(F[mask]))

    ...: axes[1].set_xlim(0, 1000)

    ...: axes[1].set_ylabel("$|F|$", fontsize=14)

    ...: axes[1].set_xlabel("Frequency (Hz)", fontsize=14)

Figure 17-7. Signal and spectrum for samples half a second duration of a guitar 
sound
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The next step is to repeat the analysis for successive segments from the full sample 

array. The time evolution of the spectrum can be visualized as a spectrogram, with 

frequency on the x axis and time on the y axis. To be able to plot the spectrogram with 

the imshow function from Matplotlib, we create a two-dimensional NumPy array  

spectrogram_data for storing the spectra for the successive sample segments. The 

shape of the spectrogram_data array is (n_max, f_values), where n_max is the number of 

segments of length N in the sample array data and f_values are the number of frequency 

bins with frequencies that match the condition used to compute mask (positive 

frequencies less than 1000 Hz):

In [52]: n_max = int(data.shape[0] / N)

In [53]: f_values = np.sum(mask)

In [54]: spectogram_data = np.zeros((n_max, f_values))

To improve the contrast of the resulting spectrogram, we also apply a Blackman 

window function to each subset of the sample data before we compute the FFT. Here we 

choose the Blackman window function for its spectral leakage reducing properties, but 

many other window functions give similar results. The length of the window array must 

be the same as the length of the subdata array, so we pass its length argument to the 

Blackman function:

In [55]: window = signal.blackman(len(subdata))

Finally we can compute the spectrum for each segment in the sample by looping 

over the array slices of size N, apply the window function, compute the FFT, and store 

the subset of the result for the frequencies we are interested in in the spectrogram_data 

array:

In [56]: for n in range(0, n_max):

    ...:     subdata = data[(N * n):(N * (n + 1))]

    ...:     F = fftpack.fft(subdata * window)

    ...:     spectogram_data[n, :] = np.log(abs(F[mask]))

When the spectrogram_data is computed, we can visualize the spectrogram using 

the imshow function from Matplotlib. The result is shown in Figure 17-8.

In [57]: fig, ax = plt.subplots(1, 1, figsize=(8, 6))

    ...: p = ax.imshow(spectogram_data, origin='lower',

    ...:               extent=(0, 1000, 0, data.shape[0] / sample_rate),
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    ...:               aspect='auto',

    ...:               cmap=mpl.cm.RdBu_r)

    ...: cb = fig.colorbar(p, ax=ax)

    ...: cb.set_label("$\log|F|$", fontsize=14)

    ...: ax.set_ylabel("time (s)", fontsize=14)

    ...: ax.set_xlabel("Frequency (Hz)", fontsize=14)

The spectrogram in Figure 17-8 contains a lot of information about the sampled 

signal and how it evolves over time. The narrow vertical stripes correspond to tones 

produced by the guitar, and those signals slowly decay with increasing time. The broad 

horizontal bands correspond roughly to periods of time when strings are being plucked 

on the guitar, which for a short time gives a very broad frequency response. Note, 

however, that the color axis represents a logarithmic scale, so small variations in the 

color represent large variation in the actual intensity.

Figure 17-8. Spectrogram of an audio sampling of a guitar sound
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 Signal Filters
One of the main objectives in signal processing is to manipulate and transform 

temporal or spatial signals to change their characteristics. Typical applications 

are noise reduction, sound effects in audio signals, and effects such as blurring, 

sharpening, contrast enhancement, and color balance adjustments in image data. Many 

common transformations can be implemented as filters that act on the frequency- 

domain representation of the signal, for example, by suppressing certain frequency 

components. In the previous section, we saw an example of a low-pass filter, which we 

implemented by taking the Fourier transform of the signal, removing the high-frequency 

components, and finally taking the inverse Fourier transform to obtain a new time- 

domain signal. With this approach, we can implement arbitrary frequency filters, but 

we cannot necessarily apply them in real time on a streaming signal since they require 

buffering sufficient samples to be able to perform the discrete Fourier transform. In 

many applications, it is desirable to apply filters and transform a signal in a continuous 

fashion, for example, when processing signals in transmission or live audio signals.

 Convolution Filters
Certain types of frequency filters can be implemented directly in the time domain using 

a convolution of the signal with a function that characterizes the filter. An important 

property of Fourier transformations is that the (inverse) Fourier transform of the 

product of two functions (e.g., the spectrum of a signal and the filter shape function) 

is a convolution of the two functions (inverse) Fourier transforms. Therefore, if we 

want to apply a filter Hk to the spectrum Xk of a signal xn, we can instead compute the 

convolution of xn with hm, the inverse Fourier transform of the filter function Hk. In 

general, we can write a filter on convolution form as

 
y x hn

k
k n k=

=-¥

¥

-å ,
 

where xk is the input, yn is the output, and hn − k is the convolution kernel that 

characterizes the filter. Note that in this general form, the signal yn at time step n depends 

on both earlier and later values of the input xk. To illustrate this point, let’s return to the 

first example in this chapter, where we applied a low-pass filter to a simulated signal with 

components at 1 Hz and at 22 Hz. In that example we Fourier transformed the signal 
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and multiplied its spectrum with a step function that suppressed all high-frequency 

components, and finally we inverse Fourier transformed the signal back into the time 

domain. The result was a smoothened version of the original noisy signal (Figure 17-3). 

An alternative approach using convolution is to inverse Fourier transform the frequency 

response function for the filter H and use the result h as a kernel with which we convolve 

the original time-domain signal f_t:

In [58]: t = np.linspace(0, T, N)

In [59]: f_t = signal_samples(t)

In [60]: H = abs(f) < 2

In [61]: h = fftpack.fftshift(fftpack.ifft(H))

In [62]: f_t_filtered_conv = signal.convolve(f_t, h, mode='same')

To carry out the convolution, here we used the convolve function from the signal 

module in SciPy. It takes as arguments two NumPy arrays containing the signals for 

which to compute the convolution. Using the optional keyword argument mode, we 

can set the size of the output array to be the same as the first input (mode='same'), 

the full convolution output after having zero-padded the arrays to account for 

transients (mode='full'), or to contain only elements that do not rely on zero-padding 

(mode='valid'). Here we use mode='same', so we easily can compare and plot the result 

with the original signal, f_t. The result of applying this convolution filter,  f_t_filtered_

conv, is shown in Figure 17-9, together with the corresponding result that was computed 

using fft and ifft with a modified spectrum (f_t_filtered). As expected the two 

methods give identical results.

In [63]: fig = plt.figure(figsize=(8, 6))

     ...: ax = plt.subplot2grid((2,2), (0,0))

    ...: ax.plot(f, H)

    ...: ax.set_xlabel("frequency (Hz)")

    ...: ax.set_ylabel("Frequency filter")

    ...: ax.set_ylim(0, 1.5)

    ...: ax = plt.subplot2grid((2,2), (0,1))

    ...: ax.plot(t - t[-1]/2.0, h.real)

    ...: ax.set_xlabel("time (s)")

    ...: ax.set_ylabel("convolution kernel")

    ...: ax = plt.subplot2grid((2,2), (1,0), colspan=2)

    ...: ax.plot(t, f_t, label='original', alpha=0.25)
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    ...:  ax.plot(t, f_t_filtered.real, 'r', lw=2, label='filtered in 

frequency domain')

    ...:  ax.plot(t, f_t_filtered_conv.real, 'b--', lw=2, label='filtered 

with convolution')

    ...: ax.set_xlim(0, 10)

    ...: ax.set_xlabel("time (s)")

    ...: ax.set_ylabel("signal")

    ...: ax.legend(loc=2)

Figure 17-9. Top left: frequency filter. Top right: convolution kernel corresponding 
to the frequency filter (its inverse discrete Fourier transform). Bottom: simple low- 
pass filter applied via convolution
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 FIR and IIR Filters
In the example of a convolution filter in the previous section, there is no computational 

advantage of using a convolution to implement the filter rather than a sequence of a call 

to fft, spectrum modifications, followed by a call to ifft. In fact, the convolution here is 

in general more demanding than the extra FFT transformation, and the SciPy signal 

module actually provides a function call fftconvolve, which implements the 

convolution using FFT and its inverse. Furthermore, the convolution kernel of the filter 

has many undesirable properties, such as being noncasual, where the output signal 

depends on future values of the input (see the upper-right panel in Figure 17- 9). 

However, there are important special cases of convolution-like filters that can be 

efficiently implemented with both dedicated digital signal processors (DSPs) and 

general-purpose processors. An important family of such filters is the finite impulse 

response (FIR) filters, which takes the form y b xn
k

M

k n k=
=

-å
0

. This time-domain filter is 

casual because the output yn only depends on input values at earlier time steps.

Another similar type of filter is the infinite impulse response (IIR) filters, which can be 

written in the form a y b x a yn
k

M

k n k
k

N

k n k0
0 1

= -
=

-
=

-å å . This is not strictly a convolution since it 

additionally includes past values of the output when computing a new output value (a 

feedback term), but it is nonetheless in a similar form. Both FIR and IIR filters can be 

used to evaluate new output values given the recent history of the signal and the output 

and can therefore be evaluated sequentially in the time domain, if we know the finite 

sequences of values of bk and ak.

Computing the values of bk and ak given a set of requirements on filter properties 

is known as filter design. The SciPy signal module provides many functions for this 

purpose. For example, using the firwin function, we can compute the bk coefficients 

for an FIR filter given frequencies of the band boundaries, where, for example, the filter 

transitions from a pass to a stop filter (for a low-pass filter). The firwin function takes 

the number of values in the ak sequence as the first argument (also known as taps in 

this context). The second argument, cutoff, defines the low-pass transition frequency 

in units of the Nyquist frequency (half the sampling rate). The scale of the Nyquist 

frequency can optionally be set using the nyq argument, which defaults to 1. Finally we 

can specify the type of window function to use with the window argument.
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In [64]: n = 101

In [65]: f_s = 1 / 3600

In [66]: nyq = f_s/2

In [67]: b = signal.firwin(n, cutoff=nyq/12, nyq=nyq, window="hamming")

The result is the sequence of coefficients bk that defines an FIR filter and which can 

be used to implement the filter with a time-domain convolution. Given the coefficients 

bk, we can evaluate the amplitude and phase response of the filter using the freqz 

function from the signal module. It returns arrays containing frequencies and the 

corresponding complex-valued frequency response, which are suitable for plotting 

purposes, as shown in Figure 17-10.

In [68]: f, h = signal.freqz(b)

In [69]: fig, ax = plt.subplots(1, 1, figsize=(12, 3))

    ...: h_ampl = 20 * np.log10(abs(h))

    ...: h_phase = np.unwrap(np.angle(h))

    ...: ax.plot(f/max(f), h_ampl, 'b')

    ...: ax.set_ylim(-150, 5)

    ...: ax.set_ylabel('frequency response (dB)', color="b")

    ...: ax.set_xlabel(r'normalized frequency')

    ...: ax = ax.twinx()

    ...: ax.plot(f/max(f), h_phase, 'r')

    ...: ax.set_ylabel('phase response', color="r")

    ...: ax.axvline(1.0/12, color="black")

Figure 17-10. The amplitude and phase response of a low-pass FIR filter
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The low-pass filter shown in Figure 17-10 is designed to pass through signals with 

frequencies less than fs/24 (indicated with a vertical line) and suppress higher-frequency 

signal components. The finite transition region between pass and stop bands and 

the nonperfect suppression above the cutoff frequency is a price we have to pay to be 

able to represent the filter in FIR form. The accuracy of the FIR filter can be improved 

by increasing the number of coefficients bk, at the expense of higher computational 

complexity.

The effect of an FIR filter, given the coefficients bk, and an IIR filter, given the 

coefficients bk and ak, can be evaluated using the lfilter function from the signal 

module. As first argument, this function expects the array with coefficients bk, and as 

second argument, the array with the coefficients ak in the case of an IIR filter, or the 

scalar 1 in case of an FIR filter. The third argument to the function is the input signal 

array, and the return value is the filter output. For example, to apply the FIR filter we 

created in the preceding text to the array with hourly temperature measurements 

temperature, we can use

In [70]: temperature_filt = signal.lfilter(b, 1, temperature)

The effect of applying the low-pass FIR filter to the signal is to smoothen the function 

by an eliminating the high-frequency oscillations, as shown in Figure 17-11. Another 

approach to achieve a similar result is to apply a moving average filter, in which the 

output is a weighted average or median of a few nearby input values. The function 

medfilt from the signal module applies a median filter of a given input signal, using the 

number of past nearby values specified with the second argument to the function:

In [71]: temperature_median_filt = signal.medfilt(temperature, 25)

Figure 17-11. Output of an FIR filter and a median filter
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The result of applying the FIR low-pass filter and the median filter to the hourly 

temperature measurement dataset is shown in Figure 17-11. Note that the output of 

the FIR filter is shifted from the original signal by a time delay that corresponds to the 

number of taps in the FIR filter. The median filter implemented using medfilt does not 

suffer from this issue because the median is computed with respect to both past and 

future values, which makes it a noncasual filter that cannot be evaluated on the fly on 

streaming input data.

In [72]: fig, ax = plt.subplots(figsize=(8, 3))

    ...: ax.plot(df.index, temperature, label="original", alpha=0.5)

    ...:  ax.plot(df.index, temperature_filt, color="red", lw=2, 

label="FIR")

    ...:  ax.plot(df.index, temperature_median_filt, color="green", lw=2, 

label="median filer")

    ...: ax.set_ylabel("temperature", fontsize=14)

    ...: ax.legend(loc=0)

To design an IIR filter, we can use the iirdesign function from the signal module or 

use one of the many predefined IIR filter types, including the Butterworth filter (signal.

butter), Chebyshev filters of types I and II (signal.cheby1 and signal.cheby2), and 

elliptic filter (signal.ellip). For example, to create a Butterworth high-pass filter that 

allows frequencies above the critical frequency 7/365 Hz to pass, while lower frequencies 

are suppressed, we can use

In [73]: b, a = signal.butter(2, 7/365.0, btype='high')

The first argument to this function is the order of the Butterworth filter, and the 

second argument is the critical frequency of the filter (where it goes from bandstop to 

bandpass function). The optional argument btype can, for example, be used to specify if 

the filter is a low-pass filter (low) or high-pass filter (high). More options are described 

in the function’s docstring: see, for example, help(signal.butter). The outputs a 

and b are the ak and bk coefficients that define the IIR filter, respectively. Here we have 

computed a Butterworth filter of second order, so a and b each has three elements:

In [74]: b

Out[74]: array([ 0.95829139, -1.91658277,  0.95829139])

In [75]: a

Out[75]: array([ 1.        , -1.91484241,  0.91832314])
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Like before we can apply the filter to an input signal (here we again use the hourly 

temperature dataset as an example):

In [76]: temperature_iir = signal.lfilter(b, a, temperature)

Alternatively we can apply the filter using the filtfilt function, which applies the 

filter both forward and backward, resulting in a noncasual filter.

In [77]: temperature_filtfilt = signal.filtfilt(b, a, temperature)

The results of both types of filters are shown in Figure 17-12. Eliminating the low- 

frequency components detrends the time series and only retains the high-frequency 

oscillations and fluctuations. The filtered signal can therefore be viewed as measuring 

the volatility of the original signal. In this example we can see that the daily variations 

are greater during the spring months of March, April, and May, when compared to the 

winter month of January and February.

In [78]: fig, ax = plt.subplots(figsize=(8, 3))

    ...: ax.plot(df.index, temperature, label="original", alpha=0.5)

    ...:  ax.plot(df.index, temperature_iir, color="red", label="IIR 

filter")

    ...:  ax.plot(df.index, temperature_filtfilt, color="green", 

label="filtfilt filtered")

    ...: ax.set_ylabel("temperature", fontsize=14)

    ...: ax.legend(loc=0)

Figure 17-12. Output from an IIR high-pass filter and the corresponding filtfilt 
filter (applied both forward and backward) 
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These techniques can be directly applied to audio and image data. For example, to 

apply a filter to the audio signal of the guitar samples, we can use the use the lfilter 

functions. The coefficients bk for the FIR filter can sometimes be constructed manually. 

For example, to apply a naive echo sound effect, we can create an FIR filter that repeats 

past signals with some time delay: yn = xn+xn − N, where N is a time delay in units of time 

steps. The corresponding coefficients bk are easily constructed and can be applied to the 

audio signal data.

In [79]: b = np.zeros(10000)

    ...: b[0] = b[-1] = 1

    ...: b /= b.sum()

In [80]: data_filt = signal.lfilter(b, 1, data)

To be able to listen to the modified audio signal, we can write it to a WAV file using 

the write function from the io.wavefile module in SciPy:

In [81]: io.wavfile.write("guitar-echo.wav", sample_rate,

    ...:                   np.vstack([data_filt, data_filt]).T.astype(np.

int16))

Similarly, we can implement many types of image processing filters using the 

tools from the signal module. SciPy also provides a module ndimage, which contains 

many common image manipulation functions and filters that are specially adapted for 

applying on two-dimensional image data. The Scikit-Image library5 provides a more 

advanced framework for working with image processing in Python.

 Summary
Signal processing is an extremely broad field with applications in most fields of science 

and engineering. As such, here we have only been able to cover a few basic applications 

of signal processing in this chapter, and we have focused on introducing methods 

for approaching this type of problem with computational methods using Python and 

the libraries and tools that are available within the Python ecosystem for scientific 

computing. In particular, we explored spectral analysis of time-dependent signals using 

fast Fourier transform and the design and application of linear filters to signals using the 

signal module in the SciPy library.

5 See the project’s web page at http://scikit-image.org for more information.

Chapter 17  Signal proCeSSing

http://scikit-image.org


599

 Further Reading
For a comprehensive review of the theory of signal processing, see Smith (1999), which 

can also be viewed online at www.dspguide.com/pdfbook.htm. For a Python-oriented 

discussion of signal processing, see Unpingco (2014), from which content is available as 

IPython notebooks at http://nbviewer.ipython.org/github/unpingco/Python-for- 

Signal-Processing.
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CHAPTER 18

Data Input and Output
In nearly all scientific computing and data analysis applications, there is a need for data 

input and output. This includes to load datasets and to persistently store results to files 

on disk or to databases. Getting data in and out of programs is consequently a key step in 

the computational workflow. There are many standardized formats for storing structured 

and unstructured data. The benefits of using standardized formats are obvious: You can 

use existing libraries for reading and writing data, saving yourself both time and effort. 

In the course of working with scientific and technical computing, it is likely that you will 

face a variety of data formats through interaction with colleagues and peers or when 

acquiring data from sources such as equipment and databases. As a computational 

practitioner, it is important to be able to handle data efficiently and seamlessly, 

regardless of which format it comes in. This motivates why this entire chapter is devoted 

to the topic of data input and output.

Python has good support for many file formats. In fact, multiple options exist for 

dealing with the most common formats. In this chapter we survey data storage formats 

with applications in computing and discuss typical situations where each format is 

suitable. We also introduce Python libraries and tools for handling a selection of data 

formats that are common in computing.

Data can be classified into several categories and types. Important categories are 

structured and unstructured data, and values can, for example, be categorical (finite 

set of values), ordinal (values with meaningful ordering), or numerical (continuous or 

discrete). Values also have types, such as string, integer, floating-point number, etc. A 

data format for storing or transmitting data should ideally account for these concepts 

in order to avoid loss of data or metadata, and we frequently need to have fine-grained 

control of how data is represented.

In computing applications, most of the time we deal with structured data, for 

example, arrays and tabular data. Examples of unstructured datasets include free-form 

texts or nested list with nonhomogeneous types. In this chapter we focus on the CSV 
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family of formats and the HDF5 format for structured data, and toward the end of the 

chapter, we discuss the JSON format as a lightweight and flexible format that can be 

used to store both simple and complex datasets, with a bias toward storing lists and 

dictionaries. This format is well suited for storing unstructured data. We also briefly 

discuss methods of serializing objects into storable data using the msgpack format and 

Python’s built-in pickle format.

Because of the importance of data input and output in many data-centric 

computational applications, several Python libraries have emerged with the objective to 

simplify and assist in handling data in different formats and for moving and converting 

data. For example, the Blaze library (http://blaze.pydata.org/en/latest) provides 

a high-level interface for accessing data of different formats and from different types of 

sources. Here we focus mainly on lower-level libraries for reading specific types of file 

formats that are useful for storing numerical data and unstructured datasets. However, 

the interested reader is encouraged to also explore higher-level libraries such as Blaze.

 Importing Modules
In this chapter we use a number of different libraries for handling different types of data. 

In particular, we require NumPy and Pandas, which as usual we import as np and pd, 

respectively:

In [1]: import numpy as np

In [2]: import pandas as pd

We also use the csv and json modules from the Python standard library:

In [3]: import csv

In [4]: import json

For working with the HDF5 format for numerical data, we use the h5py and the 

pytables libraries:

In [5]: import h5py

In [6]: import tables
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Finally, in the context of serializing objects to storable data, we explore the pickle 

and msgpack libraries:

In [7]: import pickle

In [8]: import msgpack

 Comma-Separated Values
Comma-separated values (CSV) is an intuitive and loosely defined1 plain-text file format 

that is simple yet effective and very prevalent for storing tabular data. In this format 

each record is stored as a line, and each field of the record is separated with a delimiter 

character (e.g., a comma). Optionally, each field can be enclosed in quotation marks, 

to allow for string-valued fields that contain the delimiter character. Also, the first line 

is sometimes used to store column names, and comment lines are also common. An 

example of a CSV file is shown in Listing 18-1.

