
Numerical
Python

Scientific Computing and Data Science
Applications with Numpy,
SciPy and Matplotlib
—
Second Edition
—
Robert Johansson

www.allitebooks.com

http://www.allitebooks.org

Numerical Python
Scientific Computing and Data

Science Applications with Numpy,
SciPy and Matplotlib

Second Edition

Robert Johansson

www.allitebooks.com

http://www.allitebooks.org

Numerical Python: Scientific Computing and Data Science Applications with
Numpy, SciPy and Matplotlib

ISBN-13 (pbk): 978-1-4842-4245-2 ISBN-13 (electronic): 978-1-4842-4246-9
https://doi.org/10.1007/978-1-4842-4246-9

Library of Congress Control Number: 2018966798

Copyright © 2019 by Robert Johansson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Todd Green
Development Editor: James Markham
Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484242452. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Robert Johansson
Urayasu-shi, Chiba, Japan

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4246-9
http://www.allitebooks.org

To Mika and Erika.

www.allitebooks.com

http://www.allitebooks.org

v

About the Author ���xv

About the Technical Reviewers ���xvii

Introduction ��xxi

Table of Contents

Chapter 1: Introduction to Computing with Python �� 1

Environments for Computing with Python �� 5

Python ��� 6

Interpreter ��� 7

IPython Console �� 8

Input and Output Caching �� 9

Autocompletion and Object Introspection ��� 11

Documentation �� 11

Interaction with the System Shell ��� 12

IPython Extensions �� 13

Jupyter �� 19

The Jupyter QtConsole �� 20

The Jupyter Notebook ��� 21

Jupyter Lab �� 24

Cell Types ��� 25

Editing Cells ��� 26

Markdown Cells ��� 28

Rich Output Display ��� 30

nbconvert �� 34

www.allitebooks.com

http://www.allitebooks.org

vi

Spyder: An Integrated Development Environment �� 37

Source Code Editor �� 38

Consoles in Spyder �� 40

Object Inspector �� 40

Summary��� 41

Further Reading �� 41

References �� 41

Chapter 2: Vectors, Matrices, and Multidimensional Arrays ��������������������������������� 43

Importing the Modules �� 44

The NumPy Array Object ��� 44

Data Types ��� 46

Order of Array Data in Memory �� 49

Creating Arrays ��� 50

Arrays Created from Lists and Other Array-Like Objects ��� 52

Arrays Filled with Constant Values �� 52

Arrays Filled with Incremental Sequences �� 54

Arrays Filled with Logarithmic Sequences �� 54

Meshgrid Arrays �� 55

Creating Uninitialized Arrays ��� 56

Creating Arrays with Properties of Other Arrays �� 56

Creating Matrix Arrays ��� 57

Indexing and Slicing �� 58

One-Dimensional Arrays �� 58

Multidimensional Arrays �� 60

Views ��� 62

Fancy Indexing and Boolean-Valued Indexing ��� 63

Reshaping and Resizing �� 66

Vectorized Expressions ��� 70

Arithmetic Operations �� 72

Elementwise Functions ��� 76

Table of ConTenTs

vii

Aggregate Functions ��� 79

Boolean Arrays and Conditional Expressions �� 82

Set Operations ��� 85

Operations on Arrays ��� 87

Matrix and Vector Operations �� 88

Summary��� 95

Further Reading �� 95

References �� 96

Chapter 3: Symbolic Computing ��� 97

Importing SymPy ��� 98

Symbols �� 99

Numbers �� 102

Expressions ��� 109

Manipulating Expressions ��� 110

Simplification ��� 111

Expand ��� 112

Factor, Collect, and Combine ��� 114

Apart, Together, and Cancel ��� 115

Substitutions ��� 115

Numerical Evaluation �� 117

Calculus �� 118

Derivatives ��� 119

Integrals �� 121

Series �� 123

Limits ��� 125

Sums and Products ��� 126

Equations �� 127

Linear Algebra ��� 130

Table of ConTenTs

viii

Summary��� 134

Further Reading �� 134

Reference �� 134

Chapter 4: Plotting and Visualization ��� 135

Importing Modules �� 136

Getting Started �� 137

Interactive and Noninteractive Modes ��� 141

Figure �� 143

Axes �� 145

Plot Types �� 146

Line Properties �� 147

Legends ��� 152

Text Formatting and Annotations ��� 153

Axis Properties �� 156

Advanced Axes Layouts �� 168

Insets ��� 168

Subplots �� 170

Subplot2grid �� 172

GridSpec �� 173

Colormap Plots �� 174

3 D Plots �� 177

Summary��� 180

Further Reading �� 180

References �� 181

Chapter 5: Equation Solving ��� 183

Importing Modules �� 184

Linear Equation Systems �� 185

Square Systems �� 186

Rectangular Systems��� 192

Table of ConTenTs

ix

Eigenvalue Problems��� 196

Nonlinear Equations �� 198

Univariate Equations �� 199

Systems of Nonlinear Equations �� 207

Summary��� 212

Further Reading �� 212

References �� 212

Chapter 6: Optimization �� 213

Importing Modules �� 214

Classification of Optimization Problems ��� 214

Univariate Optimization ��� 217

Unconstrained Multivariate Optimization �� 221

Nonlinear Least Square Problems ��� 230

Constrained Optimization �� 232

Linear Programming �� 238

Summary��� 241

Further Reading �� 241

References �� 242

Chapter 7: Interpolation �� 243

Importing Modules �� 244

Interpolation �� 244

Polynomials ��� 245

Polynomial Interpolation ��� 249

Spline Interpolation ��� 255

Multivariate Interpolation �� 258

Summary��� 265

Further Reading �� 265

References �� 265

Table of ConTenTs

x

Chapter 8: Integration��� 267

Importing Modules �� 268

Numerical Integration Methods��� 269

Numerical Integration with SciPy �� 274

Tabulated Integrand ��� 277

Multiple Integration ��� 280

Symbolic and Arbitrary-Precision Integration ��� 285

Line Integrals ��� 288

Integral Transforms ��� 289

Summary��� 292

Further Reading �� 293

References �� 293

Chapter 9: Ordinary Differential Equations ��� 295

Importing Modules �� 296

Ordinary Differential Equations ��� 296

Symbolic Solution to ODEs �� 298

Direction Fields �� 304

Solving ODEs Using Laplace Transformations ��� 309

Numerical Methods for Solving ODEs ��� 313

Numerical Integration of ODEs Using SciPy �� 317

Summary��� 332

Further Reading �� 333

References �� 333

Chapter 10: Sparse Matrices and Graphs ��� 335

Importing Modules �� 336

Sparse Matrices in SciPy �� 336

Functions for Creating Sparse Matrices �� 342

Sparse Linear Algebra Functions ��� 345

Table of ConTenTs

xi

Linear Equation Systems ��� 345

Graphs and Networks �� 352

Summary��� 360

Further Reading �� 361

References �� 361

Chapter 11: Partial Differential Equations �� 363

Importing Modules �� 364

Partial Differential Equations �� 365

Finite-Difference Methods �� 366

Finite-Element Methods �� 373

Survey of FEM Libraries �� 377

Solving PDEs Using FEniCS ��� 378

Summary��� 403

Further Reading �� 403

References �� 404

Chapter 12: Data Processing and Analysis ��� 405

Importing Modules �� 406

Introduction to Pandas �� 407

Series �� 407

DataFrame ��� 410

Time Series �� 422

The Seaborn Graphics Library ��� 434

Summary��� 440

Further Reading �� 440

References �� 441

Chapter 13: Statistics ��� 443

Importing Modules �� 444

Review of Statistics and Probability ��� 444

Random Numbers ��� 446

Table of ConTenTs

xii

Random Variables and Distributions ��� 451

Hypothesis Testing �� 460

Nonparametric Methods ��� 466

Summary��� 469

Further Reading �� 470

References �� 470

Chapter 14: Statistical Modeling �� 471

Importing Modules �� 472

Introduction to Statistical Modeling �� 473

Defining Statistical Models with Patsy �� 474

Linear Regression ��� 485

Example Datasets �� 494

Discrete Regression �� 496

Logistic Regression ��� 496

Poisson Model ��� 502

Time Series ��� 506

Summary��� 511

Further Reading �� 511

References �� 511

Chapter 15: Machine Learning ��� 513

Importing Modules �� 514

Brief Review of Machine Learning �� 515

Regression �� 518

Classification ��� 529

Clustering �� 535

Summary��� 540

Further Reading �� 540

References �� 541

Table of ConTenTs

xiii

Chapter 16: Bayesian Statistics �� 543

Importing Modules �� 544

Introduction to Bayesian Statistics ��� 545

Model Definition �� 548

Sampling Posterior Distributions ��� 553

Linear Regression �� 558

Summary��� 571

Further Reading �� 572

References �� 572

Chapter 17: Signal Processing ��� 573

Importing Modules �� 574

Spectral Analysis ��� 574

Fourier Transforms �� 575

Windowing ��� 581

Spectrogram �� 585

Signal Filters ��� 590

Convolution Filters ��� 590

FIR and IIR Filters �� 593

Summary��� 598

Further Reading �� 599

References �� 599

Chapter 18: Data Input and Output ��� 601

Importing Modules �� 602

Comma-Separated Values ��� 603

HDF5 ��� 608

h5py ��� 610

PyTables �� 623

Pandas HDFStore ��� 629

Table of ConTenTs

xiv

JSON ��� 631

Serialization �� 636

Summary��� 639

Further Reading �� 639

Reference �� 640

Chapter 19: Code Optimization ��� 641

Importing Modules �� 644

Numba��� 644

Cython ��� 652

Summary��� 664

Further Reading �� 665

References �� 665

 Appendix: Installation ��� 667

 Miniconda and Conda ��� 668

 A Complete Environment��� 676

 Summary��� 680

 Further Reading �� 680

Index ��� 683

Table of ConTenTs

xv

About the Author

Robert Johansson is an experienced Python programmer

and computational scientist, with a Ph.D. in Theoretical

Physics from Chalmers University of Technology, Sweden.

He has worked with scientific computing in academia and

industry for over 10 years, and he has participated in both

open source development and proprietary research projects.

His open source contributions include work on QuTiP, a

popular Python framework for simulating the dynamics of

quantum systems; and he has also contributed to several

other popular Python libraries in the scientific computing

landscape. Robert is passionate about scientific computing

and software development and about teaching and communicating best practices for

bringing these fields together with optimal outcome: novel, reproducible, and extensible

computational results. Robert’s background includes 5 years of postdoctoral research in

theoretical and computational physics, and he is now working as a data scientist in the

IT industry.

xvii

About the Technical Reviewers

Massimo Nardone has more than 24 years of experiences

in security, web/mobile development, cloud, and IT

architecture. His true IT passions are security and Android.

He has been programming and teaching how to program

with Android, Perl, PHP, Java, VB, Python, C/C++, and

MySQL for more than 20 years.

He holds an M.Sc. degree in computing science from the

University of Salerno, Italy.

He has worked as a project manager, software engineer,

research engineer, chief security architect, information

security manager, PCI/SCADA auditor, and senior lead IT security/cloud/SCADA

architect for many years.

His technical skills include security, Android, cloud, Java, MySQL, Drupal, Cobol,

Perl, web and mobile development, MongoDB, D3, Joomla!, Couchbase, C/C++, WebGL,

Python, Pro Rails, Django CMS, Jekyll, Scratch, etc.

He worked as visiting lecturer and supervisor for exercises at the Networking

Laboratory of the Helsinki University of Technology (Aalto University). He holds four

international patents (PKI, SIP, SAML, and Proxy areas).

He currently works as chief information security officer (CISO) for Cargotec Oyj, and

he is a member of the ISACA Finland Chapter Board.

Massimo has reviewed more than 45 IT books for different publishers and has

coauthored Pro JPA 2 in Java EE 8 (Apress, 2018), Beginning EJB in Java EE 8

(Apress, 2018), and Pro Android Games (Apress, 2015).

xviii

Chinmaya Patnayak is an embedded software developer at

NVIDIA and is skilled in C++, CUDA, deep learning, Linux,

and file systems. He has been a speaker and instructor for

deep learning at various major technology events across

India. Chinmaya holds an M.Sc. degree in physics and

B.E. in electrical and electronics engineering from BITS

Pilani. He has previously worked with Defence Research

and Development Organization (DRDO) on encryption

algorithms for video streams. His current interest lies in

neural networks for image segmentation and applications in biomedical research and

self-driving cars. Find more about him at http://chinmayapatnayak.github.io.

Michael Thomas has worked in software development

for more than 20 years as an individual contributor, team

lead, program manager, and vice president of engineering.

Michael has more than 10 years of experience working with

mobile devices. His current focus is in the medical sector,

using mobile devices to accelerate information transfer

between patients and health-care providers.

David Stansby is a Ph.D. student at Imperial College

London and an active Python developer. He is on the core

development team of Matplotlib, Python’s most popular

plotting library, and the creator of HelioPy, a Python package

for space science data analysis.

abouT The TeChniCal RevieweRs

http://chinmayapatnayak.github.io/

xix

Jason Whitehorn is an experienced entrepreneur and

software developer and has helped many oil and gas

companies automate and enhance their oilfield solutions

through field data capture, SCADA, and machine learning.

Jason obtained his B.SC. in computer science from Arkansas

State University, but he traces his passion for development

back many years before then, having first taught himself

to program BASIC on his family’s computer while still in

middle school.

When he’s not mentoring and helping his team at work, writing, or pursuing one of

his many side projects, Jason enjoys spending time with his wife and four children and

living in the Tulsa, Oklahoma region. More information about Jason can be found on his

web site: https://jason.whitehorn.us.

abouT The TeChniCal RevieweRs

https://jason.whitehorn.us/

xxi

Introduction

Scientific and numerical computing is a booming field in research, engineering, and

analytics. The revolution in the computer industry over the last several decades has

provided new and powerful tools for computational practitioners. This has enabled

computational undertakings of previously unprecedented scale and complexity. Entire

fields and industries have sprung up as a result. This development is still ongoing, and

it is creating new opportunities as hardware, software, and algorithms keep improving.

Ultimately the enabling technology for this movement is the powerful computing

hardware that has been developed in recent decades. However, for a computational

practitioner, the software environment used for computational work is as important as, if

not more important than, the hardware on which the computations are carried out. This

book is about one popular and fast-growing environment for numerical computing: the

Python programming language and its vibrant ecosystem of libraries and extensions for

computational work.

Computing is an interdisciplinary activity that requires experience and expertise

in both theoretical and practical subjects: a firm understanding of mathematics and

scientific thinking is a fundamental requirement for effective computational work.

Equally important is solid training in computer programming and computer science.

The role of this book is to bridge these two subjects by introducing how scientific

computing can be done using the Python programming language and the computing

environment that has appeared around this language. In this book the reader is assumed

to have some previous training in mathematics and numerical methods and basic

knowledge about Python programming. The focus of the book is to give a practical

introduction to computational problem-solving with Python. Brief introductions to the

theory of the covered topics are given in each chapter, to introduce notation and remind

readers of the basic methods and algorithms. However, this book is not a self-consistent

treatment of numerical methods. To assist readers that are not previously familiar with

some of the topics of this book, references for further reading are given at the end of each

chapter. Likewise, readers without experience in Python programming will probably find

it useful to read this book together with a book that focuses on the Python programming

language itself.

xxii

 How This Book Is Organized
The first chapter in this book introduces general principles for scientific computing

and the main development environments that are available for work with computing in

Python: the focus is on IPython and its interactive Python prompt, the excellent Jupyter

Notebook application, and the Spyder IDE.

In Chapter 2, an introduction to the NumPy library is given, and here we also

discuss more generally array-based computing and its virtues. In Chapter 3, we turn our

attention to symbolic computing – which in many respects complements array-based

computing – using the SymPy library. In Chapter 4, we cover plotting and visualization

using the Matplotlib library. Together, Chapters 2 to 4 provide the basic computational

tools that will be used for domain-specific problems throughout the rest of the book:

numerics, symbolics, and visualization.

In Chapter 5, the topic of study is equation solving, which we explore with both

numerical and symbolic methods, using the SciPy and SymPy libraries. In Chapter 6, we

explore optimization, which is a natural extension of equation solving. Here we mainly

work with the SciPy library and briefly with the cvxopt library. Chapter 7 deals with

interpolation, which is another basic mathematical method with many applications of

its own, and important roles in higher-level algorithms and methods. In Chapter 8, we

cover numerical and symbolic integration. Chapters 5 to 8 cover core computational

techniques that are pervasive in all types of computational work. Most of the methods

from these chapters are found in the SciPy library.

In Chapter 9, we proceed to cover ordinary differential equations. Chapter 10 is

a detour into sparse matrices and graph methods, which helps prepare the field for

the following chapter. In Chapter 11, we discuss partial differential equations, which

conceptually are closely related to ordinary differential equations, but require a different

set of techniques that necessitates the introduction of sparse matrices, the topic of

Chapter 10.

Starting with Chapter 12, we make a change of direction and begin exploring data

analysis and statistics. In Chapter 12, we introduce the Pandas library and its excellent

data analysis framework. In Chapter 13, we cover basic statistical analysis and methods

from the SciPy stats package. In Chapter 14, we move on to statistical modeling,

using the statsmodels library. In Chapter 15, the theme of statistics and data analysis

is continued with a discussion of machine learning, using the scikit-learn library. In

Chapter 16, we wrap up the statistics-related chapters with a discussion of Bayesian

statistics and the PyMC library. Together, Chapters 12 to 16 provide an introduction to

inTRoduCTion

xxiii

the broad field of statistics and data analytics: a field that has been developing rapidly

within and outside of the scientific Python community in recent years.

In Chapter 17, we briefly return to a core subject in scientific computing: signal

processing. In Chapter 18, we discuss data input and output, and several methods for

reading and writing numerical data to files, which is a basic topic that is required for

most types of computational work. In Chapter 19, the final regular chapter in this book,

two methods for speeding up Python code are introduced, using the Numba and Cython

libraries.

The Appendix covers the installation of the software used in this book. To install

the required software (mostly Python libraries), we use the conda package manager.

Conda can also be used to create virtual and isolated Python environments, which is an

important topic for creating stable and reproducible computational environments. The

Appendix also discusses how to work with such environments using the conda package

manager.

 Source Code Listings
Each chapter in this book has an accompanying Jupyter Notebook that contains the

chapter’s source code listings. These notebooks, and the data files required to run them,

can be downloaded by clicking the Download Source Code button located at

 www.apress.com/9781484242452.

inTRoduCTion

http://www.apress.com/9781484242452

1
© Robert Johansson 2019
R. Johansson, Numerical Python, https://doi.org/10.1007/978-1-4842-4246-9_1

CHAPTER 1

Introduction to Computing
with Python
This book is about using Python for numerical computing. Python is a high-level,

general-purpose interpreted programming language that is widely used in scientific

computing and engineering. As a general-purpose language, Python was not specifically

designed for numerical computing, but many of its characteristics make it well suited

for this task. First and foremost, Python is well known for its clean and easy-to-read

code syntax. Good code readability improves maintainability, which in general results in

fewer bugs and better applications overall, but it also enables rapid code development.

This readability and expressiveness are essential in exploratory and interactive

computing, which requires fast turnaround for testing various ideas and models.

In computational problem-solving, it is, of course, important to consider the

performance of algorithms and their implementations. It is natural to strive for

efficient high- performance code, and optimal performance is indeed crucial for many

computational problems. In such cases it may be necessary to use a low-level program

language, such as C or Fortran, to obtain the best performance out of the hardware that

runs the code. However, it is not always the case that optimal runtime performance is the

most suitable objective. It is also important to consider the development

time required to implement a solution to a problem in a given programming language

or environment. While the best possible runtime performance can be achieved in a

low-level programming language, working in a high-level language such as Python usually

reduces the development time and often results in more flexible and extensible code.

These conflicting objectives present a trade-off between high performance and

long development time and lower performance but shorter development time. See

Figure 1-1 for a schematic visualization of this concept. When choosing a computational

environment for solving a particular problem, it is important to consider this trade-off

and to decide whether man-hours spent on the development or CPU-hours spent on

2

running the computations is more valuable. It is worth noting that CPU-hours are cheap

already and are getting even cheaper, but man-hours are expensive. In particular, your

own time is of course a very valuable resource. This makes a strong case for minimizing

development time rather than the runtime of a computation by using a high-level

programming language and environment such as Python and its scientific computing

libraries.

Figure 1-1. Trade-off between low- and high-level programming languages.
While a low-level language typically gives the best performance when a significant
amount of development time is invested in the implementation of a solution to a
problem, the development time required to obtain a first runnable code that solves
the problem is typically shorter in a high-level language such as Python.

A solution that partially avoids the trade-off between high- and low-level languages

is to use a multilanguage model, where a high-level language is used to interface

libraries and software packages written in low-level languages. In a high-level scientific

computing environment, this type of interoperability with software packages written in

low-level languages (e.g., Fortran, C, or C++) is an important requirement. Python excels

at this type of integration, and as a result, Python has become a popular “glue language”

used as an interface for setting up and controlling computations that use code written

in low-level programming languages for time-consuming number crunching. This is an

Chapter 1 IntroduCtIon to ComputIng wIth python

3

important reason for why Python is a popular language for numerical computing. The

multilanguage model enables rapid code development in a high-level language while

retaining most of the performance of low-level languages.

As a consequence of the multilanguage model, scientific and technical computing

with Python involves much more than just the Python language itself. In fact, the Python

language is only a piece of an entire ecosystem of software and solutions that provide a

complete environment for scientific and technical computing. This ecosystem includes

development tools and interactive programming environments, such as Spyder and

IPython, which are designed particularly with scientific computing in mind. It also

includes a vast collection of Python packages for scientific computing. This ecosystem

of scientifically oriented libraries ranges from generic core libraries – such as NumPy,

SciPy, and Matplotlib – to more specific libraries for particular problem domains.

Another crucial layer in the scientific Python stack exists below the various Python

modules: many scientific Python library interface, in one way or another; low-level

high-performance scientific software packages, such as for example optimized LAPACK

and BLAS libraries1 for low-level vector, matrix, and linear algebra routines; or other

specialized libraries for specific computational tasks. These libraries are typically

implemented in a compiled low-level language and can therefore be optimized and

efficient. Without the foundation that such libraries provide, scientific computing with

Python would not be practical. See Figure 1-2 for an overview of the various layers of the

software stack for computing with Python.

1 For example, MKL, the Math Kernel Library from Intel, https://software.intel.com/en-us/
intel-mkl; openBLAS, https://www.openblas.net; or ATLAS, the Automatically Tuned Linear
Algebra Software, available at http://math-atlas.sourceforge.net

Chapter 1 IntroduCtIon to ComputIng wIth python

https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://www.openblas.net
http://math-atlas.sourceforge.net

4

Tip the Scipy organization and its web site www.scipy.org provide a
centralized resource for information about the core packages in the scientific
python ecosystem, and lists of additional specialized packages, as well as
documentation and tutorials. as such, it is a valuable resource when working
with scientific and technical computing in python. another great resource is the
Numeric and Scientific page on the official python wiki: http://wiki.python.
org/moin/NumericAndScientific.

Apart from the technical reasons for why Python provides a good environment for

computational work, it is also significant that Python and its scientific computing libraries

are free and open source. This eliminates economic constraints on when and how

applications developed with the environment can be deployed and distributed by its users.

Equally significant, it makes it possible for a dedicated user to obtain complete insight on

how the language and the domain-specific packages are implemented and what methods

are used. For academic work where transparency and reproducibility are hallmarks, this

Environments

Python language

Python packages

System and system libraries

Figure 1-2. An overview of the components and layers in the scientific computing
environment for Python, from a user’s perspective from top to bottom. Users
typically only interact with the top three layers, but the bottom layer constitutes a
very important part of the software stack.

Chapter 1 IntroduCtIon to ComputIng wIth python

http://www.scipy.org
http://wiki.python.org/moin/NumericAndScientific
http://wiki.python.org/moin/NumericAndScientific

5

is increasingly recognized as an important requirement on software used in research. For

commercial use, it provides freedom on how the environment is used and integrated into

products and how such solutions are distributed to customers. All users benefit from the

relief of not having to pay license fees, which may otherwise inhibit deployments on large

computing environments, such as clusters and cloud computing platforms.

The social component of the scientific computing ecosystem for Python is another

important aspect of its success. Vibrant user communities have emerged around the core

packages and many of the domain-specific projects. Project-specific mailing lists, Stack

Overflow groups, and issue trackers (e.g., on Github, www.github.com) are typically very

active and provide forums for discussing problems and obtaining help, as well as a way of

getting involved in the development of these tools. The Python computing community also

organizes yearly conferences and meet-ups at many venues around the world, such as the

SciPy (http://conference.scipy.org) and PyData (http://pydata.org) conference series.

 Environments for Computing with Python
There are a number of different environments that are suitable for working with

Python for scientific and technical computing. This diversity has both advantages

and disadvantages compared to a single endorsed environment that is common in

proprietary computing products: diversity provides flexibility and dynamism that lends

itself to specialization for particular use-cases, but on the other hand, it can also be

confusing and distracting for new users, and it can be more complicated to set up a

full productive environment. Here I give an orientation of common environments for

scientific computing, so that their benefits can be weighed against each other and an

informed decision can be reached regarding which one to use in different situations and

for different purposes. The three environments discussed here are

• The Python interpreter or the IPython console to run code

interactively. Together with a text editor for writing code, this

provides a lightweight development environment.

• The Jupyter Notebook, which is a web application in which Python

code can be written and executed through a web browser. This

environment is great for numerical computing, analysis, and

problem-solving, because it allows one to collect the code, the output

produced by the code, related technical documentation, and the

analysis and interpretation, all in one document.

Chapter 1 IntroduCtIon to ComputIng wIth python

http://www.github.com
http://conference.scipy.org
http://pydata.org

6

• The Spyder Integrated Development Environment, which can be

used to write and interactively run Python code. An IDE such as

Spyder is a great tool for developing libraries and reusable Python

modules.

All of these environments have justified use-cases, and it is largely a matter of

personal preference which one to use. However, I do in particular recommend exploring

the Jupyter Notebook environment, because it is highly suitable for interactive and

exploratory computing and data analysis, where data, code, documentation, and results

are tightly connected. For development of Python modules and packages, I recommend

using the Spyder IDE, because of its integration with code analysis tools and the Python

debugger.

Python, and the rest of the software stack required for scientific computing with

Python, can be installed and configured in a large number of ways, and in general the

installation details also vary from system to system. In Appendix 1, we go through one

popular cross-platform method to install the tools and libraries that are required for

this book.

 Python
The Python programming language and the standard implementation of the Python

interpreter are frequently updated and made available through new releases.2 Currently,

there are two active versions of Python available for production use: Python 2 and

Python 3. In this book we will work with Python 3, which by now has practically

superseded Python 2. However, for some legacy applications, using Python 2 may still be

the only option, if it contains libraries that have not been made compatible with Python

3. It is also sometimes the case that only Python 2 is the available in institutionally

provided environments, such as on high-performance clusters or universities’ computer

systems. When developing Python code for such environments, it might be necessary

to use Python 2, but otherwise, I strongly recommend using Python 3 in new projects. It

should also be noted that support for Python 2 has now been dropped by many major

2 The Python language and the default Python interpreter are managed and maintained by the
Python Software Foundation: http://www.python.org.

Chapter 1 IntroduCtIon to ComputIng wIth python

http://www.python.org

7

Python libraries, and the vast majority of computing-oriented libraries for Python now

support Python 3. For the purpose of this book, we require version 2.7 or greater for the

Python 2 series or Python 3.2 or greater for the preferred Python 3 series.

 Interpreter
The standard way to execute Python code is to run the program directly through the

Python interpreter. On most systems, the Python interpreter is invoked using the python

command. When a Python source file is passed as an argument to this command, the

Python code in the file is executed.

$ python hello.py

Hello from Python!

Here the file hello.py contains the single line:

print("Hello from Python!")

To see which version of Python is installed, one can invoke the python command

with the --version argument:

$ python --version

Python 3.6.5

It is common to have more than one version of Python installed on the same system.

Each version of Python maintains its own set of libraries and provides its own interpreter

command (so each Python environment can have different libraries installed). On many

systems, specific versions of the Python interpreter are available through the commands

such as, for example, python2.7 and python3.6. It is also possible to set up virtual

python environments that are independent of the system-provided environments. This

has many advantages and I strongly recommend to become familiar with this way of

working with Python. Appendix A provides details of how to set up and work with these

kinds of environments.

Chapter 1 IntroduCtIon to ComputIng wIth python

8

In addition to executing Python script files, a Python interpreter can also be used

as an interactive console (also known as a REPL: Read–Evaluate–Print–Loop). Entering

python at the command prompt (without any Python files as argument) launches the

Python interpreter in an interactive mode. When doing so, you are presented with a

prompt:

$ python

Python 3.6.1 |Continuum Analytics, Inc.| (default, May 11 2017, 13:04:09)

[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.57)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>>

From here Python code can be entered, and for each statement, the interpreter

evaluates the code and prints the result to the screen. The Python interpreter itself

already provides a very useful environment for interactively exploring Python code,

especially since the release of Python 3.4, which includes basic facilities such as a

command history and basic autocompletion (not available by default in Python 2).

 IPython Console
Although the interactive command-line interface provided by the standard Python

interpreter has been greatly improved in recent versions of Python 3, it is still in certain

aspects rudimentary, and it does not by itself provide a satisfactory environment for

interactive computing. IPython3 is an enhanced command-line REPL environment for

Python, with additional features for interactive and exploratory computing. For example,

IPython provides improved command history browsing (also between sessions), an

input and output caching system, improved autocompletion, more verbose and helpful

exception tracebacks, and much more. In fact, IPython is now much more than an

enhanced Python command-line interface, which we will explore in more detail later

in this chapter and throughout the book. For instance, under the hood IPython is a

3 See the IPython project web page, http://ipython.org, for more information and its official
documentation.

Chapter 1 IntroduCtIon to ComputIng wIth python

http://ipython.org

9

client- server application, which separates the frontend (user interface) from the backend

(kernel) that executes the Python code. This allows multiple types of user interfaces

to communicate and work with the same kernel, and a user-interface application can

connect multiple kernels using IPython’s powerful framework for parallel computing.

Running the ipython command launches the IPython command prompt:

$ ipython

Python 3.6.1 |Continuum Analytics, Inc.| (default, May 11 2017, 13:04:09)

Type 'copyright', 'credits' or 'license' for more information

IPython 6.4.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]:

Caution note that each Ipython installation corresponds to a specific version
of python, and if you have several versions of python available on your system,
you may also have several versions of Ipython as well. on many systems, Ipython
for python 2 is invoked with the command ipython2 and for python 3 with
ipython3, although the exact setup varies from system to system. note that here
the “2” and “3” refer to the python version, which is different from the version of
Ipython itself (which at the time of writing is 6.4.0).

In the following sections, I give a brief overview of some of the IPython features

that are most relevant to interactive computing. It is worth noting that IPython is used

in many different contexts in scientific computing with Python, for example, as a

kernel in the Jupyter Notebook application and in the Spyder IDE, which are covered

in more detail later in this chapter. It is time well spent to get familiar with the tricks

and techniques that IPython offers to improve your productivity when working with

interactive computing.

 Input and Output Caching
In the IPython console, the input prompt is denoted as In [1]: and the corresponding

output is denoted as Out [1]:, where the numbers within the square brackets are

incremented for each new input and output. These inputs and outputs are called cells in

IPython. Both the input and the output of previous cells can later be accessed through

Chapter 1 IntroduCtIon to ComputIng wIth python

10

the In and Out variables that are automatically created by IPython. The In and Out

variables are a list and a dictionary, respectively, that can be indexed with a cell number.

For instance, consider the following IPython session:

In [1]: 3 * 3

Out[1]: 9

In [2]: In[1]

Out[2]: '3 * 3'

In [3]: Out[1]

Out[3]: 9

In [4]: In

Out[4]: [", '3 * 3', 'In[1]', 'Out[1]', 'In']

In [5]: Out

Out[5]: {1: 9, 2: '3 * 3', 3: 9, 4: [", '3 * 3', 'In[1]', 'Out[1]', 'In', 'Out']}

Here, the first input was 3 * 3 and the result was 9, which later is available as In[1]

and Out[1]. A single underscore _ is a shorthand notation for referring to the most

recent output, and a double underscore __ refers to the output that preceded the most

recent output. Input and output caching is often useful in interactive and exploratory

computing, since the result of a computation can be accessed even if it was not explicitly

assigned to a variable.

Note that when a cell is executed, the value of the last statement in an input cell

is by default displayed in the corresponding output cell, unless the statement is an

assignment or if the value is Python null value None. The output can be suppressed by

ending the statement with a semicolon:

In [6]: 1 + 2

Out[6]: 3

In [7]: 1 + 2; # output suppressed by the semicolon

In [8]: x = 1 # no output for assignments

In [9]: x = 2; x # these are two statements. The value of 'x' is shown in

the output

Out[9]: 2

Chapter 1 IntroduCtIon to ComputIng wIth python

11

 Autocompletion and Object Introspection
In IPython, pressing the TAB key activates autocompletion, which displays a list of

symbols (variables, functions, classes, etc.) with names that are valid completions of

what has already been typed. The autocompletion in IPython is contextual, and it will

look for matching variables and functions in the current namespace or among the

attributes and methods of a class when invoked after the name of a class instance. For

example, os.<TAB> produces a list of the variables, functions, and classes in the os

module, and pressing TAB after having typed os.w results in a list of symbols in the os

module that starts with w:

In [10]: import os

In [11]: os.w<TAB>

os.wait os.wait3 os.wait4 os.waitpid os.walk os.write os.writev

This feature is called object introspection, and it is a powerful tool for interactively

exploring the properties of Python objects. Object introspection works on modules,

classes, and their attributes and methods and on functions and their arguments.

 Documentation
Object introspection is convenient for exploring the API of a module and its member

classes and functions, and together with the documentation strings, or “docstrings”, that

are commonly provided in Python code, it provides a built-in dynamic reference manual

for almost any Python module that is installed and can be imported. A Python object

followed by a question mark displays the documentation string for the object. This is

similar to the Python function help. An object can also be followed by two question

marks, in which case IPython tries to display more detailed documentation, including

the Python source code if available. For example, to display help for the cos function in

the math library:

In [12]: import math

In [13]: math.cos?

Type: builtin_function_or_method

String form: <built-in function cos>

Chapter 1 IntroduCtIon to ComputIng wIth python

12

Docstring:

cos(x)

Return the cosine of x (measured in radians).

Docstrings can be specified for Python modules, functions, classes, and their

attributes and methods. A well-documented module therefore includes a full API

documentation in the code itself. From a developer’s point of view, it is convenient to be

able to document a code together with the implementation. This encourages writing and

maintaining documentation, and Python modules tend to be well documented.

 Interaction with the System Shell
IPython also provides extensions to the Python language that makes it convenient

to interact with the underlying system. Anything that follows an exclamation mark

is evaluated using the system shell (such as bash shell). For example, on a UNIX-like

system, such as Linux or Mac OS X, listing files in the current directory can be done using

In[14]: !ls

file1.py file2.py file3.py

On Microsoft Windows, the equivalent command would be !dir. This method for

interacting with the OS is a very powerful feature that makes it easy to navigate the file

system and to use the IPython console as a system shell. The output generated by a

command following an exclamation mark can easily be captured in a Python variable.

For example, a file listing produced by !ls can be stored in a Python list using

In[15]: files = !ls

In[16]: len(files)

3

In[17] : files

['file1.py', 'file2.py', 'file3.py']

Likewise, we can pass the values of Python variables to shell commands by prefixing

the variable name with a $ sign:

In[18]: file = "file1.py"

In[19]: !ls -l $file

-rw-r--r-- 1 rob staff 131 Oct 22 16:38 file1.py

Chapter 1 IntroduCtIon to ComputIng wIth python

13

This two-way communication with the IPython console and the system shell can be

very convenient when, for example, processing data files.

 IPython Extensions
IPython provides extension commands that are called magic functions in IPython

terminology. These commands all start with one or two % signs.4 A single % sign is used

for one-line commands, and two % signs are used for commands that operate on cells

(multiple lines). For a complete list of available extension commands, type %lsmagic,

and the documentation for each command can be obtained by typing the magic

command followed by a question mark:

In[20]: %lsmagic?

Type: Magic function

String form: <bound method BasicMagics.lsmagic of <IPython.core.magics.

basic.BasicMagics object at 0x10e3d28d0>>

Namespace: IPython internal

File: /usr/local/lib/python3.6/site-packages/IPython/core/magics/

basic.py

Definition: %lsmagic(self, parameter_s=")

Docstring: List currently available magic functions.

 File System Navigation

In addition to the interaction with the system shell described in the previous section,

IPython provides commands for navigating and exploring the file system. The

commands will be familiar to UNIX shell users: %ls (list files), %pwd (return current

working directory), %cd (change working directory), %cp (copy file), %less (show the

content of a file in the pager), and %%writefile filename (write content of a cell to the

file filename). Note that autocomplete in IPython also works with the files in the current

4 When %automagic is activated (type %automagic at the IPython prompt to toggle this feature), the
% sign that precedes the IPython commands can be omitted, unless there is a name conflict with
a Python variable or function. However, for clarity, the % signs are explicitly shown here.

Chapter 1 IntroduCtIon to ComputIng wIth python

14

working directory, which makes IPython as convenient to explore the file system as is the

system shell. It is worth noting that these IPython commands are system independent

and can therefore be used on both UNIX-like operating systems and on Windows.

 Running Scripts from the IPython Console

The command %run is an important and useful extension, perhaps one of the most

important features of the IPython console. With this command, an external Python

source code file can be executed within an interactive IPython session. Keeping a session

active between multiple runs of a script makes it possible to explore the variables and

functions defined in a script interactively after the execution of the script has finished.

To demonstrate this functionality, consider a script file fib.py that contains the

following code:

def fib(n):

 """

 Return a list of the first n Fibonacci numbers.

 """

 f0, f1 = 0, 1

 f = [1] * n

 for i in range(1, n):

 f[i] = f0 + f1

 f0, f1 = f1, f[i]

 return f

print(fib(10))

It defines a function that generates a sequence of n Fibonacci numbers and prints

the result for n = 10 to the standard output. It can be run from the system terminal using

the standard Python interpreter:

$ python fib.py

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

Chapter 1 IntroduCtIon to ComputIng wIth python

15

It can also be run from an interactive IPython session, which produces the

same output, but also adds the symbols defined in the file to the local namespace,

so that the fib function is available in the interactive session after the %run command

has been issued.

In [21]: %run fib.py

Out[22]: [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

In [23]: %who

fib

In [23]: fib(6)

Out[23]: [1, 1, 2, 3, 5, 8]

In the preceding example, we also made use of the %who command, which lists

all defined symbols (variables and functions).5 The %whos command is similar, but

also gives more detailed information about the type and value of each symbol, when

applicable.

 Debugger

IPython includes a handy debugger mode, which can be invoked postmortem after

a Python exception (error) has been raised. After the traceback of an unintercepted

exception has been printed to the IPython console, it is possible to step directly into the

Python debugger using the IPython command %debug. This possibility can eliminate

the need to rerun the program from the beginning using the debugger or after having

employed the common debugging method of sprinkling print statements into the code.

If the exception was unexpected and happened late in a time-consuming computation,

this can be a big time-saver.

To see how the %debug command can be used, consider the following incorrect

invocation of the fib function defined earlier. It is incorrect because a float is passed to

the function while the function is implemented with the assumption that the argument

passed to it is an integer. On line 7 the code runs into a type error, and the Python

interpreter raises an exception of the type TypeError. IPython catches the exception and

5 The Python function dir provides a similar feature.

Chapter 1 IntroduCtIon to ComputIng wIth python

16

prints out a useful traceback of the call sequence on the console. If we are clueless as

to why the code on line 7 contains an error, it could be useful to enter the debugger by

typing %debug in the IPython console. We then get access to the local namespace at

the source of the exception, which can allow us to explore in more detail why the

exception was raised.

In [24]: fib(1.0)

TypeError Traceback (most recent call last)

<ipython-input-24-874ca58a3dfb> in <module>()

 ----> 1 fib.fib(1.0)

/Users/rob/code/fib.py in fib(n)

 5 """

 6 f0, f1 = 0, 1

 ----> 7 f = [1] * n

 8 for i in range(1, n):

 9 f[n] = f0 + f1

TypeError: can't multiply sequence by non-int of type 'float'

In [25]: %debug

> /Users/rob/code/fib.py(7)fib()

 6 f0, f1 = 0, 1

----> 7 f = [1] * n

 8 for i in range(1, n):

ipdb> print(n)

1.0

■■ Tip type a question mark at the debugger prompt to show a help menu that
lists available commands:

ipdb> ?

more information about the python debugger and its features is also available in
the python Standard Library documentation: http://docs.python.org/3/
library/pdb.html.

Chapter 1 IntroduCtIon to ComputIng wIth python

http://docs.python.org/3/library/pdb.html
http://docs.python.org/3/library/pdb.html

17

 Reset

Resetting the namespace of an IPython session is often useful to ensure that a program

is run in a pristine environment, uncluttered by existing variables and functions. The

%reset command provides this functionality (use the flag –f to force the reset). Using

this command can often eliminate the need for otherwise common exit-restart cycles of

the console. Although it is necessary to reimport modules after the %reset command has

been used, it is important to know that even if the modules have changed since the last

import, a new import after a %reset will not import the new module but rather reenable

a cached version of the module from the previous import. When developing Python

modules, this is usually not the desired behavior. In that case, a reimport of a previously

imported (and since updated) module can often be achieved by using the reload

function from IPython.lib.deepreload. However, this method does not always work, as

some libraries run code at import time that is only intended to run once. In this case, the

only option might be to terminate and restart the IPython interpreter.

 Timing and Profiling Code

The %timeit and %time commands provide simple benchmarking facilities that are

useful when looking for bottlenecks and attempting to optimize code. The %timeit

command runs a Python statement a number of times and gives an estimate of the

runtime (use %%timeit to do the same for a multiline cell). The exact number of times

the statement is ran is determined heuristically, unless explicitly set using the –n and –r

flags. See %timeit? for details. The %timeit command does not return the resulting

value of the expression. If the result of the computation is required, the %time or %%time

(for a multiline cell) commands can be used instead, but %time and %%time only run the

statement once and therefore give a less accurate estimate of the average runtime.

The following example demonstrates a typical usage of the %timeit and %time

commands:

In [26]: %timeit fib(100)

100000 loops, best of 3: 16.9 μs per loop
In [27]: result = %time fib(100)

CPU times: user 33 μs, sys: 0 ns, total: 33 μs
Wall time: 48.2

Chapter 1 IntroduCtIon to ComputIng wIth python

18

While the %timeit and %time commands are useful for measuring the elapsed

runtime of a computation, they do not give any detailed information about what part

of the computation takes more time. Such analyses require a more sophisticated code

profiler, such as the one provided by Python standard library module cProfile.6 The

Python profiler is accessible in IPython through the commands %prun (for statements)

and %run with the flag –p (for running external script files). The output from the profiler

is rather verbose and can be customized using optional flags to the %prun and %run -p

commands (see %prun? for a detailed description of the available options).

As an example, consider a function that simulates N random walkers each taking M

steps and then calculates the furthest distance from the starting point achieved by any of

the random walkers:

In [28]: import numpy as np

In [29]: def random_walker_max_distance(M, N):

 ...: """

 ...: Simulate N random walkers taking M steps, and return the

largest distance

 ...: from the starting point achieved by any of the random walkers.

 ...: """

 ...: trajectories = [np.random.randn(M).cumsum() for _ in range(N)]

 ...: return np.max(np.abs(trajectories))

Calling this function using the profiler with %prun results in the following output,

which includes information about how many times each function was called and

a breakdown of the total and cumulative time spent in each function. From this

information we can conclude that in this simple example, the calls to the function

np.random.randn consume the bulk of the elapsed computation time.

In [30]: %prun random_walker_max_distance(400, 10000)

 20008 function calls in 0.254 seconds

 Ordered by: internal time

6 Which can, for example, be used with the standard Python interpreter to profile scripts by
running python -m cProfile script.py

Chapter 1 IntroduCtIon to ComputIng wIth python

19

 ncalls tottime percall cumtime percall filename:lineno(function)

 10000 0.169 0.000 0.169 0.000 {method 'randn' of 'mtrand.

RandomState' objects}

 10000 0.036 0.000 0.036 0.000 {method 'cumsum' of 'numpy.

ndarray' objects}

 1 0.030 0.030 0.249 0.249 <ipython-input- 30>:18(random_

walker_max_distance)

 1 0.012 0.012 0.217 0.217 <ipython-input-30>:

19(<listcomp>)

 1 0.005 0.005 0.254 0.254 <string>:1(<module>)

 1 0.002 0.002 0.002 0.002 {method 'reduce' of 'numpy.

ufunc' objects}

 1 0.000 0.000 0.254 0.254 {built-in method exec}

 1 0.000 0.000 0.002 0.002 _methods.py:25(_amax)

 1 0.000 0.000 0.002 0.002 fromnumeric.py:2050(amax)

 1 0.000 0.000 0.000 0.000 {method 'disable' of '_

lsprof.Profiler' objects}

 Interpreter and Text Editor as Development Environment

In principle, the Python or the IPython interpreter and a good text editor are all that are

required for a full productive Python development environment. This simple setup is,

in fact, the preferred development environment for many experienced programmers.

However, in the following sections, we will look into the Jupyter Notebook and the

integrated development environment Spyder. These environments provide richer

features that improve productivity when working with interactive and exploratory

computing applications.

 Jupyter
The Jupyter project7 is a spin-off from the IPython project that includes the Python

independent frontends – most notably the notebook application which we discuss in

more detail in the following section – and the communication framework that enables

7 For more information about Jupyter, see http://jupyter.org.

Chapter 1 IntroduCtIon to ComputIng wIth python

http://jupyter.org

20

the separation of the frontend from the computational backends, known as kernels.

Prior to the creation of the Jupyter project, the notebook application and its underlying

framework were a part of the IPython project. However, because the notebook frontend

is language agnostic – it can also be used with a large number of other languages, such as

R and Julia – it was spun off a separate project to better cater to the wider computational

community and to avoid a perceived bias toward Python. Now, the remaining role of

IPython is to focus on Python-specific applications, such as the interactive Python

console, and to provide a Python kernel for the Jupyter environment.

In the Jupyter framework, the frontend talks to computational backends known as

kernels. The frontend can have multiple kernels registered, for example, for different

programming languages, for different versions of Python, or for different Python

environments. The kernel maintains the state of the interpreter and performs the actual

computations, while the frontend manages how code is entered and organized and how

the results of calculations are visualized to the user.

In this section, we will discuss the Jupyter QtConsole and Notebook frontends and

give a brief introduction to some of their rich display and interactivity features, as well

as the workflow organization that the notebook provides. The Jupyter Notebook is the

Python environment for computation work that I generally recommend in this book,

and the code listings in the rest of this book are understood to be read as if they are cells

in a notebook.

 The Jupyter QtConsole
The Jupyter QtConsole is an enhanced console application that can serve as a substitute

to the standard IPython console. The QtConsole is launched by passing the qtconsole

argument to the jupyter command:

$ jupyter qtconsole

This opens up a new IPython application in a console that is capable of displaying

rich media objects such as images, figures, and mathematical equations. The Jupyter

QtConsole also provides a menu-based mechanism for displaying autocompletion

results, and it shows docstrings for functions in a pop-up window when typing the

opening parenthesis of a function or a method call. A screenshot of the Jupyter

Qtconsole is shown in Figure 1-3.

Chapter 1 IntroduCtIon to ComputIng wIth python

21

 The Jupyter Notebook
In addition to the interactive console, Jupyter also provides the web-based notebook

application that has made it famous. The notebook offers many advantages over

a traditional development environment when working with data analysis and

computational problem-solving. In particular, the notebook environment allows to

write and to run code, to display the output produced by the code, and to document

and interpret the code and the results: all in one document. This means that the entire

analysis workflow is captured in one file, which can be saved, restored, and reused later

on. In contrast, when working with a text editor or an IDE, the code, the corresponding

data files and figures, and the documentation are spread out over multiple files in the file

system, and it takes a significant effort and discipline to keep such a workflow organized.

The Jupyter Notebook features a rich display system that can show media such as

equations, figures, and videos as embedded objects in the notebook. It is also possible

to create user interface (UI) elements with HTML and JavaScript, using Jupyter’s widget

system. These widgets can be used in interactive applications that connect the web

Figure 1-3. A screenshot of the Jupyter QtConsole application

Chapter 1 IntroduCtIon to ComputIng wIth python

22

application with Python code that is executed in the IPython kernel (on the server side).

These and many other features of the Jupyter Notebook make it a great environment for

interactive and literate computing, as we will see examples of throughout this book.

To launch the Jupyter Notebook environment, the notebook argument is passed to

the jupyter command-line application.

$ jupyter notebook

This launches a notebook kernel and a web application that, by default, will serve

up a web server on port 8888 on localhost, which is accessed using the local address

http://localhost:8888/ in a web browser.8 By default, running jupyter notebook

will open a dashboard web page in the default web browser. The dashboard lists

all notebooks that are available in the directory from where the Jupyter Notebook

was launched, as well as a simple directory browser that can be used to navigate

subdirectories, relative to the location where the notebook server was launched, and to

open notebooks from therein. Figure 1-4 shows a screenshot of a web browser and the

Jupyter Notebook dashboard page.

8 This web application is by default only accessible locally from the system where the notebook
application was launched.

Chapter 1 IntroduCtIon to ComputIng wIth python

23

Clicking the “New” button creates a new notebook and opens it in a new page in the

browser (see Figure 1-5). A newly created notebook is named Untitled, or Untitled1,

etc., depending on the availability of unused filenames. A notebook can be renamed by

clicking the title field on the top of the notebook page. The Jupyter Notebook files are

stored in a JSON file format using the filename extension ipynb. A Jupyter Notebook file

is not pure Python code, but if necessary the Python code in a notebook can easily be

extracted using either “File ➤ Download as ➤ Python” or the Jupyter utility nbconvert

(see in the following section).

Figure 1-4. A screenshot of the Jupyter Notebook dashboard page

Chapter 1 IntroduCtIon to ComputIng wIth python

24

 Jupyter Lab
Jupyter Lab is a new alternative development environment from the Jupyter project.

It combines the Jupyter Notebook interface with a file browser, text editor, shell, and

IPython consoles, in a web-based IDE-like environment; see Figure 1-6.

Figure 1-5. A newly created and empty Jupyter Notebook

Chapter 1 IntroduCtIon to ComputIng wIth python

25

The Jupyter Lab environment consolidates the many advantages of the notebook

environment and the strengths of traditional IDEs. Having access to shell consoles and

text editors all within the same web frontend is also convenient when working on a

Jupyter server that runs on a remote system, such as a computing cluster or in the cloud.

 Cell Types
The main content of a notebook, below the menu bar and the toolbar, is organized as

input and output cells. The cells can be of several types, and the type of the selected

cell can be changed using the cell-type drop-down menu in the toolbar (which initially

displays “Code”). The most important types are

• Code: A code cell can contain an arbitrary amount of multiline

Python code. Pressing Shift-Enter sends the code in the cell to

the kernel process, where the kernel evaluates it using the Python

interpreter. The result is sent back to the browser and displayed in the

corresponding output cell.

Figure 1-6. The Jupyter Lab interface, which includes a file browser (left) and
multitab notebook editor (right). The notebook displayed here shows code and
output from an example in Chapter 11.

Chapter 1 IntroduCtIon to ComputIng wIth python

26

• Markdown: The content of a Markdown cell can contain marked-

up plain text, which is interpreted using the Markdown language

and HTML. A Markdown cell can also contain LaTeX formatted

equations, which are rendered in the notebook using the JavaScript-

based LaTeX engine MathJax.

• Headings: Heading cells can be used to structure a notebook into

sections.

• Raw: A raw text cell is displayed without any processing.

 Editing Cells
Using the menu bar and the toolbar, cells can be added, removed, moved up and down,

cut and pasted, and so on. These functions are also mapped to keyboard shortcuts,

which are convenient and time-saving when working with Jupyter Notebooks. The

notebook uses a two-mode input interface, with an edit mode and a command mode.

The edit mode can be entered by clicking a cell or by pressing the Enter key on the

keyboard when a cell is in focus. Once in edit mode, the content of the input cell can be

edited. Leaving the edit mode is done by pressing the ESC key or by using Shift-Enter to

execute the cell. When in command mode, the up and down arrows can be used to move

focus between cells, and a number of keyboard shortcuts are mapped to the basic cell

manipulation actions that are available through the toolbar and the menu bar. Table 1-1

summarizes the most important Jupyter Notebook keyboard shortcuts for the

command mode.

Chapter 1 IntroduCtIon to ComputIng wIth python

27

Table 1-1. A Summary of Keyboard Shortcuts in the Jupyter Notebook

Command Mode

Keyboard Shortcut Description

b Create a new cell below the currently selected cell.

a Create a new cell above the currently selected cell.

d-d delete the currently selected cell.

1 to 6 heading cell of level 1 to 6.

x Cut currently selected cell.

c Copy currently selected cell.

v paste cell from the clipboard.

m Convert a cell to a markdown cell.

y Convert a cell to a code cell.

up Select previous cell.

down Select next cell.

enter enter edit mode.

escape exit edit mode.

Shift-enter run the cell.

h display a help window with a list of all available keyboard

shortcuts.

0-0 restart the kernel.

i-i Interrupt an executing cell.

s Save the notebook.

While a notebook cell is being executed, the input prompt number is represented

with an asterisk, In[*], and an indicator in the upper right corner of the page signals that

the IPython kernel is busy. The execution of a cell can be interrupted using the menu

option “Kernel ➤ Interrupt” or by typing i-i in the command mode (i.e., press the i key

twice in a row).

Chapter 1 IntroduCtIon to ComputIng wIth python

28

 Markdown Cells
One of the key features of the Jupyter Notebook is that code cells and output cells

can be complemented with documentation contained in text cells. Text input cells

are called Markdown cells. The input text is interpreted and reformatted using the

Markdown markup language. The Markdown language is designed to be a lightweight

typesetting system that allows text with simple markup rules to be converted to HTML

and other formats for richer display. The markup rules are designed to be user-friendly

and readable as is in plain-text format. For example, a piece of text can be made italics

by surrounding it with asterisks, *text*, and it can be made bold by surrounding it

with double asterisks, **text**. Markdown also allows creating enumerated and

bulleted lists, tables, and hyper-references. An extension to Markdown supported by

Jupyter is that mathematical expressions can be typeset in LaTeX, using the JavaScript

LaTeX library MathJax. Taking full advantage of what Jupyter Notebooks offer includes

generously documenting the code and resulting output using Markdown cells and the

many rich display options they provide. Table 1-2 introduces basic Markdown and

equation formatting features that can be used in a Jupyter Notebook Markdown cell.

Table 1-2. Summary of Markdown Syntax for Jupyter Notebook Markdown Cells

Function Syntax by Example

Italics *text*

Bold **text**

Strike-through ~~text~~

Fixed-width font `text`

urL [URL text](http://www.example.com)

new paragraph Separate the text of two paragraphs with an empty line.

Verbatim Lines that start with four blank spaces are displayed as is, without

any further processing, using a fixed-width font. this is useful for

code-like text segments.

␣␣␣␣def func(x):

␣␣␣␣ return x ** 2

(continued)

Chapter 1 IntroduCtIon to ComputIng wIth python

29

Function Syntax by Example

table | A | B | C |

|---|---|---|

| 1 | 2 | 3 |

| 4 | 5 | 6 |

horizontal line a line containing three dashes is rendered as a horizontal line

separator:

heading # Level 1 heading

Level 2 heading

Level 3 heading

. . .

Block quote Lines that start with a “>” are rendered as a block quote.

> Text here is indented and offset

> from the main text body.

unordered list * Item one

* Item two

* Item three

ordered list 1. Item one

2. Item two

3. Item three

Image ![Alternative text](image-file.png)9

or

![Alternative text](http://www.example.com/image.png)

Inline LateX equation \LaTeX

displayed LateX equation

(centered and on a new line)

$$\LaTeX$$ or \begin{env}...\end{env} where env can be a

LateX environment such as equation, eqnarray, align, etc.

Table 1-2. (continued)

9 The path/filename is relative to the notebook directory.

Chapter 1 IntroduCtIon to ComputIng wIth python

30

Markdown cells can also contain HTML code, and the Jupyter Notebook interface

will display it as rendered HTML. This is a very powerful feature for the Jupyter

Notebook, but its disadvantage is that such HTML code cannot be converted to other

formats, such as PDF, using the nbconvert tool (see later section in this chapter).

Therefore, it is in general better to use Markdown formatting when possible and resort to

HTML only when absolutely necessary.

More information about MathJax and Markdown is available at the projects web

pages at www.mathjax.com and http://daringfireball.net/projects/markdown,

respectively.

 Rich Output Display
The result produced by the last statement in a notebook cell is normally displayed in the

corresponding output cell, just like in the standard Python interpreter or the IPython

console. The default output cell formatting is a string representation of the object,

generated, for example, by the __repr__ method. However, the notebook environment

enables a much richer output formatting, as it in principle allows displaying arbitrary

HTML in the output cell area. The IPython.display module provides several classes and

functions that make it easy to programmatically render formatted output in a notebook.

For example, the Image class provides a way to display images from the local file system

or online resources in a notebook, as shown in Figure 1-7. Other useful classes from

the same module are HTML, for rendering HTML code, and Math, for rendering LaTeX

expressions. The display function can be used to explicitly request an object to be

rendered and displayed in the output area.

Figure 1-7. An example of rich Jupyter Notebook output cell formatting, where an
image has been displayed in the cell output area using the Image class

Chapter 1 IntroduCtIon to ComputIng wIth python

http://www.mathjax.com
http://daringfireball.net/projects/markdown/

31

An example of how HTML code can be rendered in the notebook using the HTML class

is shown in Figure 1-8. Here we first construct a string containing HTML code for a table

with version information for a list of Python libraries. This HTML code is then rendered

in the output cell area by creating an instance of the HTML class, and since this statement

is the last (and only) statement in the corresponding input cell, Jupyter will render the

representation of this object in the output cell area.

For an object to be displayed in an HTML formatted representation, all we need to

do is to add a method called _repr_hmtl_ to the class definition. For example, we can

easily implement our own primitive version of the HTML class and use it to render the

same HTML code as in the previous example, as demonstrated in Figure 1-9.

Figure 1-8. Another example of rich Jupyter Notebook output cell formatting,
where an HTML table containing module version information has been rendered
and displayed using the HTML class

Figure 1-9. Another example of how to render HTML code in the Jupyter
Notebook, using a class that implements the _repr_hmtl_ method

Chapter 1 IntroduCtIon to ComputIng wIth python

32

Jupyter supports a large number of representations in addition to the _repr_hmtl_

shown in the preceding text, for example, _repr_png_, _repr_svg_, and _repr_latex_,

to mention a few. The former two can be used to generate and display graphics in the

notebook output cell, as used by, for example, the Matplotlib library (see the following

interactive example and Chapter 4). The Math class, which uses the _repr_latex_

method, can be used to render mathematical formulas in the Jupyter Notebook. This is

often useful in scientific and technical applications. Examples of how formulas can be

rendered using the Math class and the _repr_latex_ method are shown in Figure 1-10.

Figure 1-10. An example of how a LaTeX formula is rendered using the Math class
and how the _repr_latex_ method can be used to generate a LaTeX formatted
representation of an object

Using the various representation methods recognized by Jupyter, or the convenience

classes in the IPython.display module, we have great flexibility in shaping how results

are visualized in the Jupyter Notebook. However, the possibilities do not stop there: an

exciting feature of the Jupyter Notebook is that interactive applications, with two-way

communication between the frontend and the backend kernel, can be created using, for

example, a library of widgets (UI components) or directly with Javascript and HTML. For

example, using the interact function from the ipywidgets library, we can very easily

create an interactive graph that takes an input parameter that is determined from a UI

slider, as shown in Figure 1-11.

Chapter 1 IntroduCtIon to ComputIng wIth python

33

In the example in Figure 1-11, we plot the distribution functions for the Normal

distribution and the Poisson distribution, where the mean and the variance of

the distributions are taken as an input from the UI object created by the interact

function. By moving the slider back and forth, we can see how the Normal and Poisson

distributions (with equal variance) approach each other as the distribution mean is

increased and how they behave very differently for small values of the mean. Interactive

Figure 1-11. An example of interactive application created using the IPython
widget interact. The interact widget provides a slider UI element which allows
the value of an input parameter to be changed. When the slider is dragged, the
provided function is reevaluated, which in this case renders a new graph.

Chapter 1 IntroduCtIon to ComputIng wIth python

34

graphs like this are a great tool for building intuition and for exploring computation

problems, and the Jupyter Notebook is a fantastic enabler for this kind of investigations.10

 nbconvert
Jupyter Notebooks can be converted to a number of different read-only formats

using the nbconvert application, which is invoked by passing nbconvert as the first

argument to the jupyter command line. Supported formats include, among others,

PDF and HTML. Converting Jupyter Notebooks to PDF or HTML is useful when sharing

notebooks with colleagues or when publishing them online, when the reader does

not necessarily need to run the code, but primarily view the results contained in the

notebooks.

 HTML

In the notebook web interface, the menu option “File ➤ Download as ➤ HTML” can

be used to generate an HTML document representing a static view of a notebook. An

HTML document can also be generated from the command prompt using the nbconvert

application. For example, a notebook called Notebook.ipynb can be converted to HTML

using the command:

$ jupyter nbconvert --to html Notebook.ipynb

This generates an HTML page that is self-contained in terms of style sheets and

JavaScript resources (which are loaded from public CDN servers), and it can be

published as is online. However, image resources that are using Markdown or HTML tags

are not included and must be distributed together with the resulting HTML file.

For public online publishing of Jupyter Notebooks, the Jupyter project provides a

convenient web service called nbviewer, available at http://nbviewer.jupyter.org.

By feeding it a URL to a public notebook file, the nbviewer application automatically

10 For more information about how to create interactive applications using Jupyter and IPython
widgets, see the documentation for the ipywidgets library https://ipywidgets.readthedocs.
io/en/latest.

Chapter 1 IntroduCtIon to ComputIng wIth python

http://nbviewer.jupyter.org
https://ipywidgets.readthedocs.io/en/latest
https://ipywidgets.readthedocs.io/en/latest

35

converts the notebook to HTML and displays the result. One of the many benefits of

this method of publishing Jupyter Notebooks is that the notebook author only needs to

maintain one file – the notebook file itself – and when it is updated and uploaded to its

online location, the static view of the notebook provided by nbviewer is automatically

updated as well. However, it requires publishing the source notebook at a publicly

accessible URL, so it can only be used for public sharing.

Tip the Jupyter project maintains a wiki page that indexes many interesting
Jupyter notebooks that are published online at http://github.com/jupyter/
jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks. these
notebooks demonstrate many of Ipython’s and Jupyter’s more advanced features
and can be a great resource for learning more about Jupyter notebooks as well as
the many topics covered by those notebooks.

 PDF

Converting a Jupyter Notebook to PDF format requires first converting the notebook

to LaTeX and then compiling the LaTeX document to PDF format. To be able to do

the LaTeX to PDF conversion, a LaTeX environment must be available on the system

(see Appendix A for pointers on how to install these tools). The nbconvert application

can do both the notebook-to-LaTeX and the LaTeX-to-PDF conversions in one go,

using the --to pdf argument (the --to latex argument can be used to obtain the

intermediate LaTeX source):

$ jupyter nbconvert --to pdf Notebook.ipynb

The style of the resulting document can be specified using the --template name

argument, where built-in templates include base, article, and report (these templates

can be found in the nbconvert/templates/latex directory where Jupyter is installed).

By extending one of the existing templates,11 it is easy to customize the appearance of

11 The IPython nbconvert application uses the jinja2 template engine. See http://jinja.pocoo.org
for more information and documentation of its syntax.

Chapter 1 IntroduCtIon to ComputIng wIth python

http://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
http://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
http://jinja.pocoo.org

36

the generated document. For example, in LaTeX it is common to include additional

information about the document that is not available in Jupyter Notebooks, such as a

document title (if different from the notebook filename) and the author of the document.

This information can be added to a LaTeX document that is generated by the nbconvert

application by creating a custom template. For example, the following template extends

the built-in template article and overrides the title and author blocks:

((*- extends 'article.tplx' -*))

((* block title *)) \title{Document title} ((* endblock title *))

((* block author *)) \author{Author's Name} ((* endblock author *))

Assuming that this template is stored in a file called custom_template.tplx,

the following command can be used to convert a notebook to PDF format using this

customized template:

$ jupyter nbconvert --to pdf --template custom_template.tplx Notebook.ipynb

The result is LaTeX and PDF documents where the title and author fields are set as

requested in the template.

 Python

A Jupyter Notebook in its JSON-based file format can be converted to a pure Python code

using the nbconvert application and the python format:

$ jupyter nbconvert --to python Notebook.ipynb

This generates the file Notebook.py, which only contains executable Python code (or

if IPython extensions were used in the notebook; a file that is executable with ipython).

The noncode content of the notebook is also included in the resulting Python code file in

the form of comments that do not prevent the file from being interpreted by the Python

interpreter. Converting a notebook to pure Python code is useful, for example, when

using the Jupyter Notebooks to develop functions and classes that need to be imported

in other Python files or notebooks.

Chapter 1 IntroduCtIon to ComputIng wIth python

37

 Spyder: An Integrated Development Environment
An integrated development environment is an enhanced text editor that also provides

features such as integrated code execution, documentation, and debugging. Many

free and commercial IDE environments have good support for Python-based projects.

Spyder12 is an excellent free IDE that is particularly well suited for computing and data

analysis using Python. The rest of this section focuses on Spyder and explores its features

in more detail. However, there are also many other suitable IDEs. For example, Eclipse13

is a popular and powerful multilanguage IDE, and the PyDev14 extension to Eclipse

provides a good Python environment. PyCharm15 is another powerful Python IDE that

has gained a significant popularity among Python developers recently, and the Atom

IDE16 is yet another great option. For readers with previous experience with any of these

tools, they could be a productive and familiar environment also for computational work.

However, the Spyder IDE was specifically created for Python programming and in

particular for scientific computing with Python. As such it has features that are useful for

interactive and exploratory computing: most notably, integration with the IPython console

directly in the IDE. The Spyder user interface consists of several optional panes, which can

be arranged in different ways within the IDE application. The most important panes are

• Source code editor

• Consoles for the Python and the IPython interpreters and the system

shell

• Object inspector, for showing documentation for Python objects

• Variable explorer

• File explorer

• Command history

• Profiler

12 http://code.google.com/p/spyderlib
13 http://www.eclipse.org
14 http://pydev.org
15 http://www.jetbrains.com/pycharm
16 https://atom.io

Chapter 1 IntroduCtIon to ComputIng wIth python

http://code.google.com/p/spyderlib
http://www.eclipse.org
http://pydev.org
http://www.jetbrains.com/pycharm
https://atom.io

38

Each pane can be configured to be shown or hidden, depending on the user’s

preferences and needs, using the “View ➤ Panes” menu option. Furthermore, panes

can be organized together in tabbed groups. In the default layout, three pane groups are

displayed: The left pane group contains the source code editor. The top-right pane group

contains the variable explorer, the file explorer, and the object inspector. The bottom

right pane group contains Python and IPython consoles.

Running the command spyder at the shell prompt launches the Spyder IDE. See

Figure 1-12 for a screenshot of the default layout of the Spyder application.

Figure 1-12. A screenshot of the Spyder IDE application. The code editor is shown
in the left panel, the top-right panel shows the object inspector (help viewer), and
the bottom right panel shows an IPython console.

 Source Code Editor
The source code editor in Spyder supports code highlighting, intelligent autocompletion,

working with multiple open files simultaneously, parenthesis matching, indentation

guidance, and many other features that one would expect from a modern source code

Chapter 1 IntroduCtIon to ComputIng wIth python

39

editor. The added benefit from using an IDE is that code in the editor can be run – as a

whole (shortcut F5) or a selection (shortcut F9) – in attached Python or IPython consoles

with persistent sessions between successive runs.

In addition, the Spyder editor has very useful support for static code checking with

pylint,17 pyflakes,18 and pep8,19 which are external tools that analyze Python source code

and report errors such as undefined symbols, syntax errors, coding style violations, and

more. Such warnings and errors are shown on a line-by-line basis as a yellow triangle

with an exclamation mark in the left margin of the editor, next to the line number. Static

code checking is extremely important in Python programming. Since Python is an

interpreted and lazily evaluated language, simple bugs like undefined symbols may not

be discovered until the offending code line is reached at runtime, and for rarely used

code paths, sometimes such bugs can be very hard to discover. Real-time static code

checking and coding style checks in the Spyder editor can be activated and deactivated

in the “Editor” section of the preference windows (Python ➤ Preferences, in the menu

on OS X, and Tools ➤ Preferences on Linux and Windows). In the Editor section,

I recommend checking the “Code analysis” and “Style analysis” boxes in the “Code

Introspection/Analysis” tab.

Tip the python language is versatile, and equivalent python source code can
be written in a vast variety of styles and manners. however, a python coding style
standard, pep8, has been put forward to encourage a uniform appearance of
python code. I strongly recommend studying the pep8 coding style standard and
complying to it in your code. the pep8 is described at www.python.org/dev/
peps/pep-0008.

17 http://www.pylint.org
18 http://github.com/pyflakes/pyflakes
19 http://pep8.readthedocs.org

Chapter 1 IntroduCtIon to ComputIng wIth python

http://www.python.org/dev/peps/pep-0008
http://www.python.org/dev/peps/pep-0008
http://www.pylint.org
http://github.com/pyflakes/pyflakes
http://pep8.readthedocs.org/en/latest

40

 Consoles in Spyder
The integrated Python and IPython consoles can be used to execute a file that is being

edited in the text editor window, or for running interactively typed Python code. When

executing Python source code files from the editor, the namespace variables created

in the script are retained in the IPython or Python session in the console. This is an

important feature that makes Spyder an interactive-computing environment, in addition

to a traditional IDE application, since it allows exploring the values of variables after

a script has finished executing. Spyder supports having multiple Python and IPython

consoles opened simultaneously, and, for example, a new IPython console can be

launched through the “Consoles ➤ Open an IPython console” menu. When running a

script from the editor, by pressing F5 or pressing the run button in the toolbar, the script

is by default ran in the most recently activated console. This makes it possible to maintain

different consoles, with independent namespaces, for different scripts or projects.

When possible, use the %reset command and the reload function to clear a

namespace and reload updated modules. If that is insufficient, it is possible to restart the

IPython kernel corresponding to an IPython console, or the Python interpreter, via the

drop-down menu for the top-right icon in the console panel. Finally, a practical feature

is that IPython console sessions can be exported as an HTML file by right-clicking the

console window and selecting “Save as HTML/XML” in the pop-up menu.

 Object Inspector
The object inspector (Help pane) is a great aid when writing Python code. It can display

richly formatted documentation strings for objects defined in source code created with

the editor and for symbols defined in library modules that are installed on the system. The

object text field at the top of the object inspector panel can be used to type the name of

a module, function, or class for which to display the documentation string. Modules and

symbols do not need to be imported into the local namespace to be able to display their

docstrings using the object inspector. The documentation for an object in the editor or the

console can also be opened in the object inspector by selecting the object with the cursor

and using the shortcut Ctrl-i (Cmd-i on OS X). It is even possible to automatically display

docstrings for callable objects when its opening left parenthesis is typed. This gives an

immediate reminder of the arguments and their order for the callable object, which can

be a great productivity booster. To activate this feature, navigate to the “Help” page in the

“Preferences” window and check the boxes in the “Automatic connections” section.

Chapter 1 IntroduCtIon to ComputIng wIth python

41

 Summary
In this chapter we introduced the Python environment for scientific and technical

computing. This environment is, in fact, an entire ecosystem of libraries and tools

for computing, which includes not only Python software but everything from low-

level number crunching libraries up to graphical user interface applications and web

applications. In this multilanguage ecosystem, Python is the language that ties it all

together into a coherent and productive environment for computing. IPython is a core

component of Python’s computing environment, and we briefly surveyed some of its

most important features before covering the higher-level user environments provided

by the Jupyter Notebook and the Spyder IDE. These are the tools in which the majority

of exploratory and interactive computing is carried out. In the rest of this book, we focus

on computing using Python libraries, assuming that we are working within one of the

environments provided by IPython, the Jupyter Notebook, or Spyder.

 Further Reading
The Jupyter Notebook is a particularly rich platform for interactive computing, and it is

also a very actively developed software. One of the most recent developments within the

Jupyter Notebook is its widget system, which are user-interface components that can be

used to create interactive interfaces within the browser that is displaying the notebook.

In this book we just briefly touch upon Jupyter widgets, but it is a very interesting and

rapidly developing part of the Jupyter project, and I do recommend exploring their

potential applications for interactive computing. The Jupyter Notebook widgets, and

many other parts of Jupyter, are documented through examples in Jupyter Notebook form

that are available here: http://nbviewer.ipython.org/github/ipython/ipython/tree/

master/examples. There are also two interesting books on this topic (Rossant, Learning

IPython for Interactive Computing and Data Visualization, 2013; Rossant, IPython

Interactive Computing and Visualization Cookbook, 2014) that I highly recommend.

 References
Rossant, C. (2014). IPython Interactive Computing and Visualization Cookbook.

Mumbai: Packt.

Rossant, C. (2013). Learning IPython for Interactive Computing and Data

Visualization. Mumbai: Packt.

Chapter 1 IntroduCtIon to ComputIng wIth python

http://nbviewer.ipython.org/github/ipython/ipython/tree/master/examples
http://nbviewer.ipython.org/github/ipython/ipython/tree/master/examples

43
© Robert Johansson 2019
R. Johansson, Numerical Python, https://doi.org/10.1007/978-1-4842-4246-9_2

CHAPTER 2

Vectors, Matrices, and
Multidimensional Arrays
Vectors, matrices, and arrays of higher dimensions are essential tools in numerical

computing. When a computation must be repeated for a set of input values, it is natural

and advantageous to represent the data as arrays and the computation in terms of

array operations. Computations that are formulated this way are said to be vectorized.1

Vectorized computing eliminates the need for many explicit loops over the array

elements by applying batch operations on the array data. The result is concise and more

maintainable code, and it enables delegating the implementation of (e.g., elementwise)

array operations to more efficient low-level libraries. Vectorized computations can

therefore be significantly faster than sequential element-by-element computations. This

is particularly important in an interpreted language such as Python, where looping over

arrays element by element entails a significant performance overhead.

In Python’s scientific computing environment, efficient data structures for working

with arrays are provided by the NumPy library. The core of NumPy is implemented in C

and provides efficient functions for manipulating and processing arrays. At a first glance,

NumPy arrays bear some resemblance to Python’s list data structure. But an important

difference is that while Python lists are generic containers of objects, NumPy arrays are

homogenous and typed arrays of fixed size. Homogenous means that all elements in the

array have the same data type. Fixed size means that an array cannot be resized (without

creating a new array). For these and other reasons, operations and functions acting on

NumPy arrays can be much more efficient than those using Python lists. In addition to

1 Many modern processors provide instructions that operate on arrays. These are also known as
vectorized operations, but here vectorized refers to high-level array-based operations, regardless
of how they are implemented at the processor level.

44

the data structures for arrays, NumPy also provides a large collection of basic operators

and functions that act on these data structures, as well as submodules with higher-level

algorithms such as linear algebra and fast Fourier transform.

In this chapter we first look at the basic NumPy data structure for arrays and various

methods to create such NumPy arrays. Next we look at operations for manipulating

arrays and for doing computations with arrays. The multidimensional data array

provided by NumPy is a foundation for nearly all numerical libraries for Python.

Spending time on getting familiar with NumPy and developing an understanding of how

NumPy works is therefore important.

NumPy The NumPy library provides data structures for representing a rich
variety of arrays and methods and functions for operating on such arrays. NumPy
provides the numerical backend for nearly every scientific or technical library for
Python. It is therefore a very important part of the scientific Python ecosystem. At
the time of writing, the latest version of NumPy is 1.14.2. More information about
NumPy is available at www.numpy.org.

 Importing the Modules
In order to use the NumPy library, we need to import it in our program. By convention,

the numPy module imported under the alias np, like so:

In [1]: import numpy as np

After this, we can access functions and classes in the numpy module using the np

namespace. Throughout this book, we assume that the NumPy module is imported in

this way.

 The NumPy Array Object
The core of the NumPy library is the data structures for representing multidimensional

arrays of homogeneous data. Homogeneous refers to all elements in an array having

the same data type.2 The main data structure for multidimensional arrays in NumPy

2 This does not necessarily need to be the case for Python lists, which therefore can be
heterogenous.

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

http://www.numpy.org

45

is the ndarray class. In addition to the data stored in the array, this data structure also

contains important metadata about the array, such as its shape, size, data type, and other

attributes. See Table 2-1 for a more detailed description of these attributes. A full list of

attributes with descriptions is available in the ndarray docstring, which can be accessed

by calling help(np.ndarray) in the Python interpreter or np.ndarray? in an IPython

console.

The following example demonstrates how these attributes are accessed for an

instance data of the class ndarray:

In [2]: data = np.array([[1, 2], [3, 4], [5, 6]])

In [3]: type(data)

Out[3]: <class 'numpy.ndarray'>

In [4]: data

Out[4]: array([[1, 2],

 [3, 4],

 [5, 6]])

In [5]: data.ndim

Out[5]: 2

In [6]: data.shape

Out[6]: (3, 2)

In [7]: data.size

Out[7]: 6

Table 2-1. Basic Attributes of the ndarray Class

Attribute Description

Shape A tuple that contains the number of elements (i.e., the length) for each

dimension (axis) of the array.

Size The total number elements in the array.

Ndim Number of dimensions (axes).

nbytes Number of bytes used to store the data.

dtype The data type of the elements in the array.

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

46

In [8]: data.dtype

Out[8]: dtype('int64')

In [9]: data.nbytes

Out[9]: 48

Here the ndarray instance data is created from a nested Python list using the

function np.array. More ways to create ndarray instances from data and from rules of

various kinds are introduced later in this chapter. In the preceding example, the data is

a two-dimensional array (data.ndim) of shape 3 × 2, as indicated by data.shape, and in

total it contains six elements (data.size) of type int64 (data.dtype), which amounts to

a total size of 48 bytes (data.nbytes).

 Data Types
In the previous section, we encountered the dtype attribute of the ndarray object. This

attribute describes the data type of each element in the array (remember, since NumPy

arrays are homogeneous, all elements have the same data type). The basic numerical

data types supported in NumPy are shown in Table 2-2. Nonnumerical data types, such

as strings, objects, and user-defined compound types, are also supported.

Table 2-2. Basic Numerical Data Types Available in NumPy

dtype Variants Description

int int8, int16, int32, int64 Integers

uint uint8, uint16, uint32, uint64 unsigned (nonnegative) integers

bool Bool Boolean (True or False)

float float16, float32, float64, float128 Floating-point numbers

complex complex64, complex128, complex256 Complex-valued floating-point numbers

For numerical work the most important data types are int (for integers), float (for

floating-point numbers), and complex (for complex floating-point numbers). Each of

these data types comes in different sizes, such as int32 for 32-bit integers, int64 for

64-bit integers, etc. This offers more fine-grained control over data types than the

 standard Python types, which only provides one type for integers and one type for floats.

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

47

It is usually not necessary to explicitly choose the bit size of the data type to work with,

but it is often necessary to explicitly choose whether to use arrays of integers, floating-

point numbers, or complex values.

The following example demonstrates how to use the dtype attribute to generate

arrays of integer-, float-, and complex-valued elements:

In [10]: np.array([1, 2, 3], dtype=np.int)

Out[10]: array([1, 2, 3])

In [11]: np.array([1, 2, 3], dtype=np.float)

Out[11]: array([1., 2., 3.])

In [12]: np.array([1, 2, 3], dtype=np.complex)

Out[12]: array([1.+0.j, 2.+0.j, 3.+0.j])

Once a NumPy array is created, its dtype cannot be changed, other than by creating

a new copy with type-casted array values. Typecasting an array is straightforward and

can be done using either the np.array function:

In [13]: data = np.array([1, 2, 3], dtype=np.float)

In [14]: data

Out[14]: array([1., 2., 3.])

In [15]: data.dtype

Out[15]: dtype('float64')

In [16]: data = np.array(data, dtype=np.int)

In [17]: data.dtype

Out[17]: dtype('int64')

In [18]: data

Out[18]: array([1, 2, 3])

or by using the astype method of the ndarray class:

In [19]: data = np.array([1, 2, 3], dtype=np.float)

In [20]: data

Out[20]: array([1., 2., 3.])

In [21]: data.astype(np.int)

Out[21]: array([1, 2, 3])

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

48

When computing with NumPy arrays, the data type might get promoted from one

type to another, if required by the operation. For example, adding float-valued and

complex-valued arrays, the resulting array is a complex-valued array:

In [22]: d1 = np.array([1, 2, 3], dtype=float)

In [23]: d2 = np.array([1, 2, 3], dtype=complex)

In [24]: d1 + d2

Out[24]: array([2.+0.j, 4.+0.j, 6.+0.j])

In [25]: (d1 + d2).dtype

Out[25]: dtype('complex128')

In some cases, depending on the application and its requirements, it is essential to

create arrays with data type appropriately set to, for example, int or complex. The default

type is float. Consider the following example:

In [26]: np.sqrt(np.array([-1, 0, 1]))

Out[26]: RuntimeWarning: invalid value encountered in sqrt

 array([nan, 0., 1.])

In [27]: np.sqrt(np.array([-1, 0, 1], dtype=complex))

Out[27]: array([0.+1.j, 0.+0.j, 1.+0.j])

Here, using the np.sqrt function to compute the square root of each element in

an array gives different results depending on the data type of the array. Only when the

data type of the array is complex is the square root of –1 resulting in the imaginary unit

(denoted as 1j in Python).

 Real and Imaginary Parts

Regardless of the value of the dtype attribute, all NumPy array instances have the attributes

real and imag for extracting the real and imaginary parts of the array, respectively:

In [28]: data = np.array([1, 2, 3], dtype=complex)

In [29]: data

Out[29]: array([1.+0.j, 2.+0.j, 3.+0.j])

In [30]: data.real

Out[30]: array([1., 2., 3.])

In [31]: data.imag

Out[31]: array([0., 0., 0.])

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

49

The same functionality is also provided by the functions np.real and np.imag,

which also can be applied to other array-like objects, such as Python lists. Note that

Python itself has support of complex numbers, and the imag and real attributes are also

available for Python scalars.

 Order of Array Data in Memory
Multidimensional arrays are stored as contiguous data in memory. There is a freedom of

choice in how to arrange the array elements in this memory segment. Consider the case

of a two-dimensional array, containing rows and columns: one possible way to store

this array as a consecutive sequence of values is to store the rows after each other, and

another equally valid approach is to store the columns one after another. The former is

called row-major format and the latter is column-major format. Whether to use row-

major or column-major is a matter of conventions, and row-major format is used, for

example, in the C programming language, and Fortran uses the column-major format.

A NumPy array can be specified to be stored in row-major format, using the keyword

argument order= 'C', and column-major format, using the keyword argument

order= 'F', when the array is created or reshaped. The default format is row-major.

The 'C' or 'F' ordering of NumPy array is particularly relevant when NumPy arrays are

used in interfaces with software written in C and Fortran, which is often required when

working with numerical computing with Python.

Row-major and column-major ordering are special cases of strategies for mapping

the index used to address an element, to the offset for the element in the array’s memory

segment. In general, the NumPy array attribute ndarray.strides defines exactly how

this mapping is done. The strides attribute is a tuple of the same length as the number

of axes (dimensions) of the array. Each value in strides is the factor by which the index

for the corresponding axis is multiplied when calculating the memory offset (in bytes)

for a given index expression.

For example, consider a C-order array A with shape (2, 3), which corresponds to

a two-dimensional array with two and three elements along the first and the second

dimensions, respectively. If the data type is int32, then each element uses 4 bytes, and

the total memory buffer for the array therefore uses 2 × 3 × 4 = 24 bytes. The strides

attribute of this array is therefore (4 × 3, 4 × 1) = (12, 4), because each increment of m in

A[n, m] increases the memory offset with one item, or 4 bytes. Likewise, each increment

of n increases the memory offset with three items or 12 bytes (because the second

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

50

dimension of the array has length 3). If, on the other hand, the same array were stored in

'F' order, the strides would instead be (4, 8). Using strides to describe the mapping of

array index to array memory offset is clever because it can be used to describe different

mapping strategies, and many common operations on arrays, such as for example the

transpose, can be implemented by simply changing the strides attribute, which can

eliminate the need for moving data around in the memory. Operations that only require

changing the strides attribute result in new ndarray objects that refer to the same data

as the original array. Such arrays are called views. For efficiency, NumPy strives to create

views rather than copies when applying operations on arrays. This is generally a good

thing, but it is important to be aware of that some array operations result in views rather

than new independent arrays, because modifying their data also modifies the data of the

original array. Later in this chapter, we will see several examples of this behavior.

 Creating Arrays
In the previous section, we looked at NumPy’s basic data structure for representing

arrays, the ndarray class, and we looked at the basic attributes of this class. In this

section we focus on functions from the NumPy library that can be used to create ndarray

instances.

Arrays can be generated in a number of ways, depending on their properties and

the applications they are used for. For example, as we saw in the previous section, one

way to initialize an ndarray instance is to use the np.array function on a Python list,

which, for example, can be explicitly defined. However, this method is obviously limited

to small arrays. In many situations it is necessary to generate arrays with elements that

follow some given rule, such as filled with constant values, increasing integers, uniformly

spaced numbers, random numbers, etc. In other cases we might need to create arrays

from data stored in a file. The requirements are many and varied, and the NumPy library

provides a comprehensive set of functions for generating arrays of various types. In this

section we look in more detail at many of these functions. For a complete list, see the

NumPy reference manual or the docstrings that are available by typing help(np) or using

the autocompletion np.<TAB>. A summary of frequently used array-generating functions

is given in Table 2-3.

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

51

Table 2-3. Summary of NumPy Functions for Generating Arrays

Function Name Type of Array

np.array Creates an array for which the elements are given by an array-like object,

which, for example, can be a (nested) Python list, a tuple, an iterable

sequence, or another ndarray instance.

np.zeros Creates an array with the specified dimensions and data type that is filled

with zeros.

np.ones Creates an array with the specified dimensions and data type that is filled

with ones.

np.diag Creates a diagonal array with specified values along the diagonal and

zeros elsewhere.

np.arange Creates an array with evenly spaced values between the specified start,

end, and increment values.

np.linspace Creates an array with evenly spaced values between specified start and

end values, using a specified number of elements.

np.logspace Creates an array with values that are logarithmically spaced between the

given start and end values.

np.meshgrid Generates coordinate matrices (and higher-dimensional coordinate arrays)

from one-dimensional coordinate vectors.

np.fromfunction Creates an array and fills it with values specified by a given function,

which is evaluated for each combination of indices for the given array size.

np.fromfile Creates an array with the data from a binary (or text) file. NumPy also

provides a corresponding function np.tofile with which NumPy arrays

can be stored to disk and later read back using np.fromfile.

np.genfromtxt,np.

loadtxt

Create an array from data read from a text file, for example, a comma-

separated value (CsV) file. The function np.genfromtxt also supports

data files with missing values.

np.random.rand Generates an array with random numbers that are uniformly distributed

between 0 and 1. other types of distributions are also available in the np.

random module.

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

52

 Arrays Created from Lists and Other Array-Like Objects
Using the np.array function, NumPy arrays can be constructed from explicit Python

lists, iterable expressions, and other array-like objects (such as other ndarray instances).

For example, to create a one-dimensional array from a Python list, we simply pass the

Python list as an argument to the np.array function:

In [32]: np.array([1, 2, 3, 4])

Out[32]: array([1, 2, 3, 4])

In [33]: data.ndim

Out[33]: 1

In [34]: data.shape

Out[34]: (4,)

To create a two-dimensional array with the same data as in the previous example, we

can use a nested Python list:

In [35]: np.array([[1, 2], [3, 4]])

Out[35]: array([[1, 2],

 [3, 4]])

In [36]: data.ndim

Out[36]: 2

In [37]: data.shape

Out[37]: (2, 2)

 Arrays Filled with Constant Values
The functions np.zeros and np.ones create and return arrays filled with zeros and ones,

respectively. They take, as first argument, an integer or a tuple that describes the number

of elements along each dimension of the array. For example, to create a 2 × 3 array filled

with zeros, and an array of length 4 filled with ones, we can use

In [38]: np.zeros((2, 3))

Out[38]: array([[0., 0., 0.],

 [0., 0., 0.]])

In [39]: np.ones(4)

Out[39]: array([1., 1., 1., 1.])

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

53

Like other array-generating functions, the np.zeros and np.ones functions also

accept an optional keyword argument that specifies the data type for the elements in the

array. By default, the data type is float64, and it can be changed to the required type by

explicitly specifying the dtype argument.

In [40]: data = np.ones(4)

In [41]: data.dtype

Out[41]: dtype('float64')

In [42]: data = np.ones(4, dtype=np.int64)

In [43]: data.dtype

Out[43]: dtype('int64')

An array filled with an arbitrary constant value can be generated by first creating

an array filled with ones and then multiplying the array with the desired fill value.

However, NumPy also provides the function np.full that does exactly this in one step.

The following two ways of constructing arrays with ten elements, which are initialized to

the numerical value 5.4 in this example, produces the same results, but using np.full is

slightly more efficient since it avoids the multiplication.

In [44]: x1 = 5.4 * np.ones(10)

In [45]: x2 = np.full(10, 5.4)

An already created array can also be filled with constant values using the np.fill

function, which takes an array and a value as arguments, and set all elements in the array

to the given value. The following two methods to create an array therefore give the same

results:

In [46]: x1 = np.empty(5)

In [47]: x1.fill(3.0)

In [48]: x1

Out[48]: array([3., 3., 3., 3., 3.])

In [49]: x2 = np.full(5, 3.0)

In [50]: x2

Out[50]: array([3., 3., 3., 3., 3.])

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

54

In this last example, we also used the np.empty function, which generates an array

with uninitialized values, of the given size. This function should only be used when the

initialization of all elements can be guaranteed by other means, such as an explicit loop

over the array elements or another explicit assignment. This function is described in

more detail later in this chapter.

 Arrays Filled with Incremental Sequences
In numerical computing it is very common to require arrays with evenly spaced values

between a starting value and ending value. NumPy provides two similar functions to

create such arrays: np.arange and np.linspace. Both functions take three arguments,

where the first two arguments are the start and end values. The third argument of

np.arange is the increment, while for np.linspace it is the total number of points

in the array.

For example, to generate arrays with values between 1 and 10, with increment 1,

we could use either of the following:

In [51]: np.arange(0.0, 10, 1)

Out[51]: array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])

In [52]: np.linspace(0, 10, 11)

Out[52]: array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])

However, note that np.arange does not include the end value (10), while by default

np.linspace does (although this behavior can be changed using the optional endpoint

keyword argument). Whether to use np.arange or np.linspace is mostly a matter of

personal preference, but it is generally recommended to use np.linspace whenever the

increment is a noninteger.

 Arrays Filled with Logarithmic Sequences
The function np.logspace is similar to np.linspace, but the increments between the

elements in the array are logarithmically distributed, and the first two arguments, for

the start and end values, are the powers of the optional base keyword argument (which

defaults to 10). For example, to generate an array with logarithmically distributed values

between 1 and 100, we can use

In [53]: np.logspace(0, 2, 5) # 5 data points between 10**0=1 to 10**2=100

Out[53]: array([1. , 3.16227766, 10. , 31.6227766 , 100.])

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

55

 Meshgrid Arrays
Multidimensional coordinate grids can be generated using the function np.meshgrid.

Given two one-dimensional coordinate arrays (i.e., arrays containing a set of coordinates

along a given dimension), we can generate two-dimensional coordinate arrays using the

np.meshgrid function. An illustration of this is given in the following example:

In [54]: x = np.array([-1, 0, 1])

In [55]: y = np.array([-2, 0, 2])

In [56]: X, Y = np.meshgrid(x, y)

In [57]: X

Out[57]: array([[-1, 0, 1],

 [-1, 0, 1],

 [-1, 0, 1]])

In [58]: Y

Out[58]: array([[-2, -2, -2],

 [0, 0, 0],

 [2, 2, 2]])

A common use-case of the two-dimensional coordinate arrays, like X and Y in this

example, is to evaluate functions over two variables x and y. This can be used when

plotting functions over two variables, as colormap plots and contour plots. For example,

to evaluate the expression (x+y)2 at all combinations of values from the x and y arrays in

the preceding section, we can use the two-dimensional coordinate arrays X and Y:

In [59]: Z = (X + Y) ** 2

In [60]: Z

Out[60]: array([[9, 4, 1],

 [1, 0, 1],

 [1, 4, 9]])

It is also possible to generate higher-dimensional coordinate arrays by passing

more arrays as argument to the np.meshgrid function. Alternatively, the functions np.

mgrid and np.ogrid can also be used to generate coordinate arrays, using a slightly

different syntax based on indexing and slice objects. See their docstrings or the NumPy

documentation for details.

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

56

 Creating Uninitialized Arrays
To create an array of specific size and data type, but without initializing the elements in

the array to any particular values, we can use the function np.empty. The advantage of

using this function, for example, instead of np.zeros, which creates an array initialized

with zero-valued elements, is that we can avoid the initiation step. If all elements are

guaranteed to be initialized later in the code, this can save a little bit of time, especially

when working with large arrays. To illustrate the use of the np.empty function, consider

the following example:

In [61]: np.empty(3, dtype=np.float)

Out[61]: array([1.28822975e-231, 1.28822975e-231, 2.13677905e-314])

Here we generated a new array with three elements of type float. There is no

guarantee that the elements have any particular values, and the actual values will vary

from time to time. For this reason it is important that all values are explicitly assigned

before the array is used; otherwise unpredictable errors are likely to arise. Often the

np.zeros function is a safer alternative to np.empty, and if the performance gain is not

essential, it is better to use np.zeros, to minimize the likelihood of subtle and hard-to-

reproduce bugs due to uninitialized values in the array returned by np.empty.

 Creating Arrays with Properties of Other Arrays
It is often necessary to create new arrays that share properties, such as shape and data

type, with another array. NumPy provides a family of functions for this purpose: np.

ones_like, np.zeros_like, np.full_like, and np.empty_like. A typical use-case is

a function that takes arrays of unspecified type and size as arguments and requires

working arrays of the same size and type. For example, a boilerplate example of this

situation is given in the following function:

def f(x):

 y = np.ones_like(x)

 # compute with x and y

 return y

At the first line of the body of this function, a new array y is created using np.ones_

like, which results in an array of the same size and data type as x, and filled with ones.

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

57

 Creating Matrix Arrays
Matrices, or two-dimensional arrays, are an important case for numerical computing.

NumPy provides functions for generating commonly used matrices. In particular, the

function np.identity generates a square matrix with ones on the diagonal and zeros

elsewhere:

In [62]: np.identity(4)

Out[62]: array([[1., 0., 0., 0.],

 [0., 1., 0., 0.],

 [0., 0., 1., 0.],

 [0., 0., 0., 1.]])

The similar function numpy.eye generates matrices with ones on a diagonal

(optionally offset). This is illustrated in the following example, which produces matrices

with nonzero diagonals above and below the diagonal, respectively:

In [63]: np.eye(3, k=1)

Out[63]: array([[0., 1., 0.],

 [0., 0., 1.],

 [0., 0., 0.]])

In [64]: np.eye(3, k=-1)

Out[64]: array([[0., 0., 0.],

 [1., 0., 0.],

 [0., 1., 0.]])

To construct a matrix with an arbitrary one-dimensional array on the diagonal, we

can use the np.diag function (which also takes the optional keyword argument k to

specify an offset from the diagonal), as demonstrated here:

In [65]: np.diag(np.arange(0, 20, 5))

Out[65]: array([[0, 0, 0, 0],

 [0, 5, 0, 0],

 [0, 0, 10, 0],

 [0, 0, 0, 15]])

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

58

Here we gave a third argument to the np.arange function, which specifies the step

size in the enumeration of elements in the array returned by the function. The resulting

array therefore contains the values [0, 5, 10, 15], which is inserted on the diagonal of a

two-dimensional matrix by the np.diag function.

 Indexing and Slicing
Elements and subarrays of NumPy arrays are accessed using the standard square bracket

notation that is also used with Python lists. Within the square bracket, a variety of

different index formats are used for different types of element selection. In general, the

expression within the bracket is a tuple, where each item in the tuple is a specification of

which elements to select from each axis (dimension) of the array.

 One-Dimensional Arrays
Along a single axis, integers are used to select single elements, and so-called slices are

used to select ranges and sequences of elements. Positive integers are used to index

elements from the beginning of the array (index starts at 0), and negative integers are

used to index elements from the end of the array, where the last element is indexed

with –1, the second to last element with –2, and so on.

Slices are specified using the : notation that is also used for Python lists. In this

notation, a range of elements can be selected using an expression like m:n, which

selects elements starting with m and ending with n − 1 (note that the nth element is

not included). The slice m:n can also be written more explicitly as m : n : 1, where the

number 1 specifies that every element between m and n should be selected. To select

every second element between m and n, use m : n : 2, and to select every p elements, use

m : n : p, and so on. If p is negative, elements are returned in reversed order starting from

m to n+1 (which implies that m has to be larger than n in this case). See Table 2-4 for a

summary of indexing and slicing operations for NumPy arrays.

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

59

The following examples demonstrate index and slicing operations for NumPy arrays.

To begin with, consider an array with a single axis (dimension) that contains a sequence

of integers between 0 and 10:

In [66]: a = np.arange(0, 11)

In [67]: a

Out[67]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

Note that the end value 11 is not included in the array. To select specific elements

from this array, for example, the first, the last, and the 5th element, we can use integer

indexing:

In [68]: a[0] # the first element

Out[68]: 0

In [69]: a[-1] # the last element

Out[69]: 10

In [70]: a[4] # the fifth element, at index 4

Out[70]: 4

Table 2-4. Examples of Array Indexing and Slicing Expressions

Expression Description

a[m] select element at index m, where m is an integer (start counting form 0).

a[-m] select the n th element from the end of the list, where n is an integer. The last

element in the list is addressed as –1, the second to last element as –2, and so on.

a[m:n] select elements with index starting at m and ending at n − 1 (m and n are integers).

a[:] or

a[0:-1]

select all elements in the given axis.

a[:n] select elements starting with index 0 and going up to index n − 1 (integer).

a[m:] or

a[m:-1]

select elements starting with index m (integer) and going up to the last element in

the array.

a[m:n:p] select elements with index m through n (exclusive), with increment p.

a[::-1] select all the elements, in reverse order.

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

60

To select a range of element, say from the second to the second-to-last element,

selecting every element and every second element, respectively, we can use index slices:

In [71]: a[1:-1]

Out[71]: array([1, 2, 3, 4, 5, 6, 7, 8, 9])

In [72]: a[1:-1:2]

Out[72]: array([1, 3, 5, 7, 9])

To select the first five and the last five elements from an array, we can use the slices :5

and –5:, since if m or n is omitted in m:n, the defaults are the beginning and the end of the

array, respectively.

In [73]: a[:5]

Out[73]: array([0, 1, 2, 3, 4])

In [74]: a[-5:]

Out[74]: array([6, 7, 8, 9, 10])

To reverse the array and select only every second value, we can use the slice ::-2, as

shown in the following example:

In [75]: a[::-2]

Out[75]: array([10, 8, 6, 4, 2, 0])

 Multidimensional Arrays
With multidimensional arrays, element selections like those introduced in the previous

section can be applied on each axis (dimension). The result is a reduced array where

each element matches the given selection rules. As a specific example, consider the

following two-dimensional array:

In [76]: f = lambda m, n: n + 10 * m

In [77]: A = np.fromfunction(f, (6, 6), dtype=int)

In [78]: A

Out[78]: array([[0, 1, 2, 3, 4, 5],

 [10, 11, 12, 13, 14, 15],

 [20, 21, 22, 23, 24, 25],

 [30, 31, 32, 33, 34, 35],

 [40, 41, 42, 43, 44, 45],

 [50, 51, 52, 53, 54, 55]])

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

61

We can extract columns and rows from this two-dimensional array using a

combination of slice and integer indexing:

In [79]: A[:, 1] # the second column

Out[79]: array([1, 11, 21, 31, 41, 51])

In [80]: A[1, :] # the second row

Out[80]: array([10, 11, 12, 13, 14, 15])

By applying a slice on each of the array axes, we can extract subarrays (submatrices

in this two-dimensional example):

In [81]: A[:3, :3] # upper half diagonal block matrix

Out[81]: array([[0, 1, 2],

 [10, 11, 12],

 [20, 21, 22]])

In [82]: A[3:, :3] # lower left off-diagonal block matrix

Out[82]: array([[30, 31, 32],

 [40, 41, 42],

 [50, 51, 52]])

With element spacing other that 1, submatrices made up from nonconsecutive

elements can be extracted:

In [83]: A[::2, ::2] # every second element starting from 0, 0

Out[83]: array([[0, 2, 4],

 [20, 22, 24],

 [40, 42, 44]])

In [84]: A[1::2, 1::3] # every second and third element starting from 1, 1

Out[84]: array([[11, 14],

 [31, 34],

 [51, 54]])

This ability to extract subsets of data from a multidimensional array is a simple but

very powerful feature with many data processing applications.

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

62

 Views
Subarrays that are extracted from arrays using slice operations are alternative views of

the same underlying array data. That is, they are arrays that refer to the same data in the

memory as the original array, but with a different strides configuration. When elements

in a view are assigned new values, the values of the original array are therefore also

updated. For example,

In [85]: B = A[1:5, 1:5]

In [86]: B

Out[86]: array([[11, 12, 13, 14],

 [21, 22, 23, 24],

 [31, 32, 33, 34],

 [41, 42, 43, 44]])

In [87]: B[:, :] = 0

In [88]: A

Out[88]: array([[0, 1, 2, 3, 4, 5],

 [10, 0, 0, 0, 0, 15],

 [20, 0, 0, 0, 0, 25],

 [30, 0, 0, 0, 0, 35],

 [40, 0, 0, 0, 0, 45],

 [50, 51, 52, 53, 54, 55]])

Here, assigning new values to the elements in an array B, which is created from

the array A, also modifies the values in A (since both arrays refer to the same data

in the memory). The fact that extracting subarrays results in views rather than new

independent arrays eliminates the need for copying data and improves performance.

When a copy rather than a view is needed, the view can be copied explicitly by using the

copy method of the ndarray instance.

In [89]: C = B[1:3, 1:3].copy()

In [90]: C

Out[90]: array([[0, 0],

 [0, 0]])

In [91]: C[:, :] = 1 # this does not affect B since C is a copy of the

view B[1:3, 1:3]

In [92]: C

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

63

Out[92]: array([[1, 1],

 [1, 1]])

In [93]: B

Out[93]: array([[0, 0, 0, 0],

 [0, 0, 0, 0],

 [0, 0, 0, 0],

 [0, 0, 0, 0]])

In addition to the copy attribute of the ndarray class, an array can also be copied

using the function np.copy or, equivalently, using the np.array function with the

keyword argument copy=True.

 Fancy Indexing and Boolean-Valued Indexing
In the previous section, we looked at indexing NumPy arrays with integers and slices, to

extract individual elements or ranges of elements. NumPy provides another convenient

method to index arrays, called fancy indexing. With fancy indexing, an array can be

indexed with another NumPy array, a Python list, or a sequence of integers, whose

values select elements in the indexed array. To clarify this concept, consider the

following example: we first create a NumPy array with 11 floating-point numbers, and

then index the array with another NumPy array (and Python list), to extract element

numbers 0, 2, and 4 from the original array:

In [94]: A = np.linspace(0, 1, 11)

Out[94]: array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.])

In [95]: A[np.array([0, 2, 4])]

Out[95]: array([0. , 0.2, 0.4])

In [96]: A[[0, 2, 4]] # The same thing can be accomplished by indexing with a

Python list

Out[96]: array([0. , 0.2, 0.4])

This method of indexing can be used along each axis (dimension) of a

multidimensional NumPy array. It requires that the elements in the array or list used for

indexing are integers.

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

64

Another variant of indexing NumPy arrays is to use Boolean-valued index arrays. In

this case, each element (with values True or False) indicates whether or not to select the

element from the list with the corresponding index. That is, if element n in the indexing

array of Boolean values is True, then element n is selected from the indexed array. If the

value is False, then element n is not selected. This index method is handy when filtering out

elements from an array. For example, to select all the elements from the array A (as defined in

the preceding section) that exceed the value 0.5, we can use the following combination of the

comparison operator applied to a NumPy array and indexing using a Boolean-valued array:

In [97]: A > 0.5

Out[97]: array([False, False, False, False, False, False, True, True, True,

True, True], dtype=bool)

In [98]: A[A > 0.5]

Out[98]: array([0.6, 0.7, 0.8, 0.9, 1.])

Unlike arrays created by using slices, the arrays returned using fancy indexing and

Boolean-valued indexing are not views but rather new independent arrays. Nonetheless,

it is possible to assign values to elements selected using fancy indexing:

In [99]: A = np.arange(10)

In [100]: indices = [2, 4, 6]

In [101]: B = A[indices]

In [102]: B[0] = -1 # this does not affect A

In [103]: A

Out[103]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [104]: A[indices] = -1 # this alters A

In [105]: A

Out[105]: array([0, 1, -1, 3, -1, 5, -1, 7, 8, 9])

and likewise for Boolean-valued indexing:

In [106]: A = np.arange(10)

In [107]: B = A[A > 5]

In [108]: B[0] = -1 # this does not affect A

In [109]: A

Out[109]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

65

In [110]: A[A > 5] = -1 # this alters A

In [111]: A

Out[111]: array([0, 1, 2, 3, 4, 5, -1, -1, -1, -1])

A visual summary of different methods to index NumPy arrays is given in Figure 2-1.

Note that each type of indexing we have discussed here can be independently applied to

each dimension of an array.

Figure 2-1. Visual summary of indexing methods for NumPy arrays. These
diagrams represent NumPy arrays of shape (4, 4), and the highlighted elements
are those that are selected using the indexing expression shown above the block
representations of the arrays.

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

66

Table 2-5. Summary of NumPy Functions for Manipulating the Dimensions and

the Shape of Arrays

Function/Method Description

np.reshape,

np.ndarray.reshape

reshape an N-dimensional array. The total number of elements must

remain the same.

np.ndarray.flatten Creates a copy of an N-dimensional array, and reinterpret it as a

one- dimensional array (i.e., all dimensions are collapsed into one).

np.ravel,

np.ndarray.ravel

Create a view (if possible, otherwise a copy) of an N-dimensional array

in which it is interpreted as a one-dimensional array.

np.squeeze removes axes with length 1.

np.expand_dims,

np.newaxis

Add a new axis (dimension) of length 1 to an array, where np.

newaxis is used with array indexing.

np.transpose,

np.ndarray.transpose,

np.ndarray.T

Transpose the array. The transpose operation corresponds to reversing

(or more generally, permuting) the axes of the array.

np.hstack stacks a list of arrays horizontally (along axis 1): for example, given a

list of column vectors, appends the columns to form a matrix.

np.vstack stacks a list of arrays vertically (along axis 0): for example, given a list

of row vectors, appends the rows to form a matrix.

np.dstack stacks arrays depth-wise (along axis 2).

np.concatenate Creates a new array by appending arrays after each other, along a

given axis.

 Reshaping and Resizing
When working with data in array form, it is often useful to rearrange arrays and alter the

way they are interpreted. For example, an N × N matrix array could be rearranged into a

vector of length N2, or a set of one-dimensional arrays could be concatenated together

or stacked next to each other to form a matrix. NumPy provides a rich set of functions of

this type of manipulation. See Table 2-5 for a summary of a selection of these functions.

(continued)

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

67

Reshaping an array does not require modifying the underlying array data; it only

changes in how the data is interpreted, by redefining the array’s strides attribute.

An example of this type of operation is a 2 × 2 array (matrix) that is reinterpreted as a

1 × 4 array (vector). In NumPy, the function np.reshape, or the ndarray class method

reshape, can be used to reconfigure how the underlying data is interpreted. It takes an

array and the new shape of the array as arguments:

In [112]: data = np.array([[1, 2], [3, 4]])

In [113]: np.reshape(data, (1, 4))

Out[113]: array([[1, 2, 3, 4]])

In [114]: data.reshape(4)

Out[114]: array([1, 2, 3, 4])

It is necessary that the requested new shape of the array match the number of

elements in the original size. However, the number of axes (dimensions) does not need

to be conserved, as illustrated in the previous example, where in the first case, the

new array has dimension 2 and shape (1, 4), while in the second case, the new array

has dimension 1 and shape (4,). This example also demonstrates two different ways

of invoking the reshape operation: using the function np.reshape and the ndarray

method reshape. Note that reshaping an array produces a view of the array, and if an

independent copy of the array is needed, the view has to be copied explicitly (e.g., using

np.copy).

Function/Method Description

np.resize resizes an array. Creates a new copy of the original array, with the

requested size. If necessary, the original array will be repeated to fill

up the new array.

np.append Appends an element to an array. Creates a new copy of the array.

np.insert Inserts a new element at a given position. Creates a new copy of the

array.

np.delete deletes an element at a given position. Creates a new copy of the array.

Table 2-5. (continued)

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

68

The np.ravel (and its corresponding ndarray method) is a special case of reshape,

which collapses all dimensions of an array and returns a flattened one-dimensional

array with a length that corresponds to the total number of elements in the original

array. The ndarray method flatten performs the same function but returns a copy

instead of a view.

In [115]: data = np.array([[1, 2], [3, 4]])

In [116]: data

Out[116]: array([[1, 2],

 [3, 4]])

In [117]: data.flatten()

Out[117]: array([1, 2, 3, 4])

In [118]: data.flatten().shape

Out[118]: (4,)

While np.ravel and np.flatten collapse the axes of an array into a one-dimensional

array, it is also possible to introduce new axes into an array, either by using np.reshape

or, when adding new empty axes, using indexing notation and the np.newaxis keyword

at the place of a new axis. In the following example, the array data has one axis, so it

should normally be indexed with a tuple with one element. However, if it is indexed with

a tuple with more than one element, and if the extra indices in the tuple have the value

np.newaxis, then the corresponding new axes are added:

In [119]: data = np.arange(0, 5)

In [120]: column = data[:, np.newaxis]

In [121]: column

Out[121]: array([[0],

 [1],

 [2],

 [3],

 [4]])

In [122]: row = data[np.newaxis, :]

In [123]: row

Out[123]: array([[0, 1, 2, 3, 4]])

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

69

The function np.expand_dims can also be used to add new dimensions to an

array, and in the preceding example, the expression data[:, np.newaxis] is

equivalent to np.expand_dims(data, axis=1), and data[np.newaxis, :] is equivalent

to np.expand_dims(data, axis=0). Here the axis argument specifies the location

relative to the existing axes where the new axis is to be inserted.

We have up to now looked at methods to rearrange arrays in ways that do not affect

the underlying data. Earlier in this chapter, we also looked at how to extract subarrays

using various indexing techniques. In addition to reshaping and selecting subarrays,

it is often necessary to merge arrays into bigger arrays, for example, when joining

separately computed or measured data series into a higher-dimensional array, such as

a matrix. For this task, NumPy provides the functions np.vstack, for vertical stacking of,

for example, rows into a matrix, and np.hstack for horizontal stacking of, for example,

columns into a matrix. The function np.concatenate provides similar functionality, but

it takes a keyword argument axis that specifies the axis along which the arrays are to be

 concatenated.

The shape of the arrays passed to np.hstack, np.vstack, and np.concatenate

is important to achieve the desired type of array joining. For example, consider the

following cases: say we have one-dimensional arrays of data, and we want to stack them

vertically to obtain a matrix where the rows are made up of the one-dimensional arrays.

We can use np.vstack to achieve this

In [124]: data = np.arange(5)

In [125]: data

Out[125]: array([0, 1, 2, 3, 4])

In [126]: np.vstack((data, data, data))

Out[126]: array([[0, 1, 2, 3, 4],

 [0, 1, 2, 3, 4],

 [0, 1, 2, 3, 4]])

If we instead want to stack the arrays horizontally, to obtain a matrix where the arrays

are the column vectors, we might first attempt something similar using np.hstack:

In [127]: data = np.arange(5)

In [128]: data

Out[128]: array([0, 1, 2, 3, 4])

In [129]: np.hstack((data, data, data))

Out[129]: array([0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4])

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

70

This indeed stacks the arrays horizontally, but not in the way intended here. To

make np.hstack treat the input arrays as columns and stack them accordingly, we

need to make the input arrays two-dimensional arrays of shape (1, 5) rather than

one- dimensional arrays of shape (5,). As discussed earlier, we can insert a new axis by

indexing with np.newaxis:

In [130]: data = data[:, np.newaxis]

In [131]: np.hstack((data, data, data))

Out[131]: array([[0, 0, 0],

 [1, 1, 1],

 [2, 2, 2],

 [3, 3, 3],

 [4, 4, 4]])

The behavior of the functions for horizontal and vertical stacking, as well as

concatenating arrays using np.concatenate, is clearest when the stacked arrays have

the same number of dimensions as the final array and when the input arrays are stacked

along an axis for which they have length 1.

The number of elements in a NumPy array cannot be changed once the array has

been created. To insert, append, and remove elements from a NumPy array, for example,

using the function np.append, np.insert, and np.delete, a new array must be created

and the data copied to it. It may sometimes be tempting to use these functions to grow

or shrink the size of a NumPy array, but due to the overhead of creating new arrays and

copying the data, it is usually a good idea to preallocate arrays with size such that they do

not later need to be resized.

 Vectorized Expressions
The purpose of storing numerical data in arrays is to be able to process the data with

concise vectorized expressions that represent batch operations that are applied to all

elements in the arrays. Efficient use of vectorized expressions eliminates the need of

many explicit for loops. This results in less verbose code, better maintainability, and

higher-performing code. NumPy implements functions and vectorized operations

corresponding to most fundamental mathematical functions and operators. Many

of these functions and operations act on arrays on an elementwise basis, and binary

operations require all arrays in an expression to be of compatible size. The meaning of

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

71

compatible size is normally that the variables in an expression represent either scalars

or arrays of the same size and shape. More generally, a binary operation involving two

arrays is well defined if the arrays can be broadcasted into the same shape and size.

In the case of an operation between a scalar and an array, broadcasting refers to the

scalar being distributed and the operation applied to each element in the array. When

an expression contains arrays of unequal sizes, the operations may still be well defined if

the smaller of the array can be broadcasted (“effectively expanded”) to match the larger

array according to NumPy’s broadcasting rule: an array can be broadcasted over another

array if their axes on a one-by-one basis either have the same length or if either of them

have length 1. If the number of axes of the two arrays is not equal, the array with fewer

axes is padded with new axes of length 1 from the left until the numbers of dimensions of

the two arrays agree.

Two simple examples that illustrate array broadcasting are shown in Figure 2-2: a

3 × 3 matrix is added to a 1 × 3 row vector and a 3 × 1 column vector, respectively, and

in both cases the result is a 3 × 3 matrix. However, the elements in the two resulting

matrices are different, because the way the elements of the row and column vectors are

broadcasted to the shape of the larger array is different depending on the shape of the

arrays, according to NumPy’s broadcasting rule.

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

72

 Arithmetic Operations
The standard arithmetic operations with NumPy arrays perform elementwise

operations. Consider, for example, the addition, subtraction, multiplication, and division

of equal-sized arrays:

In [132]: x = np.array([[1, 2], [3, 4]])

In [133]: y = np.array([[5, 6], [7, 8]])

In [134]: x + y

Out[134]: array([[6, 8],

 [10, 12]])

Figure 2-2. Visualization of broadcasting of row and column vectors into the
shape of a matrix. The highlighted elements represent true elements of the arrays,
while the light gray-shaded elements describe the broadcasting of the elements of
the array of smaller size.

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

73

In [135]: y - x

Out[135]: array([[4, 4],

 [4, 4]])

In [136]: x * y

Out[136]: array([[5, 12],

 [21, 32]])

In [137]: y / x

Out[137]: array([[5. , 3.],

 [2.33333333, 2.]])

In operations between scalars and arrays, the scalar value is applied to each element

in the array, as one could expect:

In [138]: x * 2

Out[138]: array([[2, 4],

 [6, 8]])

In [139]: 2 ** x

Out[139]: array([[2, 4],

 [8, 16]])

In [140]: y / 2

Out[140]: array([[2.5, 3.],

 [3.5, 4.]])

In [141]: (y / 2).dtype

Out[141]: dtype('float64')

Note that the dtype of the resulting array for an expression can be promoted if the

computation requires it, as shown in the preceding example with division between an

integer array and an integer scalar, which in that case resulted in an array with a dtype

that is np.float64.

If an arithmetic operation is performed on arrays with incompatible size or shape, a

ValueError exception is raised:

In [142]: x = np.array([1, 2, 3, 4]).reshape(2, 2)

In [143]: z = np.array([1, 2, 3, 4])

In [144]: x / z

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

74

ValueError Traceback (most recent call last)

<ipython-input-144-b88ced08eb6a> in <module>()

----> 1 x / z

ValueError: operands could not be broadcast together with shapes (2,2) (4,)

Here the array x has shape (2, 2) and the array z has shape (4,), which cannot

be broadcasted into a form that is compatible with (2, 2). If, on the other hand, z has

shape (2,), (2, 1), or (1, 2), then it can broadcasted to the shape (2, 2) by effectively

repeating the array z along the axis with length 1. Let’s first consider an example with an

array z of shape (1, 2), where the first axis (axis 0) has length 1:

In [145]: z = np.array([[2, 4]])

In [146]: z.shape

Out[146]: (1, 2)

Dividing the array x with array z is equivalent to dividing x with an array zz that is

constructed by repeating (here using np.concatenate) the row vector z to obtain an

array zz that has the same dimensions as x:

In [147]: x / z

Out[147]: array([[0.5, 0.5],

 [1.5, 1.]])

In [148]: zz = np.concatenate([z, z], axis=0)

In [149]: zz

Out[149]: array([[2, 4],

 [2, 4]])

In [150]: x / zz

Out[150]: array([[0.5, 0.5],

 [1.5, 1.]])

Let’s also consider the example in which the array z has shape (2, 1) and where the

second axis (axis 1) has length 1:

In [151]: z = np.array([[2], [4]])

In [152]: z.shape

Out[152]: (2, 1)

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

75

In this case, dividing x with z is equivalent to dividing x with an array zz that is

constructed by repeating the column vector z until a matrix with the same dimension as

x is obtained.

In [153]: x / z

Out[153]: array([[0.5 , 1.],

 [0.75, 1.]])

In [154]: zz = np.concatenate([z, z], axis=1)

In [155]: zz

Out[155]: array([[2, 2],

 [4, 4]])

In [156]: x / zz

Out[156]: array([[0.5 , 1.],

 [0.75, 1.]])

In summary, these examples show how arrays with shape (1, 2) and (2, 1) are

broadcasted to the shape (2, 2) of the array x when the operation x / z is performed.

In both cases, the result of the operation x / z is the same as first repeating the smaller

array z along its axis of length 1 to obtain a new array zz with the same shape as x and

then performing the equal-sized array operation x / zz. However, the implementation

of the broadcasting does not explicitly perform this expansion and the corresponding

memory copies, but it can be helpful to think of the array broadcasting in these terms.

A summary of the operators for arithmetic operations with NumPy arrays is given

in Table 2-6. These operators use the standard symbols used in Python. The result of an

arithmetic operation with one or two arrays is a new independent array, with its own

data in the memory. Evaluating complicated arithmetic expression might therefore

trigger many memory allocation and copy operations, and when working with large

arrays, this can lead to a large memory footprint and impact the performance negatively.

In such cases, using inplace operation (see Table 2-6) can reduce the memory footprint

and improve performance. As an example of inplace operators, consider the following

two statements, which have the same effect:

In [157]: x = x + y

In [158]: x += y

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

76

The two expressions have the same effect, but in the first case, x is reassigned to a

new array, while in the second case, the values of array x are updated inplace. Extensive

use of inplace operators tends to impair code readability, and inplace operators should

therefore be used only when necessary.

 Elementwise Functions
In addition to arithmetic expressions using operators, NumPy provides vectorized

functions for elementwise evaluation of many elementary mathematical functions

and operations. Table 2-7 gives a summary of elementary mathematical functions in

NumPy.3 Each of these functions takes a single array (of arbitrary dimension) as input

and returns a new array of the same shape, where for each element the function has

been applied to the corresponding element in the input array. The data type of the

output array is not necessarily the same as that of the input array.

3 Note that this is not a complete list of the available elementwise functions in NumPy. See the
NumPy reference documentations for comprehensive lists.

Table 2-6. Operators for Elementwise

Arithmetic Operation on NumPy Arrays

Operator Operation

+, += Addition

-, -= subtraction

*, *= Multiplication

/, /= division

//, //= Integer division

**, **= exponentiation

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

77

For example, the np.sin function (which takes only one argument) is used to

compute the sine function for all values in the array:

In [159]: x = np.linspace(-1, 1, 11)

In [160]: x

Out[160]: array([-1. , -0.8, -0.6, -0.4, -0.2, 0. , 0.2, 0.4, 0.6, 0.8, 1.])

In [161]: y = np.sin(np.pi * x)

In [162]: np.round(y, decimals=4)

Out[162]: array([-0., -0.5878, -0.9511, -0.9511, -0.5878, 0., 0.5878, 0.9511,

0.9511, 0.5878, 0.])

Here we also used the constant np.pi and the function np.round to round the values

of y to four decimals. Like the np.sin function, many of the elementary math functions

take one input array and produce one output array. In contrast, many of the mathematical

operator functions (Table 2-8) operates on two input arrays returns one array:

In [163]: np.add(np.sin(x) ** 2, np.cos(x) ** 2)

Out[163]: array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])

In [164]: np.sin(x) ** 2 + np.cos(x) ** 2

Out[164]: array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])

Table 2-7. Selection of NumPy Functions for Elementwise Elementary

Mathematical Functions

NumPy Function Description

np.cos, np.sin, np.tan Trigonometric functions.

np.arccos, np.arcsin, np.arctan Inverse trigonometric functions.

np.cosh, np.sinh, np.tanh hyperbolic trigonometric functions.

np.arccosh, np.arcsinh, np.arctanh Inverse hyperbolic trigonometric functions.

np.sqrt square root.

np.exp exponential.

np.log, np.log2, np.log10 logarithms of base e, 2, and 10, respectively.

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

78

Note that in this example, np.add and the operator + are equivalent, and for normal

use the operator should be used.

Occasionally it is necessary to define new functions that operate on NumPy arrays

on an element-by-element basis. A good way to implement such functions is to express

it in terms of already existing NumPy operators and expressions, but in cases when this

is not possible, the np.vectorize function can be a convenient tool. This function takes

a nonvectorized function and returns a vectorized function. For example, consider the

following implementation of the Heaviside step function, which works for scalar input:

In [165]: def heaviside(x):

 ...: return 1 if x > 0 else 0

In [166]: heaviside(-1)

Out[166]: 0

In [167]: heaviside(1.5)

Out[167]: 1

Table 2-8. Summary of NumPy Functions for Elementwise Mathematical

Operations

NumPy Function Description

np.add, np.subtract,

np.multiply, np.divide

Addition, subtraction, multiplication, and division of two NumPy

arrays.

np.power raises first input argument to the power of the second input

argument (applied elementwise).

np.remainder The remainder of division.

np.reciprocal The reciprocal (inverse) of each element.

np.real, np.imag,

np.conj

The real part, imaginary part, and the complex conjugate of the

elements in the input arrays.

np.sign, np.abs The sign and the absolute value.

np.floor, np.ceil,

np.rint

Convert to integer values.

np.round rounds to a given number of decimals.

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

79

However, unfortunately this function does not work for NumPy array input:

In [168]: x = np.linspace(-5, 5, 11)

In [169]: heaviside(x)

...

ValueError: The truth value of an array with more than one element is

ambiguous. Use a.any() or a.all()

Using np.vectorize the scalar Heaviside function can be converted into a

vectorized function that works with NumPy arrays as input:

In [170]: heaviside = np.vectorize(heaviside)

In [171]: heaviside(x)

Out[171]: array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])

Although the function returned by np.vectorize works with arrays, it will be

relatively slow since the original function must be called for each element in the array.

There are much better ways to implementing this particular function using arithmetic

with Boolean-valued arrays, as discussed later in this chapter:

In [172]: def heaviside(x):

 ...: return 1.0 * (x > 0)

Nonetheless, np.vectorize can often be a quick and convenient way to vectorize a

function written for scalar input.

In addition to NumPy’s functions for elementary mathematical function, as

summarized in Table 2-7, there are also numerous functions in NumPy for mathematical

operations. A summary of a selection of these functions is given in Table 2-8.

 Aggregate Functions
NumPy provides another set of functions for calculating aggregates for NumPy arrays,

which take an array as input and by default return a scalar as output. For example,

statistics such as averages, standard deviations, and variances of the values in the input

array, and functions for calculating the sum and the product of elements in an array, are

all aggregate functions.

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

80

A summary of aggregate functions is given in Table 2-9. All of these functions are

also available as methods in the ndarray class. For example, np.mean(data) and data.

mean() in the following example are equivalent:

In [173]: data = np.random.normal(size=(15,15))

In [174]: np.mean(data)

Out[174]: -0.032423651106794522

In [175]: data.mean()

Out[175]: -0.032423651106794522

Table 2-9. NumPy Functions for Calculating Aggregates of NumPy Arrays

NumPy Function Description

np.mean The average of all values in the array.

np.std standard deviation.

np.var Variance.

np.sum sum of all elements.

np.prod Product of all elements.

np.cumsum Cumulative sum of all elements.

np.cumprod Cumulative product of all elements.

np.min, np.max The minimum/maximum value in an array.

np.argmin, np.argmax The index of the minimum/maximum value in an array.

np.all returns True if all elements in the argument array are nonzero.

np.any returns True if any of the elements in the argument array is nonzero.

By default, the functions in Table 2-9 aggregate over the entire input array. Using

the axis keyword argument with these functions, and their corresponding ndarray

methods, it is possible to control over which axis in the array aggregation is carried out.

The axis argument can be an integer, which specifies the axis to aggregate values over.

In many cases the axis argument can also be a tuple of integers, which specifies multiple

axes to aggregate over. The following example demonstrates how calling the aggregate

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

81

function np.sum on the array of shape (5, 10, 15) reduces the dimensionality of the

array depending on the values of the axis argument:

In [176]: data = np.random.normal(size=(5, 10, 15))

In [177]: data.sum(axis=0).shape

Out[177]: (10, 15)

In [178]: data.sum(axis=(0, 2)).shape

Out[178]: (10,)

In [179]: data.sum()

Out[179]: -31.983793284860798

A visual illustration of how aggregation over all elements, over the first axis, and over

the second axis of a 3 × 3 array is shown in Figure 2-3. In this example, the data array is

filled with integers between 1 and 9:

In [180]: data = np.arange(1,10).reshape(3,3)

In [181]: data

Out[181]: array([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

Figure 2-3. Illustration of array aggregation functions along all axes (left), the first
axis (center), and the second axis (right) of a two-dimensional array of shape 3 × 3

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

82

and we compute the aggregate sum of the entire array, over the axis 0, and over axis 1,

respectively:

In [182]: data.sum()

Out[182]: 45

In [183]: data.sum(axis=0)

Out[183]: array([12, 15, 18])

In [184]: data.sum(axis=1)

Out[184]: array([6, 15, 24])

 Boolean Arrays and Conditional Expressions
When computing with NumPy arrays, there is often a need to compare elements in

different arrays and perform conditional computations based on the results of such

comparisons. Like with arithmetic operators, NumPy arrays can be used with the usual

comparison operators, for example, >, <, >=, <=, ==, and !=, and the comparisons are

made on an element-by-element basis. The broadcasting rules also apply to comparison

operators, and if two operators have compatible shapes and sizes, the result of the

comparison is a new array with Boolean values (with dtype as np.bool) that gives the

result of the comparison for each element:

In [185]: a = np.array([1, 2, 3, 4])

In [186]: b = np.array([4, 3, 2, 1])

In [187]: a < b

Out[187]: array([True, True, False, False], dtype=bool)

To use the result of a comparison between arrays in, for example, an if statement,

we need to aggregate the Boolean values of the resulting arrays in some suitable fashion,

to obtain a single True or False value. A common use-case is to apply the np.all or np.

any aggregation functions, depending on the situation at hand:

In [188]: np.all(a < b)

Out[188]: False

In [189]: np.any(a < b)

Out[189]: True

In [190]: if np.all(a < b):

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

83

 ...: print("All elements in a are smaller than their corresponding

element in b")

 ...: elif np.any(a < b):

 ...: print("Some elements in a are smaller than their corresponding

element in b")

 ...: else:

 ...: print("All elements in b are smaller than their corresponding

element in a")

Some elements in a are smaller than their corresponding element in b

The advantage of Boolean-valued arrays, however, is that they often make it possible

to avoid conditional if statements altogether. By using Boolean-valued arrays in

arithmetic expressions, it is possible to write conditional computations in vectorized

form. When appearing in an arithmetic expression together with a scalar number, or

another NumPy array with a numerical data type, a Boolean array is converted to a

numerical- valued array with values 0 and 1 inplace of False and True, respectively.

In [191]: x = np.array([-2, -1, 0, 1, 2])

In [192]: x > 0

Out[192]: array([False, False, False, True, True], dtype=bool)

In [193]: 1 * (x > 0)

Out[193]: array([0, 0, 0, 1, 1])

In [194]: x * (x > 0)

Out[194]: array([0, 0, 0, 1, 2])

This is a useful property for conditional computing, such as when defining piecewise

functions. For example, if we need to define a function describing a pulse of a given

height, width, and position, we can implement this function by multiplying the height

(a scalar variable) with two Boolean-valued arrays for the spatial extension of the pulse:

In [195]: def pulse(x, position, height, width):

 ...: return height * (x >= position) * (x <= (position + width))

In [196]: x = np.linspace(-5, 5, 11)

In [197]: pulse(x, position=-2, height=1, width=5)

Out[197]: array([0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0])

In [198]: pulse(x, position=1, height=1, width=5)

Out[198]: array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

84

In this example, the expression (x >= position) * (x <= (position + width)) is a

multiplication of two Boolean-valued arrays, and for this case the multiplication operator

acts as an elementwise AND operator. The function pulse could also be implemented

using NumPy’s function for elementwise AND operations, np.logical_and:

In [199]: def pulse(x, position, height, width):

 ...: return height * np.logical_and(x >= position, x <= (position +

width))

There are also functions for other logical operations, such as NOT, OR, and XOR,

and functions for selectively picking values from different arrays depending on a

given condition np.where, a list of conditions np.select, and an array of indices

np.choose. See Table 2-10 for a summary of such functions, and the following examples

demonstrate the basic usage of some of these functions. The np.where function selects

elements from two arrays (second and third arguments), given a Boolean-valued

array condition (the first argument). For elements where the condition is True, the

corresponding values from the array given as second argument are selected, and if the

condition is False, elements from the third argument array are selected:

In [200]: x = np.linspace(-4, 4, 9)

In [201]: np.where(x < 0, x**2, x**3)

Out[201]: array([16., 9., 4., 1., 0., 1., 8., 27., 64.])

Table 2-10. NumPy Functions for Conditional and Logical Expressions

Function Description

np.where Chooses values from two arrays depending on the value

of a condition array.

np.choose Chooses values from a list of arrays depending on the

values of a given index array.

np.select Chooses values from a list of arrays depending on a list

of conditions.

np.nonzero returns an array with indices of nonzero elements.

np.logical_and Performs an elementwise ANd operation.

np.logical_or, np.logical_xor elementwise or/Xor operations.

np.logical_not elementwise NoT operation (inverting).

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

85

The np.select function works similarly, but instead of a Boolean-valued condition

array, it expects a list of Boolean-valued condition arrays and a corresponding list of

value arrays:

In [202]: np.select([x < -1, x < 2, x >= 2],

 ...: [x**2 , x**3 , x**4])

Out[202]: array([16., 9., 4., -1., 0., 1., 16.,

81., 256.])

The np.choose takes as a first argument a list or an array with indices that determine

from which array in a given list of arrays an element is picked from:

In [203]: np.choose([0, 0, 0, 1, 1, 1, 2, 2, 2],

 ...: [x**2, x**3, x**4])

Out[203]: array([16., 9., 4., -1., 0., 1., 16.,

81., 256.])

The function np.nonzero returns a tuple of indices that can be used to index the

array (e.g., the one that the condition was based on). This has the same results as

indexing the array directly with abs(x) > 2, but it uses fancy indexing with the indices

returned by np.nonzero rather than Boolean-valued array indexing.

In [204]: np.nonzero(abs(x) > 2)

Out[204]: (array([0, 1, 7, 8]),)

In [205]: x[np.nonzero(abs(x) > 2)]

Out[205]: array([-4., -3., 3., 4.])

In [206]: x[abs(x) > 2]

Out[206]: array([-4., -3., 3., 4.])

 Set Operations
The Python language provides a convenient set data structure for managing unordered

collections of unique objects. The NumPy array class ndarray can also be used to

describe such sets, and NumPy contains functions for operating on sets stored as

NumPy arrays. These functions are summarized in Table 2-11. Using NumPy arrays to

describe and operate on sets allows expressing certain operations in vectorized form.

For example, testing if the values in a NumPy array are included in a set can be done

using the np.in1d function, which tests for the existence of each element of its first

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

86

argument in the array passed as the second argument. To see how this works, consider

the following example: first, to ensure that a NumPy array is a proper set, we can use the

np.unique function, which returns a new array with unique values:

In [207]: a = np.unique([1, 2, 3, 3])

In [208]: b = np.unique([2, 3, 4, 4, 5, 6, 5])

In [209]: np.in1d(a, b)

Out[209]: array([False, True, True], dtype=bool)

Table 2-11. NumPy Functions for Operating on Sets

Function Description

np.unique Creates a new array with unique elements, where each value only appears

once.

np.in1d Tests for the existence of an array of elements in another array.

np.intersect1d returns an array with elements that are contained in two given arrays.

np.setdiff1d returns an array with elements that are contained in one, but not the other, of

two given arrays.

np.union1d returns an array with elements that are contained in either, or both, of two

given arrays.

Here, the existence of each element in a in the set b was tested, and the result is a

Boolean-valued array. Note that we can use the in keyword to test for the existence of

single elements in a set represented as NumPy array:

In [210]: 1 in a

Out[210]: True

In [211]: 1 in b

Out[211]: False

To test if a is a subset of b, we can use the np.in1d, as in the previous example,

together with the aggregation function np.all (or the corresponding ndarray method) :

In [212]: np.all(np.in1d(a, b))

Out[212]: False

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

87

The standard set operations union (the set of elements included in either or both

sets), intersection (elements included in both sets), and difference (elements included in

one of the sets but not the other) are provided by np.union1d, np.intersect1d, and np.

setdiff1d, respectively:

In [213]: np.union1d(a, b)

Out[213]: array([1, 2, 3, 4, 5, 6])

In [214]: np.intersect1d(a, b)

Out[214]: array([2, 3])

In [215]: np.setdiff1d(a, b)

Out[215]: array([1])

In [216]: np.setdiff1d(b, a)

Out[216]: array([4, 5, 6])

 Operations on Arrays
In addition to elementwise and aggregation functions, some operations act on arrays

as a whole and produce a transformed array of the same size. An example of this type of

operation is the transpose, which flips the order of the axes of an array. For the special

case of a two-dimensional array, i.e., a matrix, the transpose simply exchanges rows and

columns:

In [217]: data = np.arange(9).reshape(3, 3)

In [218]: data

Out[218]: array([[0, 1, 2],

 [3, 4, 5],

 [6, 7, 8]])

In [219]: np.transpose(data)

Out[219]: array([[0, 3, 6],

 [1, 4, 7],

 [2, 5, 8]])

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

88

The transpose function np.transpose also exists as a method in ndarray and as the

special method name ndarray.T. For an arbitrary N-dimensional array, the transpose

operation reverses all the axes, as can be seen from the following example (note that the

shape attribute is used here to display the number of values along each axis of the array) :

In [220]: data = np.random.randn(1, 2, 3, 4, 5)

In [221]: data.shape

Out[221]: (1, 2, 3, 4, 5)

In [222]: data.T.shape

Out[222]: (5, 4, 3, 2, 1)

The np.fliplr (flip left-right) and np.flipud (flip up-down) functions perform

operations that are similar to the transpose: they reshuffle the elements of an array so

that the elements in rows (np.fliplr) or columns (np.flipud) are reversed, and the

shape of the output array is the same as the input. The np.rot90 function rotates the

elements in the first two axes in an array by 90 degrees, and like the transpose function,

it can change the shape of the array. Table 2-12 gives a summary of NumPy functions for

common array operations.

 Matrix and Vector Operations
We have so far discussed general N-dimensional arrays. One of the main applications of

such arrays is to represent the mathematical concepts of vectors, matrices, and tensors,

and in this use-case, we also frequently need to calculate vector and matrix operations

Table 2-12. Summary of NumPy Functions for Array Operations

Function Description

np.transpose,

np.ndarray.transpose,

np.ndarray.T

The transpose (reverse axes) of an array.

np.fliplr/np.flipud reverse the elements in each row/column.

np.rot90 rotates the elements along the first two axes by 90 degrees.

np.sort,

np.ndarray.sort

sort the elements of an array along a given specified axis (which

default to the last axis of the array). The np.ndarray method sort

performs the sorting in place, modifying the input array.

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

89

such as scalar (inner) products, dot (matrix) products, and tensor (outer) products. A

summary of NumPy’s functions for matrix operations is given in Table 2-13.

Table 2-13. Summary of NumPy Functions for Matrix Operations

NumPy Function Description

np.dot Matrix multiplication (dot product) between two given arrays representing

vectors, arrays, or tensors.

np.inner scalar multiplication (inner product) between two arrays representing vectors.

np.cross The cross product between two arrays that represent vectors.

np.tensordot dot product along specified axes of multidimensional arrays.

np.outer outer product (tensor product of vectors) between two arrays representing

vectors.

np.kron Kronecker product (tensor product of matrices) between arrays representing

matrices and higher-dimensional arrays.

np.einsum evaluates einstein’s summation convention for multidimensional arrays.

In NumPy, the * operator is used for elementwise multiplication. For two two-

dimensional arrays A and B, the expression A * B therefore does not compute a matrix

product (in contrast to many other computing environments). Currently there is no

operator for denoting matrix multiplication,4 and instead the NumPy function np.dot

is used for this purpose. There is also a corresponding method in the ndarray class. To

compute the product of two matrices A and B, of size N × M and M × P, which results in a

matrix of size N × P, we can use:

In [223]: A = np.arange(1, 7).reshape(2, 3)

In [224]: A

Out[224]: array([[1, 2, 3],

 [4, 5, 6]])

In [225]: B = np.arange(1, 7).reshape(3, 2)

In [226]: B

4 Python recently adopted the @ symbol for denoting matrix multiplication, and as of Python 3.5,
this operator is now available. However, at the time of writing, this operator is still not widely
used. See http://legacy.python.org/dev/peps/pep-0465 for details.

