
ODP.NET Developer's Guide

Oracle Database 10g Development with Visual
Studio 2005 and the Oracle Data Provider for .NET

A practical guide for developers working with the Oracle
Data Provider for .NET and the Oracle Developer Tools
for Visual Studio 2005

Jagadish Chatarji Pulakhandam
Sunitha Paruchuri

 BIRMINGHAM - MUMBAI

ODP.NET Developer's Guide
Oracle Database 10g Development with Visual Studio 2005 and the
Oracle Data Provider for .NET

Copyright © 2007 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2007

Production Reference: 1150607

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847191-96-0

www.packtpub.com

Cover Image by www.visionwt.com

Credits

Authors
Jagadish Chatarji Pulakhandam
Sunitha Paruchuri

Reviewer
Steven M. Swafford

Development Editor
Douglas Paterson

Assistant Development Editor

Mithil Kulkarni

Technical Editor
Divya Menon

Editorial Manager
Dipali Chittar

Project Manager
Patricia Weir

Project Coordinator
Abhijeet Deobhakta

Indexer
Bhushan Pangaonkar

Proofreader
Chris Smith

Production Coordinator
Manjiri Nadkarni

Cover Designer
Manjiri Nadkarni

About the Authors

Jagadish Chatarji Pulakhandam currently works as a .NET Architect and is
responsible for analyzing/designing enterprise-level .NET applications. He has
worked with Oracle since database version 7.1 and has been in the IT field for about
12 years. Apart from Oracle and .NET, he has a good knowledge of developing
corporate software and web applications, designing and implementing databases,
designing and implementing data warehouses, and working with enterprise
reporting software. During his free time, he contributes technical articles to OTN
(Oracle Technology Network) and to the world of developer communities.

I dedicate this book to my mother Dhana Laxmi. Without her patience,
support and encouragement, I would never be to this stage. A special
thanks to my uncle Ch. Jagadish Kumar, who is the basis for change
in my life. And several thanks to all of my relatives and friends who
encouraged and supported me at various milestones in my life.

A final thanks to every member of this book project from PACKT
Publishing and a special thanks to Douglas Paterson, who offered me
the first chance of writing this first book in my life.

Sunitha Paruchuri has been programming with Microsoft tools and Oracle
since 1997. She has developed numerous desktop, web, mobile, and distributed
applications using Microsoft .NET and has good experience with other Microsoft
products like Microsoft SQL Server, Microsoft Sharepoint Portal Server, etc.

I dedicate this book to my parents Harnadha babu and Aruna Kumari
and special thanks to my sister (Bhagya Laxmi), all of my relatives
and friends who framed, encouraged and supported me in developing
my career.

 About the Reviewer

Steven M. Swafford began developing software in 1995 while serving in the
United States Air Force (USAF). Upon leaving the USAF he continued developing
leading edge solutions in support of the America's war fighters as part of the
original USAF enterprise portal development team. His roots are now in central
Alabama where he works as a senior software engineer developing Java- and
.NET-based applications and web services. Steven credits his wife Su Ok and
daughter Sarah for supporting and inspiring his ongoing passion for software
development and the resultant challenges of life near the bleeding edge. Steven
was honored by the Microsoft Corporation in 2006 as a Microsoft ASP.NET Visual
Developer MVP. He would like to thank Tim Stewart and Edward Habal who
were his professional mentors and to this day remain close friends. Steven's personal
website is located at http://www.radicaldevelopment.net and his blog is located
at http://aspadvice.com/blogs/sswafford/.

Table of Contents
Preface� 1
Chapter 1: Introduction to ODP.NET� 5

Introduction to ODP.NET� 5
Why Use ODP.NET?� 7

Oracle Database Access from .NET Applications� 7
What Do We Require to Work with ODP.NET?� 9

Introduction to Oracle Database Extensions for .NET� 10
Oracle Database Extensions for .NET � 10

How does .NET Work within Oracle Database?� 10
Processing of .NET Stored Procedure with Oracle� 11

Introduction to Oracle Developer Tools for Visual Studio� 11
Summary� 13

Chapter 2: Connecting to Oracle� 15
Provider-Independent Model in ADO.NET 2.0� 15

Listing All Installed .NET Data Providers� 16
Enumerating all Oracle Data Sources Available� 17

Connecting to Oracle Databases from .NET� 19
Connecting Using .NET Data Provider Factory Classes� 20
Connecting Using .NET Data Provider for OLEDB� 22
Connecting Using .NET Data Provider for ODBC� 23
Connecting using Microsoft's .NET Data Provider for Oracle � 24
Connecting Using Oracle Data Provider for .NET (ODP.NET) � 25
Connecting with Connection Pooling� 27
Connecting with System-Level Privileges or DBA Privileges� 28
Dynamic Connecting String Using OracleConnectionStringBuilder and app.config�29
Embedding a "tnsnames.ora" Entry-like Connection String� 31
Connecting to a Default Oracle Database� 32
Connecting Using Windows Authentication (Single Sign‑On)� 33

Summary� 35

Table of Contents

[iii]

Chapter 5: Programming ODP.NET with PL/SQL� 93
Working with Anonymous PL/SQL Blocks� 93

Executing Anonymous PL/SQL Blocks� 94
Passing Information to Anonymous PL/SQL Blocks� 95
Retrieving Information from Anonymous Blocks� 96

Working with PL/SQL Stored Procedures and Functions� 98
Executing a PL/SQL Stored Procedure � 98
Passing Parameter Values to a PL/SQL Stored Procedure � 100
Using an Anonymous PL/SQL Block to Execute a PL/SQL Stored Procedure�102
Retrieving Output Parameters from a PL/SQL Stored Procedure � 103
Passing IN and Getting OUT Simultaneously � 105
Handling User-Defined Application Errors� 107
Executing a PL/SQL User-Defined Function � 109

PL/SQL Packages, Tables, and REF CURSOR � 111
Executing Routines in a PL/SQL Package� 111

Executing a Procedure in a PL/SQL Package� 112
Executing a User-Defined Function in a PL/SQL Package� 114

Passing Arrays to and Receiving Arrays from Oracle Database� 116
Sending an Array to Oracle Database� 116
Receiving an Array from Oracle Database� 119

Working with REF CURSOR Using ODP.NET� 122
Pulling from REF CURSOR Using OracleDataReader� 122
Filling a Dataset from REF CURSOR� 125
Working with Multiple Active Result Sets (MARS)� 126

Summary� 130
Chapter 6: Dealing with Large Objects (LOBs)� 131

Working with BFILEs� 131
Setting Up the Environment to Work with BFILEs� 132
Adding a New Row Containing BFILE� 133
Updating an Existing BFILE Row� 135
Retrieving BFILE Information from a Database� 136
Retrieving Properties of a BFILE � 138
Working with CLOBs� 140
Inserting Huge Text Information into Oracle Database� 140
Updating CLOB Information Using OracleClob� 142
Retrieving CLOB Information from Oracle Database � 143
Reading a Text File and Uploading as CLOB� 144

Working with BLOBs� 147
Setting Up the Environment to Work with BLOBs� 148
Uploading Images to Oracle Database Using BLOB� 150

Table of Contents

[iv]

Retrieving Images from Oracle Database Using BLOB� 153
Uploading Documents to and Retrieving Documents from Oracle Database � 154

Summary� 158
Chapter 7: XML and XML DB Development with ODP.NET � 159

A Fast Track on XML with Oracle� 160
Generating XML from Existing Rows in Tables� 163

Generate XML Using ADO.NET DataSet� 163
Generate XML Using ExecuteXMLReader� 164
Generate XML Using DBMS_XMLGEN� 166
Converting Rows to HTML Using XML and XSLT� 167

Manipulating Rows in a Table Using XML � 171
Inserting Rows into Oracle Using XML� 171
Updating Rows into Oracle Using XML� 174

Working with Native XML in Oracle Database� 175
Inserting XML Data into XMLType Using Traditional INSERT� 175
Updating XML Data in XMLType Using Traditional UPDATE� 177
Inserting XML Data Using OracleXmlType� 178
Retrieving and Updating XML Data Using OracleXmlType� 179
Extracting Individual Node Information of an XMLType Value� 181

Summary� 183
Chapter 8: Application Development Using ODP.NET� 185

Notifying Applications of Database Changes� 185
Catching Notifications� 186

Catching Multiple Notifications� 189
Identifying Rows Modified During Notifications� 190

Developing Long-Running Applications � 193
The Devil of Applications: "Not Responding" � 194
Asynchronous Task with Multi-Threading� 195

Developing Web Applications Using ASP.NET and ODP.NET� 199
Web Development Using Smart Data Binding� 199

Populating an ASP.NET DropDownList Control� 199
Linking an ASP.NET GridView Control with a DropDownList Control� 207
Add, Update, or Delete a Row Using GridView and FormView� 212

Working with Web Controls Manually� 218
Developing Web Reports Using ASP.NET� 221

Creating a Strongly-Typed Dataset Using Designer� 221
Designing and Binding a Report to the Dataset � 224
Grouping and Displaying Sub-Totals� 228
Embedding Charts (Graphs) in Reports� 232

Table of Contents

[�]

Object-Oriented Development Using ASP.NET and ODP.NET� 235
Developing a Simple Oracle Database Helper Class� 236
Developing a Simple Business Logic Class� 238
Working with ObjectDataSource in an ASP.NET 2.0 Web Form� 241

Developing Web Services Using ODP.NET� 247
Creating the .NET XML Web Service� 247
Consuming the Web Service from ASP.NET� 255

Developing Smart Device Applications� 259
Introducing Microsoft Windows Mobile� 259
Consuming a Web Service from Pocket PC� 260

Summary� 263
Chapter 9: Introduction to Oracle Developer Tools for Visual Studio 2005�265

Features of Oracle Developer Tools� 265
Connecting to Oracle from Visual Studio Using Oracle Explorer� 266
Retrieving Oracle Information from Visual Studio Using ODT� 270
Working with Oracle Database Objects from Visual Studio Using ODT� 274

Dealing with Tables, Views, and Sequences Using ODT� 274
Creating Stored Procedures Using ODT� 277

Debugging PL/SQL Stored Procedures from Visual Studio� 279
.NET CLR Stored Procedures in Oracle� 289
Taking Advantage of Automatic .NET Code Generation� 296
Summary� 307

Index� 309

Preface
Oracle's ODP.NET is a .NET data provider that can connect to and access Oracle
databases with tight integrity. It can be used from any .NET language, including
C# and VB.NET. This book will show you how ODP.NET is the best choice for
connecting .NET applications with Oracle database. We will be dealing with the
concepts of ODP.NET and its requirements, working with SQL, PL/SQL, and
XML DB using ODP.NET, looking at application development with ODP.NET:
Web Applications, Web Services, and Mobile Applications. We will also learn to
manipulate Oracle databases from within Visual Studio using Oracle Developer
Tools for Visual Studio.

What This Book Covers
Chapter 1 introduces the concept of Oracle Database Extensions for .NET and
provides information about Oracle Developer Tools for Visual Studio.

Chapter 2 introduces the Provider-Independent Model in ADO.NET 2.0, and shows
how to connect to Oracle databases from .NET, working with .NET data providers,
connection pooling, system privileged connection, and single sign-on etc.

Chapter 3 shows you several methods to retrieve data from an Oracle database. You
will work with the core ODP.NET classes like OracleCommand, OracleDataReader,
OracleDataAdapter, OracleParameter, and ADO.NET classes like DataSet,
DataTable, and DataRow etc.

Chapter 4 is about inserting, updating, and deleting data in the database. You
will also learn about statement caching, array binding, working with offline data,
implementing transactions, and handling errors and exceptions encountered during
database work.

Preface

[�]

Chapter 5 deals with working with PL/SQL blocks, PL/SQL stored procedures, and
functions. It also teaches you how to execute routines in PL/SQL packages, how to
pass arrays to and receive arrays from the Oracle database, and working with REF
CURSOR using ODP.NET.

Chapter 6 is completely dedicated to dealing with large objects in Oracle. This chapter
illustrates concepts, configurations, and programming for BFILE, BLOB, and CLOB
(or NCLOB) in conjunction with ODP.NET.

Chapter 7 gives details about Oracle XML DB, an add-on feature of Oracle database.
It provides information about generating XML from existing rows in tables,
manipulating rows in a table using XML, and working with native XML in the
Oracle database.

Chapter 8 deals with real-time application development scenarios like Oracle
database change notifications, asynchronous application development, web
application development using ASP.NET 2.0, web reporting (including grouping,
sub-totals, charts, etc.), Object-Oriented development with ODP.NET and ASP.NET,
XML web-services development using ODP.NET, and Smart Device Application
development (for clients like the Pocket PC).

Chapter 9 introduces you to Oracle Developer Tools for Visual Studio 2005. It
teaches you to connect to Oracle from the Visual Studio 2005 environment, retrieve
Oracle information from Visual Studio, and work with database objects from Visual
Studio. It also provides information about how to create and debug PL/SQL stored
procedures and .NET CLR stored procedures in Oracle.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "�����������Connecting
to a default Oracle database is purely dependent on the ORACLE_SID key available in
your registry.�"

A block of code will be set as follows:

Dim ProviderName As String = _
 "Oracle.DataAccess.Client"
Dim fctry As DbProviderFactory = -
 DbProviderFactories.GetFactory(ProviderName)

Preface

[�]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

Dim dt As DataTable = _
 DbProviderFactories.GetFactoryClasses()
Me.DataGridView1.DataSource = dt

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"clicking the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Introduction to ODP.NET
In the early days of databases, developers used to have knowledge on only one data
access technology as they would usually concentrate on a single database. Later,
numerous database products advanced quickly, leaving programmers in a confused
state when selecting a particular data access methodology. The era of evolving
architectures like client/server (two tier), three tier, and multi-tier (which includes
web-enabled) has dramatically changed the way of accessing databases.
The paradigm got shifted from simple "connection-oriented" applications to
connection-less or disconnected (or offline) applications to meet the demands of
devices like PDAs/Handhelds, Smart Phones, Pocket PCs etc.

Introduction to ODP.NET
We now have several types of data access methodologies to develop applications.
Choosing the best data access methodology is totally dependent on the type of
application you are working on.

ADO.NET is a rock-solid technology and a proof of Microsoft's commitment to the
UDA (Universal Data Access) strategy. The ADO.NET layer in the .NET architecture
internally contains a few .NET data components (or .NET data providers), which can
be used to connect to and access any database.

Introduction to ODP.NET

[�]

The data access through ADO.NET is shown in the following figure (along with
other data access methodologies available prior to .NET):

Traditional
VB/ASP

application

.NET Applications

ADO.NET

C/C++
Applications

Microsoft
SQL Server
.NET Data
Provider

Microsoft
Oracle

.NET Data

Microsoft
ODBC

.NET Data

Microsoft
OLEDB .NET
Data Provider

Oracle Data
Provider

(ODP.NET)

Other / 3rd
party .NET

Data Provider

DAO

ADO

RDO
OLEDB (with OLEDB Providers)

ODBC (with ODBC Mgr. and ODBC Drivers) Respective
libraries

Access MS SQL Server Oracle
Other

RDBMS

Flat files,
XML, Mail
Servers

Other
Legacy

Systems

Even though Microsoft designed its own .NET data providers, it has also opened
its doors (specification) to the public and is encouraging other database companies
to develop their own .NET data providers. Microsoft made the data access model
consistent among all of the .NET data providers and thus any .NET data provider
should definitely conform to the standards and architecture of ADO.NET. One of
those is Oracle's ODP.NET, a .NET data provider that can connect to and access
Oracle databases with tight integrity.

Chapter 1

[�]

The ODP.NET features optimized data access to the Oracle database from a .NET
environment. It is one of the several data access methods to connect to and access
Oracle databases. Oracle didn't simply stop giving support to Microsoft platform
with only ODP.NET. Instead, it has extended its commitment for Microsoft .NET
by adding� Oracle database extensions for .NET and Oracle Developer Tools for
Visual Studio.

The upcoming sections will give you a solid understanding of ODP.NET along with
its features.

Why Use ODP.NET?
Can't we access Oracle without ODP.NET? Yes, we can. It is not compulsory for you
to work with ODP.NET. As mentioned in the following section, we can still connect
to and access Oracle using other alternative methods. But, in terms of features and
performance, ODP .NET is your best choice for connecting .NET applications with
Oracle database. Let us see how!

I am limiting the discussion to only .NET applications or clients
that are trying to access Oracle databases. I will not be discussing
application development prior to .NET.

Oracle Database Access from .NET
Applications
There exist four main methodologies to access Oracle database from a
.NET application:

Microsoft's .NET data provider for ODBC (or ODBC.NET)
Microsoft's .NET data provider for OLEDB (or OLEDB.NET)
Microsoft's .NET data provider for Oracle
Oracle's data provider for .NET (or ODP.NET)

•

•

•

•

Introduction to ODP.NET

[�]

Before discussing each of the above methodologies, let us understand their nature
from the following figure:

Any .NET Client

VB.NET C# C++.NET ASP.NET …

ODBC.NET OLEDB.NET

Oracle ODBC Oracle OLEDB

Microsoft's
.NET data
provider

for Oracle

Oracle database

Oracle's Data
Provider

(ODP.NET)

Oracle Client

ADO.NET

Microsoft's .NET data providers for ODBC and OLEDB are not intentionally
developed exclusively for Oracle database. Those are generic .NET data providers
mainly targeted for most of the common data sources. If you plan to use either of
those two .NET data providers, you are likely to face performance problems.

From the above figure, you can observe that there exists a separate layer for each of
those .NET data providers. In other words, ODBC.NET or OLEDB.NET would not
directly execute the queries or commands. Those operations would be carried to
another intermediate layer (or data access bridge) and further get executed at Oracle
database. The existence of this intermediate layer really kills the performance (or
response time) of execution. So, if you are trying to access Oracle database from a
.NET application, neither of those would be a good choice.