Listing 18-1. Example of a CSV File with a Comment Line, a Header Line, and 

Mixed Numerical and String-Valued Data Fields (Data source: www.nhl.com)

# 2013-2014 / Regular Season / All Skaters / Summary / Points

Rank,Player,Team,Pos,GP,G,A,P,+/-,PIM,PPG,PPP,SHG,SHP,GW,OT,S,S%,TOI/

GP,Shift/GP,FO%

1,Sidney Crosby,PIT

,C,80,36,68,104,+18,46,11,38,0,0,5,1,259,13.9,21:58,24.0,52.5

2,Ryan Getzlaf,ANA

,C,77,31,56,87,+28,31,5,23,0,0,7,1,204,15.2,21:17,25.2,49.0

3,Claude Giroux,PHI

,C,82,28,58,86,+7,46,7,37,0,0,7,1,223,12.6,20:26,25.1,52.9

4,Tyler Seguin,DAL

,C,80,37,47,84,+16,18,11,25,0,0,8,0,294,12.6,19:20,23.4,41.5

5,Corey Perry,ANA

,R,81,43,39,82,+32,65,8,18,0,0,9,1,280,15.4,19:28,23.2,36.0

1 Although RFC 4180, http://tools.ietf.org/html/rfc4180, is sometimes taken as an unofficial 
specification, in practice there exist many varieties and dialects of CSV.
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CSV is occasionally also taken to be an acronym for character-separated value, 

reflecting the fact that the CSV format commonly refers to a family of formats using 

different delimiters between the fields. For example, instead of the comma, the Tab 

character is often used, in which case the format is sometimes called TSV instead of 

CSV. The term delimiter-separated values (DSV) is also occasionally used to refer to 

these types of formats.

In Python there are several ways to read and write data in the CSV format, each with 

different use-cases and advantages. To begin with, the standard Python library contains 

a module called csv for reading CSV data. To use this module, we can call the csv.

reader function with a file handle as argument. It returns a class instance that can be 

used as an iterator that parses lines from the given CSV file into Python lists of strings. 

For example, to read the file playerstats-2013-2014.csv (shown in Listing 18-1) into a 

nested list of strings, we can use

In [9]: with open("playerstats-2013-2014.csv") as f:

   ...:     csvreader = csv.reader(f)

   ...:     rows = [fields for fields in csvreader]

In [10]: rows[1][1:6]

Out[10]: ['Player', 'Team', 'Pos', 'GP', 'G']

In [11]: rows[2][1:6]

Out[11]: ['Sidney Crosby', 'PIT', 'C', '80', '36']

Note that by default each field in the parsed rows is string-valued, even if the field 

represents a numerical value, such as 80 (games played) or 36 (goals) in the preceding 

example. While the csv module provides a flexible way of defining custom CSV reader 

classes, this module is most convenient for reading CSV files with string-valued fields.

In computational work, it is common to store and load arrays with numerical values, 

such as vectors and matrices. The NumPy library provides the np.loadtxt and np.savetxt 

for this purpose. These functions take several arguments to fine-tune the type of CSV 

format to read or write: for example, with the delimiter argument, we can select which 

character to use to separate fields, and the header and comments arguments can be used to 

specify a header row and comment rows that are prepended to the header, respectively.

As an example, consider saving an array with random numbers and of shape (100, 3) 

to a file data.csv using np.savetxt. To give the data some context, we add a header and 

a comment line to the file as well, and we explicitly request using the comma character 

as field delimiter with the argument delimiter="," (the default delimiter is the space 

character):
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In [12]: data = np.random.randn(100, 3)

In [13]: np.savetxt("data.csv", data, delimiter=",", header="x,y,z",

    ...:            comments="# Random x, y, z coordinates\n")

In [14]: !head -n 5 data.csv

# Random x, y, z coordinates

x,y,z

1.652276634254504772e-01,9.522165919962696234e-01,4.659850998659530452e-01

8.699729536125471174e-01,1.187589118344758443e+00,1.788104702180680405e+00

-8.106725710122602013e-01,2.765616277935758482e-01,4.456864674903074919e-01

To read data on this format back into a NumPy array, we can use the np.loadtxt 

function. It takes arguments that are similar to those of np.savetxt: in particular, we 

again set the delimiter argument to ",", to indicate the fields that are separated by a 

comma character. We also need to use the skiprows argument to skip over the first two 

lines in the file (the comment and header line), since they do not contain numerical 

data:

In [15]: data_load = np.loadtxt("data.csv", skiprows=2, delimiter=",")

The result is a new NumPy array that is equivalent to the original one written to the 

data.csv file using np.savetxt:

In [16]: (data == data_load).all()

Out[16]: True

Note that in contrast to the CSV reader in the csv module in the Python standard 

library, by default the loadtxt function in NumPy converts all fields into numerical 

values, and the result is a NumPy with numerical dtype (float64):

In [17]: data_load[1,:]

Out[17]: array([ 0.86997295,  1.18758912,  1.7881047 ])

In [18]: data_load.dtype

Out[18]: dtype('float64')

To read CSV files that contain nonnumerical data using np.loadtxt – such as the 

playerstats-2013-2014.csv file that we read using the Python standard library in the 

preceding text – we must explicitly set the data type of the resulting array using the dtype 

argument. If we attempt to read a CSV file with nonnumerical values without setting 

dtype, we get an error:
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In [19]: np.loadtxt("playerstats-2013-2014.csv", skiprows=2, delimiter=",")

---------------------------------------------------------------------------

ValueError: could not convert string to float: b'Sidney Crosby'

Using dtype=bytes (or str or object), we get a NumPy array with unparsed values:

In [20]: data = np.loadtxt("playerstats-2013-2014.csv", skiprows=2, 

delimiter=",", dtype=bytes)

In [21]: data[0][1:6]

Out[21]: array([b'Sidney Crosby', b'PIT', b'C', b'80', b'36'], 

dtype='|S13') 

Alternatively, if we want to read only columns with numerical types, we can select to 

read a subset of columns using the usecols argument:

In [22]: np.loadtxt("playerstats-2013-2014.csv", skiprows=2, delimiter=",", 

usecols=[6,7,8])

Out[22]: array([[  68.,  104.,   18.],

                [  56.,   87.,   28.],

                [  58.,   86.,    7.],

                [  47.,   84.,   16.],

                [  39.,   82.,   32.]])

While the NumPy savetxt and loadtxt functions are configurable and flexible 

CSV writers and readers, they are most convenient for all-numerical data. The Python 

standard library module csv, on the other hand, is most convenient for CSV files with 

string-valued data. A third method to read CSV files in the Python is to use the Pandas 

read_csv function. We have already seen examples of this function in Chapter 12, where 

we used it to create Pandas data frames from TSV-formatted data files. The read_csv 

function in Pandas is very handy when reading CSV files with both numerical and string- 

valued fields, and in most cases, it will automatically determine which type a field has 

and converts it accordingly. For example, when reading the playerstats-2013-2014.

csv file using read_csv, we obtain a Pandas data frame with all the fields parsed into 

columns with suitable type:

In [23]: df = pd.read_csv("playerstats-2013-2014.csv", skiprows=1)

In [24]: df = df.set_index("Rank")

In [25]: df[["Player", "GP", "G", "A", "P"]]
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Out[25]:

Rank Player GP G A P

1 Sidney Crosby 80 36 68 104

2 Ryan Getzlaf 77 31 56 87

3 Claude Giroux 82 28 58 86

4 Tyler Seguin 80 37 47 84

5 Corey Perry 81 43 39 82

Using the info method of the DataFrame instance df, we can see explicitly which 

type each column has been converted to (here the output is truncated for brevity):

In [26]: df.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 5 entries, 1 to 5

Data columns (total 20 columns):

Player      5 non-null object

Team        5 non-null object

Pos         5 non-null object

GP          5 non-null int64

G           5 non-null int64

...

S           5 non-null int64

S%          5 non-null float64

TOI/GP      5 non-null object

Shift/GP    5 non-null float64

FO%         5 non-null float64

dtypes: float64(3), int64(13), object(4)

memory usage: 840.0+ bytes
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Data frames can also be written to CSV files using the to_csv method of the 

DataFrame object:

In [27]: df[["Player", "GP", "G", "A", "P"]].to_csv("playerstats-2013-2014- 

subset.csv")

In [28]: !head -n 5 playerstats-2013-2014-subset.csv

Rank,Player,GP,G,A,P

1,Sidney Crosby,80,36,68,104

2,Ryan Getzlaf,77,31,56,87

3,Claude Giroux,82,28,58,86

4,Tyler Seguin,80,37,47,84

The combination of the Python standard library, NumPy and Pandas, provides a 

powerful toolbox for both reading and writing CSV files of various flavors. However, 

although CSV files are convenient and effective for tabular data, there are obvious 

shortcomings with the format. For starters, it can only be used to store one- or two- 

dimensional arrays, and it does not contain metadata that can help interpret the data. 

Also, it is not very efficient in terms of either storage or reading and writing, and it 

cannot be used to store more than one array per file, requiring multiple files for multiple 

arrays even if they are closely related. The use of CSV should therefore be limited to 

simple datasets. In the following section, we will look at the HDF5 file format, which was 

designed to store numerical data efficiently and to overcome all the shortcomings of 

simple data formats such as CSV and related formats.

 HDF5
The Hierarchical Data Format 5 (HDF5) is a format for storing numerical data. It is 

developed by The HDF Group2, a nonprofit organization, and it is available under the 

BSD open source license. The HDF5 format, which was released in 1998, is designed 

and implemented to efficiently handle large datasets, including support for high- 

performance parallel I/O. The HDF5 format is therefore suitable for use on distributed 

high-performance supercomputers and clusters and can be used to store and operate on 

datasets of terabyte scale, or even larger. However, the beauty of HDF5 is that it is equally 

suitable for small datasets. As such it is a truly versatile format and an invaluable tool for 

a computational practitioner.

2 www.hdfgroup.org
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The hierarchical aspect of the format allows organizing datasets within a file, using 

a hierarchical structure that resembles a file system. The terminology used for entities 

in an HDF5 file is groups and datasets, which corresponds to directories and files in the 

file system analogy. Groups in an HDF5 file can be nested to create a tree structure and 

hence hierarchical in the name of the format. A dataset in an HDF5 file is a homogenous 

array of certain dimensions and elements of a certain type. The HDF5 type system 

supports all standard basic data types and also allows defining custom compound data 

types. Both groups and datasets in an HDF5 file can also have attributes, which can 

be used to store metadata about groups and datasets. Attributes can themselves have 

different types, such as numeric or string-valued.

In addition to the file format itself, The HDF Group also provides a library and a 

reference implementation of the format. The main library is written in C, and wrappers 

to its C API are available for many programming languages. The HDF5 library for 

accessing data from an HDF5 file has sophisticated support for partial read and write 

operations, which can be used to access a small segment of the entire dataset. This is a 

powerful feature that enables computations on datasets that are larger than what can 

be fit a computer’s memory3. The HDF5 format is a mature file format with widespread 

support on different platforms and computational environments. This also makes 

HDF5 a suitable choice for long-term storage of data. As a data storage platform, HDF5 

provides a solution to a number of problems: cross-platform storage, efficient I/O, and 

storage that scales up to very large data files, a metadata system (attributes) that can be 

used to annotate and describe the groups and datasets in a file to make the data self-

describing. Altogether, these features make HDF5 a great tool for computational work.

For Python there are two libraries for using HDF5 files: h5py and PyTables. These 

two libraries take different approaches to use HDF5, and it is well worth being familiar 

with both of these libraries. The h5py library provides an API that is relatively close to the 

basic HDF5 concepts, with a focus on groups and datasets. It provides a NumPy-inspired 

API for accessing datasets, which makes it very intuitive for someone that is familiar with 

NumPy.

3 This is also known as out-of-core computing. For another recent project that also provides  
out-of-core computing capabilities in Python, see the dask library (http://dask.pydata.org/en/
latest).
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h5py the h5py library provides a pythonic interface to the hDF5 file format and 
a numpy-like interface to its datasets. For more information about the project, 
including its official documentation, see its web page at www.h5py.org. at the 
time of writing, the most recent version of the library is 2.7.1.

The PyTables library provides a higher-level data abstraction based on the HDF5 

format, providing database-like features, such as tables with easily customizable data 

types. It also allows querying datasets as a database and the use of advanced indexing 

features.

PyTables the pytables library provides a database-like data model on top of 
hDF5. For more information about the project and its documentation, see the web 
page at http://pytables.github.io. at the time of writing, the latest version 
of pytables is 3.4.3.

In the following two sections, we explore in more detail how the h5py and PyTables 

libraries can be used to read and write numerical data with HDF5 files.

 h5py
We begin with a tour of the h5py library. The API for h5py is surprisingly simple and 

pleasant to work with, yet at the same time full-featured. This is accomplished through 

the thoughtful use of Pythonic idioms such as dictionary and NumPy’s array semantics. 

A summary of basic objects and methods in the h5py library is shown in Table 18-1. In 

the following, we explore how to use these methods through a series of examples.
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Table 18-1. Summary of the Main Objects and Methods in the h5py API

Object Method/Attribute Description

h5py.File __init__(name, mode, 

...)

Open an existing hDF5, or create 

a new one, with filename name. 

Depending on the value of the mode 

argument, the file can be opened in 

read-only or read- write mode (see 

main text).

flush() Write buffers to file.

close() Close an open hDF5 file.

h5py.File, h5py.Group create_group(name) Create a new group with name name 

(can be a path) within the current 

group.

create_dataset(name, 

data=..., shape=..., 

dtype=..., ...)

Create a new dataset.

[] dictionary syntax access items (groups and datasets) 

within a group.

h5py.Dataset dtype Data type.

shape Shape (dimensions) of the dataset.

value the full array of the underlying data of 

the dataset.

[] array syntax access elements or subsets of the data 

in a dataset.

h5py.File, h5py.Group, 

h5py.Dataset

name name (path) of the object in the hDF5 

file hierarchy.

attrs Dictionary-like attribute access.
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 Files

We begin by looking at how to open existing and create new HDF5 files using the 

h5py.File object. The initializer for this object only takes a filename as a required 

argument, but we will typically also need to specify the mode argument, with which 

we can choose to open a file in read-only or read-write mode and if a file should be 

truncated or not when opened. The mode argument takes string values similar to 

the built-in Python function open: "r" is used for read-only (file must exist), "r+" for 

read-write (file must exist), "w" for creating a new file (truncate if file exists), "w-" for 

creating a new file (error if file exists), and "a" for read-write (if file exists, otherwise 

create). To create a new file in read-write mode, we can therefore use

In [29]: f = h5py.File("data.h5", mode="w")

The result is a file handle, here assigned to the variable f, which we can use to access 

and add content to the file. Given a file handle, we can see which mode it is opened in 

using the mode attribute:

In [30]: f.mode

Out[30]: 'r+'

Note that even though we opened the file in mode "w", once the file has been opened it is 

either read-only ("r") or read-write ("r+"). Other file-level operations that can be performed 

using the HDF5 file object are flushing buffers containing data that has not yet been written 

to the file using the flush method and closing the file using the close method:

In [31]: f.flush()

In [32]: f.close()

 Groups

At the same time as representing an HDF5 file handle, the File object also represents the 

HDF5 group object known as the root group. The name of a group is accessible through 

the name attribute of the group object. The name takes the form of a path, similar to a 

path in a file system, which specifies where in the hierarchical structure of the file the 

group is stored. The name of the root group is "/":

In [33]: f = h5py.File("data.h5", "w")

In [34]: f.name

Out[34]: '/'
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A group object has the method create_group for creating a new group within an 

existing group. A new group created with this method becomes a subgroup of the group 

instance for which the create_group method is invoked:

In [35]: grp1 = f.create_group("experiment1")

In [36]: grp1.name

Out[36]: '/experiment1'

Here the group experiment1 is a subgroup of root group, and its name and path in 

the hierarchical structure is therefore /experiment1. When creating a new group, its 

immediate parent group does not necessarily have to exist beforehand. For example, to 

create a new group /experiment2/measurement, we can directly use the create_group 

method of the root group without first creating the experiment2 group explicitly. 

Intermediate groups are created automatically.

In [37]: grp2_meas = f.create_group("experiment2/measurement")

In [38]: grp2_meas.name

Out[38]: '/experiment2/measurement'

In [39]: grp2_sim = f.create_group("experiment2/simulation")

In [40]: grp2_sim.name

Out[40]: '/experiment2/simulation'

The group hierarchy of an HDF5 file can be explored using a dictionary-style 

interface. To retrieve a group with a given path name, we can perform a dictionary-like 

lookup from one of its ancestor groups (typically the root node):

In [41]: f["/experiment1"]

Out[41]: <HDF5 group "/experiment1" (0 members)>

In [42]: f["/experiment2/simulation"]

Out[42]: <HDF5 group "/experiment2/simulation" (0 members)>

The same type of dictionary lookup works for subgroups too (not only the root node):

In [43]: grp_experiment2 = f["/experiment2"]

In [44]: grp_experiment2['simulation']

Out[44]: <HDF5 group "/experiment2/simulation" (0 members)>
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The keys method returns an iterator over the names of subgroups and datasets 

within a group, and the items method returns an iterator over (name, value) tuples 

for each entity in the group. These can be used to traverse the hierarchy of groups 

programmatically.

In [45]: list(f.keys())

Out[45]: ['experiment1', 'experiment2']

In [46]: list(f.items())

Out[46]: [('experiment1', <HDF5 group "/experiment1" (0 members)>),

          ('experiment2', <HDF5 group "/experiment2" (2 members)>)]

To traverse the hierarchy of groups in an HDF5 file, we can also use the method 

visit, which takes a function as argument and calls that function with the name for each 

entity in the file hierarchy:

In [47]: f.visit(lambda x: print(x))

experiment1

experiment2

experiment2/measurement

experiment2/simulation

or the visititems method which does the same thing except that it calls the function 

with both the item name and the item itself as arguments:

In [48]: f.visititems(lambda name, item: print(name, item))

experiment1 <HDF5 group "/experiment1" (0 members)>

experiment2 <HDF5 group "/experiment2" (2 members)>

experiment2/experiment <HDF5 group "/experiment2/measurement" (0 members)>

experiment2/simulation <HDF5 group "/experiment2/simulation" (0 members)>

In keeping with the semantics of Python dictionaries, we can also operate on Group 

objects using the set membership testing with the in Python keyword:

In [49]: "experiment1" in f

Out[49]: True

In [50]: "simulation" in f["experiment2"]

Out[50]: True

In [51]: "experiment3" in f

Out[51]: False
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Using the visit and visititems methods, together with the dictionary-style 

methods keys and items, we can easily explore the structure and content of an HDF5 

file, even if we have no prior information on what it contains and how the data is 

organized within it. The ability to conveniently explore HDF5 is an important aspect 

of the usability of the format. There are also external non-Python tools for exploring 

the content of HDF5 files that often are useful when working with this type of files. In 

particular, the h5ls command-line tool is handy for quickly inspecting the content of an 

HDF5 file:

In [52]: f.flush()

In [53]: !h5ls -r data.h5

/                        Group

/experiment1                 Group

/experiment2                 Group

/experiment2/measurement     Group

/experiment2/simulation      Group

Here we used the -r flag to the h5ls program to recursively show all items in the 

file. The h5ls program is part of a series of HDF5 utility programs provided by a package 

called hdf5-tools (see also h5stat, h5copy, h5diff, etc.). Even though these are not 

Python tools, they are very useful when working with HDF5 files in general, also from 

within Python.

 Datasets

Now that we have explored how to create and access groups within an HDF5 file, it is 

time to look at how to store datasets. Storing numerical data is after all the main purpose 

of the HDF5 format. There are two main methods to create a dataset in an HDF5 file 

using h5py. The easiest way to create a dataset is to simply assign a NumPy array to an 

item within an HDF5 group, using the dictionary index syntax. The second method is to 

create an empty dataset using the create_dataset method, as we will see examples later 

in this section.
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For example, to store two NumPy arrays, array1 and meas1, into the root group and 

the experiment2/measurement groups, respectively, we can use

In [54]: array1 = np.arange(10)

In [55]: meas1 = np.random.randn(100, 100)

In [56]: f["array1"] = array1

In [57]: f["/experiment2/measurement/meas1"] = meas1

To verify that the datasets for the assigned NumPy arrays were added to the file, let’s 

traverse through the file hierarchy using the visititems method:

In [58]: f.visititems(lambda name, value: print(name, value))

array1 <HDF5 dataset "array1": shape (10,), type "<i8">

experiment1 <HDF5 group "/experiment1" (0 members)>

experiment2 <HDF5 group "/experiment2" (2 members)>

experiment2/measurement <HDF5 group "/experiment2/measurement" (1 members)>

experiment2/measurement/meas1 <HDF5 dataset "meas1": shape (100, 100),  

type "<f8">

experiment2/simulation <HDF5 group "/experiment2/simulation" (0 members)>

We see that, indeed, the array1 and meas1 datasets are now added to the file. Note 

that the paths used as dictionary keys in the assignments determine the locations of the 

datasets within the file. To retrieve a dataset, we can use the same dictionary-like syntax 

as we used to retrieve a group. For example, to retrieve the array1 dataset, which is 

stored in the root group, we can use f["array1"]:

In [59]: ds = f["array1"]

In [60]: ds

Out[60]: <HDF5 dataset "array1": shape (10,), type "<i8">

The result is a Dataset object, not a NumPy array like the one that we assigned to 

the array1 item. The Dataset object is a proxy for the underlying data within the HDF5. 

Like a NumPy array, a Dataset object has several attributes that describe the dataset, 

including name, dtype, and shape. It also has the method len that returns the length of 

the dataset:

In [61]: ds.name

Out[61]: '/array1'

In [62]: ds.dtype
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Out[62]: dtype('int64')

In [63]: ds.shape

Out[63]: (10,)

In [64]: ds.len()

Out[64]: 10

The actual data for the dataset can be accessed, for example, using the value 

attribute. This returns the entire dataset as a NumPy array, which here is equivalent to 

the array that we assigned to the array1 dataset.