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

http://legacy.python.org/dev/peps/pep-0465

90

Out[226]: array([[1, 2],

 [3, 4],

 [5, 6]])

In [227]: np.dot(A, B)

Out[227]: array([[22, 28],

 [49, 64]])

In [228]: np.dot(B, A)

Out[228]: array([[9, 12, 15],

 [19, 26, 33],

 [29, 40, 51]])

The np.dot function can also be used for matrix-vector multiplication (i.e.,

multiplication of a two-dimensional array, which represents a matrix, with a one-

dimensional array representing a vector) . For example,

In [229]: A = np.arange(9).reshape(3, 3)

In [230]: A

Out[230]: array([[0, 1, 2],

 [3, 4, 5],

 [6, 7, 8]])

In [231]: x = np.arange(3)

In [232]: x

Out[232]: array([0, 1, 2])

In [233]: np.dot(A, x)

Out[233]: array([5, 14, 23])

In this example, x can be either a two-dimensional array of shape (1, 3) or a one-

dimensional array with shape (3,). In addition to the function np.dot, there is also a

corresponding method dot in ndarray, which can be used as in the following example:

In [234]: A.dot(x)

Out[234]: array([5, 14, 23])

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

91

Unfortunately, nontrivial matrix multiplication expressions can often become

complex and hard to read when using either np.dot or np.ndarray.dot. For example,

even a relatively simple matrix expression like the one for a similarity transform,

A′ = BAB−1, must be represented with relatively cryptic nested expressions,5 such as

either

In [235]: A = np.random.rand(3,3)

In [236]: B = np.random.rand(3,3)

In [237]: Ap = np.dot(B, np.dot(A, np.linalg.inv(B)))

or

In [238]: Ap = B.dot(A.dot(np.linalg.inv(B)))

To improve this situation, NumPy provides an alternative data structure to

ndarray named matrix, for which expressions like A * B are implemented as matrix

multiplication. It also provides some convenient special attributes, like matrix.I for the

inverse matrix and matrix.H for the complex conjugate transpose of a matrix. Using

instances of this matrix class, one can therefore use the vastly more readable expression:

In [239]: A = np.matrix(A)

In [240]: B = np.matrix(B)

In [241]: Ap = B * A * B.I

This may seem like a practical compromise, but unfortunately using the matrix class

does have a few disadvantages, and its use is therefore often discouraged. The main

objection against using matrix is that expression like A * B is then context dependent:

that is, it is not immediately clear if A * B denotes elementwise or matrix multiplication,

because it depends on the type of A and B, and this creates another code-readability

problem. This can be a particularly relevant issue if A and B are user-supplied arguments

to a function, in which case it would be necessary to cast all input arrays explicitly to

matrix instances, using, for example, np.asmatrix or the function np.matrix (since

there would be no guarantee that the user calls the function with arguments of type

matrix rather than ndarray). The np.asmatrix function creates a view of the original

array in the form of an np.matrix instance. This does not add much in computational

costs, but explicitly casting arrays back and forth between ndarray and matrix does

5 With the new infix matrix multiplication operator, this same expression can be expressed as the
considerably more readable: Ap = B @ A @ np.linalg.inv(B).

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

92

offset much of the benefits of the improved readability of matrix expressions. A related

issue is that some functions that operate on arrays and matrices might not respect the

type of the input and may return an ndarray even though it was called with an input

argument of type matrix. This way, a matrix of type matrix might be unintentionally

converted to ndarray, which in turn would change the behavior of expressions like

A * B. This type of behavior is not likely to occur when using NumPy’s array and matrix

functions, but it is not unlikely to happen when using functions from other packages.

However, in spite of all the arguments for not using matrix matrices too extensively,

personally I think that using matrix class instances for complicated matrix expressions is

an important use-case, and in these cases, it might be a good idea to explicitly cast arrays

to matrices before the computation and explicitly cast the result back to the ndarray

type, following the pattern:

In [242]: A = np.asmatrix(A)

In [243]: B = np.asmatrix(B)

In [244]: Ap = B * A * B.I

In [245]: Ap = np.asarray(Ap)

The inner product (scalar product) between two arrays representing vectors can be

computed using the np.inner function:

In [246]: np.inner(x, x)

Out[246]: 5

or, equivalently, using np.dot:

In [247]: np.dot(x, x)

Out[247]: 5

The main difference is that np.inner expects two input arguments with the same

dimension, while np.dot can take input vectors of shape 1 × N and N × 1, respectively:

In [248]: y = x[:, np.newaxis]

In [249]: y

Out[249]: array([[0],

 [1],

 [2]])

In [250]: np.dot(y.T, y)

Out[250]: array([[5]])

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

93

While the inner product maps two vectors to a scalar, the outer product performs the

complementary operation of mapping two vectors to a matrix.

In [251]: x = np.array([1, 2, 3])

In [252]: np.outer(x, x)

Out[252]: array([[1, 2, 3],

 [2, 4, 6],

 [3, 6, 9]])

The outer product can also be calculated using the Kronecker product using the

function np.kron, which, however, in contrast to np.outer, produces an output array of

shape (M*P, N*Q) if the input arrays have shapes (M, N) and (P, Q), respectively. Thus,

for the case of two one-dimensional arrays of length M and P, the resulting array has

shape (M*P,) :

In [253]: np.kron(x, x)

Out[253]: array([1, 2, 3, 2, 4, 6, 3, 6, 9])

To obtain the result that corresponds to np.outer(x, x), the input array x must be

expanded to shape (N, 1) and (1, N), in the first and second argument to np.kron,

respectively:

In [254]: np.kron(x[:, np.newaxis], x[np.newaxis, :])

Out[254]: array([[1, 2, 3],

 [2, 4, 6],

 [3, 6, 9]])

In general, while the np.outer function is primarily intended for vectors as input,

the np.kron function can be used for computing tensor products of arrays of arbitrary

dimension (but both inputs must have the same number of axes). For example, to

compute the tensor product of two 2 × 2 matrices, we can use:

In [255]: np.kron(np.ones((2,2)), np.identity(2))

Out[255]: array([[1., 0., 1., 0.],

 [0., 1., 0., 1.],

 [1., 0., 1., 0.],

 [0., 1., 0., 1.]])

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

94

In [256]: np.kron(np.identity(2), np.ones((2,2)))

Out[256]: array([[1., 1., 0., 0.],

 [1., 1., 0., 0.],

 [0., 0., 1., 1.],

 [0., 0., 1., 1.]])

When working with multidimensional arrays, it is often possible to express common

array operations concisely using Einstein’s summation convention, in which an implicit

summation is assumed over each index that occurs multiple times in an expression. For

example, the scalar product between two vectors x and y is compactly expressed as xnyn,

and the matrix multiplication of two matrices A and B is expressed as AmkBkn. NumPy

provides the function np.einsum for carrying out Einstein summations. Its first argument

is an index expression, followed by an arbitrary number of arrays that are included in the

expression. The index expression is a string with comma-separated indices, where each

comma separates the indices of each array. Each array can have any number of indices.

For example, the scalar product expression xnyn can be evaluated with np.einsum using

the index expression "n,n", that is using np.einsum("n,n", x, y) :

In [257]: x = np.array([1, 2, 3, 4])

In [258]: y = np.array([5, 6, 7, 8])

In [259]: np.einsum("n,n", x, y)

Out[259]: 70

In [260]: np.inner(x, y)

Out[260]: 70

Similarly, the matrix multiplication AmkBkn can be evaluated using np.einsum and the

index expression "mk,kn":

In [261]: A = np.arange(9).reshape(3, 3)

In [262]: B = A.T

In [263]: np.einsum("mk,kn", A, B)

Out[263]: array([[5, 14, 23],

 [14, 50, 86],

 [23, 86, 149]])

In [264]: np.alltrue(np.einsum("mk,kn", A, B) == np.dot(A, B))

Out[264]: True

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

95

The Einstein summation convention can be particularly convenient when dealing

with multidimensional arrays, since the index expression that defines the operation

makes it explicit which operation is carried out and along which axes it is performed.

An equivalent computation using, for example, np.tensordot might require giving the

axes along which the dot product is to be evaluated.

 Summary
In this chapter we have given a brief introduction to array-based programming with

the NumPy library that can serve as a reference for the following chapters in this book.

NumPy is a core library for computing with Python that provides a foundation for

nearly all computational libraries for Python. Familiarity with the NumPy library and

its usage patterns is a fundamental skill for using Python for scientific and technical

computing. Here we started with introducing NumPy’s data structure for N-dimensional

arrays – the ndarray object – and we continued by discussing functions for creating

and manipulating arrays, including indexing and slicing for extracting elements from

arrays. We also discussed functions and operators for performing computations with

ndarray objects, with an emphasis on vectorized expressions and operators for efficient

computation with arrays. Throughout the rest of this book, we will see examples

of higher-level libraries for specific fields in scientific computing that use the array

framework provided by NumPy.

 Further Reading
The NumPy library is the topic of several books, including the Guide to NumPy, by the

creator of the NumPy T. Oliphant, available for free online at http://web.mit.edu/dvp/

Public/numpybook.pdf, and a series of books by Ivan Idris: Numpy Beginner’s Guide

(2015), NumPy Cookbook (2012), and Learning NumPy Array (2014). NumPy is also

covered in fair detail in McKinney (2013).

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

http://web.mit.edu/dvp/Public/numpybook.pdf
http://web.mit.edu/dvp/Public/numpybook.pdf

96

 References
Idris, I. Learning NumPy Array. Mumbai: Packt, 2014.

—. Numpy Beginner’s Guide. 3rd. Mumbai: Packt, 2015.

—. NumPy Cookbook. Mumbai: Packt, 2012.

McKinney, Wes. Python for Data Analysis. Sebastopol: O’Reilly, 2013.

ChAPTer 2 VeCTors, MATrICes, ANd MulTIdIMeNsIoNAl ArrAys

97
© Robert Johansson 2019
R. Johansson, Numerical Python, https://doi.org/10.1007/978-1-4842-4246-9_3

CHAPTER 3

Symbolic Computing
Symbolic computing is an entirely different paradigm in computing compared to the

numerical array-based computing introduced in the previous chapter. In symbolic

computing software, also known as computer algebra systems (CASs), representations

of mathematical objects and expressions are manipulated and transformed analytically.

Symbolic computing is mainly about using computers to automate analytical

computations that can in principle be done by hand with pen and paper. However, by

automating the book-keeping and the manipulations of mathematical expressions using

a computer algebra system, it is possible to take analytical computing much further than

can realistically be done by hand. Symbolic computing is a great tool for checking and

debugging analytical calculations that are done by hand, but more importantly it enables

carrying out analytical analysis that may not otherwise be possible.

Analytical and symbolic computing is a key part of the scientific and technical

computing landscape, and even for problems that can only be solved numerically (which

is common, because analytical methods are not feasible in many practical problems),

it can make a big difference to push the limits for what can be done analytically before

resorting to numerical techniques. This can, for example, reduce the complexity or

size of the numerical problem that finally needs to be solved. In other words, instead

of tackling a problem in its original form directly using numerical methods, it may be

possible to use analytical methods to simplify the problem first.

In the scientific Python environment, the main module for symbolic computing is

SymPy (Symbolic Python). SymPy is entirely written in Python and provides tools for a

wide range of analytical and symbolic problems. In this chapter we look in detail into

how SymPy can be used for symbolic computing with Python.

98

SymPy The Symbolic Python (SymPy) library aims to provide a full-featured
computer algebra system (CAS). In contrast to many other CASs, SymPy is
primarily a library, rather than a full environment. This makes SymPy well suited for
integration in applications and computations that also use other Python libraries.
At the time of writing, the latest version is 1.1.1. More information about SymPy
is available at www.sympy.org and https://github.com/sympy/sympy/
wiki/Faq.

 Importing SymPy
The SymPy project provides the Python module named sympy. It is common to import

all symbols from this module when working with SymPy, using from sympy import *,

but in the interest of clarity and for avoiding namespace conflicts between functions

and variables from SymPy and from other packages such NumPy and SciPy (see later

chapters), here we will import the library in its entirety as sympy. In the rest of this book,

we will assume that SymPy is imported in this way.

In [1]: import sympy

In [2]: sympy.init_printing()

Here we have also called the sympy.init_printing function, which configures

SymPy’s printing system to display nicely formatted renditions of mathematical

expressions, as we will see examples of such later in this chapter. In the Jupyter

Notebook, this sets up printing so that the MathJax JavaScript library renders SymPy

expressions, and the results are displayed on the browser page of the notebook.

For the sake of convenience and readability of the example codes in this chapter, we

will also assume that the following frequently used symbols are explicitly imported from

SymPy into the local namespace:

In [3]: from sympy import I, pi, oo

ChAPTer 3 SyMbolIC CoMPuTIng

http://www.sympy.org
https://github.com/sympy/sympy/wiki/Faq
https://github.com/sympy/sympy/wiki/Faq

99

Caution note that numPy and SymPy, as well as many other libraries, provide
many functions and variables with the same name. but these symbols are rarely
interchangeable. For example, numpy.pi is a numerical approximation of the
mathematical symbol π, while sympy.pi is a symbolic representation of π. It is
therefore important to not mix them up and use, for instance, numpy.pi in place
of sympy.pi when doing symbolic computations, or vice versa. The same holds
true for many fundamental mathematical functions, such as for example numpy.
sin vs. sympy.sin. Therefore, when using more than one package in computing
with Python, it is important to consistently use namespaces.

 Symbols
A core feature in SymPy is to represent mathematical symbols as Python objects. In

the SymPy library, for example, the class sympy.Symbol can be used for this purpose.

An instance of Symbol has a name and set of attributes describing its properties and

methods for querying those properties and for operating on the symbol object. A symbol

by itself is not of much practical use, but symbols are used as nodes in expression trees

to represent algebraic expressions (see next section). Among the first steps in setting up

and analyzing a problem with SymPy is to create symbols for the various mathematical

variables and quantities that are required to describe the problem.

The symbol name is a string, which optionally can contain LaTeX-like markup to

make the symbol name display well in, for example, IPython’s rich display system.

The name of a Symbol object is set when it is created. Symbols can be created in a few

different ways in SymPy, for example, using sympy.Symbol, sympy.symbols, and sympy.

var. Normally it is desirable to associate SymPy symbols with Python variables with

the same name or a name that closely corresponds to the symbol name. For example,

to create a symbol named x, and binding it to the Python variable with the same name,

we can use the constructor of the Symbol class and pass a string containing the symbol

name as the first argument:

In [4]: x = sympy.Symbol("x")

ChAPTer 3 SyMbolIC CoMPuTIng

100

The variable x now represents an abstract mathematical symbol x of which very little

information is known by default. At this point, x could represent, for example, a real

number, an integer, a complex number, a function, as well as a large number of other

possibilities. In many cases it is sufficient to represent a mathematical symbol with this

abstract, unspecified Symbol object, but sometimes it is necessary to give the SymPy

library more hints about exactly what type of symbol a Symbol object is representing.

This may help SymPy to more efficiently manipulate or simplify analytical expressions.

We can add on various assumptions that narrow down the possible properties of a

symbol by adding optional keyword arguments to the symbol-creating functions, such

as Symbol. Table 3-1 summarizes a selection of frequently used assumptions that can be

associated with a Symbol class instance. For example, if we have a mathematical variable

y that is known to be a real number, we can use the real=True keyword argument

when creating the corresponding symbol instance. We can verify that SymPy indeed

recognizes that the symbol is real by using the is_real attribute of the Symbol class:

In [5]: y = sympy.Symbol("y", real=True)

In [6]: y.is_real

Out[6]: True

If, on the other hand, we were to use is_real to query the previously defined symbol

x, which was not explicitly specified to real, and therefore can represent both real and

nonreal variables, we get None as a result:

In [7]: x.is_real is None

Out[7]: True

Note that the is_real returns True if the symbol is known to be real, False if the

symbol is known to not be real, and None if it is not known if the symbol is real or not.

Other attributes (see Table 3-1) for querying assumptions on Symbol objects work in the

same way. For an example that demonstrates a symbol for which the is_real attribute is

False, consider

In [8]: sympy.Symbol("z", imaginary=True).is_real

Out[8]: False

ChAPTer 3 SyMbolIC CoMPuTIng

101

Among the assumptions in Table 3-1, the most important ones to explicitly specify

when creating new symbols are real and positive. When applicable, adding these

assumptions to symbols can frequently help SymPy to simplify various expressions

further than otherwise possible. Consider the following simple example:

In [9]: x = sympy.Symbol("x")

In [10]: y = sympy.Symbol("y", positive=True)

In [11]: sympy.sqrt(x ** 2)

Out[11]: x 2

In [12]: sympy.sqrt(y ** 2)

Out[12]: y

Here we have created two symbols, x and y, and computed the square root of the

square of that symbol using the SymPy function sympy.sqrt. If nothing is known about

the symbol in the computation, then no simplification can be done. If, on the other hand,

the symbol is known to be representing a positive number, then obviously y y2 = , and

SymPy correctly recognizes this in the latter example.

Table 3-1. Selected Assumptions and Their Corresponding Keyword for Symbol

Objects. For a complete list, see the docstring for sympy.Symbol

Assumption Keyword Arguments Attributes Description

real, imaginary is_real, is_

imaginary

Specify that a symbol represents a

real or imaginary number.

positive, negative is_positive,

is_negative

Specify that a symbol is positive or

negative.

integer is_integer The symbol represents an integer.

odd, even is_odd, is_even The symbol represents an odd or

even integer.

prime is_prime The symbol is a prime number and

therefore also an integer.

finite, infinite is_finite, is_

infinite

The symbol represents a quantity

that is finite or infinite.

ChAPTer 3 SyMbolIC CoMPuTIng

102

When working with mathematical symbols that represent integers, rather than say

real numbers, it is also useful to explicitly specify this when creating the corresponding

SymPy symbols, using, for example, the integer=True, or even=True or odd=True, if

applicable. This may also allow SymPy to analytically simplify certain expressions and

function evaluations, such as in the following example:

In [13]: n1 = sympy.Symbol("n")

In [13]: n2 = sympy.Symbol("n", integer=True)

In [13]: n3 = sympy.Symbol("n", odd=True)

In [14]: sympy.cos(n1 * pi)

Out[14]: cos(πn)
In [15]: sympy.cos(n2 * pi)

Out[15]: (–1)n

In [16]: sympy.cos(n3 * pi)

Out[16]: –1

To formulate a nontrivial mathematical problem, it is often necessary to define a

large number of symbols. Using Symbol to specify each symbol one-by-one may become

tedious, and for convenience, SymPy contains a function sympy.symbols for creating

multiple symbols in one function call. This function takes a comma-separated string of

symbol names, as well as an arbitrary set of keyword arguments (which apply to all the

symbols), and it returns a tuple of newly created symbols. Using Python’s tuple unpacking

syntax together with a call to sympy.symbols is a convenient way to create symbols:

In [17]: a, b, c = sympy.symbols("a, b, c", negative=True)

In [18]: d, e, f = sympy.symbols("d, e, f", positive=True)

 Numbers
The purpose of representing mathematical symbols as Python objects is to use them

in expression trees that represent mathematical expressions. To be able to do this, we

also need to represent other mathematical objects, such as numbers, functions, and

constants. In this section we look at SymPy’s classes for representing number objects.

All of these classes have many methods and attributes shared with instances of Symbol,

which allows us to treat symbols and numbers on equal footing when representing

expressions.

ChAPTer 3 SyMbolIC CoMPuTIng

103

For example, in the previous section, we saw that Symbol instances have attributes

for querying properties of symbol objects, such as is_real. We need to be able to use the

same attributes for all types of objects, including for example numbers such as integers

and floating-point numbers, when manipulating symbolic expressions in SymPy. For this

reason, we cannot directly use the built-in Python objects for integers, int, and floating-

point numbers, float, and so on. Instead, SymPy provides the classes sympy.Integer

and sympy.Float for representing integers and floating-point numbers within the SymPy

framework. This distinction is important to be aware of when working with SymPy, but

fortunately we rarely need to concern ourselves with creating objects of type sympy.

Integer and sympy.Float to representing specific numbers, since SymPy automatically

promotes Python numbers to instances of these classes when they occur in SymPy

expressions. However, to demonstrate this difference between Python’s built-in number

types and the corresponding types in SymPy, in the following example, we explicitly

create instances of sympy.Integer and sympy.Float and use some of their attributes to

query their properties:

In [19]: i = sympy.Integer(19)

In [20]: type(i)

Out[20]: sympy.core.numbers.Integer

In [21]: i.is_Integer, i.is_real, i.is_odd

Out[21]: (True, True, True)

In [22]: f = sympy.Float(2.3)

In [23]: type(f)

Out[23]: sympy.core.numbers.Float

In [24]: f.is_Integer, f.is_real, f.is_odd

Out[24]: (False, True, False)

Tip We can cast instances of sympy.Integer and sympy.Float back to
Python built-in types using the standard type casting int(i) and float(f).

ChAPTer 3 SyMbolIC CoMPuTIng

104

To create a SymPy representation of a number, or in general, an arbitrary expression,

we can also use the sympy.sympify function. This function takes a wide range of inputs and

derives a SymPy compatible expression, and it eliminates the need for specifying explicitly

what types of objects are to be created. For the simple case of number input, we can use

In [25]: i, f = sympy.sympify(19), sympy.sympify(2.3)

In [26]: type(i), type(f)

Out[26]: (sympy.core.numbers.Integer, sympy.core.numbers.Float)

 Integer

In the previous section, we have already used the Integer class to represent integers.

It’s worth pointing out that there is a difference between a Symbol instance with

the assumption integer=True and an instance of Integer. While the Symbol with

integer=True represents some integer, the Integer instance represents a specific

integer. For both cases, the is_integer attribute is True, but there is also an attribute

is_Integer (note the capital I), which is only True for Integer instances. In general,

attributes with names in the form is_Name indicate if the object is of type Name, and

attributes with names in the form is_name indicate if the object is known to satisfy

the condition name. Thus, there is also an attribute is_Symbol that is True for Symbol

instances.

In [27]: n = sympy.Symbol("n", integer=True)

In [28]: n.is_integer, n.is_Integer, n.is_positive, n.is_Symbol

Out[28]: (True, False, None, True)

In [29]: i = sympy.Integer(19)

In [30]: i.is_integer, i.is_Integer, i.is_positive, i.is_Symbol

Out[30]: (True, True, True, False)

Integers in SymPy are arbitrary precision, meaning that they have no fixed lower

and upper bounds, which is the case when representing integers with a specific bit size,

as, for example, in NumPy. It is therefore possible to work with very large numbers, as

shown in the following examples:

In [31]: i ** 50

Out[31]: 8663234049605954426644038200675212212900743262211018069459689001

ChAPTer 3 SyMbolIC CoMPuTIng

105

In [32]: sympy.factorial(100)

Out[32]: 933262154439441526816992388562667004907159682643816214685929638952

175999932299156089414639761565182862536979208272237582511852109168640000000

00000000000000000

 Float

We have also already encountered the type sympy.Float in the previous sections.

Like Integer, Float is arbitrary precision, in contrast to Python’s built-in float type

and the float types in NumPy. This means that a Float can represent a float with an

arbitrary number of decimals. When a Float instance is created using its constructor,

there are two arguments: the first argument is a Python float or a string representing a

floating-point number, and the second (optional) argument is the precision (number

of significant decimal digits) of the Float object. For example, it is well known

that the real number 0.3 cannot be represented exactly as a normal fixed bit-size

floating-point number, and when printing 0.3 to 20 significant digits, it is displayed as

0.2999999999999999888977698. The SymPy Float object can represent the real number

0.3 without the limitations of floating-point numbers:

In [33]: "%.25f" % 0.3 # create a string representation with 25 decimals

Out[33]: '0.2999999999999999888977698'

In [34]: sympy.Float(0.3, 25)

Out[34]: 0.2999999999999999888977698

In [35]: sympy.Float('0.3', 25)

Out[35]: 0.3

However, note that to correctly represent 0.3 as a Float object, it is necessary to

initialize it from a string ‘0.3’ rather than the Python float 0.3, which already contains a

floating-point error.

 Rational

A rational number is a fraction p/q of two integers, the numerator p and the

denominator q. SymPy represents this type of numbers using the sympy.Rational class.

Rational numbers can be created explicitly, using sympy.Rational and the numerator

and denominator as arguments:

In [36]: sympy.Rational(11, 13)

Out[36]: 11

13

ChAPTer 3 SyMbolIC CoMPuTIng

106

or they can be a result of a simplification carried out by SymPy. In either case,

arithmetic operations between rational and integers remain rational.

In [37]: r1 = sympy.Rational(2, 3)

In [38]: r2 = sympy.Rational(4, 5)

In [39]: r1 * r2

Out[39]: 8

15
In [40]: r1 / r2

Out[40]:
5

6

 Constants and Special Symbols

SymPy provides predefined symbols for various mathematical constants and

special objects, such as the imaginary unit i and infinity. These are summarized in

Table 3- 2, together with their corresponding symbols in SymPy. Note in particular that

the imaginary unit is written as I in SymPy.

 Functions

In SymPy, objects that represent functions can be created with sympy.Function. Like

Symbol, this Function object takes a name as the first argument. SymPy distinguishes

between defined and undefined functions, as well as between applied and unapplied

functions. Creating a function with Function results in an undefined (abstract) and

Table 3-2. Selected Mathematical Constants and Special Symbols and Their

Corresponding Symbols in SymPy

Mathematical Symbol SymPy Symbol Description

 π sympy.pi ratio of the circumference to the diameter of a

circle.

 e sympy.E The base of the natural logarithm, e = exp (1).

 γ sympy.EulerGamma euler’s constant.

 i sympy.I The imaginary unit.

 ∞ sympy.oo Infinity.

ChAPTer 3 SyMbolIC CoMPuTIng

107

unapplied function, which has a name but cannot be evaluated because its expression,

or body, is not defined. Such a function can represent an arbitrary function of arbitrary

numbers of input variables, since it also has not yet been applied to any particular

symbols or input variables. An unapplied function can be applied to a set of input

symbols that represent the domain of the function by calling the function instance with

those symbols as arguments.1 The result is still an unevaluated function, but one that

has been applied to the specified input variables, and therefore has a set of dependent

variables. As an example of these concepts, consider the following code listing where we

create an undefined function f, which we apply to the symbol x, and another function g

which we directly apply to the set of symbols x, y, z:

In [41]: x, y, z = sympy.symbols("x, y, z")

In [42]: f = sympy.Function("f")

In [43]: type(f)

Out[43]: sympy.core.function.UndefinedFunction

In [44]: f(x)

Out[44]: f(x)

In [45]: g = sympy.Function("g")(x, y, z)

In [46]: g

Out[46]: g(x,y,z)

In [47]: g.free_symbols

Out[47]: {x,y,z}

Here we have also used the property free_symbols, which returns a set of unique

symbols contained in a given expression (in this case the applied undefined function g),

to demonstrate that an applied function indeed is associated with a specific set of input

symbols. This will be important later in this chapter, for example, when we consider

derivatives of abstract functions. One important application of undefined functions is for

specifying differential equations or, in other words, when an equation for the function is

known, but the function itself is unknown.

In contrast to undefined functions, a defined function is one that has a specific

implementation and can be numerically evaluated for all valid input parameters. It is

possible to define this type of function, for example, by subclassing sympy.Function,

1 Here it is important to keep in mind the distinction between a Python function, or callable
Python object such as sympy.Function, and the symbolic function that a sympy.Function class
instance represents.

ChAPTer 3 SyMbolIC CoMPuTIng

108

but in most cases it is sufficient to use the mathematical functions provided by SymPy.

Naturally, SymPy has built-in functions for many standard mathematical functions

that are available in the global SymPy namespace (see the module documentation

for sympy.functions.elementary, sympy.functions.combinatorial, and sympy.

functions.special and their subpackages for comprehensive lists of the numerous

functions that are available, using the Python help function). For example, the SymPy

function for the sine function is available as sympy.sin (with our import convention).

Note that this is not a function in the Python sense of the word (it is, in fact, a subclass of

sympy.Function), and it represents an unevaluated sin function that can be applied to a

numerical value, a symbol, or an expression.

In [48]: sympy.sin

Out[48]: sympy.functions.elementary.trigonometric.sin

In [49]: sympy.sin(x)

Out[49]: sin(x)

In [50]: sympy.sin(pi * 1.5)

Out[50]: –1

When applied to an abstract symbol, such as x, the sin function remains

unevaluated, but when possible it is evaluated to a numerical value, for example,

when applied to a number or, in some cases, when applied to expressions with certain

properties, as in the following example:

In [51]: n = sympy.Symbol("n", integer=True)

In [52]: sympy.sin(pi * n)

Out[52]: 0

A third type of function in SymPy is lambda functions, or anonymous functions,

which do not have names associated with them, but do have a specific function body

that can be evaluated. Lambda functions can be created with sympy.Lambda:

In [53]: h = sympy.Lambda(x, x**2)

In [54]: h

Out[54]: x x� 2()
In [55]: h(5)

Out[55]: 25

In [56]: h(1 + x)

Out[56]: (1 + x)2

ChAPTer 3 SyMbolIC CoMPuTIng

109

 Expressions
The various symbols introduced in the previous sections are the fundamental building

blocks required to express mathematical expressions. In SymPy, mathematical

expressions are represented as trees where leaves are symbols and nodes are class

instances that represent mathematical operations. Examples of these classes are Add,

Mul, and Pow for basic arithmetic operators and Sum, Product, Integral, and Derivative

for analytical mathematical operations. In addition, there are many other classes for

mathematical operations, which we will see more examples of later in this chapter.

Consider, for example, the mathematical expression 1+2x2+3x3. To represent this in

SymPy, we only need to create the symbol x and then write the expression as Python

code:

In [54]: x = sympy.Symbol("x")

In [55]: expr = 1 + 2 * x**2 + 3 * x**3

In [56]: expr

Out[56]: 3x3 + 2x2 + 1

Here expr is an instance of Add, with the subexpressions 1, 2*x**2, and 3*x**3.

The entire expression tree for expr is visualized in Figure 3-1. Note that we do not need

to explicitly construct the expression tree, since it is automatically built up from the

expression with symbols and operators. Nevertheless, to understand how SymPy works,

it is important to know how expressions are represented.

Figure 3-1. Visualization of the expression tree for 1 + 2*x**2 + 3*x**3

ChAPTer 3 SyMbolIC CoMPuTIng

110

The expression tree can be traversed explicitly using the args attribute, which all

SymPy operations and symbols provide. For an operator, the args attribute is a tuple

of subexpressions that are combined with the rule implemented by the operator class.

For symbols, the args attribute is an empty tuple, which signifies that it is a leaf in the

expression tree. The following example demonstrates how the expression tree can be

explicitly accessed:

In [57]: expr.args

Out[57]: (1,2x2,3x3)

In [58]: expr.args[1]

Out[58]: 2x2

In [59]: expr.args[1].args[1]

Out[59]: x2

In [60]: expr.args[1].args[1].args[0]

Out[60]: x

In [61]: expr.args[1].args[1].args[0].args

Out[61]: ()

In the basic use of SymPy, it is rarely necessary to explicitly manipulate expression

trees, but when the methods for manipulating expressions that are introduced in the

following section are not sufficient, it is useful to be able to implement functions of your

own that traverse and manipulate the expression tree using the args attribute.

 Manipulating Expressions
Manipulating expression trees is one of the main jobs for SymPy, and numerous

functions are provided for different types of transformations. The general idea is

that expression trees can be transformed between mathematically equivalent forms

using simplification and rewrite functions. These functions generally do not change

the expressions that are passed to the functions, but rather create a new expression

that corresponds to the modified expression. Expressions in SymPy should thus be

considered immutable objects (that cannot be changed). All the functions we consider

in this section treat SymPy expressions as immutable objects and return new expression

trees rather than modify expressions in place.

ChAPTer 3 SyMbolIC CoMPuTIng

111

 Simplification
The most desirable manipulation of a mathematical expression is to simplify it. This

is perhaps and also the most ambiguous operation, since it is nontrivial to determine

algorithmically if one expression appears simpler than another to a human being,

and in general it is also not obvious which methods should be employed to arrive at a

simpler expression. Nonetheless, black-box simplification is an important part of any

CAS, and SymPy includes the function sympy.simplify that attempts to simplify a given

expression using a variety of methods and approaches. The simplification function can

also be invoked through the method simplify, as illustrated in the following example.

In [67]: expr = 2 * (x**2 - x) - x * (x + 1)

In [68]: expr

Out[68]: 2x2 – x(x+1)–2x

In [69]: sympy.simplify(expr)

Out[69]: x(x–3)

In [70]: expr.simplify()

Out[70]: x(x–3)

In [71]: expr

Out[71]: 2x2 – x(x+1)–2x

Note that here both sympy.simplify(expr) and expr.simplify() return new

expression trees and leave the expression expr untouched, as mentioned earlier. In this

example, the expression expr can be simplified by expanding the products, canceling

terms, and then factoring the expression again. In general, sympy.simplify will attempt

a variety of different strategies and will also simplify, for example, trigonometric and

power expressions, as exemplified here:

In [72]: expr = 2 * sympy.cos(x) * sympy.sin(x)

In [73]: expr

Out[73]: 2 sin(x)cos(x)

In [74]: sympy.simplify(expr)

Out[74]: sin(2x)

ChAPTer 3 SyMbolIC CoMPuTIng

112

and

In [75]: expr = sympy.exp(x) * sympy.exp(y)

In [76]: expr

Out[76]: exp(x)exp(y)

In [77]: sympy.simplify(expr)

Out[77]: exp(x+y)

Each specific type of simplification can also be carried out with more specialized

functions, such as sympy.trigsimp and sympy.powsimp, for trigonometric and power

simplifications, respectively. These functions only perform the simplification that their

names indicate and leave other parts of an expression in its original form. A summary

of simplification functions is given in Table 3-3. When the exact simplification steps

are known, it is in general better to rely on the more specific simplification functions,

since their actions are more well defined and less likely to change in future versions of

SymPy. The sympy.simplify function, on the other hand, relies on heuristic approaches

that may change in the future and, as a consequence, produce different results for a

particular input expression.

Table 3-3. Summary of Selected SymPy Functions for Simplifying Expressions

Function Description

sympy.simplify Attempt various methods and approaches to obtain a simpler form of a

given expression.

sympy.trigsimp Attempt to simplify an expression using trigonometric identities.

sympy.powsimp Attempt to simplify an expression using laws of powers.

sympy.compsimp Simplify combinatorial expressions.

sympy.ratsimp Simplify an expression by writing on a common denominator.

 Expand
When the black-box simplification provided by sympy.simplify does not produce

satisfying results, it is often possible to make progress by manually guiding SymPy

using more specific algebraic operations. An important tool in this process is to expand

expression in various ways. The function sympy.expand performs a variety of expansions,

ChAPTer 3 SyMbolIC CoMPuTIng

113

depending on the values of optional keyword arguments. By default the function

distributes products over additions, into a fully expanded expression. For example, a

product of the type (x+1)(x+2) can be expanded to x2+3x+2 using

In [78]: expr = (x + 1) * (x + 2)

In [79]: sympy.expand(expr)

Out[79]: x2 + 3x + 2

Some of the available keyword arguments are mul=True for expanding products (as

in the preceding example), trig=True for trigonometric expansions,

In [80]: sympy.sin(x + y).expand(trig=True)

Out[80]: sin(x)cos(y) + sin(y)cos(x)

log=True for expanding logarithms,

In [81]: a, b = sympy.symbols("a, b", positive=True)

In [82]: sympy.log(a * b).expand(log=True)

Out[82]: log(a) + log(b)

complex=True for separating real and imaginary parts of an expression,

In [83]: sympy.exp(I*a + b).expand(complex=True)

Out[83]: ieb sin(a) + eb cos(a)

and power_base=True and power_exp=True for expanding the base and the exponent

of a power expression, respectively.

In [84]: sympy.expand((a * b)**x, power_base=True)

Out[84]: axbx

In [85]: sympy.exp((a-b)*x).expand(power_exp=True)

Out[85]: eiaxe–ibx

Calling the sympy.expand function with these keyword arguments set to True is

equivalent to calling the more specific functions sympy.expand_mul, sympy.expand_

trig, sympy.expand_log, sympy.expand_complex, sympy.expand_power_base, and

sympy.expand_power_exp, respectively, but an advantage of the sympy.expand function

is that several types of expansions can be performed in a single function call.

ChAPTer 3 SyMbolIC CoMPuTIng

114

 Factor, Collect, and Combine
A common use pattern for the sympy.expand function is to expand an expression, let

SymPy cancel terms or factors, and then factor or combine the expression again. The

sympy.factor function attempts to factor an expression as far as possible and is in some

sense the opposite to sympy.expand with mul=True. It can be used to factor algebraic

expressions, such as

In [86]: sympy.factor(x**2 - 1)

Out[86]: (x – 1)(x + 1)

In [87]: sympy.factor(x * sympy.cos(y) + sympy.sin(z) * x)

Out[87]: x(sin(x) + cos(y))

The inverse of the other types of expansions in the previous section can be carried

out using sympy.trigsimp, sympy.powsimp, and sympy.logcombine, for example

In [90]: sympy.logcombine(sympy.log(a) - sympy.log(b))

Out[90]: log
a

b
æ
è
ç

ö
ø
÷

When working with mathematical expressions, it is often necessary to have fine-

grained control over factoring. The SymPy function sympy.collect factors terms that

contain a given symbol or list of symbols. For example, x+y+xyz cannot be completely

factorized, but we can partially factor terms containing x or y:

In [89]: expr = x + y + x * y * z

In [90]: expr.collect(x)

Out[90]: x(yz + 1) + y

In [91]: expr.collect(y)

Out[91]: x + y(xz + 1)

By passing a list of symbols or expressions to the sympy.collect function or to the

corresponding collect method, we can collect multiple symbols in one function call.

Also, when using the method collect, which returns the new expression, it is possible to

chain multiple method calls in the following way:

ChAPTer 3 SyMbolIC CoMPuTIng

115

In [93]: expr = sympy.cos(x + y) + sympy.sin(x - y)

In [94]: expr.expand(trig=True).collect([sympy.cos(x),

 ...: sympy.sin(x)]).collect(sympy.

cos(y) - sympy.sin(y))

Out[95]: (sin(x) + cos(x))(–sin(y) + cos(y))

 Apart, Together, and Cancel
The final type of mathematical simplification that we will consider here is the rewriting

of fractions. The functions sympy.apart and sympy.together, which, respectively,

rewrite a fraction as a partial fraction and combine partial fractions to a single fraction,

can be used in the following way:

In [95]: sympy.apart(1/(x**2 + 3*x + 2), x)

Out[95]: -
+

+
+

1

2

1

1x x

In [96]: sympy.together(1 / (y * x + y) + 1 / (1+x))

Out[96]:
y

y x

+
+()
1

1

In [97]: sympy.cancel(y / (y * x + y))

Out[97]:
1

1x +

In the first example, we used sympy.apart to rewrite the expression (x2+3x+2)−1 as

the partial fraction -
+

+
+

1

2

1

1x x
, and we used sympy.together to combine the sum of

fractions 1/(yx+y)+1/(1+x) into an expression in the form of a single fraction. In this

example we also used the function sympy.cancel to cancel shared factors between

numerator and the denominator in the expression y/(yx+y).

 Substitutions
The previous sections have been concerned with rewriting expressions using various

mathematical identities. Another frequently used form of manipulation of mathematical

expressions is substitutions of symbols or subexpressions within an expression. For

example, we may want to perform a variable substitution and replace the variable x with y or

replace a symbol with another expression. In SymPy there are two methods for carrying out

ChAPTer 3 SyMbolIC CoMPuTIng

116

substitutions: subs and replace. Usually subs is the most suitable alternative, but in some

cases replace provides a more powerful tool, which, for example, can make replacements

based on wildcard expressions (see docstring for sympy.Symbol.replace for details).

In the most basic use of subs, the method is called in an expression, and the symbol

or expression that is to be replaced (x) is given as the first argument, and the new symbol

or the expression (y) is given as the second argument. The result is that all occurrences of

x in the expression are replaced with y:

In [98]: (x + y).subs(x, y)

Out[98]: 2y

In [99]: sympy.sin(x * sympy.exp(x)).subs(x, y)

Out[99]: sin(yey)

Instead of chaining multiple subs calls when multiple substitutions are required, we

can alternatively pass a dictionary as the first and only argument to subs that maps old

symbols or expressions to new symbols or expressions:

In [100]: sympy.sin(x * z).subs({z: sympy.exp(y), x: y, sympy.sin: sympy.cos})

Out[100]: cos(yey)

A typical application of the subs method is to substitute numerical values in place

of symbols, for numerical evaluation (see the following section for more details).

A convenient way of doing this is to define a dictionary that translates the symbols to

numerical values and pass this dictionary as the argument to the subs method. For

example, consider

In [101]: expr = x * y + z**2 *x

In [102]: values = {x: 1.25, y: 0.4, z: 3.2}

In [103]: expr.subs(values)

Out[103]: 13.3

ChAPTer 3 SyMbolIC CoMPuTIng

117

 Numerical Evaluation
Even when working with symbolic mathematics, it is almost invariably sooner or later

required to evaluate the symbolic expressions numerically, for example, when producing

plots or concrete numerical results. A SymPy expression can be evaluated using either

the sympy.N function or the evalf method of SymPy expression instances:

In [104]: sympy.N(1 + pi)

Out[104]: 4.14159265358979

In [105]: sympy.N(pi, 50)

Out[105]: 3.1415926535897932384626433832795028841971693993751

In [106]: (x + 1/pi).evalf(10)

Out[106]: x + 0.3183098862

Both sympy.N and the evalf method take an optional argument that specifies the

number of significant digits to which the expression is to be evaluated, as shown in the

previous example where SymPy’s multiprecision float capabilities were leveraged to

evaluate the value of π up to 50 digits.

When we need to evaluate an expression numerically for a range of input values, we

could in principle loop over the values and perform successive evalf calls, for example

In [114]: expr = sympy.sin(pi * x * sympy.exp(x))

In [115]: [expr.subs(x, xx).evalf(3) for xx in range(0, 10)]

Out[115]: [0,0.774,0.642,0.722,0.944,0.205,0.974,0.977,-0.870,-0.695]

However, this method is rather slow, and SymPy provides a more efficient method

for doing this operation using the function sympy.lambdify. This function takes a set of

free symbols and an expression as arguments and generates a function that efficiently

evaluates the numerical value of the expression. The produced function takes the same

number of arguments as the number of free symbols passed as the first argument to

sympy.lambdify.

In [109]: expr_func = sympy.lambdify(x, expr)

In [110]: expr_func(1.0)

Out[110]: 0.773942685266709

Note that the function expr_func expects numerical (scalar) values as arguments,

so we cannot, for example, pass a symbol as an argument to this function; it is strictly

for numerical evaluation. The expr_func created in the previous example is a scalar

ChAPTer 3 SyMbolIC CoMPuTIng

118

function and is not directly compatible with vectorized input in the form of NumPy

arrays, as discussed in Chapter 2. However, SymPy is also able to generate functions that

are NumPy-array aware: by passing the optional argument 'numpy' as the third argument

to sympy.lambdify SymPy creates a vectorized function that accepts NumPy arrays as

input. This is in general an efficient way to numerically evaluate symbolic expressions2

for a large number of input parameters. The following code exemplifies how the SymPy

expression expr is converted into a NumPy-array aware vectorized function that can be

efficiently evaluated:

In [111]: expr_func = sympy.lambdify(x, expr, 'numpy')

In [112]: import numpy as np

In [113]: xvalues = np.arange(0, 10)

In [114]: expr_func(xvalues)

Out[114]: array([0. , 0.77394269, 0.64198244, 0.72163867,

0.94361635,

 0.20523391, 0.97398794, 0.97734066, -0.87034418,

-0.69512687])

This method for generating data from SymPy expressions is useful for plotting and

many other data-oriented applications.

 Calculus
So far we have looked at how to represent mathematical expression in SymPy and

how to perform basic simplification and transformation of such expressions. With

this framework in place, we are now ready to explore symbolic calculus, or analysis,

which is a cornerstone in applied mathematics and has a great number of applications

throughout science and engineering. The central concept in calculus is the change of

functions as input variables are varied, as quantified with derivatives and differentials,

and accumulations of functions over ranges of input, as quantified by integrals. In this

section we look at how to compute derivatives and integrals of functions in SymPy.

2 See also the ufuncity from the sympy.utilities.autowrap module and the theano_function
from the sympy.printing.theanocode module. These provide similar functionality as sympy.
lambdify, but use different computational backends.

ChAPTer 3 SyMbolIC CoMPuTIng

119

 Derivatives
The derivative of a function describes its rate of change at a given point. In SymPy we can

calculate the derivative of a function using sympy.diff or alternatively by using the diff

method of SymPy expression instances. The argument to these functions is a symbol,

or a number of symbols, with respect to which the function or the expression is to be

derived. To represent the first-order derivative of an abstract function f (x) with respect

to x, we can do

In [119]: f = sympy.Function('f')(x)

In [120]: sympy.diff(f, x) # equivalent to f.diff(x)

Out[120]:
d

dx
f x()

and to represent higher-order derivatives, all we need to do is to repeat the symbol x

in the argument list in the call to sympy.diff or, equivalently, specify an integer as an

argument following a symbol, which defines the number of times the expression should

be derived with respect to that symbol:

In [117]: sympy.diff(f, x, x)

Out[117]:
d

dx
f x

2

2 ()

In [118]: sympy.diff(f, x, 3) # equivalent to sympy.diff(f, x, x, x)

Out[118]:
d

dx
f x

3

3 ()

This method is readily extended to multivariate functions:

In [119]: g = sympy.Function('g')(x, y)

In [120]: g.diff(x, y) # equivalent to sympy.diff(g, x, y)

Out[120]: ¶
¶ ¶

()
2

x y
g x y,

In [121]: g.diff(x, 3, y, 2) # equivalent to sympy.diff(g, x, x, x, y, y)

Out[121]:
¶

¶ ¶
()

5

3 2x y
g x y,

ChAPTer 3 SyMbolIC CoMPuTIng

120

These examples so far only involve formal derivatives of undefined functions.

Naturally, we can also evaluate the derivatives of defined functions and expressions,

which result in new expressions that correspond to the evaluated derivatives. For

example, using sympy.diff we can easily evaluate derivatives of arbitrary mathematical

expressions, such as polynomials:

In [122]: expr = x**4 + x**3 + x**2 + x + 1

In [123]: expr.diff(x)

Out[123]: 4x3 + 3x2 + 2x+1

In [124]: expr.diff(x, x)

Out[124]: 2(6x2 + 3x + 1)

In [125]: expr = (x + 1)**3 * y ** 2 * (z - 1)

In [126]: expr.diff(x, y, z)

Out[126]: 6y(x + 1)2

as well as trigonometric and other more complicated mathematical expressions:

In [127]: expr = sympy.sin(x * y) * sympy.cos(x / 2)

In [128]: expr.diff(x)

Out[128]: y
x

xy
x

xycos cos sin sin
2

1

2 2
æ
è
ç

ö
ø
÷ () - æ

è
ç

ö
ø
÷ ()

In [129]: expr = sympy.special.polynomials.hermite(x, 0)

In [130]: expr.diff(x).doit()

Out[130]:
2 0

2
1
2

2
2

1
2

2 2

2
1
2

x
x

x

x x

p ppolygamma ,- +æ
è
ç

ö
ø
÷

- +æ
è
ç

ö
ø
÷

+
()

- +æG G

log

èè
ç

ö
ø
÷

Derivatives are usually relatively easy to compute, and sympy.diff should be able to

evaluate the derivative of most standard mathematical functions defined in SymPy.

Note that in these examples, calling sympy.diff on an expression directly results in

a new expression. If we rather want to symbolically represent the derivative of a definite

expression, we can create an instance of the class sympy.Derivative, passing the

expression as the first argument, followed by the symbols with respect to the derivative

that is to be computed:

In [131]: d = sympy.Derivative(sympy.exp(sympy.cos(x)), x)

In [132]: d

ChAPTer 3 SyMbolIC CoMPuTIng

121

Out[132]: d

dx
e xcos()

This formal representation of a derivative can then be evaluated by calling the doit

method on the sympy.Derivative instance:

In [133]: d.doit()

Out[133]: –ecos(x) sin(x)

This pattern of delayed evaluation is reoccurring throughout SymPy, and full control

of when a formal expression is evaluated to a specific result is useful in many situations,

in particular with expressions that can be simplified or manipulated while represented

as a formal expression rather than after it has been evaluated.

 Integrals
In SymPy, integrals are evaluated using the function sympy.integrate, and formal

integrals can be represented using sympy.Integral (which, as in the case with sympy.

Derivative, can be explicitly evaluated by calling the doit method). Integrals come

in two basic forms: definite and indefinite, where a definite integral has specified

integration limits and can be interpreted as an area or volume, while an indefinite

integral does not have integration limits and denotes the antiderivative (inverse of the

derivative of a function). SymPy handles both indefinite and definite integrals using the

sympy.integrate function.

If the sympy.integrate function is called with only an expression as an argument,

the indefinite integral is computed. On the other hand, a definite integral is computed

if the sympy.integrate function additionally is passed a tuple in the form (x, a, b),

where x is the integration variable and a and b are the integration limits. For a single-

variable function f (x), the indefinite and definite integrals are therefore computed using

In [135]: a, b, x, y = sympy.symbols("a, b, x, y")

 ...: f = sympy.Function("f")(x)

In [136]: sympy.integrate(f)

Out[136]: ∫ f(x)dx

In [137]: sympy.integrate(f, (x, a, b))

Out[137]:
a

b

f x dxò ()

ChAPTer 3 SyMbolIC CoMPuTIng

122

and when these methods are applied to explicit functions, the integrals are evaluated

accordingly:

In [138]: sympy.integrate(sympy.sin(x))

Out[138]: –cos(x)

In [139]: sympy.integrate(sympy.sin(x), (x, a, b))

Out[139]: cos(a) – cos(b)

Definite integrals can also include limits that extend from negative infinity, and/or to

positive infinite, using SymPy’s symbol for infinity oo:

In [139]: sympy.integrate(sympy.exp(-x**2), (x, 0, oo))

Out[139]:
p
2

In [140]: a, b, c = sympy.symbols("a, b, c", positive=True)

In [141]: sympy.integrate(a * sympy.exp(-((x-b)/c)**2), (x, -oo, oo))

Out[141]: pac

Computing integrals symbolically is in general a difficult problem, and SymPy will

not be able to give symbolic results for any integral you can come up with. When SymPy

fails to evaluate an integral, an instance of sympy.Integral, representing the formal

integral, is returned instead.

In [142]: sympy.integrate(sympy.sin(x * sympy.cos(x)))

Out[142]: ∫sin(x cos(x))dx

Multivariable expressions can also be integrated with sympy.integrate. In the case

of an indefinite integral of a multivariable expression, the integration variable has to be

specified explicitly:

In [140]: expr = sympy.sin(x*sympy.exp(y))

In [141]: sympy.integrate(expr, x)

Out[141]: –e–ycos(xey)

In [142]: expr = (x + y)**2

In [143]: sympy.integrate(expr, x)

Out[143]:
x

x y xy
3

2 2

3
+ +

ChAPTer 3 SyMbolIC CoMPuTIng

123

By passing more than one symbol, or multiple tuples that contain symbols and their

integration limits, we can carry out multiple integrations:

In [144]: sympy.integrate(expr, x, y)

Out[144]: x y x y xy3 2 2 3

3 2 3
+ +

In [145]: sympy.integrate(expr, (x, 0, 1), (y, 0, 1))

Out[145]:
7

6

 Series
Series expansions are an important tool in many disciplines in computing. With a series

expansion, an arbitrary function can be written as a polynomial, with coefficients given

by the derivatives of the function at the point around which the series expansion is

made. By truncating the series expansion at some order n, the nth order approximation

of the function is obtained. In SymPy, the series expansion of a function or an expression

can be computed using the function sympy.series or the series method available

in SymPy expression instances. The first argument to sympy.series is a function or

expression that is to be expanded, followed by a symbol with respect to which the

expansion is to be computed (it can be omitted for single-variable expressions and

function). In addition, it is also possible to request a particular point around which the

series expansions are to be performed (using the x0 keyword argument, with default

x0=0), specifying the order of the expansion (using the n keyword argument, with default

n=6) and specifying the direction from which the series is computed, i.e., from below or

above x0 (using the dir keyword argument, which defaults to dir='+').

For an undefined function f(x), the expansion up to sixth order around x0=0 is

computed using

In [147]: x, y = sympy.symbols("x, y")

In [148]: f = sympy.Function("f")(x)

In [149]: sympy.series(f, x)

Out[149]:
f x

d

dx
f x

x d

dx
f x

x d

dx
f x

x d

dx

x x x
0

2 6

24

0

2 2

2 0

3 3

3 0

4 4

4

() + () + () + ()

+

= = =

ff x
x d

dx
f x x

x x
() + () + ()= =0

5 5

5 0

6

120

ChAPTer 3 SyMbolIC CoMPuTIng

124

To change the point around which the function is expanded, we specify the x0

argument as in the following example:

In [147]: x0 = sympy.Symbol("{x_0}")

In [151]: f.series(x, x0, n=2)

Out[151]: f x x x
d

d
f x x x x

x0 0
1

1 0

2

0
1 0

() + -() () + -() ®()=x
x

x
 ;

Here we also specified n=2, to request a series expansion with only terms up to

and including the second order. Note that the errors due to the truncated terms are

represented by the order object ¼() . The order object is useful for keeping track of the

order of an expression when computing with series expansions, such as multiplying or

adding different expansions. However, for concrete numerical evolution, it is necessary

to remove the order term from the expression, which can be done using the method

removeO:

In [152]: f.series(x, x0, n=2).removeO()

Out[152]: f x x x
d

d
f

x0 0
1

1
1 0

() + -() ()
=x

x
x

While the expansions shown in the preceding text were computed for an unspecified

function f(x), we can naturally also compute the series expansions of specific functions

and expressions, and in those cases we obtain specific evaluated results. For example,

we can easily generate the well-known expansions of many standard mathematical

functions:

In [153]: sympy.cos(x).series()

Out[153]:1
2 24

2 4
6- + + ()x x

x

In [154]: sympy.sin(x).series()

Out[154]: x
x x

x- + + ()
3 5

6

6 120

In [155]: sympy.exp(x).series()

Out[155]:1
2 6 24 120

2 3 4 5
6+ + + + + + ()x

x x x x
x

In [156]: (1/(1+x)).series()

Out[156]:1 2 3 4 5 6- + - + - + ()x x x x x x

ChAPTer 3 SyMbolIC CoMPuTIng

125

as well as arbitrary expressions of symbols and functions, which in general can also be

multivariable functions:

In [157]: expr = sympy.cos(x) / (1 + sympy.sin(x * y))

In [158]: expr.series(x, n=4)

Out[158]:1
1

2

5

6 2
2 2 3

3
4- + -æ

è
ç

ö
ø
÷ + - +

æ

è
ç

ö

ø
÷ + ()xy x y x

y y
x

In [159]: expr.series(y, n=4)

Out[159]: cos cos cos
cos

x xy x x y x
x y x

y() - () + () - ()
+ ()2 2

3 3
45

6

 Limits
Another important tool in calculus is limits, which denotes the value of a function as

one of its dependent variables approaches a specific value or as the value of the variable

approaches negative or positive infinity. An example of a limit is one of the definitions of

the derivative:

d

dx
f x

f x h f x

hh
() =

+()- ()
®
lim .

0

While limits are more of a theoretical tool and do not have as many practical

applications as, say, series expansions, it is still useful to be able to compute limits using

SymPy. In SymPy, limits can be evaluated using the sympy.limit function, which takes

an expression, a symbol it depends on, as well as the value that the symbol approaches

in the limit. For example, to compute the limit of the function sin(x)/x, as the variable x

goes to zero, that is, limsin /
x

x x
®

()
0

, we can use

In [161]: sympy.limit(sympy.sin(x) / x, x, 0)

Out[161]: 1

Here we obtained the well-known answer 1 for this limit. We can also use sympy.limit

to compute symbolic limits, which can be illustrated by computing derivatives using the

previous definition (although it is of course more efficient to use sympy.diff):

In [162]: f = sympy.Function('f')

 ...: x, h = sympy.symbols("x, h")

In [163]: diff_limit = (f(x + h) - f(x))/h

ChAPTer 3 SyMbolIC CoMPuTIng

126

In [164]: sympy.limit(diff_limit.subs(f, sympy.cos), h, 0)

Out[164]: –sin(x)

In [165]: sympy.limit(diff_limit.subs(f, sympy.sin), h, 0)

Out[165]: cos(x)

A more practical example of using limits is to find the asymptotic behavior as a

function, for example, as its dependent variable approaches infinity. As an example,

consider the function f(x) = (x2 − 3x)/(2x − 2), and suppose we are interested in the large-

x dependence of this function. It will be in the form f (x) → px+q, and we can compute

p and q using sympy.limit as in the following:

In [166]: expr = (x**2 - 3*x) / (2*x - 2)

In [167]: p = sympy.limit(expr/x, x, sympy.oo)

In [168]: q = sympy.limit(expr - p*x, x, sympy.oo)

In [169]: p, q

Out[169]:
1

2
1,-æ

è
ç

ö
ø
÷

Thus, the asymptotic behavior of f (x) as x becomes large is the linear function

f (x) → x/2 − 1.

 Sums and Products
Sums and products can be symbolically represented using the SymPy classes sympy.

Sum and sympy.Product. They both take an expression as their first argument, and as

a second argument, they take a tuple of the form (n, n1, n2), where n is a symbol

and n1 and n2 are the lower and upper limits for the symbol n, in the sum or product,

respectively. After sympy.Sum or sympy.Product objects have been created, they can be

evaluated using the doit method:

In [171]: n = sympy.symbols("n", integer=True)

In [172]: x = sympy.Sum(1/(n**2), (n, 1, oo))

In [173]: x

Out[173]:
n n=

¥

å
1

2

1

In [174]: x.doit()

Out[174]: p
2

6

ChAPTer 3 SyMbolIC CoMPuTIng

127

In [175]: x = sympy.Product(n, (n, 1, 7))

In [176]: x

Out[176]:
n

n
=
Õ

1

7

In [177]: x.doit()

Out[177]: 5040

Note that the sum in the previous example was specified with an upper limit of

infinity. It is therefore clear that this sum was not evaluated by explicit summation, but

was rather computed analytically. SymPy can evaluate many summations of this type,

including when the summand contains symbolic variables other than the summation

index, such as in the following example:

In [178]: x = sympy.Symbol("x")

In [179]: sympy.Sum((x)**n/(sympy.factorial(n)), (n, 1, oo)).doit().

simplify()

Out[179]: ex – 1

 Equations
Equation solving is a fundamental part of mathematics with applications in nearly every

branch of science and technology, and it is therefore immensely important. SymPy can

solve a wide variety of equations symbolically, although many equations cannot be

solved analytically even in principle. If an equation, or a system of equations, can be

solved analytically, there is a good chance that SymPy is able to find the solution. If not,

numerical methods might be the only option.

In its simplest form, equation solving involves a single equation with a single

unknown variable, and no additional parameters: for example, finding the value of x that

satisfies the second-degree polynomial equation x2+2x – 3 = 0. This equation is of course

easy to solve, even by hand, but in SymPy we can use the function sympy.solve to find

the solutions of x that satisfy this equation using

In [170]: x = sympy.Symbol("x")

In [171]: sympy.solve(x**2 + 2*x - 3)

Out[171]: [–3,1]

ChAPTer 3 SyMbolIC CoMPuTIng

128

That is, the solutions are x=-3 and x=1. The argument to the sympy.solve function

is an expression that will be solved under the assumption that it equals zero. When this

expression contains more than one symbol, the variable that is to be solved for must be

given as a second argument. For example,

In [172]: a, b, c = sympy.symbols("a, b, c")

In [173]: sympy.solve(a * x**2 + b * x + c, x)

Out[173]:
1

2
4

1

2
42 2

a
b ac b

a
b ac b- + - +() - + - +()é

ëê
ù
ûú

,

and in this case the resulting solutions are expressions that depend on the symbols

representing the parameters in the equation.

The sympy.solve function is also capable of solving other types of equations,

including trigonometric expressions:

In [174]: sympy.solve(sympy.sin(x) - sympy.cos(x), x)

Out[174]: -é
ëê

ù
ûú

3

4

p
,

and equations whose solution can be expressed in terms of special functions:

In [180]: sympy.solve(sympy.exp(x) + 2 * x, x)

Out[180]: - æ
è
ç

ö
ø
÷

é

ë
ê

ù

û
úLambertW

1

2

However, when dealing with general equations, even for a univariate case, it is not

uncommon to encounter equations that are not solvable algebraically or which SymPy

is unable to solve. In these cases SymPy will return a formal solution, which can be

evaluated numerically if needed, or raise an error if no method is available for that

particular type of equation:

In [176]: sympy.solve(x**5 - x**2 + 1, x)

Out[176]: [RootOf(x5 – x2 + 1,0), RootOf(x5 – x2 + 1,1), RootOf(x5 – x2 + 1,2),

RootOf(x5 – x2 + 1,3), RootOf(x5 – x2 + 1,4)]

In [177]: sympy.solve(sympy.tan(x) + x, x)

NotImplementedError Traceback (most recent call last)

...

NotImplementedError: multiple generators [x, tan(x)] No algorithms are

implemented to solve equation x + tan(x)

ChAPTer 3 SyMbolIC CoMPuTIng

129

Solving a system of equations for more than one unknown variable in SymPy is a

straightforward generalization of the procedure used for univariate equations. Instead of

passing a single expression as the first argument to sympy.solve, a list of expressions that

represents the system of equations is used, and in this case the second argument should

be a list of symbols to solve for. For example, the following two examples demonstrate

how to solve two systems that are linear and nonlinear equations in x and y, respectively:

In [178]: eq1 = x + 2 * y – 1

 ...: eq2 = x - y + 1

In [179]: sympy.solve([eq1, eq2], [x, y], dict=True)

Out[179]: x y: :-ì
í
î

ü
ý
þ

é

ë
ê

ù

û
ú

1

3

2

3
,

In [180]: eq1 = x**2 - y

 ...: eq2 = y**2 - x

In [181]: sols = sympy.solve([eq1, eq2], [x, y], dict=True)

In [182]: sols

Out[182]:

x y x y x
i
y

i
x

i
: : : : : : :0 0 1 1

1

2

3

2

1

2

3

2

1 3
, , , , , ,{ } { } - + - -

ì
í
ï

îï

ü
ý
ï

þï

-()22
4

1

2

3

2
,y

i
:- +

ì
í
ï

îï

ü
ý
ï

þï

é

ë

ê
ê
ê

ù

û

ú
ú
ú

Note that in both these examples, the function sympy.solve returns a list where each

element represents a solution to the equation system. The optional keyword argument

dict=True was also used, to request that each solution is returned in dictionary format,

which maps the symbols that have been solved for to their values. This dictionary can

conveniently be used in, for example, calls to subs, as in the following code that checks

that each solution indeed satisfies the two equations:

In [183]: [eq1.subs(sol).simplify() == 0 and eq2.subs(sol).simplify() == 0

for sol in sols]

Out[183]: [True, True, True, True]

ChAPTer 3 SyMbolIC CoMPuTIng

130

 Linear Algebra
Linear algebra is another fundamental branch of mathematics with important

applications throughout scientific and technical computing. It concerns vectors, vector

spaces, and linear mappings between vector spaces, which can be represented as

matrices. In SymPy we can represent vectors and matrices symbolically using the sympy.

Matrix class, whose elements can in turn be represented by numbers, symbols, or even

arbitrary symbolic expressions. To create a matrix with numerical entries, we can, as in

the case of NumPy arrays in Chapter 2, pass a Python list to sympy.Matrix:

In [184]: sympy.Matrix([1, 2])

Out[184]:
1

2

é

ë
ê
ù

û
ú

In [185]: sympy.Matrix([[1, 2]])

Out[185]: 1 2[]
In [186]: sympy.Matrix([[1, 2], [3, 4]])

Out[186]:
1 2

3 4

é

ë
ê

ù

û
ú

As this example demonstrates, a single list generates a column vector, while a

matrix requires a nested list of values. Note that unlike the multidimensional arrays

in NumPy discussed in Chapter 2, the sympy.Matrix object in SymPy is only for up to

two-dimensional arrays, i.e., vectors and matrices. Another way of creating new sympy.

Matrix objects is to pass as arguments the number of rows, the number of columns, and

a function that takes the row and column index as arguments and returns the value of

the corresponding element:

In [187]: sympy.Matrix(3, 4, lambda m, n: 10 * m + n)

Out[187]:

0 1 2 3

10 11 12 13

20 21 22 23

é

ë

ê
ê
ê

ù

û

ú
ú
ú

ChAPTer 3 SyMbolIC CoMPuTIng

131

The most powerful features of SymPy’s matrix objects, which distinguish it from,

for example, NumPy arrays, are of course that its elements themselves can be symbolic

expressions. For example, an arbitrary 2x2 matrix can be represented with a symbolic

variable for each of its elements:

In [188]: a, b, c, d = sympy.symbols("a, b, c, d")

In [189]: M = sympy.Matrix([[a, b], [c, d]])

In [190]: M

Out[190]:
a b

c d

é

ë
ê

ù

û
ú

and such matrices can naturally also be used in computations, which then remains

parameterized with the symbolic values of the elements. The usual arithmetic operators

are implemented for matrix objects, but note that multiplication operator * in this case

denotes matrix multiplication:

In [191]: M * M

Out[191]:
a bc ab bd

ac cd bc d

2

2

+ +
+ +

é

ë
ê

ù

û
ú

In [192]: x = sympy.Matrix(sympy.symbols("x_1, x_2"))

In [194]: M * x

Out[194]:
ax bx

cx dx
1 2

1 2

+
+

é

ë
ê

ù

û
ú

In addition to arithmetic operations, many standard linear algebra operations on

vectors and matrices are also implemented as SymPy functions and methods of the

sympy.Matrix class. Table 3-4 gives a summary of the frequently used linear algebra-

related functions (see the docstring for sympy.Matrix for a complete list), and SymPy

matrices can also be used in an element-oriented fashion using indexing and slicing

operations that closely resemble those discussed for NumPy arrays in Chapter 2.

As an example of a problem that can be solved with symbolic linear algebra using

SymPy, but which is not directly solvable with purely numerical approaches, consider

the following parameterized linear equation system:

x p y b+ = 1 ,

q x y b+ = 2 ,

ChAPTer 3 SyMbolIC CoMPuTIng

132

which we would like to solve for the unknown variables x and y. Here p, q, b1, and b2 are

unspecified parameters. On matrix form, we can write these two equations as

1

1
1

2

p

q

x

y

b

b

æ

è
ç

ö

ø
÷
æ

è
ç

ö

ø
÷ =

æ

è
ç

ö

ø
÷.

With purely numerical methods, we would have to choose particular values of the

parameters p and q before we could begin to solve this problem, for example, using an

LU factorization (or by computing the inverse) of the matrix on the left-hand side of

the equation. With a symbolic computing approach, on the other hand, we can directly

proceed with computing the solution, as if we carried out the calculation analytically

by hand. With SymPy, we can simply define symbols for the unknown variables and

parameters and set up the required matrix objects:

In [195]: p, q = sympy.symbols("p, q")

In [196]: M = sympy.Matrix([[1, p], [q, 1]])

In [203]: M

Out[203]:
1

1

p

q

é

ë
ê

ù

û
ú

In [197]: b = sympy.Matrix(sympy.symbols("b_1, b_2"))

In [198]: b

Out[198]: b b1 2[]

and then use, for example, the LUsolve method to solve the linear equation system:

In [199]: x = M.LUsolve(b)

In [200]: x

Out[200]:

b
p b q b

pq

b q b

pq

1
1 2

1 2

1

1

-
- +()
- +

- +
- +

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

Alternatively, we could also directly compute the inverse of the matrix M and multiply

it with the vector b:

In [201]: x = M.inv() * b

In [202]: x

ChAPTer 3 SyMbolIC CoMPuTIng

133

Out[202]:
b

pq

pq

b p

pq

b q

pq

b

pq

1
2

1 2

1
1

1

1 1

- +
+

æ

è
ç

ö

ø
÷ - - +

-
- +

+
- +

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

Table 3-4. Selected Functions and Methods for Operating on SymPy Matrices

Function/Method Description

transpose/T Compute the transpose of a matrix.

adjoint/H Compute the adjoint of a matrix.

trace Compute the trace (sum of diagonal elements) of a matrix.

det Compute the determinant of a matrix.

inv Compute the inverse of a matrix.

LUdecomposition Compute the lu decomposition of a matrix.

LUsolve Solve a linear system of equations in the form Mx = b, for the unknown

vector x, using lu factorization.

QRdecomposition Compute the Qr decomposition of a matrix.

QRsolve Solve a linear system of equations in the form Mx = b, for the unknown

vector x, using Qr factorization.

diagonalize Diagonalize a matrix M, such that it can be written in the form D = P −1MP,

where D is diagonal.

norm Compute the norm of a matrix.

nullspace Compute a set of vectors that span the null space of a Matrix.

rank Compute the rank of a matrix.

singular_values Compute the singular values of a matrix.

solve Solve a linear system of equations in the form Mx = b.

ChAPTer 3 SyMbolIC CoMPuTIng

134

However, computing the inverse of a matrix is more difficult than performing the

LU factorization, so if solving the equation Mx = b is the objective, as it was here, then

using LU factorization is more efficient. This becomes particularly noticeable for larger

equation systems. With both methods considered here, we obtain a symbolic expression

for the solution that is trivial to evaluate for any parameter values, without having to

recompute the solution. This is the strength of symbolic computing and an example of

how it sometimes can excel over direct numerical computing. The example considered

here could of course also be solved easily by hand, but as the number of equations

and unspecified parameters grow, analytical treatment by hand quickly becomes

prohibitively lengthy and tedious. With the help of a computer algebra system such as

SymPy, we can push the limits of which problems that can be treated analytically.

 Summary
This chapter introduced computer-assisted symbolic computing using Python and the

SymPy library. Although analytical and numerical techniques are often considered

separately, it is a fact that analytical methods underpin everything in computing and

are essential in developing algorithms and numerical methods. Whether analytical

mathematics is carried by hand or using a computer algebra system such as SymPy, it is

an essential tool for computational work. The approach that I would like to encourage is

therefore the following: Analytical and numerical methods are closely intertwined, and

it is often worthwhile to start analyzing a computational problem with analytical and

symbolic methods. When such methods turn out to be unfeasible, it is time to resort to

numerical methods. However, by directly applying numerical methods to a problem,

before analyzing it analytically, it is likely that one ends up solving a more difficult

computational problem than is really necessary.

 Further Reading
For a quick and short introduction to SymPy, see, for example, Lamy (2013). The official

SymPy documentation also provides a great tutorial for getting started with SymPy,

which is available at http://docs.sympy.org/latest/tutorial/index.html.

 Reference
Lamy, R. (2013). Instant SymPy Starter. Mumbai: Packt.

ChAPTer 3 SyMbolIC CoMPuTIng

http://docs.sympy.org/latest/tutorial/index.html

135
© Robert Johansson 2019
R. Johansson, Numerical Python, https://doi.org/10.1007/978-1-4842-4246-9_4

CHAPTER 4

Plotting and Visualization
Visualization is a universal tool for investigating and communicating results of

computational studies, and it is hardly an exaggeration to say that the end product of

nearly all computations – be it numeric or symbolic – is a plot or a graph of some sort.

It is when visualized in graphical form that knowledge and insights can be most easily

gained from computational results. Visualization is therefore a tremendously important

part of the workflow in all fields of computational studies.

In the scientific computing environment for Python, there are a number of high-

quality visualization libraries. The most popular general-purpose visualization library

is Matplotlib, which mainly focuses on generating static publication-quality 2D and

3D graphs. Many other libraries focus on niche areas of visualization. A few prominent

examples are Bokeh (http://bokeh.pydata.org) and Plotly (http://plot.ly), which

both primarily focus on interactivity and web connectivity, Seaborn (http://stanford.

edu/~mwaskom/software/seaborn) which is a high-level plotting library which targets

statistical data analysis and which is based on the Matplotlib library, and the Mayavi

library (http://docs.enthought.com/mayavi/mayavi) for high-quality 3D visualization,

which uses the venerable VTK software (http://www.vtk.org) for heavy-duty scientific

visualization. It is also worth noting that other VTK-based visualization software, such as

ParaView (www.paraview.org), is scriptable with Python and can also be controlled from

Python applications. In the 3D visualization space, there are also more recent players,

such as VisPy (http://vispy.org), which is an OpenGL-based 2D and 3D visualization

library with great interactivity and connectivity with browser-based environments, such

as the Jupyter Notebook.

The visualization landscape in the scientific computing environment for Python is

vibrant and diverse, and it provides ample options for various visualization needs. In

this chapter we focus on exploring traditional scientific visualization in Python using

the Matplotlib library. With traditional visualization, I mean plots and figures that are

commonly used to visualize results and data in scientific and technical disciplines, such

as line plots, bar plots, contour plots, colormap plots, and 3D surface plots.

http://bokeh.pydata.org
http://plot.ly
http://stanford.edu/~mwaskom/software/seaborn
http://stanford.edu/~mwaskom/software/seaborn
http://docs.enthought.com/mayavi/mayavi
http://www.vtk.org
http://www.paraview.org
http://vispy.org

136

Matplotlib Matplotlib is a Python library for publication-quality 2D and 3D
graphics, with support for a variety of different output formats. At the time of
writing, the latest version is 2.2.2. More information about Matplotlib is available
at the project’s web site www.matplotlib.org. This web site contains detailed
documentation and an extensive gallery that showcases the various types of
graphs that can be generated using the Matplotlib library, together with the code
for each example. This gallery is a great source of inspiration for visualization
ideas, and I highly recommend exploring Matplotlib by browsing this gallery.

There are two common approaches to creating scientific visualizations: using

a graphical user interface to manually build up graphs and using a programmatic

approach where the graphs are created with code. Both approaches have their

advantages and disadvantages. In this chapter we will take the programmatic approach,

and we will explore how to use the Matplotlib API to create graphs and control every

aspect of their appearance. The programmatic approach is a particularly suitable

method for creating graphics for scientific and technical applications and in particular

for creating publication-quality figures. An important part of the motivation for this

is that programmatically created graphics can guarantee consistency across multiple

figures, can be made reproducible, and can easily be revised and adjusted without

having to redo potentially lengthy and tedious procedures in a graphical user interface.

 Importing Modules
Unlike most Python libraries, Matplotlib actually provides multiple entry points into the

library, with different application programming interfaces (APIs). Specifically, it provides

a stateful API and an object-oriented API, both provided by the module matplotlib.

pyplot. I strongly recommend to only use the object-oriented approach, and the

remainder of this chapter will solely focus on this part of Matplotlib.1

1 Although the stateful API may be convenient and simple for small examples, the readability and
maintainability of code written for stateful APIs scale poorly, and the context-dependent nature
of such code makes it hard to rearrange or reuse. I therefore recommend to avoid it altogether
and to only use the object-oriented API.

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

http://www.matplotlib.org

137

To use the object-oriented Matplotlib API, we first need to import its Python

modules. In the following we will assume that Matplotlib is imported using the following

standard convention:

In [1]: %matplotlib inline

In [2]: import matplotlib as mpl

In [3]: import matplotlib.pyplot as plt

In [4]: from mpl_toolkits.mplot3d.axes3d import Axes3D

The first line is assuming that we are working in an IPython environment and more

specifically in the Jupyter Notebook or the IPython QtConsole. The IPython magic

command %matplotlib inline configures the Matplotlib to use the “inline” backend,

which results in the created figures being displayed directly in, for example, the Jupyter

Notebook, rather than in a new window. The statement import matplotlib as mpl

imports the main Matplotlib module, and the import statement import matplotlib.

pyplot as plt, is for convenient access to the submodule matplotlib.pyplot that

provides the functions that we will use to create new Figure instances.

Throughout this chapter we also make frequent use of the NumPy library, and as in

Chapter 2, we assume that NumPy is imported using

In [5]: import numpy as np

and we also use the SymPy library, imported as:

In [6]: import sympy

 Getting Started
Before we delve deeper into the details of how to create graphics with Matplotlib, we

begin here with a quick example of how to create a simple but typical graph. We also

cover some of the fundamental principles of the Matplotlib library, to build up an

understanding for how graphics can be produced with the library.

A graph in Matplotlib is structured in terms of a Figure instance and one or more

Axes instances within the figure. The Figure instance provides a canvas area for drawing,

and the Axes instances provide coordinate systems that are assigned to fixed regions of

the total figure canvas; see Figure 4-1.

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

138

A Figure can contain multiple Axes instances, for example, to show multiple panels

in a figure or to show insets within another Axes instance. An Axes instance can manually

be assigned to an arbitrary region of a figure canvas, or, alternatively, Axes instances can

be automatically added to a figure canvas using one of several layout managers provided

by Matplotlib. The Axes instance provides a coordinate system that can be used to plot

data in a variety of plot styles, including line graphs, scatter plots, bar plots, and many

other styles. In addition, the Axes instance also determines how the coordinate axes are

displayed, for example, with respect to the axis labels, ticks and tick labels, and so on.

In fact, when working with Matplotlib’s object-oriented API, most functions that are

needed to tune the appearance of a graph are methods of the Axes class.

As a simple example for getting started with Matplotlib, say that we would like to

graph the function y(x) = x3+5x2+10, together with its first and second derivatives, over

the range x ∈ [−5, 2]. To do this we first create NumPy arrays for the x range and then

compute the three functions we want to graph. When the data for the graph is prepared,

we need to create Matplotlib Figure and Axes instances, then use the plot method of the

Axes instance to plot the data, and set basic graph properties such as x and y axis labels,

Figure 4-1. Illustration of the arrangement of a Matplotlib Figure instance and
an Axes instance. The Axes instance provides a coordinate system for plotting, and
the Axes instance itself is assigned to a region within the figure canvas. The figure
canvas has a simple coordinate system where (0, 0) is the lower-left corner and
(1,1) is the upper-right corner. This coordinate system is only used when placing
elements, such as an Axes, directly on the figure canvas.

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

139

using the set_xlabel and set_ylabel methods and generating a legend using the

legend method. These steps are carried out in the following code, and the resulting

graph is shown in Figure 4-2.

In [7]: x = np.linspace(-5, 2, 100)

 ...: y1 = x**3 + 5*x**2 + 10

 ...: y2 = 3*x**2 + 10*x

 ...: y3 = 6*x + 10

 ...:

 ...: fig, ax = plt.subplots()

 ...: ax.plot(x, y1, color="blue", label="y(x)")

 ...: ax.plot(x, y2, color="red", label="y'(x)")

 ...: ax.plot(x, y3, color="green", label="y”(x)")

 ...: ax.set_xlabel("x")

 ...: ax.set_ylabel("y")

 ...: ax.legend()

Here we used the plt.subplots function to generate Figure and Axes instances.

This function can be used to create grids of Axes instances within a newly created Figure

instance, but here it was merely used as a convenient way of creating a Figure and an

Axes instance in one function call. Once the Axes instance is available, note that all

the remaining steps involve calling methods of this Axes instance. To create the actual

graphs, we use ax.plot, which takes as first and second arguments NumPy arrays with

Figure 4-2. Example of a simple graph created with Matplotlib

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

140

numerical data for the x and y values of the graph, and it draws a line connecting these

data points. We also used the optional color and label keyword arguments to specify

the color of each line and assign a text label to each line that is used in the legend. These

few lines of code are enough to generate the graph we set out to produce, but as a bare

minimum, we should also set labels on the x and y axes and if suitable add a legend for

the curves we have plotted. The axis labels are set with ax.set_xlabel and ax.set_

ylabel methods, which takes as argument a text string with the corresponding label. The

legend is added using the ax.legend method, which does not require any arguments in

this case since we used the label keyword argument when plotting the curves.

These are the typical steps required to create a graph using Matplotlib. While

this graph, Figure 4-2, is complete and fully functional, there is certainly room for

improvements in many aspects of its appearance. For example, to meet publication or

production standards, we may need to change the font and the fontsize of the axis labels,

the tick labels, and the legend, and we should probably move the legend to a part of the

graph where it does not interfere with the curves we are plotting. We might even want

to change the number of axis ticks and label and add annotations and additional help

lines to emphasize certain aspects of the graph and so on. With a few changes along

these lines, the figure may, for example, appear like in Figure 4-3, which is considerably

more presentable. In the remainder of this chapter, we look at how to fully control the

appearance of the graphics produced using Matplotlib.

Figure 4-3. Revised version of Figure 4-2

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

141

 Interactive and Noninteractive Modes
The Matplotlib library is designed to work well with many different environments and

platforms. As such, the library does not only contain routines for generating graphs, but

it also contains support for displaying graphs in different graphical environments. To

this end, Matplotlib provides backends for generating graphics in different formats (e.g.,

PNG, PDF, Postscript, and SVG) and for displaying graphics in a graphical user interface

using a variety of different widget toolkits (e.g., Qt, GTK, wxWidgets, and Cocoa for Mac

OS X) that are suitable for different platforms.

Which backend to use can be selected in that Matplotlib resource file,2 or using the

function mpl.use, which must be called right after importing matplotlib, before importing

the matplotlib.pyplot module. For example, to select the Qt4Agg backend, we can use

import matplotlib as mpl

mpl.use('qt4agg')

import matplotlib.pyplot as plt

2 The Matplotlib resource file, matplotlibrc, can be used to set default values of many Matplotlib
parameters, including which backend to use. The location of the file is platform dependent. For
details, see http://matplotlib.org/users/customizing.html.

Figure 4-4. A screenshot of the Matplotlib graphical user interface for displaying
figures, using the Qt4 backend on Mac OS X. The detailed appearance varies across
platforms and backends, but the basic functionality is the same.

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

http://matplotlib.org/users/customizing.html

142

The graphical user interface for displaying Matplotlib figures, as shown in Figure 4- 4,

is useful for interactive use with Python script files or the IPython console, and it allows

to interactively explore figures, for example, by zooming and panning. When using

an interactive backend, which displays the figure in a graphical user interface, it is

necessary to call the function plt.show to get the window to appear on the screen.

By default, the plt.show call will hang until the window is closed. For a more interactive

experience, we can activate interactive mode by calling the function plt.ion. This

instructs Matplotlib to take over the GUI event loop and show a window for a figure as

soon as it is created, returning the control flow to the Python or IPython interpreter. To

have the changes to a figure take effect, we need to issue a redraw command using the

function plt.draw. We can deactivate the interactive mode using the function plt.ioff,

and we can use the function mpl.is_interactive to check if Matplotlib is in interactive

or noninteractive mode.

While the interactive graphical user interfaces have unique advantages, when

working the Jupyter Notebook or Qtconsole, it is often more convenient to display

Matplotlib-produced graphics embedded directly in the notebook. This behavior is

activated using the IPython command %matplotlib inline, which activates the “inline

backend” provided by IPython. This configures Matplotlib to use a noninteractive

backend to generate graphics images, which are then displayed as static images in, for

example, the Jupyter Notebook. The IPython “inline backend” for Matplotlib can be

fine-tuned using the IPython %config command. For example, we can select the output

format for the generated graphics using the InlineBackend.figure_format option,3

which, for example, we can set to ‘svg’ to generate SVG graphics rather than PNG files:

In [8]: %matplotlib inline

In [9]: %config InlineBackend.figure_format='svg'

With this approach the interactive aspect of the graphical user interface is lost

(e.g., zooming and panning), but embedding the graphics directly in the notebook has

many other advantages. For example, keeping the code that was used to generate a

figure together with the resulting figure in the same document eliminates the need for

rerunning the code to display a figure, and interactive nature of the Jupyter Notebook

itself replaces some of the interactivity of Matplotlib’s graphical user interface.

3 For Max OS X users, %config InlineBackend.figure_format='retina' is another useful
option, which improves the quality of the Matplotlib graphics when viewed on retina displays.

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

143

When using the IPython inline backend, it is not necessary to use plt.show and plt.

draw, since the IPython rich display system is responsible for triggering the rendering

and the displaying of the figures. In this book, I will assume that code examples are

executed in the Jupyter Notebooks, and the calls to the function plt.show are therefore

not in the code examples. When using an interactive backend, it is necessary to add this

function call at the end of each example.

 Figure
As introduced in the previous section, the Figure object is used in Matplotlib to

represent a graph. In addition to providing a canvas on which, for example, Axes

instances can be placed, the Figure object also provides methods for performing actions

on figures, and it has several attributes that can be used to configure the properties of a

figure.

A Figure object can be created using the function plt.figure, which takes several

optional keyword arguments for setting figure properties. In particular, it accepts the

figsize keyword argument, which should be assigned to a tuple on the form (width,

height), specifying the width and height of the figure canvas in inches. It can also

be useful to specify the color of the figure canvas by setting the facecolor keyword

argument.

Once a Figure is created, we can use the add_axes method to create a new

Axes instance and assign it to a region on the figure canvas. The add_axes takes one

mandatory argument: a list containing the coordinates of the lower-left corner and

the width and height of the Axes in the figure canvas coordinate system, on the format

(left, bottom, width, height).4 The coordinates and the width and height of the

Axes object are expressed as fractions of total canvas width and height; see Figure 4-1.

For example, an Axes object that completely fills the canvas corresponds to (0, 0, 1, 1),

but this leaves no space for axis labels and ticks. A more practical size could be (0.1,

0.1, 0.8, 0.8), which corresponds to a centered Axes instance that covers 80% of the

width and height of the canvas. The add_axes method takes a large number of keyword

arguments for setting properties of the new Axes instance. These will be described in

more detail later in this chapter, when we discuss the Axes object in depth. However,

4 An alternative to passing a coordinate and size tuple to add_axes is to pass an already existing
Axes instance.

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

144

one keyword argument that is worth to emphasize here is facecolor, with which we can

assign a background color for the Axes object. Together with the facecolor argument of

plt.figure, this allows selecting colors of both the canvas and the regions covered by

Axes instances.

With the Figure and Axes objects obtained from plt.figure and fig.add_axes,

we have the necessary preparations to start plotting data using the methods of the Axes

objects. For more details on this, see the next section of this chapter. However, once the

required plots have been created, there are more methods in the Figure objects that are

important in the graph creation workflow. For example, to set an overall figure title, we

can use suptitle, which takes a string with the title as argument. To save a figure to a

file, we can use the savefig method. This method takes a string with the output filename

as first argument, as well as several optional keyword arguments. By default, the output

file format will be determined from the file extension of the filename argument, but we

can also specify the format explicitly using the format argument. The available output

formats depend on which Matplotlib backend is used, but commonly available options

are PNG, PDF, EPS, and SVG formats. The resolution of the generated image can be

set with the dpi argument. DPI stands for “dots per inch,” and since the figure size is

specified in inches using the figsize argument, multiplying these numbers gives the

output image size in pixels. For example, with figsize=(8, 6) and dpi=100, the size of

the generated image is 800x600 pixels. The savefig method also takes some arguments

that are similar to those of the plt.figure function, such as the facecolor argument.

Note that even though the facecolor argument is used with plt.figure, it also needs

to be specified with savefig for it to apply to the generated image file. Finally, the

figure canvas can also be made transparent using the transparent=True argument to

savefig. The following code listing illustrates these techniques, and the result is shown

in Figure 4-5.

In [10]: fig = plt.figure(figsize=(8, 2.5), facecolor="#f1f1f1")

 ...:

 ...: # axes coordinates as fractions of the canvas width and height

 ...: left, bottom, width, height = 0.1, 0.1, 0.8, 0.8

 ...: ax = fig.add_axes((left, bottom, width, height),

facecolor="#e1e1e1")

 ...:

 ...: x = np.linspace(-2, 2, 1000)

 ...: y1 = np.cos(40 * x)

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

145

 ...: y2 = np.exp(-x**2)

 ...:

 ...: ax.plot(x, y1 * y2)

 ...: ax.plot(x, y2, 'g')

 ...: ax.plot(x, -y2, 'g')

 ...: ax.set_xlabel("x")

 ...: ax.set_ylabel("y")

 ...:

 ...: fig.savefig("graph.png", dpi=100, facecolor="#f1f1f1")

 Axes
The Figure object introduced in the previous section provides the backbone of a

Matplotlib graph, but all the interesting content is organized within or around Axes

instances. We have already encountered Axes objects on a few occasions earlier in this

chapter. The Axes object is central to most plotting activities with the Matplotlib library.

It provides the coordinate system in which we can plot data and mathematical functions,

and in addition it contains the axis objects that determine where the axis labels and the

axis ticks are placed. The functions for drawing different types of plots are also methods

of this Axes class. In this section we first explore different types of plots that can be drawn

using Axes methods and how to customize the appearance of the x and y axes and the

coordinate systems used with an Axes object.

Figure 4-5. Graph showing the result of setting the size of a figure with figsize,
adding a new Axes instance with add_axes, setting the background colors of the
Figure and Axes objects using facecolor, and finally saving the figure to file using
savefig

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

146

We have seen how new Axes instances can be added to a figure explicitly using the

add_axes method. This is a flexible and powerful method for placing Axes objects at

arbitrary positions, which has several important applications, as we will see later in

the chapter. However, for most common use-cases, it is tedious to specify explicitly the

coordinates of the Axes instances within the figure canvas. This is especially true when

using multiple panels of Axes instances within a figure, for example, in a grid layout.

Matplotlib provides several different Axes layout managers, which create and place

Axes instances within a figure canvas following different strategies. Later in this chapter,

we look into more detail of how to use such layout managers. However, to facilitate the

forthcoming examples, we here briefly look at one of these layout managers: the plt.

subplots function. Earlier in this chapter, we already used this function to conveniently

generate new Figure and Axes objects in one function call. However, the plt.subplots

function is also capable of filling a figure with a grid of Axes instances, which is specified

using the first and the second arguments, or alternatively with the nrows and ncols

arguments, which, as the names imply, create a grid of Axes objects, with the given

number of rows and columns. For example, to generate a grid of Axes instances in a

newly created Figure object, with three rows and two columns, we can use

fig, axes = plt.subplots(nrows=3, ncols=2)

Here, the function plt.subplots returns a tuple (fig, axes), where fig is a Figure

instance and axes is a NumPy array of size (nrows, ncols), in which each element is an

Axes instance that has been appropriately placed in the corresponding figure canvas. At

this point we can also specify that columns and/or rows should share x and y axes, using

the sharex and sharey arguments, which can be set to True or False.

The plt.subplots function also takes two special keyword arguments fig_kw and

subplot_kw, which are dictionaries with keyword arguments that are used when creating

the Figure and Axes instances, respectively. This allows us to set and retain full control

of the properties of the Figure and Axes objects with plt.subplots in a similar way as

when directly using plt.figure and the make_axes method.

 Plot Types
Effective scientific and technical visualization of data requires a wide variety of graphing

techniques. Matplotlib implements many types of plotting techniques as methods of

the Axes object. For example, in the previous examples, we have already used the plot

method, which draws curves in the coordinate system provided by the Axes object.

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

147

In the following sections, we explore some of Matplotlib’s plotting functions in more

depth by using these functions in example graphs. A summary of commonly used 2D

plot functions is shown in Figure 4-6. Other types of graphs, such as color maps and 3D

graphs, are discussed later in this chapter. All plotting functions in Matplotlib expect data

as NumPy arrays as input, typically as arrays with x and y coordinates as the first and

second arguments. For details, see the docstrings for each method shown in Figure 4-6,

using, for example, help(plt.Axes.bar).

 Line Properties
The most basic type of plot is the simple line plot. It may, for example, be used to depict

the graph of a univariate function or to plot data as a function of a control variable.

In line plots, we frequently need to configure properties of the lines in the graph,

for example, the line width, line color, and line style (solid, dashed, dotted, etc.). In

Matplotlib we set these properties with keyword arguments to the plot methods, such

as plot, step, and bar. A few of these graph types are shown in Figure 4-6. Many of the

plot methods have their own specific arguments, but basic properties such as colors

and line width are shared among most plotting methods. These basic properties and the

corresponding keyword arguments are summarized in Table 4-1.

Axes.plot

Axes.errorbar Axes.scatter Axes.fill_between Axes.quiver

Axes.step Axes.bar Axes.hist

Figure 4-6. Overview of selected 2D graph types. The name of the Axes method for
generating each type of graph is shown together with the corresponding graph.

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

148

To illustrate the use of these properties and arguments, consider the following code,

which draws horizontal lines with various values of the line width, line style, marker

symbol, color, and size. The resulting graph is shown in Figure 4-7.

Table 4-1. Basic Line Properties and Their Corresponding Argument Names for

Use with the Matplotlib Plotting Methods

Argument Example Values Description

color A color specification can be a

string with a color name, such as

“red,” “blue,” etc., or a rgB color

code on the form “#aabbcc.”

A color specification.

alpha Float number between 0.0

(completely transparent) and 1.0

(completely opaque).

The amount of transparency.

linewidth, lw Float number. The width of a line.

linestyle, ls “-” – solid

“--” – dashed

“:” – dotted

“.-” – dash-dotted

The style of the line, i.e., whether the

line is to be drawn as a solid line or

if it should be, for example, dotted or

dashed.

marker +, o, * = cross, circle, star

s = square

. = small dot

1, 2, 3, 4, ... = triangle-shaped

symbols with different angles.

each data point, whether or not it

is connected with adjacent data

points, can be represented with a

marker symbol as specified with this

argument.

markersize Float number. The marker size.

markerfacecolor Color specification (see in the

preceding text).

The fill color for the marker.

markeredgewidth Float number. The line width of the marker edge.

markeredgecolor Color specification (see above). The marker edge color.

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

149

In [11]: x = np.linspace(-5, 5, 5)

 ...: y = np.ones_like(x)

 ...:

 ...: def axes_settings(fig, ax, title, ymax):

 ...: ax.set_xticks([])

 ...: ax.set_yticks([])

 ...: ax.set_ylim(0, ymax+1)

 ...: ax.set_title(title)

 ...:

 ...: fig, axes = plt.subplots(1, 4, figsize=(16,3))

 ...:

 ...: # Line width

 ...: linewidths = [0.5, 1.0, 2.0, 4.0]

 ...: for n, linewidth in enumerate(linewidths):

 ...: axes[0].plot(x, y + n, color="blue", linewidth=linewidth)

 ...: axes_settings(fig, axes[0], "linewidth", len(linewidths))

 ...:

 ...: # Line style

 ...: linestyles = ['-', '-.', ':']

 ...: for n, linestyle in enumerate(linestyles):

 ...: axes[1].plot(x, y + n, color="blue", lw=2, linestyle=linestyle)

 ...: # custom dash style

 ...: line, = axes[1].plot(x, y + 3, color="blue", lw=2)

 ...: length1, gap1, length2, gap2 = 10, 7, 20, 7

 ...: line.set_dashes([length1, gap1, length2, gap2])

 ...: axes_settings(fig, axes[1], "linetypes", len(linestyles) + 1)

 ...: # marker types

 ...: markers = ['+', 'o', '*', 's', '.', '1', '2', '3', '4']

 ...: for n, marker in enumerate(markers):

 ...: # lw = shorthand for linewidth, ls = shorthand for linestyle

 ...: axes[2].plot(x, y + n, color="blue", lw=2, ls='*',

marker=marker)

 ...: axes_settings(fig, axes[2], "markers", len(markers))

 ...:

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

150

 ...: # marker size and color

 ...: markersizecolors = [(4, "white"), (8, "red"), (12, "yellow"),

(16, "lightgreen")]

 ...: for n, (markersize, markerfacecolor) in enumerate

(markersizecolors):

 ...: axes[3].plot(x, y + n, color="blue", lw=1, ls='-',

 ...: marker='o', markersize=markersize,

 ...: markerfacecolor=markerfacecolor,

markeredgewidth=2)

 ...: axes_settings(fig, axes[3], "marker size/color", len

(markersizecolors))

In practice, using different colors, line widths and line styles are important tools for

making a graph easily readable. In a graph with a large number of lines, we can use a

combination of colors and line style to make each line uniquely identifiable, for example,

via a legend. The line width property is best used to give emphasis to important lines.

Consider the following example, where the function sin(x) is plotted together with its

first few series expansions around x = 0, as shown in Figure 4-8.

In [12]: # a symbolic variable for x, and a numerical array with specific

values of x

 ...: sym_x = sympy.Symbol("x")

 ...: x = np.linspace(-2 * np.pi, 2 * np.pi, 100)

 ...:

 ...: def sin_expansion(x, n):

 ...: """

 ...: Evaluate the nth order Taylor. series expansion

Figure 4-7. Graphs showing the result of setting the line properties line width, line
style, marker type and marker size, and color

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

151

 ...: of sin(x) for the numerical values in the array x.

 ...: """

 ...: return sympy.lambdify(sym_x, sympy.sin(sym_x).series(n=n+1).

removeO(), 'numpy')(x)

 ...:

 ...: fig, ax = plt.subplots()

 ...:

 ...: ax.plot(x, np.sin(x), linewidth=4, color="red", label='exact')

 ...:

 ...: colors = ["blue", "black"]

 ...: linestyles = [':', '-.', '--']

 ...: for idx, n in enumerate(range(1, 12, 2)):

 ...: ax.plot(x, sin_expansion(x, n), color=colors[idx // 3],

 ...: linestyle=linestyles[idx % 3], linewidth=3,

 ...: label="order %d approx." % (n+1))

 ...:

 ...: ax.set_ylim(-1.1, 1.1)

 ...: ax.set_xlim(-1.5*np.pi, 1.5*np.pi)

 ...:

 ...: # place a legend outsize of the Axes

 ...: ax.legend(bbox_to_anchor=(1.02, 1), loc=2, borderaxespad=0.0)

 ...: # make room for the legend to the right of the Axes

 ...: fig.subplots_adjust(right=.75)

Figure 4-8. Graph for sin(x) together with its Taylor series approximation of the
few lowest orders

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

152

 Legends
A graph with multiple lines may often benefit from a legend, which displays a label along

each line type somewhere within the figure. As we have seen in the previous example,

a legend may be added to an Axes instance in a Matplotlib figure using the legend

method. Only lines with assigned labels are included in the legend (to assign a label to

a line, use the label argument of, for example, Axes.plot). The legend method accepts

a large number of optional arguments. See help(plt.legend) for details. Here we

emphasize a few of the more useful arguments. In the example in the previous section,

we used the loc argument, which allows to specify where in the Axes area the legend

is to be added: loc=1 for upper-right corner, loc=2 for upper-left corner, loc=3 for the

lower-left corner, and loc=4 for lower-right corner, as shown in Figure 4-9.

In the example of the previous section, we also used the bbox_to_anchor, with which

help the legend can be placed at an arbitrary location within the figure canvas. The

bbox_to_anchor argument takes the value of a tuple on the form (x, y), where x and y

are the canvas coordinates within the Axes object. That is, the point (0, 0) corresponds

to the lower-left corner, and (1, 1) corresponds to the upper-right corner. Note that x

and y can be smaller than 0 and larger than 1 in this case, which indicates that the legend

is to be placed outside the Axes area, as was used in the previous section.

By default all lines in the legend are shown in a vertical arrangement. Using the

ncols argument, it is possible to split the legend labels into multiple columns, as

illustrated in Figure 4-10.

Figure 4-9. Legend at different positions within an Axes instance, specified using
the loc argument of the method legend

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

153

 Text Formatting and Annotations
Text labels, titles, and annotations are important components in most graphs, and

having full control of, for example, the font types and fontsizes that are used to render

such texts is a basic requirement for producing publication-quality graphs. Matplotlib

provides several ways of configuring font properties. The default values can be set in the

Matplotlib resource file, and session-wide configuration can be set in the mpl.rcParams

dictionary. This dictionary is a cache of the Matplotlib resource file, and changes to

parameters within this dictionary are valid until the Python interpreter is restarted

and Matplotlib is imported again. Parameters that are relevant to how text is displayed

include, for example, 'font.family' and 'font.size'.

Tip Try print(mpl.rcParams) to get a list of possible configuration
parameters and their current values. updating a parameter is as simple as
assigning a new value to the corresponding item in the dictionary mpl.rcParams,
for example, mpl.rcParams[‘savefig.dpi’] = 100. see also the mpl.rc
function, which can be used to update the mpl.rcParams dictionary, and
mpl.rcdefaults for restoring the default values.

It is also possible to set text properties on a case-to-case basis, by passing a set

of standard keyword arguments to functions that create text labels in a graph. Most

Matplotlib functions that deal with text labels, in one way or another, accept the keyword

arguments summarized in Table 4-2 (this list is an incomplete selection of common

arguments; see help(mpl.text.Text) for a complete reference). For example, these

Figure 4-10. Legend displayed outside the Axes object and shown with four
columns instead of the single one, here using ax.legend(ncol=4, loc=3, bbox_
to_anchor=(0, 1))

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

154

arguments can be used with the method Axes.text, which create a new text label at a

given coordinate. They may also be used with set_title, set_xlabel, set_ylabel, etc.

For more information on these methods, see the next section.

In scientific and technical visualization, it is clearly important to be able to render

mathematical symbols and expressions in text labels. Matplotlib provides excellent

support for this through LaTeX markup within its text labels: any text label in Matplotlib

can include LaTeX math by enclosing it within $ signs, for example, "Regular text:

$f(x)=1-x^2$". By default, Matplotlib uses an internal LaTeX rendering, which supports

a subset of LaTeX language. However, by setting the configuration parameter mpl.

rcParams["text.usetex"]=True, it is also possible to use an external full-featured

LaTeX engine (if it is available on your system).

When embedding LaTeX code in strings in Python, there is a common stumbling

block: Python uses \ as escape character, while in LaTeX it is used to denote the start

of commands. To prevent the Python interpreter from escaping characters in strings

containing LaTeX expressions, it is convenient to use raw strings, which are literal string

expressions that are prepended with and an r, for example, r"$\int f(x) dx$" and

r'$x_{\rm A}$'.

The following example demonstrates how to add text labels and annotations to a

Matplotlib figure using ax.text and ax.annotate, as well as how to render a text label

that includes an equation that is typeset in LaTeX. The resulting graph is shown in

Figure 4-11.

In [13]: fig, ax = plt.subplots(figsize=(12, 3))

 ...:

 ...: ax.set_yticks([])

 ...: ax.set_xticks([])

 ...: ax.set_xlim(-0.5, 3.5)

 ...: ax.set_ylim(-0.05, 0.25)

 ...: ax.axhline(0)

 ...:

 ...: # text label

 ...: ax.text(0, 0.1, "Text label", fontsize=14, family="serif")

 ...:

 ...: # annotation

 ...: ax.plot(1, 0, "o")

 ...: ax.annotate("Annotation",

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

155

 ...: fontsize=14, family="serif",

 ...: xy=(1, 0), xycoords="data",

 ...: xytext=(+20, +50), textcoords="offset points",

 ...: arrowprops=dict(arrowstyle="->", connectionstyle="arc3,

rad=.5"))

 ...:

 ...: # equation

 ...: ax.text(2, 0.1, r"Equation: $i\hbar\partial_t \Psi = \hat{H}\

Psi$", fontsize=14, family="serif")

 ...:

Figure 4-11. Example demonstrating the result of adding text labels and
annotations using ax.text and ax.annotation and including LaTeX formatted
equations in a Matplotlib text label

Table 4-2. Summary of Selected Font Properties and the Corresponding Keyword

Arguments

Argument Description

fontsize The size of the font, in points.

family or fontname The font type.

backgroundcolor Color specification for the background color of the text

label.

color Color specification for the font color.

alpha Transparency of the font color.

rotation rotation angle of the text label.

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

156

 Axis Properties
After having created Figure and Axes objects, the data or functions are plotted using

some of the many plot functions provided by Matplotlib, and the appearance of lines and

markers are customized – the last major aspect of a graph that remains to be configured

and fine-tuned is the Axis instances. A two-dimensional graph has two axis objects: for

the horizontal x axis and the vertical y axis. Each axis can be individually configured with

respect to attributes such as the axis labels, the placement of ticks and the tick labels,

and the location and appearance of the axis itself. In this section we look into the details

of how to control these aspects of a graph.

 Axis Labels and Titles

Arguably the most important property of an axis, which needs to be set in nearly all cases,

is the axis label. We can set the axis labels using the set_xlabel and set_ylabel methods:

they both take a string with the label as first arguments. In addition, the optional labelpad

argument specifies the spacing, in units of points, from the axis to the label. This padding

is occasionally necessary to avoid overlap between the axis label and the axis tick labels.

The set_xlabel and set_ylabel methods also take additional arguments for setting text

properties, such as color, fontsize, and fontname, as discussed in detail in the previous

section. The following code, which produces Figure 4- 12, demonstrates how to use the

set_xlabel and set_ylabel methods and the keyword arguments discussed here.

In [14]: x = np.linspace(0, 50, 500)

 ...: y = np.sin(x) * np.exp(-x/10)

 ...:

 ...: fig, ax = plt.subplots(figsize=(8, 2), subplot_kw={'facecolor':

"#ebf5ff"})

 ...:

 ...: ax.plot(x, y, lw=2)

 ...:

 ...: ax.set_xlabel ("x", labelpad=5, fontsize=18, fontname='serif',

color="blue")

 ...: ax.set_ylabel ("f(x)", labelpad=15, fontsize=18, fontname='serif',

color="blue")

 ...: ax.set_title("axis labels and title example", fontsize=16,

 ...: fontname='serif', color="blue")

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

157

In addition to labels on the x and y axes, we can also set a title of an Axes object,

using the set_title method. This method takes mostly the same arguments as set_

xlabel and set_ylabel, with the exception of the loc argument, which can be assigned

to 'left', 'centered', to 'right', and which dictates that the title is to be left aligned,

centered, or right aligned.

 Axis Range

By default, the range of the x and y axes of a Matplotlib is automatically adjusted to the

data that is plotted in the Axes object. In many cases these default ranges are sufficient,

but in some situations, it may be necessary to explicitly set the axis ranges. In such cases,

we can use the set_xlim and set_ylim methods of the Axes object. Both these methods

take two arguments that specify the lower and upper limit that is to be displayed on the

axis, respectively. An alternative to set_xlim and set_ylim is the axis method, which, for

example, accepts the string argument 'tight', for a coordinate range that tightly fit the

lines it contains, and 'equal', for a coordinate range where one unit length along each axis

corresponds to the same number of pixels (i.e., a ratio preserving coordinate system).

It is also possible to use the autoscale method to selectively turn on and off

autoscaling, by passing True and False as first argument, for the x and/or y axis by

setting its axis argument to 'x', 'y', or 'both'. The example below shows how to use

these methods to control axis ranges. The resulting graphs are shown in Figure 4-13.

In [15]: x = np.linspace(0, 30, 500)

 ...: y = np.sin(x) * np.exp(-x/10)

 ...:

 ...:

 ...: fig, axes = plt.subplots(1, 3, figsize=(9, 3), subplot_

kw={'facecolor': "#ebf5ff"})

Figure 4-12. Graph demonstrating the result of using set_xlabel and set_
ylabel for setting the x and y axis labels

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

158

 ...:

 ...: axes[0].plot(x, y, lw=2)

 ...: axes[0].set_xlim(-5, 35)

 ...: axes[0].set_ylim(-1, 1)

 ...: axes[0].set_title("set_xlim / set_y_lim")

 ...:

 ...: axes[1].plot(x, y, lw=2)

 ...: axes[1].axis('tight')

 ...: axes[1].set_title("axis('tight')")

 ...:

 ...: axes[2].plot(x, y, lw=2)

 ...: axes[2].axis('equal')

 ...: axes[2].set_title("axis('equal')")

 Axis Ticks, Tick Labels, and Grids

The final basic properties of the axis that remain to be configured are the placement of

axis ticks and the placement and the formatting of the corresponding tick labels. The

axis ticks are an important part of the overall appearance of a graph, and when preparing

publication and production-quality graphs, it is often necessary to have detailed control

over the axis ticks. Matplotlib module mpl.ticker provides a general and extensible

tick management system that gives full control of the tick placement. Matplotlib

distinguishes between major ticks and minor ticks. By default, every major tick has a

corresponding label, and the distances between major ticks may be further marked with

minor ticks that do not have labels, although this feature must be explicitly turned on.

See Figure 4-14 for an illustration of major and minor ticks.

Figure 4-13. Graphs that show the result of using the set_xlim, set_ ylim, and
axis methods for setting the axis ranges that are shown in a graph

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

159

When approaching the configuration of ticks, the most common design target is to

determine where the major tick with labels should be placed along the coordinate axis.

The mpl.ticker module provides classes for different tick placement strategies. For

example, the mpl.ticker.MaxNLocator can be used to set the maximum number ticks

(at unspecified locations), the mpl.ticker.MultipleLocator can be used for setting

ticks at multiples of a given base, and the mpl.ticker.FixedLocator can be used to

place ticks at explicitly specified coordinates. To change ticker strategy, we can use the

set_major_locator and the set_minor_locator methods in Axes.xaxis and Axes.

yaxis. These methods accept an instance of a ticker class defined in mpl.ticker or a

custom class that is derived from one of those classes.

When explicitly specifying tick locations, we can also use the methods set_xticks

and set_yticks, which accept a list of coordinates for where to place major ticks. In this

case, it is also possible to set custom labels for each tick using the set_xticklabels and

set_yticklabels, which expects lists of strings to use as labels for the corresponding

ticks. If possible, it is a good idea to use generic tick placement strategies, for example,

mpl.ticker.MaxNLocator, because they dynamically adjust if the coordinate range is

changed, whereas explicit tick placement using set_xticks and set_yticks then would

require manual code changes. However, when the exact placement of ticks must be

controlled, then set_xticks and set_yticks are convenient methods.

The following code demonstrates how to change the default tick placement using

combinations of the methods discussed in the previous paragraphs, and the resulting

graphs are shown in Figure 4-15.

Figure 4-14. The difference between major and minor ticks

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

160

In [16]: x = np.linspace(-2 * np.pi, 2 * np.pi, 500)

 ...: y = np.sin(x) * np.exp(-x**2/20)

 ...:

 ...: fig, axes = plt.subplots(1, 4, figsize=(12, 3))

 ...:

 ...: axes[0].plot(x, y, lw=2)

 ...: axes[0].set_title("default ticks")

 ...: axes[1].plot(x, y, lw=2)

 ...: axes[1].set_title("set_xticks")

 ...: axes[1].set_yticks([-1, 0, 1])

 ...: axes[1].set_xticks([-5, 0, 5])

 ...:

 ...: axes[2].plot(x, y, lw=2)

 ...: axes[2].set_title("set_major_locator")

 ...: axes[2].xaxis.set_major_locator(mpl.ticker.MaxNLocator(4))

 ...: axes[2].yaxis.set_major_locator(mpl.ticker.FixedLocator([-1, 0, 1]))

 ...: axes[2].xaxis.set_minor_locator(mpl.ticker.MaxNLocator(8))

 ...: axes[2].yaxis.set_minor_locator(mpl.ticker.MaxNLocator(8))

 ...:

 ...: axes[3].plot(x, y, lw=2)

 ...: axes[3].set_title("set_xticklabels")

 ...: axes[3].set_yticks([-1, 0, 1])

 ...: axes[3].set_xticks([-2 * np.pi, -np.pi, 0, np.pi, 2 * np.pi])

 ...: axes[3].set_xticklabels([r'-2π', r'$-\pi$', 0, r'π',

 r'2π'])

 ...: x_minor_ticker = mpl.ticker.FixedLocator([-3 * np.pi / 2,

-np.pi / 2, 0,

 ...: np.pi / 2, 3 * np.pi / 2])

 ...: axes[3].xaxis.set_minor_locator(x_minor_ticker)

 ...: axes[3].yaxis.set_minor_locator(mpl.ticker.MaxNLocator(4))

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

161

A commonly used design element in graphs is grid lines, which are intended as a

visual guide when reading values from the graph. Grids and grid lines are closely related

to axis ticks, since they are drawn at the same coordinate values, and are therefore

essentially extensions of the ticks that span across the graph. In Matplotlib, we can turn

on axis grids using the grid method of an axes object. The grid method takes optional

keyword arguments that are used to control the appearance of the grid. For example, like

many of the plot functions in Matplotlib, the grid method accepts the arguments color,

linestyle, and linewidth, for specifying the properties of the grid lines. In addition, it

takes argument which and axis that can be assigned values 'major', 'minor', or 'both',

and 'x', 'y', or 'both', respectively. These arguments are used to indicate which ticks

along which axis the given style is to be applied to. If several different styles for the grid

lines are required, multiple calls to grid can be used, with different values of which and

axis. For an example of how to add grid lines and how to style them in different ways,

see the following example, which produces the graphs shown in Figure 4-16.

In [17]: fig, axes = plt.subplots(1, 3, figsize=(12, 4))

 ...: x_major_ticker = mpl.ticker.MultipleLocator(4)

 ...: x_minor_ticker = mpl.ticker.MultipleLocator(1)

 ...: y_major_ticker = mpl.ticker.MultipleLocator(0.5)

 ...: y_minor_ticker = mpl.ticker.MultipleLocator(0.25)

 ...:

 ...: for ax in axes:

 ...: ax.plot(x, y, lw=2)

 ...: ax.xaxis.set_major_locator(x_major_ticker)

 ...: ax.yaxis.set_major_locator(y_major_ticker)

 ...: ax.xaxis.set_minor_locator(x_minor_ticker)

 ...: ax.yaxis.set_minor_locator(y_minor_ticker)

Figure 4-15. Graphs that demonstrate different ways of controlling the placement
and appearance of major and minor ticks along the x axis and the y axis

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

162

 ...:

 ...: axes[0].set_title("default grid")

 ...: axes[0].grid()

 ...:

 ...: axes[1].set_title("major/minor grid")

 ...: axes[1].grid(color="blue", which="both", linestyle=':',

linewidth=0.5)

 ...:

 ...: axes[2].set_title("individual x/y major/minor grid")

 ...: axes[2].grid(color="grey", which="major", axis='x', linestyle='-',

linewidth=0.5)

 ...: axes[2].grid(color="grey", which="minor", axis='x', linestyle=':',

linewidth=0.25)

 ...: axes[2].grid(color="grey", which="major", axis='y', linestyle='-',

linewidth=0.5)

In addition to controlling the tick placements, the Matplotlib mpl.ticker module

also provides classes for customizing the tick labels. For example, the ScalarFormatter

from the mpl.ticker module can be used to set several useful properties related

to displaying tick labels with scientific notation, for displaying axis labels for large

numerical values. If scientific notation is activated using the set_scientific method,

we can control the threshold for when scientific notation is used with the set_

powerlimits method (by default, tick labels for small numbers are not displayed using

the scientific notation), and we can use the useMathText=True argument when creating

Figure 4-16. Graphs demonstrating the result of using grid lines

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

163

the ScalarFormatter instance in order to have the exponents shown in math style rather

than using code style exponents (e.g., 1e10). See the following code for an example of

using scientific notation in tick labels. The resulting graphs are shown in Figure 4-17.

In [19]: fig, axes = plt.subplots(1, 2, figsize=(8, 3))

 ...:

 ...: x = np.linspace(0, 1e5, 100)

 ...: y = x ** 2

 ...:

 ...: axes[0].plot(x, y, 'b.')

 ...: axes[0].set_title("default labels", loc='right')

 ...:

 ...: axes[1].plot(x, y, 'b')

 ...: axes[1].set_title("scientific notation labels", loc='right')

 ...:

 ...: formatter = mpl.ticker.ScalarFormatter(useMathText=True)

 ...: formatter.set_scientific(True)

 ...: formatter.set_powerlimits((-1,1))

 ...: axes[1].xaxis.set_major_formatter(formatter)

 ...: axes[1].yaxis.set_major_formatter(formatter)

Figure 4-17. Graphs with tick labels in scientific notation. The left panel uses the
default label formatting, while the right panel uses tick labels in scientific notation,
rendered as math text.

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

164

 Log Plots

In visualization of data that spans several orders of magnitude, it is useful to work

with logarithmic coordinate systems. In Matplotlib, there are several plot functions for

graphing functions in such coordinate systems, for example, loglog, semilogx, and

semilogy, which use logarithmic scales for both the x and y axes, for only the x axis, and

for only the y axis, respectively. Apart from the logarithmic axis scales, these functions

behave similarly to the standard plot method. An alternative approach is to use the

standard plot method and to separately configure the axis scales to be logarithmic

using the set_xscale and/or set_yscale method with 'log' as first argument. These

methods of producing log-scale plots are exemplified in the following section, and the

resulting graphs are shown in Figure 4-18.

In [20]: fig, axes = plt.subplots(1, 3, figsize=(12, 3))

 ...:

 ...: x = np.linspace(0, 1e3, 100)

 ...: y1, y2 = x**3, x**4

 ...:

 ...: axes[0].set_title('loglog')

 ...: axes[0].loglog(x, y1, 'b', x, y2, 'r')

 ...:

 ...: axes[1].set_title('semilogy')

 ...: axes[1].semilogy(x, y1, 'b', x, y2, 'r')

 ...:

 ...: axes[2].set_title('plot / set_xscale / set_yscale')

 ...: axes[2].plot(x, y1, 'b', x, y2, 'r')

 ...: axes[2].set_xscale('log')

 ...: axes[2].set_yscale('log')

Figure 4-18. Examples of log-scale plots

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

165

 Twin Axes

An interesting trick with axes that Matplotlib provides is the twin axis feature, which

allows displaying two independent axes overlaid on each other. This is useful when

plotting two different quantities, for example, with different units, within the same graph.

A simple example that demonstrates this feature is shown as follows, and the resulting

graph is shown in Figure 4-19. Here we use the twinx method (there is also a twiny

method) to produce second Axes instance with shared x axis and a new independent

y axis, which is displayed on the right side of the graph.

In [21]: fig, ax1 = plt.subplots(figsize=(8, 4))

 ...:

 ...: r = np.linspace(0, 5, 100)

 ...: a = 4 * np.pi * r ** 2 # area

 ...: v = (4 * np.pi / 3) * r ** 3 # volume

 ...:

 ...: ax1.set_title("surface area and volume of a sphere", fontsize=16)

 ...: ax1.set_xlabel("radius [m]", fontsize=16)

 ...:

 ...: ax1.plot(r, a, lw=2, color="blue")

 ...: ax1.set_ylabel(r"surface area (m^2)", fontsize=16, color="blue")

 ...: for label in ax1.get_yticklabels():

 ...: label.set_color("blue")

 ...:

 ...: ax2 = ax1.twinx()

 ...: ax2.plot(r, v, lw=2, color="red")

 ...: ax2.set_ylabel(r"volume (m^3)", fontsize=16, color="red")

 ...: for label in ax2.get_yticklabels():

 ...: label.set_color("red")

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

166

 Spines

In all graphs generated so far, we have always had a box surrounding the Axes region.

This is indeed a common style for scientific and technical graphs, but in some cases, for

example, when representing schematic graphs, moving these coordinate lines may be

desired. The lines that make up the surrounding box are called axis spines in Matplotlib,

and we can use the Axes.spines attribute to change their properties. For example, we

might want to remove the top and the right spines and move the spines to coincide with

the origin of the coordinate systems.

The spines attribute of the Axes object is a dictionary with the keys right, left,

top, and bottom that can be used to access each spine individually. We can use the

set_color method to set the color to 'None' to indicate that a particular spine should

not be displayed, and in this case, we also need to remove the ticks associated with that

spine, using the set_ticks_position method of Axes.xaxis and Axes.yaxis (which

accepts the arguments 'both', 'top', or 'bottom' and 'both', 'left', or 'right',

respectively). With these methods we can transform the surrounding box to x and y

coordinate axes, as demonstrated in the following example. The resulting graph is shown

in Figure 4-20.

In [22]: x = np.linspace(-10, 10, 500)

 ...: y = np.sin(x) / x

 ...:

 ...: fig, ax = plt.subplots(figsize=(8, 4))

 ...:

 ...: ax.plot(x, y, linewidth=2)

 ...:

 ...: # remove top and right spines

Figure 4-19. Example of graphs with twin axes

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

167

 ...: ax.spines['right'].set_color('none')

 ...: ax.spines['top'].set_color('none')

 ...:

 ...: # remove top and right spine ticks

 ...: ax.xaxis.set_ticks_position('bottom')

 ...: ax.yaxis.set_ticks_position('left')

 ...:

 ...: # move bottom and left spine to x = 0 and y = 0

 ...: ax.spines['bottom'].set_position(('data', 0))

 ...: ax.spines['left'].set_position(('data', 0))

 ...:

 ...: ax.set_xticks([-10, -5, 5, 10])

 ...: ax.set_yticks([0.5, 1])

 ...:

 ...: # give each label a solid background of white, to not overlap with

the plot line

 ...: for label in ax.get_xticklabels() + ax.get_yticklabels():

 ...: label.set_bbox({'facecolor': 'white',

 ...: 'edgecolor': 'white'})

Figure 4-20. Example of a graph with axis spines

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

168

 Advanced Axes Layouts
So far, we have repeatedly used plt.figure, Figure.make_axes, and plt.subplots to

create new Figure and Axes instances, which we then used for producing graphs. In

scientific and technical visualization, it is common to pack together multiple figures

in different panels, for example, in a grid layout. In Matplotlib there are functions

for automatically creating Axes objects and placing them on a figure canvas, using a

variety of different layout strategies. We have already used the plt.subplots function,

which is capable of generating a uniform grid of Axes objects. In this section we explore

additional features of the plt.subplots function and introduce the subplot2grid

and GridSpec layout managers, which are more flexible in how the Axes objects are

distributed within a figure canvas.

 Insets
Before diving into the details of how to use more advanced Axes layout managers, it

is worth taking a step back and considering an important use-case of the very first

approach we used to add Axes instances to a figure canvas: the Figure.add_axes

method. This approach is well suited for creating so-called inset, which is a smaller

graph that is displayed within the region of another graph. Insets are, for example,

frequently used for displaying a magnified region of special interest in the larger graph or

for displaying some related graphs of secondary importance.

In Matplotlib we can place additional Axes objects at arbitrary locations within

a figure canvas, even if they overlap with existing Axes objects. To create an inset, we

therefore simply add a new Axes object with Figure.make_axes and with the (figure

canvas) coordinates for where the inset should be placed. A typical example of a graph

with an inset is produced by the following code, and the graph that this code generates is

shown in Figure 4-21. When creating the Axes object for the inset, it may be useful to use

the argument facecolor='none', which indicates that there should be no background

color, that is, that the Axes background of the inset should be transparent.

In [23]: fig = plt.figure(figsize=(8, 4))

 ...:

 ...: def f(x):

 ...: return 1/(1 + x**2) + 0.1/(1 + ((3 - x)/0.1)**2)

 ...:

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

169

 ...: def plot_and_format_axes(ax, x, f, fontsize):

 ...: ax.plot(x, f(x), linewidth=2)

 ...: ax.xaxis.set_major_locator(mpl.ticker.MaxNLocator(5))

 ...: ax.yaxis.set_major_locator(mpl.ticker.MaxNLocator(4))

 ...: ax.set_xlabel(r"x", fontsize=fontsize)

 ...: ax.set_ylabel(r"$f(x)$", fontsize=fontsize)

 ...:

 ...: # main graph

 ...: ax = fig.add_axes([0.1, 0.15, 0.8, 0.8], facecolor="#f5f5f5")

 ...: x = np.linspace(-4, 14, 1000)

 ...: plot_and_format_axes(ax, x, f, 18)

 ...:

 ...: # inset

 ...: x0, x1 = 2.5, 3.5

 ...: ax.axvline(x0, ymax=0.3, color="grey", linestyle=":")

 ...: ax.axvline(x1, ymax=0.3, color="grey", linestyle=":")

 ...:

 ...: ax_insert = fig.add_axes([0.5, 0.5, 0.38, 0.42], facecolor='none')

 ...: x = np.linspace(x0, x1, 1000)

 ...: plot_and_format_axes(ax_insert, x, f, 14)

Figure 4-21. Example of a graph with an inset

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

170

 Subplots
We have already used plt.subplots extensively, and we have noted that it returns a

tuple with a Figure instance and a NumPy array with the Axes objects for each row and

column that was requested in the function call. It is often the case when plotting grids of

subplots that either the x or the y axis, or both, is shared among the subplots. Using the

sharex and sharey arguments to plt.subplots can be useful in such situations, since it

prevents the same axis labels to be repeated across multiple Axes.

It is also worth noting that the dimension of the NumPy array with Axes instances

that is returned by plt.subplots is “squeezed” by default: that is, the dimensions with

length 1 are removed from the array. If both the requested numbers of column and row

are greater than one, then a two-dimensional array is returned, but if either (or both) the

number of columns or rows is one, then a one-dimensional (or scalar, i.e., the only Axes

object itself) is returned. We can turn off the squeezing of the dimensions of the NumPy

arrays by passing the argument squeeze=False to the plt.subplots function. In this

case the axes variable in fig, axes = plt.subplots(nrows, ncols) is always a two-

dimensional array.

A final touch of configurability can be achieved using the plt.subplots_adjust

function, which allows to explicitly set the left, right, bottom, and top coordinates of the

overall Axes grid, as well as the width (wspace) and height spacing (hspace) between

Axes instances in the grid. See the following code, and the corresponding Figure 4-22, for

a step-by-step example of how to set up an Axes grid with shared x and y axes and with

adjusted Axes spacing.

In [24]: fig, axes = plt.subplots(2, 2, figsize=(6, 6), sharex=True,

sharey=True, squeeze=False)

 ...:

 ...: x1 = np.random.randn(100)

 ...: x2 = np.random.randn(100)

 ...:

 ...: axes[0, 0].set_title("Uncorrelated")

 ...: axes[0, 0].scatter(x1, x2)

 ...:

 ...: axes[0, 1].set_title("Weakly positively correlated")

 ...: axes[0, 1].scatter(x1, x1 + x2)

 ...:

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

171

 ...: axes[1, 0].set_title("Weakly negatively correlated")

 ...: axes[1, 0].scatter(x1, -x1 + x2)

 ...:

 ...: axes[1, 1].set_title("Strongly correlated")

 ...: axes[1, 1].scatter(x1, x1 + 0.15 * x2)

 ...:

 ...: axes[1, 1].set_xlabel("x")

 ...: axes[1, 0].set_xlabel("x")

 ...: axes[0, 0].set_ylabel("y")

 ...: axes[1, 0].set_ylabel("y")

 ...:

 ...: plt.subplots_adjust(left=0.1, right=0.95, bottom=0.1, top=0.95,

wspace=0.1, hspace=0.2)

Figure 4-22. Example graph using plt.subplot and plt.subplot_adjust

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

172

 Subplot2grid
The plt.subplot2grid function is an intermediary between plt.subplots and

gridspec (see the next section) that provides a more flexible Axes layout management

than plt.subplots while at the same time being simpler to use than gridspec. In

particular, plt.subplot2grid is able to create grids with Axes instances that span

multiple rows and/or columns. The plt.subplot2grid takes two mandatory arguments:

the first argument is the shape of the Axes grid, in the form of a tuple (nrows, ncols),

and the second argument is a tuple (row, col) that specifies the starting position within

the grid. The two optional keyword arguments colspan and rowspan can be used to

indicate how many rows and columns the new Axes instance should span. An example

of how to use the plt.subplot2grid function is given in Table 4-3. Note that each call

to the plt.subplot2grid function results in one new Axes instance, in contrast to

plt.subplots which creates all Axes instances in one function call and returns them in

a NumPy array.

Table 4-3. Example of a Grid Layout Created with plt.subplot2grid and the

Corresponding Code

Axes Grid Layout Code

ax0 = plt.subplot2grid((3, 3), (0, 0))

ax1 = plt.subplot2grid((3, 3), (0, 1))

ax2 = plt.subplot2grid((3, 3), (1, 0),

colspan=2)

ax3 = plt.subplot2grid((3, 3), (2, 0),

colspan=3)

ax4 = plt.subplot2grid((3, 3), (0, 2),

rowspan=2)

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

173

 GridSpec
The final grid layout manager that we cover here is GridSpec from the mpl.gridspec

module. This is the most general grid layout manager in Matplotlib, and in particular

it allows creating grids where not all rows and columns have equal width and height,

which is not easily achieved with the grid layout managers we have used earlier in this

chapter.

A GridSpec object is only used to specify the grid layout, and by itself it does not

create any Axes objects. When creating a new instance of the GridSpec class, we must

specify the number of rows and columns in the grid. Like for other grid layout managers,

we can also set the position of the grid using the keyword arguments left, bottom,

right, and top, and we can set the width and height spacing between subplots using

wspace and hspace. Additionally, GricSpec allows specifying the relative width and

heights of columns and rows using the width_ratios and height_ratios arguments.

These should both be lists with relative weights for the size of each column and row

in the grid. For example, to generate a grid with two rows and two columns, where the

first row and column is twice as big as the second row and column, we could use mpl.

gridspec.GridSpec(2, 2, width_ratios=[2, 1], height_ratios=[2, 1]).

Once a GridSpec instance has been created, we can use the Figure.add_subplot

method to create Axes objects and place them on a figure canvas. As argument to

add_subplot, we need to pass an mpl.gridspec.SubplotSpec instance, which we can

generate from the GridSpec object using an array-like indexing: for example, given a

GridSpec instance gs, we obtain a SubplotSpec instance for the upper-left grid element

using gs[0, 0] and for a SubplotSpec instance that covers the first row we use gs[:, 0]

and so on. See Table 4-4 for concrete examples of how to use GridSpec and add_subplot

to create Axes instance.

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

174

 Colormap Plots
We have so far only considered graphs of univariate functions or, equivalently, two-

dimensional data in x-y format. The two-dimensional Axes objects that we have used for

this purpose can also be used to visualize bivariate functions, or three-dimensional data

on x-y-z format, using so-called color maps (or heat maps), where each pixel in the Axes

Table 4-4. Examples of How to Use the Subplot Grid Manager mpl.gridspec.

GridSpec

Axes Grid Layout Code

fig = plt.figure(figsize=(6, 4))

gs = mpl.gridspec.GridSpec(4, 4)

ax0 = fig.add_subplot(gs[0, 0])

ax1 = fig.add_subplot(gs[1, 1])

ax2 = fig.add_subplot(gs[2, 2])

ax3 = fig.add_subplot(gs[3, 3])

ax4 = fig.add_subplot(gs[0, 1:])

ax5 = fig.add_subplot(gs[1:, 0])

ax6 = fig.add_subplot(gs[1, 2:])

ax7 = fig.add_subplot(gs[2:, 1])

ax8 = fig.add_subplot(gs[2, 3])

ax9 = fig.add_subplot(gs[3, 2])

fig = plt.figure(figsize=(4, 4))

gs = mpl.gridspec.GridSpec(

2, 2,

width_ratios=[4, 1],

height_ratios=[1, 4],

wspace=0.05, hspace=0.05)

ax0 = fig.add_subplot(gs[1, 0])

ax1 = fig.add_subplot(gs[0, 0])

ax2 = fig.add_subplot(gs[1, 1])

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

175

area is colored according to the z value corresponding to that point in the coordinate

system. Matplotlib provides the functions pcolor and imshow for these types of plots, and

the contour and contourf functions graph data on the same format by drawing contour

lines rather than color maps. Examples of graphs generated with these functions are

shown in Figure 4-23.

To produce a colormap graph, for example, using pcolor, we first need to prepare

the data in the appropriate format. While standard two-dimensional graphs expect

one-dimensional coordinate arrays with x and y values, in the present case, we need to

use two-dimensional coordinate arrays, as, for example, generated using the NumPy

meshgrid function. To plot a bivariate function or data with two dependent variables,

we start by defining one-dimensional coordinate arrays, x and y, that span the desired

coordinate range or correspond to the values for which data is available. The x and y

arrays can then be passed to the np.meshgrid function, which produces the required

two-dimensional coordinate arrays X and Y. If necessary, we can use NumPy array

computations with X and Y to evaluate bivariate functions to obtain a data array Z, as

done in lines 1 to 3 in In [25] (see in the following section).

Once the two-dimensional coordinate and data arrays are prepared, they are easily

visualized using, for example, pcolor, contour, or contourf, by passing the X, Y, and Z

arrays as the first three arguments. The imshow method works similarly but only expects

the data array Z as argument, and the relevant coordinate ranges must instead be set

using the extent argument, which should be set to a list on the format [xmin, xmax,

ymin, ymax]. Additional keyword arguments that are important for controlling the

appearance of colormap graphs are vmin, vmax, norm, and cmap: the vmin and vmax can

be used to set the range of values that are mapped to the color axis. This can equivalently

be achieved by setting norm=mpl.colors.Normalize(vmin, vmax). The cmap argument

Figure 4-23. Example graphs generated with pcolor, imshow, contour, and
contourf

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

176

specifies a color map for mapping the data values to colors in the graph. This argument

can either be a string with a predefined colormap name or a colormap instance. The

predefined color maps in Matplotlib are available in mpl.cm. Try help(mpl.cm) or try to

autocomplete in IPython on the mpl.cm module for a full list of available color maps.5

The last piece required for a complete colormap plot is the colorbar element, which

gives the viewer of the graph a way to read off the numerical values that different colors

correspond to. In Matplotlib we can use the plt.colorbar function to attach a colorbar

to an already plotted colormap graph. It takes a handle to the plot as first argument,

and it takes two optional arguments ax and cax, which can be used to control where in

the graph the colorbar is to appear. If ax is given, the space will be taken from this Axes

object for the new colorbar. If, on the other hand, cax is given, then the colorbar will

draw on this Axes object. A colorbar instance cb has its own axis object, and the standard

methods for setting axis attributes can be used on the cb.ax object, and we can use, for

example, the set_label, set_ticks, and set_ticklabels method in the same manner

as for x and y axes.

The steps outlined in the previous paragraphs are shown in the following code,

and the resulting graph is shown in Figure 4-24. The functions imshow, contour,

and contourf can be used in a nearly similar manner, although these functions take

additional arguments for controlling their characteristic properties. For example, the

contour and contourf functions additionally take an argument N that specifies the

number of contour lines to draw.

In [25]: x = y = np.linspace(-10, 10, 150)

 ...: X, Y = np.meshgrid(x, y)

 ...: Z = np.cos(X) * np.cos(Y) * np.exp(-(X/5)**2-(Y/5)**2)

 ...:

 ...: fig, ax = plt.subplots(figsize=(6, 5))

 ...:

 ...: norm = mpl.colors.Normalize(-abs(Z).max(), abs(Z).max())

 ...: p = ax.pcolor(X, Y, Z, norm=norm, cmap=mpl.cm.bwr)

 ...:

 ...: ax.axis('tight')

 ...: ax.set_xlabel(r"x", fontsize=18)

5 A nice visualization of all the available color maps is available at http://wiki.scipy.org/
Cookbook/Matplotlib/Show_colormaps. This page also describes how to create new color maps.

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

http://wiki.scipy.org/Cookbook/Matplotlib/Show_colormaps
http://wiki.scipy.org/Cookbook/Matplotlib/Show_colormaps

177

 ...: ax.set_ylabel(r"y", fontsize=18)

 ...: ax.xaxis.set_major_locator(mpl.ticker.MaxNLocator(4))

 ...: ax.yaxis.set_major_locator(mpl.ticker.MaxNLocator(4))

 ...:

 ...: cb = fig.colorbar(p, ax=ax)

 ...: cb.set_label(r"z", fontsize=18)

 ...: cb.set_ticks([-1, -.5, 0, .5, 1])

 3D Plots
The colormap graphs discussed in the previous section were used to visualize data with

two dependent variables by color-coding data in 2D graphs. Another way of visualizing

the same type of data is to use 3D graphs, where a third axis z is introduced and the

graph is displayed in a perspective on the screen. In Matplotlib, drawing 3D graphs

requires using a different axes object, namely, the Axes3D object that is available from

the mpl_toolkits.mplot3d module. We can create a 3D-aware Axes instance explicitly

using the constructor of the Axes3D class, by passing a Figure instance as argument:

ax = Axes3D(fig). Alternatively, we can use the add_subplot function with the

projection='3d' argument:

ax = ax = fig.add_subplot(1, 1, 1, projection='3d')

Figure 4-24. Example using pcolor to produce a colormap graph

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

178

or use plt.subplots with the subplot_kw={'projection': '3d'} argument:

fig, ax = plt.subplots(1, 1, figsize=(8, 6), subplot_kw={'projection': '3d'})

In this way, we can use all of the axes layout approaches we have previously used for

2D graphs, if only we specify the projection argument in the appropriate manner. Note

that using add_subplot, it is possible to mix axes objects with 2D and 3D projections

within the same figure, but when using plt.subplots, the subplot_kw argument applies

to all the subplots added to a figure.

Having created and added 3D-aware Axes instances to a figure, for example, using

one of the methods described in the previous paragraph, the Axes3D class methods –

such as plot_surface, plot_wireframe, and contour – can be used to plot data as

surfaces in a 3D perspective. These functions are used in a manner that is nearly the

same as how the color map was used in the previous section: these 3D plotting functions

all take two-dimensional coordinate and data arrays X, Y, and Z as first arguments. Each

function also takes additional parameters for tuning specific properties. For example,

the plot_surface function takes the arguments rstride and cstride (row and column

stride) for selecting data from the input arrays (to avoid data points that are too dense).

The contour and contourf functions take optional arguments zdir and offset, which

is used to select a projection direction (the allowed values are “x,” “y,” and “z”) and the

plane to display the projection on.

In addition to the methods for 3D surface plotting, there are also straightforward

generalizations of the line and scatter plot functions that are available for 2D axes, for

example, plot, scatter, bar, and bar3d, which in the version that is available in the

Axes3D class takes an additional argument for the z coordinates. Like their 2D relatives,

these functions expect one-dimensional data arrays rather than the two-dimensional

coordinate arrays that are used for surface plots.

When it comes to axes titles, labels, ticks, and tick labels, all the methods used for 2D

graphs, as described in detail earlier in this chapter, are straightforwardly generalized

to 3D graphs. For example, there are new methods set_zlabel, set_zticks, and

set_zticklabels for manipulating the attributes of the new z axis. The Axes3D object

also provides new class methods for 3D specific actions and attributes. In particular, the

view_init method can be used to change the angle from which the graph is viewed, and

it takes the elevation and the azimuth, in degrees, as first and second arguments.

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

179

Examples of how to use these 3D plotting functions are given in the following

section, and the produced graphs are shown in Figure 4-25.

In [26]: fig, axes = plt.subplots(1, 3, figsize=(14, 4), subplot_

kw={'projection': '3d'})

 ...:

 ...: def title_and_labels(ax, title):

 ...: ax.set_title(title)

 ...: ax.set_xlabel("x", fontsize=16)

 ...: ax.set_ylabel("y", fontsize=16)

 ...: ax.set_zlabel("z", fontsize=16)

 ...:

 ...: x = y = np.linspace(-3, 3, 74)

 ...: X, Y = np.meshgrid(x, y)

 ...:

 ...: R = np.sqrt(X**2 + Y**2)

 ...: Z = np.sin(4 * R) / R

 ...:

 ...: norm = mpl.colors.Normalize(-abs(Z).max(), abs(Z).max())

 ...:

 ...: p = axes[0].plot_surface(X, Y, Z, rstride=1, cstride=1,

linewidth=0, antialiased=False, norm=norm, cmap=mpl.cm.Blues)

 ...:

 ...: cb = fig.colorbar(p, ax=axes[0], shrink=0.6)

 ...: title_and_labels(axes[0], "plot_surface")

 ...:

 ...: p = axes[1].plot_wireframe(X, Y, Z, rstride=2, cstride=2,

color="darkgrey")

 ...: title_and_labels(axes[1], "plot_wireframe")

 ...:

 ...: cset = axes[2].contour(X, Y, Z, zdir='z', offset=0, norm=norm,

cmap=mpl.cm.Blues)

 ...: cset = axes[2].contour(X, Y, Z, zdir='y', offset=3, norm=norm,

cmap=mpl.cm.Blues)

 ...: title_and_labels(axes[2], "contour")

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

180

 Summary
In this chapter, we have covered the basics of how to produce 2D and 3D graphics using

Matplotlib. Visualization is one of the most important tools for computational scientists

and engineers, both as an analysis tool while working on computational problems and

for presenting and communicating computational results. Visualization is therefore an

integral part of the computational workflow, and it is equally important to be able to

quickly visualize and explore data and to be able to produce picture-perfect publication-

quality graphs, with detailed control over every graphical element. Matplotlib is a great

general-purpose tool for both exploratory visualization and for producing publication-

quality graphics. However, there are limitations to what can be achieved with Matplotlib,

especially with respect to interactivity and high-quality 3D graphics. For more

specialized use-cases, I therefore recommend to also explore some of the other graphic

libraries that are available in the scientific Python ecosystem, some of which was briefly

mentioned at the beginning of this chapter.