Coming to the next choice, it is somewhat promising. Microsoft contributed a
separate .NET Framework data provider (or Microsoft's Data Provider for Oracle) to
connect to and access Oracle. It enables data access to Oracle data sources through
Oracle client connectivity software without having any intermediate layers. This
really improves performance over the previous two choices. Before using this
provider in your .NET applications, you should install and configure Oracle client
software (version 8.1.7 or later) on the development machine and test it.

Chapter 1

[�]

The Oracle Data Provider for .NET (ODP.NET) features optimized data access to
the Oracle database from any .NET client. It is the best in performance together with
great flexibility. It allows developers to take advantage of native Oracle data types
(including XML data type), XML DB, binding array parameters, Multiple Active
Result Sets (MARS), Real Application Clusters (RAC), advanced security, etc.

What Do We Require to Work with ODP.NET?
As we are trying to develop .NET applications with access to Oracle database, we
must have .NET Framework installed on our machine. Any Windows Operating
System (preferably Windows Server 2003 or Windows XP Professional) supporting
.NET can be used to work with ODP.NET.

At the time of this writing, .NET Framework 3.0 is the latest in market; but Oracle
hasn't released ODP.NET compatible with that version yet. Not only that, Visual
Studio 2008 (or "Orcas") supporting .NET Framework 3.0/3.5 is still in its beta
version. For our purpose .NET Framework 2.0 is the latest in market, and you can
download it free from Microsoft's website.

Even though .NET Framework (including SDK and .NET runtime) alone is enough
to develop .NET-based applications, it is better to have some GUI-based RAD
environment (or IDE) installed, so that we can develop .NET applications in no time.
Microsoft Visual Studio 2005 Professional Edition is the preferred GUI to develop
.NET 2.0-based applications. If you install Microsoft Visual Studio 2005 Professional
Edition, all the necessary components (including .NET Framework SDK and
runtime) get automatically installed.

The next is Oracle database. It is preferred to have at least Oracle 8.1 on your machine
(or on a separate server). If you want to test with the latest version of Oracle on your
own machine, you can download it free from Oracle's website for your development
purposes. The lightest Oracle database version available (free) at the time of this
writing is Oracle Database 10g Express Edition (or XE). Certain of the features like
.NET CLR extensions (for .NET CLR-based stored procedure development) for Oracle
are available only from Oracle 10g version 2.0 (Oracle 10.2) onwards. If you want to
have distributed transaction support (like COM+ or Enterprise Services, etc.), then
you may have install and configure Oracle Services for MTS.

If you install Oracle database version 9i release 2 or later on your own system, no
special Oracle client is necessary to work with ODP.NET. If your database is at some
other location, then you may have to install and configure Oracle 9i Release 2 or higher
client on your machine to work with ODP.NET. Oracle Net Services get automatically
installed when Oracle 9i Release 2 or higher client is installed on your machine. This
may be required when you try to access an Oracle database on a network.

Introduction to ODP.NET

[10]

Another important optional component is Oracle Developer Tools for Visual Studio
2005. This is a wonderful add-in, which gets injected right into Visual Studio 2005.
Using this add-in (called Oracle Explorer), you can connect to any Oracle database
and work with schema or data without leaving the Visual Studio 2005 environment.
It is particularly useful if you are likely to deal with .NET CLR extensions for Oracle.
I strongly recommend having it installed on your machine, if you are working with
Visual Studio Environment.

If you are developing ASP.NET applications, it is better to have IIS configured on
your machine, to test web applications over the network. If you are developing
Smart Phone or Pocket PC applications, you may need to install Smart Device
Extensions for Visual Studio (which automatically installs .NET Compact Framework
for Smart Devices).

Introduction to Oracle Database
Extensions for .NET
The Oracle Database Extensions for .NET is a new feature of Oracle Database
10g Release 2 on Windows that makes it easy to develop, deploy, and run stored
procedures and functions written in any .NET-compliant language.

Oracle Database Extensions for .NET
Oracle Database Extensions for .NET makes it possible to build and run any .NET-
based stored procedures or functions with Oracle Database for Microsoft Windows.
This feature is supported only from Oracle 10g version 2 (on Windows) onwards or
Oracle 10g Express Edition (or Oracle 10g XE).

How does .NET Work within Oracle Database?
How come Oracle understands .NET? Oracle database doesn't need to understand
.NET at all. It simply hosts the Microsoft .NET Common Language Runtime (CLR)
in an external process, outside of the Oracle database process, but on the same
computer. The integration of Oracle database with the Microsoft Common Language
Runtime (CLR) enables applications to run .NET stored procedures or functions on
Oracle database without any hurdles.

Application developers can write stored procedures and functions using any
.NET-compliant language, such as C# and VB.NET, and use these .NET stored
procedures in the database, in the same manner as other PL/SQL or Java stored
procedures. .NET stored procedures can be used from PL/SQL packages,
procedures, functions, and triggers.

Chapter 1

[11]

Once the caller (or other PL/SQL stored procedures, packages, etc.) calls any of these
.NET routines (stored procedures or functions), they get executed by the Oracle
hosted Microsoft CLR and the results are automatically picked up by the Oracle
PL/SQL engine. Once the control comes back to PL/SQL engine, it proceeds with the
normal and traditional the PL/SQL process flow of execution.

Processing of .NET Stored Procedure with Oracle
To develop .NET CLR-based stored procedures or functions, you may need to have
Oracle 10g version 2 or higher (for Windows) or at least Oracle 10g Express Edition
together with Oracle Database Extensions for .NET installed. If you use Oracle 10g
Express Edition, the extensions get automatically installed. But, if you install Oracle
10g version 2 (for Windows), you may have to go to custom install and select the
extensions. Apart from the extensions, you also need to download Oracle Developer
Tools for Visual Studio (with appropriate version) to develop and deploy .NET CLR-
based routines in Oracle database.

Application developers build .NET stored procedures or functions using any .NET
compliant language, such as C# and VB.NET, into a .NET assembly (generally a
DLL), typically using Microsoft Visual Studio .NET 2003/2005. Obviously, we use
Oracle Data Provider for .NET (ODP.NET) in .NET stored procedures and functions
for Oracle data access. After building .NET procedures and functions into a .NET
assembly, developers deploy them in Oracle database, using the Oracle Deployment
Wizard for .NET, a component of the Oracle Developer Tools for Visual Studio .NET.

Once the .NET stored procedure gets deployed, the PL/SQL wrappers for all of
those routines get automatically created within the schema. The user invokes a .NET
stored procedure or function through this PL/SQL wrapper (which would be the
same as for normal PL/SQL stored procedures or functions). Oracle Deployment
Wizard for .NET determines the probable mappings between Oracle data types and
.NET data types, which the user can override. The mappings are handled seamlessly
by the PL/SQL wrapper.

Introduction to Oracle Developer Tools
for Visual Studio
Oracle Developer Tools for Visual Studio is an add-in for Microsoft Visual Studio
that tightly integrates the Visual Studio environment with Oracle database. You
will be able to manipulate Oracle databases from within Visual Studio and without
leaving Visual Studio.

Chapter 1

[13]

To work with database tables (for example inserting, updating, etc.) you can keep
yourself tied with Oracle Data Window. It also gives you the flexibility to run and
test your PL/SQL stored procedures. Oracle Explorer also includes a fully integrated
PL/SQL debugger (for Visual Studio 2005).

Apart from all of the above, you can easily develop and deploy .NET stored
procedures and functions using .NET Deployment Wizard.

Summary
In this chapter, we have covered the concepts of ODP.NET, requirements to work
with ODP.NET, Oracle Database Extensions for .NET, and finally concluded with an
introduction to Oracle Developer Tools for Visual Studio.NET

Connecting to Oracle
From this chapter on, we will start programming with ODP.NET. This chapter
mainly concentrates on the following:

Introducing the Provider-Independent Model in ADO.NET 2.0
Working with .NET data providers
Different ways to connect to Oracle database from ADO.NET 2.0
Connection pooling, system privileged connection, Windows authentication

Provider-Independent Model in ADO.NET 2.0
ADO.NET internally works with .NET data providers (or .NET data bridge provider)
to connect to and access data from different kinds of data sources (including
databases). The same data provider model existing in ADO.NET 1.1 is further
enhanced in ADO.NET 2.0 (with new factory classes) to leverage the flexibility of
developing database-independent applications.

What exactly is a ��� factory class?��� �� The purpose of a factory class is to provide an
interface for creating families of related objects, with or without specifying their
concrete (method implementation) classes. If the factory class is created without one
or more implementations of methods, we call it as an abstract factory class.

The provider-independent programming model in ADO.NET 2.0 revolves around
the classes in the System.Data.Common namespace. There are mainly two new
factory classes that implement the provider-independent model (within the
same namespace):

DbProviderFactories

DbProviderFactory

•

•

•

•

•

•

Connecting to Oracle

[16]

Listing All Installed .NET Data Providers
Now, let us start our programming with listing all .NET data providers installed on
your machine. All .NET data provider-related information gets listed in the machine.
config file on your machine��� . Each provider is generally identified with its invariant
name. The invariant name (in most cases) is the same as its namespace.

The following code gives out the list of all .NET data providers installed on
your machine:

Imports System.Data.Common

Public Class Form1

 Private Sub btnProviders_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnProviders.Click

 Dim dt As DataTable = _
 DbProviderFactories.GetFactoryClasses()
 Me.DataGridView1.DataSource = dt

 End Sub

End Class

Within the above code, the DbProviderFactories class is mainly used to enumerate
all .NET data providers installed on your machine. Using the same class, we can also
create instances related to a specific provider (to access databases specific to that
provider). To list all the .NET data providers installed on your machine, we can use a
GetFactoryClasses() ������������������������ method available in the DbProviderFactories class.

The highlighted line of code finds and lists all the .NET data providers installed on
your machine (and populates them into a data table). When that code gets executed,
the output should look similar to the following:

Chapter 2

[17]

According to the preceding figure, you can see that the machine has six .NET data
providers installed. The third column represents the invariant names to identify each
of those providers.

Enumerating all Oracle Data Sources Available
In the previous section, we enumerated the list of all .NET data providers installed
on the machine. In the previous screenshot, you should observe that the machine in
this example has the Oracle Data Provider for .NET installed, �������������������� which is identified
with invariant name Oracle.DataAccess.Client.

In this section, we shall enumerate the list of all Oracle data sources available. Let us
go through the following code first:

Imports System.Data.Common

Public Class Form2

 Private Sub btnDataSources_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnDataSources.Click

 Dim ProviderName As String = _
 "Oracle.DataAccess.Client"
 Dim fctry As DbProviderFactory = _
 DbProviderFactories.GetFactory(ProviderName)
 If (fctry.CanCreateDataSourceEnumerator) Then
 Dim dsenum As DbDataSourceEnumerator = _
 fctry.CreateDataSourceEnumerator()
 Dim dt As DataTable = dsenum.GetDataSources()
 Me.DataGridView1.DataSource = dt
 Else
 MessageBox.Show("No datasources found")
 End If

 End Sub

End Class

Let us go through the above code step by step.

The following is the statement that selects the ODP.NET data provider:

Dim ProviderName As String = "Oracle.DataAccess.Client"

Connecting to Oracle

[18]

The .NET data provider name is nothing but the invariant name available for the
respective .NET data provider. In the previous screenshot, you can observe that
there is a special column named InvariantName to identify the respective .NET
data provider.

The following statement creates a factory instance of the data provider selected:

Dim fctry As DbProviderFactory = _
 DbProviderFactories.GetFactory(ProviderName)

Once the factory instance is created, we need to determine whether the provider (or
instance) supports enumerating of data sources or not. This is easily accomplished
with the CanCreateDataSourceEnumerator() ���������������������������������� method���������������������������� (which returns a Boolean).

If the underlying .NET data provider supports enumerating the data sources, we
can find and retrieve all the data sources for respective .NET data provider using the
following code:

 If (fctry.CanCreateDataSourceEnumerator) Then
 Dim dsenum As DbDataSourceEnumerator = _
 fctry.CreateDataSourceEnumerator()
 Dim dt As DataTable = dsenum.GetDataSources()
 Me.DataGridView1.DataSource = dt
 Else
 MessageBox.Show("No datasources found")
 End If

The CreateDataSourceEnumerator() method simply creates an enumerator. The
method GetDataSources() enumerates through all existing Oracle data sources.

When the above code gets executed, the output should look similar to the following:

Chapter 2

[19]

Here, the XE is nothing but the name of the Oracle instance (SID) running on the
system, which has Oracle 10g Express Edition installed.

So far we have just enumerated all the .NET data providers installed on our machine
and the list of Oracle data sources. We haven't connected to an Oracle database yet in
the preceding code.

Connecting to Oracle Databases from .NET
There are several ways to connect to Oracle database from within .NET. Each of those
methods has its own pros and cons as described in Chapter 1. Now, we will explore
the most popular methodologies to connect to Oracle database through .NET.

To connect to Oracle, we need to have proper connection descriptors configured
on the system. This is usually taken care by the� tnsnames.ora file. TNS stands
for Transparent Network Substrate. It provides a uniform application interface to
enable network applications to access the underlying network protocols. tnsnames.
ora ��������������������������������������� ��� is simply a text file that provides SQL*Net with the Oracle server location and
the necessary connection strings to connect to Oracle databases. This file always
resides in the �������������� Oracle home's Network\Admin folder.

If the Oracle client (or SQL*Plus) is already able to connect to the Oracle database
server, the tnsnames.ora file is already correctly configured and you need not
disturb it. But, it is beneficial for you to look at the content of tnsnames.ora to have
a better understanding of the connection descriptors. The following is an example
entry available in the tnsname.ora file on a machine to get connected to Oracle
(yours could be different):

XE =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = 127.0.0.1)
 (PORT = 1521))
)
 (CONNECT_DATA =
 (SERVICE_NAME = xe)
)
)

The above configuration script shows that the Oracle database server is available at
127.0.0.1 (local machine) and listening at port 1521. The service name (or SID) to
connect to the server is xe. The whole description is assigned to a name XE.

We will make use of the above specification in most of the connection strings
available in the examples.

Chapter 2

[21]

 Catch ex As Exception
 'display error message if not connected
 MessageBox.Show("Unable to connect. " & ex.Message)
 End Try

 End Sub

End Class

From the preceding code we have the following statements that are used to create
a factory instance for the .NET data provider selected (in this case it is Oracle.
DataAccess.Client).

 Dim ProviderName As String = _
 "Oracle.DataAccess.Client"
 Dim fctry As DbProviderFactory = _
 DbProviderFactories.GetFactory(ProviderName)

Further moving down, we have the following:

 Dim Connection As Data.Common.DbConnection
 Connection = fctry.CreateConnection

Data.Common.DbConnection can simply hold any type of database connection
irrespective of the data source or data provider. To create a database connection
object from the factory instance, we can make use of the CreateConnection()
method, which in turn returns an object of the type Data.Common.DbConnection.
Once the DbConnection object is created (for the respective .NET data provider
through the factory instance), it needs to be provided with database connection
string information as follows:

Connection.ConnectionString = _
 "Data Source=xe;user id=scott;password=tiger"

Once the DbConnection object is ready, we can open the connection to connect and
work with the database. It is always suggested to open a database connection as late
as possible and close it as early as possible. The following code fragment tries to
open the connection using the Open() method and closes using the Close() method:

 Try
 'try connecting to oracle
 Connection.Open()
 'close the connection before exiting
 Connection.Close()
 MessageBox.Show("Succesfully connected")
 Catch ex As Exception
 'display error message if not connected
 MessageBox.Show("Unable to connect. " & ex.Message)
 End Try

Connecting to Oracle

[22]

This model (and method) of connectivity is mostly preferred when you are trying to
develop database-independent applications.

Connecting Using .NET Data Provider for
OLEDB
This method is mostly preferred when you are trying to develop database-
independent applications based on ADO.NET 1.1. If you are trying to develop a
database-independent application based on ADO.NET 2.0, the method provided in
the previous section is preferred.

The following is the code to connect to Oracle database using .NET data provider
for OLEDB:

Imports System.Data.OleDb

Public Class Form4

 Private Sub btnConnect_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnConnect.Click

 Dim cn As New OleDbConnection
 cn.ConnectionString = "Provider=msdaora;
 Data Source=xe;User Id=scott;Password=tiger;"
 Try
 'try connecting to oracle
 cn.Open()
 'close the connection before exiting
 cn.Close()
 MessageBox.Show("Succesfully connected")
 Catch ex As Exception
 'display error message if not connected
 MessageBox.Show("Unable to connect. " & ex.Message)
 End Try

 End Sub
End Class

In the above code, the System.Data.oleDb namespace is used to deal with .NET
Data Provider for OLEDB. When we are working with OLEDB data sources, we need
to connect through the OleDbConnection class. The connection string information
would also be different when we deal with .NET Data Provider for OLEDB to
connect to Oracle.

Chapter 2

[23]

The following is the new connection string used to get connected to Oracle database
using .NET Data Provider for OLEDB:

 cn.ConnectionString = "Provider=msdaora;
 Data Source=xe;User Id=scott;Password=tiger;"

Connecting Using .NET Data Provider for
ODBC
This method is used when you are trying to develop multi-platform
database‑independent applications using ADO.NET. This method is preferable, if you
want to connect to legacy systems or database systems existing on other platforms.