In [65]: ds.value

Out[65]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

To access a dataset deeper down the group hierarchy, we can use a file  

system-like path name. For example, to retrieve the meas1 dataset in the group 

experiment2/measurement, we can use

In [66]: ds = f["experiment2/measurement/meas1"]

In [67]: ds

Out[67]: <HDF5 dataset "meas1": shape (100, 100), type "<f8">

Again we get a Dataset object, whose basic properties can be inspected using the 

object attributes we introduced earlier:

In [68]: ds.dtype

Out[68]: dtype('float64')

In [69]: ds.shape

Out[69]: (100, 100)

Note that the data type of this dataset is float64, while for the dataset array1, the 

data type is int64. This type information was derived from the NumPy arrays that were 

assigned to the two datasets. Here again we could use the value attribute to retrieve the 

array as a NumPy array. An alternative syntax for the same operation is to use bracket 

indexing with the ellipsis notation: ds[...].

In [70]: data_full = ds[...]

In [71]: type(data_full)

Out[71]: numpy.ndarray

In [72]: data_full.shape

Out[72]: (100, 100)
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This is an example of NumPy-like array indexing. The Dataset object supports 

most of the indexing and slicing types used in NumPy, and this provides a powerful and 

flexible method for partially reading data from a file. For example, to retrieve only the 

first column from the meas1 dataset, we can use

In [73]: data_col = ds[:, 0]

In [74]: data_col.shape

Out[74]: (100,)

The result is a 100-element array corresponding the first column in the dataset. 

Note that this slicing is performed within the HDF5 library, and not in NumPy, so in this 

example only 100 elements were read from the file and stored in the resulting NumPy 

array, without every fully loading the dataset into memory. This is an important feature 

when working with large datasets that do not fit in memory.

For example, the Dataset object also supports strided indexing:

In [75]: ds[10:20:3, 10:20:3] # 3 stride

Out[75]: array([[-0.22321057, -0.61989199,  0.78215645,  0.73774187],

                [-1.03331515,  2.54190817, -0.24812478, -2.49677693],

                [ 0.17010011,  1.88589248,  1.91401249, -0.63430569],

                [ 0.4600099 , -1.3242449 ,  0.41821078,  1.47514922]])

as well as “fancy indexing”, where a list of indices is given for one of the dimensions of 

the array (does not work for more than one index):

In [76]: ds[[1,2,3], :].shape

Out[76]: (3, 100)

We can also use Boolean indexing, where a Boolean-valued NumPy array is used to 

index a Dataset. For example, to single out the first five columns (index :5 on the second 

axis) for each row whose value in the first column (ds[:, 0]) is larger than 2, we can 

index the dataset with the Boolean mask ds[:, 0] > 2:

In [77]: mask = ds[:, 0] > 2

In [78]: mask.shape, mask.dtype

Out[78]: ((100,), dtype('bool'))

In [79]: ds[mask, :5]
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Out[79]: array([[  2.1224865 ,  0.70447132, -1.71659513,  1.43759445, 

-0.61080907],

                [  2.11780508, -0.2100993 ,  1.06262836, 

-0.46637199,  0.02769476],

                [  2.41192679, -0.30818179, -0.31518842, -1.78274309, 

-0.80931757],

                [  2.10030227,  0.14629889,  0.78511191, 

-0.19338282,  0.28372485]])

Since the Dataset object uses the NumPy’s indexing and slicing syntax to select 

subsets of the underlying data, working with large HDF5 datasets in Python using h5py 

comes very naturally to someone who is familiar with NumPy. Also remember that for 

large files, there is a big difference in index slicing on the Dataset object rather than 

on the NumPy array that can be accessed through the value attribute, since the former 

avoids loading the entire dataset into memory.

So far we have seen how to create datasets in an HDF5 file by explicitly assigning data 

into an item in a group object. We can also create datasets explicitly using the create_

dataset method. It takes the name of the new dataset as the first argument, and we can 

either set the data for the new dataset using the data argument or create an empty array 

by setting the shape argument. For example, instead of the assignment f["array2"] = 

np.random.randint(10, size=10), we can also use the create_dataset method:

In [80]:  ds = f.create_dataset("array2", data=np.random.randint(10, 

size=10))

In [81]: ds

Out[81]: <HDF5 dataset "array2": shape (10,), type "<i8">

In [82]: ds.value

Out[82]: array([2, 2, 3, 3, 6, 6, 4, 8, 0, 0])

When explicitly calling the create_dataset method, we have a finer level of control 

of the properties of the resulting dataset. For example, if we can explicitly set the data 

type for the dataset using the dtype argument, we can choose a compression method 

using the compress argument, setting the chunk size using the chunks argument 

and setting the maximum allowed array size for resizable datasets using the maxsize 

argument. There are also many other advanced features related to the Dataset object. 

See the docstring for create_dataset for details.
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When creating an empty array by specifying the shape argument instead of providing 

an array for initializing a dataset, we can also use the fillvalue argument to set the 

default value for the dataset. For example, to create an empty dataset of shape (5, 5) and 

default value -1, we can use

In [83]:  ds = f.create_dataset("/experiment2/simulation/data1",  

shape=(5, 5), fillvalue=-1)

In [84]: ds

Out[84]: <HDF5 dataset "data1": shape (5, 5), type "<f4">

In [85]: ds.value

Out[85]: array([[-1., -1., -1., -1., -1.],

                [-1., -1., -1., -1., -1.],

                [-1., -1., -1., -1., -1.],

                [-1., -1., -1., -1., -1.],

                [-1., -1., -1., -1., -1.]], dtype=float32)

HDF5 is clever about disk usage for an empty dataset and will not store more data 

than necessary, in particular if we select a compression method using the compression 

argument. There are several compression methods available, for example, 'gzip'. Using 

dataset compression we can create a very large dataset and gradually fill them with data, 

for example, when measurement results or results of computations become available, 

without initially wasting a lot of storage space. For example, let’s create a large dataset 

with shape (5000, 5000, 5000) with the data1 in the group experiment1/simulation:

In [86]:  ds = f.create_dataset("/experiment1/simulation/data1", 

shape=(5000, 5000, 5000), fillvalue=0, compression='gzip')

In [87]: ds

Out[87]: <HDF5 dataset "data1": shape (5000, 5000, 5000), type "<f4">

To begin with this dataset uses neither memory nor disk space, until we start filling 

it with data. To assign values to the dataset, we can again use the NumPy-like indexing 

syntax and assign values to specific elements in the dataset or to subsets selected using 

slicing syntax:

In [88]: ds[:, 0, 0] = np.random.rand(5000)

In [89]: ds[1, :, 0] += np.random.rand(5000)

In [90]: ds[:2, :5, 0]
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Out[90]: array([[ 0.67240328, 0.        , 0.        , 0.        , 0.        ],

                [  0.99613971, 0.48227152, 0.48904559, 0.78807044, 0.62100351]],  

dtype=float32)

Note that the elements that have not been assigned values are set to the value of 

fillvalue that was specified when the array was created. If we do not know what fill 

value a dataset has, we can find out by looking at the fillvalue attribute of the Dataset 

object:

In [91]: ds.fillvalue

Out[91]: 0.0

To see that the newly created dataset is indeed stored in the group where we 

intended to assign it, we can again use the visititems method to list the content of the 

experiment1 group:

In [92]:  f["experiment1"].visititems(lambda name, value: print(name, 

value))

simulation <HDF5 group "/experiment1/simulation" (1 members)>

simulation/data1 <HDF5 dataset "data1": shape (5000, 5000, 5000), type 

"<f4">

Although the dataset experiment1/simulation/data1 is very large (4 × 50003 bytes ~ 

465 Gb), since we have not yet filled it with much data, the HDF5 file still does not take a 

lot of disk space (only about 357 Kb):

In [93]: f.flush()

In [94]: f.filename

Out[94]: 'data.h5'

In [95]: !ls -lh data.h5

-rw-r--r--@ 1 rob  staff   357K Apr  5 18:48 data.h5

So far we have seen how to create groups and datasets within an HDF5 file. It is of 

course sometimes also necessary to delete items from a file. With h5py we can delete 

items from a group using the Python del keyword, again complying with the semantics 

of Python dictionaries:

In [96]: del f["/experiment1/simulation/data1"]

In [97]: f["experiment1"].visititems(lambda name, value: print(name, value))

simulation <HDF5 group "/experiment1/simulation" (0 members)>
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 Attributes

Attributes are a component of the HDF5 format that makes it a great format for 

annotating data and providing self-describing data through the use of metadata. For 

example, when storing experimental data, there are often external parameters and 

conditions that should be recorded together with the observed data. Likewise, in a 

computer simulation, it is usually necessary to store additional model or simulation 

parameters together with the generated simulation results. In all these cases, the best 

solution is to make sure that the required additional parameters are stored as metadata 

together with the main datasets.

The HDF5 format supports this type of metadata through the use of attributes. An 

arbitrary number of attributes can be attached to each group and dataset within an 

HDF5 file. With the h5py library, attributes are accessed using a dictionary-like interface, 

just like groups are. The Python attribute attrs of Group and Dataset objects are used to 

access the HDF5 attributes:

In [98]: f.attrs

Out[98]: <Attributes of HDF5 object at 4462179384>

To create an attribute, we simply assign to the attrs dictionary for the target object. 

For example, to create an attribute description for the root group, we can use

In [99]: f.attrs["description"] = "Result sets for experiments and 

simulations"

Similarly, to add date attributes to the experiment1 and experiment2 groups:

In [100]: f["experiment1"].attrs["date"] = "2015-1-1"

In [101]: f["experiment2"].attrs["date"] = "2015-1-2"

We can also add attributes directly to datasets (not only groups):

In [102]: f["experiment2/simulation/data1"].attrs["k"] = 1.5

In [103]: f["experiment2/simulation/data1"].attrs["T"] = 1000
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Like for groups, we can use the keys and items method of the Attribute object to 

retrieve iterators over the attributes it contains:

In [104]: list(f["experiment1"].attrs.keys())

Out[104]: ['date']

In [105]: list(f["experiment2/simulation/data1"].attrs.items())

Out[105]: [('k', 1.5), ('T', 1000)]

The existence of an attribute can be tested with the Python in operator, in keeping 

with the Python dictionary semantics:

In [106]: "T" in f["experiment2/simulation/data1"].attrs

Out[106]: True

To delete existing attributes, we can use the del keyword:

In [107]: del f["experiment2/simulation/data1"].attrs["T"]

In [108]: "T" in f["experiment2/simulation"].attrs

Out[108]: False

The attributes of HDF5 groups and datasets are suitable for storing metadata 

together with the actual datasets. Using attributes generously can help to provide context 

to the data, which often must be available for the data to be useful.

 PyTables
The PyTables library offers an alternative interface to HDF5 for Python. The focus 

on this library is higher-level table-based data model implemented using the HDF5 

format, although PyTables can also be used to create and read generic HDF5 groups and 

datasets, like the h5py library. Here we focus on the table data model, as it complements 

the h5py library that we discussed in the previous section. We demonstrate the use of 

PyTables table objects using the NHL player statistics dataset that we used earlier in 

this chapter and where we construct a PyTables table from a Pandas data frame for that 

dataset. We therefore begin with reading in the dataset into a DataFrame object using the 

read_csv function:

In [109]: df = pd.read_csv("playerstats-2013-2014.csv", skiprows=1)

     ...: df = df.set_index("Rank")
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Next we proceed to create a new PyTables HDF5 file handle by using the tables.

open_file function4. This function takes a filename as the first argument and the file 

mode as an optional second argument. The result is a PyTables HDF5 file handle (here 

assigned to the variable f):

In [110]: f = tables.open_file("playerstats-2013-2014.h5", mode="w")

Like with the h5py library, we can create HDF5 groups with the method create_

group of the file handle object. It takes the path to the parent group as the first argument, 

the group name as the second argument, and optionally also the argument title, with 

which a descriptive HDF5 attribute can be set on the group.

In [111]: grp = f.create_group("/", "season_2013_2014",

     ...:                       title="NHL player statistics for the 

2013/2014 season")

In [112]: grp

Out[112]: /season_2013_2014 (Group) 'NHL player statistics for the 

2013/2014 season'

            children := []

Unlike the h5py library, the file handle object in PyTables does not represent the root 

group in the HDF5 file. To access the root node, we must use the root attribute of the file 

handle object:

In [113]: f.root

Out[113]: / (RootGroup) "

            children := ['season_2013_2014' (Group)]

A nice feature of the PyTables library is that it is easy to create tables with mixed 

column types, using the struct-like compound data type of HDF5. The simplest way 

to define such a table data structure with PyTables is to create a class that inherits 

from the tables.IsDescription class. It should contain fields composed of data-type 

representations from the tables library. For example, to create a specification of the 

table structure for the player statistics dataset, we can use

4 Note that the Python module provided by the PyTables library is named tables. Therefore, 
tables.open_file refers to open_file function in the tables module provided by the PyTables 
library.
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In [114]: class PlayerStat(tables.IsDescription):

     ...:     player = tables.StringCol(20, dflt="")

     ...:     position = tables.StringCol(1, dflt="C")

     ...:     games_played = tables.UInt8Col(dflt=0)

     ...:     points = tables.UInt16Col(dflt=0)

     ...:     goals = tables.UInt16Col(dflt=0)

     ...:     assists = tables.UInt16Col(dflt=0)

     ...:     shooting_percentage = tables.Float64Col(dflt=0.0)

     ...:     shifts_per_game_played = tables.Float64Col(dflt=0.0)

Here the class PlayerStat represents the table structure of a table with eight 

columns, where the first two columns are fixed-length strings (tables.StringCol), 

where the following four columns are unsigned integers (tables.UInt8Col and tables.

UInt16Col, of 8- and 16-bit size), and where the last two columns have floating-point 

type (tables.Float64Col). The optional dflt argument to data-type objects specifies 

the fields’ default value. Once the table structure is defined using a class on this form, 

we can create the actual table in the HDF5 file using the create_table method. It takes 

a group object or the path to the parent node as the first argument, the table name as 

the second argument, the table specification class as the third argument, and optionally 

a table title as the fourth argument (stored as an HDF5 attribute for the corresponding 

dataset):

In [115]:  top30_table = f.create_table(grp, 'top30', PlayerStat, "Top 30 

point leaders")

To insert data into the table, we can use the row attribute of the table object to 

retrieve a Row accessor class that can be used as a dictionary to populate the row with 

values. When the row object is fully initialized, we can use the append method to actually 

insert the row into the table:

In [116]: playerstat = top30_table.row

In [117]: for index, row_series in df.iterrows():

     ...:     playerstat["player"] = row_series["Player"]

     ...:     playerstat["position"] = row_series["Pos"]

     ...:     playerstat["games_played"] = row_series["GP"]

     ...:     playerstat["points"] = row_series["P"]

     ...:     playerstat["goals"] = row_series["G"]

Chapter 18  Data Input anD Output



626

     ...:     playerstat["assists"] = row_series["A"]

     ...:     playerstat["shooting_percentage"] = row_series["S%"]

     ...:     playerstat["shifts_per_game_played"] = row_series["Shift/GP"]

     ...:     playerstat.append()

The flush method forces a write of the table data to the file:

In [118]: top30_table.flush()

To access data from the table, we can use the cols attribute to retrieve columns as 

NumPy arrays:

In [119]: top30_table.cols.player[:5]

Out[119]: array([b'Sidney Crosby', b'Ryan Getzlaf', b'Claude Giroux',

                 b'Tyler Seguin', b'Corey Perry'], dtype='|S20')

In [120]: top30_table.cols.points[:5]

Out[120]: array([104,  87,  86,  84,  82], dtype=uint16)

To access data in a row-wise fashion, we can use the iterrows method to create an 

iterator over all the rows in the table. Here we use this approach to loop through all the 

rows and print them to the standard output (here the output is truncated for brevity):

In [121]: def print_playerstat(row):

     ...:     print("%20s\t%s\t%s\t%s" %

     ...:           (row["player"].decode('UTF-8'), row["points"],

     ...:            row["goals"], row["assists"]))

In [122]: for row in top30_table.iterrows():

     ...:     print_playerstat(row)

  Sidney Crosby    104    36    68

Ryan Getzlaf        87    31    56

Claude Giroux       86    28    58

Tyler Seguin        84    37    47

...

Jaromir Jagr        67    24    43

John Tavares        66    24    42

Jason Spezza        66    23    43

Jordan Eberle       65    28    37
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One of the most powerful features of the PyTables table interface is the ability to 

selectively extract rows from the underlying HDF5 using queries. For example, the where 

method allows us to pass an expression in terms of the table columns as a string that is 

used by PyTables to filter rows:

In [123]: for row in top30_table.where("(points > 75) & (points <= 80)"):

     ...:     print_playerstat(row)

Phil Kessel        80    37    43

Taylor Hall        80    27    53

Alex Ovechkin      79    51    28

Joe Pavelski       79    41    38

Jamie Benn         79    34    45

Nicklas Backstrom  79    18    61

Patrick Sharp      78    34    44

Joe Thornton       76    11    65

With the where method, we can also define conditions in terms of multiple columns:

In [124]: for row in top30_table.where("(goals > 40) & (points < 80)"):

     ...:     print_playerstat(row)

Alex Ovechkin     79    51    28

Joe Pavelski      79    41    38

This feature allows us to query a table in a database-like fashion. Although for 

a small dataset, like the current one, we could just as well perform these kinds of 

 operations directly in memory using a Pandas data frame, but remember that HDF5 files 

are stored on disk, and the efficient use of I/O in the PyTables library enables us to work 

with very large datasets that do not fit in memory, which would prevent us from using, 

for example, NumPy or Pandas on the entire dataset.

Before we conclude this section, let us inspect the structure of the resulting HDF5 file 

that contains the PyTables table that we have just created:

In [125]: f

Out[125]: File( filename=playerstats-2013-2014.h5, title=", mode='w', 

root_uep='/', filters=Filters(complevel=0, shuffle=False, 

fletcher32=False, least_significant_digit=None))
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          /  (RootGroup) " /season_2013_2014 (Group) 'NHL player stats for 

the 2013/2014 season'

          /season_2013_2014/top30 (Table(30,)) 'Top 30 point leaders'

              description := {

              "assists": UInt16Col(shape=(), dflt=0, pos=0),

              "games_played": UInt8Col(shape=(), dflt=0, pos=1),

              "goals": UInt16Col(shape=(), dflt=0, pos=2),

              "player": StringCol(itemsize=20, shape=(), dflt=b", pos=3),

              "points": UInt16Col(shape=(), dflt=0, pos=4),

               "position": StringCol(itemsize=1, shape=(), dflt=b'C', 

pos=5),

               "shifts_per_game_played": Float64Col(shape=(), dflt=0.0, 

pos=6),

              "shooting_percentage": Float64Col(shape=(), dflt=0.0, pos=7)}

           byteorder := 'little'

           chunkshape := (1489,)

From the string representation of the PyTables file handle, and the HDF5 file 

hierarchy that it contains, we can see that the PyTables library has created a dataset /

season_2013_2014/top30 that uses an involved compound data type that was created 

according to the specification in the PlayerStat object that we created earlier. Finally, 

when we are finished modifying a dataset in a file, we can flush its buffers and force a 

write to the file using the flush method, and when we are finished working with a file, 

we can close it using the close method:

In [126]: f.flush()

In [127]: f.close()

Although we do not cover other types of datasets here, such as regular homogenous 

arrays, it is worth mentioning that the PyTables library also supports these types of 

data structures. For example, we can use the create_array, create_carray, and 

create_earray to construct fixed-size arrays, chunked arrays, and enlargeable arrays, 

respectively. For more information on how to use these data structures, see the 

corresponding docstrings.
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 Pandas HDFStore
A third way to store data in HDF5 files using Python is to use the HDFStore object in 

Pandas. It can be used to persistently store data frames and other Pandas objects in 

an HDF5 file. To use this feature in Pandas, the PyTables library must be installed. 

We can create an HDFStore object by passing a filename to its initializer. The result is 

an HDFStore object that can be used as a dictionary to which we can assign Pandas 

DataFrame instances to have them stored into the HDF5 file:

In [128]: store = pd.HDFStore('store.h5')

In [129]: df = pd.DataFrame(np.random.rand(5,5))

In [130]: store["df1"] = df

In [131]: df = pd.read_csv("playerstats-2013-2014-top30.csv", skiprows=1)

In [132]: store["df2"] = df

The HDFStore object behaves as a regular Python dictionary, and we can, for 

example, see what objects it contains by calling the keys method:

In [133]: store.keys()

Out[133]: ['/df1', '/df2']

and we can test for the existence of an object with a given key using the Python in 

keyword:

In [134]: 'df2' in store

Out[134]: True

To retrieve an object from the store, we again use the dictionary-like semantic and 

index the object with its corresponding key:

In [135]: df = store["df1"]

From the HDFStore object, we can also access the underlying HDF5 handle using the 

root attribute. This is actually nothing but a PyTables file handle:

In [136]: store.root

Out[136]: / (RootGroup) "   children := ['df1' (Group), 'df2' (Group)]
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Once we are finished with an HDFStore object, we should close it using the close 

method, to ensure that all data associated with it is written to the file.