 Further Reading
The Matplotlib is treated in books dedicated to the library, such as Tosi (2009) and

Devert (2014), and in several books with a wider scope, for example, Milovanovi (2013)

and McKinney (2013). For interesting discussions on data visualization and style guides

and good practices in visualization, see, for example, Yau (2011) and J. Steele (2010).

Figure 4-25. 3D surface and contour graphs generated by using plot_surface,
plot_wireframe, and contour

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

181

 References
Devert, A. (2014). matplotlib Plotting Cookbook. Mumbai: Packt.

J. Steele, N. I. (2010). Beautiful Visualization. Sebastopol: O’Reilly.

McKinney, W. (2013). Python for Data Analysis. Sebastopol: O’Reilly.

Milovanovi, I. (2013). Python Data Visualization Cookbook. Mumbai: Packt.

Tosi, S. (2009). Matplotlib for Python Developers. Mumbai: Packt.

Yau, N. (2011). Visualize this. Indianapolis: Wiley.

ChAPTer 4 PloTTIng AnD VIsuAlIzATIon

183
© Robert Johansson 2019
R. Johansson, Numerical Python, https://doi.org/10.1007/978-1-4842-4246-9_5

CHAPTER 5

Equation Solving
In the previous chapters, we have discussed general methodologies and techniques,

namely, array-based numerical computing, symbolic computing, and visualization.

These methods are the cornerstones of scientific computing that make up a fundamental

toolset we have at our disposal when attacking computational problems.

Starting from this chapter, we begin to explore how to solve problems from

different domains of applied mathematics and computational sciences, using the basic

techniques introduced in the previous chapters. The topic of this chapter is algebraic

equation solving. This is a broad topic that requires the application of theory and

approaches from multiple fields of mathematics. In particular, when discussing equation

solving, we have to distinguish between univariate and multivariate equations (i.e.,

equations that contain one unknown variable or many unknown variables). In addition,

we need to distinguish between linear and nonlinear equations. This classification is

useful because solving equations of these different types requires applying different

mathematical methods and approaches.

We begin with linear equation systems, which are tremendously useful and have

important applications in every field of science. The reason for this universality

is that linear algebra theory allows us to straightforwardly solve linear equations,

while nonlinear equations are difficult to solve in general and typically require more

complicated and computationally demanding methods. Because linear systems are

readily solvable, they are also an important tool for local approximations of nonlinear

systems. For example, by considering small variations from an expansion point, a

nonlinear system can often be approximated by a linear system in the local vicinity of

the expansion point. However, a linearization can only describe local properties, and

for global analysis of nonlinear problems, other techniques are required. Such methods

typically employ iterative approaches for gradually constructing an increasingly accurate

estimate of the solution.

184

In this chapter, we use SymPy for solving equations symbolically, when possible,

and use the linear algebra module from the SciPy library for numerically solving

linear equation systems. For tackling nonlinear problems, we will use the root-finding

functions in the optimize module of SciPy.

SciPy SciPy is a Python library, the collective name of the scientific computing
environment for Python, and the umbrella organization for many of the core
libraries for scientific computing with Python. The library, scipy, is in fact rather
a collection of libraries for high-level scientific computing, which are more or
less independent of each other. The SciPy library is built on top of NumPy, which
provides the basic array data structures and fundamental operations on such
arrays. The modules in SciPy provide domain-specific high-level computation
methods, such as routines for linear algebra, optimization, interpolation,
integration, and much more. At the time of writing, the most recent version of SciPy
is 1.1.0. See www.scipy.org for more information.

 Importing Modules
The SciPy module scipy should be considered a collection of modules that are selectively

imported when required. In this chapter we will use the scipy.linalg module, for solving

linear systems of equations, and the scipy.optimize module, for solving nonlinear

equations. In this chapter we assume that these modules are imported as:

In [1]: from scipy import linalg as la

In [2]: from scipy import optimize

In this chapter we also use the NumPy, SymPy, and Matplotlib libraries introduced

in the previous chapters, and we assume that those libraries are imported following the

previously introduced convention:

In [3]: import sympy

In [4]: sympy.init_printing()

In [5]: import numpy as np

In [6]: import matplotlib.pyplot as plt

ChAPTer 5 equATioN SolviNg

http://www.scipy.org

185

To get the same behavior in both Python 2 and Python 3 with respect to integer

division, we also include the following statement (which is only necessary in Python 2):

In [7]: from __future__ import division

 Linear Equation Systems
An important application of linear algebra is solving systems of linear equations. We

have already encountered linear algebra functionality in the SymPy library, in Chapter 3.

There are also linear algebra modules in the NumPy and SciPy libraries, numpy.linalg

and scipy.linalg, which together provide linear algebra routines for numerical

problems, that is, for problems that are completely specified in terms of numerical

factors and parameters.

In general, a linear equation system can be written on the form

a x a x a x bn n11 1 12 2 1 1+ +¼+ = ,

a x a x a x bn n21 1 22 2 2 2+ +¼+ = ,

¼

a x a x a x bm m mn n m1 1 2 2+ +¼+ = .

This is a linear system of m equations in n unknown variables {x1, x2, …, xn}, where amn

and bm are known parameters or constant values. When working with linear equation

systems, it is convenient to write the equations in matrix form:

a a a

a a a

a a a

x

x

x

n

n

m m mn n

11 12 1

21 22 2

1 2

1

2

¼
¼

¼

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

æ

è

ç
ç
ç� � � � �
çç

ö

ø

÷
÷
÷
÷

=

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

b

b

bm

1

2

�
,

or simply Ax = b, where A is a m × n matrix, b is a m × 1 matrix (or m-vector), and

x is the unknown n × 1 solution matrix (or n-vector). Depending on the properties of

the matrix A, the solution vector x may or may not exist, and if a solution does exist, it

is not necessarily unique. However, if a solution exists, then it can be interpreted as an

expression for the vector b as a linear combination of the columns of the matrix A, where

the coefficients are given by the elements in the solution vector x.

ChAPTer 5 equATioN SolviNg

186

A system for which n < m is said to be underdetermined, because it has fewer

equations than unknown and therefore cannot completely determine a unique solution.

If, on the other hand, m > n, then the equations are said to be overdetermined. This will

in general lead to conflicting constraints, resulting in that a solution does not exist.

 Square Systems
Square systems with m = n is an important special case. It corresponds to the situation

where the number of equations equals the number of unknown variables, and it can

therefore potentially have a unique solution. In order for a unique solution to exist, the

matrix A must be nonsingular, in which case the inverse of A exists, and the solution can

be written as x = A−1b. If the matrix A is singular, that is, the rank of the matrix is less than

n, rank(A) < n, or, equivalently, if its determinant is zero, detA = 0, then the equation

Ax = b can either have no solution or infinitely many solutions, depending on the right-

hand side vector b. For a matrix with rank deficiency, rank(A) < n, there are columns

or rows that can be expressed as linear combinations of other columns or vectors, and

they therefore correspond to equations that do not contain any new constraints, and

the system is really underdetermined. Computing the rank of the matrix A that defines a

linear equation system is therefore a useful method that can tell us whether the matrix is

singular or not and therefore whether there exists a solution or not.

When A has full rank, the solution is guaranteed to exist. However, it may or may

not be possible to accurately compute the solution. The condition number of the matrix,

cond(A), gives a measure of how well or poorly conditioned a linear equation system

is. If the conditioning number is close to 1, if the system is said to be well conditioned (a

condition number 1 is ideal), and if the condition number is large, the system is said to

be ill-conditioned. The solution to an equation system that is ill-conditioned can have

large errors. An intuitive interpretation of the condition number can be obtained from a

simple error analysis. Assume that we have a linear equation system on the form Ax = b,

where x is the solution vector. Now consider a small variation of b, say δb, which gives a

corresponding change in the solution, δx, given by A(x+δx) = b+δb. Because of linearity

of the equation, we have Aδx = δb. An important question to consider now is: how large

is the relative change in x compared to the relative change in b? Mathematically we can

formulate this question in terms of the ratios of the norms of these vectors. Specifically,

we are interested in comparing ‖δx‖/‖x‖ and ‖δb‖/‖b‖, where ‖x‖ denotes the norm of

x. Using the matrix norm relation ‖Ax‖ ≤ ‖A‖ ∙ ‖x‖, we can write

ChAPTer 5 equATioN SolviNg

187

ôô ôô
ôô ôô

ôô ôô
ôô ôô

ôô ôô × ôô ôô
ôô ôô

d d dx

x

A b

x

A b

x
 = £

- -1 1

== £
-

-
ôô ôô × ôô ôô

ôô ôô
 ×
ôô ôô
ôô ôô

ôô ôô × ôô ôô
A b

x

b

b
A A

1
1d

 ×
ôô ôô
ôô ôô
db
b

A bound of the relative error in the solution x, given a relative error in the b vector, is

therefore given by cond(A) ≡ ‖A−1‖ ∙ ‖A‖, which by definition is the condition number

of the matrix A. This means that for linear equation systems characterized by a matrix A

that is ill-conditioned, even a small perturbation in the b vector can give large errors in

the solution vector x. This is particularly relevant in numerical solution using floating-

point numbers, which are only approximations to real numbers. When solving a system

of linear equations, it is therefore important to look at the condition number to estimate

the accuracy of the solution.

The rank, condition number, and norm of a symbolic matrix can be computed in

SymPy using the Matrix methods rank, condition_number, and norm, and for numerical

problems, we can use the NumPy functions np.linalg.matrix_rank, np.linalg.

cond, and np.linalg.norm. For example, consider the following system of two linear

equations:

2 3 4

5 4 3
1 2

1 2

x x

x x

+ =
+ =

These two equations correspond to lines in the (x1,x2) plane, and their intersection is

the solution to the equation system. As can be seen in Figure 5-1, which graphs the lines

corresponding to the two equations, the lines intersect at (−1, 2).

Figure 5-1. Graphical representation of a system of two linear equations

ChAPTer 5 equATioN SolviNg

188

We can define this problem in SymPy by creating matrix objects for A and b and

computing the rank, condition number, and norm of the matrix A using

In [8]: A = sympy.Matrix([[2, 3], [5, 4]])

In [9]: b = sympy.Matrix([4, 3])

In [10]: A.rank()

Out[10]: 2

In [11]: A.condition_number()

Out[11]:
27 2 170

27 2 170

+

-

In [12]: sympy.N(_)

Out[12]: 7.58240137440151

In [13]: A.norm()

Out[13]: 3 6

We can do the same thing in NumPy/SciPy using NumPy arrays for A and b and

functions from the np.linalg and scipy.linalg modules:

In [14]: A = np.array([[2, 3], [5, 4]])

In [15]: b = np.array([4, 3])

In [16]: np.linalg.matrix_rank(A)

Out[16]: 2

In [17]: np.linalg.cond(A)

Out[17]: 7.5824013744

In [18]: np.linalg.norm(A)

Out[18]: 7.34846922835

A direct approach to solving the linear problem is to compute the inverse of the

matrix A and multiply it with the vector b, as used, for example, in the previous analytical

discussions. However, this is not the most efficient computational method to find the

solution vector x. A better method is LU factorization of the matrix A, such that A = LU and

where L is a lower triangular matrix and U is an upper triangular matrix. Given L and U,

the solution vector x can be efficiently constructed by first solving Ly = b with forward

substitution and then solving Ux = y with backward substitution. Owning to the fact that

L and U are triangular matrices, these two procedures are computationally efficient.

ChAPTer 5 equATioN SolviNg

189

In SymPy we can perform a symbolic LU factorization by using the LUdecomposition

method of the sympy.Matrix class. This method returns new Matrix objects for the L and

U matrices, as well as a row swap matrix. When we are interested in solving an equation

system Ax = b, we do not explicitly need to calculate the L and U matrices, but rather we

can use the LUsolve method, which performs the LU factorization internally and solves

the equation system using those factors. Returning to the previous example, we can

compute the L and U factors and solve the equation system using

In [19]: A = sympy.Matrix([[2, 3], [5, 4]])

In [20]: b = sympy.Matrix([4, 3])

In [21]: L, U, _ = A.LUdecomposition()

In [22]: L

Out[22]:
1 0

5 2 1/

é

ë
ê

ù

û
ú

In [23]: U

Out[23]:
2 3

0 7 2-
é

ë
ê

ù

û
ú/

In [24]: L * U

Out[24]:
2 3

5 4

é

ë
ê

ù

û
ú

In [25]: x = A.solve(b); x # equivalent to A.LUsolve(b)

Out[25]:
-é

ë
ê

ù

û
ú
1

2

For numerical problems we can use the la.lu function form SciPy’s linear algebra module.

It returns a permutation matrix P and the L and U matrices, such that A = PLU. Like with

SymPy, we can solve the linear system Ax = b without explicitly calculating the L and U matrices

by using the la.solve function, which takes the A matrix and the b vector as arguments. This

is in general the preferred method for solving numerical linear equation systems using SciPy.

In [26]: A = np.array([[2, 3], [5, 4]])

In [27]: b = np.array([4, 3])

In [28]: P, L, U = la.lu(A)

In [29]: L

Out[29]: array([[1. , 0.],

 [0.4, 1.]])

ChAPTer 5 equATioN SolviNg

190

In [30]: U

Out[30]: array([[5. , 4.],

 [0. , 1.4]])

In [31]: P.dot(L.dot(U))

Out[31]: array([[2., 3.],

 [5., 4.]])

In [32]: la.solve(A, b)

Out[32]: array([-1., 2.])

The advantage of using SymPy is of course that we may obtain exact results and

we can also include symbolic variables in the matrices. However, not all problems

are solvable symbolically, or it may give exceedingly lengthy results. The advantage

of using a numerical approach with NumPy/SciPy, on the other hand, is that we are

guaranteed to obtain a result, although it will be an approximate solution due to

floating-point errors. See the following code (In [38]) for an example that illustrates the

differences between the symbolic and numerical approaches and for an example that

show numerical approaches can be sensitive for equation systems with large condition

number. In this example we solve the equation system

1

1
1

1

2
1

2

p

p

x

x

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

æ

è
ç

ö

ø
÷ =

æ

è
ç

ö

ø
÷

which for p = 1 is singular and for p in the vicinity of one is ill-conditioned. Using

SymPy, the solution is easily found to be

In [33]: p = sympy.symbols("p", positive=True)

In [34]: A = sympy.Matrix([[1, sympy.sqrt(p)], [1, 1/sympy.sqrt(p)]])

In [35]: b = sympy.Matrix([1, 2])

In [36]: x = A.solve(b)

In [37]: x

Out[37]:

2 1

1

1

p

p

p

p

-
-

-
-

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

ChAPTer 5 equATioN SolviNg

191

A comparison between this symbolic solution and the numerical solution is shown

in Figure 5-2. Here the errors in the numerical solution are due to numerical floating-

point errors, and the numerical errors are significantly larger in the vicinity of p = 1,

where the system has a large condition number. Also, if there are other sources of errors

in either A or b, the corresponding errors in x can be even more severe.

In [38]: # Symbolic problem specification

 ...: p = sympy.symbols("p", positive=True)

 ...: A = sympy.Matrix([[1, sympy.sqrt(p)], [1, 1/sympy.sqrt(p)]])

 ...: b = sympy.Matrix([1, 2])

 ...:

 ...: # Solve symbolically

 ...: x_sym_sol = A.solve(b)

 ...: Acond = A.condition_number().simplify()

 ...:

 ...: # Numerical problem specification

 ...: AA = lambda p: np.array([[1, np.sqrt(p)], [1, 1/np.sqrt(p)]])

 ...: bb = np.array([1, 2])

 ...: x_num_sol = lambda p: np.linalg.solve(AA(p), bb)

 ...:

 ...: # Graph the difference between the symbolic (exact) and numerical

results.

 ...: fig, axes = plt.subplots(1, 2, figsize=(12, 4))

 ...:

 ...: p_vec = np.linspace(0.9, 1.1, 200)

 ...: for n in range(2):

 ...: x_sym = np.array([x_sym_sol[n].subs(p, pp).evalf() for pp in

p_vec])

 ...: x_num = np.array([x_num_sol(pp)[n] for pp in p_vec])

 ...: axes[0].plot(p_vec, (x_num - x_sym)/x_sym, 'k')

 ...: axes[0].set_title("Error in solution\n(numerical - symbolic)/

symbolic")

 ...: axes[0].set_xlabel(r'p', fontsize=18)

 ...:

 ...: axes[1].plot(p_vec, [Acond.subs(p, pp).evalf() for pp in p_vec])

 ...: axes[1].set_title("Condition number")

 ...: axes[1].set_xlabel(r'p', fontsize=18)

ChAPTer 5 equATioN SolviNg

192

 Rectangular Systems
Rectangular systems, with m ≠ n, can be either underdetermined or overdetermined.

Underdetermined systems have more variables than equations, so the solution cannot

be fully determined. Therefore, for such a system, the solution must be given in terms

of the remaining free variables. This makes it difficult to treat this type of problem

numerically, but a symbolic approach can often be used instead.

For example, consider the underdetermined linear equation system

1 2 3

4 5 6

7

8

1

2

3

æ

è
ç

ö

ø
÷

æ

è

ç
ç
ç

ö

ø

÷
÷
÷
=
æ

è
ç

ö

ø
÷

x

x

x

.

Here we have three unknown variables, but only two equations impose constraints

on the relations between these variables. By writing this equation as Ax − b = 0, we can

use the SymPy sympy.solve function to obtain a solution for x1 and x2 parameterized by

the remaining free variable x3:

In [39]: x_vars = sympy.symbols("x_1, x_2, x_3")

In [40]: A = sympy.Matrix([[1, 2, 3], [4, 5, 6]])

In [41]: x = sympy.Matrix(x_vars)

In [42]: b = sympy.Matrix([7, 8])

In [43]: sympy.solve(A*x - b, x_vars)

Out[43]: x x x x1 3 2 319 3 2 20 3= - = - +{ }/ /,

Figure 5-2. Graph of the relative numerical errors (left) and condition number
(right) as a function of the parameter p

ChAPTer 5 equATioN SolviNg

193

Here we obtained the symbolic solution x1 = x3 − 19/3 and x2 = − 2x3+20/3, which

defines a line in the three-dimensional space spanned by {x1, x2, x3}. Any point on this

line therefore satisfies this underdetermined equation system.

On the other hand, if the system is overdetermined and has more equations than

unknown variables, m > n, then we have more constraints than degrees of freedom, and

in general there is no exact solution to such a system. However, it is often interesting to

find an approximate solution to an overdetermined system. An example of when this

situation arises is data fitting: say we have a model where a variable y is a quadratic

polynomial in the variable x, so that y = A+Bx+Cx2, and that we would like to fit this

model to experimental data. Here y is nonlinear in x, but y is linear in the three unknown

coefficients A, B, and C, and this fact can be used to write the model as a linear equation

system. If we collect data for m pairs x yi i i

m
,(){ } =1

 of the variables x and y, we can write the

model as an m × 3 equation system:

1

1

1 1
2

2

1x x

x x

A

B

C

y

ym m m

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

æ

è

ç
ç
ç

ö

ø

÷
÷
÷
=
æ

è

ç
ç
ç

ö

ø

÷
÷
÷
.

If m = 3, we can solve for the unknown model parameters A, B, and C, assuming the

system matrix is nonsingular. However, it is intuitively clear that if the data is noisy and

if we were to use more than three data points, we should be able to get a more accurate

estimate of the model parameters.

However, for m > 3, there is in general no exact solution, and we need to introduce an

approximate solution that gives the best fit for the overdetermined system Ax ≈ b. A

natural definition of the best fit for this system is to minimize the sum of square errors,

min ()x ii

m
r

=å 1

2 , where r = b − Ax is the residual vector. This leads to the least square

solution of the problem Ax ≈ b, which minimizes the distances between the data points

and the linear solution. In SymPy we can solve for the least square solution of an

overdetermined system using the solve_least_squares method, and for numerical

problems, we can use the SciPy function la.lstsq.

The following code demonstrates how the SciPy la.lstsq method can be used

to fit the example model considered in the preceding section, and the result is shown

in Figure 5-3. We first define the true parameters of the model, and then we simulate

ChAPTer 5 equATioN SolviNg

194

measured data by adding random noise to the true model relation. The least square

problem is then solved using the la.lstsq function, which in addition to the solution

vector x also returns the total sum of square errors (the residual r), the rank rank and the

singular values sv of the matrix A. However, in the following example, we only use the

solution vector x.

In [44]: # define true model parameters

 ...: x = np.linspace(-1, 1, 100)

 ...: a, b, c = 1, 2, 3

 ...: y_exact = a + b * x + c * x**2

 ...:

 ...: # simulate noisy data

 ...: m = 100

 ...: X = 1 - 2 * np.random.rand(m)

 ...: Y = a + b * X + c * X**2 + np.random.randn(m)

 ...:

 ...: # fit the data to the model using linear least square

 ...: A = np.vstack([X**0, X**1, X**2]) # see np.vander for alternative

 ...: sol, r, rank, sv = la.lstsq(A.T, Y)

 ...:

 ...: y_fit = sol[0] + sol[1] * x + sol[2] * x**2

 ...: fig, ax = plt.subplots(figsize=(12, 4))

 ...:

 ...: ax.plot(X, Y, 'go', alpha=0.5, label='Simulated data')

 ...: ax.plot(x, y_exact, 'k', lw=2, label='True value $y = 1 + 2x +

3x^2$')

 ...: ax.plot(x, y_fit, 'b', lw=2, label='Least square fit')

 ...: ax.set_xlabel(r"x", fontsize=18)

 ...: ax.set_ylabel(r"y", fontsize=18)

 ...: ax.legend(loc=2)

ChAPTer 5 equATioN SolviNg

195

A good fit of data to a model obviously requires that the model used to describe the

data correspond well to the underlying process that produced the data. In the following

example (In [45]), and in Figure 5-4, we fit the same data used in the previous example

to linear model and to a higher-order polynomial model (up to order 15). The former

case corresponds to underfitting, where we have used a too simple model for the data,

and the latter case corresponds to overfitting, where we have used a too complex model

for the data, and thus fit the model not only to the underlying trend but also to the

measurement noise. Using an appropriate model is an important and delicate aspect of

data fitting.

In [45]: # fit the data to the model using linear least square:

 ...: # 1st order polynomial

 ...: A = np.vstack([X**n for n in range(2)])

 ...: sol, r, rank, sv = la.lstsq(A.T, Y)

 ...: y_fit1 = sum([s * x**n for n, s in enumerate(sol)])

 ...:

 ...: # 15th order polynomial

 ...: A = np.vstack([X**n for n in range(16)])

 ...: sol, r, rank, sv = la.lstsq(A.T, Y)

 ...: y_fit15 = sum([s * x**n for n, s in enumerate(sol)])

 ...:

 ...: fig, ax = plt.subplots(figsize=(12, 4))

 ...: ax.plot(X, Y, 'go', alpha=0.5, label='Simulated data')

Figure 5-3. Linear least square fit

ChAPTer 5 equATioN SolviNg

196

 ...: ax.plot(x, y_exact, 'k', lw=2, label='True value $y = 1 + 2x +

3x^2$')

 ...: ax.plot(x, y_fit1, 'b', lw=2, label='Least square fit [1st

order]')

 ...: ax.plot(x, y_fit15, 'm', lw=2, label='Least square fit [15th

order]')

 ...: ax.set_xlabel(r"x", fontsize=18)

 ...: ax.set_ylabel(r"y", fontsize=18)

 ...: ax.legend(loc=2)

 Eigenvalue Problems
A special system of equations of great theoretical and practical importance is the

eigenvalue equation Ax = λx, where A is a N × N square matrix, x is an unknown vector,

and λ is an unknown scalar. Here x is an eigenvector and λ an eigenvalue of the matrix A.

The eigenvalue equation Ax = λx closely resembles the linear equation system Ax = b, but

note that here both x and λ are unknown, so we cannot directly apply the same techniques

to solve this equation. A standard approach to solve this eigenvalue problem is to rewrite

the equation as (A − Iλ)x = 0 and note that for there to exist a nontrivial solution, x ≠ 0, the

matrix A − Iλ must be singular, and its determinant must be zero, det(A − Iλ) = 0. This gives

a polynomial equation (the characteristic polynomial) of Nth order whose N roots give the

N eigenvalues ln n

N{ } =1
. Once the eigenvalues are known, the equation (A − Iλn)xn = 0 can

be solved for the nth eigenvector xn using standard forward substitution.

Figure 5-4. Graph demonstrating underfitting and overfitting of data using the
linear least square method

ChAPTer 5 equATioN SolviNg

197

Both SymPy and the linear algebra package in SciPy contain solvers for eigenvalue

problems. In SymPy, we can use the eigenvals and eigenvects methods of the Matrix

class, which are able to compute the eigenvalues and eigenvectors of some matrices with

elements that are symbolic expressions. For example, to compute the eigenvalues and

eigenvectors of symmetric 2 × 2 matrix with symbolic elements, we can use

In [46]: eps, delta = sympy.symbols("epsilon, Delta")

In [47]: H = sympy.Matrix([[eps, delta], [delta, -eps]])

In [48]: H

Out[48]:
e

e
D

D -
æ

è
ç

ö

ø
÷

In [49]: H.eigenvals()

Out[49]: - + +{ }e e2 2 2 21 1D D: :,

In [50]: H.eigenvects()

Out[50]: - +
-

+ +
é

ë

ê
ê
ê

ù

û

ú
ú
ú

é

ë

ê
ê
ê

ù

û

ú
ú
ú

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

+e e e e2 2 2 2 2 21

1

1D
D

D D, , , , ,
--

- +
é

ë

ê
ê
ê

ù

û

ú
ú
ú

é

ë

ê
ê
ê

ù

û

ú
ú
ú

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

é

ë

ê
ê
ê

ù

û

ú
ú
ú

D

De e 2 2

1

The return value of the eigenvals method is a dictionary where each eigenvalue

is a key, and the corresponding value is the multiplicity of that particular eigenvalue.

Here the eigenvalues are - +e 2 2D and e 2 2+D , each with multiplicity one. The

return value of eigenvects is a bit more involved: a list is returned where each element

is a tuple containing an eigenvalue, the multiplicity of the eigenvalue, and a list of

eigenvectors. The number of eigenvectors for each eigenvalue equals the multiplicity.

For the current example, we can unpack the value returned by eigenvects and verify that

the two eigenvectors are orthogonal using, for example,

In [51]: (eval1, _, evec1), (eval2, _, evec2) = H.eigenvects()

In [52]: sympy.simplify(evec1[0].T * evec2[0])

Out[52]: [0]

Obtaining analytical expressions for eigenvalues and eigenvectors using these

methods is often very desirable indeed, but unfortunately it only works for small

matrices. For anything larger than a 3 × 3, the analytical expression typically becomes

extremely lengthy and cumbersome to work with even using a computer algebra

system such as SymPy. Therefore, for larger systems we must resort to a fully numerical

ChAPTer 5 equATioN SolviNg

198

approach. For this we can use the la.eigvals and la.eig functions in the SciPy linear

algebra package. Matrices that are either Hermitian or real symmetric have real-valued

eigenvalues, and for such matrices, it is advantageous to instead use the functions

la.eigvalsh and la.eigh, which guarantees that the eigenvalues returned by the

function are stored in a NumPy array with real values. For example, to solve a numerical

eigenvalue problem with la.eig, we can use

In [53]: A = np.array([[1, 3, 5], [3, 5, 3], [5, 3, 9]])

In [54]: evals, evecs = la.eig(A)

In [55]: evals

Out[55]: array([13.35310908+0.j, -1.75902942+0.j, 3.40592034+0.j])

In [56]: evecs

Out[56]: array([[0.42663918, 0.90353276, -0.04009445],

 [0.43751227, -0.24498225, -0.8651975],

 [0.79155671, -0.35158534, 0.49982569]])

In [57]: la.eigvalsh(A)

Out[57]: array([-1.75902942, 3.40592034, 13.35310908])

Since the matrix in this example is symmetric, we could use la.eigh and la.

eigvalsh, giving real-valued eigenvalue arrays, as shown in the cell Out[57] in the

preceding code listing.

 Nonlinear Equations
In this section we consider nonlinear equations. Systems of linear equations, as considered

in the previous sections of this chapter, are of fundamental importance in scientific

computing because they are easily solved and can be used as important building blocks

in many computational methods and techniques. However, in natural sciences and in

engineering disciplines, many, if not most, systems are intrinsically nonlinear.

A linear function f (x) by definition satisfies additivity f (x+y) = f (x)+f (y) and

homogeneity f (αx) = αf (x), which can be written together as the superposition principle

f (αx+βy) = αf (x)+βf (y). This gives a precise definition of linearity. A nonlinear function,

in contrast, is a function that does not satisfy these conditions. Nonlinearity is therefore

a much broader concept, and a function can be nonlinear in many different ways.

However, in general, an expression that contains a variable with a power greater that one

is nonlinear. For example, x2+x+1 is nonlinear because of the x2 term.

ChAPTer 5 equATioN SolviNg

199

A nonlinear equation can always be written on the form f (x) = 0, where f (x) is a

nonlinear function and we seek the value of x (which can be a scalar or a vector) such

that f (x) is zero. This x is called the root of the function f (x), and equation solving is

therefore often referred to as root finding. In contrast to the previous section of this

chapter, in this section we need to distinguish between univariate equation solving and

multivariate equations, in addition to single equations and system of equations.

 Univariate Equations
A univariate function is a function that depends only on a single variable f (x), where x

is a scalar, and the corresponding univariate equation is on the form f (x) = 0. Typical

examples of this type of equation are polynomials, such as x2 − x+1 = 0, and expressions

containing elementary functions, such as x3 − 3 sin (x) = 0 and exp(x) − 2 = 0. Unlike for

linear systems, there are no general methods for determining if a nonlinear equation has

a solution, or multiple solutions, or if a given solution is unique. This can be understood

intuitively from the fact that graphs of nonlinear functions correspond to curves that can

intersect x = 0 in an arbitrary number of ways.

Because of the vast number of possible situations, it is difficult to develop a

completely automatic approach to solving nonlinear equations. Analytically, only

equations on special forms can be solved exactly. For example, polynomials of up to 4th

order, and in some special cases also higher orders, can be solved analytically, and some

equations containing trigonometric and other elementary functions may be solvable

analytically. In SymPy we can solve many analytically solvable univariate and nonlinear

equations using the sympy.solve function. For example, to solve the standard quadratic

equation a+bx+cx2 = 0, we define an expression for the equation and pass it to the sympy.

solve function:

In [58]: x, a, b, c = sympy.symbols("x, a, b, c")

In [59]: sympy.solve(a + b*x + c*x**2, x)

Out[59]: [(-b + sqrt(-4*a*c + b**2))/(2*c), -(b + sqrt(-4*a*c + b**2))/(2*c)]

The solution is indeed the well-known formula for the solution of this equation. The

same method can be used to solve some trigonometric equations:

In [60]: sympy.solve(a * sympy.cos(x) - b * sympy.sin(x), x)

Out[60]: [-2*atan((b - sqrt(a**2 + b**2))/a), -2*atan((b +

sqrt(a**2 + b**2))/a)]

ChAPTer 5 equATioN SolviNg

200

However, in general nonlinear equations are typically not solvable analytically. For

example, equations that contain both polynomial expressions and elementary functions,

such as sinx = x, are often transcendental and do not have an algebraic solution. If we

attempt to solve such an equation using SymPy, we obtain an error in the form of an

exception:

In [61]: sympy.solve(sympy.sin(x)-x, x)

...

NotImplementedError: multiple generators [x, sin(x)]

No algorithms are implemented to solve equation -x + sin(x)

In this type of situation, we need to resort to various numerical techniques. As a first

step, it is often very useful to graph the function. This can give important clues about the

number of solutions to the equation and their approximate locations. This information

is often necessary when applying numerical techniques to find good approximations to

the roots of the equations. For example, consider the following example (In [62]), which

plots four examples of nonlinear functions, as shown in Figure 5-5. From these graphs,

we can immediately conclude that the plotted functions, from left to right, have two,

three, one, and a large number of roots (at least within the interval that is being graphed).

In [62]: x = np.linspace(-2, 2, 1000)

 ...: # four examples of nonlinear functions

 ...: f1 = x**2 - x - 1

 ...: f2 = x**3 - 3 * np.sin(x)

 ...: f3 = np.exp(x) - 2

 ...: f4 = 1 - x**2 + np.sin(50 / (1 + x**2))

 ...:

 ...: # plot each function

 ...: fig, axes = plt.subplots(1, 4, figsize=(12, 3), sharey=True)

 ...:

 ...: for n, f in enumerate([f1, f2, f3, f4]):

 ...: axes[n].plot(x, f, lw=1.5)

 ...: axes[n].axhline(0, ls=':', color='k')

 ...: axes[n].set_ylim(-5, 5)

 ...: axes[n].set_xticks([-2, -1, 0, 1, 2])

 ...: axes[n].set_xlabel(r'x', fontsize=18)

 ...:

ChAPTer 5 equATioN SolviNg

201

 ...: axes[0].set_ylabel(r'$f(x)$', fontsize=18)

 ...:

 ...: titles = [r'$f(x)=x^2-x-1$', r'$f(x)=x^3-3\sin(x)$',

 ...: r'$f(x)=\exp(x)-2$', r'$f(x)=\sin\left(50/(1+x^2)\

right)+1-x^2$']

 ...: for n, title in enumerate(titles):

 ...: axes[n].set_title(title)

To find the approximate location of a root to an equation, we can apply one of the

many techniques for numerical root finding, which typically applies an iterative scheme

where the function is evaluated at successive points until the algorithm has narrowed in

on the solution, to the desired accuracy. Two standard methods that illustrate the basic

idea of how many numerical root-finding methods work are the bisection method and

the Newton method.

The bisection method requires a starting interval [a, b] such that f (a) and f (b) have

different signs. This guarantees that there is at least one root within this interval. In each

iteration, the function is evaluated in the middle point m between a and b, and sign of

the function is different at a and m, and then the new interval [a, b = m] is chosen for

the next iteration. Otherwise the interval [a = m, b] is chosen for the next iteration. This

guarantees that in each iteration, the function has a different sign at the two endpoints

of the interval, and in each iteration the interval is halved and therefore converges

toward a root of the equation. The following code example demonstrates a simple

implementation of the bisection method with a graphical visualization of each step, as

shown in Figure 5-6.

Figure 5-5. Graphs of four examples of nonlinear functions

ChAPTer 5 equATioN SolviNg

202

In [63]: # define a function, desired tolerance and starting interval [a, b]

 ...: f = lambda x: np.exp(x) - 2

 ...: tol = 0.1

 ...: a, b = -2, 2

 ...: x = np.linspace(-2.1, 2.1, 1000)

 ...:

 ...: # graph the function f

 ...: fig, ax = plt.subplots(1, 1, figsize=(12, 4))

 ...:

 ...: ax.plot(x, f(x), lw=1.5)

 ...: ax.axhline(0, ls=':', color='k')

 ...: ax.set_xticks([-2, -1, 0, 1, 2])

 ...: ax.set_xlabel(r'x', fontsize=18)

 ...: ax.set_ylabel(r'$f(x)$', fontsize=18)

 ...:

 ...: # find the root using the bisection method and visualize

 ...: # the steps in the method in the graph

 ...: fa, fb = f(a), f(b)

 ...:

 ...: ax.plot(a, fa, 'ko')

 ...: ax.plot(b, fb, 'ko')

 ...: ax.text(a, fa + 0.5, r"a", ha='center', fontsize=18)

 ...: ax.text(b, fb + 0.5, r"b", ha='center', fontsize=18)

 ...:

 ...: n = 1

 ...: while b - a > tol:

 ...: m = a + (b - a)/2

 ...: fm = f(m)

 ...:

 ...: ax.plot(m, fm, 'ko')

 ...: ax.text(m, fm - 0.5, r"$m_%d$" % n, ha='center')

 ...: n += 1

 ...:

 ...: if np.sign(fa) == np.sign(fm):

ChAPTer 5 equATioN SolviNg

203

 ...: a, fa = m, fm

 ...: else:

 ...: b, fb = m, fm

 ...:

 ...: ax.plot(m, fm, 'r*', markersize=10)

 ...: ax.annotate("Root approximately at %.3f" % m,

 ...: fontsize=14, family="serif",

 ...: xy=(a, fm), xycoords='data',

 ...: xytext=(-150, +50), textcoords='offset points',

 ...: arrowprops=dict(arrowstyle="->",

connectionstyle="arc3, rad=-.5"))

 ...:

 ...: ax.set_title("Bisection method")

Another standard method for root finding is Newton’s method, which converges

faster than the bisection method discussed in the previous paragraph. While the

bisection method only uses the sign of the function at each point, Newton’s method uses

the actual function values to obtain a more accurate approximation of the nonlinear

function. In particular, it approximates the function f (x) with its first-order Taylor

expansion f (x+dx) = f (x)+dx f ′(x), which is a linear function whose root is easily found

to be x – f (x)/f ′(x). Of course, this does not need to be a root of the function f(x), but in

many cases it is a good approximation for getting closer to a root of f (x). By iterating this

scheme, xk+1 = xk − f (xk)/f ′(xk), we may approach the root of the function. A potential

problem with this method is that it fails if f ′(xk) is zero at some point xk. This special

case would have to be dealt with in a real implementation of this method. The following

Figure 5-6. Graphical visualization of how the bisection method works

ChAPTer 5 equATioN SolviNg

204

example (In [64]) demonstrates how this method can be used to solve for the root of

the equation exp(x) − 2 = 0, using SymPy to evaluate the derivative of the function f (x),

and Figure 5-7 visualizes the steps in this root-finding process.

In [64]: # define a function, desired tolerance and starting point xk

 ...: tol = 0.01

 ...: xk = 2

 ...:

 ...: s_x = sympy.symbols("x")

 ...: s_f = sympy.exp(s_x) - 2

 ...:

 ...: f = lambda x: sympy.lambdify(s_x, s_f, 'numpy')(x)

 ...: fp = lambda x: sympy.lambdify(s_x, sympy.diff(s_f, s_x), 'numpy')(x)

 ...:

 ...: x = np.linspace(-1, 2.1, 1000)

 ...:

 ...: # setup a graph for visualizing the root finding steps

 ...: fig, ax = plt.subplots(1, 1, figsize=(12, 4))

 ...: ax.plot(x, f(x))

 ...: ax.axhline(0, ls=':', color='k')

 ...:

 ...: # iterate Newton's method until convergence to the desired

tolerance has been reached

 ...: n = 0

 ...: while f(xk) > tol:

 ...: xk_new = xk - f(xk) / fp(xk)

 ...:

 ...: ax.plot([xk, xk], [0, f(xk)], color='k', ls=':')

 ...: ax.plot(xk, f(xk), 'ko')

 ...: ax.text(xk, -.5, r'$x_%d$' % n, ha='center')

 ...: ax.plot([xk, xk_new], [f(xk), 0], 'k-')

 ...:

 ...: xk = xk_new

 ...: n += 1

 ...:

 ...: ax.plot(xk, f(xk), 'r*', markersize=15)

ChAPTer 5 equATioN SolviNg

205

 ...: ax.annotate("Root approximately at %.3f" % xk,

 ...: fontsize=14, family="serif",

 ...: xy=(xk, f(xk)), xycoords='data',

 ...: xytext=(-150, +50), textcoords='offset points',

 ...: arrowprops=dict(arrowstyle="->",

connectionstyle="arc3, rad=-.5"))

 ...:

 ...: ax.set_title("Newtown's method")

 ...: ax.set_xticks([-1, 0, 1, 2])

A potential issue with Newton’s method is that it requires both the function values

and the values of the derivative of the function in each iteration. In the previous

example, we used SymPy to symbolically compute the derivatives. In an all-numerical

implementation, this is of course not possible, and a numerical approximation of the

derivative would be necessary, which would in turn require further function evaluations.

A variant of Newton’s method that bypasses the requirement to evaluate function

derivatives is the secant method, which uses two previous function evaluations to obtain

a linear approximation of the function, which can be used to compute a new estimate of

the root. The iteration formula for the secant method is x x f x
x x

f x f xk k k
k k

k k
+

-

-

= - () -
() - ()1

1

1

.

This is only one example of the many variants and possible refinements on the basic idea

of Newton’s method. State-of-the-art implementations of numerical root-finding

functions typically use the basic idea of either the bisection method of Newton’s method

or a combination of both but additionally use various refinement strategies, such as

higher-order interpolations of the function to achieve faster convergence.

Figure 5-7. Visualization of the root-finding steps in Newton’s method for the
equation exp(x) − 2 = 0

ChAPTer 5 equATioN SolviNg

206

The SciPy optimize module provides multiple functions for numerical root finding.

The optimize.bisect and optimize.newton functions implement variants of bisection

and Newton methods. The optimize.bisect takes three arguments: first a Python

function (e.g., a lambda function) that represents the mathematical function for the

equation for which a root is to be calculated and the second and third arguments are the

lower and upper values of the interval for which to perform the bisection method. Note

that the sign of the function has to be different at the points a and b for the bisection

method to work, as discussed earlier. Using the optimize.bisect function, we can

calculate the root of the equation exp(x) − 2 = 0 that we used in the previous examples,

using

In [65]: optimize.bisect(lambda x: np.exp(x) - 2, -2, 2)

Out[65]: 0.6931471805592082

As long as f (a) and f (b) indeed have different signs, this is guaranteed to give a root

within the interval [a, b]. In contrast, the function optimize.newton for Newton’s method

takes a function as the first argument and an initial guess for the root of the function as

the second argument. Optionally, it also takes an argument for specifying the derivative

of the function, using the fprime keyword argument. If fprime is given, Newton’s

method is used; otherwise the secant method is used instead. To find the root of the

equation expx − 2 = 0, with and without specifying its derivative, we can use

In [66]: x_root_guess = 2

In [67]: f = lambda x: np.exp(x) – 2

In [68]: fprime = lambda x: np.exp(x)

In [69]: optimize.newton(f, x_root_guess)

Out[69]: 0.69314718056

In [70]: optimize.newton(f, x_root_guess, fprime=fprime)

Out[70]: 0.69314718056

Note that with this method, we have less control over which root is being computed,

if the function has multiple roots. For instance, there is no guarantee that the root the

function returns is the closest one to the initial guess; we cannot know in advance if the

root is larger or smaller than the initial guess.

The SciPy optimize module provides additional functions for root finding. In

particular, the optimize.brentq and optimize.brenth functions, which are variants of

the bisection method, also work on an interval where the function changes sign. The

ChAPTer 5 equATioN SolviNg

207

optimize.brentq function is generally considered the preferred all-around root-finding

function in SciPy. To find a root of the same equation that we considered previously,

using optimize.brentq and optimize.brenth functions, we can use

In [71]: optimize.brentq(lambda x: np.exp(x) - 2, -2, 2)

Out[71]: 0.6931471805599453

In [72]: optimize.brenth(lambda x: np.exp(x) - 2, -2, 2)

Out[72]: 0.6931471805599381

Note that these two functions take a Python function for the equation as the first

argument and the lower and upper values of the sign-changing interval as the second

and third arguments.

 Systems of Nonlinear Equations
In contrast to a linear system of equations, we cannot in general write a system of

nonlinear equations as a matrix-vector multiplication. Instead we represent a system of

multivariate nonlinear equations as a vector-valued function, for example, f : ℝN → ℝN,

that takes an N-dimensional vector and maps it to another N-dimensional vector.

Multivariate systems of equations are much more complicated to solve than univariate

equations, partly because there are so many more possible behaviors. As a consequence,

there is no method that strictly guarantees convergence to a solution, such as the

bisection method for a univariate nonlinear equation, and the methods that do exist

are much more computationally demanding than the univariate case, especially as the

number of variables increases.

Not all methods that we previously discussed for univariate equation solving can

be generalized to the multivariate case. For example, the bisection method cannot be

directly generalized to a multivariate equation system. On the other hand, Newton’s

method can be used for multivariate problems, and in this case its iteration formula

is xk+1 = xk − Jf(xk)−1f (xk), where Jf (xk) is the Jacobian matrix of the function f (x), with

elements [Jf (xk)]ij = ∂fi(xk)/∂xj. Instead of inverting the Jacobian matrix, it is sufficient to

solve the linear equation system Jf (xk)δxk = − f (xk) and update xk using xk+1 = xk+δxk. Like

the secant variants of the Newton method for univariate equation systems, there are also

variants of the multivariate method that avoid computing the Jacobian by estimating it

from previous function evaluations. Broyden’s method is a popular example of this type

of secant updating method for multivariate equation systems. In the SciPy optimize

ChAPTer 5 equATioN SolviNg

208

module, broyden1 and broyden2 provide two implementations of Broyden’s method

using different approximations of the Jacobian, and the function optimize.fsolve

provides an implementation of a Newton-like method, where optionally the Jacobian

can be specified, if available. The functions all have a similar function signature: The first

argument is a Python function that represents the equation to be solved, and it should

take a NumPy array as the first argument and return an array of the same shape. The

second argument is an initial guess for the solution, as a NumPy array. The optimize.

fsolve function also takes an optional keyword argument fprime, which can be used

to provide a function that returns the Jacobian of the function f (x). In addition, all these

functions take numerous optional keyword arguments for tuning their behavior (see the

docstrings for details).

For example, consider the following system of two multivariate and nonlinear

equations

y x x

y x

- - + =
+ - =

ì
í
î

3 2

2

2 1 0

1 0
,

which can be represented by the vector-valued function

f ([x1, x2]) = [x2 − x1
3 − 2x1

2+1, x2+x1
2 − 1]. To solve this equation system using SciPy, we

need to define a Python function for f ([x1, x2]) and call, for example, the optimize.fsolve

using the function and an initial guess for the solution vector:

In [73]: def f(x):

 ...: return [x[1] - x[0]**3 - 2 * x[0]**2 + 1, x[1] + x[0]**2 - 1]

In [74]: optimize.fsolve(f, [1, 1])

Out[74]: array([0.73205081, 0.46410162])

The optimize.broyden1 and optimize.broyden2 can be used in a similar manner.

To specify a Jacobian for optimize.fsolve to use, we need to define a function that

evaluates the Jacobian for a given input vector. This requires that we first derive the

Jacobian by hand or, for example, using SymPy

In [75]: x, y = sympy.symbols("x, y")

In [76]: f_mat = sympy.Matrix([y - x**3 -2*x**2 + 1, y + x**2 - 1])

In [77]: f_mat.jacobian(sympy.Matrix([x, y]))

Out[77]:
- -æ

è
ç

ö

ø
÷

3 4 1

2 1

2x x

x

ChAPTer 5 equATioN SolviNg

209

which we can then easily implement as a Python function that can be passed to the

optimize.fsolve function:

In [78]: def f_jacobian(x):

 ...: return [[-3*x[0]**2-4*x[0], 1], [2*x[0], 1]]

In [79]: optimize.fsolve(f, [1, 1], fprime=f_jacobian)

Out[79]: array([0.73205081, 0.46410162])

As with the Newton’s method for a univariate nonlinear equation system, the initial

guess for the solution is important, and different initial guesses may result in different

solutions that are found for the equations. There is no guarantee that any particular

solution is found, although the proximity of the initial guess to the true solution often is

correlated with convergence to that particular solution. When possible, it is often a good

approach to graph the equations that are being solved, to give a visual indication of the

number of solutions and their locations. For example, the following code demonstrates

how three different solutions can be found to the equation systems we are considering

here, by using different initial guesses with the optimize.fsolve function. The result is

shown in Figure 5-8.

In [80]: def f(x):

 ...: return [x[1] - x[0]**3 - 2 * x[0]**2 + 1,

 ...: x[1] + x[0]**2 - 1]

 ...:

 ...: x = np.linspace(-3, 2, 5000)

 ...: y1 = x**3 + 2 * x**2 -1

 ...: y2 = -x**2 + 1

 ...:

 ...: fig, ax = plt.subplots(figsize=(8, 4))

 ...:

 ...: ax.plot(x, y1, 'b', lw=1.5, label=r'$y = x^3 + 2x^2 - 1$')

 ...: ax.plot(x, y2, 'g', lw=1.5, label=r'$y = -x^2 + 1$')

 ...:

 ...: x_guesses = [[-2, 2], [1, -1], [-2, -5]]

 ...: for x_guess in x_guesses:

 ...: sol = optimize.fsolve(f, x_guess)

 ...: ax.plot(sol[0], sol[1], 'r*', markersize=15)

 ...:

ChAPTer 5 equATioN SolviNg

210

 ...: ax.plot(x_guess[0], x_guess[1], 'ko')

 ...: ax.annotate("", xy=(sol[0], sol[1]), xytext=(x_guess[0],

x_guess[1]),

 ...: arrowprops=dict(arrowstyle="->", linewidth=2.5))

 ...:

 ...: ax.legend(loc=0)

 ...: ax.set_xlabel(r'x', fontsize=18)

By systematically solving the equation systems with different initial guesses, we

can build a visualization of how different initial guesses converge to different solutions.

This is done in the following code example, and the result is shown in Figure 5-9.

This example demonstrates that even for this relatively simple example, the regions

of initial guesses that converge to different solutions are highly nontrivial, and there

are also missing dots which corresponds to initial guesses for which the algorithm

fails to converge to any solution. Nonlinear equation solving is a complex task,

and visualizations of different types can often be a valuable tool when building an

understanding of the characteristics of a particular problem.

In [81]: fig, ax = plt.subplots(figsize=(8, 4))

 ...:

 ...: ax.plot(x, y1, 'k', lw=1.5)

 ...: ax.plot(x, y2, 'k', lw=1.5)

Figure 5-8. Graph of a system of two nonlinear equations. The solutions are
indicated with red stars and the initial guess with a black dot and an arrow to the
solution each initial guess eventually converged to.

ChAPTer 5 equATioN SolviNg

211

 ...:

 ...: sol1 = optimize.fsolve(f, [-2, 2])

 ...: sol2 = optimize.fsolve(f, [1, -1])

 ...: sol3 = optimize.fsolve(f, [-2, -5])

 ...: sols = [sol1, sol2, sol3]

 ...: for idx, s in enumerate(sols):

 ...: ax.plot(s[0], s[1], colors[idx]+'*', markersize=15)

 ...:

 ...: colors = ['r', 'b', 'g']

 ...: for m in np.linspace(-4, 3, 80):

 ...: for n in np.linspace(-15, 15, 40):

 ...: x_guess = [m, n]

 ...: sol = optimize.fsolve(f, x_guess)

 ...: idx = (abs(sols - sol)**2).sum(axis=1).argmin()

 ...: ax.plot(x_guess[0], x_guess[1], colors[idx]+'.')

 ...:

 ...: ax.set_xlabel(r'x', fontsize=18)

Figure 5-9. Visualization of the convergence of different initial guesses to different
solutions. Each dot represents an initial guess, and its color encodes which solution
it eventually converges to. The solutions are marked with correspondingly color-
coded stars.

ChAPTer 5 equATioN SolviNg

212

 Summary
In this chapter we have explored methods for solving algebraic equations using the

SymPy and SciPy libraries. Equation solving is one of the most elementary mathematical

tools for computational sciences, and it is both an important component in many

algorithms and methods and has direct applications in many problem-solving

situations. In some cases, analytical algebraic solutions exist, especially for equations

that are polynomials or contain certain combinations of elementary functions, and

such equations can often be handled symbolically with SymPy. For equations with no

algebraic solution, and for larger systems of equations, numerical methods are usually

the only feasible approach. Linear equation systems can always be systematically

solved, and for this reason there is an abundance of important applications for linear

equation systems, be it for originally linear systems or as approximations to originally

nonlinear systems. Nonlinear equation solving requires a different set of methods, and

it is in general much more complex and computationally demanding compared to

linear equation systems. In fact, solving linear equation systems is an important step

in the iterative methods employed in many of the methods that exist to solve nonlinear

equation systems. For numerical equation solving, we can use the linear algebra and

optimization modules in SciPy, which provide efficient and well-tested methods for

numerical root finding and equation solving of both linear and nonlinear systems.

 Further Reading
Equation solving is a basic numerical technique whose methods are covered in most

introductory numerical analysis texts. A good example of a book that covers these

topics is Heath (2001), and W.H. Press (2007) gives a practical introduction with

implementation details.

 References
Heath, M. (2001). Scientific Computing. Boston: McGraw-Hill.

W.H. Press, S. T. (2007). Numerical Recipes: The Art of Scientific Computing (3rd ed.).

Cambridge: Cambridge University Press.

ChAPTer 5 equATioN SolviNg

213
© Robert Johansson 2019
R. Johansson, Numerical Python, https://doi.org/10.1007/978-1-4842-4246-9_6

CHAPTER 6

Optimization
In this chapter, we will build on Chapter 5 about equation solving and explore the related

topic of solving optimization problems. In general, optimization is the process of finding

and selecting the optimal element from a set of feasible candidates. In mathematical

optimization, this problem is usually formulated as determining the extreme value

of a function on a given domain. An extreme value, or an optimal value, can refer to

either the minimum or maximum of the function, depending on the application and

the specific problem. In this chapter we are concerned with the optimization of real-

valued functions of one or several variables, which optionally can be subject to a set of

constraints that restricts the domain of the function.

The applications of mathematical optimization are many and varied, and so are the

methods and algorithms that must be employed to solve optimization problems. Since

optimization is a universally important mathematical tool, it has been developed and

adapted for use in many fields of science and engineering, and the terminology used to

describe optimization problems varies between fields. For example, the mathematical

function that is optimized may be called a cost function, loss function, energy function,

or objective function, to mention a few. Here we use the generic term objective function.

Optimization is closely related to equation solving because at an optimal value of

a function, its derivative, or gradient in the multivariate case, is zero. The converse,

however, is not necessarily true, but a method to solve optimization problems is to

solve for the zeros of the derivative or the gradient and test the resulting candidates

for optimality. This approach is not always feasible though, and often it is required to

take other numerical approaches, many of which are closely related to the numerical

methods for root finding that was covered in Chapter 5.

In this chapter we discuss using SciPy’s optimization module optimize for nonlinear

optimization problems, and we will briefly explore using the convex optimization library

cvxopt for linear optimization problems with linear constraints. This library also has

powerful solvers for quadratic programming problems.

214

cvxopt The convex optimization library cvxopt provides solvers for linear and
quadratic optimization problems. At the time of writing, the latest version is 1.1.9.
For more information, see the project’s web site http://cvxopt.org. Here we
use this library for constrained linear optimization.

 Importing Modules
Like in the previous chapter, here we use the optimize module from the SciPy library.

Here we assume that this module is imported in the following manner:

In [1]: from scipy import optimize

In the later part of this chapter, we also look at linear programming using the cvxopt

library, which we assume to be imported in its entirety without any alias:

In [2]: import cvxopt

For basic numerics, symbolics, and plotting, here we also use the NumPy, SymPy,

and Matplotlib libraries, which are imported and initialized using the conventions

introduced in earlier chapters:

In [3]: import matplotlib.pyplot as plt

In [4]: import numpy as np

In [5]: import sympy

In [6]: sympy.init_printing()

 Classification of Optimization Problems
Here we restrict our attention to mathematical optimization of real-valued functions,

with one or more dependent variables. Many mathematical optimization problems can

be formulated in this way, but a notable exception is optimization of functions over

discrete variables, for example, integers, which is beyond the scope of this book.

A general optimization problem of the type considered here can be formulated as a

minimization problem, minx f x() , subject to sets of m equality constraints g(x) = 0 and

p inequality constraints h(x) ≤ 0. Here f(x) is a real-valued function of x, which can be a

CHApTer 6 OpTimizATiOn

http://cvxopt.org

215

scalar or a vector x = (x0, x1, …, xn)T, while g(x) and h(x) can be vector-valued functions:

f : ℝn ⟶ ℝ, g : ℝn ⟶ ℝm and h : ℝn ⟶ ℝp. Note that maximizing f (x) is equivalent to

minimizing –f (x), so without loss of generality, it is sufficient to consider only

minimization problems.

Depending on the properties of the objective function f (x) and the equality and

inequality constraints g(x) and h(x), this formulation includes a rich variety of problems.

A general mathematical optimization on this form is difficult to solve, and there are

no efficient methods for solving completely generic optimization problems. However,

there are efficient methods for many important special cases, and in optimization it is

therefore important to know as much as possible about the objective functions and the

constraints in order to be able to solve a problem.

Optimization problems are classified depending on the properties of the functions

f (x), g(x), and h(x). First and foremost, the problem is univariate or one dimensional if x

is a scalar, x ∈ ℝ, and multivariate or multidimensional if x is a vector, x ∈ ℝn. For high-

dimensional objective functions, with larger n, the optimization problem is harder and

more computationally demanding to solve. If the objective function and the constraints

all are linear, the problem is a linear optimization problem, or linear programming

problem.1 If either the objective function or the constraints are nonlinear, it is a

nonlinear optimization problem, or a nonlinear programming problem. With respect

to constraints, important subclasses of optimization are unconstrained problems, and

those with linear and nonlinear constraints. Finally, handling equality and inequality

constraints requires different approaches.

As usual, nonlinear problems are much harder to solve than linear problems,

because they have a wider variety of possible behaviors. A general nonlinear problem

can have both local and global minima, which turns out to make it very difficult to find

the global minima: iterative solvers may often converge to local minima rather than

the global minima or may even fail to converge altogether if there are both local and

global minima. However, an important subclass of nonlinear problems that can be

solved efficiently is convex problems, which is directly related to the absence of strictly

local minima and the existence of a unique global minimum. By definition, a function

is convex on an interval [a, b] if the values of the function on this interval lie below the

line through the endpoints (a, f (a)) and (b, f (b)). This condition, which can be readily

generalized to the multivariate case, implies a number of important properties, such as

1 For historical reasons optimization problems are often referred to as programming problems,
which are not related to computer programming.

CHApTer 6 OpTimizATiOn

216

the existence of a unique minimum on the interval. Because of strong properties like

this one, convex problems can be solved efficiently even though they are nonlinear.

The concepts of local and global minima, and convex and nonconvex functions, are

illustrated in Figure 6-1.

Whether the objective function f (x) and the constraints g(x) and h(x) are continuous

and smooth are properties that have very important implications for the methods and

techniques that can be used to solve an optimization problem. Discontinuities in these

functions, or their derivatives or gradients, cause difficulties for many of the available

methods of solving optimization problems, and in the following, we assume that these

functions are indeed continuous and smooth. On a related note, if the function itself is

not known exactly, but contains noise due to measurements or for other reasons, many

of the methods discussed in the following may not be suitable.

Optimization of continuous and smooth functions are closely related to nonlinear

equation solving, because extremal values of a function f (x) correspond to points

where its derivative, or gradient, is zero. Finding candidates for the optimal value

of f (x) is therefore equivalent to solving the (in general nonlinear) equation system

∇f (x) = 0. However, a solution to ∇f (x) = 0, which is known as a stationary point, does

not necessarily correspond to a minimum of f (x); it can also be maximum or a saddle

point; see Figure 6-2. Candidates obtained by solving ∇f (x) = 0 should therefore be tested

for optimality. For unconstrained objective functions, the higher-order derivatives, or

Hessian matrix

H x
f x

x xf ij
i j

(){ } =
¶ ()
¶ ¶

2

,

Figure 6-1. Illustration of a convex function (left) and a nonconvex function
(right) with a global minimum and two local minima

CHApTer 6 OpTimizATiOn

217

for the multivariate case, can be used to determine if a stationary point is a local

minimum or not. In particular if the second-order derivative is positive, or the Hessian

positive definite, when evaluated at stationary point x∗, then x∗ is a local minimum.

Negative second-order derivative, or negative definite Hessian, corresponds to a local

maximum, and a zero second-order derivative, or an indefinite Hessian, corresponds to

saddle point.

Algebraically solving the equation system ∇f (x) = 0 and testing the candidate

solutions for optimality is therefore one possible strategy for solving an optimization

problem. However, it is not always a feasible method. In particular, we may not have

an analytical expression for f (x) from which we can compute the derivatives, and the

resulting nonlinear equation system may not be easy to solve, especially not to find all of

its roots. For such cases, there are alternative numerical optimization approaches, some

of which have analogs among the root-finding methods discussed in Chapter 5. In the

remaining part of this chapter, we explore the various classes of optimization problems

and how such problems can be solved in practice using available optimization libraries

for Python.

 Univariate Optimization
Optimization of a function that only depends on a single variable is relatively easy. In

addition to the analytical approach of seeking the roots of the derivative of the function,

we can employ techniques that are similar to the root-finding methods for univariate

functions, namely, bracketing methods and Newton’s method. Like the bisection

method for univariate root finding, it is possible to use bracketing and iteratively refine

an interval using function evaluations alone. Refining an interval [a, b] that contains

a minimum can be achieved by evaluating the function at two interior points x1 and

Figure 6-2. Illustration of different stationary points of a one-dimensional
function

CHApTer 6 OpTimizATiOn

218

x2, x1 < x2, and selecting [x1, b] as new interval if f (x1) > f (x2), and [a, x2] otherwise. This

idea is used in the golden section search method, which additionally uses the trick of

choosing x1 and x2 such that their relative positions in the [a, b] interval satisfy the golden

ratio. This has the advantage of allowing to reuse one function evaluation from the

previous iteration and thus only requiring one new function evaluation in each iteration

but still reducing the interval with a constant factor in each iteration. For functions with

a unique minimum on the given interval, this approach is guaranteed to converge to an

optimal point, but this is unfortunately not guaranteed for more complicated functions.

It is therefore important to carefully select the initial interval, ideally relatively close to

an optimal point. In the SciPy optimize module, the function golden implements the

golden search method.

As the bisection method for root finding, the golden search method is a

(relatively) safe but a slowly converging method. Methods with better convergence

can be constructed if the values of the function evaluations are used, rather than

only comparing the values to each other (which is similar to using only the sign of

the functions, as in the bisection method). The function values can be used to fit a

polynomial, for example, a quadratic polynomial, which can be interpolated to find a

new approximation for the minimum, giving a candidate for a new function evaluation,

after which the process can be iterated. This approach can converge faster but is riskier

than bracketing and may not converge at all or may converge to local minima outside the

given bracket interval.

Newton’s method for root finding is an example of a quadratic approximation

method that can be applied to find a function minimum, by applying the method

to the derivative rather than the function itself. This yields the iteration formula

xk+1 = xk − f ′(xk)/f ′′(xk), which can converge quickly if started close to an optimal point

but may not converge at all if started too far from the optimal value. This formula also

requires evaluating both the derivative and the second-order derivative in each iteration.

If analytical expressions for these derivatives are available, this can be a good method.

If only function evaluations are available, the derivatives may be approximated using an

analog of the secant method for root finding.

A combination of the two previous methods is typically used in practical

implementations of univariate optimization routines, giving both stability and fast

convergence. In SciPy’s optimize module, the brent function is such a hybrid method,

and it is generally the preferred method for optimization of univariate functions with

SciPy. This method is a variant of the golden section search method that uses inverse

parabolic interpolation to obtain faster convergence.

CHApTer 6 OpTimizATiOn

219

Instead of calling the optimize.golden and optimize.brent functions directly,

it is convenient to use the unified interface function optimize.minimize_scalar,

which dispatches to the optimize.golden and optimize.brent functions depending

on the value of the method keyword argument, where the currently allowed options

are 'Golden', 'Brent', or 'Bounded'. The last option dispatches to optimize.

fminbound, which performs optimization on a bounded interval, which corresponds

to an optimization problem with inequality constraints that limit the domain of

objective function f (x). Note that the optimize.golden and optimize.brent functions

may converge to a local minimum outside the initial bracket interval, but optimize.

fminbound would in such circumstances return the value at the end of the allowed range.

As an example for illustrating these techniques, consider the following classic

optimization problem: Minimize the area of a cylinder with unit volume. Here, suitable

variables are the radius r and height h of the cylinder, and the objective function is

f ([r, h]) = 2πr2+2πrh, subject to the equality constraint g([r, h]) = πr2h − 1 = 0. As this

problem is formulated here, it is a two-dimensional optimization problem with an

equality constraint. However, we can algebraically solve the constraint equation for

one of the dependent variables, for example, h = 1/πr2, and substitute this into the

objective function to obtain an unconstrained one-dimensional optimization problem:

f (r) = 2πr2+2/r. To begin with, we can solve this problem symbolically using SymPy,

using the method of equating the derivative of f (r) to zero:

In [7]: r, h = sympy.symbols("r, h")

In [8]: Area = 2 * sympy.pi * r**2 + 2 * sympy.pi * r * h

In [9]: Volume = sympy.pi * r**2 * h

In [10]: h_r = sympy.solve(Volume - 1)[0]

In [11]: Area_r = Area.subs(h_r)

In [12]: rsol = sympy.solve(Area_r.diff(r))[0]

In [13]: rsol

Out[13]:
2

2

2 3

3

/

p
In [14]: _.evalf()

Out[14]: 0.541926070139289

CHApTer 6 OpTimizATiOn

220

Now verify that the second derivative is positive and that rsol corresponds to a

minimum:

In [15]: Area_r.diff(r, 2).subs(r, rsol)

Out[15]: 12π

In [16]: Area_r.subs(r, rsol)

Out[16]: 3 23 p

In [17]: _.evalf()

Out[17]: 5.53581044593209

For simple problems this approach is often feasible, but for more realistic problems,

we typically need to resort to numerical techniques. To solve this problem using SciPy’s

numerical optimization functions, we first define a Python function f that implements

the objective function. To solve the optimization problem, we then pass this function to,

for example, optimize.brent. Optionally we can use the brack keyword argument to

specify a starting interval for the algorithm:

In [18]: def f(r):

 ...: return 2 * np.pi * r**2 + 2 / r

In [19]: r_min = optimize.brent(f, brack=(0.1, 4))

In [20]: r_min

Out[20]: 0.541926077256

In [21]: f(r_min)

Out[21]: 5.53581044593

Instead of calling optimize.brent directly, we could use the generic interface

for scalar minimization problems optimize.minimize_scalar. Note that to specify a

starting interval in this case, we must use the bracket keyword argument:

In [22]: optimize.minimize_scalar(f, bracket=(0.1, 4))

Out[22]: nit: 13

 fun: 5.5358104459320856

 x: 0.54192606489766715

 nfev: 14

All these methods give that the radius that minimizes the area of the cylinder is

approximately 0.54 (the exact result from the symbolic calculation is 2 22 3 3/ / p) and a

minimum area of approximately 5.54 (the exact result is 3 23 p). The objective function

CHApTer 6 OpTimizATiOn

221

that we minimized in this example is plotted in Figure 6-3, where the minimum is

marked with a red star. When possible, it is a good idea to visualize the objective function

before attempting a numerical optimization, because it can help in identifying a suitable

initial interval or a starting point for the numerical optimization routine.

 Unconstrained Multivariate Optimization
Multivariate optimization is significantly harder than the univariate optimization

discussed in the previous section. In particular, the analytical approach of solving

the nonlinear equations for roots of the gradient is rarely feasible in the multivariate

case, and the bracketing scheme used in the golden search method is also not directly

applicable. Instead we must resort to techniques that start at some point in the

coordinate space and use different strategies to move toward a better approximation

of the minimum point. The most basic approach of this type is to consider the gradient

∇f (x) of the objective function f (x) at a given point x. In general, the negative of the

gradient, −∇f (x), always points in the direction in which the function f (x) decreases the

most. As minimization strategy, it is therefore sensible to move along this direction for

some distance αk and then iterate this scheme at the new point. This method is known as

the steepest descent method, and it gives the iteration formula xk+1 = xk − αk∇f(xk), where

αk is a free parameter known as the line search parameter that describes how far along

the given direction to move in each iteration. An appropriate αk can, for example, be

selected by solving the one-dimensional optimization problem ak k k kf x f xmin - Ñ ()()a .

This method is guaranteed to make progress and eventually converge to a minimum

Figure 6-3. The surface area of a cylinder with unit volume as a function of the
radius r

CHApTer 6 OpTimizATiOn

222

of the function, but the convergence can be quite slow because this method tends to

overshoot along the direction of the gradient, giving a zigzag approach to the minimum.

Nonetheless, the steepest descent method is the conceptual basis for many multivariate

optimization algorithms, and with suitable modifications, the convergence can be

speed up.

Newton’s method for multivariate optimization is a modification of the steepest

descent method that can improve convergence. As in the univariate case, Newton’s

method can be viewed as a local quadratic approximation of the function, which when

minimized gives an iteration scheme. In the multivariate case, the iteration formula

is x x H x f xk k f k k+
-= - ()Ñ ()1
1 , where compared to the steepest descent method, the

gradient has been replaced with the gradient multiplied from the left with the inverse

of Hessian matrix for the function.2 In general this alters both the direction and the

length of the step, so this method is not strictly a steepest descent method and may

not converge if started too far from a minimum. However, when close to a minimum, it

converges quickly. As usual there is a trade-off between convergence rate and stability.

As it is formulated here, Newton’s method requires both the gradient and the Hessian of

the function.

In SciPy, Newton’s method is implemented in the function optimize.fmin_ncg. This

function takes the following arguments: a Python function for the objective function, a

starting point, a Python function for evaluating the gradient, and (optionally) a Python

function for evaluating the Hessian. To see how this method can be used to solve an

optimization problem, we consider the following problem: minx f x() where the

objective function is f (x) = (x1 − 1)4+5(x2 − 1)2 − 2x1x2. To apply Newton’s method, we

need to calculate the gradient and the Hessian. For this particular case, this can easily

be done by hand. However, for the sake of generality, in the following we use SymPy to

compute symbolic expressions for the gradient and the Hessian. To this end, we begin

by defining symbols and a symbolic expression for the objective function, and then use

the sympy.diff function for each variable to obtain the gradient and Hessian in symbolic

form:

In [23]: x1, x2 = sympy.symbols("x_1, x_2")

In [24]: f_sym = (x1-1)**4 + 5 * (x2-1)**2 - 2*x1*x2

In [25]: fprime_sym = [f_sym.diff(x_) for x_ in (x1, x2)]

2 In practice, the inverse of the Hessian does not need to be computed, and instead we can solve
the linear equation system Hf (xk)yk = − ∇f(xk) and use the integration formula xk+1 = xk+yk.

CHApTer 6 OpTimizATiOn

223

In [26]: # Gradient

 ...: sympy.Matrix(fprime_sym)

Out[26]:
- + -()
- + -

é

ë
ê
ê

ù

û
ú
ú

2 4 1

2 10 10
2 1

3

1 2

x x

x x

In [27]: fhess_sym = [[f_sym.diff(x1_, x2_) for x1_ in (x1, x2)] for x2_ in

(x1, x2)]

In [28]: # Hessian

 ...: sympy.Matrix(fhess_sym)

Out[28]:
12 1 2

2 10
1

2
x -() -
-

é

ë
ê
ê

ù

û
ú
ú

Now that we have a symbolic expression for the gradient and the Hessian, we can

create vectorized functions for these expressions using sympy.lambdify.

In [29]: f_lmbda = sympy.lambdify((x1, x2), f_sym, 'numpy')

In [30]: fprime_lmbda = sympy.lambdify((x1, x2), fprime_sym, 'numpy')

In [31]: fhess_lmbda = sympy.lambdify((x1, x2), fhess_sym, 'numpy')

However, the functions produced by sympy.lambdify take one argument for each

variable in the corresponding expression, and the SciPy optimization functions expect a

vectorized function where all coordinates are packed into one array. To obtain functions

that are compatible with the SciPy optimization routines, we wrap each of the functions

generated by sympy.lambdify with a Python function that rearranges the arguments:

In [32]: def func_XY_to_X_Y(f):

 ...: """

 ...: Wrapper for f(X) -> f(X[0], X[1])

 ...: """

 ...: return lambda X: np.array(f(X[0], X[1]))

In [33]: f = func_XY_to_X_Y(f_lmbda)

In [34]: fprime = func_XY_to_X_Y(fprime_lmbda)

In [35]: fhess = func_XY_to_X_Y(fhess_lmbda)

Now the functions f, fprime, and fhess are vectorized Python functions on the form

that, for example, optimize.fmin_ncg expects, and we can proceed with a numerical

optimization of the problem at hand by calling this function. In addition to the functions

that we have prepared from SymPy expressions, we also need to give a starting point for

the Newton method. Here we use (0, 0) as the starting point.

CHApTer 6 OpTimizATiOn

224

In [36]: x_opt = optimize.fmin_ncg(f, (0, 0), fprime=fprime, fhess=fhess)

 Optimization terminated successfully.

 Current function value: -3.867223

 Iterations: 8

 Function evaluations: 10

 Gradient evaluations: 17

 Hessian evaluations: 8

In [37]: x_opt

Out[37]: array([1.88292613, 1.37658523])

The routine found a minimum point at (x1, x2) = (1.88292613, 1.37658523), and

diagnostic information about the solution was also printed to standard output, including

the number of iterations and the number of function, gradient, and Hessian evaluations

that were required to arrive at the solution. As usual it is illustrative to visualize the

objective function and the solution (see Figure 6-4):

In [38]: fig, ax = plt.subplots(figsize=(6, 4))

 ...: x_ = y_ = np.linspace(-1, 4, 100)

 ...: X, Y = np.meshgrid(x_, y_)

 ...: c = ax.contour(X, Y, f_lmbda(X, Y), 50)

 ...: ax.plot(x_opt[0], x_opt[1], 'r*', markersize=15)

 ...: ax.set_xlabel(r"x_1", fontsize=18)

 ...: ax.set_ylabel(r"x_2", fontsize=18)

 ...: plt.colorbar(c, ax=ax)

Figure 6-4. Contour plot of the objective function f(x) = (x1 − 1)4+5(x2 − 1)2 − 2x1x2.
The minimum point is marked by a red star.

CHApTer 6 OpTimizATiOn

225

In practice, it may not always be possible to provide functions for evaluating both

the gradient and the Hessian of the objective function, and often it is convenient with a

solver that only requires function evaluations. For such cases, several methods exist to

numerically estimate the gradient or the Hessian or both. Methods that approximate the

Hessian are known as quasi-Newton methods, and there are also alternative iterative

methods that completely avoid using the Hessian. Two popular methods are the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) and the conjugate gradient methods, which

are implemented in SciPy as the functions optimize.fmin_bfgs and optimize.fmin_cg.

The BFGS method is a quasi-Newton method that can gradually build up numerical

estimates of the Hessian, and also the gradient, if necessary. The conjugate gradient

method is a variant of the steepest descent method and does not use the Hessian, and

it can be used with numerical estimates of the gradient obtained from only function

evaluations. With these methods, the number of function evaluations that are required

to solve a problem is much larger than for Newton’s method, which on the other hand

also evaluates the gradient and the Hessian. Both optimize.fmin_bfgs and optimize.

fmin_cg can optionally accept a function for evaluating the gradient, but if not provided,

the gradient is estimated from function evaluations.

The preceding problem given, which was solved with the Newton method, can also

be solved using the optimize.fmin_bfgs and optimize.fmin_cg, without providing a

function for the Hessian:

In [39]: x_opt = optimize.fmin_bfgs(f, (0, 0), fprime=fprime)

 Optimization terminated successfully.

 Current function value: -3.867223

 Iterations: 10

 Function evaluations: 14

 Gradient evaluations: 14

In [40]: x_opt

Out[40]: array([1.88292605, 1.37658523])

In [41]: x_opt = optimize.fmin_cg(f, (0, 0), fprime=fprime)

 Optimization terminated successfully.

 Current function value: -3.867223

 Iterations: 7

 Function evaluations: 17

 Gradient evaluations: 17

CHApTer 6 OpTimizATiOn

226

In [42]: x_top

Out[42]: array([1.88292613, 1.37658522])

Note that here, as shown in the diagnostic output from the optimization solvers in

the preceding section, the number of function and gradient evaluations is larger than

for Newton’s method. As already mentioned, both of these methods can also be used

without providing a function for the gradient as well, as shown in the following example

using the optimize.fmin_bfgs solver:

In [43]: x_opt = optimize.fmin_bfgs(f, (0, 0))

 Optimization terminated successfully.

 Current function value: -3.867223

 Iterations: 10

 Function evaluations: 56

 Gradient evaluations: 14

In [44]: x_opt

Out[44]: array([1.88292604, 1.37658522])

In this case the number of function evaluations is even larger, but it is clearly

convenient to not have to implement functions for the gradient and the Hessian.

In general, the BFGS method is often a good first approach to try, in particular if

neither the gradient nor the Hessian is known. If only the gradient is known, then the

BFGS method is still the generally recommended method to use, although the conjugate

gradient method is often a competitive alternative to the BFGS method. If both the

gradient and the Hessian are known, then Newton’s method is the method with the

fastest convergence in general. However, it should be noted that although the BFGS and

the conjugate gradient methods theoretically have slower convergence than Newton’s

method, they can sometimes offer improved stability and can therefore be preferable.

Each iteration can also be more computationally demanding with Newton’s method

compared to quasi-Newton methods and the conjugate gradient method, and especially

for large problems, these methods can be faster in spite of requiring more iterations.

The methods for multivariate optimization that we have discussed so far all

converge to a local minimum in general. For problems with many local minima, this

can easily lead to a situation when the solver easily gets stuck in a local minimum,

even if a global minimum exists. Although there is no complete and general solution

to this problem, a practical approach that can partially alleviate this problem is to

use a brute force search over a coordinate grid to find a suitable starting point for an

CHApTer 6 OpTimizATiOn

227

iterative solver. At least this gives a systematic approach to find a global minimum within

given coordinate ranges. In SciPy, the function optimize.brute can carry out such a

systematic search. To illustrate this method, consider the problem of minimizing the

function 4 sin xπ+6 sin yπ+(x − 1)2+(y − 1)2, which has a large number of local minima.

This can make it tricky to pick a suitable initial point for an iterative solver. To solve this

optimization problem with SciPy, we first define a Python function for the objective

function:

In [45]: def f(X):

 ...: x, y = X

 ...: return (4 * np.sin(np.pi * x) + 6 * np.sin(np.pi * y)) +

(x - 1)**2 + (y - 1)**2

To systematically search for the minimum over a coordinate grid, we call optimize.

brute with the objective function f as the first parameter and a tuple of slice objects as

the second argument, one for each coordinate. The slice objects specify the coordinate

grid over which to search for a minimum value. Here we also set the keyword argument

finish=None, which prevents the optimize.brute from automatically refining the best

candidate.

In [46]: x_start = optimize.brute(f, (slice(-3, 5, 0.5),

slice(-3, 5, 0.5)), finish=None)

In [47]: x_start

Out[47]: array([1.5, 1.5])

In [48]: f(x_start)

Out[48]: −9.5

On the coordinate grid specified by the given tuple of slice objects, the optimal

point is (x1, x2) = (1.5, 1.5), with corresponding objective function minimum −9.5. This

is now a good starting point for a more sophisticated iterative solver, such as optimize.

fmin_bfgs:

In [49]: x_opt = optimize.fmin_bfgs(f, x_start)

 Optimization terminated successfully.

 Current function value: -9.520229

 Iterations: 4

 Function evaluations: 28

 Gradient evaluations: 7

CHApTer 6 OpTimizATiOn

228

In [50]: x_opt

Out[50]: array([1.47586906, 1.48365788])

In [51]: f(x_opt)

Out[51]: −9.52022927306

Here the BFGS method gave the final minimum point (x1, x2) = (1.47586906, 1.48365788),

with the minimum value of the objective function −9.52022927306. For this type of

problem, guessing the initial starting point easily results in that the iterative solver

converges to a local minimum, and the systematic approach that optimize.brute

provides is frequently useful.

As always, it is important to visualize the objective function and the solution when

possible. The following two code cells plot a contour graph of the current objective

function and mark the obtained solution with a red star (see Figure 6-5). As in the

previous example, we need a wrapper function for reshuffling the parameters of the

objective function because of the different conventions of how the coordinated vectors

are passed to the function (separate arrays and packed into one array, respectively).

In [52]: def func_X_Y_to_XY(f, X, Y):

 ...: """

 ...: Wrapper for f(X, Y) -> f([X, Y])

 ...: """

 ...: s = np.shape(X)

 ...: return f(np.vstack([X.ravel(), Y.ravel()])).reshape(*s)

In [53]: fig, ax = plt.subplots(figsize=(6, 4))

 ...: x_ = y_ = np.linspace(-3, 5, 100)

 ...: X, Y = np.meshgrid(x_, y_)

 ...: c = ax.contour(X, Y, func_X_Y_to_XY(f, X, Y), 25)

 ...: ax.plot(x_opt[0], x_opt[1], 'r*', markersize=15)

 ...: ax.set_xlabel(r"x_1", fontsize=18)

 ...: ax.set_ylabel(r"x_2", fontsize=18)

 ...: plt.colorbar(c, ax=ax)

CHApTer 6 OpTimizATiOn

229

In this section, we have explicitly called functions for specific solvers, for example,

optimize.fmin_bfgs. However, like for scalar optimization, SciPy also provides a

unified interface for all multivariate optimization solver with the function optimize.

minimize, which dispatches out to the solver-specific functions depending on the value

of the method keyword argument (remember, the univariate minimization function that

provides a unified interface is optimize.scalar_minimize). For clarity, here we have

favored explicitly calling functions for specific solvers, but in general it is a good idea to

use optimize.minimize, as this makes it easier to switch between different solvers.

For example, in the previous example, where we used optimize.fmin_bfgs in the

following way,

In [54]: x_opt = optimize.fmin_bfgs(f, x_start)

we could just as well have used

In [55]: result = optimize.minimize(f, x_start, method= 'BFGS')

In [56]: x_opt = result.x

The optimize.minimize function returns an instance of optimize.OptimizeResult

that represents the result of the optimization. In particular, the solution is available via

the x attribute of this class.

Figure 6-5. Contour plot of the objective function f(x) = 4 sin xπ+6 sin yπ+(x − 1)2+
(y − 1)2. The minimum is marked with a red star.

CHApTer 6 OpTimizATiOn

230

 Nonlinear Least Square Problems
In Chapter 5 we encountered linear least square problems and explored how they can be

solved with linear algebra methods. In general, a least square problem can be viewed as

an optimization problem with the objective function g r rii

mb b b() = () = ()=å 2 2

0
,

where r(β) is a vector with the residuals ri(β) = yi − f (xi, β) for a set of m observations

(xi, yi). Here β is a vector with unknown parameters that specifies the function f (x, β). If

this problem is nonlinear in the parameters β, it is known as a nonlinear least square

problem, and since it is nonlinear, it cannot be solved with the linear algebra techniques

discussed in Chapter 5. Instead, we can use the multivariate optimization techniques

described in the previous section, such as Newton’s method or a quasi-Newton method.

However, this nonlinear least square optimization problem has a specific structure, and

several methods that are tailored to solve this particular optimization problem have

been developed. One example is the Levenberg-Marquardt method, which is based on

the idea of successive linearizations of the problem in each iteration.

In SciPy, the function optimize.leastsq provides a nonlinear least square solver

that uses the Levenberg-Marquardt method. To illustrate how this function can be

used, consider a nonlinear model on the form f (x, β) = β0+β1 exp (−β2x2) and a set of

observations (xi, yi). In the following example, we simulate the observations with random

noise added to the true values, and we solve the minimization problem that gives the

best least square estimates of the parameters β. To begin with, we define a tuple with

the true values of the parameter vector β and a Python function for the model function.

This function, which should return the y value corresponding to a given x value, takes

as first argument the variable x, and the following arguments are the unknown function

parameters:

In [57]: beta = (0.25, 0.75, 0.5)

In [58]: def f(x, b0, b1, b2):

 ...: return b0 + b1 * np.exp(-b2 * x**2)

Once the model function is defined, we generate randomized data points that

simulate the observations.

In [59]: xdata = np.linspace(0, 5, 50)

In [60]: y = f(xdata, *beta)

In [61]: ydata = y + 0.05 * np.random.randn(len(xdata))

CHApTer 6 OpTimizATiOn

231

With the model function and observation data prepared, we are ready to start solving

the nonlinear least square problem. The first step is to define a function for the residuals

given the data and the model function, which is specified in terms of the yet-to-be

determined model parameters β.

In [62]: def g(beta):

 ...: return ydata - f(xdata, *beta)

Next we define an initial guess for the parameter vector and let the optimize.

leastsq function solve for the best least square fit for the parameter vector:

In [63]: beta_start = (1, 1, 1)

In [64]: beta_opt, beta_cov = optimize.leastsq(g, beta_start)

In [65]: beta_opt

Out[65]: array([0.25733353, 0.76867338, 0.54478761])

Here the best fit is quite close to the true parameter values (0.25, 0.75, 0.5), as defined

earlier. By plotting the observation data and the model function for the true and fitted

function parameters, we can visually confirm that the fitted model seems to describe the

data well (see Figure 6-6).

In [66]: fig, ax = plt.subplots()

 ...: ax.scatter(xdata, ydata, label='samples')

 ...: ax.plot(xdata, y, 'r', lw=2, label='true model')

 ...: ax.plot(xdata, f(xdata, *beta_opt), 'b', lw=2, label='fitted model')

 ...: ax.set_xlim(0, 5)

 ...: ax.set_xlabel(r"x", fontsize=18)

 ...: ax.set_ylabel(r"$f(x, \beta)$", fontsize=18)

 ...: ax.legend()

CHApTer 6 OpTimizATiOn

232

The SciPy optimize module also provides an alternative interface to nonlinear least

square fitting, through the function optimize.curve_fit. This is a convenience wrapper

around optimize.leastsq, which eliminates the need to explicitly define the residual

function for the least square problem. The previous problem could therefore be solved

more concisely using the following:

In [67]: beta_opt, beta_cov = optimize.curve_fit(f, xdata, ydata)

In [68]: beta_opt

Out[68]: array([0.25733353, 0.76867338, 0.54478761])

 Constrained Optimization
Constraints add another level of complexity to optimization problems, and they require a

classification of their own. A simple form of constrained optimization is the optimization

where the coordinate variables are subject to some bounds. For example: minx f x()

subject to 0 ≤ x ≤ 1. The constraint 0 ≤ x ≤ 1 is simple because it only restricts the range

of the coordinate without dependencies on the other variables. This type of problems can

be solved using the L-BFGS-B method in SciPy, which is a variant of the BFGS method we

used earlier. This solver is available through the function optimize.fmin_l_bgfs_b or via

optimize.minimize with the method argument set to 'L-BFGS-B'. To define the coordinate

boundaries, the bound keyword argument must be used, and its value should be a list of

tuples that contain the minimum and maximum value of each constrained variable. If the

minimum or maximum value is set to None, it is interpreted as an unbounded.

Figure 6-6. Nonlinear least square fit to the function f(x, β) = β0+β1 exp (−β2x2)
with β = (0.25, 0.75, 0.5)

CHApTer 6 OpTimizATiOn

233

As an example of solving a bounded optimization problem with the L-BFGS-B

solver, consider minimizing the objective function f (x) = (x1 − 1)2 − (x2 − 1)2 subject to

the constraints 2 ≤ x1 ≤ 3 and 0 ≤ x2 ≤ 2. To solve this problem, we first define a Python

function for the objective functions and tuples with the boundaries for each of the two

variables in this problem, according to the given constraints. For comparison, in the

following code, we also solve the unconstrained optimization problem with the same

objective function, and we plot a contour graph of the objective function where the

unconstrained and constrained minimum values are marked with blue and red stars,

respectively (see Figure 6-7).

In [69]: def f(X):

 ...: x, y = X

 ...: return (x - 1)**2 + (y - 1)**2

In [70]: x_opt = optimize.minimize(f, [1, 1], method='BFGS').x

In [71]: bnd_x1, bnd_x2 = (2, 3), (0, 2)

In [72]: x_cons_opt = optimize.minimize(f, [1, 1], method='L-BFGS-B',

 ...: bounds=[bnd_x1, bnd_x2]).x

In [73]: fig, ax = plt.subplots(figsize=(6, 4))

 ...: x_ = y_ = np.linspace(-1, 3, 100)

 ...: X, Y = np.meshgrid(x_, y_)

 ...: c = ax.contour(X, Y, func_X_Y_to_XY(f, X, Y), 50)

 ...: ax.plot(x_opt[0], x_opt[1], 'b*', markersize=15)

 ...: ax.plot(x_cons_opt[0], x_cons_opt[1], 'r*', markersize=15)

 ...: bound_rect = plt.Rectangle((bnd_x1[0], bnd_x2[0]),

 ...: bnd_x1[1] - bnd_x1[0], bnd_x2[1] -

bnd_x2[0], facecolor="grey")

 ...: ax.add_patch(bound_rect)

 ...: ax.set_xlabel(r"x_1", fontsize=18)

 ...: ax.set_ylabel(r"x_2", fontsize=18)

 ...: plt.colorbar(c, ax=ax)

CHApTer 6 OpTimizATiOn

234

Constraints that are defined by equalities or inequalities that include more than

one variable are somewhat more complicated to deal with. However, there are general

techniques also for this type of problems. For example, using the Lagrange multipliers, it

is possible to convert a constrained optimization problem to an unconstrained problem

by introducing additional variables. For example, consider the optimization problem

minx f x() subject to the equality constraint g(x) = 0. In an unconstrained optimization

problem, the gradient of f (x) vanishes at the optimal points, ∇f (x) = 0. It can be shown

that the corresponding condition for constrained problems is that the negative gradient

lies in the space supported by the constraint normal, i.e., -Ñ () = ()f x xg
TlJ . Here Jg(x)

is the Jacobian matrix of the constraint function g(x) and λ is the vector of Lagrange

multipliers (new variables). This condition arises from equating to zero the gradient of

the function Λ(x, λ) = f (x)+λTg(x), which is known as the Lagrangian function. Therefore,

if both f (x) and g(x) are continuous and smooth, a stationary point (x0, λ0) of the function

Λ(x, λ) corresponds to an x0 that is an optimum of the original constrained optimization

problem. Note that if g(x) is a scalar function (i.e., there is only one constraint), then the

Jacobian Jg(x) reduces to the gradient ∇g(x).

To illustrate this technique, consider the problem of maximizing the volume of a

rectangle with sides of length x1, x2, and x3, subject to the constraint that the total surface

area should be unity: g(x) = 2x1x2+2x0x2+2x1x0 − 1 = 0. To solve this optimization problem

Figure 6-7. Contours of the objective function f(x), with the unconstrained (blue
star) and constrained minima (red star). The feasible region of the constrained
problem is shaded in gray.

CHApTer 6 OpTimizATiOn

235

using Lagrange multipliers, we form the Lagrangian Λ(x) = f (x)+λg(x) and seek the

stationary points for ∇Λ(x) = 0. With SymPy, we can carry out this task by first defining

the symbols for the variables in the problem, then constructing expressions for f (x), g(x),

and Λ(x),

In [74]: x = x0, x1, x2, l = sympy.symbols("x_0, x_1, x_2, lambda")

In [75]: f = x0 * x1 * x2

In [76]: g = 2 * (x0 * x1 + x1 * x2 + x2 * x0) - 1

In [77]: L = f + l * g

and finally computing ∇Λ(x) using sympy.diff and solving the equation ∇Λ(x) = 0 using

sympy.solve:

In [78]: grad_L = [sympy.diff(L, x_) for x_ in x]

In [79]: sols = sympy.solve(grad_L)

In [80]: sols

Out[80]: l l: : : : : : :-
ì
í
ï

îï

ü
ý
ï

þï
- -

6

24

6

6

6

6

6

6

6

24

6

6

6
0 1 2 0 1, , , , , , x x x x x

66

6

62, x :-
ì
í
ï

îï

ü
ý
ï

þï

é

ë
ê
ê

ù

û
ú
ú

This procedure gives two stationary points. We could determine which one

corresponds to the optimal solution by evaluating the objective function for each case.

However, here only one of the stationary points corresponds to a physically acceptable

solution: since xi is the length of a rectangle side in this problem, it must be positive.

We can therefore immediately identify the interesting solution, which corresponds to

the intuitive result x x x0 1 2

6

6
= = = (a cube). As a final verification, we evaluate the

constraint function and the objective function using the obtained solution:

In [81]: g.subs(sols[0])

Out[81]: 0

In [82]: f.subs(sols[0])

Out[82]: 6

36

This method can be extended to handle inequality constraints as well, and there

exist various numerical methods of applying this approach. One example is the

method known as sequential least square programming, abbreviated as SLSQP, which

is available in the SciPy as the optimize.slsqp function and via optimize.minimize

CHApTer 6 OpTimizATiOn

236

with method='SLSQP'. The optimize.minimize function takes the keyword argument

constraints, which should be a list of dictionaries that each specifies a constraint.

The allowed keys (values) in this dictionary are type ('eq' or 'ineq'), fun (constraint

function), jac (Jacobian of the constraint function), and args (additional arguments

to constraint function and the function for evaluating its Jacobian). For example, the

constraint dictionary describing the constraint in the previous problem would be

dict(type='eq', fun=g).

To solve the full problem numerically using SciPy’s SLSQP solver, we need to define

Python functions for the objective function and the constraint function:

In [83]: def f(X):

 ...: return -X[0] * X[1] * X[2]

In [84]: def g(X):

 ...: return 2 * (X[0]*X[1] + X[1] * X[2] + X[2] * X[0]) - 1

Note that since the SciPy optimization functions solve minimization problems, and

here we are interested in maximization, the function f is here the negative of the original

objective function. Next we define the constraint dictionary for g(x) = 0 and finally call

the optimize.minimize function

In [85]: constraint = dict(type='eq', fun=g)

In [86]: result = optimize.minimize(f, [0.5, 1, 1.5], method='SLSQP',

constraints=[constraint])

In [87]: result

Out[87]: status: 0

 success: True

 njev: 18

 nfev: 95

 fun: -0.068041368623352985

 x: array([0.40824187, 0.40825127, 0.40825165])

 message: 'Optimization terminated successfully.'

 jac: array([-0.16666925, -0.16666542, -0.16666527, 0.])

 nit: 18

In [88]: result.x

Out[88]: array([0.40824187, 0.40825127, 0.40825165])

CHApTer 6 OpTimizATiOn

237

As expected, the solution agrees well with the analytical result obtained from the

symbolic calculation using Lagrange multipliers.

To solve problems with inequality constraints, all we need to do is to set type='ineq'

in the constraint dictionary and provide the corresponding inequality function. To

demonstrate minimization of a nonlinear objective function with a nonlinear inequality

constraint, we return to the quadratic problem considered previously but in this case

with inequality constraint g(x) = x1 − 1.75 − (x0 − 0.75)4 ≥ 0. As usual, we begin by

defining the objective function and the constraint function, as well as the constraint

dictionary:

In [89]: def f(X):

 ...: return (X[0] - 1)**2 + (X[1] - 1)**2

In [90]: def g(X):

 ...: return X[1] - 1.75 - (X[0] - 0.75)**4

In [91]: constraints = [dict(type='ineq', fun=g)]

Next, we are ready to solve the optimization problem by calling the optimize.minimize

function. For comparison, here we also solve the corresponding unconstrained problem.

In [92]: x_opt = optimize.minimize(f, (0, 0), method='BFGS').x

In [93]: x_cons_opt = optimize.minimize(f, (0, 0), method='SLSQP',

constraints=constraints).x

To verify the soundness of the obtained solution, we plot the contours of the

objective function together with a shaded area representing the feasible region (where

the inequality constraint is satisfied). The constrained and unconstrained solutions are

marked with a red and a blue star, respectively (see Figure 6-8).

In [94]: fig, ax = plt.subplots(figsize=(6, 4))

In [95]: x_ = y_ = np.linspace(-1, 3, 100)

 ...: X, Y = np.meshgrid(x_, y_)

 ...: c = ax.contour(X, Y, func_X_Y_to_XY(f, X, Y), 50)

 ...: ax.plot(x_opt[0], x_opt[1], 'b*', markersize=15)

 ...: ax.plot(x_, 1.75 + (x_-0.75)**4, 'k-', markersize=15)

 ...: ax.fill_between(x_, 1.75 + (x_-0.75)**4, 3, color='grey')

 ...: ax.plot(x_cons_opt[0], x_cons_opt[1], 'r*', markersize=15)

 ...:

CHApTer 6 OpTimizATiOn

238

 ...: ax.set_ylim(-1, 3)

 ...: ax.set_xlabel(r"x_0", fontsize=18)

 ...: ax.set_ylabel(r"x_1", fontsize=18)

 ...: plt.colorbar(c, ax=ax)

For optimization problems with only inequality constraints, SciPy provides an

alternative solver using the constrained optimization by linear approximation (COBYLA)

method. This solver is accessible either through optimize.fmin_cobyla or optimize.

minimize with method='COBYLA'. The previous example could just as well have been

solved with this solver, by replacing method='SLSQP' with method='COBYLA'.

 Linear Programming
In the previous section, we considered methods for very general optimization problems,

where the objective function and constraint functions all can be nonlinear. However,

at this point it is worth taking a step back and considering a much more restricted type

of optimization problem, namely, linear programming, where the objective function

is linear and all constraints are linear equality or inequality constraints. The class of

problems is clearly much less general, but it turns out that linear programming has

many important applications, and they can be solved vastly more efficiently than general

nonlinear problems. The reason for this is that linear problems have properties that

enable completely different methods to be used. In particular, the solution to a linear

Figure 6-8. Contour plot of the objective function with the feasible region of the
constrained problem shaded gray. The red and blue stars are the optimal points in
the constrained and unconstrained problems, respectively.

CHApTer 6 OpTimizATiOn

239

optimization problem must necessarily lie on a constraint boundary, so it is sufficient

to search the vertices of the intersections of the linear constraint functions. This can be

done efficiently in practice. A popular algorithm for this type of problems is known as

simplex, which systematically moves from one vertex to another until the optimal vertex

has been reached. There are also more recent interior point methods that efficiently

solve linear programming problems. With these methods, linear programming problems

with thousands of variables and constraints are readily solvable.

Linear programming problems are typically written in the so-called standard form:

minx
Tc x where Ax ≤ b and x ≥ 0. Here c and x are vectors of length n, and A is a m × n

matrix and b a m-vector. For example, consider the problem of minimizing the function

f (x) = − x0+2x1 − 3x2, subject to the three inequality constraints x0+x1 ≤ 1, −x0+3x1 ≤ 2,

and −x1+x2 ≤ 3. On the standard form, we have c = (−1, 2, −3), b = (1, 2, 3), and

A = -
-

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

1 1 0

1 3 0

0 1 1

.

To solve this problem, here we use the cvxopt library, which provides the linear

programming solver with the cvxopt.solvers.lp function. This solver expects as

arguments the c, A, and b vectors and matrix used in the standard form introduced

in the preceding text, in the given order. The cvxopt library uses its own classes for

representing matrices and vectors, but fortunately they are interoperable with NumPy

arrays via the array interface3 and can therefore be cast from one form to another using

the cvxopt.matrix and np.array functions. Since NumPy array is the de facto standard

array format in the scientific Python environment, it is sensible to use NumPy array as far

as possible and only convert to cvxopt matrices when necessary, i.e., before calling one

of the solvers in cvxopt.solvers.

To solve the stated example problem using the cvxopt library, we therefore first

create NumPy arrays for the A matrix and the c and b vectors and convert them to cvxopt

matrices using the cvxpot.matrix function:

In [96]: c = np.array([-1.0, 2.0, -3.0])

In [97]: A = np.array([[1.0, 1.0, 0.0],

 [-1.0, 3.0, 0.0],

 [0.0, -1.0, 1.0]])

3 For details, see http://docs.scipy.org/doc/numpy/reference/arrays.interface.html.

CHApTer 6 OpTimizATiOn

http://docs.scipy.org/doc/numpy/reference/arrays.interface.html

240

In [98]: b = np.array([1.0, 2.0, 3.0])

In [99]: A_ = cvxopt.matrix(A)

In [100]: b_ = cvxopt.matrix(b)

In [101]: c_ = cvxopt.matrix(c)

The cvxopt compatible matrices and vectors c_, A_, and b_ can now be passed to the

linear programming solver cvxopt.solvers.lp:

In [102]: sol = cvxopt.solvers.lp(c_, A_, b_)

 Optimal solution found.

In [103]: sol

Out[103]: {'dual infeasibility': 1.4835979218054372e-16,

 'dual objective': -10.0,

 'dual slack': 0.0,

 'gap': 0.0,

 'iterations': 0,

 'primal infeasibility': 0.0,

 'primal objective': -10.0,

 'primal slack': -0.0,

 'relative gap': 0.0,

 'residual as dual infeasibility certificate': None,

 'residual as primal infeasibility certificate': None,

 's': <3x1 matrix, tc='d'>,

 'status': 'optimal',

 'x': <3x1 matrix, tc='d'>,

 'y': <0x1 matrix, tc='d'>,

 'z': <3x1 matrix, tc='d'>}

In [104]: x = np.array(sol['x'])

In [105]: x

Out[105]: array([[0.25],

 [0.75],

 [3.75]])

In [106]: sol['primal objective']

Out[106]: -10.0

CHApTer 6 OpTimizATiOn

241

The solution to the optimization problem is given in terms of the vector x, which in

this particular example is x = (0.25, 0.75, 3.75), which corresponds to the f(x) value −10.

With this method and the cvxopt.solvers.lp solver, linear programming problems with

hundreds or thousands of variables can readily be solved. All that is needed is to write

the optimization problem on the standard form and create the c, A, and b arrays.

 Summary
Optimization – to select the best option from a set of alternatives – is fundamental in

many applications in science and engineering. Mathematical optimization provides

a rigorous framework for systematically treating optimization problems, if they can

be formulated as a mathematical problem. Computational methods for optimization

are the tools with which such optimization problems are solved in practice. In a

scientific computing environment, optimization therefore plays a very important role.

For scientific computing with Python, the SciPy library provides efficient routines

for solving many standard optimization problems, which can be used to solve a vast

variety of computational optimization problems. However, optimization is a large

field in mathematics, requiring a different array of methods for solving different types

of problems, and there are several optimization libraries for Python that provide

specialized solvers for specific types of optimization problems. In general, the SciPy

optimize module provides good and flexible general-purpose solvers for a wide variety

of optimization problems, but for specific types of optimization problems, there are also

many specialized libraries that provide better performance or more features. An example

of such a library is cvxopt, which complements the general-purpose optimization

routines in SciPy with efficient solvers for linear and quadratic problems.

 Further Reading
For an accessible introduction to optimization, with more detailed discussions of the

numerical properties of several of the methods introduced in this chapter, see, for

example, Heath (2002). For a more rigorous and in-depth introduction to optimization,

see, for example, E.K.P. Chong (2013). A thorough treatment of convex optimization is

given by the creators of the cvxopt library in the excellent book (S. Boyd, 2004), which is

also available online at http://stanford.edu/~boyd/cvxbook.

CHApTer 6 OpTimizATiOn

http://stanford.edu/~boyd/cvxbook

242

 References
E.K.P. Chong, S. Z. (2013). An Introduction to Optimization (4th ed.). New York: Wiley.

Heath, M. (2002). Scientific Computing: An introductory Survey (2nd ed.). Boston:

McGraw-Hill.

S. Boyd, L. V. (2004). Convex Optimization. Cambridge: Cambridge University Press.

CHApTer 6 OpTimizATiOn

243
© Robert Johansson 2019
R. Johansson, Numerical Python, https://doi.org/10.1007/978-1-4842-4246-9_7

CHAPTER 7

Interpolation
Interpolation is a mathematical method for constructing a function from a discrete set of

data points. The interpolation function, or interpolant, should exactly coincide with the

given data points, and it can also be evaluated for other intermediate input values within

the sampled range. There are many applications of interpolation: A typical use-case that

provides an intuitive picture is the plotting of a smooth curve through a given set of data

points. Another use-case is to approximate complicated functions, which, for example,

could be computationally demanding to evaluate. In that case, it can be beneficial to

evaluate the original function only at a limited number of points and use interpolation to

approximate the function when evaluating it for intermediary points.

Interpolation may at a first glance look a lot like least square fitting, which we saw

already in both Chapter 5 (linear least square) and Chapter 6 (nonlinear least square).

Indeed, there are many similarities between interpolation and curve fitting with least

square methods, but there are also important conceptual differences that distinguish

these two methods: In least square fitting, we are interested in approximately fitting

a function to data points in manner that minimizes the sum of square errors, using

many data points and an overdetermined system of equations. In interpolation, on the

other hand, we require a function that exactly coincides with the given data points and

only uses the number of data points that equals the number of free parameters in the

interpolation function. Least square fitting is therefore more suitable for fitting a large

number of data points to a model function, and interpolation is a mathematical tool for

creating a functional representation for a given minimum number of data points. In fact,

interpolation is an important component in many mathematical methods, including some

of the methods for equation solving and optimization that we used in Chapters 5 and 6.

Extrapolation is a concept that is related to interpolation. It refers to evaluating

the estimated function outside of the sampled range, while interpolation only refers

to evaluating the function within the range that is spanned by the given data points.

Extrapolation can often be riskier than interpolation, because it involves estimating a

244

function in a region where it has not been sampled. Here we are only concerned with

interpolation. To perform interpolation in Python, we use the polynomial module from

NumPy and the interpolate module from SciPy.

 Importing Modules
Here we will continue with the convention of importing submodules from the SciPy

library explicitly. In this chapter we need the interpolate module from SciPy, and

also the polynomial module from NumPy, which provides functions and classes for

polynomials. We import these modules as follows:

In [1]: from scipy import interpolate

In [2]: from numpy import polynomial as P

In addition, we also need the rest of the NumPy library, the linear algebra module

linalg from SciPy, and the Matplotlib library for plotting:

In [3]: import numpy as np

In [4]: from scipy import linalg

In [5]: import matplotlib.pyplot as plt

 Interpolation
Before we dive into the details of how to perform interpolation with NumPy and SciPy,

we first state the interpolation problem in mathematical form. For notational brevity, here

we only consider one-dimensional interpolation, which can be formulated as follows:

for a given set of n data point x yi i i

n
,(){ } =1

, find a function f (x) such that f (xi) = yi, for

i ∈ [1, n]. The function f(x) is known as the interpolant, and it is not unique. In fact, there

are an infinite number of functions that satisfy the interpolation criteria. Typically we

can write the interpolant as a linear combination of some basis functions ϕj(x), such that

f x c xj jj

n() = ()=å f
1

, where cj are unknown coefficients. Substituting the given data points

into this linear combination results in a linear equation system for the unknown coefficients:

c x yj j i ij

n f () ==å .
1

 This equation system can be written on explicit matrix form as

f f f
f f f

f f f

1 1 2 1 1

1 2 2 2 2

1 2

x x x

x x x

x x x

n

n

n n n

() () ()
() () ()

() ()

�
�

� � � �
� nn n n

c

c

c

y

y

y()

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

1

2

1

2

� �
,

Chapter 7 InterpolatIon

245

or in a more compact implicit matrix form as Φ(x)c = y, where the elements of the matrix

Φ(x) are {Φ(x)}ij = ϕj(xi). Note that here the number of basis functions is the same as the

number of data points, and Φ(x) is therefore a square matrix. Assuming that this matrix

has full rank, we can solve for the unique c-vector using the standard methods discussed

in Chapter 5. If the number of data points is larger than the number of basis functions,

then the system is overdetermined, and in general there is no solution that satisfies the

interpolation criteria. Instead, in this situation it is more suitable to consider a least

square fit than an exact interpolation; see Chapter 5.

The choice of basis functions affects the properties of the resulting equation system,

and a suitable choice of basis depends on the properties of the data that is fitted.

Common choices of basis functions for interpolation are various types of polynomials,

for example, the power basis ϕi(x) = xi − 1, or orthogonal polynomials such as Legendre

polynomials ϕi(x) = Pi − 1(x), Chebyshev polynomials ϕi(x) = Ti − 1(x), or piecewise

polynomials. Note that in general f (x) is not unique, but for n data points, there is a

unique interpolating polynomial of order n − 1, regardless of which polynomial basis

we use. For power basis ϕi(x) = xi − 1, the matrix Φ(x) is the Vandermonde matrix, which

we already have seen applications of in least square fitting in Chapter 5. For other

polynomial bases, Φ(x) are generalized Vandermonde matrices, for which each basis

defines the matrix of the linear equation system that has to be solved in the interpolation

problem. The structure of the Φ(x) matrix is different for different polynomial bases,

and its condition number and the computational cost of solving the interpolation

problem vary correspondingly. Polynomials thus play an important role in interpolation,

and before we can start to solve interpolation problems, we need a convenient way of

working with polynomials in Python. This is the topic of the following section.

 Polynomials
The NumPy library contains the submodule polynomial (here imported as P), which

provides functions and classes for working with polynomials. In particular, it provides

implementations of many standard orthogonal polynomials. These functions and classes

are useful when working with interpolation, and we therefore review how to use this

module before looking at polynomial interpolation.

Chapter 7 InterpolatIon

246

Note there are two modules for polynomials in numpy: numpy.poly1d and
numpy.polynomial. there is a large overlap in functionality in these two
modules, but they are not compatible with each other (specifically, the coordinate
arrays have reversed order in the two representations). the numpy.poly1d
module is older and has been superseded by numpy.polynomial, which is now
recommended for new code. here we only focus on numpy.polynomial, but it is
worth being aware of numpy.poly1d as well.

The np.polynomial module contains a number of classes for representing

polynomials in different polynomial bases. Standard polynomials, written in the usual

power basis {xi}, are represented with the Polynomial class. To create an instance of

this class, we can pass a coefficient array to its constructor. In the coefficient array, the

ith element is the coefficient of xi. For example, we can create a representation of the

polynomial 1+2x+3x2 by passing the list [1, 2, 3] to the Polynomial class:

In [6]: p1 = P.Polynomial([1, 2, 3])

In [7]: p1

Out[7]: Polynomial([1., 2., 3.], domain=[-1, 1], window=[-1, 1])

Alternatively, we can also initialize a polynomial by specifying its roots using the

class method P.Polynomial.fromroots. The polynomial with roots at x = − 1 and x = 1,

for example, can be created using:

In [8]: p2 = P.Polynomial.fromroots([-1, 1])

In [9]: p2

Out[9]: Polynomial([-1., 0., 1.], domain=[-1., 1.], window=[-1., 1.])

Here, the result is the polynomial with the coefficient array [-1, 0, 1], which

corresponds to −1+x2. The roots of a polynomial can be computed using the roots

method. For example, the roots of the two previously created polynomials are

In [10]: p1.roots()

Out[10]: array([-0.33333333-0.47140452j, -0.33333333+0.47140452j])

In [11]: p2.roots()

Out[11]: array([-1., 1.])

Chapter 7 InterpolatIon

247

As expected, the roots of the polynomial p2 are x = − 1 and x = 1, as was requested

when it was created using the fromroots class method.

In the preceding examples, the representation of a polynomial is on the form

Polynomial([-1., 0., 1.], domain=[-1., 1.], window=[-1., 1.]). The first of

the lists in this representation is the coefficient array. The second and third lists are

the domain and window attributes, which can be used to map the input domain of a

polynomial to another interval. Specifically, the input domain interval [domain[0],

domain[1]] is mapped to the interval [window[0], window[1]] through a linear

transformation (scaling and translation). The default values are domain=[-1, 1] and

window=[-1, 1], which correspond to an identity transformation (no change). The

domain and window arguments are particularly useful when working with polynomials

that are orthogonal with respect to a scalar product that is defined on a specific interval.

It is then desirable to map the domain of the input data onto this interval. This is

important when interpolating with orthogonal polynomials, such as the Chebyshev or

Hermite polynomials, because performing this transformation can vastly improve the

conditioning number of the Vandermonde matrix for the interpolation problem.

The properties of a Polynomial instance can be directly accessed using the coeff,

domain, and window attributes. For example, for the p1 polynomial defined in the

preceding example, we have

In [12]: p1.coef

Out[12]: array([1., 2., 3.])

In [13]: p1.domain

Out[13]: array([-1, 1])

In [14]: p1.window

Out[14]: array([-1, 1])

A polynomial that is represented as a Polynomial instance can easily be evaluated

at arbitrary values of x by calling the class instance as a function. The x variable can be

specified as a scalar, a list, or an arbitrary NumPy array. For example, to evaluate the

polynomial p1 at the points x = {1.5, 2.5, 3.5}, we simply call the p1 class instance with an

array of x values as the argument:

In [15]: p1(np.array([1.5, 2.5, 3.5]))

Out[15]: array([10.75, 24.75, 44.75])

Chapter 7 InterpolatIon

248

Instances of Polynomial can be operated on using the standard arithmetic operators

+, -, *, /, and so on. The // operator is used for polynomial division. To see how this

works, consider the division of the polynomial p1(x) = (x − 3)(x − 2)(x − 1) with the

polynomial p2(x) = (x − 2). The answer, which is obvious when written in the factorized

form, is (x − 3)(x − 1). We can compute and verify this using NumPy in the following

manner: first create Polynomial instances for the p1 and p2, and then use the // operator

to compute the polynomial division.

In [16]: p1 = P.Polynomial.fromroots([1, 2, 3])

In [17]: p1

Out[17]: Polynomial([-6., 11., -6., 1.], domain=[-1., 1.],

window=[-1., 1.])

In [18]: p2 = P.Polynomial.fromroots([2])

In [19]: p2

Out[19]: Polynomial([-2., 1.], domain=[-1., 1.], window=[-1., 1.])

In [20]: p3 = p1 // p2

In [21]: p3

Out[21]: Polynomial([3., -4., 1.], domain=[-1., 1.], window=[-1., 1.])

The result is a new polynomial with coefficient array [3, -4, 1], and if we compute

its roots, we find that they are 1 and 3, so this polynomial is indeed (x − 3)(x − 1):

In [22]: p3.roots()

Out[22]: array([1., 3.])

In addition to the Polynomial class for polynomials in the standard power basis,

the polynomial module also has classes for representing polynomials in Chebyshev,

Legendre, Laguerre, and Hermite bases, with the names Chebyshev, Legendre,

Laguerre, Hermite (Physicists’), and HermiteE (Probabilists’), respectively. For example,

the Chebyshev polynomial with coefficient list [1, 2, 3], that is, the polynomial

1T0(x)+2T1(x)+3T2(x), where Ti(x) is the Chebyshev polynomial of order i, can be created

using:

In [23]: c1 = P.Chebyshev([1, 2, 3])

In [24]: c1

Out[24]: Chebyshev([1., 2., 3.], domain=[-1, 1], window=[-1, 1])

Chapter 7 InterpolatIon

249

and its roots can be computed using the roots attribute:

In [25]: c1.roots()

Out[25]: array([-0.76759188, 0.43425855])

All the polynomial classes have the same methods, attributes, and operators as the

Polynomial class discussed above, and they can all be used in the same manner. For

example, to create the Chebyshev and Legendre representations of the polynomial with

roots x = − 1 and x = 1, we can use the fromroots attribute, in the same way as we did

previously with the Polynomial class:

In [26]: c1 = P.Chebyshev.fromroots([-1, 1])

In [27]: c1

Out[27]: Chebyshev([-0.5, 0. , 0.5], domain=[-1., 1.],

window=[-1., 1.])

In [28]: l1 = P.Legendre.fromroots([-1, 1])

In [29]: l1

Out[29]: Legendre([-0.66666667, 0. , 0.66666667], domain=[-1., 1.],

window=[-1., 1.])

Note that the same polynomials, here with the roots at x = − 1 and x = 1 (which is

a unique polynomial), have different coefficient arrays when represented in different

bases, but when evaluated at specific values of x, the two gives the same results (as

expected):

In [30]: c1(np.array([0.5, 1.5, 2.5]))

Out[30]: array([-0.75, 1.25, 5.25])

In [31]: l1(np.array([0.5, 1.5, 2.5]))

Out[31]: array([-0.75, 1.25, 5.25])

 Polynomial Interpolation
The polynomial classes discussed in the previous section all provide useful functions

for polynomial interpolation. For instance, recall the linear equation for the polynomial

interpolation problem: Φ(x)c = y, where x and y are vectors containing the xi and yi data

points and c is the unknown coefficient vector. To solve the interpolation problem, we

need to first evaluate the matrix Φ(x) for a given basis and then solve the resulting linear

Chapter 7 InterpolatIon

250

equation system. Each of the polynomial classes in polynomial conveniently provides

a function for computing the (generalized) Vandermonde matrix for the corresponding

basis. For example, for polynomials in the power basis, we can use np.polynomial.

polynomial.polyvander; for polynomials in the Chebyshev basis, we can use the

corresponding np.polynomial.chebyshev.chebvander function; and so on. See the

docstrings for np.polynomial and its submodules for the complete list of generalized

Vandermonde matrix functions for the various polynomial bases.

Using the abovementioned functions for generating the Vandermonde matrices, we

can easily perform a polynomial interpolation in different bases. For example, consider

the data points (1, 1), (2, 3), (3, 5), and (4, 4). We begin with creating NumPy array for the

x and y coordinates for the data points.

In [32]: x = np.array([1, 2, 3, 4])

In [33]: y = np.array([1, 3, 5, 4])

To interpolate a polynomial through these points, we need to use a polynomial of

third degree (number of data points minus one). For interpolation in the power basis, we

seek the coefficient ci such that f x c x c x c x c x c xi
i

i
() = = + + +-

=å 1
1

0
2

1
3

2
4

3

1

4
, and to find

this coefficient, we evaluate the Vandermonde matrix and solve the interpolation

equation system:

In [34]: deg = len(x) - 1

In [35]: A = P.polynomial.polyvander(x, deg)

In [36]: c = linalg.solve(A, y)

In [37]: c

Out[37]: array([2. , -3.5, 3. , -0.5])

The sought coefficient vector is [2, -3.5, 3, -0.5], and the interpolation polynomial

is thus f (x) = 2 − 3.5x+3x2 − 0.5x3. Given the coefficient array c, we can now create a

polynomial representation that can be used for interpolation:

In [38]: f1 = P.Polynomial(c)

In [39]: f1(2.5)

Out[39]: 4.1875

Chapter 7 InterpolatIon

251

To perform this polynomial interpolation in another polynomial basis, all that we

need to change is the name of the function that was used to generate the Vandermonde

matrix A in the previous example. For example, to interpolate using the Chebyshev basis

polynomials, we can do:

In [40]: A = P.chebyshev.chebvander(x, deg)

In [41]: c = linalg.solve(A, y)

In [42]: c

Out[42]: array([3.5 , -3.875, 1.5 , -0.125])

As expected, the coefficient array has different values in this basis, and the interpolation

polynomial in the Chebyshev basis is f (x) = 3.5T0(x) − 3.875T1(x)+1.5T2(x) − 0.125T3(x).

However, regardless of the polynomial basis, the interpolation polynomial is unique, and

evaluating the interpolant will always result in the same values:

In [43]: f2 = P.Chebyshev(c)

In [44]: f2(2.5)

Out[44]: 4.1875

We can demonstrate that the interpolation with the two bases indeed results in the

same interpolation function by plotting the f1 and f2 together with the data points (see

Figure 7-1):

In [45]: xx = np.linspace(x.min(), x.max(), 100) # supersampled [x[0],

x[-1]] interval

In [45]: fig, ax = plt.subplots(1, 1, figsize=(12, 4))

 ...: ax.plot(xx, f1(xx), 'b', lw=2, label='Power basis interp.')

 ...: ax.plot(xx, f2(xx), 'r--', lw=2, label='Chebyshev basis interp.')

 ...: ax.scatter(x, y, label='data points')

 ...: ax.legend(loc=4)

 ...: ax.set_xticks(x)

 ...: ax.set_ylabel(r"y", fontsize=18)

 ...: ax.set_xlabel(r"x", fontsize=18)

Chapter 7 InterpolatIon

252

While interpolation with different polynomial bases is convenient due to the

functions for the generalized Vandermonde matrices, there is an even simpler and better

method available. Each polynomial class provides a class method fit that can be used

to compute an interpolation polynomial.1 The two interpolation functions that were

computed manually in the previous example could therefore instead be computed in the

following manner: using the power basis and its Polynomial class, we obtain:

In [46]: f1b = P.Polynomial.fit(x, y, deg)

In [47]: f1b

Out[47]: Polynomial([4.1875, 3.1875, -1.6875, -1.6875],

domain=[1., 4.], window=[-1., 1.])

and by using the class method fit from the Chebyshev class instead, we obtain:

In [48]: f2b = P.Chebyshev.fit(x, y, deg)

In [49]: f2b

Out[49]: Chebyshev([3.34375 , 1.921875, -0.84375 , -0.421875],

domain=[1., 4.], window=[-1., 1.])

Note that with this method, the domain attribute of the resulting instances are

automatically set to the appropriate x values of the data points (in this example, the input

range is [1, 4]), and the coefficients are adjusted accordingly. As mentioned previously,

mapping the interpolation data into the range that is most suitable for a specific basis

1 If the requested polynomial degree of the interpolant is smaller than the number of data points
minus one, then a least square fit is computed rather than an exact interpolation.

Figure 7-1. Polynomial interpolation of four data points, using power basis and
the Chebyshev basis

Chapter 7 InterpolatIon

253

can significantly improve the numerical stability of the interpolation. For example, using

the Chebyshev basis with x values that are scaled such that x ∈ [−1, 1], rather than the

original x values in the previous example, reduces the condition number from almost

4660 to about 1.85:

In [50]: np.linalg.cond(P.chebyshev.chebvander(x, deg))

Out[50]: 4659.7384241399586

In [51]: np.linalg.cond(P.chebyshev.chebvander((2*x-5)/3.0, deg))

Out[51]: 1.8542033440472896

Polynomial interpolation of a few data points is a powerful and useful mathematical

tool, which is an important part of many mathematical methods. When the number

of data points increases, we need to use increasingly high-order polynomials for

exact interpolation, and this is problematic in several ways. To begin with, it becomes

increasingly demanding to both determine and evaluate the interpolant for increasing

polynomial order. However, a more serious issue is that high-order polynomial

interpolation can have undesirable behavior between the interpolation points.

Although the interpolation is exact at the given data points, a high-order polynomial

can vary wildly between the specified points. This is famously illustrated by polynomial

interpolation of Runge’s function f (x) = 1/(1+25x2) using evenly spaced sample points

in the interval [−1, 1]. The result is an interpolant that nearly diverges between the data

points near the end of the interval.

To illustrate this behavior, we create a Python function runge that implements

Runge’s function, and a function runge_interpolate that interpolates an nth order

polynomial, in the power basis, to the Runge’s function at evenly spaced sample points:

In [52]: def runge(x):

 ...: return 1/(1 + 25 * x**2)

In [53]: def runge_interpolate(n):

 ...: x = np.linspace(-1, 1, n + 1)

 ...: p = P.Polynomial.fit(x, runge(x), deg=n)

 ...: return x, p

Chapter 7 InterpolatIon

254

Next we plot Runge’s function together with the 13th and 14th order polynomial

interpolations, at supersampled x values in the [−1, 1] interval. The resulting plot is

shown in Figure 7-2.

In [54]: xx = np.linspace(-1, 1, 250)

In [55]: fig, ax = plt.subplots(1, 1, figsize=(8, 4))

 ...: ax.plot(xx, runge(xx), 'k', lw=2, label="Runge's function")

 ...: # 13th order interpolation of the Runge function

 ...: n = 13

 ...: x, p = runge_interpolate(n)

 ...: ax.plot(x, runge(x), 'ro')

 ...: ax.plot(xx, p(xx), 'r', label='interp. order %d' % n)

 ...: # 14th order interpolation of the Runge function

 ...: n = 14

 ...: x, p = runge_interpolate(n)

 ...: ax.plot(x, runge(x), 'go')

 ...: ax.plot(xx, p(xx), 'g', label='interp. order %d' % n)

 ...:

 ...: ax.legend(loc=8)

 ...: ax.set_xlim(-1.1, 1.1)

 ...: ax.set_ylim(-1, 2)

 ...: ax.set_xticks([-1, -0.5, 0, 0.5, 1])

 ...: ax.set_ylabel(r"y", fontsize=18)

 ...: ax.set_xlabel(r"x", fontsize=18)

Figure 7-2. The Runge’s function together with two high-order polynomial
interpolations

Chapter 7 InterpolatIon

255

We note that in Figure 7-2, the interpolants exactly agree with Runge’s function at

the sample points, but between these points they oscillate wildly near the ends of the

interval. This is an undesirable property of an interpolant, and it defeats the purpose of

the interpolation. A solution to this problem is to use piecewise low-order polynomials

when interpolating with a large number of data points. In other words, instead of fitting

all the data points to a single high-order polynomial, a different low-order polynomial is

used to describe each subinterval bracketed by two consecutive data points. This is the

topic of the following section.

 Spline Interpolation
For a set of n data points {xi, yi}, there are n − 1 subintervals [xi, xi+1] in the full range of

the data [x0, xn − 1]. An interior data point that connects two such subintervals is known

as a knot in the terminology of piecewise polynomial interpolation. To interpolate the

n data points using piecewise polynomials of degree k on each of the subintervals, we

must determine (k+1)(n − 1) unknown parameters. The values at the knots give 2(n − 1)

equations. These equations, by themselves, are only sufficient to determine a piecewise

polynomial of order one, i.e., a piecewise linear function. However, additional equations

can be obtained by requiring that also derivatives and higher-order derivatives are

continuous at the knots. This condition ensures that the resulting piecewise polynomial

has a smooth appearance.

A spline is a special type of piecewise polynomial interpolant: a piecewise

polynomial of degree k is a spline if it is continuously differentiable k − 1 times. The most

popular choice is the third-order spline, k = 3, which requires 4(n − 1) parameters. For

this case, the continuity of two derivatives at the n − 2 knots gives 2(n − 2) additional

equations, bringing the total number of equations to 2(n − 1)+2(n − 2) = 4(n − 1) − 2.

There are therefore two remaining undetermined parameters, which must be

determined by other means. A common approach is to additionally require that the

second-order derivatives at the endpoints are zero (resulting in the natural spline). This

gives two more equations, which closes the equation system.

The SciPy interpolate module provides several functions and classes for

performing spline interpolation. For example, we can use the interpolate.interp1d

function, which takes x and y arrays for the data points as first and second arguments.

Chapter 7 InterpolatIon

256

The optional keyword argument kind can be used to specify the type and order of

the interpolation. In particular, we can set kind=3 (or, equivalently, kind='cubic') to

compute the cubic spline. This function returns a class instance that can be called like

a function and which can be evaluated for different values of x using function calls. An

alternative spline function is interpolate.InterpolatedUnivariateSpline, which

also takes x and y arrays as the first and second arguments, but which uses the keyword

argument k (instead of kind) to specify the order of the spline interpolation.

To see how the interpolate.interp1d function can be used, consider again

Runge’s function, and we now want to interpolate this function with a third-order spline

polynomial. To this end, we first create NumPy arrays for the x and y coordinates of the

sample points. Next we call the interpolate.interp1d function with kind=3 to obtain

the third-order spline for the given data:

In [56]: x = np.linspace(-1, 1, 11)

In [57]: y = runge(x)

In [58]: f_i = interpolate.interp1d(x, y, kind=3)

To evaluate how good this spline interpolation is (here represented by the class

instance f_i), we plot the interpolant together with the original Runge’s function and the

sample points. The result is shown in Figure 7-3.

In [59]: xx = np.linspace(-1, 1, 100)

In [60]: fig, ax = plt.subplots(figsize=(8, 4))

 ...: ax.plot(xx, runge(xx), 'k', lw=1, label="Runge's function")

 ...: ax.plot(x, y, 'ro', label='sample points')

 ...: ax.plot(xx, f_i(xx), 'r--', lw=2, label='spline order 3')

 ...: ax.legend()

 ...: ax.set_xticks([-1, -0.5, 0, 0.5, 1])

 ...: ax.set_ylabel(r"y", fontsize=18)

 ...: ax.set_xlabel(r"x", fontsize=18)

Chapter 7 InterpolatIon

257

Here we used 11 data points and a spline of the third order. We note that the

interpolant agrees very well with the original function in Figure 7-3. Typically spline

interpolation of order three or less does not suffer from the same type of oscillations that

we observed with high-order polynomial interpolation, and normally it is sufficient to

use splines of order three if we have a sufficient number of data points.

To illustrate the effect of the order of a spline interpolation, consider the problem of

interpolating the data (0, 3), (1, 4), (2, 3.5), (3, 2), (4, 1), (5, 1.5), (6, 1.25), and (7, 0.9) with

splines of increasing order. We first define the x and y arrays, and then loop over the

required spline orders, computing the interpolation and plotting it for each order:

In [61]: x = np.array([0, 1, 2, 3, 4, 5, 6, 7])

In [62]: y = np.array([3, 4, 3.5, 2, 1, 1.5, 1.25, 0.9])

In [63]: xx = np.linspace(x.min(), x.max(), 100)

In [64]: fig, ax = plt.subplots(figsize=(8, 4))

 ...: ax.scatter(x, y)

 ...:

 ...: for n in [1, 2, 3, 5]:

 ...: f = interpolate.interp1d(x, y, kind=n)

 ...: ax.plot(xx, f(xx), label='order %d' % n)

 ...:

 ...: ax.legend()

 ...: ax.set_ylabel(r"y", fontsize=18)

 ...: ax.set_xlabel(r"x", fontsize=18)

Figure 7-3. Runge’s function with a third-order Spline interpolation using 11 data
points

Chapter 7 InterpolatIon

258

From the spline interpolation shown in Figure 7-4, it is clear that spline order two or

three already provides a rather good interpolation, with relatively small errors between

the original function and the interpolant function. For higher-order splines, the same

problem as we saw for high-order polynomial interpolation resurfaces. In practice, it is

therefore often suitable to use third-order spline interpolation.

 Multivariate Interpolation
Polynomial and spline interpolations can be straightforwardly generalized to

multivariate situations. In analogy with the univariate case, we seek a function whose

values are given at a set of specified points and that can be evaluated for intermediary

points within the sampled range. SciPy provides several functions and classes for

multivariate interpolation, and in the following two examples, we explore two of the

most useful functions for bivariate interpolation: the interpolate.interp2d and

interpolate.griddata functions, respectively. See the docstring for the interpolate

module and its reference manual for further information on other interpolation options.

We begin by looking at interpolate.interp2d, which is a straightforward

generalization of the interp1d function that we previously used. This function takes

the x and y coordinates of the available data points as separate one-dimensional

arrays, followed by a two-dimensional array of values for each combination of x and y

coordinates. This presumes that the data points are given on a regular and uniform grid

of x and y coordinates.

Figure 7-4. Spline interpolations of different orders

Chapter 7 InterpolatIon

259

To illustrate how the interp2d function can be used, we simulate noisy

measurements by adding random noise to a known function, which in the following

example is taken to be f(x, y) = exp (−(x+1/2)2 − 2(y+1/2)2) − exp (−(x − 1/2)2 −

2(y − 1/2)2). To form an interpolation problem, we sample this function at 10 points

in the interval [−2, 2], along the x and y coordinates, and then add a small normal-

distributed noise to the exact values. We first create NumPy arrays for the x and y

coordinates of the sample points and define a Python function for f (x, y):

In [65]: x = y = np.linspace(-2, 2, 10)

In [66]: def f(x, y):

 ...: return np.exp(-(x + .5)**2 - 2*(y + .5)**2) -

np.exp(-(x - .5)**2 - 2*(y - .5)**2)

Next we evaluate the function at the sample points and add the random noise to

simulate uncertain measurements:

In [67]: X, Y = np.meshgrid(x, y)

In [68]: # simulate noisy data at fixed grid points X, Y

 ...: Z = f(X, Y) + 0.05 * np.random.randn(*X.shape)

At this point, we have a matrix of data points Z with noisy data, which is associated

with exactly known and regularly spaced coordinates x and y. To obtain an interpolation

function that can be evaluated for intermediary x and y values, within the sampled

range, we can now use the interp2d function:

In [69]: f_i = interpolate.interp2d(x, y, Z, kind='cubic')

Note that here x and y are one-dimensional arrays (of length 10), and Z is a two-

dimensional array of shape (10, 10). The interp2d function returns a class instance,

here f_i, that behaves as a function that we can evaluate at arbitrary x and y coordinates

(within the sampled range). A supersampling of the original data, using the interpolation

function, can therefore be obtained in the following way:

In [70]: xx = yy = np.linspace(x.min(), x.max(), 100)

In [71]: ZZi = f_i(xx, yy)

In [72]: XX, YY = np.meshgrid(xx, yy)

Chapter 7 InterpolatIon

260

Here, XX and YY are coordinate matrices for the supersampled points, and the

corresponding interpolated values are ZZi. These can, for example, be used to plot

a smoothed function describing the sparse and noisy data. The following code plots

contours of both the original function and the interpolated data. See Figure 7-5 for the

resulting contour plot.

In [73]: fig, axes = plt.subplots(1, 2, figsize=(12, 5))

 ...: # for reference, first plot the contours of the exact function
 ...: c = axes[0].contourf(XX, YY, f(XX, YY), 15, cmap=plt.cm.RdBu)
 ...: axes[0].set_xlabel(r"x", fontsize=20)
 ...: axes[0].set_ylabel(r"y", fontsize=20)
 ...: axes[0].set_title("exact / high sampling")
 ...: cb = fig.colorbar(c, ax=axes[0])
 ...: cb.set_label(r"z", fontsize=20)
 ...: # next, plot the contours of the supersampled interpolation of the

noisy data
 ...: c = axes[1].contourf(XX, YY, ZZi, 15, cmap=plt.cm.RdBu)
 ...: axes[1].set_ylim(-2.1, 2.1)
 ...: axes[1].set_xlim(-2.1, 2.1)
 ...: axes[1].set_xlabel(r"x", fontsize=20)
 ...: axes[1].set_ylabel(r"y", fontsize=20)
 ...: axes[1].scatter(X, Y, marker='x', color='k')
 ...: axes[1].set_title("interpolation of noisy data / low sampling")

 ...: cb = fig.colorbar(c, ax=axes[1])

 ...: cb.set_label(r"z", fontsize=20)

Figure 7-5. Contours of the exact function (left) and a bivariate cubic spline
interpolation (right) of noisy samples from the function on a regular grid (marked
with crosses)

Chapter 7 InterpolatIon

261

With relatively sparsely spaced data points, we can thus construct an approximation

of the underlying function by using the interpolate.interp2d to compute the

bivariate cubic spline interpolation. This gives a smoothed approximation for the

underplaying function, which is frequently useful when dealing with data obtained

from measurements or computations that are costly, in time or other resources. For

higher-dimensional problems, there is a function interpolate.interpnd, which is a

generalization to N-dimensional problems.

Another common situation that requires multivariate interpolation occurs when

sampled data is given on an irregular coordinate grid. This situation frequently arises

(e.g., in experiments or other data collection processes) when the exact values at which

the observations are collected cannot be directly controlled. To be able to easily plot and

analyze such data with existing tools, it may be desirable to interpolate it onto a regular

coordinate grid. In SciPy we can use the interpolate.griddata for exactly this task. This

function takes as first argument. a tuple of one-dimensional coordinate vectors (xdata,

ydata) for the data values zdata, which are passed to the function in matrix form as third

argument. The fourth argument is a tuple (X, Y) of coordinate vectors or coordinate

matrices for the new points at which the interpolant is to be evaluated. Optionally, we

can also set the interpolation method using the method keyword argument ('nearest',

'linear', or 'cubic'):

In [74]: Zi = interpolate.griddata((xdata, ydata), zdata, (X, Y),

method='cubic')

To demonstrate how to use the interpolate.griddata function for

interpolating data at unstructured coordinate points, we take the function

f (x, y) = exp (−x2 − y2) cos 4x sin 6y and randomly select sampling points in the interval

[−1, 1] along the x and y coordinates. The resulting {xi, yi, zi} data is then interpolated and

evaluated on a supersampled regular grid spanning the x, y ∈ [−1, 1] region. To this end,

we first define a Python function for f (x, y) and then generate the randomly sampled

data:

In [75]: def f(x, y):

 ...: return np.exp(-x**2 - y**2) * np.cos(4*x) * np.sin(6*y)

In [76]: N = 500

In [77]: xdata = np.random.uniform(-1, 1, N)

In [78]: ydata = np.random.uniform(-1, 1, N)

In [79]: zdata = f(xdata, ydata)

Chapter 7 InterpolatIon

262

To visualize the function and the density of the sampling points, we plot a scatter plot

for the sampling locations overlaid on a contour graph of f(x, y). The result is shown in

Figure 7-6.

In [80]: x = y = np.linspace(-1, 1, 100)

In [81]: X, Y = np.meshgrid(x, y)

In [82]: Z = f(X, Y)

In [83]: fig, ax = plt.subplots(figsize=(8, 6))

 ...: c = ax.contourf(X, Y, Z, 15, cmap=plt.cm.RdBu);

 ...: ax.scatter(xdata, ydata, marker='.')

 ...: ax.set_ylim(-1,1)

 ...: ax.set_xlim(-1,1)

 ...: ax.set_xlabel(r"x", fontsize=20)

 ...: ax.set_ylabel(r"y", fontsize=20)

 ...: cb = fig.colorbar(c, ax=ax)

 ...: cb.set_label(r"z", fontsize=20)

From the contour graph and scatter plots in Figure 7-6, it appears that the randomly

chosen sample points cover the coordinate region of interest fairly well, and it is

plausible that we should be able to reconstruct the function f(x, y) relatively accurately

by interpolating the data. Here we would like to interpolate the data on the finely spaced

Figure 7-6. Exact contour plot of a randomly sampled function. The 500 sample
points are marked with black dots.

Chapter 7 InterpolatIon

263

(supersampled) regular grid described by the X and Y coordinate arrays. To compare

different interpolation methods, and the effect of increasing number of sample points,

we define the function z_interpolate that interpolates the given data points with the

nearest data point, a linear interpolation, and a cubic spline interpolation:

In [84]: def z_interpolate(xdata, ydata, zdata):

 ...: Zi_0 = interpolate.griddata((xdata, ydata), zdata, (X, Y),

method='nearest')

 ...: Zi_1 = interpolate.griddata((xdata, ydata), zdata, (X, Y),

method='linear')

 ...: Zi_3 = interpolate.griddata((xdata, ydata), zdata, (X, Y),

method='cubic')

 ...: return Zi_0, Zi_1, Zi_3

Finally we plot a contour graph of the interpolated data for the three different

interpolation methods applied to three subsets of the total number of sample points that

use 50, 150, and all 500 points, respectively. The result is shown in Figure 7-7.