The following is the code to connect to Oracle database using .NET data provider
for ODBC:

Imports System.Data.odbc

Public Class Form5

 Private Sub btnConnect_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnConnect.Click

 Dim cn As New OdbcConnection
 cn.ConnectionString =
 "Driver={Microsoft ODBC for Oracle};
 Server=xe;Uid=scott;Pwd=tiger;"

 Try
 'try connecting to oracle
 cn.Open()
 'close the connection before exiting
 cn.Close()
 MessageBox.Show("Succesfully connected")
 Catch ex As Exception
 'display error message if not connected
 MessageBox.Show("Unable to connect. " & ex.Message)
 End Try

 End Sub
End Class

Connecting to Oracle

[24]

In the preceding code, the System.Data.odbc namespace is used to deal with .NET
Data Provider for ODBC. When we are working with ODBC data sources, we need
to connect through the OdbcConnection class. The connection string information
would also be different when we deal with .NET Data Provider for ODBC to connect
to Oracle. The following is the new connection string used to get connected to Oracle
database using .NET Data Provider for ODBC:

cn.ConnectionString = "Driver={Microsoft ODBC for Oracle};
 Server=xe;Uid=scott;Pwd=tiger;"

Connecting using Microsoft's .NET Data
Provider for Oracle
This provider is added by Microsoft to facilitate developers connecting and
accessing Oracle databases. This method is mostly preferred when you are trying
to access only Oracle databases and when you don't have ODP.NET installed on
your machine.

Before you start working with this provider, you need to add a reference to the
assembly System.Data.OracleClient as shown in following figure:

Chapter 2

[25]

Once you add a reference as shown in the preceding figure, you can proceed with the
following code to connect to Oracle database using Microsoft's .NET data provider
for Oracle:

Imports System.Data.OracleClient

Public Class Form6

 Private Sub btnConnect_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnConnect.Click

 Dim cn As New OracleConnection
 cn.ConnectionString = _
 "Data Source=xe; User Id=scott;Password=tiger;"

 Try
 'try connecting to oracle
 cn.Open()
 'close the connection before exiting
 cn.Close()
 MessageBox.Show("Succesfully connected")
 Catch ex As Exception
 'display error message if not connected
 MessageBox.Show("Unable to connect. " & ex.Message)
 End Try

 End Sub
End Class

In the above code, we are making use of the System.Data.OracleClient namespace
to deal with ������������Microsoft's� .NET Data Provider for Oracle. The OracleConnection class
used in the above code is available as part of the same namespace (and not to be
confused with the same class available in Oracle.DataAccess.Client).

Connecting Using Oracle Data Provider for
.NET (ODP.NET)
This provider is contributed by Oracle to facilitate developers connecting and
accessing Oracle databases with tight integration (along with best performance) and
advanced features. This method is the best even when you are trying to access Oracle,
as ODP.NET has tight integration with Oracle database. To use this method, you must
have ODP.NET downloaded (available free) and installed on your machine.

Connecting to Oracle

[26]

Once you have ODP.NET installed on your machine, you need to add a reference to
the assembly Oracle.DataAccess. If you have more than one version installed, you
may have to choose the right one. If you are using Visual Studio 2005 and ODP.NET
10.2.0.2.20 (with support for ADO.NET 2.0) choose as shown in following figure:

Once you add a reference as shown in the above figure, you can proceed with the
following code to connect to Oracle database using ODP.NET:

Imports oracle.DataAccess.Client

Public Class Form7

 Private Sub btnConnect_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnConnect.Click

 Dim cn As New OracleConnection
 cn.ConnectionString = _
 "Data Source=xe;User Id=scott;Password=tiger;"

 Try
 'try connecting to oracle
 cn.Open()
 'close the connection before exiting
 cn.Close()
 MessageBox.Show("Succesfully connected")
 Catch ex As Exception

Chapter 2

[27]

 'display error message if not connected
 MessageBox.Show("Unable to connect. " & ex.Message)
 End Try
 End Sub

End Class

In the above code, the namespace Oracle.DataAccess.Client is used to deal with
Oracle Data Provider for .NET (ODP.NET). The OracleConnection class used in the
above code is available as part of the same namespace (and not to be confused with
the same class available in System.data.OracleClient). The connection string
information for this data provider and .NET data provider factory classes could be
the same (as both of them deal with the namespace internally).

Connecting with Connection Pooling
Opening and maintaining a database connection for each client (or application/
user) is expensive and wastes lots of resources. This is true especially during web
application development. To overcome such scenarios, Connection Pooling can
be implemented.

A Connection Pool is simply a cache of database connections. These connections can
be reused when the database receives future requests from clients (or applications)
for data. The clients (or applications) will feel as if each of them has a separate
connection to the database.

Connection Pooling is enabled by default and it is not only limited to ODP.NET but
also available with other .NET data providers. You can simply add pooling=false
to your connection string to disable Connection Pooling. You can customize pooling
with your own specification within the connection string.

The following is a simple demonstration of customizing the Connection Pooling as
part of the connection string:

Imports oracle.DataAccess.Client

Public Class Form7

 Private Sub btnConnect_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnConnect.Click

 Dim cn As New OracleConnection
 cn.ConnectionString = "Data Source=xe;
 User id=scott;Password=tiger;
 Min Pool Size= 5;
 Connection Lifetime=120;

Chapter 2

[29]

If you need .NET applications to connect to Oracle with system-level privileges, you
just need to add connection parameters to the existing connection string as follows:

Imports oracle.DataAccess.Client

Public Class Form7

 Private Sub btnConnect_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnConnect.Click

 Dim cn As New OracleConnection

 cn.ConnectionString = "Data Source=xe;
 User id=system;Password=manager;
 DBA Privilege=SYSOPER"
 Try
 'try connecting to oracle
 cn.Open()
 'close the connection before exiting
 cn.Close()
 MessageBox.Show("Succesfully connected")
 Catch ex As Exception
 'display error message if not connected
 MessageBox.Show("Unable to connect. " & ex.Message)
 End Try
 End Sub

End Class

In the above statement, you can observe that the user name is system (which is a
DBA user) and privilege is SYSDBA.

Dynamic Connecting String Using
OracleConnectionStringBuilder and app.config
You can dynamically build a connection string using the
OracleConnectionStringBuilder class available in ODP.NET 10.2.0.2. This is very
helpful if you have any Oracle connectivity parameters in the .NET configuration
files like app.config or web.config.

Connecting to Oracle

[30]

Now, let us add few of the Oracle connectivity parameters to the app.config file by
using solution properties as follows:

Once you add the parameters as shown in the above figure, you can
develop the code as follows to dynamically create a connection string using
OracleConnectionStringBuilder (explained later)�:

Imports Oracle.DataAccess.Client

Public Class Form9

 Private Function getConnectionString() As String
 Dim cnBuilder As New OracleConnectionStringBuilder
 With cnBuilder
 .DataSource = My.Settings.DataSource
 .UserID = My.Settings.UserID
 .Password = My.Settings.Password
 End With
 Return cnBuilder.ConnectionString
 End Function

Chapter 2

[31]

 Private Sub btnConnect_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnConnect.Click
 Dim cn As New OracleConnection
 cn.ConnectionString = getConnectionString()
 Try
 'try connecting to oracle
 cn.Open()
 'close the connection before exiting
 cn.Close()
 MessageBox.Show("Succesfully connected")
 Catch ex As Exception
 'display error message if not connected
 MessageBox.Show("Unable to connect. " & ex.Message)
 End Try
 End Sub
End Class

From the above code, you can observe that we are trying to retrieve all the
connection parameters from the app.config file using the My object introduced in
.NET Framework 2.0. The OracleConnectionStringBuilder object simply needs
to have a few properties (like DataSource, UserID, Password etc.) set. Once the
properties are set, it automatically frames a connection string internally and returns
this when used with the ConnectionString property.

Embedding a "tnsnames.ora" Entry-like
Connection String
In all of the above examples, we directly used the specification available in the
tnsnames.ora file. You can even define your own entry in the style of tnsnames.
ora,�� directly within the connection string. The following is the code for a tnsnames.
ora-less connection:

Imports oracle.DataAccess.Client

Public Class Form7

 Private Sub btnConnect_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnConnect.Click

 Dim cn As New OracleConnection
 Dim ConnStr As String

Connecting to Oracle

[32]

 ConnStr = "Data Source = "
 ConnStr &= "(DESCRIPTION = "
 ConnStr &= " (ADDRESS_LIST ="
 ConnStr &= " (ADDRESS = (PROTOCOL = TCP)
 (HOST = 127.0.0.1)(PORT = 1521))"
 ConnStr &= ")"
 ConnStr &= " (CONNECT_DATA ="
 ConnStr &= " (SERVICE_NAME = xe)"
 ConnStr &= ")"
 ConnStr &= ");"
 ConnStr &= "User Id=scott;"
 ConnStr &= "password=tiger;"
 cn.ConnectionString = ConnStr

 Try
 'try connecting to oracle
 cn.Open()
 'close the connection before exiting
 cn.Close()
 MessageBox.Show("Succesfully connected")
 Catch ex As Exception
 'display error message if not connected
 MessageBox.Show("Unable to connect. " & ex.Message)
 End Try
 End Sub

End Class

In the above code, we simply copied and pasted the entry available in tnsnames.ora
and it worked like a charm. You can also make the above connection string dynamic
(say, if you want to connect to different data sources at different times), by adding text
boxes to your form and concatenating those values with the above connection string.

Connecting to a Default Oracle Database
In all of the previous methods, within the connection string, we specified the data
source or server values to connect to an Oracle instance (using SID). Sometimes, it
may be necessary for us to get connected to the default Oracle database existing on
the same machine as of the .NET application (but not on any other network server).

Connecting to a default Oracle database is purely dependent on the ORACLE_SID key
available in your registry (as shown in the following). You can even add it manually
if it is not available in your Oracle home. Once that is added, you can define
connection strings without the specification of data source or server.

Chapter 2

[33]

Even though you can add this ORACLE_SID using the "Environment
Variables" dialog box, this method is not suggested if you have
multiple versions of Oracle installed on the same machine.

Once you set up the default Oracle database using the ORACLE_SID registry key in
your registry, the connection string could be modified and made simple (without
specifying any data source or server specification) as follows:

cn.ConnectionString = "User Id=scott;Password=tiger;"

Connecting Using Windows Authentication
(Single Sign‑On)
This is totally a different scenario from any of the previous types of connectivity to
Oracle databases. A Windows Authentication is simply a process of authenticating
against Oracle database using the Windows-user credentials. A Single Sign-on is
the process of authenticating against Oracle database even without providing any
credentials (by taking into the account of existing Windows-user credentials).

There exists no direct solution to achieve 100% ������������������������������� single sign-on����������������� to authenticate
against Oracle database. However, we need to provide the user ID as "/", which
automatically carries our current Windows-user credentials to authenticate
against Oracle database. By using this facility, we can develop .NET applications
implementing 100% �� single sign-on against Oracle databases.

Connecting to Oracle

[34]

Primarily, a Windows Authentication to an Oracle database is not a straight process.
Even though, it is not very complicated process, we do have some configuration,
which needs to be set up using database administrator privileges. To get a Windows
user for a successful Windows authentication (or single sign-on) against Oracle
database, we must start by finding two important values as follows:

Operating System Authentication Prefix (os_authent_prefix parameter in
the init.ora file)
Windows user name (along with either host name or domain name)

The ��� Operating System Authentication Prefix������������������������������� gets configured during Oracle
installation and is available as an os_authent_prefix ����������������� parameter in the
init.ora file. We need to use this value as a prefix to the Windows-user credentials.
To retrieve the value of that parameter, you need to use the following statement:

SQL> show parameter os_authent_prefix

You may need to have DBA privileges (or log in as system/sysdba/sysoper user) to
carry out these tasks.

You can easily get your complete user name (along with your host name or domain
name) from your login dialog box. You can even get it dynamically using the
following VB.NET code:

 Private Sub btnWindowsUser_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnWindowsUser.Click

 Dim WindowsUser As String = My.User.Name
 MessageBox.Show(WindowsUser)

 End Sub

Once you find out those two values, you need to create a user in Oracle with the
same Windows user name (along with host/domain name) preceded with the value
of os_authent_prefix and grant enough privileges to get the user connected.

Sometimes, the value of os_authent_prefix could be
empty (or no value). In such scenarios, you need not prefix the
Windows user with any value.

•

•

Chapter 2

[35]

You can issue the following statements to create and grant privileges to the Windows
user in Oracle:

SQL> CREATE USER "PS$LAPTOP2K3\ADMINISTRATOR"
 IDENTIFIED EXTERNALLY;
SQL> GRANT connect, resource TO
 "PS$LAPTOP2K3\ADMINISTRATOR"

In the above commands, PS$ is the parameter value of os_authent_prefix on my
machine and LAPTOP2K3\ADMINISTRATOR is the Windows user. If there is no value
(or empty) for os_authent_prefix, you need not prefix the Windows user with any
value. Once the above setup is perfectly configured, you must be able to connect to
that user using the following command at the SQL prompt:

SQL> connect /

You can observe that it is quite simple to connect to Oracle database using "/", which
informs it to use a Windows authentication. In the same manner, you can modify
your connection string in .NET as follows to achieve a single sign-on authentication
(with Windows authentication) to Oracle database:

 Dim cn As New OracleConnection
 cn.ConnectionString = "Data Source=xe;User Id=/;"

Summary
In this chapter, we have reviewed the strategy of the Provider-Independent Model in
ADO.NET 2.0, used this model to list installed .NET data providers and data sources,
and finally developed code to connect to Oracle database from .NET using all the
available methods.

Retrieving Data from Oracle Using ODP.NET

[38]

The following is the list of fundamental ODP.NET classes:

OracleConnection

OracleCommand

OracleParameter

OracleDataReader

OracleDataAdapter

The OracleConnection class provides the means to connect to the Oracle database.
We have already used this class several number of times in the previous chapter. It
connects to Oracle database and performs all the operations we need to carry out.
Without this class, we would never be able to perform any database operation. It also
manages transactions and connection pooling.

The OracleCommand class is mainly used to execute commands against Oracle
database. It supports the execution of SQL commands (like SELECT, INSERT, and
CREATE), stored procedures, etc. We can even specify table or view names (without
even providing a SELECT statement) to retrieve the rows available through them. It
works in conjunction with OracleConnection to connect to Oracle database.

The OracleParameter class is complementary to the OracleCommand class to
provide run‑time parameters along with their values to SQL queries or stored
procedures. You can even work with different types of stored-procedure parameters
like IN, OUT, or IN OUT. It is also mostly used whenever you want to execute the
same SQL command frequently or continuously.

The OracleDataReader class is simply a read-only and forward-only result set. As
the data retrieved using this class is non-updatable and only forward-navigable, this
is the fastest retrieval mechanism available. The most important point to remember
while using OracleDataReader is that it needs a dedicated connection to Oracle
database while it retrieves information. It is best used to fill in drop-down lists, data
grids, etc. It works in conjunction with OracleCommand to connect to and retrieve
information from Oracle database.

The� OracleDataAdapter class is mainly used to populate datasets or data tables
for offline use (disconnected use). The OracleDataAdapter simply connects to
the database, retrieves the information (or data), populates that information into
datasets or data tables, and finally disconnects the connection to the database. It
works with OracleConnection to connect to Oracle database. It can also work with
OracleCommand if necessary.

A data table is very similar to a disconnected result set (or record set). A dataset is
simply a set of data tables along with their relations (if available). A dataset is a kind
of small scale in-memory RDBMS, which gets created on demand.

•

•

•

•

•

Chapter 3

[39]

DataTable and DataSet are the two classes for these in ADO.NET that are used
in combination with OracleDataAdapter. The data in a dataset (or data table) can
be modified offline (in disconnected mode) and later can be updated back to the
database using the same OracleDataAdapter. In simple words, OracleDataAdapter
works as a bridge between offline data (or a dataset) and Oracle database.

Retrieving Data Using OracleDataReader
OracleDataReader is simply a read-only and forward-only result set. It works only
if the database connection is open and it makes sure that the connection is open
while you are retrieving data. As the data that it retrieves is read-only, it is a bit
faster than any other method to retrieve data from Oracle.

You need to work with OracleCommand together with OracleConnection to
get access to OracleDataReader. ������������ There is an ExecuteReader method in the
OracleCommand class���������������������� , which gives you the OracleDataReader.

Retrieving a Single Row of Information
Let us start by retrieving a single row from Oracle database using ODP.NET and
populate the data into few textboxes on a WinForm.

To connect to and work with Oracle database, we need to start with
OracleConnection. Once a connection to the database is established, we need to
issue a SELECT statement to retrieve some information from the database. A query
(or any SQL command) can be executed with the help of an OracleCommand object.
Once the SELECT statement gets executed, we can use OracleDataReader to retrieve
the information.

The following code accepts an employee number from the user and gives you the
details of that employee:

Imports Oracle.DataAccess.Client

Public Class Form1

 Private Sub btnGetEmployee_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnGetEmployee.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 Dim SQL As String
 'build the SELECT statement

Retrieving Data from Oracle Using ODP.NET

[40]

 SQL = String.Format("SELECT ename, sal, job FROM
 emp WHERE empno={0}", Me.txtEmpno.Text)
 'create command object to work with SELECT
 Dim cmd As New OracleCommand(SQL, cn)
 'open the connection
 cmd.Connection.Open()
 'get the DataReader object from command object
 Dim rdr As OracleDataReader = _
 cmd.ExecuteReader(CommandBehavior.CloseConnection)
 'check if it has any rows
 If rdr.HasRows Then
 'read the first row
 rdr.Read()
 'extract the details
 Me.txtEname.Text = rdr("ename")
 Me.txtSal.Text = rdr("sal")
 Me.txtJob.Text = rdr("job")
 Else
 'display message if no rows found
 MessageBox.Show("Not found")
 End If
 'clear up the resources
 rdr.Close()
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
 End Sub

End Class

As explained earlier, the above program creates an OracleConnection object
as follows:

Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")

Chapter 3

[41]

Next, we need to create an OracleCommand object by providing a SELECT query and
the connection object (through which it can connect to the database):

Dim SQL As String
SQL = String.Format("SELECT ename, sal, job FROM
 emp WHERE empno={0}", Me.txtEmpno.Text)
Dim cmd As New OracleCommand(SQL, cn)

Once the OracleCommand object is created, it is time to open the connection and
execute the SELECT query. The following does this:

cmd.Connection.Open()
Dim rdr As OracleDataReader = _
 cmd.ExecuteReader(CommandBehavior.CloseConnection)

You must observe that the query gets executed using the ExecuteReader method of
OracleCommand object, which in turn returns an OracleDataReader object. In the
above statement, the ExecuteReader method is specified with CommandBehavior.
CloseConnection, which simply closes the database connection once the
OracleDataReader and OracleCommand are disposed.