In [137]: store.close()

Since HDF5 is a standard file format, there is, of course, nothing that prevents us 

from opening an HDF5 file created with Pandas HDFStore or PyTables with any other 

HDF5 compatible software, such as the h5py library. If we open the file produced with 

HDFStore with h5py, we can easily inspect its content and see how the HDFStore object 

arranges the data of the DataFrame objects that we assigned to it:

In [138]: f = h5py.File("store.h5")

In [139]:  f.visititems(lambda x, y: print(x, "\t" * int(3 - 

len(str(x))//8), y))

df1                 <HDF5 group "/df1" (4 members)>

df1/axis0           <HDF5 dataset "axis0": shape (5,), type "<i8">

df1/axis1           <HDF5 dataset "axis1": shape (5,), type "<i8">

df1/block0_items    <HDF5 dataset "block0_items": shape (5,), type "<i8">

df1/block0_values   <HDF5 dataset "block0_values": shape (5, 5), type "<f8">

df2                 <HDF5 group "/df2" (8 members)>

df2/axis0           <HDF5 dataset "axis0": shape (21,), type "|S8">

df2/axis1           <HDF5 dataset "axis1": shape (30,), type "<i8">

df2/block0_items    <HDF5 dataset "block0_items": shape (3,), type "|S8">

df2/block0_values   <HDF5 dataset "block0_values": shape (30, 3), type "<f8">

df2/block1_items    <HDF5 dataset "block1_items": shape (14,), type "|S4">

df2/block1_values   <HDF5 dataset "block1_values": shape (30, 14), type "<i8">

df2/block2_items    <HDF5 dataset "block2_items": shape (4,), type "|S6">

df2/block2_values   <HDF5 dataset "block2_values": shape (1,), type "|O8">

We can see that the HDFStore object stores each DataFrame object in a group of its 

own and that it has split each data frame into several heterogeneous HDF5 datasets 

(blocks) where the columns are grouped by their data type. Furthermore, the column 

names and values are stored in separate HDF5 datasets.

In [140]: f["/df2/block0_items"].value

Out[140]: array([b'S%', b'Shift/GP', b'FO%'], dtype='|S8')

In [141]: f["/df2/block0_values"][:3]
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Out[141]: array([[ 13.9,  24. ,  52.5],

                 [ 15.2,  25.2,  49. ],

                 [ 12.6,  25.1,  52.9]])

In [142]: f["/df2/block1_values"][:3, :5]

Out[142]: array([[  1,  80,  36,  68, 104],

                 [  2,  77,  31,  56,  87],

                 [  3,  82,  28,  58,  86]]) 

 JSON
The JSON5 (JavaScript Object Notation) is a human-readable, lightweight plain-text 

format that is suitable for storing datasets made up from lists and dictionaries. The 

values of such lists and dictionaries can themselves be lists or dictionaries or must be of 

the following basic data types: string, integer, float, and Boolean, or the value null (like 

the None value in Python). This data model allows storing complex and versatile datasets, 

without structural limitations such as the tabular form required by formats such as 

CSV. A JSON document can, for example, be used as a key-value store, where the values 

for different keys can have different structure and data types.

The JSON format was primarily designed to be used as a data interchange format 

for passing information between web services and JavaScript applications. In fact, JSON 

is a subset of JavaScript language and, as such, a valid JavaScript code. However, the 

JSON format itself is a language-independent data format that can be readily parsed 

and generated from essentially every language and environment, including Python. The 

JSON syntax is also almost valid Python code, making it familiar and intuitive to work 

with from Python as well.

We have already seen an example of a JSON dataset in Chapter 10, where we looked 

at the graph of the Tokyo Metro network. Before we revisit that dataset, we begin with a 

brief overview of JSON basics and how to read and write JSON in Python. The Python 

standard library provides the module json for working with JSON-formatted data. 

Specifically, this module contains functions for generating JSON data from a Python data 

structure (list or dictionary), json.dump and json.dumps, and for parsing JSON data into 

a Python data structure: json.load and json.loads. The functions loads and dumps take 

Python strings as input and output, while the load and dump operate on a file handle and 

read and write data to a file.

5 For more information about JSON, see http://json.org.
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For example, we can generate the JSON string of a Python list by calling the json.

dumps function. The return value is a JSON string representation of the given Python list 

that closely resembles the Python code that could be used to create the list. However, 

a notable exception is the Python value None, which is represented as the value null in 

JSON:

In [143]: data = ["string", 1.0, 2, None]

In [144]: data_json = json.dumps(data)

In [145]: data_json

Out[145]: '["string", 1.0, 2, null]'

To convert the JSON string back into a Python object, we can use json.loads:

In [146]: data = json.loads(data_json)

In [147]: data

Out[147]: ['string', 1.0, 2, None]

In [148]: data[0]

Out[148]: 'string'

We can use exactly the same method to store Python dictionaries as JSON strings. 

Again, the resulting JSON string is essentially identical to the Python code for defining 

the dictionary:

In [149]: data = {"one": 1, "two": 2.0, "three": "three"}

In [150]: data_json = json.dumps(data)

In [151]: data_json

Out[151]: '{"two": 2.0, "three": "three", "one": 1}'

To parse the JSON string and convert it back into a Python object, we again use json.

loads:

In [152]: data = json.loads(data_json)

In [153]: data["two"]

Out[153]: 2.0

In [154]: data["three"]

Out[154]: 'three'

Chapter 18  Data Input anD Output



633

The combination of lists and dictionaries makes a versatile data structure. For 

example, we can store lists or dictionaries of lists with a variable number of elements. 

This type of data would be difficult to store directly as a tabular array, and further levels 

of nested lists and dictionaries would make it very impractical. When generating JSON 

data with the json.dump and json.dumps functions, we can optionally give the argument 

indent=True, to obtain indented JSON code that can be easier to read:

In [155]: data = {"one": [1],

     ...:         "two": [1, 2],

     ...:         "three": [1, 2, 3]}

In [156]: data_json = json.dumps(data, indent=True)

In [157]: data_json

Out[157]: {

            "two": [

             1,

             2

             ],

            "three": [

             1,

             2,

             3

            ],

            "one": [

             1

            ]

          }

As an example of a more complex data structure, consider a dictionary containing 

a list, a dictionary, a list of tuples, and a text string. We could use the same method as in 

the preceding text to generate a JSON representation of the data structure using json.

dumps, but instead here we write the content to a file using the json.dump function. 

Compared to json.dumps, it additionally takes a file handle as a second argument, which 

we need to create beforehand:

In [158]: data = {"one": [1],

     ...:         "two": {"one": 1, "two": 2},

     ...:         "three": [(1,), (1, 2), (1, 2, 3)],
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     ...:         "four": "a text string"}

In [159]: with open("data.json", "w") as f:

     ...:     json.dump(data, f)

The result is that the JSON representation of the Python data structure is written to 

the file data.json:

In [160]: !cat data.json

{"four":  "a text string", "two": {"two": 2, "one": 1}, "three": [[1],  

[1, 2], [1, 2, 3]],

 "one": [1]}

To read and parse a JSON-formatted file into a Python data structure, we can use 

json.load, to which we need to pass a handle to an open file:

In [161]: with open("data.json", "r") as f:

     ...:     data_from_file = json.load(f)

In [162]: data_from_file["two"]

Out[162]: [1, 2]

In [163]: data_from_file["three"]

Out[163]: [[1], [1, 2], [1, 2, 3]]

The data structure returned by json.load is not always identical to the one 

stored with json.dump. In particular, JSON is stored as Unicode, so strings in the data 

structure returned by json.load are always Unicode strings. Also, as we can see from 

the preceding example, JSON does not distinguish between tuples and lists, and the 

json.load always produces lists rather than tuples, and the order in which keys for 

a dictionary are displayed is not guaranteed, unless using the sorted_keys=True 

argument to the dumps and dump functions.

Now that we have seen how Python lists and dictionaries can be converted to and 

from JSON representation using the json module, it is worthwhile to revisit the Tokyo 

Metro dataset in Chapter 10. This is a more realistic dataset and an example of a data 

structure that mixes dictionaries, lists of variable lengths, and string values. The first 20 

lines of the JSON file are shown here:

In [164]: !head -n 20 tokyo-metro.json

{

     "C": {

         "color": "#149848",
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          "transfers": [

             [

                 "C3",

                  "F15"

             ],

              [

                 "C4",

                  "Z2"

             ],

             [

                 "C4",

                  "G2"

             ],

              [

                 "C7",

                  "M14"

             ],

To load the JSON data into a Python data structure, we use json.load in the same 

way as before:

In [165]: with open("tokyo-metro.json", "r") as f:

     ...:     data = json.load(f)

The result is a dictionary with a key for each metro line:

In [166]: data.keys()

Out[166]: ['N', 'M', 'Z', 'T', 'H', 'C', 'G', 'F', 'Y']

The dictionary value for each metro line is again a dictionary that contains line color, 

lists of transfer points, and the travel times between stations on the line:

In [167]: data["C"].keys()

Out[167]: ['color', 'transfers', 'travel_times']

In [168]: data["C"]["color"]

Out[168]: '#149848'

In [169]: data["C"]["transfers"]
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Out[169]: [ ['C3', 'F15'],  ['C4', 'Z2'],  ['C4', 'G2'],  ['C7', 'M14'],   

['C7', 'N6'],

            ['C7', 'G6'],  ['C8', 'M15'],  ['C8', 'H6'],  ['C9', 'H7'],   

['C9', 'Y18'],

            ['C11', 'T9'],  ['C11', 'M18'],  ['C11', 'Z8'],  ['C12', 'M19'],   

['C18', 'H21']]

With the dataset loaded as a nested structure of Python dictionaries and lists, we 

can iterate over and filter items from the data structure with ease, for example, using 

Python’s list comprehension syntax. The following example demonstrates how to select 

the set of connected nodes in the graph on the C line which has a travel time of 1 minute:

In [170]: [(s, e, tt) for s, e, tt in data["C"]["travel_times"] if tt == 1]

Out[170]: [('C3', 'C4', 1), ('C7', 'C8', 1), ('C9', 'C10', 1)]

The hierarchy of dictionaries and the variable length of the lists stored in the 

dictionaries make this a good example of a dataset that does not have a strict structure 

and which therefore is suitable to store in a versatile format such as JSON.

 Serialization
In the previous section, we used the JSON format to generate a representation of 

in-memory Python objects, such as lists and dictionaries. This process is called 

serialization, which in this case resulted in a JSON plain-text representation of the 

objects. An advantage of the JSON format is that it is language independent and can 

easily be read by other software. Its disadvantages are that JSON files are not space 

efficient, and they can only be used to serialize a limited type of objects (list, dictionaries, 

basic types, as discussed in the previous section). There are many alternative 

serialization techniques that address these issues. Here we briefly will look at two 

alternatives that address the space efficiency issue and the types of objects that can be 

serialized, respectively: the msgpack library and the Python pickle module.

We begin with msgpack, which is a binary protocol for storing JSON-like data 

efficiently. The msgpack software is available for many languages and environments. For 

more information about the library and its Python bindings, see the project’s web page 

at http://msgpack.org. In analogy to the JSON module, the msgpack library provides 

two sets of functions that operate on byte lists (msgpack.packb and msgpack.unpackb) 
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and file handles (msgpack.pack and msgpack.unpack), respectively. The pack and packb 

functions convert a Python data structure into a binary representation, and the unpack 

and unpackb functions perform the reverse operation. For example, the JSON file for the 

Tokyo Metro dataset is relatively large and takes about 27 Kb on disk:

In [171]: !ls -lh tokyo-metro.json

-rw-r--r--@ 1 rob  staff    27K Apr  7 23:18 tokyo-metro.json

Packing the data structure with msgpack rather than JSON results in a considerably 

smaller file, at around 3 Kb:

In [172]: data_pack = msgpack.packb(data)

In [173]: type(data_pack)

Out[173]: bytes

In [174]: len(data_pack)

Out[174]: 3021

In [175]: with open("tokyo-metro.msgpack", "wb") as f:

     ...:     f.write(data_pack)

In [176]: !ls -lh tokyo-metro.msgpack

-rw-r--r--@ 1 rob  staff   3.0K Apr  8 00:40 tokyo-metro.msgpack

More precisely, the byte list representation of the dataset uses only 3021 bytes. In 

applications where storage space or bandwidth is essential, this is can be a significant 

improvement. However, the price we have paid for this increased storage efficiency is 

that we must use the msgpack library to unpack the data, and it uses a binary format 

and therefore is not human-readable. Whether this is an acceptable trade-off or not will 

depend on the application at hand. To unpack a binary msgpack byte list, we can use the 

msgpack.unpackb function, which recovers the original data structure:

In [177]: del data

In [178]: with open("tokyo-metro.msgpack", "rb") as f:

     ...:     data_msgpack = f.read()

     ...:     data = msgpack.unpackb(data_msgpack)

In [179]: list(data.keys())

Out[179]: ['T', 'M', 'Z', 'H', 'F', 'C', 'G', 'N', 'Y']
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The other issue with JSON serialization is that only certain type of Python objects 

can be stored as JSON. The Python pickle module6 can create a binary representation 

of nearly any kind of Python object, including class instances and function. Using the 

pickle module follows the exact same use pattern as the json module: we have the 

dump and dumps functions for serializing an object to a byte array and a file handle, 

respectively, and the load and loads for deserializing a pickled object.

In [180]: with open("tokyo-metro.pickle", "wb") as f:

     ...:     pickle.dump(data, f)

In [181]: del data

In [182]: !ls -lh tokyo-metro.pickle

-rw-r--r--@ 1 rob  staff   8.5K Apr  8 00:40 tokyo-metro.pickle

The size of the pickled object is considerably smaller than the JSON serialization but 

larger than the serialization produced by msgpack. We can recover a pickled object using 

the pickle.load function, which expects a file handle as argument:

In [183]: with open("tokyo-metro.pickle", "rb") as f:

     ...:     data = pickle.load(f)

In [184]: data.keys()

Out[184]: dict_keys(['T', 'M', 'Z', 'H', 'F', 'C', 'G', 'N', 'Y'])

The main advantage with pickle is that almost any type of Python object can be 

serialized. However, Python pickles cannot be read by software not written in Python, 

and it is also not a recommended format for long-term storage, because compatibility 

between Python versions and with different versions of libraries that defines the objects 

that are pickled cannot always be guaranteed. If possible, using JSON for serializing list- 

and dictionary-based data structures is generally a better approach, and if the file size 

is an issue, the msgpack library provides a popular and easily accessible alternative to 

JSON.

6 An alternative to the pickle module is the cPickle module, which is a more efficient 
reimplementation that is also available in the Python standard library. See also the dill library 
at https://pypi.org/project/dill.

Chapter 18  Data Input anD Output

https://pypi.org/project/dill


639

 Summary
In this chapter we have reviewed common data formats for reading and writing 

numerical data to files on disk, and we introduced a selection of Python libraries that 

are available for working with these formats. We first looked at the ubiquitous CSV file 

format, which is a simple and transparent format that is suitable for small and simple 

datasets. The main advantage of this format is that it is human-readable plain text, which 

makes it intuitively understandable. However, it lacks many features that are desirable 

when working with numerical data, such as metadata describing the data and support 

for multiple datasets. The HDF5 format naturally takes over as the go-to format for 

numerical data when the size and complexity of the data grow beyond what is easily 

handled using a CSV format. HDF5 is a binary file format, so it is not a human-readable 

format like CSV, but there are good tools for exploring the content in an HDF5 file, both 

programmatically and using command-line and GUI-based user interfaces. In fact, 

due to the possibility of storing metadata in attributes, HDF5 is a great format for self- 

describing data. It is also a very efficient file format for numerical data, both in terms of 

I/O and storage, and it can even be used as a data model for computing with very large 

datasets that do not fit in the memory of the computer. Overall, HDF5 is a fantastic tool 

for numerical computing that anyone working with computing should benefit greatly 

from being familiar with. Toward the end of the chapter, we also briefly reviewed JSON, 

msgpack, and Python pickles for serializing data into text and binary format.

 Further Reading
An informal specification of the CSV file is given in RFC 4180, http://tools.ietf.

org/html/rfc4180. It outlines many of the commonly used features of the CSV format, 

although not all CSV readers and writers comply with every aspect of this document. 

An accessible and informative introduction to the HDF5 format and the h5py library is 

given by the creator of h5py in Collette (2013). It is also worth reading about the NetCDF 

(Network Common Data Format), www.unidata.ucar.edu/software/netcdf, which is 

another widely used format for numerical data. The Pandas library also provides I/O 

functions beyond what we have discussed here, such as the ability to read Excel files 

(pandas.io.excel.read_excel) and the fixed-width format (read_fwf). Regarding the 

JSON format, a concise but complete specification of the format is available at the web 

site http://json.org. With the increasingly important role of data in computing, there 
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has been a rapid diversification of formats and data storage technologies in recent years. 

As a computational practitioner, reading data from databases, such as SQL and NoSQL 

databases, is now also an important task. Python provides a common database API for 

standardizing database access from Python applications, as described by PEP 249 (www.

python.org/dev/peps/pep-0249). Another notable project for reading databases from 

Python is SQLAlchemy (www.sqlalchemy.org).

 Reference
Collette, A. (2013). Python and HDF5. Sebastopol: O’Reilly.
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CHAPTER 19

Code Optimization
In this book we have explored various topics of scientific and technical computing using 

Python and its ecosystem of libraries. As touched upon in the very first chapter of this 

book, the Python environment for scientific computing generally strikes a good balance 

between a high-level environment that is suitable for exploratory computing and rapid 

prototyping – which minimizes development efforts – and high-performance numerics, 

which minimize application runtimes. High-performance numerics is achieved not 

through the Python language itself, but rather through leveraging libraries that contain 

or use externally compiled code, typically written in C or in Fortran. Because of this, in 

computing applications that rely heavily on libraries such as NumPy and SciPy, most of 

the number crunching is performed by compiled code, and the performance is therefore 

vastly better than if the same computation were to be implemented purely in Python.

The key to high-performance Python programs is therefore to efficiently utilize 

libraries such as NumPy and SciPy for array-based computations. The vast majority 

of scientific and technical computations can be expressed in terms of common array 

operations and fundamental computational routines. Much of this book has been 

dedicated to exploring this style of scientific computing with Python, by introducing the 

main Python libraries for different fields of scientific computing. However, occasionally 

there is a need for computations that cannot easily be formulated as array expressions or 

do not fit existing computing patterns. In such cases it may be necessary to implement 

the computation from the ground up, for example, using pure Python code. However, 

pure Python code tends to be slow compared to the equivalent code written in a 

compiled language, and if the performance overhead of pure Python is too large, it 

can be necessary to explore alternatives. The traditional solution is to write an external 

library in, for example, C or Fortran, which performs the time-consuming computations, 

and interface it to Python code using an extension module.
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There are several methods to create extension modules for Python. The most 

fundamental method is to use Python’s C API to build an extension module with 

functions implemented in C that can be called from Python. This is typically very tedious 

and  requires a significant effort. The Python standard library itself provides the module 

ctypes to simplify the interfacing between Python and C. Other alternatives include the 

CFFI (C foreign function interface) library1 for interfacing Python with C and the F2PY2 

program for generating interfaces between Python and Fortran. These are all effective 

tools for interfacing Python with compiled code, and they all play an important role in 

making Python suitable for scientific computing. However, using these tools requires 

programming skills and efforts in other languages than Python, and they are the most 

useful when working with a code base that is already written in, say, C or Fortran.

For new development there are alternatives closer to Python that are worth 

considering before embarking on a complete implementation of a problem directly in a 

compiled language. In this chapter we explore two such methods: Numba and Cython. 

These offer a middle ground between Python and low-level languages that retains many 

of the advantages of a high-level language while achieving performance comparable to 

compiled code.

Numba is a just-in-time (JIT) compiler for Python code using NumPy that produces 

machine code that can be executed more efficiently than the original Python code. To 

achieve this, Numba leverages the LLVM compiler suite (http://llvm.org), which is 

a compiler toolchain that has become very popular in recent years for its modular and 

reusable design and interface, enabling, for example, applications such as Numba. 

Numba is a relatively new project and is not yet widely used in a lot of scientific 

computing libraries, but it is a promising project with strong backing by Continuum 

Analytics Inc.,3 and it is likely to have a bright future in scientific computing with Python.

1 http://cffi.readthedocs.org
2 http://docs.scipy.org/doc/numpy-dev/f2py/index.html
3 The producers of the Anaconda Python environment, see Chapter 1 and Appendix.
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Numba the numba library provides a just-in-time compiler for python and 
numpy code that is based on the LLVm compiler. the main advantage of numba 
is that it can generate machine code with minimal or no changes to the original 
python code. For more information about the project and its documentation, see 
the project’s web page at http://numba.pydata.org. at the time of writing, 
the latest version of the library is 0.39.0. numba is an open source project created 
by Continuum analytics inc., which also offers a commercial extended version of 
numba called numbapro (for more information, see http://docs.continuum.
io/numbapro/index).

Cython is a superset of the Python language that can be automatically translated into 

C or C++ and compiled into a machine code, which can run much faster than Python 

code. Cython is widely used in computationally oriented Python projects for speeding 

up time-critical parts of a code base that is otherwise written in Python. Several of the 

libraries that we have used earlier in this book heavily rely on Cython. These include 

NumPy, SciPy, Pandas, and scikit-learn, just to mention a few.

Cython the Cython library provides a translation of python code, or decorated 
python code, into C or C++, which can be compiled into a binary extension 
module. For more information about the project and its documentation, see the 
project’s web page at http://cython.org. at the time of writing, the latest 
version of Cython is 0.28.4.