In [85]: fig, axes = plt.subplots(3, 3, figsize=(12, 12), sharex=True,

sharey=True)

 ...:

 ...: n_vec = [50, 150, 500]

 ...: for idx, n in enumerate(n_vec):

 ...: Zi_0, Zi_1, Zi_3 = z_interpolate(xdata[:n], ydata[:n],

zdata[:n])

 ...: axes[idx, 0].contourf(X, Y, Zi_0, 15, cmap=plt.cm.RdBu)

 ...: axes[idx, 0].set_ylabel("%d data points\ny" % n, fontsize=16)

 ...: axes[idx, 0].set_title("nearest", fontsize=16)

 ...: axes[idx, 1].contourf(X, Y, Zi_1, 15, cmap=plt.cm.RdBu)

 ...: axes[idx, 1].set_title("linear", fontsize=16)

 ...: axes[idx, 2].contourf(X, Y, Zi_3, 15, cmap=plt.cm.RdBu)

 ...: axes[idx, 2].set_title("cubic", fontsize=16)

 ...: for m in range(len(n_vec)):

 ...: axes[idx, m].set_xlabel("x", fontsize=16)

Chapter 7 InterpolatIon

264

Figure 7-7 shows that it is possible to reconstruct a function fairly well from

interpolation of unstructured samples, as long as the region of interest is well covered.

In this example, and quite generally for other situations as well, it is clear that the cubic

spline interpolation is vastly superior to nearest-point and linear interpolation, and

although it is more computationally demanding to compute the spline interpolation, it is

often worthwhile.

Figure 7-7. Bivariate interpolation of randomly sampled values, for increasing
interpolation order (left to right) and increasing number of sample points (top to
bottom)

Chapter 7 InterpolatIon

265

 Summary
Interpolation is a fundamental mathematical tool that has significant applications

throughout scientific and technical computing. In particular, interpolation is a crucial

part of many mathematical methods and algorithms. It is also a practical tool in itself,

which is useful when plotting or analyzing data that are obtained from experiments,

observations, or resource-demanding computations. The combination of the NumPy

and SciPy libraries provides good coverage of numerical interpolation methods, in one

or more independent variables. For most practical interpolation problems that involve

a large number of data points, cubic spline interpolation is the most useful technique,

although polynomial interpolation of low degree is most commonly used as a tool in

other numerical methods (such as root finding, optimization, numerical integration). In

this chapter we have explored how to use NumPy’s polynomial and SciPy’s interpolate

modules to perform interpolation on given datasets with one and two independent

variables. Mastering these techniques is an important skill of a computational scientist,

and I encourage further exploring the content in scipy.interpolate that was not

covered here by studying the docstrings for this module and its many functions and

classes.

 Further Reading
Interpolation is covered in most texts on numerical methods, and for a more

thorough theoretical introduction to the subject, see, for example, J. Stoer (1992) or

Hamming (1987).

 References
Hamming, R. (1987). Numerical Methods for Scientists and Engineers. New York: Dover

Publications.

J. Stoer, R. B. (1992). Introduction to Numerical Analysis. New York: Springer.

Chapter 7 InterpolatIon

267
© Robert Johansson 2019
R. Johansson, Numerical Python, https://doi.org/10.1007/978-1-4842-4246-9_8

CHAPTER 8

Integration
In this chapter we cover different aspects of integration, with the main focus on

numerical integration. For historical reasons, numerical integration is also known

as quadrature. Integration is significantly more difficult than its inverse operation –

differentiation – and while there are many examples of integrals that can be calculated

analytically, in general we have to resort to numerical methods. Depending on the

properties of the integrand (the function being integrated) and the integration limits,

it can be easy or difficult to numerically compute an integral. Integrals of continuous

functions and with finite integration limits can in most cases be computed efficiently

in one dimension, but integrable functions with singularities or integrals with infinite

integration limits are examples of cases that can be difficult to handle numerically, even

in a single dimension. Two-dimensional integrals (double integrals) and higher-order

integrals can be numerically computed with repeated single-dimension integration or

using methods that are multidimensional generalizations of the techniques used to solve

single-dimensional integrals. However, the computational complexity grows quickly

with the number of dimensions to integrate over, and in practice such methods are

only feasible for low-dimensional integrals, such as double integrals or triple integrals.

Integrals of higher dimension than that often require completely different techniques,

such as Monte Carlo sampling algorithms.

In addition to numerical evaluation of integrals with definite integration limits,

which gives a single number as a result, integration also has other important

applications. For example, equations where the integrand of an integral is the unknown

quantity are called integral equations, and such equations frequently appear in science

and engineering applications. Integral equations are usually difficult to solve, but they

can often be recast into linear equation systems by discretizing the integral. However, we

do not cover this topic here, but we will see examples of this type of problem in

Chapter 10. Another important application of integration is integral transforms, which

268

are techniques for transforming functions and equations between different domains.

At the end of this chapter, we briefly discuss how SymPy can be used to compute some

integral transforms, such as Laplace transforms and Fourier transforms.

To carry out symbolic integration, we can use SymPy, as briefly discussed in

Chapter 3, and to compute numerical integration, we mainly use the integrate module

in SciPy. However, SymPy (through the multiple-precision library mpmath) also have

routines for numerical integration, which complement those in SciPy, for example, by

offering arbitrary-precision integration. In this chapter we look into both these options

and discuss their pros and cons. We also briefly look at Monte Carlo integrations using

the scikit-monaco library.

Scikit-monaco Scikit-monaco is a small and recent library that makes Monte
Carlo integration convenient and easily accessible. At the time of writing, the
most recent version of scikit-monaco is 0.2.1. See http://scikit- monaco.
readthedocs.org for more information.

 Importing Modules
In this chapter we require, as usual, the NumPy and the Matplotlib libraries for basic

numerical and plotting support, and on top of that, we use the integrate module from

SciPy, the SymPy library, and the arbitrary-precision math library mpmath. Here we

assume that these modules are imported as follows:

In [1]: import numpy as np

In [2]: import matplotlib.pyplot as plt

 ...: import maplotlib as mpl

In [3]: from scipy import integrate

In [4]: import sympy

In [5]: import mpmath

In addition, for nicely formatted output from SymPy, we also need to set up its

printing system:

In [6]: sympy.init_printing()

ChApter 8 IntegrAtIon

http://scikit-monaco.readthedocs.org
http://scikit-monaco.readthedocs.org

269

 Numerical Integration Methods
Here we are concerned with evaluating definite integrals on the form I f f x x

a

b

() = ()ò d ,

with given integration limits a and b. The interval [a, b] can be finite, semi-infinite

(where either a = − ∞ or b = ∞), or infinite (where both a = − ∞ and b = ∞). The

integral I(f) can be interpreted as the area between the curve of the integrand f(x) and

the x axis, as illustrated in Figure 8-1.

A general strategy for numerically evaluating an integral I(f), on the form given

above, is to write the integral as a discrete sum that approximates the value of the

integral:

I f w f x r

i

n

i i n() = () +
=
å

1

 .

Here wi are the weights of n evaluations of f (x) at the points xi ∈ [a, b], and rn is

the residual due to the approximation. In practice we assume that rn is small and can

be neglected, but it is important to have an estimate of rn to known how accurately

the integral is approximated. This summation formula for I(f) is known as an n-point

quadrature rule, and the choice of the number of points n, their locations in [a, b],

and the weight factors wi influence the accuracy and the computational complexity

of its evaluation. Quadrature rules can be derived from interpolations of f (x) on the

interval [a, b]. If the points xi are evenly spaced in the interval [a, b], and a polynomial

interpolation is used, then the resulting quadrature rule is known as a Newton-Cotes

Figure 8-1. Interpretation of an integral as the area between the curve of the
integrand and the x axis, where the area is counted as positive where f(x) > 0
(green/light) and negative otherwise (red/dark)

ChApter 8 IntegrAtIon

270

quadrature rule. For instance, approximating f(x) with a zeroth-order polynomial

(constant value) using the midpoint value x0 = (a+b)/2, we obtain

 a

b

a

b

f x x f
a b

x b a f
a b

ò ò() »
+æ

è
ç

ö
ø
÷ = -() +æ

è
ç

ö
ø
÷d d

2 2
.

This is known as the midpoint rule, and it integrates polynomials of up to order

one (linear functions) exactly, and it is therefore said to be of polynomial degree one.

Approximating f(x) by a polynomial of degree one, evaluated at the endpoints of the

interval, results in

 a

b

f x x
b a

f a f bò () »
- ()+ ()()d
2

.

This is known as the trapezoid rule, and it is also of polynomial degree one. Using an

interpolation polynomial of second order results in Simpson’s rule,

 a

b

f x x
b a

f a f
a b

f bò () »
- ()+ +æ

è
ç

ö
ø
÷+ ()æ

è
ç

ö

ø
÷d

6
4

2
,

which uses function evaluations at the endpoints and the midpoint. This method is

of polynomial degree three, meaning that it integrates exactly polynomials up to order

three. The method of arriving at this formula can easily be demonstrated using SymPy:

First we define symbols for the variables a, b, and x, as well as the function f.

In [7]: a, b, X = sympy.symbols("a, b, x")

In [8]: f = sympy.Function("f")

Next we define a tuple x that contains the sample points (the endpoints and

the middle point of the interval [a, b]) and a list w of weight factors to be used in the

quadrature rule, corresponding to each sample point:

In [9]: x = a, (a+b)/2, b # for Simpson's rule

In [10]: w = [sympy.symbols("w_%d" % i) for i in range(len(x))]

ChApter 8 IntegrAtIon

271

Given x and w, we can now construct a symbolic expression for the quadrature rule:

In [11]: q_rule = sum([w[i] * f(x[i]) for i in range(len(x))])

In [12]: q_rule

Out[12]: w f a w f
a b

w f b0 1 22 2
()+ +æ

è
ç

ö
ø
÷+ ()

To compute the appropriate values of the weight factors wi, we choose the

polynomial basis functions fn
n

n
x x() ={ }

=0

2
 for the interpolation of f(x), and here we use

the sympy.Lambda function to create symbolic representations for each of these basis

functions:

In [13]: phi = [sympy.Lambda(X, X**n) for n in range(len(x))]

In [14]: phi

Out[14]: x x x x x� � �1 2() () ()éë ùû, ,

The key to finding the weight factors in the quadrature expression (Out[12]) is that

the integral

a

b

n x xò ()f d can be computed analytically for each of the basis functions ϕn(x).

By substituting the function f(x) with each of the basis functions ϕn(x) in the quadrature

rule, we obtain an equation system for the unknown weight factors:

 i
i n i

a

b

nw x x x
=
å ò() = ()

0

2

f f d ,

These equations are equivalent to requiring that the quadrature rule exactly

integrates all the basis functions and therefore also (at least) all functions that are

spanned by the basis. This equation system can be constructed with SymPy using

In [15]: eqs = [q_rule.subs(f, phi[n]) - sympy.integrate(phi[n](X), (X, a, b))

 ...: for n in range(len(phi))]

In [16]: eqs

Out[16]: a b w w w
a

aw
b

bw w
a b a

a w
b

- + + + + - + + +æ
è
ç

ö
ø
÷ + +

é

ë
0 1 2

2

0

2

2 1

3
2

0

3

2 2 2 2 3 3
, , –êê

+ +æ
è
ç

ö
ø
÷
ù

û
ú
ú

b w w
a b2

2 1

2

2 2

ChApter 8 IntegrAtIon

272

Solving this linear equation system gives analytical expressions for the weight

factors,

In [17]: w_sol = sympy.solve(eqs, w)

In [18]: w_sol

Out[18]: w
a b

w
a b

w
a b

0 1 26 6

2

3

2

3 6 6
: : :- + - + - +ì

í
î

ü
ý
þ

, ,

and by substituting the solution into the symbolic expression for the quadrature rule, we

obtain

In [19]: q_rule.subs(w_sol).simplify()

Out[19]: - -() ()+ ()+ +æ
è
ç

ö
ø
÷

æ

è
ç

ö

ø
÷

1

6
4

2 2
a b f a f b f

a b

We recognize this result as Simpson’s quadrature rule given in the preceding section.

Choosing different sample points (the x tuple in this code) results in different quadrature

rules.

Higher-order quadrature rules can similarly be derived using higher-order

polynomial interpolation (more sample points in the [a, b] interval). However,

high-order polynomial interpolation can have undesirable behavior between the

sample points, as discussed in Chapter 7. Rather than using higher-order quadrature

rules, it is therefore often better to divide the integration interval [a, b] into

subintervals [a = x0, x1],[x1, x2],…,[xN − 1, xN = b] and use a low-order quadrature rule in

each of these subintervals. Such methods are known as composite quadrature rules.

Figure 8-2 shows the three lowest-order Newton-Cotes quadrature rules for the function

f (x) = 3+x+x2+x3+x4 on the interval [−1, 1] and the corresponding composite quadrature

rules with four subdivisions of the original interval.

ChApter 8 IntegrAtIon

273

An important parameter that characterizes composite quadrature rules is the

subinterval length h = (b − a)/N. Estimates for the errors in an approximate quadrature

rule, and the scaling of the error with respect to h, can be obtained from Taylor series

expansions of the integrand and the analytical integration of the term in the resulting

series. An alternative technique is to simultaneously consider quadrature rules of

different orders or of different subinterval lengths h. The difference between two such

results can often be shown to give estimates of the error, and this is the basis for how

many quadrature routines produce an estimate of the error in addition to the estimate of

the integral, as we will see in the examples in the following section.

We have seen that the Newton-Cotes quadrature rules use evenly spaced sample

points of the integrand f (x). This is often convenient, especially if the integrand is

obtained from measurements or observations at prescribed points, and cannot be

evaluated at arbitrary points in the interval [a, b]. However, this is not necessarily

the most efficient choice of quadrature nodes, and if the integrand is given as a

function that easily can be evaluated at arbitrary values of x ∈ [a, b], then it can be

advantageous to use quadrature rules that do not use evenly spaced sample points.

An example of such a method is Gaussian quadrature, which also uses polynomial

interpolation to determine the values of the weight factors in the quadrature rule but

Figure 8-2. Visualization of quadrature rules (top panel) and composite
quadrature rules (bottom panel) of orders zero (the midpoint rule), one (the
trapezoid rule), and two (Simpson’s rule)

ChApter 8 IntegrAtIon

274

where the quadrature nodes xi are chosen to maximize order of polynomials that can

be integrated exactly (the polynomial degree) given a fixed number of quadrature

points. It turns out that choices xi that satisfy these criteria are the roots of different

orthogonal polynomials, and the sample points xi are typically located at irrational

locations in the integration interval [a, b]. This is typically not a problem for numerical

implementations, but practically it requires that the function f (x) is available to

be evaluated at arbitrary points that are decided by the integration routine, rather

than given as tabulated or precomputed data at regularly spaced x values. Gaussian

quadrature rules are typically superior if f (x) can be evaluated at arbitrary values, but

for the reason just mentioned, the Newton-Cotes quadrature rules also have important

use-cases when the integrand is given as tabulated data.

 Numerical Integration with SciPy
The numerical quadrature routines in the SciPy integrate module can be categorized

into two types: routines that take the integrand as a Python function and routines that

take arrays with samples of the integrand at given points. The functions of the first type

use Gaussian quadrature (quad, quadrature, fixed_quad), while functions of the second

type use Newton-Cotes methods (trapz, simps, and romb).

The quadrature function is an adaptive Gaussian quadrature routine that is

implemented in Python. The quadrature repeatedly calls the fixed_quad function, for

Gaussian quadrature of fixed order, with increasing order until the required accuracy is

reached. The quad function is a wrapper for routines from the FORTRAN library

QUADPACK, which has superior performance in terms of speed and has more features

(such as support for infinite integration limits). It is therefore usually preferable to use

quad, and in the following, we use this quadrature function. However, all these functions

take similar arguments and can often be replaced with each other. They take as a first

argument the function that implements the integrand, and the second and third

arguments are the lower and upper integration limits. As a concrete example, consider the

numerical evaluation of the integral

-

-ò
1

1
2

e xx d . To evaluate this integral using SciPy’s quad

function, we first define a function for the integrand and then call the quad function:

In [20]: def f(x):

 ...: return np.exp(-x**2)

In [21]: val, err = integrate.quad(f, -1, 1)

ChApter 8 IntegrAtIon

275

In [22]: val

Out[22]: 1.493648265624854

In [23]: err

Out[23]: 1.6582826951881447e−14

The quad function returns a tuple that contains the numerical estimate of the

integral, val, and an estimate of the absolute error, err. The tolerances for the absolute

and the relative errors can be set using the optional epsabs and epsrel keyword

arguments, respectively. If the function f takes more than one variable, the quad routine

integrates the function over its first argument. We can optionally specify the values of

additional arguments by passing those values to the integrand function via the keyword

argument args to the quad function. For example, if we wish to evaluate

-

- -()ò
1

1
2 2

ae xx b c/ d

for the specific values of the parameters a = 1, b = 2, and c = 3, we can define a function

for the integrand that takes all these additional arguments and then specify the values of

a, b, and c by passing args=(1, 2, 3) to the quad function:

In [24]: def f(x, a, b, c):

 ...: return a * np.exp(-((x - b)/c)**2)

In [25]: val, err = integrate.quad(f, -1, 1, args=(1, 2, 3))

In [26]: val

Out[26]: 1.2763068351022229

In [27]: err

Out[27]: 1.4169852348169507e−14

When working with functions where the variable we want to integrate over is not the

first argument, we can reshuffle the arguments by using a lambda function. For example,

if we wish to compute the integral
0

5

0ò ()J x xd , where the integrand J0(x) is the zeroth-

order Bessel function of the first kind, it would be convenient to use the function jv from

the scipy.special module as integrand. The function jv takes the arguments v and x

and is the Bessel function of the first kind for the real-valued order v and evaluated at x.

To be able to use the jv function as integrand for quad, we therefore need to reshuffle the

arguments of jv. With a lambda function, we can do this in the following manner:

In [28]: from scipy.special import jv

In [29]: f = lambda x: jv(0, x)

In [30]: val, err = integrate.quad(f, 0, 5)

ChApter 8 IntegrAtIon

276

In [31]: val

Out[31]: 0.7153119177847678

In [32]: err

Out[32]: 2.47260738289741e−14

With this technique we can arbitrarily reshuffle arguments of any function and

always obtain a function where the integration variable is the first argument, so that the

function can be used as integrand for quad.

The quad routine supports infinite integration limits. To represent integration limits

that are infinite, we use the floating-point representation of infinity, float('inf'),

which is conveniently available in NumPy as np.inf. For example, consider the integral

-¥

¥
-òe xx2d . To evaluate it using quad, we can do

In [33]: f = lambda x: np.exp(-x**2)

In [34]: val, err = integrate.quad(f, -np.inf, np.inf)

In [35]: val

Out[35]: 1.7724538509055159

In [36]: err

Out[36]: 1.4202636780944923e−08

However, note that the quadrature and fixed_quad functions only support finite

integration limits.

With a bit of extra guidance, the quad function is also able to handle many integrals

with integrable singularities. For example, consider the integral
-
ò
1

1 1

x
xd . The integrand

diverges at x = 0, but the value of the integral does not diverge, and its value is 4. Naively

trying to compute this integral using quad may fail because of the diverging integrand:

In [37]: f = lambda x: 1/np.sqrt(abs(x))

In [38]: a, b = -1, 1

In [39]: integrate.quad(f, a, b)

Out[39]: (inf, inf)

In situations like these, it can be useful to graph the integrand to get insights into

how it behaves, as shown in Figure 8-3.

In [40]: fig, ax = plt.subplots(figsize=(8, 3))

 ...: x = np.linspace(a, b, 10000)

 ...: ax.plot(x, f(x), lw=2)

ChApter 8 IntegrAtIon

277

 ...: ax.fill_between(x, f(x), color='green', alpha=0.5)

 ...: ax.set_xlabel("x", fontsize=18)

 ...: ax.set_ylabel("$f(x)$", fontsize=18)

 ...: ax.set_ylim(0, 25)

 ...: ax.set_xlim(-1, 1)

In this case the evaluation of the integral fails because the integrand diverges exactly

at one of the sample points in the Gaussian quadrature rule (the midpoint). We can

guide the quad routine by specifying a list of points that should be avoided using the

points keyword arguments, and using points=[0] in the current example allows quad to

correctly evaluate the integral:

In [41]: integrate.quad(f, a, b, points=[0])

Out[41]: (4.0,5.684341886080802e−14)

 Tabulated Integrand
We have seen that the quad routine is suitable for evaluating integrals when the

integrand is specified using a Python function that the routine can evaluate at arbitrary

points (which is determined by the specific quadrature rule). However, in many

situations we may have an integrand that is only specified at predetermined points,

such as evenly spaced points in the integration interval [a, b]. This type of situation can

occur, for example, when the integrand is obtained from experiments or observations

that cannot be controlled by the particular integration routine. In this case we can use a

Newton-Cotes quadrature, such as the midpoint rule, trapezoid rule, or Simpson’s rule

that were described earlier in this chapter.

Figure 8-3. Example of a diverging integrand with finite integral (green/shaded
area) that can be computed using the quad function

ChApter 8 IntegrAtIon

278

In the SciPy integrate module, the composite trapezoid rule and Simpson’s rule are

implemented in the trapz and simps functions. These functions take as first argument

an array y with values of the integrand at a set of points in the integration interval, and

they optionally take as second argument an array x that specifies the x values of the

sample points, or alternatively the spacing dx between each sample (if uniform). Note

that the sample points do not necessarily need to be evenly spaced, but they must be

known in advance.

To see how to evaluate an integral of a function that is given by sampled values, let’s

evaluate the integral
0

2

ò x xd by taking 25 samples of the integrand in the integration

interval [0, 2], as shown in Figure 8-4:

In [42]: f = lambda x: np.sqrt(x)

In [43]: a, b = 0, 2

In [44]: x = np.linspace(a, b, 25)

In [45]: y = f(x)

In [46]: fig, ax = plt.subplots(figsize=(8, 3))

 ...: ax.plot(x, y, 'bo')

 ...: xx = np.linspace(a, b, 500)

 ...: ax.plot(xx, f(xx), 'b-')

 ...: ax.fill_between(xx, f(xx), color='green', alpha=0.5)

 ...: ax.set_xlabel(r"x", fontsize=18)

 ...: ax.set_ylabel(r"$f(x)$", fontsize=18)

Figure 8-4. Integrand given as tabulated values marked with dots. The integral
corresponds to the shaded area.

ChApter 8 IntegrAtIon

279

To evaluate the integral, we can pass the x and y arrays to the trapz or simps

methods. Note that the y array must be passed as the first argument:

In [47]: val_trapz = integrate.trapz(y, x)

In [48]: val_trapz

Out[48]: 1.88082171605

In [49]: val_simps = integrate.simps(y, x)

In [50]: val_simps

Out[50]: 1.88366510245

The trapz and simps functions do not provide any error estimates, but for this

particular example, we can compute the integral analytically and compare to the

numerical values computed with the two methods:

In [51]: val_exact = 2.0/3.0 * (b-a)**(3.0/2.0)

In [52]: val_exact

Out[52]: 1.8856180831641267

In [53]: val_exact - val_trapz

Out[53]: 0.00479636711328

In [54]: val_exact - val_simps

Out[54]: 0.00195298071541

Since all the information we have about the integrand is the given sample points, we

also cannot ask either of trapz or simps to compute more accurate solutions. The only

options for increasing the accuracy are to increase the number of sample points (which

might be difficult if the underlying function is not known) or possibly to use a higher-

order method.

The integrate module also provides an implementation of the Romberg method

with the romb function. The Romberg method is a Newton-Cotes method but one that

uses Richardson extrapolation to accelerate the convergence of the trapezoid method;

however this method does require that the sample points are evenly spaced and also that

there are 2n+1 sample points, where n is an integer. Like the trapz and simps methods,

romb takes an array with integrand samples as first argument, but the second argument

must (if given) be the sample-point spacing dx:

ChApter 8 IntegrAtIon

280

In [55]: x = np.linspace(a, b, 1 + 2**6)

In [56]: len(x)

Out[56]: 65

In [57]: y = f(x)

In [58]: dx = x[1] - x[0]

In [59]: val_exact - integrate.romb(y, dx=dx)

Out[59]: 0.000378798422913

Among the SciPy integration functions that we have discussed here, simps is perhaps

the most useful one overall, since it provides a good balance between ease of use (no

constraints on the sample points) and relatively good accuracy.

 Multiple Integration
Multiple integrals, such as double integrals

a

b

c

d

f x y x yòò (), d d and triple integrals

a

b

c

d

e

f

f x y z x y zòòò (), , d d d , can be evaluated using the dblquad and tplquad functions from the

SciPy integrate module. Also, integration over n variables ∫…∫Df (x)dx, over some

domain D, can be evaluated using the nquad function. These functions are wrappers

around the single-variable quadrature function quad, which is called repeatedly along

each dimension of the integral.

Specifically, the double integral routine dblquad can evaluate integrals on the form

 a

b

g x

h x

f x y x yò ò
()

()

(), d d ,

and it has the function signature dblquad(f, a, b, g, h), where f is a Python function

for the integrand, a and b are constant integration limits along the x dimension, and g

and f are Python functions (taking x as argument) that specify the integration limits

along the y dimension. For example, consider the integral

0

1

0

1
2 2

òò - -e x yx y d d . To evaluate this

we first define the function f for the integrand and graph the function and the

integration region, as shown in Figure 8-5:

In [60]: def f(x, y):

 ...: return np.exp(-x**2 - y**2)

In [61]: fig, ax = plt.subplots(figsize=(6, 5))

ChApter 8 IntegrAtIon

281

 ...: x = y = np.linspace(-1.25, 1.25, 75)

 ...: X, Y = np.meshgrid(x, y)

 ...: c = ax.contour(X, Y, f(X, Y), 15, cmap=mpl.cm.RdBu, vmin=-1,

vmax=1)

 ...: bound_rect = plt.Rectangle((0, 0), 1, 1, facecolor="grey")

 ...: ax.add_patch(bound_rect)

 ...: ax.axis('tight')

 ...: ax.set_xlabel('x', fontsize=18)

 ...: ax.set_ylabel('y', fontsize=18)

In this example the integration limits for both the x and y variables are constants, but

since dblquad expects functions for the integration limits for the y variable, we must also

define the functions h and g, even though in this case they only evaluate to constants

regardless of the value of x.

In [62]: a, b = 0, 1

In [63]: g = lambda x: 0

In [64]: h = lambda x: 1

Figure 8-5. Two-dimensional integrand as contour plot with integration region
shown as a shaded area

ChApter 8 IntegrAtIon

282

Now, with all the arguments prepared, we can call dblquad to evaluate the integral:

In [65]: integrate.dblquad(f, a, b, g, h)

Out[65]: (0.5577462853510337, 6.1922276789587025e−15)

Note that we could also have done the same thing a bit more concisely, although

slightly less readable, by using inline lambda function definitions:

In [66]: integrate.dblquad(lambda x, y: np.exp(-x**2-y**2), 0, 1, lambda

x: 0, lambda x: 1)

Out[66]: (0.5577462853510337, 6.1922276789587025e−15)

Because g and h are functions, we can compute integrals with x-dependent integration

limits along the y dimension. For example, with g(x) = x − 1 and h(x) = 1 − x, we obtain:

In [67]: integrate.dblquad(f, 0, 1, lambda x: -1 + x, lambda x: 1 - x)

Out[67]: (0.7320931000008094, 8.127866157901059e−15)

The tplquad function can compute integrals on the form

 a

b

g x

h x

q x y

r x y

f x y z x y zò ò ò
()

()

()

()

()
,

,

, , d d d ,

which is a generalization of the double integral expression computed with dblquad. It

additionally takes two Python functions as arguments, which specifies the integration

limits along the z dimension. These functions take two arguments, x and y, but note that

g and h still only take one argument (x). To see how tplquad can be used, consider the

generalization of the previous integral to three variables:
0

1

0

1

0

1
2 2 2

òòò - - -e x y zx y z d d d .

We compute this integral using a similar method compared to the dblquad example.

That is, we first define functions for the integrand and the integration limits and the call

to the tplquad function:

In [68]: def f(x, y, z):

 ...: return np.exp(-x**2-y**2-z**2)

In [69]: a, b = 0, 1

In [70]: g, h = lambda x: 0, lambda x: 1

In [71]: q, r = lambda x, y: 0, lambda x, y: 1

In [72]: integrate.tplquad(f, 0, 1, g, h, q, r)

Out[72]: (0.4165383858866382, 4.624505066515441e−15)

ChApter 8 IntegrAtIon

283

For an arbitrary number of integrations, we can use the nquad function. It also takes

the integrand as a Python function as the first argument. The integrand function should

have the function signature f(x1, x2, ..., xn). In contrast to dplquad and tplquad,

the nquad function expects a list of integration limit specifications, as the second

argument. The list should contain a tuple with integration limits for each integration

variable or a callable function that returns such a limit. For example, to compute the

integral that we previously computed with tplquad, we could use

In [73]: integrate.nquad(f, [(0, 1), (0, 1), (0, 1)])

Out[73]: (0.4165383858866382, 8.291335287314424e−15)

For increasing number of integration variables, the computational complexity of a

multiple integral grows quickly, for example, when using nquad. To see this scaling trend,

consider the following generalized version of the integrand studied with dplquad and

tplquad.

In [74]: def f(*args):

 ...: """

 ...: f(x1, x2, ... , xn) = exp(-x1^2 - x2^2 - ... – xn^2)

 ...: """

 ...: return np.exp(-np.sum(np.array(args)**2))

Next, we evaluate the integral for varying number of dimensions (ranging from 1 up

to 5). In the following examples, the length of the list of integration limits determines

the number of the integrals. To see a rough estimate of the computation time, we use the

IPython command %time:

In [75]: %time integrate.nquad(f, [(0,1)] * 1)

CPU times: user 398 μs, sys: 63 μs, total: 461 μs
Wall time: 466 μs
Out[75]: (0.7468241328124271,8.291413475940725e−15)

In [76]: %time integrate.nquad(f, [(0,1)] * 2)

CPU times: user 6.31 ms, sys: 298 μs, total: 6.61 ms
Wall time: 6.57 ms

Out[76]: (0.5577462853510337,8.291374381535408e−15)

ChApter 8 IntegrAtIon

284

In [77]: %time integrate.nquad(f, [(0,1)] * 3)

CPU times: user 123 ms, sys: 2.46 ms, total: 126 ms

Wall time: 125 ms

Out[77]: (0.4165383858866382,8.291335287314424e−15)

In [78]: %time integrate.nquad(f, [(0,1)] * 4)

CPU times: user 2.41 s, sys: 11.1 ms, total: 2.42 s

Wall time: 2.42 s

Out[78]: (0.31108091882287664,8.291296193277774e−15)

In [79]: %time integrate.nquad(f, [(0,1)] * 5)

CPU times: user 49.5 s, sys: 169 ms, total: 49.7 s

Wall time: 49.7 s

Out[79]: (0.23232273743438786,8.29125709942545e−15)

Here we see that increasing the number of integrations from one to five increases

the computation time from hundreds of microseconds to nearly a minute. For an even

larger number of integrals, it may become impractical to use direct quadrature routines,

and other methods, such as Monte Carlo sampling techniques, can often be superior,

especially if the required precision is not that high. Monte Carlo integration is a simple

but powerful technique that is based on sampling the integrand at randomly selected

points in the domain of the integral and gradually forming an estimate of the integral.

Due to the stochastic nature of the algorithm, the conversion rate is typically relatively

slow, and it is difficult to achieve very high accuracy. However, Monte Carlo integration

scales very well with dimensionality, and it is often a competitive method for high-

dimensional integrals.

To compute an integral using Monte Carlo sampling, we can use the mcquad function

from the skmonaco library (known as scikit-monaco). As first argument it takes a Python

function for the integrand, as second argument it takes a list of lower integration limits,

and as third argument it takes a list of upper integration limits. Note that the way the

integration limits are specified is not exactly the same as for the quad function in SciPy’s

integrate module. We begin by importing the skmonaco (scikit-monaco) module:

In [80]: import skmonaco

Once the module is imported, we can use the skmonaco.mcquad function for

performing a Monte Carlo integration. In the following example, we compute the same

integral as in the previous example using nquad:

ChApter 8 IntegrAtIon

285

In [81]: %time val, err = skmonaco.mcquad(f, xl=np.zeros(5), xu=np.ones(5),

npoints=100000)

CPU times: user 1.43 s, sys: 100 ms, total: 1.53 s

Wall time: 1.5 s

In [82]: val, err

Out[82]: (0.231322502809, 0.000475071311272)

While the error is not comparable to the result given by nquad, the computation

time is much shorter. By increasing the number of sample points, which we can specify

using the npoints argument, we can increase the accuracy of the result. However, the

convergence of Monte Carlo integration is very slow, and it is most suitable when high

accuracy is not required. However, the beauty of Monte Carlo integration is that its

computational complexity is independent of the number of integrals. This is illustrated

in the following example, which computes a ten-variable integration at the same time

and with comparable error level as the previous example with a five-variable integration:

In [83]: %time val, err = skmonaco.mcquad(f, xl=np.zeros(10), xu=np.

ones(10), npoints=100000)

CPU times: user 1.41 s, sys: 64.9 ms, total: 1.47 s

Wall time: 1.46 s

In [84]: val, err

Out[84]: (0.0540635928549, 0.000171155166006)

 Symbolic and Arbitrary-Precision Integration
In Chapter 3, we already saw examples of how SymPy can be used to compute definite

and indefinite integrals of symbolic functions, using the sympy.integrate function. For

example, to compute the integral
-
ò -
1

1
22 1 x xd , we first create a symbol for x and define

expressions for the integrand and the integration limits a = − 1 and b = 1,

In [85]: x = sympy.symbols("x")

In [86]: f = 2 * sympy.sqrt(1-x**2)

In [87]: a, b = -1, 1

ChApter 8 IntegrAtIon

286

after which we can compute the closed-form expression for the integral using

In [88]: val_sym = sympy.integrate(f, (x, a, b))

In [89]: val_sym

Out[89]: π

For this example, SymPy is able to find the analytic expression for the integral: π.

As pointed out earlier, this situation is the exception, and in general we will not be

able to find an analytical closed-form expression. We then need to resort to numerical

quadrature, for example, using SciPy’s integrate.quad, as discussed earlier in this

chapter. However, the mpmath library,1 which is closely integrated with SymPy, provides

an alternative implementation of numerical quadrature, using arbitrary-precision

computations. With this library, we can evaluate an integral to arbitrary precision, without

being restricted to the limitations of floating-point numbers. However, the downside is, of

course, that arbitrary-precision computations are significantly slower than floating-point

computations. But when we require precision beyond what the SciPy quadrature functions

can provide, this multiple-precision quadrature provides a solution.

For example, to evaluate the integral
-
ò -
1

1
22 1 x xd to a given precision,2 we can use

the mpmath.quad function, which takes a Python function for the integrand as first

argument, and the integration limits as a tuple (a, b) as second argument. To specify

the precision, we set the variable mpmath.mp.dps to the required number of accurate

decimal places. For example, if we require 75 accurate decimal places, we set

In [90]: mpmath.mp.dps = 75

The integrand must be given as a Python function that uses math functions from

the mpmath library to compute the integrand. From a SymPy expression, we can create

such a function using sympy.lambdify with 'mpmath' as third argument, which indicates

that we want an mpmath compatible function. Alternatively, we can directly implement a

Python function using the math functions from the mpmath module in SymPy, which in

this case would be f_mpmath = lambda x: 2 * mpmath.sqrt(1 - x**2). However, here

we use sympy.lambdify to automate this step:

In [91]: f_mpmath = sympy.lambdify(x, f, 'mpmath')

1 For more information about the multiprecision (arbitrary precision) math library mpmath, see
the project’s web page at http://mpmath.org.

2 Here we deliberately choose to work with an integral that has a known analytical value, so that
we can compare the multiprecision quadrature result with the known exact value.

ChApter 8 IntegrAtIon

http://mpmath.org

287

Next we can compute the integral using mpmath.quad and display the resulting value:

In [92]: val = mpmath.quad(f_mpmath, (a, b))

In [93]: sympy.sympify(val)

Out[93]: 3.1415926535897932384626433832795028841971693993751058209749445923

0781640629

To verify that the numerically computed value is accurate to the required number of

decimal places (75), we compare the result with the known analytical value (π). The error

is indeed very small:

In [94]: sympy.N(val_sym, mpmath.mp.dps+1) - val

Out[94]: 6.908934844075555700309081490240319656892800291549025108

01896277613487344253e−77

This level of precision cannot be achieved with the quad function in SciPy’s

integrate module, since it is limited by the precision of floating-point numbers.

The mpmath library’s quad function can also be used to evaluate double and triple

integrals. To do so, we only need to pass to it an integrand function that takes multiple

variables as arguments, and pass tuples with integration limits for each integration

variable. For example, to compute the double integral

 0

1

0

1
2 2

òò () () - -cos cosx y e x yx y d d

and the triple integral

 0

1

0

1

0

1
2 2 2

òòò () () () - - -cos cos cosx y z e x y zx y z d d d

to 30 significant decimals (this example cannot be solved symbolically with SymPy), we

could first create SymPy expressions for the integrands, and then use sympy.lambdify to

create the corresponding mpmath expressions:

In [95]: x, y, z = sympy.symbols("x, y, z")

In [96]: f2 = sympy.cos(x) * sympy.cos(y) * sympy.exp(-x**2 - y**2)

In [97]: f3 = sympy.cos(x) * sympy.cos(y) * sympy.cos(z) * sympy.

exp(-x**2 - y**2 - z**2)

In [98]: f2_mpmath = sympy.lambdify((x, y), f2, 'mpmath')

In [99]: f3_mpmath = sympy.lambdify((x, y, z), f3, 'mpmath')

ChApter 8 IntegrAtIon

288

The integrals can then be evaluated to the desired accuracy by setting mpmath.

mp.dps and calling mpmath.quad:

In [100]: mpmath.mp.dps = 30

In [101]: mpmath.quad(f2_mpmath, (0, 1), (0, 1))

Out[101]: mpf('0.430564794306099099242308990195783')

In [102]: res = mpmath.quad(f3_mpmath, (0, 1), (0, 1), (0, 1))

In [103]: sympy.sympify(res)

Out[103]: 0.282525579518426896867622772405

Again, this gives access to levels of accuracy that is beyond what scipy.integrate.

quad can achieve, but this additional accuracy comes with a hefty increase in

computational cost. Note that the type of the object returned by mpmath.quad is a

multiprecision float (mpf). It can be cast into a SymPy type using sympy.sympify.

 Line Integrals
SymPy can also be used to compute line integrals on the form ∫C f (x, y)ds, where C is

a curve in the x–y plane, using the line_integral function. This function takes the

integrand, as a SymPy expression, as first argument, a sympy.Curve instance as second

argument, and a list of integration variables as third argument. The path of the line

integral is specified by the Curve instance, which describes a parameterized curve for

which the x and y coordinates are given as a function of an independent parameter, say t.

To create a Curve instance that describes a path along the unit circle, we can use:

In [104]: t, x, y = sympy.symbols("t, x, y")

In [105]: C = sympy.Curve([sympy.cos(t), sympy.sin(t)], (t, 0, 2 * sympy.pi))

Once the integration path is specified, we can easily compute the corresponding

line integral for a given integrand using line_integral. For example, with the integrand

f (x, y) = 1, the result is the circumference of the unit circle:

In [106]: sympy.line_integrate(1, C, [x, y])

Out[106]: 2π

The result is less obvious for a nontrivial integrand, such as in the following example

where we compute the line integral with the integrand f (x, y) = x2y2:

In [107]: sympy.line_integrate(x**2 * y**2, C, [x, y])

Out[107]: π/4

ChApter 8 IntegrAtIon

289

 Integral Transforms
The last application of integrals that we discuss in this chapter is integral transforms.

An integral transform is a procedure that takes a function as input and outputs

another function. Integral transforms are the most useful when they can be computed

symbolically, and here we explore two examples of integral transforms that can be

performed using SymPy: the Laplace transform and the Fourier transform. There are

numerous applications of these two transformations, but the fundamental motivation

is to transform problems into a form that is more easily handled. It can, for example,

be a transformation of a differential equation into an algebraic equation, using Laplace

transforms, or a transformation of a problem from the time domain to the frequency

domain, using Fourier transforms.

In general, an integral transform of a function f (t) can be written as

T u K t u f t tf

t

t

() = () ()ò
1

2

, d ,

where Tf(u) is the transformed function. The choice of the kernel K(t, u) and the

integration limits determine the type of integral transform. The inverse of the integral

transform is given by

f u K u t T u u
u

u

f() = () ()ò -

1

2

1 , d ,

where K−1(u, t) is the kernel of the inverse transform. SymPy provides functions for

several types of integral transform, but here we focus on the Laplace transform

L s e f t tf

st() = ()
¥

-ò
0

d ,

with the inverse transform

f t

i
e L s s

c i

c i
st

f() = ()
- ¥

+ ¥

ò
1

2p
d ,

ChApter 8 IntegrAtIon

290

and the Fourier transform

F e f t tf

i tw
p

w() = ()
-¥

¥
-ò

1

2
d ,

with the inverse transform

f t e F di t

f() = ()
-¥

¥

ò
1

2p
w ww .

With SymPy, we can perform these transforms with the sympy.laplace_transform

and sympy.fourier_transform, respectively, and the corresponding inverse transforms

can be computed with the sympy.inverse_laplace_transform and sympy.inverse_

fourier_transform. These functions take a SymPy expression for the function to

transform as first argument, and the symbol for independent variable of the expression

to transform as second argument (e.g., t), and as third argument they take the symbol

for the transformation variable (e.g., s). For example, to compute the Laplace transform

of the function f (t) = sin (at), we begin by defining SymPy symbols for the variables a, t,

and s and a SymPy expression for the function f (t):

In [108]: s = sympy.symbols("s")

In [109]: a, t = sympy.symbols("a, t", positive=True)

In [110]: f = sympy.sin(a*t)

Once we have SymPy objects for the variables and the function, we can call the

laplace_transform function to compute the Laplace transform:

In [111]: sympy.laplace_transform(f, t, s)

Out[111]: (
a

a s2 2+
,−∞, 0<Rs)

By default, the laplace_transform function returns a tuple containing the resulting

transform; the value A from convergence condition of the transform, which takes the

form A s<R ; and lastly additional conditions that are required for the transform to be

well defined. These conditions typically depend on the constraints that are specified

when symbols are created. For example, here we used positive=True when creating the

symbols a and t, to indicate that they represent real and positive numbers. Often we are

only interested in the transform itself, and we can then use the noconds=True keyword

argument to suppress the conditions in the return result:

ChApter 8 IntegrAtIon

291

In [112]: F = sympy.laplace_transform(f, t, s, noconds=True)

In [113]: F

Out[113]:
a

a s2 2+

The inverse transformation can be used in a similar manner, except that we need to

reverse the roles of the symbols s and t. The Laplace transform is a unique one-to-one

mapping, so if we compute the inverse Laplace transform of the previously computed

Laplace transform, we expect to recover the original function:

In [114]: sympy.inverse_laplace_transform(F, s, t, noconds=True)

Out[114]: sin(at)

SymPy can compute the transforms for many elementary mathematical functions

and for a wide variety of combinations of such functions. When solving problems

using Laplace transformations by hand, one typically searches for matching functions

in reference tables with known Laplace transformations. Using SymPy, this process

can conveniently be automated in many, but not all, cases. The following examples

show a few additional examples of well-known functions that one finds in Laplace

transformation tables. Polynomials have simple Laplace transformation:

In [115]: [sympy.laplace_transform(f, t, s, noconds=True) for f in

[t, t**2, t**3, t**4]]

Out[115]: [
1
2s
,

2
3s
,

6
4s
,
24
5s
]

and we can also compute the general result with an arbitrary integer exponent:

In [116]: n = sympy.symbols("n", integer=True, positive=True)

In [117]: sympy.laplace_transform(t**n, t, s, noconds=True)

Out[117]:
G n

sn
+()
+

1
1

The Laplace transform of composite expressions can also be computed, as in the

following example which computes the transform of the function f (t) = (1 − at)e−at:

In [118]: sympy.laplace_transform((1 - a*t) * sympy.exp(-a*t), t, s,

noconds=True)

Out[118]:
s

a s+()2

ChApter 8 IntegrAtIon

292

The main application of Laplace transforms is to solve differential equations,

where the transformation can be used to bring the differential equation into a purely

algebraic form, which can then be solved and transformed back to the original domain

by applying the inverse Laplace transform. In Chapter 9 we will see concrete examples of

this method. Fourier transforms can also be used for the same purpose.

The Fourier transform function, fourier_tranform, and its inverse, inverse_

fourier_transform, are used in much the same way as the Laplace transformation

functions. For example, to compute the Fourier transform of f t e at() = - 2

, we would first

define SymPy symbols for the variables a, t, and ω, and the function f(t), and then

compute the Fourier transform by calling the sympy.fourier_transform function:

In [119]: a, t, w = sympy.symbols("a, t, omega")

In [120]: f = sympy.exp(-a*t**2)

In [121]: F = sympy.fourier_transform(f, t, w)

In [122]: F

Out[122]: p p w/ /ae a- 2 2

As expected, computing the inverse transformation for F recovers the original

function:

In [123]: sympy.inverse_fourier_transform(F, w, t)

Out[123]: e
at- 2

SymPy can be used to compute a wide range of Fourier transforms symbolically, but

unfortunately it does not handle well transformations that involve Dirac delta functions,

in either the original function or the resulting transformation. This currently limits its

usability, but nonetheless, for problems that do not involve Dirac delta functions, it is a

valuable tool.

 Summary
Integration is one of the fundamental tools in mathematical analysis. Numerical

quadrature, or numerical evaluation of integrals, has important applications in many

fields of science, because integrals that occur in practice often cannot be computed

analytically and expressed as a closed-form expression. Their computation then

requires numerical techniques. In this chapter we have reviewed basic techniques and

ChApter 8 IntegrAtIon

293

methods for numerical quadrature and introduced the corresponding functions in the

SciPy integrate module that can be used for the evaluation of integrals in practice.

When the integrand is given as a function that can be evaluated at arbitrary points, we

typically prefer Gaussian quadrature rules. On the other hand, when the integrand is

defined as a tabulated data, the simpler Newton-Cotes quadrature rules can be used.

We also studied symbolic integration and arbitrary-precision quadrature, which can

complement floating-point quadrature for specific integrals that can be computed

symbolically or when additional precision is required. As usual, a good starting point

is to begin to analyze a problem symbolically, and if a particular integral can be solved

symbolically by finding its antiderivative, that is generally the most desirable situation.

When symbolic integration fails, we need to resort to numerical quadrature, which

should first be explored with floating-point-based implementations, like the ones

provided by the SciPy integrate module. If additional accuracy is required, we can fall

back on arbitrary-precision quadrature. Another application of symbolic integration is

integral transformation, which can be used to transform problems, such as differential

equations, between different domains. Here we briefly looked at how to perform Laplace

and Fourier transforms symbolically using SymPy, and in the following chapter, we

continue to explore this for solving certain types of differential equations.

 Further Reading
Numerical quadrature is discussed in many introductory textbooks on numerical

computing, such as Heath (2002) and J. Stoer (1992). Detailed discussions on many

quadrature methods, together with example implementations, are available in W. H.

Press (2002). The theory of integral transforms, such as the Fourier transform and the

Laplace transform, is introduced; see, for example, Folland (1992).

 References
Folland, G.B. Fourier Analysis and Its Applications. American Mathematical Society, 1992.

Heath, M.T. Scientific Computing An introductory survey. 2nd. New York: McGrawHill,

2002.

J. Stoer, R. Bulirsch. Introduction to Numerical Analysis. New York: Springer, 1992.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery. Numerical Recipes in C.

Cambridge: Cambridge University Press, 2002.

ChApter 8 IntegrAtIon

295
© Robert Johansson 2019
R. Johansson, Numerical Python, https://doi.org/10.1007/978-1-4842-4246-9_9

CHAPTER 9

Ordinary Differential
Equations
Equations wherein the unknown quantity is a function, rather than a variable, and that

involve derivatives of the unknown function, are known as differential equations. An

ordinary differential equation is a special case where the unknown function has only one

independent variable with respect to which derivatives occur in the equation. If, on the

other hand, derivatives of more than one variable occur in the equation, then it is known

as a partial differential equation, and that is the topic of Chapter 11. Here we focus on

ordinary differential equations (in the following abbreviated as ODEs), and we explore

both symbolic and numerical methods for solving this type of equations in this chapter.

Analytical closed-form solutions to ODEs often do not exist, but for many special types

of ODEs, there are analytical solutions, and in those cases, there is a chance that we can

find solutions using symbolic methods. If that fails, we must as usual resort to numerical

techniques.

Ordinary differential equations are ubiquitous in science and engineering, as well

as in many other fields, and they arise, for example, in studies of dynamical systems.

A typical example of an ODE is an equation that describes the time evolution of a

process where the rate of change (the derivative) can be related to other properties of

the process. To learn how the process evolves in time, given some initial state, we must

solve, or integrate, the ODE that describes the process. Specific examples of applications

of ODEs are the laws of mechanical motion in physics, molecular reactions in chemistry

and biology, and population modeling in ecology, just to mention a few.

In this chapter we will explore both symbolic and numerical approaches to solving

ODE problems. For symbolic methods we use the SymPy module, and for numerical

integration of ODEs, we use functions from the integrate module in SciPy.

296

 Importing Modules
Here we require the NumPy and Matplotlib libraries for basic numerical and plotting

purposes, and for solving ODEs, we need the SymPy library and SciPy’s integrate

module. As usual, we assume that these modules are imported in the following manner:

In [1]: import numpy as np

In [2]: import matplotlib.pyplot as plt

In [3]: from scipy import integrate

In [4]: import sympy

For nicely displayed output from SymPy, we need to initialize its printing system:

In [5]: sympy.init_printing()

 Ordinary Differential Equations
The simplest form of an ordinary differential equation is

dy x

dx
f x y x

()
= ()(), , where

y(x) is the unknown function and f (x,y(x)) is known. It is a differential equation because

the derivative of the unknown function y(x) occurs in the equation. Only the first

derivative occurs in the equation, and it is therefore an example of a first- order ODE.

More generally, we can write an ODE of nth order in explicit form as

d y

dx
f x y

dy

dx

d y

dx

n

n

n

n
= ¼

æ

è
ç

ö

ø
÷

-

-, , , ,
1

1 , or in implicit form as F x y
dy

dx

d y

dx

n

n
, , , ,¼

æ

è
ç

ö

ø
÷ = 0 ,

where f and F are known functions.

An example of a first-order ODE is Newton’s law of cooling
dT t

dt
k T t Ta

()
= - ()-() ,

which describes the temperature T(t) of a body in a surrounding with temperature Ta.

The solution to this ODE is T(t) = T0+(T0 − Ta)e−kt, where T0 is the initial temperature of

the body. An example of a second-order ODE is Newton’s second law of motion F = ma,

or more explicitly F x t m
d x t

dt
()() = ()2

2
. This equation describes the position x(t) of

an object with mass m, when subjected to a position-dependent force F(x(t)). To

completely specify a solution to this ODE, we would, in addition to finding its general

solution, also have to give the initial position and velocity of the object. Similarly, the

general solution of an nth order ODE has n free parameters that we need to specify, for

example, as initial conditions for the unknown function and n − 1 of its derivatives.

Chapter 9 Ordinary differential equatiOns

297

An ODE can always be rewritten as a system of first-order ODEs. Specifically, the nth

order ODE on the explicit form
d y

dx
g x y

dy

dx

d y

dx

n

n

n

n
= ¼

æ

è
ç

ö

ø
÷

-

-, , , ,
1

1 can be written in the

standard form by introducing n new functions y1 = y, y
dy

dx2 = , …, y
d y

dxn

n

n
=

-

-

1

1
. This gives

the following system of first-order ODEs

d

dx

y

y

y

y

y

y

y

g x y y
n

n

n

n

1

2

1

2

3

1

� �

-

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

=

¼()

é

ë

ê
ê
ê
ê
ê
ê , , ,

ùù

û

ú
ú
ú
ú
ú
ú

,

which also can be written in a more compact vector form:
d

dx
x f x xy y() = ()(), .

This canonical form is particularly useful for numerical solutions of ODEs, and it is

common that numerical methods for solving ODEs take the function f = (f1, f2, …, fn),

which in the current case is f = (y2, y3, …, g), as the input that specifies the ODE.

For example, the second-order ODE for Newton’s second law of motion, F x m
d x

dt
() =

2

2
,

can be written on the standard form using y = = =é
ëê

ù
ûú

y x y
dx

dt

T

1 2, , giving

d

dt

y

y

y

F y m
1

2

2

1

é

ë
ê

ù

û
ú = ()

é

ë
ê

ù

û
ú/
.

If the functions f1, f2,…, fn are all linear, then the corresponding system of ODEs can be

written on the simple form
d

dx
A x x x

y x
y r

()
= () ()+ () , where A(x) is an n × n matrix and

r(x) is an n-vector that only depends on x. In this form, the r(x) is known as the source

term, and the linear system is known as homogeneous if r(x) = 0 and nonhomogeneous

otherwise. Linear ODEs are an important special case that can be solved, for example,

using eigenvalue decomposition of A(x). Likewise, for certain properties and forms of

the function f (x, y(x)), there may be known solutions and special methods for solving the

corresponding ODE problem, but there is no general method for an arbitrary f (x, y(x)),

other than approximate numerical methods.

In addition to the properties of the function f (x, y(x)), the boundary conditions for

an ODE also influence the solvability of the ODE problem, as well as which numerical

approaches are available. Boundary conditions are needed to determine the values of the

integration constants that appear in a solution. There are two main types of boundary

Chapter 9 Ordinary differential equatiOns

298

conditions for ODE problems: initial value conditions and boundary value conditions.

For initial value problems, the value of the function and its derivatives are given at a

starting point, and the problem is to evolve the function forward in the independent

variable (e.g., representing time or position) from this starting point. For boundary value

problems, the value of the unknown function, or its derivatives, is given at fixed points.

These fixed points are frequently the endpoints of the domain of interest. In this chapter

we mostly focus on initial value problem, and methods that are applicable to boundary

value problems are discussed in Chapter 10 on partial differential equations.

 Symbolic Solution to ODEs
SymPy provides a generic ODE solver sympy.dsolve, which is able to find analytical

solutions to many elementary ODEs. The sympy.dsolve function attempts to

automatically classify a given ODE, and it may attempt a variety of techniques to find

its solution. It is also possible to give hints to the dsolve function, which can guide it to

the most appropriate solution method. While dsolve can be used to solve many simple

ODEs symbolically, as we will see in the following, it is worth keeping in mind that most

ODEs cannot be solved analytically. Typical examples of ODEs where one can hope to

find a symbolic solution are ODEs of first or second order or linear systems of first-order

ODEs with only a few unknown functions. It also helps greatly if the ODE has special

symmetries or properties, such as being separable, having constant coefficients, or is in a

special form for which there exist known analytical solutions. While these types of ODEs

are exceptions and special cases, there are many important applications of such ODEs,

and for these cases SymPy’s dsolve can be a very useful complement to traditional

analytical methods. In this section we will explore how to use SymPy and its dsolve

function to solve simple but commonly occurring ODEs.

To illustrate the method for solving ODEs with SymPy, we begin with a simple

problem and gradually look at more complicated situations. The first example is the

simple first-order ODE for Newton’s cooling law,
dT t

dt
k T t Ta

()
= - ()-() , with the initial

value T(0) = T0. To approach this problem using SymPy, we first need to define symbols

for the variables t, k, T0, and Ta, and to represent the unknown function T(t), we can use a

sympy.Function object:

In [6]: t, k, T0, Ta = sympy.symbols("t, k, T_0, T_a")

In [7]: T = sympy.Function("T")

Chapter 9 Ordinary differential equatiOns

299

Next, we can define the ODE very naturally by simply creating a SymPy expression

for the left-hand side of the ODE when written on the form
dT t

dt
k T t Ta

()
+ ()-() = 0.

Here, to represent the function T(t), we can now use the Sympy function object T.

Applying the symbol t to it, using the function call syntax T(t), results in an applied

function object that we can take derivatives of using either sympy.diff or the diff

method on the T(t) expression:

In [8]: ode = T(t).diff(t) + k*(T(t) - Ta)

In [9]: sympy.Eq(ode)

Out[9]: k T T t
dT t

dta- + ()()+ ()
= 0

Here we used sympy.Eq to display the equation including the equality sign

and a right-hand side that is zero. Given this representation of the ODE, we can directly

pass it to sympy.dsolve, which will attempt to automatically find the general solution of

the ODE.

In [10]: ode_sol = sympy.dsolve(ode)

In [11]: ode_sol

Out[11]: T t C e Tkt
a() = +-

1

For this ODE problem, the sympy.dsolve function indeed finds the general solution,

which here includes an unknown integration constant C1 that we have to determine

from the initial conditions of the problem. The return value from the sympy.dsolve is

an instance of sympy.Eq, which is a symbolic representation of an equality. It has the

attributes lhs and rhs for accessing the left-hand side and the right-hand side of the

equality object:

In [12]: ode_sol.lhs

Out[12]: T(t)

In [13]: ode_sol.rhs

Out[13]: C1e–kt + Ta

Once the general solution has been found, we need to use the initial conditions

to find the values of the yet-to-be-determined integration constants. Here the initial

condition is T(0) = T0. To this end, we first create a dictionary that describes the initial

condition, ics = {T(0): T0}, that we can use with SymPy’s subs method to apply the

Chapter 9 Ordinary differential equatiOns

300

initial condition to the solution of the ODE. This results in an equation for the unknown

integration constant C1:

In [14]: ics = {T(0): T0}

In [15]: ics

Out[15]: {T(0): T0}

In [16]: C_eq = ode_sol.subs(t, 0).subs(ics)

In [17]: C_eq

Out[17]: T0 = C1 + Ta

In the present example, the equation for C1 is trivial to solve, but for the sake of

generality, here we solve it using sympy.solve. The result is a list of solutions (in this

case a list of only one solution). We can substitute the solution for C1 into the general

solution of the ODE problem to obtain the particular solution that corresponds to the

given initial conditions:

In [18]: C_sol = sympy.solve(C_eq)

In [19]: C_sol

Out[19]: [{C1:T0 – Ta}]

In [20]: ode_sol.subs(C_sol[0])

Out[20]: T(t) = Ta + (T0 – Ta)e–kt

By carrying out these steps, we have completely solved the ODE problem

symbolically, and we obtained the solution T(t) = Ta+(T0 − Ta)e−kt. The steps

involved in this process are straightforward, but applying the initial conditions and

solving for the undetermined integration constants can be slightly tedious, and it

is worthwhile to collect these steps in a reusable function. The following function

apply_ics is a basic implementation that generalizes these steps to a differential

equation of arbitrary order.

In [21]: def apply_ics(sol, ics, x, known_params):

 : """

 : Apply the initial conditions (ics), given as a dictionary on

 : the form ics = {y(0): y0, y(x).diff(x).subs(x, 0): yp0, ...},

 : to the solution of the ODE with independent variable x.

 : The undetermined integration constants C1, C2, ... are extracted

Chapter 9 Ordinary differential equatiOns

301

 : from the free symbols of the ODE solution, excluding symbols in

 : the known_params list.

 : """

 : free_params = sol.free_symbols - set(known_params)

 : eqs = [(sol.lhs.diff(x, n) - sol.rhs.diff(x, n))

.subs(x, 0).subs(ics) for n in range(len(ics))]

 : sol_params = sympy.solve(eqs, free_params)

 : return sol.subs(sol_params)

With this function, we can more conveniently single out a particular solution to

an ODE that satisfies a set of initial conditions, given the general solution to the same

ODE. For our previous example, we get

In [22]: ode_sol

Out[22]: T(t) = C1e–kt + Ta
In [23]: apply_ics(ode_sol, ics, t, [k, Ta])

Out[23]: T(t) = Ta + (T0 – Ta)e–kt

The example we looked at so far is almost trivial, but the same method can be used

to approach any ODE problem, although there is of course no guarantee that a solution

will be found. As an example of a slightly more complicated problem, consider the ODE

for a damped harmonic oscillator, which is a second-order ODE on the form

d x t

dt

dx t

dt
x t

2

2 0 0
22 0

()
+

()
+ () =gw w , where x(t) is the position of the oscillator at time t,

ω0 is the frequency for the undamped case, and γ is the damping ratio. We first define

the required symbols and construct the ODE and then ask SymPy to find the general

solution by calling sympy.dsolve:

In [24]: t, omega0, gamma= sympy.symbols("t, omega_0, gamma",

positive=True)

In [25]: x = sympy.Function("x")

In [26]: ode = x(t).diff(t, 2) + 2 * gamma * omega0 * x(t).diff(t) +

omega0**2 * x(t)

In [27]: sympy.Eq(ode)

Out[27]:
d x t

dt

dx t

dt
x t

2

2 0 0
22 0

()
+

()
+ () =gw w

In [28]: ode_sol = sympy.dsolve(ode)

Chapter 9 Ordinary differential equatiOns

302

In [29]: ode_sol

Out[29]: x t C e C e
t t

() = +
- - -() - + -()

1

1

2

10
2

0
2w g g w g g

Since this is a second-order ODE, there are two undetermined integration constants

in the general solution. We need to specify initial conditions for both the position x(0)

and the velocity
dx t

dt
t

()
=0

 to single out a particular solution to the ODE. To do this we

create a dictionary with these initial conditions and apply it to the general ODE solution

using apply_ics:

In [30]: ics = {x(0): 1, x(t).diff(t).subs(t, 0): 0}

In [31]: ics

Out[31]: x
dx t

dt
t

0 1 0
0

() ()ì
í
ï

îï

ü
ý
ï

þï=

: :,

In [32]: x_t_sol = apply_ics(ode_sol, ics, t, [omega0, gamma])

In [33]: x_t_sol

Out[33]: x t e e
t t

() = -
-

+
æ

è
çç

ö

ø
÷÷

+
-

+
æ

è
çç

ö

ø
÷÷

- - -()g

g

g

g

w g g w

2 1

1

2 2 1

1

22

1

2

0
2

0 -- + -()g g 2 1

This is the solution for the dynamics of the oscillator for arbitrary values of t, ω0,

and γ, where we used the initial condition x(0) = 1 and
dx t

dt
t

()
=

=0

0 . However,

substituting γ = 1, which corresponds to critical damping, directly into this expression

results in a division by zero error, and for this particular choice of γ, we need to be careful

and compute the limit where γ → 1.

In [34]: x_t_critical = sympy.limit(x_t_sol.rhs, gamma, 1)

In [35]: x_t_critical

Out[35]:
w

w
0 1

0

t

e t

+

Finally, we plot the solutions for ω0 = 2π and a sequence of different values of the

damping ratio γ:

In [36]: fig, ax = plt.subplots(figsize=(8, 4))

 ...: tt = np.linspace(0, 3, 250)

 ...: w0 = 2 * sympy.pi

 ...: for g in [0.1, 0.5, 1, 2.0, 5.0]:

 ...: if g == 1:

Chapter 9 Ordinary differential equatiOns

303

 ...: x_t = sympy.lambdify(t, x_t_critical.subs({omega0: w0}), 'numpy')

 ...: else:

 ...: x_t = sympy.lambdify(t, x_t_sol.rhs.subs({omega0: w0,

gamma: g}), 'numpy')

 ...: ax.plot(tt, x_t(tt).real, label=r"$\gamma = %.1f$" % g)

 ...: ax.set_xlabel(r"t", fontsize=18)

 ...: ax.set_ylabel(r"$x(t)$", fontsize=18)

 ...: ax.legend()

The solution to the ODE for the damped harmonic oscillator is graphed in

Figure 9-1. For γ < 1, the oscillator is underdamped, and we see oscillatory solutions. For

γ > 1 the oscillator is overdamped and decays monotonically. The crossover between

these two behaviors occurs at the critical damping ratio γ = 1.

The two examples of ODEs we have looked at so far could both be solved exactly

by analytical means, but this is far from always the case. Even many first-order ODEs

cannot be solved exactly in terms of elementary functions. For example, consider

dy x

dx
x y x

()
= + ()2 , which is an example of an ODE that does not have any closed-form

solution. If we try to solve this equation using sympy.dsolve, we obtain an approximate

solution, in the form of a power series:

In [37]: x = sympy.symbols("x")

In [38]: y = sympy.Function("y")

In [39]: f = y(x)**2 + x

Figure 9-1. Solutions to the ODE for a damped harmonic oscillator, for a sequence
of damping ratios

Chapter 9 Ordinary differential equatiOns

304

In [40]: sympy.Eq(y(x).diff(x), f)

Out[40]:
dy x

dx
x y x

()
= + ()2

In [41]: sympy.dsolve(y(x).diff(x) - f)

Out[41]: y x C C x C x
C

x
C

C x

C C

() = + + +() + + +()

+ +()+

1 1 1
2 1 3 1

1
4

1
2

1

1

2
2 1

7

6 12
5

1

60
45 220 31

5 6C x x+() + ()

For many other types of equations, SymPy outright fails to produce any solution at

all. For example, if we attempt to solve the second-order ODE
d y x

dx
x y x

2

2

2()
= + () ,

we obtain the following error message:

In [42]: sympy.Eq(y(x).diff(x, x), f)

Out[42]:
d y x

dx
x y x

2

2

2()
= + ()

In [43]: sympy.dsolve(y(x).diff(x, x) - f)

...

NotImplementedError: solve: Cannot solve -x - y(x)**2 + Derivative(y(x), x, x)

This type of result can mean that there actually is no analytical solution to the ODE

or, just as likely, simply that SymPy is unable to handle it.

The dsolve function accepts many optional arguments, and it can frequently make a

difference if the solver is guided by giving hints about which methods should be used to

solve the ODE problem at hand. See the docstring for sympy.dsolve for more information

about the available options.

 Direction Fields
A direction field graph is a simple but useful technique to visualize possible solutions

to arbitrary first-order ODEs. It is made up of short lines that show the slope of the

unknown function on a grid in the x–y plane. This graph can be easily produced

because the slope of y(x) at arbitrary points of the x–y plane is given by the definition

of the ODE:
dy x

dx
f x y x

()
= ()(), . That is, we only need to iterate over the x and y values

on the coordinate grid of interest and evaluate f (x, y(x)) to know the slope of y(x) at that

point. The reason why the direction field graph is useful is that smooth and continuous

Chapter 9 Ordinary differential equatiOns

305

curves that tangent the slope lines (at every point) in the direction field graph are possible

solutions to the ODE.

The following function plot_direction_field produces a direction field graph for a

first-order ODE, given the independent variable x, the unknown function y(x), and the

right-hand side function f(x, y(x)). It also takes optional ranges for the x and y axes (x_lim

and y_lim, respectively) and an optional Matplotlib axis instance to draw the graph on.

 In [44]: def plot_direction_field(x, y_x, f_xy, x_lim=(-5, 5),

y_lim=(-5, 5), ax=None):

 ...: f_np = sympy.lambdify((x, y_x), f_xy, 'numpy')

 ...: x_vec = np.linspace(x_lim[0], x_lim[1], 20)

 ...: y_vec = np.linspace(y_lim[0], y_lim[1], 20)

 ...:

 ...: if ax is None:

 ...: _, ax = plt.subplots(figsize=(4, 4))

 ...:

 ...: dx = x_vec[1] - x_vec[0]

 ...: dy = y_vec[1] - y_vec[0]

 ...:

 ...: for m, xx in enumerate(x_vec):

 ...: for n, yy in enumerate(y_vec):

 ...: Dy = f_np(xx, yy) * dx

 ...: Dx = 0.8 * dx**2 / np.sqrt(dx**2 + Dy**2)

 ...: Dy = 0.8 * Dy*dy / np.sqrt(dx**2 + Dy**2)

 ...: ax.plot([xx - Dx/2, xx + Dx/2],

 ...: [yy - Dy/2, yy + Dy/2], 'b', lw=0.5)

 ...: ax.axis('tight')

 ...: ax.set_title(r"$%s$" %

 ...: (sympy.latex(sympy.Eq(y(x).diff(x), f_xy))),

 ...: fontsize=18)

 ...: return ax

With this function we can produce the direction field graphs for the ODEs on the

form
dy x

dx
f x y x

()
= ()(), . For example, the following code generates the direction field

graphs for f (x, y(x)) = y(x)2+x, f (x, y(x)) = − x/y(x), and f (x, y(x)) = y(x)2/x. The result is

shown in Figure 9-2.

Chapter 9 Ordinary differential equatiOns

306

In [45]: x = sympy.symbols("x")

In [46]: y = sympy.Function("y")

In [47]: fig, axes = plt.subplots(1, 3, figsize=(12, 4))

 ...: plot_direction_field(x, y(x), y(x)**2 + x, ax=axes[0])

 ...: plot_direction_field(x, y(x), -x / y(x), ax=axes[1])

 ...: plot_direction_field(x, y(x), y(x)**2 / x, ax=axes[2])

Figure 9-2. Direction fields for three first-order differential equations

The direction lines in the graphs in Figure 9-2 suggest how the curves that are

solutions to the corresponding ODE behave, and direction field graphs are therefore

a useful tool for visualizing solutions to ODEs that cannot be solved analytically. To

illustrate this point, consider again the ODE
dy x

dx
x y x

()
= + ()2 with the initial condition

y(0) = 0, which we previously saw can be solved inexactly as an approximate power

series. Like before, we solve this problem again by defining the symbol x and the

function y(x), which we in turn use to construct and display the ODE:

In [48]: x = sympy.symbols("x")

In [49]: y = sympy.Function("y")

In [50]: f = y(x)**2 + x

In [51]: sympy.Eq(y(x).diff(x), f)

Out[51]:
dy x

dx
x y x

()
= + ()2

Chapter 9 Ordinary differential equatiOns

307

Now we want to find the specific power-series solution that satisfies the initial

condition, and for this problem, we can specify the initial condition directly using the ics

keyword argument to the dsolve function1:

In [52]: ics = {y(0): 0}

In [53]: ode_sol = sympy.dsolve(y(x).diff(x) - f, ics=ics)

In [54]: ode_sol

Out[54]: y x
x x

x() = + + ()
2 5

6

2 20

Plotting the solution together with the direction field for the ODE is a quick and

simple way to get an idea of the validity range of the power-series approximation. The

following code plots the approximate solution and the direction field (Figure 9-3, left

panel). A solution with extended validity range is also obtained by repeatedly solving the

ODE with initial conditions at increasing values of x, taken from a previous power-series

solution (Figure 9-3, right panel).

In [55]: fig, axes = plt.subplots(1, 2, figsize=(8, 4))

 ...: # left panel

 ...: plot_direction_field(x, y(x), f, ax=axes[0])

 ...: x_vec = np.linspace(-3, 3, 100)

 ...: axes[0].plot(x_vec, sympy.lambdify(x, ode_sol.rhs.removeO())

(x_vec), 'b', lw=2)

 ...: axes[0].set_ylim(-5, 5)

 ...:

 ...: # right panel

 ...: plot_direction_field(x, y(x), f, ax=axes[1])

 ...: x_vec = np.linspace(-1, 1, 100)

 ...: axes[1].plot(x_vec, sympy.lambdify(x, ode_sol.rhs.removeO())

(x_vec), 'b', lw=2)

 ...: # iteratively resolve the ODE with updated initial conditions

 ...: ode_sol_m = ode_sol_p = ode_sol

 ...: dx = 0.125

 ...: # positive x

1 In the current version of SymPy, the ics keyword argument is only recognized by the power-
series solver in dsolve. Solvers for other types of ODEs ignore the ics argument and hence the
need for the apply_ics function we defined and used earlier in this chapter.

Chapter 9 Ordinary differential equatiOns

308

 ...: for x0 in np.arange(1, 2., dx):

 ...: x_vec = np.linspace(x0, x0 + dx, 100)

 ...: ics = {y(x0): ode_sol_p.rhs.removeO().subs(x, x0)}

 ...: ode_sol_p = sympy.dsolve(y(x).diff(x) - f, ics=ics, n=6)

 ...: axes[1].plot(x_vec, sympy.lambdify(x, ode_sol_p.rhs.removeO())

(x_vec), 'r', lw=2)

 ...: # negative x

 ...: for x0 in np.arange(-1, -5, -dx):

 ...: x_vec = np.linspace(x0, x0 - dx, 100)

 ...: ics = {y(x0): ode_sol_m.rhs.removeO().subs(x, x0)}

 ...: ode_sol_m = sympy.dsolve(y(x).diff(x) - f, ics=ics, n=6)

 ...: axes[1].plot(x_vec, sympy.lambdify(x, ode_sol_m.rhs.removeO())

(x_vec), 'r', lw=2)

In the left panel of Figure 9-3, we see that the approximate solution curve aligns well

with the direction field lines near x = 0 but starts to deviate for ∣x ∣ ≳ 1, suggesting that

the approximate solution is no longer valid. The solution curve shown in the right panel

aligns better with the direction field throughout the plotted range. The blue (dark gray)

curve segment is the original approximate solution, and the red (light gray) curves are

continuations obtained from resolving the ODE with an initial condition sequence that

starts where the blue (dark gray) curves end.

Figure 9-3. Direction field graph of the ODE
dy x

dx
y x x

()
= () +2

, with the fifth-

order power-series solutions around x = 0 (left), and consecutive power-series
expansions around x between −5 and 2, with a 0.125 spacing (right)

Chapter 9 Ordinary differential equatiOns

309

 Solving ODEs Using Laplace Transformations
An alternative to solving ODEs symbolically with SymPy’s “black-box” solver2 dsolve

is to use the symbolic capabilities of SymPy to assist in a more manual approach to

solving ODEs. A technique that can be used to solve certain ODE problems is to Laplace

transform the ODE, which for many problems results in an algebraic equation that is

easier to solve. The solution to the algebraic equation can then be transformed back

to the original domain with an inverse Laplace transform, to obtain the solution to the

original problem. The key to this method is that the Laplace transform of the derivative

of a function is an algebraic expression in the Laplace transform of the function itself:

 ¢()éë ùû = ()éë ùû ()y t s y t y– 0 . However, while SymPy is good at Laplace transforming many

types of elementary functions, it does not recognize how to transform derivatives of an

unknown function. But defining a function that performs this task easily amends this

shortcoming.

For example, consider the following differential equation for a driven harmonic

oscillator:

d

dt
y t

d

dt
y t y t t

2

2
2 10 2 3()+ ()+ () = sin .

To work with this ODE, we first create SymPy symbols for the independent variable

t and the function y(t) and then use them to construct the symbolic expression for the

ODE:

In [56]: t = sympy.symbols("t", positive=True)

In [57]: y = sympy.Function("y")

In [58]: ode = y(t).diff(t, 2) + 2 * y(t).diff(t) + 10 * y(t) - 2 * sympy.

sin(3*t)

In [59]: sympy.Eq(ode)

Out[59]: 10 2 3 2 0
2

2
y t t

d

dt
y t

d

dt
y t()- ()+ ()+ () =sin

2 Or “white-box” solver, since SymPy is open source and the inner workings of dsolve are readily
available for inspection.

Chapter 9 Ordinary differential equatiOns

310

Laplace transforming this ODE should yield an algebraic equation. To pursue this

approach using SymPy and its function sympy.laplace_transform, we first need to create

a symbol s, to be used in the Laplace transformation. At this point we also create a

symbol Y for later use.

In [60]: s, Y = sympy.symbols("s, Y", real=True)

Next we proceed to Laplace transform the unknown function y(t), as well as the

entire ODE equation:

In [61]: L_y = sympy.laplace_transform(y(t), t, s)

In [62]: L_y

Out[62]: t y t s()éë ùû()

In [63]: L_ode = sympy.laplace_transform(ode, t, s, noconds=True)

In [64]: sympy.Eq(L_ode)

Out[64]: 10 2
62

2
 t t ty t s

d

dt
y t s

d

dt
y t s()éë ùû()+ ()é

ëê
ù
ûú
()+ ()é

ë
ê

ù

û
ú()-

ss2 9
0

+
=

When Laplace transforming the unknown function y(t), we get the

undetermined result t y t s()éë ùû() , which is to be expected. However, applying sympy.

laplace_transform on a derivative of y(t), such as
d

dt
y t() , results in the unevaluated

expression, t
d

dt
y t s()é

ëê
ù
ûú
() . This is not the desired result, and we need to work around

this issue to obtain the sought-after algebraic equation. The Laplace transformation of

the derivative of an unknown function has a well-known form that involves the Laplace

transform of the function itself, rather than its derivatives: for the nth derivative of a

function y(t), the formula is

 t

n

n
n

t
m

n
n m

m

m

d

dt
y t s s y t s s

d

dt
y t()é

ë
ê

ù

û
ú() = ()éë ùû()- (

=

-
- -å

0

1
1))

=t 0

.

By iterating through the SymPy expression tree for L_ode, and replacing the

occurrences of t
n

n

d

dt
y t s()é

ë
ê

ù

û
ú() with expressions of the form given by this formula,

Chapter 9 Ordinary differential equatiOns

311

we can obtain the algebraic form of the ODE that we seek. The following function takes

a Laplace- transformed ODE and performs the substitution of the unevaluated Laplace

transforms of the derivatives of y(t):

In [65]: def laplace_transform_derivatives(e):

 ...: """

 ...: Evaluate laplace transforms of derivatives of functions

 ...: """

 ...: if isinstance(e, sympy.LaplaceTransform):

 ...: if isinstance(e.args[0], sympy.Derivative):

 ...: d, t, s = e.args

 ...: n = len(d.args) - 1

 ...: return ((s**n) * sympy.LaplaceTransform(d.args[0], t, s) -

 ...: sum([s**(n-i) * sympy.diff(d.args[0], t, i-1).

subs(t, 0) for i in range(1, n+1)]))

 ...:

 ...: if isinstance(e, (sympy.Add, sympy.Mul)):

 ...: t = type(e)

 ...: return t(*[laplace_transform_derivatives(arg) for arg in

e.args])

 ...:

 ...: return e

Applying this function on the Laplace-transformed ODE equation, L_ode, yields:

In [66]: L_ode_2 = laplace_transform_derivatives(L_ode)

In [67]: sympy.Eq(L_ode_2)

Out[67]: s y t s s y t s sy

y t s y

t t

t

2 2 0

10 2 0

()éë ùû() + ()éë ùû() - ()

+ ()éë ùû() - ()) - () -
+

=
=

d

dt
y t

st 0
2

6

9
0

Chapter 9 Ordinary differential equatiOns

312

To simplify the notation, we now substitute the expression t y t s()éë ùû() for the

symbol Y:

In [68]: L_ode_3 = L_ode_2.subs(L_y, Y)

In [69]: sympy.Eq(L_ode_3)

Out[69]: s Y sY sy Y y
d

dt
y t

st

2

0
2

2 0 10 2 0
6

9
0+ - ()+ - ()- () -

+
=

=

At this point we need to specify the boundary conditions for the ODE problem.

Here we use y(0) = 1 and y’(t) = 0, and after creating a dictionary that contains these

boundary conditions, we use it to substitute the values into the Laplace-transformed

ODE equation:

In [70]: ics = {y(0): 1, y(t).diff(t).subs(t, 0): 0}

In [71]: ics

Out[71]: y
d

dt
y t

t

0 1 0
0

() ()ì
í
î

ü
ý
þ=

: :,

In [72]: L_ode_4 = L_ode_3.subs(ics)

In [73]: sympy.Eq(L_ode_4)

Out[74]: Ys Ys Y s
s

2
2

2 10 2
6

9
0+ + - - -

+
=

This is an algebraic equation that can be solved for Y:

In [75]: Y_sol = sympy.solve(L_ode_4, Y)

In [76]: Y_sol

Out[76]:
s s s

s s s s

3 2

4 3 2

2 9 24

2 19 18 90

+ + +
+ + + +

é

ë
ê

ù

û
ú

The result is a list of solutions, which in this case contains only one element.

Performing the inverse Laplace transformation on this expression gives the solution to

the original problem in the time domain:

In [77]: y_sol = sympy.inverse_laplace_transform(Y_sol[0], s, t)

In [78]: sympy.simplify(y_sol)

Out[78]:
1

111
6 3 6 3 43 3 147 3

e
t t e t t

t
tsin cos sin cos-() + +()

Chapter 9 Ordinary differential equatiOns

313

This technique of Laplace transforming an ODE, solving the corresponding algebraic

equation, and inverse Laplace transforming the result to obtain the solution to the

original problem can be applied to solve many important ODE problems that arise in,

for example, electrical engineering and process control applications. Although these

problems can be solved by hand with the help of Laplace transformation tables, using

SymPy has the potential of significantly simplifying the process.

 Numerical Methods for Solving ODEs
While some ODE problems can be solved with analytical methods, as we have seen in

the examples in the previous sections, it is much more common with ODE problems that

cannot be solved analytically. In practice, ODE problems are therefore mainly solved

with numerical methods. There are many approaches to solving ODEs numerically, and

most of them are designed for problems that are formulated as a system of first-order

ODEs on the standard form3
d x

dx
f x x

y
y

()
= ()(), , where y(x) is a vector of unknown

functions of x. SciPy provides functions for solving this kind of problems, but before we

explore how to use those functions, we briefly review the fundamental concepts and

introduce the terminology used for the numerical integration of ODE problems.

The basic idea of many numerical methods for ODEs is captured in Euler method.

This method can, for example, be derived from a Taylor series expansion of y(x) around

the point x

y x h y x

dy x

dx
h

d y x

dx
h+() = ()+ ()

+
()

+¼
1

2

2

2
2 ,

where for notational simplicity, we consider the case when y(x) is a scalar function.

By dropping terms of second order or higher, we get the approximate equation

y(x+h) ≈ y(x)+f (x, y(x))h, which is accurate to first order in the stepsize h. This equation

can be turned into an iteration formula by discretizing the x variables, x0, x1, …, xk,

choosing the stepsize hk = xk+1 − xk, and denoting yk = y(xk). The resulting iteration

formula yk+1 ≈ yk+f (xk, yk)hk is known as the forward Euler method, and it is said to be an

explicit form because given the value of the yk, we can directly compute yk+1 using the

3 Recall that any ODE problem can be written as a system of first-order ODEs on this standard
form.

Chapter 9 Ordinary differential equatiOns

314

formula. The goal of the numerical solution of an initial value problem is to compute

y(x) at some points xn, given the initial condition y(x0) = y0. An iteration formula like the

forward Euler method can therefore be used to compute successive values of yk, starting

from y0. There are two types of errors involved in this approach: First, the truncation of

the Taylor series gives an error that limits the accuracy of the method. Second, using

the approximation of yk given by the previous iteration when computing yk+1 gives an

additional error that may accumulate over successive iterations and that can affect the

stability of the method.

An alternative form, which can be derived in a similar manner, is the backward Euler

method, given by the iteration formula yk+1 ≈ yk+f(xk+1, yk+1)hk. This is an example of a

backward differentiation formula (BDF), which is implicit, because yk+1 occurs on both

sides of the equation. To compute yk+1, we therefore need to solve an algebraic equation

(e.g., using Newton’s method, see Chapter 5). Implicit methods are more complicated to

implement than explicit methods, and each iteration requires more computational work.

However, the advantage is that implicit methods generally have larger stability region

and better accuracy, which means that larger stepsize hk can be used while still obtaining

an accurate and stable solution. Whether explicit or implicit methods are more efficient

depends on the particular problem that is being solved. Implicit methods are often

particularly useful for stiff problems, which loosely speaking are ODE problems that

describe dynamics with multiple disparate timescales (e.g., dynamics that includes both

fast and slow oscillations).

There are several methods to improve upon the first-order Euler forward and

backward methods. One strategy is to keep higher-order terms in the Taylor series

expansion of y(x+h), which gives higher-order iteration formulas that can have better

accuracy, such as the second-order method y y x f x y h y x hk k k k k k k+ + +» () + () + ¢¢()1 1 1
21

2
, .

However, such methods require evaluating higher-order derivatives of y(x), which may

be a problem if f (x, y(x)) is not known in advance (and not given in symbolic form).

Ways around this problem include approximating the higher-order derivatives using

finite-difference approximations of the derivatives or sampling the function f (x, y(x))

at intermediary points in the interval [xk, xk+1]. An example of this type of method is the

well-known Runge-Kutta method, which is a single-step method that uses additional

evaluations of f (x, y(x)). The most well-known Runge-Kutta method is the fourth-order

scheme

y y k k k kk k+ = + + + +()1 1 2 3 4

1

6
2 2 ,

Chapter 9 Ordinary differential equatiOns

315

where

k f t y hk k k1 = (), ,

k f t

h
y

k
hk

k
k k2

1

2 2
= + +æ

è
ç

ö
ø
÷, ,

k f t

h
y

k
hk

k
k k3

2

2 2
= + +æ

è
ç

ö
ø
÷, ,

k f t h y k hk k k k4 3= + +(), .

Here, k1 to k4 are four different evaluations of the ODE function f(x, y(x)) that are used

in the explicit formula for yk+1 given in the preceding text. The resulting estimate of yk+1 is

accurate to fourth order, with an error of fifth order. Higher-order schemes that use more

function evaluations can also be constructed. By combining two methods of different

orders, it can be possible to also estimate the error in the approximation. A popular

combination is the Runge-Kutta fourth- and fifth-order schemes, which results in a

fourth-order accurate method with error estimates. It is known as RK45 or the Runge-

Kutta-Fehlberg method. The Dormand-Prince method is another example of a higher-

order method, which additionally uses adaptive stepsize control. For example, the 8-5-3

method combines third- and fifth-order schemes to produce an eighth-order method.

An implementation of this method is available in SciPy, which we will see in the next

section.

An alternative method is to use more than one previous value of yk to compute yk+1.

Such methods are known as multistep methods and can in general be written in the form

y a y h b f x yk s

n

s

n k n
n

s

n k n k n+
=

-

+
=

+ += + ()å å
0

1

0
, .

With this formula, to compute yk+s, the previous s values of yk and f (xk, yk) are used

(known as an s-step method). The choices of the coefficients an and bn give rise to

different multistep methods. Note that if bs = 0, then the method is explicit, and if bs ≠ 0,

it is implicit.

For example, b0 = b1 = … = bs − 1 = 0 gives the general formula for an s-step BDF

formula, where an and bn are chosen to maximize the order of the accuracy by requiring

that the method is exact for polynomials up to as high order as possible. This gives an

equation system that can be solved for the unknown coefficients an and bn. For example,

Chapter 9 Ordinary differential equatiOns

316

the one-step BDF method with b1 = a0 = 1 reduces to the backward Euler method, yk+1 =

yk+hf (xk+1, yk+1), and the two-step BDF method, yk+2 = a0yk+a1yk+1+hb2f (xk+2, yk+2), when

solved for the coefficients (a0, a1, and b2), becomes y y y hf x yk k k k k+ + + += - + + ()2 1 2 2

1

3

4

3

2

3 , .

Higher- order BDF methods can also be constructed. SciPy provides a BDF solver that is

recommended for stiff problems, because of its good stability properties.

Another family of multistep methods is the Adams methods, which result

from the choice a0 = a1 = … = as − 2 = 0 and as − 1 = 1, where again the remaining

unknown coefficients are chosen to maximize the order of the method. Specifically,

the explicit methods with bs = 0 are known as Adams-Bashforth methods, and the

implicit methods with bs ≠ 0 are known as Adams-Moulton methods. For example, the

one-step Adams-Bashforth and Adams-Moulton methods reduce to the forward and

backward Euler methods, respectively, and the two-step methods are

y y h f x y f x yk k k k k k+ + + += + - ()+ ()æ
è
ç

ö
ø
÷2 1 1 1

1

2

3

2, , and y y h f x y f x yk k k k k k+ + += + ()+ ()()1 1 1

1

2 , , ,

respectively. Higher-order explicit and implicit methods can also be constructed in this

way. Solvers using these Adams methods are also available in SciPy.

In general explicit methods are more convenient to implement and less

computational demanding to iterate than implicit methods, which in principle requires

solving (a potentially nonlinear) equation in each iteration with an initial guess for

the unknown yk+1. However, as mentioned earlier, implicit methods often are more

accurate and have superior stability properties. A compromise that retains some of the

advantages of both methods is to combine explicit and implicit methods in the following

way: first compute yk+1 using an explicit method, and then use this yk+1 as an initial guess

for solving the equation for yk+1 given by an implicit method. This equation does not

need to be solved exactly, and since the initial guess from the explicit method should be

quite good, it could be sufficient with a small number of iterations, using, for example,

Newton’s method. Methods like these, where the result from an explicit method is

used to predict yk+1 and an implicit method is used to correct the prediction, are called

predictor- corrector methods.

Finally, an important technique that is employed by many advanced ODE solvers

is adaptive stepsize or stepsize control: the accuracy and stability of an ODE are strongly

related to the stepsize hk used in the iteration formula for an ODE method, and so is the

computational cost of the solution. If the error in yk+1 can be estimated together with the

computation of yk+1 itself, then it is possible to automatically adjust the stepsize hk so that

the solver uses large economical stepsizes when possible and smaller stepsizes when

Chapter 9 Ordinary differential equatiOns

317

required. A related technique, which is possible with some methods, is to automatically

adjust the order of the method, so that a lower-order method is used when possible and

a higher-order method is used when necessary. The Adams methods are examples of

methods where the order can be changed easily.

There exist a vast variety of high-quality implementations of ODE solvers, and rarely

should it be necessary to reimplement any of the methods discussed here. In fact, doing

so would probably be a mistake, unless it is for educational purposes or if one’s primary

interest is research on methods for numerical ODE solving. For practical purposes, it is

advisable to use one of the many highly tuned and thoroughly tested ODE suites that

already exist, most of which are available for free and as open source and packaged into

libraries such as SciPy. However, there are a large number of solvers to choose from, and

to be able to make an informed decision on which one to use for a particular problem,

and to understand many of their options, it is important to be familiar with the basic

ideas and methods and the terminology that is used to discuss them.

 Numerical Integration of ODEs Using SciPy
After the review of numerical methods for solving ODEs given in the previous section,

we are now ready to explore the ODE solvers that are available in SciPy and how to use

them. The integrate module of SciPy provides two ODE solver interfaces: integrate.

odeint and integrate.ode. The odeint function is an interface to the LSODA solver

from ODEPACK,4 which automatically switches between an Adams predictor-corrector

method for nonstiff problems and a BDF method for stiff problems. In contrast, the

integrate.ode class provides an object-oriented interface to a number of different

solvers: the VODE and ZVODE solvers5 (ZVODE is a variant of VODE for complex-valued

functions), the LSODA solver, and dopri5 and dop853 which are fourth- and eighth-

order Dormand-Prince methods (i.e., types of Runge-Kutta methods) with adaptive

stepsize. While the object-oriented interface provided by integrate.ode is more

flexible, the odeint function is in many cases simpler and more convenient to use. In the

following we look at both these interfaces, starting with the odeint function.

4 More information about ODEPACK is available at http://computation.llnl.gov/casc/
odepack.

5 The VODE and ZVODE solvers are available at netlib: http://www.netlib.org/ode.

Chapter 9 Ordinary differential equatiOns

http://computation.llnl.gov/casc/odepack
http://computation.llnl.gov/casc/odepack
http://www.netlib.org/ode

318

The odeint function takes three mandatory arguments: a function for evaluating the

right-hand side of the ODE on the standard form, an array (or scalar) that specifies the

initial condition for the unknown functions, and an array with values of the independent

variable where an unknown function is to be computed. The function for the right-hand

side of the ODE takes two mandatory arguments and an arbitrary number of optional

arguments. The required arguments are the array (or scalar) for the vector y(x) as first

argument and the value of x as second argument. For example, consider again the scalar

ODE y′(x) = f (x, y(x)) = x+y(x)2. To be able to plot the direction field for this ODE again,

this time together with a specific solution obtained by numerical integration using

odeint, we first define the SymPy symbols required to construct a symbolic expression

for f (x, y(x)):

In [79]: x = sympy.symbols("x")

In [80]: y = sympy.Function("y")

In [81]: f = y(x)**2 + x

To be able to solve this ODE with SciPy’s odeint, we first and foremost need to define

a Python function for f (x, y(x)) that takes Python scalars or NumPy arrays as input. From

the SymPy expression f, we can generate such a function using sympy.lambdify with the

'numpy' argument6:

In [82]: f_np = sympy.lambdify((y(x), x), f)

Next we need to define the initial value y0 and a NumPy array with the discrete

values of x for which to compute the function y(x). Here we solve the ODE starting at

x = 0 in both the positive and negative directions, using the NumPy arrays xp and xm,

respectively. Note that to solve the ODE in the negative direction, we only need to create

a NumPy array with negative increments. Now that we have set up the ODE function

f_np, initial value y0, and array of x coordination, for example, xp, we can integrate the

ODE problem by calling integrate.odeint(f_np, y0, xp):

In [83]: y0 = 0

In [84]: xp = np.linspace(0, 1.9, 100)

In [85]: yp = integrate.odeint(f_np, y0, xp)

6 In this particular case, with a scalar ODE, we could also use the 'math' argument, which
produces a scalar function using functions from the standard math library, but more frequently
we will need array-aware functions, which we obtain by using the 'numpy' argument to sympy.
lambdify.

Chapter 9 Ordinary differential equatiOns

319

In [86]: xm = np.linspace(0, -5, 100)

In [87]: ym = integrate.odeint(f_np, y0, xm)

The results are two one-dimensional NumPy arrays ym and yp, of the same length

as the corresponding coordinate arrays xm and xp (i.e., 100), which contain the solution

to the ODE problem at the specified points. To visualize the solution, we next plot the

ym and yp arrays together with the direction field for the ODE. The result is shown in

Figure 9-4. It is apparent that the solution aligns with (tangents) the lines in the direction

field at every point in the graph, as expected.

In [88]: fig, ax = plt.subplots(1, 1, figsize=(4, 4))

 ...: plot_direction_field(x, y(x), f, ax=ax)

 ...: ax.plot(xm, ym, 'b', lw=2)

 ...: ax.plot(xp, yp, 'r', lw=2)

In the previous example, we solved a scalar ODE problem. More often we are

interested in vector-valued ODE problems (systems of ODEs). To see how we can solve

that kind of problems using odeint, consider the Lotka-Volterra equations for the

dynamics of a population of predator and prey animals (a classic example of coupled

ODEs). The equations are x′(t) = ax − bxy and y′(t) = cxy − dy, where x(t) is the number

of prey animals and y(t) is the number of predator animals, and the coefficients a, b, c,

Figure 9-4. The direction field of the ODE y′(x) = x+y(x)2 and the specific solution
that satisfies y(0) = 0

Chapter 9 Ordinary differential equatiOns

320

and d describe the rates of the processes in the model. For example, a is the rate at which

prey animals are born, and d is the rate at which predators die. The b and c coefficients

are the rates at which predators consume prey and the rate at which the predator

population grows at the expense of the prey population, respectively. Note that this is a

nonlinear system of ODEs, because of the xy terms.

To solve this problem with odeint, we first need to write a function for the right-hand

side of the ODE in vector form. For this case we have f(t, [x, y]T) = [ax − bxy, cxy − dy]T,

which we can implement as a Python function in the following way:

In [89]: a, b, c, d = 0.4, 0.002, 0.001, 0.7

In [90]: def f(xy, t):

 ...: x, y = xy

 ...: return [a * x - b * x * y, c * x * y - d * y]

Here we have also defined variables and values for the coefficients a, b, c, and d.

Note that here the first argument of the ODE function f is an array containing the current

values of x(t) and y(t). For convenience, we first unpack these variables into separate

variables x and y, which makes the rest of the function easier to read. The return value

of the function should be an array, or list, that contains the values of the derivatives of

x(t) and y(t). The function f must also take the argument t, with the current value of the

independent coordinate. However, t is not used in this example. Once the f function is

defined, we also need to define an array xy0 with the initial values x(0) and y(0) and an

array t for the points at which we wish to compute the solution to the ODE. Here we use

the initial conditions x(0) = 600 and y(0) = 400, which corresponds to 600 prey animals

and 400 predators at the beginning of the simulation.

In [91]: xy0 = [600, 400]

In [92]: t = np.linspace(0, 50, 250)

In [93]: xy_t = integrate.odeint(f, xy0, t)

In [94]: xy_t.shape

Out[94]: (250,2)

Calling integrate.odeint(f, xy0, t) integrates the ODE problem and returns an

array of shape (250, 2), which contains x(t) and y(t) for each of the 250 values in t. The

following code plots the solution as a function of time and in phase space. The result is

shown in Figure 9-5.

Chapter 9 Ordinary differential equatiOns

321

In [95]: fig, axes = plt.subplots(1, 2, figsize=(8, 4))

 ...: axes[0].plot(t, xy_t[:,0], 'r', label="Prey")

 ...: axes[0].plot(t, xy_t[:,1], 'b', label="Predator")

 ...: axes[0].set_xlabel("Time")

 ...: axes[0].set_ylabel("Number of animals")

 ...: axes[0].legend()

 ...: axes[1].plot(xy_t[:,0], xy_t[:,1], 'k')

 ...: axes[1].set_xlabel("Number of prey")

 ...: axes[1].set_ylabel("Number of predators")

In the previous two examples, the function for the right-hand side of the ODE was

implemented without additional arguments. In the example with the Lotka-Volterra

equation, the function f used globally defined coefficient variables. Rather than using

global variables, it is often convenient and elegant to implement the f function in such

a way that it takes arguments for all its coefficient or parameters. To illustrate this point,

let’s consider another famous ODE problem: the Lorenz equations, which are the

following system of three coupled nonlinear ODEs, x′(t) = σ(y − x), y′(t) = x(ρ − z) − y,

and z′(t) = xy − βz. These equations are known for their chaotic solutions, which

sensitively depend on the values of the parameters σ, ρ, and β. If we wish to solve these

equations for different values of these parameters, it is useful to write the ODE function

so that it additionally takes the values of these variables as arguments. In the following

Figure 9-5. A solution to the Lotka-Volterra ODE for predator-prey populations,
as a function of time (left) and in phase space (right)

Chapter 9 Ordinary differential equatiOns

322

implementation of f, the three arguments sigma, rho, and beta, for the correspondingly

named parameters, have been added after the mandatory y(t) and t arguments:

In [96]: def f(xyz, t, sigma, rho, beta):

 ...: x, y, z = xyz

 ...: return [sigma * (y - x),

 ...: x * (rho - z) - y,

 ...: x * y - beta * z]

Next, we define variables with specific values of the parameters, the array with t

values to compute the solution for, and the initial conditions for the functions x(t), y(t),

and z(t).

In [97]: sigma, rho, beta = 8, 28, 8/3.0

In [98]: t = np.linspace(0, 25, 10000)

In [99]: xyz0 = [1.0, 1.0, 1.0]

This time when we call integrate.odeint, we need to also specify the args

argument, which needs to be a list, tuple, or array with the same number of elements

as the number of additional arguments in the f function we defined in the preceding

section. In this case there are three parameters, and we pass a tuple with the values

of these parameters via the args argument when calling integrate.odeint. In the

following we solve the ODE for three different sets of parameters (but the same initial

conditions).

In [100]: xyz1 = integrate.odeint(f, xyz0, t, args=(sigma, rho, beta))

In [101]: xyz2 = integrate.odeint(f, xyz0, t, args=(sigma, rho, 0.6*beta))

In [102]: xyz3 = integrate.odeint(f, xyz0, t, args=(2*sigma, rho, 0.6*beta))

The solutions are stored in the NumPy arrays xyz1, xyz2, and xyz3. In this case these

arrays have the shape (10000, 3), because the t array have 10000 elements and there

are three unknown functions in the ODE problem. The three solutions are plotted in 3D

graphs in the following code, and the result is shown in Figure 9-6. With small changes in

the system parameters, the resulting solutions can vary greatly.

In [103]: from mpl_toolkits.mplot3d.axes3d import Axes3D

In [104]: fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(12, 4),

 ...: subplot_kw={'projection':'3d'})

Chapter 9 Ordinary differential equatiOns

323

 ...: for ax, xyz, c in [(ax1, xyz1, 'r'), (ax2, xyz2, 'b'),

(ax3, xyz3, 'g')]:

 ...: ax.plot(xyz[:,0], xyz[:,1], xyz[:,2], c, alpha=0.5)

 ...: ax.set_xlabel('x', fontsize=16)

 ...: ax.set_ylabel('y', fontsize=16)

 ...: ax.set_zlabel('z', fontsize=16)

 ...: ax.set_xticks([-15, 0, 15])

 ...: ax.set_yticks([-20, 0, 20])

 ...: ax.set_zticks([0, 20, 40])

The three examples we have looked at so far all use the odeint solver. This function

takes a large number of optional arguments that can be used to fine-tune the solver,

including options for the maximum number of allowed steps (hmax) and the maximum

order for the Adams (mxordn) and BDF (mxords) methods, just to mention a few. See the

docstring of odeint for further information.

Figure 9-6. The dynamics for the Lorenz ODE, for three different sets of
parameters

The alternative to odeint in SciPy is the object-oriented interface provided by the

integrate.ode class. Like with the odeint function, to use the integrate.ode class, we

first need to define the right-hand side function for the ODE and define the initial state

array and an array for the values of the independent variable at which we want to compute

the solution. However, one small but important difference is that while the function for

f (x, y(x)) to be used with odeint had to have the function signature f(y, x, ...), the

corresponding function to be used with integrate.ode must have the function signature

f(x, y, ...) (i.e., the order of x and y is reversed).

Chapter 9 Ordinary differential equatiOns

324

The integrate.ode class can work with a collection of different solvers, and it has

specific options for each solver. The docstring of integrate.ode describes the available

solvers and their options. To illustrate how to use the integrate.ode interface, we first

look at the following sets of coupled second-order ODEs:

m x t x t k x k x x11 1 1 1 2 2 11 0¢¢() + ¢ () + - -() =g ,

m x t x t k x x2 22 2 2 2 1 0¢¢ () + ¢ () + -() =g .

These equations describe the dynamics of two coupled springs, where x1(t) and x2(t)

are the displacements of two objects, with masses m1 and m2, from their equilibrium

positions. The object at x1 is connected to a fixed wall via a spring with spring constant

k1 and connected to the object at x2 via a spring with spring constant k2. Both objects

are subject to damping forces characterized by γ1 and γ2, respectively. To solve this kind

of problem with SciPy, we first have to write it in standard form, which we can do by

introducing y0(t) = x1(t), y t x t11 () = ¢ () , y2(t) = x2(t), and y t x t23 () = ¢ () , which results in

four coupled first-order equations:

d

dt

y t

y t

y t

y t

f t, t

y t

y
0

1

2

3

1

1 1

()
()
()
()

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

= ()() =
()

-
y

g tt k y t k y t k y t m

y t

y t k y t k y

()- ()- ()+ ()()
()

- ()- ()+

1 0 2 0 2 2 1

3

2 3 2 2 2

/

g 00 2t m()()

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú/

The first task is to write a Python function that implements the function f(t, y(t)),

which also takes the problem parameters as additional arguments. In the following

implementation, we bunch all the parameter into a tuple that is passed to the function as

a single argument and unpack on the first line of the function body:

In [105]: def f(t, y, args):

 ...: m1, k1, g1, m2, k2, g2 = args

 ...: return [y[1], - k1/m1 * y[0] + k2/m1 * (y[2] - y[0]) -

g1/m1 * y[1],

 ...: y[3], - k2/m2 * (y[2] - y[0]) - g2/m2 * y[3]]

The return value of the function f is a list of length 4, whose elements are the

derivatives of the ODE functions y0(t) to y3(t). Next we create variables with specific

values for the parameters and pack them into a tuple args that can be passed to the

Chapter 9 Ordinary differential equatiOns

325

function f. Like before, we also need to create arrays for the initial condition y0 and for

the t values that we want to compute the solution to the ODE, t.

In [106]: m1, k1, g1 = 1.0, 10.0, 0.5

In [107]: m2, k2, g2 = 2.0, 40.0, 0.25

In [108]: args = (m1, k1, g1, m2, k2, g2)

In [109]: y0 = [1.0, 0, 0.5, 0]

In [110]: t = np.linspace(0, 20, 1000)

The main difference between using integrate.odeint and integrate.ode starts at

this point. Instead of calling the odeint function, we now need to create an instance of

the class integrate.ode, passing the ODE function f as an argument:

In [111]: r = integrate.ode(f)

Here we store the resulting solver instance in the variable r. Before we can start

using it, we need to configure some of its properties. At a minimum, we need to set the

initial state using the set_initial_value method, and if the function f takes additional

arguments, we need to configure those using the set_f_params method. We can

also select solver using set_integrator method, which accepts the following solver

names as the first argument: vode, zvode, lsoda, dopri5, and dop853. Each solver takes

additional optional arguments. See the docstring for integrate.ode for details. Here we

use the LSODA solver and set the initial state and the parameters to the function f:

In [112]: r.set_integrator('lsoda');

In [113]: r.set_initial_value(y0, t[0]);

In [114]: r.set_f_params(args);

Once the solver is created and configured, we can start solving the ODE step by step

by calling r.integrate method, and the status of the integration can be queried using the

method r.successful (which returns True as long as the integration is proceeding fine). We

need to keep track of which point to integrate to, and we need to store results by ourselves:

In [115]: dt = t[1] - t[0]

 ...: y = np.zeros((len(t), len(y0)))

 ...: idx = 0

 ...: while r.successful() and r.t < t[-1]:

 ...: y[idx, :] = r.y

 ...: r.integrate(r.t + dt)

 ...: idx += 1

Chapter 9 Ordinary differential equatiOns

326

This is arguably not as convenient as simply calling the odeint, but it offers extra

flexibility that sometimes is exactly what is needed. In this example we stored the

solution in the array y for each corresponding element in t, which is similar to what

odeint would have returned. The following code plots the solution, and the result is

shown in Figure 9-7.

In [116]: fig = plt.figure(figsize=(10, 4))

 ...: ax1 = plt.subplot2grid((2, 5), (0, 0), colspan=3)

 ...: ax2 = plt.subplot2grid((2, 5), (1, 0), colspan=3)

 ...: ax3 = plt.subplot2grid((2, 5), (0, 3), colspan=2, rowspan=2)

 ...: # x_1 vs time plot

 ...: ax1.plot(t, y[:, 0], 'r')

 ...: ax1.set_ylabel('x_1', fontsize=18)

 ...: ax1.set_yticks([-1, -.5, 0, .5, 1])

 ...: # x2 vs time plot

 ...: ax2.plot(t, y[:, 2], 'b')

 ...: ax2.set_xlabel('t', fontsize=18)

 ...: ax2.set_ylabel('x_2', fontsize=18)

 ...: ax2.set_yticks([-1, -.5, 0, .5, 1])

 ...: # x1 and x2 phase space plot

 ...: ax3.plot(y[:, 0], y[:, 2], 'k')

 ...: ax3.set_xlabel('x_1', fontsize=18)

 ...: ax3.set_ylabel('x_2', fontsize=18)

 ...: ax3.set_xticks([-1, -.5, 0, .5, 1])

 ...: ax3.set_yticks([-1, -.5, 0, .5, 1])

 ...: fig.tight_layout()

Chapter 9 Ordinary differential equatiOns

327

In addition to providing a Python function for the ODE function f (t, y(t)), we can

also provide a Python function that computes the Jacobian matrix for a given t and

y(t). The solver can, for example, use the Jacobian to solve more efficiently the system

of equations that arise in implicit methods. To use a Jacobian function jac, like the

one defined below for the current problem, we need to pass it to the integrate.ode

class when it is created, together with the f function. If the Jacobian function jac takes

additional arguments, those also have to be configured using the set_jac_params

method in the resulting integrate.ode instance:

In [117]: def jac(t, y, args):

 ...: m1, k1, g1, m2, k2, g2 = args

 ...: return [[0, 1, 0, 0],

 ...: [- k1/m2 - k2/m1, - g1/m1 * y[1], k2/m1, 0],

 ...: [0, 0, 1, 0],

 ...: [k2/m2, 0, - k2/m2, - g2/m2]]

In [118]: r = integrate.ode(f, jac)

In [119]: r.set_jac_params(args);

Python functions for both f (t, y(t)) and its Jacobian can conveniently be generated

using SymPy’s lambdify, provided that the ODE problem first can be defined as a

SymPy expression. This symbolic-numeric hybrid approach is a powerful method for

solving ODE problems. To illustrate this approach, consider the rather complicated

system of two coupled second-order and nonlinear ODEs for a double pendulum.

Figure 9-7. The solution of the ODE for two coupled damped oscillators

Chapter 9 Ordinary differential equatiOns

328

The equations of motion for the angular deflection, θ1(t) and θ2(t), for the first and the

second pendulum, respectively, are7

m m l t m l t m l t1 2 1 1 2 2 2 1 2 2 2 2

2

1+() ¢¢() + ¢¢() -() + ¢ ()() -q q q q q qcos sin qq q2 1 2 1 0() + +() =g m m sin ,

m l t m l m l t m g2 2 2 2 1 1 1 2 2 1 1

2

1 2 2¢¢() + ¢¢ -() - ¢()() -() +q q q q q q qcos sin ssin .q2 0=

The first pendulum is attached to a fixed support, and the second pendulum is

attached to the first pendulum. Here m1 and m2 are the masses and l1 and l2 the lengths

of the first and second pendulums, respectively. We begin by defining SymPy symbols

for the variables and the functions in the problem and then constructing the ode

expressions:

In [120]: t, g, m1, l1, m2, l2 = sympy.symbols("t, g, m_1, l_1, m_2, l_2")

In [121]: theta1, theta2 = sympy.symbols("theta_1, theta_2", cls=sympy.

Function)

In [122]: ode1 = sympy.Eq((m1+m2)*l1 * theta1(t).diff(t,t) +

 ...: m2*l2 * theta2(t).diff(t,t) * sympy.

cos(theta1(t)-theta2(t)) +

 ...: m2*l2 * theta2(t).diff(t)**2 * sympy.

sin(theta1(t)-theta2(t)) +

 ...: g*(m1+m2) * sympy.sin(theta1(t)))

 ...: ode1

Out[122]: g m m t l m m
d

dt
t l m t t

d
1 2 1 1 1 2

2

2 1 2 2 1 2+() ()+ +() ()+ ()- ()()sin sinq q q q
ddt

t

l m
d

dt
t t t

q

q q q

2

2

2 2

2

2 2 1 2 0

()æ
è
ç

ö
ø
÷

+ () ()- ()() =cos

In [123]: ode2 = sympy.Eq(m2*l2 * theta2(t).diff(t,t) +

 ...: m2*l1 * theta1(t).diff(t,t) * sympy.

cos(theta1(t)-theta2(t)) -

 ...: m2*l1 * theta1(t).diff(t)**2 * sympy.

sin(theta1(t) - theta2(t)) +

 ...: m2*g * sympy.sin(theta2(t)))

 ...: ode2

7 See http://scienceworld.wolfram.com/physics/DoublePendulum.html for details.

Chapter 9 Ordinary differential equatiOns

http://scienceworld.wolfram.com/physics/DoublePendulum.html

329

Out[123]: gm t l m t t
d

dt
t

l m t

2 2 1 2 1 2 1

2

1 2 1

sin sin

cos

q q q q

q

()- ()- ()() ()æ
è
ç

ö
ø
÷

+ (()- ()() ()+ () =q q q2

2

2 1 2 2

2

2 2 0t
d

dt
t l m

d

dt
t

Now ode1 and ode2 are SymPy expressions for the two second-order ODE equations.

Trying to solve these equations with sympy.dsolve is fruitless, and to proceed we need

to use a numerical method. However, the equations as they stand here are not in a form

that is suitable for numerical solution with the ODE solvers that are available in SciPy.

We first have to write the system of two second-order ODEs as a system of four first-order

ODEs on the standard form. Rewriting the equations on the standard form is not difficult

but can be tedious to do by hand. Fortunately we can leverage the symbolic capabilities

of SymPy to automate this task. To this end we need to introduce new functions

y1(t) = θ1(t) and y t t2 1() = ¢()q and y3(t) = θ2(t) and y t t4 2() = ¢ ()q and rewrite the ODEs in

terms of these functions. By creating a dictionary for the variable change, and using the

SymPy function subs to perform the substitution using this dictionary, we can easily

obtain the equations for ¢ ()y t2 and ¢ ()y t4 :

In [124]: y1, y2, y3, y4 = sympy.symbols("y_1, y_2, y_3, y_4", cls=sympy.

Function)

In [125]: varchange = {theta1(t).diff(t, t): y2(t).diff(t),

 ...: theta1(t): y1(t),

 ...: theta2(t).diff(t, t): y4(t).diff(t),

 ...: theta2(t): y3(t)}

In [126]: ode1_vc = ode1.subs(varchange)

In [127]: ode2_vc = ode2.subs(varchange)

We also need to introduce two more ODEs for ¢ ()y t1 and ¢ ()y t3 :

In [128]: ode3 = y1(t).diff(t) - y2(t)

In [129]: ode4 = y3(t).diff(t) - y4(t)

At this point we have four coupled first-order ODEs for the functions y1 to y4. It only

remains to solve for the derivatives of these functions to obtain the ODEs in standard

form. We can do this using sympy.solve:

Chapter 9 Ordinary differential equatiOns

330

In [130]: y = sympy.Matrix([y1(t), y2(t), y3(t), y4(t)])

In [131]: vcsol = sympy.solve((ode1_vc, ode2_vc, ode3, ode4), y.diff(t),

dict=True)

In [132]: f = y.diff(t).subs(vcsol[0])

Now f is SymPy expression for the ODE function f (t, y(t)). We can display the ODEs

using sympy.Eq(y.diff(t), f), but the result is rather lengthy, and in the interest

of space, we do not show the output here. The main purpose of constructing f here is

to convert it to a NumPy-aware function that can be used with integrate.odeint or

integrate.ode. The ODEs are now on a form that we can create such a function using

sympy.lambdify. Also, since we have a symbolic representation of the problem so far, it

is easy to also compute the Jacobian and create a NumPy-aware function for it too. When

using sympy.lambdify to create functions for odeint and ode, we have to be careful to

put t and y in the correct order in the tuple that is passed to sympy.lambdify. Here we

will use integrate.ode, so we need a function with the signature f(t, y, *args), and

thus we pass the tuple (t, y) as first argument to sympy.lambdify, and we wrap the

resulting function with a lambda function in order to be able to receive the additional

argument args, which is not used in the SymPy expression.

In [133]: params = {m1: 5.0, l1: 2.0, m2: 1.0, l2: 1.0, g: 10.0}

In [134]: _f_np = sympy.lambdify((t, y), f.subs(params), 'numpy')

In [135]: f_np = lambda _t, _y, *args: _f_np(_t, _y)

In [136]: jac = sympy.Matrix([[fj.diff(yi) for yi in y] for fj in f])

In [137]: _jac_np = sympy.lambdify((t, y), jac.subs(params), 'numpy')

In [138]: jac_np = lambda _t, _y, *args: _jac_np(_t, _y)

Here we have also substituted specific values of the system parameters before calling

sympy.lambdify. The first pendulum is made twice as long and five times as heavy as

the second pendulum. With the functions f_np and jac_np, we are now ready to solve

the ODE using integrate.ode in the same manner as in the previous examples. Here we

take the initial state to be θ1(0) = 2 and θ2(0) = 0, and with the derivatives zero to zero, and

we solve for the time interval [0, 20] with 1000 steps:

In [139]: y0 = [2.0, 0, 0, 0]

In [140]: tt = np.linspace(0, 20, 1000)

In [141]: r = integrate.ode(f_np, jac_np).set_initial_value(y0, tt[0])

In [142]: dt = tt[1] - tt[0]

Chapter 9 Ordinary differential equatiOns

331

 ...: yy = np.zeros((len(tt), len(y0)))

 ...: idx = 0

 ...: while r.successful() and r.t < tt[-1]:

 ...: yy[idx, :] = r.y

 ...: r.integrate(r.t + dt)

 ...: idx += 1

The solution to the ODEs is now stored in the array yy, which have the shape

(1000, 4). When visualizing this solution, it is more intuitive to plot the positions of the

pendulums in the x – y plane rather than their angular deflections. The transformations

between the angular variables θ1 and θ2 and x and y coordinates are x1 = l1 sin θ1,

y1 = l1 cos θ1, x2 = x1+l2 sin θ2, and y2 = y1+l2 cos θ2:

In [143]: theta1_np, theta2_np = yy[:, 0], yy[:, 2]

In [144]: x1 = params[l1] * np.sin(theta1_np)

 ...: y1 = -params[l1] * np.cos(theta1_np)

 ...: x2 = x1 + params[l2] * np.sin(theta2_np)

 ...: y2 = y1 - params[l2] * np.cos(theta2_np)

Finally we plot the dynamics of the double pendulum as a function of time and in

the x–y plane. The result is shown in Figure 9-8. As expected, pendulum 1 is confined

to move on a circle (because of its fixed anchor point), while pendulum 2 have a much

more complicated trajectory.

In [145]: fig = plt.figure(figsize=(10, 4))

 ...: ax1 = plt.subplot2grid((2, 5), (0, 0), colspan=3)

 ...: ax2 = plt.subplot2grid((2, 5), (1, 0), colspan=3)

 ...: ax3 = plt.subplot2grid((2, 5), (0, 3), colspan=2, rowspan=2)

 ...:

 ...: ax1.plot(tt, x1, 'r')

 ...: ax1.plot(tt, y1, 'b')

 ...: ax1.set_ylabel('x_1, y_1', fontsize=18)

 ...: ax1.set_yticks([-3, 0, 3])

 ...:

 ...: ax2.plot(tt, x2, 'r')

 ...: ax2.plot(tt, y2, 'b')

 ...: ax2.set_xlabel('t', fontsize=18)

Chapter 9 Ordinary differential equatiOns

332

 ...: ax2.set_ylabel('x_2, y_2', fontsize=18)

 ...: ax2.set_yticks([-3, 0, 3])

 ...:

 ...: ax3.plot(x1, y1, 'r')

 ...: ax3.plot(x2, y2, 'b', lw=0.5)

 ...: ax3.set_xlabel('x', fontsize=18)

 ...: ax3.set_ylabel('y', fontsize=18)

 ...: ax3.set_xticks([-3, 0, 3])

 ...: ax3.set_yticks([-3, 0, 3])

 Summary
In this chapter we have explored various methods and tools for solving ordinary

differential equations (ODEs) using the scientific computing packages for Python. ODEs

show up in many areas of science and engineering – in particular in modeling and the

description of dynamical systems – and mastering the techniques to solve ODE problems

is therefore a crucial part of the skillset of a computational scientist. In this chapter, we

first looked at solving ODEs symbolically using SymPy, either with the sympy.dsolve

function or using a Laplace transformation method. The symbolic approach is often a

good starting point, and with the symbolic capabilities of SymPy, many fundamental

ODE problems can be solved analytically. However, for most practical problems, there

is no analytical solution, and the symbolic methods are then doomed to fail. Our

remaining option is then to fall back on numerical techniques. Numerical integration

Figure 9-8. The dynamics of the double pendulum

Chapter 9 Ordinary differential equatiOns

333

of ODEs is a vast field in mathematics, and there exist numerous reliable methods for

solving ODE problems. In this chapter we briefly reviewed methods for integrating

ODEs, with the intent to introduce the concepts and ideas behind the Adams and BDF

multistep methods that are used in the solvers provided by SciPy. Finally, we looked at

how the odeint and ode solvers, available through the SciPy integrate module, can

be used by solving a few example problems. Although most ODE problems eventually

require numerical integration, there can be great advantages in using a hybrid symbolic-

numerical approach, which uses features from both SymPy and SciPy. The last example

of this chapter is devoted to demonstrating this approach.

 Further Reading
An accessible introduction to many methods for numerically solving ODE problems

is given in Heath (2002). For a review of ordinary differential equations with code

examples, see Chapter 11 in Numerical Recipes (W.H. Press 2007). For a more detailed

survey of numerical methods for ODEs, see, for example, (Kendall Atkinson (2009).

The main implementations of ODE solvers that are used in SciPy are the VODE and

LSODA solvers. The original source code for these methods is available from netlib at

www.netlib.org/ode/vode.f and www.netlib.org/odepack, respectively. In addition

to these solvers, there is also a well-known suite of solvers called sundials, which is

provided by the Lawrence Livermore National Laboratory and available at http://

computation.llnl.gov/casc/sundials/main.html. This suite also includes solvers

of differential-algebraic equations (DAEs). A Python interface for the sundials solvers

is provided by the scikit.odes library, which can be obtained from http://github.

com/bmcage/odes. The odespy library also provides a unified interface to many different

ODE solvers. For more information about odespy, see the project’s web site at http://

hplgit.github.io/odespy/doc/web/index.html.

 References
Heath, M. T. Scientific Computing. 2nd. New York: McGraw-Hill, 2002.

Kendall Atkinson, Weimin Han, David Stewart. Numerical solution of ordinary

differential equations. New Jersey: Wiley, 2009.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery. Numerical Recipes. 3rd.

New York: Cambridge University Press, 2007.

Chapter 9 Ordinary differential equatiOns

http://www.netlib.org/ode/vode.f
http://www.netlib.org/odepack
http://computation.llnl.gov/casc/sundials/main.html
http://computation.llnl.gov/casc/sundials/main.html
http://github.com/bmcage/odes
http://github.com/bmcage/odes
http://hplgit.github.io/odespy/doc/web/index.html
http://hplgit.github.io/odespy/doc/web/index.html

335
© Robert Johansson 2019
R. Johansson, Numerical Python, https://doi.org/10.1007/978-1-4842-4246-9_10

CHAPTER 10

Sparse Matrices
and Graphs
We have already seen numerous examples of arrays and matrices being the essential

entities in many aspects of numerical computing. So far we have represented arrays

with the NumPy ndarray data structure, which is a heterogeneous representation that

stores all the elements of the array that it represents. In many cases, this is the most

efficient way to represent an object such as a vector, matrix, or a higher-dimensional

array. However, notable exceptions are matrices where most of the elements are zeros.

Such matrices are known as sparse matrices, and they occur in many applications, for

example, in connection networks (such as circuits) and in large algebraic equation

systems that arise, for example, when solving partial differential equations (see Chapter 11

for examples).

For matrices that are dominated by elements that are zero, it is inefficient to store all

the zeros in the computer’s memory, and it is more suitable to store only the nonzero

values with additional information about their locations. For nonsparse matrices,

known as dense matrices, such a representation is less efficient than storing all values

consecutively in the memory, but for large sparse matrices, it can be vastly superior.

There are several options for working with sparse matrices in Python. Here we

mainly focus on the sparse matrix module in SciPy, scipy.sparse, which provides a

feature-rich and easy-to-use interface for representing sparse matrices and carrying out

linear algebra operations on such objects. Another option is PySparse1, which provides

similar functionality. For very large-scale problems, the PyTrilinos2 and PETSc3 packages

1 http://pysparse.sourceforge.net
2 http://trilinos.org/packages/pytrilinos
3 See http://www.mcs.anl.gov/petsc and https://bitbucket.org/petsc/petsc4py for its
Python bindings.

http://pysparse.sourceforge.net
http://trilinos.org/packages/pytrilinos
http://www.mcs.anl.gov/petsc
https://code.google.com/p/petsc4py

336

have powerful parallel implementations of many sparse matrix operations. However,

using these packages requires more programming, and they have a steeper learning

curve and are more difficult to install and set up. For most basic use-cases, SciPy’s

sparse module is the most suitable option or at least a suitable starting point.

Toward the end of the chapter, we also briefly explore representing and processing

graphs, using the SciPy sparse.csgraph module and the NetworkX library. Graphs

can be represented as adjacency matrices, which in many applications are very sparse.

Graphs and sparse matrices are therefore closely connected topics.

 Importing Modules
The main module that we work with in this chapter is the sparse module in SciPy

library. We assume that this module is included under the name sp, and in addition we

need to explicitly import its submodule linalg, to make this module accessible through

sp.linalg.

In [1]: import scipy.sparse as sp

In [2]: import scipy.sparse.linalg

We also need the NumPy library, which we, as usual, import under the name np, and

the Matplotlib library for plotting:

In [3]: import numpy as np

In [4]: import matplotlib.pyplot as plt

And in the last part of this chapter, we use the networkx module, which we import

under the name nx:

In [5]: import networkx as nx

 Sparse Matrices in SciPy
The basic idea of sparse matrix representation is to avoid storing the excessive amount of

zeros in a sparse matrix. In dense matrix representation, where all elements of an array

are stored consecutively, it is sufficient to store the values themselves, since the row and

column indices for each element are known implicitly from the position in the array.

However, if we store only the nonzero elements, we clearly also need to store the row

and column indices for each element. There are numerous approaches to organizing

Chapter 10 SparSe MatriCeS and GraphS

337

the storage of the nonzero elements and their corresponding row and column indices.

These approaches have different advantages and disadvantages, for example, in terms

how easy it is to create the matrices and, perhaps more importantly, how efficiently they

can be used in implementations of mathematical operations on the sparse matrices. A

summary and comparison of sparse matrix formats that are available in the SciPy sparse

module is given in Table 10-1.

Table 10-1. Summary and Comparison of Methods to Represent Sparse Matrices

Type Description Pros Cons

Coordinate list

(COO, sp.coo_

matrix)

nonzero values are stored

in a list together with their

row and column.

Simple to construct

and efficient to add

new elements.

inefficient element

access. not suitable for

mathematical operations,

such as matrix

multiplication.

List of lists

(LiL, sp.lil_matrix)

Stores a list of column

indices for nonzero

elements for each

row and a list of the

corresponding values.

Supports slicing

operations.

not ideal for

mathematical operations.

dictionary of keys

(dOK, sp.dok_

matrix)

nonzero values are stored

in a dictionary with a tuple

of (row, column) as key.

Simple to construct

and fast to add,

remove and access

elements.

not ideal for

mathematical operations.

diagonal matrix

(dia, sp.dia_matrix)

Stores lists of diagonals of

the matrix.

efficient for

diagonal matrices.

not suitable for

nondiagonal matrices.

Compressed sparse

column (CSC, sp.

csc_matrix) and

compressed sparse row

(CSr, sp.csr_matrix)

Stores the values together

with arrays with column

or row indices.

relatively

complicated to

construct.

efficient matrix-vector

multiplication.

Block-sparse matrix

(BSr, cp.bsr_matrix)

Similar to CSr, but for

sparse matrices with

dense submatrices.

efficient for their

specific intended

purpose.

not suitable for general-

purpose use.

Chapter 10 SparSe MatriCeS and GraphS

338

A simple and intuitive approach for storing sparse matrices is to simply store lists

with column indices and row indices together with the list of nonzero values. This format

is called coordinate list format, and it is abbreviated as COO in SciPy. The class sp.

coo_matrix is used to represent sparse matrices in this format. This format is particularly

easy to initialize. For instance, with the matrix

A =

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

0 1 0 0

0 0 0 2

0 0 3 0

4 0 0 0

,

we can easily identify the nonzero values [A01 = 1, A13 = 2, A22 = 3, A30 = 4] and their

corresponding rows [0, 1, 2, 3] and columns [1, 3, 2, 0] (note that here we have used

Python’s zero-based indexing). To create a sp.coo_matrix object, we can create lists (or

arrays) for the values, row indices, and column indices and pass them to sp.coo_matrix.

Optionally, we can also specify the shape of the array using the shape argument, which

is useful when the nonzero elements do not span the entire matrix (i.e., if there are

columns or rows containing only zeros, so that the shape cannot be correctly inferred

from the row and column arrays):

In [6]: values = [1, 2, 3, 4]

In [7]: rows = [0, 1, 2, 3]

In [8]: cols = [1, 3, 2, 0]

In [9]: A = sp.coo_matrix((values, (rows, cols)), shape=[4, 4])

In [10]: A

Out[10]: <4x4 sparse matrix of type '<type 'numpy.int64'>'

 with 4 stored elements in Coordinate format>

The result is a data structure that represents the sparse matrix. All sparse matrix

representations in SciPy’s sparse module share several common attributes, many of

which are derived from NumPy’s ndarray object. Examples of such attributes are size,

shape, dtype, and ndim, and common to all sparse matrix representations are the nnz

(number of nonzero elements) and data (the nonzero values) attributes:

In [11]: A.shape, A.size, A.dtype, A.ndim

Out[11]: ((4, 4), 4, dtype('int64'), 2)

In [12]: A.nnz, A.data

Out[12]: (4, array([1, 2, 3, 4]))

Chapter 10 SparSe MatriCeS and GraphS

339

In addition to the shared attributes, each type of sparse matrix representation also

has attributes that are specific to its way of storing the positions for each nonzero value.

For the case of sp.coo_matrix objects, there are row and col attributes for accessing the

underlying row and column arrays:

In [13]: A.row

Out[13]: array([0, 1, 2, 3], dtype=int32)

In [14]: A.col

Out[14]: array([1, 3, 2, 0], dtype=int32)

There are also a large number of methods available for operating on sparse matrix

objects. Many of these methods are for applying mathematical functions on the matrix,

for example, elementwise math methods like sin, cos, arcsin, etc.; aggregation methods

like min, max, sum, etc.; mathematical array operators such as conjugate (conj) and

transpose (transpose), etc.; and dot for computing the dot product between sparse

matrices or a sparse matrix and a dense vector (the * operator also denotes matrix

multiplication for sparse matrices). For further details, see the docstring for the sparse

matrix classes (summarized in Table 10-1). Another important family of methods is used

to convert sparse matrices between different formats: for example, tocoo, tocsr, tolil,

etc. There are also methods for converting a sparse matrix to NumPy ndarray and NumPy

matrix objects (i.e., dense matrix representations): toarray and todense, respectively.

For example, to convert the sparse matrix A from COO format to CSR format, and to a

NumPy array, respectively, we can use the following:

In [15]: A.tocsr()

Out[15]: <4x4 sparse matrix of type '<type 'numpy.int64'>'

 with 4 stored elements in Compressed Sparse Row format>

In [16]: A.toarray()

Out[16]: array([[0, 1, 0, 0],

 [0, 0, 0, 2],

 [0, 0, 3, 0],

 [4, 0, 0, 0]])

The obvious way to access elements in a matrix, which we have used in numerous

different contexts so far, is using the indexing syntax, for example, A[1,2], as well as

the slicing syntax, for example, A[1:3, 2], and so on. We can often use this syntax with

sparse matrices too, but not all representations support indexing and slicing, and if it is

supported, it may not be an efficient operation. In particular, assigning values to zero-

Chapter 10 SparSe MatriCeS and GraphS

340

valued elements can be a costly operation, as it may require to rearrange the underlying

data structures, depending on which format is used. To incrementally add new elements

to a sparse matrix, the LIL (sp.lil_matrix) format is a suitable choice, but this format is

on the other hand not suitable for arithmetic operations.

When working with sparse matrices, it is common to face the situation that

different tasks – such as construction, updating, and arithmetic operations – are most

efficiently handled in different formats. Converting between different sparse formats is

relatively efficient, so it is useful to switch between different formats in different parts

of an application. Efficient use of sparse matrices therefore requires an understanding

of how different formats are implemented and what they are suitable for. Table 10-1

briefly summarizes the pros and cons of the sparse matrix formats available in SciPy’s

sparse module, and using the conversion methods, it is easy to switch between different

formats. For a more in-depth discussion of the merits of the various formats, see the

“Sparse Matrices”4 section in the SciPy reference manual.

For computations, the most important sparse matrix representations in SciPy’s

sparse module are the CSR (Compressed Sparse Row) and CSC (Compressed Sparse

Column) formats, because they are well suited for efficient matrix arithmetic and linear

algebra applications. Other formats, like COO, LIL, and DOK, are mainly used for

constructing and updated sparse matrices, and once a sparse matrix is ready to be used

in computations, it is best to convert it to either CSR or CSC format, using the tocsr or

tocsc methods, respectively.

In the CSR format, the nonzero values (data) are stored along with an array that

contains the column indices of each value (indices) and another array that stores the

offsets of the column index array of each row (indptr). For instance, consider the matrix

A =

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

1 2 0 0

0 3 4 0

0 0 5 6

7 0 8 9

,

Here the nonzero values are [1, 2, 3, 4, 5, 6, 7, 8, 9] (data), and the column indices

corresponding to the nonzero values in the first row are [0, 1], the second row [1, 2], the

third row [2, 3], and the fourth row [0, 2, 3]. Concatenating all of these column index lists

gives the indices array [0, 1, 1, 2, 2, 3, 0, 2, 3]. To keep track of which row entries in this

4 http://docs.scipy.org/doc/scipy/reference/sparse.html

Chapter 10 SparSe MatriCeS and GraphS

http://docs.scipy.org/doc/scipy/reference/sparse.html

341

column index array correspond to, we can store the starting position in for each row

in a second array. The column indices of the first row are elements 0 to 1, the second

row elements 2 to 3, the third row elements 4 to 5, and finally the fourth row elements

6 to 9. Collecting the starting indices in an array gives [0, 2, 4, 6]. For convenience in

the implementation, we also add at the end of this array the total number of nonzero

elements, which results in the indptr array [0, 2, 4, 6, 9]. In the following code, we create

a dense NumPy array corresponding to the matrix A, convert it to a CSR matrix using sp.

csr_matrix, and then display the data, indices, and indptr attributes:

In [17]: A = np.array([[1, 2, 0, 0], [0, 3, 4, 0], [0, 0, 5, 6], [7, 0, 8, 9]])

 ...: A

Out[17]: array([[1, 2, 0, 0],

 [0, 3, 4, 0],

 [0, 0, 5, 6],

 [7, 0, 8, 9]])

In [18]: A = sp.csr_matrix(A)

In [19]: A.data

Out[19]: array([1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=int64)

In [20]: A.indices

Out[20]: array([0, 1, 1, 2, 2, 3, 0, 2, 3], dtype=int32)

In [21]: A.indptr

Out[21]: array([0, 2, 4, 6, 9], dtype=int32)

With this storage scheme, the nonzero elements in the row with index i are stored

in the data array between index indptr[i] and indptr[i+1]-1, and the column indices

for these elements are stored at the same indices in the indices array. For example,

the elements in the third row, with index i=2, starts at indptr[2]=4 and ends at

indptr[3]-1=5, which gives the element values data[4]=5 and data[5]=6 and column

indices indices[4]=2 and indices[5]=3. Thus, A[2, 2] = 5 and A[2, 3] = 6 (in zero-index-

based notation):

In [22]: i = 2

In [23]: A.indptr[i], A.indptr[i+1]-1

Out[23]: (4, 5)

In [24]: A.indices[A.indptr[i]:A.indptr[i+1]]

Out[24]: array([2, 3], dtype=int32)

In [25]: A.data[A.indptr[i]:A.indptr[i+1]]

Chapter 10 SparSe MatriCeS and GraphS

342

Out[25]: array([5, 6], dtype=int64)

In [26]: A[2, 2], A[2,3] # check

Out[26]: (5, 6)

While the CSR storage method is not as intuitive as COO, LIL, or DOK, it turns out

that it is well suited for use in the implementation of matrix arithmetic and for linear

algebra operations. Together with the CSC format, it is therefore the main format for use

in sparse matrix computations. The CSC format is essentially identical to CSR, except

that instead of column indices and row pointers, row indices and column pointers are

used (i.e., the role of columns and rows is reversed).

 Functions for Creating Sparse Matrices
As we have seen in the examples earlier in this chapter, one way of constructing sparse

matrices is to prepare the data structures for a specific sparse matrix format and pass

these to the constructor of the corresponding sparse matrix class. While this method

is sometimes suitable, it is often more convenient to compose sparse matrices from

predefined template matrices. The sp.sparse module provides a variety of functions for

generating such matrices, for example, sp.eye for creating diagonal sparse matrices with

ones on the diagonal (optionally offset from the main diagonal), sp.diags for creating

diagonal matrices with a specified pattern along the diagonal, sp.kron for calculating

the Kronecker (tensor) product of two sparse matrices, and bmat, vstack, and hstack,

for building sparse matrices from sparse block matrices, and by stacking sparse matrices

vertically and horizontally, respectively.

For example, in many applications sparse matrices have a diagonal form. To create a

sparse matrix of size 10 × 10 with a main diagonal and an upper and lower diagonal, we

can use three calls to sp.eye, using the k argument to specify the offset from the main

diagonal:

In [27]: N = 10

In [28]: A = sp.eye(N, k=1) - 2 * sp.eye(N) + sp.eye(N, k=-1)

In [29]: A

Out[29]: <10x10 sparse matrix of type '<class 'numpy.float64'>'

 with 28 stored elements in Compressed Sparse Row format>

Chapter 10 SparSe MatriCeS and GraphS

343

By default the resulting object is sparse matrix in the CSR format, but using the

format argument, we can specify any other sparse matrix format. The value of the format

argument should be a string such as 'csr', 'csc', 'lil', etc. All functions for creating

sparse matrices in sp.sparse accept this argument. For example, in the previous

example, we could have produced the same matrix using sp.diags, by specifying the

pattern [1, –2, 1] (the coefficients to the sp.eye functions in the previous expression),

and the corresponding offsets from the main diagonal [1, 0, –1]. If we additionally

want the resulting sparse matrix in CSC format, we can set format='csc':

In [30]: A = sp.diags([1, -2, 1], [1, 0, -1], shape=[N, N], format='csc')

In [31]: A

Out[31]: <10x10 sparse matrix of type '<class 'numpy.float64'>'

 with 28 stored elements in Compressed Sparse Column format>

The advantages of using sparse matrix formats rather than dense matrices only

manifest themselves when working with large matrices. Sparse matrices are by their

nature therefore large, and hence it can be difficult to visualize a matrix by, for example,

printing its elements in the terminal. Matplotlib provides the function spy, which is a

useful tool for visualizing the structure of a sparse matrix. It is available as a function

in pyplot module or as a method for Axes instances. When using it on the previously

defined A matrix, we obtain the results shown in Figure 10-1.

In [32]: fig, ax = plt.subplots()

 ...: ax.spy(A)

Chapter 10 SparSe MatriCeS and GraphS

344

Sparse matrices are also often associated with tensor product spaces. For such

cases we can use the sp.kron function to compose a sparse matrix from its smaller

components. For example, to create a sparse matrix for the tensor product between A

and the matrix

B =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

0 1 0

1 0 1

0 1 0

,

we can use sp.kron(A, B):

In [33]: B = sp.diags([1, 1], [-1, 1], shape=[3,3])

In [34]: C = sp.kron(A, B)

In [35]: fig, (ax_A, ax_B, ax_C) = plt.subplots(1, 3, figsize=(12, 4))

 ...: ax_A.spy(A)

 ...: ax_B.spy(B)

 ...: ax_C.spy(C)

For comparison, we also plotted the sparse matrix structure of A, B, and C, and the

result is shown in Figure 10-2. For more detailed information on ways to build sparse

matrices with the sp.sparse module, see its docstring and the “Sparse Matrices” section

in the SciPy reference manual.

Figure 10-1. Structure of the sparse matrix with nonzero elements only on the two
diagonals closest to the main diagonal and the main diagonal itself

Chapter 10 SparSe MatriCeS and GraphS

345

 Sparse Linear Algebra Functions
The main application of sparse matrices is to perform linear algebra operations on large

matrices that are intractable or inefficient to treat using dense matrix representations.

The SciPy sparse module contains a module linalg that implements many linear

algebra routines. Not all linear algebra operations are suitable for sparse matrices, and in

some cases the behavior of the sparse matrix version of operations needs to be modified

compared to the dense counterparts. Consequently, there are a number of differences

between the sparse linear algebra module scipy.sparse.linalg and the dense linear

algebra module scipy.linalg. For example, the eigenvalue solvers for dense problems

typically compute and return all eigenvalues and eigenvectors. For sparse matrices this

is not manageable, because storing all eigenvectors of a sparse matrix A of size N × N

usually amounts to storing a dense matrix of size N × N. Instead, sparse eigenvalue

solvers typically give a few eigenvalues and eigenvectors, for example, those with the

smallest or largest eigenvalues. In general, for sparse matrix methods to be efficient,

they must retain the sparsity of matrices involved in the computation. An example of an

operation where the sparsity usually is not retained is the matrix inverse, and it should

therefore be avoided when possible.