We can use the HasRows property of OracleDataReader to test whether the reader
retrieved any rows or not. If any rows are retrieved, we can read each successive row
using the Read method of OracleDataReader. The Read method returns a Boolean
value to indicate whether it has successfully read a row or not. Once the Read
succeeds, we can retrieve each value in the row with the column name as follows:

If rdr.HasRows Then
 'read the first row
 rdr.Read()
 'extract the details
 Me.txtEname.Text = rdr("ename")
 Me.txtSal.Text = rdr("sal")
 Me.txtJob.Text = rdr("job")
Else
 'display message if no rows found
 MessageBox.Show("Not found")
End If

Finally, we close the OracleDataReader object using the Close method as follows:

rdr.Close()

Retrieving Data from Oracle Using ODP.NET

[42]

If it could read successfully, the output for this code would look similar to the
following figure:

Using "Using" for Simplicity
The above program can be made simple by using the Using statement together with
ODP.NET classes as follows:

Using cn As New OracleConnection("Data Source=xe;
 User Id=scott;Password=tiger")
 Try
 cn.Open()
 Dim SQL As String
 SQL = String.Format("SELECT ename, sal,
 job FROM emp WHERE empno={0}", Me.txtEmpno.Text)
 Using cmd As New OracleCommand(SQL, cn)
 Using rdr As OracleDataReader = cmd.ExecuteReader
 If rdr.HasRows Then
 'read the first row
 rdr.Read()
 'extract the details
 Me.txtEname.Text = rdr("ename")
 Me.txtSal.Text = rdr("sal")
 Me.txtJob.Text = rdr("job")
 Else
 'display message if no rows found
 MessageBox.Show("Not found")
 End If
 End Using
 End Using
 Catch ex As Exception
 MessageBox.Show("Error: " & ex.Message)
 If cn.State = ConnectionState.Open Then

Chapter 3

[43]

 cn.Close()
 End If
 End Try
End Using

The Using keyword is new in Visual Basic 2005, which internally generates try and
finally blocks around the object being allocated and calls Dispose() for you saving
you the hassle of manually creating it.

The objects created using the Using keyword are automatically erased (and
respective resources would be automatically cleared) from the memory once it is out
of using scope. Even though it is very flexible to use the Using statement, for the
sake of clarity, we will go without using it in the examples of this book.

Retrieving Multiple Rows on to the Grid
In the previous section, we tried to retrieve only one row using OracleDataReader.
In this section, we will try to retrieve more than one row (or a result set) and
populate a DataGridView on a WinForm.

The following code lists out the details of all employees available in the emp table:

Imports Oracle.DataAccess.Client

Public Class Form2
 Private Sub btnGetEmployees_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnGetEmployees.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe;
 User Id=scott;Password=tiger")
 Try
 Dim SQL As String
 'build the SELECT statement
 SQL = String.Format("SELECT empno, ename, job,
 mgr, hiredate, sal, comm, deptno FROM emp")
 'create command object to work with SELECT
 Dim cmd As New OracleCommand(SQL, cn)
 'open the connection
 cmd.Connection.Open()
 'get the DataReader object from command object
 Dim rdr As OracleDataReader = _
 cmd.ExecuteReader(CommandBehavior.CloseConnection)
 'check if it has any rows
 If rdr.HasRows Then

Chapter 3

[45]

Once the OracleDataReader is ready with rows, we need to start with clearing the
rows already displayed in the DataGridView with the help of the following code:

With Me.DataGridView1
 'remove existing rows from grid
 .Rows.Clear()

Once the rows are cleared, the first issue is the header of the grid. The moment we
add columns to the grid, the header row gets automatically populated (with the
column names). Before adding columns to the header, we should know the number
of columns being added (just for the loop iterations) with the FieldCount property
of DataGridView. The following is the code fragment that finds the number of
columns and adds the columns to DataGridView:

Dim ColumnCount As Integer = rdr.FieldCount
For i As Integer = 0 To ColumnCount - 1
 .Columns.Add(rdr.GetName(i), rdr.GetName(i))
Next

All the columns get auto-sized based on the column header with the
following statement:

.AutoSizeColumnsMode =
 DataGridViewAutoSizeColumnsMode.ColumnHeader

Once the columns are added, we need to read every successive row from the
OracleDataReader and add it to the DataGridview. To add all column values at a
time, we make use of the GetValues() method of OracleDataReader to push all the
values in to an array and finally add the array itself as a row to the DataGridView.
The following code fragment accomplishes this.

While rdr.Read
 'get all row values into an array
 Dim objCells(ColumnCount - 1) As Object
 rdr.GetValues(objCells)
 'add array as a row to grid
 .Rows.Add(objCells)
End While

Retrieving Data from Oracle Using ODP.NET

[46]

The output for this code would look similar to the following figure:

Pulling Information Using Table Name
In all of the previous examples, the SELECT statement was used to retrieve a set
of rows. The SELECT statement is a good choice if you would like to retrieve only
specific columns or to include some complex combinations using sub-queries, joins
etc. You can also retrieve a complete table (without using a SELECT statement) by
setting the CommandType of OracleCommand to TableDirect. The following code
demonstrates the use of TableDirect:

Imports Oracle.DataAccess.Client

Public Class Form2
 Private Sub btnGetEmployees_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnGetEmployees.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 Dim SQL As String
 'build the SELECT statement

Chapter 3

[47]

 Dim cmd As New OracleCommand("emp", cn)
 cmd.CommandType = CommandType.TableDirect
 cmd.Connection.Open()
...
 End Sub
End Class

The default CommandType is Text, which accepts any SQL statement. When we
change it to TableDirect, it accepts only a table name. Another command type
available is StoredProcedure. It is mainly used when you want to execute stored
procedures using an OracleCommand object. (Working with PL/SQL stored
procedures is covered in Chapter 5.)

Retrieving Typed Data
While retrieving values from OracleDataReader, we can extract information
available in individual columns (of a particular row) either by using column ordinal
(position) values or column names.

Retrieving Typed Data Using Ordinals
ODP.NET provides data-specific enumerations through the namespace oracle.
DataAccess.types. This is specially useful if you are trying to retrieve very specific
data from the OracleDataReader.

For example, you can modify the code given previously to work with specific data
types as following:

Me.txtEname.Text = rdr.GetOracleString(1)
Me.txtSal.Text = rdr.GetFloat(5)
Me.txtJob.Text = rdr.GetOracleString(2)

Here we provide ordinal values (column numbers starting from 0) to retrieve the
data in a specific column. Apart from above data types, you also have the full
support of every native data type existing in ODP.NET!

Retrieving Typed Data Using Column Names
The strategy of working with column ordinals will not be an issue as long as we
know with what columns we are dealing with. But, sometimes, it is very dangerous
to play with it. If the underlying table structure gets modified, our application
becomes out of synch with the column ordinals. At the same time, using column
ordinals can make your code very difficult to follow. It is always suggested not to go
for column ordinals (unless we use it for looping purposes).

Retrieving Data from Oracle Using ODP.NET

[48]

However, the typed methods only accept column ordinals as parameters.
Fortunately, we can use the GetOrdinal() method to find the ordinal corresponding
to a particular column name as demonstrated in the following:

Me.txtEname.Text =
 rdr.GetOracleString(rdr.GetOrdinal("ename"))
Me.txtSal.Text = rdr.GetFloat(rdr.GetOrdinal("sal"))
Me.txtJob.Text =
 rdr.GetOracleString(rdr.GetOrdinal("job"))

Working with Data Tables and Data Sets
The OracleDataAdapter class is mainly used to populate data sets or data tables
for offline use. The OracleDataAdapter simply connects to the database, retrieves
the information, populates that information into datasets or data tables, and
finally disconnects the connection to the database. You can navigate through any
of those rows in any manner. You can modify (add or delete) any of those rows in
disconnected mode and finally update them back to the database using the same
OracleDataAdapter.

A set of rows can be populated into a data table and a set of data tables can be
grouped into a data set. Apart from grouping, a data set can also maintain offline
relationships (using DataRelation between data tables existing in it).

OracleDataAdapter primarily works with OracleConnection to connect to Oracle
database. It can also work with OracleCommand if necessary.

Retrieving Multiple Rows into a DataTable
Using OracleDataAdapter
Now that we understand about OracleDataAdapter, let us try to use it to retrieve all
the employees available in the emp table:

Imports Oracle.DataAccess.Client
Public Class Form4

 Private Sub btnGetEmployees_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnGetEmployees.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 Dim SQL As String

Chapter 3

[49]

 'build the SELECT statement
 SQL = String.Format("SELECT empno, ename, job,
 mgr, hiredate, sal, comm, deptno FROM emp")
 'create the dataadapter object
 Dim adp As New OracleDataAdapter(SQL, cn)
 'create the offline datatable
 Dim dt As New DataTable
 'fill the data table with rows
 adp.Fill(dt)
 'clear up the resources and work offline
 adp.Dispose()
 'check if it has any rows
 If dt.Rows.Count > 0 Then
 'simply bind datatable to grid
 Me.DataGridView1.DataSource = dt
 Else
 'display message if no rows found
 MessageBox.Show("Not found")
 Me.DataGridView1.Rows.Clear()
 End If
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
 End Sub
End Class

Once the OracleConnection is established, we need to start with the
OracleDataAdapter object as follows:

SQL = String.Format("SELECT empno, ename, job,
 mgr, hiredate, sal, comm, deptno FROM emp")
Dim adp As New OracleDataAdapter(SQL, cn)

You can understand from the above that OracleDataAdapter can be used directly
with a SELECT statement. You can also specify an OracleCommand object in place of a
SELECT statement if necessary.

To place data offline, we need to either work with DataSet or DataTable objects. In
this scenario, we will deal with a DataTable object, and it is created as follows:

Dim dt As New DataTable

Retrieving Data from Oracle Using ODP.NET

[50]

Once the DataTable object is created, we need to fill up all the rows using the
OracleDataAdapter object as follows:

adp.Fill(dt)

Once all the rows are available�������� in the DataTable object (which will always be
in memory), we can close (dispose) the OracleDataAdapter using the following
statement:

adp.Dispose()

The DataTable object contains a collection of DataRow objects corresponding to
each row populated into it. We can retrieve the number of rows available in the
DataTable object using the DataTable.Rows.Count property as follows:

If dt.Rows.Count > 0 Then
 'simply bind datatable to grid
 Me.DataGridView1.DataSource = dt
 Else
 'display message if no rows found
 MessageBox.Show("Not found")
 Me.DataGridView1.Rows.Clear()
End If

In the above code fragment, we are assigning the DataTable object as DataSource to
DataGridView. This would automatically populate entire DataGridView with all the
column names (as part of the header) and all rows.

The output for the above code would look similar to the following figure:

Chapter 3

[51]

Filling a DataTable Using OracleDataReader
So far, we have been filling data tables using OracleDataAdapter. ADO.NET 2.0
gives us the flexibility to fill a data table using OracleDataReader as well. The
following code gives you the details of all employees available in the emp table by
filling a data table using an OracleDataReader:

Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 Dim SQL As String
 Dim dt As New DataTable
 'build the SELECT statement
 SQL = String.Format("SELECT empno, ename, job,
 mgr, hiredate, sal, comm, deptno FROM emp")
 'create command object to work with SELECT
 Dim cmd As New OracleCommand(SQL, cn)
 'open the connection
 cmd.Connection.Open()
 'get the DataReader object from command object
 Dim rdr As OracleDataReader = _
 cmd.ExecuteReader(CommandBehavior.CloseConnection)
 'check if it has any rows
 If rdr.HasRows Then
 'simply bind datatable to grid
 dt.Load(rdr, LoadOption.OverwriteChanges)
 Me.DataGridView1.DataSource = dt
 Else
 'display message if no rows found
 MessageBox.Show("Not found")
 Me.DataGridView1.Rows.Clear()
 End If
 rdr.Close()
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try

Once the OracleConnection and OracleDataReader are created, we need to create
and fill a DataTable object using OracleDataReader itself. The following is the
statement that creates a DataTable object:

Dim dt As New DataTable

Chapter 3

[53]

 If dt.Rows.Count > 0 Then
 'extract the details
 Me.txtEname.Text = dt.Rows(0)("ename")
 Me.txtSal.Text = dt.Rows(0)("sal")
 Me.txtJob.Text = dt.Rows(0)("job")
 Else
 'display message if no rows found
 MessageBox.Show("Not found")
 End If

 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
 End Sub
End Class

Once the DataTable object is filled using OracleDataAdapter, we can directly
retrieve a particular row using the row index. Once the row is fetched, we extract
column values by providing column names for the rows as follows:

Me.txtEname.Text = dt.Rows(0)("ename")
Me.txtSal.Text = dt.Rows(0)("sal")
Me.txtJob.Text = dt.Rows(0)("job")

The output for the above code would look similar to the following figure:

Retrieving Data from Oracle Using ODP.NET

[54]

Working with DataTableReader
DataTableReader is complementary to a DataTable object, and is mainly used as a
type of Data Reader in the disconnected mode. The following is the modified code:

'create connection to db
Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
Try
 Dim SQL As String
 'build the SELECT statement
 SQL = String.Format("SELECT ename, sal, job FROM emp
 WHERE empno={0}", Me.txtEmpno.Text)
 'create the DataAdapter object
 Dim adp As New OracleDataAdapter(SQL, cn)
 'create the offline datatable
 Dim dt As New DataTable
 'fill the data table with rows
 adp.Fill(dt)
 'clear up the resources and work offline
 adp.Dispose()
 Dim dtr As DataTableReader = dt.CreateDataReader

 'check if it has any rows
 If dtr.HasRows Then
 'read the first row
 dtr.Read()
 'extract the details
 Me.txtEname.Text = dtr("ename")
 Me.txtSal.Text = dtr("sal")
 Me.txtJob.Text = dtr("job")
 Else
 'display message if no rows found
 MessageBox.Show("Not found")
 End If

Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
End Try

Chapter 3

[55]

You can observe the highlighted code, which creates a DataTableReader object by
calling the CreateDataReader method related to the DataTable object. Once the
DataTableReader is created, we can directly retrieve the column values with the
specified column names as follows:

Me.txtEname.Text = dtr("ename")
Me.txtSal.Text = dtr("sal")
Me.txtJob.Text = dtr("job")

Populating a Dataset with a Single Data Table
A dataset is simply a group of data tables. These data tables can be identified with
their own unique names within a dataset. You can also add relations between data
tables available in a dataset.

The following code gives you the details of all employees available in the emp ������table
by populating a dataset with only a single data table using OracleDataAdapter:

Imports Oracle.DataAccess.Client
Public Class Form6

 Private Sub btnGetEmployees_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnGetEmployees.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 Dim SQL As String
 'build the SELECT statement
 SQL = String.Format("SELECT empno, ename, job,
 mgr, hiredate, sal, comm, deptno FROM emp")
 'create the dataadapter object
 Dim adp As New OracleDataAdapter(SQL, cn)
 'create the offline datatable
 Dim ds As New DataSet
 'fill the data set with a data table named emp
 adp.Fill(ds, "emp")
 'clear up the resources and work offline
 adp.Dispose()
 'check if it has any rows
 If ds.Tables("emp").Rows.Count > 0 Then
 'simply bind datatable to grid
 Me.DataGridView1.DataSource = ds.Tables("emp")

Retrieving Data from Oracle Using ODP.NET

[56]

 Else
 'display message if no rows found
 MessageBox.Show("Not found")
 Me.DataGridView1.Rows.Clear()
 End If
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
 End Sub
End Class

If you can observe the highlighted code in the above script, we are creating a new
DataSet object, populating it with a DataTable named "emp" (which contains all the
rows) and finally assigning the same DataTable to the grid. The output for the above
code would look similar to the figure in the section Retrieving Multiple Rows into a
Data Table Using OracleDataAdapter.