In this chapter we explore how Numba and Cython can be used to speed up code 

originally written in Python. These methods can be tried when a Python implementation 

turns out to be unacceptably slow. However, before trying to optimize anything that is 

written in Python, it is advisable to first profile the code, for example, using the cProfile 

module or IPython’s profiling utilities (see Chapter 1) and identifying exactly which 

parts of a code are the bottlenecks. If clear bottlenecks can be identified, they may be 

good candidates for optimization efforts. The first optimization attempt should be to 

use already existing libraries, such as NumPy as SciPy, in the most efficient way to solve 

the problem at hand, as well as use the Python language itself in the most efficient 
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manner possible.4 Only when existing libraries do not already provide functions and 

methods that allow us to implement a computation in an efficient way should we 

consider optimizing our code with Numba or Cython. Code optimization should only 

be used as a last resort, since premature optimization is often fruitless and results in less 

maintainable code: “premature optimization is the root of all evil” (Donald Knuth).

 Importing Modules
In this chapter we will work with Numba and Cython. Numba is used as a regular Python 

module, and here we assume that this library is imported in its entirety using

In [1]: import numba

Cython can be used in several different ways, as we will see later in this chapter. 

Typically we are not required to explicitly import the Cython library when using Cython 

code from Python, but instead, we import the pyximport library provided by Cython and 

register an import hook using pyximport.install():

In [2]: import pyximport

This will alter the way Python modules are imported, and in particular it will allow 

us to import Cython files with the file-ending pyx directly as if they were pure Python 

modules. Occasionally it is also useful to explicitly import the Cython library, in which 

case we assume that it is imported in the following manner:

In [3]: import cython

For basic numerics and plotting, we also require the NumPy and Matplotlib libraries:

In [4]: import numpy as np

In [5]: import matplotlib.pyplot as plt

 Numba
One of the most attractive aspects of the Numba library is that it can often be used to speed 

up Python code that uses NumPy without changing the target code. The only thing that 

we need to do is decorating a function with the @numba.jit decorator, which results in the 

4 For example, carefully consider which data structures to use, and make good use of iterators to 
avoid unnecessary memory copy operations.

Chapter 19  Code optimization



645

function being just-in-time (JIT) compiled into code that can be significantly faster than 

the pure Python code, by as much as a factor of several hundred or more. The speedup is 

obtained mainly for functions that use NumPy arrays, for which Numba can automatically 

perform type interference and generate optimized code for the required type signatures.

To get started using Numba, consider the following simple problem: compute the 

sum of all elements in an array. A function that performs this computation is simple to 

implement in Python using for loops:

In [6]: def py_sum(data):

   ...:     s = 0

   ...:     for d in data:

   ...:         s += d

   ...:     return s

Although this function is nearly trivial, it nicely illustrates the potential and power 

of Numba. For loops in Python are notoriously slow, due to Python’s flexibility and 

dynamic typing. To quantify this statement and benchmark the py_sum function, we 

generate an array with 50000 random numbers and use the %timeit IPython command 

to measure the typical computation time:

In [7]: data = np.random.randn(50000)

In [8]: %timeit py_sum(data)

100 loops, best of 3: 8.43 ms per loop

The result suggests that summing the 50000 elements in the data array using the 

py_sum function typically takes 8.43 milliseconds on this particular system. Compared to 

other methods that we explore below, this is not a good performance. The usual solution 

is to use array operations, such as those provided by NumPy, instead of iterating over the 

arrays manually. Indeed, NumPy provides the sum function that does exactly what we want 

to do here. To verify that the py_sum function defined in the preceding text produces the 

same results as the NumPy sum function, we first issue an assert statement to this effect:

In [9]: assert abs(py_sum(data) - np.sum(data)) < 1e-10

Since assert does not raise an error, we conclude that the two functions produce the 

same result. Next we benchmark the NumPy sum function using %timeit in the same way 

we used in the preceding example:

In [10]: %timeit np.sum(data)

10000 loops, best of 3: 29.8 μs per loop
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The NumPy sum function is several hundred times faster than the py_sum function, 

demonstrating that vectorized expressions and operations using, for example, NumPy 

are the key to good performance in Python. We see the same phenomena for other 

functions that use for loops. For example, consider also the accumulative sum,  

py_cumsum, which takes an array as input and produces an array as output:

In [11]: def py_cumsum(data):

    ...:     out = np.zeros_like(data)

    ...:     s = 0

    ...:     for n in range(len(data)):

    ...:         s += data[n]

    ...:         out[n] = s

    ...:     return out

Benchmarking this function also gives a result that is much slower than the 

corresponding array-based NumPy function:

In [12]: %timeit py_cumsum(data)

100 loops, best of 3: 14.4 ms per loop

In [13]: %timeit np.cumsum(data)

10000 loops, best of 3: 147 μs per loop

Now let’s see how Numba can be used to speed up the slow py_sum and py_cumsum 

functions. To activate JIT compilation of a function, we simply apply the decorator  

@numba.jit:

In [14]: @numba.jit

    ...: def jit_sum(data):

    ...:     s = 0

    ...:     for d in data:

    ...:         s += d

    ...:     return s

Next we verify that the JIT-compiled function produces the same result as the NumPy 

sum function and benchmark it using the %timeit function.

In [15]: assert abs(jit_sum(data) - np.sum(data)) < 1e-10

In [16]: %timeit jit_sum(data)

10000 loops, best of 3: 47.7 μs per loop
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Compared to the pure Python function, the jit_sum function is about 300 times 

faster and reaches performance that is comparable to the NumPy sum function, in spite 

of being written in pure Python.

In addition to JIT compiling a function by applying the numba.jit decorator when 

the function is defined, we can apply the decorator after the fact. For example, to JIT 

compile the py_cumsum function that we defined earlier, we can use

In [17]: jit_cumsum = numba.jit()(py_cumsum)

We verify that the resulting function jit_cumsum indeed produces the same result as 

the corresponding NumPy function and benchmark it using %timeit:

In [18]: assert np.allclose(np.cumsum(data), jit_cumsum(data))

In [19]: %timeit jit_cumsum(data)

10000 loops, best of 3: 66.6 μs per loop

In this case the jit_cumsum function outperforms the NumPy cumsum function by 

a factor of two. The NumPy function cumsum is more versatile than the jit_cumsum 

function, so the comparison is not entirely fair, but it is remarkable that we can reach 

performance that is comparable to compiled code by JIT compiling Python code with 

a single function decorator. This allows us to use loop-based computations in Python 

without performance degradation, which is particularly useful for algorithms that are 

not easily written in vectorized form.

An example of such an algorithm is the computation of the Julia fractal, which 

requires a variable number of iterations for each element of a matrix with coordinate 

points in the complex plane: A point z in the complex plane belongs to the Julia set if 

the iteration formula z ← z2 + c does not diverge after a large number of iterations. To 

generate a Julia fractal graph, we can therefore loop over a set of coordinate points and 

iterate z ← z2 + c and store the number of iterations required to diverge beyond some 

predetermined bound (absolute value larger than 2.0 in the following implementation):

In [20]: def py_julia_fractal(z_re, z_im, j):

    ...:    for m in range(len(z_re)):

    ...:        for n in range(len(z_im)):

    ...:            z = z_re[m] + 1j * z_im[n]

    ...:            for t in range(256):

    ...:                z = z ** 2 - 0.05 + 0.68j

    ...:                if np.abs(z) > 2.0:
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    ...:                    j[m, n] = t

    ...:                    break

This implementation is very simple and straightforward when using explicit loops, but 

in pure Python these three nested loops are inhibitively slow, as we will see in the following 

text. However, with JIT compilation using Numba, we can obtain a great speedup.

By default Numba gracefully falls back on the standard Python interpreter in 

cases when it fails to produce optimized code. An exception to this rule is when the 

nopython=True argument to numba.jit is given, in which case the JIT compilation 

will fail if Numba is unable to generate statically typed code. When automatic type 

interference fails, the resulting JIT-compiled code generated by Numba typically 

does not provide any speedup, so it is often advisable to use the nopython=True 

argument to the jit decorator so that we fail quickly when the produced JIT-compiled 

code is unlikely to result in a speedup. To assist Numba in the code generation, it is 

sometimes useful to explicitly define types of variables that occur in a function body, 

which we can do using the locals keyword argument to the jit decorator that can 

be assigned to a dictionary that maps symbol names to explicit types: for example, 

locals=dict(z=numba.complex) specifies that the variable z is a complex number. 

However, with the current example, we do not need to specify the types of local variables 

explicitly, since they can all be inferred from the data types of the NumPy arrays that are 

passed to the function. We can verify that this is the case by using the nopython=True 

argument to numba.jit when decorating the py_julia_fractal function:

In [21]: jit_julia_fractal = numba.jit(nopython=True)(py_julia_fractal)

Next we call the resulting jit_julia_fractal function to compute the Julia set. 

Note that here we have written the function such that all the involved NumPy arrays are 

defined outside the function. This helps Numba recognizing which types are involved in 

the calculation and allows it to generate efficient code in the JIT compilation:

In [22]: N = 1024

In [23]: j = np.zeros((N, N), np.int64)

In [24]: z_real = np.linspace(-1.5, 1.5, N)

In [25]: z_imag = np.linspace(-1.5, 1.5, N)

In [26]: jit_julia_fractal(z_real, z_imag, j)

After the call to the jit_julia_fractal function, the result of the computation is 

stored in the j array. To visualize the result, we can plot the j array using the Matplotlib 

imshow function. The result is shown in Figure 19-1:
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In [27]: fig, ax = plt.subplots(figsize=(8, 8))

    ...: ax.imshow(j, cmap=plt.cm.RdBu_r, extent=[-1.5, 1.5, -1.5, 1.5])

    ...: ax.set_xlabel("$\mathrm{Re}(z)$", fontsize=18)

    ...: ax.set_ylabel("$\mathrm{Im}(z)$", fontsize=18)

We can compare the speed of the pure Python function py_julia_fractal and the 

corresponding JIT-compiled function jit_julia_fractal using the %timeit command:

In [28]: %timeit py_julia_fractal(z_real, z_imag, j)

1 loops, best of 3: 60 s per loop

In [29]: %timeit jit_julia_fractal(z_real, z_imag, j)

10 loops, best of 3: 140 ms per loop

The speedup in this particular case is a remarkable 430 times, again by simply adding 

a decorator to the Python function. With this type of speedup, for loops in Pythons do 

not really need to be avoided after all.

Figure 19-1. The Julia fractal generated by a JIT-compiled Python function using 
Numba
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Another useful decorator in the Numba library is numba.vectorize. It generates and 

JIT compiles a vectorized function from a kernel function written for scalar input and 

output, much like the NumPy vectorize function. Consider, for example, the Heaviside 

step function:
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If we wanted to implement this function for scalar input x, we could use

In [30]: def py_Heaviside(x):

    ...:     if x == 0.0:

    ...:         return 0.5

    ...:     if x < 0.0:

    ...:         return 0.0

    ...:     else:

    ...:         return 1.0

This function only works for scalar input, and if we want to apply it to an array or list, 

we have to explicitly iterate over the array and apply it to each element:

In [31]: x = np.linspace(-2, 2, 50001)

In [32]: %timeit [py_Heaviside(xx) for xx in x]

100 loops, best of 3: 16.7 ms per loop

This is inconvenient and slow. The NumPy vectorize function solves the 

inconvenience problem, by automatically wrapping the scalar kernel function into a 

NumPy- array aware function:

In [33]: np_vec_Heaviside = np.vectorize(py_Heaviside)

In [34]: np_vec_Heaviside(x)

Out[34]: array([ 0.,  0.,  0., ...,  1.,  1.,  1.])

However, the NumPy vectorize function does not solve the performance problem. As 

we see from benchmarking the np_vec_Heaviside function with %timeit, its performance 

is comparable to explicitly looping over the array and consecutively calls the py_

Heaviside function for each element:
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In [35]: %timeit np_vec_Heaviside(x)

100 loops, best of 3: 13.6 ms per loop

Better performance can be achieved by using NumPy array expressions instead of 

using NumPy vectorize on a scalar kernel written in Python:

In [36]: def np_Heaviside(x):

    ...:     return (x > 0.0) + (x == 0.0)/2.0

In [37]: %timeit np_Heaviside(x)

1000 loops, best of 3: 268 μs per loop

However, even better performance can be achieved using Numba and the vectorize 

decorator, which takes a list of function signatures for which to generate JIT-compiled 

code. Here we choose to generate vectorized functions for two signatures – one that 

takes arrays of 32-bit floating-point numbers as input and output, defined as numba.

float32(numba.float32), and one that takes arrays of 64-bit floating-point numbers as 

input and output, defined as numba.float64(numba.float64):

In [38]: @numba.vectorize([numba.float32(numba.float32),

    ...:                   numba.float64(numba.float64)])

    ...: def jit_Heaviside(x):

    ...:     if x == 0.0:

    ...:         return 0.5

    ...:     if x < 0:

    ...:         return 0.0

    ...:     else:

    ...:         return 1.0

Benchmarking the resulting jit_Heaviside function shows the best performance of 

the methods we have looked at:

In [39]: %timeit jit_Heaviside(x)

10000 loops, best of 3: 58.5 μs per loop

and the jit_Heaviside function can be used as any NumPy universal function, including 

support for broadcasting and other NumPy features. To demonstrate that the function 

indeed implements the desired function, we can test it on a simple list of input values:

In [40]: jit_Heaviside([-1, -0.5, 0.0, 0.5, 1.0])

Out[40]: array([ 0. ,  0. ,  0.5,  1. ,  1. ])
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In this section we have explored speeding up Python code using JIT compilation with 

the Numba library. We looked at four examples: two simple examples for demonstrating 

the basic usage of Numba, the summation and accumulative summation of an array. 

For a more realistic use-case of Numba that is not so easily defined in terms of vector 

expressions, we looked at the computation of the Julia set. Finally, we explored the 

vectorization of scalar kernel with the implementation of the Heaviside step function. 

These examples demonstrate the common use patterns for Numba, but there is also 

much more to explore in the Numba library, such as code generation for GPUs. For 

more information about this and other topics, see the official Numba documentation at 

http://numba.pydata.org/doc.html.

 Cython
Like Numba, Cython is a solution for speeding up Python code, although Cython takes 

a completely different approach to this problem. Whereas Numba is a Python library 

that converts pure Python code to LLVM code that is JIT-compiled into machine code, 

Cython is a programming language that is a superset of the Python programming 

language: Cython extends Python with C-like properties. Most notably, Cython allows 

us to use explicit and static type declarations. The purpose of the extensions to Python 

introduced in Cython is to make it possible to translate the code into efficient C or C++ 

code, which can be compiled into a Python extension module that can be imported and 

used from regular Python code.

There are two main usages of Cython:speeding up Python code and generating 

wrappers for interfacing with compiled libraries. When using Cython, we need to modify 

the targeted Python code, so compared to using Numba, there is a little bit more work 

involved, and we need to learn the syntax and behavior of Cython in order to use it to 

speed up Python code. However, as we will see in this section, Cython provides more 

fine-grained control of how the Python code is processed, and Cython also has features 

that are out of scope for Numba, such as generating interfaces between Python and 

external libraries and speeding up Python code that does not use NumPy arrays.

While Numba uses transparent just-in-time compilation, Cython is mainly designed 

for using traditional ahead-of-time compilation. There are several ways to compile 

 Cython code into a Python extension module, each with different use-cases. We begin 

with reviewing options for compiling Cython code and then proceed to introduce 

features of Cython that are useful for speeding up computations written in Python. 
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Throughout this section we will work with mostly the same examples that we looked at in 

the previous section using Numba, so that we can easily compare both the methods and 

the results. We begin by looking at how to speed up the py_sum and py_cumsum functions 

defined in the previous section.

To use Cython code from Python, it has to pass through the Cython compilation 

pipeline: first the Cython code must be translated into C or C++ code, after which it 

has to be compiled into machine code using a C or C++ compiler. The translation from 

Cython code to C or C++ can be done using the cython command-line tool. It takes 

a file with Cython code, which we typically store in files using the pyx file extension, 

and produces a C or C++ file. For example, consider the file cy_sum.pyx, with the 

content shown in Listing 19-1. To generate a C file from this Cython file, we can run the 

command cython cy_sum.pyx. The result is the file cy_sum.c, which we can compile 

using a standard C compiler into a Python extension module. This compilation step 

is platform dependent and requires using the right compiler flags and options as to 

produce a proper Python extension.

Listing 19-1. Content of the Cython File cy_sum.pyx

def cy_sum(data):

     s = 0.0

     for d in data:

         s += d

     return s

To avoid the complications related to platform-specific compilation options for 

C and C++ code, we can use the distutils and Cython libraries to automate the 

translation of Cython code into a useful Python extension module. This requires creating 

a setup.py script that calls the setup function from distutils.core (which knows how 

to compile C code into a Python extension) and the cythonize function from Cython.

Build (which knows how to translate Cython code into C code), as shown in Listing 19-2.  

When the setup.py file is prepared, we can compile the Cython module using the 

command python setup.py build_ext --inplace, which instructs distutils to build 

the extension module and place it in the same directory as the source code.
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Listing 19-2. A setup.py Script That Can Be Used to Automatically Compile a 

Cython File into a Python Extension Module

from distutils.core import setup

from Cython.Build import cythonize

import numpy as np

setup(ext_modules=cythonize('cy_sum.pyx'),

       include_dirs=[np.get_include()],

      requires=['Cython', 'numpy'])

Once the Cython code has been compiled into a Python extension module, whether 

by hand or using distutils library, we can import it and use it as a regular module in 

Python:

In [41]: from cy_sum import cy_sum

In [42]: cy_sum(data)

Out[42]: -189.70046227549025

In [43]: %timeit cy_sum(data)

100 loops, best of 3: 5.56 ms per loop

In [44]: %timeit py_sum(data)

100 loops, best of 3: 8.08 ms per loop

Here we see that for this example, compiling the pure Python code in Listing 19-1 

using Cython directly gives a speedup of about 30%. This is a nice speedup, but arguably 

not worth the trouble of going through the Cython compilation pipeline. We will see later 

how to improve on this speedup using more features of Cython.

Listing 19-3. Content of the Cython File cy_cumsum.pyx

cimport numpy

 import numpy

def cy_cumsum(data):

     out = numpy.zeros_like(data)

     s = 0

     for n in range(len(data)):

         s += data[n]

         out[n] = s

    return out
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The explicit compilation of Cython code into a Python extension module shown 

in the preceding code is useful for distributing prebuilt modules written in Cython, 

as the end result does not require Cython to be installed to use the extension module. 

An alternative way to implicitly invoke the Cython compilation pipeline automatically 

during the import of a module is provided by the pyximport library, which is distributed 

with Cython. To seamlessly import a Cython file directly from Python, we can first invoke 

the install function from the pyximport library:

In [45]: pyximport.install(setup_args=dict(include_dirs=np.get_include()))

This will modify the behavior of the Python import statement and add support for 

Cython pyx files. When a Cython module is imported, it will first be compiled in C or C++ 

and then to machine code in the format of a Python extension module that the Python 

interpreter can import. These implicit steps sometimes require additional configuration, 

which we can pass to the pyximport.install function via arguments. For example, to be 

able to import Cython code that uses NumPy-related features, we need the resulting C 

code to be compiled against the NumPy C header files. We can configure this by setting 

the include_dirs to the value given by np.get_include() in the setup_args argument 

to the install function, as shown in the preceding code. Several other options are also 

available, and we can also give custom compilation and linking arguments. See the 

docstring for pyximport.install for details. Once pyximport.install has been called, 

we can use a standard Python import statement to import a function from a Cython 

module:

In [46]: from cy_cumsum import cy_cumsum

In [47]: %timeit cy_cumsum(data)

100 loops, best of 3: 5.91 ms per loop

In [48]: %timeit py_cumsum(data)

100 loops, best of 3: 13.8 ms per loop

In this example too, we see a welcome but not very impressive speedup of a factor of 

two for the Python code that has been passed through the Cython compilation pipeline.

Before we get into the detailed usage of Cython that allow us to improve upon 

this speedup factor, we quickly introduce yet another way of compiling and import 

Cython code. When using IPython, and especially the Jupyter Notebook, we can use 

the convenient %%cython command, which automatically compiles and loads Cython 
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code in a code cell as Python extension and makes it available in the IPython session. 