 Linear Equation Systems
The most important application of sparse matrices is arguably to solve linear equation

system on the form Ax = b, where A is a sparse matrix and x and b are dense vectors.

The SciPy sparse.linalg module has both direct and iterative solver for this type of

Figure 10-2. The sparse matrix structures of two matrices A (left) and B (middle)
and their tensor product (right)

Chapter 10 SparSe MatriCeS and GraphS

346

problem (sp.linalg.spsolve) and methods to factor a matrix A, using, for example,

LU factorization (sp.linalg.splu) and incomplete LU factorization (sp.linalg.spilu).

For example, consider the problem Ax = b where A is the tridiagonal matrix considered

in the preceding text and b is a dense vector filled with negative ones (see Chapter 11

for a physical interpretation of this equation). To solve this problem for the system size

10 × 10, we first create the sparse matrix A and the dense vector b:

In [36]: N = 10

In [37]: A = sp.diags([1, -2, 1], [1, 0, -1], shape=[N, N], format='csc')

In [38]: b = -np.ones(N)

Now, to solve the equation system using the direct solver provided by SciPy,

we can use:

In [39]: x = sp.linalg.spsolve(A, b)

In [40]: x

Out[40]: array([5., 9., 12., 14., 15., 15., 14., 12., 9., 5.])

The solution vector is a dense NumPy array. For comparison, we can also solve

this problem using dense direct solver in NumPy np.linalg.solve (or, similarly, using

scipy.linalg.solve). To be able to use the dense solver, we need to convert the sparse

matrix A to a dense array using A.todense():

In [41]: np.linalg.solve(A.todense(), b)

Out[41]: array([5., 9., 12., 14., 15., 15., 14., 12., 9., 5.])

As expected, the result agrees with what we obtained from the sparse solver. For

small problems like this one, there is not much to gain using sparse matrices, but for

increasing system size, the merits of using sparse matrices and sparse solvers become

apparent. For this particular problem, the threshold system size beyond which using

sparse methods outperforms dense methods is approximately N = 100, as shown in

Figure 10-3. While the exact threshold varies from problem to problem, as well as

hardware and software versions, this behavior is typical for problems where the matrix A

is sufficiently sparse5.

5 For a discussion of techniques and methods to optimize Python code, see Chapter 21.

Chapter 10 SparSe MatriCeS and GraphS

https://doi.org/10.1007/978-1-4842-4246-9_21

347

An alternative to the spsolve interface is to explicitly compute the LU factorization

using sp.sparse.splu or sp.sparse.spilu (incomplete LU factorization). These

functions return an object that contains the L and U factors and that has a method that

solves LUx = b for a given vector b. This is of course particularly useful when the Ax = b

has to be solved for multiple vectors b. For example, the LU factorization of the matrix A

used previously is computed using:

In [42]: lu = sp.linalg.splu(A)

In [43]: lu.L

Out[43]: <10x10 sparse matrix of type '<class 'numpy.float64'>'

 with 20 stored elements in Compressed Sparse Column format>

In [44]: lu.U

Out[44]: <10x10 sparse matrix of type '<class 'numpy.float64'>'

 with 20 stored elements in Compressed Sparse Column format>

Once the LU factorization is available, we can efficiently solve the equation LUx = b

using the solve method for the lu object:

In [45]: x = lu.solve(b)

In [46]: x

Out[46]: array([5., 9., 12., 14., 15., 15., 14., 12., 9., 5.])

Figure 10-3. Performance comparison between sparse and dense methods to solve
the one-dimensional Poisson problem as a function of problem size

Chapter 10 SparSe MatriCeS and GraphS

348

An important consideration that arises with sparse matrices is that the LU

factorization of A may introduce new nonzero elements in L and U compared to the

matrix A and therefore make L and U less sparse. Elements that exist in L or U, but

not in A, are called fill-ins. If the amount of fill-ins is large, the advantage of using

sparse matrices may be lost. While there is no complete solution to eliminate fill-ins,

it is often possible to reduce fill-in by permuting the rows and columns in A, so that

the LU factorization takes the form PrAPc = LU, where Pr and Pc are row and column

permutation matrices, respectively. Several such methods for permutations methods are

available. The spsolve, splu, and spilu functions all take the argument permc_spec,

which can take the values NATURAL, MMD_ATA, MMD_AT_PLUS_A, or COLAMD, which indicates

different permutation methods that are built into these methods. The object returned

by splu and spilu accounts for such permutations, and the permutation vectors are

available via the perm_c and perm_r attributes. Because of these permutations, the

product of lu.L and lu.U is not directly equal to A, and to reconstruct A from lu.L and

lu.U, we also need to undo the row and column permutations:

In [47]: def sp_permute(A, perm_r, perm_c):

 ...: """ permute rows and columns of A """

 ...: M, N = A.shape

 ...: # row permutation matrix

 ...: Pr = sp.coo_matrix((np.ones(M), (perm_r, np.arange(N)))).tocsr()

 ...: # column permutation matrix

 ...: Pc = sp.coo_matrix((np.ones(M), (np.arange(M), perm_c))).tocsr()

 ...: return Pr.T * A * Pc.T

In [48]: lu.L * lu.U - # != 0

Out[48]: <10x10 sparse matrix of type '<class 'numpy.float64'>'

 with 8 stored elements in Compressed Sparse Column format>

In [49]: sp_permute(lu.L * lu.U, lu.perm_r, lu.perm_c) - A # == 0

Out[49]: <10x10 sparse matrix of type '<class 'numpy.float64'>'

 with 0 stored elements in Compressed Sparse Column format>

By default, the direct sparse linear solver in SciPy uses the SuperLU6 package. An

alternative sparse matrix solver that also can be used in SciPy is the UMFPACK7 package,

although this package is not bundled with SciPy and requires that the scikit-umfpack

6 http://crd-legacy.lbl.gov/~xiaoye/SuperLU/
7 http://faculty.cse.tamu.edu/davis/suitesparse.html

Chapter 10 SparSe MatriCeS and GraphS

http://crd-legacy.lbl.gov/~xiaoye/SuperLU/
http://faculty.cse.tamu.edu/davis/suitesparse.html

349

Python library is installed. If scikit-umfpack is available, and if the use_umfpack

argument to the sp.linalg.spsolve function is True, then the UMFPACK is used instead

of SuperLU. Whether SuperLU or UMFPACK gives better performance varies from problem

to problem, so it is worth having both installed and testing both for any given problem.

The sp.spsolve function is an interface to direct solvers, which internally performs

matrix factorization. An alternative approach is to use iterative methods that originate

in optimization. The SciPy sparse.linalg module contains several functions for the

iterative solution of sparse linear problems: for example, bicg (biconjugate gradient

method), bicgstab (biconjugate gradient stabilized method), cg (conjugate gradient),

gmres (generalized minimum residual), and lgmres (loose generalized minimum

residual method). All of these functions (and a few others) can be used to solve the

problem Ax = b by calling the function with A and b as arguments, and they all return a

tuple (x, info) where x is the solution and info contains additional information about

the solution process (info=0 indicates success, and it is positive for convergence error

and negative for input error). For example:

In [50]: x, info = sp.linalg.bicgstab(A, b)

In [51]: x

Out[51]: array([5., 9., 12., 14., 15., 15., 14., 12., 9., 5.])

In [52]: x, info = sp.linalg.lgmres(A, b)

In [53]: x

Out[53]: array([5., 9., 12., 14., 15., 15., 14., 12., 9., 5.])

In addition, each iterative solver takes its own solver-dependent arguments. See the

docstring for each function for details. Iterative solver may have an advantage over direct

solvers for very large problems, where direct solvers may require excessive memory

usage due to undesirable fill-ins. In contrast, iterative solvers only require to evaluate

sparse matrix-vector multiplications and therefore do not suffer from fill-in problems,

but on the other hand, they might have slow convergence for many problems, especially

if not properly preconditioned.

 Eigenvalue Problems

Sparse eigenvalue and singular-value problems can be solved using the sp.linalg.eigs

and sp.linalg.svds functions, respectively. For real symmetric or complex Hermitian

matrices, the eigenvalues (which in this case are real) and eigenvectors can also be

computed using sp.linalg.eigsh. These functions do not compute all eigenvalues

Chapter 10 SparSe MatriCeS and GraphS

350

or singular values, but rather compute a given number of eigenvalues and vectors (the

default is six). Using the keyword argument k with these functions, we can define how

many eigenvalues and vectors should be computed. Using the which keyword argument,

we can specify which k values are to be computed. The options for eigs are the largest

magnitude LM, smallest magnitude SM, largest real part LR, smallest real part SR, largest

imaginary part LI, and smallest imaginary part SI. For svds only LM and SM are available.

For example, to compute the lowest four eigenvalues for the sparse matrix of the

one-dimensional Poisson problem (of system size 10x10), we can use sp.linalg.

eigs(A, k=4, which='LM'):

In [54]: N = 10

In [55]: A = sp.diags([1, -2, 1], [1, 0, -1], shape=[N, N], format='csc')

In [56]: evals, evecs = sp.linalg.eigs(A, k=4, which='LM')

In [57]: evals

Out[57]: array([-3.91898595+0.j, -3.68250707+0.j, -3.30972147+0.j,

-2.83083003+0.j])

The return value of sp.linalg.eigs (and sp.linalg.eigsh) is a tuple (evals,

evecs) whose first element is an array of eigenvalues (evals), and the second element

is an array (evecs) of shape N × k, whose columns are the eigenvectors corresponding to

the k eigenvalues in evals. Thus, we expect that the dot product between A and a column

in evecs is equal to the same column in evecs scaled by the corresponding eigenvalue in

evals. We can directly confirm that this is indeed the case:

In [58]: np.allclose(A.dot(evecs[:,0]), evals[0] * evecs[:,0])

Out[58]: True

For this particular example, the sparse matrix A is symmetric, so instead of sp.

linalg.eigs, we could use sp.linalg.eigsh, and in doing so we obtain an eigenvalue

array with real-valued elements:

In [59]: evals, evecs = sp.linalg.eigsh(A, k=4, which='LM')

In [60]: evals

Out[60]: array([-3.91898595, -3.68250707, -3.30972147, -2.83083003])

By changing the argument which='LM' (for largest magnitude) to which='SM'

(smallest magnitude), we obtain a different set of eigenvalues and vector (those with the

smallest magnitude).

Chapter 10 SparSe MatriCeS and GraphS

351

In [61]: evals, evecs = sp.linalg.eigs(A, k=4, which='SM')

In [62]: evals

Out[62]: array([-0.08101405+0.j, -0.31749293+0.j, -0.69027853+0.j,

-1.16916997+0.j])

In [63]: np.real(evals).argsort()

Out[63]: array([3, 2, 1, 0])

Note that although we requested and obtained the four eigenvalues with the smallest

magnitude in the previous example, those eigenvalues and vectors are not necessarily

sorted within each other (although they are in this particular case). Obtaining sorted

eigenvalues is often desirable, and this is easily achieved with a small but convenient

wrapper function that sorts the eigenvalues using NumPy’s argsort method. Here we

give such a function, sp_eigs_sorted, which returns the eigenvalues and eigenvectors

sorted by the real part of the eigenvalue.

In [64]: def sp_eigs_sorted(A, k=6, which='SR'):

 ...: """ compute and return eigenvalues sorted by the real part """

 ...: evals, evecs = sp.linalg.eigs(A, k=k, which=which)

 ...: idx = np.real(evals).argsort()

 ...: return evals[idx], evecs[idx]

In [65]: evals, evecs = sp_eigs_sorted(A, k=4, which='SM')

In [66]: evals

Out[66]: array([-1.16916997+0.j, -0.69027853+0.j, -0.31749293+0.j,

-0.08101405+0.j])

As a less trivial example using sp.linalg.eigs and the wrapper function sp_

eigs_sorted, consider the spectrum of lowest eigenvalues of the linear combination

(1 − x)M1+xM2 of random sparse matrices M1 and M2. We can use the sp.rand function

to generate two random sparse matrices, and by repeatedly using sp_eigs_sorted to

find the smallest 25 eigenvalues of the (1 − x)M1+xM2 matrix for different values of x, we

can build a matrix (evals_mat) that contains the eigenvalues as a function of x. Below we

use 50 values of x in the interval [0, 1]:

In [67]: N = 100

In [68]: x_vec = np.linspace(0, 1, 50)

In [69]: M1 = sp.rand(N, N, density=0.2)

Chapter 10 SparSe MatriCeS and GraphS

352

In [70]: M2 = sp.rand(N, N, density=0.2)

In [71]: evals_mat = np.array([sp_eigs_sorted((1-x)*M1 + x*M2, k=25)[0] for

x in x_vec])

Once the matrix evals_mat of eigenvalues as a function of x is computed, we can

plot the eigenvalue spectrum. The result is shown in Figure 10-4, which is a complicated

eigenvalue spectrum due to the randomness of the matrices M1 and M2.

In [72]: fig, ax = plt.subplots(figsize=(8, 4))

 ...: for idx in range(evals_mat.shape[1]):

 ...: ax.plot(x_vec, np.real(evals_mat[:,idx]), lw=0.5)

 ...: ax.set_xlabel(r"x", fontsize=16)

 ...: ax.set_ylabel(r"eig.vals. of $(1-x)M_1+xM_2$", fontsize=16)

Figure 10-4. The spectrum of the lowest 25 eigenvalues of the sparse matrix
(1 − x)M1+xM2, as a function of x, where M1 and M2 are two random matrices

 Graphs and Networks
Representing graphs as adjacency matrices is another important application of sparse

matrices. In an adjacency matrix, an element describes which nodes in a graph are

connected to each other. Consequently, if each node is only connected to a small set of

other nodes, the adjacency matrix is sparse. The csgraph module in the SciPy sparse

module provides functions for processing such graphs, including methods for traversing

a graph using different methods (e.g., breadth-first and depth-first traversals) and for

computing shortest paths between nodes in a graph, and so on. For more information

about this module, refer to its docstring: help(sp.csgraph).

Chapter 10 SparSe MatriCeS and GraphS

353

For a more comprehensive framework for working with graphs, there is the

NetworkX Python library. It provides utilities for creating and manipulating undirected

and directed graphs and also implements many graph algorithms, such as finding

minimum paths between nodes in a graph. Here we assume that the Networkx library

is imported under the name nx. Using this library, we can, for example, create an

undirected graph by initiating an object of the class nx.Graph. Any hashable Python

object can be stored as nodes in a graph object, which makes it a very flexible data

structure. However, in the following examples, we only use graph objects with integers

and strings as node labels. See Table 10-2 for a summary of functions for creating graphs

and for adding nodes and edges to graph objects.

Table 10-2. Summary of Objects and Methods for Basic Graph Construction Using

NetworkX

Object/Method Description

nx.Graph Class for representing undirected graphs.

nx.DiGraph Class for representing directed graphs.

nx.MultiGraph Class for representing undirected graphs with support for multiple edges.

nx.MultiDiGraph Class for representing directed graphs with support for multiple edges.

add_node add a node to the graph. expects a node label (e.g., a string, or in general a

hashable object) as argument.

add_nodes_from adds multiple nodes. expects a list (or iterable) of node labels as argument.

add_edge add an edge. expects two node arguments as arguments and creates an

edge between those nodes.

add_edges_from adds multiple edges. expects a list (or iterable) of tuples of node labels.

add_weighted_

edges_from

adds multiple edges with weight factors. expects a list (or iterable) of tuples

each containing two node labels and the weight factor.

Chapter 10 SparSe MatriCeS and GraphS

354

For example, we can create a simple graph with node data that are integers using

nx.Graph(), and the add_node method, or add_nodes_from to add multiple nodes in one

go. The nodes method returns an iterator object for the nodes, called a NodeView:

In [73]: g = nx.Graph()

In [74]: g.add_node(1)

In [75]: g.nodes()

Out[75]: NodeView((1,))

In [76]: g.add_nodes_from([3, 4, 5])

In [77]: g.nodes()

Out[77]: NodeView((1, 3, 4, 5))

To connect nodes we can add edges, using add_edge. We pass the labels

of the two nodes we want to connect as arguments. To add multiple edges, we can use

add_edges_from and pass to it a list of tuples of nodes to connect. The edges method

returns an iterator object for the edges, called EdgeView:

In [78]: g.add_edge(1, 2)

In [79]: g.edges()

Out[79]: EdgeView([(1, 2)])

In [80]: g.add_edges_from([(3, 4), (5, 6)])

In [81]: g.edges()

Out[81]: EdgeView([(1, 2), (3, 4), (5, 6)])

To represent edges between nodes that have weights associated with them (e.g., a

distance), we can use add_weighted_edges_from, to which we pass a list of tuples that

also contains the weight factor for each edge, in addition to the two nodes. When calling

the edges method, we can additionally give argument data=True to indicate that also the

edge data should be included in the resulting view.

In [82]: g.add_weighted_edges_from([(1, 3, 1.5), (3, 5, 2.5)])

In [83]: g.edges(data=True)

Out[83]: EdgeDataView([(1, 2, {}),

 (1, 3, {'weight': 1.5}),

 (3, 4, {}),

 (3, 5, {'weight': 2.5}),

 (5, 6, {})])

Chapter 10 SparSe MatriCeS and GraphS

355

Note that if we add edges between nodes that do not yet exist in the graph, they are

seamlessly added. For example, in the following code, we add a weighted edge between

nodes 6 and 7. Node 7 does not previously exist in the graph, but when adding an edge to

it, it is automatically created and added to the graph:

In [84]: g.add_weighted_edges_from([(6, 7, 1.5)])

In [85]: g.nodes()

Out[85]: NodeView((1, 3, 4, 5, 2, 6, 7))

In [86]: g.edges()

Out[86]: EdgeView([(1, 2), (1, 3), (3, 4), (3, 5), (5, 6), (6, 7)])

With these basic fundamentals in place, we are already prepared to look at a more

complicated example of a graph. In the following we will build a graph from a dataset

stored in a JSON file called tokyo-metro.json (available together with the code listings),

which we load using the Python standard library module json8:

In [87]: import json

In [88]: with open("tokyo-metro.json") as f:

 ...: data = json.load(f)

The result of loading the JSON file is a dictionary data that contains metro line

descriptions. For each line, there is a list of travel times between stations (travel_times),

a list of possible transfer points to other lines (transfer), as well as the line color:

In [89]: data.keys()

Out[89]: dict_keys(['C', 'T', 'N', 'F', 'Z', 'M', 'G', 'Y', 'H'])

In [90]: data["C"]

Out[90]: {'color': '#149848',

 'transfers': [['C3', 'F15'], ['C4', 'Z2'], ...],

 'travel_times': [['C1', 'C2', 2], ['C2', 'C3', 2], ...]}

Here the format of the travel_times list is [['C1', 'C2', 2], ['C2', 'C3', 2], ...],

indicating that it takes 2 minutes to travel between the stations C1 and C2, and 2 minutes

to travel between C2 and C3, etc. The format of the transfers list is [['C3', 'F15'], ...],

indicating that it is possible to transfer from the C line to the F line at station C3 to

station F15. The travel_times and transfers are directly suitable for feeding to

8 For more information about the JSON format and the json module, see Chapter 18.

Chapter 10 SparSe MatriCeS and GraphS

356

add_weighed_edges_from and add_edges_from, and we can therefore easily create a

graph for representing the metro network by iterating over each metro line dictionary

and call these methods:

In [91]: g = nx.Graph()

 ...: for line in data.values():

 ...: g.add_weighted_edges_from(line["travel_times"])

 ...: g.add_edges_from(line["transfers"])

The line transfer edges do not have edge weights, so let’s first mark all transfer edges

by adding a new Boolean attribute transfer to each edge:

In [92]: for n1, n2 in g.edges():

 ...: g[n1][n2]["transfer"] = "weight" not in g[n1][n2]

Next, for plotting purposes, we create two lists of edges containing transfer edges and on-

train edges, and we also create a list with colors corresponding to each node in the network:

In [93]: on_foot = [e for e in g.edges() if g.get_edge_data(*e)["transfer"]]

In [94]: on_train = [e for e in g.edges () if not g.get_edge_data(*e)

["transfer"]]

In [95]: colors = [data[n[0].upper()]["color"] for n in g.nodes()]

To visualize the graph, we can use the Matplotlib-based drawing routines in the

Networkx library: we use nx.draw to draw each node, nx.draw_networkx_labels to

draw the labels to the nodes, and nx.draw_network_edges to draw the edges. We call

nx.draw_network_edges twice, with the edge lists for transfers (on_foot) and on-train

(on_train) connections, and color the links as blue and black, respectively, using the

edge_color argument. The layout of the graph is determined by the pos argument to

the drawing functions. Here we used the graphviz_layout function from networkx.

drawing.nx_agraph to lay out the nodes. All drawing functions also accept a Matplotlib

axes instance via the ax argument. The resulting graph is shown in Figure 10-5.

In [96]: fig, ax = plt.subplots(1, 1, figsize=(14, 10))

 ...: pos = nx.drawing.nx_agraph.graphviz_layout(g, prog="neato")

 ...: nx.draw(g, pos, ax=ax, node_size=200, node_color=colors)

 ...: nx.draw_networkx_labels(g, pos=pos, ax=ax, font_size=6)

Chapter 10 SparSe MatriCeS and GraphS

357

 ...: nx.draw_networkx_edges(g, pos=pos, ax=ax, edgelist=on_train, width=2)

 ...: nx.draw_networkx_edges(g, pos=pos, ax=ax, edgelist=on_foot, edge_

color="blue")

Figure 10-5. Network graph for the Tokyo Metro stations

Once the network has been constructed, we can use the many graph algorithms

provided by the NetworkX library to analyze the network. For example, to compute the

degree (i.e., the number of connections to a node) of each node, we can use the degree

method (here the output is truncated at ... to save space):

In [97]: g.degree()

Out[97]: DegreeView({'Y8': 3, 'N18': 2, 'M24': 2, 'G15': 3, 'C18': 3,

'N13': 2, ... })

Chapter 10 SparSe MatriCeS and GraphS

358

For this graph, the degree of a node can be interpreted as the number of connections

to a station: the more metro lines that connect at a station, the higher the degree of the

corresponding node. We can easily search for the most highly connected station in the

network by using the degree method and the max function to find the highest degree

in the network. Next we iterate over the result of the degree method and select out the

nodes with the maximal degree (which is 6 in this network):

In [98]: d_max = max(d for (n, d) in g.degree())

In [99]: [(n, d) for (n, d) in g.degree() if d == d_max]

Out[99]: [('N7', 6), ('G5', 6), ('Y16', 6), ('M13', 6), ('Z4', 6)]

The result tells us that the most highly connected stations are station numbers 7 on

the N line, 5 on the G line, and so on. All these lines intercept at the same station (the

Nagatachou station). We can also compute the closest path between two points in the

network using nx.shortest_path. For example, the optimal traveling route (assuming

no waiting time and instantaneous transfer) for traveling between Y24 and C19 is

In [100]: p = nx.shortest_path(g, "Y24", "C19")

In [101]: p

Out[101]: ['Y24', 'Y23', 'Y22', 'Y21', 'Y20', 'Y19', 'Y18', 'C9', 'C10', 'C11',

 'C12', 'C13', 'C14', 'C15', 'C16', 'C17', 'C18', 'C19']

Given a path on this form, we can also directly evaluate the travel time by summing

up the weight attributes of neighboring nodes in the path:

In [102]: np.sum([g[p[n]][p[n+1]]["weight"]

 ...: for n in range(len(p)-1) if "weight" in g[p[n]][p[n+1]]])

Out[102]: 35

The result suggests that it takes 35 minutes to travel from Y24 to C19. Since the

transfer nodes do not have a weight associated with them, the train transfers are

effectively assumed to be instantaneous. It may be reasonable to assume that a train

transfer takes about 5 minutes, and to take this into account in the shortest path and

travel time computation, we can update the transfer nodes and add a weight of 5 to

each of them. To do this we create a copy of the graph using the copy method and iterate

through the edges and update those with transfer attribute set to True:

In [103]: h = g.copy()

In [104]: for n1, n2 in h.edges():

Chapter 10 SparSe MatriCeS and GraphS

359

 ...: if h[n1][n2]["transfer"]:

 ...: h[n1][n2]["weight"] = 5

Recomputing the path and the traveling time with the new graph gives a more

realistic estimate of the traveling time:

In [105]: p = nx.shortest_path(h, "Y24", "C19")

In [106]: p

Out[106]: ['Y24', 'Y23', 'Y22', 'Y21', 'Y20', 'Y19', 'Y18', 'C9', 'C10',

'C11', 'C12', 'C13', 'C14', 'C15', 'C16', 'C17', 'C18', 'C19']

In [107]: np.sum([h[p[n]][p[n+1]]["weight"] for n in range(len(p)-1)])

Out[107]: 40

With this method, we can of course compute the optimal path and travel time

between arbitrary nodes in the network. As another example, we also compute the

shortest path and traveling time between Z1 and H16 (32 minutes):

In [108]: p = nx.shortest_path(h, "Z1", "H16")

In [109]: np.sum([h[p[n]][p[n+1]]["weight"] for n in range(len(p)-1)])

Out[109]: 32

The NetworkX representation of a graph can be converted to an adjacency matrix in

the form of a SciPy sparse matrix using the nx.to_scipy_sparse_matrix, after which we

can also analyze the graph with the routines in the sp.csgraph module. As an example

of this, we convert the Tokyo Metro graph to an adjacency matrix and compute its

reverse Cuthill-McKee ordering (using sp.csgraph.reverse_cuthill_mckee, which

is a reordering that reduces the maximum distance of the matrix elements from the

diagonal) and permute the matrix with this ordering. We plot the result of both matrices

using Matplotlib’s spy function, and the result is shown in Figure 10-6.

In [110]: A = nx.to_scipy_sparse_matrix(g)

In [111]: A

Out[111]: <184x184 sparse matrix of type '<class 'numpy.int64'>'

 with 486 stored elements in Compressed Sparse

Row format>

In [112]: perm = sp.csgraph.reverse_cuthill_mckee(A)

In [113]: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))

 ...: ax1.spy(A, markersize=2)

 ...: ax2.spy(sp_permute(A, perm, perm), markersize=2)

Chapter 10 SparSe MatriCeS and GraphS

360

 Summary
In this chapter we have briefly introduced common methods of storing sparse matrices

and reviewed how these can be represented using the sparse matrix classes in the SciPy

sparse module. We also reviewed the sparse matrix construction functions available

in the SciPy sparse module and the sparse linear algebra routines available in sparse.

linalg. To complement the linear algebra routines built into SciPy, we also discussed

briefly the scikit.umfpack extension package, which makes the UMFPACK solver

available to SciPy. The sparse matrix library in SciPy is versatile and very convenient

to work with, and because it uses efficient low-level libraries for linear algebra routines

(SuperLU or UMFPACK), it also offers good performance. For large-scale problems that

require parallelization to distribute the workload to multiple cores or even multiple

computers, the PETSc and Trilinos frameworks, which both have Python interfaces,

provide routes for using sparse matrices and sparse linear algebra with Python in

high-performance applications. We also briefly introduced graph representations and

processing using the SciPy sparse.csgraph and NetworkX libraries.

Figure 10-6. The adjacency matrix of the Tokyo metro graph (left) and the same
after RCM ordering (right)

Chapter 10 SparSe MatriCeS and GraphS

361

 Further Reading
A good and accessible introduction to sparse matrices and direct solvers for sparse linear

equation systems is given in Davis (2006). A fairly detailed discussion of sparse matrices

and methods is also given in W. H. Press (2007). For a thorough introduction to network

and graph theory, see Newman (2010).

 References
Davis, T. (2006). Direct Methods for Sparse Linear Systems. Philadelphia: SIAM.

Newman, M. (2010). Networks: An introduction. New York: Oxford.

W. H. Press, S. A. (2007). Numerical Recipes in C: The Art of Scientific Computing.

Cambridge: Cambridge University Press.

Chapter 10 SparSe MatriCeS and GraphS

363
© Robert Johansson 2019
R. Johansson, Numerical Python, https://doi.org/10.1007/978-1-4842-4246-9_11

CHAPTER 11

Partial Differential
Equations
Partial differential equations (PDEs) are multivariate differential equations where

derivatives of more than one dependent variable occur. That is, the derivatives in the

equation are partial derivatives. As such they are generalizations of ordinary differential

equations, which were covered in Chapter 9. Conceptually, the difference between

ordinary and partial differential equations is not that big, but the computational

techniques required to deal with ODEs and PDEs are very different, and solving PDEs

is typically much more computationally demanding. Most techniques for solving PDEs

numerically are based on the idea of discretizing the problem in each independent

variable that occurs in the PDE, thereby recasting the problem into an algebraic form.

This usually results in very large-scale linear algebra problems. Two common techniques

for recasting PDEs into algebraic form are the finite-difference methods (FDMs), where

the derivatives in the problem are approximated with their finite-difference formula,

and the finite-element methods (FEMs), where the unknown function is written as

linear combination of simple basis functions that can be differentiated and integrated

easily. The unknown function is described by a set of coefficients for the basis functions

in this representation, and by a suitable rewriting of the PDEs, we can obtain algebraic

equations for these coefficients.

With both FDMs and FEMs, the resulting algebraic equation system is usually very

large, and in the matrix form, such equation systems are usually very sparse. Both FDM

and FEM therefore heavily rely on sparse matrix representation for the algebraic linear

equations, as discussed in Chapter 10. Most general-purpose frameworks for PDEs are

based on FEM, or some variant thereof, as this method allows for solving very general

problems on complicated problem domains.

364

Solving PDE problems can be far more resource demanding compared to other

types of computational problems that we have covered so far (e.g., compared to ODEs).

It can be resource demanding partly because of the number of points required to

discretize a region of space scale exponentially with the number of dimensions. If a one-

dimensional problem requires 100 points to describe, a two-dimensional problem with

similar resolution requires 1002 = 104 points, and a three-dimensional problem requires

1003 = 106 points. Since each point in the discretized space corresponds to an unknown

variable, it is easy to imagine that PDE problems can result in very large equation

systems. Defining PDE problems programmatically can also be complicated. One reason

for this is that the possible forms of a PDE vastly outnumber the more limited possible

forms of ODEs. Another reason is geometry: while an interval in one-dimensional space

is uniquely defined by two points, an area in two-dimensional problems and a volume

in three-dimensional problems can have arbitrarily complicated geometries enclosed

by curves and surfaces. To define the problem domain of a PDE and its discretization in

a mesh of coordinate points can therefore require advanced tools, and there is a large

amount of freedom in how boundary conditions can be defined as well. In contrast to

ODE problems, there is no standard form on which any PDE problem can be defined.

For these reasons, the PDE solvers for Python are only available through libraries

and frameworks that are specifically dedicated to PDE problems. For Python, there are

at least three significant libraries for solving PDE problems using the FEM method: the

FiPy library, the SfePy library, and the FEniCS library. All of these libraries are extensive

and feature-rich, and going into the details of using either of these libraries is beyond

the scope of this book. Here we can only give a brief introduction to PDE problems

and survey prominent examples of PDE libraries that can be used from Python and

go through a few examples that illustrate some of the features of one of these libraries

(FEniCS). The hope is that this can give the reader who is interested in solving PDE

problems with Python a bird’s-eye overview of the available options and some useful

pointers on where to look for further information.

 Importing Modules
For basic numerical and plotting usage, in this chapter too, we require the NumPy and

Matplotlib libraries. For 3D plotting we need to explicitly import the mplot3d module

from the Matplotlib toolkit library mpl_toolkits. As usual, we assume that these

libraries are imported in the following manner:

Chapter 11 partial Differential equations

365

In [1]: import numpy as np

In [2]: import matplotlib.pyplot as plt

In [3]: import matplotlib as mpl

In [4]: import mpl_toolkits.mplot3d

We also use the linalg and the sparse modules from SciPy, and to use the linalg

submodule of the sparse module, we also need to import it explicitly:

In [5]: import scipy.sparse as sp

In [6]: import scipy.sparse.linalg

In [7]: import scipy.linalg as la

With these imports, we can access the dense linear algebra module as la, while

the sparse linear algebra module is accessed as sp.linalg. Furthermore, later in this

chapter, we will also use the FEniCS FEM framework, and we require that its dolfin and

mshr libraries be imported in the following manner:

In [8]: import dolfin

In [9]: import mshr

 Partial Differential Equations
The unknown quantity in a PDE is a multivariate function, here denoted as u. In

an N-dimensional problem, the function u depends on n-independent variables:

u(x1, x2, …, xn). A general PDE can formally be written as

F x x x u
u

x

u

x xn
i i n i i

1 2

1

2

11
1

1 2

, , , , , ,¼
¶
¶

ì
í
ï

îï

ü
ý
ï

þï

¶
¶

ì
í
ï

îï

ü
ý
ï

þï£ £ ££ £

¼
æ

è

ç
ç

ö

ø

÷
÷
= Î

i i n1 2

0
,

, ,, x W

where
¶
¶

ì
í
ï

îï

ü
ý
ï

þï £ £

u

xi i n1
11

 denotes all first-order derivatives with respect to the

independent variables x1,…,xn,
¶

¶

ì
í
ï

îï

ü
ý
ï

þï £ £

2

11 2
1 2

u

x xn n i i n,

 denotes all second-order derivatives, and

so on. Here F is a known function that describes the form of the PDE, and Ω is the

domain of the PDE problem. Many PDEs that occur in practice only contain up to

second-order derivatives, and we typically deal with problems in two or three spatial

dimensions and possibly time. When working with PDEs, it is common to simplify the

Chapter 11 partial Differential equations

366

notation by denoting the partial derivatives with respect to an independent variable x

using the subscript notation: u
u

xx =
¶
¶

. Higher-order derivatives are denoted with

multiple indices: u
u

xxx =
¶
¶

2

2
, u

u

x yxy =
¶
¶ ¶

2

, and so on. An example of a typical PDE is the

heat equation, which in a two-dimensional Cartesian coordinate system takes the form

ut = α(uxx+uyy). Here the function u = u(t, x, y) describes the temperature at the spatial

point (x, y) at time t, and α is the thermal diffusivity coefficient.

To fully specify a particular solution to a PDE, we need to define its boundary

conditions, which are known values of the function or a combination of its derivatives

along the boundary of the problem domain Ω, as well as the initial values if the problem

is time-dependent. The boundary is often denoted as Γ or ∂Ω, and in general different

boundary conditions can be given for different parts of the boundary. Two important

types of boundary conditions are Dirichlet boundary conditions, which specify the value

of the function at the boundary, u(x) = h(x) for x ∈ ΓD, and Neumann boundary

conditions, which specify the normal derivative on the boundary,
¶ ()
¶

= ()u
g

x

n
x for

x ∈ ΓN, where n is the outward normal from the boundary. Here h(x) and g(x) are

arbitrary functions.

 Finite-Difference Methods
The basic idea of the finite-difference method is to approximate the derivatives that

occur in a PDE with their finite-difference formulas on a discretized space. For example,

the finite-difference formula for the ordinary derivative
du x

dx

()
 on a discretization of the

continuous variable x into discrete points {xn} can be approximated with the forward

difference formula
du x

dx

u x u x

x x
n n n

n n

()
»

()- ()
-

+

+

1

1

, the backward difference formula

du x

dx

u x u x

x x
n n n

n n

()
»

()- ()
-

-

-

1

1

, or the centered difference formula
du x

dx

u x u x

x x
n n n

n n

()
»

()- ()
-

+ -

+ -

1 1

1 1

.

Similarly, we can also construct finite-difference formulas for higher-order derivatives,

such as the second-order derivative
d u x

dx

u x u x u x

x x
n n n n

n n

2

2
1 1

1

2

2()
»

()- ()+ ()
-()

+ -

-

. Assuming that

the discretization of the continuous variable x into discrete points is fine enough, these

finite-difference formulas can give good approximations of the derivatives. Replacing

Chapter 11 partial Differential equations

367

derivatives in an ODE or PDE with their finite-difference formulas recasts the equations

from differential equations to algebraic equations. If the original ODE or PDE is linear,

the algebraic equations are also linear and can be solved with standard linear algebra

methods.

To make this method more concrete, consider the ODE problem uxx = − 5 in the

interval x ∈ [0, 1] and with boundary conditions u(x = 0) = 1 and u(x = 1) = 2, which, for

example, arises from the steady-state heat equation in one dimension. In contrast to the

ODE initial value problem considered in Chapter 9, this is a boundary value problem

because the value of u is specified at both x = 0 and x = 1. The methods for initial

value problems are therefore not applicable here. Instead we can treat this problem

by dividing the interval [0, 1] into discrete points xn, and the problem is then to find

the function u(xn) = un at these points. Writing the ODE problem in finite-difference

form gives an equation (un − 1 − 2un+un+1)/Δx2 = − 5 for every interior point n and the

boundary conditions u0 = 1 and uN+1 = 2. Here the interval [0, 1] is discretized into N+2

evenly spaced points, including the boundary points, with separation Δx = 1/(N+1).

Since the function is known at the two boundary points, there are N unknown variables

un corresponding to the function values at the interior points. The set of equations

for the interior points can be written in a matrix form as Au = b, where u = [u1, …, uN]T,

b
u

x

u

x
N

T

= - - - ¼ - - -é
ëê

ù
ûú

+5 5 5 50
2

1
2D D

, , , , , and

A
x

=

- ¼
- ¼

-
-

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

1

2 1 0 0

1 2 1 0

0 1 2 1 0

0 0 1 2

0

2D
�

� � � �

.

Here the matrix A describes the coupling of the equations for un to values at

neighboring points due to the finite-difference formula that was used to approximate the

second-order derivative in the ODE. The boundary values are included in the b vector,

which also contains the constant right-hand side of the original ODE (the source term).

At this point, we can straightforwardly solve the linear equation system Au = b for the

unknown vector of u and thereby obtain the approximate values of the function u(x) at

the discrete points {xn}.

Chapter 11 partial Differential equations

368

In Python code, we can set up and solve this problem in the following way: First,

we define variables for the number of interior points N, the values of the function at the

boundaries u0 and u1, as well as the spacing between neighboring points dx.

In [10]: N = 5

In [11]: u0, u1 = 1, 2

In [12]: dx = 1.0 / (N + 1)

Next we construct the matrix A as described in the preceding section. For this we can

use the eye function from NumPy, which creates a two-dimensional array with ones on

the diagonal or on the upper or lower diagonal that is shifted from the main diagonal by

the number given by the argument k.

In [13]: A = (np.eye(N, k=-1) - 2 * np.eye(N) + np.eye(N, k=1)) / dx**2

In [14]: A

Out[14]: array([[-72., 36., 0., 0., 0.],

 [36., -72., 36., 0., 0.],

 [0., 36., -72., 36., 0.],

 [0., 0., 36., -72., 36.],

 [0., 0., 0., 36., -72.]])

Next we need to define an array for the vector b, which corresponds to the source

term –5 in the differential equation, as well as the boundary condition. The boundary

conditions enter into the equations via the finite-difference expressions for the

derivatives of the first and the last equation (for u1 and uN), but these terms are missing

from the expression represented by the matrix A and must therefore be added to the

vector b.

In [15]: b = -5 * np.ones(N)

 ...: b[0] -= u0 / dx**2

 ...: b[N-1] -= u1 / dx**2

Once the matrix A and the vector b are defined, we can proceed to solve the equation

system using the linear equation solver from SciPy (we could also use the one provided

by NumPy, np.linalg.solve).

In [16]: u = la.solve(A, b)

Chapter 11 partial Differential equations

369

This completes the solution of this ODE problem. To visualize the solution, here

we first create an array x that contains the discrete coordinate points for which we have

solved the problem, including the boundary points, and we also create an array U that

combines the boundary values and the interior points in one array. The result is then

plotted and shown in Figure 11-1.

In [17]: x = np.linspace(0, 1, N+2)

In [18]: U = np.hstack([[u0], u, [u1]])

In [19]: fig, ax = plt.subplots(figsize=(8, 4))

 ...: ax.plot(x, U)

 ...: ax.plot(x[1:-1], u, 'ks')

 ...: ax.set_xlim(0, 1)

 ...: ax.set_xlabel(r"x", fontsize=18)

 ...: ax.set_ylabel(r"$u(x)$", fontsize=18)

Figure 11-1. Solution to the second-order ODE boundary value problem
introduced in the text

The finite-difference method can easily be extended to higher dimensions by using

the finite-difference formula along each discretized coordinate. For a two-dimensional

problem, we have a two-dimensional array u for the unknown interior function values,

and when using the finite differential formula, we obtain a system of coupled equations

for the elements in u. To write these equations on the standard matrix-vector form, we

can rearrange the u array into a vector and assemble the corresponding matrix A from

the finite-difference equations.

Chapter 11 partial Differential equations

370

As an example, consider the following two-dimensional generalization of the

previous problem: uxx+uyy = 0, with the boundary conditions u(x = 0) = 3, u(x = 1) = − 1,

u(y = 0) = − 5, and u(y = 1) = 5. Here there is no source term, but the boundary

conditions in a two-dimensional problem are more complicated than in the one-

dimensional problem we solved earlier. In finite-difference form, we can write the

PDE as (um − 1,n − 2um,n+um+1,n)/Δx2+(um,n − 1 − 2um,n+um,n+1)/Δy2 = 0. If we divide the x

and y intervals into N interior points (N+2 points including the boundary points), then

D Dx y
N

= =
+
1

1
, and u is an NxN matrix. To write the equation on the standard form

Av = b, we can rearrange the matrix u by stacking its rows or columns into a vector of

size N 2 × 1. The matrix A is then of size N 2 × N 2, which can be very big if we need to use

a fine discretization of the x and y coordinates. For example, using 100 points along

both x and y gives an equation system that has 104 unknown values umn, and the matrix

A has 1004 = 108 elements. Fortunately, since the finite-difference formula only couples

neighboring points, the matrix A turns out to be very sparse, and here we can benefit

greatly from working with sparse matrices, as we will see in the following.

To solve this PDE problem with Python and the finite-element method, we start

by defining variables for the number of interior points and the values along the four

boundaries of the unit square:

In [20]: N = 100

In [21]: u0_t, u0_b = 5, -5

In [22]: u0_l, u0_r = 3, -1

In [23]: dx = 1. / (N+1)

We also computed the separation dx between the uniformly spaced coordinate

points in the discretization of x and y (assumed equal). Because the finite-difference

formula couples both neighboring rows and columns, it is slightly more involved to

construct the matrix A for this example. However, a relatively direct approach is to first

define the matrix A_1d that corresponds to the one-dimensional formula along one of the

coordinates (say x or the index m in um,n). To distribute this formula along each row, we

can take the tensor product of the identity matrix of size N × N with the A_1d matrix. The

result describes all derivatives along the m-index for all indices n. To cover the terms that

couple the equation for um,n to um,n+1 and um,n − 1, that is, the derivatives along the index

n, we need to add diagonals that are separated from the main diagonal by N positions.

In the following we perform these steps to construct A using the eye and kron functions

from the scipy.sparse module. The result is a sparse matrix A that describes the finite-

difference equation system for the two-dimensional PDE we are considering here:

Chapter 11 partial Differential equations

371

In [24]: A_1d = (sp.eye(N, k=-1) + sp.eye(N, k=1) - 4 * sp.eye(N))/dx**2

In [25]: A = sp.kron(sp.eye(N), A_1d) + (sp.eye(N**2, k=-N) + sp.eye(N**2,

k=N))/dx**2

In [26]: A

Out[26]: <10000x10000 sparse matrix of type '<type 'numpy.float64'>'

 with 49600 stored elements in Compressed Sparse Row format>

The printout of A shows that it is a sparse matrix with 108 elements with 49600

nonzero elements, so that only 1 out of about 2000 elements is nonzero, and A is indeed

very sparse. To construct the vector b from the boundary conditions, it is convenient to

create a N × N array of zeros and assign the boundary condition to edge elements of this

array (which are the corresponding elements in u that are coupled to the boundaries,

i.e., the interior points that are neighbors to the boundary). Once this N × N array is

created and assigned, we can use the reshape method to rearrange it into a N 2 × 1 vector

that can be used in the Av = b equation:

In [27]: b = np.zeros((N, N))

 ...: b[0, :] += u0_b # bottom

 ...: b[-1, :] += u0_t # top

 ...: b[:, 0] += u0_l # left

 ...: b[:, -1] += u0_r # right

 ...: b = - b.reshape(N**2) / dx**2

When the A and b arrays are created, we can proceed to solve the equation system for

the vector v and use the reshape method to arrange it back into the N × N matrix u:

In [28]: v = sp.linalg.spsolve(A, b)

In [29]: u = v.reshape(N, N)

For plotting purposes, we also create a matrix U that combines the u matrix with the

boundary conditions. Together with the coordinate matrices X and Y, we then plot a

colormap graph and a 3D surface view of the solution. The result is shown in Figure 11-2.

In [30]: U = np.vstack([np.ones((1, N+2)) * u0_b,

 ...: np.hstack([np.ones((N, 1)) * u0_l, u, np.ones

((N, 1)) * u0_r]),

 ...: np.ones((1, N+2)) * u0_t])

In [31]: x = np.linspace(0, 1, N+2)

Chapter 11 partial Differential equations

372

In [32]: X, Y = np.meshgrid(x, x)

 In [33]: fig = plt.figure(figsize=(12, 5.5))

 ...: cmap = mpl.cm.get_cmap('RdBu_r')

 ...:

 ...: ax = fig.add_subplot(1, 2, 1)

 ...: c = ax.pcolor(X, Y, U, vmin=-5, vmax=5, cmap=cmap)

 ...: ax.set_xlabel(r"x_1", fontsize=18)

 ...: ax.set_ylabel(r"x_2", fontsize=18)

 ...:

 ...: ax = fig.add_subplot(1, 2, 2, projection='3d')

 ...: p = ax.plot_surface(X, Y, U, vmin=-5, vmax=5, rstride=3, cstride=3,

 ...: linewidth=0, cmap=cmap)

 ...: ax.set_xlabel(r"x_1", fontsize=18)

 ...: ax.set_ylabel(r"x_2", fontsize=18)

 ...: cb = plt.colorbar(p, ax=ax, shrink=0.75)

 ...: cb.set_label(r"$u(x_1, x_2)$", fontsize=18)

As mentioned in the preceding section, FDM methods result in matrices A that are

very sparse, and using sparse matrix data structures, such as those provided by scipy.

sparse, can give significant performance improvements compared to using dense

Figure 11-2. The solution to the two-dimensional heat equation with Dirichlet
boundary conditions defined in the text

Chapter 11 partial Differential equations

373

NumPy arrays. To illustrate in concrete terms the importance of using sparse matrices

for this type of problems, we can compare the time required for solving of the Av = b

equation using the IPython command %timeit, for the two cases where A is a sparse and

a dense matrix:

In [34]: A_dense = A.todense()

In [35]: %timeit la.solve(A_dense, b)

1 loops, best of 3: 10.8 s per loop

In [36]: %timeit sp.linalg.spsolve(A, b)

10 loops, best of 3: 31.9 ms per loop

From these results, we see that using sparse matrices for the present problem results

in a speedup of several orders of magnitude (in this particular case, we have a speedup

of a factor 10.8/0.0319 ≈ 340).

The finite-difference method that we used in the last two examples is a powerful

and relatively simple method for solving ODE boundary value problems and PDE

problems with simple geometries. However, it is not so easily adapted to problems on

more complicated domains or problems on nonuniform coordinate grids. For such

problems finite-element methods are typically more flexible and convenient to work

with, and although FEMs are conceptually more complicated than FDMs, they can be

computationally efficient and adapt well to complicated problem domains and more

involved boundary conditions.

 Finite-Element Methods
The finite-element method is a powerful and universal method for converting PDEs into

algebraic equations. The basic idea of this method is to represent the domain on which

the PDE is defined with a finite set of discrete regions, or elements, and to approximate

the unknown function as a linear combination of basis functions with local support on

each of these elements (or on a small group of neighboring elements). Mathematically,

this approximation solution, uh, represents a projection of the exact solution u in the

function space V (e.g., continuous real-valued functions) onto a finite subspace Vh ⊂ V

that is related to the discretization of the problem domain. If Vh is a suitable subspace of

V, then it can be expected that uh can be a good approximation to u.

Chapter 11 partial Differential equations

374

To be able to solve the approximate problem on the simplified function space Vh,

we can first rewrite the PDE from its original formulation, which is known as the strong

form, to its corresponding variational form, also known as the weak form. To obtain

the weak form, we multiply the PDE with an arbitrary function v and integrate over the

entire problem domain. The function v is called a test function, and it can in general be

defined on function space V� that differs from V and Vh.

For example, consider the steady-state heat equation (also known as the Poisson

equation) that we solved using the FDM earlier in this chapter: the strong form of

this equation is −Δu(x) = f (x), where we have used the vector operator notation. By

multiplying this equation with a test function v and integrating over the domain x ∈ Ω,

we obtain the weak form:

- =ò ò
W W

Duv x f v xd d .

Since the exact solution u satisfies the strong form, it also satisfies the weak form of

the PDE for any reasonable choice of v. The reverse does not necessarily hold true, but

if a function uh, which is called a trial function in this context, satisfies the weak form

for a large class of suitably chosen test functions v, then it is plausible that it is a good

approximation to the exact solution u.

To treat this problem numerically, we first need to make the transition from the

infinite-dimensional function spaces V and V� to approximate finite-dimensional

function spaces Vh and V h
� :

- =ò ò
W W

Du v x fv xh h hd d ,

where uh ∈ Vh and v Vh hÎ� . The key point here is that Vh and V h
� are finite

dimensional, so we can use a finite set of basis functions {ϕi} and f� i{ } that spans

the function spaces Vh and V h
� , respectively, to describe the functions uh and vh. In

particular, we can express uh as a linear combination of the basis functions that span its

function space, uh = ∑ Uiϕi. Inserting this linear combination in the weak form of the

PDE and carrying out the integrals and differential operators on the basis functions,

instead of directly over terms in the PDE, yields a set of algebraic equations.

Chapter 11 partial Differential equations

375

To obtain an equation system on the simple form AU = b, we also must write

the weak form of the PDE on bilinear form with respect to the uh and vh functions

a(uh, vh) = L(vh), for some functions a and L. This is not always possible, but for the

current example of the Poisson equation, we can obtain this form by integrating by parts:

- = Ñ - Ñ Ñ() = Ñ - Ñò
W W W W ¶W
ò ò ò òD Ñ Ñu v x u v x u v x u v x uh h h h h h h h hd d d d· · · ·· n()v dh G,

where in the second equality we have also applied Gauss’ theorem to convert the second

term to an integral over the boundary ∂Ω of the domain Ω. Here n is the outward normal

vector of the boundary ∂Ω. There is no general method for rewriting a PDE on the strong

form to weak form, and each problem will have to be approached on a case- by- case

basis. However, the technique used here, to integrate by part and rewrite the resulting

integrals using integral identities, can be used for many frequently occurring PDEs.

To reach the bilinear form that can be approached with standard linear algebra

methods, we also have to deal with the boundary term in the preceding weak form

equation. To this end, assume that the problem satisfies the Dirichlet boundary

condition on a part of ∂Ω denoted ΓD and Neumann boundary conditions on the

remaining part of ∂Ω, denoted ΓN: {u = h, x ∈ ΓD} and {∇u ∙ n = g, x ∈ ΓN}. Not all boundary

conditions are of Dirichlet or Neumann type, but together these cover many physically

motivated situations.

Since we are free to choose the test functions vh, we can let vh vanish on the part of

the boundary that satisfies Dirichlet boundary conditions. In this case we obtain the

following weak form of the PDE problem:

 W W G
ò ò òÑ Ñ = +u v x fv x g v dh h h h· d d

N

G.

If we substitute the function uk for its expression as a linear combination of basis

functions, and substitute the test function with one of its basis functions, we obtain an

algebraic equation:

å Ñ Ñ = +ò ò òU x f x g dj j i i i

W W G

f f f f· � � �d d
N

G.

Chapter 11 partial Differential equations

376

If there are N basis functions in Vk, then there are N unknown coefficients Ui, and we

need N-independent test functions f� i to obtain a closed equation system. This equation

system is on the form AU = b with A xij j i= Ñ Ñò
W

f f· � d and b f x g di i i= +ò ò
W G

f f� �d
N

G.

Following this procedure we have therefore converted the PDE problem into a system of

linear equations that can be readily solved using techniques discussed in previous

chapters.

In practice, a very large number of basis functions can be required to obtain a good

approximation to the exact solution, and the linear equation system generated by FEMs

is therefore often very large. However, the fact that each basis function has support only at

one or a few nearby elements in the discretization of the problem domain ensures that the

matrix A is sparse, which makes it tractable to solve rather large-scale FEM problems. We also

note that an important property of the basis functions ϕi and f� i is that it should be easy to

compute the derivatives and integrals of the expression that occurs in the final weak form of

the problem, so that the matrix A and vector b can be assembled efficiently. Typical examples

of basis functions are low-order polynomial functions that are nonzero only within a single

element. See Figure 11-3 for a one-dimensional illustration of this type of basis function,

where the interval [0, 6] is discretized using five interior points, and a continuous function

(black solid curve) is approximated as a piecewise linear function (dashed red/light-gray

line) by suitably weighted triangular basic functions (blue/dark-gray solid lines).

Figure 11-3. An example of possible basis functions (blue/dark-gray lines), with
local support, for the one-dimensional domain [0, 6]

When using FEM software for solving PDE problems, it is typically required to

convert the PDE to weak form by hand and if possible rewrite it on the bilinear form

a(u, v) = L(v). It is also necessary to provide a suitable discretization of the problem

domain. This discretization is called a mesh, and it is usually made up of triangular

partitioning (or their higher-order generalizations) of the total domain. Meshing an

intricate problem domain can in itself be a complicated process, and it may require

using sophisticated software especially dedicated for mesh generation. For simple

geometries there are tools for programmatically generating meshes, and we will see

examples of this in the following section.

Chapter 11 partial Differential equations

377

Once a mesh is generated and the PDE problem is written on a suitable weak form,

we can feed the problem into a FEM framework, which then automatically assembles

the algebraic equation system and applies suitable sparse equation solvers to find the

solution. In this processes, we often have a choice of what type of basis functions to use,

as well as which type of solver to use. Once the algebraic equation is solved, we can

construct the approximation solution to the PDE with the help of the basis functions,

and we can, for example, visualize the solution or post-process it in some other fashion.

In summary, solving a PDE using FEM typically involves the following steps:

 1. Generate a mesh for the problem domain.

 2. Write the PDE on weak form.

 3. Program the problem in the FEM framework.

 4. Solve the resulting algebraic equations.

 5. Post-process and/or visualize the solution.

In the following section, we will review available FEM frameworks that can be used

with Python and then look at a number of examples that illustrate some of the key steps

in the PDE solution process using FEM.

 Survey of FEM Libraries
For Python there are at least three significant FEM packages: FiPy, SfePy, and FEniCS.

These are all rather full-featured frameworks, which are capable of solving a wide

range of PDE problems. Technically, the FiPy library is not a FEM software, but rather

a finite-volume method (FVM) software, but the gist of this method is quite similar to

FEM. The FiPy framework can be obtained from http://www.ctcms.nist.gov/fipy.

The SfePy library is a FEM software that takes a slightly different approach to define

PDE problems, in that it uses Python files as configuration files for its FEM solver,

rather programmatically setting up a FEM problem (although this mode of operation

is technically also supported in SfePy). The SfePy library is available from http://

sfepy.org. The third major framework for FEM with Python is FEniCS, which is written

for C++ and Python. The FEniCS framework is my personal favorite when it comes to

FEM software for Python, as it provides an elegant Python interface to a powerful FEM

engine. Like FDM problem, FEM problems typically result in very large-scale equation

systems that require using sparse matrix techniques to solve efficiently. A crucial part

Chapter 11 partial Differential equations

http://www.ctcms.nist.gov/fipy
http://sfepy.org
http://sfepy.org

378

of a FEM framework is therefore to efficiently solve large-scale linear and nonlinear

systems, using sparse matrices representation and direct or iterative solvers that work

on sparse systems, possibly using parallelization. Each of the frameworks mentioned in

the preceding section supports multiple backends for such low-level computations. For

example, many FEM frameworks can use the PETSc and Trilinos frameworks.

Unfortunately we are not able to explore in depth how to use either of these FEM

frameworks here, but in the following section, we will look at solving example problems

with FEniCS and thereby introduce some of its basic features and usage. The hope is

that the examples can give a flavor of how it is to work with FEM problems in Python

and provide a starting point for the readers interested in learning more about FEM with

Python.

 Solving PDEs Using FEniCS
In this section we solve a series of increasingly complicated PDEs using the FEniCS

framework, and in the process, we introduce the workflow and a few of the main features

of this FEM software. For a thorough introduction to the FEniCS framework, see the

documentation at the project web sites and the official FEniCS book (Anders Logg, 2012).

FEniCS feniCs is a highly capable feM framework that is made up of a
collection of libraries and tools for solving pDe problem. Much of feniCs is
programmed in C++, but it also provides an official python interface. Because
of the complexity of the many dependencies of the feniCs libraries to external
low-level numerical libraries, feniCs is usually packaged and installed as an
independent environment, although it can also be installed using conda on some
platforms. for more information about the feniCs, see the project’s web site at
http://fenicsproject.org. at the time of writing, the most recent version is
2018.1.0.

The Python interface to FEniCS is provided by a library named dolfin. For mesh

generation we will also use the mshr library. In the following code, we assume that these

libraries are imported in their entirety, as shown in the beginning of this chapter. For a

summary of the most important functions and classes from these libraries, see Table 11- 1

and Table 11-2.

Chapter 11 partial Differential equations

http://fenicsproject.org/

379

Table 11-1. Summary of Selected Functions and Classes in the dolfin Library

Function/Class Description Example

parameters Dictionary holding configuration

parameters for the feniCs framework.

dolfin.parameters

["reorder_dofs_serial"]

RectangleMesh object for generating a rectangular 2D

mesh.

mesh = dolfin.

RectangularMesh(dolfin.

Point(0, 0),dolfin.Point

(1, 1), 10, 10)

MeshFunction function defined over a given mesh. dolfin.

MeshFunction("size_t",

mesh, mesh.topology().

dim()-1)

FunctionSpace object for representing a function space. V = dolfin.

FunctionSpace(mesh,

'Lagrange', 1)

TrialFunction object for representing a trial function

defined in a given function space.

u = dolfin.

TrialFunction(V)

TestFunction object for representing a test function

defined in a given function space.

v = dolfin.TestFunction(V)

Function object for representing unknown

functions appearing in the weak form

of a pDe.

u_sol = dolfin.Function(V)

Constant object for representing a fixed constant. c = dolfin.Constant(1.0)

Expression representation of a mathematical

expression in terms of the spatial

coordinates.

dolfin.

Expression("x[0]*x[0] +

x[1]*x[1]")

DirichletBC object for representing Dirichlet-type

boundary conditions.

dolfin.DirichletBC(V, u0,

u0_boundary)

Equation object for representing an equation,

for example, generated by using the ==

operator with other feniCs objects.

a == L

(continued)

Chapter 11 partial Differential equations

380

Table 11-1. (continued)

Function/Class Description Example

inner symbolic representation of the inner

product.

dolfin.inner(u, v)

nabla_grad symbolic representation of the gradient

operator.

dolfin.nabla_grad(u)

dx symbolic representation of the volume

measure for integration.

f*v*dx

ds symbolic representation of a line

measure for integration.

g_v * v * dolfin.ds(0,

domain=mesh, subdomain_

data=boundary_parts)

assemble assemble the algebraic equations by

carrying out the integrations over the

basis functions.

A = dolfin.assemble(a)

solve solve an algebraic equation. dolfin.solve(A, u_sol.

vector(), b)

plot plot a function or expression. dolfin.plot(u_sol)

File Write a function to a file that can be

opened with visualization software such

as paraView.

dolfin.File('u_sol.pvd')

<< u_sol

refine refine a mesh by splitting a selection of

the existing mesh elements into smaller

pieces.

mesh = dolfin.refine

(mesh, cell_markers)

AutoSubDomain representation of a subset of a

domain, selected from all elements by

the indicator function passed to it as

argument.

dolfin.AutoSubDomain

(v_boundary_func)

Chapter 11 partial Differential equations

381

Before we proceed to use FEniCS and the dolfin Python library, we need to set two

configuration parameters via the dolfin.parameters dictionary to obtain the behavior

that we need in the following examples:

In [37]: dolfin.parameters["reorder_dofs_serial"] = False

In [38]: dolfin.parameters["allow_extrapolation"] = True

To get started with FEniCS, we begin by reconsidering the steady-state heat

equation in two dimensions that we already solved earlier in this chapter using the

FDM. Here we consider the problem uxx+uyy = f, where f is a source function. To begin

with we will assume that the boundary conditions are u(x = 0, y) = u(x = 1, y) = 0 and

u(x, y = 0) = u(x, y = 1) = 0. In later examples we will see how to define Dirichlet and

Neumann boundary conditions.

The first step in the solution of a PDE with FEM is to define a mesh that describes the

discretization of the problem domain. In the current example, the problem domain is the

unit square x,y ∈ [0, 1]. For simple geometries like this, there are functions in the dolfin

library for generating the mesh. Here we use the RectangleMesh function, which as first

two arguments takes the coordinate points (x0, y0) and (x1, y1), represented as dolfin.

Point instances, where (x0, y0) is the coordinates of the lower-left corner of the rectangle

and (x1, y1) of the upper-right corner. The fifth and sixth arguments are the numbers of

Table 11-2. Summary of Selected Functions and Classes in the mshr and dolfin

Library

Function/Class Description

dolfin.Point representation of a coordinate point.

mshr.Circle representation of a geometrical object with the shape of a circle, which can be

used to compose 2D domain.

mshr.Ellipse representation of a geometrical object with the shape of an ellipse.

mshr.

Rectangle

representation of a domain defined by a rectangle in 2D.

mshr.Box representation of a domain defined by a box in 3D.

mshr.Sphere representation of a domain defined by a sphere in 3D.

mshr.

generate_mesh

Generate a mesh from a domain composed of geometrical objects, such as

those listed in the preceding section.

Chapter 11 partial Differential equations

382

elements along the x and y directions, respectively. The resulting mesh object is viewed

in a Jupyter Notebook via its rich display system (here we generate a less fine mesh for

the purpose of displaying the mesh structure), as shown in Figure 11-4:

In [39]: N1 = N2 = 75

In [40]: mesh = dolfin.RectangleMesh(dolfin.Point(0, 0), dolfin.Point

(1, 1), N1, N2)

In [41]: dolfin.RectangleMesh(dolfin.Point(0, 0), dolfin.Point(1, 1), 10, 10)

for display

This mesh for the problem domain is the key to the discretization of the problem into a

form that can be treated using numerical methods. The next step is to define a representation

of the function space for the trial and the test functions, using the dolfin.FunctionSpace

class. The constructor of this class takes at least three arguments: a mesh object, the name of

the type of basis function, and the degree of the basis function. For our purposes we will use

the Lagrange type of basis functions of degree one (linear basis functions):

In [42]: V = dolfin.FunctionSpace(mesh, 'Lagrange', 1)

Once the mesh and the function space objects are created, we need to create objects

for the trial function uh and the test function vh, which we can use to define the weak

form of the PDE of interest. In FEniCS, we use the dolfin.TrialFunction and dolfin.

TestFunction classes for this purpose. They both require a function space object as first

argument to their constructors:

In [43]: u = dolfin.TrialFunction(V)

In [44]: v = dolfin.TestFunction(V)

Figure 11-4. A rectangular mesh generated using dolfin.RectangleMesh

Chapter 11 partial Differential equations

383

The purpose of defining representations of the function space V and the trial and test

functions u and v is to be able to construct a representation of a generic PDE on the weak

form. For the steady-state heat equation that we are studying here, the weak form was

shown in the previous section to be (in the absence of Neumann boundary conditions)

 W W
ò òÑ Ñ =u v x fv x· d d .

To arrive at this form usually requires rewriting and transforming by hand the direct

integrals over the PDE, typically by performing integration by parts. In FEniCS, the PDE

itself is defined using the integrands that appear in the weak form, including the integral

measure (i.e., the dx). To this end, the dolfin library provides a number of functions

acting on the trial and test function objects v and u that are used to represent operations

on these function that commonly occur in the weak form of a PDE. For example, in the

present case, the integrand of the left-hand side integral is ∇u ∙ ∇v dx. To represent this

expression, we need a symbolic representation of the inner product, the gradients of

u and v, and the integration measure dx. The names for these functions in the dolfin

library are inner, nabla_grad, and dx, respectively, and using these functions we can

create a representation of a(u, v) = ∇u ∙ ∇v dx that the FEniCS framework understands

and can work with:

In [45]: a = dolfin.inner(dolfin.nabla_grad(u), dolfin.nabla_grad(v)) *

dolfin.dx

Likewise, for the right-hand side, we need a representation of b(v) = fv dx. At this

point, we need to specify an explicit form of f (the source term in the original PDF) to be

able to proceed with the solution of the problem. Here we look at two types of functions:

f = 1 (a constant) and f = x2+y2 (a function of x and y). To represent f = 1, we can use the

dolfin.Constant object. It takes as its only argument the value of the constant that it

represents:

In [46]: f1 = dolfin.Constant(1.0)

In [47]: L1 = f1 * v * dolfin.dx

If f is a function of x and y, we instead need to use the dolfin.Expression object to

represent f. The constructor of this object takes a string as first argument that contains

an expression that corresponds to the function. This expression must be defined in

Chapter 11 partial Differential equations

384

C++ syntax, since the FEniCS framework automatically generates and compiles a C++

function for efficient evaluation of the expression. In the expression we have access to

a variable x, which is an array of coordinates at a specific point, where x is accessed as

x[0], y as x[1], and so on. For example, to write the expression for f(x, y) = x2+y2, we

can use "x[0]*x[0] + x[1]*x[1]". Note that because we need to use C++ syntax in

this expression, we cannot use the Python syntax x[0]**2. The Expression class also

takes the keyword argument degree that specifies the degree of the basis function or,

alternatively, the keyword argument element that describes the finite elements, which,

for example, can be obtained using the ufl_element method of the function space

object V.

In [48]: f2 = dolfin.Expression("x[0]*x[0] + x[1]*x[1]", degree=1)

In [49]: L2 = f2 * v * dolfin.dx

At this point we have defined symbolic representations of the terms that occur in the

weak form of the PDE. The next step is to define the boundary conditions. We begin with

a simple uniform Dirichlet-type boundary condition. The dolfin library contains a class

DirichletBC for representing this type of boundary conditions. We can use this class to

represent arbitrary functions along the boundaries of the problem domain, but in this

first example, consider the simple boundary condition u = 0 on the entire boundary. To

represent the constant value on the boundary (zero in this case), we can again use the

dolfin.Constant class.

In [50]: u0 = dolfin.Constant(0)

In addition to the boundary condition value, we also need to define a function (here

called u0_boundary) that is used to select different parts of the boundary when creating

an instance of the DirichletBC class. This function takes two arguments: a coordinate

array x and a flag on_boundary that indicates if a point is on the physical boundary of

the mesh, and it should return True if the point x belongs to the boundary and False

otherwise. Since this function is evaluated for every vertex in the mesh, by customizing

the function, one could pin down the function value at arbitrary parts of the problem

domain to specific values or expressions. However, here we only need to select all the

points that are on the physical boundary, so we can simply let the u0_boundary function

return the on_boundary argument.

In [51]: def u0_boundary(x, on_boundary):

 ...: return on_boundary

Chapter 11 partial Differential equations

385

Once we have an expression for the value on the boundary, u0, and a function for

selecting the boundary from the mesh vertices, u0_boundary, we can, with the function

space object V, finally create the DirichletBC object:

In [52]: bc = dolfin.DirichletBC(V, u0, u0_boundary)

This completes the specification of the PDE problem, and our next step is to convert

the problem into an algebraic form, by assembling the matrix and vector from the weak

form representations of the PDE. We can do this explicitly using the dolfin.assemble

function:

In [53]: A = dolfin.assemble(a)

In [54]: b = dolfin.assemble(L1)

In [55]: bc.apply(A, b)

which results in a matrix A and vector b that define the algebraic equation system for

the unknown function. Here we have also used the apply method of the DirichletBC

class instance bc, which modifies the A and b objects in such a way that the boundary

condition is accounted for in the equations.

To finally solve the problem, we need to create a function object for storing the

unknown solution and call the dolfin.solve function, providing the A matrix and the b

vector, as well as the underlying data array of a Function object. We can obtain the data

array for a Function instance by calling the vector method on the object.

In [56]: u_sol1 = dolfin.Function(V)

In [57]: dolfin.solve(A, u_sol1.vector(), b)

Here we named the Function object for the solution u_sol1, and the call to dolfin.

solve function solves the equation system and fills in the values in the data array of the

u_sol1 object. Here we solved the PDE problem by explicitly assembling the A and b

matrices and passing the results to the dolfin.solve function. These steps can also be

carried out automatically by the dolfin.solve function, by passing a dolfin.Equation

object as first argument to the function, the Function object for the solution as second

argument, and a boundary condition (or list of boundary conditions) as third argument.

We can create the Equation object using, for example, a == L2:

In [58]: u_sol2 = dolfin.Function(V)

In [59]: dolfin.solve(a == L2, u_sol2, bc)

Chapter 11 partial Differential equations

386

This is slightly more concise than that of the method we used to find u_sol1 using

the equivalence of a == L1, but in some cases when a problem needs to be solved for

multiple situations, it can be useful to use explicit assembling of the matrix A and/or the

vector b, so it is worthwhile to be familiar with both methods.

With the solution available as a FEniCS Function object, there are a number ways we

can proceed with post-processing and visualizing the solution. A straightforward way to

plot the solution is to use the built-in dolfin.plot function, which can be used to plot

mesh objects, function objects, as well as several other types of objects (see the docstring

for dolfin.plot for more information). For example, to plot the solution u_sol2, we

simply call dolfin.plot(u_sol2). The resulting graph window is shown in Figure 11-5.

In [60]: dolfin.plot(u_sol2)

Using dolfin.plot is a good way of quickly visualizing a solution or a grid, but for

better control of the visualization, it is often necessary to export the data and plot it in

dedicated visualization software, such as ParaView1. To save the solutions u_sol1 and u_

sol2 in a format that can be opened with ParaView, we can use the dolfin.File object

to generate PVD files (collections of VTK files) and append objects to the file using the <<

operator, in a C++ stream-like fashion:

In [61]: dolfin.File('u_sol1.pvd') << u_sol1

1 http://www.paraview.org

Figure 11-5. A graph of the mesh function u_sol2, produced by the plot function
in the dolfin library

Chapter 11 partial Differential equations

http://www.paraview.org

387

We can also add multiple objects to a PVD file using this method:

In [62]: f = dolfin.File('u_sol_and_mesh.pvd')

 ...: f << mesh

 ...: f << u_sol1

 ...: f << u_sol2

Exporting data for FEniCS objects to files that can be loaded and visualized with

external visualization software is a method that benefits from the many advantages of

powerful visualization software, such as interactivity, parallel processing, and high level

of control of the visualizations, just to mention a few. However, in many cases it might be

preferable to work within, for example, the Jupyter Notebook also for visualization of the

solutions and the mesh. For relatively simple problems in one, two, and, to some extent,

three dimensions, we can use Matplotlib to visualize meshes and solution functions

directly. To be able to use Matplotlib, we need to obtain a NumPy array with data

corresponding to the FEniCS function object. There are several ways to construct such

arrays. To begin with, the FEniCS function object can be called like a function, with an

array (list) of coordinate values:

In [63]: u_sol1([0.21, 0.67])

Out[63]: 0.0466076997781351

This allows us to evaluate the solution at arbitrary points within the problem

domain. We can also obtain the values of a function object like u_sol1 at the mesh

vertices as a FEniCS vector using the vector method, which in turn can be converted

to a NumPy array using the np.array function. The resulting NumPy arrays are flat

(one-dimensional), and for the case of a two-dimensional rectangular mesh (like in the

current example), it is sufficient to reshape the flat array to obtain a two-dimensional

array that can be plotted with, for example, the pcolor, contour, or plot_surface

functions from Matplotlib. In the following we follow these steps to convert the

underlying data of the u_sol1 and u_sol2 function objects to NumPy arrays, which then

is plotted using Matplotlib. The result is shown in Figure 11-6.

In [64]: u_mat1 = np.array(u_sol1.vector()).reshape(N1+1, N2+1)

In [65]: u_mat2 = np.array(u_sol2.vector()).reshape(N1+1, N2+1)

In [66]: X, Y = np.meshgrid(np.linspace(0, 1, N1+2), np.linspace(0, 1, N2+2))

In [67]: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))

 ...:

Chapter 11 partial Differential equations

388

 ...: c = ax1.pcolor(X, Y, u_mat1, cmap=mpl.cm.get_cmap('Reds'))

 ...: cb = plt.colorbar(c, ax=ax1)

 ...: ax1.set_xlabel(r"x", fontsize=18)

 ...: ax1.set_ylabel(r"y", fontsize=18)

 ...: cb.set_label(r"$u(x, y)$", fontsize=18)

 ...: cb.set_ticks([0.0, 0.02, 0.04, 0.06])

 ...:

 ...: c = ax2.pcolor(X, Y, u_mat2, cmap=mpl.cm.get_cmap('Reds'))

 ...: cb = plt.colorbar(c, ax=ax2)

 ...: ax1.set_xlabel(r"x", fontsize=18)

 ...: ax1.set_ylabel(r"y", fontsize=18)

 ...: cb.set_label(r"$u(x, x)$", fontsize=18)

 ...: cb.set_ticks([0.0, 0.02, 0.04])

The method used to produce Figure 11-6 is simple and convenient, but it only

works for rectangular meshes. For more complicated meshes, the vertex coordinates

are not organized in a structural manner, and a simple reshaping of the flat array data

is not sufficient. However, the Mesh object that represents the mesh for the problem

domain contains a list of the coordinates for each vertex. Together with values from a

Function object, these can be combined into a form that can be plotted with Matplotlib

triplot and tripcolor functions. To use these plot functions, we first need to create a

Triangulation object from the vertex coordinates for the mesh:

Figure 11-6. The solution of the steady-state heat equation on the unit square,
with source terms f = 1 (left) and f = x2+y2 (right), subject to the condition that the
function u(x, y) is zero on the boundary

Chapter 11 partial Differential equations

389

In [68]: coordinates = mesh.coordinates()

 ...: triangles = mesh.cells()

 ...: triangulation = mpl.tri.Triangulation(coordinates[:, 0],

coordinates[:, 1], triangles)

With the triangulation object defined, we can directly plot the array data for FEniCS

functions using triplot and tripcolor, as shown in the following code. The resulting

graph is shown in Figure 11-7.

In [69]: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4))

 ...: ax1.triplot(triangulation)

 ...: ax1.set_xlabel(r"x", fontsize=18)

 ...: ax1.set_ylabel(r"y", fontsize=18)

 ...: cmap = mpl.cm.get_cmap('Reds')

 ...: c = ax2.tripcolor(triangulation, np.array(u_sol2.vector()),

cmap=cmap)

 ...: cb = plt.colorbar(c, ax=ax2)

 ...: ax2.set_xlabel(r"x", fontsize=18)

 ...: ax2.set_ylabel(r"y", fontsize=18)

 ...: cb.set_label(r"$u(x, y)$", fontsize=18)

 ...: cb.set_ticks([0.0, 0.02, 0.04])

Figure 11-7. The same as Figure 11-6, except that this graph was produced with
Matplotlib’s triangulation functions. The mesh is plotted to the left and the solution
of the PDE to the right

Chapter 11 partial Differential equations

390

To see how we can work with more complicated boundary conditions, consider

again the heat equation, this time without a source term uxx+uyy = 0, but with the

following boundary conditions: u(x = 0) = 3, u(x = 1) = − 1, u(y = 0) = − 5, and

u(y = 1) = 5. This is the same problem as we solved with the FDM method earlier in

this chapter. Here we solve this problem again using FEM. We begin, as in the previous

example, by defining a mesh for the problem domain, the function space, and trial and

test function objects:

In [70]: V = dolfin.FunctionSpace(mesh, 'Lagrange', 1)

In [71]: u = dolfin.TrialFunction(V)

In [72]: v = dolfin.TestFunction(V)

Next we define the weak form of the PDE. Here we set f = 0 using a dolfin.Constant

object to represent f:

In [73]: a = dolfin.inner(dolfin.nabla_grad(u), dolfin.nabla_grad(v)) *

dolfin.dx

In [74]: f = dolfin.Constant(0.0)

In [75]: L = f * v * dolfin.dx

Now it remains to define the boundary conditions according to the given specification.

In this example we do not want a uniform boundary condition that applies to the entire

boundary, so we need to use the first argument to the boundary selection function that is

passed to the DirichletBC class, to single out different parts of the boundary. To this end,

we define four functions that select the top, bottom, left, and right boundaries:

In [76]: def u0_top_boundary(x, on_boundary):

 ...: # on boundary and y == 1 -> top boundary

 ...: return on_boundary and abs(x[1]-1) < 1e-5

In [77]: def u0_bottom_boundary(x, on_boundary):

 ...: # on boundary and y == 0 -> bottom boundary

 ...: return on_boundary and abs(x[1]) < 1e-5

In [78]: def u0_left_boundary(x, on_boundary):

 ...: # on boundary and x == 0 -> left boundary

 ...: return on_boundary and abs(x[0]) < 1e-5

In [79]: def u0_right_boundary(x, on_boundary):

 ...: # on boundary and x == 1 -> left boundary

 ...: return on_boundary and abs(x[0]-1) < 1e-5

Chapter 11 partial Differential equations

391

The values of the unknown function at each of the boundaries are simple constants

that we can represent with instances of dolfin.Constant. Thus, we can create instances

of DirichletBC for each boundary, and the resulting objects are collected in a list bcs:

In [80]: bc_t = dolfin.DirichletBC(V, dolfin.Constant(5), u0_top_boundary)

 ...: bc_b = dolfin.DirichletBC(V, dolfin.Constant(-5), u0_bottom_

boundary)

 ...: bc_l = dolfin.DirichletBC(V, dolfin.Constant(3), u0_left_boundary)

 ...: bc_r = dolfin.DirichletBC(V, dolfin.Constant(-1), u0_right_

boundary)

In [81]: bcs = [bc_t, bc_b, bc_r, bc_l]

With this specification of the boundary conditions, we can continue to solve the PDE

problem by calling dolfin.solve. The resulting vector converted to a NumPy array is

used for plotting the solution using Matplotlib’s pcolor function. The result is shown

in Figure 11-8. By comparing to the result from the corresponding FDM computation,

shown in Figure 11-2, we can conclude that the two methods indeed give the same

results.

In [82]: u_sol = dolfin.Function(V)

In [83]: dolfin.solve(a == L, u_sol, bcs)

In [84]: u_mat = np.array(u_sol.vector()).reshape(N1+1, N2+1)

In [85]: x = np.linspace(0, 1, N1+2)

 ...: y = np.linspace(0, 1, N1+2)

 ...: X, Y = np.meshgrid(x, y)

In [86]: fig, ax = plt.subplots(1, 1, figsize=(8, 6))

 ...: c = ax.pcolor(X, Y, u_mat, vmin=-5, vmax=5, cmap=mpl.cm.get_

cmap('RdBu_r'))

 ...: cb = plt.colorbar(c, ax=ax)

 ...: ax.set_xlabel(r"x_1", fontsize=18)

 ...: ax.set_ylabel(r"x_2", fontsize=18)

 ...: cb.set_label(r"$u(x_1, x_2)$", fontsize=18)

Chapter 11 partial Differential equations

392

So far we have used FEM to solve the same kind of problems that we also solved

with FDM, but the true strength of FEM becomes apparent first when PDE problem with

more complicated problem geometries is considered. As an illustration of this, consider

the heat equation on a unit circle perforated by five smaller circles, one centered at the

origin and the other four smaller circles, as shown in the mesh figure below. To generate

meshes for geometries like this one, we can use the mshr library that is distributed with

FEniCS. It provides geometric primitives (Point, Circle, Rectangle, etc.) that can be

used in algebraic (set) operations to compose mesh for the problem domain of interest.

Here we first create a unit circle, centered at (0, 0), using mshr.Circle, and subtract from

it other Circle objects corresponding to the part of the mesh that should be removed.

The resulting mesh is shown in Figure 11-9.

In [87]: r_outer = 1

 ...: r_inner = 0.25

 ...: r_middle = 0.1

 ...: x0, y0 = 0.4, 0.4

In [88]: domain = mshr.Circle(dolfin.Point(.0, .0), r_outer) \

 ...: - mshr.Circle(dolfin.Point(.0, .0), r_inner) \

 ...: - mshr.Circle(dolfin.Point(x0, y0), r_middle) \

 ...: - mshr.Circle(dolfin.Point(x0, -y0), r_middle) \

 ...: - mshr.Circle(dolfin.Point(-x0, y0), r_middle) \

 ...: - mshr.Circle(dolfin.Point(-x0, -y0), r_middle)

In [89]: mesh = mshr.generate_mesh(domain, 10)

Figure 11-8. The steady-state solution to the heat equation with different Dirichlet
boundary condition on each of the sides of the unit square

Chapter 11 partial Differential equations

393

A physical interpretation of this mesh is that the geometry is a cross section of five

pipes through a block of material, where, for example, the inner pipe carries a hot fluid

and the outer pipes a cold fluid for cooling the material block (e.g., an engine cylinder

surrounded by cooling pipes). With this interpretation in mind, we set the boundary

condition of the inner pipe to a high value, u x y
x y r0 2 2 2 10,

outer
() =

+ =
, and the smaller

surrounding pipes to a lower value, u x y
x x y y r0

0
2

0
2 2 0,

inner
() =

-() + -() =
, where (x0, y0) is the center

of each of the smaller pipes. We leave the outer boundary unspecified, which is

equivalent to the special case of a Neumann boundary condition:
¶ ()
¶

=
u x
n

0 . As before,

we define functions for singling out vertices on the boundary. Since we have different

boundary conditions on different boundaries, here too we need to use the coordinate

argument x to determine which vertices belong to which boundary.

In [90]: def u0_inner_boundary(x, on_boundary):

 ...: x, y = x[0], x[1]

 ...: return on_boundary and abs(np.sqrt(x**2 + y**2) - r_inner)

< 5e-2

In [91]: def u0_middle_boundary(x, on_boundary):

 ...: x, y = x[0], x[1]

 ...: if on_boundary:

 ...: for _x0 in [-x0, x0]:

 ...: for _y0 in [-y0, y0]:

Figure 11-9. A mesh object generated by the mshr library

Chapter 11 partial Differential equations

394

 ...: if abs(np.sqrt((x-_x0)**2 + (y-_y0)**2) - r_

middle) < 5e-2:

 ...: return True

 ...: return False

In [92]: bc_inner = dolfin.DirichletBC(V, dolfin.Constant(10), u0_inner_

boundary)

 ...: bc_middle = dolfin.DirichletBC(V, dolfin.Constant(0), u0_middle_

boundary)

In [93]: bcs = [bc_inner, bc_middle]

Once the mesh and boundary conditions are specified, we can proceed as usual with

defining the function space and the trial and test functions and constructing the weak

form representation of the PDE problem:

In [94]: V = dolfin.FunctionSpace(mesh, 'Lagrange', 1)

In [95]: u = dolfin.TrialFunction(V)

In [96]: v = dolfin.TestFunction(V)

In [97]: a = dolfin.inner(dolfin.nabla_grad(u), dolfin.nabla_grad(v)) *

dolfin.dx

In [98]: f = dolfin.Constant(0.0)

In [99]: L = f * v * dolfin.dx

In [100]: u_sol = dolfin.Function(V)

Solving and visualizing the problem also follows the same pattern as before. The

result of plotting the solution is shown in Figure 11-10.

In [101]: dolfin.solve(a == L, u_sol, bcs)

In [102]: coordinates = mesh.coordinates()

 ...: triangles = mesh.cells()

 ...: triangulation = mpl.tri.Triangulation(

 ...: coordinates[:, 0], coordinates[:, 1], triangles)

In [103]: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4))

 ...: ax1.triplot(triangulation)

 ...: ax1.set_xlabel(r"x", fontsize=18)

 ...: ax1.set_ylabel(r"y", fontsize=18)

 ...: c = ax2.tripcolor(

 ...: triangulation, np.array(u_sol.vector()), cmap=mpl.cm.get_

cmap("Reds"))

Chapter 11 partial Differential equations

395

 ...: cb = plt.colorbar(c, ax=ax2)

 ...: ax2.set_xlabel(r"x", fontsize=18)

 ...: ax2.set_ylabel(r"y", fontsize=18)

 ...: cb.set_label(r"$u(x, y)$", fontsize=18)

 ...: cb.set_ticks([0.0, 5, 10, 15])

Problems with this kind of geometry are difficult to treat with FDM methods but can

be handled with relative ease using FEM. Once we obtain a solution for a FEM problem,

even for intricate problem boundaries, we can also with relative ease post-process the

solution function in other ways than plotting it. For example, we might be interested

in the value of the function along one of the boundaries. For instance, in the current

problem, it is natural to look at the temperature along the outer radius of the problem

domain, for example, to see how much the exterior temperature of the body decreases

due to the four cooling pipes. In order to do this kind of analysis, we need a way of singling

out the boundary values from the u_sol object. We can do this by defining an object that

describes the boundary (here using dolfin.AutoSubDomain) and applying it to a new

Function object that is used as a mask for selecting the desired elements from the u_sol

and from mesh.coordinates(). In the following we call this mask function mask_outer.

In [104]: outer_boundary = dolfin.AutoSubDomain(

 ...: lambda x, on_bnd: on_bnd and abs(np.sqrt(x[0]**2 + x[1]**2) -

r_outer) < 5e-2)

In [105]: bc_outer = dolfin.DirichletBC(V, 1, outer_boundary)

In [106]: mask_outer = dolfin.Function(V)

Figure 11-10. The solution to the heat equation on a perforated unit circle

Chapter 11 partial Differential equations

396

In [107]: bc_outer.apply(mask_outer.vector())

In [108]: u_outer = u_sol.vector()[mask_outer.vector() == 1]

In [109]: x_outer = mesh.coordinates()[mask_outer.vector() == 1]

With these steps we have created the mask for the outer boundary condition and

applied it to u_sol.vector() and mesh.coordinates() and thereby obtained the

function values and the coordinates for the outer boundary points. Next we plot the

boundary data as a function of the angle between the (x, y) point and the x axis. The

result is shown in Figure 11-11.

In [110]: phi = np.angle(x_outer[:, 0] + 1j * x_outer[:, 1])

In [111]: order = np.argsort(phi)

In [112]: fig, ax = plt.subplots(1, 1, figsize=(8, 4))

 ...: ax.plot(phi[order], u_outer[order], 's-', lw=2)

 ...: ax.set_ylabel(r"$u(x,y)$ at $x^2+y^2=1$", fontsize=18)

 ...: ax.set_xlabel(r"ϕ", fontsize=18)

 ...: ax.set_xlim(-np.pi, np.pi)

The accuracy of the solution to a PDE computed with FEM is intimately connected

to the element sizes in the mesh that represent the problem domain: a finer mesh gives

a more accurate solution. However, increasing the number of elements in the mesh also

makes the problem more computationally demanding to solve. Thus, there is a trade-

off between the accuracy of the mesh and the available computational resources that

must be considered. An important tool for dealing with this trade-off is a mesh with

Figure 11-11. Temperature distribution along the outer boundary of the
perforated unit circle

Chapter 11 partial Differential equations

397

nonuniformly distributed elements. With such a mesh, we can use smaller elements

where the unknown function is expected to change in value quickly and fewer elements

in less interesting regions. The dolfin library provides a simple way to refine a mesh,

using the dolfin.refine function. It takes a mesh as first argument, and if no other

arguments are given, it uniformly refines the mesh and returns a new mesh. However,

the dolfin.refine function also accepts an optional a second argument that describes

which parts of the mesh should be refined. This argument should be an instance of a

Boolean-valued dolfin.MeshFunction, which acts as a mask that flags which elements

(cells) should be divided. For example, consider a mesh for the unit circle less the part

in the quadrant where x > 0 and y < 0. We can construct a mesh for this geometry using

mshr.Circle and mshr.Rectangle:

In [113]: domain = mshr.Circle(dolfin.Point(.0, .0), 1.0) \

 ...: - mshr.Rectangle(dolfin.Point(0.0, -1.0), dolfin.Point(1.0, 0.0))

In [114]: mesh = mshr.generate_mesh(domain, 10)

The resulting mesh is shown in the left part of Figure 11-12. It is often desirable to

use meshes with finer structure near sharp corners in the geometry. For this example,

it is reasonable to attempt to refine the mesh around the edge near the origin. To do

this we need to create an instance of dolfin.MeshFunction; initialize all its elements to

False, using the set_all method; iterate through the elements and mark those ones in

the vicinity of the origin as True; and finally call the dolfin.refine function with the

mesh and the MeshFunction instance as arguments. We can do this repeatedly until a

sufficiently fine mesh is obtained. In the following we iteratively call dolfin.refine,

with a decreasing number of cells marked for splitting:

In [115]: refined_mesh = mesh

 ...: for r in [0.5, 0.25]:

 ...: cell_markers = dolfin.MeshFunction("bool", refined_mesh, dim=2)

 ...: cell_markers.set_all(False)

 ...: for cell in dolfin.cells(refined_mesh):

 ...: if cell.distance(dolfin.Point(.0, .0)) < r:

 ...: # mark cells within a radius r from the origin to be split

 ...: cell_markers[cell] = True

 ...: refined_mesh = dolfin.refine(refined_mesh, cell_markers)

Chapter 11 partial Differential equations

398

The resulting mesh refined_mesh is a version of the original mesh that has finer

element partitioning near the origin. The following code plots the two meshes for

comparison, and the result is shown in Figure 11-12.

In [116]: def mesh_triangulation(mesh):

 ...: coordinates = mesh.coordinates()

 ...: triangles = mesh.cells()

 ...: triangulation = mpl.tri.Triangulation(coordinates[:, 0],

coordinates[:, 1],

 ...: return triangulation

In [117]: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))

 ...:

 ...: ax1.triplot(mesh_triangulation(mesh))

 ...: ax2.triplot(mesh_triangulation(refined_mesh))

 ...:

 ...: # hide axes and ticks

 ...: for ax in [ax1, ax2]:

 ...: for side in ['bottom','right','top','left']:

 ...: ax.spines[side].set_visible(False)

 ...: ax.set_xticks([])

 ...: ax.set_yticks([])

 ...: ax.xaxis.set_ticks_position('none')

 ...: ax.yaxis.set_ticks_position('none')

 ...:

 ...: ax.set_xlabel(r"x", fontsize=18)

 ...: ax.set_ylabel(r"y", fontsize=18)

Chapter 11 partial Differential equations

399

Refining a mesh using dolfin.refine is a practical technique for improving simple

meshes that are constructed using expressions of geometrical primitives, like the one

we have used in this chapter. As a final example of using FEniCS, we consider another

example of the steady-state heat equation, using this refined mesh for the three-quarters

of the unit circle, where we impose Neumann boundary conditions on the vertical

and horizontal boundaries along the missing quarter of the unit circle: for the vertical

edge, we assume an outflux of heat described by ∇u ∙ n = − 2, x = 0, y < 0, and through

the horizontal edge, we assume an influx of heat described by ∇u ∙ n = 1, x > 0, y = 0,

while the outer radial boundary is assumed to be described by the Dirichlet boundary

condition u(x, y) = 0, x2+y2 = 1.

We begin, as usual, by creating objects for the function space, the test function, and

the trial function:

In [118]: mesh = refined_mesh

In [119]: V = dolfin.FunctionSpace(mesh, 'Lagrange', 1)

In [120]: u = dolfin.TrialFunction(V)

In [121]: v = dolfin.TestFunction(V)

For problems with Neumann boundary conditions, we need to include the boundary

condition in the weak form of the PDE. Recall that the weak form for the Poisson equation

is
W W G
ò ò òÑ Ñ = +u v x fv x g v d· d d

N

G , so compared to the earlier examples, we need to

account for the additional term
GN

ò g v dG , which is an integral over the boundary with

Figure 11-12. The original and the refined meshes for three-quarters of the
unit circle

Chapter 11 partial Differential equations

400

Neumann boundary condition. To represent the integral measure for this integral in the

weak form specification, we can use dolfin.ds, but to be able to distinguish different parts

of the boundary, we first need to mark the boundary parts. One way to do this in FEniCS is

to use a dolfin.MeshFunction object and assign to it a unique integer value for each

distinct part of the boundary. To do this we first create a dolfin.MeshFunction instance:

In [122]: boundary_parts = dolfin.MeshFunction("size_t", mesh, mesh.

topology().dim()-1)

Next we define a function for selecting boundary points and a dolfin.

AutoSubDomain instance that is initialized from the boundary selection function. The

AutoSubDomain instance can then be used to mark the corresponding cells in the

MeshFunction (here called boundary_parts) with an identifying integer value. The

following lines of code perform these steps for the vertical edge of the mesh, where x = 0

and y < 0:

In [121]: def v_boundary_func(x, on_boundary):

 ...: """ the vertical edge of the mesh, where x = 0 and y < 0 """

 ...: x, y = x[0], x[1]

 ...: return on_boundary and abs(x) < 1e-4 and y < 0.0

In [122]: v_boundary = dolfin.AutoSubDomain(v_boundary_func)

In [123]: v_boundary.mark(boundary_parts, 0)

We repeat the same procedure for the horizontal edge of the mesh, where y = 0 and x > 0:

In [124]: def h_boundary_func(x, on_boundary):

 ...: """ the horizontal edge of the mesh, where y = 0 and x > 0 """

 ...: x, y = x[0], x[1]

 ...: return on_boundary and abs(y) < 1e-4 and x > 0.0

In [125]: h_boundary = dolfin.AutoSubDomain(h_boundary_func)

In [126]: h_boundary.mark(boundary_parts, 1)

We can also use the same method to define Dirichlet boundary conditions. Here we

mark the part of the boundary that is described by the Dirichlet boundary condition and

then use it in the creation of the dolfin.DirichletBC object:

In [127]: def outer_boundary_func(x, on_boundary):

 ...: x, y = x[0], x[1]

 ...: return on_boundary and abs(x**2 + y**2-1) < 1e-2

Chapter 11 partial Differential equations

401

In [128]: outer_boundary = dolfin.AutoSubDomain(outer_boundary_func)

In [129]: outer_boundary.mark(boundary_parts, 2)

In [130]: bc = dolfin.DirichletBC(V, dolfin.Constant(0.0), boundary_parts, 2)

Once the boundaries are marked, we can proceed to create the weak form of the

PDE. Since we use partitioned boundary here, we need to specify the domain and

subdomain arguments to the integral measures dolfin.dx and dolfin.ds, using the mesh

and boundary_parts objects.

In [131]: dx = dolfin.dx(domain=mesh, subdomain_data=boundary_parts)

In [132]: a = dolfin.inner(dolfin.nabla_grad(u), dolfin.nabla_grad(v)) * dx

In [133]: f = dolfin.Constant(0.0)

In [134]: g_v = dolfin.Constant(-2.0)

In [135]: g_h = dolfin.Constant(1.0)

In [136]: L = f * v * dolfin.dx(domain=mesh, subdomain_data=boundary_parts)

In [137]: L += g_v * v * dolfin.ds(0, domain=mesh, subdomain_data=boundary_parts)

In [138]: L += g_h * v * dolfin.ds(1, domain=mesh, subdomain_data=boundary_parts)

In the last two code cells, we have added new terms for the Neumann boundary

conditions for the vertical and the horizontal edges in the mesh. These parts of the

boundary are denoted by integers 0 and 1, respectively, as defined in the preceding

section, and these integers are passed as an argument to the dolfin.ds to select

integration over different parts of the boundaries.

In [139]: u_sol = dolfin.Function(V)

In [140]: dolfin.solve(a == L, u_sol, bc)

Once the representation of the weak form of the PDE is defined, we can go ahead

and solve the problem using dolfin.solve, as we have done in earlier examples.

Finally we plot the solution using Matplotlib’s triangulation plot functions. The results

are shown in Figure 11-13. From the graph we can see that, as expected, the solution

has more structure near the edge at the origin. Using a mesh with smaller elements in

this region is therefore a good way to obtain sufficient resolution in this region without

inflicting excessive computational cost by using a uniformly fine-structured mesh.

Chapter 11 partial Differential equations

402

In [141]: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4))

 ...: triangulation = mesh_triangulation(mesh)

 ...: ax1.triplot(triangulation)

 ...: ax1.set_xlabel(r"x", fontsize=18)

 ...: ax1.set_ylabel(r"y", fontsize=18)

 ...:

 ...: data = np.array(u_sol.vector())

 ...: norm = mpl.colors.Normalize(-abs(data).max(), abs(data).max())

 ...: c = ax2.tripcolor(triangulation, data, norm=norm, cmap=mpl.

cm.get_cmap("RdBu_r"))

 ...: cb = plt.colorbar(c, ax=ax2)

 ...: ax2.set_xlabel(r"x", fontsize=18)

 ...: ax2.set_ylabel(r"y", fontsize=18)

 ...: cb.set_label(r"$u(x, y)$", fontsize=18)

 ...: cb.set_ticks([-.5, 0, .5])

The examples we have explored in this section are merely a few simple

demonstrations of the types of problems that the FEniCS framework can be used for.

There are a vast number of features in FEniCS that we have not even been able to

mention here. For the reader who is particularly interested in solving PDE problems,

I recommend studying the FEniCS book (Anders Logg, 2012) and the many example

applications that it contains. In particular, important aspects of solving PDEs with FEM

that we have not been able to discuss here are nontrivial Neumann boundary conditions

Figure 11-13. Solution to the heat equation on a quarter of the unit circle with
Neumann and Dirichlet boundary conditions

Chapter 11 partial Differential equations

403

(which need to be included in the formulation of weak form of the PDE), PDEs for

vector-valued functions, higher-dimensional PDE problems (e.g., the heat equation in

three dimensions), and time-dependent PDE problems. All of these topics, and many

others, are well supported in the FEniCS framework.

 Summary
In this chapter we briefly surveyed methods for solving partial differential equations

(PDEs) and how these methods can be employed within the scientific Python

environment. Specifically, we introduced the finite-difference method (FDM) and the

finite-element method (FEM) for solving PDE problems and used these methods to solve

several example problems. The advantage of FDM is its simplicity, and for problems

where it is easily applicable (simple problem domains, uniform discretization, etc.), it

is a very practical method. For more complicated PDE problems, for example, where

the problem domain is more complex, FEM is generally more suitable. However, the

mathematical theory of the FEM is more involved, and the implementation is far more

technical. While there are a number of advanced FEM frameworks that can be used from

Python, in this chapter we focused on one prominent example: the FEniCS framework.

FEniCS is a full-featured FEM software that can be used for a wide range of PDE

problem. With the examples considered here, we have only scraped the surface of what

can be achieved with the software. However, the hope is that the examples studied in this

chapter give a general sense of the workflow when solving PDE problems with FEM and

when using the FEniCS software in particular.

 Further Reading
While we have discussed FDM and FEM in this chapter, there are also other successful

and useful methods for numerically solving PDEs. For instance, the finite-volume

method (FVM) is a variant of the FEM method that is often used for fluid dynamics

calculations, as well as in other fields. The Python library FiPy provides a framework for

solving PDE problems using this method, and a theoretical introduction to the method

is given in, for example, Wesseling (2009). The theoretical background information

about the FDM and FEM that is given in this chapter is very brief indeed, and it merely

serves to introduce the terminology and notation used here. For serious work with the

Chapter 11 partial Differential equations

404

FDM, and in particular the FEM method, it is important to thoroughly understand the

fundamentals of these methods. Good introductions to FDM and FEM are given in,

for example, Gockenbach (2011), Gockenbach (2006), Johnson (2009), and LeVeque

(2007). The FEniCS book (Logg, 2012), which is available for free online from the FEniCS

project’s web site (http://fenicsproject.org), also contains a nice introduction to the

FEM method, in addition to a detailed documentation of the FEniCS software itself.

 References
Anders Logg, K.-A. M. (2012). Automated Solution of Differential Equations by the Finite

Element Method. Springer.

Gockenbach, M. (2011). Partial Differential Equations. Philadelphia: SIAM.

Gockenbach, M. (2006). Understanding And Implementing the Finite Element

Method. Philadelphia: SIAM.

Johnson, C. (2009). Numerical Solution of Partial Differential Equations by the Finite

Element Method. Cambridge: Dover.

LeVeque, R. (2007). Finite Difference Methods for Ordinary and Partial Differential

Equations: Steady-State and Time-Dependent Problems. Philadelphia: SIAM.

Wesseling, P. (2009). Principles of Computational Fluid Dynamics. Berlin: Springer.

Chapter 11 partial Differential equations

http://fenicsproject.org

405
© Robert Johansson 2019
R. Johansson, Numerical Python, https://doi.org/10.1007/978-1-4842-4246-9_12

CHAPTER 12

Data Processing
and Analysis
In the last several chapters, we have covered the main topics of traditional scientific

computing. These topics provide a foundation for most computational work. Starting

with this chapter, we move on to explore data processing and analysis, statistics, and

statistical modeling. As the first step in this direction, we look at the data analysis library

pandas. This library provides convenient data structures for representing series and

tables of data and makes it easy to transform, split, merge, and convert data. These are

important steps in the process1 of cleansing raw data into a tidy form that is suitable for

analysis. The Pandas library builds on top of NumPy and complements it with features

that are particularly useful when handling data, such as labeled indexing, hierarchical

indices, alignment of data for comparison and merging of datasets, handling of missing

data, and much more. As such, the pandas library has become a de facto standard

library for high-level data processing in Python, especially for statistics applications.

The pandas library itself contains only limited support for statistical modeling (namely,

linear regression). For more involved statistical analysis and modeling, there are other

packages available, such as statsmodels, patsy, and scikit-learn, which we cover in

later chapters. However, also for statistical modeling with these packages, pandas can

still be used for data representation and preparation. The pandas library is therefore a

key component in the software stack for data analysis with Python.

1 Also known as data munging or data wrangling

406

Pandas The pandas library is a framework for data processing and analysis
in Python. At the time of writing, the most recent version of Pandas is 0.23.4. For
more information about the pandas library, and its official documentation, see the
project’s web site at http://pandas.pydata.org.

The main focus of this chapter is to introduce basic features and usage of the pandas

library. Toward the end of the chapter, we also briefly explore the statistical visualization

library Seaborn, which is built on top of Matplotlib. This library provides quick and

convenient graphing of data represented as pandas data structure (or NumPy arrays).

Visualization is a very important part of exploratory data analysis, and the Pandas library

itself also provides functions for basic data visualization (which also builds on top of

Matplotlib). The Seaborn library takes this further, by providing additional statistical

graphing capabilities and improved styling: the Seaborn library is notable for generating

good-looking graphics using default settings.

Seaborn The Seaborn library is a visualization library for statistical graphics.
It builds on Matplotlib and provides easy-to-use functions for common statistical
graphs. At the time of writing, the most recent version of Seaborn is 0.8.1. For
more information about Seaborn, and its official documentation, see the project’s
web site at: http://stanford.edu/~mwaskom/software/seaborn.

 Importing Modules
In this chapter we mainly work with the pandas library, which we assume is imported

under the name pd:

In [1]: import pandas as pd

We also require NumPy and Matplotlib, which we import as usual in the following

way:

In [2]: import numpy as np

In [3]: import matplotlib.pyplot as plt

ChAPTer 12 DATA ProCessing AnD AnAlysis

http://pandas.pydata.org
http://stanford.edu/~mwaskom/software/seaborn

407

For more aesthetically pleasing appearance of Matplotlib figures produced by the

pandas library, we select a style that is suitable for statistical graphs using the function

mpl.style.use:

In [4]: import matplotlib as mpl

 ...: mpl.style.use('ggplot')

Later in this chapter, we will also require to import the seaborn module, which we

will import under the name sns:

In [5]: import seaborn as sns

 Introduction to Pandas
The main focus of this chapter is the pandas library for data analysis, and we begin here

with an introduction to this library. The pandas library mainly provides data structures

and methods for representing and manipulating data. The two main data structures

in Pandas are the Series and DataFrame objects, which are used to represent data

series and tabular data, respectively. Both of these objects have an index for accessing

elements or rows in the data represented by the object. By default, the indices are

integers starting from zero, like NumPy arrays, but it is also possible to use any sequence

of identifiers as index.

 Series
The merit of being able to index a data series with labels rather than integers is apparent

even in the simplest of examples: Consider the following construction of a Series

object. We give the constructor a list of integers, to create a Series object that represents

the given data. Displaying the object in IPython reveals the data of the Series object

together with the corresponding indices:

In [6]: s = pd.Series([909976, 8615246, 2872086, 2273305])

In [7]: s

Out[7]: 0 909976

 1 8615246

 2 2872086

 3 2273305

 dtype: int64

ChAPTer 12 DATA ProCessing AnD AnAlysis

408

The resulting object is a Series instance with the data type (dtype) int64, and

the elements are indexed by the integers 0, 1, 2, and 3. Using the index and values

attributes, we can extract the underlying data for the index and the values stored in the

series:

In [8]: list(s.index)

Out[8]: RangeIndex(start=0, stop=4, step=1)

In [9]: s.values

Out[9]: array([909976, 8615246, 2872086, 2273305], dtype=int64)

While using integer-indexed arrays or data series is a fully functional representation

of the data, it is not descriptive. For example, if the data represents the population of four

European capitals, it is convenient and descriptive to use the city names as indices rather

than integers. With a Series object this is possible, and we can assign the index attribute

of a Series object to a list with new indices to accomplish this. We can also set the name

attribute of the Series object, to give it a descriptive name:

In [10]: s.index = ["Stockholm", "London", "Rome", "Paris"]

In [11]: s.name = "Population"

In [12]: s

Out[12]: Stockholm 909976

 London 8615246

 Rome 2872086

 Paris 2273305

 Name: Population, dtype: int64

It is now immediately obvious what the data represents. Alternatively, we can also set

the index and name attributes through keyword arguments to the Series object when it

is created:

In [13]: s = pd.Series([909976, 8615246, 2872086, 2273305], name="Population",

 ...: index=["Stockholm", "London", "Rome", "Paris"])

While it is perfectly possible to store the data for the populations of these cities

directly in a NumPy array, even in this simple example, it is much clearer what the

data represent when the data points are indexed with meaningful labels. The benefits

of bringing the description of the data closer to the data are even greater when the

complexity of the dataset increases.

ChAPTer 12 DATA ProCessing AnD AnAlysis

409

We can access elements in a Series by indexing with the corresponding index (label)

or directly through an attribute with the same name as the index (if the index label is a

valid Python symbol name):

In [14]: s["London"]

Out[14]: 8615246

In [15]: s.Stockholm

Out[15]: 909976

Indexing a Series object with a list of indices gives a new Series object with a subset

of the original data (corresponding to the provided list of indices):

In [16]: s[["Paris", "Rome"]]

Out[16]: Paris 2273305

 Rome 2872086

 Name: Population, dtype: int64

With a data series represented as a Series object, we can easily compute its

descriptive statistics using the Series methods count (the number of data points),

median (calculate the median), mean (calculate the mean value), std (calculate the

standard deviation), min and max (minimum and maximum values), and the quantile

(for calculating quantiles):

In [17]: s.median(), s.mean(), s.std()

Out[17]: (2572695.5, 3667653.25, 3399048.5005155364)

In [18]: s.min(), s.max()

Out[18]: (909976, 8615246)

In [19]: s.quantile(q=0.25), s.quantile(q=0.5), s.quantile(q=0.75)

Out[19]: (1932472.75, 2572695.5, 4307876.0)

All of the preceding data are combined in the output of the describe method, which

provides a summary of the data represented by a Series object:

In [20]: s.describe()

Out[20]: count 4.000000

 mean 3667653.250000

 std 3399048.500516

 min 909976.000000

 25% 1932472.750000

ChAPTer 12 DATA ProCessing AnD AnAlysis

410

 50% 2572695.500000

 75% 4307876.000000

 max 8615246.000000

 Name: Population, dtype: float64

Using the plot method, we can quickly and easily produce graphs that visualize

the data in a Series object. The pandas library uses Matplotlib for plotting, and we can

optionally pass a Matplotlib Axes instance to the plot method via the ax argument. The

type of the graph is specified using the kind argument (valid options are line, hist, bar,

barh, box, kde, density, area, and pie).

In [21]: fig, axes = plt.subplots(1, 4, figsize=(12, 3))

 ...: s.plot(ax=axes[0], kind='line', title='line')

 ...: s.plot(ax=axes[1], kind='bar', title='bar')

 ...: s.plot(ax=axes[2], kind='box', title='box')

 ...: s.plot(ax=axes[3], kind='pie', title='pie')

Figure 12-1. Examples of plot styles that can be produced with Pandas using the
Series.plot method

 DataFrame
As we have seen in the previous examples, a pandas Series object provides a

convenient container for one-dimensional arrays, which can use descriptive labels for

the elements and which provides quick access to descriptive statistics and visualization.

For higher-dimensional arrays (mainly two-dimensional arrays, or tables), the

corresponding data structure is the Pandas DataFrame object. It can be viewed as a

collection of Series objects with a common index.

ChAPTer 12 DATA ProCessing AnD AnAlysis

411

There are numerous ways to initialize a DataFrame. For simple examples, the easiest

way is to pass a nested Python list or dictionary to the constructor of the DataFrame

object. For example, consider an extension of the dataset we used in the previous

section, where, in addition to the population of each city, we also include a column that

specifies which state each city belongs to. We can create the corresponding DataFrame

object in the following way:

In [22]: df = pd.DataFrame([[909976, "Sweden"],

 ...: [8615246, "United Kingdom"],

 ...: [2872086, "Italy"],

 ...: [2273305, "France"]])

In [23]: df

Out[23]:

0 1

0 909976 Sweden

1 8615246 United Kingdom

2 2872086 Italy

3 2273305 France

The result is a tabular data structure with rows and columns. Like with a Series

object, we can use labeled indexing for rows by assigning a sequence of labels to the

index attribute, and, in addition, we can set the columns attribute to a sequence of labels

for the columns:

In [24]: df.index = ["Stockholm", "London", "Rome", "Paris"]

In [25]: df.columns = ["Population", "State"]

In [26]: df

Out[26]:

Population State

Stockholm 909976 Sweden

London 8615246 United Kingdom

Rome 2872086 Italy

Paris 2273305 France

ChAPTer 12 DATA ProCessing AnD AnAlysis

412

The index and columns attributes can also be set using the corresponding keyword

arguments to the DataFrame object when it is created:

In [27]: df = pd.DataFrame([[909976, "Sweden"],

 ...: [8615246, "United Kingdom"],

 ...: [2872086, "Italy"],

 ...: [2273305, "France"]],

 ...: index=["Stockholm", "London", "Rome", "Paris"],

 ...: columns=["Population", "State"])

An alternative way to create the same data frame, which sometimes can be more

convenient, is to pass a dictionary with column titles as keys and column data as values:

In [28]: df = pd.DataFrame({"Population": [909976, 8615246, 2872086, 2273305],

 ...: "State": ["Sweden", "United Kingdom", "Italy",

"France"]},

 ...: index=["Stockholm", "London", "Rome", "Paris"])

As before, the underlying data in a DataFrame can be obtained as a NumPy array

using the values attribute and the index and column arrays through the index and

columns attributes, respectively. Each column in a data frame can be accessed using

the column name as attribute (or, alternatively, by indexing with the column label,

e.g., df["Population"]):

In [29]: df.Population

Out[29]: Stockholm 909976

 London 8615246

 Rome 2872086

 Paris 2273305

 Name: Population, dtype: int64

The result of extracting a column from a DataFrame is a new Series object, which we

can process and manipulate with the methods discussed in the previous section. Rows of a

DataFrame instance can be accessed using the loc indexer attribute. Indexing this attribute

also results in a Series object, which corresponds to a row of the original data frame:

In [30]: df.loc["Stockholm"]

Out[30]: Population 909976

 State Sweden

 Name: Stockholm, dtype: object

ChAPTer 12 DATA ProCessing AnD AnAlysis

413

Passing a list of row labels to the loc indexer results in a new DataFrame that is a

subset of the original DataFrame, containing only the selected rows:

In [31]: df.loc[["Paris", "Rome"]]

Out[31]:

Population State

Paris 2273305 France

Rome 2872086 Italy

The loc indexer can also be used to select both rows and columns simultaneously,

by first passing a row label (or a list thereof) and second a column label (or a list

thereof). The result is a DataFrame, a Series, or an element value, depending on the

number of columns and rows that are selected:

In [32]: df.loc[["Paris", "Rome"], "Population"]

Out[32]: Paris 2273305

 Rome 2872086

 Name: Population, dtype: int64

We can compute descriptive statistics using the same methods as we already used

for Series objects. When invoking those methods (mean, std, median, min, max, etc.) for a

DataFrame, the calculation is performed for each column with numerical data types:

In [33]: df.mean()

Out[33]: Population 3667653.25

 dtype: float64

In this case, only one of the two columns has a numerical data type (the one named

Population). Using the DataFrame method info and the attribute dtypes, we can obtain

a summary of the content in a DataFrame and the data types of each column:

In [34]: df.info()

<class 'pandas.core.frame.DataFrame'>

Index: 4 entries, Stockholm to Paris

Data columns (total 2 columns):

Population 4 non-null int64

State 4 non-null object

dtypes: int64(1), object(1)

ChAPTer 12 DATA ProCessing AnD AnAlysis

414

memory usage: 96.0+ bytes

In [35]: df.dtypes

Out[35]: Population int64

 State object

 dtype: object

The real advantages of using pandas emerge when dealing with larger and more complex

datasets than the examples we have used so far. Such data can rarely be defined as explicit

lists or dictionaries, which can be passed to the DataFrame initializer. A more common

situation is that the data must be read from a file or some other external sources. The pandas

library supports numerous methods for reading data from files of different formats. Here

we use the read_csv function to read in data and create a DataFrame object from a CSV file.2

This function accepts a large number of optional arguments for tuning its behavior. See the

docstring help(pd.read_csv) for details. Some of the most useful arguments are header

(specifies which row, if any, contains a header with column names), skiprows (number of

rows to skip before starting to read data, or a list of line numbers of lines to skip), delimiter

(the character that is used as a delimiter between column values), encoding (the name of the

encoding used in the file, e.g., utf-8), and nrows (number of rows to read). The first and only

mandatory argument to the pd.read_csv function is a filename or a URL to the data source.

For example, to read in a dataset stored in a file called european_cities.csv,3 of which the

first five lines are shown in the following code, we can simply call pd.read_csv("european_

cities.csv"), since the default delimiter is "," and the header is by default taken from the

first line. However, we could also write out all these options explicitly:

In [36]: !head –n 5 european_cities.csv

Rank,City,State,Population,Date of census

1,London, United Kingdom,"8,615,246",1 June 2014

2,Berlin, Germany,"3,437,916",31 May 2014

3,Madrid, Spain,"3,165,235",1 January 2014

4,Rome, Italy,"2,872,086",30 September 2014

In [37]: df_pop = pd.read_csv("european_cities.csv",

 ...: delimiter=",", encoding="utf-8", header=0)

2 CSV, or comma-separated values, is a common text format where rows are stored in lines and
columns are separated by a comma (or some other text delimiter). See Chapter 18 for more
details about this and other file formats.

3 This dataset was obtained from the Wiki page: http://en.wikipedia.org/wiki/
Largest_cities_of_the_European_Union_by_population_within_city_limits

ChAPTer 12 DATA ProCessing AnD AnAlysis

http://en.wikipedia.org/wiki/Largest_cities_of_the_European_Union_by_population_within_city_limits
http://en.wikipedia.org/wiki/Largest_cities_of_the_European_Union_by_population_within_city_limits

415

This dataset is similar to the example data we used earlier in this chapter, but here

there are additional columns and many more rows for other cities. Once a dataset is read

into a DataFrame object, it is useful to start by inspecting the summary given by the info

method, to begin forming an idea of the properties of the dataset.

In [38]: df_pop.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 105 entries, 0 to 104

Data columns (total 5 columns):

Rank 105 non-null int64

City 105 non-null object

State 105 non-null object

Population 105 non-null object

Date of census 105 non-null object

dtypes: int64(1), object(4) memory usage: 4.9+ KB

Here we see that there are 105 rows in this dataset and that it has five columns. Only

the Rank column is of a numerical data type. In particular, the Population column is

not yet of numeric data type because its values are of the format "8,615,246" and is

therefore interpreted as string values by the read_csv function. It is also informative

to display a tabular view of the data. However, this dataset is too large to display in full,

and in situations like this, the head and tail methods are handy for creating a truncated

dataset containing the first few and last few rows, respectively. Both of these functions

take an optional argument that specifies how many rows to include in the truncated

DataFrame. Note also that df.head(n) is equivalent to df[:n], where n is an integer.

In [39]: df_pop.head()

Out[39]:

Rank City State Population Date of census

0 1 London United Kingdom 8,615,246 1 June 2014

1 2 Berlin Germany 3,437,916 31 May 2014

2 3 Madrid Spain 3,165,235 1 January 2014

3 4 Rome Italy 2,872,086 30 September 2014

4 5 Paris France 2,273,305 1 January 2013

ChAPTer 12 DATA ProCessing AnD AnAlysis

416

Displaying a truncated DataFrame gives a good idea of how the data look like and

what remains to be done before the data is ready for analysis. It is common to have

to transform columns in one way or another and to reorder the table by sorting by a

specific column or by ordering the index. In the following we explore some methods

for modifying DataFrame objects. First of all, we can create new columns and update

columns in a DataFrame simply by assigning a Series object to the DataFrame indexed

by the column name, and we can delete columns using the Python del keyword.

The apply method is a powerful tool to transform the content in a column. It creates

and returns a new Series object for which a function passed to apply has been applied

to each element in the original column. For example, we can use the apply method to

transform the elements in the Population column from strings to integers, by passing a

lambda function that removes the "," characters from the strings and casts the results

to an integer. Here we assign the transformed column to a new column with the name

NumericPopulation. Using the same method, we also tidy up the State values by

removing extra white spaces in its elements using the string method strip.

In [40]: df_pop["NumericPopulation"] = df_pop.Population.apply(

 ...: lambda x: int(x.replace(",", "")))

In [41]: df_pop["State"].values[:3] # contains extra white spaces

Out[41]: array([' United Kingdom', ' Germany', ' Spain'], dtype=object)

In [42]: df_pop["State"] = df_pop["State"].apply(lambda x: x.strip())

In [43]: df_pop.head()

Out[43]:

Rank City State Population Date of census NumericPopulation

0 1 London United

Kingdom

8,615,246 1 June 2014 8615246

1 2 Berlin Germany 3,437,916 31 May 2014 3437916

2 3 Madrid Spain 3,165,235 1 January 2014 3165235

3 4 Rome Italy 2,872,086 30 September

2014

2872086

4 5 Paris France 2,273,305 1 January 2013 2273305

ChAPTer 12 DATA ProCessing AnD AnAlysis

417

Inspecting the data types of the columns in the updated DataFrame confirms that the

new column NumericPopulation is indeed of integer type (while the Population column

is unchanged):

In [44]: df_pop.dtypes

Out[44]: Rank int64

 City object

 State object

 Population object

 Date of census object

 NumericPopulation int64

 dtype: object

We may also need to change the index to one of the columns of the DataFrame. In the

current example, we may want to use the City column as index. We can accomplish this

using the set_index method, which takes as argument the name of the column to use as

index. The result is a new DataFrame object, and the original DataFrame is unchanged.

Furthermore, using the sort_index method, we can sort the data frame with respect to

the index:

In [45]: df_pop2 = df_pop.set_index("City")

In [46]: df_pop2 = df_pop2.sort_index()

In [47]: df_pop2.head()

Out[47]:

City Rank State Population Date of census NumericPopulation

Aarhus 92 Denmark 326,676 1 October 2014 326676

Alicante 86 Spain 334,678 1 January 2012 334678

Amsterdam 23 Netherlands 813,562 31 May 2014 813562

Antwerp 59 Belgium 510,610 1 January 2014 510610

Athens 34 Greece 664,046 24 May 2011 664046

ChAPTer 12 DATA ProCessing AnD AnAlysis

418

The sort_index method also accepts a list of column names, in which case a

hierarchical index is created. A hierarchical index uses tuples of index labels to address

rows in the data frame. We can use the sort_index method with the integer-valued

argument level, to sort the rows in a DataFrame according to the nth level of the

hierarchical index, where level=n. In the following example, we create a hierarchical

index with State and City as indices, and we use the sort_index method to sort by the

first index (State):

In [48]: df_pop3 = df_pop.set_index(["State", "City"]).sort_index(level=0)

In [49]: df_pop3.head(7)

Out[49]:

State City Rank Population Date of census

Austria Vienna 7 1794770 1 January 2015

Belgium Antwerp 59 510610 1 January 2014

Brussels 16 1175831 1 January 2014

Bulgaria Plovdiv 84 341041 31 December 2013

Sofia 14 1291895 14 December 2014

Varna 85 335819 31 December 2013

Croatia Zagreb 24 790017 31 March 2011

A DataFrame with a hierarchical index can be partially indexed using only its zeroth-

level index (df3.loc["Sweden"]) or completely indexed using a tuple of all hierarchical

indices (df3.loc[("Sweden", "Gothenburg")]):

In [50]: df_pop3.loc["Sweden"]

Out[50]:

City Rank Population Date of census NumericPopulation

Gothenburg 53 528,014 31 March 2013 528014

Malmö 102 309,105 31 March 2013 309105

Stockholm 20 909,976 31 January 2014 909976

ChAPTer 12 DATA ProCessing AnD AnAlysis

419

In [51]: df_pop3.loc[("Sweden", "Gothenburg")]

Out[51]: Rank 53

 Population 528,014

 Date of census 31 March 2013

 NumericPopulation 528014

 Name: (Sweden, Gothenburg), dtype: object

If we want to sort by a column rather than the index, we can use the sort_values

method. It takes a column name, or a list of column names, with respect to which the

DataFrame is to be sorted. It also accepts the keyword argument ascending, which is a

Boolean or a list of Boolean values that specifies whether the corresponding column is to

be sorted in ascending or descending order:

In [52]: df_pop.set_index("City").sort_values(["State", "NumericPopulation"],

 ...: ascending=[False, True]).head()

Out[52]:

City Rank State Population Date of

census

NumericPopulation

Nottingham 103 United

Kingdom

308,735 30 June 2012 308735

Wirral 97 United

Kingdom

320,229 30 June 2012 320229

Coventry 94 United

Kingdom

323,132 30 June 2012 323132

Wakefield 91 United

Kingdom

327,627 30 June 2012 327627

Leicester 87 United

Kingdom

331,606 30 June 2012 331606

ChAPTer 12 DATA ProCessing AnD AnAlysis

420

With categorical data such as the State column, it is frequently of interest to

summarize how many values of each category a column contains. Such counts can be

computed using the value_counts method (of the Series object). For example, to count

the number of cities each country has on the list of the 105 largest cities in Europe, we

can use:

In [53]: city_counts = df_pop.State.value_counts()

In [54]: city_counts.head()

Out[54]: Germany 19

 United Kingdom 16

 Spain 13

 Poland 10

 Italy 10

 dtype: int64

In this example, we see from the results that the state with the largest number of

cities in the list is Germany, with 19 cities, followed by the United Kingdom with 16

cities, and so on. A related question is how large the total population of all cities within

a state is. To answer this type of question, we can proceed in two ways: First, we can

create a hierarchical index using State and City and use the sum method to reduce the

DataFrame along one of the indices. In this case, we want to sum over all entries within

the index level State, so we can use sum(level="State"), which eliminates the City

index. For presentation we also sort the resulting DataFrame in descending order of the

column NumericPopulation:

In [55]: df_pop3 = df_pop[["State", "City", "NumericPopulation"]].set_

index(["State", "City"])

In [56]: df_pop4 = df_pop3.sum(level="State").sort_

values("NumericPopulation", ascending=False)

In [57]: df_pop4.head()

Out[57]:

ChAPTer 12 DATA ProCessing AnD AnAlysis

421

State NumericPopulation

United Kingdom 16011877

Germany 15119548

Spain 10041639

Italy 8764067

Poland 6267409

Second, we can obtain the same results using the groupby method, which allows

us to group rows of a DataFrame by the values of a given column, and apply a reduction

function on the resulting object (e.g., sum, mean, min, max, etc.). The result is a new

DataFrame with the grouped-by column as index. Using this method we can compute the

total population of the 105 cities, grouped by state, in the following way:

In [58]: df_pop5 = (df_pop.drop("Rank", axis=1)

 ...: .groupby("State").sum()

 ...: .sort_values("NumericPopulation",

ascending=False))

Note that here we also used the drop method to remove the Rank column (hence the

axis=1, use axis=0 to drop rows) from the DataFrame (since it is not meaningful

to aggregate the rank by summation). Finally, we use the plot method of the Series

object to plot bar graphs for the city count and the total population. The results are

shown in Figure 12-2.

In [59]: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))

 ...: city_counts.plot(kind='barh', ax=ax1)

 ...: ax1.set_xlabel("# cities in top 105")

 ...: df_pop5.NumericPopulation.plot(kind='barh', ax=ax2)

 ...: ax2.set_xlabel("Total pop. in top 105 cities")

ChAPTer 12 DATA ProCessing AnD AnAlysis

422

 Time Series
Time series are a common form of data in which a quantity is given, for example, at

regularly or irregularly spaced timestamps or for fixed or variable time spans (periods).

In pandas, there are dedicated data structures for representing these types of data.

Series and DataFrame can have both columns and indices with data types describing

timestamps and time spans. When dealing with temporal data, it is particularly useful

to be able to index the data with time data types. Using pandas time-series indexers,

DatetimeIndex and PeriodIndex, we can carry out many common date, time, period,

and calendar operations, such as selecting time ranges and shifting and resampling of

the data points in a time series.

To generate a sequence of dates that can be used as an index in a pandas Series

or DataFrame objects, we can, for example, use the date_range function. It takes the

starting point as a date and time string (or, alternatively, a datetime object from the

Python standard library) as a first argument, and the number of elements in the range

can be set using the periods keyword argument:

In [60]: pd.date_range("2015-1-1", periods=31)

Out[60]: <class 'pandas.tseries.index.DatetimeIndex'>

 [2015-01-01, ..., 2015-01-31]

 Length: 31, Freq: D, Timezone: None

Figure 12-2. The number of cities in the list of the top 105 most populated cities in
Europe (left) and the total population in those cities (right), grouped by state

ChAPTer 12 DATA ProCessing AnD AnAlysis

423

To specify the frequency of the timestamps (which defaults to one day), we can use

the freq keyword argument, and instead of using periods to specify the number of

points, we can give both starting and ending points as date and time strings (or datetime

objects) as the first and second arguments. For example, to generate hourly timestamps

between 00:00 and 12:00 on 2015-01-01, we can use:

In [61]: pd.date_range("2015-1-1 00:00", "2015-1-1 12:00", freq="H")

Out[61]: <class 'pandas.tseries.index.DatetimeIndex'>

 [2015-01-01 00:00:00, ..., 2015-01-01 12:00:00]

 Length: 13, Freq: H, Timezone: None

The date_range function returns an instance of DatetimeIndex, which can be used,

for example, as an index for a Series or DataFrame object:

In [62]: ts1 = pd.Series(np.arange(31), index=pd.date_range("2015-1-1",

periods=31))

In [63]: ts1.head()

Out[63]: 2015-01-01 0

 2015-01-02 1

 2015-01-03 2

 2015-01-04 3

 2015-01-05 4

 Freq: D, dtype: int64

The elements of a DatetimeIndex object can, for example, be accessed using

indexing with date and time strings. An element in a DatetimeIndex is of the type

Timestamp, which is a pandas object that extends the standard Python datetime object

(see the datetime module in the Python standard library).

In [64]: ts1["2015-1-3"]

Out[64]: 2

In [65]: ts1.index[2]

Out[65]: Timestamp('2015-01-03 00:00:00', offset='D')

In many aspects, a Timestamp and datetime object are interchangeable, and the

Timestamp class has, like the datetime class, attributes for accessing time fields such

as year, month, day, hour, minute, and so on. However, a notable difference between

Timestamp and datetime is that Timestamp stores a timestamp with nanosecond

resolution, while a datetime object only uses microsecond resolution.

ChAPTer 12 DATA ProCessing AnD AnAlysis

424

In [66]: ts1.index[2].year, ts1.index[2].month, ts1.index[2].day

Out[66]: (2015, 1, 3)

In [67]: ts1.index[2].nanosecond

Out[67]: 0

We can convert a Timestamp object to a standard Python datetime object using the

to_pydatetime method:

In [68]: ts1.index[2].to_pydatetime()

Out[68]: datetime.datetime(2015, 1, 3, 0, 0)

and we can use a list of datetime objects to create pandas time series:

In [69]: import datetime

In [70]: ts2 = pd.Series(np.random.rand(2),

 ...: index=[datetime.datetime(2015, 1, 1), datetime.

datetime(2015, 2, 1)])

In [71]: ts2

Out[71]: 2015-01-01 0.683801

 2015-02-01 0.916209

 dtype: float64

Data that is defined for sequences of time spans can be represented using Series

and DataFrame objects that are indexed using the PeriodIndex class. We can construct

an instance of the PeriodIndex class explicitly by passing a list of Period objects and

then specify it as index when creating a Series or DataFrame object:

In [72]: periods = pd.PeriodIndex([pd.Period('2015-01'),

 ...: pd.Period('2015-02'),

 ...: pd.Period('2015-03')])

In [73]: ts3 = pd.Series(np.random.rand(3), index=periods)

In [74]: ts3

Out[74]: 2015-01 0.969817

 2015-02 0.086097

 2015-03 0.016567

 Freq: M, dtype: float64

In [75]: ts3.index

Out[75]: <class 'pandas.tseries.period.PeriodIndex'>

 [2015-01, ..., 2015-03]

 Length: 3, Freq: M

ChAPTer 12 DATA ProCessing AnD AnAlysis

425

We can also convert a Series or DataFrame object indexed by a DatetimeIndex

object to a PeriodIndex using the to_period method (which takes an argument that

specifies the period frequency, here 'M' for month):

In [76]: ts2.to_period('M')

Out[76]: 2015-01 0.683801

 2015-02 0.916209

 Freq: M, dtype: float64

In the remaining part of this section we explore select features of pandas time

series through examples. We look at the manipulation of two time series that contain

sequences of temperature measurements at given timestamps. We have one dataset

for an indoor temperature sensor and one dataset for an outdoor temperature sensor,

both with observations approximately every 10 minutes during most of 2014. The two

data files, temperature_indoor_2014.tsv and temperature_outdoor_2014.tsv, are

TSV (tab-separated values, a variant of the CSV format) files with two columns: the first

column contains UNIX timestamps (seconds since Jan 1, 1970), and the second column

is the measured temperature in degree Celsius. For example, the first five lines in the

outdoor dataset are

In [77]: !head -n 5 temperature_outdoor_2014.tsv

1388530986 4.380000

1388531586 4.250000

1388532187 4.190000

1388532787 4.060000

1388533388 4.060000

We can read the data files using read_csv by specifying that the delimiter between

columns is the TAB character: delimiter="\t". When reading the two files, we also

explicitly specify the column names using the names keyword argument, since the files in

this example do not have header lines with the column names.

In [78]: df1 = pd.read_csv('temperature_outdoor_2014.tsv', delimiter="\t",

 ...: names=["time", "outdoor"])

In [79]: df2 = pd.read_csv('temperature_indoor_2014.tsv', delimiter="\t",

 ...: names=["time", "indoor"])

Once we have created DataFrame objects for the time-series data, it is informative to

inspect the data by displaying the first few lines:

ChAPTer 12 DATA ProCessing AnD AnAlysis

426

In [80]: df1.head()

Out[80]:

time outdoor

0 1388530986 4.38

1 1388531586 4.25

2 1388532187 4.19

3 1388532787 4.06

4 1388533388 4.06

The next step toward a meaningful representation of the time-series data is to

convert the UNIX timestamps to date and time objects using to_datetime with the

unit="s" argument. Furthermore, we localize the timestamps (assigning a time zone)

using tz_localize and convert the time zone attribute to the Europe/Stockholm time

zone using tz_convert. We also set the time column as index using set_index:

In [81]: df1.time = (pd.to_datetime(df1.time.values, unit="s")

 ...: .tz_localize('UTC').tz_convert('Europe/Stockholm'))

In [82]: df1 = df1.set_index("time")

In [83]: df2.time = (pd.to_datetime(df2.time.values, unit="s")

 ...: .tz_localize('UTC').tz_convert('Europe/Stockholm'))

In [84]: df2 = df2.set_index("time")

In [85]: df1.head()

Out[85]:

time outdoor

2014-01-01 00:03:06+01:00 4.38

2014-01-01 00:13:06+01:00 4.25

2014-01-01 00:23:07+01:00 4.19

2014-01-01 00:33:07+01:00 4.06

2014-01-01 00:43:08+01:00 4.06

ChAPTer 12 DATA ProCessing AnD AnAlysis

427

Displaying the first few rows of the data frame for the outdoor temperature dataset

shows that the index now indeed is a date and time object. As we will see examples of

such in the following, having the index of a time series represented as proper date and

time objects (in contrast to using, e.g., integers representing the UNIX timestamps)

allows us to easily perform many time-oriented operations. Before we proceed to explore

the data in more detail, we first plot the two time series to obtain an idea of how the data

looks like. For this we can use the DataFrame.plot method, and the results are shown

in Figure 12-3. Note that there is data missing for a part of August. Imperfect data is a

common problem, and handling missing data in a suitable manner is an important part

of the mission statement of the pandas library.

In [86]: fig, ax = plt.subplots(1, 1, figsize=(12, 4))

 ...: df1.plot(ax=ax)

 ...: df2.plot(ax=ax)

Figure 12-3. Plot of the time series for indoor and outdoor temperature

It is also illuminating to display the result of the info method of the DataFrame

object. Doing so tells us that there are nearly 50000 data points in this dataset and that it

contains data points starting at 2014-01-01 00:03:06 and ending at 2014-12-30 23:56:35:

In [87]: df1.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 49548 entries, 2014-01-01 00:03:06+01:00 to 2014-12-30

23:56:35+01:00

Data columns (total 1 columns):

outdoor 49548 non-null float64

dtypes: float64(1) memory usage: 774.2 KB

ChAPTer 12 DATA ProCessing AnD AnAlysis

428

A common operation on time series is to select and extract parts of the data. For

example, from the full dataset that contains data for all of 2014, we may be interested in

selecting out and analyzing only the data for the month of January. In pandas, we can

accomplish this in a number of ways. For example, we can use Boolean indexing of a

DataFrame to create a DataFrame for a subset of the data. To create the Boolean indexing

mask that selects the data for January, we can take advantage of the pandas time-series

features that allow us to compare the time-series index with string representations of a

date and time. In the following code, the expressions like df1.index >= "2014-1-1",

where df1.index is a time DateTimeIndex instance, result in a Boolean NumPy array

that can be used as a mask to select the desired elements.

In [88]: mask_jan = (df1.index >= "2014-1-1") & (df1.index < "2014-2- 1")

In [89]: df1_jan = df1[mask_jan]

In [90]: df1_jan.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 4452 entries, 2014-01-01 00:03:06+01:00 to 2014-01-31

23:56:58+01:00

Data columns (total 1 columns):

outdoor 4452 non-null float64

dtypes: float64(1) memory usage: 69.6 KB

Alternatively, we can use slice syntax directly with date and time strings:

In [91]: df2_jan = df2["2014-1-1":"2014-1-31"]

The results are two DataFrame objects, df1_jan and df2_jan, that contain data only

for the month of January. Plotting this subset of the original data using the plot method

results in the graph shown in Figure 12-4.

In [92]: fig, ax = plt.subplots(1, 1, figsize=(12, 4))

 ...: df1_jan.plot(ax=ax)

 ...: df2_jan.plot(ax=ax)

ChAPTer 12 DATA ProCessing AnD AnAlysis

429

Like the datetime class in Python’s standard library, the Timestamp class that is used

in pandas to represent time values has attributes for accessing fields such as year, month,

day, hour, minute, and so on. These fields are particularly useful when processing time

series. For example, if we wish to calculate the average temperature for each month of

the year, we can begin by creating a new column month, which we assign to the month

field of the Timestamp values of the DatetimeIndex indexer. To extract the month field

from each Timestamp value, we first call reset_index to convert the index to a column

in the data frame (in which case the new DataFrame object falls back to using an integer

index), after which we can use the apply function on the newly created time column.4

In [93]: df1_month = df1.reset_index()

In [94]: df1_month["month"] = df1_month.time.apply(lambda x: x.month)

In [95]: df1_month.head()

Out[95]:

time outdoor month

0 2014-01-01 00:03:06+01:00 4.38 1

1 2014-01-01 00:13:06+01:00 4.25 1

2 2014-01-01 00:23:07+01:00 4.19 1

3 2014-01-01 00:33:07+01:00 4.06 1

4 2014-01-01 00:43:08+01:00 4.06 1

4 We can also directly use the month method of the DatetimeIndex index object, but for the sake of
demonstration, we use a more explicit approach here.

Figure 12-4. Plot of the time series for indoor and outdoor temperature for a
selected month (January)

ChAPTer 12 DATA ProCessing AnD AnAlysis

430

Next, we can group the DataFrame by the new month field and aggregate the grouped

values using the mean function for computing the average within each group.

In [96]: df1_month = df1_month.groupby("month").aggregate(np.mean)

In [97]: df2_month = df2.reset_index()

In [98]: df2_month["month"] = df2_month.time.apply(lambda x: x.month)

In [99]: df2_month = df2_month.groupby("month").aggregate(np.mean)

After having repeated the same process for the second DataFrame (indoor

temperatures), we can combine df1_month and df2_month into a single DataFrame using

the join method:

In [100]: df_month = df1_month.join(df2_month)

In [101]: df_month.head(3)

Out[101]:

time outdoor indoor

1 -1.776646 19.862590

2 2.231613 20.231507

3 4.615437 19.597748

In only a few lines of code, we have here leveraged some of the many data processing

capabilities of pandas to transform and compute with the data. It is often the case that

there are many different ways to combine the tools provided by pandas to do the same,

or a similar, analysis. For the current example, we can do the whole process in a single

line of code, using the to_period and groupby methods and the concat function (which

like join combines DataFrame into a single DataFrame):

In [102]: df_month = pd.concat([df.to_period("M").groupby(level=0).mean()

for df in [df1, df2]],

 ...: axis=1)

In [103]: df_month.head(3)

ChAPTer 12 DATA ProCessing AnD AnAlysis

431

Out[103]:

time outdoor indoor

2014-01 -1.776646 19.862590

2014-02 2.231613 20.231507

2014-03 4.615437 19.597748

To visualize the results, we plot the average monthly temperatures as a bar plot and a

boxplot using the DataFrame method plot. The result is shown in Figure 12-5.