Populating a Dataset with Multiple Data
Tables
Now, let us add more than one data table into a dataset������������������������������� . ����������������������������� The following code retrieves
a list of department details into a data table named Departments and another list of
employee details into a data table named Employees:

Imports Oracle.DataAccess.Client
Public Class Form7

 Private Sub btnData_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnData.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 Dim ds As New DataSet
 Dim adp As OracleDataAdapter

 adp = New OracleDataAdapter("SELECT deptno,
 dname, loc FROM Dept", cn)
 adp.Fill(ds, "Departments")

Chapter 3

[57]

 adp.Dispose()
 adp = New OracleDataAdapter("SELECT empno, ename,
 job, mgr, hiredate, sal, comm, deptno FROM
 Emp", cn)
 adp.Fill(ds, "Employees")
 adp.Dispose()

 Me.DataGridView1.DataSource = ds
 Me.DataGridView1.DataMember = "Departments"

 Me.DataGridView2.DataSource =
 ds.Tables("Employees")
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
 End Sub
End Class

From the above highlighted code, you can easily observe that we are retrieving
two different result sets (identified by Departments and Employees) into the same
dataset. The following code fragment creates the Departments data table:

adp = New OracleDataAdapter("SELECT deptno, dname,
 loc FROM Dept", cn)
adp.Fill(ds, "Departments")
adp.Dispose()

The following code fragment creates the Employees data table:

adp = New OracleDataAdapter("SELECT empno, ename, job,
 mgr, hiredate, sal, comm, deptno FROM Emp", cn)
adp.Fill(ds, "Employees")
adp.Dispose()

Those two result sets are automatically created as two data tables within the same
dataset. Once the dataset is populated, we can present them with two different grids
(two different methods) as follows:

Me.DataGridView1.DataSource = ds
Me.DataGridView1.DataMember = "Departments"
Me.DataGridView2.DataSource = ds.Tables("Employees")

Retrieving Data from Oracle Using ODP.NET

[58]

The output for this code would look similar to the following figure:

Presenting Master-Detail Information Using a
Dataset
As mentioned before, a DataSet object can have its own ����������������������� relations ������������� between data
tables existing in it. We can add these relations dynamically at the client side
(within an application), to represent master-detail (or hierarchical) information.
The following code gives the list of employees (in the bottom grid) based on the
department you choose in the top grid:

Chapter 3

[59]

Imports Oracle.DataAccess.Client
Public Class Form8

 Private Sub btnData_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnData.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 Dim ds As New DataSet
 Dim adp As OracleDataAdapter

 adp = New OracleDataAdapter("SELECT deptno,
 dname, loc FROM Dept", cn)
 adp.Fill(ds, "Departments")
 adp.Dispose()

 adp = New OracleDataAdapter("SELECT empno, ename,
 job, mgr, hiredate, sal, comm, deptno FROM
 Emp", cn)
 adp.Fill(ds, "Employees")
 adp.Dispose()

 ds.Relations.Add(New DataRelation("FK_Emp_Dept",
 ds.Tables("Departments").Columns("Deptno"),
 ds.Tables("Employees").Columns("Deptno")))
 Dim bsMaster As New BindingSource(ds, _
 "Departments")
 Dim bsChild As New BindingSource(bsMaster, _
 "FK_Emp_Dept")
 Me.DataGridView1.DataSource = bsMaster
 Me.DataGridView2.DataSource = bsChild

 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
 End Sub
End Class

Chapter 3

[61]

You can observe that this screen displays only the employees working in department
number 20 as that is selected in the top grid.

More About the OracleCommand Object
Till now, we have seen OracleCommand working with OracleDataReader.
OracleCommand is not simply meant for OracleDataReader. It has got a lot of
functionality for itself. Let us see few of the most commonly used features of
OracleCommand in this section. We will further go into depth in subsequent sections
and chapters.

Retrieving a Single Value from the Database
As we already covered working with single or multiple rows, we need to work on
retrieving a single value from database very effectively. We have already retrieved
row values in our previous examples, but those examples are more suitable when
you are trying to deal with entire rows.

OracleCommand is equipped with a method called ExecuteScalar, which is mainly
used to retrieve single values from the database very efficiently thus improving the
performance. The following example focuses on this:

Imports Oracle.DataAccess.Client

Public Class Form9
 Private Sub btnEmployeeCount_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnEmployeeCount.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 'create the command object
 Dim cmd As New OracleCommand("SELECT COUNT(*) _
 FROM emp", cn)
 'open the connection from command
 cmd.Connection.Open()
 'execute the command and get the single value
 'result
 Dim result As String = cmd.ExecuteScalar
 'clear the resources
 cmd.Connection.Close()
 cmd.Dispose()
 'display the output

Retrieving Data from Oracle Using ODP.NET

[62]

 MessageBox.Show("No. of Employees: " & result)
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
 End Sub
End Class

The highlighted line in the above code simply executes the SELECT command,
which retrieves the number of rows from the emp table and assigns this value to the
result variable.

Handling Nulls when Executing with ExecuteScalar
The most important issue to remember is that ExecuteScalar simply returns an
object type of data. The object refers to any data type within .NET. If the data type
of your variable matches with the type of object returned by ExecuteScalar, an
implicit (automatic) conversion takes place. There would not be a problem as long
as the data types match. However, it would be a problem if the result is NULL. Let us
have an example that accepts an employee number from the user and gives his or
her commission:

Imports Oracle.DataAccess.Client

Public Class Form12

 Private Sub btnGetCommission_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnGetCommission.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 'create the command object
 Dim cmd As New OracleCommand("SELECT comm FROM _
 emp WHERE empno=" & Me.txtEmpno.Text, cn)
 'open the connection from command
 cmd.Connection.Open()
 'execute the command and get the single value
 'result
 Dim result As Double = cmd.ExecuteScalar
 cmd.Connection.Close()

Chapter 3

[63]

 cmd.Dispose()
 'display the output
 MessageBox.Show("Commission: " & result)
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
 End Sub

In the highlighted statement above, we are expecting a numeric (or double) value
as the result. If the ExecuteScalar returns a double value, it would never be a
problem. What if it returns a NULL? The following is the error you would receive:

To deal with the above error, we may have to include our own condition to test
against nulls in the output. Just replace the highlighted code above with the
following two statements and it should work fine now:

Dim result As Object = cmd.ExecuteScalar
If IsDBNull(result) Then result = 0

You can observe from the above two lines that we are receiving the value in the form
of an object and assigning a value zero if it is null.

Handling Nulls when Working with OracleDataReader
When we work with OracleDataReader (or for that matter, even with data rows in
a data table), we may come across nulls. The following is the efficient way to deal in
with such scenarios:

'create connection to db
Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
Try

Retrieving Data from Oracle Using ODP.NET

[64]

 'create the command object
 Dim cmd As New OracleCommand("SELECT comm FROM _
 emp WHERE empno=" & Me.txtEmpno.Text, cn)
 'open the connection from command
 cmd.Connection.Open()
 'create the data reader
 Dim rdr As OracleDataReader = _
 cmd.ExecuteReader(CommandBehavior.CloseConnection)
 'check if it has any rows
 If rdr.HasRows Then
 'read the first row
 rdr.Read()
 'extract the details
 Dim result As Double = IIf(IsDBNull(rdr("comm")), _
 0, rdr("comm"))
 MessageBox.Show("Commission: " & result)
 Else
 'display message if no rows found
 MessageBox.Show("Not found")
 End If
 rdr.Dispose()
Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
End Try

You can observe that we are making use of the IIF function in Visual Basic.NET to
make the inline comparison. We can also use the rdr.isDBNull method to achieve
the same.

Working with Bind Variables together with
OracleParameter
With the help of OracleParameter, you can include bind variables within any SQL
statement. These bind variables are nothing but run-time query parameters. The
values in the SQL statement are bound at run time when we use bind variables.

If the same SQL statement is being continuously used (with different values), it is
recommended to work with bind variables. When you use bind variables in SQL
statements, the statements would automatically cache at server level to improve
performance during repeated database operations of the same type.

Chapter 3

[65]

Following is a simple example that includes a bind variable in a SELECT statement
followed by OracleParameter,�� which fills the bind variable with a value:

Imports Oracle.DataAccess.Client

Public Class Form11

 Private Sub btnGetEmployee_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnGetEmployee.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 'create command object to work with SELECT

 Dim cmd As New OracleCommand("SELECT empno, _
 ename, sal, job FROM emp WHERE empno=:empno", cn)
 cmd.Parameters.Add(New OracleParameter(":empno",
 Me.txtEmpno.Text))

 'open the connection
 cmd.Connection.Open()
 'get the DataReader object from command object
 Dim rdr As OracleDataReader = _
 cmd.ExecuteReader(CommandBehavior.CloseConnection)
 'check if it has any rows
 If rdr.HasRows Then
 'read the first row
 rdr.Read()
 'extract the details
 Me.txtEmpno.Text = rdr("empno")
 Me.txtEname.Text = rdr("ename")
 Me.txtSal.Text = rdr("sal")
 Me.txtJob.Text = rdr("job")
 Else
 'display message if no rows found
 MessageBox.Show("Not found")
 End If
 'clear up the resources
 rdr.Close()
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open

Retrieving Data from Oracle Using ODP.NET

[66]

 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
 End Sub
End Class

Within the above highlighted code,:empno is the bind variable. We are placing (or
assigning) a value into that bind variable using OracleParameter.

If you want to provide a very clear OracleParameter, you can even write something
like the following code:

Dim cmd As New OracleCommand("SELECT empno, ename, _
 sal, deptno FROM emp WHERE ename=:ename", cn)
Dim pEmpno As New OracleParameter
With pEmpno
 .ParameterName = ":ename"
 .OracleDbType = OracleDbType.Varchar2
 .Size = 20
 .Value = Me.txtEname.Text
End With
cmd.Parameters.Add(pEmpno)

In the above code fragment, we are working with a bind variable :ename, which is
of type VARCHAR2 and size 20. We will deal with OracleParemeter in more detail in
subsequent chapters.

Working with OracleDataAdapter together with
OracleCommand
In the previous examples, we worked with OracleDataAdapter by
directly specifying SQL statements. You can also pass OracleCommand to
OracleDataAdapter. This is very useful if you deal with stored procedures (covered
in Chapter 5) or bind variables together with OracleDataAdapter.

The following is a simple example that uses OracleCommand together with
OracleDataAdapter:

Imports Oracle.DataAccess.Client

Public Class Form10

 Private Sub btnGetEmployees_Click_1(ByVal sender As

Chapter 3

[67]

 System.Object, ByVal e As System.EventArgs) Handles
 btnGetEmployees.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 'create command object to work with SELECT
 Dim cmd As New OracleCommand("SELECT empno, _
 ename, job, mgr, hiredate, sal, comm, deptno _
 FROM emp", cn)
 'create DataAdapter from command
 Dim adp As New OracleDataAdapter(cmd)
 'create the offline data table
 Dim dt As New DataTable
 'fill the data table with data and clear resources
 adp.Fill(dt)
 adp.Dispose()
 'display the data
 Me.DataGridView1.DataSource = dt
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try

 End Sub
End Class

You can observe from the above highlighted code that we created an OracleCommand
object, and the OracleDataAdapter can accept OracleCommand as a parameter.

Techniques to Improve Performance
while Retrieving Data
Performance tuning is a great subject in Oracle. Volumes of books would not be
enough to cover every aspect of performance tuning in Oracle. However, in this
section, we will only discuss the fundamental performance techniques while
working with ODP.NET.

Chapter 3

[69]

In any case, ODP.NET by default fetches only 64K at a time. So, even though you
try to execute a SELECT statement that retrieves all rows in a table, it retrieves only
chunks of 64K based on demand. You can customize this fetch size by issuing the
following statement:

cmd.FetchSize = cmd.RowSize * 25

The above makes sure that it retrieves a maximum of 25 rows per round-trip to the
server. You can observe that the FetchSize is completely based on RowSize and not
simply on the number of rows. Apart from modifying the FetchSize, try to provide
filters in your user interface to minimize the data fetching from server.

If you are working continuously with a similar set of SQL statements (like INSERT
in a loop etc.) in a routine, it is always suggested to take advantage of statement
caching. A cache is nothing but some high-performance memory at server. If you
cache the frequently used SQL statements, a copy of such SQL statements gets stored
at that high-performance memory and gets executed (with different values) every
time you issue the same SQL statement. This removes the burden at the server of
parsing and preparing an execution plan for every SQL statement and improves the
performance tremendously. Generally, when you use the concept of bind variables
together with OracleParameter, the statement caching automatically takes place.

Finally, when developing business logic, it is suggested to design scalable business
components, which can take advantage of features like automatic object pooling,
loosely coupled behavior, caching, persistence, accessibility permissions (security),
transactions etc. Designing and implementing business components (like COM+,
MSMQ, Windows Services, Web Services, .NET Remoting, etc.) are very common
in enterprise applications. Selecting a proper approach for implementing a business
component is the main backbone at the middle tier (if you are developing multi-tier
applications).

Summary
In this chapter, we have seen several methods to retrieve data from Oracle database.
We worked with the core ODP.NET classes like OracleCommand, OracleDataReader,
OracleDataAdapter, OracleParameter,�������������������������������������� etc., and the most important ADO.NET
classes like Dataset, DataTable, DataRow,����� etc.

Manipulating Data in Oracle
Using ODP.NET

The most common manipulations for any database are inserting or adding,
updating, and deleting of data. The fundamental life-cycle of a database purely
depends on these three manipulations. In this chapter, we will mainly cover
the following:

Inserting, updating, and deleting rows in a database
Working with DDL statements
Statement caching
Array binding
Working with offline data
Dealing with transactions
Handling Oracle errors (exception handling)

Executing DML or DDL Statements Using
OracleCommand
The most commonly used DML (Data Manipulation Language) commands to
manipulate data at Oracle are INSERT, UPDATE, and DELETE. I assume that you are
already familiar with the syntax and usage of those commands. Let us see how to get
those statements executed through OracleCommand.

•

•

•

•

•

•

•

Manipulating Data in Oracle Using ODP.NET

[72]

Using INSERT with OracleCommand
Let us start with inserting data into Oracle database using OracleCommand. For the
sake of executing DML statements that do not return any result sets, OracleCommand
offers a method called ExecuteNonQuery. This is the most important method that is
used to execute any Oracle commands (including stored procedures), which do not
return any result set.

The following code inserts a new row into the emp ������table:

Private Sub btnAdd_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles btnAdd.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 Dim SQL As String
 'build the INSERT statement
 Dim sb As New System.Text.StringBuilder
 sb.Append(" INSERT INTO emp")
 sb.Append(" (empno, ename, sal, deptno)")
 sb.Append(" VALUES")
 sb.Append(" ({0},'{1}',{2},{3})")
 SQL = String.Format(sb.ToString, Me.txtEmpno.Text,
 Me.txtEname.Text, Me.txtSal.Text,
 Me.txtDeptno.Text)
 'create command object
 Dim cmd As New OracleCommand(SQL, cn)
 'open the connection
 cmd.Connection.Open()
 'execute the command
 Dim result As Integer = cmd.ExecuteNonQuery()
 'close the connection
 cmd.Connection.Close()
 'display the result
 If result = 0 Then
 MessageBox.Show("No rows inserted")
 Else
 MessageBox.Show("Succesfully inserted")
 End If
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If

Chapter 4

[73]

 End Try
 End Sub

If you observe the highlighted statement in the above code, we are making use of
ExecuteNonQuery to execute the INSERT command. It is necessary as INSERT is not a
query that returns any information. However, ExecuteNonQuery returns the number
of rows affected by the DML statement provided to it. In this case, if the INSERT
statement adds only one row, the value of result would be 1. Once the above code
gets executed, you are likely to see the following output:

Using UPDATE with OracleCommand
The code for using the UPDATE statement is almost identical to the code for the
INSERT statement, except we use the UPDATE statement!

Private Sub btnSave_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles btnSave.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 Dim SQL As String
 'build the UPDATE statement
 Dim sb As New System.Text.StringBuilder
 sb.Append(" UPDATE emp SET")
 sb.Append(" ename = '{1}'")
 sb.Append(",sal = {2}")
 sb.Append(",deptno = {3}")

Manipulating Data in Oracle Using ODP.NET

[74]

 sb.Append(" WHERE empno = {0}")
 SQL = String.Format(sb.ToString, Me.txtEmpno.Text,
 Me.txtEname.Text, Me.txtSal.Text,
 Me.txtDeptno.Text)
 'create command object
 Dim cmd As New OracleCommand(SQL, cn)
 'open the connection
 cmd.Connection.Open()
 'execute the command
 Dim result As Integer = cmd.ExecuteNonQuery()
 'close the connection
 cmd.Connection.Close()
 'display the result
 If result = 0 Then
 MessageBox.Show("No rows updated")
 Else
 MessageBox.Show("Succesfully updated")
 End If
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
 End Sub

Once the above code gets executed, you are likely to see the following output:

Chapter 4

[75]

Using DELETE with OracleCommand
The code for DELETE is almost the same as listed previously except that we will
replace UPDATE with DELETE as shown below:

Private Sub btnDelete_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnDelete.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 Dim SQL As String
 'build the DELETE statement
 Dim sb As New System.Text.StringBuilder
 sb.Append(" DELETE FROM emp")
 sb.Append(" WHERE empno = {0}")
 SQL = String.Format(sb.ToString, Me.txtEmpno.Text)
 'create command object
 Dim cmd As New OracleCommand(SQL, cn)
 'open the connection
 cmd.Connection.Open()
 'execute the command
 Dim result As Integer = cmd.ExecuteNonQuery()
 'close the connection
 cmd.Connection.Close()
 'display the result
 If result = 0 Then
 MessageBox.Show("No rows deleted")
 Else
 MessageBox.Show("Succesfully deleted")
 End If
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
 End Sub

Chapter 4

[77]

 sb.Append(" INSERT INTO emp")
 sb.Append(" (empno, ename, sal, deptno)")
 sb.Append(" VALUES")
 sb.Append(" (:empno, :ename, :sal, :deptno)")
 SQL = sb.ToString
 'create command object
 Dim cmd As New OracleCommand(SQL, cn)
 'open the connection
 cmd.Connection.Open()
 For i As Integer = 1 To 8
 cmd.Parameters.Clear()
 cmd.Parameters.Add(New OracleParameter(":empno",
 i + 1000))
 cmd.Parameters.Add(New OracleParameter(":ename",
 "dummy " & i))
 cmd.Parameters.Add(New OracleParameter(":sal",
 i * 1000))
 cmd.Parameters.Add(New
 OracleParameter(":deptno", 20))
 cmd.ExecuteNonQuery()
 Next
 'close the connection
 cmd.Connection.Close()
 'display the result
 MessageBox.Show("Succesfully inserted")
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
 End Sub

We started with building an INSERT statement with bind variables as shown below:

Dim sb As New System.Text.StringBuilder
sb.Append(" INSERT INTO emp")
sb.Append(" (empno, ename, sal, deptno)")
sb.Append(" VALUES")
sb.Append(" (:empno, :ename, :sal, :deptno)")

Manipulating Data in Oracle Using ODP.NET

[78]

To fill the values of each bind variable, we use the OracleParameter class, which
accepts both bind variable name and value as following:

cmd.Parameters.Add(New OracleParameter(":empno",
 i + 1000))
cmd.Parameters.Add(New OracleParameter(":ename",
 "dummy " & i))
cmd.Parameters.Add(New OracleParameter(":sal",
 i * 1000))
cmd.Parameters.Add(New OracleParameter(":deptno", 20))

Multiple Inserts Using Array Binding
Another method to insert rows repeatedly is array binding. Using this technique,
you can store all the values (based on the number of rows to be inserted) of each
column in different arrays. The maximum size of all the arrays (indirectly columns)
would be the maximum rows you are trying to insert. Once you fill all the arrays
with values (treat each array as a column of data), you can directly bind them as
parameters to OracleCommand. The rest would be automatically taken care of by the
OracleCommand.