To be able to use this command, we first have to activate it using the %load_ext cython 

command:

In [49]: %load_ext cython

With the %%cython command activated, we can write and load Cython code 

interactively in an IPython session:

In [50]: %%cython

    ...: def cy_sum(data):

    ...:     s = 0.0

    ...:     for d in data:

    ...:         s += d

    ...:     return s

In [51]: %timeit cy_sum(data)

100 loops, best of 3: 5.21 ms per loop

In [52]: %timeit py_sum(data)

100 loops, best of 3: 8.6 ms per loop

As before, see a direct speedup by simply adding the %%cython at the first line of the 

IPython code cell. This is reminiscent of adding the @numba.jit decorator to a function, 

but the underlying mechanics of these two methods are rather different. In the rest of 

this section, we will use this method for compiling and loading Cython code. When using 

the %%cython IPython command, it is also useful to add the -a argument. This results 

in Cython annotation output to be displayed as the output of the code cell, as shown 

in Figure 19-2. The annotation shows each code line in a shade of yellow, where bright 

yellow indicates that the line of code is translated to C code with strong dependencies 

on the Python C/API, and a where a while line of code is directly translated into pure C 

code. When working on optimizing Cython code, we generally need to strive for Cython 

code that gets translated into as pure C code as possible, so it is extremely useful to 

inspect the annotation output and look for yellow lines, which typically represent the 

bottlenecks in the code. As an added bonus, clicking a line of code in the annotation 

output toggles between the Cython code that we provided and the C code that it is being 

translated into.
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In the rest of the section, we explore ways of speeding up Cython code using 

language features that are introduced by Cython that are particularly useful for 

computational problems. We first revisit the implementation of the cy_sum given in 

the preceding code. In our first attempt to speed up this function, we simply used the 

pure Python and passed it through the Cython compilation pipeline, and as a result, we 

saw a speedup of about 30%. The key step to see much larger speedups is to add type 

declarations for all the variables and arguments of the function. By explicitly declaring 

the types of variables, the Cython compiler will be able to generate more efficient C 

code. To specify a type of a variable, we need to use the Cython keyword cdef, which we 

can use with any standard C type. For example, to declare the variable n of integer type, 

we can use cdef int n. We can also use type definitions from the NumPy library: for 

example, cdef numpy.float64_t s declares the variable s to be a 64-bit floating-point 

number. NumPy arrays can be declared using the type specification in the format numpy.

ndarray[numpy.float64_t, ndim=1] data, which declares data to be an array with  

64-bit floating-point number elements, with one dimension (a vector) and of unspecified 

length. Adding type declarations of this style to the previous cy_sum function results in 

the following code:

In [53]: %%cython

    ...: cimport numpy

    ...: cimport cython

     ...:

    ...: @cython.boundscheck(False)

    ...: @cython.wraparound(False)

Figure 19-2. Annotation generated by Cython using the %%cython IPython 
command with the -a argument
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    ...: def cy_sum(numpy.ndarray[numpy.float64_t, ndim=1] data):

    ...:     cdef numpy.float64_t s = 0.0

    ...:     cdef int n, N = len(data)

    ...:     for n in range(N):

    ...:         s += data[n]

    ...:     return s

In this implementation of the cy_sum function, we have also applied the two decorators 

@cython.boundscheck(False) and @cython.wraparound(False), which disable time-

consuming bound checks on the indexing of NumPy arrays. This results in less safe code, 

but if we are confident that the NumPy arrays in this function will not be index outside of 

their valid ranges, we can obtain additional speedup by disabling such checks. Now that 

we have explicitly declared the type of all variables and arguments of the function, Cython 

is able to generate efficient C code that when compiled into a Python module provides 

performance that is comparable to the JIT-compiled code using Numba and not far from 

the built-in sum function from NumPy (which also is implemented in C):

In [54]: %timeit cy_sum(data)

10000 loops, best of 3: 49.2 μs per loop
In [55]: %timeit jit_sum(data)

10000 loops, best of 3: 47.6 μs per loop
In [56]: %timeit np.sum(data)

10000 loops, best of 3: 29.7 μs per loop

Next let’s turn our attention to the cy_cumsum function. Like the cy_sum function, 

this function too will benefit from explicit type declarations. To simplify the declarations 

of NumPy array types, here we use the ctypedef keyword to create an alias for numpy.

float64_t to the shorter FTYPE_t. Note also that in Cython code, there are two different 

import statements: cimport and import. The import statement can be used to import 

any Python module, but it will result in C code that calls back into the Python interpreter 

and can therefore be slow. The cimport statement works like a regular import, but is used 

for importing other Cython modules. Here cimport numpy imports a Cython module 

named numpy that provides Cython extensions to NumPy, mostly type and function 

declarations. In particular, the C-like types such as numpy.float64_t are declared in this 

Cython module. However, the function call numpy.zeros in the function defined in the 

following code results in a call to the function zeros in the NumPy module, and for it, we 

need to include the Python module numpy using import numpy.
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Adding these type declarations to the previously defined cy_cumsum function results 

in the implementation given in the following:

In [57]: %%cython

    ...: cimport numpy

    ...: import numpy

    ...: cimport cython

     ...:

    ...: ctypedef numpy.float64_t FTYPE_t

     ...:

    ...: @cython.boundscheck(False)

    ...: @cython.wraparound(False)

    ...: def cy_cumsum(numpy.ndarray[FTYPE_t, ndim=1] data):

    ...:     cdef int n, N = data.size

    ...:      cdef numpy.ndarray[FTYPE_t, ndim=1] out = numpy.zeros 

(N, dtype=data.dtype)

    ...:     cdef numpy.float64_t s = 0.0

    ...:     for n in range(N):

    ...:         s += data[n]

    ...:         out[n] = s

    ...:     return out

Like for cy_sum, we see a significant speedup after having declared the types of all 

variables in the function, and the performance of cy_cumsum is now comparable to the 

JIT-compiled Numba function jit_cumsum and faster than the built-in cumsum function 

in NumPy (which on the other hand is more versatile):

In [58]: %timeit cy_cumsum(data)

10000 loops, best of 3: 69.7 μs per loop
In [59]: %timeit jit_cumsum(data)

10000 loops, best of 3: 70 μs per loop
In [60]: %timeit np.cumsum(data)

10000 loops, best of 3: 148 μs per loop
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When adding explicit type declarations, we gain performance when compiling 

the function with Cython, but we lose generality as the function is now unable to take 

any other type of arguments. For example, the original py_sum function, as well as the 

NumPy sum function, accepts a much wider variety of input types. We can sum Python 

lists and NumPy arrays of both floating-point numbers and integers:

In [61]: py_sum([1.0, 2.0, 3.0, 4.0, 5.0])

Out[61]: 15.0

In [62]: py_sum([1, 2, 3, 4, 5])

Out[62]: 15

The Cython-compiled version with explicit type declaration, on the other hand, only 

works for exactly the type we declared it:

In [63]: cy_sum(np.array([1.0, 2.0, 3.0, 4.0, 5.0]))

Out[63]: 15.0

In [64]: cy_sum(np.array([1, 2, 3, 4, 5]))

---------------------------------------------------------------------------

ValueError: Buffer dtype mismatch, expected 'float64_t' but got 'long'

Often it is desirable to support more than one type of input, such as providing the 

ability to sum arrays of both floating-point numbers and integers with the same function. 

Cython provides a solution to this problem through its ctypedef fused keyword, with 

which we can define new types that are one out of several provided types. For example, 

consider the modification to the py_sum function given in py_fused_sum here:

In [65]: %%cython

    ...: cimport numpy

    ...: cimport cython

     ...:

    ...: ctypedef fused I_OR_F_t:

    ...:     numpy.int64_t

    ...:     numpy.float64_t

     ...:

    ...: @cython.boundscheck(False)

    ...: @cython.wraparound(False)

    ...: def cy_fused_sum(numpy.ndarray[I_OR_F_t, ndim=1] data):

    ...:     cdef I_OR_F_t s = 0
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    ...:     cdef int n, N = len(data)

    ...:     for n in range(N):

    ...:         s += data[n]

    ...:     return s

Here the function is defined in terms of the type I_OR_F_t, which is defined 

using ctypedef fused to be either numpy.int64_t or numpy.float64_t. Cython will 

automatically generate the necessary code for both types of functions, so that we can use 

the function on both floating-point and integer arrays (at the price of a small decrease in 

performance):

In [66]: cy_fused_sum(np.array([1.0, 2.0, 3.0, 4.0, 5.0]))

Out[66]: 15.0

In [67]: cy_fused_sum(np.array([1, 2, 3, 4, 5]))

Out[67]: 15

As a final example of how to speed up Python code with Cython, consider again the 

Python code for generating the Julia set that we looked at in the previous section. To 

implement a Cython version of this function, we simply take the original Python code 

and explicitly declare the types of all the variables used in the function, following the 

procedure we used in the preceding text. We also add the decorators for disabling index 

bound checks and wraparound. Here we have both NumPy integer arrays and floating-

point arrays as input, so we define the arguments as types numpy.ndarray[numpy.

float64_t, ndim=1] and numpy.ndarray[numpy.int64_t, ndim=2], respectively.

The implementation of cy_julia_fractal given in the following code also includes 

a Cython implementation of the square of the absolute value of a complex number. This 

function is declared as inline using the inline keyword, which means that the compiler 

will put the body of the function at every place it is called, rather than creating a function 

that is called from those locations. This will result in large code, but avoid the overhead 

of an additional function call. We also define this function using cdef rather than the 

usual def keyword. In Cython, def defines a function that can be called from Python, 

while cdef defines a function that can be called from C. Using the cpdef keyword, we can 

simultaneously define a function that is callable both from C and from Python. As it is 

written here, using cdef, we cannot call the abs2 function from the IPython session after 

executing this code cell, but if we change cdef to cpdef, we can.
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In [68]: %%cython

    ...: cimport numpy

    ...: cimport cython

     ...:

    ...: cdef inline double abs2(double complex z):

    ...:     return z.real * z.real + z.imag * z.imag

     ...:

    ...: @cython.boundscheck(False)

    ...: @cython.wraparound(False)

    ...: def cy_julia_fractal(numpy.ndarray[numpy.float64_t, ndim=1] z_re,

    ...:                      numpy.ndarray[numpy.float64_t, ndim=1] z_im,

    ...:                      numpy.ndarray[numpy.int64_t, ndim=2] j):

    ...:     cdef int m, n, t, M = z_re.size, N = z_im.size

    ...:     cdef double complex z

    ...:     for m in range(M):

    ...:         for n in range(N):

    ...:             z = z_re[m] + 1.0j * z_im[n]

    ...:             for t in range(256):

    ...:                 z = z ** 2 - 0.05 + 0.68j

    ...:                 if abs2(z) > 4.0:

    ...:                     j[m, n] = t

    ...:                     break

If we call the cy_julia_fractal function with the same arguments as we previously 

called the Python implementation that was JIT-compiled using Numba, we see that the 

two implementations have comparable performance.

In [69]: N = 1024

In [70]: j = np.zeros((N, N), dtype=np.int64)

In [71]: z_real = np.linspace(-1.5, 1.5, N)

In [72]: z_imag = np.linspace(-1.5, 1.5, N)

In [73]: %timeit cy_julia_fractal(z_real, z_imag, j)

10 loops, best of 3: 113 ms per loop

In [74]: %timeit jit_julia_fractal(z_real, z_imag, j)

10 loops, best of 3: 141 ms per loop
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The slight edge to the cy_julia_fractal implementation is mainly due to the inline 

definition of the innermost loop call to the abs2 function and the fact that abs2 avoids 

computing the square root. Making a similar change in jit_julia_fractal improves its 

performance and approximately accounts for the difference shown here.

So far we have explored Cython as a method to speed up Python code by compiling it 

into machine code that is made available as Python extension modules. There is another 

important use-case of Cython, which is at least as important to its widespread use in 

the Python scientific computing community: Cython can also be used to easily create 

wrappers to compiled C and C++ libraries. We will not explore this in depth here, but 

will give a simple example that illustrates that using Cython we can call out to arbitrary 

C libraries in just a few lines of code. As an example, consider the math library from 

the C standard library. It provides mathematical functions, similar to those defined 

in the Python standard library with the same name: math. To use these functions in a 

C program, we would include the math.h header file to obtain their declarations and 

compile and link the program against the libm library. From Cython we can obtain 

function declarations using the cdef extern from keywords, after which we need to give 

the name of the C header file and list the declarations of the function we want to use in 

the following code block. For example, to make the acos function from libm available in 

Cython, we can use the following code:

In [75]: %%cython

    ...: cdef extern from "math.h":

    ...:      double acos(double)

     ...:

    ...: def cy_acos1(double x):

    ...:     return acos(x)

Here we also defined the Python function cy_acos1, which we can call from Python:

In [76]: %timeit cy_acos1(0.5)

10000000 loops, best of 3: 83.2 ns per loop

Using this method we can wrap arbitrary C functions into functions that are 

callable from regular Python code. This is a very useful feature for scientific computing 

applications since it makes existing code written in C and C++ easily available from 

Python. For the standard libraries, Cython already provides type declarations via the 

libc module, so we do not need to explicitly define the functions using cdef extern 
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from. For the acos example, we could therefore instead directly import the function from 

libc.math using the cimport statement:

In [77]: %%cython

    ...: from libc.math cimport acos

    ...:

    ...: def cy_acos2(double x):

    ...:     return acos(x)

In [78]: %timeit cy_acos2(0.5)

10000000 loops, best of 3: 85.6 ns per loop

The resulting function cy_acos2 is identical to cy_acos1 that was explicitly imported 

from math.h earlier. It is instructive to compare the performance of these C math library 

functions to the corresponding functions defined in NumPy and the Python standard 

math library:

In [79]: from numpy import arccos

In [80]: %timeit arccos(0.5)

1000000 loops, best of 3: 1.07 μs per loop
In [81]: from math import acos

In [82]: %timeit acos(0.5)

10000000 loops, best of 3: 95.9 ns per loop

The NumPy version is about ten times slower than the Python math function and 

Cython wrappers to the C standard library function, because of the overhead related to 

NumPy array data structures.

 Summary
In this chapter we have explored methods for speeding up Python code using Numba, 

which produces optimized machine code using just-in-time compilation, and Cython, 

which produces C code that can be compiled into machine code using ahead-of- 

time compilation. Numba works with pure Python code, but heavily relies on type 

interference using NumPy arrays, while Cython works with an extension to the Python 

language that allows explicit type declarations. The advantages of these methods are that 

we can achieve performance that is comparable to compiled machine code while staying 

in a Python or Python-like programming environment. The key to speeding up Python 
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code is the use of typed variables, either by using type interference from NumPy arrays, 

as in Numba, or by explicitly declaring the types of variables, as in Cython. Explicitly 

typed code can be translated into much more efficient code than the dynamically typed 

code in pure Python and can avoid much of the overhead involved in type lookups in 

Python. Both Numba and Cython are convenient ways to obtain impressive speedups 

of Python code, and they often produce code with similar performance. Cython also 

provides an easy-to-use method for creating interfaces to external libraries so that they 

can be accessed from Python. In both Numba and Cython, the common theme is use 

type information (from NumPy arrays or from explicit declarations) to generate more 

efficient typed machine code. Within the Python community, there has also recently 

been a movement toward adding support for optional type hints to the Python language 

itself. For more details about type hints, see PEP 484 (www.python.org/dev/peps/pep- 

0484), which has been included in Python as of version 3.5. While type hints in Python 

are not likely to be widely available in the near future, it is certainly an interesting 

development to follow.

 Further Reading
Thorough guides to using Cython are given in Smith (2015) and Herron (2013). For more 

information about Numba, see its official documentation at http://numba.pydata.org/

numba-doc. For a detailed discussion of high-performance computing with Python, see 

also M. Gorelick (2014).
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 APPENDIX

Installation
This appendix covers the installation and setup of a Python environment for scientific 

computing on commonly used platforms. As discussed in Chapter 1, the scientific 

computing environment for Python is not a single product, but rather a diverse ecosystem 

of packages and libraries, and there are numerous possible ways to install and configure a 

Python environment on any given platform. Python itself is rather easy to install,1 and on 

many operating systems, it is even preinstalled. All pure Python libraries that are hosted on 

the Python Package Index2 are also easily installed, for example, using pip and a command 

such as pip install PACKAGE, where PACKAGE is the name of the package to install. The 

pip software then searches for the package on the Python Package Index, and downloads 

and installs it, if it is found. For example, to install IPython, we can use

$ pip install ipython

and to upgrade an already installed package, we simply add the --upgrade flag to the 

pip command:

$ pip install --upgrade ipython

However, many libraries for computing with Python are not pure Python 

libraries, and they frequently have dependencies on system libraries written in 

other languages, such as C and Fortran. These dependencies cannot be handled by 

pip and the Python Package Index, and to build such libraries from source requires 

C and Fortran compilers to be installed. In other words, installing a full scientific 

computing software stack for Python manually can be difficult or at least time-

consuming and tedious. To solve this problem, there have emerged a number of 

prepackaged Python environments with automated installers. The most popular 

1 Installers for all major platforms are available for download at http://www.python.org/
downloads

2 http://pypi.python.org

https://doi.org/10.1007/978-1-4842-4246-9
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http://www.python.org/downloads
http://pypi.python.org
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environments are Continuum Analytics’ Anaconda3 and Enthought’s Canopy,4 which 

are both sponsored by corporations with close connections to the open source 

scientific Python community, and Python(x,y),5 which is a community-maintained 

environment that targets Microsoft’s operating systems. These environments all have 

in common that they bundle the Python interpreter, the required system libraries 

and tools, and a large number of scientific- computing- oriented Python libraries in an 

easy-to-install distribution. Any of these environments can readily be used to set up 

the software required to run the code discussed in this book, but in the following we 

use the Anaconda environment from Continuum Analytics. In particular, we discuss 

Miniconda – a lightweight version of Anaconda – and the package manager conda.

 Miniconda and Conda
The Anaconda environment, which comes bundled with a large number of libraries, 

is a convenient way to get a scientific computing environment for Python up and 

running quickly. However, for clarity, here we start with a Miniconda environment 

and explicitly install the packages that we need. In this way, we control exactly which 

packages are included in the environment we set up. Miniconda is a minimal version 

of Anaconda, which only includes the most basic components: a Python interpreter, a 

few fundamental libraries, and the conda package manager. The download page for the 

Miniconda project (http://conda.pydata.org/miniconda.html) contains installers 

for Linux, Mac OS X, and Windows.6 Download and run the installer, and follow the 

on-screen instructions. When the installation has finished, you should have a directory 

named miniconda in your home directory, and if you choose to add it to your PATH 

variable during the installation, you should now be able to invoke the conda package 

manager by running conda at the command prompt.

3 http://continuum.io/downloads
4 http://www.enthought.com/products/canopy
5 http://code.google.com/p/pythonxy
6 Miniconda is available in both 32- and 64-bit versions. Generally the 64-bit version is 
recommended for modern computers, but on Windows a 64-bit compiler might not always 
be readily available, so staying with the 32-bit version might be better in some cases on this 
platform.
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Conda7 is a cross-platform package manager that can handle dependencies on 

Python packages as well as system tools and libraries. This is essential for installing 

scientific computing software, which by nature uses a diverse set of tools and libraries. 

Conda packages are prebuilt binaries for the target platform and are therefore fast and 

convenient to install. To verify that conda is available on your system, you can try

$ conda --version

conda 4.5.11

In this case, the output tells us that conda is installed and that the version of conda is 

4.5.11. To update to the latest version of conda, we can use the conda package manager 

itself:

$ conda update conda

and to update all packages installed in a particular conda environment, we can use

$ conda update --all

Once conda is installed, we can use it to install Python interpreters and libraries. 

When doing so we can optionally specify precise versions of the packages we want 

to install. The Python software ecosystem consists of a large number of independent 

projects, each with their own release cycles and development goals, and there are 

constantly new versions of different libraries being released. This is both exciting – 

because there is steady progress and new features are frequently made available – but 

unfortunately not all new releases of all libraries are backward compatible. This presents 

a dilemma for a user that requires a stable and reproducible environment over the 

long term and for users that simultaneously work on projects with different versions of 

dependencies.

The best solution in the Python ecosystem for this problem is to use a package 

manager such as conda to set up virtual Python environments for different projects, in 

which different versions of the required dependencies are installed. With this approach, 

it is easy to maintain multiple environments with different configurations, such as 

separate Python 2 and Python 3 environments, or environments with stable versions and 

development versions of relevant packages. I strongly recommend using virtual Python 

environments rather than using the default system-wide Python environments for the 

reasons given in the preceding text.

7 http://conda.pydata.org/docs/index.html
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With conda, new environments are created with the conda create command, 

to which we need to provide a name for the new environment using -n NAME or 

alternatively a path to where the environment is to be stored using -p PATH. When 

providing a name, the environment is by default stored in the miniconda/envs/

NAME directory. When creating a new environment, we can also give a list of packages 

to install. At least one package must be specified. For example, to create two new 

environments based on Python 2.7 and Python 3.6, we can use the commands

$ conda create -n py2.7 python=2.7

$ conda create -n py3.6 python=3.6

where we have given the Python 2 and Python 3 environments the names py2.7 

and py3.6, respectively. To use one of these environments, we need to activate it using 

the command source activate py2.7 or source activate py3.6, respectively, and 

to deactivate an environment, we use source deactivate.8 With this method it is easy 

to switch between different environments, as illustrated in the following sequence of 

commands:

$ source activate py2.7

discarding /Users/rob/miniconda/bin from PATH

prepending /Users/rob/miniconda/envs/py2.7/bin to PATH

(py2.7)$ python --version

Python 2.7.14 :: Continuum Analytics, Inc.

(py2.7)$ source activate py3.6

discarding /Users/rob/miniconda/envs/py2.7/bin from PATH

prepending /Users/rob/miniconda/envs/py3.6/bin to PATH

(py3.6)$ python --version

Python 3.6.5 :: Continuum Analytics, Inc.