In [104]: fig, axes = plt.subplots(1, 2, figsize=(12, 4))

 ...: df_month.plot(kind='bar', ax=axes[0])

 ...: df_month.plot(kind='box', ax=axes[1])

Finally, a very useful feature of the pandas time-series objects is the ability to up-

and down-sample the time series using the resample method. Resampling means

that the number of data points in a time series is changed. It can be either increased

(up-sampling) or decreased (down-sampling). For up-sampling, we need to choose a

method for filling in the missing values, and for down-sampling we need to choose a

method for aggregating multiple sample points between each new sample point. The

resample method expects as first argument a string that specifies the new period of data

points in the resampled time series. For example, the string H represents a period of

Figure 12-5. Average indoor and outdoor temperatures per month (left) and a
boxplot for monthly indoor and outdoor temperature (right)

ChAPTer 12 DATA ProCessing AnD AnAlysis

432

one hour, the string D one day, the string M one month, and so on.5 We can also combine

these in simple expressions, such as 7D, which denotes a time period of seven days.

The resample method returns a resampler object for which we can invoke aggregation

methods such as mean and sum, in order to obtain the resampled data.

To illustrate the use of the resample method, consider the previous two time series with

temperature data. The original sampling frequency is roughly 10 minutes, which amounts to

a lot of data points over a year. For plotting purposes, or if we want to compare the two time

series, which are sampled at slightly different timestamps, it is often necessary to down-

sample the original data. This can give less busy graphs and regularly spaced time series

that can be readily compared to each other. In the following code, we resample the outdoor

temperature time series to four different sampling frequencies and plot the resulting time

series. We also resample both the outdoor and indoor time series to daily averages that we

subtract to obtain the daily average temperature difference between indoors and outdoors

throughout the year. These types of manipulations are very handy when dealing with time

series, and it is one of the many areas in which the pandas library really shines.

In [105]: df1_hour = df1.resample("H").mean()

In [106]: df1_hour.columns = ["outdoor (hourly avg.)"]

In [107]: df1_day = df1.resample("D").mean()

In [108]: df1_day.columns = ["outdoor (daily avg.)"]

In [109]: df1_week = df1.resample("7D").mean()

In [110]: df1_week.columns = ["outdoor (weekly avg.)"]

In [111]: df1_month = df1.resample("M").mean()

In [112]: df1_month.columns = ["outdoor (monthly avg.)"]

In [113]: df_diff = (df1.resample("D").mean().outdoor - df2.resample("D").

mean().indoor)

In [114]: fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 6))

 ...: df1_hour.plot(ax=ax1, alpha=0.25)

 ...: df1_day.plot(ax=ax1)

 ...: df1_week.plot(ax=ax1)

 ...: df1_month.plot(ax=ax1)

 ...: df_diff.plot(ax=ax2)

 ...: ax2.set_title("temperature difference between outdoor and indoor")

 ...: fig.tight_layout()

5 There are a large number of available time-unit codes. See the sections on “Offset aliases” and
“Anchored offsets” in the Pandas reference manual for details.

ChAPTer 12 DATA ProCessing AnD AnAlysis

433

As an illustration of up-sampling, consider the following example where we

resample the data frame df1 to a sampling frequency of 5 minutes, using three different

aggregation methods (mean, ffill for forward-fill, and bfill for back-fill). The original

sample frequency is approximately 10 minutes, so this resampling is indeed up-

sampling. The result is three new data frames that we combine into a single DataFrame

object using the concat function. The first five rows in the data frame are also shown

in the following example. Note that every second data point is a new sample point,

and depending on the value of the aggregation method, those values are filled (or not)

according to the specified strategies. When no fill strategy is selected, the corresponding

values are marked as missing using the NaN value.

In [115]: pd.concat(

 ...: [df1.resample("5min").mean().rename(columns={"outdoor":

'None'}),

 ...: df1.resample("5min").ffill().rename(columns={"outdoor":

'ffill'}),

 ...: df1.resample("5min").bfill().rename(columns={"outdoor":

'bfill'})],

 ...: axis=1).head()

Figure 12-6. Outdoor temperature, resampled to hourly, daily, weekly, and
monthly averages (top). Daily temperature difference between outdoors and
indoors (bottom)

ChAPTer 12 DATA ProCessing AnD AnAlysis

434

Out[115]:

time None ffill bfill

2014-01-01 00:00:00+01:00 4.38 4.38 4.38

2014-01-01 00:05:00+01:00 NaN 4.38 4.25

2014-01-01 00:10:00+01:00 4.25 4.25 4.25

2014-01-01 00:15:00+01:00 NaN 4.25 4.19

2014-01-01 00:20:00+01:00 4.19 4.19 4.19

 The Seaborn Graphics Library
The Seaborn graphics library is built on top of Matplotlib, and it provides functions

for generating graphs that are useful when working with statistics and data analysis,

including distribution plots, kernel-density plots, joint distribution plots, factor plot,

heatmaps, facet plots, and several ways of visualizing regressions. It also provides

methods for coloring data in graphs and numerous well-crafted color palettes. The

Seaborn library is created with close attention to the aesthetics of the graphs it produces,

and the graphs generated with the library tend to be both good looking and informative.

The Seaborn library distinguishes itself from the underlying Matplotlib library in that it

provides polished higher-level graph functions for a specific application domain, namely,

statistical analysis and data visualization. The ease with which standard statistical graphs

can be generated with the library makes it a valuable tool in exploratory data analysis.

To get started using the Seaborn library, we first set a style for the graphs it produces

using the sns.set function. Here we choose to work with the style called darkgrid,

which produces graphs with a gray background (also try the whitegrid style).

In [116]: sns.set(style="darkgrid")

Importing seaborn and setting a style for the library alters the default settings

for how Matplotlib graphs appear, including graphs produced by the pandas library.

For example, consider the following plot of the previously used indoor and outdoor

temperature time series. The resulting graph is shown in Figure 12-7, and although

the graph was produced using the pandas DataFrame method plot, using the sns.set

function has changed the appearance of the graph (compare with Figure 12-3).

ChAPTer 12 DATA ProCessing AnD AnAlysis

435

In [117]: df1 = pd.read_csv('temperature_outdoor_2014.tsv', delimiter="\t",

 ...: names=["time", "outdoor"])

 ...: df1.time = (pd.to_datetime(df1.time.values, unit="s")

 ...: .tz_localize('UTC').tz_convert('Europe/Stockholm'))

 ...: df1 = df1.set_index("time").resample("10min").mean()

In [118]: df2 = pd.read_csv('temperature_indoor_2014.tsv', delimiter="\t",

 ...: names=["time", "indoor"])

 ...: df2.time = (pd.to_datetime(df2.time.values, unit="s")

 ...: .tz_localize('UTC').tz_convert('Europe/Stockholm'))

 ...: df2 = df2.set_index("time").resample("10min").mean()

In [119]: df_temp = pd.concat([df1, df2], axis=1)

In [120]: fig, ax = plt.subplots(1, 1, figsize=(8, 4))

 ...: df_temp.resample("D").mean().plot(y=["outdoor", "indoor"], ax=ax)

Figure 12-7. Time-series plot produced by Matplotlib using the Pandas library,
with a plot style that is set up by the Seaborn library

The main strength of the Seaborn library, apart from generating good-looking

graphics, is its collection of easy-to-use statistical plots. Examples of these are the

kdeplot and distplot, which plot a kernel-density estimate plot and a histogram

plot with a kernel-density estimate overlaid on top of the histogram, respectively. For

example, the following two lines of code produce the graph shown in Figure 12-8. The

solid blue and green lines in this figure are the kernel-density estimate that can also be

graphed separately using the function kdeplot (not shown here).

ChAPTer 12 DATA ProCessing AnD AnAlysis

436

In [121]: sns.distplot(df_temp.to_period("M")["outdoor"]["2014-04"].

dropna().values, bins=50);

 ...: sns.distplot(df_temp.to_period("M")["indoor"]["2014-04"].

dropna().values, bins=50);

The kdeplot function can also operate on two-dimensional data, showing a contour

graph of the joint kernel-density estimate. Relatedly, we can use the jointplot function

to plot the joint distribution for two separate datasets. In the following example, we use

the kdeplot and jointplot to show the correlation between the indoor and outdoor

data series, which are resampled to hourly averages before visualized (we also drop

missing values using dropna method, since the functions from the seaborn module do

not accept arrays with missing data). The results are shown in Figure 12-9.

In [122]: sns.kdeplot(df_temp.resample("H").mean()["outdoor"].dropna().values,

 ...: df_temp.resample("H").mean()["indoor"].dropna().

values, shade=False)

In [123]: with sns.axes_style("white"):

 ...: sns.jointplot(df_temp.resample("H").mean()["outdoor"].values,

 ...: df_temp.resample("H").mean()["indoor"].values,

kind="hex")

Figure 12-8. The histogram (bars) and kernel-density plots (solid lines) for the
subset of the indoor and outdoor datasets that corresponds to the month of April

ChAPTer 12 DATA ProCessing AnD AnAlysis

437

The seaborn library also provides functions for working with categorical data. A

simple example of a graph type that is often useful for datasets with categorical variables

is the standard boxplot for visualizing the descriptive statistics (min, max, median, and

quartiles) of a dataset. An interesting twist on the standard boxplot is violin plot, in

which the kernel-density estimate is shown in the width of boxplot. The boxplot and

violinplot functions can be used to produce such graphs, as shown in the following

example, and the resulting graph is shown in Figure 12-10.

In [124]: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))

 ...: sns.boxplot(df_temp.dropna(), ax=ax1, palette="pastel")

 ...: sns.violinplot(df_temp.dropna(), ax=ax2, palette="pastel")

Figure 12-9. Two-dimensional kernel-density estimate contours (left) and the joint
distribution for the indoor and outdoor temperature datasets (right). The outdoor
temperatures are shown on the x axis and the indoor temperatures on the y axis.

Figure 12-10. A boxplot (left) and violin plot (right) for the indoor and outdoor
temperature datasets

ChAPTer 12 DATA ProCessing AnD AnAlysis

438

As a further example of violin plots, consider the outdoor temperature dataset

partitioned by the month, which can be produced by passing the month field of the

index of the data frame as a second argument (used to group the data into categories).

The resulting graph, which is shown in Figure 12-11, provides a compact and informative

visualization of the distribution of temperatures for each month of the year.

In [125]: sns.violinplot(x=df_temp.dropna().index.month,

 ...: y=df_temp.dropna().outdoor, color="skyblue");

Figure 12-11. Violin plot for the outdoor temperature grouped by month

Heatmaps are another type of graph that is handy when dealing with categorical

variables, especially for variables with a large number of categories. The Seaborn library

provides the function heatmap for generating this type of graphs. For example, working

with the outdoor temperature dataset, we can create two categorical columns month and

hour by extracting those fields from the index and assigning them to new columns in

the data field. Next we can use the pivot_table function in pandas to pivot the columns

into a table (matrix) where two selected categorical variables constitute the new index

and columns. Here we pivot the temperature dataset so that the hours of the day are the

columns and the months of the year are the rows (index). To aggregate the multiple data

points that fall within each hour-month category, we use aggfunc=np.mean argument to

compute the mean of all the values:

ChAPTer 12 DATA ProCessing AnD AnAlysis

439

In [126]: df_temp["month"] = df_temp.index.month

 ...: df_temp["hour"] = df_temp.index.hour

In [127]: table = pd.pivot_table(df_temp, values='outdoor',

index=['month'], columns=['hour'],

 ...: aggfunc=np.mean)

Once we have created a pivot table, we can visualize it as a heatmap using the

heatmap function in Seaborn. The result is shown in Figure 12-12.

In [128]: fig, ax = plt.subplots(1, 1, figsize=(8, 4))

 ...: sns.heatmap(table, ax=ax)

Figure 12-12. A heatmap of the outdoor temperature data grouped by the hour of
the day and month of the year

The Seaborn library contains much more statistical visualization tools than what we

have been able to survey here. However, I hope that looking at a few examples of what

this library can do illustrates the essence of the Seaborn library – that it is a convenient

tool for statistical analysis and exploration of data, which is able to produce many

standard statistical graphs with a minimum of effort. In the following chapters, we will

see further examples of applications of the Seaborn library.

ChAPTer 12 DATA ProCessing AnD AnAlysis

440

 Summary
In this chapter we have explored data representation and data processing using the

Pandas library, and we briefly surveyed the statistical graphics tools provided by the

Seaborn visualization library. The Pandas library provides the backend of much of data

wrangling done with Python. It achieves this by adding a higher-level abstraction layer in

the data representation on top of NumPy arrays, with additional methods for operating

on the underlying data. The ease with which data can be loaded, transformed, and

manipulated makes it an invaluable part of the data processing workflow in Python. The

pandas library also contains basic functions for visualizing the data that is represented by

its data structures. Being able to quickly visualize data represented as Pandas series and

data frames is an important tool in exploratory data analytics as well as for presentation.

The Seaborn library takes this a step further and provides a rich collection of statistical

graphs that can be produced often with a single line of code. Many functions in the

Seaborn library can operate directly on Pandas data structures.

 Further Reading
A great introduction to the Pandas library is given by the original creator of the library

in McKinney (2013), and it is also a rather detailed introduction to NumPy. The Pandas

official documentation, available at http://pandas.pydata.org/pandas-docs/stable,

also provides an accessible and very detailed description of the features of the library.

Another good online resource for learning Pandas is http://github.com/jvns/pandas-

cookbook. For data visualization, we have looked at the Seaborn library in this chapter,

and it is well described in the documentation available on its web site. With respect to

higher-level visualization tools, it is also worth exploring the ggplot library for Python,

http://ggplot.yhathq.com, which is an implementation based on the renowned The

Grammar of Graphics (L. Wilkinson, 2005). This library is also closely integrated with the

Pandas library, and it provides statistical visualization tools that are convenient when

analyzing data. For more information about visualization in Python, see, for example,

Vaingast (2014).

ChAPTer 12 DATA ProCessing AnD AnAlysis

http://pandas.pydata.org/pandas-docs/stable
http://github.com/jvns/pandas-cookbook
http://github.com/jvns/pandas-cookbook
http://ggplot.yhathq.com

441

 References
L. Wilkinson, D. W. (2005). The Grammar of Graphics. Chicago: Springer.

McKinney, W. (2013). Python for Data Analysis. Sebastopol: O'Reilly.

Vaingast, S. (2014). Beginning Python Visualization. New York: Apress.

ChAPTer 12 DATA ProCessing AnD AnAlysis

443
© Robert Johansson 2019
R. Johansson, Numerical Python, https://doi.org/10.1007/978-1-4842-4246-9_13

CHAPTER 13

Statistics
Statistics has long been a field of mathematics that is relevant to practically all applied

disciplines of science and engineering, as well as business, medicine, and other

fields where data is used for obtaining knowledge and making decisions. With the

recent proliferation of data analytics, there has been a surge of renewed interest in

statistical methods. Still, computer-aided statistics has a long history, and it is a field

that traditionally has been dominated by domain-specific software packages and

programming environments, such as the S language, and more recently its open source

counterpart: the R language. The use of Python for statistical analysis has grown rapidly

over the last several years, and by now there is a mature collection of statistical libraries

for Python. With these libraries Python can match the performance and features of

domain-specific languages in many areas of statistics, albeit not all, while also providing

the unique advantages of the Python programming language and its environment. The

Pandas library that we discussed in Chapter 12 is an example of a development within

the Python community that was strongly influenced by statistical software, with the

introduction of the data frame data structure to the Python environment. The NumPy and

SciPy libraries provide computational tools for many fundamental statistical concepts, and

higher-level statistical modeling and machine learning are covered by the statsmodels

and scikit-learn libraries, which we will see more of in the following chapters.

In this chapter we focus on fundamental statistical applications using Python and in

particular the stats module in SciPy. Here we discuss computing descriptive statistics,

random numbers, random variables, distributions, and hypothesis testing. We defer

more involved statistical modeling and machine-learning applications to the following

chapters. Some fundamental statistical functions are also available through the NumPy

library, such as its functions and methods for computing descriptive statistics and its

module for generating random numbers. The SciPy stats module builds on top of

NumPy and, for example, provides random number generators with more specialized

distributions.

444

 Importing Modules
In this chapter we mainly work with the stats module in SciPy, and following the

convention to selectively import modules from SciPy, we here assume that this module,

as well as the optimize module, is imported in the following way:

In [1]: from scipy import stats

 ...: from scipy import optimize

In addition, as usual we also require the NumPy and the Matplotlib libraries:

In [2]: import numpy as np

In [3]: import matplotlib.pyplot as plt

and for statistical graphs and styling, we use the Seaborn library:

In [4]: import seaborn as sns

In [5]: sns.set(style="whitegrid")

 Review of Statistics and Probability
We begin with a brief review of statistics, in order to introduce some of the key concepts

and the notation that we use in this and the following chapters. Statistics deals

with the collection and analysis of data for the purpose of gaining insights, drawing

conclusions, and supporting decision-making. Statistical methods are necessary when

we have incomplete information about a phenomenon. Typically we have incomplete

information because we are unable to collect data from all members of a population

or if there is uncertainty in observations that we make (e.g., due to measurement

noise). When we are unable to survey an entire population, a randomly chosen sample

can be studied instead, and we can use statistical methods and compute descriptive

statistics (parameters such as the mean and the variances) to make inferences about the

properties of the entire population (also called sample space) in a systematic manner

and with controlled risks of error.

Statistical methods are built on the foundation provided by probability theory,

with which we can model uncertainty and incomplete information using probabilistic,

random variables. For example, with randomly selected samples of a population, we can

hope to obtain representative samples whose properties can be used to infer properties

of the entire population. In probability theory, each possible outcome for an observation

Chapter 13 StatiStiCS

445

is given a probability, and the probability for all possible outcomes constitutes the

probability distribution. Given the probability distribution, we can compute the

properties of the population, such as its mean and variance, but for randomly selected

samples, we only know the expected, or average, results.

In statistical analysis it is important to distinguish between population and sample

statistics. Here we denote parameters of the population with Greek symbols and

parameters of a sample with the corresponding population symbol with the added

subscript x (or the symbol that is used to represent the sample). For example, the mean

and the variance of a population are denoted with μ and σ2, and the mean and the

variance of a sample x are denoted as μx and s x
2 . Furthermore, we denote variables

representing a population (random variables) with capital letters, for example, X, and

a set of sample elements is denoted with a lowercase letter, for example, x. A bar over

a symbol denotes the average or mean, m = =
=
åX

N
x

i

N

i

1

1

 and mx
i

n

ix
n

x= =
=
å1

1

, where N

is the number of elements in the population X and n is the number of elements in the

sample x. The only difference between these two expressions is the number of elements

in the sum (N ≥ n). The situation is slightly more complex for the variance: the population

variance is the mean of the squared distance from the mean, s m2

1

21
= -()

=
åN

x
i

N

i , and the

corresponding sample variance is s mx
i

n

i xn
x2

1

21

1
=

-
-()

=
å . In the latter expression, we

have replaced the population mean μ with the sample mean μx and divided the sum with

n − 1 rather than n. The reason for this is that one degree of freedom has been eliminated

from the sample set when calculating the sample mean μx, so when computing the

sample variance, only n − 1 degrees of freedom remains. Consequently, the way to

compute the variance for a population and a sample is slightly different. This is reflected

in functions we can use to compute these statistics in Python.

In Chapter 2 we have already seen that we can compute descriptive statistics for

data using NumPy functions or the corresponding ndarray methods. For example, to

compute the mean and the median of a dataset, we can use the NumPy functions mean

and median:

In [6]: x = np.array([3.5, 1.1, 3.2, 2.8, 6.7, 4.4, 0.9, 2.2])

In [7]: np.mean(x)

Out[7]: 3.1

Chapter 13 StatiStiCS

446

In [8]: np.median(x)

Out[8]: 3.0

Similarly, we can use min and max functions or ndarray methods to compute the

minimum and maximum values in the array:

In [9]: x.min(), x.max()

Out[9]: (0.90, 6.70)

To compute the variance and the standard deviation for a dataset, we use the var

and std methods. By default the formula for the population variance and standard

deviation is used (i.e., it is assumed that the dataset is the entire population).

In [10]: x.var()

Out[10]: 3.07

In [11]: x.std()

Out[11]: 1.7521415467935233

However, to change this behavior, we can use the argument ddof (delta degrees of

freedom). The denominator in the expression for the variance is the number of elements

in the array minus ddof, so to calculate the unbiased estimate of the variance and

standard deviation from a sample, we need to set ddof=1:

In [12]: x.var(ddof=1)

Out[12]: 3.5085714285714293

In [13]: x.std(ddof=1)

Out[13]: 1.8731181032095732

In the following sections, we look into more detail on how to use NumPy and

SciPy’s stats module to generate random numbers, represent random variables and

distributions, and test hypotheses.

 Random Numbers
The Python standard library contains the module random, which provides functions for

generating single random numbers with a few basic distributions. The random module

in the NumPy module provides similar functionality but offers functions that generate

Chapter 13 StatiStiCS

447

NumPy arrays with random numbers, and it has support for a wider selection of probability

distributions. Arrays with random numbers are often practical for computational purposes,

so here we focus on the random module in NumPy, and later also the higher-level functions

and classes in scipy.stats, which build on top of and extend NumPy.

Earlier in this book, we have already used np.random.rand, which generates

uniformly distributed floating-point numbers in the half-open interval [0, 1) (i.e., 0.0 is

a possible outcome, but 1.0 is not). In addition to this function, the np.random module

also contains a large collection of other functions for generating random numbers that

cover different intervals, have different distributions, and take values of different types

(e.g., floating-point numbers and integers). For example, the randn function produces

random numbers that are distributed according to the standard normal distribution (the

normal distribution with mean 0 and standard deviation 1), and the randint function

generates uniformly distributed integers between a given low (inclusive) and high

(exclusive) value. When the rand and randn functions are called without any arguments,

they produce a single random number:

In [14]: np.random.rand()

Out[14]: 0.532833024789759

In [15]: np.random.randn()

Out[15]: 0.8768342101492541

However, passing the shape of the array as arguments to these functions produces

arrays of random numbers. For example, here we generate a vector of length 5 using

rand by passing a single argument 5 and a 2 × 4 array using randn by passing 2 and 4

as arguments (higher-dimensional arrays are generated by passing the length of each

dimension as arguments):

In [16]: np.random.rand(5)

Out[16]: array([0.71356403, 0.25699895, 0.75269361, 0.88387918, 0.15489908])

In [17]: np.random.randn(2, 4)

Out[17]: array([[3.13325952, 1.15727052, 1.37591514, 0.94302846],

 [0.8478706 , 0.52969142, -0.56940469, 0.83180456]])

Chapter 13 StatiStiCS

448

To generate random integers using randint (see also random_integers), we need

to either provide the upper limit for the random numbers (in which case the lower limit

is implicitly zero) or provide both the lower and upper limits. The size of the generated

array is specified using the size keyword arguments, and it can be an integer or a tuple

that specifies the shape of a multidimensional array:

In [18]: np.random.randint(10, size=10)

Out[18]: array([0, 3, 8, 3, 9, 0, 6, 9, 2, 7])

In [19]: np.random.randint(low=10, high=20, size=(2, 10))

Out[19]: array([[12, 18, 18, 17, 14, 12, 14, 10, 16, 19],

 [15, 13, 15, 18, 11, 17, 17, 10, 13, 17]])

Note that the randint function generates random integers in the half-open interval

[low, high). To demonstrate that the random numbers produced by rand, randn, and

randint, indeed, are distributed differently, we can plot the histograms of say 10000

random numbers produced by each function. The result is shown in Figure 13-1. We

note that the distributions for rand and randint appear uniform but have different

ranges and types, while the distribution of the numbers produced by randn resembles a

Gaussian curve centered at zero, as expected.

In [20]: fig, axes = plt.subplots(1, 3, figsize=(12, 3))

 ...: axes[0].hist(np.random.rand(10000))

 ...: axes[0].set_title("rand")

 ...: axes[1].hist(np.random.randn(10000))

 ...: axes[1].set_title("randn")

 ...: axes[2].hist(np.random.randint(low=1, high=10, size=10000),

bins=9, align='left')

 ...: axes[2].set_title("randint(low=1, high=10)")

Chapter 13 StatiStiCS

449

In statistical analysis, it is often necessary to generate a unique list of integers. This

corresponds to sampling (randomly selecting) items from a set (population) without

replacement (so that we do not get the same item twice). From the NumPy random

module, we can use the choice function to generate this type of random numbers. As the

first argument, we can either provide a list (or array) with the values in the population or

an integer that corresponds to the number of elements in the population. As the second

argument, we give the number of values that are to be sampled. Whether the values are

to be sampled with or without replacement can be specified using the replace keyword

argument, which takes the Boolean values True or False. For example, to sample five

unique (without replacement) items from the set of integers between 0 (inclusive) and

10 (exclusive), we can use

In [21]: np.random.choice(10, 5, replace=False)

Out[21]: array([9, 0, 5, 8, 1])

When working with random number generation, it can be useful to seed the random

number generator. The seed is a number that initializes random number generator

to a specific state, so that once it has been seeded with a specific number, it always

generates the same sequence of random numbers. This can be useful when testing and

for reproducing previous results and occasionally in applications that require reseeding

the random number generator (e.g., after having forked a process). To seed the random

number generator in NumPy, we can use the seed function, which takes an integer as

argument:

In [22]: np.random.seed(123456789)

In [23]: np.random.rand()

Out[23]: 0.532833024789759

Figure 13-1. Distributions for 10000 random numbers generated by the rand,
randn, and randint functions in NumPy’s random module

Chapter 13 StatiStiCS

450

Note that after having seeded the random number generator with a specific number,

here 123456789, the following calls to the random number generators always produce

the same results:

In [24]: np.random.seed(123456789); np.random.rand()

Out[24]: 0.532833024789759

The seed of the random number generator is a global state of the np.random module.

A finer level of control of the state of the random number generator can be achieved

by using the RandomState class, which optionally takes a seed integer as argument to

its initializer. The RandomState object keeps tracks of the state of the random number

generator and allows maintaining several independent random number generators in

the same program (which can be useful, e.g., when working with threaded applications).

Once a RandomState object has been created, we can use methods of this object to

generate random numbers. The RandomState class has methods that correspond to the

functions that are available in np.random module. For example, we can use the method

randn of the RandomState class to generate standard normal distributed

random numbers:

In [25]: prng = np.random.RandomState(123456789)

In [26]: prng.randn(2, 4)

Out[26]: array([[2.212902, 2.1283978, 1.8417114, 0.08238248],

 [0.85896368, -0.82601643, 1.15727052, 1.37591514]])

Similarly, there are methods, rand, randint, rand_integers, and choice, which

also correspond to the functions in the np.random module with the same name. It is

considered good programming practice to use a RandomState instance rather than

directly using the functions in the np.random module, because it avoids relying on

a global state variable and improves the isolation of the code. This is an important

consideration when developing library functions that use random numbers, but is

perhaps less important in smaller applications and calculations.

In addition to the fundamental random number distributions we have looked at so

far (discrete and continuous uniform distributions, randint and rand, and the standard

normal distribution, randn), there are also functions, and RandomState methods, for

a large number of probability distributions that occur in statistics. To mention just a

few, there is the continuous χ2 distribution (chisquare), the Student’s t distribution

(standard_t), and the F distribution (f):

Chapter 13 StatiStiCS

451

In [27]: prng.chisquare(1, size=(2, 2))

Out[27]: array([[0.78631596, 0.19891367],

 [0.11741336, 2.8713997]])

In [28]: prng.standard_t(1, size=(2, 3))

Out[28]: array([[0.39697518, -0.19469463, 1.15544019],

 [-0.65730814, -0.55125015, 0.13578694]])

In [29]: prng.f(5, 2, size=(2, 4))

Out[29]: array([[0.45471421, 17.64891848, 1.48620557, 2.55433261],

 [1.21823269, 3.47619315, 0.50835525, 0.70599655]])

and the discrete binomial distribution (binomial) and the Poisson distribution (poisson):

In [30]: prng.binomial(10, 0.5, size=10)

Out[30]: array([4, 5, 6, 7, 3, 5, 7, 5, 4, 5])

In [31]: prng.poisson(5, size=10)

Out[31]: array([3, 5, 5, 5, 0, 6, 5, 4, 6, 3])

For a complete list of available distribution functions, see the docstrings for the np.

random module, help(np.random), and the RandomState class. While it is possible to use

the functions in np.random and methods in RandomState to draw random numbers from

many different statistical distribution functions, when working with distributions there

is a higher-level interface in the scipy.stats module that combines random number

sampling with many other convenient functions for probability distributions. In the

following section, we explore this in more detail.

 Random Variables and Distributions
In probability theory, the set of possible outcomes of a random process is called the

sample space. Each element in the sample space (i.e., an outcome of an experiment

or an observation) can be assigned a probability, and the probabilities of all possible

outcomes define the probability distribution. A random variable is a mapping from the

sample space to the real numbers or to integers. For example, the possible outcomes of

a coin toss are head and tail, so the sample space is {head, tail}, and a possible random

variable takes the value 0 for head and 1 for tail. In general there are many ways to

define random variables for the possible outcomes of a given random process. Random

variables are a problem-independent representation of a random process. It is easier

Chapter 13 StatiStiCS

452

to work with random variables because they are described by numbers instead of

outcomes from problem-specific sample spaces. A common step in statistical problem-

solving is therefore to map outcomes to numerical values and figure out the probability

distribution of those values.

Consequently, a random variable is characterized by its possible values and its

probability distribution, which assigns a probability for each possible value. Each

observation of the random variable results in a random number, and the distribution

of the observed values are described by the probability distribution. There are two

main types of distributions, discrete and continuous distributions, which are integer

valued and real valued, respectively. When working with statistics, dealing with random

variables is of central importance, and in practice this often means working with

probability distributions. The SciPy stats module provides classes for representing

random variables with a large number of probability distributions. There are two base

classes for discrete and continuous random variables: rv_discrete and rv_continuous.

These classes are not used directly, but rather used as base classes for random variables

with specific distributions, and define a common interface for all random variable

classes in SciPy stats. A summary of selected methods for discrete and continuous

random variables is given in Table 13-1.

Table 13-1. Selected Methods for Discrete and Continuous Random Variables in

the SciPy stats Module

Methods Description

pdf/pmf probability distribution function (continuous) or probability mass function

(discrete).

cdf Cumulative distribution function.

sf Survival function (1 – cdf).

ppf percent-point function (inverse of cdf).

moment Noncentral moments of nth order.

stats Statistics of the distribution (typically the mean and variance, sometimes

additional statistics).

(continued)

Chapter 13 StatiStiCS

453

There are a large number of classes for the discrete and continuous random variable

in the SciPy stats module. At the time of writing, there are classes for 13 discrete

and 98 continuous distributions, and these include the most commonly encountered

distributions (and many less common). For a complete reference, see the docstring for

the stats module: help(stats). In the following we explore some of the more common

distributions, but the usage of all the other distributions follows the same pattern.

The random variable classes in the SciPy stats module have several use-cases. They

are both representations of the distribution, which can be used to compute descriptive

statistics and for graphing, and they can be used to generate random numbers following

the given distribution using the rvs (random variable sample) method. The latter

use- case is similar to what we used the np.random module for earlier in this chapter.

As a demonstration of how to use the random variable classes in SciPy stats,

consider the following example where we create a normal distributed random variable

with mean 1.0 and standard deviation 0.5:

In [32]: X = stats.norm(1, 0.5)

Now X is an object that represents a random variable, and we can compute

descriptive statistics of this random variable using, for example, the mean, median, std,

and var methods:

In [33]: X.mean()

Out[33]: 1.0

Methods Description

fit Fit distribution to data using a numerical maximum likelihood optimization (for

continuous distributions).

expect expectation value of a function with respect to the distribution.

interval the endpoints of the interval that contains a given percentage of the distribution

(confidence interval).

rvs random variable samples. takes as argument the size of the resulting array of

samples.

mean, median,

std, var

Descriptive statistics: mean, median, standard deviation, and the variance of the

distribution.

Table 13-1. (continued)

Chapter 13 StatiStiCS

454

In [34]: X.median()

Out[34]: 1.0

In [35]: X.std()

Out[35]: 0.5

In [36]: X.var()

Out[36]: 0.25

Noncentral moments of arbitrary order can be computed with the moment method:

In [37]: [X.moment(n) for n in range(5)]

Out[37]: [1.0, 1.0, 1.25, 1.75, 2.6875]

And we can obtain a distribution-dependent list of statistics using the stats method

(here, for a normal distributed random variable, we get the mean and the variance):

In [38]: X.stats()

Out[38]: (array(1.0), array(0.25))

We can evaluate the probability distribution function, the cumulative distribution

function, the survival function, etc., using the methods pdf, cdf, sf, etc. These all take a

value, or an array of values, at which to evaluate the function:

In [39]: X.pdf([0, 1, 2])

Out[39]: array([0.10798193, 0.79788456, 0.10798193])

In [40]: X.cdf([0, 1, 2])

Out[40]: array([0.02275013, 0.5, 0.97724987])

The interval method can be used to compute the lower and upper values of x

such that a given percentage of the probability distribution falls within the interval

(lower, upper). This method is useful for computing confidence intervals and for

selecting a range of x values for plotting:

In [41]: X.interval(0.95)

Out[41]: (0.020018007729972975, 1.979981992270027)

In [42]: X.interval(0.99)

Out[42]: (-0.28791465177445019, 2.2879146517744502)

Chapter 13 StatiStiCS

455

To build intuition for the properties of a probability distribution, it is useful to graph

it, together with the corresponding cumulative probability function and the percent-

point function. To make it easier to repeat this for several distributions, we first create a

function plot_rv_distribution that plots the result of pdf or pmf, the cdf and sf, and

ppf methods of the SciPy stats random variable objects, over an interval that contains

99.9% of the probability distribution function. We also highlight the area that contains

95% of the probability distribution using the fill_between drawing method:

In [43]: def plot_rv_distribution(X, axes=None):

 ...: """Plot the PDF or PMF, CDF, SF and PPF of a given random

variable"""

 ...: if axes is None:

 ...: fig, axes = plt.subplots(1, 3, figsize=(12, 3))

 ...:

 ...: x_min_999, x_max_999 = X.interval(0.999)

 ...: x999 = np.linspace(x_min_999, x_max_999, 1000)

 ...: x_min_95, x_max_95 = X.interval(0.95)

 ...: x95 = np.linspace(x_min_95, x_max_95, 1000)

 ...:

 ...: if hasattr(X.dist, "pdf"):

 ...: axes[0].plot(x999, X.pdf(x999), label="PDF")

 ...: axes[0].fill_between(x95, X.pdf(x95), alpha=0.25)

 ...: else:

 ...: # discrete random variables do not have a pdf method,

instead we use pmf:

 ...: x999_int = np.unique(x999.astype(int))

 ...: axes[0].bar(x999_int, X.pmf(x999_int), label="PMF")

 ...: axes[1].plot(x999, X.cdf(x999), label="CDF")

 ...: axes[1].plot(x999, X.sf(x999), label="SF")

 ...: axes[2].plot(x999, X.ppf(x999), label="PPF")

 ...:

 ...: for ax in axes:

 ...: ax.legend()

Next we use this function to graph a few examples of distributions: the normal

distribution, the F distribution, and the discrete Poisson distribution. The result is shown

in Figure 13-2.

Chapter 13 StatiStiCS

456

In [44]: fig, axes = plt.subplots(3, 3, figsize=(12, 9))

 ...: X = stats.norm()

 ...: plot_rv_distribution(X, axes=axes[0, :])

 ...: axes[0, 0].set_ylabel("Normal dist.")

 ...: X = stats.f(2, 50)

 ...: plot_rv_distribution(X, axes=axes[1, :])

 ...: axes[1, 0].set_ylabel("F dist.")

 ...: X = stats.poisson(5)

 ...: plot_rv_distribution(X, axes=axes[2, :])

 ...: axes[2, 0].set_ylabel("Poisson dist.")

Figure 13-2. Examples of probability distribution functions (PDF) or probability
mass functions (PMFs), cumulative distribution functions (CDF), survival
functions (SF), and percent-point functions (PPF) for a normal distribution (top),
an F distribution (middle), and a Poisson distribution (bottom)

Chapter 13 StatiStiCS

457

In the examples so far, we have initiated an instance of a random variable class

and computed statistics and other properties using method calls. An alternative way

to use the random variable classes in SciPy’s stats module is to use class methods, for

example, stats.norm.mean, and pass the distribution parameters as arguments (often

loc and scale, as in this example for normally distributed values):

In [45]: stats.norm.stats(loc=2, scale=0.5)

Out[45]: (array(2.0), array(0.25))

which gives the same result as first creating an instance and then calling the

corresponding method:

In [46]: stats.norm(loc=1, scale=0.5).stats()

Out[46]: (array(1.0), array(0.25))

Most methods in the rv_discrete and rv_continuous classes can be used as class

methods in this way.

So far we have only looked at properties of the distribution function of random

variables. Note that although a distribution function describes a random variable, the

distribution itself is fully deterministic. To draw random numbers that are distributed

according to the given probability distribution, we can use the rvs (random variable

sample) method. It takes as argument the shape of the required array (can be an integer

for a vector or a tuple of dimension lengths for a higher-dimensional array). Here we use

rvs(10) to generate a one-dimensional array with ten values:

In [47]: X = stats.norm(1, 0.5)

In [48]: X.rvs(10)

Out[48]: array([2.106451, 2.0641989, 1.9208557, 1.04119124, 1.42948184,

 0.58699179, 1.57863526, 1.68795757, 1.47151423, 1.4239353])

To see that the resulting random numbers indeed are distributed according to the

corresponding probability distribution function, we can graph a histogram of a large

number of samples of a random variable and compare it to the probability distribution

function. Again, to be able to do this easily for samples of several random variables, we

create a function plot_dist_samples for this purpose. This function uses the interval

method to obtain a suitable plot range for a given random variable object.

Chapter 13 StatiStiCS

458

In [49]: def plot_dist_samples(X, X_samples, title=None, ax=None):

 ...: """ Plot the PDF and histogram of samples of a continuous

random variable"""

 ...: if ax is None:

 ...: fig, ax = plt.subplots(1, 1, figsize=(8, 4))

 ...:

 ...: x_lim = X.interval(.99)

 ...: x = np.linspace(*x_lim, num=100)

 ...:

 ...: ax.plot(x, X.pdf(x), label="PDF", lw=3)

 ...: ax.hist(X_samples, label="samples", normed=1, bins=75)

 ...: ax.set_xlim(*x_lim)

 ...: ax.legend()

 ...:

 ...: if title:

 ...: ax.set_title(title)

 ...: return ax

Note that in this function we have used the tuple unpacking syntax *x_lim, which

distributes the elements in the tuple x_lim to different arguments for the function. In this

case it is equivalent to np.linspace(x_lim[0], x_lim[1], num=100).

Next we use this function to visualize 2000 samples of three random variables with

different distributions: here we use the Student’s t distribution, the χ2 distribution,

and the exponential distribution, and the results are shown in Figure 13-3. Since 2000

is a fairly large sample, the histogram graphs of the samples coincide well with the

probability distribution function. With an even larger number of samples, the agreement

can be expected to be even better.

In [50]: fig, axes = plt.subplots(1, 3, figsize=(12, 3))

 ...: N = 2000

 ...: # Student's t distribution

 ...: X = stats.t(7.0)

 ...: plot_dist_samples(X, X.rvs(N), "Student's t dist.", ax=axes[0])

 ...: # The chisquared distribution

 ...: X = stats.chi2(5.0)

 ...: plot_dist_samples(X, X.rvs(N), r"χ^2 dist.", ax=axes[1])

Chapter 13 StatiStiCS

459

 ...: # The exponential distribution

 ...: X = stats.expon(0.5)

 ...: plot_dist_samples(X, X.rvs(N), "exponential dist.", ax=axes[2])

The opposite of drawing random samples from a known distribution function is to fit

given probability distribution with unknown parameters to a set of data points. In such

a fit, we typically wish to optimize the unknown parameters such that the likelihood of

observing the given data is maximized. This is called a maximum likelihood fit. Many of

the random variable classes in the SciPy stats module implements the method fit that

performs such a fitting to given data. As a first example, consider drawing 500 random

samples from the χ2 distribution with five degrees of freedom (df=5) and then refitting

the random variables to the χ2 distribution using the fit method.

In [51]: X = stats.chi2(df=5)

In [52]: X_samples = X.rvs(500)

In [53]: df, loc, scale = stats.chi2.fit(X_samples)

In [54]: df, loc, scale

Out[54]: (5.2886783664198465, 0.0077028130326141243, 0.93310362175739658)

In [55]: Y = stats.chi2(df=df, loc=loc, scale=scale)

The fit method returns the maximum likelihood parameters of the distribution,

for the given data. We can pass on those parameters to the initializer of the stats.chi2

to create a new random variable instance Y. The probability distribution of Y should

resemble the probability distribution of the original random variable X. To verify this we

can plot the probability distribution functions for both random variables. The resulting

graph is shown in Figure 13-4.

Figure 13-3. Probability distribution function (PDF) together with histograms of
2000 random samples from the Student’s t distribution (left), the χ2 distribution
(middle), and the exponential distribution (right)

Chapter 13 StatiStiCS

460

In [56]: fig, axes = plt.subplots(1, 2, figsize=(12, 4))

 ...: x_lim = X.interval(.99)

 ...: x = np.linspace(*x_lim, num=100)

 ...:

 ...: axes[0].plot(x, X.pdf(x), label="original")

 ...: axes[0].plot(x, Y.pdf(x), label="recreated")

 ...: axes[0].legend()

 ...:

 ...: axes[1].plot(x, X.pdf(x) - Y.pdf(x), label="error")

 ...: axes[1].legend()

In this section we have explored how to use random variable objects from the SciPy

stats model to describe random variables with various distributions and how they can

be used to compute properties of the given distributions, as well as generating random

variable samples and performing maximum likelihood fitting. In the following section,

we see how to further use these random variable objects for hypothesis testing.

 Hypothesis Testing
Hypothesis testing is a cornerstone of the scientific method, which requires that claims

are investigated objectively and that a claim is rejected or accepted on the basis of factual

observations. Statistical hypothesis testing has a more specific meaning. It is a systematic

methodology for evaluating if a claim, or a hypothesis, is reasonable or not, on the basis

Figure 13-4. Original and recreated probability distribution function (left) and
the error (right), from a maximum likelihood fit of 500 random samples of the
original distribution

Chapter 13 StatiStiCS

461

of data. As such it is an important application of statistics. In this methodology, we

formulate the hypothesis in terms of a null hypothesis, H0, which represents the currently

accepted state of knowledge, and an alternative hypothesis, HA, which represents a

new claim that challenges the current state of knowledge. The null hypothesis and the

alternative hypothesis must be mutually exclusive and complementary, so that one and

only one of the hypotheses is true.

Once H0 and HA are defined, the data that support the test must be collected, for

example, through measurements, observations, or a survey. The next step is to find a

test statistics that can be computed from the data and whose probability distribution

function can be found under the null hypothesis. Next we can evaluate the data by

computing the probability (the p-value) of obtaining the observed value of the test

statistics (or a more extreme one) using the distribution function that is implied by the

null hypothesis. If the p-value is smaller than a predetermined threshold, known as

the significance level, and denoted by α (typically 5% or 1%), we can conclude that the

observed data is unlikely to have been described by the distribution corresponding to

the null hypothesis. In that case, we can therefore reject the null hypothesis in favor of

the alternative hypothesis. The steps for carrying out a hypothesis test are summarized

in the following list:

 1. Formulate the null hypothesis and the alternative hypothesis.

 2. Select a test statistics such that its sampling distribution under the

null hypothesis is known (exactly or approximately).

 3. Collect data.

 4. Compute the test statistics from the data and calculate its p-value

under the null hypothesis.

 5. If the p-value is smaller than the predetermined significance level

α, we reject the null hypothesis. If the p-value is larger, we fail to

reject the null hypothesis.

Statistical hypothesis testing is a probabilistic method, which means that we

cannot be certain in the decision to reject or not to reject the null hypothesis. There

can be two types of error: we can mistakenly reject the null hypothesis when in reality

it should not be rejected, and we can fail to reject the null hypothesis when it should be

rejected. These are called type I and type II errors, respectively. By choosing the required

significance level, we can balance the trade-off between these two types of error.

Chapter 13 StatiStiCS

462

In general, the most challenging step in the method outlined in the preceding

section is to know the sampling distribution of the test statistics. Fortunately many

hypothesis tests fall in a few standard categories for which the probability distributions

are known. A brief summary and overview of common hypothesis test cases and the

corresponding distribution of their test statistics are given in Table 13-2. For motivations

for why each of these tests is suitable for stated situations, and the full set of conditions

for the validity of the tests, see statistics textbooks such as Wasserman (2004) or Rice

(1995). The docstring for each listed functions in the SciPy stats module also contains

further information about each test.

Table 13-2. Summary of Common Hypothesis Test Cases with the Corresponding

Distributions and SciPy Functions

Null Hypothesis Distributions SciPy Functions for
Test

test if the mean of a population is a given

value.

Normal distribution (stats.

norm), or Student’s t
distribution (stats.t)

stats.

ttest_1samp

test if the means of two random variables

are equal (independent or paired samples).

Student’s t distribution

(stats.t)

stats.ttest_ind,

stats.ttest_rel

test goodness of fit of a continuous

distribution to data.

Kolmogorov-Smirnov

distribution

stats.kstest

test if categorical data occur with given

frequency (sum of squared normally

distributed variables).

χ2 distribution (stats.chi2) stats.chisquare

test for the independence of categorical

variables in a contingency table.

χ2 distribution (stats.chi2) stats.chi2_

contingency

test for equal variance in samples of two or

more variables.

F distribution (stats.f) stats.barlett,

stats.levene

test for noncorrelation between two

variables.

Beta distribution (stats.beta,

stasts.mstats.betai)

stats.pearsonr,

stats.spearmanr

test if two or more variables have the same

population mean (aNOVa – analysis of

variance) .

F distribution stats.f_oneway,

stats.kruskal

Chapter 13 StatiStiCS

463

In the following we also look at examples of how the corresponding functions in

SciPy stats module can be used to carry out steps 4 and 5 in the preceding procedure

given: computing a test statistic and the corresponding p-value.

For example, a common null hypothesis is a claim that the mean μ of a population

is a certain value μ0. We can then sample the population and use the sample mean x

to form a test statistic z
x

n
=

-m
s

0

/
, where n is the sample size. If the population is large

and the variance σ is known, then it is reasonable to use assume that the test statistic is

normally distributed. If the variance is unknown, we can substitute σ2 with the sample

variance s x
2 . The test statistic then follows the Student’s t distribution, which in the limit

of a large number of samples approaches the normal distribution. Regardless of which

distribution we end up using, we can compute a p-value for the test statistics using the

given distribution.

As an example of how this type of hypothesis test can be carried out using the

functions provided by the SciPy stats module, consider a null hypothesis that claims

that a random variable X has mean μ0 = 1. Given samples of X, we then wish to test if the

sampled data is compatible with the null hypothesis. Here we simulate the samples by

drawing 100 random samples from a distribution slightly different than that claimed by

the null hypothesis (using μ = 0.8):

In [57]: mu0, mu, sigma = 1.0, 0.8, 0.5

In [58]: X = stats.norm(mu, sigma)

In [59]: n = 100

In [60]: X_samples = X.rvs(n)

Given the sample data, X_samples, next we need to compute a test statistic. If the

population standard deviation σ is known, as in this example, we can use z
x

n
=

-m
s

0

/
,

which is normally distributed.

In [61]: z = (X_samples.mean() - mu0)/(sigma/np.sqrt(n))

In [62]: z

Out[62]: -2.8338979550098298

If the population variance is not known, we can use the sample standard deviation

instead: t
x

nx

=
-m

s /
. However, in this case, the test statistics t follows the Student’s t

distribution instead rather than the normal distribution. To compute t in this case,

Chapter 13 StatiStiCS

464

we can use the NumPy method std with the ddof=1 argument to compute the sample

standard deviation:

In [63]: t = (X_samples.mean() - mu0)/(X_samples.std(ddof=1)/np.sqrt(n))

In [64]: t

Out[64]: -2.9680338545657845

In either case we get a test statistics that we can compare with the corresponding

distribution to obtain a p-value. For example, for a normal distribution, we can use a

stats.norm instance to represent a normal distributed random variable, and with its ppf

method, we can look up the statistics value that corresponds to a certain significance

level. For a two-sided hypothesis test of significance level 5% (2.5% on each side), the

statistics threshold is

In [65]: stats.norm().ppf(0.025)

Out[65]: -1.9599639845400545

Since the observed statistics is about -2.83, which is smaller than the threshold value

–1.96 for a two-sided test with significance level 5%, we have sufficient grounds to reject

the null hypothesis in this case. We can explicitly compute the p-value for the observed

test statistics using the cdf method (multiplied by two for a two-sided test). The resulting

p-value is indeed rather small, which supports the rejection of the null hypothesis:

In [66]: 2 * stats.norm().cdf(-abs(z))

Out[66]: 0.0045984013290753566

If we would like to use the t distribution, we can use the stats.t class instead of

stats.norm. After computing the sample mean, x , only n − 1 degrees of freedom (df)

remains in the sample data. The number of degrees of freedom is an important

parameter for the t distribution, which we need to specify when we create the random

variable instance:

In [67]: 2 * stats.t(df=(n-1)).cdf(-abs(t))

Out[67]: 0.0037586479674227209

The p-value is again very small, suggesting that we should reject the null hypothesis.

Instead of explicitly carrying out these steps (computing the test statistics, then

computing the p-value), there are built-in functions in SciPy’s stats module for carrying

out many common tests, as summarized in Table 13-2. For the test we have used here,

we can directly compute the test statistics and the p-value using the stats.ttest_1samp

function:

Chapter 13 StatiStiCS

465

In [68]: t, p = stats.ttest_1samp(X_samples, mu)

In [69]: t

Out[69]: -2.9680338545657841

In [70]: p

Out[70]: 0.0037586479674227209

Again we see that the p-value is very small (the same value as in the preceding text)

and that we should reject the null hypothesis. It is also illustrative to plot the distribution

corresponding to the null hypothesis, together with the sampled data (see Figure 13-5):

In [71]: fig, ax = plt.subplots(figsize=(8, 3))

 ...: sns.distplot(X_samples, ax=ax)

 ...: x = np.linspace(*X.interval(0.999), num=100)

 ...: ax.plot(x, stats.norm(loc=mu, scale=sigma).pdf(x))

For another example, consider a two-variable problem, where the null hypothesis

states that the population means of two random variables are equal (e.g., corresponding

to independent subjects with and without treatment). We can simulate this type of test

by creating two random variables with normal distribution, with a randomly chosen

population means. Here we select 50 samples for each random variable.

In [72]: n, sigma = 50, 1.0

In [73]: mu1, mu2 = np.random.rand(2)

In [74]: X1 = stats.norm(mu1, sigma)

In [75]: X1_sample = X1.rvs(n)

In [76]: X2 = stats.norm(mu2, sigma)

In [77]: X2_sample = X2.rvs(n)

Figure 13-5. Distribution function according to the null hypothesis (light green)
and the sample estimated distribution function (dark blue)

Chapter 13 StatiStiCS

466

We are interested in evaluating if the observed samples provide sufficient evidence

that the two population means are not equal (rejecting the null hypothesis). For this

situation, we can use the t test for two independent samples, which is available in SciPy

stats.ttext_ind, which returns the test statistics and the corresponding p-value:

In [78]: t, p = stats.ttest_ind(X1_sample, X2_sample)

In [79]: t

Out[79]: -1.4283175246005888

In [80]: p

Out[80]: 0.15637981059673237

Here the p-value is about 0.156, which is not small enough to support rejecting the

null hypothesis that the two means are different. In this example the two population

means are indeed different:

In [81]: mu1, mu2

Out[81]: (0.24764580637159606, 0.42145435527527897)

However, the particular samples drawn from these distributions did not statistically

prove that these means are different (an error of type II). To increase the power of the

statistical test, we would need to increase the number of samples from each random

variable.

The SciPy stats module contains functions for common types of hypothesis testing

(see the summary in Table 13-2), and their use closely followed what we have seen in

the examples in this section. However, some tests require additional arguments for

distribution parameters. See the docstrings for each individual test function for details.

 Nonparametric Methods
So far we have described random variables with distributions that are completely

determined by a few parameters, such as the mean and the variance for the normal

distributions. Given the sampled data, we can fit a distribution function using maximum

likelihood optimization with respect to the distribution parameters. Such distribution

functions are called parametric, and statistical methods based on such distribution

functions (e.g., a hypothesis test) are called parametric methods. When using those

methods, we make a strong assumption that the sampled data is indeed described by

the given distribution. An alternative approach to constructing a representation of an

Chapter 13 StatiStiCS

467

unknown distribution function is kernel-density estimation (KDE), which can be viewed

as a smoothened version of the histogram of the sampled data (see, e.g., Figure 13-6).

In this method, the probability distribution is estimated by a sum of the kernel function

centered at each data point f̂ x
n

K
x x

i

n
i() = -æ

è
ç

ö
ø
÷

=
å1

0· bw bw
, where bw is a free parameter

known as the bandwidth and K is the kernel function (normalized so that it integrates to

unity). The bandwidth is an important parameter that defines a scale for the influence

of each term in the sum. A too broad bandwidth gives a featureless estimate of the

probability distribution, and a too small bandwidth gives a noisy overly structured

estimate (see the middle panel in Figure 13-6). Different choices of kernel functions are

also possible. A Gaussian kernel is a popular choice, because of its smooth shape with

local support, and it is relatively easy to perform computations with.

In SciPy’s the KDE method using a Gaussian kernel is implemented in the function

stats.kde.gaussian_kde. This function returns a callable object that behaves as,

and can be used as, a probability distribution function. For example, consider a set of

samples, X_samples, drawn from a random variable X with unknown distribution (here

simulated using the χ2 distribution with five degrees of freedom):

In [82]: X = stats.chi2(df=5)

In [83]: X_samples = X.rvs(100)

To compute the kernel-density estimate for the given data, we call the function

stats.kde.guassian_kde with the array of sample points as argument:

In [84]: kde = stats.kde.gaussian_kde(X_samples)

Figure 13-6. Histogram (left), kernel-density estimation of the distribution
function (middle), and both a histogram and the kernel-density estimate in the
same graph (right)

Chapter 13 StatiStiCS

468

By default, a standard method for computing a suitable bandwidth is used, which

often gives acceptable results. However, if we wish, we could also specify a function

for computing the bandwidth, or directly setting the bandwidth, using the bw_method

argument. To set a smaller bandwidth, we can, for example, use

In [85]: kde_low_bw = stats.kde.gaussian_kde(X_samples, bw_method=0.25)

The gaussian_kde function returns an estimate of the distribution function, which

we, for example, can graph or use for other applications. Here we plot a histogram of the

data and the two kernel-density estimates (with default and explicitly set bandwidth).

For reference, we also plot the true probability distribution function for the samples. The

result is shown in Figure 13-6.

In [86]: x = np.linspace(0, 20, 100)

In [87]: fig, axes = plt.subplots(1, 3, figsize=(12, 3))

 ...: axes[0].hist(X_samples, normed=True, alpha=0.5, bins=25)

 ...: axes[1].plot(x, kde(x), label="KDE")

 ...: axes[1].plot(x, kde_low_bw(x), label="KDE (low bw)")

 ...: axes[1].plot(x, X.pdf(x), label="True PDF")

 ...: axes[1].legend()

 ...: sns.distplot(X_samples, bins=25, ax=axes[2])

The seaborn statistical graphics library provides a convenient function for plotting

both a histogram and the kernel-density estimation for a set of data: distplot. A graph

produced by this function is shown in the right panel of Figure 13-6.

Given kernel-density estimate, we can also use it to generate new random numbers

using the resample method, which takes the number of data points as arguments:

In [88]: kde.resample(10)

Out[88]: array([[1.75376869, 0.5812183, 8.19080268, 1.38539326, 7.56980335,

 1.16144715, 3.07747215, 5.69498716, 1.25685068, 9.55169736]])

The kernel-density estimate object does not directly contain methods for computing

the cumulative distribution functions (CDF) and its inverse, the percent-point function

(PPF). But there are several methods for integrating the kernel-density estimate of the

probability distribution function. For example, for a one-dimensional KDE, we can use

the integrate_box_1d to obtain the corresponding CDF:

Chapter 13 StatiStiCS

469

In [89]: def _kde_cdf(x):

 ...: return kde.integrate_box_1d(-np.inf, x)

In [90]: kde_cdf = np.vectorize(_kde_cdf)

and can use the SciPy optimize.fsolve function to find the inverse (the PPF):

In [91]: def _kde_ppf(q):

 ...: return optimize.fsolve(lambda x, q: kde_cdf(x) - q, kde.

dataset.mean(), args=(q,))[0]

 ...:

In [92]: kde_ppf = np.vectorize(_kde_ppf)

With the CDF and PPF for the kernel-density estimate, we can, for example, perform

statistical hypothesis testing and compute confidence intervals. For example, using the

kde_ppf function defined in the preceding section, we can compute an approximate 90%

confidence interval for the mean of the population from which the sample was collected:

In [93]: kde_ppf([0.05, 0.95])

Out[93]: array([0.39074674, 11.94993578])

As illustrated with this example, once we have a KDE that represents the probability

distribution for a statistical problem, we can proceed with many of the same methods as

we use in parametric statistics. The advantage of nonparametric methods is that we do

not necessarily need to make assumptions about the shape of the distribution function.

However, because nonparametric methods use less information (weaker assumptions)

than parametric methods, their statistical power is lower. Therefore, if we can justify

using a parametric method, then that is usually the best approach. Nonparametric

methods offer a versatile generic approach that we can fall back on when parametric

methods are not feasible.

 Summary
In this chapter we have explored how NumPy and the SciPy stats module can be used

in basic statistical applications, including random number generation, for representing

random variables and probability distribution functions, maximum likelihood fitting of

distributions to data, and using probability distributions and test statistics for hypothesis

testing. We also briefly looked at kernel-density estimation of an unknown probability

Chapter 13 StatiStiCS

470

distribution, as an example of a nonparametric method. The concepts and methods

discussed in this chapter are fundamental building blocks for working with statistics, and

the computational tools introduced here also provide a foundation for many statistical

applications. In the following chapters, we build on what has been discussed here and

explore statistical modeling and machine learning in more depth.

 Further Reading
Good introductions to the fundamentals of statistics and data analysis are given in Rice

(1995) and Wasserman (2004). A computationally oriented introduction to statistics

is given in Dalgaard (2008), which, although it uses the R language, is relevant for

statistics in Python too. There are also free online resources about statistics, for example,

OpenIntro Statistics, which is available from www.openintro.org/stat/textbook.php.

 References
Dalgaard, P. (2008). Introductory Statistics with R. New York: Springer.

Rice, J. A. (1995). Mathematical Statistics and Data Analysis. Belmont: Duxbury Press.

Wasserman, L. (2004). All of statistics. New York: Springer.

Chapter 13 StatiStiCS

http://www.openintro.org/stat/textbook.php

471
© Robert Johansson 2019
R. Johansson, Numerical Python, https://doi.org/10.1007/978-1-4842-4246-9_14

CHAPTER 14

Statistical Modeling
In the previous chapter, we covered basic statistical concepts and methods. In this

chapter we build on the foundation laid out in the previous chapter and explore statistical

modeling, which deals with creating models that attempt to explain data. A model can

have one or several parameters, and we can use a fitting procedure to find the values of the

parameter that best explains the observed data. Once a model has been fitted to data, it

can be used to predict the values of new observations, given the values of the independent

variables of the model. We can also perform statistical analysis on the data and the fitted

model and try to answer questions such as if the model accurately explains the data,

which factors in the model are more relevant (predictive) than others, and if there are

parameters that do not contribute significantly to the predictive power of the model.

In this chapter we mainly use the statsmodels library. It provides classes and

functions for defining statistical models and fitting them to observed data, for calculating

descriptive statistics, and for carrying out statistical tests. The statsmodels library has

some overlap with the SciPy stats module that we covered in the previous chapter, but

it is mostly an extension of what is available in SciPy1. In particular, the main focus of the

statsmodels library is on fitting models to data rather than probability distributions and

random variables, for which in many cases it relies on the SciPy stats.

statsmodels The statsmodels library provides a rich set of functionality related
to statistical tests and statistical modeling, including linear regression, logistic
regression, and time-series analysis. For more information about the project
and its documentation, see the project’s web page at http://statsmodels.
sourceforge.net. At the time of writing, the latest version of statsmodels is 0.9.0.

1 The statsmodels library originally started as a part of the SciPy stats module but was later
moved to a project on its own. The SciPy stats library remains an important dependency for
statsmodels.

http://statsmodels.sourceforge.net
http://statsmodels.sourceforge.net

472

The statsmodels library is closely integrated with the Patsy library, which allows us to

write statistical models as simple formulas. The Patsy library is one of the dependencies

of the statsmodels library but can also be used with other statistical libraries as well,

such as scikit-learn that will be discussed in Chapter 15. However, here we will introduce

the Patsy library in the context of using it together with the statsmodels library.

patsy The patsy library provides features for defining statistical models
with a simple formula language inspired by statistical software such as R. The
patsy library is designed to be a companion library for statistical modeling
packages, such as statsmodels. For more information about the project and its
documentation, see the web page at http://patsy.readthedocs.org. At the
time of writing, the most recent version of Patsy is 0.5.0.

 Importing Modules
In this chapter we work extensively with the statsmodels library. This library encourages

an import convention that is slightly different than other libraries we have used so far:

It provides api modules that collect the publically accessible symbols that the library

provides. Here we assume that the statsmodels.api is imported under the name

sm, and statsmodels.formula.api is imported as the name smf. We also require the

statsmodels.graphics.api module to be imported as the name smg:

In [1]: import statsmodels.api as sm

In [2]: import statsmodels.formula.api as smf

In [3]: import statsmodels.graphics.api as smg

Since the statsmodels library internally uses the Patsy library, it is normally not

necessary to access this library’s functions directly. However, here we directly use Patsy

for demonstration purposes, and we therefore need to import the library explicitly:

In [4]: import patsy

As usual, we also require the Matplotlib, NumPy, and Pandas libraries to be imported as

In [5]: import matplotlib.pyplot as plt

In [6]: import numpy as np

In [7]: import pandas as pd

ChAPTeR 14 STATiSTiCAl Modeling

http://patsy.readthedocs.org

473

and the SciPy stats module as

In [8]: from scipy import stats

 Introduction to Statistical Modeling
In this chapter we consider the following type of problem: For a set of response

(dependent) variables Y and explanatory (independent) variables X, we wish to find

a mathematical relationship (model) between Y and X. In general, we can write a

mathematical model as a function Y = f (X). Knowing the function f (X) would allow us to

compute the value of Y for any of values X. If we do not know the function f (X), but we

have access to data for observations {yi, xi}, we can parameterize the function f (X) and

fit the values of the parameters to the data. An example of a parameterization of f (X) is

the linear model f (X) = β0+β1X, where the coefficients β0 and β1 are the parameters of the

model. Typically we have many more data points than the number of free parameters

in the model. In such cases we can, for example, use a least square fit that minimizes

the norm of the residual r = Y − f (X), although other minimization objective functions

can also be used2, for example, depending on the statistical properties of the residual r.

So far we have described a mathematical model. The essential component that makes a

model statistical is that the data {yi, xi} has an element of uncertainty, for example, due

to measurement noise or other uncontrolled circumstances. The uncertainty in the data

can be described in the model as random variables: For example, Y = f (X)+ε, where ε

is a random variable. This is a statistical model because it includes random variables.

Depending on how the random variables appear in the model and what distributions the

random variables follow, we obtain different types of statistical models, which each may

require different approaches to analyze and solve.

A typical situation where a statistical model can be used is to describe the

observations yi in an experiment, where xi is a vector with control knobs that are

recorded together with each observation. An element in xi may or may not be relevant

for predicting the observed outcome yi, and an important aspect of statistical modeling

is to determine which explanatory variables are relevant. It is of course also possible that

there are relevant factors that are not included in the set of explanatory variables xi, but

which influence the outcome of the observation yi. In this case, it might not be possible

2 We will see examples of this later in Chapter 15, when we consider regularized regression.

ChAPTeR 14 STATiSTiCAl Modeling

474

to accurately explain the data with the model. Determining if a model accurately

explains the data is another essential aspect of statistical modeling.

A widely used statistical model is Y = β0 + β1 X + ε, where β0 and β1 are model

parameters and ε is normally distributed with zero mean and variance σ2: ε~N(0, σ2).

This model is known as simple linear regression if X is a scalar, multiple linear regression

if X is a vector, and multivariate linear regression if Y is a vector. Because the residual

ε is normally distributed, for all these cases, the model can be fitted to data using

ordinary least squares (OLS). Relaxing the condition that the elements in Y, in the case of

multivariate linear regression, must be independent and normally distributed with equal

variance gives rise to variations of the model that can be solved with methods known as

generalized least squares (GLS) and weighted least squares (WLS). All methods for solving

statistical models typically have a set of assumptions that one has to be mindful of when

applying the models. For standard linear regression, the most important assumption is

that the residuals are independent and normally distributed.

The generalized linear model is an extension of the linear regression model that

allows the errors in the response variable to have distributions other than the normal

distribution. In particular, the response variable is assumed to be a function of a

linear predictor and where the variance of the response variable can be a function of

the variable’s value. This provides a broad generalization of the linear model that is

applicable in many situations. For example, this enables modeling important types of

problems where the response variable takes discrete values, such as binary outcomes of

count values. The errors in the response variables of such models may follow different

statistical distributions (e.g., the binomial and/or the Poisson distribution). Examples

of these types of models include logistic regression for binary outcomes and Poisson

regression for positive integer outcomes.

In the following sections, we will explore how statistical models of these types can be

defined and solved using the Patsy and statsmodels libraries.

 Defining Statistical Models with Patsy
Common to all statistical modeling is that we need to make assumptions about the

mathematical relation between the response variables Y and explanatory variables X.

In the vast majority of cases, we are interested in linear models, such that Y can be

written as a linear combination of the response variables X, or functions of the response

ChAPTeR 14 STATiSTiCAl Modeling

475

variables, or models that have a linear component. For example, Y = α1X1 + … + αnXn,

Y = α1X + α2X 2 … + αnXn, and Y = α1 sin X1 + α2 cos X2 are all examples of such linear

models. Note that for the model to be linear, we only need the relation to be linear with

respect to the unknown coefficients α and not necessarily in the known explanatory

variables X. In contrast, an example of a nonlinear model is Y = exp (β0 + β1X), since

in this case Y is not a linear function with respect to β0 and β1. However, this model is

log-linear in the sense that taking the logarithm of the relation yields a linear model:
�Y X= +b b0 1 for �Y Y= log . Problems that can be transformed into a linear model in this

manner are the type of problems that can be handled with the generalized linear model.

Once the mathematical form of the model has been established, the next step is often

to construct the so-called design matrices y and X such that the regression problem can

be written in matrix form as y = Xβ + ε, where y is the vector (or matrix) of observations,

β is a vector of coefficients, and ε is the residual (error). The elements Xij of the design

matrix X are the values of the (functions of) explanatory variables corresponding to each

coefficient βj and observation yi. Many solvers for statistical models in statsmodels and

other statistical modeling libraries can take the design matrices X and y as input.

For example, if the observed values are y = [1, 2, 3, 4, 5] with two independent

variables with corresponding values x1 = [6, 7, 8, 9, 10] and x2 = [11, 12, 13, 14, 15], and

if the linear model under consideration is Y = β0 + β1X1 + β2X2 + β3X1X2, then the design

matrix for the right-hand side is X = [1, x1, x2, x1x2]. We can construct this design matrix

using the NumPy vstack function:

In [9]: y = np.array([1, 2, 3, 4, 5])

In [10]: x1 = np.array([6, 7, 8, 9, 10])

In [11]: x2 = np.array([11, 12, 13, 14, 15])

In [12]: X = np.vstack([np.ones(5), x1, x2, x1*x2]).T

In [13]: X

Out[13]: array([[1., 6., 11., 66.],

 [1., 7., 12., 84.],

 [1., 8., 13., 104.],

 [1., 9., 14., 126.],

 [1., 10., 15., 150.]])

ChAPTeR 14 STATiSTiCAl Modeling

476

Given the design matrix X and observation vector y, we can solve for the unknown

coefficient vector β, for example, using least square fit (see Chapters 5 and 6):

In [14]: beta, res, rank, sval = np.linalg.lstsq(X, y)

In [15]: beta

Out[15]: array([-5.55555556e-01, 1.88888889e+00, -8.88888889e-01, -1.33226763e-15])

These steps are the essence of statistical modeling in its simplest form. However,

variations and extensions to this basic method make statistical modeling a field in its

own right and call for computational frameworks such as statsmodels for systematic

analysis. For example, although constructing the design matrix X was straightforward

in this simple example, it can be tedious for more involved models and if we wish to be

able to easily change how the model is defined. This is where the Patsy library enters

the picture. It offers a convenient (although not necessarily intuitive) formula language

for defining a model and automatically constructing the relevant design matrices.

To construct the design matrix for a Patsy formula, we can use the patsy.dmatrices

function. It takes the formula as a string as the first argument and a dictionary-like object

with data arrays for the response and explanatory variables as the second argument.

The basic syntax for the Patsy formula is "y ~ x1 + x2 + ...", which means that y

is a linear combination of the explanatory variables x1 and x2 (explicitly including an

intercept coefficient). For a summary of the Patsy formula syntax, see Table 14-1.

As an introductory example, consider again the linear model Y = β0 + β1X1+ β2X2 + β3X1X2

that we used earlier. To define this model with Patsy, we can use the formula "y ~ 1

+ x1 + x2 + x1*x2". Note that we leave out coefficients in the model formula, as it is

implicitly assumed that each term in the formula has a model parameter as a coefficient.

In addition to specifying the formula, we also need to create a dictionary data that maps

the variable names to the corresponding data arrays:

In [16]: data = {"y": y, "x1": x1, "x2": x2}

In [17]: y, X = patsy.dmatrices("y ~ 1 + x1 + x2 + x1*x2", data)

The result is two arrays y and X, which are the design matrices for the given data

arrays and the specified model formula:

In [18]: y

Out[18]: DesignMatrix with shape (5, 1)

ChAPTeR 14 STATiSTiCAl Modeling

477

 y

 1

 2

 3

 4

 5

 Terms:

 'y' (column 0)

In [19]: X

Out[19]: DesignMatrix with shape (5, 4)

 Intercept x1 x2 x1:x2

 1 6 11 66

 1 7 12 84

 1 8 13 106

 1 9 14 126

 1 10 15 150

 Terms:

 'Intercept' (column 0)

 'x1' (column 1)

 'x2' (column 2)

 'x1:x2' (column 3)

These arrays are of type DesignMatrix, which is a Patsy-supplied subclass of the

standard NumPy array, which contains additional metadata and an altered printing

representation.

In [20]: type(X)

Out[20]: patsy.design_info.DesignMatrix

Note that the numerical values of the DesignMatrix array are equal to those of the

explicitly constructed array that we produced earlier using vstack.

As a subclass of the NumPy ndarray, the arrays of type DesignMatrix are fully

compatible with code that expects NumPy arrays as input. However, we can also

explicitly cast a DesignMatrix instance into an ndarray object using the np.array

function, although this normally should not be necessary.

ChAPTeR 14 STATiSTiCAl Modeling

478

In [21]: np.array(X)

Out[21]: array([[1., 6., 11., 66.],

 [1., 7., 12., 84.],

 [1., 8., 13., 104.],

 [1., 9., 14., 126.],

 [1., 10., 15., 150.]])

Alternatively, we can set the return_type argument to "dataframe", in which case

the patsy.dmatrices function returns design matrices in the form of Pandas DataFrame

objects. Also note that since DataFrame objects behave as dictionary-like objects, so we

can use data frames to specify the model data as the second argument to the patsy.

dmatrices function.

In [22]: df_data = pd.DataFrame(data)

In [23]: y, X = patsy.dmatrices("y ~ 1 + x1 + x2 + x1:x2", df_data, return_

type="dataframe")

In [24]: X

Out[24]:

Intercept x1 x2 x1:x2

0 1 6 11 66

1 1 7 12 84

2 1 8 13 104

3 1 9 14 126

4 1 10 15 150

With the help of Patsy, we have now automatically created the design matrices

required for solving a statistical model, using, for example, the np.linalg.lstsq

function (as we saw an example earlier), or using one of the many statistical model

solvers provided by the statsmodels library. For example, to perform an ordinary linear

regression (OLS), we can use the class OLS from the statsmodels library instead of using

the lower-level method np.linalg.lstsq. Nearly all classes for statistical models in

statsmodels take the design matrices y and X as the first and second arguments and

ChAPTeR 14 STATiSTiCAl Modeling

479

return a class instance that represents the model. To actually fit the model to the data

encoded in the design matrices, we need to invoke the fit method, which returns a

result object that contains fitted parameters (among other attributes):

In [25]: model = sm.OLS(y, X)

In [26]: result = model.fit()

In [27]: result.params

Out[27]: Intercept -5.555556e-01

 x1 1.888889e+00

 x2 -8.888889e-01

 x1:x2 -8.881784e-16

 dtype: float64

Note that the result is equivalent to the least square fitting that we computed earlier

in this chapter. Using the statsmodels formula API (the module that we imported as smf),

we can directly pass the Patsy formula for the model when we create a model instance,

which completely eliminates the need for first creating the design matrices. Instead of

passing y and X as arguments, we then pass the Patsy formula and the dictionary-like

object (e.g., a Pandas data frame) that contains the model data.

In [28]: model = smf.ols("y ~ 1 + x1 + x2 + x1:x2", df_data)

In [29]: result = model.fit()

In [30]: result.params

Out[30]: Intercept -5.555556e-01

 x1 1.888889e+00

 x2 -8.888889e-01

 x1:x2 -8.881784e-16

 dtype: float64

The advantage of using statsmodels instead of explicitly constructing NumPy

arrays and calling the NumPy least square model is, of course, that much of the

process is automated in statsmodels, which makes it possible to add and remove

terms in the statistical model without any extra work. Also, when using statsmodels,

we have access to a large variety of linear model solvers and statistical tests for

analyzing how well the model fits the data. For a summary of the Patsy formula

language, see Table 14-1.

ChAPTeR 14 STATiSTiCAl Modeling

480

Now that we have seen how a Patsy formula can be used to construct design

matrices, or be used directly with one of the many statistical model classes from

statsmodels, we briefly return to the syntax and notational conventions for Patsy

formulae before we continue and look in more detail on different statistical models

that are available in the statsmodels library. As mentioned in the preceding text, and

Table 14-1. Simplified Summary of the Patsy Formula Syntax. For a complete

specification of the formula syntax, see the Patsy documentation at http://patsy.

readthedocs.org/en/latest

Syntax Example Description

lhs ~ rhs y ~ x

(Equivalent to y ~

1 + x)

The ~ character is used to separate the left-hand side

(containing the dependent variables) and the right-

hand side (containing the independent variables) of a

model equation.

var * var x1*x2

(Equivalent to

x1+x2+x1*x2)

An interaction term that implicitly contains all its

lower-order interaction terms.

var + var +

...

x1 + x2 + ...

(Equivalent to y ~

1 + x1 + x2)

The addition sign is used to denote the union of terms.

var:var x1:x2 The colon character denotes a pure interaction term

(e.g., x1 ∙ x2).

f(expr) np.log(x),

np.cos(x+y)

Arbitrary Python functions (often numPy functions)

can be used to transform terms in the expression. The

expression for the argument of a function is interpreted

as an arithmetic expression rather than the set-like

formula operations that are otherwise used in Patsy.

I(expr) I(x+y) I is a Patsy-supplied identity function that can be

used to escape arithmetic expression so that they are

interpreted as arithmetic operations.

C(var) C(x), C(x, Poly) Treat the variable x as a categorical variable, and

expand its values into orthogonal dummy variables.

ChAPTeR 14 STATiSTiCAl Modeling

http://patsy.readthedocs.org/en/latest
http://patsy.readthedocs.org/en/latest

481

summarized in Table 14-1, the basic syntax for a model formula has the form “LHS ~

RHS”. The ~ character is used to separate the left-hand side (LHS) and the right-hand

side (RHS) of the model equation. The LHS specifies the terms that constitute the

response variables, and the RHS specifies the terms that constitute the explanatory

variables. The terms in the LHS and RHS expressions are separated by + or – signs, but

these should not be interpreted as arithmetic operators, but rather as set-union and

set-difference operators. For example, a+b means that both a and b are included in the

model, and -a means that the term a is not included in the model. An expression of the

type a*b is automatically expanded to a + b + a:b, where a:b is the pure interaction

term a ∙ b.

As a concrete example, consider the following formula and the resulting right-hand

side terms (which we can extract from the design_info attribute using the term_names

attribute):

In [31]: from collections import defaultdict

In [32]: data = defaultdict(lambda: np.array([]))

In [33]: patsy.dmatrices("y ~ a", data=data)[1].design_info.term_names

Out[33]: ['Intercept', 'a']

Here the two terms are Intercept and a, which correspond to constant and a linear

dependence on a. By default Patsy always includes the intercept constant, which in the

Patsy formula also can be written explicitly using y ~ 1 + a. Including the 1 in the Patsy

formula is optional.

In [34]: patsy.dmatrices("y ~ 1 + a + b", data=data)[1].design_info.term_names

Out[34]: ['Intercept', 'a', 'b']

In this case we have one more explanatory variable (a and b), and here the intercept

is explicitly included in the formula. If we do not want to include the intercept in the

model, we can use the notation -1 to remove this term:

In [35]: patsy.dmatrices("y ~ -1 + a + b", data=data)[1].design_info.term_names

Out[35]: ['a', 'b']

ChAPTeR 14 STATiSTiCAl Modeling

482

Expressions of the type a * b are automatically expanded to include all lower-order

interaction terms:

In [36]: patsy.dmatrices("y ~ a * b", data=data)[1].design_info.term_names

Out[36]: ['Intercept', 'a', 'b', 'a:b']

Higher-order expansions work too:

In [37]: patsy.dmatrices("y ~ a * b * c", data=data)[1].design_info.term_names

Out[37]: ['Intercept', 'a', 'b', 'a:b', 'c', 'a:c', 'b:c', 'a:b:c']

To remove a specific term from a formula, we can write the term preceded by the

minus operator. For example, to remove the pure third-order interaction term a:b:c

from the automatic expansion of a*b*c, we can use

In [38]: patsy.dmatrices("y ~ a * b * c - a:b:c", data=data)[1].design_

info.term_names

Out[38]: ['Intercept', 'a', 'b', 'a:b', 'c', 'a:c', 'b:c']

In Patsy, the + and - operators are used for set-like operations on sets of terms; if

we need to represent the arithmetic operations, we need to wrap the expression in a

function call. For convenience, Patsy provides an identity function with the name I

that can be used for this purpose. To illustrate this point, consider the following two

examples, which show the resulting terms for y ~ a + b and y ~ I(a + b):

In [39]: data = {k: np.array([]) for k in ["y", "a", "b", "c"]}

In [40]: patsy.dmatrices("y ~ a + b", data=data)[1].design_info.term_names

Out[40]: ['Intercept', 'a', 'b']

In [41]: patsy.dmatrices("y ~ I(a + b)", data=data)[1].design_info.term_names

Out[41]: ['Intercept', 'I(a + b)']

Here the column in the design matrix that corresponds to the term with the name

I(a+b) is the arithmetic sum of the arrays for the variables a and b. The same trick must

be used if we want to include terms that are expressed as a power of a variable:

In [42]: patsy.dmatrices("y ~ a**2", data=data)[1].design_info.term_names

Out[42]: ['Intercept', 'a']

In [43]: patsy.dmatrices("y ~ I(a**2)", data=data)[1].design_info.term_names

Out[43]: ['Intercept', 'I(a ** 2)']

ChAPTeR 14 STATiSTiCAl Modeling

483

The notation I(...) that we used here is an example of a function call notation. We

can apply transformations of the input data in a Patsy formula by including arbitrary

Python function calls in the formula. In particular, we can transform the input data array

using functions from NumPy:

In [44]: patsy.dmatrices("y ~ np.log(a) + b", data=data)[1].design_info.

term_names

Out[44]: ['Intercept', 'np.log(a)', 'b']

Or we can even transform variables with arbitrary Python functions:

In [45]: z = lambda x1, x2: x1+x2

In [46]: patsy.dmatrices("y ~ z(a, b)", data=data)[1].design_info.term_names

Out[46]: ['Intercept', 'z(a, b)']

So far we have considered models with numerical response and explanatory

variables. Statistical modeling also frequently includes categorical variables, which

can take a discrete set of values that do not have a meaningful numerical order (e.g.,

“Female” or “Male”; type “A”, ”B”, or ”C”; etc.). When using such variables in a linear

model, we typically need to recode them by introducing binary dummy variables. In a

patsy formula any variable that does not have a numerical data type (float or int) will

be interpreted as a categorical variable and automatically encoded accordingly. For

numerical variables, we can use the C(x) notation to explicitly request that a variable x

should be treated as a categorical variable.

For example, compare the following two examples that show the design matrix for

the formula "y ~ - 1 + a" and "y ~ - 1 + C(a)", which corresponds to models where

a is a numerical and categorical explanatory variable, respectively:

In [48]: data = {"y": [1, 2, 3], "a": [1, 2, 3]}

In [48]: patsy.dmatrices("y ~ - 1 + a", data=data, return_type="dataframe")[1]

Out[48]:

a

0 1

1 2

2 3

ChAPTeR 14 STATiSTiCAl Modeling

484

For a numerical variable, the corresponding column in the design matrix simply

corresponds to the data vector, while for a categorical variable C(a) new binary-valued

columns with a mask-like encoding of individual values of the original variable are

added to the design matrix:

In [49]: patsy.dmatrices("y ~ - 1 + C(a)", data=data, return_

type="dataframe")[1]

Out[49]:

C(a)[1] C(a)[2] C(a)[3]

0 1 0 0

1 0 1 0

2 0 0 1

Variables with nonnumerical values are automatically interpreted and treated as

categorical values:

In [50]: data = {"y": [1, 2, 3], "a": ["type A", "type B", "type C"]}

In [51]: patsy.dmatrices("y ~ - 1 + a", data=data, return_type="dataframe")[1]

Out[51]:

a[type A] a[type B] a[type C]

0 1 0 0

1 0 1 0

2 0 0 1

The default type of encoding of categorical variables into binary-valued

treatment fields can be changed and extended by the user. For example, to encode

the categorical variables with orthogonal polynomials instead of treatment

indicators, we can use C(a, Poly):

In [52]: patsy.dmatrices("y ~ - 1 + C(a, Poly)", data=data, return_

type="dataframe")[1]

ChAPTeR 14 STATiSTiCAl Modeling

485

Out[52]:

C(a, Poly).Constant C(a, Poly).Linear C(a, Poly).Quadratic

0 1 -7.071068e-01 0.408248

1 1 -5.551115e-17 -0.816497

2 1 7.071068e-01 0.408248

The automatic encoding of categorical variables by Patsy is a very convenient aspect

of Patsy formula, which allows the user to easily add and remove both numerical and

categorical variables in a model. This is arguably one of the main advantages of using the

Patsy library to define model equations.

 Linear Regression
The statsmodels library supports several types of statistical models that are applicable

in varying situations, but nearly all follow the same usage pattern, which makes it easy

to switch between different models. Statistical models in statsmodels are represented

by model classes. These can be initiated given the design matrices for the response and

explanatory variables of a linear model or given a Patsy formula and a data frame (or

another dictionary-like object). The basic workflow when setting up and analyzing a

statistical model with statsmodels includes the following steps:

 1. Create an instance of a model class, for example, using model =

sm.MODEL(y, X) or model = smf.model(formula, data), where

MODEL and model are the name of a particular model, such as OLS,

GLS, Logit, etc. Here the convention is that uppercase names

are used for classes that take design matrices as arguments and

lowercase names for classes that take Patsy formulas and data

frames as arguments.

 2. Creating a model instance does not perform any computations. To

fit the model to the data, we must invoke the fit method, result =

model.fit(), which performs the fit and returns a result object that

has methods and attributes for further analysis.

 3. Print summary statistics for the result object returned by the

fit method. The result object varies in content slightly for each

statistical model, but most models implement the method

ChAPTeR 14 STATiSTiCAl Modeling

486

summary, which produces a summary text that describes the result

of the fit, including several types of statistics that can be useful

for judging if the statistical model successfully explains the data.

Viewing the output from the summary method is usually a good

starting point when analyzing the result of a fitting process.

 4. Post-process the model fit results: in addition to the summary

method, the result object also contains methods and attributes

for obtaining the fitted parameters (params), the residual for the

model and the data (resid), the fitted values (fittedvalues), and a

method for predicting the value of the response variables for new

independent variables (predict).

 5. Finally, it may be useful to visualize the result of the fitting, for

example, with the Matplotlib and Seaborn graphics libraries,

of using some of the many graphing routines that are directly

included in the statsmodels library (see the statsmodels.

graphics module).

To demonstrate this workflow with a simple example, in the following we consider

fitting a model to generate data whose true value is y = 1 + 2x1 + 3x2 + 4x1x2. We begin with

storing the data in a Pandas data frame object:

In [53]: N = 100

In [54]: x1 = np.random.randn(N)

In [55]: x2 = np.random.randn(N)

In [56]: data = pd.DataFrame({"x1": x1, "x2": x2})

In [57]: def y_true(x1, x2):

 ...: return 1 + 2 * x1 + 3 * x2 + 4 * x1 * x2

In [58]: data["y_true"] = y_true(x1, x2)

Here we have stored the true value of y in the y_true column in the DataFrame object

data. We simulate a noisy observation of y by adding a normal distributed noise to the

true values and store the result in the y column:

In [59]: e = 0.5 * np.random.randn(N)

In [60]: data["y"] = data["y_true"] + e

ChAPTeR 14 STATiSTiCAl Modeling

487

Now, from the data we know that we have two explanatory variables, x1 and x2, in

addition to the response variable y. The simplest possible model we can start with is the

linear model Y = β0 + β1x1 + β2x2, which we can define with the Patsy formula "y ~ x1 + x2".

Since the response variable is continuous, it is a good starting point to fit the model to

the data using ordinary linear squares, for which we can use the smf.ols class.

In [61]: model = smf.ols("y ~ x1 + x2", data)

In [62]: result = model.fit()

Remember that ordinary least square regression assumes that the residuals of the

fitted model and the data are normally distributed. However, before analyzing the

data, we might not know if this condition is satisfied or not. Nonetheless, we can start

by fitting the data to the model and investigate the distribution of the residual using

graphical methods and statistical tests (with the null hypothesis that the residuals are

indeed normally distributed). A lot of useful information, including several types of test

statistics, can be displayed using the summary method:

In [63]: print(result.summary())

 OLS Regression Results

===

Dep. Variable: y R-squared: 0.380

Model: OLS Adj. R-squared: 0.367

Method: Least Squares F-statistic: 29.76

Date: Wed, 22 Apr 2015 Prob (F-statistic): 8.36e-11

Time: 22:40:33 Log-Likelihood: -271.52

No. Observations: 100 AIC: 549.0

Df Residuals: 97 BIC: 556.9

Df Model: 2

Covariance Type: nonrobust

===

 coef std err t P>|t| [95.0% Conf. Int.]

--

Intercept 0.9868 0.382 2.581 0.011 0.228 1.746

x1 1.0810 0.391 2.766 0.007 0.305 1.857

x2 3.0793 0.432 7.134 0.000 2.223 3.936

===

Omnibus: 19.951 Durbin-Watson: 1.682

ChAPTeR 14 STATiSTiCAl Modeling

488

Prob(Omnibus): 0.000 Jarque-Bera (JB): 49.964

Skew: -0.660 Prob(JB): 1.41e-11

Kurtosis: 6.201 Cond. No. 1.32

===

Warnings: [1] Standard errors assume that the covariance matrix of the

errors is correctly specified.

The output produced by the summary method is rather verbose, and a detailed

description of all the information provided by this method is beyond the scope of

this treatment. Instead, here we only focus on a few key indicators. To begin with, the

R-squared value is a statistic that indicates how well the model fits the data. It can take

values between 0 and 1, where an R-squared statistic of 1 corresponds to a perfect fit.

The R-squared value of 0.380 reported in the preceding summary method is rather poor,

and it indicates that we need to refine our model (which is expected, since we left out

the interaction term x1 ∙ x2). We can also explicitly access the R-squared statistic from the

result object using the rsquared attribute.

In [64]: result.rsquared

Out[64]: 0.38025383255132539

Furthermore, the coef column in the middle of the table provides the fitted model

parameters. Assuming that the residuals indeed are normally distributed, the std err

column provides an estimate of the standard errors for the model coefficients, and the t

and P>|t| columns are the t-statistics and the corresponding p-value for the statistical

test with the null hypothesis that the corresponding coefficient is zero. Therefore, while

keeping in mind that this analysis assumes that the residuals are normally distributed,

we can look for the columns with small p-values and judge which explanatory variables

have coefficients that are very likely to be different from zero (meaning that they have a

significant predictive power).

To investigate whether the assumption of normal distributed errors is justified, we

need to look at the residuals of the model fit to the data. The residuals are accessible via

the resid attribute of the result object:

In [65]: result.resid.head()

Out[65]: 0 -3.370455

 1 -11.153477

 2 -11.721319

 3 -0.948410

ChAPTeR 14 STATiSTiCAl Modeling

489

 4 0.306215

 dtype: float64

Using these residuals, we can check for normality using the normaltest function

from the SciPy stats module:

In [66]: z, p = stats.normaltest(result.fittedvalues.values)

In [67]: p

Out[67]: 4.6524990253009316e-05

For this example the resulting p-value is indeed very small, suggesting that we

can reject the null hypothesis that the residuals are normally distributed (i.e., we can

conclude that the assumption of normal distributed residuals is violated). A graphical

method to check for normality of a sample is to use the qqplot from the statsmodels.

graphics module. The QQ-plot, which compares the sample quantiles with the

theoretical quantiles, should be close to a straight line if the sampled values are indeed

normally distributed. The following function call to smg.qqplot produces the QQ-plot

shown in Figure 14-1:

In [68]: fig, ax = plt.subplots(figsize=(8, 4))

 ...: smg.qqplot(result.resid, ax=ax)

Figure 14-1. QQ-plot of a linear model with two explanatory variables without
any interaction term

ChAPTeR 14 STATiSTiCAl Modeling

490

As can be seen in Figure 14-1, the points in the QQ-plot significantly deviate from

a linear relation, suggesting that the observed residuals are unlikely to be a sample of a

normal distributed random variable. In summary, these indicators provide evidence that

the model that we used is not sufficient and that we might need to refine the model. We

can include the missing interaction term by adding it to the Patsy formula and repeat the

steps from the previous analysis:

In [69]: model = smf.ols("y ~ x1 + x2 + x1*x2", data)

In [70]: result = model.fit()

In [71]: print(result.summary())

 OLS Regression Results

===

Dep. Variable: y R-squared: 0.963

Model: OLS Adj. R-squared: 0.961

Method: Least Squares F-statistic: 821.8

Date: Tue, 21 Apr 2015 Prob (F-statistic): 2.69e-68

Time: 23:52:12 Log-Likelihood: -138.39

No. Observations: 100 AIC: 284.8

Df Residuals: 96 BIC: 295.2

Df Model: 3

Covariance Type: nonrobust

===

 coef std err t P>|t| [95.0% Conf. Int.]

--

Intercept 1.1023 0.100 10.996 0.000 0.903 1.301

x1 2.0102 0.110 18.262 0.000 1.792 2.229

x2 2.9085 0.095 30.565 0.000 2.720 3.097

x1:x2 4.1715 0.134 31.066 0.000 3.905 4.438

==

Omnibus: 1.472 Durbin-Watson: 1.912

Prob(Omnibus): 0.479 Jarque-Bera (JB): 0.937

Skew: 0.166 Prob(JB): 0.626

Kurtosis: 3.338 Cond. No. 1.54

==

Warnings: [1] Standard errors assume that the covariance matrix of the

errors is correctly specified.

ChAPTeR 14 STATiSTiCAl Modeling

491

In this case we can see that the R-squared statistic is significantly higher, 0.963,

indicating a nearly perfect correspondence between the model and the data.

In [72]: result.rsquared

Out[72]: 0.96252198253140375

Note that we can always increase the R-squared statistic by introducing more

variables, but we want to make sure that we do not add variables with low predictive

power (small coefficient and high corresponding p-value), since it would make the

model susceptible to overfitting, and as usual we require that the residuals be normally

distributed. Repeating the normality test and the QQ-plot from the previous analysis

with the updated model results in a relatively high p-value (0.081) and a relatively linear

QQ-plot (see Figure 14-2). This suggests that in this case the residuals could very well be

normally distributed (as we know they are, by design, in this example).

In [73]: z, p = stats.normaltest(result.fittedvalues.values)

In [74]: p

Out[74]: 0.081352587523644201

In [75]: fig, ax = plt.subplots(figsize=(8, 4))

 ...: smg.qqplot(result.resid, ax=ax)

Figure 14-2. QQ-plot of a linear model with two explanatory variables with an
interaction term

ChAPTeR 14 STATiSTiCAl Modeling

492

Once we are satisfied with the fit of the model, we can extract the model coefficients

from the result object using the params attribute.

In [76]: result.params

Out[76]: Intercept 1.102297

 x1 2.010154

 x2 2.908453

 x1:x2 4.171501

 dtype: float64

Also, we can predict the values of new observations using the predict method,

which takes as argument a NumPy array or DataFrame object with values of the

independent variables (x1 and x2 in this case). For example, since the current problem

has only two independent variables, we can visualize the predictions of the model as a

contour plot. To this end, we first construct a DataFrame object with the x1 and x2 values

for which we want to predict the y-value using the fitted model.

In [77]: x = np.linspace(-1, 1, 50)

In [78]: X1, X2 = np.meshgrid(x, x)

In [79]: new_data = pd.DataFrame({"x1": X1.ravel(), "x2": X2.ravel()})

Using the predict method of the result object obtained from the fitting of the

model, we can compute the predicted y values for the new set of values of the response

variables.

In [80]: y_pred = result.predict(new_data)

The result is a NumPy array (vector) with the same length as the data vectors X1.

ravel() and X2.ravel(). To be able to plot the data using the Matplotlib contour

function, we first resize the y_pred vector to a square matrix.

In [81]: y_pred.shape

Out[81]: (2500,)

In [82]: y_pred = y_pred.values.reshape(50, 50)

The contour graphs of the true model and the fitted model are shown in Figure 14-3,

which demonstrate that the agreement of the model fitted to the 100 noisy observations

of y is sufficient to reproduce the function rather accurately in this example.

ChAPTeR 14 STATiSTiCAl Modeling

493

In [83]: fig, axes = plt.subplots(1, 2, figsize=(12, 5), sharey=True)

 ...: def plot_y_contour(ax, Y, title):

 ...: c = ax.contourf(X1, X2, Y, 15, cmap=plt.cm.RdBu)

 ...: ax.set_xlabel(r"x_1", fontsize=20)

 ...: ax.set_ylabel(r"x_2", fontsize=20)

 ...: ax.set_title(title)

 ...: cb = fig.colorbar(c, ax=ax)

 ...: cb.set_label(r"y", fontsize=20)

 ...:

 ...: plot_y_contour(axes[0], y_true(X1, X2), "true relation")

 ...: plot_y_contour(axes[1], y_pred, "fitted model")

In the example we have looked at here, we used the ordinary least square (ols)

method to fit the model to the data. Several other options are also available, such as

the robust linear model (rlm) that is suitable if there are significant outliers in the

observations, and variants of the generalized linear model that is suitable, for example,

if the response variable can take only discrete values. This is the topic of the following

section. In the following chapter, we will also see examples of regularized regression,

where the minimization objective is modified not only to minimize the square of the

residuals but also, for example, to penalize large coefficients in the model.

Figure 14-3. The true relation and fit of the correct model to 100 samples from the
true relation with normally distributed noise

ChAPTeR 14 STATiSTiCAl Modeling

494

 Example Datasets
When working with statistical methods, it is helpful to have example datasets to

explore. The statsmodels package provides an interface for loading example datasets

from an extensive dataset repository3 of the R statistical software. The module sm.

datasets contains a function get_rdataset that can be used to load datasets listed on

the page http://vincentarelbundock.github.io/Rdatasets/datasets.html. The

get_rdataset function takes the name of the dataset and optionally also the name of a

package (grouping of datasets).

For example, to load a dataset named Icecream from the package Ecdat, we can use

In [84]: dataset = sm.datasets.get_rdataset("Icecream", "Ecdat")

The result is a data structure with the dataset and metadata describing the dataset.

The name of the dataset is given by the title attribute, and the __doc__ attribute

contains an explanatory text describing the dataset (too long to display here):

In [85]: dataset.title

Out[85]: 'Ice Cream Consumption'

The data in the form of a Pandas DataFrame object is accessible via the data

attribute:

In [86]: dataset.data.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 30 entries, 0 to 29

Data columns (total 4 columns):

cons 30 non-null float64

income 30 non-null int64

price 30 non-null float64

temp 30 non-null int64

dtypes: float64(2), int64(2)

memory usage: 1.2 KB

From the output given by the DataFrame method info, we can see that the Icecream

dataset contains four variables: cons (consumption), income, price, and temp

(temperature). Once a dataset is loaded, we can explore it and fit it to statistical models

3 See http://vincentarelbundock.github.io/Rdatasets.

ChAPTeR 14 STATiSTiCAl Modeling

http://vincentarelbundock.github.io/Rdatasets/datasets.html
http://vincentarelbundock.github.io/Rdatasets

495

following the usual procedures. For example, to model the consumption as a linear

model with price and temperature as independent variables, we can use

In [87]: model = smf.ols("cons ~ -1 + price + temp", data=dataset.data)

In [88]: result = model.fit()

The result object can be analyzed using descriptive statistics and statistical tests, for

example, starting with printing the output from the summary method, as we have seen

before. We can also take a graphical approach and plot regression graphs, for example,

using the plot_fit function in the smg module (see also the regplot function in the

seaborn library):

In [89]: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))

 ...: smg.plot_fit(result, 0, ax=ax1)

 ...: smg.plot_fit(result, 1, ax=ax2)

From the regression plots shown in Figure 14-4, we can conclude that in this

Icecream dataset the consumption seems linearly correlated to the temperature but

has no clear dependence on the price (probably because the range of prices is rather

small). Graphical tools such as plot_fit can be a useful tool when developing statistical

models.

Figure 14-4. Regression plots for the fit of the consumption vs. price and
temperature in the Icecream dataset

ChAPTeR 14 STATiSTiCAl Modeling

496

 Discrete Regression
Regression with discrete dependent variables (e.g., binary outcomes) requires different

techniques than the linear regression model that we have seen so far. The reason is that

linear regression requires that the response variable is a normally distributed continuous

variable, which cannot be used directly for a response variable that has only a few

discrete possible outcomes, such as binary variables or variables taking positive integer

values. However, using a suitable transformation, it is possible to map a linear predictor

to an interval that can be interpreted as a probability of different discrete outcomes.

For example, in the case of binary outcomes, one popular transformation is the logistic

function log(p/(1 − p)) = β0 + β ∙ x, or p = (1 + exp (−β0 − β1 ∙ x))−1, which maps x ∈ [−∞, ∞]

to p ∈ [0, 1]. In other words, the continuous or discrete feature vector x is mapped via

the model parameters β0 and β1 and the logistic transformation onto a probability p. If

p < 0.5, it can be taken to predict that y = 0, and p ≥ 0.5 can be taken to predict y = 1. This

procedure, which is known as logistic regression, is an example of a binary classifier. We

will see more about classifiers in Chapter 15 about machine learning.

The statsmodels library provides several methods for discrete regression, including

the Logit class,4 the related Probit class (which uses a cumulative distribution function

of the normal distribution rather than the logistic function to transform the linear

predictor to the [0, 1] interval), the multinomial logistic regression class MNLogit (for

more than two categories), and the Poisson regression class Poisson for Poisson-

distributed count variables (positive integers).

 Logistic Regression
As an example of how to perform a logistic regression with statsmodels, we first load a

classic dataset using the sm.datasets.get_rdataset function, which contains sepal

and petal lengths and widths for a sample of Iris flowers, together with a classification

of the species of the flower. Here we will select a subset of the dataset corresponding to

two different species and create a logistic model for predicting the type of species from

the values of the petal length and width. The info method gives a summary of which

variables contained in the dataset:

4 Logistic regression belongs to the class of model that can be viewed as a generalized linear
model, with the logistic transformation as link function, so we could alternatively use sm.GLM or
smf.glm.

ChAPTeR 14 STATiSTiCAl Modeling

497

In [90]: df = sm.datasets.get_rdataset("iris").data

In [91]: df.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 150 entries, 0 to 149

Data columns (total 5 columns):

Sepal.Length 150 non-null float64

Sepal.Width 150 non-null float64

Petal.Length 150 non-null float64

Petal.Width 150 non-null float64

Species 150 non-null object

dtypes: float64(4), object(1)

memory usage: 7.0+ KB

To see how many unique types of species are present in the Species column, we can

use the unique method for the Pandas series that is returned when extracting the column

from the data frame object:

In [92]: df.Species.unique()

Out[92]: array(['setosa', 'versicolor', 'virginica'], dtype=object)

This dataset contains three different types of species. To obtain a binary variable that

we can use as the response variable in a logistic regression, here we focus only on the

data for the two species versicolor and virginica. For convenience we create a new data

frame, df_subset, for the subset of the dataset corresponding to those species:

In [93]: df_subset = df[df.Species.isin(["versicolor", "virginica"])].

copy()

To be able to use logistic regression to predict the species using the other variables as

independent variables, we first need to create a binary variable that corresponds to the

two different species. Using the map method of the Pandas series object, we can map the

two species names into binary values 0 and 1.

In [94]: df_subset.Species = df_subset.Species.map({"versicolor": 1,

"virginica": 0})

We also need to rename the columns with names that contain period characters

to names that are valid symbol names in Python (e.g., by replacing the “.” characters

with “_”), or else Patsy formulas that include these column names will be interpreted

ChAPTeR 14 STATiSTiCAl Modeling

498

incorrectly. To rename the columns in a DataFrame object, we can use the rename

method and pass a dictionary with name translations as the columns argument:

In [95]: df_subset.rename(columns={"Sepal.Length": "Sepal_Length",

 ...: "Sepal.Width": "Sepal_Width",

 ...: "Petal.Length": "Petal_Length",

 ...: "Petal.Width": "Petal_Width"},

inplace=True)

After these transformations we have a DataFrame instance that is suitable for use in a

logistic regression analysis:

In [96]: df_subset.head(3)

Out[96]:

Sepal_Length Sepal_Width Petal_Length Petal_Width Species

50 7.0 3.2 4.7 1.4 1

51 6.4 3.2 4.5 1.5 1

52 6.9 3.1 4.9 1.5 1

To create a logistic model that attempts to explain the value of the Species variable

with Petal_length and Petal_Width as independent variables, we can create an

instance of the smf.logit class and use the Patsy formula "Species ~ Petal_Length +

Petal_Width":

In [97]: model = smf.logit("Species ~ Petal_Length + Petal_Width", data=df_

subset)

As usual, we need to call the fit method of the resulting model instance to actually fit the

model to the supplied data. The fit is performed with maximum likelihood optimization.

In [98]: result = model.fit()

Optimization terminated successfully.

 Current function value: 0.102818

 Iterations 10

As for regular linear regression, we can obtain a summary of the fit of the model to

the data by printing the output produced by the summary method of the result object. In

particular, we can see the fitted model parameters with an estimate for its z-score and

ChAPTeR 14 STATiSTiCAl Modeling

499

the corresponding p-value, which can help us judge whether an explanatory variable is

significant or not in the model.

In [99]: print(result.summary())

 Logit Regression Results

===

Dep. Variable: Species No. Observations: 100

Model: Logit Df Residuals: 97

Method: MLE Df Model: 2

Date: Sun, 26 Apr 2015 Pseudo R-squ.: 0.8517

Time: 01:41:04 Log-Likelihood: -10.282

converged: True LL-Null: -69.315

LLR p-value: 2.303e- 26

===

 coef std err z P>|z| [95.0% Conf. Int.]

--

Intercept 45.2723 13.612 3.326 0.001 18.594 71.951

Petal_Length -5.7545 2.306 -2.496 0.013 -10.274 -1.235

Petal_Width -10.4467 3.756 -2.782 0.005 -17.808 -3.086

===

The result object for logistic regression also provides the method get_margeff,

which returns an object that also implements a summary method that outputs

information about the marginal effects of each explanatory variable in the model.

In [100]: print(result.get_margeff().summary())

 Logit Marginal Effects

=====================================

Dep. Variable: Species

Method: dydx

At: overall

===

 dy/dx std err z P>|z| [95.0% Conf. Int.]

--

Petal_Length -0.1736 0.052 -3.347 0.001 -0.275 -0.072

Petal_Width -0.3151 0.068 -4.608 0.000 -0.449 -0.181

===

ChAPTeR 14 STATiSTiCAl Modeling

500

When we are satisfied with the fit of the model to the data, we can, for example,

use it to predict the value of the response variable for new values of the explanatory

variables. For this we can use the predict method in the result object produced by the

model fitting, and to it we need to pass a data frame object with the new values of the

independent variables.

In [101]: df_new = pd.DataFrame({"Petal_Length": np.random.randn(20)*0.5 + 5,

 ...: "Petal_Width": np.random.randn(20)*0.5 + 1.7})

In [102]: df_new["P-Species"] = result.predict(df_new)

The result is an array with probabilities for each observation to correspond to the

response y = 1, and by comparing this probability to the threshold value 0.5, we can

generate predictions for the binary value of the response variable:

In [103]: df_new["P-Species"].head(3)

Out[103]: 0 0.995472

 1 0.799899

 2 0.000033

 Name: P-Species, dtype: float64

In [104]: df_new["Species"] = (df_new["P-Species"] > 0.5).astype(int)

The intercept and the slope of the line in the plane spanned by the coordinates

Petal_Width and Petal_Length that define the boundary between a point that is

classified as y = 0 and y = 1, respectively, can be computed from the fitted model

parameters. The model parameters can be obtained using the params attribute of the

result object:

In [105]: params = result.params

 ...: alpha0 = -params['Intercept']/params['Petal_Width']

 ...: alpha1 = -params['Petal_Length']/params['Petal_Width']

Finally, to access the model and its predictions for new data points, we plot a scatter

plot of the fitted (squares) and predicted (circles) data where data corresponding to the

species virginica is coded with blue (dark) color, and the species versicolor is coded with

green (light) color. The result is shown in Figure 14-10.

In [106]: fig, ax = plt.subplots(1, 1, figsize=(8, 4))

 ...: # species virginica

 ...: ax.plot(df_subset[df_subset.Species == 0].Petal_Length.values,

ChAPTeR 14 STATiSTiCAl Modeling

501

 ...: df_subset[df_subset.Species == 0].Petal_Width.values,

's', label='virginica')

 ...: ax.plot(df_new[df_new.Species == 0].Petal_Length.values,

 ...: df_new[df_new.Species == 0].Petal_Width.values,

 ...: 'o', markersize=10, color="steelblue", label='virginica

(pred.)')

 ...:

 ...: # species versicolor

 ...: ax.plot(df_subset[df_subset.Species == 1].Petal_Length.values,

 ...: df_subset[df_subset.Species == 1].Petal_Width.values,

's', label='versicolor')

 ...: ax.plot(df_new[df_new.Species == 1].Petal_Length.values,

 ...: df_new[df_new.Species == 1].Petal_Width.values,

 ...: 'o', markersize=10, color="green", label='versicolor

(pred.)')

 ...:

 ...: # boundary line

 ...: _x = np.array([4.0, 6.1])

 ...: ax.plot(_x, alpha0 + alpha1 * _x, 'k')

 ...: ax.set_xlabel('Petal length')

 ...: ax.set_ylabel('Petal width')

 ...: ax.legend()

Figure 14-5. The result of a classification of Iris species using Logit regression with
petal length and width and independent variables

ChAPTeR 14 STATiSTiCAl Modeling

502

 Poisson Model
Another example of discrete regression is the Poisson model, which can describe a process

where the response variable is a success count for many attempts that each has a low

probability of success. The Poisson model is also an example of a model that can be treated

with the generalized linear model, using the natural logarithm as the link function. To see

how we can fit data to a Poisson model using the statsmodels library, we will analyze another

interesting dataset from the R dataset repository: The discoveries dataset contains counts

of the number of great discoveries between 1860 and 1959. Because of the nature of the

data, it is reasonable to assume that the counts might be Poisson distributed. To explore

this hypothesis, we begin with loading the dataset using the sm.datasets.get_rdataset

function and display the first few values to obtain an understanding of the format of the data.

In [107]: dataset = sm.datasets.get_rdataset("discoveries")

In [108]: df = dataset.data.set_index("time").rename(columns={"values":

"discoveries"})

In [109]: df.head(10).T

Out[109]:

time 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869

discoveries 5 3 0 2 0 3 2 3 6 1

Here we can see that the dataset contains integer counts in the discoveries series

and that the first few years in the series have on average a few great discoveries. To

see if this is typical data for the entire series, we can plot a bar graph of the number of

discoveries per year, as shown in Figure 14-6.

In [109]: fig, ax = plt.subplots(1, 1, figsize=(16, 4))

 ...: df.plot(kind='bar', ax=ax)

Figure 14-6. The number of great discoveries per year

ChAPTeR 14 STATiSTiCAl Modeling

503

Judging from Figure 14-6, the number of great discoveries seems to be relatively

constant over time, although a slightly declining trend might be noticeable. Nonetheless,

the initial hypothesis that the number of discoveries might be Poisson distributed does

not look immediately unreasonable. To explore this hypothesis more systematically,

we can fit the data to a Poisson process, for example, using the smf.poisson class and

the Patsy formula "discoveries ~ 1", which means that we model the discoveries

variable with only an intercept coefficient (the Poisson distribution parameter).

In [110]: model = smf.poisson("discoveries ~ 1", data=df)

As usual we have to call the fit method to actually perform the fit of the model to

the supplied data:

In [111]: result = model.fit()

Optimization terminated successfully.

 Current function value: 2.168457

 Iterations 7

The summary method of the result objects displays a summary of model fit and

several fit statistics.

In [112]: print(result.summary())

 Poisson Regression Results

==

Dep. Variable: discoveries No. Observations: 100

Model: Poisson Df Residuals: 99

Method: MLE Df Model: 0

Date: Sun, 26 Apr 2015 Pseudo R-squ.: 0.000

Time: 14:51:41 Log-Likelihood: -216.85

converged: True LL-Null: -216.85

LLR p-value: nan

==

 coef std err z P>|z| [95.0% Conf. Int.]

--

Intercept 1.1314 0.057 19.920 0.000 1.020 1.243

==

ChAPTeR 14 STATiSTiCAl Modeling

504

The model parameters, available via the params attribute of the result object, are

related to the λ parameter of the Poisson distribution via the exponential function (the

inverse of the link function):

In [113]: lmbda = np.exp(result.params)

Once we have the estimated λ parameter of the Poisson distribution, we can, for

example, compare the histogram of the observed count values with the theoretical

counts, which we can obtain from a Poisson-distributed random variable from the SciPy

stats library.

In [114]: X = stats.poisson(lmbda)

In addition to the fit parameters, we can also obtain estimated confidence intervals

of the parameters using the conf_int method:

In [115]: result.conf_int()

Out[115]:

0 1

Intercept 1.020084 1.242721

To assess the fit of the data to the Poisson distribution, we also create random

variables for the lower and upper bounds of the confidence interval for the model

parameter:

In [116]: X_ci_l = stats.poisson(np.exp(result.conf_int().values)[0, 0])

In [117]: X_ci_u = stats.poisson(np.exp(result.conf_int().values)[0, 1])

Finally, we graph the histogram of the observed counts with the theoretical

probability mass functions for the Poisson distributions corresponding to the fitted

model parameter and its confidence intervals. The result is shown in Figure 14-7.

In [118]: v, k = np.histogram(df.values, bins=12, range=(0, 12),

normed=True)

In [119]: fig, ax = plt.subplots(1, 1, figsize=(12, 4))

 ...: ax.bar(k[:-1], v, color="steelblue", align='center',

label='Discoveries per year')

 ...: ax.bar(k-0.125, X_ci_l.pmf(k), color="red", alpha=0.5,

align='center', width=0.25,

ChAPTeR 14 STATiSTiCAl Modeling

505

 ...: label='Poisson fit (CI, lower)')

 ...: ax.bar(k, X.pmf(k), color="green", align='center', width=0.5,

label='Poisson fit')

 ...: ax.bar(k+0.125, X_ci_u.pmf(k), color="red", alpha=0.5,

align='center', width=0.25,

 ...: label='Poisson fit (CI, upper)')

 ...: ax.legend()

Figure 14-7. Comparison of histograms of the number of great discoveries per
year and the probability mass function for the fitted Poisson model

The result shown in Figure 14-7 indicates that the dataset of great discoveries is not

well described by a Poisson process, since the agreement between Poisson probability

mass function and the observed counts deviates significantly. The hypothesis that the

number of great discoveries per year is a Poisson process must therefore be rejected.

A failure to fit a mode to a given dataset is of course a natural part of the statistical

modeling process, and although the dataset turned out not to be Poisson distributed

(perhaps because years with a large and small number of great discovers tend to be

clustered together), we still have gained insight by the failed attempt to model it as such.

Because of the correlations between the number of discoveries at any given year and its

recent past, a time-series analysis such as discussed in the following section could be a

better approach.

ChAPTeR 14 STATiSTiCAl Modeling

506

 Time Series
Time-series analysis is an important field in statistical modeling that deals with

analyzing and forecasting future values of data that is observed as a function of time.

Time-series modeling differs in several aspects from the regular regression models

that we have looked at so far. Perhaps most importantly, a time series of observations

typically cannot be considered as a series of independent random samples from a

population. Instead there is often a rather strong component of correlation between

observations that are close to each other in time. Also, the independent variables in

a time-series model are the past observations of the same series, rather than a set of

distinct factors. For example, while a regular regression can describe the demand for a

product as a function of its price, in a time-series model it is typical to attempt to predict

the future values from the past observations. This is a reasonable approach when there

are autocorrelations such as trends in the time series under consideration (e.g., daily or

weekly cycles, or steady increasing trends, or inertia in the change of its value). Examples

of time series include stock prices, and weather and climate observations, and many

other temporal processes in nature and in economics.

An example of a type of statistical model for time series is the autoregressive (AR)

model, in which a future value depends linearly on p previous values:

Y Yt
n

p

n t n t= + +
=

-åb b e0
1

, where β0 is a constant and βn,1 ≤ n ≤ N are the coefficients that

define the AR model. The error εt is assumed to be white noise without autocorrelation.

Within this model, all autocorrelation in the time series should therefore be captured by

the linear dependence on the p previous values. A time series which depends linearly on

only one previous value (in a suitable unit of time) can be fully modeled with an AR

process with p=1, denoted as AR(1), and a time series that depends linearly on two

previous values can be modeled by an AR(2) process, and so on. The AR model is a

special case of the ARMA model, a more general model that also includes a moving

average (MA) of q previous residuals of the series: Y Yt

n

p

n t n
n

q

n t n t= + + +
=

-
=

-å åb b q e e0

1 1

,

where the model parameters θn are the weight factors for the moving average. This model

is known as the ARMA model and is denoted by ARMA(p, q), where p is the number of

autoregressive terms and q is the number of moving-average terms. Many other models

for time-series model exist, but the AR and ARMA capture the basic ideas that are

fundamental to many time-series applications.

ChAPTeR 14 STATiSTiCAl Modeling

507

The statsmodels library has a submodule dedicated to time-series analysis: sm.tsa,

which implements several standard models for time-series analysis, as well as graphical

and statistical analysis tools for exploring properties of time-series data. For example,

let’s revisit the time series with outdoor temperature measurements used in Chapter 12

and say that we want to predict the hourly temperature for a few days into the future

based on previous observations using an AR model. For concreteness, we will take the

temperatures measured during the month of March and predict the hourly temperature

for the first 3 days of April. We first load the dataset into a Pandas DataFrame object:

In [120]: df = pd.read_csv("temperature_outdoor_2014.tsv", header=None,

delimiter="\t", names=["time", "temp"])

 ...: df.time = pd.to_datetime(df.time, unit="s")

 ...: df = df.set_index("time").resample("H").mean()

For convenience we extract the observations for March and April and store them in

new DataFrame objects, df_march and df_april, respectively:

In [121]: df_march = df[df.index.month == 3]

In [122]: df_april = df[df.index.month == 4]

Here we will attempt to model the time series of the temperature observations using

the AR model, and an important condition for its applicability is that it is applied to

a stationary process, which does not have autocorrelation or trends other than those

explained by the terms in the model. The function plot_acf in the smg.tsa model is a

useful graphical tool for visualizing autocorrelation in a time series. It takes an array of

time-series observations and graphs the autocorrelation with increasing time delay on

the x axis. The optional lags argument can be used to determine how many time steps

are to be included in the plot, which is useful for long time series and when we only

wish to see the autocorrelation for a limited number of time steps. The autocorrelation

functions for the temperature observations and its first-, second-, and third-order

differences are generated and graphed using the plot_acf function in the following

code, and the resulting graph is shown in Figure 14-8.

In [123]: fig, axes = plt.subplots(1, 4, figsize=(12, 3))

 ...: smg.tsa.plot_acf(df_march.temp, lags=72, ax=axes[0])

 ...: smg.tsa.plot_acf(df_march.temp.diff().dropna(), lags=72,

ax=axes[1])

ChAPTeR 14 STATiSTiCAl Modeling

508

 ...: smg.tsa.plot_acf(df_march.temp.diff().diff().dropna(), lags=72,

ax=axes[2])

 ...: smg.tsa.plot_acf(df_march.temp.diff().diff().diff().dropna(),

lags=72, ax=axes[3])

Figure 14-8. Autocorrelation function for temperature data at increasing order of
differentiation, from left to right

We can see a clear correlation between successive values in the time series in

the leftmost graph of Figure 14-8, but for increasing order, differencing of the time

series reduces the autocorrelation significantly. Suggesting that while each successive

temperature observation is strongly correlated with its preceding value, such

correlations are not as strong for the higher-order changes between the successive

observations. Taking the difference of a time series is often a useful way of detrending it

and eliminating correlation. The fact that taking differences diminishes the structural

autocorrelation suggests that a sufficiently high-order AR model might be able to model

the time series.

To create an AR model for the time series under consideration, we can use the sm.

tsa.AR class. It can, for example, be initiated with Pandas series that is indexed by

DatetimeIndex or PeriodIndex (see the docstring of AR for alternative ways of pass time-

series data to this class):

In [124]: model = sm.tsa.AR(df_march.temp)

When we fit the model to the time-series data, we need to provide the order of the AR

model. Here, since we can see a strong autocorrelation with a lag of 24 periods (24 hours)

in Figure 14-8, we must at least include terms for 24 previous terms in the model. To be

on the safe side, and since we aim to predict the temperature for 3 days, or 72 hours, here

we choose to make the order of the AR model correspond to 72 hours as well:

In [125]: result = model.fit(72)

ChAPTeR 14 STATiSTiCAl Modeling

509

An important condition for the AR process to be applicable is that the residuals of the

series are stationary (no remaining autocorrelation and no trends). The Durbin-Watson

statistical test can be used to test for stationary in a time series. It returns a value between

0 and 4, and values close to 2 correspond to time series that do not have remaining

autocorrelation. We can also use the plot_acf function to graph the autocorrelation

function for the residuals and to verify that the there is no significant autocorrelation.

In [126]: sm.stats.durbin_watson(result.resid)

Out[126]: 1.9985623006352975

We can also use the plot_acf function to graph the autocorrelation function for the

residual and verify that the there is no significant autocorrelation.

In [127]: fig, ax = plt.subplots(1, 1, figsize=(8, 3))

 ...: smg.tsa.plot_acf(result.resid, lags=72, ax=ax)

Figure 14-9. Autocorrelation plot for the residual from the AR(72) model for the
temperature observations

The Durbin-Watson statistic close to 2 and the absence of autocorrelation in

Figure 14-9 suggest that the current model successfully explains the fitted data. We can

now proceed to forecast the temperature for future dates using the predict method in

the result object returned by the model fit method:

In [128]: temp_3d_forecast = result.predict("2014-04-01", "2014-04-4")

Next we graph the forecast (red) together with the previous 3 days of temperature

observations (blue) and the actual outcome (green), for which the result is shown in

Figure 14-10:

ChAPTeR 14 STATiSTiCAl Modeling

510

In [129]: fig, ax = plt.subplots(1, 1, figsize=(12, 4))

 ...: ax.plot(df_march.index.values[-72:], df_march.temp.values[-72:],

label="train data")

 ...: ax.plot(df_april.index.values[:72], df_april.temp.values[:72],

label="actual outcome")

 ...: ax.plot(pd.date_range("2014-04-01", "2014-04-4", freq="H").values,

temp_3d_forecast, label="predicted outcome")

 ...:

 ...: ax.legend()

The agreement of the predicted temperature and the actual outcome shown in

Figure 14-10 is rather good. However, this will of course not always be the case, as the

temperature cannot be forecasted based solely on previous observations. Nonetheless,

within a period of a stable weather system, the hourly temperature of a day may be

accurately forecasted with an AR model, accounting for the daily variations and other

steady trends.

In addition to the basic AR model, statsmodels also provides the ARMA

(autoregressive moving average) and ARIMA (autoregressive integrated moving average)

models. The usage patterns for these models are similar to that of the AR model we have

used here, but there are some differences in the details. Refer to the docstrings for sm.

tsa.ARMA and sm.tsa.ARIMA classes and the official statsmodels documentation for

further information.

Figure 14-10. Observed and predicted temperatures as a function of time

ChAPTeR 14 STATiSTiCAl Modeling

511

 Summary
In this chapter we have briefly surveyed statistical modeling and introduced basic

statistical modeling features of the statsmodels library and model specification using

Patsy formulas. Statistical modeling is a broad field, and we only scratched the surface

of what the statsmodels library can be used for in this chapter. We began with an

introduction of how to specify statistical models using the Patsy formula language, which

we used in the section on “Linear Regression” for response variables that are continuous

(regular linear regression) and discrete (logistic and nominal regression). After having

covered linear regression, we briefly looked at time-series analysis, which requires

slightly different methods compared to linear regression because of the correlations

between successive observations that naturally arise in time series. There are many

aspects of statistical modeling that we did not touch upon in this introduction, but the

basics of linear regression and time-series modeling that we did cover here should

provide a background for further explorations. In Chapter 15 we continue with machine

learning, which is a topic that is closely related to statistical modeling in both motivation

and methods.

 Further Reading
Excellent and thorough introductions to statistical modeling are given in G. James

(2013), which is also available for free at www-bcf.usc.edu/~gareth/ISL/index.html,

and in M. Kuhn (2013). An accessible introduction to time-series analysis is given in

R.J. Hyndman (2013), which is also available for free online at www.otexts.org/fpp.

 References
G. James, D. W. (2013). An Introduction to Statistical Learning. New York: Springer-

Verlag.

M. Kuhn, K. J. (2013). Applied Predictive Modeling. New York: Springer.

R.J. Hyndman, G. A. (2013). Forecasting: principles and practice. OTexts.

ChAPTeR 14 STATiSTiCAl Modeling

http://www-bcf.usc.edu/~gareth/ISL/index.html
http://www.otexts.org/fpp

513
© Robert Johansson 2019
R. Johansson, Numerical Python, https://doi.org/10.1007/978-1-4842-4246-9_15

CHAPTER 15

Machine Learning
In this chapter we explore machine learning. This topic is closely related to statistical

modeling, which we considered in Chapter 14, in the sense that both deal with using

data to describe and predict outcomes of uncertain or unknown processes. However,

while statistical modeling emphasizes the model used in the analysis, machine learning

sidesteps the model part and focuses on algorithms that can be trained to predict the

outcome of new observations. In other words, the approach taken in statistical modeling

emphasizes understanding how the data is generated, by devising models and tuning

their parameters by fitting to the data. If the model is found to fit the data well and if it

satisfies the relevant model assumptions, then the model gives an overall description

of the process, and it can be used to compute statistics with known distributions and

for evaluating statistical tests. However, if the actual data is too complex to be explained

using available statistical models, this approach has reached its limits. In machine

learning, on the other hand, the actual process that generates the data, and potential

models thereof, is not central. Instead, the observed data and the explanatory variables

are the fundamental starting point of a machine-learning application. Given data,

machine-learning methods can be used to find patterns and structure in the data,

which can be used to predict the outcome of new observations. Machine learning

therefore does not provide an understanding of how data was generated, and because

fewer assumptions are made regarding the distribution and statistical properties of the

data, we typically cannot compute statistics and perform statistical tests regarding the

significance of certain observations. Instead, machine learning puts a strong emphasis

on the accuracy with which new observations are predicted.

Although there are significant differences in the fundamental approach taken in

statistical modeling and machine learning, many of the mathematical methods that are

used are closely related or sometimes even the same. In the course of this chapter, we are

going to recognize several methods that we used in Chapter 14 on statistical modeling,

but they will be employed with a different mindset and with slightly different goals.

514

In this chapter we give a brief introduction to basic machine-learning methods,

and we survey how such methods can be used in Python. The focus is on machine-

learning methods that have broad application in many fields of scientific and technical

computing. The most prominent and comprehensive machine-learning library for

Python is scikit-learn, although there are several alternative and complementary

libraries as well: for example, TensorFlow, Keras, PyTorch, to mention a few. In this

chapter we exclusively use the scikit-learn library, which provides implementations of

the most common machine-learning algorithm. However, readers that are particularly

interested in machine learning are encouraged to also explore the other libraries

mentioned in the preceding text as well.

Scikit-learn The scikit-learn library contains a comprehensive collection
of machine-learning-related algorithms, including regression, classification,
dimensionality reduction, and clustering. For more information about the project and
its documentation, see the project’s web page at http://scikit-learn.org.
At the time of writing, the latest version of scikit-learn is 0.19.2.

 Importing Modules
In this chapter we work with the scikit-learn library, which provides the sklearn Python

module. With the sklearn module, here we use the same import strategy as we use with

the SciPy library: that is, we explicitly import modules from the library that we need for

our work. In this chapter we use the following modules from the sklearn library:

In [1]: from sklearn import datasets

In [2]: from sklearn import model_selection

In [3]: from sklearn import linear_model

In [4]: from sklearn import metrics

In [5]: from sklearn import tree

In [6]: from sklearn import neighbors

In [7]: from sklearn import svm

In [8]: from sklearn import ensemble

In [9]: from sklearn import cluster

ChApTer 15 MAChine LeArning

http://scikit-learn.org

515

For plotting and basic numerics, we also require the Matplotlib and NumPy libraries,

which we import in the usual manner:

In [10]: import matplotlib.pyplot as plt

In [11]: import numpy as np

We also use the Seaborn library for graphics and figure styling:

In [12]: import seaborn as sns

 Brief Review of Machine Learning
Machine learning is a topic in the artificial intelligence field of computer science.

Machine learning can be viewed as including all applications where feeding training

data into a computer program makes it able to perform a given task. This is a very broad

definition, but in practice, machine learning is often associated with a much more

specific set of techniques and methods. Here we take a practical approach and explore

by example several basic methods and key concepts in machine learning. Before we get

started with specific examples, we begin with a brief introduction of the terminology and

core concepts.

In machine learning, the process of fitting a model or an algorithm to observed data

is known as training. Machine-learning applications can often be classified into either

of two types: supervised and unsupervised learning, which differ in the type of data the

application is trained with. In supervised learning, the data includes feature variables

and known response variables. Both feature and response variables can be continuous

or discrete. Preparing such data typically requires manual effort and sometimes even

expert domain knowledge. The application is thus trained with handcrafted data,

and the training can therefore be viewed as supervised machine learning. Examples

of applications include regression (prediction of a continuous response variable)

and classification (prediction of a discrete response variable), where the value of the

response variable is known for the training dataset, but not for new samples.

In contrast, unsupervised learning corresponds to situations where machine-

learning applications are trained with raw data that is not labeled or otherwise manually

prepared. An example of unsupervised learning is clustering of data into groups, or

in other words, grouping of data into suitable categories. In contrast to supervised

classification, it is typical for unsupervised learning that the final categories are not

ChApTer 15 MAChine LeArning

516

known in advance, and the training data therefore cannot be labeled accordingly. It may

also be the case that the manual labeling of the data is difficult or costly, for example,

because the number of samples is too large. It goes without saying that unsupervised

machine learning is more difficult and limited in what it can be used for than supervised

machine learning, and supervised machine learning therefore should be preferred

whenever possible. However, unsupervised machine learning can be a powerful tool

when creating labeled training datasets is not possible.

There is naturally much more complexity to machine learning than suggested

by the basic types of problems outlined in the preceding text, but these concepts are

recurring themes in many machine-learning applications. In this chapter we look at a

few examples of basic machine-learning techniques that demonstrate several central

concepts of machine learning. Before we do so, we briefly introduce common machine-

learning terminology that we will refer to in the following sections:

• Cross-validation is the practice of dividing the available data into

training data and testing data (also known as validation data), where

only the training data is used to train the machine-learning model

and where the test data allows the trained application to be tested

on previously unseen data. The purpose of this is to measure how

well the model predicts new observations and to limit problems

with overfitting. There are several approaches to dividing the

data into training and testing datasets. For example, one extreme

approach is to test all possible ways to divide the data (exhaustive

cross-validation) and use an aggregate of the result (e.g., average,

or the minimum value, depending on the situation). However, for

large datasets, the number of possible combinations of train and test

data becomes extremely large, making exhaustive cross-validation

impractical. Another extreme is to use all but one sample in the

training set, and the remaining sample in the training set (leave-

one- out cross-validation), and to repeat the training-test cycle for all

combinations in which one sample is chosen from the available data.

A variant of this method is to divide the available data into k groups

and perform a leave-one-out cross-validation with the k groups of

datasets. This method is known as k-fold cross-validation and is a

popular technique that often is used in practice. In the scikit-learn

library, the module sklearn.model_selection contains functions for

working with cross-validation.

ChApTer 15 MAChine LeArning

517

• Feature extraction is an important step in the preprocessing stage

of a machine-learning problem. It involves creating suitable feature

variables and the corresponding feature matrices that can be

passed to one of many machine-learning algorithms implemented

in the scikit-learn library. The scikit-learn module sklearn.

feature_extraction plays a similar role in many machine-learning

applications as the Patsy formula library does in statistical modeling,

especially for text- and image-based machine-learning problems.

Using methods from the sklearn.feature_extraction module, we

can automatically assemble feature matrices (design matrices) from

various data sources.

• Dimensionality reduction and feature selection are techniques that

are frequently used in machine-learning applications where it is

common to have a large number of explanatory variables (features),

many of which may not significantly contribute to the predictive

power of the application. To reduce the complexity of the model, it

is then often desirable to eliminate less useful features and thereby

reduce the dimensionality of the problem. This is particularly

important when the number of features is comparable to or larger

than the number of observations. The scikit-learn modules sklearn.

decomposition and sklearn.feature_selection contain functions

for reducing the dimensionality of a machine-learning problem:

for example, principal component analysis (PCA) is a popular

technique for dimensionality reduction that works by performing a

singular-value decomposition of the feature matrix and keeping only

dimensions that correspond to the most significant singular vectors.

In the following sections, we look at how scikit-learn can be used to solve examples

of machine-learning problems using the techniques discussed in the preceding text.

Here we work with generated data and built-in datasets. Like the statsmodels library,

scikit-learn comes with a number of built-in datasets that can be used for exploring

machine-learning methods. The datasets module in sklearn provides three groups of

functions for loading built-in datasets (with prefix load_, e.g., load_boston), for fetching

external datasets (with prefix fetch_, e.g., fetch_californa_housing), and finally for

generating datasets from random numbers (with prefix make_, e.g., make_regression).

ChApTer 15 MAChine LeArning

518

 Regression
Regression is a central part of machine learning and statistical modeling, as we

already saw in Chapter 14. In machine learning, we are not so concerned with how

well the regression model fits the data, but rather care about how well it predicts new

observations. For example, if we have a large number of features and less number of

observations, we can typically fit the regression perfectly to the data without it being

very useful for predicting new values. This is an example of overfitting: A small residual

between the data and regression model is not a guarantee that the model is able to

accurately predict future observations. In machine learning, a common method to deal

with this problem is to partition the available data into a training dataset and a testing

dataset that is used for validating the regression results against previously unseen data.

To see how fitting a training dataset and validating the result against a testing dataset

can work out, let’s consider a regression problem with 50 samples and 50 features, out of

which only 10 features are informative (linearly correlated with the response variable).

This simulates a scenario when we have 50 known features, but it turns out that only 10

of those features contribute to the predictive power of the regression model. The make_

regression function in the sklearn.datasets module generates data of kind:

In [13]: X_all, y_all = datasets.make_regression(n_samples=50,

n_features=50, n_informative=10)

The result is two arrays, X_all and y_all, of shapes (50, 50) and (50,),

corresponding to the design matrices for a regression problem with 50 samples and 50

features. Instead of performing a regression on the entire dataset (and obtain a perfect fit

because of the small number of observations), here we split the dataset into two equal size

datasets, using the train_test_split function from sklearn.model_selection module.

The result is a training dataset X_train, y_train, and a testing dataset X_test, y_test:

In [14]: X_train, X_test, y_train, y_test = \

 ...: model_selection.train_test_split(X_all, y_all, train_size=0.5)

In scikit-learn, ordinary linear regression can be carried out using the

LinearRegression class from the sklearn.linear_model module, which is comparable

with the statsmodels.api.OLS from the statsmodels library. To perform a regression, we

first create a LinearRegression instance:

In [15]: model = linear_model.LinearRegression()

ChApTer 15 MAChine LeArning

519

To actually fit the model to the data, we need to invoke the fit method, which takes

the feature matrix and the response variable vector as the first and second arguments:

In [16]: model.fit(X_train, y_train)

Out[16]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1,

normalize=False)

Note that compared to the OLS class in statsmodels, the order of the feature matrix and

response variable vector is reversed, and in statsmodels the data is specified when the class

instance is created instead of when calling the fit method. Also, in scikit-learn calling the

fit method does not return a new result object, but the result is instead stored directly

in the model instance. These minor differences are small inconveniences when working

interchangeably with the statsmodels and scikit-learn modules and worth taking note of.1

Since the regression problem has 50 features and we only trained the model with

25 samples, we can expect complete overfitting that perfectly fits the data. This can be

quantified by computing the sum of squared errors (SSEs) between the model and the

data. To evaluate the model for a given set of features, we can use the predict method,

from which we can compute the residuals and the SSE:

In [17]: def sse(resid):

 ...: return np.sum(resid**2)

In [18]: resid_train = y_train - model.predict(X_train)

 ...: sse_train = sse(resid_train)

 ...: sse_train

Out[18]: 8.1172209425431673e-25

As expected, for the training dataset, the residuals are all essentially zero, due to

the overfitting allowed by having twice as many features as data points. This overfitted

model is, however, not at all suitable for predicting unseen data. This can be verified by

computing the SSE for our test dataset:

In [19]: resid_test = y_test - model.predict(X_test)

 ...: sse_test = sse(resid_test)

 ...: sse_test

Out[19]: 213555.61203039082

1 In practice it is common to work with both statsmodels and scikit-learn, as they in many respects
complement each other. However, in this chapter we focus solely on scikit-learn.

ChApTer 15 MAChine LeArning

520

The result is a very large SSE value, which indicates that the model does not do a

good job at predicting new observations. An alternative measure of the fit of a model

to a dataset is the R-squared score (see Chapter 14), which we can compute using the

score method. It takes a feature matrix and response variable vector as arguments and

computes the score. For the training dataset, we obtain, as expected, an r-square score of

1.0, but for the testing dataset, we obtain a low score:

In [20]: model.score(X_train, y_train)

Out[20]: 1.0

In [21]: model.score(X_test, y_test)

Out[21]: 0.31407400675201746

The big difference between the scores for the training and testing datasets once again

indicates that the model is overfitted.

Finally, we can also take a graphical approach and plot the residuals of the training

and testing datasets and visually inspect the values of the coefficients and the residuals.

From a LinearRegression object, we can extract the fitted parameters using the coef_

attribute. To simplify repeated plotting of the training and testing residuals and the

model parameters, here we first create a function plot_residuals_and_coeff for

plotting these quantities. We then call the function with the result from the ordinary

linear regression model trained and tested on the training and testing datasets,

respectively. The result is shown in Figure 15-1, and it is clear that there is a large

difference in the magnitude of the residuals for the test and the training datasets, for

every sample.

In [22]: def plot_residuals_and_coeff(resid_train, resid_test, coeff):

 ...: fig, axes = plt.subplots(1, 3, figsize=(12, 3))

 ...: axes[0].bar(np.arange(len(resid_train)), resid_train)

 ...: axes[0].set_xlabel("sample number")

 ...: axes[0].set_ylabel("residual")

 ...: axes[0].set_title("training data")

 ...: axes[1].bar(np.arange(len(resid_test)), resid_test)

 ...: axes[1].set_xlabel("sample number")

 ...: axes[1].set_ylabel("residual")

 ...: axes[1].set_title("testing data")

 ...: axes[2].bar(np.arange(len(coeff)), coeff)

 ...: axes[2].set_xlabel("coefficient number")

ChApTer 15 MAChine LeArning

521

 ...: axes[2].set_ylabel("coefficient")

 ...: fig.tight_layout()

 ...: return fig, axes

In [23]: fig, ax = plot_residuals_and_coeff(resid_train, resid_test,

model.coef_)

The overfitting in this example happens because we have too few samples, and

one solution could be to collect more samples until overfitting is no longer a problem.

However, this may not always be practical, as collecting observations may be expensive,

and because in some applications, we might have a very large number of features. For

such situations it is desirable to be able to fit a regression problem in a way that avoids

overfitting as much as possible (at the expanse of not fitting the training data perfectly),

so that the model can give meaningful predictions for new observations.

Regularized regression is one possible solution to this problem. In the following we

look at a few different variations of regularized regression. In ordinary linear regression,

the model parameters are chosen such that the sum of squared residuals is minimized.

Viewed as an optimization problem, the objective function is therefore min ,b bX y-
2

2

where X is the feature matrix, y is the response variables, and β is the vector of model

parameters and where ‖∙‖2 denotes the L2 norm. In regularized regression, we add a

penalty term in the objective function of the minimization problem. Different types

of penalty terms impose different types of regularization on the original regression

problem. Two popular regularizations are obtained by adding the L1 or L2 norms of the

parameter vector to the minimization objective function, minb b a bX y- +{ }2

2

1
 and

min .b b a bX y- +{ }2

2

2

2
 These are known as LASSO and Ridge regression, respectively.

Figure 15-1. The residual between the ordinary linear regression model and the
training data (left), the model and the test data (middle), and the values of the
coefficients for the 50 features (right)

ChApTer 15 MAChine LeArning

522

Here α is a free parameter that determines the strength of the regularization. Adding

the L2 norm b
2

2
 favors model parameter vectors with smaller coefficients, and adding

the L1 norm ‖β‖1 favors a model parameter vectors with as few nonzero elements as

possible. Which type of regularization is more suitable depends on the problem at hand:

when we wish to eliminate as many features as possible, we can use L1 regularization

with LASSO regression, and when we wish to limit the magnitude of the model

coefficients, we can use L2 regularization with Ridge regression.

With scikit-learn, we can perform Ridge regression using the Ridge class from

the sklearn.linear_model module. The usage of this class is almost the same as the

LinearRegression class that we used in the preceding text, but we can also give the value

of the α parameter that determines the strength of the regularization as an argument

when we initialize the class. Here we chose the value α = 2.5. A more systematic

approach to choosing α is introduced later in this chapter.