The following example code uses array binding to achieve multiple inserts:

Private Sub btnArrayBind_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnArrayBind.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 Dim SQL As String
 'build the INSERT statement
 Dim sb As New System.Text.StringBuilder
 sb.Append(" INSERT INTO emp")
 sb.Append(" (empno, ename, sal, deptno)")
 sb.Append(" VALUES")
 sb.Append(" (:empno, :ename, :sal, :deptno)")
 SQL = sb.ToString
 'create array structures to hold 8 rows
 �������������������������� Dim ar_empno(7) As Integer
 Dim ar_ename(7) As String
 Dim ar_sal(7) As Integer
 Dim ar_deptno(7) As Integer

Chapter 4

[79]

 ������������������������������������ 'fill the array structures with rows
 For i As Integer = 0 To 7
 ���������������������� ar_empno(i) = i + 1000
 ar_ename(i) = "dummy " & i
 ar_sal(i) = i * 1000
 ar_deptno(i) = 20
 ����Next
 'define parameters
 Dim p_empno As New OracleParameter
 p_empno.OracleDbType = OracleDbType.Int16
 p_empno.Value = ar_empno
 Dim p_ename As New OracleParameter
 p_ename.OracleDbType = OracleDbType.Varchar2
 p_ename.Value = ar_ename
 Dim p_sal As New OracleParameter
 p_sal.OracleDbType = OracleDbType.Double
 p_sal.Value = ar_sal
 Dim p_deptno As New OracleParameter
 p_deptno.OracleDbType = OracleDbType.Int16
 p_deptno.Value = ar_deptno
 'create command object
 Dim cmd As New OracleCommand(SQL, cn)
 cmd.ArrayBindCount = 8
 'rows to insert through binding
 'add parameters to command
 cmd.Parameters.Add(p_empno)
 cmd.Parameters.Add(p_ename)
 cmd.Parameters.Add(p_sal)
 cmd.Parameters.Add(p_deptno)
 'open the connection
 cmd.Connection.Open()
 Dim result As Integer = cmd.ExecuteNonQuery()
 'close the connection
 cmd.Connection.Close()
 'display the result
 MessageBox.Show("Succesfully inserted " &
 result & " rows")
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
 End Sub

Manipulating Data in Oracle Using ODP.NET

[80]

Now we will take a detailed look at this code. As we would like to insert eight rows
(using array binding), we need to create arrays that can hold eight values each for
each column. That is achieved as follows:

Dim ar_empno(7) As Integer
Dim ar_ename(7) As String
Dim ar_sal(7) As Integer
Dim ar_deptno(7) As Integer

Now, we need to fill in the arrays with some values. We will use a loop to fill up the
arrays as in the following snippet:

For i As Integer = 0 To 7
 ���������������������� ar_empno(i) = i + 1000
 ar_ename(i) = "dummy " & i
 ar_sal(i) = i * 1000
 ar_deptno(i) = 20
 ����Next

Once the arrays are filled, we need to assign each of these arrays to different
OracleParameter objects (one OracleParameter object for each column). The
following code fragment creates an OracleParameter object for the empno column
and assigns the array for it:

Dim p_empno As New OracleParameter
p_empno.OracleDbType = OracleDbType.Int16
p_empno.Value = ar_empno

Once the OracleParameter objects are ready, we need to add all of these parameters
to an OracleCommand object as shown in the following code:

Dim cmd As New OracleCommand(SQL, cn)
cmd.ArrayBindCount = 8 'rows to insert through binding
'add parameters to command
cmd.Parameters.Add(p_empno)
cmd.Parameters.Add(p_ename)
cmd.Parameters.Add(p_sal)
cmd.Parameters.Add(p_deptno)

Observe the highlighted statement in the above code fragment; that is to inform the
OracleCommand object that the arrays are made up of eight values.

Chapter 4

[81]

Creating an Oracle Table Dynamically Using
ODP.NET
You can work with almost any DDL command using the same method you used
previously i.e. ExecuteNonQuery with OracleCommand. We can just replace the DML
command we used earlier with a DDL command.

The following example creates a table in Oracle database dynamically from
within .NET:

Private Sub btnCreateTable_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnCreateTable.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 Dim SQL As String
 'build the CREATE TABLE statement
 Dim sb As New System.Text.StringBuilder
 sb.Append(" CREATE TABLE MyEmp")
 sb.Append(" (")
 sb.Append(" empno NUMBER(4),")
 sb.Append(" ename VARCHAR2(20)")
 sb.Append(")")
 SQL = sb.ToString
 'create command object
 Dim cmd As New OracleCommand(SQL, cn)
 'open the connection
 cmd.Connection.Open()
 'execute the DDL command
 cmd.ExecuteNonQuery()
 'close the connection
 cmd.Connection.Close()
 'display the result
 MessageBox.Show("Succesfully created")
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

Manipulating Data in Oracle Using ODP.NET

[82]

Updating Offline Data to the Database
Using OracleDataAdapter
When you use OracleDataAdapter, you will generally fill information into either
a dataset or data table. A dataset or data table resides in client memory (offline)
without having any connection to Oracle database. You can make changes to the data
available at the client (in offline mode) and finally update all of those modifications
to the database using the Update method of OracleDataAdapter.

The following is a demonstration, which adds a new row to a data table (in offline
mode) and later updates it to the database using the Update method:

Private Sub btnDatasetUpdate_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnDatasetUpdate.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try

 'build the INSERT statement
 Dim sb As New System.Text.StringBuilder
 sb.Append(" INSERT INTO emp")
 sb.Append(" (empno, ename, sal, deptno)")
 sb.Append(" VALUES")
 sb.Append(" (:empno, :ename, :sal, :deptno)")
 Dim sqlInsert As String = sb.ToString

 'build the SELECT statement
 sb = New System.Text.StringBuilder
 sb.Append(" SELECT")
 sb.Append(" empno, ename, sal, deptno")
 sb.Append(" FROM emp")
 Dim sqlSelect As String = sb.ToString

 'create command objects
 Dim cmdSelect As New OracleCommand(sqlSelect, cn)
 Dim cmdInsert As New OracleCommand(sqlInsert, cn)
 'attach parameters to insert command object
 With cmdInsert.Parameters
 .Add(New OracleParameter(":empno",
 OracleDbType.Int16, 4, "empno"))
 .Add(New OracleParameter(":ename",
 OracleDbType.Varchar2, 12, "ename"))
 .Add(New OracleParameter(":sal",
 OracleDbType.Decimal, 0, "sal"))

Chapter 4

[83]

 .Add(New OraceParameter(":deptno",
 OracleDbType.Int16, 4, "deptno"))
 End With

 'create data adapter
 Dim da As New OracleDataAdapter
 'assign command objects to data adapter
 da.SelectCommand = cmdSelect
 da.InsertCommand = cmdInsert
 'create and fill the datatable
 Dim dt As New DataTable
 da.Fill(dt)
 'modify data in datatable by adding
 'a new offline row
 ����������������������������� Dim dr As DataRow = dt.NewRow
 ������������������ dr("empno") = 1001
 dr("ename") = "Jagadish"
 dr("sal") = 1300
 dr("deptno") = 20
 dt.Rows.Add(dr)
 'update the offline row back to database
 da.Update(dt)
 'clear resources
 da.Dispose()
 'display the result
 MessageBox.Show("Updated succesfully")
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

OracleDataAdapter doesn't know any commands by itself. It is our responsibility to
let OracleDataAdapter know about how to retrieve, insert, update, or delete data. In
the above case, we just assigned two command objects (one each for retrieving and
inserting) to OracleDataAdapter. This is done as follows:

'create data adapter
Dim da As New OracleDataAdapter
'assign command objects to data adapter
da.SelectCommand = cmdSelect
da.InsertCommand = cmdInsert

Chapter 4

[85]

 Dim sb As New System.Text.StringBuilder
 sb.Append(" SELECT")
 sb.Append(" empno, ename, sal, deptno")
 sb.Append(" FROM emp")
 Dim sqlSelect As String = sb.ToString

 'create command objects
 Dim cmdSelect As New OracleCommand(sqlSelect, cn)

 �������������������� 'create data adapter
 Dim da As New OracleDataAdapter
 ��������������������������������������� 'assign command objects to data adapter
 da.SelectCommand = cmdSelect
 Dim CommBuilder As New OracleCommandBuilder(da)
 'create and fill the datatable
 Dim dt As New DataTable
 da.Fill(dt)
 'modify data in datatable by adding
 'a new offline row
 ����������������������������� Dim dr As DataRow = dt.NewRow
 ������������������ dr("empno") = 2001
 dr("ename") = "Sunitha"
 dr("sal") = 1300
 dr("deptno") = 20
 dt.Rows.Add(dr)
 'update the offline row back to database
 da.Update(dt)
 'clear resources
 da.Dispose()
 'display the result
 MessageBox.Show("Updated succesfully")
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
 End Sub

The highlighted statement in the above code does the entire magic of
generating automatic INSERT, UPDATE, ����and DELETE statements internally for the
OracleDataAdapter.

Manipulating Data in Oracle Using ODP.NET

[86]

Working with Transactions Using ODP.NET
A transaction is simply a set of data operations (like some inserts, updates, or deletes,
or combinations of them), where all of the operations must be successfully executed
or none of them will be successful. To work with transactions using ODP.NET, we
need to use the OracleTransaction class.

To demonstrate a transaction example, I added two sample tables: stock ����and sales.
The stock ����������������������� table looks as follows:

The sales ��� table looks something like the following:

The following code adds a row into the sales table and updates a row in the
stock table as part of a transaction. We are trying to do two operations in a single
transaction. If any part of the operation fails, the whole transaction must be canceled.

Private Sub btnGenTransaction_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnGenTransaction.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 'create transaction object
 Dim trans As OracleTransaction = Nothing
 Try
 Dim sqlInsertSales As String
 Dim sb As New System.Text.StringBuilder
 sb.Append(" INSERT INTO sales")
 sb.Append(" (orderno, customername, itemid, qty)")
 sb.Append(" VALUES")
 sb.Append(" ({0},'{1}',{2},{3})")
 sqlInsertSales = String.Format(sb.ToString,
 202, "Winner", 1002, 3)
 Dim sqlUpdateStock As String
 sb = New System.Text.StringBuilder

Chapter 4

[87]

 sb.Append(" UPDATE stock SET")
 sb.Append(" qty = qty - {1}")
 sb.Append(" WHERE")
 sb.Append(" itemid = {0}")
 sqlUpdateStock = String.Format(sb.ToString,
 1002, 3)

 'open the connection
 cn.Open()
 'begin the transaction
 trans = cn.BeginTransaction
 'create command objects
 Dim cmdInsertSales As New _
 OracleCommand(sqlInsertSales, cn)
 Dim cmdUpdateStock As New _
 OracleCommand(sqlUpdateStock, cn)
 'execute the commands
 cmdInsertSales.ExecuteNonQuery()
 cmdUpdateStock.ExecuteNonQuery()
 'commit the transaction
 trans.Commit()
 'close the connection
 cn.Close()
 'display the result
 MessageBox.Show("Transaction Succesful")
 Catch ex As Exception
 If Not trans Is Nothing Then
 'rollback the transaction
 trans.Rollback()
 End If

 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
 End Sub

For any transaction, we must first begin it, do a sequence of operations, and then
commit it. If any error occurs, the transaction needs to be rolled back. This is
achieved by using the highlighted statements in the above code. If you really want to
check the transaction, try modifying the UPDATE statement above with a syntax error
(simply replace stock with stock2). After execution, you will observe that the sales
table did not get inserted with any new row (even though that is the first command
issued to execute).

Manipulating Data in Oracle Using ODP.NET

[88]

Handling Oracle Errors and Exceptions
In all of the previous examples, we simply used only the Exception class, which is
the ancestral error handling class in .NET. ODP.NET also includes its own exception
class OracleException, to deal with errors (received from Oracle database) in detail.

Displaying a Single or First Error
The following code gives you the error details when we try to execute the INSERT
statement (which is wrong):

Private Sub btnSingleError_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnSingleError.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 Dim SQL As String
 'build the INSERT statement
 Dim sb As New System.Text.StringBuilder
 sb.Append(" INSERT INTO emp2")
 sb.Append(" (empno, ename, sal, deptno)")
 sb.Append(" VALUES")
 sb.Append(" ({0},'{1}',{2},{3})")
 SQL = String.Format(sb.ToString, 1001,
 "Jagadish", 1300, 20)
 'create command object
 Dim cmd As New OracleCommand(SQL, cn)
 'open the connection
 cmd.Connection.Open()
 'execute the command
 Dim result As Integer = cmd.ExecuteNonQuery()
 'close the connection
 cmd.Connection.Close()
 'display the result
 If result = 0 Then
 MessageBox.Show("No rows inserted")
 Else
 MessageBox.Show("Succesfully inserted")
 End If
 Catch ex As OracleException
 'display if any error occurs
 Dim sb As New System.Text.StringBuilder

Chapter 4

[89]

 sb.Append("Error occurred at:" &
 ControlChars.NewLine)
 sb.Append("-------------------------------
 ---------" & ControlChars.NewLine)
 sb.Append("Source: " & ex.Source &
 ControlChars.NewLine)
 sb.Append("Data Source: " & ex.DataSource &
 ControlChars.NewLine)
 sb.Append("Error Number: " & ex.Number &
 ControlChars.NewLine)
 sb.Append("Procedure: " & ex.Procedure &
 ControlChars.NewLine)
 sb.Append("Message: " & ex.Message)
 MessageBox.Show(sb.ToString)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

You can observe the above highlighted code, which makes use of the
OracleException class. It contains the entire information of the error raised during
execution (run time). The output for the above code looks like the following:

Displaying Multiple Errors
OracleException maintains an OracleErrorCollection (a collection of
OracleError instances) to deal with more errors. If an OracleException contains
more than one error message, you can retrieve all of them using the error collection
as follows:

Manipulating Data in Oracle Using ODP.NET

[90]

Private Sub btnMultipleErrors_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnMultipleErrors.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 Dim SQL As String
 'build the INSERT statement
 Dim sb As New System.Text.StringBuilder
 sb.Append(" INSERT INTO emp")
 sb.Append(" (empno, ename, sal, deptno)")
 sb.Append(" VALUES")
 sb.Append(" (:empno, :ename, :sal, :deptno)")
 SQL = sb.ToString
 'create array structures to hold 8 rows
 �������������������������� Dim ar_empno(7) As Integer
 Dim ar_ename(7) As String
 Dim ar_sal(7) As Integer
 Dim ar_deptno(7) As Integer
 ������������������������������������ 'fill the array structures with rows
 For i As Integer = 0 To 7
 ar_empno(i) = i + 1000
 ar_ename(i) = "too many number of chars here " _
 ��� & i
 �������������������� ar_sal(i) = i * 1000
 ar_deptno(i) = 20
 ����Next
 'define parameters
 Dim p_empno As New OracleParameter
 p_empno.OracleDbType = OracleDbType.Int16
 p_empno.Value = ar_empno
 Dim p_ename As New OracleParameter
 p_ename.OracleDbType = OracleDbType.Varchar2
 p_ename.Value = ar_ename
 Dim p_sal As New OracleParameter
 p_sal.OracleDbType = OracleDbType.Double
 p_sal.Value = ar_sal
 Dim p_deptno As New OracleParameter
 p_deptno.OracleDbType = OracleDbType.Int16
 p_deptno.Value = ar_deptno
 'create command object
 Dim cmd As New OracleCommand(SQL, cn)
 cmd.ArrayBindCount = 8 'rows to insert
 through binding
 'add parameters to command
 cmd.Parameters.Add(p_empno)

Chapter 4

[91]

 cmd.Parameters.Add(p_ename)
 cmd.Parameters.Add(p_sal)
 cmd.Parameters.Add(p_deptno)
 'open the connection
 cmd.Connection.Open()
 Dim result As Integer = cmd.ExecuteNonQuery()
 'close the connection
 cmd.Connection.Close()
 'display the result
 MessageBox.Show("Succesfully inserted "
 & result & " rows")
 Catch ex As OracleException
 'display if any error occurs
 Dim sb As New System.Text.StringBuilder
 For Each er As OracleError In ex.Errors
 sb.Append("-->" & er.Message &
 ControlChars.NewLine)
 Next
 MessageBox.Show(sb.ToString)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
 End Sub

You can observe the highlighted code, which gives you all the error messages related
to a single exception. The output for the above program looks like the following:

Programming ODP.NET with
PL/SQL

In previous chapters, we learned about connecting to Oracle databases, retrieving
and manipulating information together with error handling. In this chapter, we will
explore the following capabilities using ODP.NET:

Working with PL/SQL blocks, stored procedures, and user-defined functions
Working with PL/SQL packages, and PL/SQL tables
Taking advantage of Ref Cursors and MARS (Mutiple Active Result Sets)

This chapter does not explain PL/SQL. It explains working with PL/
SQL together with ODP.NET. Explanation of PL/SQL programming
(in this or successive chapters) is beyond the scope of this book.