(py3.6)$ source deactivate

discarding /Users/rob/miniconda/envs/py3.6/bin from PATH

$

8 On Windows, leave out source from these commands.
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To manage environments, the conda env, conda info, and conda list commands 

are helpful tools. The conda info command can be used to list available environments 

(same as conda env list):

$ conda info --envs

# conda environments:

#

base                  *  /Users/rob/miniconda

py2.7                    /Users/rob/miniconda/envs/py2.7

py3.6                    /Users/rob/miniconda/envs/py3.6

and the conda list command can be used to list installed packages and their 

versions, in a given environment:

$ conda list -n py3.6

# packages in environment at /Users/rob/miniconda/envs/py3.6:

#

# Name                    Version                   Build  Channel

ca-certificates           2017.08.26           ha1e5d58_0

certifi                   2018.1.18                py36_0

libcxx                    4.0.1                h579ed51_0

libcxxabi                 4.0.1                hebd6815_0

libedit                   3.1                  hb4e282d_0

libffi                    3.2.1                h475c297_4

ncurses                   6.0                  hd04f020_2

openssl                   1.0.2o               h26aff7b_0

pip                       9.0.3                    py36_0

python                    3.6.5                hc167b69_0

readline                  7.0                  hc1231fa_4

setuptools                39.0.1                   py36_0

sqlite                    3.22.0               h3efe00b_0

tk                        8.6.7                h35a86e2_3

wheel                     0.30.0           py36h5eb2c71_1

xz                        5.2.3                h0278029_2

zlib                      1.2.11               hf3cbc9b_2
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Similar information in YAML format9 is produced by the conda env export 

command:

(py3.6)$ conda env export

name: py3.6

channels:

  - defaults

dependencies:

  - ca-certificates=2017.08.26=ha1e5d58_0

  - certifi=2018.1.18=py36_0

  - libcxx=4.0.1=h579ed51_0

  - libcxxabi=4.0.1=hebd6815_0

  - libedit=3.1=hb4e282d_0

  - libffi=3.2.1=h475c297_4

  - ncurses=6.0=hd04f020_2

  - openssl=1.0.2o=h26aff7b_0

  - pip=9.0.3=py36_0

  - python=3.6.5=hc167b69_0

  - readline=7.0=hc1231fa_4

  - setuptools=39.0.1=py36_0

  - sqlite=3.22.0=h3efe00b_0

  - tk=8.6.7=h35a86e2_3

  - wheel=0.30.0=py36h5eb2c71_1

  - xz=5.2.3=h0278029_2

  - zlib=1.2.11=hf3cbc9b_2

prefix: /Users/rob/miniconda/envs/py3.6

To install additional packages in an environment, we can either specify a list 

of packages when the environment is created or activate the environment and use 

conda install or use the conda install command with the -n flag to specify a target 

environment for the installation. For example, to create a Python 3.6 environment with 

NumPy version 1.14, we could use

$ conda create -n py3.6-np1.14 python=3.6 numpy=1.14

9 http://yaml.org
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To verify that the new environment py3.6-np1.14 indeed contains NumPy of the 

specified version, we can use the conda list command again:

$ conda list -n py3.6-np1.14

# packages in environment at /Users/rob/miniconda/envs/py3.6-np1.14:

#

# Name                    Version                   Build  Channel

ca-certificates           2017.08.26           ha1e5d58_0

certifi                   2018.1.18                py36_0

intel-openmp              2018.0.0                      8

libcxx                    4.0.1                h579ed51_0

libcxxabi                 4.0.1                hebd6815_0

libedit                   3.1                  hb4e282d_0

libffi                    3.2.1                h475c297_4

libgfortran               3.0.1                h93005f0_2

mkl                       2018.0.2                      1

mkl_fft                   1.0.1            py36h917ab60_0

mkl_random                1.0.1            py36h78cc56f_0

ncurses                   6.0                  hd04f020_2

numpy                     1.14.2           py36ha9ae307_1

openssl                   1.0.2o               h26aff7b_0

pip                       9.0.3                    py36_0

python                    3.6.5                hc167b69_0

readline                  7.0                  hc1231fa_4

setuptools                39.0.1                   py36_0

sqlite                    3.22.0               h3efe00b_0

tk                        8.6.7                h35a86e2_3

wheel                     0.30.0           py36h5eb2c71_1

xz                        5.2.3                h0278029_2

zlib                      1.2.11               hf3cbc9b_2

Here we see that NumPy is indeed installed, and the precise version of the library is 

1.8.14. If we do not explicitly specify the version of a library, the latest stable release is used.

To use the second method – to install additional packages in an already existing 

environment – we first activate the environment

$ source activate py3.6
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and then use conda install PACKAGE to install the package with name PACKAGE. 

Here we can also give a list of package names. For example, to install the NumPy, SciPy, 

and Matplotlib libraries, we can use

(py3.6)$ conda install numpy scipy matplotlib

or, equivalently,

$ conda install -n py3.6 numpy scipy matplotlib

When installing packages using conda, all required dependencies are also installed 

automatically, and the preceding command actually also installed the packages 

dateutil, freetype, libpng, pyparsing, pytz, and six packages, among others, which 

are dependencies for the matplotlib package:

(py3.6)$ conda list

# packages in environment at /Users/rob/miniconda/envs/py3.6:

#

# Name                    Version                   Build  Channel

ca-certificates           2017.08.26           ha1e5d58_0

certifi                   2018.1.18                py36_0

cycler                    0.10.0           py36hfc81398_0

freetype                  2.8                  h12048fb_1

intel-openmp              2018.0.0                      8

kiwisolver                1.0.1            py36h792292d_0

libcxx                    4.0.1                h579ed51_0

libcxxabi                 4.0.1                hebd6815_0

libedit                   3.1                  hb4e282d_0

libffi                    3.2.1                h475c297_4

libgfortran               3.0.1                h93005f0_2

libpng                    1.6.34               he12f830_0

matplotlib                2.2.2            py36ha7267d0_0

mkl                       2018.0.2                      1

mkl_fft                   1.0.1            py36h917ab60_0

mkl_random                1.0.1            py36h78cc56f_0

ncurses                   6.0                  hd04f020_2

numpy                     1.14.2           py36ha9ae307_1

openssl                   1.0.2o               h26aff7b_0

Appendix  instAllAtion



675

pip                       9.0.3                    py36_0

pyparsing                 2.2.0            py36hb281f35_0

python                    3.6.5                hc167b69_0

python-dateutil           2.7.2                    py36_0

pytz                      2018.3                   py36_0

readline                  7.0                  hc1231fa_4

scipy                     1.0.1            py36hcaad992_0

setuptools                39.0.1                   py36_0

six                       1.11.0           py36h0e22d5e_1

sqlite                    3.22.0               h3efe00b_0

tk                        8.6.7                h35a86e2_3

tornado                   5.0.1                    py36_1

wheel                     0.30.0           py36h5eb2c71_1

xz                        5.2.3                h0278029_2

zlib                      1.2.11               hf3cbc9b_2

Note that not all of the packages installed in this environment are Python libraries. 

For example, libpng and freetype are system libraries, but conda is able to handle them 

and install them automatically as dependencies. This is one of the strengths of conda 

compared to, for example, the Python-centric package manager pip.

To update selected packages in an environment, we can use the conda update 

command. For example, to update NumPy and SciPy in the currently active 

environment, we can use

(py3.4)$ conda update numpy scipy

To remove a package, we can use conda remove PACKAGE, and to completely remove 

an environment, we can use conda remove -n NAME --all. For example, to remove the 

environment py2.7-np1.8, we can use

$ conda remove -n py2.7-np1.8 --all

Conda locally caches packages that have once been installed. This makes it fast to 

reinstall a package in a new environment and also quick and easy to tear down and 

set up new environments for testing and trying out different things, without any risk 

of breaking environments used for other projects. To re-create a conda environment, 

all we need to do is to keep track of the installed packages. Using the -e flag with the 

conda list command gives a list of packages and their versions, in a format that is also 
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compatible with the pip software. This list can be used to replicate a conda environment, 

for example, on another system or at a later point in time:

$ conda list -e > requirements.txt

With the file requirements.txt, we can now update an existing conda environment 

in the following manner:

$ conda install --file requirements.txt

or create a new environment that is a replication of the environment that was used to 

create the requirement.txt file:

$ conda create –n NAME --file requirements.txt

Alternatively, we can use the YAML format dump of an environment produced by 

conda env export:

$ conda env export –n NAME > env.yml

and in this case we can reproduce the environment using

$ conda env create --file env.yml

Note that here we do not need to specify the environment name since the env.

yml file also contains this information. Using this method also has the advantage 

that packages installed using pip are installed when the environment is replicated or 

restored.

 A Complete Environment
Now that we have explored the conda package manager, and seen how it can be used to 

set up environments and install packages, next we cover the procedures for setting up 

a complete environment with all the dependencies that are required for the material in 

this book. In the following we use the py3.6 environment, which was previously created 

using the command:

$ conda create –n py3.6 python=3.6

This environment can be activate using

$ source activate py3.6
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Once the target environment is activated, we can install the libraries that we use in 

this book with the following commands:

conda install ipython jupyter jupyterlab spyder pylint pyflakes pep8

conda install numpy scipy sympy matplotlib networkx pandas seaborn

conda install patsy statsmodels scikit-learn pymc3

conda install h5py pytables msgpack-python cython numba cvxopt

conda install -c conda-forge fenics mshr

conda install -c conda-forge pygraphviz

pip install scikit-monaco

pip install version_information

The FEniCS libraries have many intricate dependencies, which can make it difficult 

to install using this standard approach on some platforms.10 For this reason, if the 

FEniCS installation using conda fails, it is most easily installed using the prebuilt 

environments available from the project’s web site: http://fenicsproject.org/

download. Another good solution for obtaining a complete FEniCS environment can 

be to use a Docker11 container with FEniCS preinstalled. See, for example, https://

registry.hub.docker.com/repos/fenicsproject for more information about this 

method.

Table A-1 presents a breakdown of the installation commands for the dependencies, 

on a chapter-by-chapter basis.

10 There are recent efforts to create conda packages for the FEniCS libraries and their 
dependencies: http://fenicsproject.org/download/. However, this method is currently only 
available for Linux and MacOS.

11 For more information about software container solution Docker, see https://www.docker.com.
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Table A-1. Installation Instructions for Dependencies for Each Chapter

Chapter Used Libraries Installation

1 ipython, spyder, 

Jupyter

conda install ipython jupyter jupyterlab

conda install spyder pylint pyflakes pep8

Here pylint, pyflakes, and pep8 are code analysis tools that 

can be used by spyder.

For converting ipython notebooks to pdF, you also need a 

working latex installation.

to book-keep which versions of libraries that were used to 

execute the ipython notebooks that accompany this book, 

we have used ipython extension command %version_

information, which is available in the version_

information package that can be installed with pip:

pip install version_information

2 numpy conda install numpy

3 numpy, sympy conda install numpy sympy

4 numpy, Matplotlib conda install numpy matplotlib

5 numpy, sympy, scipy, 

Matplotlib

conda install numpy sympy scipy matplotlib

6 numpy, sympy, scipy, 

Matplotlib, cvxopt

conda install numpy sympy scipy matplotlib 

cvxopt

7 numpy, scipy, 

Matplotlib

conda install numpy scipy matplotlib

8 numpy, sympy, scipy, 

Matplotlib,scikit- 

Monaco

conda install numpy sympy scipy matplotlib

there is no conda package for scikit-monaco, so we need to 

install this library using pip:

pip install scikit-monaco

9 numpy, sympy, scipy, 

Matplotlib

conda install numpy sympy scipy matplotlib

(continued)
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Table A-1. (continued)

Chapter Used Libraries Installation

10 numpy, scipy, 

Matplotlib, networkx

conda install numpy scipy matplotlib networkx

to visualize networkx graphs, we also need the Graphviz 

library (see www.graphviz.org) and its python bindings in 

the pygraphviz library:

conda install -c conda-forge pygraphviz

11 numpy, scipy, 

Matplotlib, and FeniCs

conda install numpy scipy matplotlib

conda install -c conda-forge fenics mshr

12 numpy, pandas, 

Matplotlib, seaborn

conda install numpy pandas matplotlib seaborn

13 numpy, scipy, 

Matplotlib, seaborn

conda install numpy scipy matplotlib seaborn

14 numpy, pandas, 

Matplotlib, seaborn, 

patsy, statsmodels

conda install numpy pandas matplotlib seaborn 

patsy statsmodels

15 numpy, Matplotlib, 

seaborn, scikit-learn

conda install numpy matplotlib seaborn scikit- 

learn

16 numpy, Matplotlib, 

pyMC3

conda install numpy matplotlib pymc3

17 numpy, scipy, 

Matplotlib

conda install numpy scipy matplotlib

18 numpy, pandas, h5py, 

pytables, msgpack

conda install numpy pandas h5py pytables 

msgpack- python

At the time of writing, the msgpack-python conda package 

is not available for all platforms. When conda packages are not 

available, the msgpack library needs to be installed manually, 

and its python bindings can be installed using pip:

pip install msgpack-python

19 numpy, Matplotlib, 

Cython, numba

conda install numpy matplotlib cython numba
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A list of the packages and their exact versions that were used to run the code 

included in this book is also available in the requirements.txt file that is available 

for download together with the code listing. With this file we can directly create an 

environment with all the required dependencies with a single command:

$ conda create -n py3.6 --file requirements.txt

Alternatively, we can re-create the py2.7 and py3.6 environments using the exports 

py2.7-env.yml and py3.6-env.yml. These files are also available together with the 

source code listings.

$ conda env create --file py2.7-env.yml

$ conda env create --file py3.6-env.yml

 Summary
In this appendix we have reviewed the installation of the various Python libraries used 

in this book. The Python environment for scientific computing is not a monolithic 

environment, but rather consists of an ecosystem of diverse libraries that are maintained 

and developed by different groups of people, following different release cycles and 

development paces. As a consequence, it can be difficult to collect all the necessary 

pieces of a productive setup from scratch. In response to this problem, several solutions 

addressing this situation have appeared, typically in the form of prepackaged Python 

distributions. In the Python scientific computing community, Anaconda and Canopy 

are two popular examples of such environments. Here we focused on the conda package 

manager from the Anaconda Python distribution, which in addition to being a package 

manager also allows to create and to manage virtual installation environments.

 Further Reading
If you are interested in creating Python source packages for your own projects, see, 

for example, http://packaging.python.org/en/latest/index.html. In particular, 

study the setuptools library and its documentation at http://pythonhosted.org/

setuptools. Using setuptools, we can create installable and distributable Python 

source packages. Once a source package has been created using setuptools, it is usually 

straightforward to create binary conda packages for distribution. For information 
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on creating and distributing conda packages, see http://conda.pydata.org/docs/

build_tutorials/pkgs.html. See also the conda-recipes repository at github.

com, which contains many examples of conda packages: http://github.com/conda/

conda-recipes. Finally, http://www.anaconda.org is a conda package hosting service 

with many public channels (repositories) where custom-built conda packages can be 

published and installed directly using the conda package manager. Many packages that 

are not available in the standard Anaconda channel can be found on user-contributed 

channels on anaconda.org. In particular, many packages are available in the conda- 

forge channel, built from conda recipes available from conda-forge.org.
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vectors and matrices, 604

Complex data structure, 633
Complex-valued array, 48
Composite quadrature rules, 272–273
Computer algebra systems (CASs), 97
Computing environment, 5–6
Conda, 669

create command, 670
environment, update, 676
package, 669
re-create, 675

Confusion matrix, 532, 538
Constrained optimization

contour graph, 233–234
contour plot, 237–238
coordinate variables, 232
inequality constraints, 235, 237
linear programming, 238–239, 241
SymPy, 235

Constraints, 216, 234
Continuous real-valued functions, 373
Continuum Analytics’ Anaconda, 668
contourf function, 178
Convex problems, 215
cProfile module, 643
Cross-validation, 516
ctypes, 642
cvxopt library, 214, 239
cvxopt.solvers.lp solver, 241
cvxpot.matrix function, 239
cy_cumsum function, 658
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Cython
C math library functions, 664
code, 653
compilation pipeline, 655, 657
cpdef keyword, 661
cy_cumsum function, 658
cy_cumsum.pyx, 654
cy_julia_fractal function, 661, 662
cy_sum function, 657, 659
cy_sum.pyx, 653
%%cython IPython command, 656–657
cython cy_sum.pyx, 653
design, 652
distutils library, 654
explicit type declarations, 664
floating-point and integer arrays, 661
generation, C code, 658
libc module, 663
%load_ext cython command, 656
machine code, 643
math.h header file, 663
py_sum function, 660
Python projects, 643
Python with C-like properties, 652
pyximport library, 655
pyximport.install function, 655
setup function, 653
speedup, 654
usages, 652

Cythonimport, 644

D
Data input and output

arrays and tabular data, 601
categories and types, 601
CSV (see Comma-separated  

values (CSV))

HDF5 (see Hierarchical Data  
Format 5 (HDF5))

JSON (see JavaScript Object  
Notation (JSON))

libraries, 602
options, 601
serialization, 636–638
storing structured and  

unstructured, 601
dblquad function, 280
Default tick placement, 159, 161
Dense matrices, 335
Dense NumPy arrays, 373
DesicisionTreeClassifier class, 532
Digital signal processors (DSPs), 593
Dimensionality reduction, 517
Dirac delta functions, 292
Direction field graph  

technique, 304–305, 307–308
DirichletBC class, 384, 390
Dirichlet boundary  

conditions, 366, 372, 399–400, 402
Discrete cosine transform (DCT), 576
Discrete Fourier transform (DFT), 575
Discrete sine transform (DST), 576
doit method, 121, 126
dolfin.AutoSubDomain  

instance, 400
dolfin.FunctionSpace class, 382
dolfin library, 381, 383–384
dolfin.MeshFunction instance, 400
dolfin.refine function, 397
dolfin.solve function, 385
dolfin.TrialFunction and dolfin.

TestFunction classes, 382
Dormand-Prince method, 315
Dots per inch (DPI), 144
dpi argument, 144
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3D plots, 177–180
dplquad function, 283
Durbin-Watson statistical test, 509

E
eigenvals method, 197
Eigenvalue equation, 196
Eigenvalue problems

SciPy, 198
SymPy, 197

eigenvects method, 197
Einstein summation, 94–95
ElasticNet class, 528
Elastic-net regularized regression, 529
Enthought’s Canopy, 668
Environment, manage, 671
Environment, switching, 670
Euler method, 313
evalf method, 117
expr_func function, 117
extent argument, 175
Extrapolation, 243

F
facecolor argument, 144
Fancy indexing, 63
Fast Fourier transform (FFT), 573, 575
Feature extraction, 517
FEniCS framework, PDEs

AutoSubDomain instance, 400
Dirichlet boundary  

conditions, 392, 400, 402
dolfin.assemble function, 385
dolfin.AutoSubDomain instance, 400
dolfin.Constant object, 390
dolfin.Expression object, 383

dolfin.FunctionSpace class, 382
dolfin.MeshFunction, 400
dolfin.parameters dictionary, 381
dolfin.plot, 386
dolfin.RectangleMesh, 382
dolfin.refine function, 397, 399
dolfin.solve, 401
dolfin.TrialFunction and dolfin.

TestFunction classes, 382
domain and subdomain arguments, 401
Expression class, 384
external visualization software, 387
function object, 385–387
functions and classes

dolfin library, 379–381
mshr library, 381

libraries and tools, 378
Matplotlib, 387
Matplotlib’s pcolor function, 391
mesh and boundary_parts objects, 401
mesh function, 386
mesh generation, 378
mesh object generation,  

mshr library, 393
mshr.Circle, 392
Neumann boundary  

conditions, 393, 399
np.array function, 387
on_boundary, 384
Python interface, 378
RectangleMesh function, 381
refined_mesh, 398–399
steady-state heat equation, 381, 388
temperature distribution, 396
trial and test functions, 394
triplot and tripcolor, 389
ufl_element method, 384
uniformly fine-structured mesh, 401–402
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u_sol.vector() and mesh. 
coordinates(), 396

vector method, 385
FEniCS libraries, 364, 677
fftpack module, 576
figsize argument, 144
Figure.add_subplot method, 173
Figure object, 143–145
Figure, techniques, 144–145
Filter design, 593
Finite-difference formulas, 366, 367
Finite-difference methods (FDMs), 363

algebraic equations, 367
backward difference formula, 366
boundary conditions, 368, 371
dense NumPy arrays, 372
eye and kron functions, 370
eye function from NumPy, 368
finite-difference formulas, 366, 369
linear equation solver from SciPy, 368
PDE problems, 373
reshape method, 371
second-order ODE boundary value 

problem, 369
solving ODE boundary value 

problems, 373
sparse matrices, 370
sparse matrix data structures, 372
two-dimensional heat equation, 

Dirichlet boundary conditions, 372
Finite-element methods (FEMs), 363

basis functions, 375–377
continuous function, 376
FiPy, SfePy, and FEniCS libraries, 377
infinite-dimensional function  

spaces, 374
mesh generation, 376
Poisson equation, 375

solving PDE problems, 376
standard linear algebra methods, 375
steady-state heat equation, 374
strong form, 374
test functions, 374, 375

Finite impulse response (FIR) filter, 593–596
Finite-volume method (FVM) software, 377
FiPy framework, 377
FiPy library, 364
fixed_quad functions, 274, 276
Float-valued array, 48
format argument, 144
Fourier transform F(v), 268, 575, 578, 580
free_symbols property, 107
Frequency-domain filter, 580–581
Function object, 388

G
Gaussian_kde function, 468
Gaussian quadrature, 273–274
Gaussian window function, 581
Generalized least squares (GLS), 474
Generalized linear model, 474
Glue language, 2
Golden section search method, 218
Graph creation using Matplotlib, 139–140
Graphical user interface, 136
Graphs and networks

adjacency matrix, 352
edge data, 354–355
EdgeView, 354
NetworkX library, 353
NodeView, 354
objects and methods, 353
Tokyo Metro stations

adjacency matrix, 359–360
Boolean attribute, 356
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Cuthill-McKee ordering, 359
degree method, 357–358
graphviz_layout function, 356
JSON file, 355
nx.draw_network_edges, 356
nx.draw_networkx_labels, 356
optimal traveling route, 358
path and traveling time, 359
shortest path and traveling  

time, 358, 359
transfer edges and on-train  

edges, 356
travel_times and transfers, 355
weight attributes, 358

grid method, 161
Grid lines, results, 161–162
GridSpec layout manager, 168

H
h5py library

API, 610–611
datasets, 618

Boolean indexing, 618–619
create_dataset method, 619
creation, 615
empty array, 620
experiment1/simulation/data1, 621
group experiment2/ 

measurement, 617
fancy indexing, 618
fillvalue, 621
float64, 617
meas1 dataset, 618
NumPy arrays, 616, 619
object, 616
retrieve, 616

value, 617
visititems method, 616

files, 612
groups, 612–615

Hamming function, 581
Hann function, 581
Hermite polynomials, 247
Hessian matrix, 216, 217
Hierarchical Data Format 5 (HDF5)

attributes, 622–623
h5py library (see h5py library)
high-performance parallel I/O, 608
implementation, 609
libraries, 609
long-term storage, 609
Pandas HDFStore, 629–631
PyTables library, 623, 625–628
storing numerical data, 608
structure, 609