In [24]: model = linear_model.Ridge(alpha=2.5)

To fit the regression model to the data, we again use the fit method, passing the

training feature matrix and response variable as arguments:

In [25]: model.fit(X_train, y_train)

Out[25]: Ridge(alpha=2.5, copy_X=True, fit_intercept=True, max_iter=None,

 normalize=False, solver='auto', tol=0.001)

Once the model has been fitted to the training data, we can compute the model

predictions for the training and testing datasets and compute the corresponding SSE

values:

In [26]: resid_train = y_train - model.predict(X_train)

 ...: sse_train = sse(resid_train)

 ...: sse_train

Out[26]: 178.50695164950841

In [27]: resid_test = y_test - model.predict(X_test)

 ...: sse_test = sse(resid_test)

 ...: sse_test

Out[27]: 212737.00160105844

ChApTer 15 MAChine LeArning

523

We note that the SSE of the training data is no longer close to zero, but there is a

slight decrease in the SSE for the testing data. For comparison with ordinary regression,

we also plot the training and testing residuals and the model parameters using the

function plot_residuals_and_coeff that we defined in the preceding text. The result is

shown in Figure 15-2.

In [28]: fig, ax = plot_residuals_and_coeff(resid_train, resid_test,

model.coef_)

Similarly, we can perform the L1-regularized LASSO regression using the Lasso class

from the sklearn.linear_model module. It also accepts the value of the α parameter as an

argument when the class instance is initialized. Here we choose α = 1.0 and perform the

fitting of the model to the training data and the computation of the SSE for the training

and testing data in the same way as described previously:

In [29]: model = linear_model.Lasso(alpha=1.0)

In [30]: model.fit(X_train, y_train)

Out[30]: Lasso(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=1000,

 normalize=False, positive=False, precompute=False, random_

state=None,

 selection='cyclic', tol=0.0001, warm_start=False)

In [31]: resid_train = y_train - model.predict(X_train)

 ...: sse_train = sse(resid_train)

 ...: sse_train

Figure 15-2. The residual between the Ridge-regularized regression model and
the training data (left), the model and the test data (middle), and the values of the
coefficients for the 50 features (right)

ChApTer 15 MAChine LeArning

524

Out[31]: 309.74971389531891

In [32]: resid_test = y_test - model.predict(X_test)

 ...: sse_test = sse(resid_test)

 ...: sse_test

Out[32]: 1489.1176065002333

Here we note that while the SSE of the training data increased compared to that of

the ordinary regression, the SSE for the testing data decreased significantly. Thus, by

paying a price in terms of how well the regression model fits the training data, we have

obtained a model with significantly improved ability to predict the testing dataset. For

comparison with the earlier methods, we graph the residuals and the model parameters

once again with the plot_residuals_and_coeff function. The result is shown in Figure 15- 3.

In the rightmost panel of this figure, we see that the coefficient profile is significantly

different from those shown in Figure 15-1 and Figure 15-2, and the coefficient vector

produced with the LASSO regression contains mostly zeros. This is a suitable method for

the current data because in the beginning, when we generated the dataset, we choose

50 features out of which only 10 are informative. If we suspect that we might have a large

number of features that might not contribute much in the regression model, using the L1

regularization of the LASSO regression can thus be a good approach to try.

In [33]: fig, ax = plot_residuals_and_coeff(resid_train, resid_test,

model.coef_)

Figure 15-3. The residual between the LASSO-regularized regression model and
the training data (left), the model and the test data (middle), and the values of the
coefficients for the 50 features (right)

The values of α that we used in the two previous examples using Ridge and LASSO

regression were chosen arbitrarily. The most suitable value of α is problem dependent,

and for every new problem, we need to find a suitable value using trial and error. The

scikit-learn library provides methods for assisting this process, as we will see in the

ChApTer 15 MAChine LeArning

525

following text, but before we explore those methods, it is instructive to look at how the

regression model parameters and the SSE for the training and testing datasets depend

on the value of α for a specific problem. Here we focus on LASSO regression, since it was

seen to work well for the current problem, and we repeatedly solve the same problem

using different values for the regularization strength parameter α while storing the values

of the coefficients and SSE values in NumPy arrays.

We begin by creating the required NumPy arrays. We use np.logspace to create a

range of α values that span several orders of magnitude:

In [34]: alphas = np.logspace(-4, 2, 100)

In [35]: coeffs = np.zeros((len(alphas), X_train.shape[1]))

In [36]: sse_train = np.zeros_like(alphas)

In [37]: sse_test = np.zeros_like(alphas)

Next we loop through the α values and perform the LASSO regression for each value:

In [38]: for n, alpha in enumerate(alphas):

 ...: model = linear_model.Lasso(alpha=alpha)

 ...: model.fit(X_train, y_train)

 ...: coeffs[n, :] = model.coef_

 ...: sse_train[n] = sse(y_train - model.predict(X_train))

 ...: sse_test[n] = sse(y_test - model.predict(X_test))

Finally, we plot the coefficients and the SSE for the training and testing datasets

using Matplotlib. The result is shown in Figure 15-4. We can see in the left panel of

this figure that a large number coefficients are nonzero for very small values of α. This

corresponds to the overfitting regime. We can also see that when α is increased above a

certain threshold, many of the coefficients collapse to zero, and only a few coefficients

remain nonzero. In the right panel of the figure, we see that while the SSE for the training

set is steadily increasing with increasing α, there is also a sharp drop in the SSE for the

testing dataset. This is the sought-after effect in LASSO regression. However, for too large

values of α, all coefficients converge to zero and the SSEs for both the training and testing

datasets become large. Therefore, there is an optimal region of α that prevents overfitting

and improves the model’s ability to predict unseen data. While these observations are

not universally true, a similar pattern can be seen for many problems.

ChApTer 15 MAChine LeArning

526

In [39]: fig, axes = plt.subplots(1, 2, figsize=(12, 4), sharex=True)

 ...: for n in range(coeffs.shape[1]):

 ...: axes[0].plot(np.log10(alphas), coeffs[:, n], color='k', lw=0.5)

 ...:

 ...: axes[1].semilogy(np.log10(alphas), sse_train, label="train")

 ...: axes[1].semilogy(np.log10(alphas), sse_test, label="test")

 ...: axes[1].legend(loc=0)

 ...:

 ...: axes[0].set_xlabel(r"${\log_{10}}\alpha$", fontsize=18)

 ...: axes[0].set_ylabel(r"coefficients", fontsize=18)

 ...: axes[1].set_xlabel(r"${\log_{10}}\alpha$", fontsize=18)

 ...: axes[1].set_ylabel(r"sse", fontsize=18)

The process of testing a regularized regression with several values of α can be carried

out automatically using, for example, the RidgeCV and LassoCV classes. These variants

of the Ridge and LASSO regression internally perform a search for the optimal α using

a cross-validation approach. By default, a k-fold cross-validation with k = 3 is used,

although this can be changed using the cv argument to these classes. Because of the

built-in cross-validation, we do not need to explicitly divide the dataset into training and

testing datasets, as we have done previously.

To use the LASSO method with an automatically chosen α, we simply create an

instance of LassoCV and invoke its fit method:

Figure 15-4. The coefficients (left) and the sum of squared errors (SSEs) for the
training and testing datasets (right), for LASSO regression as a function of the
logarithm of the regularization strength parameter α

ChApTer 15 MAChine LeArning

527

In [40]: model = linear_model.LassoCV()

In [41]: model.fit(X_all, y_all)

Out[41]: LassoCV(alphas=None, copy_X=True, cv=None, eps=0.001,

 fit_intercept=True, max_iter=1000, n_alphas=100, n_jobs=1,

normalize=False, positive=False, precompute='auto',

random_state=None, selection='cyclic', tol=0.0001,

verbose=False)

The value of regularization strength parameter α selected through the cross-

validation search is accessible through the alpha_ attribute:

In [42]: model.alpha_

Out[42]: 0.13118477495069433

We note that the suggested value of α agrees reasonably well with what we might

have guessed from Figure 15-4. For comparison with the previous method, we also

compute the SSE for the training and testing datasets (although both were used for

training in the call to LassoCV.fit) and graph the SSE values together with the model

parameters, as shown in Figure 15-5. By using the cross-validated LASSO method, we

obtain a model that predicts both the training and testing datasets with relatively high

accuracy, and we are no longer as likely to suffer from the problem of overfitting, in spite

of having few samples compared to the number of features2.

In [43]: resid_train = y_train - model.predict(X_train)

 ...: sse_train = sse(resid_train)

 ...: sse_train

Out[43]: 66.900068715063625

In [44]: resid_test = y_test - model.predict(X_test)

 ...: sse_test = sse(resid_test)

 ...: sse_test

Out[44]: 966.39293785448456

In [45]: fig, ax = plot_residuals_and_coeff(resid_train, resid_test,

model.coef_)

2 However, note that we can never be sure that a machine-learning application does not suffer
from overfitting before we see how the application performs on new observations, and a
repeated reevaluation of the application on a regular basis is a good practice.

ChApTer 15 MAChine LeArning

528

Finally, yet another type of popular regularized regression, which combines

the L1 and L2 regularization of the LASSO and Ridge methods, is known as

elastic-net regularization. The minimization objective function for this method is

minb b ar b a r bX y- + + -(){ }2

2

1 2

2
1 , where the parameter ρ (l1_ratio in scikit-learn)

determines the relative weight of the L1 and L2 penalties and thus how much the

method behaves like the LASSO and Ridge methods. In scikit-learn, we can perform an

elastic-net regression using the ElasticNet class, to which we can give explicit values of

the α (alpha) and ρ (l1_ratio) parameters, or the cross-validated version ElasticNetCV,

which automatically finds suitable values of the α and ρ parameters:

In [46]: model = linear_model.ElasticNetCV()

In [47]: model.fit(X_train, y_train)

Out[47]: ElasticNetCV(alphas=None, copy_X=True, cv=None, eps=0.001,

fit_intercept=True, l1_ratio=0.5, max_iter=1000,

n_alphas=100, n_jobs=1, normalize=False,

positive=False, precompute='auto', random_state=None,

selection='cyclic', tol=0.0001, verbose=0)

The value of regularization parameters α and ρ suggested by the cross- validation

search is available through the alpha_ and l1_ratio attributes:

In [48]: model.alpha_

Out[48]: 0.13118477495069433

In [49]: model.l1_ratio

Out[49]: 0.5

Figure 15-5. The residuals of the LASSO-regularized regression model with cross-
validation for the training data (left) and the testing data (middle). The values of
the coefficients for the 50 features are also shown (right).

ChApTer 15 MAChine LeArning

529

For comparison with the previous method, we once again compute the SSE and plot

the model coefficients, as shown in Figure 15-6. As expected with ρ = 0.5, the result has

characteristics of both LASSO regression (favoring a sparse solution vector with only

a few dominating elements) and Ridge regression (suppressing the magnitude of the

coefficients).

In [50]: resid_train = y_train - model.predict(X_train)

 ...: sse_train = sse(resid_train)

 ...: sse_train

Out[50]: 2183.8391729391255

In [51]: resid_test = y_test - model.predict(X_test)

 ...: sse_test = sse(resid_test)

 ...: sse_test

Out[51]: 2650.0504463382508

In [52]: fig, ax = plot_residuals_and_coeff(resid_train, resid_test,

model.coef_)

 Classification
Like regression, classification is a central topic in machine learning. In Chapter 14, about

statistical modeling, we already saw examples of classification, where we used a logistic

regression model to classify observations into discrete categories. Logistic regression

is also used in machine learning for the same task, but there are also a wide variety of

alternative algorithms for classification, such as nearest neighbor methods, support

vector machines (SVM), decision trees, and Random Forest methods. The scikit-learn

Figure 15-6. The residuals of the elastic-net regularized regression model with
cross-validation for the training data (left) and the testing data (middle). The
values of the coefficients for the 50 features are also shown (right).

ChApTer 15 MAChine LeArning

530

library provides a convenient unified API that allows all these different methods to be

used interchangeably for any given classification problems.

To see how we can train a classification model with a training dataset and test

its performance on a testing datasets, let’s once again look at the Iris dataset, which

provides features for Iris flower samples (sepal and petal width and height), together

with the species of each sample (setosa, versicolor, and virginica). The Iris dataset

that is included in the scikit-learn library (as well as in the statsmodels library) is a

classic dataset that is commonly used for testing and demonstrating machine-learning

algorithms and statistical models. Here we revisit the problem of classifying the species

of a flower sample given its sepal and petal width and height (see also Chapter 14). First,

to load the dataset, we call the load_iris function in the datasets module. The result is

a container object (called a Bunch object in the scikit-learn jargon) that contains the data

as well as metadata.

In [53]: iris = datasets.load_iris()

In [54]: type(iris)

Out[54]: sklearn.datasets.base.Bunch

For example, descriptive names of the features and target classes are available

through the feature_names and target_names attributes:

In [55]: iris.target_names

Out[55]: array(['setosa', 'versicolor', 'virginica'], dtype='|S10')

In [56]: iris.feature_names

Out[56]: ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)',

'petal width (cm)']

and the actual dataset is available through the data and target attributes:

In [57]: iris.data.shape

Out[57]: (150, 4)

In [58]: iris.target.shape

Out[58]: (150,)

We begin by splitting the dataset into a training and testing part, using the train_

test_split function. There we chose to include 70% of the samples in the training set,

leaving the remaining 30% for testing and validation:

ChApTer 15 MAChine LeArning

531

In [59]: X_train, X_test, y_train, y_test = \

 ...: model_selection.train_test_split(iris.data, iris.target,

train_size=0.7)

The first step in training a classifier and performing classification tasks using scikit-

learn is to create a classifier instance. There are, as mentioned in the preceding text and

demonstrated in the following, numerous classifiers available. We begin with a logistic

regression classifier, which is provided by the LogisticRegression class in the linear_

model module:

In [60]: classifier = linear_model.LogisticRegression()

The training of the classifier is carried out by calling the fit method of the classifier

instance. The arguments are the design matrices for the feature and target variables.

Here we use the training part of the Iris dataset arrays that was created for us when

loading the dataset using the load_iris function. If the design matrices are not

already available, we can use the same techniques that we used in Chapter 14: that is,

constructing the matrices by hand using NumPy functions or using the Patsy library to

automatically construct the appropriate arrays. We can also use the feature extraction

utilities in the feature_extraction module in the scikit-learn library.

In [61]: classifier.fit(X_train, y_train)

Out[61]: LogisticRegression(C=1.0, class_weight=None, dual=False,

fit_intercept=True, intercept_scaling=1,

max_iter=100, multi_class='ovr', penalty='l2',

random_state=None, solver='liblinear',

tol=0.0001, verbose=0)

Once the classifier has been trained, we can immediately start using it for predicting

the class for new observations using the predict method. Here we apply this method to

predict the class for the samples assigned to the testing dataset so that we can compare

the predictions with the actual values.

In [62]: y_test_pred = classifier.predict(X_test)

The sklearn.metrics module contains helper functions for assisting in the analysis

of the performance and accuracy of classifiers. For example, the classification_

report function, which takes arrays of actual values and the predicted values, returns

a tabular summary of the informative classification metrics related to the rate of false

negatives and false positives:

ChApTer 15 MAChine LeArning

532

In [63]: print(metrics.classification_report(y_test, y_test_pred))

 precision recall f1-score support

 0 1.00 1.00 1.00 13

 1 1.00 0.92 0.96 13

 2 0.95 1.00 0.97 19

avg / total 0.98 0.98 0.98 45

The so-called confusion matrix, which can be computed using the confusion_

matrix function, also presents useful classification metrics in a compact form: The

diagonals correspond to the number of samples that are correctly classified for each level

of the category variable, and the off-diagonal elements are the number of incorrectly

classified samples. More specifically, the element Cij of the confusion matrix C is the

number of samples of category i that were categorized as j. For the current data, we

obtain the confusion matrix:

In [64]: metrics.confusion_matrix(y_test, y_test_pred)

Out[64]: array([[13 0 0]

 [0 12 1]

 [0 0 19]])

This confusion matrix shows that all elements in the first and third class were

classified correctly, but one element of the second class was mistakenly classified as

class three. Note that the elements in each row of the confusion matrix sum up to the

total number of samples for the corresponding category. In this testing sample, we have

13 elements each in the first and second class and 19 elements of the third class, as also

can be seen by counting unique values in the y_test array:

In [65]: np.bincount(y_test)

Out[65]: array([13, 13, 19])

To perform a classification using a different classifier algorithm, all we need to do is

to create an instance of the corresponding classifier class. For example, to use a decision

tree instead of logistic regression, we can use the DesicisionTreeClassifier class from

the sklearn.tree module. Training the classifier and predicting new observations is

done in exactly the same way for all classifiers:

In [66]: classifier = tree.DecisionTreeClassifier()

 ...: classifier.fit(X_train, y_train)

 ...: y_test_pred = classifier.predict(X_test)

ChApTer 15 MAChine LeArning

533

 ...: metrics.confusion_matrix(y_test, y_test_pred)

Out[66]: array([[13, 0, 0],

 [0, 12, 1],

 [0, 1, 18]])

With the decision tree classifier, the resulting confusion matrix is somewhat different,

corresponding to one additional misclassification in the testing dataset.

Other popular classifiers that are available in scikit-learn include the nearest

neighbor classifier KNeighborsClassifier from the sklearn.neighbors module, the

support vector classifier (SVC) from the sklearn.svm module, and the Random Forest

classifier RandomForestClassifier from the sklearn.ensemble module. Since they

all have the same usage pattern, we can programmatically apply a series of classifiers

on the same problem and compare their performance (on this particular problem), for

example, as a function of the training and testing sample sizes. To this end, we create a

NumPy array with training size ratios, ranging from 10% to 90%:

In [67]: train_size_vec = np.linspace(0.1, 0.9, 30)

Next we create a list of classifier classes that we wish to apply:

In [68]: classifiers = [tree.DecisionTreeClassifier,

 ...: neighbors.KNeighborsClassifier,

 ...: svm.SVC,

 ...: ensemble.RandomForestClassifier]

and an array in which we can store the diagonals of the confusion matrix as a function of

training size ratio and classifier:

In [69]: cm_diags = np.zeros((3, len(train_size_vec), len(classifiers)),

dtype=float)

Finally, we loop over each training size ratio and classifier, and for each combination,

we train the classifier, predict the values of the testing data, compute the confusion

matrix, and store its diagonal divided by the ideal values in the cm_diags array:

In [70]: for n, train_size in enumerate(train_size_vec):

 ...: X_train, X_test, y_train, y_test = \

 ...: model_selection.train_test_split(iris.data, iris.target,

 ...: train_size=train_size)

ChApTer 15 MAChine LeArning

534

 ...: for m, Classifier in enumerate(classifiers):

 ...: classifier = Classifier()

 ...: classifier.fit(X_train, y_train)

 ...: y_test_p = classifier.predict(X_test)

 ...: cm_diags[:, n, m] = metrics.confusion_matrix(y_test,

y_test_p).diagonal()

 ...: cm_diags[:, n, m] /= np.bincount(y_test)

The resulting classification accuracy for each classifier, as a function of training size

ratio, is plotted and shown in Figure 15-7.

In [71]: fig, axes = plt.subplots(1, len(classifiers), figsize=(12, 3))

 ...: for m, Classifier in enumerate(classifiers):

 ...: axes[m].plot(train_size_vec, cm_diags[2, :, m], label=iris.

target_names[2])

 ...: axes[m].plot(train_size_vec, cm_diags[1, :, m], label=iris.

target_names[1])

 ...: axes[m].plot(train_size_vec, cm_diags[0, :, m], label=iris.

target_names[0])

 ...: axes[m].set_title(type(Classifier()).__name__)

 ...: axes[m].set_ylim(0, 1.1)

 ...: axes[m].set_ylabel("classification accuracy")

 ...: axes[m].set_xlabel("training size ratio")

 ...: axes[m].legend(loc=4)

Figure 15-7. Comparison of classification accuracy of four different classifiers

ChApTer 15 MAChine LeArning

535

In Figure 15-7, we see that classification error is different for each model, but for this

particular example, they have comparable performance. Which classifier is best depends

on the problem at hand, and it is difficult to give any definite answer to which one is

more suitable in general. Fortunately, it is easy to switch between different classifiers

in scikit-learn and therefore effortless to try a few different classifiers for a given

classification problem. In addition to the classification accuracy, another important

aspect is the computational performance and scaling to larger problems. For large

classification problems, with many features, decision tree methods such as Randomized

Forest are often a good starting point.

 Clustering
In the two previous sections, we explored regression and classification, which both are

examples of supervised learning, since the response variables are given in the dataset.

Clustering is a different type of problem that also is an important topic in machine

learning. It can be thought of as a classification problem where the classes are unknown,

which makes clustering an example of unsupervised learning. The training dataset for a

clustering algorithm contains only the feature variables, and the output of the algorithm

is an array of integers that assign each sample to a cluster (or class). This output array

corresponds to the response variable in a supervised classification problem.

The scikit-learn library implements a large number of clustering algorithms that

are suitable for different types of clustering problems and for different types of datasets.

Popular general-purpose clustering methods include the K-means algorithm, which

groups the samples into clusters such that the within-group sum of square deviation

from the group center is minimized, and the mean-shift algorithm, which clusters the

samples by fitting the data to density functions (e.g., Gaussian functions).

In scikit-learn, the sklearn.cluster module contains several clustering algorithms,

including the K-means algorithm KMeans and the mean-shift algorithm MeanShift,

just to mention a few. To perform a clustering task with one of these methods, we first

initialize an instance of the corresponding class and train it with a feature-only dataset

using the fit method, and we finally obtain the result of the clustering by calling the

predict method. Many clustering algorithms require the number of clusters as an

input parameter, which we can specify using the n_clusters parameter when the class

instance is created.

ChApTer 15 MAChine LeArning

536

As an example of clustering, consider again the Iris dataset that we used in the

previous section, but now we will not use the response variable, which was used in

supervised classification, but instead we attempt to automatically discover a suitable

clustering of the samples using the K-means method. We begin by loading the Iris data,

as before, and store the feature and target data in the variables X and y, respectively:

In [72]: X, y = iris.data, iris.target

With the K-means clustering method, we need to specify how many clusters we want

in the output. The most suitable number of clusters is not always obvious in advance,

and trying clustering with a few different numbers of clusters is often necessary.

However, here we know that the data corresponds to three different species of Iris

flowers, so we use three clusters. To perform the clustering, we create an instance of

Kmeans class, using the n_clusters argument to set the number of clusters.

In [73]: n_clusters = 3

In [74]: clustering = cluster.KMeans(n_clusters=n_clusters)

To actually perform the computation, we call the fit method with the Iris feature

matrix as an argument:

In [75]: clustering.fit(X)

Out[75]: KMeans(copy_x=True, init='k-means++', max_iter=300, n_clusters=3,

n_init=10, n_jobs=1, precompute_distances='auto',

random_state=None, tol=0.0001, verbose=0)

The clustering result is available through the predict method, to which we also pass

a feature dataset that optionally can contain features of new samples. However, not all

the clustering methods implemented in scikit-learn support predicting clusters for a

new sample. In this case, the predict method is not available, and we need to use the

fit_predict method instead. Here, we use the predict method with the training feature

dataset to obtain the clustering result:

In [76]: y_pred = clustering.predict(X)

ChApTer 15 MAChine LeArning

537

The result is an integer array of the same length and the number of samples in

the training dataset. The elements in the array indicate which group (from 0 up to n_

samples- 1) each sample is assigned to. Since the resulting array y_pred is long, we only

display every eighth element in the array using the NumPy stride indexing ::8.

In [77]: y_pred[::8]

Out[77]: array([1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0],

dtype=int32)

We can compare the obtained clustering with the supervised classification of the Iris

samples:

In [78]: y[::8]

Out[78]: array([0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2])

There seems to be a good correlation between the two, but the output of the

clustering has assigned different integer values to the groups than what was used in the

target vector in the supervised classification. To be able to compare the two arrays with

metrics such as the confusion_matrix function, we first need to rename the elements so

that the same integer values are used for the same group. We can do this operation with

NumPy array manipulations:

In [79]: idx_0, idx_1, idx_2 = (np.where(y_pred == n) for n in range(3))

In [80]: y_pred[idx_0], y_pred[idx_1], y_pred[idx_2] = 2, 0, 1

In [81]: y_pred[::8]

Out[81]: array([0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2],

dtype=int32)

Now that we represent the corresponding groups with the same integers, we can

summarize the overlaps between the supervised and unsupervised classification of the

Iris samples using the confusion_matrix function:

In [82]: metrics.confusion_matrix(y, y_pred)

Out[82]: array([[50, 0, 0],

 [0, 48, 2],

 [0, 14, 36]])

ChApTer 15 MAChine LeArning

538

This confusion matrix indicates that the clustering algorithm was able to correctly

identify all samples corresponding to the first species as a group of its own, but due to

the overlapping samples in the second and third groups, those could not be completely

resolved as different clusters. For example, 2 elements from group one were assigned to

group two, and 14 elements from group two were assigned to group one.

The result of the clustering can also be visualized, for example, by plotting scatter

plots for each pair of features, as we do in the following. We loop over each pair of

features and each cluster and plot a scatter graph for each cluster using different colors

(orange, blue, and green, displayed as different shades of gray in Figure 15-8), and we

also draw a red square around each sample for which the clustering does not agree with

the supervised classification. The result is shown in Figure 15-8.

In [83]: N = X.shape[1]

 ...: fig, axes = plt.subplots(N, N, figsize=(12, 12), sharex=True,

sharey=True)

 ...: colors = ["coral", "blue", "green"]

 ...: markers = ["^", "v", "o"]

 ...: for m in range(N):

 ...: for n in range(N):

 ...: for p in range(n_clusters):

 ...: mask = y_pred == p

 ...: axes[m, n].scatter(X[:, m][mask], X[:, n][mask], s=30,

 ...: marker=markers[p], color=colors[p],

alpha=0.25)

 ...: for idx in np.where(y != y_pred):

 ...: axes[m, n].scatter(X[idx, m], X[idx, n], s=30,

 ...: marker="s", edgecolor="red",

facecolor=(1,1,1,0))

 ...: axes[N-1, m].set_xlabel(iris.feature_names[m], fontsize=16)

 ...: axes[m, 0].set_ylabel(iris.feature_names[m], fontsize=16)

ChApTer 15 MAChine LeArning

539

The result of the clustering of the Iris samples in Figure 15-8 shows that the

clustering does a remarkably good job at recognizing which samples belong to distinct

groups. Of course, because of the overlap in the features for classes shown in blue (dark

gray) and green (medium gray) in the graph, we cannot expect that any unsupervised

clustering algorithm can fully resolve the various groups in the dataset, and some

deviation from the supervised response variable is therefore expected.

Figure 15-8. The result of clustering, using the K-means algorithm, of the Iris
dataset features

ChApTer 15 MAChine LeArning

540

 Summary
In this chapter we have given an introduction to machine learning using Python. We

began with a brief review and summary of the subject and its terminology and continued

with introducing the Python library scikit-learn which we applied in three different

types of problems that are fundamental topics in machine learning: First we revisited

regression, from the point of view of machine learning, followed by classification,

and finally we considered an example of clustering. The first two of these topics are

examples of supervised machine learning, while the clustering method is an example

of unsupervised machine learning. Beyond what we have been able to cover here,

there are many more methods and problem domains covered by the broad subject of

machine learning. For example, an important part of machine learning that we have not

touched upon in this brief introduction is text-based problems. The scikit-learn contains

an extensive module (sklearn.text) with tools and method for processing text-based

problems, and the Natural Language Toolkit (www.nltk.org) is a powerful platform for

working with and processing data in the form of human language text. Image processing

and computer vision is another prominent problem domain in machine learning, which,

for example, can be treated with OpenCV (http://opencv.org) and its Python bindings.

Other examples of big topics in machine learning are neural networks and deep learning,

which have received much attention in recent years. The readers who are interested in

such methods are recommended to explore the TensorFlow (www.tensorflow.org) and

Keras libraries (http://keras.io).

 Further Reading
Machine learning is a part of the computer science field of artificial intelligence, which

is a broad field with numerous techniques, methods, and applications. In this chapter,

we have only been able to show examples of a few basic machine-learning methods,

which nonetheless can be useful in many practical applications. For a more thorough

introduction to machine learning, see T. Hastie (2013), and for introductions to machine

learning specific to the Python environment, see, for example, R. Garreta (2013),

Hackeling (2014), and L. Pedro Coelho (2015).

ChApTer 15 MAChine LeArning

http://www.nltk.org
http://opencv.org
http://www.tensorflow.org
http://keras.io

541

 References
Hackeling, G. (2014). Mastering Machine Learning With scikit-learn. Mumbai: Packt.

L. Pedro Coelho, W. R. (2015). Building Machine Learning Systems with Python.

Mumbai: Packt.

R. Garreta, G. M. (2013). Learning scikit-learn: Machine Learning in Python.

Mumbai: Packt.

T. Hastie, R. T. (2013). The Elements of Statistical Learning: Data Mining, Inference,

and Prediction. New York: Springer.

ChApTer 15 MAChine LeArning

543
© Robert Johansson 2019
R. Johansson, Numerical Python, https://doi.org/10.1007/978-1-4842-4246-9_16

CHAPTER 16

Bayesian Statistics
In this chapter, we explore an alternative interpretation of statistics – Bayesian statistics –

and the methods associated with this interpretation. Bayesian statistics, in contrast to

the frequentist’s statistics that we used in Chapter 13 and Chapter 14, treats probability

as a degree of belief rather than as a measure of proportions of observed outcomes.

This different point of view gives rise to distinct statistical methods that we can use in

problem-solving. While it is generally true that statistical problems can in principle be

solved using either frequentist or Bayesian statistics, there are practical differences that

make these two approaches to statistics suitable for different types of problems.

Bayesian statistics is based on Bayes’ theorem, which relates conditional and

unconditional probabilities. Bayes’ theorem is a fundamental result in probability

theory, and it applies to both the frequentist’s and the Bayesian interpretation of

statistics. In the context of Bayesian inference, unconditional probabilities are used

to describe the prior knowledge of a system, and Bayes’ theorem provides a rule for

updating this knowledge after making new observations. The updated knowledge is

described by a conditional probability, which is conditioned on the observed data.

The initial knowledge of a system is described by the prior probability distribution, and

the updated knowledge, conditioned on the observed data, is the posterior probability

distribution. In problem- solving with Bayesian statistics, the posterior probability

distribution is the unknown quantity that we seek, and from it we can compute

expectation values and other statistical quantities for random variables of interest.

Although Bayes’ theorem describes how to compute the posterior distribution from

the prior distribution, for most realistic problems, the calculations involve evaluating

high-dimensional integrals that can be prohibitively difficult to compute, both

analytically and numerically. This has until recently hindered Bayesian statistics from

being widely used in practice. However, with the advent of computational statistics,

and the development of efficient simulation methods that allows us to sample directly

from the posterior distributions (rather than directly compute it), Bayesian methods

544

are becoming increasingly popular. The methods that enable us to sample from the

posterior distribution are, first and foremost, the so-called Markov chain Monte

Carlo (MCMC) methods. Several alternative implementations of MCMC methods are

available. For instance, traditional MCMC methods include Gibbs sampling and the

Metropolis-Hastings algorithm, and more recent methods include Hamiltonian and No-

U-Turn algorithms. In this chapter we explore how to use several of these methods.

Statistical problem-solving with Bayesian inference methods is sometimes known as

probabilistic programming. The key steps in probabilistic programming are as follows:

(1) Create a statistical model. (2) Sample from the posterior

distribution for the quantity of interest using an MCMC method.

(3) Use the obtained posterior distribution to compute properties

of interest for the problem at hand and make inference decisions

based on the obtained results. In this chapter we explore how to

carry out these steps from within the Python environment, with

the help of the PyMC library.

PyMc The PyMC library, currently known as PyMC3, provides a framework
for doing probabilistic programming – that is, solving statistical problems using
simulation with Bayesian methods. At the time of writing, the latest official release
is version 3.4.1. For more information about the project, see the web page at
http://docs.pymc.io.

 Importing Modules
In this chapter we mainly work with the pymc3 library, which we import in the following

manner:

In [1]: import pymc3 as mc

We also require NumPy, Pandas, and Matplotlib for basic numerics, data analytics,

and plotting, respectively. These libraries are imported following the usual convention:

In [2]: import numpy as np

In [3]: import pandas as pd

In [4]: import matplotlib.pyplot as plt

ChAPTer 16 BAyesiAn sTATisTiCs

http://docs.pymc.io

545

For comparison to non-Bayesian statistics, we also use the stats module from SciPy,

the statsmodels library, and the Seaborn library for visualization:

In [5]: from scipy import stats

In [6]: import statsmodels.api as sm

In [7]: import statsmodels.formula.api as smf

In [8]: import seaborn as sns

 Introduction to Bayesian Statistics
The foundation of Bayesian statistics is Bayes’ theorem, which gives a relation between

unconditioned and conditional probabilities of two events A and B:

 P A B P B P B A P A| |() () = () (),

where P(A) and P(B) are the unconditional probabilities of event A and B and where

P(A| B) is the conditional probability of event A given that event B is true and P(B| A) is

the conditional probability of B given that A is true. Both sides of the preceding equation

are equal to the probability that both A and B are true: P(A ∩ B). In other words, Bayes’

rule states the probability that both A and B are equal to the probability of A times the

probability of B given that A is true, P(A)P(B| A) or, equivalently, the probability of B

times the probability of A given that B is true: P(B)P(A| B).

In the context of Bayesian inference, Bayes’ rule is typically employed for the situation

when we have a prior belief about the probability of an event A, represented by the

unconditional probability P(A), and wish to update this belief after having observed an

event B. In this language, the updated belief is represented by the conditional probability

of A given the observation B: P(A| B), which we can compute using Bayes’ rule:

P A B

P B A P A

P B
|

|() = () ()
()

.

Each factor in this expression has a distinct interpretation and a name: P(A) is

the prior probability of event A, and P(A| B) is the posterior probability of A given the

observation B. P(B| A) is the likelihood of observing B given that A is true, and the

probability of observing B regardless of A, P(B), is known as model evidence and can be

considered as a normalization constant (with respect to A).

ChAPTer 16 BAyesiAn sTATisTiCs

546

In statistical modeling we are typically interested in a set of random variables X

that are characterized by probability distributions with certain parameters θ. After

collecting data for the process that we are interested in modeling, we wish to infer the

values of the model parameters from the data. In the frequentist’s statistical approach,

we can maximize the likelihood function given the observed data and obtain estimators

for the model parameters. The Bayesian approach is to consider the unknown model

parameters θ as random variables in their own right and use Bayes’ rule to derive

probability distributions for the model parameters θ. If we denote the observed data as

x, we can express the probability distribution for θ given the observed data x using Bayes’

rule as

p x

p x p

p x

p x p

p x p d
q

q q q q
q q q

|
| |

|
() = () ()

()
=

() ()
ò () ()

.

The second equality in this equation follows from the law of total probability,

p(x) = ∫ p(x| θ)p(θ)dθ. Once we have computed the posterior probability distribution

p(θ| x) for the model parameters, we can, for example, compute expectation values of

the model parameters and obtain a result that is similar to the estimators that we can

compute in a frequentist’s approach. In addition, when we have an estimate of the

full probability distribution for p(θ| x), we can also compute other quantities, such as

credibility intervals, and marginal distributions for certain model parameters in the case

when θ is multivariate. For example, if we have two model parameters, θ = (θ1, θ2), but

are interested only in θ1, we can obtain the marginal posterior probability distribution

p(θ1| x) by integrating the joint probability distribution p(θ1, θ2| x) using the expression

obtained from Bayes’ theorem:

p x p x d

p x p d

p x p
q q q q

q q q q q
q q1 1 2 2

1 2 1 2 2

1 2

| |
| ,

|
() = ò () =

ò () ()
ò ò ()

,
,

, qq q q q1 2 1 2,()d d
.

Here note that the final expression contains integrals over the known likelihood

function p(x| θ1,θ2) and the prior distribution p(θ1, θ2), so we do not need to know

the joint probability distribution p(θ1,θ2| x) to compute the marginal probability

distribution p(θ1| x). This approach provides a powerful and generic methodology for

computing probability distributions for model parameters and successively updating

the distributions once new data becomes available. However, directly computing p(θ| x),

or the marginal distributions thereof, requires that we can write down the likelihood

ChAPTer 16 BAyesiAn sTATisTiCs

547

function p(x| θ) and the prior distribution p(θ) and that we can evaluate the resulting

integrals. For many simple but important problems, it is possible to analytically compute

these integrals and find the exact closed-form expressions for the posterior distribution.

Textbooks, such as Gelman (2013), provide numerous examples of problems that

are exactly solvable in this way. However, for more complicated models, with prior

distributions and likelihood functions for which the resulting integrals are not easily

evaluated, or for multivariate statistical models, for which the resulting integrals can be

high-dimensional, both exact and numerical evaluation may be unfeasible.

It is primarily for models that cannot be solved with exact methods that we can

benefit from using simulation methods, such as Markov chain Monte Carlo, which

allows us to sample the posterior probability distribution for the model parameters and

thereby construct an approximation of the joint or marginal posterior distributions, or

directly evaluating integrals, such as expectation values. Another important advantage

of simulation- based methods is that the modeling process can be automated. Here

we exclusively focus on Bayesian statistical modeling using Monte Carlo simulation

methods. For a thorough review of the theory, and many examples of analytically

solvable problems, see the references given at the end of this chapter. In the remaining

part of this chapter, we explore the definition of statistical models and sampling of their

posterior distribution with the PyMC library as a probabilistic programming framework.

Before we proceed with computational Bayesian statistics, it is worth taking a

moment to summarize the key differences between the Bayesian approach and the

classical frequentist’s approach that we used in earlier chapters: In both approaches

to statistical modeling, we formulate the models in terms of random variables.

A key step in the definition of a statistical model is to make assumptions about the

probability distributions for the random variables that are defined in the model. In

parametric methods, each probability distribution is characterized by a small number

of parameters. In the frequentist’s approach, those model parameters have some

specific true values, and observed data is interpreted as random samples from the

true distributions. In other words, the model parameters are assumed to be fixed, and

the data is assumed to be stochastic. The Bayesian approach takes the opposite point

of view: The data is interpreted as fixed, and the model parameters are described as

random variables. Starting from a prior distribution for the model parameters, we

can then update the distribution to account for observed data and in the end obtain

a probability distribution for the relevant model parameters, conditioned on the

observed data.

ChAPTer 16 BAyesiAn sTATisTiCs

548

 Model Definition
A statistical model is defined in terms of a set of random variables. The random variables

in a given model can be independent or, more interestingly, dependent on each other.

The PyMC library provides classes for representing random variables for a large number

of probability distributions: For example, an instance of mc.Normal can be used to

represent a normal distributed random variable. Other examples are mc.Bernoulli for

representing discrete Bernoulli-distributed random variables, mc.Uniform for uniformly

distributed random variables, mc.Gamma for Gamma-distributed random variables, and

so on. For a complete list of available distributions, see dir(mc.distributions) and

the docstrings for each available distribution for information on how to use them. It

is also possible to define custom distributions using the mc.DensityDist class, which

takes a function that specifies the logarithm of the random variable’s probability density

function.

In Chapter 13 we saw that the SciPy stats module also contains classes for

representing random variables. Like the random variable classes in SciPy stats, we

can use the PyMC distributions to represent random variables with fixed parameters.

However, the essential feature of the PyMC random variables is that the distribution

parameters, such as the mean μ and variance σ2 for a random variable following the

normal distribution m s, 2() , can themselves be random variables. This allows us to

chain random variables in a model and to formulate models with a hierarchical structure

in the dependencies between random variables that occur in the model.

Let’s start with the simplest possible example. In PyMC, models are represented by

an instance of the class mc.Model, and random variables are added to a model using the

Python context syntax: Random variable instances that are created within the body of

a model context are automatically added to the model. Say that we are interested in a

model consisting of a single random variable that follows the normal distribution with

the fixed parameters μ = 4 and σ = 2. We first define the fixed model parameters and then

create an instance of mc.Model to represent our model.

In [9]: mu = 4.0

In [10]: sigma = 2.0

In [11]: model = mc.Model()

Next, we can attach random variables to the model by creating them within the

model context. Here, we create a random variable X within the model context, which is

activated using a with model statement:

ChAPTer 16 BAyesiAn sTATisTiCs

549

In [12]: with model:

 ...: mc.Normal('X', mu, tau=1/sigma**2)

All random variable classes in PyMC take as first argument the name of the variable.

In the case of mc.Normal, the second argument is the mean of the normal distribution,

and the third argument tau is the precision τ = 1/σ2, where σ2 is the variance.

Alternatively, we can use the sd keyword argument to specify the standard deviation

rather than the precision: mc.Normal('X', mu, sd=sigma).

We can inspect which random variables exist in a model using the vars attribute.

Here we have only one random variable in the model:

In [13]: model.vars

Out[13]: [X]

To sample from the random variables in the model, we use the mc.sample function,

which implements the MCMC algorithm. The mc.sample function accepts many

arguments, but at a minimum, we need to provide the number of samples as the first

argument and, as the second argument, a step class instance, which implements

an MCMC step. Optionally we can also provide a starting point as a dictionary with

parameter values from which the sampling is started, using the start keyword

argument. For the step method, here we use an instance of the Metropolis class, which

implements the Metropolis-Hastings step method for the MCMC sampler1. Note that we

execute all model-related code within the model context:

In [14]: start = dict(X=2)

In [15]: with model:

 ...: step = mc.Metropolis()

 ...: trace = mc.sample(10000, start=start, step=step)

[-----------------100%-----------------] 10000 of 10000 complete in 1.6 sec

With these steps, we have sampled 10000 values from the random variable defined

within the model, which in this simple case is only a normal distributed random

variable. To access the samples, we can use the get_values method of the trace object

returned by the mc.sample function:

In [16]: X = trace.get_values("X")

1 See also the Slice, HamiltonianMC, and NUTS samplers, which can be used more or less
interchangeably.

ChAPTer 16 BAyesiAn sTATisTiCs

550

The probability density function (PDF) for a normal distributed is, of course, known

analytically. Using SciPy stats module, we can access the PDF using the pdf method

of the norm class instance for comparing to the sampled random variable. The sampled

values and the true PDF for the present model are shown in Figure 16-1.

In [17]: x = np.linspace(-4, 12, 1000)

In [18]: y = stats.norm(mu, sigma).pdf(x)

In [19]: fig, ax = plt.subplots(figsize=(8, 3))

 ...: ax.plot(x, y, 'r', lw=2)

 ...: sns.distplot(X, ax=ax)

 ...: ax.set_xlim(-4, 12)

 ...: ax.set_xlabel("x")

 ...: ax.set_ylabel("Probability distribution")

With the mc.traceplot function, we can also visualize the MCMC random walk

that generated the samples, as shown in Figure 16-2. The mc.traceplot function

automatically plots both the kernel-density estimate and the sampling trace for every

random variable in the model.

In [20]: fig, axes = plt.subplots(1, 2, figsize=(8, 2.5), squeeze=False)

 ...: mc.traceplot(trace, ax=axes)

 ...: axes[0, 0].plot(x, y, 'r', lw=0.5)

Figure 16-1. The probability density function for the normal distributed random
variable (red/thick line) and a histogram from 10000 MCMC samples

ChAPTer 16 BAyesiAn sTATisTiCs

551

As a next step in building more complex statistical models, consider again a model

with a normal distributed random variable X ~ m s, 2() , but where parameters μ and σ

themselves are random variables. In PyMC, we can easily create dependent variables by

passing them as an argument when creating other random variables. For example, with

m ~ 3 1, () and s ~ , 0 1, () we can create the dependent random variable X using

the following model specification:

In [21]: model = mc.Model()

In [22]: with model:

 ...: mean = mc.Normal('mean', 3.0)

 ...: sigma = mc.HalfNormal('sigma', sd=1.0)

 ...: X = mc.Normal('X', mean, sd=sigma)

Here we have used the mc.HalfNormal to represent the random variable s ~ , 0 1, ()

and the mean and standard deviation arguments to the mc.Normal class for X are random

variable instances rather than fixed model parameters. As before we can inspect which

random variables a model contains using the vars attribute.

In [23]: model.vars

Out[23]: [mean, sigma_log__, X]

Note that here the pymc3 library represents the sigma variable with a log-transformed

variable sigma_log__, as a mean to handle the half-normal distribution. Nonetheless,

we can still directly access the sigma variable from the model, as will be shown in the

following text.

Figure 16-2. Left panel: the density kernel estimate (blue/thick line) of the
sampling trace and the normal probability distribution (red/thin line). Right
panel: the MCMC sampling trace

ChAPTer 16 BAyesiAn sTATisTiCs

552

When the complexity of the model increases, it may no longer be straightforward

to select a suitable starting point for the sampling process explicitly. The mc.find_MAP

function can be used to find the point in the parameter space that corresponds to the

maximum of the posterior distribution, which can serve as a good starting point for the

sampling process.

In [24]: with model:

 ...: start = mc.find_MAP()

In [25]: start

Out[25]: {'X': array(3.0), 'mean': array(3.0),

 'sigma': array(0.70710674), 'sigma_log__': array(-0.34657365)}

As before, once the model is specified, and a starting point is computed, we can

sample from the random variables in the model using the mc.sample function, for

example, using mc.Metropolis as an MCMC sampling step method:

In [26]: with model:

 ...: step = mc.Metropolis()

 ...: trace = mc.sample(100000, start=start, step=step)

[-----------------100%-----------------] 100000 of 100000 complete in 53.4

sec

For example, to obtain the sample trace for the sigma variable, we can use get_

values('sigma'). The result is a NumPy array that contains the sample values, and from

it, we can compute further statistics, such as its sample mean and standard deviation:

In [27]: trace.get_values('sigma').mean()

Out[27]: 0.80054476153369014

The same approach can be used to obtain the samples of X and compute statistics

from them:

In [28]: X = trace.get_values('X')

In [29]: X.mean()

Out[29]: 2.9993248663922092

In [30]: trace.get_values('X').std()

Out[30]: 1.4065656512676457

ChAPTer 16 BAyesiAn sTATisTiCs

553

The trace plot for the current model, created using the mc.traceplot, is shown in

Figure 16-3, where we have used the varnames argument to mc.traceplot to explicitly

select which random variables to plot.

In [31]: fig, axes = plt.subplots(3, 2, figsize=(8, 6), squeeze=False)

 ...: mc.traceplot(trace, varnames=['mean', 'sigma', 'X'], ax=axes)

 Sampling Posterior Distributions
So far we have defined models and sampled from models that only contain random

variables without any references to observed data. In the context of Bayesian models,

these types of random variables represent the prior distributions of the unknown model

parameters. In the previous examples, we have therefore used the MCMC method

Figure 16-3. Kernel density estimates (left) and MCMC random sampling trace
(right), for the three random variables: mean, sigma, and X

ChAPTer 16 BAyesiAn sTATisTiCs

554

to sample from the prior distributions of the model. However, the real application of

the MCMC algorithm is to sample from the posterior distribution, which represents

the probability distribution for the model variables after having updated the prior

distribution to account for the effect of observations.

To condition the model on observed data, all we need to do is to add the data using

the observed keyword argument when the corresponding random variable is created

within the model: For example, mc.Normal('X', mean, 1/sigma**2, observed=data)

indicates that the random variable X has been observed to take the values in the

array data. Adding observed random variables to a model automatically results in

that subsequent sampling using mc.sample samples the posterior distribution of the

model, appropriately conditioned on the observed data according to Bayes’ rule and

the likelihood function implied by the distribution selected for the observed data. For

example, consider the model we used in the preceding text, with a normal distributed

random variable X whose mean and standard deviation are random variables. Here we

simulate the observations for X by drawing samples from a normally distributed random

variable with μ = 2.5 and σ = 1.5 using the norm class from the SciPy stats module:

In [32]: mu = 2.5

In [33]: s = 1.5

In [34]: data = stats.norm(mu, s).rvs(100)

The data is feed into the model by setting the keyword argument observed=data

when the observed variable is created and added to the model:

In [35]: with mc.Model() as model:

 ...: mean = mc.Normal('mean', 4.0, 1.0) # true 2.5

 ...: sigma = mc.HalfNormal('sigma', 3.0 * np.sqrt(np.pi/2))

true 1.5

 ...: X = mc.Normal('X', mean, 1/sigma**2, observed=data)

A consequence of providing observed data for X is that it is no longer considered as

a random variable in the model. This can be seen from inspecting the model using the

vars attribute, where X is now absent:

In [36]: model.vars

Out[36]: [mean, sigma_log_]

ChAPTer 16 BAyesiAn sTATisTiCs

555

Instead, in this case, X is a deterministic variable that is used to construct the

likelihood function that relates the priors, represented by mean and sigma, to the

posterior distribution for these random variables. Like before, we can find a suitable

starting point for the sampling process using the mc.find_MAP function. After creating

an MCMC step instance, we can sample the posterior distribution for the model using

mc.sample:

In [37]: with model:

 ...: start = mc.find_MAP()

 ...: step = mc.Metropolis()

 ...: trace = mc.sample(100000, start=start, step=step)

[-----------------100%-----------------] 100000 of 100000 complete in 36.1

sec

The starting point that was calculated using mc.find_MAP maximizes the likelihood

of the posterior given the observed data, and it provides an estimate of the unknown

parameters of the prior distribution:

In [38]: start

Out[38]: {'mean': array(2.5064940359768246), 'sigma_log':

array(0.394681633456101)}

However, to obtain estimates of the distribution of these parameters (which are

random variables in their own right), we need to carry out the MCMC sampling using

the mc.sample function, as done in the preceding text. The result of the posterior

distribution sampling is shown in Figure 16-4. Note that the distributions for the mean

and sigma variables are closer to the true parameter values, μ = 2.5 and σ = 1.5, than to

the prior guesses of 4.0 and 3.0, respectively, due to the influence of the data and the

corresponding likelihood function.

In [38]: fig, axes = plt.subplots(2, 2, figsize=(8, 4), squeeze=False)

 ...: mc.traceplot(trace, varnames=['mean', 'sigma'], ax=axes)

ChAPTer 16 BAyesiAn sTATisTiCs

556

To calculate statistics and estimate quantities using the samples from the posterior

distributions, we can access arrays containing the samples using the get_values

method, which takes the name of the random variable as argument. For example, in the

following code, we compute estimates of the mean of the two random variables in the

model and compare to the corresponding true values for the distributions that the data

points were drawn from:

In [39]: mu, trace.get_values('mean').mean()

Out[39]: (2.5, 2.5290001218008435)

In [40]: s, trace.get_values('sigma').mean()

Out[40]: (1.5, 1.5029047840092264)

The PyMC library also provides utilities for analyzing and summarizing the statistics

of the marginal posterior distributions obtained from the mc.sample function. For

example, the mc.forestplot function visualizes the mean and credibility intervals

(i.e., an interval within which the true parameter value is likely to be) for each random

variable in a model. The result of visualizing the samples for the current example using

the mc.forestplot function is shown in Figure 16-5:

In [41]: mc.forestplot(trace, varnames=['mean', 'sigma'])

Figure 16-4. The MCMC sampling trace of the posterior distribution for mean and
sigma

ChAPTer 16 BAyesiAn sTATisTiCs

557

Similar information can also be presented in text form using the mc.summary

function, which, for example, includes information such as the mean, standard

deviation, and posterior quantiles.

In [42]: mc.summary(trace, varnames=['mean', 'sigma'])

mean:

 Mean SD MC Error 95% HPD interval

 2.472 0.143 0.001 [2.195, 2.757]

 Posterior quantiles:

 2.5 25 50 75 97.5

 |--------------|==============|==============|--------------|

 2.191 2.375 2.470 2.567 2.754

sigma:

 Mean SD MC Error 95% HPD interval

 1.440 0.097 0.001 [1.256, 1.630]

 Posterior quantiles:

 2.5 25 50 75 97.5

 |--------------|==============|==============|--------------|

 1.265 1.372 1.434 1.501 1.643

Figure 16-5. A forest plot for the two parameters, mean and sigma, which show
their credibility intervals

ChAPTer 16 BAyesiAn sTATisTiCs

558

 Linear Regression
Regression is one of the most basic tools in statistical modeling, and we have already

seen examples of linear regression within the classical statistical formalism, for example,

in Chapters 14 and 15. Linear regression can also be approached with Bayesian methods

and treated as a modeling problem where we assign prior probability distributions

to the unknown model parameters (slopes and intercept) and compute the posterior

distribution given the available observations. To be able to compare the similarities and

differences between Bayesian linear regression and the frequentist’s approach to the

same problem, using, for example, the methods from Chapter 14, here we begin with

a short analysis of a linear regression problem using the statsmodels library. Next, we

proceed to analyze the same problem with PyMC.

As example data for performing a linear regression analysis, here we use a dataset

that contains the height and weight for 200 men and women, which we can load using

the get_rdataset function from the datasets module in the statsmodels library:

In [42]: dataset = sm.datasets.get_rdataset("Davis", "carData")

For simplicity, to begin with, we work only with the subset of the dataset that

corresponds to male subjects, and to avoid having to deal with outliers, we filter out all

subjects with a weight that exceeds 110 kg. These operations are readily performed using

Pandas methods for filtering data frames using Boolean masks:

In [43]: data = dataset.data[dataset.data.sex == 'M']

In [44]: data = data[data.weight < 110]

The resulting Pandas data frame object data contains several columns:

In [45]: data.head(3)

Out[45]:

sex weight height repwt repht

0 M 77 182 77 180

3 M 68 177 70 175

5 M 76 170 76 165

ChAPTer 16 BAyesiAn sTATisTiCs

559

Here we focus on a linear regression model for the relationship between the weight

and height columns in this dataset. Using the statsmodels library and its model for

ordinary least square regression and the Patsy formula language, we create a statistical

model for this relationship in a single line of code:

In [46]: model = smf.ols("height ~ weight", data=data)

To actually perform the fitting of the specified model to the observed data, we use

the fit method of the model instance:

In [47]: result = model.fit()

Once the model has been fitted and the model result object has been created, we can

use the predict method to compute the predictions for new observations and for plotting

the linear relation between the height and weight, as shown in Figure 16-6.

In [48]: x = np.linspace(50, 110, 25)

In [49]: y = result.predict({"weight": x})

In [50]: fig, ax = plt.subplots(1, 1, figsize=(8, 3))

 ...: ax.plot(data.weight, data.height, 'o')

 ...: ax.plot(x, y, color="blue")

 ...: ax.set_xlabel("weight")

 ...: ax.set_ylabel("height")

Figure 16-6. Height vs. weight, with a linear model fitted using ordinary least
square

ChAPTer 16 BAyesiAn sTATisTiCs

560

The linear relation shown in Figure 16-6 summarizes the main result of performing

a linear regression on this dataset. It gives the best fitting line, described by specific

values of the model parameters (intercept and slope). Within the frequentist’s approach

to statistics, we can also compute numerous statistics, for example, p-values for various

hypotheses, such as the hypotheses that a model parameter is zero (no effect).

The end result of a Bayesian regression analysis is the posterior distribution for the

marginal distributions for each model parameter. From such marginal distributions, we

can compute the mean estimates for the model parameters, which roughly correspond

to the model parameters obtained from a frequentist’s analysis. We can also compute

other quantities, such as the credibility interval, which characterizes the uncertainty

in the estimate. To model the height vs. weight using a Bayesian model, we can use a

relation such as height intercept weight,~ +()b s 2 , where intercept, β, and σ are

random variables with unknown distributions and parameters. We also need to give

prior distributions to all stochastic variables in the model. Depending on the application,

the exact choice of prior can be a sensitive issue, but when there is a lot of data to fit, it

is normally sufficient to use reasonable initial guesses. Here we simply start with priors

that represent broad distributions for all the model parameters.

To program the model in PyMC, we use the same methodology as earlier in this

chapter: First, we create random variables for the stochastic components of the model

and assign them to distributions with specific parameters that represent the prior

distributions. Next, we create a deterministic variable that are functions of the stochastic

variables, but with observed data attached to it using the observed keyword argument,

as well as in the expression for the expected value of the distribution of the heights

(height_mu).

In [51]: with mc.Model() as model:

 ...: sigma = mc.Uniform('sigma', 0, 10)

 ...: intercept = mc.Normal('intercept', 125, sd=30)

 ...: beta = mc.Normal('beta', 0, sd=5)

 ...: height_mu = intercept + beta * data.weight

 ...: mc.Normal('height', mu=height_mu, sd=sigma, observed=data.

height)

 ...: predict_height = mc.Normal('predict_height', mu=intercept +

beta * x, sd=sigma, shape=len(x))

ChAPTer 16 BAyesiAn sTATisTiCs

561

If we want to use the model for predicting the heights at specific values of weights,

we can also add an additional stochastic variable to the model. In the preceding model

specification, the predict_height variable is an example of this. Here x is the NumPy

array with values between 50 and 110 that was created earlier. Because it is an array, we

need to set the shape attribute of the mc.Normal class to the corresponding length of the

array. If we inspect the vars attribute of the model, we now see that it contains the two

model parameters (intercept and beta), the distribution of the model errors (sigma), and

the predict_height variable for predicting the heights at specific values of weight from the

x array:

In [52]: model.vars

Out[52]: [sigma_interval, intercept, beta, predict_height]

Once the model is fully specified, we can turn to the MCMC algorithm to sample

the marginal posterior distributions for the model, given the observed data. Like before,

we can use mc.find_MAP to find a suitable starting point. Here we use an alternative

sampler, mc.NUTS (No-U-Turn Sampler), which is a new and powerful sampler that has

been added to version 3 of PyMC.

In [53]: with model:

 ...: start = mc.find_MAP()

 ...: step = mc.NUTS()

 ...: trace = mc.sample(10000, step, start=start)

[-----------------100%-----------------] 10000 of 10000 complete in 43.1 sec

The result of the sampling is stored in a trace object returned by mc.sample. We

can visualize the kernel density estimate of the probability distribution and the MCMC

random walk traces that generated the samples using the mc.traceplot function. Here we

again use the varnames argument to explicitly select which stochastic variables in the

model to show in the trace plot. The result is shown in Figure 16-7.

In [54]: fig, axes = plt.subplots(2, 2, figsize=(8, 4), squeeze=False)

 ...: mc.traceplot(trace, varnames=['intercept', 'beta'], ax=axes)

ChAPTer 16 BAyesiAn sTATisTiCs

562

The values of the intercept and coefficient in the linear model that most closely

correspond to the results from the statsmodels analysis in the preceding text are

obtained by computing the mean of the traces for the stochastic variables in the

Bayesian model:

In [55]: intercept = trace.get_values("intercept").mean()

In [56]: intercept

Out[56]: 149.97546241676989

In [57]: beta = trace.get_values("beta").mean()

In [58]: beta

Out[58]: 0.37077795098761318

The corresponding result from the statsmodels analysis is obtained by accessing the

params attribute in the result class returned by the fit method (see the preceding text):

In [59]: result.params

Out[59]: Intercept 152.617348

 weight 0.336477

 dtype: float64

Figure 16-7. Distribution and sampling trace of the linear model intercept and
beta coefficient

ChAPTer 16 BAyesiAn sTATisTiCs

563

By comparing these values for the intercepts and the coefficients, we see that the two

approaches give similar results for the maximum likelihood estimates of the unknown

model parameters. In the statsmodels approach, to predict the expected height for a

given weight, say 90 kg, we can use the predict method to get a specific height:

In [60]: result.predict({"weight": 90}).values

Out[60]: array([182.90030002])

The corresponding result in the Bayesian model is obtained by computing the mean

for the distribution of the stochastic variable predict_height, for the given weight:

In [61]: weight_index = np.where(x == 90)[0][0]

In [62]: trace.get_values("predict_height")[:, weight_index].mean()

Out[62]: 183.33943635274935

Again, the results from the two approaches are comparable. In the Bayesian model,

however, we have access to an estimate of the full probability distribution of the height

at every modeled weight. For example, we can plot a histogram and the kernel density

estimate of the probability distribution for the weight 90 kg using the distplot function

from the Seaborn library, which results in the graph shown in Figure 16-8:

In [63]: fig, ax = plt.subplots(figsize=(8, 3))

 ...: sns.distplot(trace.get_values("predict_height")[:, weight_index],

ax=ax)

 ...: ax.set_xlim(150, 210)

 ...: ax.set_xlabel("height")

 ...: ax.set_ylabel("Probability distribution")

Figure 16-8. Probability distribution for prediction of the height for the weight 90 kg

ChAPTer 16 BAyesiAn sTATisTiCs

564

Every sample in the MCMC trace represents a possible value of the intercept and

coefficients in the linear model that we wish to fit the observed data. To visualize the

uncertainty in the mean intercept and coefficient that we can take as estimates of the

final linear model parameters, it is illustrative to plot the lines corresponding to each

sample point, along with the data as a scatter plot and the lines that correspond to the

mean intercept and slope. This results in a graph like the one shown in Figure 16-9. The

spread of the lines represents the uncertainty in the estimate of the height for a given

weight. The spread tends to be larger toward the edges where fewer data points are

available and tighter in the middle of a cloud of data points.

In [64]: fig, ax = plt.subplots(1, 1, figsize=(8, 3))

 ...: for n in range(500, 2000, 1):

 ...: intercept = trace.get_values("intercept")[n]

 ...: beta = trace.get_values("beta")[n]

 ...: ax.plot(x, intercept + beta * x, color='red', lw=0.25,

alpha=0.05)

 ...: intercept = trace.get_values("intercept").mean()

 ...: beta = trace.get_values("beta").mean()

 ...: ax.plot(x, intercept + beta * x, color='k', label="Mean Bayesian

prediction")

 ...: ax.plot(data.weight, data.height, 'o')

 ...: ax.plot(x, y, '--', color="blue", label="OLS prediction")

 ...: ax.set_xlabel("weight")

 ...: ax.set_ylabel("height")

 ...: ax.legend(loc=0)

Figure 16-9. Height vs. weight, with linear fits using OLS and a Bayesian
model

ChAPTer 16 BAyesiAn sTATisTiCs

565

In the linear regression problem we have looked at here, we explicitly defined the

statistical model and the stochastic variables included in the model. This illustrates

the general steps that are required for analyzing statistical models using the Bayesian

approach and the PyMC library. For generalized linear model, however, the PyMC

library provides a simplified API that creates the model and the required stochastic

variables for us. With the mc.glm.GLM.from_formula function, we can define a

generalized linear model using Patsy formula (see Chapter 14) and provide the data

using a Pandas data frame. This automatically takes care of setting up the model. With

the model setup using mc.glm.glm, we can proceed to sample from the posterior

distribution of the model using the same methods as before.

In [65]: with mc.Model() as model:

 ...: mc.glm.GLM.from_formula('height ~ weight', data)

 ...: step = mc.NUTS()

 ...: trace = mc.sample(2000, step)

[-----------------100%-----------------] 2000 of 2000 complete in 99.1 sec

The result of the sampling of the GLM model, as visualized by the mc.traceplot

function, is shown in Figure 16-10. In these trace plots, sd corresponds to the sigma

variable in the explicit model definition used in the preceding text, and it represents the

standard error of the residual of the model and the observed data. In the traces, note

how the sample requires a few hundred samples before it reaches a steady level. The

initial transient period does not contribute samples with the correct distribution, so

when using the samples to compute estimates, we should exclude the samples from the

initial period.

In [66]: fig, axes = plt.subplots(3, 2, figsize=(8, 6), squeeze=False)

 ...: mc.traceplot(trace, varnames=['Intercept', 'weight', 'sd'],

ax=axes)

ChAPTer 16 BAyesiAn sTATisTiCs

566

With the mc.glm.glm we can create and analyze linear models using Bayesian

statistics in almost the same way as we define and analyze a model using the

frequentist’s approach with statsmodels. For the simple example studied here,

the regression analysis with both statistical approaches gives similar results, and

neither methods are much more suitable than the other. However, there are practical

differences that depending on the situation can favor one or the other. For example,

with the Bayesian approach, we have access to estimates of the full marginal posterior

distributions, which can be useful for computing statistical quantities other than the

mean. However, performing MCMC on simple models like the one considered here is

significantly more computationally demanding than carrying out ordinary least square

fitting. The real advantages of the Bayesian methods arise when analyzing complicated

models in high dimensions (many unknown model parameters). In such cases, defining

appropriate frequentist’s models can be difficult and solving the resulting models

Figure 16-10. Sample trace plot for a Bayesian GLM model defined using the
mc.glm module

ChAPTer 16 BAyesiAn sTATisTiCs

567

challenging. The MCMC algorithm has the very attractive property that it scales well

to high-dimensional problems and can therefore be highly competitive for complex

statistical models. While the model we have considered here all are simple, and can

easily be solved using a frequentist’s approach, the general methodology used here

remains unchanged, and creating more involved models is only a matter of adding more

stochastic variables to the model.

As a final example, we illustrate that the same general procedure can be used also

when the complexity of the Bayesian model is increased. We return to the height and

weight dataset, but instead of selecting only the male subject, here we consider an

additional level in the model which accounts for the gender of the subject so that both

males and females can be modeled with potentially different slopes and intercepts.

In PyMC we can create a multilevel model by using the shape argument to specify the

dimension for each stochastic variable that is added to the model, as shown in the

following example.

We begin by preparing the dataset. Here we again restrict our analysis to subjects

with weight less than 110 kg, to eliminate outliers, and we convert the sex column to a

binary variable where 0 represents male and 1 represents female.

In [67]: data = dataset.data.copy()

In [68]: data = data[data.weight < 110]

In [69]: data["sex"] = data["sex"].apply(lambda x: 1 if x == "F" else 0)

Next, we define the statistical model, which we here take to be height~N(intercepti +

βi weight, σ2), where i is an index that takes the value 0 for male subjects and 1 for female

subjects. When creating the stochastic variables for intercepti and βi, we indicate the

multilevel structure by specifying shape=2 (since in this case, we have two levels: male

and female). The only other difference compared to the previous model definition is that

we also need to use an index mask when defining the expression for height_mu, so that

each value in data.weight is associated with the correct level.

In [70]: with mc.Model() as model:

 ...: intercept_mu, intercept_sigma = 125, 30

 ...: beta_mu, beta_sigma = 0, 5

 ...:

 ...: intercept = mc.Normal('intercept', intercept_mu, sd=intercept_

sigma, shape=2)

 ...: beta = mc.Normal('beta', beta_mu, sd=beta_sigma, shape=2)

ChAPTer 16 BAyesiAn sTATisTiCs

568

 ...: error = mc.Uniform('error', 0, 10)

 ...:

 ...: sex_idx = data.sex.values

 ...: height_mu = intercept[sex_idx] + beta[sex_idx] * data.weight

 ...:

 ...: mc.Normal('height', mu=height_mu, sd=error, observed=data.

height)

Inspecting the model variables using the vars attribute object shows that we again

have three stochastic variables in the model: intercept, beta, and error. However, in

contrast to the earlier model, here intercept and beta both have two levels.

In [71]: model.vars

Out[71]: [intercept, beta, error_interval]

The way we invoke the MCMC sampling algorithm is identical to the earlier

examples in this chapter. Here we use the NUTS sampler and collect 5000 samples:

In [72]: with model:

 ...: start = mc.find_MAP()

 ...: step = mc.NUTS()

 ...: trace = mc.sample(5000, step, start=start)

[-----------------100%-----------------] 5000 of 5000 complete in 64.2 sec

We can also, like before, use the mc.traceplot function to visualize the result of

the sampling. This allows us to quickly form an idea of the distribution of the model

parameters and to verify that the MCMC sampling has produced sensible results. The

trace plot for the current model is shown in Figure 16-11, and unlike earlier examples,

here we have multiple curves in the panels for the intercept and beta variables,

reflecting their multilevel nature: the blue (dark) lines show the results for the male

subjects, and the green (light) lines show the result for the female subjects.

In [73]: mc.traceplot(trace, figsize=(8, 6))

ChAPTer 16 BAyesiAn sTATisTiCs

569

Using the get_values method of the trace object, we can extract the sampling

data for the model variables. Here the sampling data for intercept and beta are two-

dimensional arrays with shape (5000, 2): the first dimension represents each sample,

and the second dimension represents the level of the variable. Here we are interested in

the intercept and the slope for each gender, so we take the mean along the first axis (all

samples):

In [74]: intercept_m, intercept_f = trace.get_values('intercept').

mean(axis=0)

In [75]: beta_m, beta_f = trace.get_values('beta').mean(axis=0)

Figure 16-11. Kernel density estimates of the probability distributions of the
model parameters and the MCMC sampling traces for each variable in the
multilevel model for height vs. weight

ChAPTer 16 BAyesiAn sTATisTiCs

570

By averaging over both dimensions, we can also get the intercept and the slope that

represent the entire dataset, where male and female subjects are grouped together:

In [76]: intercept = trace.get_values('intercept').mean()

In [77]: beta = trace.get_values('beta').mean()

Finally, we visualize the results by plotting the data as scatter plots and drawing the

lines corresponding to the intercepts and slopes that we obtained for male and female

subjects, as well as the result from grouping all subjects together. The result is shown in

Figure 16-12.

In [78]: fig, ax = plt.subplots(1, 1, figsize=(8, 3))

 ...: mask_m = data.sex == 0

 ...: mask_f = data.sex == 1

 ...: ax.plot(data.weight[mask_m], data.height[mask_m], 'o',

color="steelblue",

 ...: label="male", alpha=0.5)

 ...: ax.plot(data.weight[mask_f], data.height[mask_f], 'o',

color="green",

 ...: label="female", alpha=0.5)

 ...: x = np.linspace(35, 110, 50)

 ...: ax.plot(x, intercept_m + x * beta_m, color="steelblue",

label="model male group")

 ...: ax.plot(x, intercept_f + x * beta_f, color="green", label="model

female group")

 ...: ax.plot(x, intercept + x * beta, color="black", label="model both

groups")

 ...:

 ...: ax.set_xlabel("weight")

 ...: ax.set_ylabel("height")

 ...: ax.legend(loc=0)

ChAPTer 16 BAyesiAn sTATisTiCs

571

The regression lines are shown in Figure 16-12, and the distribution plots shown

in Figure 16-11 indicate that the model is improved by taking account for different

intercepts and slopes for male and female subjects. In a Bayesian model with PyMC,

changing the underlying model used in the analysis is only a matter of adding stochastic

variables to the model, defining how they are related to each other and assigning a prior

distribution for each stochastic variable. The MCMC sampling required to actually solve

the model is independent of the model details. This is one of the most attractive aspects

of Bayesian statistical modeling. For instance, in the multilevel model considered in the

preceding text, instead of specifying the priors for the intercept and slope variables as

independent probability distributions, we could relate the distribution parameters of the

priors to another stochastic variable and thereby obtain a hierarchical Bayesian model,

where the model parameters describing the distribution of the intercept and the slope

for each level are drawn from a common distribution. Hierarchical models have many

uses and are one of the many applications where Bayesian statistics excel.

 Summary
In this chapter, we have explored Bayesian statistics using computational methods

provided by the PyMC library. The Bayesian approach to statistics is distinct from

classical frequentist’s statistics in several fundamental viewpoints. From a practical,

computational point of view, Bayesian methods are often very demanding to solve

exactly. In fact, computing the posterior distribution for a Bayesian model exactly is

often prohibitively expensive. However, what we often can do is to apply powerful and

Figure 16-12. The height vs. weight for male (dark/blue) and female (light/green)
subjects

ChAPTer 16 BAyesiAn sTATisTiCs

572

efficient sampling methods that allow us to find an approximate posterior distribution

using simulations. The key role of a Bayesian statistics framework is to allow us to define

statistical models and then apply sampling methods to find an approximate posterior

distribution for the model. Here, we have employed the PyMC library as a Bayesian

modeling framework in Python. We briefly explored defining statistical models in terms

of stochastic variables with given distributions and the simulation and sampling of the

posterior distribution for those models using the MCMC methods implemented in the

PyMC library.

 Further Reading
For accessible introductions to the theory of Bayesian statistics, see Kruschke (2014)

and Downey (2013). A more technical discussion is given in Gelman (2013). A

computationally oriented introduction to Bayesian methods with Python is given in

Probabilistic Programming and Bayesian Methods for Hackers, which is available for

free online at http://camdavidsonpilon.github.io/Probabilistic-Programming-

and-Bayesian-Methods-for-Hackers. An interesting discussion about the differences

between the Bayesian and frequentist’s approaches to statistics, with examples written

in Python, is given in VanderPlas (2014), which is also available at http://arxiv.org/

pdf/1411.5018.pdf.

 References
Downey, A. (2013). Think Bayes. Sebastopol: O’Reilly.

Gelman, A. a. (2013). Bayesian Data Analysis (3rd ed.). New York: CRC Press.

Kruschke, J. (2014). Doing Bayesian Data Analysis. Amsterdam: Academic Press.

VanderPlas, J. (2014). Frequentism and Bayesianism: A Python-driven Primer.

PROC. OF THE 13th PYTHON IN SCIENCE CONF. Austin: SCIPY.

ChAPTer 16 BAyesiAn sTATisTiCs

http://camdavidsonpilon.github.io/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers
http://camdavidsonpilon.github.io/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers
http://arxiv.org/pdf/1411.5018.pdf
http://arxiv.org/pdf/1411.5018.pdf

573
© Robert Johansson 2019
R. Johansson, Numerical Python, https://doi.org/10.1007/978-1-4842-4246-9_17

CHAPTER 17

Signal Processing
In this chapter we explore signal processing, which is a subject with applications in

diverse branches of science and engineering. A signal in this context can be a quantity

that varies in time (temporal signal) or as a function of space coordinates (spatial

signal). For example, an audio signal is a typical example of a temporal signal, while an

image is a typical example of a spatial signal in two dimensions. In reality, signals are

often continuous functions, but in computational applications, it is common to work

with discretized signals, where the original continuous signal is sampled at discrete

points with uniform distances. The sampling theorem gives rigorous and quantitative

conditions for when a continuous signal can be accurately represented by a discrete

sequence of samples.

Computational methods for signal processing play a central role in scientific

computing not only because of their widespread application but also because there

exist very efficient computational methods for important signal-processing problems. In

particular, the fast Fourier transform (FFT) is an important algorithm for many signal-

processing problems, and moreover it is perhaps one of the most important numerical

algorithms in all of computing. In this chapter we explore how FFTs can be used in

spectral analysis, but beyond this basic application, there is also broad usage of FFT

both directly and indirectly as a component in other algorithms. Other signal-processing

methods, such as convolution and correlation analysis, and linear filters also have

widespread applications, in particular in engineering fields such as control theory.

In this chapter we discuss spectral analysis and basic applications of linear filters,

using the fftpack and signal modules in the SciPy library.

574

 Importing Modules
In this chapter, we mainly work with the fftpack and signal modules from the SciPy

library. As usual with modules from the SciPy library, we import the modules using the

following pattern:

In [1]: from scipy import fftpack

In [2]: from scipy import signal

We also use the io.wavefile module from SciPy to read and write WAV audio files in

one of the examples. We import this module in the following way:

In [3]: import scipy.io.wavfile

In [4]: from scipy import io

For basic numerics and graphics, we also require the NumPy, Pandas, and Matplotlib

libraries:

In [5]: import numpy as np

In [6]: import pandas as pd

In [7]: import matplotlib.pyplot as plt

In [8]: import matplotlib as mpl

 Spectral Analysis
We begin this exploration of signal processing by considering spectral analysis. Spectral

analysis is a fundamental application of Fourier transforms, which is a mathematical

integral transform that allows us to take a signal from the time domain – where it is

described as a function of time – to the frequency domain, where it is described as

a function of frequency. The frequency-domain representation of a signal is useful

for many purposes, for example, extracting features such as dominant frequency

components of a signal, applying filters to signals, and solving differential equations

(see Chapter 9), just to mention a few.

Chapter 17 Signal proCeSSing

575

 Fourier Transforms
The mathematical expression for the Fourier transform F(v) of a continuous signal f(t) is1

F f t e dti tn p n() = ()

-¥

¥
-ò 2 ,

and the inverse Fourier transform is given by

f t F e di t() = ()

-¥

¥

ò n np n2 .

Here F(v) is the complex-valued amplitude spectrum of the signal f (t), and v is

the frequency. From F(v) we can compute other types of spectrum, such as the power

spectrum |F(v)|2. In this formulation f (t) is a continuous signal with infinite duration. In

practical applications we are often more interested in approximating f (t) using a finite

number of samples from a finite duration of time. For example, we might sample the

function f (t) at N uniformly spaced points in the time interval t ∈ [0, T], resulting in a

sequence of samples that we denote (x0, x1, …, xN). The continuous Fourier transform

shown in the preceding text can be adapted to the discrete case: the discrete Fourier

transform (DFT) of a sequence of uniformly spaced samples is

X x ek

n

N

n
ink N=

=

-
-å

0

1
2p / ,

and similarly we have the inverse DFT

x

N
X en

k

N

k
ink N=

=

-

å1

0

1
2p / ,

where Xk is the discrete Fourier transform of the samples xn and k is a frequency bin

number that can be related to a real frequency. The DFT for a sequence of samples can

be computed very efficiently using the algorithm known as fast Fourier transform (FFT).

1 There are several alternative definitions of the Fourier transform, which vary in the coefficient in
the exponent and the normalization of the transform integral.

Chapter 17 Signal proCeSSing

576

The SciPy fftpack module2 provides implementations of the FFT algorithm. The

fftpack module contains FFT functions for a variety of cases: see Table 17-1 for a

summary. Here we focus on demonstrating the usage of the fft and ifft functions and

several of the helper functions in the fftpack module. However, the general usage is

similar for all FFT functions in Table 17-1.

Note that the DFT takes discrete samples as input and outputs a discrete frequency

spectrum. To be able to use DFT for processes that are originally continuous, we first

must reduce the signals to discrete values using sampling. According to the sampling

theorem, a continuous signal with bandwidth B (i.e., the signal does not contain

frequencies higher than B) can be completely reconstructed from discrete samples with

2 There is also an implementation of FFT in the fft module in NumPy. It provides mostly the
same functions as scipy.fftpack, which we use here. As a general rule, when SciPy and NumPy
provide the same functionality, it is generally preferable to use SciPy if available and fallback to
the NumPy implementation when SciPy is not available.

Table 17-1. Summary of Selected Functions from the fftpack Module in SciPy.

For detailed usage of each function, including their arguments and return values,

see their docstrings which are available using, for example, help(fftpack.fft).

Function Description

fft, ifft general FFt and inverse FFt of a real- or complex-valued signal. the resulting

frequency spectrum is complex valued.

rfft, irfft FFt and inverse FFt of a real-valued signal.

dct, idct the discrete cosine transform (DCt) and its inverse.

dst, idst the discrete sine transform (DSt) and its inverse.

fft2, ifft2,

fftn, ifftn

the two-dimensional and the n-dimensional FFt for complex-valued signals and

their inverses.

fftshift,

ifftshift,

rfftshift,

irfftshift

Shift the frequency bins in the result vector produced by fft and rfft,

respectively, so that the spectrum is arranged such that the zero-frequency

component is in the middle of the array.

fftfreq Calculate the frequencies corresponding to the FFt bins in the result returned by fft.

Chapter 17 Signal proCeSSing

577

sampling frequency fs ≥ 2B. This is a very important result in signal processing because

it tells us under what circumstances we can work with discrete instead of continuous

signals. It allows us to determine a suitable sampling rate when measuring a continuous

process, since it is often possible to know or approximately guess the bandwidth of a

process, for example, from physical arguments. While the sampling rate determines the

maximum frequency we can describe with a discrete Fourier transform, the spacing of

samples in frequency space is determined by the total sampling time T or equivalently

from the number of samples points once the sampling frequency is determined, T = N/fs.

As an introductory example, consider a simulated signal with pure sinusoidal

components at 1 Hz and at 22 Hz, on top of a normal-distributed noise floor. We begin by

defining a function signal_samples that generates noisy samples of this signal:

In [9]: def signal_samples(t):

 ...: return (2 * np.sin(2 * np.pi * t) + 3 * np.sin(22 * 2 *

np.pi * t) + 2 * np.random.randn(*np.shape(t)))

We can get a vector of samples by calling this function with an array with sample

times as argument. Say that we are interested in computing the frequency spectrum of

this signal up to frequencies of 30 Hz. We then need to choose the sampling frequency

fs = 60 Hz, and if we want to obtain a frequency spectrum with a resolution of ∆f = 0.01 Hz,

we need to collect at least N = fs/∆f = 6000 samples, corresponding to a sampling period

of T = N/fs = 100 seconds:

In [10]: B = 30.0

In [11]: f_s = 2 * B

In [12]: delta_f = 0.01

In [13]: N = int(f_s / delta_f); N

Out[13]: 6000

In [14]: T = N / f_s; T

Out[14]: 100.0

Next we sample the signal function at N uniformly spaced points in time by first

creating an array t that contains the sample times and then using it to evaluate the

signal_samples function:

In [15]: t = np.linspace(0, T, N)

In [16]: f_t = signal_samples(t)

Chapter 17 Signal proCeSSing

578

The resulting signal is plotted in Figure 17-1. The signal is rather noisy, both when

viewed over the entire sampling time and when viewed for a shorter period of time, and

the added random noise mostly masks the pure sinusoidal signals when viewed in the

time domain.

In [17]: fig, axes = plt.subplots(1, 2, figsize=(8, 3), sharey=True)

 ...: axes[0].plot(t, f_t)

 ...: axes[0].set_xlabel("time (s)")

 ...: axes[0].set_ylabel("signal")

 ...: axes[1].plot(t, f_t)

 ...: axes[1].set_xlim(0, 5)

 ...: axes[1].set_xlabel("time (s)")

To reveal the sinusoidal components in the signal, we can use the FFT to compute

the spectrum of the signal (or in other words, its frequency-domain representation). We

obtain the discrete Fourier transform of the signal by applying the fft function to the

array of discrete samples, f_t:

In [18]: F = fftpack.fft(f_t)

The result is an array F, which contains the frequency components of the spectrum

at frequencies that are determined by the sampling rate and the number of samples.

When computing these frequencies, it is convenient to use the helper function fftfreq,

Figure 17-1. Simulated signal with random noise. Full signal to the left and zoom
into early times on the right

Chapter 17 Signal proCeSSing

579

which takes the number of samples and the time duration between successive samples

as parameters and returns an array of the same size as F that contains the frequencies

corresponding to each frequency bin.

In [19]: f = fftpack.fftfreq(N, 1.0/f_s)

The frequency bins for the amplitude values returned by the fft function contain

both positive and negative frequencies, up to the frequency that corresponds to half the

sampling rate, fs/2. For real-valued signals, the spectrum is symmetric at positive and

negative frequencies, and we are for this reason often only interested in the positive-

frequency components. Using the frequency array f, we can conveniently create a mask

that can be used to extract the part of the spectrum that corresponds to the frequencies

we are interested in. Here we create a mask for selecting the positive-frequency

components:

In [20]: mask = np.where(f >= 0)

The spectrum for the positive-frequency components is shown in Figure 17-2. The

top panel contains the entire positive-frequency spectrum and is plotted on a log scale

to increase the contrast between the signal and the noise. We can see that there are

sharp peaks near 1 Hz and 22 Hz, corresponding to the sinusoidal components in the

signal. These peaks clearly stand out from the noise floor in the spectrum. In spite of the

noise concealing the sinusoidal components in the time-domain signal, we can clearly

detect their presence in the frequency-domain representation. The lower two panels in

Figure 17-2 show magnifications of the two peaks at 1 Hz and 22 Hz, respectively.

In [21]: fig, axes = plt.subplots(3, 1, figsize=(8, 6))

 ...: axes[0].plot(f[mask], np.log(abs(F[mask])), label="real")

 ...: axes[0].plot(B, 0, 'r*', markersize=10)

 ...: axes[0].set_ylabel("$\log(|F|)$", fontsize=14)

 ...: axes[1].plot(f[mask], abs(F[mask])/N, label="real")

 ...: axes[1].set_xlim(0, 2)

 ...: axes[1].set_ylabel("$|F|/N$", fontsize=14)

 ...: axes[2].plot(f[mask], abs(F[mask])/N, label="real")

 ...: axes[2].set_xlim(21, 23)

 ...: axes[2].set_xlabel("frequency (Hz)", fontsize=14)

 ...: axes[2].set_ylabel("$|F|/N$", fontsize=14)

Chapter 17 Signal proCeSSing

580

 Frequency-Domain Filter

Just like we can compute the frequency-domain representation from the time-domain

signal using the FFT function fft, we can compute the time-domain signal from the

frequency-domain representation using the inverse FFT function ifft. For example,

applying the ifft function to the F array will reconstruct the f_t array. By modifying

the spectrum before we apply the inverse transform, we can realize frequency-domain

filters. For example, selecting only frequencies below 2 Hz in the spectrum amounts to

applying a 2 Hz low-pass filter, which suppresses high-frequency components in the

signal (higher than 2 Hz in this case):

In [22]: F_filtered = F * (abs(f) < 2)

In [23]: f_t_filtered = fftpack.ifft(F_filtered)

Computing the inverse FFT for the filtered signal results in a time-domain signal

where the high-frequency oscillations are absent, as shown in Figure 17-3. This simple

example summarizes the essence of many frequency-domain filters. Later in this

Figure 17-2. Spectrum of the simulated signal with frequency components at 1 Hz
and 22 Hz

Chapter 17 Signal proCeSSing

581

chapter, we explore in more detail some of the many types of filters that are commonly

used in signal-processing analysis.

In [24]: fig, ax = plt.subplots(figsize=(8, 3))

 ...: ax.plot(t, f_t, label='original')

 ...: ax.plot(t, f_t_filtered.real, color="red", lw=3, label='filtered')

 ...: ax.set_xlim(0, 10)

 ...: ax.set_xlabel("time (s)")

 ...: ax.set_ylabel("signal")

 ...: ax.legend()

 Windowing
In the previous section, we directly applied the FFT to the signal. This can give

acceptable results, but it is often possible to further improve the quality and the contrast

of the frequency spectrum by applying a so-called window function to the signal before

applying the FFT. A window function is a function that when multiplied with the signal

modulates its magnitude so that it approaches zero at the beginning and the end of the

sampling duration. There are many possible functions that can be used as a window

function, and the SciPy signal module provides implementations of many common

window functions, including the Blackman function, the Hann function, the Hamming

function, Gaussian window functions (with variable standard deviation), and the Kaiser

window function.3 These functions are all plotted in Figure 17-4. This graph shows that

while all of these window functions are slightly different, the overall shape is very similar.

3 Several other window functions are also available. See the docstring for the scipy.signal
module for a complete list.

Figure 17-3. The original time-domain signal and the reconstructed signal after
applying a low-pass filter to the frequency-domain representation of the signal

Chapter 17 Signal proCeSSing

582

In [25]: fig, ax = plt.subplots(1, 1, figsize=(8, 3))

 ...: N = 100

 ...: ax.plot(signal.blackman(N), label="Blackman")

 ...: ax.plot(signal.hann(N), label="Hann")

 ...: ax.plot(signal.hamming(N), label="Hamming")

 ...: ax.plot(signal.gaussian(N, N/5), label="Gaussian (std=N/5)")

 ...: ax.plot(signal.kaiser(N, 7), label="Kaiser (beta=7)")

 ...: ax.set_xlabel("n")

 ...: ax.legend(loc=0)

The alternative window functions all have slightly different properties and objectives,

but for the most part, they can be used interchangeably. The main purpose of window

functions is to reduce spectral leakage between nearby frequency bins, which occur

in discrete Fourier transform computation when the signal contains components with

periods that are not exactly divisible with the sampling period. Signal components with

such frequencies can therefore not fit a full number of cycles in the sampling period, and

since discrete Fourier transform assumes that signal is period, the resulting discontinuity

at the period boundary can give rise to spectral leakage. Multiplying the signal with a

window function reduces this problem. Alternatively, we could also increase the number

of sample points (increase the sampling period) to obtain a higher frequency resolution,

but this might not always be practical.

Figure 17-4. Example of commonly used window functions

Chapter 17 Signal proCeSSing

583

To see how we can use a window function before applying the FFT to a time-series

signal, let’s consider the outdoor temperature measurements that we looked at in

Chapter 12. First, we use the Pandas library to load the dataset and resample it to evenly

spaced hourly samples, using fillna method to aggregate the elements.

In [26]: df = pd.read_csv('temperature_outdoor_2014.tsv', delimiter="\t",

 ...: names=["time", "temperature"])

In [27]: df.time = (pd.to_datetime(df.time.values, unit="s").

 ...: tz_localize('UTC').tz_convert('Europe/Stockholm'))

In [28]: df = df.set_index("time")

In [29]: df = df.resample("H").ffill()

In [30]: df = df[(df.index >= "2014-04-01")*(df.index < "2014-06- 01")].

dropna()

Once the Pandas data frame has been created and processed, we exact the

underlying NumPy arrays to be able to process the time-series data using the fftpack

module.

In [31]: time = df.index.astype('int64')/1.0e9

In [32]: temperature = df.temperature.values

Now we wish to apply a window function to the data in the array temperature before

we compute the FFT. Here we use the Blackman window function, which is a window

function that is suitable for reducing spectral leakage. It is available as the blackman

function in the signal module in SciPy. As the argument to the window function, we

need to pass the length of the sample array, and it returns an array of that same length:

In [33]: window = signal.blackman(len(temperature))

To apply the window function, we simply multiply it with the array containing the

time-domain signal and use the result in the subsequent FFT computation. However,

before we proceed with the FFT for the windowed temperature signal, we first plot the

original temperature time series and the windowed version. The result is shown in

Figure 17-5. The result of multiplying the time series with the window function is a signal

that approaches zero near the sampling period boundaries, and it can be viewed as a

periodic function with smooth transitions between period boundaries, and as such the

FFT of the windowed signal has better-behaved properties.

Chapter 17 Signal proCeSSing

584

In [34]: temperature_windowed = temperature * window

In [35]: fig, ax = plt.subplots(figsize=(8, 3))

 ...: ax.plot(df.index, temperature, label="original")

 ...: ax.plot(df.index, temperature_windowed, label="windowed")

 ...: ax.set_ylabel("temperature", fontsize=14)

 ...: ax.legend(loc=0)

After having prepared the windowed signal, the rest of the spectral analysis proceeds

as before: we can use the fft function to compute the spectrum and the fftfreq

function to calculate the frequencies corresponding to each frequency bin.

In [36]: data_fft_windowed = fftpack.fft(temperature_windowed)

In [37]: f = fftpack.fftfreq(len(temperature), time[1]-time[0])

Here we also select the positive frequencies by creating a mask array from the array

f and plot the resulting positive-frequency spectrum as shown in Figure 17-6. The

spectrum in Figure 17-6 clearly shows peaks at the frequency that corresponds to 1 day

(1/86400 Hz) and its higher harmonics (2/86400 Hz, 3/86400 Hz, etc.).

In [38]: mask = f > 0

In [39]: fig, ax = plt.subplots(figsize=(8, 3))

 ...: ax.set_xlim(0.000005, 0.00004)

 ...: ax.axvline(1./86400, color='r', lw=0.5)

 ...: ax.axvline(2./86400, color='r', lw=0.5)

Figure 17-5. Windowed and original temperature time-series signal

Chapter 17 Signal proCeSSing

585

 ...: ax.axvline(3./86400, color='r', lw=0.5)

 ...: ax.plot(f[mask], np.log(abs(data_fft_windowed[mask])), lw=2)

 ...: ax.set_ylabel("$\log|F|$", fontsize=14)

 ...: ax.set_xlabel("frequency (Hz)", fontsize=14)

To get the most accurate spectrum from a given set of samples, it is generally

advisable to apply a window function to the time-series signal before applying an

FFT. Most of the window functions available in SciPy can be used interchangeably,

and the choice of window function is usually not critical. A popular choice is the

Blackman window function, which is designed to minimize spectral leakage. For

more details about the properties of different window functions, see, for example,

Chapter 9 (Smith, 1999).

 Spectrogram
As a final example in this section on spectral analysis, here we analyze the spectrum of

an audio signal that was sampled from a guitar.4 First we load sampled data from the

guitar.wav file using the io.wavefile.read function from the SciPy library:

In [40]: sample_rate, data = io.wavfile.read("guitar.wav")

4 The data used in this example was obtained from https://www.freesound.org/people/
guitarguy1985/sounds/52047.

Figure 17-6. Spectrum of the windowed temperature time series. The dominant
peak occurs at the frequency corresponding to a 1-day period and its higher
harmonics.

Chapter 17 Signal proCeSSing

https://www.freesound.org/people/guitarguy1985/sounds/52047
https://www.freesound.org/people/guitarguy1985/sounds/52047

586

The io.wavefile.read function returns a tuple containing the sampling rate,

sample_rate, and a NumPy array containing the audio intensity. For this particular file,

we get the sampling rate of 44.1 kHz, and the audio signal was recorded in stereo, which is

represented by a data array with two channels. Each channel contains 1181625 samples:

In [41]: sample_rate

Out[41]: 44100

In [42]: data.shape

Out[42]: (1181625, 2)

Here we will only be concerned with analyzing a single audio channel, so we form

the average of the two channels to obtain a mono-channel signal:

In [43]: data = data.mean(axis=1)

We can calculate the total duration of the audio recording by dividing the number

of samples with the sampling rate. The result suggests that the recording is about 26.8

seconds.

In [44]: data.shape[0] / sample_rate

Out[44]: 26.79421768707483

It is often the case that we like to compute the spectrum of a signal in segments

instead of the entire signal at once, for example, if the nature of the signal varies in time

on a long timescale but contains nearly periodic components on a short timescale. This

is particularly true for music, which can be considered nearly period on short timescales

from the point of view of human perception (subsecond timescales) but which varies

on longer timescales. In the case of the guitar sample, we would therefore like to apply

the FFT on a sliding window in the time-domain signal. The result is a time-dependent

spectrum, which is often visualized as an equalizer graph on music equipment and

applications. Another approach is to visualize the time-dependent spectrum using a

two-dimensional heatmap graph, which in this context is known as a spectrogram. In the

following we compute the spectrogram of the guitar sample.

Before we proceed with the spectrogram visualization, we first calculate the

spectrum for a small part of the sample. We begin by determining the number of

samples to use from the full sample array. If we want to analyze for 0.5 seconds at the

time, we can use the sampling rate to compute the number of samples to use:

In [45]: N = int(sample_rate/2.0) # half a second -> 22050 samples

Chapter 17 Signal proCeSSing

587

Next, given the number of samples and the sampling rate, we can compute the

frequencies f for the frequency bins for the result of the forthcoming FFT calculation, as

well as the sampling times t for each sample in the time-domain signal. We also create

a frequency mask for selecting positive frequencies smaller than 1000 Hz, which we will

use later on to select a subset of the computed spectrum.

In [46]: f = fftpack.fftfreq(N, 1.0/sample_rate)

In [47]: t = np.linspace(0, 0.5, N)

In [48]: mask = (f > 0) * (f < 1000)

Next, we exact the first N samples from the full sample array data and apply the fft

function on it:

In [49]: subdata = data[:N]

In [50]: F = fftpack.fft(subdata)

The time- and frequency-domain signals are shown in Figure 17-7. The time-domain

signal in the left panel is zero in the beginning before the first guitar string is plucked.

The frequency-domain spectrum shows several dominant frequencies that correspond

to the different tones produced by the guitar.

In [51]: fig, axes = plt.subplots(1, 2, figsize=(12, 3))

 ...: axes[0].plot(t, subdata)

 ...: axes[0].set_ylabel("signal", fontsize=14)

 ...: axes[0].set_xlabel("time (s)", fontsize=14)

 ...: axes[1].plot(f[mask], abs(F[mask]))

 ...: axes[1].set_xlim(0, 1000)

 ...: axes[1].set_ylabel("$|F|$", fontsize=14)

 ...: axes[1].set_xlabel("Frequency (Hz)", fontsize=14)

Figure 17-7. Signal and spectrum for samples half a second duration of a guitar
sound

Chapter 17 Signal proCeSSing

588

The next step is to repeat the analysis for successive segments from the full sample

array. The time evolution of the spectrum can be visualized as a spectrogram, with

frequency on the x axis and time on the y axis. To be able to plot the spectrogram with

the imshow function from Matplotlib, we create a two-dimensional NumPy array

spectrogram_data for storing the spectra for the successive sample segments. The

shape of the spectrogram_data array is (n_max, f_values), where n_max is the number of

segments of length N in the sample array data and f_values are the number of frequency

bins with frequencies that match the condition used to compute mask (positive

frequencies less than 1000 Hz):

In [52]: n_max = int(data.shape[0] / N)

In [53]: f_values = np.sum(mask)

In [54]: spectogram_data = np.zeros((n_max, f_values))

To improve the contrast of the resulting spectrogram, we also apply a Blackman

window function to each subset of the sample data before we compute the FFT. Here we

choose the Blackman window function for its spectral leakage reducing properties, but

many other window functions give similar results. The length of the window array must

be the same as the length of the subdata array, so we pass its length argument to the

Blackman function:

In [55]: window = signal.blackman(len(subdata))

Finally we can compute the spectrum for each segment in the sample by looping

over the array slices of size N, apply the window function, compute the FFT, and store

the subset of the result for the frequencies we are interested in in the spectrogram_data

array:

In [56]: for n in range(0, n_max):

 ...: subdata = data[(N * n):(N * (n + 1))]

 ...: F = fftpack.fft(subdata * window)

 ...: spectogram_data[n, :] = np.log(abs(F[mask]))

When the spectrogram_data is computed, we can visualize the spectrogram using

the imshow function from Matplotlib. The result is shown in Figure 17-8.

In [57]: fig, ax = plt.subplots(1, 1, figsize=(8, 6))

 ...: p = ax.imshow(spectogram_data, origin='lower',

 ...: extent=(0, 1000, 0, data.shape[0] / sample_rate),

Chapter 17 Signal proCeSSing

589

 ...: aspect='auto',

 ...: cmap=mpl.cm.RdBu_r)

 ...: cb = fig.colorbar(p, ax=ax)

 ...: cb.set_label("$\log|F|$", fontsize=14)

 ...: ax.set_ylabel("time (s)", fontsize=14)

 ...: ax.set_xlabel("Frequency (Hz)", fontsize=14)

The spectrogram in Figure 17-8 contains a lot of information about the sampled

signal and how it evolves over time. The narrow vertical stripes correspond to tones

produced by the guitar, and those signals slowly decay with increasing time. The broad

horizontal bands correspond roughly to periods of time when strings are being plucked

on the guitar, which for a short time gives a very broad frequency response. Note,

however, that the color axis represents a logarithmic scale, so small variations in the

color represent large variation in the actual intensity.

Figure 17-8. Spectrogram of an audio sampling of a guitar sound

Chapter 17 Signal proCeSSing

590

 Signal Filters
One of the main objectives in signal processing is to manipulate and transform

temporal or spatial signals to change their characteristics. Typical applications

are noise reduction, sound effects in audio signals, and effects such as blurring,

sharpening, contrast enhancement, and color balance adjustments in image data. Many

common transformations can be implemented as filters that act on the frequency-

domain representation of the signal, for example, by suppressing certain frequency

components. In the previous section, we saw an example of a low-pass filter, which we

implemented by taking the Fourier transform of the signal, removing the high-frequency

components, and finally taking the inverse Fourier transform to obtain a new time-

domain signal. With this approach, we can implement arbitrary frequency filters, but

we cannot necessarily apply them in real time on a streaming signal since they require

buffering sufficient samples to be able to perform the discrete Fourier transform. In

many applications, it is desirable to apply filters and transform a signal in a continuous

fashion, for example, when processing signals in transmission or live audio signals.

 Convolution Filters
Certain types of frequency filters can be implemented directly in the time domain using

a convolution of the signal with a function that characterizes the filter. An important

property of Fourier transformations is that the (inverse) Fourier transform of the

product of two functions (e.g., the spectrum of a signal and the filter shape function)

is a convolution of the two functions (inverse) Fourier transforms. Therefore, if we

want to apply a filter Hk to the spectrum Xk of a signal xn, we can instead compute the

convolution of xn with hm, the inverse Fourier transform of the filter function Hk. In

general, we can write a filter on convolution form as

y x hn

k
k n k=

=-¥

¥

-å ,

where xk is the input, yn is the output, and hn − k is the convolution kernel that

characterizes the filter. Note that in this general form, the signal yn at time step n depends

on both earlier and later values of the input xk. To illustrate this point, let’s return to the

first example in this chapter, where we applied a low-pass filter to a simulated signal with

components at 1 Hz and at 22 Hz. In that example we Fourier transformed the signal

Chapter 17 Signal proCeSSing

591

and multiplied its spectrum with a step function that suppressed all high-frequency

components, and finally we inverse Fourier transformed the signal back into the time

domain. The result was a smoothened version of the original noisy signal (Figure 17-3).

An alternative approach using convolution is to inverse Fourier transform the frequency

response function for the filter H and use the result h as a kernel with which we convolve

the original time-domain signal f_t:

In [58]: t = np.linspace(0, T, N)

In [59]: f_t = signal_samples(t)

In [60]: H = abs(f) < 2

In [61]: h = fftpack.fftshift(fftpack.ifft(H))

In [62]: f_t_filtered_conv = signal.convolve(f_t, h, mode='same')

To carry out the convolution, here we used the convolve function from the signal

module in SciPy. It takes as arguments two NumPy arrays containing the signals for

which to compute the convolution. Using the optional keyword argument mode, we

can set the size of the output array to be the same as the first input (mode='same'),

the full convolution output after having zero-padded the arrays to account for

transients (mode='full'), or to contain only elements that do not rely on zero-padding

(mode='valid'). Here we use mode='same', so we easily can compare and plot the result

with the original signal, f_t. The result of applying this convolution filter, f_t_filtered_

conv, is shown in Figure 17-9, together with the corresponding result that was computed

using fft and ifft with a modified spectrum (f_t_filtered). As expected the two

methods give identical results.

In [63]: fig = plt.figure(figsize=(8, 6))

 ...: ax = plt.subplot2grid((2,2), (0,0))

 ...: ax.plot(f, H)

 ...: ax.set_xlabel("frequency (Hz)")

 ...: ax.set_ylabel("Frequency filter")

 ...: ax.set_ylim(0, 1.5)

 ...: ax = plt.subplot2grid((2,2), (0,1))

 ...: ax.plot(t - t[-1]/2.0, h.real)

 ...: ax.set_xlabel("time (s)")

 ...: ax.set_ylabel("convolution kernel")

 ...: ax = plt.subplot2grid((2,2), (1,0), colspan=2)

 ...: ax.plot(t, f_t, label='original', alpha=0.25)

Chapter 17 Signal proCeSSing

592

 ...: ax.plot(t, f_t_filtered.real, 'r', lw=2, label='filtered in

frequency domain')

 ...: ax.plot(t, f_t_filtered_conv.real, 'b--', lw=2, label='filtered

with convolution')

 ...: ax.set_xlim(0, 10)

 ...: ax.set_xlabel("time (s)")

 ...: ax.set_ylabel("signal")

 ...: ax.legend(loc=2)

Figure 17-9. Top left: frequency filter. Top right: convolution kernel corresponding
to the frequency filter (its inverse discrete Fourier transform). Bottom: simple low-
pass filter applied via convolution

Chapter 17 Signal proCeSSing

593

 FIR and IIR Filters
In the example of a convolution filter in the previous section, there is no computational

advantage of using a convolution to implement the filter rather than a sequence of a call

to fft, spectrum modifications, followed by a call to ifft. In fact, the convolution here is

in general more demanding than the extra FFT transformation, and the SciPy signal

module actually provides a function call fftconvolve, which implements the

convolution using FFT and its inverse. Furthermore, the convolution kernel of the filter

has many undesirable properties, such as being noncasual, where the output signal

depends on future values of the input (see the upper-right panel in Figure 17- 9).

However, there are important special cases of convolution-like filters that can be

efficiently implemented with both dedicated digital signal processors (DSPs) and

general-purpose processors. An important family of such filters is the finite impulse

response (FIR) filters, which takes the form y b xn
k

M

k n k=
=

-å
0

. This time-domain filter is

casual because the output yn only depends on input values at earlier time steps.

Another similar type of filter is the infinite impulse response (IIR) filters, which can be

written in the form a y b x a yn
k

M

k n k
k

N

k n k0
0 1

= -
=

-
=

-å å . This is not strictly a convolution since it

additionally includes past values of the output when computing a new output value (a

feedback term), but it is nonetheless in a similar form. Both FIR and IIR filters can be

used to evaluate new output values given the recent history of the signal and the output

and can therefore be evaluated sequentially in the time domain, if we know the finite

sequences of values of bk and ak.

Computing the values of bk and ak given a set of requirements on filter properties

is known as filter design. The SciPy signal module provides many functions for this

purpose. For example, using the firwin function, we can compute the bk coefficients

for an FIR filter given frequencies of the band boundaries, where, for example, the filter

transitions from a pass to a stop filter (for a low-pass filter). The firwin function takes

the number of values in the ak sequence as the first argument (also known as taps in

this context). The second argument, cutoff, defines the low-pass transition frequency

in units of the Nyquist frequency (half the sampling rate). The scale of the Nyquist

frequency can optionally be set using the nyq argument, which defaults to 1. Finally we

can specify the type of window function to use with the window argument.

Chapter 17 Signal proCeSSing

594

In [64]: n = 101

In [65]: f_s = 1 / 3600

In [66]: nyq = f_s/2

In [67]: b = signal.firwin(n, cutoff=nyq/12, nyq=nyq, window="hamming")

The result is the sequence of coefficients bk that defines an FIR filter and which can

be used to implement the filter with a time-domain convolution. Given the coefficients

bk, we can evaluate the amplitude and phase response of the filter using the freqz

function from the signal module. It returns arrays containing frequencies and the

corresponding complex-valued frequency response, which are suitable for plotting

purposes, as shown in Figure 17-10.

In [68]: f, h = signal.freqz(b)

In [69]: fig, ax = plt.subplots(1, 1, figsize=(12, 3))

 ...: h_ampl = 20 * np.log10(abs(h))

 ...: h_phase = np.unwrap(np.angle(h))

 ...: ax.plot(f/max(f), h_ampl, 'b')

 ...: ax.set_ylim(-150, 5)

 ...: ax.set_ylabel('frequency response (dB)', color="b")

 ...: ax.set_xlabel(r'normalized frequency')

 ...: ax = ax.twinx()

 ...: ax.plot(f/max(f), h_phase, 'r')

 ...: ax.set_ylabel('phase response', color="r")

 ...: ax.axvline(1.0/12, color="black")

Figure 17-10. The amplitude and phase response of a low-pass FIR filter

Chapter 17 Signal proCeSSing

595

The low-pass filter shown in Figure 17-10 is designed to pass through signals with

frequencies less than fs/24 (indicated with a vertical line) and suppress higher-frequency

signal components. The finite transition region between pass and stop bands and

the nonperfect suppression above the cutoff frequency is a price we have to pay to be

able to represent the filter in FIR form. The accuracy of the FIR filter can be improved

by increasing the number of coefficients bk, at the expense of higher computational

complexity.

The effect of an FIR filter, given the coefficients bk, and an IIR filter, given the

coefficients bk and ak, can be evaluated using the lfilter function from the signal

module. As first argument, this function expects the array with coefficients bk, and as

second argument, the array with the coefficients ak in the case of an IIR filter, or the

scalar 1 in case of an FIR filter. The third argument to the function is the input signal

array, and the return value is the filter output. For example, to apply the FIR filter we

created in the preceding text to the array with hourly temperature measurements

temperature, we can use

In [70]: temperature_filt = signal.lfilter(b, 1, temperature)

The effect of applying the low-pass FIR filter to the signal is to smoothen the function

by an eliminating the high-frequency oscillations, as shown in Figure 17-11. Another

approach to achieve a similar result is to apply a moving average filter, in which the

output is a weighted average or median of a few nearby input values. The function

medfilt from the signal module applies a median filter of a given input signal, using the

number of past nearby values specified with the second argument to the function:

In [71]: temperature_median_filt = signal.medfilt(temperature, 25)

Figure 17-11. Output of an FIR filter and a median filter

Chapter 17 Signal proCeSSing

596

The result of applying the FIR low-pass filter and the median filter to the hourly

temperature measurement dataset is shown in Figure 17-11. Note that the output of

the FIR filter is shifted from the original signal by a time delay that corresponds to the

number of taps in the FIR filter. The median filter implemented using medfilt does not

suffer from this issue because the median is computed with respect to both past and

future values, which makes it a noncasual filter that cannot be evaluated on the fly on

streaming input data.

In [72]: fig, ax = plt.subplots(figsize=(8, 3))

 ...: ax.plot(df.index, temperature, label="original", alpha=0.5)

 ...: ax.plot(df.index, temperature_filt, color="red", lw=2,

label="FIR")

 ...: ax.plot(df.index, temperature_median_filt, color="green", lw=2,

label="median filer")

 ...: ax.set_ylabel("temperature", fontsize=14)

 ...: ax.legend(loc=0)

To design an IIR filter, we can use the iirdesign function from the signal module or

use one of the many predefined IIR filter types, including the Butterworth filter (signal.

butter), Chebyshev filters of types I and II (signal.cheby1 and signal.cheby2), and

elliptic filter (signal.ellip). For example, to create a Butterworth high-pass filter that

allows frequencies above the critical frequency 7/365 Hz to pass, while lower frequencies

are suppressed, we can use

In [73]: b, a = signal.butter(2, 7/365.0, btype='high')

The first argument to this function is the order of the Butterworth filter, and the

second argument is the critical frequency of the filter (where it goes from bandstop to

bandpass function). The optional argument btype can, for example, be used to specify if

the filter is a low-pass filter (low) or high-pass filter (high). More options are described

in the function’s docstring: see, for example, help(signal.butter). The outputs a

and b are the ak and bk coefficients that define the IIR filter, respectively. Here we have

computed a Butterworth filter of second order, so a and b each has three elements:

In [74]: b

Out[74]: array([0.95829139, -1.91658277, 0.95829139])

In [75]: a

Out[75]: array([1. , -1.91484241, 0.91832314])

Chapter 17 Signal proCeSSing

597

Like before we can apply the filter to an input signal (here we again use the hourly

temperature dataset as an example):

In [76]: temperature_iir = signal.lfilter(b, a, temperature)

Alternatively we can apply the filter using the filtfilt function, which applies the

filter both forward and backward, resulting in a noncasual filter.

In [77]: temperature_filtfilt = signal.filtfilt(b, a, temperature)

The results of both types of filters are shown in Figure 17-12. Eliminating the low-

frequency components detrends the time series and only retains the high-frequency

oscillations and fluctuations. The filtered signal can therefore be viewed as measuring

the volatility of the original signal. In this example we can see that the daily variations

are greater during the spring months of March, April, and May, when compared to the

winter month of January and February.

In [78]: fig, ax = plt.subplots(figsize=(8, 3))

 ...: ax.plot(df.index, temperature, label="original", alpha=0.5)

 ...: ax.plot(df.index, temperature_iir, color="red", label="IIR

filter")

 ...: ax.plot(df.index, temperature_filtfilt, color="green",

label="filtfilt filtered")

 ...: ax.set_ylabel("temperature", fontsize=14)

 ...: ax.legend(loc=0)

Figure 17-12. Output from an IIR high-pass filter and the corresponding filtfilt
filter (applied both forward and backward)

Chapter 17 Signal proCeSSing

598

These techniques can be directly applied to audio and image data. For example, to

apply a filter to the audio signal of the guitar samples, we can use the use the lfilter

functions. The coefficients bk for the FIR filter can sometimes be constructed manually.

For example, to apply a naive echo sound effect, we can create an FIR filter that repeats

past signals with some time delay: yn = xn+xn − N, where N is a time delay in units of time

steps. The corresponding coefficients bk are easily constructed and can be applied to the

audio signal data.

In [79]: b = np.zeros(10000)

 ...: b[0] = b[-1] = 1

 ...: b /= b.sum()

In [80]: data_filt = signal.lfilter(b, 1, data)

To be able to listen to the modified audio signal, we can write it to a WAV file using

the write function from the io.wavefile module in SciPy:

In [81]: io.wavfile.write("guitar-echo.wav", sample_rate,

 ...: np.vstack([data_filt, data_filt]).T.astype(np.

int16))

Similarly, we can implement many types of image processing filters using the

tools from the signal module. SciPy also provides a module ndimage, which contains

many common image manipulation functions and filters that are specially adapted for

applying on two-dimensional image data. The Scikit-Image library5 provides a more

advanced framework for working with image processing in Python.

 Summary
Signal processing is an extremely broad field with applications in most fields of science

and engineering. As such, here we have only been able to cover a few basic applications

of signal processing in this chapter, and we have focused on introducing methods

for approaching this type of problem with computational methods using Python and

the libraries and tools that are available within the Python ecosystem for scientific

computing. In particular, we explored spectral analysis of time-dependent signals using

fast Fourier transform and the design and application of linear filters to signals using the

signal module in the SciPy library.

5 See the project’s web page at http://scikit-image.org for more information.

Chapter 17 Signal proCeSSing

http://scikit-image.org

599

 Further Reading
For a comprehensive review of the theory of signal processing, see Smith (1999), which

can also be viewed online at www.dspguide.com/pdfbook.htm. For a Python-oriented

discussion of signal processing, see Unpingco (2014), from which content is available as

IPython notebooks at http://nbviewer.ipython.org/github/unpingco/Python-for-

Signal-Processing.

 References
Smith, S. (1999). The Scientist and Engineer's Guide to Digital Signal Processing. San

Diego: Steven W. Smith.

Unpingco, J. (2014). Python for Signal Processing. New York: Springer.

Chapter 17 Signal proCeSSing

http://www.dspguide.com/pdfbook.htm
http://nbviewer.ipython.org/github/unpingco/Python-for-Signal-Processing
http://nbviewer.ipython.org/github/unpingco/Python-for-Signal-Processing

601
© Robert Johansson 2019
R. Johansson, Numerical Python, https://doi.org/10.1007/978-1-4842-4246-9_18

CHAPTER 18

Data Input and Output
In nearly all scientific computing and data analysis applications, there is a need for data

input and output. This includes to load datasets and to persistently store results to files

on disk or to databases. Getting data in and out of programs is consequently a key step in

the computational workflow. There are many standardized formats for storing structured

and unstructured data. The benefits of using standardized formats are obvious: You can

use existing libraries for reading and writing data, saving yourself both time and effort.

In the course of working with scientific and technical computing, it is likely that you will

face a variety of data formats through interaction with colleagues and peers or when

acquiring data from sources such as equipment and databases. As a computational

practitioner, it is important to be able to handle data efficiently and seamlessly,

regardless of which format it comes in. This motivates why this entire chapter is devoted

to the topic of data input and output.

Python has good support for many file formats. In fact, multiple options exist for

dealing with the most common formats. In this chapter we survey data storage formats

with applications in computing and discuss typical situations where each format is

suitable. We also introduce Python libraries and tools for handling a selection of data

formats that are common in computing.

Data can be classified into several categories and types. Important categories are

structured and unstructured data, and values can, for example, be categorical (finite

set of values), ordinal (values with meaningful ordering), or numerical (continuous or

discrete). Values also have types, such as string, integer, floating-point number, etc. A

data format for storing or transmitting data should ideally account for these concepts

in order to avoid loss of data or metadata, and we frequently need to have fine-grained

control of how data is represented.

In computing applications, most of the time we deal with structured data, for

example, arrays and tabular data. Examples of unstructured datasets include free-form

texts or nested list with nonhomogeneous types. In this chapter we focus on the CSV

602

family of formats and the HDF5 format for structured data, and toward the end of the

chapter, we discuss the JSON format as a lightweight and flexible format that can be

used to store both simple and complex datasets, with a bias toward storing lists and

dictionaries. This format is well suited for storing unstructured data. We also briefly

discuss methods of serializing objects into storable data using the msgpack format and

Python’s built-in pickle format.

Because of the importance of data input and output in many data-centric

computational applications, several Python libraries have emerged with the objective to

simplify and assist in handling data in different formats and for moving and converting

data. For example, the Blaze library (http://blaze.pydata.org/en/latest) provides

a high-level interface for accessing data of different formats and from different types of

sources. Here we focus mainly on lower-level libraries for reading specific types of file

formats that are useful for storing numerical data and unstructured datasets. However,

the interested reader is encouraged to also explore higher-level libraries such as Blaze.

 Importing Modules
In this chapter we use a number of different libraries for handling different types of data.

In particular, we require NumPy and Pandas, which as usual we import as np and pd,

respectively:

In [1]: import numpy as np

In [2]: import pandas as pd

We also use the csv and json modules from the Python standard library:

In [3]: import csv

In [4]: import json

For working with the HDF5 format for numerical data, we use the h5py and the

pytables libraries:

In [5]: import h5py

In [6]: import tables

Chapter 18 Data Input anD Output

http://blaze.pydata.org/en/latest

603

Finally, in the context of serializing objects to storable data, we explore the pickle

and msgpack libraries:

In [7]: import pickle

In [8]: import msgpack

 Comma-Separated Values
Comma-separated values (CSV) is an intuitive and loosely defined1 plain-text file format

that is simple yet effective and very prevalent for storing tabular data. In this format

each record is stored as a line, and each field of the record is separated with a delimiter

character (e.g., a comma). Optionally, each field can be enclosed in quotation marks,

to allow for string-valued fields that contain the delimiter character. Also, the first line

is sometimes used to store column names, and comment lines are also common. An

example of a CSV file is shown in Listing 18-1.

Listing 18-1. Example of a CSV File with a Comment Line, a Header Line, and

Mixed Numerical and String-Valued Data Fields (Data source: www.nhl.com)

2013-2014 / Regular Season / All Skaters / Summary / Points

Rank,Player,Team,Pos,GP,G,A,P,+/-,PIM,PPG,PPP,SHG,SHP,GW,OT,S,S%,TOI/

GP,Shift/GP,FO%

1,Sidney Crosby,PIT

,C,80,36,68,104,+18,46,11,38,0,0,5,1,259,13.9,21:58,24.0,52.5

2,Ryan Getzlaf,ANA

,C,77,31,56,87,+28,31,5,23,0,0,7,1,204,15.2,21:17,25.2,49.0

3,Claude Giroux,PHI

,C,82,28,58,86,+7,46,7,37,0,0,7,1,223,12.6,20:26,25.1,52.9

4,Tyler Seguin,DAL

,C,80,37,47,84,+16,18,11,25,0,0,8,0,294,12.6,19:20,23.4,41.5

5,Corey Perry,ANA

,R,81,43,39,82,+32,65,8,18,0,0,9,1,280,15.4,19:28,23.2,36.0

1 Although RFC 4180, http://tools.ietf.org/html/rfc4180, is sometimes taken as an unofficial
specification, in practice there exist many varieties and dialects of CSV.

Chapter 18 Data Input anD Output

http://www.nhl.com
http://tools.ietf.org/html/rfc4180

604

CSV is occasionally also taken to be an acronym for character-separated value,

reflecting the fact that the CSV format commonly refers to a family of formats using

different delimiters between the fields. For example, instead of the comma, the Tab

character is often used, in which case the format is sometimes called TSV instead of

CSV. The term delimiter-separated values (DSV) is also occasionally used to refer to

these types of formats.

In Python there are several ways to read and write data in the CSV format, each with

different use-cases and advantages. To begin with, the standard Python library contains

a module called csv for reading CSV data. To use this module, we can call the csv.

reader function with a file handle as argument. It returns a class instance that can be

used as an iterator that parses lines from the given CSV file into Python lists of strings.

For example, to read the file playerstats-2013-2014.csv (shown in Listing 18-1) into a

nested list of strings, we can use

In [9]: with open("playerstats-2013-2014.csv") as f:

 ...: csvreader = csv.reader(f)

 ...: rows = [fields for fields in csvreader]

In [10]: rows[1][1:6]

Out[10]: ['Player', 'Team', 'Pos', 'GP', 'G']

In [11]: rows[2][1:6]

Out[11]: ['Sidney Crosby', 'PIT', 'C', '80', '36']

Note that by default each field in the parsed rows is string-valued, even if the field

represents a numerical value, such as 80 (games played) or 36 (goals) in the preceding

example. While the csv module provides a flexible way of defining custom CSV reader

classes, this module is most convenient for reading CSV files with string-valued fields.

In computational work, it is common to store and load arrays with numerical values,

such as vectors and matrices. The NumPy library provides the np.loadtxt and np.savetxt

for this purpose. These functions take several arguments to fine-tune the type of CSV

format to read or write: for example, with the delimiter argument, we can select which

character to use to separate fields, and the header and comments arguments can be used to

specify a header row and comment rows that are prepended to the header, respectively.

As an example, consider saving an array with random numbers and of shape (100, 3)

to a file data.csv using np.savetxt. To give the data some context, we add a header and

a comment line to the file as well, and we explicitly request using the comma character

as field delimiter with the argument delimiter="," (the default delimiter is the space

character):

Chapter 18 Data Input anD Output

605

In [12]: data = np.random.randn(100, 3)

In [13]: np.savetxt("data.csv", data, delimiter=",", header="x,y,z",

 ...: comments="# Random x, y, z coordinates\n")

In [14]: !head -n 5 data.csv

Random x, y, z coordinates

x,y,z

1.652276634254504772e-01,9.522165919962696234e-01,4.659850998659530452e-01

8.699729536125471174e-01,1.187589118344758443e+00,1.788104702180680405e+00

-8.106725710122602013e-01,2.765616277935758482e-01,4.456864674903074919e-01

To read data on this format back into a NumPy array, we can use the np.loadtxt

function. It takes arguments that are similar to those of np.savetxt: in particular, we

again set the delimiter argument to ",", to indicate the fields that are separated by a

comma character. We also need to use the skiprows argument to skip over the first two

lines in the file (the comment and header line), since they do not contain numerical

data:

In [15]: data_load = np.loadtxt("data.csv", skiprows=2, delimiter=",")

The result is a new NumPy array that is equivalent to the original one written to the

data.csv file using np.savetxt:

In [16]: (data == data_load).all()

Out[16]: True

Note that in contrast to the CSV reader in the csv module in the Python standard

library, by default the loadtxt function in NumPy converts all fields into numerical

values, and the result is a NumPy with numerical dtype (float64):

In [17]: data_load[1,:]

Out[17]: array([0.86997295, 1.18758912, 1.7881047])

In [18]: data_load.dtype

Out[18]: dtype('float64')

To read CSV files that contain nonnumerical data using np.loadtxt – such as the

playerstats-2013-2014.csv file that we read using the Python standard library in the

preceding text – we must explicitly set the data type of the resulting array using the dtype

argument. If we attempt to read a CSV file with nonnumerical values without setting

dtype, we get an error:

Chapter 18 Data Input anD Output

606

In [19]: np.loadtxt("playerstats-2013-2014.csv", skiprows=2, delimiter=",")

ValueError: could not convert string to float: b'Sidney Crosby'

Using dtype=bytes (or str or object), we get a NumPy array with unparsed values:

In [20]: data = np.loadtxt("playerstats-2013-2014.csv", skiprows=2,

delimiter=",", dtype=bytes)

In [21]: data[0][1:6]

Out[21]: array([b'Sidney Crosby', b'PIT', b'C', b'80', b'36'],

dtype='|S13')

Alternatively, if we want to read only columns with numerical types, we can select to

read a subset of columns using the usecols argument:

In [22]: np.loadtxt("playerstats-2013-2014.csv", skiprows=2, delimiter=",",

usecols=[6,7,8])

Out[22]: array([[68., 104., 18.],

 [56., 87., 28.],

 [58., 86., 7.],

 [47., 84., 16.],

 [39., 82., 32.]])

While the NumPy savetxt and loadtxt functions are configurable and flexible

CSV writers and readers, they are most convenient for all-numerical data. The Python

standard library module csv, on the other hand, is most convenient for CSV files with

string-valued data. A third method to read CSV files in the Python is to use the Pandas

read_csv function. We have already seen examples of this function in Chapter 12, where

we used it to create Pandas data frames from TSV-formatted data files. The read_csv

function in Pandas is very handy when reading CSV files with both numerical and string-

valued fields, and in most cases, it will automatically determine which type a field has

and converts it accordingly. For example, when reading the playerstats-2013-2014.

csv file using read_csv, we obtain a Pandas data frame with all the fields parsed into

columns with suitable type:

In [23]: df = pd.read_csv("playerstats-2013-2014.csv", skiprows=1)

In [24]: df = df.set_index("Rank")

In [25]: df[["Player", "GP", "G", "A", "P"]]

Chapter 18 Data Input anD Output

607

Out[25]:

Rank Player GP G A P

1 Sidney Crosby 80 36 68 104

2 Ryan Getzlaf 77 31 56 87

3 Claude Giroux 82 28 58 86

4 Tyler Seguin 80 37 47 84

5 Corey Perry 81 43 39 82

Using the info method of the DataFrame instance df, we can see explicitly which

type each column has been converted to (here the output is truncated for brevity):

In [26]: df.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 5 entries, 1 to 5

Data columns (total 20 columns):

Player 5 non-null object

Team 5 non-null object

Pos 5 non-null object

GP 5 non-null int64

G 5 non-null int64

...

S 5 non-null int64

S% 5 non-null float64

TOI/GP 5 non-null object

Shift/GP 5 non-null float64

FO% 5 non-null float64

dtypes: float64(3), int64(13), object(4)

memory usage: 840.0+ bytes

Chapter 18 Data Input anD Output

608

Data frames can also be written to CSV files using the to_csv method of the

DataFrame object:

In [27]: df[["Player", "GP", "G", "A", "P"]].to_csv("playerstats-2013-2014-

subset.csv")

In [28]: !head -n 5 playerstats-2013-2014-subset.csv

Rank,Player,GP,G,A,P

1,Sidney Crosby,80,36,68,104

2,Ryan Getzlaf,77,31,56,87

3,Claude Giroux,82,28,58,86

4,Tyler Seguin,80,37,47,84

The combination of the Python standard library, NumPy and Pandas, provides a

powerful toolbox for both reading and writing CSV files of various flavors. However,

although CSV files are convenient and effective for tabular data, there are obvious

shortcomings with the format. For starters, it can only be used to store one- or two-

dimensional arrays, and it does not contain metadata that can help interpret the data.

Also, it is not very efficient in terms of either storage or reading and writing, and it

cannot be used to store more than one array per file, requiring multiple files for multiple

arrays even if they are closely related. The use of CSV should therefore be limited to

simple datasets. In the following section, we will look at the HDF5 file format, which was

designed to store numerical data efficiently and to overcome all the shortcomings of

simple data formats such as CSV and related formats.

 HDF5
The Hierarchical Data Format 5 (HDF5) is a format for storing numerical data. It is

developed by The HDF Group2, a nonprofit organization, and it is available under the

BSD open source license. The HDF5 format, which was released in 1998, is designed

and implemented to efficiently handle large datasets, including support for high-

performance parallel I/O. The HDF5 format is therefore suitable for use on distributed

high-performance supercomputers and clusters and can be used to store and operate on

datasets of terabyte scale, or even larger. However, the beauty of HDF5 is that it is equally

suitable for small datasets. As such it is a truly versatile format and an invaluable tool for

a computational practitioner.

2 www.hdfgroup.org

Chapter 18 Data Input anD Output

http://www.hdfgroup.org

609

The hierarchical aspect of the format allows organizing datasets within a file, using

a hierarchical structure that resembles a file system. The terminology used for entities

in an HDF5 file is groups and datasets, which corresponds to directories and files in the

file system analogy. Groups in an HDF5 file can be nested to create a tree structure and

hence hierarchical in the name of the format. A dataset in an HDF5 file is a homogenous

array of certain dimensions and elements of a certain type. The HDF5 type system

supports all standard basic data types and also allows defining custom compound data

types. Both groups and datasets in an HDF5 file can also have attributes, which can

be used to store metadata about groups and datasets. Attributes can themselves have

different types, such as numeric or string-valued.

In addition to the file format itself, The HDF Group also provides a library and a

reference implementation of the format. The main library is written in C, and wrappers

to its C API are available for many programming languages. The HDF5 library for

accessing data from an HDF5 file has sophisticated support for partial read and write

operations, which can be used to access a small segment of the entire dataset. This is a

powerful feature that enables computations on datasets that are larger than what can

be fit a computer’s memory3. The HDF5 format is a mature file format with widespread

support on different platforms and computational environments. This also makes

HDF5 a suitable choice for long-term storage of data. As a data storage platform, HDF5

provides a solution to a number of problems: cross-platform storage, efficient I/O, and

storage that scales up to very large data files, a metadata system (attributes) that can be

used to annotate and describe the groups and datasets in a file to make the data self-

describing. Altogether, these features make HDF5 a great tool for computational work.

For Python there are two libraries for using HDF5 files: h5py and PyTables. These

two libraries take different approaches to use HDF5, and it is well worth being familiar

with both of these libraries. The h5py library provides an API that is relatively close to the

basic HDF5 concepts, with a focus on groups and datasets. It provides a NumPy-inspired

API for accessing datasets, which makes it very intuitive for someone that is familiar with

NumPy.

3 This is also known as out-of-core computing. For another recent project that also provides
out-of-core computing capabilities in Python, see the dask library (http://dask.pydata.org/en/
latest).

Chapter 18 Data Input anD Output

http://dask.pydata.org/en/latest
http://dask.pydata.org/en/latest

610

h5py the h5py library provides a pythonic interface to the hDF5 file format and
a numpy-like interface to its datasets. For more information about the project,
including its official documentation, see its web page at www.h5py.org. at the
time of writing, the most recent version of the library is 2.7.1.

The PyTables library provides a higher-level data abstraction based on the HDF5

format, providing database-like features, such as tables with easily customizable data

types. It also allows querying datasets as a database and the use of advanced indexing

features.

PyTables the pytables library provides a database-like data model on top of
hDF5. For more information about the project and its documentation, see the web
page at http://pytables.github.io. at the time of writing, the latest version
of pytables is 3.4.3.

In the following two sections, we explore in more detail how the h5py and PyTables

libraries can be used to read and write numerical data with HDF5 files.

 h5py
We begin with a tour of the h5py library. The API for h5py is surprisingly simple and

pleasant to work with, yet at the same time full-featured. This is accomplished through

the thoughtful use of Pythonic idioms such as dictionary and NumPy’s array semantics.

A summary of basic objects and methods in the h5py library is shown in Table 18-1. In

the following, we explore how to use these methods through a series of examples.

Chapter 18 Data Input anD Output

http://www.h5py.org
http://pytables.github.io

611

Table 18-1. Summary of the Main Objects and Methods in the h5py API

Object Method/Attribute Description

h5py.File __init__(name, mode,

...)

Open an existing hDF5, or create

a new one, with filename name.

Depending on the value of the mode

argument, the file can be opened in

read-only or read- write mode (see

main text).

flush() Write buffers to file.

close() Close an open hDF5 file.

h5py.File, h5py.Group create_group(name) Create a new group with name name

(can be a path) within the current

group.

create_dataset(name,

data=..., shape=...,

dtype=..., ...)

Create a new dataset.

[] dictionary syntax access items (groups and datasets)

within a group.

h5py.Dataset dtype Data type.

shape Shape (dimensions) of the dataset.

value the full array of the underlying data of

the dataset.

[] array syntax access elements or subsets of the data

in a dataset.

h5py.File, h5py.Group,

h5py.Dataset

name name (path) of the object in the hDF5

file hierarchy.

attrs Dictionary-like attribute access.

Chapter 18 Data Input anD Output

612

 Files

We begin by looking at how to open existing and create new HDF5 files using the

h5py.File object. The initializer for this object only takes a filename as a required

argument, but we will typically also need to specify the mode argument, with which

we can choose to open a file in read-only or read-write mode and if a file should be

truncated or not when opened. The mode argument takes string values similar to

the built-in Python function open: "r" is used for read-only (file must exist), "r+" for

read-write (file must exist), "w" for creating a new file (truncate if file exists), "w-" for

creating a new file (error if file exists), and "a" for read-write (if file exists, otherwise

create). To create a new file in read-write mode, we can therefore use

In [29]: f = h5py.File("data.h5", mode="w")

The result is a file handle, here assigned to the variable f, which we can use to access

and add content to the file. Given a file handle, we can see which mode it is opened in

using the mode attribute:

In [30]: f.mode

Out[30]: 'r+'

Note that even though we opened the file in mode "w", once the file has been opened it is

either read-only ("r") or read-write ("r+"). Other file-level operations that can be performed

using the HDF5 file object are flushing buffers containing data that has not yet been written

to the file using the flush method and closing the file using the close method:

In [31]: f.flush()

In [32]: f.close()

 Groups

At the same time as representing an HDF5 file handle, the File object also represents the

HDF5 group object known as the root group. The name of a group is accessible through

the name attribute of the group object. The name takes the form of a path, similar to a

path in a file system, which specifies where in the hierarchical structure of the file the

group is stored. The name of the root group is "/":

In [33]: f = h5py.File("data.h5", "w")

In [34]: f.name

Out[34]: '/'

Chapter 18 Data Input anD Output

613

A group object has the method create_group for creating a new group within an

existing group. A new group created with this method becomes a subgroup of the group

instance for which the create_group method is invoked:

In [35]: grp1 = f.create_group("experiment1")

In [36]: grp1.name

Out[36]: '/experiment1'

Here the group experiment1 is a subgroup of root group, and its name and path in

the hierarchical structure is therefore /experiment1. When creating a new group, its

immediate parent group does not necessarily have to exist beforehand. For example, to

create a new group /experiment2/measurement, we can directly use the create_group

method of the root group without first creating the experiment2 group explicitly.

Intermediate groups are created automatically.

In [37]: grp2_meas = f.create_group("experiment2/measurement")

In [38]: grp2_meas.name

Out[38]: '/experiment2/measurement'

In [39]: grp2_sim = f.create_group("experiment2/simulation")

In [40]: grp2_sim.name

Out[40]: '/experiment2/simulation'

The group hierarchy of an HDF5 file can be explored using a dictionary-style

interface. To retrieve a group with a given path name, we can perform a dictionary-like

lookup from one of its ancestor groups (typically the root node):

In [41]: f["/experiment1"]

Out[41]: <HDF5 group "/experiment1" (0 members)>

In [42]: f["/experiment2/simulation"]

Out[42]: <HDF5 group "/experiment2/simulation" (0 members)>

The same type of dictionary lookup works for subgroups too (not only the root node):

In [43]: grp_experiment2 = f["/experiment2"]

In [44]: grp_experiment2['simulation']

Out[44]: <HDF5 group "/experiment2/simulation" (0 members)>

Chapter 18 Data Input anD Output

614

The keys method returns an iterator over the names of subgroups and datasets

within a group, and the items method returns an iterator over (name, value) tuples

for each entity in the group. These can be used to traverse the hierarchy of groups

programmatically.

In [45]: list(f.keys())

Out[45]: ['experiment1', 'experiment2']

In [46]: list(f.items())

Out[46]: [('experiment1', <HDF5 group "/experiment1" (0 members)>),

 ('experiment2', <HDF5 group "/experiment2" (2 members)>)]

To traverse the hierarchy of groups in an HDF5 file, we can also use the method

visit, which takes a function as argument and calls that function with the name for each

entity in the file hierarchy:

In [47]: f.visit(lambda x: print(x))

experiment1

experiment2

experiment2/measurement

experiment2/simulation

or the visititems method which does the same thing except that it calls the function

with both the item name and the item itself as arguments:

In [48]: f.visititems(lambda name, item: print(name, item))

experiment1 <HDF5 group "/experiment1" (0 members)>

experiment2 <HDF5 group "/experiment2" (2 members)>

experiment2/experiment <HDF5 group "/experiment2/measurement" (0 members)>

experiment2/simulation <HDF5 group "/experiment2/simulation" (0 members)>

In keeping with the semantics of Python dictionaries, we can also operate on Group

objects using the set membership testing with the in Python keyword:

In [49]: "experiment1" in f

Out[49]: True

In [50]: "simulation" in f["experiment2"]

Out[50]: True

In [51]: "experiment3" in f

Out[51]: False

Chapter 18 Data Input anD Output

615

Using the visit and visititems methods, together with the dictionary-style

methods keys and items, we can easily explore the structure and content of an HDF5

file, even if we have no prior information on what it contains and how the data is

organized within it. The ability to conveniently explore HDF5 is an important aspect

of the usability of the format. There are also external non-Python tools for exploring

the content of HDF5 files that often are useful when working with this type of files. In

particular, the h5ls command-line tool is handy for quickly inspecting the content of an

HDF5 file:

In [52]: f.flush()

In [53]: !h5ls -r data.h5

/ Group

/experiment1 Group

/experiment2 Group

/experiment2/measurement Group

/experiment2/simulation Group

Here we used the -r flag to the h5ls program to recursively show all items in the

file. The h5ls program is part of a series of HDF5 utility programs provided by a package

called hdf5-tools (see also h5stat, h5copy, h5diff, etc.). Even though these are not

Python tools, they are very useful when working with HDF5 files in general, also from

within Python.

 Datasets

Now that we have explored how to create and access groups within an HDF5 file, it is

time to look at how to store datasets. Storing numerical data is after all the main purpose

of the HDF5 format. There are two main methods to create a dataset in an HDF5 file

using h5py. The easiest way to create a dataset is to simply assign a NumPy array to an

item within an HDF5 group, using the dictionary index syntax. The second method is to

create an empty dataset using the create_dataset method, as we will see examples later

in this section.

Chapter 18 Data Input anD Output

616

For example, to store two NumPy arrays, array1 and meas1, into the root group and

the experiment2/measurement groups, respectively, we can use

In [54]: array1 = np.arange(10)

In [55]: meas1 = np.random.randn(100, 100)

In [56]: f["array1"] = array1

In [57]: f["/experiment2/measurement/meas1"] = meas1

To verify that the datasets for the assigned NumPy arrays were added to the file, let’s

traverse through the file hierarchy using the visititems method:

In [58]: f.visititems(lambda name, value: print(name, value))

array1 <HDF5 dataset "array1": shape (10,), type "<i8">

experiment1 <HDF5 group "/experiment1" (0 members)>

experiment2 <HDF5 group "/experiment2" (2 members)>

experiment2/measurement <HDF5 group "/experiment2/measurement" (1 members)>

experiment2/measurement/meas1 <HDF5 dataset "meas1": shape (100, 100),

type "<f8">

experiment2/simulation <HDF5 group "/experiment2/simulation" (0 members)>

We see that, indeed, the array1 and meas1 datasets are now added to the file. Note

that the paths used as dictionary keys in the assignments determine the locations of the

datasets within the file. To retrieve a dataset, we can use the same dictionary-like syntax

as we used to retrieve a group. For example, to retrieve the array1 dataset, which is

stored in the root group, we can use f["array1"]:

In [59]: ds = f["array1"]

In [60]: ds

Out[60]: <HDF5 dataset "array1": shape (10,), type "<i8">

The result is a Dataset object, not a NumPy array like the one that we assigned to

the array1 item. The Dataset object is a proxy for the underlying data within the HDF5.

Like a NumPy array, a Dataset object has several attributes that describe the dataset,

including name, dtype, and shape. It also has the method len that returns the length of

the dataset:

In [61]: ds.name

Out[61]: '/array1'

In [62]: ds.dtype

Chapter 18 Data Input anD Output

617

Out[62]: dtype('int64')

In [63]: ds.shape

Out[63]: (10,)

In [64]: ds.len()

Out[64]: 10

The actual data for the dataset can be accessed, for example, using the value

attribute. This returns the entire dataset as a NumPy array, which here is equivalent to

the array that we assigned to the array1 dataset.