Working with Anonymous PL/SQL Blocks
Let us start with simple PL/SQL anonymous blocks. A simple PL/SQL block starts
with a BEGIN statement and ends with an END statement. You may also have to work
with a DECLARE section if you would like to declare or initialize variables.

•

•

•

Programming ODP.NET with PL/SQL

[94]

Executing Anonymous PL/SQL Blocks
Now, let us execute a simple PL/SQL block using ODP.NET. The following code
increases the salaries of all employees by 500:

Private Sub btnExecuteDML_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnExecuteDML.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 'build the anonymous PL/SQL
 Dim sb As New System.Text.StringBuilder
 sb.Append(" BEGIN")
 sb.Append(" UPDATE emp SET sal = sal + 500;")
 sb.Append(" COMMIT;")
 sb.Append(" END;")
 'create command object
 Dim cmd As New OracleCommand(sb.ToString, cn)
 'open the connection
 cmd.Connection.Open()
 'execute the PL/SQL
 cmd.ExecuteNonQuery()
 'close the connection
 cmd.Connection.Close()
 'dispose the command
 cmd.Dispose()
 'display the message
 MessageBox.Show("Succesfully executed")
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

In the above code, a StringBuilder object is used to define the PL/SQL block. It is
not compulsory to use it, but it provides better flexibility to work with long strings
and also provides better performace over string concatenation. The highlighted
section in the above code generates a dynamic anonymous PL/SQL block. The PL/
SQL block in the above code fragment (starting with BEGIN and ending with END)
simply increases the salaries of all employees by 500 and finally commits it.

Chapter 5

[95]

To execute this anonymous PL/SQL block, we simply made use of the
ExecuteNonQuery method of OracleCommand.

Passing Information to Anonymous PL/SQL
Blocks
Now that you have seen the execution of an anonymous PL/SQL block, we need to
concentrate on sending values to anonymous blocks in the form of parameters.

The following code increases the salaries of all employees by the value (500) passed
as a parameter to it:

Private Sub btnExecuteDML_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnExecuteDML.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe;_
 User Id=scott;Password=tiger")
 Try
 'build the anonymous PL/SQL
 Dim sb As New System.Text.StringBuilder
 sb.Append(" DECLARE")
 sb.Append(" amt NUMBER;")
 sb.Append(" BEGIN")
 sb.Append(" amt := :1;")
 sb.Append(" UPDATE emp SET sal = sal + :1;")
 sb.Append(" COMMIT;")
 sb.Append(" END;")
 'create command object
 Dim cmd As New OracleCommand(sb.ToString, cn)
 'provide parameter details
 Dim p_amt As New OracleParameter
 p_amt.ParameterName = ":1"
 p_amt.OracleDbType = OracleDbType.Int32
 p_amt.Direction = ParameterDirection.Input
 p_amt.Value = 500
 cmd.Parameters.Add(p_amt)
 'open the connection
 cmd.Connection.Open()
 'execute the PL/SQL
 cmd.ExecuteNonQuery()
 'close the connection
 cmd.Connection.Close()
 'dispose the command
 cmd.Dispose()

Programming ODP.NET with PL/SQL

[96]

 'display the message
 MessageBox.Show("Succesfully executed")
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

From the highlighted code, it can be seen that a PL/SQL variable amt is declared
as part of the block and provided with a value using a bind variable :1. The value
for the bind variable gets populated using OracleParameter.���������������� Bind variables
and OracleParameter were explained in the previous chapter. In this case, an
OracleParameter object is created using the following statement:

Dim p_amt As New OracleParameter

Once the OracleParameter object is created, we need to specify the bind variable to
which it belongs, along with data type and parameter direction as following:

p_amt.ParameterName = ":1"
p_amt.OracleDbType = OracleDbType.Int32
p_amt.Direction = ParameterDirection.Input

The value for the bind variable is specified using the following statement:

p_amt.Value = 500

At run time, :1 in the PL/SQL block gets replaced with 500 automatically.

When you pass values to an anonymous block, the parameters must be
of type Input. When you retrieve values from an anonymous block,
the parameters must be of Output type. You can also use the Input/
Output type of parameter, when you want to deal with both passing and
retrieving information using a single parameter.

Retrieving Information from Anonymous Blocks
In the previous example, we simply executed the PL/SQL block, which doesn't
return any value or information back to the application. But, it may be necessary for
us to retrieve the information from a PL/SQL block using our .NET application. The
easiest way to achieve this is by using bind variables with Output parameters.

Chapter 5

[97]

The following code retrieves and displays the highest salary returned by a
PL/SQL block:

Private Sub btnGetSingleValue_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnGetSingleValue.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 'build the anonymous PL/SQL
 Dim sb As New System.Text.StringBuilder
 sb.Append(" BEGIN")
 sb.Append(" SELECT MAX(sal) INTO :1 FROM emp;")
 sb.Append(" END;")
 'create command object
 Dim cmd As New OracleCommand(sb.ToString, cn)
 cmd.Parameters.Add(New OracleParameter(":1",
 OracleDbType.Double,
 ParameterDirection.Output))
 'open the connection
 cmd.Connection.Open()
 'execute the PL/SQL
 cmd.ExecuteNonQuery()
 'gather the result
 Dim result As String = _
 cmd.Parameters(":1").Value.ToString
 'close the connection
 cmd.Connection.Close()
 'dispose the command
 cmd.Dispose()
 'display the result
 MessageBox.Show("Succesfully executed with
 result: " & result)
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

Programming ODP.NET with PL/SQL

[98]

From this code, it can be observed that :1 is the bind variable used to retrieve
information from the PL/SQL block. As :1 is used to retrieve information, it must be
defined as an Output type of parameter as follows:

cmd.Parameters.Add(New OracleParameter(":1",
 OracleDbType.Double, ParameterDirection.Output))

Once the OracleCommand executes the block, the value from the PL/SQL block can
be retrieved into a result variable using the following statement:

Dim result As String = _
 cmd.Parameters(":1").Value.ToString

To retrieve multiple values as a single row, you may have to use
multiple bind variables. To retrieve a result set, you may have to
use Ref Cursor or Associative Arrays (covered in later sections).

Working with PL/SQL Stored Procedures
and Functions
A PL/SQL stored procedure is simply a PL/SQL block that gets stored physically
within Oracle database. It has tremendous benefits in terms of maintainability,
accessibility, complex logic, performance, portability, and scalability.

To help us build powerful database applications, stored procedures provide several
advantages including better performance and higher productivity. Stored procedures
typically contain a group of logical SQL statements with (or without) complex
logic. They are compiled once and stored in executable form. This gives a quick and
efficient execution when any user tries to execute it. Executable code is automatically
cached and shared among several users reducing the consumption of memory and
processing resources.

PL/SQL user-defined functions are very much similar to stored procedures except
that they return values back to the execution environment (or applications calling
them). No enterprise solution really exists without implementing stored procedures
or user-defined functions!

Executing a PL/SQL Stored Procedure
The following is a simple PL/SQL stored procedure, which increments the salaries of
all employees by 500:

Chapter 5

[99]

CREATE OR REPLACE PROCEDURE p_Increment_Salary IS
 BEGIN
 UPDATE emp SET sal = sal + 500;
 COMMIT;
 END;

When the above script is executed, it creates a stored procedure named
p_Increment_Salary. The stored procedure simply increases the salary of all
employees by 500 and finally commits it.

Now, let us try to execute the above stored procedure using ODP.NET.

Private Sub btnExecute_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnExecute.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 'create command object
 Dim cmd As New OracleCommand
 With cmd
 'specify that you are working with stored
 'procedure
 .CommandType = CommandType.StoredProcedure
 'provide the name of stored procedure
 .CommandText = "p_Increment_Salary"
 'proceed with execution
 .Connection = cn
 .Connection.Open()
 .ExecuteNonQuery()
 .Connection.Close()
 .Dispose()
 End With
 MessageBox.Show("Succesfully executed")
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

Chapter 5

[101]

 .CommandType = CommandType.StoredProcedure
 'provide the name of stored procedure
 .CommandText = "p_Increment_Salary"
 'provide parameter details
 Dim p_amt As New OracleParameter
 p_amt.ParameterName = "amt"
 p_amt.OracleDbType = OracleDbType.Int32
 p_amt.Direction = ParameterDirection.Input
 p_amt.Value = 500
 .Parameters.Add(p_amt)
 'proceed with execution
 .Connection = cn
 .Connection.Open()
 .ExecuteNonQuery()
 .Connection.Close()
 .Dispose()
 End With
 MessageBox.Show("Succesfully executed")
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

For every existing parameter of a stored procedure, a separate OracleParameter
object must be defined corresponding to it. In the highlighted code above, we created
an OracleParameter and assigned a few properties according to the needs.

It is very similar to working with bind variables except that the bind variables are
replaced with parameter names. Make sure that you always specify the parameter's
Direction property.

When a stored procedure is likely to receive a value through a parameter
from an application (or during execution), it is called an input (or IN)
parameter. When a stored procedure is likely to send a value back
through a parameter to an application, it is called an output (or OUT)
parameter. When a stored procedure is likely to receive a value and return
back some value based on the same parameter (two-way parameter), it is
called an input/output (or IN OUT) parameter. If no direction (IN, OUT,
or IN OUT) is specified, it defaults to IN.

Programming ODP.NET with PL/SQL

[102]

Using an Anonymous PL/SQL Block to
Execute a PL/SQL Stored Procedure
In previous sections, we executed stored procedures directly without using any other
PL/SQL logic. Sometimes, it may be necessary to embed our own PL/SQL logic in
an anonymous PL/SQL block and then execute the stored procedure.

The following code executes the same stored procedure given in the previous
section, with a custom anonymous PL/SQL block:

Private Sub btnExecuteWithAnanymousBlock_Click(ByVal
 sender As System.Object, ByVal e As System.EventArgs)
 Handles btnExecuteWithAnanymousBlock.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 'build the anonymous PL/SQL
 Dim sb As New System.Text.StringBuilder
 sb.Append(" DECLARE")
 sb.Append(" amt NUMBER;")
 sb.Append(" BEGIN")
 sb.Append(" amt := :1;")
 sb.Append(" p_increment_salary(amt => amt);")
 sb.Append(" END;")
 'create command object
 Dim cmd As New OracleCommand(sb.ToString, cn)
 'provide parameter details
 Dim p_amt As New OracleParameter
 p_amt.ParameterName = ":1"
 p_amt.OracleDbType = OracleDbType.Int32
 p_amt.Direction = ParameterDirection.Input
 p_amt.Value = 500
 cmd.Parameters.Add(p_amt)
 'open the connection
 cmd.Connection.Open()
 'execute the PL/SQL
 cmd.ExecuteNonQuery()
 'close the connection
 cmd.Connection.Close()
 'dispose the command
 cmd.Dispose()

Chapter 5

[103]

 'display the result
 MessageBox.Show("Succesfully executed")
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

In the highlighted code, we created our own anonymous PL/SQL block, which
directly executes the stored procedure as part of the same script. The PL/SQL block
is defined as follows:

DECLARE
 amt NUMBER;
BEGIN
 amt := :1;
 p_increment_salary(amt => amt);
END;

The most important line from the above PL/SQL block is the following statement:

p_increment_salary(amt => amt);

The above statement simply executes the existing stored procedure
(p_increment_salary) by passing the value available in the amt variable to the
parameter amt of the stored procedure.

You can also observe that we are passing values to the anonymous block using an
OracleParameter. Another most important issue is that we did not specify the
CommandType as StoredProcedure anymore! This is not necessary, as you
are executing an anonymous block (and not a stored procedure) from the point
of application.

Retrieving Output Parameters from a PL/SQL
Stored Procedure
Not only can a stored procedure receive a value, but also can return a value back to
the application or any other execution environment. This is possible if you are using
output parameters as part of stored procedures.

Programming ODP.NET with PL/SQL

[104]

The following is a simple PL/SQL stored procedure, which retrieves the name of the
highest earning employee:

CREATE OR REPLACE PROCEDURE p_Highest_Earned_Employee
 (
 HighestEarned OUT VARCHAR2
)
 IS
 BEGIN
 SELECT ename INTO HighestEarned
 FROM emp
 WHERE sal = (SELECT MAX(sal) FROM emp);
 END;

From the highlighted code above, you can observe that we are making use of an
output parameter to return some value back to the application. In the above case, the
stored procedure simply returns the name of the highest earning employee back to
the application through HighestEarned variable (which is an output parameter).

Now, let us try to execute the above stored procedure using ODP.NET.

Private Sub btnOutParameter_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnOutParameter.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 'create command object
 Dim cmd As New OracleCommand
 With cmd
 'specify that you are working with
 'stored procedure
 .CommandType = CommandType.StoredProcedure
 'provide the name of stored procedure
 .CommandText = "p_Highest_Earned_Employee"
 .Parameters.Add("HighestEarned",
 OracleDbType.Varchar2, 20, Nothing,
 ParameterDirection.Output)
 'proceed with execution
 .Connection = cn
 .Connection.Open()
 .ExecuteNonQuery()
 Dim Result As String = _

Chapter 5

[105]

 cmd.Parameters("HighestEarned").Value.ToString
 .Connection.Close()
 .Dispose()
 MessageBox.Show("Succesfully executed with
 result: " & Result)
 End With
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

In the highlighted code above, we created an OracleParameter named
HighestEarned and specified it as of type Output parameter as follows:

.Parameters.Add("HighestEarned",
 OracleDbType.Varchar2, 20, Nothing,
 ParameterDirection.Output)

You can also define the above output parameter as follows:

Dim p_ename As New OracleParameter
p_ename.ParameterName = "HighestEarned"
p_ename.OracleDbType = OracleDbType.Varchar2
p_ename.Size = 20
p_ename.Direction = ParameterDirection.Output
cmd.Parameters.Add(p_ename)

It is simply a matter of convenience!

The value returned by the stored procedure as part of the Output parameter gets
received into the variable Result using the following statement:

Dim Result As String = _
 cmd.Parameters("HighestEarned").Value.ToString

Passing IN and Getting OUT Simultaneously
Now that we have seen how to deal with input and output parameters, it is time
to work with both simultaneously. Let us declare a parameter that is capable of
handling both input and output directions.

Programming ODP.NET with PL/SQL

[106]

The following is a simple PL/SQL stored procedure, which accepts employee
number (input) and increment of salary (input) as parameters and returns back
(output) the updated salary of the same employee:

CREATE OR REPLACE PROCEDURE p_Increment_Salary
 (
 eno IN NUMBER,
 inc_sal IN OUT NUMBER
)
 IS
 BEGIN
 UPDATE emp SET sal = sal + inc_sal
 WHERE empno = eno;
 SELECT sal INTO inc_sal
 FROM emp
 WHERE empno = eno;
 END;

From the highlighted code above, you can observe that we are trying to make use of
a parameter inc_sal, which is of type both input and output. That means, we can
pass a value and retrieve a value from the same parameter.

Now, let us try to execute the above stored procedure using ODP.NET.

Private Sub btnINOUTDemo_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnINOUTDemo.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 'create command object
 Dim cmd As New OracleCommand
 With cmd
 'specify that you are working with
 'stored procedure
 .CommandType = CommandType.StoredProcedure
 'provide the name of stored procedure
 .CommandText = "p_Increment_Salary"
 'provide parameter details
 cmd.Parameters.Add("eno", OracleDbType.Decimal,
 Nothing, 7369, ParameterDirection.Input)
 cmd.Parameters.Add("inc_sal",
 OracleDbType.Decimal, Nothing, 500,
 ParameterDirection.InputOutput)
 'proceed with execution
 .Connection = cn

Chapter 5

[107]

 .Connection.Open()
 .ExecuteNonQuery()
 Dim Result As String = _
 cmd.Parameters("inc_sal").Value.ToString
 .Connection.Close()
 .Dispose()
 MessageBox.Show("Salary Succesfully increased to:
 " & Result)
 End With
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

In the first piece of highlighted code, we created an OracleParameter named
inc_sal and specified it as of type InputOutput parameter. The value returned by
the stored procedure (as part of the InputOutput parameter) gets received into the
variable Result using the following statement:

Dim Result As String = _
 cmd.Parameters("inc_sal").Value.ToString

Handling User-Defined Application Errors
PL/SQL is equipped with its own error handling or exception handling capabilities.
Apart from that, it also gives us the flexibility to raise our own errors during the
execution of PL/SQL. When these errors get raised, our .NET application gets into
an abnormal termination. Now, let us handle these types of errors effectively from
within our application.

The following is a simple PL/SQL stored procedure, which accepts employee
number (input) and increment of salary (input) as parameters and returns back
(output) the updated salary of the same employee:

CREATE OR REPLACE PROCEDURE p_Increment_Salary
 (
 eno IN NUMBER,
 inc_sal IN NUMBER
)
 IS
 BEGIN

Chapter 5

[109]

 Else
 MessageBox.Show("Error: " & oex.Message)
 End If
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 Finally
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

From the highlighted code, you can observe that the error is being handled using
OracleException. Within the Catch block, we are checking if the error belongs to
20000 (our custom error number) and displaying a convincing message to the user.