Higher-order method, 279
Higher-order quadrature rules, 272

I
imshow method, 175
Indexing and slicing, 58–59

fancy and boolean, 63–65
multidimensional array, 60–61
one-dimensional array, 58–60
resize and reshape, 66–70
views, 62–63
visual summary, 65

Infinite-dimensional function spaces, 374
Infinite impulse response (IIR) filter, 593
Installation instruction, 678
Integral equations, 267
Integral identities, 375
Integral transforms, 289–292

Graphs and networks (cont.)
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Integrand function, 275
Integrand tabulated values, 278–280
Interactive modes, 141–142
Interpolant, 244
interpolate.griddata function, 261
Interpolation vs. curve fitting, 243
Interpretation of an integral, 269
Interpreter, 7–8
Inverse Laplace transform, 292
Inverse transform, 289
IPython command, 283–284
IPython console, 8–9, 142

autocompletion and object 
introspection, 11

documentation, 11–12
input and output caching, 9–10
interaction, 12

IPython environment, 137
IPython extension, 13

debugger, 15–16
navigation, 13
resetting, 17
running scripts, 14–15
text editor, 19
timing and profiling code, 17–19

IPython, install, 667
IPython, interact function, 33
Iris dataset, 530, 539
is_real attribute, 100

J
Jacobian matrix, 207
JavaScript Object Notation (JSON)

file data.json, 634
format, 631
json.dumps function, 632
json.loads, 632, 635

lines of, 634
lists and dictionaries, 631, 633
nested structure, 636
Python code, 632
Python data structure, 634
serialization, 636–638
Tokyo Metro network, 631

JIT-compiled code, 651
jit_cumsum function, 647
jit_sum function, 647
Joint probability distribution, 546
Julia fractal, 647–649
Jupyter

cell types, 25–26
editing cells, 26–27
framework, 20
HTML code, 31
Lab, 24–25
LaTeX formula, 32
markdown cells, 28–30
output display, 30–32

Jupyter Notebook, 21–24, 27, 142
Jupyter QtConsole, 20–21

K
Kaiser window function, 581
Kernel-density estimation (KDE), 467–

469, 550–551, 553, 561, 563, 569
k-fold cross-validation, 516
K-means method, 536
knot, 255

L
la.eig function, 198
la.eigvals function, 198
Lagrange multipliers, 234–235
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Lagrangian function, 234
la.lstsq method, 193
la.lu function, 189
lambda function, 275, 282
Laplace transformations, 268, 290,  

291, 309–312
la.solve function, 189
LASSO regression, 524–526
LASSO vs. regularized regression, 524, 528
LaTeX

code, 154
expressions, 154
markup, 154

Layout managers, 146
L-BFGS-B method, 232
Least square solution, 193, 195
legend method, 139
Legendre polynomials, 245
Levenberg-Marquardt method, 230
libc module, 663
Likelihood function, 546
Linear algebra

functions/methods, SymPy  
matrices, 133

matrix multiplication, 131
methods, 367
sympy.Matrix class, 130–131

Linear equation system
matrix form, 185
rectangular systems (see Rectangular 

system)
square system (see Square system)

Linear function, 198
Linear programming problems, 239
LinearRegression class, 520, 522
Linear regression, statsmodels, 485

binary variables, 496
contour graphs, 492

datasets, 494–495
explanatory variables, 487
graphical methods and  

statistical tests, 487
noisy observations, 486, 492–493
normal distributed errors, 488
null hypothesis, 489
NumPy array, 492
ordinary least square (ols)  

method, 487, 493
params attribute, 492
QQ-plot, 489–491
response variables, 492
robust linear model (rlm), 493
R-squared value, 488, 491
standard errors, 488
SciPy stats module, 489
workflow, 485–486

Line integrals, 288
Line properties, results, 148–150
Line search parameter, 221
Lines of code, 140
loc argument, 152
Logistic regression

DataFrame instance, 498
fitted model parameters, 498
get_margeff, 499
independent variables, 497
info method, 496
Iris flowers, 496
maximum likelihood optimization, 498
Patsy formulas, 497
period characters, 497
Petal_Width and Petal_ 

length, 498, 500–501
predict method, 500
Species column, 497
versicolor and virginica, 497, 500–501
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LUdecomposition method, 189
LUsolve method, 132, 189

M
Machine learning

algorithm, 515
application, 515
classification, 529, 531
clustering, 535
method, 514
regression, 518

Major vs. minor ticks, 159
make_axes method, 146
Manipulating expression, SymPy

black-box simplification, 111
simplifying expressions, 112
substitutions, 115–116
sympy.expand function, 112–113

Marginal probability  
distribution, 546

Markov chain Monte  
Carlo (MCMC), 544, 550–551

Mathematical expressions
args attribute, 110
arithmetic operators, 109
expression tree, 109

Mathematical optimization, 213, 215
Mathematical symbols

assumption keyword arguments and 
attributes, 101

Float, 105
integer class, 104
lambda functions, 108
rational number, 105–106
sine function, 108
Symbol class, 99
SymPy symbols, 106

Matplotlib, 387, 525
definition, 135–136
function, 153
libraries, 135–137, 268, 644
triangulation functions, 389
triplot and tripcolor  

functions, 388
matplotlib.pyplot module, 136, 141
Matrix methods, 187
Matrix and vector operation, 88–94
mc.forestplot function, 556–557
mc.glm module, 565–566
mcquad function, 284
mc.traceplot function, 550, 561, 565, 568
Mesh object, 388
MeshFunction, 400
meshgrid function, 175
Meshgrid array, 55
Metropolis-Hastings step  

method, 549
Midpoint rule, 270
Miniconda, 668
Monte Carlo integration, 285
mpl.gridspec module, 173
mpl.is_interactive function, 142
mpl.rcParams dictionary, 153
mpl.ticker module, 159, 162
mpl_toolkits.mplot3d module, 177
mpmath expressions, 287
mpmath library, 286
mpmath.quad function, 286
Multiple-precision library, 268
Multiprecision float (mpf), 288
Multivariate interpolation,  

258–259, 261–264
argument, 261
interp2d function, 259
Python function, 259
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Multivariate optimization
Newton’s method, 222, 226
objective function, 224, 228–229
optimize.minimize function, 229
SciPy, 227
slice objects, 227

N
nbconvert application

HTML, 34–35
PDF, 35–36
Python, 36

ncols argument, 146, 152
ndarray class, 45
Neumann boundary  

conditions, 366, 393, 399
Newton-Cotes quadrature  

rule, 269, 273–274, 277
Newton’s method, 203–205, 217, 314
Noncasual filter, 597
Noninteractive modes, 141–142
Nonlinear equations system

multivariate, 207
optimize.fsolve function, 208
SciPy, 208
SymPy, 208
visualization, 210–211

Nonlinear function, 198
Nonlinear least square problems

model function, 231
optimize.leastsq function, 230

Nonparametric methods
distribution function, 466
KDE, 467, 469

Nontrivial Neumann boundary 
conditions, 402

np.fill function, 53

np.polynomial module, 246
nquad functions, 280, 283
Numba

algorithm, 647
arrays, 664
assert, 645
benchmarking, 646
computation, 645
implementation, 648
import, 644
JIT-compiled function, 649
jit_cumsum function, 647
jit_Heaviside function, 651
jit_julia_fractal function, 648
jit_sum function, 647
Julia set, 652
LLVM compiler suite, 642
nopython=True argument, 648
numba.vectorize, 650
py_cumsum function, 646
py_Heaviside function, 650
py_julia_fractal function, 648
py_sum function, 645
scientific computing  

libraries, 642
NumPy sum function, 646
target code, 644

@numba.jit decorator, 644
Numerical integration

methods, 269
SciPy, 274

Numerical methods, 267
NumPy arrays, 43–44, 188, 239, 387

data types, 46–48
memory segment, 49–50
real and imaginary parts, 48–49

importing module, 44
NumPy functions, 187, 445
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NumPy library, 137, 604
NumPy-like array indexing, 618
NumPy sum function, 646

O
Objective function, 216
Odeint function, 318
One-dimensional interpolation, 244
Optimal value, 213
Optimization problems, 213

convex function, 216
linear, 215
minimization, 214
multivariate, 215, 217
nonconvex function, 216
nonlinear, 215–216
univariate, 215

optimize module, 214
optimize.bisect function, 206
optimize.brenth function, 206
optimize.brute function, 227
optimize.fminbound, 219
optimize.fmin_cobyla function, 238
optimize.fmin_ncg function, 222
optimize.fsolve function, 208–209
optimize.leastsq function, 231
optimize.minimize function, 236–237
optimize.minimize_scalar  

function, 219–220
optimize.newton function, 206
optimize.slsqp function, 235
Ordinary differential equations (ODEs)

direction field graph, 304–305, 307–308
first-order, 296–297
importing modules, 296
numerical methods, 313–317
problems, 298

spicy integrate module (see Spicy)
Sympy, 298–304

Ordinary least squares (OLS), 474

P
Pandas data frame, 558
Pandas HDFStore, 629–631
Pandas library, 443

DataFrame object
advantages, 414
apply method, 416
ascending/descending order, 419
Boolean values, 419
city count and total  

population, 421–422
columns, 411
dataset, 411, 415
data types, 413
df.head(n), 415
drop method, 421
groupby method, 421
head and tail methods, 415
hierarchical index, 418
higher-dimensional arrays, 410
index and columns attributes, 412
info method, 415
loc indexer, 412–413
methods (mean, std, median, min 

and max), 413
NumericPopulation, 416–417, 420
population of city, 411, 420
read_csv function, 414–415
set_index method, 417
sort_index method, 417–418
sort_values method, 419
State column, 420
sum method, 420
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tabular data structure, 411
value_counts method, 420

data structures, 405, 407
importing modules, 406
Matplotlib, 406
NumPy, 405
Seaborn, 406
Series object

construction, 407
describe method, 409
descriptive statistics, 409
index and values, 408
integer-indexed arrays, 408
name attribute, 408
plot method, 410
populations of cities, 408

statmodels, patsy, and scikit-learn, 405
time series (see Time series)

Partial derivatives, 363
Partial differential equations (PDEs), 295

boundary conditions, 366
FDMs (see Finite-difference  

methods (FDMs))
FEMs (see Finite-element  

methods (FEMs))
FEniCS (see FEniCS framework,  

solving PDEs)
importing modules, 364–365
independent variables, 365
libraries and frameworks, 364
multivariate function, 365
NumPy and Matplotlib libraries, 364
second-order derivatives, 365

Patsy library, 472
+ and-operators, 482
arbitrary Python functions, 483
categorical variables, 483–485

computational frameworks, 476
data arrays, 476
design_info attribute, 481
DesignMatrix, 475–477, 482
dictionary-like object, 479
explanatory variable, 481
higher-order expansions, 482
input data array, 483
linear models, 474, 476
log-linear, 475
nonlinear model, 475
nonnumerical values, 484
np.linalg.lstsq function, 478
numerical variable, 484
NumPy arrays, 479
NumPy vstack function, 475
patsy.dmatrices function, 478
syntax, 476, 479–481

PETSc and Trilinos frameworks, 378
Piecewise linear function, 376
Plot function, 161
Plot method, 146–148
plot_surface function, 178
plt.colorbar function, 176
plt.draw function, 142
plt.figure function, 143, 144
plt.figure method, 146
plt.ion function, 142
plt.show function, 142–143
plt.subplots_adjust function, 170–171
plt.subplots function, 139, 146, 168, 170
Poisson equation, 374
Poisson model

confidence interval, 504
conf_int method, 504
fit method, 503
generalized linear model, 502
number of discoveries per year, 502

Pandas library (cont.)
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params attribute, 504
probability mass function and number 

of discoveries per year, 504–505
sm.datasets.get_rdataset, 502
smf.poisson class, 503
SciPy stats library, 504
summary method, 503

Polynomial basis functions, 271
Polynomial interpolation, 245–246, 

248–249, 251, 253–254
Power spectrum, 575
Predictor-corrector methods, 316
Principal component analysis (PCA), 517
Prior distribution, 546
Probabilistic programming, 544
Probability density function (PDF), 550
Probability distribution  

functions (PDF), 456
Probability theory, 444
Properties, axis

axis range, 157–158
grids, 158
labels and titles, 156–157
log-scale plots, 164
spines, 166–167
twin axes, 165–166

py_cumsum function, 646
py_julia_fractal function, 648
py_sum function, 645
PyTables library, 610

creation, 624
features, 624, 627
flush method, 626
objects, 623
PlayerStat object, 628
player statistics dataset, 624
read_csv function, 623
regular homogenous arrays, 628

root node, 624
row accessor class, 625
structure, 627

Python, components and layers, 4
Python ecosystem, 669
Python module, 137
Python Package Index, 667
Python script, 142

Q
Qt4 backend, 141
Qtconsole, 142
quadrature function, 267, 274–277, 287
Quadrature rule, 269–270, 273
Quasi-Newton methods, 225

R
RandomForestClassifier, 533
Random numbers

Boolean values, 449
distribution functions, 450–451
Gaussian curve, 448
generation, 446
multidimensional array, 448
np.random.rand, 447
NumPy arrays, 447
NumPy random module, 449
RandomState class, 450
rand, randn and randint  

functions, 448, 449
seed of, 450
single, 447

Random variables and distributions
characteristics, 452
classes, 453
discrete and continuous, 452–453
discrete Poisson distribution, 455–456
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drawing method, 455
fit method, 459
interval method, 454
mean, median, std, and  

var methods, 453
moment method, 454
original and recreated  

probability, 460
PDF, 456
plot_dist_samples, 457
properties, 457
sample space, 451
stats method, 454
SciPy’s stats module, 457
visualize 2000 samples, 458–459

real=True keyword, 100
RectangleMesh function, 381
Rectangular system

data fitting, 195–196
overdetermined system, 193
symbolic solution, 193

Regularized regression, 521, 526
Ridge regression, 521, 522, 529
Ridge-regularized regression, 523
romb function, 279
Row-major format, 49
r-square score, 520
Runge-Kutta-Fehlberg  

method, 315
Runge-Kutta method, 314
Runge’s function, 253–255, 257

S
savefig method, 144
scikit-learn library, 514, 524
Scikit-monaco, 268, 284

SciPy, 184–185
import modules, 244
integrate module, 278
integrate.odeint, 322–323, 325
integration functions, 280
interfaces, 317
Jacobian matrix, 327
lambdify, 327–332
Lotka-Volterra equation, 321
Odeint function, 318, 320
optimization functions, 236

scipy.linalg module, 184
scipy.optimize module, 184, 232
scipy.special module, 275
Seaborn statistical graphics library, 468
Seaborn graphics library

boxplot and violinplot functions, 437
categorical data, 437
darkgrid, 434
heatmap, 438–439
histogram and kernel-density plots, 436
indoor and outdoor temperature time 

series, 434
kdeplot and distplot, 435
kdeplot and jointplot, 436
Matplotlib, 434
sns.set function, 434
statistical visualization tools, 439
statistics and data analysis, 434
time-series plot, 435
two-dimensional kernel-density 

estimate contours, 437
violin plot, outdoor temperature, 438

Seaborn library, 406
Sequential least square programming 

(SLSQP), 235
Serialization, 636–638
set_minor_locator method, 159

Random variables and distributions (cont.)
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set_powerlimits method, 162
set_scientific method, 162
set_title method, 157
set_xlabel method, 139, 156
set_ylabel method, 139, 156
SfePy library, 364, 377
sharex argument, 146
sharey argument, 146
Signal filters, 590

convolution, 590–592
FIR and IIR, 593

Signal processing
computational methods, 573
spectral analysis, 574

Simplex algorithm, 239
simps functions, 278–279
Simpson’s quadrature rule, 272
Single-variable quadrature function, 280
sklearn.datasets module, 518
sklearn.ensemble module, 533
sklearn library, 514
sklearn.linear_model module, 522–523
sklearn.model_selection module, 518
sklearn.neighbors module, 533
sklearn.tree module, 532
skmonaco library, 284
skmonaco.mcquad function, 284
solve_least_squares method, 193
Sparse matrices, SciPy

applications, 335
attributes, 338
column indices, 341
comparison of methods, 337
computations, 340
construction, updating, and arithmetic 

operations, 340
COO format, 339

coordinate list format, 338
CSR format, 340–342
data structure, 338, 372
dense matrices, 335
eigenvalues, 349–352
formats, 339–340
functions, 342–345
importing modules, 336
indexing syntax, 339
linear algebra operations, 335, 345
linear equation systems, 345–349
mathematical functions, 339
NumPy ndarray data structure, 335
nonzero elements, 336, 341
nonzero values, 340
PyTrilinos and PETSc packages, 335
sp.coo_matrix, 338–339
zero-valued elements, 339

Spectral analysis, 585–587, 589
Spectrogram, 586
Spline interpolation, 255–258, 260
Spyder

code editor, 38–39
consoles, 40
layout, 38
object inspector, 40
panes, 37

Square system
condition number, 186–187
LU factorization, 189
matrix norm relation, 186
numerical solution, 191–192
NumPy/SciPy, 188, 190
rank deficiency, 186
symbolic solution, 191–192
SymPy, 188, 190

Stationary point, 216

Index



698

Statistics
applications, 469
computer-aided, 443
hypothesis testing, 460–466
import modules, 444
linear regression, 558–559, 562, 564
nonparametric methods (see 

Nonparametric Methods)
NumPy and SciPy libraries, 443
random numbers, 446–451
random variables (see Random 

variables and distributions)
review of, 444–446
sample, 553–556

SciPy’s stats module, 452–453, 457
statsmodels library, 519

classes and functions, 471
generalized linear model, 474
GLS and WLS, 474
importing modules, 472
linear regression (see Linear 

regression, statsmodels)
mathematical model, 473
multiple linear regression, 474
observations, 473
parameters, 471, 473
Patsy library (see Patsy library)
random variables, 473
response variables, 474
SciPy, 471
simple linear regression, 474

Steady-state heat equation, 374, 383, 388
Steepest descent method, 221
Subplot grid manager, 174
subplot_kw argument, 178
Sum of squared errors (SSEs), 519, 526
Supervised learning, 515

Support vector classifier (SVC), 533
Support vector machines (SVM), 529
SVG graphics, 142
Symbolic computing, 97
Symbolic expression, 272
SymPy, 268, 271

equation solving, 127–129
importing, 98
symbolic computing, 97
symbols (see Mathematical symbols)

sympy.apart function, 115
sympy.cancel function, 115
sympy.collect function, 114
sympy.Derivative class, 120–121
sympy.diff function, 222
sympy.factor function, 114
sympy.Float, 103, 105
sympy.fourier_transform, 290
sympy.Function class, 106
sympy.init_printing function, 98
sympy.Integer class, 103
sympy.integrate function, 285
sympy.Lambda functions, 108, 271
sympy.lambdify function, 117–118, 223
sympy.laplace_transform, 290
SymPy library, 137
sympy.N function, 117
sympy.powsimp function, 112
sympy.Rational class, 105
sympy.series function, 123
sympy.simplify function, 111
sympy.solve function, 128–129
sympy.sqrt function, 101
sympy.symbols function, 102
sympy.sympify function, 104
sympy.together function, 115
sympy.trigsimp function, 112
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T
Taylor series, 151
Test function, 374
Text formatting and annotations, 153–155
Tick labels, 163
Time series, 422

apply function, 429
average monthly temperatures, 431
average temperature, 429
Boolean indexing, 428
concat function, 433
daily temperature, outdoors and 

indoors, 432–433
data files, read_csv, 425
DataFrame objects, 425
DataFrame.plot method, 427
date and time strings, 428
date_range function, 422–423
datetime class, 429
DatetimeIndex and  

PeriodIndex, 422, 423
DatetimeIndex instance, 428
Europe/Stockholm time zone, 426
indoor and outdoor temperature, 427
info method, 427
join method, 430
mean function, 430
NaN value, 433, 434
PeriodIndex, 424–425
periods, 422–423
plot method, 428–429
resample method, 431–432
sampling frequency, 433
statsmodels

AR model (see Autoregressive (AR) 
model)

autocorrelations, 506–509

Durbin-Watson statistical  
test, 509

independent variables, 506
observed and predicted 

temperatures, 509–510
outdoor temperature 

measurements, 507
regular regression, 506

temperature measurements, 425
Timestamp and datetime, 423–424
to_period and groupby  

methods, 430
UNIX timestamps, 426–427

tplquad functions, 280, 282
Trade-off, programming language, 2
Trapezoid rule, 270
trapz functions, 278–279
Trial function, 374
Triangulation object, 388
twinx method, 165
Two-dimensional integrand, 281

U
Uniform Dirichlet-type boundary 

condition, 384
Univariate function, 147, 174

nonlinear functions, 200–201
root-finding methods, 201
SciPy optimize module, 206
SymPy, 199
sympy.solve function, 199
trigonometric equations, 199

Univariate optimization
Newton’s method, 218
SymPy, 219

Unsupervised learning, 515
User interface (UI), 21
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V
Vandermonde matrix, 245, 250–252
Vectorized expression, 70–72

aggregate function, 79–81
arithmetic operation, 72–76
array operation, 87–88
boolean arrays and conditional 

expression, 82–85
elementwise function, 76–79
set operations, 85–86

Versions, 6–7
view_init method, 178
Visualization, approaches, 135, 136

W, X
Wave file, 574, 585, 598
Weighted least squares (WLS), 474
Window function, 581–585
Wrapper function, 228

Y
YAML format, 672, 676

Z
Zeroth-order Bessel function, 275
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