In [65]: ds.value

Out[65]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

To access a dataset deeper down the group hierarchy, we can use a file

system-like path name. For example, to retrieve the meas1 dataset in the group

experiment2/measurement, we can use

In [66]: ds = f["experiment2/measurement/meas1"]

In [67]: ds

Out[67]: <HDF5 dataset "meas1": shape (100, 100), type "<f8">

Again we get a Dataset object, whose basic properties can be inspected using the

object attributes we introduced earlier:

In [68]: ds.dtype

Out[68]: dtype('float64')

In [69]: ds.shape

Out[69]: (100, 100)

Note that the data type of this dataset is float64, while for the dataset array1, the

data type is int64. This type information was derived from the NumPy arrays that were

assigned to the two datasets. Here again we could use the value attribute to retrieve the

array as a NumPy array. An alternative syntax for the same operation is to use bracket

indexing with the ellipsis notation: ds[...].

In [70]: data_full = ds[...]

In [71]: type(data_full)

Out[71]: numpy.ndarray

In [72]: data_full.shape

Out[72]: (100, 100)

Chapter 18 Data Input anD Output

618

This is an example of NumPy-like array indexing. The Dataset object supports

most of the indexing and slicing types used in NumPy, and this provides a powerful and

flexible method for partially reading data from a file. For example, to retrieve only the

first column from the meas1 dataset, we can use

In [73]: data_col = ds[:, 0]

In [74]: data_col.shape

Out[74]: (100,)

The result is a 100-element array corresponding the first column in the dataset.

Note that this slicing is performed within the HDF5 library, and not in NumPy, so in this

example only 100 elements were read from the file and stored in the resulting NumPy

array, without every fully loading the dataset into memory. This is an important feature

when working with large datasets that do not fit in memory.

For example, the Dataset object also supports strided indexing:

In [75]: ds[10:20:3, 10:20:3] # 3 stride

Out[75]: array([[-0.22321057, -0.61989199, 0.78215645, 0.73774187],

 [-1.03331515, 2.54190817, -0.24812478, -2.49677693],

 [0.17010011, 1.88589248, 1.91401249, -0.63430569],

 [0.4600099 , -1.3242449 , 0.41821078, 1.47514922]])

as well as “fancy indexing”, where a list of indices is given for one of the dimensions of

the array (does not work for more than one index):

In [76]: ds[[1,2,3], :].shape

Out[76]: (3, 100)

We can also use Boolean indexing, where a Boolean-valued NumPy array is used to

index a Dataset. For example, to single out the first five columns (index :5 on the second

axis) for each row whose value in the first column (ds[:, 0]) is larger than 2, we can

index the dataset with the Boolean mask ds[:, 0] > 2:

In [77]: mask = ds[:, 0] > 2

In [78]: mask.shape, mask.dtype

Out[78]: ((100,), dtype('bool'))

In [79]: ds[mask, :5]

Chapter 18 Data Input anD Output

619

Out[79]: array([[2.1224865 , 0.70447132, -1.71659513, 1.43759445,

-0.61080907],

 [2.11780508, -0.2100993 , 1.06262836,

-0.46637199, 0.02769476],

 [2.41192679, -0.30818179, -0.31518842, -1.78274309,

-0.80931757],

 [2.10030227, 0.14629889, 0.78511191,

-0.19338282, 0.28372485]])

Since the Dataset object uses the NumPy’s indexing and slicing syntax to select

subsets of the underlying data, working with large HDF5 datasets in Python using h5py

comes very naturally to someone who is familiar with NumPy. Also remember that for

large files, there is a big difference in index slicing on the Dataset object rather than

on the NumPy array that can be accessed through the value attribute, since the former

avoids loading the entire dataset into memory.

So far we have seen how to create datasets in an HDF5 file by explicitly assigning data

into an item in a group object. We can also create datasets explicitly using the create_

dataset method. It takes the name of the new dataset as the first argument, and we can

either set the data for the new dataset using the data argument or create an empty array

by setting the shape argument. For example, instead of the assignment f["array2"] =

np.random.randint(10, size=10), we can also use the create_dataset method:

In [80]: ds = f.create_dataset("array2", data=np.random.randint(10,

size=10))

In [81]: ds

Out[81]: <HDF5 dataset "array2": shape (10,), type "<i8">

In [82]: ds.value

Out[82]: array([2, 2, 3, 3, 6, 6, 4, 8, 0, 0])

When explicitly calling the create_dataset method, we have a finer level of control

of the properties of the resulting dataset. For example, if we can explicitly set the data

type for the dataset using the dtype argument, we can choose a compression method

using the compress argument, setting the chunk size using the chunks argument

and setting the maximum allowed array size for resizable datasets using the maxsize

argument. There are also many other advanced features related to the Dataset object.

See the docstring for create_dataset for details.

Chapter 18 Data Input anD Output

620

When creating an empty array by specifying the shape argument instead of providing

an array for initializing a dataset, we can also use the fillvalue argument to set the

default value for the dataset. For example, to create an empty dataset of shape (5, 5) and

default value -1, we can use

In [83]: ds = f.create_dataset("/experiment2/simulation/data1",

shape=(5, 5), fillvalue=-1)

In [84]: ds

Out[84]: <HDF5 dataset "data1": shape (5, 5), type "<f4">

In [85]: ds.value

Out[85]: array([[-1., -1., -1., -1., -1.],

 [-1., -1., -1., -1., -1.],

 [-1., -1., -1., -1., -1.],

 [-1., -1., -1., -1., -1.],

 [-1., -1., -1., -1., -1.]], dtype=float32)

HDF5 is clever about disk usage for an empty dataset and will not store more data

than necessary, in particular if we select a compression method using the compression

argument. There are several compression methods available, for example, 'gzip'. Using

dataset compression we can create a very large dataset and gradually fill them with data,

for example, when measurement results or results of computations become available,

without initially wasting a lot of storage space. For example, let’s create a large dataset

with shape (5000, 5000, 5000) with the data1 in the group experiment1/simulation:

In [86]: ds = f.create_dataset("/experiment1/simulation/data1",

shape=(5000, 5000, 5000), fillvalue=0, compression='gzip')

In [87]: ds

Out[87]: <HDF5 dataset "data1": shape (5000, 5000, 5000), type "<f4">

To begin with this dataset uses neither memory nor disk space, until we start filling

it with data. To assign values to the dataset, we can again use the NumPy-like indexing

syntax and assign values to specific elements in the dataset or to subsets selected using

slicing syntax:

In [88]: ds[:, 0, 0] = np.random.rand(5000)

In [89]: ds[1, :, 0] += np.random.rand(5000)

In [90]: ds[:2, :5, 0]

Chapter 18 Data Input anD Output

621

Out[90]: array([[0.67240328, 0. , 0. , 0. , 0.],

 [0.99613971, 0.48227152, 0.48904559, 0.78807044, 0.62100351]],

dtype=float32)

Note that the elements that have not been assigned values are set to the value of

fillvalue that was specified when the array was created. If we do not know what fill

value a dataset has, we can find out by looking at the fillvalue attribute of the Dataset

object:

In [91]: ds.fillvalue

Out[91]: 0.0

To see that the newly created dataset is indeed stored in the group where we

intended to assign it, we can again use the visititems method to list the content of the

experiment1 group:

In [92]: f["experiment1"].visititems(lambda name, value: print(name,

value))

simulation <HDF5 group "/experiment1/simulation" (1 members)>

simulation/data1 <HDF5 dataset "data1": shape (5000, 5000, 5000), type

"<f4">

Although the dataset experiment1/simulation/data1 is very large (4 × 50003 bytes ~

465 Gb), since we have not yet filled it with much data, the HDF5 file still does not take a

lot of disk space (only about 357 Kb):

In [93]: f.flush()

In [94]: f.filename

Out[94]: 'data.h5'

In [95]: !ls -lh data.h5

-rw-r--r--@ 1 rob staff 357K Apr 5 18:48 data.h5

So far we have seen how to create groups and datasets within an HDF5 file. It is of

course sometimes also necessary to delete items from a file. With h5py we can delete

items from a group using the Python del keyword, again complying with the semantics

of Python dictionaries:

In [96]: del f["/experiment1/simulation/data1"]

In [97]: f["experiment1"].visititems(lambda name, value: print(name, value))

simulation <HDF5 group "/experiment1/simulation" (0 members)>

Chapter 18 Data Input anD Output

622

 Attributes

Attributes are a component of the HDF5 format that makes it a great format for

annotating data and providing self-describing data through the use of metadata. For

example, when storing experimental data, there are often external parameters and

conditions that should be recorded together with the observed data. Likewise, in a

computer simulation, it is usually necessary to store additional model or simulation

parameters together with the generated simulation results. In all these cases, the best

solution is to make sure that the required additional parameters are stored as metadata

together with the main datasets.

The HDF5 format supports this type of metadata through the use of attributes. An

arbitrary number of attributes can be attached to each group and dataset within an

HDF5 file. With the h5py library, attributes are accessed using a dictionary-like interface,

just like groups are. The Python attribute attrs of Group and Dataset objects are used to

access the HDF5 attributes:

In [98]: f.attrs

Out[98]: <Attributes of HDF5 object at 4462179384>

To create an attribute, we simply assign to the attrs dictionary for the target object.

For example, to create an attribute description for the root group, we can use

In [99]: f.attrs["description"] = "Result sets for experiments and

simulations"

Similarly, to add date attributes to the experiment1 and experiment2 groups:

In [100]: f["experiment1"].attrs["date"] = "2015-1-1"

In [101]: f["experiment2"].attrs["date"] = "2015-1-2"

We can also add attributes directly to datasets (not only groups):

In [102]: f["experiment2/simulation/data1"].attrs["k"] = 1.5

In [103]: f["experiment2/simulation/data1"].attrs["T"] = 1000

Chapter 18 Data Input anD Output

623

Like for groups, we can use the keys and items method of the Attribute object to

retrieve iterators over the attributes it contains:

In [104]: list(f["experiment1"].attrs.keys())

Out[104]: ['date']

In [105]: list(f["experiment2/simulation/data1"].attrs.items())

Out[105]: [('k', 1.5), ('T', 1000)]

The existence of an attribute can be tested with the Python in operator, in keeping

with the Python dictionary semantics:

In [106]: "T" in f["experiment2/simulation/data1"].attrs

Out[106]: True

To delete existing attributes, we can use the del keyword:

In [107]: del f["experiment2/simulation/data1"].attrs["T"]

In [108]: "T" in f["experiment2/simulation"].attrs

Out[108]: False

The attributes of HDF5 groups and datasets are suitable for storing metadata

together with the actual datasets. Using attributes generously can help to provide context

to the data, which often must be available for the data to be useful.

 PyTables
The PyTables library offers an alternative interface to HDF5 for Python. The focus

on this library is higher-level table-based data model implemented using the HDF5

format, although PyTables can also be used to create and read generic HDF5 groups and

datasets, like the h5py library. Here we focus on the table data model, as it complements

the h5py library that we discussed in the previous section. We demonstrate the use of

PyTables table objects using the NHL player statistics dataset that we used earlier in

this chapter and where we construct a PyTables table from a Pandas data frame for that

dataset. We therefore begin with reading in the dataset into a DataFrame object using the

read_csv function:

In [109]: df = pd.read_csv("playerstats-2013-2014.csv", skiprows=1)

 ...: df = df.set_index("Rank")

Chapter 18 Data Input anD Output

624

Next we proceed to create a new PyTables HDF5 file handle by using the tables.

open_file function4. This function takes a filename as the first argument and the file

mode as an optional second argument. The result is a PyTables HDF5 file handle (here

assigned to the variable f):

In [110]: f = tables.open_file("playerstats-2013-2014.h5", mode="w")

Like with the h5py library, we can create HDF5 groups with the method create_

group of the file handle object. It takes the path to the parent group as the first argument,

the group name as the second argument, and optionally also the argument title, with

which a descriptive HDF5 attribute can be set on the group.

In [111]: grp = f.create_group("/", "season_2013_2014",

 ...: title="NHL player statistics for the

2013/2014 season")

In [112]: grp

Out[112]: /season_2013_2014 (Group) 'NHL player statistics for the

2013/2014 season'

 children := []

Unlike the h5py library, the file handle object in PyTables does not represent the root

group in the HDF5 file. To access the root node, we must use the root attribute of the file

handle object:

In [113]: f.root

Out[113]: / (RootGroup) "

 children := ['season_2013_2014' (Group)]

A nice feature of the PyTables library is that it is easy to create tables with mixed

column types, using the struct-like compound data type of HDF5. The simplest way

to define such a table data structure with PyTables is to create a class that inherits

from the tables.IsDescription class. It should contain fields composed of data-type

representations from the tables library. For example, to create a specification of the

table structure for the player statistics dataset, we can use

4 Note that the Python module provided by the PyTables library is named tables. Therefore,
tables.open_file refers to open_file function in the tables module provided by the PyTables
library.

Chapter 18 Data Input anD Output

625

In [114]: class PlayerStat(tables.IsDescription):

 ...: player = tables.StringCol(20, dflt="")

 ...: position = tables.StringCol(1, dflt="C")

 ...: games_played = tables.UInt8Col(dflt=0)

 ...: points = tables.UInt16Col(dflt=0)

 ...: goals = tables.UInt16Col(dflt=0)

 ...: assists = tables.UInt16Col(dflt=0)

 ...: shooting_percentage = tables.Float64Col(dflt=0.0)

 ...: shifts_per_game_played = tables.Float64Col(dflt=0.0)

Here the class PlayerStat represents the table structure of a table with eight

columns, where the first two columns are fixed-length strings (tables.StringCol),

where the following four columns are unsigned integers (tables.UInt8Col and tables.

UInt16Col, of 8- and 16-bit size), and where the last two columns have floating-point

type (tables.Float64Col). The optional dflt argument to data-type objects specifies

the fields’ default value. Once the table structure is defined using a class on this form,

we can create the actual table in the HDF5 file using the create_table method. It takes

a group object or the path to the parent node as the first argument, the table name as

the second argument, the table specification class as the third argument, and optionally

a table title as the fourth argument (stored as an HDF5 attribute for the corresponding

dataset):

In [115]: top30_table = f.create_table(grp, 'top30', PlayerStat, "Top 30

point leaders")

To insert data into the table, we can use the row attribute of the table object to

retrieve a Row accessor class that can be used as a dictionary to populate the row with

values. When the row object is fully initialized, we can use the append method to actually

insert the row into the table:

In [116]: playerstat = top30_table.row

In [117]: for index, row_series in df.iterrows():

 ...: playerstat["player"] = row_series["Player"]

 ...: playerstat["position"] = row_series["Pos"]

 ...: playerstat["games_played"] = row_series["GP"]

 ...: playerstat["points"] = row_series["P"]

 ...: playerstat["goals"] = row_series["G"]

Chapter 18 Data Input anD Output

626

 ...: playerstat["assists"] = row_series["A"]

 ...: playerstat["shooting_percentage"] = row_series["S%"]

 ...: playerstat["shifts_per_game_played"] = row_series["Shift/GP"]

 ...: playerstat.append()

The flush method forces a write of the table data to the file:

In [118]: top30_table.flush()

To access data from the table, we can use the cols attribute to retrieve columns as

NumPy arrays:

In [119]: top30_table.cols.player[:5]

Out[119]: array([b'Sidney Crosby', b'Ryan Getzlaf', b'Claude Giroux',

 b'Tyler Seguin', b'Corey Perry'], dtype='|S20')

In [120]: top30_table.cols.points[:5]

Out[120]: array([104, 87, 86, 84, 82], dtype=uint16)

To access data in a row-wise fashion, we can use the iterrows method to create an

iterator over all the rows in the table. Here we use this approach to loop through all the

rows and print them to the standard output (here the output is truncated for brevity):

In [121]: def print_playerstat(row):

 ...: print("%20s\t%s\t%s\t%s" %

 ...: (row["player"].decode('UTF-8'), row["points"],

 ...: row["goals"], row["assists"]))

In [122]: for row in top30_table.iterrows():

 ...: print_playerstat(row)

 Sidney Crosby 104 36 68

Ryan Getzlaf 87 31 56

Claude Giroux 86 28 58

Tyler Seguin 84 37 47

...

Jaromir Jagr 67 24 43

John Tavares 66 24 42

Jason Spezza 66 23 43

Jordan Eberle 65 28 37

Chapter 18 Data Input anD Output

627

One of the most powerful features of the PyTables table interface is the ability to

selectively extract rows from the underlying HDF5 using queries. For example, the where

method allows us to pass an expression in terms of the table columns as a string that is

used by PyTables to filter rows:

In [123]: for row in top30_table.where("(points > 75) & (points <= 80)"):

 ...: print_playerstat(row)

Phil Kessel 80 37 43

Taylor Hall 80 27 53

Alex Ovechkin 79 51 28

Joe Pavelski 79 41 38

Jamie Benn 79 34 45

Nicklas Backstrom 79 18 61

Patrick Sharp 78 34 44

Joe Thornton 76 11 65

With the where method, we can also define conditions in terms of multiple columns:

In [124]: for row in top30_table.where("(goals > 40) & (points < 80)"):

 ...: print_playerstat(row)

Alex Ovechkin 79 51 28

Joe Pavelski 79 41 38

This feature allows us to query a table in a database-like fashion. Although for

a small dataset, like the current one, we could just as well perform these kinds of

 operations directly in memory using a Pandas data frame, but remember that HDF5 files

are stored on disk, and the efficient use of I/O in the PyTables library enables us to work

with very large datasets that do not fit in memory, which would prevent us from using,

for example, NumPy or Pandas on the entire dataset.

Before we conclude this section, let us inspect the structure of the resulting HDF5 file

that contains the PyTables table that we have just created:

In [125]: f

Out[125]: File(filename=playerstats-2013-2014.h5, title=", mode='w',

root_uep='/', filters=Filters(complevel=0, shuffle=False,

fletcher32=False, least_significant_digit=None))

Chapter 18 Data Input anD Output

628

 / (RootGroup) " /season_2013_2014 (Group) 'NHL player stats for

the 2013/2014 season'

 /season_2013_2014/top30 (Table(30,)) 'Top 30 point leaders'

 description := {

 "assists": UInt16Col(shape=(), dflt=0, pos=0),

 "games_played": UInt8Col(shape=(), dflt=0, pos=1),

 "goals": UInt16Col(shape=(), dflt=0, pos=2),

 "player": StringCol(itemsize=20, shape=(), dflt=b", pos=3),

 "points": UInt16Col(shape=(), dflt=0, pos=4),

 "position": StringCol(itemsize=1, shape=(), dflt=b'C',

pos=5),

 "shifts_per_game_played": Float64Col(shape=(), dflt=0.0,

pos=6),

 "shooting_percentage": Float64Col(shape=(), dflt=0.0, pos=7)}

 byteorder := 'little'

 chunkshape := (1489,)

From the string representation of the PyTables file handle, and the HDF5 file

hierarchy that it contains, we can see that the PyTables library has created a dataset /

season_2013_2014/top30 that uses an involved compound data type that was created

according to the specification in the PlayerStat object that we created earlier. Finally,

when we are finished modifying a dataset in a file, we can flush its buffers and force a

write to the file using the flush method, and when we are finished working with a file,

we can close it using the close method:

In [126]: f.flush()

In [127]: f.close()

Although we do not cover other types of datasets here, such as regular homogenous

arrays, it is worth mentioning that the PyTables library also supports these types of

data structures. For example, we can use the create_array, create_carray, and

create_earray to construct fixed-size arrays, chunked arrays, and enlargeable arrays,

respectively. For more information on how to use these data structures, see the

corresponding docstrings.

Chapter 18 Data Input anD Output

629

 Pandas HDFStore
A third way to store data in HDF5 files using Python is to use the HDFStore object in

Pandas. It can be used to persistently store data frames and other Pandas objects in

an HDF5 file. To use this feature in Pandas, the PyTables library must be installed.

We can create an HDFStore object by passing a filename to its initializer. The result is

an HDFStore object that can be used as a dictionary to which we can assign Pandas

DataFrame instances to have them stored into the HDF5 file:

In [128]: store = pd.HDFStore('store.h5')

In [129]: df = pd.DataFrame(np.random.rand(5,5))

In [130]: store["df1"] = df

In [131]: df = pd.read_csv("playerstats-2013-2014-top30.csv", skiprows=1)

In [132]: store["df2"] = df

The HDFStore object behaves as a regular Python dictionary, and we can, for

example, see what objects it contains by calling the keys method:

In [133]: store.keys()

Out[133]: ['/df1', '/df2']

and we can test for the existence of an object with a given key using the Python in

keyword:

In [134]: 'df2' in store

Out[134]: True

To retrieve an object from the store, we again use the dictionary-like semantic and

index the object with its corresponding key:

In [135]: df = store["df1"]

From the HDFStore object, we can also access the underlying HDF5 handle using the

root attribute. This is actually nothing but a PyTables file handle:

In [136]: store.root

Out[136]: / (RootGroup) " children := ['df1' (Group), 'df2' (Group)]

Chapter 18 Data Input anD Output

630

Once we are finished with an HDFStore object, we should close it using the close

method, to ensure that all data associated with it is written to the file.

In [137]: store.close()

Since HDF5 is a standard file format, there is, of course, nothing that prevents us

from opening an HDF5 file created with Pandas HDFStore or PyTables with any other

HDF5 compatible software, such as the h5py library. If we open the file produced with

HDFStore with h5py, we can easily inspect its content and see how the HDFStore object

arranges the data of the DataFrame objects that we assigned to it:

In [138]: f = h5py.File("store.h5")

In [139]: f.visititems(lambda x, y: print(x, "\t" * int(3 -

len(str(x))//8), y))

df1 <HDF5 group "/df1" (4 members)>

df1/axis0 <HDF5 dataset "axis0": shape (5,), type "<i8">

df1/axis1 <HDF5 dataset "axis1": shape (5,), type "<i8">

df1/block0_items <HDF5 dataset "block0_items": shape (5,), type "<i8">

df1/block0_values <HDF5 dataset "block0_values": shape (5, 5), type "<f8">

df2 <HDF5 group "/df2" (8 members)>

df2/axis0 <HDF5 dataset "axis0": shape (21,), type "|S8">

df2/axis1 <HDF5 dataset "axis1": shape (30,), type "<i8">

df2/block0_items <HDF5 dataset "block0_items": shape (3,), type "|S8">

df2/block0_values <HDF5 dataset "block0_values": shape (30, 3), type "<f8">

df2/block1_items <HDF5 dataset "block1_items": shape (14,), type "|S4">

df2/block1_values <HDF5 dataset "block1_values": shape (30, 14), type "<i8">

df2/block2_items <HDF5 dataset "block2_items": shape (4,), type "|S6">

df2/block2_values <HDF5 dataset "block2_values": shape (1,), type "|O8">

We can see that the HDFStore object stores each DataFrame object in a group of its

own and that it has split each data frame into several heterogeneous HDF5 datasets

(blocks) where the columns are grouped by their data type. Furthermore, the column

names and values are stored in separate HDF5 datasets.

In [140]: f["/df2/block0_items"].value

Out[140]: array([b'S%', b'Shift/GP', b'FO%'], dtype='|S8')

In [141]: f["/df2/block0_values"][:3]

Chapter 18 Data Input anD Output

631

Out[141]: array([[13.9, 24. , 52.5],

 [15.2, 25.2, 49.],

 [12.6, 25.1, 52.9]])

In [142]: f["/df2/block1_values"][:3, :5]

Out[142]: array([[1, 80, 36, 68, 104],

 [2, 77, 31, 56, 87],

 [3, 82, 28, 58, 86]])

 JSON
The JSON5 (JavaScript Object Notation) is a human-readable, lightweight plain-text

format that is suitable for storing datasets made up from lists and dictionaries. The

values of such lists and dictionaries can themselves be lists or dictionaries or must be of

the following basic data types: string, integer, float, and Boolean, or the value null (like

the None value in Python). This data model allows storing complex and versatile datasets,

without structural limitations such as the tabular form required by formats such as

CSV. A JSON document can, for example, be used as a key-value store, where the values

for different keys can have different structure and data types.

The JSON format was primarily designed to be used as a data interchange format

for passing information between web services and JavaScript applications. In fact, JSON

is a subset of JavaScript language and, as such, a valid JavaScript code. However, the

JSON format itself is a language-independent data format that can be readily parsed

and generated from essentially every language and environment, including Python. The

JSON syntax is also almost valid Python code, making it familiar and intuitive to work

with from Python as well.

We have already seen an example of a JSON dataset in Chapter 10, where we looked

at the graph of the Tokyo Metro network. Before we revisit that dataset, we begin with a

brief overview of JSON basics and how to read and write JSON in Python. The Python

standard library provides the module json for working with JSON-formatted data.

Specifically, this module contains functions for generating JSON data from a Python data

structure (list or dictionary), json.dump and json.dumps, and for parsing JSON data into

a Python data structure: json.load and json.loads. The functions loads and dumps take

Python strings as input and output, while the load and dump operate on a file handle and

read and write data to a file.

5 For more information about JSON, see http://json.org.

Chapter 18 Data Input anD Output

http://json.org

632

For example, we can generate the JSON string of a Python list by calling the json.

dumps function. The return value is a JSON string representation of the given Python list

that closely resembles the Python code that could be used to create the list. However,

a notable exception is the Python value None, which is represented as the value null in

JSON:

In [143]: data = ["string", 1.0, 2, None]

In [144]: data_json = json.dumps(data)

In [145]: data_json

Out[145]: '["string", 1.0, 2, null]'

To convert the JSON string back into a Python object, we can use json.loads:

In [146]: data = json.loads(data_json)

In [147]: data

Out[147]: ['string', 1.0, 2, None]

In [148]: data[0]

Out[148]: 'string'

We can use exactly the same method to store Python dictionaries as JSON strings.

Again, the resulting JSON string is essentially identical to the Python code for defining

the dictionary:

In [149]: data = {"one": 1, "two": 2.0, "three": "three"}

In [150]: data_json = json.dumps(data)

In [151]: data_json

Out[151]: '{"two": 2.0, "three": "three", "one": 1}'

To parse the JSON string and convert it back into a Python object, we again use json.

loads:

In [152]: data = json.loads(data_json)

In [153]: data["two"]

Out[153]: 2.0

In [154]: data["three"]

Out[154]: 'three'

Chapter 18 Data Input anD Output

633

The combination of lists and dictionaries makes a versatile data structure. For

example, we can store lists or dictionaries of lists with a variable number of elements.

This type of data would be difficult to store directly as a tabular array, and further levels

of nested lists and dictionaries would make it very impractical. When generating JSON

data with the json.dump and json.dumps functions, we can optionally give the argument

indent=True, to obtain indented JSON code that can be easier to read:

In [155]: data = {"one": [1],

 ...: "two": [1, 2],

 ...: "three": [1, 2, 3]}

In [156]: data_json = json.dumps(data, indent=True)

In [157]: data_json

Out[157]: {

 "two": [

 1,

 2

],

 "three": [

 1,

 2,

 3

],

 "one": [

 1

]

 }

As an example of a more complex data structure, consider a dictionary containing

a list, a dictionary, a list of tuples, and a text string. We could use the same method as in

the preceding text to generate a JSON representation of the data structure using json.

dumps, but instead here we write the content to a file using the json.dump function.

Compared to json.dumps, it additionally takes a file handle as a second argument, which

we need to create beforehand:

In [158]: data = {"one": [1],

 ...: "two": {"one": 1, "two": 2},

 ...: "three": [(1,), (1, 2), (1, 2, 3)],

Chapter 18 Data Input anD Output

634

 ...: "four": "a text string"}

In [159]: with open("data.json", "w") as f:

 ...: json.dump(data, f)

The result is that the JSON representation of the Python data structure is written to

the file data.json:

In [160]: !cat data.json

{"four": "a text string", "two": {"two": 2, "one": 1}, "three": [[1],

[1, 2], [1, 2, 3]],

 "one": [1]}

To read and parse a JSON-formatted file into a Python data structure, we can use

json.load, to which we need to pass a handle to an open file:

In [161]: with open("data.json", "r") as f:

 ...: data_from_file = json.load(f)

In [162]: data_from_file["two"]

Out[162]: [1, 2]

In [163]: data_from_file["three"]

Out[163]: [[1], [1, 2], [1, 2, 3]]

The data structure returned by json.load is not always identical to the one

stored with json.dump. In particular, JSON is stored as Unicode, so strings in the data

structure returned by json.load are always Unicode strings. Also, as we can see from

the preceding example, JSON does not distinguish between tuples and lists, and the

json.load always produces lists rather than tuples, and the order in which keys for

a dictionary are displayed is not guaranteed, unless using the sorted_keys=True

argument to the dumps and dump functions.

Now that we have seen how Python lists and dictionaries can be converted to and

from JSON representation using the json module, it is worthwhile to revisit the Tokyo

Metro dataset in Chapter 10. This is a more realistic dataset and an example of a data

structure that mixes dictionaries, lists of variable lengths, and string values. The first 20

lines of the JSON file are shown here:

In [164]: !head -n 20 tokyo-metro.json

{

 "C": {

 "color": "#149848",

Chapter 18 Data Input anD Output

635

 "transfers": [

 [

 "C3",

 "F15"

],

 [

 "C4",

 "Z2"

],

 [

 "C4",

 "G2"

],

 [

 "C7",

 "M14"

],

To load the JSON data into a Python data structure, we use json.load in the same

way as before:

In [165]: with open("tokyo-metro.json", "r") as f:

 ...: data = json.load(f)

The result is a dictionary with a key for each metro line:

In [166]: data.keys()

Out[166]: ['N', 'M', 'Z', 'T', 'H', 'C', 'G', 'F', 'Y']

The dictionary value for each metro line is again a dictionary that contains line color,

lists of transfer points, and the travel times between stations on the line:

In [167]: data["C"].keys()

Out[167]: ['color', 'transfers', 'travel_times']

In [168]: data["C"]["color"]

Out[168]: '#149848'

In [169]: data["C"]["transfers"]

Chapter 18 Data Input anD Output

636

Out[169]: [['C3', 'F15'], ['C4', 'Z2'], ['C4', 'G2'], ['C7', 'M14'],

['C7', 'N6'],

 ['C7', 'G6'], ['C8', 'M15'], ['C8', 'H6'], ['C9', 'H7'],

['C9', 'Y18'],

 ['C11', 'T9'], ['C11', 'M18'], ['C11', 'Z8'], ['C12', 'M19'],

['C18', 'H21']]

With the dataset loaded as a nested structure of Python dictionaries and lists, we

can iterate over and filter items from the data structure with ease, for example, using

Python’s list comprehension syntax. The following example demonstrates how to select

the set of connected nodes in the graph on the C line which has a travel time of 1 minute:

In [170]: [(s, e, tt) for s, e, tt in data["C"]["travel_times"] if tt == 1]

Out[170]: [('C3', 'C4', 1), ('C7', 'C8', 1), ('C9', 'C10', 1)]

The hierarchy of dictionaries and the variable length of the lists stored in the

dictionaries make this a good example of a dataset that does not have a strict structure

and which therefore is suitable to store in a versatile format such as JSON.

 Serialization
In the previous section, we used the JSON format to generate a representation of

in-memory Python objects, such as lists and dictionaries. This process is called

serialization, which in this case resulted in a JSON plain-text representation of the

objects. An advantage of the JSON format is that it is language independent and can

easily be read by other software. Its disadvantages are that JSON files are not space

efficient, and they can only be used to serialize a limited type of objects (list, dictionaries,

basic types, as discussed in the previous section). There are many alternative

serialization techniques that address these issues. Here we briefly will look at two

alternatives that address the space efficiency issue and the types of objects that can be

serialized, respectively: the msgpack library and the Python pickle module.

We begin with msgpack, which is a binary protocol for storing JSON-like data

efficiently. The msgpack software is available for many languages and environments. For

more information about the library and its Python bindings, see the project’s web page

at http://msgpack.org. In analogy to the JSON module, the msgpack library provides

two sets of functions that operate on byte lists (msgpack.packb and msgpack.unpackb)

Chapter 18 Data Input anD Output

http://msgpack.org

637

and file handles (msgpack.pack and msgpack.unpack), respectively. The pack and packb

functions convert a Python data structure into a binary representation, and the unpack

and unpackb functions perform the reverse operation. For example, the JSON file for the

Tokyo Metro dataset is relatively large and takes about 27 Kb on disk:

In [171]: !ls -lh tokyo-metro.json

-rw-r--r--@ 1 rob staff 27K Apr 7 23:18 tokyo-metro.json

Packing the data structure with msgpack rather than JSON results in a considerably

smaller file, at around 3 Kb:

In [172]: data_pack = msgpack.packb(data)

In [173]: type(data_pack)

Out[173]: bytes

In [174]: len(data_pack)

Out[174]: 3021

In [175]: with open("tokyo-metro.msgpack", "wb") as f:

 ...: f.write(data_pack)

In [176]: !ls -lh tokyo-metro.msgpack

-rw-r--r--@ 1 rob staff 3.0K Apr 8 00:40 tokyo-metro.msgpack

More precisely, the byte list representation of the dataset uses only 3021 bytes. In

applications where storage space or bandwidth is essential, this is can be a significant

improvement. However, the price we have paid for this increased storage efficiency is

that we must use the msgpack library to unpack the data, and it uses a binary format

and therefore is not human-readable. Whether this is an acceptable trade-off or not will

depend on the application at hand. To unpack a binary msgpack byte list, we can use the

msgpack.unpackb function, which recovers the original data structure:

In [177]: del data

In [178]: with open("tokyo-metro.msgpack", "rb") as f:

 ...: data_msgpack = f.read()

 ...: data = msgpack.unpackb(data_msgpack)

In [179]: list(data.keys())

Out[179]: ['T', 'M', 'Z', 'H', 'F', 'C', 'G', 'N', 'Y']

Chapter 18 Data Input anD Output

638

The other issue with JSON serialization is that only certain type of Python objects

can be stored as JSON. The Python pickle module6 can create a binary representation

of nearly any kind of Python object, including class instances and function. Using the

pickle module follows the exact same use pattern as the json module: we have the

dump and dumps functions for serializing an object to a byte array and a file handle,

respectively, and the load and loads for deserializing a pickled object.

In [180]: with open("tokyo-metro.pickle", "wb") as f:

 ...: pickle.dump(data, f)

In [181]: del data

In [182]: !ls -lh tokyo-metro.pickle

-rw-r--r--@ 1 rob staff 8.5K Apr 8 00:40 tokyo-metro.pickle

The size of the pickled object is considerably smaller than the JSON serialization but

larger than the serialization produced by msgpack. We can recover a pickled object using

the pickle.load function, which expects a file handle as argument:

In [183]: with open("tokyo-metro.pickle", "rb") as f:

 ...: data = pickle.load(f)

In [184]: data.keys()

Out[184]: dict_keys(['T', 'M', 'Z', 'H', 'F', 'C', 'G', 'N', 'Y'])

The main advantage with pickle is that almost any type of Python object can be

serialized. However, Python pickles cannot be read by software not written in Python,

and it is also not a recommended format for long-term storage, because compatibility

between Python versions and with different versions of libraries that defines the objects

that are pickled cannot always be guaranteed. If possible, using JSON for serializing list-

and dictionary-based data structures is generally a better approach, and if the file size

is an issue, the msgpack library provides a popular and easily accessible alternative to

JSON.

6 An alternative to the pickle module is the cPickle module, which is a more efficient
reimplementation that is also available in the Python standard library. See also the dill library
at https://pypi.org/project/dill.

Chapter 18 Data Input anD Output

https://pypi.org/project/dill

639

 Summary
In this chapter we have reviewed common data formats for reading and writing

numerical data to files on disk, and we introduced a selection of Python libraries that

are available for working with these formats. We first looked at the ubiquitous CSV file

format, which is a simple and transparent format that is suitable for small and simple

datasets. The main advantage of this format is that it is human-readable plain text, which

makes it intuitively understandable. However, it lacks many features that are desirable

when working with numerical data, such as metadata describing the data and support

for multiple datasets. The HDF5 format naturally takes over as the go-to format for

numerical data when the size and complexity of the data grow beyond what is easily

handled using a CSV format. HDF5 is a binary file format, so it is not a human-readable

format like CSV, but there are good tools for exploring the content in an HDF5 file, both

programmatically and using command-line and GUI-based user interfaces. In fact,

due to the possibility of storing metadata in attributes, HDF5 is a great format for self-

describing data. It is also a very efficient file format for numerical data, both in terms of

I/O and storage, and it can even be used as a data model for computing with very large

datasets that do not fit in the memory of the computer. Overall, HDF5 is a fantastic tool

for numerical computing that anyone working with computing should benefit greatly

from being familiar with. Toward the end of the chapter, we also briefly reviewed JSON,

msgpack, and Python pickles for serializing data into text and binary format.

 Further Reading
An informal specification of the CSV file is given in RFC 4180, http://tools.ietf.

org/html/rfc4180. It outlines many of the commonly used features of the CSV format,

although not all CSV readers and writers comply with every aspect of this document.

An accessible and informative introduction to the HDF5 format and the h5py library is

given by the creator of h5py in Collette (2013). It is also worth reading about the NetCDF

(Network Common Data Format), www.unidata.ucar.edu/software/netcdf, which is

another widely used format for numerical data. The Pandas library also provides I/O

functions beyond what we have discussed here, such as the ability to read Excel files

(pandas.io.excel.read_excel) and the fixed-width format (read_fwf). Regarding the

JSON format, a concise but complete specification of the format is available at the web

site http://json.org. With the increasingly important role of data in computing, there

Chapter 18 Data Input anD Output

http://tools.ietf.org/html/rfc4180
http://tools.ietf.org/html/rfc4180
http://www.unidata.ucar.edu/software/netcdf
http://json.org

640

has been a rapid diversification of formats and data storage technologies in recent years.

As a computational practitioner, reading data from databases, such as SQL and NoSQL

databases, is now also an important task. Python provides a common database API for

standardizing database access from Python applications, as described by PEP 249 (www.

python.org/dev/peps/pep-0249). Another notable project for reading databases from

Python is SQLAlchemy (www.sqlalchemy.org).

 Reference
Collette, A. (2013). Python and HDF5. Sebastopol: O’Reilly.

Chapter 18 Data Input anD Output

http://www.python.org/dev/peps/pep-0249
http://www.python.org/dev/peps/pep-0249
http://www.sqlalchemy.org

641
© Robert Johansson 2019
R. Johansson, Numerical Python, https://doi.org/10.1007/978-1-4842-4246-9_19

CHAPTER 19

Code Optimization
In this book we have explored various topics of scientific and technical computing using

Python and its ecosystem of libraries. As touched upon in the very first chapter of this

book, the Python environment for scientific computing generally strikes a good balance

between a high-level environment that is suitable for exploratory computing and rapid

prototyping – which minimizes development efforts – and high-performance numerics,

which minimize application runtimes. High-performance numerics is achieved not

through the Python language itself, but rather through leveraging libraries that contain

or use externally compiled code, typically written in C or in Fortran. Because of this, in

computing applications that rely heavily on libraries such as NumPy and SciPy, most of

the number crunching is performed by compiled code, and the performance is therefore

vastly better than if the same computation were to be implemented purely in Python.

The key to high-performance Python programs is therefore to efficiently utilize

libraries such as NumPy and SciPy for array-based computations. The vast majority

of scientific and technical computations can be expressed in terms of common array

operations and fundamental computational routines. Much of this book has been

dedicated to exploring this style of scientific computing with Python, by introducing the

main Python libraries for different fields of scientific computing. However, occasionally

there is a need for computations that cannot easily be formulated as array expressions or

do not fit existing computing patterns. In such cases it may be necessary to implement

the computation from the ground up, for example, using pure Python code. However,

pure Python code tends to be slow compared to the equivalent code written in a

compiled language, and if the performance overhead of pure Python is too large, it

can be necessary to explore alternatives. The traditional solution is to write an external

library in, for example, C or Fortran, which performs the time-consuming computations,

and interface it to Python code using an extension module.

642

There are several methods to create extension modules for Python. The most

fundamental method is to use Python’s C API to build an extension module with

functions implemented in C that can be called from Python. This is typically very tedious

and requires a significant effort. The Python standard library itself provides the module

ctypes to simplify the interfacing between Python and C. Other alternatives include the

CFFI (C foreign function interface) library1 for interfacing Python with C and the F2PY2

program for generating interfaces between Python and Fortran. These are all effective

tools for interfacing Python with compiled code, and they all play an important role in

making Python suitable for scientific computing. However, using these tools requires

programming skills and efforts in other languages than Python, and they are the most

useful when working with a code base that is already written in, say, C or Fortran.

For new development there are alternatives closer to Python that are worth

considering before embarking on a complete implementation of a problem directly in a

compiled language. In this chapter we explore two such methods: Numba and Cython.

These offer a middle ground between Python and low-level languages that retains many

of the advantages of a high-level language while achieving performance comparable to

compiled code.

Numba is a just-in-time (JIT) compiler for Python code using NumPy that produces

machine code that can be executed more efficiently than the original Python code. To

achieve this, Numba leverages the LLVM compiler suite (http://llvm.org), which is

a compiler toolchain that has become very popular in recent years for its modular and

reusable design and interface, enabling, for example, applications such as Numba.

Numba is a relatively new project and is not yet widely used in a lot of scientific

computing libraries, but it is a promising project with strong backing by Continuum

Analytics Inc.,3 and it is likely to have a bright future in scientific computing with Python.

1 http://cffi.readthedocs.org
2 http://docs.scipy.org/doc/numpy-dev/f2py/index.html
3 The producers of the Anaconda Python environment, see Chapter 1 and Appendix.

Chapter 19 Code optimization

http://llvm.org
http://cffi.readthedocs.org
http://docs.scipy.org/doc/numpy-dev/f2py/index.html

643

Numba the numba library provides a just-in-time compiler for python and
numpy code that is based on the LLVm compiler. the main advantage of numba
is that it can generate machine code with minimal or no changes to the original
python code. For more information about the project and its documentation, see
the project’s web page at http://numba.pydata.org. at the time of writing,
the latest version of the library is 0.39.0. numba is an open source project created
by Continuum analytics inc., which also offers a commercial extended version of
numba called numbapro (for more information, see http://docs.continuum.
io/numbapro/index).

Cython is a superset of the Python language that can be automatically translated into

C or C++ and compiled into a machine code, which can run much faster than Python

code. Cython is widely used in computationally oriented Python projects for speeding

up time-critical parts of a code base that is otherwise written in Python. Several of the

libraries that we have used earlier in this book heavily rely on Cython. These include

NumPy, SciPy, Pandas, and scikit-learn, just to mention a few.

Cython the Cython library provides a translation of python code, or decorated
python code, into C or C++, which can be compiled into a binary extension
module. For more information about the project and its documentation, see the
project’s web page at http://cython.org. at the time of writing, the latest
version of Cython is 0.28.4.

In this chapter we explore how Numba and Cython can be used to speed up code

originally written in Python. These methods can be tried when a Python implementation

turns out to be unacceptably slow. However, before trying to optimize anything that is

written in Python, it is advisable to first profile the code, for example, using the cProfile

module or IPython’s profiling utilities (see Chapter 1) and identifying exactly which

parts of a code are the bottlenecks. If clear bottlenecks can be identified, they may be

good candidates for optimization efforts. The first optimization attempt should be to

use already existing libraries, such as NumPy as SciPy, in the most efficient way to solve

the problem at hand, as well as use the Python language itself in the most efficient

Chapter 19 Code optimization

http://numba.pydata.org
http://docs.continuum.io/numbapro/index
http://docs.continuum.io/numbapro/index
http://cython.org

644

manner possible.4 Only when existing libraries do not already provide functions and

methods that allow us to implement a computation in an efficient way should we

consider optimizing our code with Numba or Cython. Code optimization should only

be used as a last resort, since premature optimization is often fruitless and results in less

maintainable code: “premature optimization is the root of all evil” (Donald Knuth).

 Importing Modules
In this chapter we will work with Numba and Cython. Numba is used as a regular Python

module, and here we assume that this library is imported in its entirety using

In [1]: import numba

Cython can be used in several different ways, as we will see later in this chapter.

Typically we are not required to explicitly import the Cython library when using Cython

code from Python, but instead, we import the pyximport library provided by Cython and

register an import hook using pyximport.install():

In [2]: import pyximport

This will alter the way Python modules are imported, and in particular it will allow

us to import Cython files with the file-ending pyx directly as if they were pure Python

modules. Occasionally it is also useful to explicitly import the Cython library, in which

case we assume that it is imported in the following manner:

In [3]: import cython

For basic numerics and plotting, we also require the NumPy and Matplotlib libraries:

In [4]: import numpy as np

In [5]: import matplotlib.pyplot as plt

 Numba
One of the most attractive aspects of the Numba library is that it can often be used to speed

up Python code that uses NumPy without changing the target code. The only thing that

we need to do is decorating a function with the @numba.jit decorator, which results in the

4 For example, carefully consider which data structures to use, and make good use of iterators to
avoid unnecessary memory copy operations.

Chapter 19 Code optimization

645

function being just-in-time (JIT) compiled into code that can be significantly faster than

the pure Python code, by as much as a factor of several hundred or more. The speedup is

obtained mainly for functions that use NumPy arrays, for which Numba can automatically

perform type interference and generate optimized code for the required type signatures.

To get started using Numba, consider the following simple problem: compute the

sum of all elements in an array. A function that performs this computation is simple to

implement in Python using for loops:

In [6]: def py_sum(data):

 ...: s = 0

 ...: for d in data:

 ...: s += d

 ...: return s

Although this function is nearly trivial, it nicely illustrates the potential and power

of Numba. For loops in Python are notoriously slow, due to Python’s flexibility and

dynamic typing. To quantify this statement and benchmark the py_sum function, we

generate an array with 50000 random numbers and use the %timeit IPython command

to measure the typical computation time:

In [7]: data = np.random.randn(50000)

In [8]: %timeit py_sum(data)

100 loops, best of 3: 8.43 ms per loop

The result suggests that summing the 50000 elements in the data array using the

py_sum function typically takes 8.43 milliseconds on this particular system. Compared to

other methods that we explore below, this is not a good performance. The usual solution

is to use array operations, such as those provided by NumPy, instead of iterating over the

arrays manually. Indeed, NumPy provides the sum function that does exactly what we want

to do here. To verify that the py_sum function defined in the preceding text produces the

same results as the NumPy sum function, we first issue an assert statement to this effect:

In [9]: assert abs(py_sum(data) - np.sum(data)) < 1e-10

Since assert does not raise an error, we conclude that the two functions produce the

same result. Next we benchmark the NumPy sum function using %timeit in the same way

we used in the preceding example:

In [10]: %timeit np.sum(data)

10000 loops, best of 3: 29.8 μs per loop

Chapter 19 Code optimization

646

The NumPy sum function is several hundred times faster than the py_sum function,

demonstrating that vectorized expressions and operations using, for example, NumPy

are the key to good performance in Python. We see the same phenomena for other

functions that use for loops. For example, consider also the accumulative sum,

py_cumsum, which takes an array as input and produces an array as output:

In [11]: def py_cumsum(data):

 ...: out = np.zeros_like(data)

 ...: s = 0

 ...: for n in range(len(data)):

 ...: s += data[n]

 ...: out[n] = s

 ...: return out

Benchmarking this function also gives a result that is much slower than the

corresponding array-based NumPy function:

In [12]: %timeit py_cumsum(data)

100 loops, best of 3: 14.4 ms per loop

In [13]: %timeit np.cumsum(data)

10000 loops, best of 3: 147 μs per loop

Now let’s see how Numba can be used to speed up the slow py_sum and py_cumsum

functions. To activate JIT compilation of a function, we simply apply the decorator

@numba.jit:

In [14]: @numba.jit

 ...: def jit_sum(data):

 ...: s = 0

 ...: for d in data:

 ...: s += d

 ...: return s

Next we verify that the JIT-compiled function produces the same result as the NumPy

sum function and benchmark it using the %timeit function.

In [15]: assert abs(jit_sum(data) - np.sum(data)) < 1e-10

In [16]: %timeit jit_sum(data)

10000 loops, best of 3: 47.7 μs per loop

Chapter 19 Code optimization

647

Compared to the pure Python function, the jit_sum function is about 300 times

faster and reaches performance that is comparable to the NumPy sum function, in spite

of being written in pure Python.

In addition to JIT compiling a function by applying the numba.jit decorator when

the function is defined, we can apply the decorator after the fact. For example, to JIT

compile the py_cumsum function that we defined earlier, we can use

In [17]: jit_cumsum = numba.jit()(py_cumsum)

We verify that the resulting function jit_cumsum indeed produces the same result as

the corresponding NumPy function and benchmark it using %timeit:

In [18]: assert np.allclose(np.cumsum(data), jit_cumsum(data))

In [19]: %timeit jit_cumsum(data)

10000 loops, best of 3: 66.6 μs per loop

In this case the jit_cumsum function outperforms the NumPy cumsum function by

a factor of two. The NumPy function cumsum is more versatile than the jit_cumsum

function, so the comparison is not entirely fair, but it is remarkable that we can reach

performance that is comparable to compiled code by JIT compiling Python code with

a single function decorator. This allows us to use loop-based computations in Python

without performance degradation, which is particularly useful for algorithms that are

not easily written in vectorized form.

An example of such an algorithm is the computation of the Julia fractal, which

requires a variable number of iterations for each element of a matrix with coordinate

points in the complex plane: A point z in the complex plane belongs to the Julia set if

the iteration formula z ← z2 + c does not diverge after a large number of iterations. To

generate a Julia fractal graph, we can therefore loop over a set of coordinate points and

iterate z ← z2 + c and store the number of iterations required to diverge beyond some

predetermined bound (absolute value larger than 2.0 in the following implementation):

In [20]: def py_julia_fractal(z_re, z_im, j):

 ...: for m in range(len(z_re)):

 ...: for n in range(len(z_im)):

 ...: z = z_re[m] + 1j * z_im[n]

 ...: for t in range(256):

 ...: z = z ** 2 - 0.05 + 0.68j

 ...: if np.abs(z) > 2.0:

Chapter 19 Code optimization

648

 ...: j[m, n] = t

 ...: break

This implementation is very simple and straightforward when using explicit loops, but

in pure Python these three nested loops are inhibitively slow, as we will see in the following

text. However, with JIT compilation using Numba, we can obtain a great speedup.

By default Numba gracefully falls back on the standard Python interpreter in

cases when it fails to produce optimized code. An exception to this rule is when the

nopython=True argument to numba.jit is given, in which case the JIT compilation

will fail if Numba is unable to generate statically typed code. When automatic type

interference fails, the resulting JIT-compiled code generated by Numba typically

does not provide any speedup, so it is often advisable to use the nopython=True

argument to the jit decorator so that we fail quickly when the produced JIT-compiled

code is unlikely to result in a speedup. To assist Numba in the code generation, it is

sometimes useful to explicitly define types of variables that occur in a function body,

which we can do using the locals keyword argument to the jit decorator that can

be assigned to a dictionary that maps symbol names to explicit types: for example,

locals=dict(z=numba.complex) specifies that the variable z is a complex number.

However, with the current example, we do not need to specify the types of local variables

explicitly, since they can all be inferred from the data types of the NumPy arrays that are

passed to the function. We can verify that this is the case by using the nopython=True

argument to numba.jit when decorating the py_julia_fractal function:

In [21]: jit_julia_fractal = numba.jit(nopython=True)(py_julia_fractal)

Next we call the resulting jit_julia_fractal function to compute the Julia set.

Note that here we have written the function such that all the involved NumPy arrays are

defined outside the function. This helps Numba recognizing which types are involved in

the calculation and allows it to generate efficient code in the JIT compilation:

In [22]: N = 1024

In [23]: j = np.zeros((N, N), np.int64)

In [24]: z_real = np.linspace(-1.5, 1.5, N)

In [25]: z_imag = np.linspace(-1.5, 1.5, N)

In [26]: jit_julia_fractal(z_real, z_imag, j)

After the call to the jit_julia_fractal function, the result of the computation is

stored in the j array. To visualize the result, we can plot the j array using the Matplotlib

imshow function. The result is shown in Figure 19-1:

Chapter 19 Code optimization

649

In [27]: fig, ax = plt.subplots(figsize=(8, 8))

 ...: ax.imshow(j, cmap=plt.cm.RdBu_r, extent=[-1.5, 1.5, -1.5, 1.5])

 ...: ax.set_xlabel("$\mathrm{Re}(z)$", fontsize=18)

 ...: ax.set_ylabel("$\mathrm{Im}(z)$", fontsize=18)

We can compare the speed of the pure Python function py_julia_fractal and the

corresponding JIT-compiled function jit_julia_fractal using the %timeit command:

In [28]: %timeit py_julia_fractal(z_real, z_imag, j)

1 loops, best of 3: 60 s per loop

In [29]: %timeit jit_julia_fractal(z_real, z_imag, j)

10 loops, best of 3: 140 ms per loop

The speedup in this particular case is a remarkable 430 times, again by simply adding

a decorator to the Python function. With this type of speedup, for loops in Pythons do

not really need to be avoided after all.

Figure 19-1. The Julia fractal generated by a JIT-compiled Python function using
Numba

Chapter 19 Code optimization

650

Another useful decorator in the Numba library is numba.vectorize. It generates and

JIT compiles a vectorized function from a kernel function written for scalar input and

output, much like the NumPy vectorize function. Consider, for example, the Heaviside

step function:

Q x

x

x

x

() =

<

=

>

ì

í
ïï

î
ï
ï

0 0

1

2
0

1 0

,

,

,

.

If we wanted to implement this function for scalar input x, we could use

In [30]: def py_Heaviside(x):

 ...: if x == 0.0:

 ...: return 0.5

 ...: if x < 0.0:

 ...: return 0.0

 ...: else:

 ...: return 1.0

This function only works for scalar input, and if we want to apply it to an array or list,

we have to explicitly iterate over the array and apply it to each element:

In [31]: x = np.linspace(-2, 2, 50001)

In [32]: %timeit [py_Heaviside(xx) for xx in x]

100 loops, best of 3: 16.7 ms per loop

This is inconvenient and slow. The NumPy vectorize function solves the

inconvenience problem, by automatically wrapping the scalar kernel function into a

NumPy- array aware function:

In [33]: np_vec_Heaviside = np.vectorize(py_Heaviside)

In [34]: np_vec_Heaviside(x)

Out[34]: array([0., 0., 0., ..., 1., 1., 1.])

However, the NumPy vectorize function does not solve the performance problem. As

we see from benchmarking the np_vec_Heaviside function with %timeit, its performance

is comparable to explicitly looping over the array and consecutively calls the py_

Heaviside function for each element:

Chapter 19 Code optimization

651

In [35]: %timeit np_vec_Heaviside(x)

100 loops, best of 3: 13.6 ms per loop

Better performance can be achieved by using NumPy array expressions instead of

using NumPy vectorize on a scalar kernel written in Python:

In [36]: def np_Heaviside(x):

 ...: return (x > 0.0) + (x == 0.0)/2.0

In [37]: %timeit np_Heaviside(x)

1000 loops, best of 3: 268 μs per loop

However, even better performance can be achieved using Numba and the vectorize

decorator, which takes a list of function signatures for which to generate JIT-compiled

code. Here we choose to generate vectorized functions for two signatures – one that

takes arrays of 32-bit floating-point numbers as input and output, defined as numba.

float32(numba.float32), and one that takes arrays of 64-bit floating-point numbers as

input and output, defined as numba.float64(numba.float64):

In [38]: @numba.vectorize([numba.float32(numba.float32),

 ...: numba.float64(numba.float64)])

 ...: def jit_Heaviside(x):

 ...: if x == 0.0:

 ...: return 0.5

 ...: if x < 0:

 ...: return 0.0

 ...: else:

 ...: return 1.0

Benchmarking the resulting jit_Heaviside function shows the best performance of

the methods we have looked at:

In [39]: %timeit jit_Heaviside(x)

10000 loops, best of 3: 58.5 μs per loop

and the jit_Heaviside function can be used as any NumPy universal function, including

support for broadcasting and other NumPy features. To demonstrate that the function

indeed implements the desired function, we can test it on a simple list of input values:

In [40]: jit_Heaviside([-1, -0.5, 0.0, 0.5, 1.0])

Out[40]: array([0. , 0. , 0.5, 1. , 1.])

Chapter 19 Code optimization

652

In this section we have explored speeding up Python code using JIT compilation with

the Numba library. We looked at four examples: two simple examples for demonstrating

the basic usage of Numba, the summation and accumulative summation of an array.

For a more realistic use-case of Numba that is not so easily defined in terms of vector

expressions, we looked at the computation of the Julia set. Finally, we explored the

vectorization of scalar kernel with the implementation of the Heaviside step function.

These examples demonstrate the common use patterns for Numba, but there is also

much more to explore in the Numba library, such as code generation for GPUs. For

more information about this and other topics, see the official Numba documentation at

http://numba.pydata.org/doc.html.

 Cython
Like Numba, Cython is a solution for speeding up Python code, although Cython takes

a completely different approach to this problem. Whereas Numba is a Python library

that converts pure Python code to LLVM code that is JIT-compiled into machine code,

Cython is a programming language that is a superset of the Python programming

language: Cython extends Python with C-like properties. Most notably, Cython allows

us to use explicit and static type declarations. The purpose of the extensions to Python

introduced in Cython is to make it possible to translate the code into efficient C or C++

code, which can be compiled into a Python extension module that can be imported and

used from regular Python code.

There are two main usages of Cython:speeding up Python code and generating

wrappers for interfacing with compiled libraries. When using Cython, we need to modify

the targeted Python code, so compared to using Numba, there is a little bit more work

involved, and we need to learn the syntax and behavior of Cython in order to use it to

speed up Python code. However, as we will see in this section, Cython provides more

fine-grained control of how the Python code is processed, and Cython also has features

that are out of scope for Numba, such as generating interfaces between Python and

external libraries and speeding up Python code that does not use NumPy arrays.

While Numba uses transparent just-in-time compilation, Cython is mainly designed

for using traditional ahead-of-time compilation. There are several ways to compile

 Cython code into a Python extension module, each with different use-cases. We begin

with reviewing options for compiling Cython code and then proceed to introduce

features of Cython that are useful for speeding up computations written in Python.

Chapter 19 Code optimization

http://numba.pydata.org/doc.html

653

Throughout this section we will work with mostly the same examples that we looked at in

the previous section using Numba, so that we can easily compare both the methods and

the results. We begin by looking at how to speed up the py_sum and py_cumsum functions

defined in the previous section.

To use Cython code from Python, it has to pass through the Cython compilation

pipeline: first the Cython code must be translated into C or C++ code, after which it

has to be compiled into machine code using a C or C++ compiler. The translation from

Cython code to C or C++ can be done using the cython command-line tool. It takes

a file with Cython code, which we typically store in files using the pyx file extension,

and produces a C or C++ file. For example, consider the file cy_sum.pyx, with the

content shown in Listing 19-1. To generate a C file from this Cython file, we can run the

command cython cy_sum.pyx. The result is the file cy_sum.c, which we can compile

using a standard C compiler into a Python extension module. This compilation step

is platform dependent and requires using the right compiler flags and options as to

produce a proper Python extension.

Listing 19-1. Content of the Cython File cy_sum.pyx

def cy_sum(data):

 s = 0.0

 for d in data:

 s += d

 return s

To avoid the complications related to platform-specific compilation options for

C and C++ code, we can use the distutils and Cython libraries to automate the

translation of Cython code into a useful Python extension module. This requires creating

a setup.py script that calls the setup function from distutils.core (which knows how

to compile C code into a Python extension) and the cythonize function from Cython.

Build (which knows how to translate Cython code into C code), as shown in Listing 19-2.

When the setup.py file is prepared, we can compile the Cython module using the

command python setup.py build_ext --inplace, which instructs distutils to build

the extension module and place it in the same directory as the source code.

Chapter 19 Code optimization

654

Listing 19-2. A setup.py Script That Can Be Used to Automatically Compile a

Cython File into a Python Extension Module

from distutils.core import setup

from Cython.Build import cythonize

import numpy as np

setup(ext_modules=cythonize('cy_sum.pyx'),

 include_dirs=[np.get_include()],

 requires=['Cython', 'numpy'])

Once the Cython code has been compiled into a Python extension module, whether

by hand or using distutils library, we can import it and use it as a regular module in

Python:

In [41]: from cy_sum import cy_sum

In [42]: cy_sum(data)

Out[42]: -189.70046227549025

In [43]: %timeit cy_sum(data)

100 loops, best of 3: 5.56 ms per loop

In [44]: %timeit py_sum(data)

100 loops, best of 3: 8.08 ms per loop

Here we see that for this example, compiling the pure Python code in Listing 19-1

using Cython directly gives a speedup of about 30%. This is a nice speedup, but arguably

not worth the trouble of going through the Cython compilation pipeline. We will see later

how to improve on this speedup using more features of Cython.

Listing 19-3. Content of the Cython File cy_cumsum.pyx

cimport numpy

 import numpy

def cy_cumsum(data):

 out = numpy.zeros_like(data)

 s = 0

 for n in range(len(data)):

 s += data[n]

 out[n] = s

 return out

Chapter 19 Code optimization

655

The explicit compilation of Cython code into a Python extension module shown

in the preceding code is useful for distributing prebuilt modules written in Cython,

as the end result does not require Cython to be installed to use the extension module.

An alternative way to implicitly invoke the Cython compilation pipeline automatically

during the import of a module is provided by the pyximport library, which is distributed

with Cython. To seamlessly import a Cython file directly from Python, we can first invoke

the install function from the pyximport library:

In [45]: pyximport.install(setup_args=dict(include_dirs=np.get_include()))

This will modify the behavior of the Python import statement and add support for

Cython pyx files. When a Cython module is imported, it will first be compiled in C or C++

and then to machine code in the format of a Python extension module that the Python

interpreter can import. These implicit steps sometimes require additional configuration,

which we can pass to the pyximport.install function via arguments. For example, to be

able to import Cython code that uses NumPy-related features, we need the resulting C

code to be compiled against the NumPy C header files. We can configure this by setting

the include_dirs to the value given by np.get_include() in the setup_args argument

to the install function, as shown in the preceding code. Several other options are also

available, and we can also give custom compilation and linking arguments. See the

docstring for pyximport.install for details. Once pyximport.install has been called,

we can use a standard Python import statement to import a function from a Cython

module:

In [46]: from cy_cumsum import cy_cumsum

In [47]: %timeit cy_cumsum(data)

100 loops, best of 3: 5.91 ms per loop

In [48]: %timeit py_cumsum(data)

100 loops, best of 3: 13.8 ms per loop

In this example too, we see a welcome but not very impressive speedup of a factor of

two for the Python code that has been passed through the Cython compilation pipeline.

Before we get into the detailed usage of Cython that allow us to improve upon

this speedup factor, we quickly introduce yet another way of compiling and import

Cython code. When using IPython, and especially the Jupyter Notebook, we can use

the convenient %%cython command, which automatically compiles and loads Cython

Chapter 19 Code optimization

656

code in a code cell as Python extension and makes it available in the IPython session.

To be able to use this command, we first have to activate it using the %load_ext cython

command:

In [49]: %load_ext cython

With the %%cython command activated, we can write and load Cython code

interactively in an IPython session:

In [50]: %%cython

 ...: def cy_sum(data):

 ...: s = 0.0

 ...: for d in data:

 ...: s += d

 ...: return s

In [51]: %timeit cy_sum(data)

100 loops, best of 3: 5.21 ms per loop

In [52]: %timeit py_sum(data)

100 loops, best of 3: 8.6 ms per loop

As before, see a direct speedup by simply adding the %%cython at the first line of the

IPython code cell. This is reminiscent of adding the @numba.jit decorator to a function,

but the underlying mechanics of these two methods are rather different. In the rest of

this section, we will use this method for compiling and loading Cython code. When using

the %%cython IPython command, it is also useful to add the -a argument. This results

in Cython annotation output to be displayed as the output of the code cell, as shown

in Figure 19-2. The annotation shows each code line in a shade of yellow, where bright

yellow indicates that the line of code is translated to C code with strong dependencies

on the Python C/API, and a where a while line of code is directly translated into pure C

code. When working on optimizing Cython code, we generally need to strive for Cython

code that gets translated into as pure C code as possible, so it is extremely useful to

inspect the annotation output and look for yellow lines, which typically represent the

bottlenecks in the code. As an added bonus, clicking a line of code in the annotation

output toggles between the Cython code that we provided and the C code that it is being

translated into.

Chapter 19 Code optimization

657

In the rest of the section, we explore ways of speeding up Cython code using

language features that are introduced by Cython that are particularly useful for

computational problems. We first revisit the implementation of the cy_sum given in

the preceding code. In our first attempt to speed up this function, we simply used the

pure Python and passed it through the Cython compilation pipeline, and as a result, we

saw a speedup of about 30%. The key step to see much larger speedups is to add type

declarations for all the variables and arguments of the function. By explicitly declaring

the types of variables, the Cython compiler will be able to generate more efficient C

code. To specify a type of a variable, we need to use the Cython keyword cdef, which we

can use with any standard C type. For example, to declare the variable n of integer type,

we can use cdef int n. We can also use type definitions from the NumPy library: for

example, cdef numpy.float64_t s declares the variable s to be a 64-bit floating-point

number. NumPy arrays can be declared using the type specification in the format numpy.

ndarray[numpy.float64_t, ndim=1] data, which declares data to be an array with

64-bit floating-point number elements, with one dimension (a vector) and of unspecified

length. Adding type declarations of this style to the previous cy_sum function results in

the following code:

In [53]: %%cython

 ...: cimport numpy

 ...: cimport cython

 ...:

 ...: @cython.boundscheck(False)

 ...: @cython.wraparound(False)

Figure 19-2. Annotation generated by Cython using the %%cython IPython
command with the -a argument

Chapter 19 Code optimization

658

 ...: def cy_sum(numpy.ndarray[numpy.float64_t, ndim=1] data):

 ...: cdef numpy.float64_t s = 0.0

 ...: cdef int n, N = len(data)

 ...: for n in range(N):

 ...: s += data[n]

 ...: return s

In this implementation of the cy_sum function, we have also applied the two decorators

@cython.boundscheck(False) and @cython.wraparound(False), which disable time-

consuming bound checks on the indexing of NumPy arrays. This results in less safe code,

but if we are confident that the NumPy arrays in this function will not be index outside of

their valid ranges, we can obtain additional speedup by disabling such checks. Now that

we have explicitly declared the type of all variables and arguments of the function, Cython

is able to generate efficient C code that when compiled into a Python module provides

performance that is comparable to the JIT-compiled code using Numba and not far from

the built-in sum function from NumPy (which also is implemented in C):

In [54]: %timeit cy_sum(data)

10000 loops, best of 3: 49.2 μs per loop
In [55]: %timeit jit_sum(data)

10000 loops, best of 3: 47.6 μs per loop
In [56]: %timeit np.sum(data)

10000 loops, best of 3: 29.7 μs per loop

Next let’s turn our attention to the cy_cumsum function. Like the cy_sum function,

this function too will benefit from explicit type declarations. To simplify the declarations

of NumPy array types, here we use the ctypedef keyword to create an alias for numpy.

float64_t to the shorter FTYPE_t. Note also that in Cython code, there are two different

import statements: cimport and import. The import statement can be used to import

any Python module, but it will result in C code that calls back into the Python interpreter

and can therefore be slow. The cimport statement works like a regular import, but is used

for importing other Cython modules. Here cimport numpy imports a Cython module

named numpy that provides Cython extensions to NumPy, mostly type and function

declarations. In particular, the C-like types such as numpy.float64_t are declared in this

Cython module. However, the function call numpy.zeros in the function defined in the

following code results in a call to the function zeros in the NumPy module, and for it, we

need to include the Python module numpy using import numpy.

Chapter 19 Code optimization

659

Adding these type declarations to the previously defined cy_cumsum function results

in the implementation given in the following:

In [57]: %%cython

 ...: cimport numpy

 ...: import numpy

 ...: cimport cython

 ...:

 ...: ctypedef numpy.float64_t FTYPE_t

 ...:

 ...: @cython.boundscheck(False)

 ...: @cython.wraparound(False)

 ...: def cy_cumsum(numpy.ndarray[FTYPE_t, ndim=1] data):

 ...: cdef int n, N = data.size

 ...: cdef numpy.ndarray[FTYPE_t, ndim=1] out = numpy.zeros

(N, dtype=data.dtype)

 ...: cdef numpy.float64_t s = 0.0

 ...: for n in range(N):

 ...: s += data[n]

 ...: out[n] = s

 ...: return out

Like for cy_sum, we see a significant speedup after having declared the types of all

variables in the function, and the performance of cy_cumsum is now comparable to the

JIT-compiled Numba function jit_cumsum and faster than the built-in cumsum function

in NumPy (which on the other hand is more versatile):

In [58]: %timeit cy_cumsum(data)

10000 loops, best of 3: 69.7 μs per loop
In [59]: %timeit jit_cumsum(data)

10000 loops, best of 3: 70 μs per loop
In [60]: %timeit np.cumsum(data)

10000 loops, best of 3: 148 μs per loop

Chapter 19 Code optimization

660

When adding explicit type declarations, we gain performance when compiling

the function with Cython, but we lose generality as the function is now unable to take

any other type of arguments. For example, the original py_sum function, as well as the

NumPy sum function, accepts a much wider variety of input types. We can sum Python

lists and NumPy arrays of both floating-point numbers and integers:

In [61]: py_sum([1.0, 2.0, 3.0, 4.0, 5.0])

Out[61]: 15.0

In [62]: py_sum([1, 2, 3, 4, 5])

Out[62]: 15

The Cython-compiled version with explicit type declaration, on the other hand, only

works for exactly the type we declared it:

In [63]: cy_sum(np.array([1.0, 2.0, 3.0, 4.0, 5.0]))

Out[63]: 15.0

In [64]: cy_sum(np.array([1, 2, 3, 4, 5]))

ValueError: Buffer dtype mismatch, expected 'float64_t' but got 'long'

Often it is desirable to support more than one type of input, such as providing the

ability to sum arrays of both floating-point numbers and integers with the same function.

Cython provides a solution to this problem through its ctypedef fused keyword, with

which we can define new types that are one out of several provided types. For example,

consider the modification to the py_sum function given in py_fused_sum here:

In [65]: %%cython

 ...: cimport numpy

 ...: cimport cython

 ...:

 ...: ctypedef fused I_OR_F_t:

 ...: numpy.int64_t

 ...: numpy.float64_t

 ...:

 ...: @cython.boundscheck(False)

 ...: @cython.wraparound(False)

 ...: def cy_fused_sum(numpy.ndarray[I_OR_F_t, ndim=1] data):

 ...: cdef I_OR_F_t s = 0

Chapter 19 Code optimization

661

 ...: cdef int n, N = len(data)

 ...: for n in range(N):

 ...: s += data[n]

 ...: return s

Here the function is defined in terms of the type I_OR_F_t, which is defined

using ctypedef fused to be either numpy.int64_t or numpy.float64_t. Cython will

automatically generate the necessary code for both types of functions, so that we can use

the function on both floating-point and integer arrays (at the price of a small decrease in

performance):

In [66]: cy_fused_sum(np.array([1.0, 2.0, 3.0, 4.0, 5.0]))

Out[66]: 15.0

In [67]: cy_fused_sum(np.array([1, 2, 3, 4, 5]))

Out[67]: 15

As a final example of how to speed up Python code with Cython, consider again the

Python code for generating the Julia set that we looked at in the previous section. To

implement a Cython version of this function, we simply take the original Python code

and explicitly declare the types of all the variables used in the function, following the

procedure we used in the preceding text. We also add the decorators for disabling index

bound checks and wraparound. Here we have both NumPy integer arrays and floating-

point arrays as input, so we define the arguments as types numpy.ndarray[numpy.

float64_t, ndim=1] and numpy.ndarray[numpy.int64_t, ndim=2], respectively.

The implementation of cy_julia_fractal given in the following code also includes

a Cython implementation of the square of the absolute value of a complex number. This

function is declared as inline using the inline keyword, which means that the compiler

will put the body of the function at every place it is called, rather than creating a function

that is called from those locations. This will result in large code, but avoid the overhead

of an additional function call. We also define this function using cdef rather than the

usual def keyword. In Cython, def defines a function that can be called from Python,

while cdef defines a function that can be called from C. Using the cpdef keyword, we can

simultaneously define a function that is callable both from C and from Python. As it is

written here, using cdef, we cannot call the abs2 function from the IPython session after

executing this code cell, but if we change cdef to cpdef, we can.

Chapter 19 Code optimization

662

In [68]: %%cython

 ...: cimport numpy

 ...: cimport cython

 ...:

 ...: cdef inline double abs2(double complex z):

 ...: return z.real * z.real + z.imag * z.imag

 ...:

 ...: @cython.boundscheck(False)

 ...: @cython.wraparound(False)

 ...: def cy_julia_fractal(numpy.ndarray[numpy.float64_t, ndim=1] z_re,

 ...: numpy.ndarray[numpy.float64_t, ndim=1] z_im,

 ...: numpy.ndarray[numpy.int64_t, ndim=2] j):

 ...: cdef int m, n, t, M = z_re.size, N = z_im.size

 ...: cdef double complex z

 ...: for m in range(M):

 ...: for n in range(N):

 ...: z = z_re[m] + 1.0j * z_im[n]

 ...: for t in range(256):

 ...: z = z ** 2 - 0.05 + 0.68j

 ...: if abs2(z) > 4.0:

 ...: j[m, n] = t

 ...: break

If we call the cy_julia_fractal function with the same arguments as we previously

called the Python implementation that was JIT-compiled using Numba, we see that the

two implementations have comparable performance.

In [69]: N = 1024

In [70]: j = np.zeros((N, N), dtype=np.int64)

In [71]: z_real = np.linspace(-1.5, 1.5, N)

In [72]: z_imag = np.linspace(-1.5, 1.5, N)

In [73]: %timeit cy_julia_fractal(z_real, z_imag, j)

10 loops, best of 3: 113 ms per loop

In [74]: %timeit jit_julia_fractal(z_real, z_imag, j)

10 loops, best of 3: 141 ms per loop

Chapter 19 Code optimization

663

The slight edge to the cy_julia_fractal implementation is mainly due to the inline

definition of the innermost loop call to the abs2 function and the fact that abs2 avoids

computing the square root. Making a similar change in jit_julia_fractal improves its

performance and approximately accounts for the difference shown here.

So far we have explored Cython as a method to speed up Python code by compiling it

into machine code that is made available as Python extension modules. There is another

important use-case of Cython, which is at least as important to its widespread use in

the Python scientific computing community: Cython can also be used to easily create

wrappers to compiled C and C++ libraries. We will not explore this in depth here, but

will give a simple example that illustrates that using Cython we can call out to arbitrary

C libraries in just a few lines of code. As an example, consider the math library from

the C standard library. It provides mathematical functions, similar to those defined

in the Python standard library with the same name: math. To use these functions in a

C program, we would include the math.h header file to obtain their declarations and

compile and link the program against the libm library. From Cython we can obtain

function declarations using the cdef extern from keywords, after which we need to give

the name of the C header file and list the declarations of the function we want to use in

the following code block. For example, to make the acos function from libm available in

Cython, we can use the following code:

In [75]: %%cython

 ...: cdef extern from "math.h":

 ...: double acos(double)

 ...:

 ...: def cy_acos1(double x):

 ...: return acos(x)

Here we also defined the Python function cy_acos1, which we can call from Python:

In [76]: %timeit cy_acos1(0.5)

10000000 loops, best of 3: 83.2 ns per loop

Using this method we can wrap arbitrary C functions into functions that are

callable from regular Python code. This is a very useful feature for scientific computing

applications since it makes existing code written in C and C++ easily available from

Python. For the standard libraries, Cython already provides type declarations via the

libc module, so we do not need to explicitly define the functions using cdef extern

Chapter 19 Code optimization

664

from. For the acos example, we could therefore instead directly import the function from

libc.math using the cimport statement:

In [77]: %%cython

 ...: from libc.math cimport acos

 ...:

 ...: def cy_acos2(double x):

 ...: return acos(x)

In [78]: %timeit cy_acos2(0.5)

10000000 loops, best of 3: 85.6 ns per loop

The resulting function cy_acos2 is identical to cy_acos1 that was explicitly imported

from math.h earlier. It is instructive to compare the performance of these C math library

functions to the corresponding functions defined in NumPy and the Python standard

math library:

In [79]: from numpy import arccos

In [80]: %timeit arccos(0.5)

1000000 loops, best of 3: 1.07 μs per loop
In [81]: from math import acos

In [82]: %timeit acos(0.5)

10000000 loops, best of 3: 95.9 ns per loop

The NumPy version is about ten times slower than the Python math function and

Cython wrappers to the C standard library function, because of the overhead related to

NumPy array data structures.

 Summary
In this chapter we have explored methods for speeding up Python code using Numba,

which produces optimized machine code using just-in-time compilation, and Cython,

which produces C code that can be compiled into machine code using ahead-of-

time compilation. Numba works with pure Python code, but heavily relies on type

interference using NumPy arrays, while Cython works with an extension to the Python

language that allows explicit type declarations. The advantages of these methods are that

we can achieve performance that is comparable to compiled machine code while staying

in a Python or Python-like programming environment. The key to speeding up Python

Chapter 19 Code optimization

665

code is the use of typed variables, either by using type interference from NumPy arrays,

as in Numba, or by explicitly declaring the types of variables, as in Cython. Explicitly

typed code can be translated into much more efficient code than the dynamically typed

code in pure Python and can avoid much of the overhead involved in type lookups in

Python. Both Numba and Cython are convenient ways to obtain impressive speedups

of Python code, and they often produce code with similar performance. Cython also

provides an easy-to-use method for creating interfaces to external libraries so that they

can be accessed from Python. In both Numba and Cython, the common theme is use

type information (from NumPy arrays or from explicit declarations) to generate more

efficient typed machine code. Within the Python community, there has also recently

been a movement toward adding support for optional type hints to the Python language

itself. For more details about type hints, see PEP 484 (www.python.org/dev/peps/pep-

0484), which has been included in Python as of version 3.5. While type hints in Python

are not likely to be widely available in the near future, it is certainly an interesting

development to follow.

 Further Reading
Thorough guides to using Cython are given in Smith (2015) and Herron (2013). For more

information about Numba, see its official documentation at http://numba.pydata.org/

numba-doc. For a detailed discussion of high-performance computing with Python, see

also M. Gorelick (2014).

 References
Herron, P. (2013). Learning Cython Programming. Mumbai: Packt.

M. Gorelick, I. O. (2014). High Performance Python: Practical Performant

Programming for Humans. Sebastopol: O'Reilly.

Smith, K. (2015). Cython A Guide for Python Programmers. Sebastopol: O'Reilly.

Chapter 19 Code optimization

http://www.python.org/dev/peps/pep-0484
http://www.python.org/dev/peps/pep-0484
http://numba.pydata.org/numba-doc
http://numba.pydata.org/numba-doc

667
© Robert Johansson 2019
R. Johansson, Numerical Python, https://doi.org/10.1007/978-1-4842-4246-9

 APPENDIX

Installation
This appendix covers the installation and setup of a Python environment for scientific

computing on commonly used platforms. As discussed in Chapter 1, the scientific

computing environment for Python is not a single product, but rather a diverse ecosystem

of packages and libraries, and there are numerous possible ways to install and configure a

Python environment on any given platform. Python itself is rather easy to install,1 and on

many operating systems, it is even preinstalled. All pure Python libraries that are hosted on

the Python Package Index2 are also easily installed, for example, using pip and a command

such as pip install PACKAGE, where PACKAGE is the name of the package to install. The

pip software then searches for the package on the Python Package Index, and downloads

and installs it, if it is found. For example, to install IPython, we can use

$ pip install ipython

and to upgrade an already installed package, we simply add the --upgrade flag to the

pip command:

$ pip install --upgrade ipython

However, many libraries for computing with Python are not pure Python

libraries, and they frequently have dependencies on system libraries written in

other languages, such as C and Fortran. These dependencies cannot be handled by

pip and the Python Package Index, and to build such libraries from source requires

C and Fortran compilers to be installed. In other words, installing a full scientific

computing software stack for Python manually can be difficult or at least time-

consuming and tedious. To solve this problem, there have emerged a number of

prepackaged Python environments with automated installers. The most popular

1 Installers for all major platforms are available for download at http://www.python.org/
downloads

2 http://pypi.python.org

https://doi.org/10.1007/978-1-4842-4246-9
http://www.python.org/downloads
http://www.python.org/downloads
http://pypi.python.org

668

environments are Continuum Analytics’ Anaconda3 and Enthought’s Canopy,4 which

are both sponsored by corporations with close connections to the open source

scientific Python community, and Python(x,y),5 which is a community-maintained

environment that targets Microsoft’s operating systems. These environments all have

in common that they bundle the Python interpreter, the required system libraries

and tools, and a large number of scientific- computing- oriented Python libraries in an

easy-to-install distribution. Any of these environments can readily be used to set up

the software required to run the code discussed in this book, but in the following we

use the Anaconda environment from Continuum Analytics. In particular, we discuss

Miniconda – a lightweight version of Anaconda – and the package manager conda.

 Miniconda and Conda
The Anaconda environment, which comes bundled with a large number of libraries,

is a convenient way to get a scientific computing environment for Python up and

running quickly. However, for clarity, here we start with a Miniconda environment

and explicitly install the packages that we need. In this way, we control exactly which

packages are included in the environment we set up. Miniconda is a minimal version

of Anaconda, which only includes the most basic components: a Python interpreter, a

few fundamental libraries, and the conda package manager. The download page for the

Miniconda project (http://conda.pydata.org/miniconda.html) contains installers

for Linux, Mac OS X, and Windows.6 Download and run the installer, and follow the

on-screen instructions. When the installation has finished, you should have a directory

named miniconda in your home directory, and if you choose to add it to your PATH

variable during the installation, you should now be able to invoke the conda package

manager by running conda at the command prompt.

3 http://continuum.io/downloads
4 http://www.enthought.com/products/canopy
5 http://code.google.com/p/pythonxy
6 Miniconda is available in both 32- and 64-bit versions. Generally the 64-bit version is
recommended for modern computers, but on Windows a 64-bit compiler might not always
be readily available, so staying with the 32-bit version might be better in some cases on this
platform.

Appendix instAllAtion

http://conda.pydata.org/miniconda.html
http://continuum.io/downloads
http://www.enthought.com/products/canopy
http://code.google.com/p/pythonxy

669

Conda7 is a cross-platform package manager that can handle dependencies on

Python packages as well as system tools and libraries. This is essential for installing

scientific computing software, which by nature uses a diverse set of tools and libraries.

Conda packages are prebuilt binaries for the target platform and are therefore fast and

convenient to install. To verify that conda is available on your system, you can try

$ conda --version

conda 4.5.11

In this case, the output tells us that conda is installed and that the version of conda is

4.5.11. To update to the latest version of conda, we can use the conda package manager

itself:

$ conda update conda

and to update all packages installed in a particular conda environment, we can use

$ conda update --all

Once conda is installed, we can use it to install Python interpreters and libraries.

When doing so we can optionally specify precise versions of the packages we want

to install. The Python software ecosystem consists of a large number of independent

projects, each with their own release cycles and development goals, and there are

constantly new versions of different libraries being released. This is both exciting –

because there is steady progress and new features are frequently made available – but

unfortunately not all new releases of all libraries are backward compatible. This presents

a dilemma for a user that requires a stable and reproducible environment over the

long term and for users that simultaneously work on projects with different versions of

dependencies.

The best solution in the Python ecosystem for this problem is to use a package

manager such as conda to set up virtual Python environments for different projects, in

which different versions of the required dependencies are installed. With this approach,

it is easy to maintain multiple environments with different configurations, such as

separate Python 2 and Python 3 environments, or environments with stable versions and

development versions of relevant packages. I strongly recommend using virtual Python

environments rather than using the default system-wide Python environments for the

reasons given in the preceding text.

7 http://conda.pydata.org/docs/index.html

Appendix instAllAtion

http://conda.pydata.org/docs/index.html

670

With conda, new environments are created with the conda create command,

to which we need to provide a name for the new environment using -n NAME or

alternatively a path to where the environment is to be stored using -p PATH. When

providing a name, the environment is by default stored in the miniconda/envs/

NAME directory. When creating a new environment, we can also give a list of packages

to install. At least one package must be specified. For example, to create two new

environments based on Python 2.7 and Python 3.6, we can use the commands

$ conda create -n py2.7 python=2.7

$ conda create -n py3.6 python=3.6

where we have given the Python 2 and Python 3 environments the names py2.7

and py3.6, respectively. To use one of these environments, we need to activate it using

the command source activate py2.7 or source activate py3.6, respectively, and

to deactivate an environment, we use source deactivate.8 With this method it is easy

to switch between different environments, as illustrated in the following sequence of

commands:

$ source activate py2.7

discarding /Users/rob/miniconda/bin from PATH

prepending /Users/rob/miniconda/envs/py2.7/bin to PATH

(py2.7)$ python --version

Python 2.7.14 :: Continuum Analytics, Inc.

(py2.7)$ source activate py3.6

discarding /Users/rob/miniconda/envs/py2.7/bin from PATH

prepending /Users/rob/miniconda/envs/py3.6/bin to PATH

(py3.6)$ python --version

Python 3.6.5 :: Continuum Analytics, Inc.

(py3.6)$ source deactivate

discarding /Users/rob/miniconda/envs/py3.6/bin from PATH

$

8 On Windows, leave out source from these commands.

Appendix instAllAtion

671

To manage environments, the conda env, conda info, and conda list commands

are helpful tools. The conda info command can be used to list available environments

(same as conda env list):

$ conda info --envs

conda environments:

#

base * /Users/rob/miniconda

py2.7 /Users/rob/miniconda/envs/py2.7

py3.6 /Users/rob/miniconda/envs/py3.6

and the conda list command can be used to list installed packages and their

versions, in a given environment:

$ conda list -n py3.6

packages in environment at /Users/rob/miniconda/envs/py3.6:

#

Name Version Build Channel

ca-certificates 2017.08.26 ha1e5d58_0

certifi 2018.1.18 py36_0

libcxx 4.0.1 h579ed51_0

libcxxabi 4.0.1 hebd6815_0

libedit 3.1 hb4e282d_0

libffi 3.2.1 h475c297_4

ncurses 6.0 hd04f020_2

openssl 1.0.2o h26aff7b_0

pip 9.0.3 py36_0

python 3.6.5 hc167b69_0

readline 7.0 hc1231fa_4

setuptools 39.0.1 py36_0

sqlite 3.22.0 h3efe00b_0

tk 8.6.7 h35a86e2_3

wheel 0.30.0 py36h5eb2c71_1

xz 5.2.3 h0278029_2

zlib 1.2.11 hf3cbc9b_2

Appendix instAllAtion

672

Similar information in YAML format9 is produced by the conda env export

command:

(py3.6)$ conda env export

name: py3.6

channels:

 - defaults

dependencies:

 - ca-certificates=2017.08.26=ha1e5d58_0

 - certifi=2018.1.18=py36_0

 - libcxx=4.0.1=h579ed51_0

 - libcxxabi=4.0.1=hebd6815_0

 - libedit=3.1=hb4e282d_0

 - libffi=3.2.1=h475c297_4

 - ncurses=6.0=hd04f020_2

 - openssl=1.0.2o=h26aff7b_0

 - pip=9.0.3=py36_0

 - python=3.6.5=hc167b69_0

 - readline=7.0=hc1231fa_4

 - setuptools=39.0.1=py36_0

 - sqlite=3.22.0=h3efe00b_0

 - tk=8.6.7=h35a86e2_3

 - wheel=0.30.0=py36h5eb2c71_1

 - xz=5.2.3=h0278029_2

 - zlib=1.2.11=hf3cbc9b_2

prefix: /Users/rob/miniconda/envs/py3.6

To install additional packages in an environment, we can either specify a list

of packages when the environment is created or activate the environment and use

conda install or use the conda install command with the -n flag to specify a target

environment for the installation. For example, to create a Python 3.6 environment with

NumPy version 1.14, we could use

$ conda create -n py3.6-np1.14 python=3.6 numpy=1.14

9 http://yaml.org

Appendix instAllAtion

http://yaml.org

673

To verify that the new environment py3.6-np1.14 indeed contains NumPy of the

specified version, we can use the conda list command again:

$ conda list -n py3.6-np1.14

packages in environment at /Users/rob/miniconda/envs/py3.6-np1.14:

#

Name Version Build Channel

ca-certificates 2017.08.26 ha1e5d58_0

certifi 2018.1.18 py36_0

intel-openmp 2018.0.0 8

libcxx 4.0.1 h579ed51_0

libcxxabi 4.0.1 hebd6815_0

libedit 3.1 hb4e282d_0

libffi 3.2.1 h475c297_4

libgfortran 3.0.1 h93005f0_2

mkl 2018.0.2 1

mkl_fft 1.0.1 py36h917ab60_0

mkl_random 1.0.1 py36h78cc56f_0

ncurses 6.0 hd04f020_2

numpy 1.14.2 py36ha9ae307_1

openssl 1.0.2o h26aff7b_0

pip 9.0.3 py36_0

python 3.6.5 hc167b69_0

readline 7.0 hc1231fa_4

setuptools 39.0.1 py36_0

sqlite 3.22.0 h3efe00b_0

tk 8.6.7 h35a86e2_3

wheel 0.30.0 py36h5eb2c71_1

xz 5.2.3 h0278029_2

zlib 1.2.11 hf3cbc9b_2

Here we see that NumPy is indeed installed, and the precise version of the library is

1.8.14. If we do not explicitly specify the version of a library, the latest stable release is used.

To use the second method – to install additional packages in an already existing

environment – we first activate the environment

$ source activate py3.6

Appendix instAllAtion

674

and then use conda install PACKAGE to install the package with name PACKAGE.

Here we can also give a list of package names. For example, to install the NumPy, SciPy,

and Matplotlib libraries, we can use

(py3.6)$ conda install numpy scipy matplotlib

or, equivalently,

$ conda install -n py3.6 numpy scipy matplotlib

When installing packages using conda, all required dependencies are also installed

automatically, and the preceding command actually also installed the packages

dateutil, freetype, libpng, pyparsing, pytz, and six packages, among others, which

are dependencies for the matplotlib package:

(py3.6)$ conda list

packages in environment at /Users/rob/miniconda/envs/py3.6:

#

Name Version Build Channel

ca-certificates 2017.08.26 ha1e5d58_0

certifi 2018.1.18 py36_0

cycler 0.10.0 py36hfc81398_0

freetype 2.8 h12048fb_1

intel-openmp 2018.0.0 8

kiwisolver 1.0.1 py36h792292d_0

libcxx 4.0.1 h579ed51_0

libcxxabi 4.0.1 hebd6815_0

libedit 3.1 hb4e282d_0

libffi 3.2.1 h475c297_4

libgfortran 3.0.1 h93005f0_2

libpng 1.6.34 he12f830_0

matplotlib 2.2.2 py36ha7267d0_0

mkl 2018.0.2 1

mkl_fft 1.0.1 py36h917ab60_0

mkl_random 1.0.1 py36h78cc56f_0

ncurses 6.0 hd04f020_2

numpy 1.14.2 py36ha9ae307_1

openssl 1.0.2o h26aff7b_0

Appendix instAllAtion

675

pip 9.0.3 py36_0

pyparsing 2.2.0 py36hb281f35_0

python 3.6.5 hc167b69_0

python-dateutil 2.7.2 py36_0

pytz 2018.3 py36_0

readline 7.0 hc1231fa_4

scipy 1.0.1 py36hcaad992_0

setuptools 39.0.1 py36_0

six 1.11.0 py36h0e22d5e_1

sqlite 3.22.0 h3efe00b_0

tk 8.6.7 h35a86e2_3

tornado 5.0.1 py36_1

wheel 0.30.0 py36h5eb2c71_1

xz 5.2.3 h0278029_2

zlib 1.2.11 hf3cbc9b_2

Note that not all of the packages installed in this environment are Python libraries.

For example, libpng and freetype are system libraries, but conda is able to handle them

and install them automatically as dependencies. This is one of the strengths of conda

compared to, for example, the Python-centric package manager pip.

To update selected packages in an environment, we can use the conda update

command. For example, to update NumPy and SciPy in the currently active

environment, we can use

(py3.4)$ conda update numpy scipy

To remove a package, we can use conda remove PACKAGE, and to completely remove

an environment, we can use conda remove -n NAME --all. For example, to remove the

environment py2.7-np1.8, we can use

$ conda remove -n py2.7-np1.8 --all

Conda locally caches packages that have once been installed. This makes it fast to

reinstall a package in a new environment and also quick and easy to tear down and

set up new environments for testing and trying out different things, without any risk

of breaking environments used for other projects. To re-create a conda environment,

all we need to do is to keep track of the installed packages. Using the -e flag with the

conda list command gives a list of packages and their versions, in a format that is also

Appendix instAllAtion

676

compatible with the pip software. This list can be used to replicate a conda environment,

for example, on another system or at a later point in time:

$ conda list -e > requirements.txt

With the file requirements.txt, we can now update an existing conda environment

in the following manner:

$ conda install --file requirements.txt

or create a new environment that is a replication of the environment that was used to

create the requirement.txt file:

$ conda create –n NAME --file requirements.txt

Alternatively, we can use the YAML format dump of an environment produced by

conda env export:

$ conda env export –n NAME > env.yml

and in this case we can reproduce the environment using

$ conda env create --file env.yml

Note that here we do not need to specify the environment name since the env.

yml file also contains this information. Using this method also has the advantage

that packages installed using pip are installed when the environment is replicated or

restored.

 A Complete Environment
Now that we have explored the conda package manager, and seen how it can be used to

set up environments and install packages, next we cover the procedures for setting up

a complete environment with all the dependencies that are required for the material in

this book. In the following we use the py3.6 environment, which was previously created

using the command:

$ conda create –n py3.6 python=3.6

This environment can be activate using

$ source activate py3.6

Appendix instAllAtion

677

Once the target environment is activated, we can install the libraries that we use in

this book with the following commands:

conda install ipython jupyter jupyterlab spyder pylint pyflakes pep8

conda install numpy scipy sympy matplotlib networkx pandas seaborn

conda install patsy statsmodels scikit-learn pymc3

conda install h5py pytables msgpack-python cython numba cvxopt

conda install -c conda-forge fenics mshr

conda install -c conda-forge pygraphviz

pip install scikit-monaco

pip install version_information

The FEniCS libraries have many intricate dependencies, which can make it difficult

to install using this standard approach on some platforms.10 For this reason, if the

FEniCS installation using conda fails, it is most easily installed using the prebuilt

environments available from the project’s web site: http://fenicsproject.org/

download. Another good solution for obtaining a complete FEniCS environment can

be to use a Docker11 container with FEniCS preinstalled. See, for example, https://

registry.hub.docker.com/repos/fenicsproject for more information about this

method.

Table A-1 presents a breakdown of the installation commands for the dependencies,

on a chapter-by-chapter basis.

10 There are recent efforts to create conda packages for the FEniCS libraries and their
dependencies: http://fenicsproject.org/download/. However, this method is currently only
available for Linux and MacOS.

11 For more information about software container solution Docker, see https://www.docker.com.

Appendix instAllAtion

http://fenicsproject.org/download
http://fenicsproject.org/download
https://registry.hub.docker.com/repos/fenicsproject
https://registry.hub.docker.com/repos/fenicsproject
http://fenicsproject.org/download/
https://www.docker.com

678

Table A-1. Installation Instructions for Dependencies for Each Chapter

Chapter Used Libraries Installation

1 ipython, spyder,

Jupyter

conda install ipython jupyter jupyterlab

conda install spyder pylint pyflakes pep8

Here pylint, pyflakes, and pep8 are code analysis tools that

can be used by spyder.

For converting ipython notebooks to pdF, you also need a

working latex installation.

to book-keep which versions of libraries that were used to

execute the ipython notebooks that accompany this book,

we have used ipython extension command %version_

information, which is available in the version_

information package that can be installed with pip:

pip install version_information

2 numpy conda install numpy

3 numpy, sympy conda install numpy sympy

4 numpy, Matplotlib conda install numpy matplotlib

5 numpy, sympy, scipy,

Matplotlib

conda install numpy sympy scipy matplotlib

6 numpy, sympy, scipy,

Matplotlib, cvxopt

conda install numpy sympy scipy matplotlib

cvxopt

7 numpy, scipy,

Matplotlib

conda install numpy scipy matplotlib

8 numpy, sympy, scipy,

Matplotlib,scikit-

Monaco

conda install numpy sympy scipy matplotlib

there is no conda package for scikit-monaco, so we need to

install this library using pip:

pip install scikit-monaco

9 numpy, sympy, scipy,

Matplotlib

conda install numpy sympy scipy matplotlib

(continued)

Appendix instAllAtion

679

Table A-1. (continued)

Chapter Used Libraries Installation

10 numpy, scipy,

Matplotlib, networkx

conda install numpy scipy matplotlib networkx

to visualize networkx graphs, we also need the Graphviz

library (see www.graphviz.org) and its python bindings in

the pygraphviz library:

conda install -c conda-forge pygraphviz

11 numpy, scipy,

Matplotlib, and FeniCs

conda install numpy scipy matplotlib

conda install -c conda-forge fenics mshr

12 numpy, pandas,

Matplotlib, seaborn

conda install numpy pandas matplotlib seaborn

13 numpy, scipy,

Matplotlib, seaborn

conda install numpy scipy matplotlib seaborn

14 numpy, pandas,

Matplotlib, seaborn,

patsy, statsmodels

conda install numpy pandas matplotlib seaborn

patsy statsmodels

15 numpy, Matplotlib,

seaborn, scikit-learn

conda install numpy matplotlib seaborn scikit-

learn

16 numpy, Matplotlib,

pyMC3

conda install numpy matplotlib pymc3

17 numpy, scipy,

Matplotlib

conda install numpy scipy matplotlib

18 numpy, pandas, h5py,

pytables, msgpack

conda install numpy pandas h5py pytables

msgpack- python

At the time of writing, the msgpack-python conda package

is not available for all platforms. When conda packages are not

available, the msgpack library needs to be installed manually,

and its python bindings can be installed using pip:

pip install msgpack-python

19 numpy, Matplotlib,

Cython, numba

conda install numpy matplotlib cython numba

Appendix instAllAtion

http://www.graphviz.org

680

A list of the packages and their exact versions that were used to run the code

included in this book is also available in the requirements.txt file that is available

for download together with the code listing. With this file we can directly create an

environment with all the required dependencies with a single command:

$ conda create -n py3.6 --file requirements.txt

Alternatively, we can re-create the py2.7 and py3.6 environments using the exports

py2.7-env.yml and py3.6-env.yml. These files are also available together with the

source code listings.

$ conda env create --file py2.7-env.yml

$ conda env create --file py3.6-env.yml

 Summary
In this appendix we have reviewed the installation of the various Python libraries used

in this book. The Python environment for scientific computing is not a monolithic

environment, but rather consists of an ecosystem of diverse libraries that are maintained

and developed by different groups of people, following different release cycles and

development paces. As a consequence, it can be difficult to collect all the necessary

pieces of a productive setup from scratch. In response to this problem, several solutions

addressing this situation have appeared, typically in the form of prepackaged Python

distributions. In the Python scientific computing community, Anaconda and Canopy

are two popular examples of such environments. Here we focused on the conda package

manager from the Anaconda Python distribution, which in addition to being a package

manager also allows to create and to manage virtual installation environments.

 Further Reading
If you are interested in creating Python source packages for your own projects, see,

for example, http://packaging.python.org/en/latest/index.html. In particular,

study the setuptools library and its documentation at http://pythonhosted.org/

setuptools. Using setuptools, we can create installable and distributable Python

source packages. Once a source package has been created using setuptools, it is usually

straightforward to create binary conda packages for distribution. For information

Appendix instAllAtion

http://packaging.python.org/en/latest/index.html
http://pythonhosted.org/setuptools
http://pythonhosted.org/setuptools

681

on creating and distributing conda packages, see http://conda.pydata.org/docs/

build_tutorials/pkgs.html. See also the conda-recipes repository at github.

com, which contains many examples of conda packages: http://github.com/conda/

conda-recipes. Finally, http://www.anaconda.org is a conda package hosting service

with many public channels (repositories) where custom-built conda packages can be

published and installed directly using the conda package manager. Many packages that

are not available in the standard Anaconda channel can be found on user-contributed

channels on anaconda.org. In particular, many packages are available in the conda-

forge channel, built from conda recipes available from conda-forge.org.

Appendix instAllAtion

http://conda.pydata.org/docs/build_tutorials/pkgs.html
http://conda.pydata.org/docs/build_tutorials/pkgs.html
http://github.com/conda/conda-recipes
http://github.com/conda/conda-recipes
http://www.anaconda.org

683
© Robert Johansson 2019
R. Johansson, Numerical Python, https://doi.org/10.1007/978-1-4842-4246-9

Index

A
Adams-Bashforth methods, 316
Adams-Moulton methods, 316
add_axes method, 143, 146
add_subplot function, 177
Analytical value, 287
Application programming

interfaces (APIs), 136
Arbitrary-precision integration, 285
Array creation, 50–51

constant values, 52–54
incremental sequence, 54
list, 52
logarithmic sequence, 54
matrix array, 57–58
uninitialized array, 56

Autoregressive (AR) model, 506
ARIMA, 510
ARMA, 506, 510
Durbin-Watson statistical test, 509
high-order, 508
sm.tsa.AR class, 508
temperature observations, 507, 509

Autoregressive integrated moving
average (ARIMA) model, 510

Autoregressive moving average (ARMA)
model, 506, 510

autoscale method, 157
AutoSubDomain instance, 400
ax.annotation, 154–155

Axes, 138, 144–146
legend method, 152–153
line properties, 147–151
plot types, 146–147
properties (see Properties, axis)
text annotations, 153

Axes layouts
GridSpec, 173
insets, 168–169
subplot2grid, 172
subplots, 170–171

Axes.text method, 154
Axis ticks, 158
ax.legend method, 140
ax.set_xlabel method, 140
ax.set_ylabel method, 140
ax.text, 154–155

B
Bayes’ theorem, 545–546
bbox_to_anchor argument, 152
BFGS method, 225–226, 228
Bisection method, 201–203, 217–218
Bivariate interpolation, 264
Blackman

function, 581, 583, 588
Boolean-valued array, 64
Bracketing methods, 217
brent function, 218

https://doi.org/10.1007/978-1-4842-4246-9

684

Broyden’s method, 207
Bunch object, 530
Butterworth filter, 596

C
Calculus, SymPy

series expansions, 123–125
sympy.diff function, 119–120
sympy.integrate function, 121–123
sympy.limit function, 125
sympy.Product class, 126
sympy.Sum class, 126

Chebyshev filter, 596
Chebyshev polynomials, 245, 251–252
Classic optimization problem, 219
Closed-form expression, 286
Code optimization

C/Fortran, 641
cProfile module, 643
Cython (see Cython)
importing modules, 644
Numba (see Numba)
NumPy and SciPy, 641

Colormap plots, 174–177
Column-major format, 49
Comma-separated values (CSV), 51

acronym, 604
array, 604
columns, 606
comment lines, 603
data, 604
data frames, 607–608
nonnumerical data, 605–606
np.loadtxt function, 605
np.savetxt, 604
NumPy array, 605
one/two-dimensional arrays, 608

pandas read_csv function, 607
plain-text file format, 603
Python lists of strings, 604
pandas read_csv function, 606
size and complexity of data, 639
specification, 639
Tab character, 604
vectors and matrices, 604

Complex data structure, 633
Complex-valued array, 48
Composite quadrature rules, 272–273
Computer algebra systems (CASs), 97
Computing environment, 5–6
Conda, 669

create command, 670
environment, update, 676
package, 669
re-create, 675

Confusion matrix, 532, 538
Constrained optimization

contour graph, 233–234
contour plot, 237–238
coordinate variables, 232
inequality constraints, 235, 237
linear programming, 238–239, 241
SymPy, 235

Constraints, 216, 234
Continuous real-valued functions, 373
Continuum Analytics’ Anaconda, 668
contourf function, 178
Convex problems, 215
cProfile module, 643
Cross-validation, 516
ctypes, 642
cvxopt library, 214, 239
cvxopt.solvers.lp solver, 241
cvxpot.matrix function, 239
cy_cumsum function, 658

Index

685

Cython
C math library functions, 664
code, 653
compilation pipeline, 655, 657
cpdef keyword, 661
cy_cumsum function, 658
cy_cumsum.pyx, 654
cy_julia_fractal function, 661, 662
cy_sum function, 657, 659
cy_sum.pyx, 653
%%cython IPython command, 656–657
cython cy_sum.pyx, 653
design, 652
distutils library, 654
explicit type declarations, 664
floating-point and integer arrays, 661
generation, C code, 658
libc module, 663
%load_ext cython command, 656
machine code, 643
math.h header file, 663
py_sum function, 660
Python projects, 643
Python with C-like properties, 652
pyximport library, 655
pyximport.install function, 655
setup function, 653
speedup, 654
usages, 652

Cythonimport, 644

D
Data input and output

arrays and tabular data, 601
categories and types, 601
CSV (see Comma-separated

values (CSV))

HDF5 (see Hierarchical Data
Format 5 (HDF5))

JSON (see JavaScript Object
Notation (JSON))

libraries, 602
options, 601
serialization, 636–638
storing structured and

unstructured, 601
dblquad function, 280
Default tick placement, 159, 161
Dense matrices, 335
Dense NumPy arrays, 373
DesicisionTreeClassifier class, 532
Digital signal processors (DSPs), 593
Dimensionality reduction, 517
Dirac delta functions, 292
Direction field graph

technique, 304–305, 307–308
DirichletBC class, 384, 390
Dirichlet boundary

conditions, 366, 372, 399–400, 402
Discrete cosine transform (DCT), 576
Discrete Fourier transform (DFT), 575
Discrete sine transform (DST), 576
doit method, 121, 126
dolfin.AutoSubDomain

instance, 400
dolfin.FunctionSpace class, 382
dolfin library, 381, 383–384
dolfin.MeshFunction instance, 400
dolfin.refine function, 397
dolfin.solve function, 385
dolfin.TrialFunction and dolfin.

TestFunction classes, 382
Dormand-Prince method, 315
Dots per inch (DPI), 144
dpi argument, 144

Index

686

3D plots, 177–180
dplquad function, 283
Durbin-Watson statistical test, 509

E
eigenvals method, 197
Eigenvalue equation, 196
Eigenvalue problems

SciPy, 198
SymPy, 197

eigenvects method, 197
Einstein summation, 94–95
ElasticNet class, 528
Elastic-net regularized regression, 529
Enthought’s Canopy, 668
Environment, manage, 671
Environment, switching, 670
Euler method, 313
evalf method, 117
expr_func function, 117
extent argument, 175
Extrapolation, 243

F
facecolor argument, 144
Fancy indexing, 63
Fast Fourier transform (FFT), 573, 575
Feature extraction, 517
FEniCS framework, PDEs

AutoSubDomain instance, 400
Dirichlet boundary

conditions, 392, 400, 402
dolfin.assemble function, 385
dolfin.AutoSubDomain instance, 400
dolfin.Constant object, 390
dolfin.Expression object, 383

dolfin.FunctionSpace class, 382
dolfin.MeshFunction, 400
dolfin.parameters dictionary, 381
dolfin.plot, 386
dolfin.RectangleMesh, 382
dolfin.refine function, 397, 399
dolfin.solve, 401
dolfin.TrialFunction and dolfin.

TestFunction classes, 382
domain and subdomain arguments, 401
Expression class, 384
external visualization software, 387
function object, 385–387
functions and classes

dolfin library, 379–381
mshr library, 381

libraries and tools, 378
Matplotlib, 387
Matplotlib’s pcolor function, 391
mesh and boundary_parts objects, 401
mesh function, 386
mesh generation, 378
mesh object generation,

mshr library, 393
mshr.Circle, 392
Neumann boundary

conditions, 393, 399
np.array function, 387
on_boundary, 384
Python interface, 378
RectangleMesh function, 381
refined_mesh, 398–399
steady-state heat equation, 381, 388
temperature distribution, 396
trial and test functions, 394
triplot and tripcolor, 389
ufl_element method, 384
uniformly fine-structured mesh, 401–402

Index

687

u_sol.vector() and mesh.
coordinates(), 396

vector method, 385
FEniCS libraries, 364, 677
fftpack module, 576
figsize argument, 144
Figure.add_subplot method, 173
Figure object, 143–145
Figure, techniques, 144–145
Filter design, 593
Finite-difference formulas, 366, 367
Finite-difference methods (FDMs), 363

algebraic equations, 367
backward difference formula, 366
boundary conditions, 368, 371
dense NumPy arrays, 372
eye and kron functions, 370
eye function from NumPy, 368
finite-difference formulas, 366, 369
linear equation solver from SciPy, 368
PDE problems, 373
reshape method, 371
second-order ODE boundary value

problem, 369
solving ODE boundary value

problems, 373
sparse matrices, 370
sparse matrix data structures, 372
two-dimensional heat equation,

Dirichlet boundary conditions, 372
Finite-element methods (FEMs), 363

basis functions, 375–377
continuous function, 376
FiPy, SfePy, and FEniCS libraries, 377
infinite-dimensional function

spaces, 374
mesh generation, 376
Poisson equation, 375

solving PDE problems, 376
standard linear algebra methods, 375
steady-state heat equation, 374
strong form, 374
test functions, 374, 375

Finite impulse response (FIR) filter, 593–596
Finite-volume method (FVM) software, 377
FiPy framework, 377
FiPy library, 364
fixed_quad functions, 274, 276
Float-valued array, 48
format argument, 144
Fourier transform F(v), 268, 575, 578, 580
free_symbols property, 107
Frequency-domain filter, 580–581
Function object, 388

G
Gaussian_kde function, 468
Gaussian quadrature, 273–274
Gaussian window function, 581
Generalized least squares (GLS), 474
Generalized linear model, 474
Glue language, 2
Golden section search method, 218
Graph creation using Matplotlib, 139–140
Graphical user interface, 136
Graphs and networks

adjacency matrix, 352
edge data, 354–355
EdgeView, 354
NetworkX library, 353
NodeView, 354
objects and methods, 353
Tokyo Metro stations

adjacency matrix, 359–360
Boolean attribute, 356

Index

688

Cuthill-McKee ordering, 359
degree method, 357–358
graphviz_layout function, 356
JSON file, 355
nx.draw_network_edges, 356
nx.draw_networkx_labels, 356
optimal traveling route, 358
path and traveling time, 359
shortest path and traveling

time, 358, 359
transfer edges and on-train

edges, 356
travel_times and transfers, 355
weight attributes, 358

grid method, 161
Grid lines, results, 161–162
GridSpec layout manager, 168

H
h5py library

API, 610–611
datasets, 618

Boolean indexing, 618–619
create_dataset method, 619
creation, 615
empty array, 620
experiment1/simulation/data1, 621
group experiment2/

measurement, 617
fancy indexing, 618
fillvalue, 621
float64, 617
meas1 dataset, 618
NumPy arrays, 616, 619
object, 616
retrieve, 616

value, 617
visititems method, 616

files, 612
groups, 612–615

Hamming function, 581
Hann function, 581
Hermite polynomials, 247
Hessian matrix, 216, 217
Hierarchical Data Format 5 (HDF5)

attributes, 622–623
h5py library (see h5py library)
high-performance parallel I/O, 608
implementation, 609
libraries, 609
long-term storage, 609
Pandas HDFStore, 629–631
PyTables library, 623, 625–628
storing numerical data, 608
structure, 609

Higher-order method, 279
Higher-order quadrature rules, 272

I
imshow method, 175
Indexing and slicing, 58–59

fancy and boolean, 63–65
multidimensional array, 60–61
one-dimensional array, 58–60
resize and reshape, 66–70
views, 62–63
visual summary, 65

Infinite-dimensional function spaces, 374
Infinite impulse response (IIR) filter, 593
Installation instruction, 678
Integral equations, 267
Integral identities, 375
Integral transforms, 289–292

Graphs and networks (cont.)

Index

689

Integrand function, 275
Integrand tabulated values, 278–280
Interactive modes, 141–142
Interpolant, 244
interpolate.griddata function, 261
Interpolation vs. curve fitting, 243
Interpretation of an integral, 269
Interpreter, 7–8
Inverse Laplace transform, 292
Inverse transform, 289
IPython command, 283–284
IPython console, 8–9, 142

autocompletion and object
introspection, 11

documentation, 11–12
input and output caching, 9–10
interaction, 12

IPython environment, 137
IPython extension, 13

debugger, 15–16
navigation, 13
resetting, 17
running scripts, 14–15
text editor, 19
timing and profiling code, 17–19

IPython, install, 667
IPython, interact function, 33
Iris dataset, 530, 539
is_real attribute, 100

J
Jacobian matrix, 207
JavaScript Object Notation (JSON)

file data.json, 634
format, 631
json.dumps function, 632
json.loads, 632, 635

lines of, 634
lists and dictionaries, 631, 633
nested structure, 636
Python code, 632
Python data structure, 634
serialization, 636–638
Tokyo Metro network, 631

JIT-compiled code, 651
jit_cumsum function, 647
jit_sum function, 647
Joint probability distribution, 546
Julia fractal, 647–649
Jupyter

cell types, 25–26
editing cells, 26–27
framework, 20
HTML code, 31
Lab, 24–25
LaTeX formula, 32
markdown cells, 28–30
output display, 30–32

Jupyter Notebook, 21–24, 27, 142
Jupyter QtConsole, 20–21

K
Kaiser window function, 581
Kernel-density estimation (KDE), 467–

469, 550–551, 553, 561, 563, 569
k-fold cross-validation, 516
K-means method, 536
knot, 255

L
la.eig function, 198
la.eigvals function, 198
Lagrange multipliers, 234–235

Index

690

Lagrangian function, 234
la.lstsq method, 193
la.lu function, 189
lambda function, 275, 282
Laplace transformations, 268, 290,

291, 309–312
la.solve function, 189
LASSO regression, 524–526
LASSO vs. regularized regression, 524, 528
LaTeX

code, 154
expressions, 154
markup, 154

Layout managers, 146
L-BFGS-B method, 232
Least square solution, 193, 195
legend method, 139
Legendre polynomials, 245
Levenberg-Marquardt method, 230
libc module, 663
Likelihood function, 546
Linear algebra

functions/methods, SymPy
matrices, 133

matrix multiplication, 131
methods, 367
sympy.Matrix class, 130–131

Linear equation system
matrix form, 185
rectangular systems (see Rectangular

system)
square system (see Square system)

Linear function, 198
Linear programming problems, 239
LinearRegression class, 520, 522
Linear regression, statsmodels, 485

binary variables, 496
contour graphs, 492

datasets, 494–495
explanatory variables, 487
graphical methods and

statistical tests, 487
noisy observations, 486, 492–493
normal distributed errors, 488
null hypothesis, 489
NumPy array, 492
ordinary least square (ols)

method, 487, 493
params attribute, 492
QQ-plot, 489–491
response variables, 492
robust linear model (rlm), 493
R-squared value, 488, 491
standard errors, 488
SciPy stats module, 489
workflow, 485–486

Line integrals, 288
Line properties, results, 148–150
Line search parameter, 221
Lines of code, 140
loc argument, 152
Logistic regression

DataFrame instance, 498
fitted model parameters, 498
get_margeff, 499
independent variables, 497
info method, 496
Iris flowers, 496
maximum likelihood optimization, 498
Patsy formulas, 497
period characters, 497
Petal_Width and Petal_

length, 498, 500–501
predict method, 500
Species column, 497
versicolor and virginica, 497, 500–501

Index

691

LUdecomposition method, 189
LUsolve method, 132, 189

M
Machine learning

algorithm, 515
application, 515
classification, 529, 531
clustering, 535
method, 514
regression, 518

Major vs. minor ticks, 159
make_axes method, 146
Manipulating expression, SymPy

black-box simplification, 111
simplifying expressions, 112
substitutions, 115–116
sympy.expand function, 112–113

Marginal probability
distribution, 546

Markov chain Monte
Carlo (MCMC), 544, 550–551

Mathematical expressions
args attribute, 110
arithmetic operators, 109
expression tree, 109

Mathematical optimization, 213, 215
Mathematical symbols

assumption keyword arguments and
attributes, 101

Float, 105
integer class, 104
lambda functions, 108
rational number, 105–106
sine function, 108
Symbol class, 99
SymPy symbols, 106

Matplotlib, 387, 525
definition, 135–136
function, 153
libraries, 135–137, 268, 644
triangulation functions, 389
triplot and tripcolor

functions, 388
matplotlib.pyplot module, 136, 141
Matrix methods, 187
Matrix and vector operation, 88–94
mc.forestplot function, 556–557
mc.glm module, 565–566
mcquad function, 284
mc.traceplot function, 550, 561, 565, 568
Mesh object, 388
MeshFunction, 400
meshgrid function, 175
Meshgrid array, 55
Metropolis-Hastings step

method, 549
Midpoint rule, 270
Miniconda, 668
Monte Carlo integration, 285
mpl.gridspec module, 173
mpl.is_interactive function, 142
mpl.rcParams dictionary, 153
mpl.ticker module, 159, 162
mpl_toolkits.mplot3d module, 177
mpmath expressions, 287
mpmath library, 286
mpmath.quad function, 286
Multiple-precision library, 268
Multiprecision float (mpf), 288
Multivariate interpolation,

258–259, 261–264
argument, 261
interp2d function, 259
Python function, 259

Index

692

Multivariate optimization
Newton’s method, 222, 226
objective function, 224, 228–229
optimize.minimize function, 229
SciPy, 227
slice objects, 227

N
nbconvert application

HTML, 34–35
PDF, 35–36
Python, 36

ncols argument, 146, 152
ndarray class, 45
Neumann boundary

conditions, 366, 393, 399
Newton-Cotes quadrature

rule, 269, 273–274, 277
Newton’s method, 203–205, 217, 314
Noncasual filter, 597
Noninteractive modes, 141–142
Nonlinear equations system

multivariate, 207
optimize.fsolve function, 208
SciPy, 208
SymPy, 208
visualization, 210–211

Nonlinear function, 198
Nonlinear least square problems

model function, 231
optimize.leastsq function, 230

Nonparametric methods
distribution function, 466
KDE, 467, 469

Nontrivial Neumann boundary
conditions, 402

np.fill function, 53

np.polynomial module, 246
nquad functions, 280, 283
Numba

algorithm, 647
arrays, 664
assert, 645
benchmarking, 646
computation, 645
implementation, 648
import, 644
JIT-compiled function, 649
jit_cumsum function, 647
jit_Heaviside function, 651
jit_julia_fractal function, 648
jit_sum function, 647
Julia set, 652
LLVM compiler suite, 642
nopython=True argument, 648
numba.vectorize, 650
py_cumsum function, 646
py_Heaviside function, 650
py_julia_fractal function, 648
py_sum function, 645
scientific computing

libraries, 642
NumPy sum function, 646
target code, 644

@numba.jit decorator, 644
Numerical integration

methods, 269
SciPy, 274

Numerical methods, 267
NumPy arrays, 43–44, 188, 239, 387

data types, 46–48
memory segment, 49–50
real and imaginary parts, 48–49

importing module, 44
NumPy functions, 187, 445

Index

693

NumPy library, 137, 604
NumPy-like array indexing, 618
NumPy sum function, 646

O
Objective function, 216
Odeint function, 318
One-dimensional interpolation, 244
Optimal value, 213
Optimization problems, 213

convex function, 216
linear, 215
minimization, 214
multivariate, 215, 217
nonconvex function, 216
nonlinear, 215–216
univariate, 215

optimize module, 214
optimize.bisect function, 206
optimize.brenth function, 206
optimize.brute function, 227
optimize.fminbound, 219
optimize.fmin_cobyla function, 238
optimize.fmin_ncg function, 222
optimize.fsolve function, 208–209
optimize.leastsq function, 231
optimize.minimize function, 236–237
optimize.minimize_scalar

function, 219–220
optimize.newton function, 206
optimize.slsqp function, 235
Ordinary differential equations (ODEs)

direction field graph, 304–305, 307–308
first-order, 296–297
importing modules, 296
numerical methods, 313–317
problems, 298

spicy integrate module (see Spicy)
Sympy, 298–304

Ordinary least squares (OLS), 474

P
Pandas data frame, 558
Pandas HDFStore, 629–631
Pandas library, 443

DataFrame object
advantages, 414
apply method, 416
ascending/descending order, 419
Boolean values, 419
city count and total

population, 421–422
columns, 411
dataset, 411, 415
data types, 413
df.head(n), 415
drop method, 421
groupby method, 421
head and tail methods, 415
hierarchical index, 418
higher-dimensional arrays, 410
index and columns attributes, 412
info method, 415
loc indexer, 412–413
methods (mean, std, median, min

and max), 413
NumericPopulation, 416–417, 420
population of city, 411, 420
read_csv function, 414–415
set_index method, 417
sort_index method, 417–418
sort_values method, 419
State column, 420
sum method, 420

Index

694

tabular data structure, 411
value_counts method, 420

data structures, 405, 407
importing modules, 406
Matplotlib, 406
NumPy, 405
Seaborn, 406
Series object

construction, 407
describe method, 409
descriptive statistics, 409
index and values, 408
integer-indexed arrays, 408
name attribute, 408
plot method, 410
populations of cities, 408

statmodels, patsy, and scikit-learn, 405
time series (see Time series)

Partial derivatives, 363
Partial differential equations (PDEs), 295

boundary conditions, 366
FDMs (see Finite-difference

methods (FDMs))
FEMs (see Finite-element

methods (FEMs))
FEniCS (see FEniCS framework,

solving PDEs)
importing modules, 364–365
independent variables, 365
libraries and frameworks, 364
multivariate function, 365
NumPy and Matplotlib libraries, 364
second-order derivatives, 365

Patsy library, 472
+ and-operators, 482
arbitrary Python functions, 483
categorical variables, 483–485

computational frameworks, 476
data arrays, 476
design_info attribute, 481
DesignMatrix, 475–477, 482
dictionary-like object, 479
explanatory variable, 481
higher-order expansions, 482
input data array, 483
linear models, 474, 476
log-linear, 475
nonlinear model, 475
nonnumerical values, 484
np.linalg.lstsq function, 478
numerical variable, 484
NumPy arrays, 479
NumPy vstack function, 475
patsy.dmatrices function, 478
syntax, 476, 479–481

PETSc and Trilinos frameworks, 378
Piecewise linear function, 376
Plot function, 161
Plot method, 146–148
plot_surface function, 178
plt.colorbar function, 176
plt.draw function, 142
plt.figure function, 143, 144
plt.figure method, 146
plt.ion function, 142
plt.show function, 142–143
plt.subplots_adjust function, 170–171
plt.subplots function, 139, 146, 168, 170
Poisson equation, 374
Poisson model

confidence interval, 504
conf_int method, 504
fit method, 503
generalized linear model, 502
number of discoveries per year, 502

Pandas library (cont.)

Index

695

params attribute, 504
probability mass function and number

of discoveries per year, 504–505
sm.datasets.get_rdataset, 502
smf.poisson class, 503
SciPy stats library, 504
summary method, 503

Polynomial basis functions, 271
Polynomial interpolation, 245–246,

248–249, 251, 253–254
Power spectrum, 575
Predictor-corrector methods, 316
Principal component analysis (PCA), 517
Prior distribution, 546
Probabilistic programming, 544
Probability density function (PDF), 550
Probability distribution

functions (PDF), 456
Probability theory, 444
Properties, axis

axis range, 157–158
grids, 158
labels and titles, 156–157
log-scale plots, 164
spines, 166–167
twin axes, 165–166

py_cumsum function, 646
py_julia_fractal function, 648
py_sum function, 645
PyTables library, 610

creation, 624
features, 624, 627
flush method, 626
objects, 623
PlayerStat object, 628
player statistics dataset, 624
read_csv function, 623
regular homogenous arrays, 628

root node, 624
row accessor class, 625
structure, 627

Python, components and layers, 4
Python ecosystem, 669
Python module, 137
Python Package Index, 667
Python script, 142

Q
Qt4 backend, 141
Qtconsole, 142
quadrature function, 267, 274–277, 287
Quadrature rule, 269–270, 273
Quasi-Newton methods, 225

R
RandomForestClassifier, 533
Random numbers

Boolean values, 449
distribution functions, 450–451
Gaussian curve, 448
generation, 446
multidimensional array, 448
np.random.rand, 447
NumPy arrays, 447
NumPy random module, 449
RandomState class, 450
rand, randn and randint

functions, 448, 449
seed of, 450
single, 447

Random variables and distributions
characteristics, 452
classes, 453
discrete and continuous, 452–453
discrete Poisson distribution, 455–456

Index

696

drawing method, 455
fit method, 459
interval method, 454
mean, median, std, and

var methods, 453
moment method, 454
original and recreated

probability, 460
PDF, 456
plot_dist_samples, 457
properties, 457
sample space, 451
stats method, 454
SciPy’s stats module, 457
visualize 2000 samples, 458–459

real=True keyword, 100
RectangleMesh function, 381
Rectangular system

data fitting, 195–196
overdetermined system, 193
symbolic solution, 193

Regularized regression, 521, 526
Ridge regression, 521, 522, 529
Ridge-regularized regression, 523
romb function, 279
Row-major format, 49
r-square score, 520
Runge-Kutta-Fehlberg

method, 315
Runge-Kutta method, 314
Runge’s function, 253–255, 257

S
savefig method, 144
scikit-learn library, 514, 524
Scikit-monaco, 268, 284

SciPy, 184–185
import modules, 244
integrate module, 278
integrate.odeint, 322–323, 325
integration functions, 280
interfaces, 317
Jacobian matrix, 327
lambdify, 327–332
Lotka-Volterra equation, 321
Odeint function, 318, 320
optimization functions, 236

scipy.linalg module, 184
scipy.optimize module, 184, 232
scipy.special module, 275
Seaborn statistical graphics library, 468
Seaborn graphics library

boxplot and violinplot functions, 437
categorical data, 437
darkgrid, 434
heatmap, 438–439
histogram and kernel-density plots, 436
indoor and outdoor temperature time

series, 434
kdeplot and distplot, 435
kdeplot and jointplot, 436
Matplotlib, 434
sns.set function, 434
statistical visualization tools, 439
statistics and data analysis, 434
time-series plot, 435
two-dimensional kernel-density

estimate contours, 437
violin plot, outdoor temperature, 438

Seaborn library, 406
Sequential least square programming

(SLSQP), 235
Serialization, 636–638
set_minor_locator method, 159

Random variables and distributions (cont.)

Index

697

set_powerlimits method, 162
set_scientific method, 162
set_title method, 157
set_xlabel method, 139, 156
set_ylabel method, 139, 156
SfePy library, 364, 377
sharex argument, 146
sharey argument, 146
Signal filters, 590

convolution, 590–592
FIR and IIR, 593

Signal processing
computational methods, 573
spectral analysis, 574

Simplex algorithm, 239
simps functions, 278–279
Simpson’s quadrature rule, 272
Single-variable quadrature function, 280
sklearn.datasets module, 518
sklearn.ensemble module, 533
sklearn library, 514
sklearn.linear_model module, 522–523
sklearn.model_selection module, 518
sklearn.neighbors module, 533
sklearn.tree module, 532
skmonaco library, 284
skmonaco.mcquad function, 284
solve_least_squares method, 193
Sparse matrices, SciPy

applications, 335
attributes, 338
column indices, 341
comparison of methods, 337
computations, 340
construction, updating, and arithmetic

operations, 340
COO format, 339

coordinate list format, 338
CSR format, 340–342
data structure, 338, 372
dense matrices, 335
eigenvalues, 349–352
formats, 339–340
functions, 342–345
importing modules, 336
indexing syntax, 339
linear algebra operations, 335, 345
linear equation systems, 345–349
mathematical functions, 339
NumPy ndarray data structure, 335
nonzero elements, 336, 341
nonzero values, 340
PyTrilinos and PETSc packages, 335
sp.coo_matrix, 338–339
zero-valued elements, 339

Spectral analysis, 585–587, 589
Spectrogram, 586
Spline interpolation, 255–258, 260
Spyder

code editor, 38–39
consoles, 40
layout, 38
object inspector, 40
panes, 37

Square system
condition number, 186–187
LU factorization, 189
matrix norm relation, 186
numerical solution, 191–192
NumPy/SciPy, 188, 190
rank deficiency, 186
symbolic solution, 191–192
SymPy, 188, 190

Stationary point, 216

Index

698

Statistics
applications, 469
computer-aided, 443
hypothesis testing, 460–466
import modules, 444
linear regression, 558–559, 562, 564
nonparametric methods (see

Nonparametric Methods)
NumPy and SciPy libraries, 443
random numbers, 446–451
random variables (see Random

variables and distributions)
review of, 444–446
sample, 553–556

SciPy’s stats module, 452–453, 457
statsmodels library, 519

classes and functions, 471
generalized linear model, 474
GLS and WLS, 474
importing modules, 472
linear regression (see Linear

regression, statsmodels)
mathematical model, 473
multiple linear regression, 474
observations, 473
parameters, 471, 473
Patsy library (see Patsy library)
random variables, 473
response variables, 474
SciPy, 471
simple linear regression, 474

Steady-state heat equation, 374, 383, 388
Steepest descent method, 221
Subplot grid manager, 174
subplot_kw argument, 178
Sum of squared errors (SSEs), 519, 526
Supervised learning, 515

Support vector classifier (SVC), 533
Support vector machines (SVM), 529
SVG graphics, 142
Symbolic computing, 97
Symbolic expression, 272
SymPy, 268, 271

equation solving, 127–129
importing, 98
symbolic computing, 97
symbols (see Mathematical symbols)

sympy.apart function, 115
sympy.cancel function, 115
sympy.collect function, 114
sympy.Derivative class, 120–121
sympy.diff function, 222
sympy.factor function, 114
sympy.Float, 103, 105
sympy.fourier_transform, 290
sympy.Function class, 106
sympy.init_printing function, 98
sympy.Integer class, 103
sympy.integrate function, 285
sympy.Lambda functions, 108, 271
sympy.lambdify function, 117–118, 223
sympy.laplace_transform, 290
SymPy library, 137
sympy.N function, 117
sympy.powsimp function, 112
sympy.Rational class, 105
sympy.series function, 123
sympy.simplify function, 111
sympy.solve function, 128–129
sympy.sqrt function, 101
sympy.symbols function, 102
sympy.sympify function, 104
sympy.together function, 115
sympy.trigsimp function, 112

Index

699

T
Taylor series, 151
Test function, 374
Text formatting and annotations, 153–155
Tick labels, 163
Time series, 422

apply function, 429
average monthly temperatures, 431
average temperature, 429
Boolean indexing, 428
concat function, 433
daily temperature, outdoors and

indoors, 432–433
data files, read_csv, 425
DataFrame objects, 425
DataFrame.plot method, 427
date and time strings, 428
date_range function, 422–423
datetime class, 429
DatetimeIndex and

PeriodIndex, 422, 423
DatetimeIndex instance, 428
Europe/Stockholm time zone, 426
indoor and outdoor temperature, 427
info method, 427
join method, 430
mean function, 430
NaN value, 433, 434
PeriodIndex, 424–425
periods, 422–423
plot method, 428–429
resample method, 431–432
sampling frequency, 433
statsmodels

AR model (see Autoregressive (AR)
model)

autocorrelations, 506–509

Durbin-Watson statistical
test, 509

independent variables, 506
observed and predicted

temperatures, 509–510
outdoor temperature

measurements, 507
regular regression, 506

temperature measurements, 425
Timestamp and datetime, 423–424
to_period and groupby

methods, 430
UNIX timestamps, 426–427

tplquad functions, 280, 282
Trade-off, programming language, 2
Trapezoid rule, 270
trapz functions, 278–279
Trial function, 374
Triangulation object, 388
twinx method, 165
Two-dimensional integrand, 281

U
Uniform Dirichlet-type boundary

condition, 384
Univariate function, 147, 174

nonlinear functions, 200–201
root-finding methods, 201
SciPy optimize module, 206
SymPy, 199
sympy.solve function, 199
trigonometric equations, 199

Univariate optimization
Newton’s method, 218
SymPy, 219

Unsupervised learning, 515
User interface (UI), 21

Index

700

V
Vandermonde matrix, 245, 250–252
Vectorized expression, 70–72

aggregate function, 79–81
arithmetic operation, 72–76
array operation, 87–88
boolean arrays and conditional

expression, 82–85
elementwise function, 76–79
set operations, 85–86

Versions, 6–7
view_init method, 178
Visualization, approaches, 135, 136

W, X
Wave file, 574, 585, 598
Weighted least squares (WLS), 474
Window function, 581–585
Wrapper function, 228

Y
YAML format, 672, 676

Z
Zeroth-order Bessel function, 275

Index

	Table of Contents
	About the Author
	About the Technical Reviewers
	Introduction
	Chapter 1: Introduction to Computing with Python
	Environments for Computing with Python
	Python
	Interpreter

	IPython Console
	Input and Output Caching
	Autocompletion and Object Introspection
	Documentation
	Interaction with the System Shell
	IPython Extensions
	File System Navigation
	Running Scripts from the IPython Console
	Debugger
	Reset
	Timing and Profiling Code
	Interpreter and Text Editor as Development Environment

	Jupyter
	The Jupyter QtConsole
	The Jupyter Notebook
	Jupyter Lab
	Cell Types
	Editing Cells
	Markdown Cells
	Rich Output Display
	nbconvert
	HTML
	PDF
	Python

	Spyder: An Integrated Development Environment
	Source Code Editor
	Consoles in Spyder
	Object Inspector

	Summary
	Further Reading
	References

	Chapter 2: Vectors, Matrices, and Multidimensional Arrays
	Importing the Modules
	The NumPy Array Object
	Data Types
	Real and Imaginary Parts

	Order of Array Data in Memory

	Creating Arrays
	Arrays Created from Lists and Other Array-Like Objects
	Arrays Filled with Constant Values
	Arrays Filled with Incremental Sequences
	Arrays Filled with Logarithmic Sequences
	Meshgrid Arrays
	Creating Uninitialized Arrays
	Creating Arrays with Properties of Other Arrays
	Creating Matrix Arrays

	Indexing and Slicing
	One-Dimensional Arrays
	Multidimensional Arrays
	Views
	Fancy Indexing and Boolean-Valued Indexing

	Reshaping and Resizing
	Vectorized Expressions
	Arithmetic Operations
	Elementwise Functions
	Aggregate Functions
	Boolean Arrays and Conditional Expressions
	Set Operations
	Operations on Arrays

	Matrix and Vector Operations
	Summary
	Further Reading
	References

	Chapter 3: Symbolic Computing
	Importing SymPy
	Symbols
	Numbers
	Integer
	Float
	Rational
	Constants and Special Symbols
	Functions

	Expressions
	Manipulating Expressions
	Simplification
	Expand
	Factor, Collect, and Combine
	Apart, Together, and Cancel
	Substitutions

	Numerical Evaluation
	Calculus
	Derivatives
	Integrals
	Series
	Limits
	Sums and Products

	Equations
	Linear Algebra
	Summary
	Further Reading
	Reference

	Chapter 4: Plotting and Visualization
	Importing Modules
	Getting Started
	Interactive and Noninteractive Modes

	Figure
	Axes
	Plot Types
	Line Properties
	Legends
	Text Formatting and Annotations
	Axis Properties
	Axis Labels and Titles
	Axis Range
	Axis Ticks, Tick Labels, and Grids
	Log Plots
	Twin Axes
	Spines

	Advanced Axes Layouts
	Insets
	Subplots
	Subplot2grid
	GridSpec

	Colormap Plots
	3D Plots
	Summary
	Further Reading
	References

	Chapter 5: Equation Solving
	Importing Modules
	Linear Equation Systems
	Square Systems
	Rectangular Systems

	Eigenvalue Problems
	Nonlinear Equations
	Univariate Equations
	Systems of Nonlinear Equations

	Summary
	Further Reading
	References

	Chapter 6: Optimization
	Importing Modules
	Classification of Optimization Problems
	Univariate Optimization
	Unconstrained Multivariate Optimization
	Nonlinear Least Square Problems
	Constrained Optimization
	Linear Programming

	Summary
	Further Reading
	References

	Chapter 7: Interpolation
	Importing Modules
	Interpolation
	Polynomials
	Polynomial Interpolation
	Spline Interpolation
	Multivariate Interpolation
	Summary
	Further Reading
	References

	Chapter 8: Integration
	Importing Modules
	Numerical Integration Methods
	Numerical Integration with SciPy
	Tabulated Integrand

	Multiple Integration
	Symbolic and Arbitrary-Precision Integration
	Line Integrals

	Integral Transforms
	Summary
	Further Reading
	References

	Chapter 9: Ordinary Differential Equations
	Importing Modules
	Ordinary Differential Equations
	Symbolic Solution to ODEs
	Direction Fields
	Solving ODEs Using Laplace Transformations

	Numerical Methods for Solving ODEs
	Numerical Integration of ODEs Using SciPy
	Summary
	Further Reading
	References

	Chapter 10: Sparse Matrices and Graphs
	Importing Modules
	Sparse Matrices in SciPy
	Functions for Creating Sparse Matrices
	Sparse Linear Algebra Functions
	Linear Equation Systems
	Eigenvalue Problems

	Graphs and Networks

	Summary
	Further Reading
	References

	Chapter 11: Partial Differential Equations
	Importing Modules
	Partial Differential Equations
	Finite-Difference Methods
	Finite-Element Methods
	Survey of FEM Libraries

	Solving PDEs Using FEniCS
	Summary
	Further Reading
	References

	Chapter 12: Data Processing and Analysis
	Importing Modules
	Introduction to Pandas
	Series
	DataFrame
	Time Series

	The Seaborn Graphics Library
	Summary
	Further Reading
	References

	Chapter 13: Statistics
	Importing Modules
	Review of Statistics and Probability
	Random Numbers
	Random Variables and Distributions
	Hypothesis Testing
	Nonparametric Methods
	Summary
	Further Reading
	References

	Chapter 14: Statistical Modeling
	Importing Modules
	Introduction to Statistical Modeling
	Defining Statistical Models with Patsy
	Linear Regression
	Example Datasets

	Discrete Regression
	Logistic Regression
	Poisson Model

	Time Series
	Summary
	Further Reading
	References

	Chapter 15: Machine Learning
	Importing Modules
	Brief Review of Machine Learning
	Regression
	Classification
	Clustering
	Summary
	Further Reading
	References

	Chapter 16: Bayesian Statistics
	Importing Modules
	Introduction to Bayesian Statistics
	Model Definition
	Sampling Posterior Distributions
	Linear Regression

	Summary
	Further Reading
	References

	Chapter 17: Signal Processing
	Importing Modules
	Spectral Analysis
	Fourier Transforms
	Frequency-Domain Filter

	Windowing
	Spectrogram

	Signal Filters
	Convolution Filters
	FIR and IIR Filters

	Summary
	Further Reading
	References

	Chapter 18: Data Input and Output
	Importing Modules
	Comma-Separated Values
	HDF5
	h5py
	Files
	Groups
	Datasets
	Attributes

	PyTables
	Pandas HDFStore

	JSON
	Serialization
	Summary
	Further Reading
	Reference

	Chapter 19: Code Optimization
	Importing Modules
	Numba
	Cython
	Summary
	Further Reading
	References

	Appendix: Installation
	Miniconda and Conda
	A Complete Environment
	Summary
	Further Reading

	Index