Executing a PL/SQL User-Defined Function
A PL/SQL stored procedure is simply a set of PL/SQL statements (bundled as a
single unit) to get executed at the database server. A PL/SQL user-defined function is
very similar to a PL/SQL stored procedure except that it will certainly return a value
to the calling application or environment. The main value being returned from a
user-defined function is handled using a RETURN statement within the function.

Do not confuse output parameters with RETURN values. Both of these
return values to the calling application. Output parameters are logical
ways of returning values. RETURN ����������������������������� exists only with PL/SQL user-
defined functions. You can also have IN, OUT or IN OUT parameters
along with a RETURN statement as part of user-defined functions.

The following is a simple PL/SQL stored procedure, which accepts employee
number (input) parameter and returns back (output) the employee's department:

 CREATE OR REPLACE FUNCTION f_get_dname
 (
 eno IN NUMBER
)
 RETURN VARCHAR2
 IS
 dn dept.dname%TYPE;
 BEGIN
 SELECT dname INTO dn
 FROM dept

Programming ODP.NET with PL/SQL

[110]

 WHERE deptno = (SELECT deptno FROM emp
 WHERE empno = eno);
 RETURN dn;
 END;
 /

From the highlighted code, you can observe that you are returning a value of the
type VARCHAR2 back to the application (or environment).

Private Sub btnUDFDemo_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnUDFDemo.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 'create command object
 Dim cmd As New OracleCommand
 With cmd
 'specify that you are working with
 'stored procedure
 .CommandType = CommandType.StoredProcedure
 'provide the name of stored procedure
 .CommandText = "f_get_dname"
 'provide parameter details
 cmd.Parameters.Add("dname",
 OracleDbType.Varchar2, 20, Nothing,
 ParameterDirection.ReturnValue)
 cmd.Parameters.Add("eno", OracleDbType.Decimal,
 Nothing, 7369, ParameterDirection.Input)

 'proceed with execution
 .Connection = cn
 .Connection.Open()
 .ExecuteNonQuery()
 Dim Result As String = _
 cmd.Parameters("dname").Value.ToString
 .Connection.Close()
 .Dispose()
 MessageBox.Show("Succesfully executed with
 result: " & Result)
 End With

 Catch ex As Exception
 'display if any error occurs

Chapter 5

[111]

 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

The most important issue to remember from the above code is the Direction set
to ReturnValue (as seen in the highlighted section). This is mainly necessary when
you are working with PL/SQL user-defined functions. Every PL/SQL user-defined
function will certainly return a value back to the application and it must be handled
only by specifying ParameterDirection as ReturnValue.

PL/SQL Packages, Tables, and REF
CURSOR
We have already covered ODP.NET with PL/SQL in several areas including server-
side programming like stored procedures, user-defined functions, etc. Now, let us
work with PL/SQL packages, PL/SQL tables, and REF CURSOR.

Executing Routines in a PL/SQL Package
Before trying to access a PL/SQL package using ODP.NET, we need to create a PL/
SQL package. To create a PL/SQL package, we need to create a package definition
and a package body.

The following is a sample PL/SQL package created for demonstration:

CREATE OR REPLACE PACKAGE pck_emp_operations IS
 PROCEDURE IncreaseSalaries (v_IncSal NUMBER);
 FUNCTION getSalaryGrade(v_empno NUMBER) RETURN
 NUMBER;
END pck_emp_operations;
/

CREATE OR REPLACE PACKAGE BODY pck_emp_operations IS
 PROCEDURE IncreaseSalaries (v_IncSal NUMBER) IS
 BEGIN
 UPDATE emp SET sal = sal + v_IncSal;
 END;

 FUNCTION getSalaryGrade(v_empno NUMBER)
 RETURN NUMBER IS

Programming ODP.NET with PL/SQL

[112]

 v_grade NUMBER;
 BEGIN
 SELECT grade INTO v_grade
 FROM salgrade
 WHERE (SELECT sal FROM emp WHERE empno=v_empno)
 BETWEEN losal AND hisal;
 RETURN v_grade;
 END;

END pck_emp_operations;
/

From the above code, you can observe that a package named pck_emp_operations
is created with two subroutines IncreaseSalaries and getSalaryGrade. The
IncreaseSalaries subroutine simply accepts a parameter and increments the
salaries of all employees. It is defined as follows:

PROCEDURE IncreaseSalaries (v_IncSal NUMBER) IS
BEGIN
 UPDATE emp SET sal = sal + v_IncSal;
END;

The getSalaryGrade subroutine accepts an employee number as parameter and
returns the employee's salary grade. It is defined as follows:

FUNCTION getSalaryGrade(v_empno NUMBER) RETURN NUMBER IS
 v_grade NUMBER;
 BEGIN
 SELECT grade INTO v_grade
 FROM salgrade
 WHERE (SELECT sal FROM emp WHERE empno=v_empno)
 BETWEEN losal AND hisal;
 RETURN v_grade;
 END;

Executing a Procedure in a PL/SQL Package
The following is the IncreaseSalaries procedure available in pck_emp_
operations:

PROCEDURE IncreaseSalaries (v_IncSal NUMBER) IS
 BEGIN
 UPDATE emp SET sal = sal + v_IncSal;
 END;

Chapter 5

[113]

The following is the code that tries to execute the above procedure:

Private Sub btnExecuteSP_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnExecuteSP.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 'create command object
 Dim cmd As New OracleCommand
 With cmd
 'specify that you are working with stored
 'procedure
 .CommandType = CommandType.StoredProcedure
 'provide the name of routine
 .CommandText =
 "pck_emp_operations.IncreaseSalaries"
 'provide parameter details
 Dim p_amt As New OracleParameter
 p_amt.ParameterName = "v_IncSal"
 p_amt.OracleDbType = OracleDbType.Int32
 p_amt.Direction = ParameterDirection.Input
 p_amt.Value = 500
 .Parameters.Add(p_amt)
 'proceed with execution
 .Connection = cn
 .Connection.Open()
 .ExecuteNonQuery()
 .Connection.Close()
 .Dispose()
 End With
 MessageBox.Show("Succesfully executed")
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

To execute a routine in a PL/SQL package, the CommandType of OracleCommand
object must be specified with StoredProcedure as following:

.CommandType = CommandType.StoredProcedure

Programming ODP.NET with PL/SQL

[114]

Now, we need to provide the details of the routine (procedure or function) available
as part of the PL/SQL package to execute. It is done as follows:

.CommandText = "pck_emp_operations.IncreaseSalaries"

As the routine accepts a parameter (v_IncSal), we provide the parameter details
as follows:

Dim p_amt As New OracleParameter
p_amt.ParameterName = "v_IncSal"
p_amt.OracleDbType = OracleDbType.Int32
p_amt.Direction = ParameterDirection.Input
p_amt.Value = 500
.Parameters.Add(p_amt)

Finally, we execute the OracleCommand using the following statement:

.ExecuteNonQuery()

Executing a User-Defined Function in a PL/SQL
Package
The following is the getSalaryGrade function available in pck_emp_operations:

FUNCTION getSalaryGrade(v_empno NUMBER) RETURN NUMBER IS
 v_grade NUMBER;
 BEGIN
 SELECT grade INTO v_grade
 FROM salgrade
 WHERE (SELECT sal FROM emp WHERE empno=v_empno)
 BETWEEN losal AND hisal;
 RETURN v_grade;
 END;

The following is the code which tries to execute the above function:

Private Sub btnExecuteUDF_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnExecuteUDF.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 'create command object
 Dim cmd As New OracleCommand
 With cmd

Chapter 5

[115]

 'specify that you are working with
 'stored procedure
 .CommandType = CommandType.StoredProcedure
 'provide the name of routine
 .CommandText =
 "pck_emp_operations.getSalaryGrade"
 'provide parameter details
 .Parameters.Add("v_grade", OracleDbType.Int16,
 Nothing, Nothing,
 ParameterDirection.ReturnValue)
 .Parameters.Add("v_empno", OracleDbType.Decimal,
 Nothing, 7839,
 ParameterDirection.Input)

 'proceed with execution
 .Connection = cn
 .Connection.Open()
 .ExecuteNonQuery()
 Dim Result As String = _
 .Parameters("v_grade").Value.ToString
 .Connection.Close()
 .Dispose()
 MessageBox.Show("Succesfully executed with
 result: " & Result)
 End With

 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

The following statement indicates that a stored routine is being executed:

.CommandType = CommandType.StoredProcedure

The following statement specifies the name of the routine to be executed (along with
the package name):

.CommandText = "pck_emp_operations.getSalaryGrade"

Chapter 5

[117]

CREATE OR REPLACE PACKAGE BODY pck_emp_tabledemo IS
 PROCEDURE IncreaseSalaries(v_EmpArray t_num_array,
 v_IncSal number) IS
 BEGIN
 FOR i IN 1..v_EmpArray.LAST
 LOOP
 UPDATE emp SET sal = sal + v_IncSal
 WHERE empno = v_EmpArray(i);
 END LOOP;
 END;
END pck_emp_tabledemo;
/

In this package, you can observe that a PL/SQL table type is declared as follows:

TYPE t_num_array IS TABLE OF NUMBER INDEX BY
 BINARY_INTEGER;

It is simply a user-defined data type that can hold a set of numbers. The routine
available as part of the package accepts a parameter, which is of the same data type,
as follows:

PROCEDURE IncreaseSalaries(v_EmpArray t_num_array,
 v_IncSal number);

The following code sends an array of values to the procedure available in the
PL/SQL package:

Private Sub btnPassArrayToSP_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnPassArrayToSP.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 'create command object
 Dim cmd As New OracleCommand
 With cmd
 'specify that you are working with stored
 'procedure
 .CommandType = CommandType.StoredProcedure
 'provide the name of stored procedure
 .CommandText =
 "pck_emp_tabledemo.IncreaseSalaries"
 'provide parameter details

Programming ODP.NET with PL/SQL

[118]

 Dim p_empno As OracleParameter =
 .Parameters.Add("v_EmpArray",
 OracleDbType.Int32, ParameterDirection.Input)
 p_empno.CollectionType =
 OracleCollectionType.PLSQLAssociativeArray
 p_empno.Value = New Int32() {7788, 7876, 7934}
 .Parameters.Add("v_IncSal", OracleDbType.Decimal,
 Nothing, 500, ParameterDirection.Input)
 'proceed with execution
 .Connection = cn
 .Connection.Open()
 .ExecuteNonQuery()
 .Connection.Close()
 .Dispose()
 MessageBox.Show("Succesfully executed")
 End With

 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

Let us go step by step as follows:

Dim p_empno As OracleParameter = _
 .Parameters.Add("v_EmpArray", OracleDbType.Int32,
 ParameterDirection.Input)

The above defines a new OracleParameter named v_EmpArray.

p_empno.CollectionType =
 OracleCollectionType.PLSQLAssociativeArray

The parameter p_empno is specified as a CollectionType and that too of the type
PLSQLAssociativeArray. When the OracleParameter is defined with this type,
then it is capable of holding multiple values.

p_empno.Value = New Int32() {7788, 7876, 7934}

As p_empno can hold multiple values, the above statement assigns a set of values in
the form of an array.

Chapter 5

[119]

Receiving an Array from Oracle Database
The following package demonstrates the use of the PL/SQL table type to send an
array of values from Oracle database to external applications:

CREATE OR REPLACE PACKAGE pck_emp_tabledemo IS
 TYPE t_num_array IS TABLE OF NUMBER INDEX BY
 BINARY_INTEGER;
 PROCEDURE GetEmployeesOfDept(v_Deptno NUMBER,
 v_EmpArray OUT t_num_array);
END pck_emp_tabledemo;
/

CREATE OR REPLACE PACKAGE BODY pck_emp_tabledemo IS
 PROCEDURE GetEmployeesOfDept(v_Deptno NUMBER,
 v_EmpArray OUT t_num_array) IS
 i NUMBER(3) := 1;
 BEGIN
 FOR e IN (SELECT empno FROM emp WHERE
 deptno = v_Deptno)
 LOOP
 v_EmpArray(i) := e.empno;
 i := i + 1;
 END LOOP;
 END;
END pck_emp_tabledemo;

The above highlighted code is where we define output parameters to send
the arrays back to the application. If you are familiar with BULK COLLECT, you
can rewrite the package body as follows (just to minimize code and make it
very efficient):

CREATE OR REPLACE PACKAGE BODY pck_emp_tabledemo IS
 PROCEDURE GetEmployeesOfDept(v_Deptno NUMBER,
 v_EmpArray OUT t_num_array) IS
 BEGIN
 SELECT empno BULK COLLECT INTO v_EmpArray
 FROM emp WHERE deptno = v_Deptno;
 END;
END pck_emp_tabledemo;
/

The following code receives an array of values from the procedure available in the
PL/SQL package:

Private Sub btnReceiveAryFromSP_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnReceiveAryFromSP.Click
 'create connection to db

Programming ODP.NET with PL/SQL

[120]

 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 'create command object
 Dim cmd As New OracleCommand
 With cmd
 'specify that you are working with
 'stored procedure
 .CommandType = CommandType.StoredProcedure
 'provide the name of stored procedure
 .CommandText =
 "pck_emp_tabledemo.GetEmployeesOfDept"
 'provide parameter details
 .Parameters.Add("v_Deptno", OracleDbType.Int32,
 10, ParameterDirection.Input)
 Dim p_empno As OracleParameter = _
 .Parameters.Add("v_EmpArray",
 OracleDbType.Int32, ParameterDirection.Output)
 p_empno.CollectionType = _
 OracleCollectionType.PLSQLAssociativeArray
 p_empno.Size = 10
 'proceed with execution
 .Connection = cn
 .Connection.Open()
 .ExecuteNonQuery()
 'get the result out
 Dim Empno() As _
 Oracle.DataAccess.Types.OracleDecimal =
 p_empno.Value
 .Connection.Close()
 .Dispose()
 Dim strEmpno As String = String.Empty
 For Each en As
 Oracle.DataAccess.Types.OracleDecimal In Empno
 strEmpno &= en.ToString & ","
 Next
 MessageBox.Show("Succesfully executed with
 result: " & strEmpno)
 End With

 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)

Chapter 5

[121]

 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try

End Sub

Let us go step by step:

Dim p_empno As OracleParameter = _
 .Parameters.Add("v_EmpArray", OracleDbType.Int32,
 ParameterDirection.Output)
p_empno.CollectionType =
 OracleCollectionType.PLSQLAssociativeArray
p_empno.Size = 10

The above defines an OracleParameter named p_empno as PLSQLAssociativeArray.
You must note that it is defined as an Output parameter. We are also required to
specify the number of values (Size) expected in that parameter.

Once the OracleCommand gets executed, we retrieve the whole set of values into an
array as follows:

Dim Empno() As Oracle.DataAccess.Types.OracleDecimal = _
 p_empno.Value

Finally, we concatenate all those values to form a single string value and display the
string back to the user using the following statements:

For Each en As Oracle.DataAccess.Types.OracleDecimal
 �������� In Empno
strEmpno &= en.ToString & ","
Next
MessageBox.Show("Succesfully executed with result: "
 & strEmpno)

Another important point to note is that the number of values you are about to receive
must be already known to you for specifying the Size. If the value is higher than
the number of values being received from database, it doesn't really give us any
problem. But, if the value is lower, it certainly raises an error.

You can observe that specifying Size in advance is bit problematic and really not
practical in every scenario. In such situations, you are encouraged to opt for the
usage of REF CURSOR.

Programming ODP.NET with PL/SQL

[122]

Working with REF CURSOR Using ODP.NET
A REF CURSOR is simply a pointer or reference to the result set available at the server.
Before we can use REF CURSOR, it is required to open it using a SELECT statement. REF
CURSOR is very helpful to .NET to retrieve server-side result sets efficiently. Unlike
associative arrays with PL/SQL tables, we need not specify the number of values or
rows being returned.

Pulling from REF CURSOR Using OracleDataReader
Let us start with creating a REF CURSOR within a PL/SQL package and then try
to access it using a .NET application. Following is the sample PL/SQL package
developed for this demonstration:

CREATE OR REPLACE PACKAGE pck_emp_Curdemo IS
 TYPE t_cursor IS REF CURSOR;
 PROCEDURE GetList(cur_emp OUT t_cursor);
END pck_emp_Curdemo;
/

CREATE OR REPLACE PACKAGE BODY pck_emp_Curdemo IS
 PROCEDURE GetList(cur_emp OUT t_cursor) IS
 BEGIN
 OPEN cur_emp FOR
 SELECT empno,ename,sal,deptno
 FROM emp;
 END;
END pck_emp_Curdemo;
/

In the above package, a separate user-defined datatype t_cursor (which is of type
REF CURSOR) is declared as follows:

TYPE t_cursor IS REF CURSOR;

If you don't want to declare a special type for REF CURSOR, you can modify the above
code as follows, which deals with SYS_REFCURSOR:

CREATE OR REPLACE PACKAGE pck_emp_Curdemo IS
 PROCEDURE GetList(cur_emp OUT SYS_REFCURSOR);
END pck_emp_Curdemo;
/

CREATE OR REPLACE PACKAGE BODY pck_emp_Curdemo IS
 PROCEDURE GetList(cur_emp OUT SYS_REFCURSOR) IS
 BEGIN
 OPEN cur_emp FOR

Chapter 5

[123]

 SELECT empno,ename,sal,deptno
 FROM emp;
 END;
END pck_emp_Curdemo;
/

In any case, the procedure GetList simply returns the output of a SELECT statement
executed by the OPEN statement of PL/SQL to the calling application using the
output parameter cur_emp.

The following code displays all employees by pulling data from REF CURSOR using
OracleDataReader:

Private Sub btnGetEmployees_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnGetEmployees.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 'create command object
 Dim cmd As New OracleCommand
 With cmd
 'specify that you are working with
 'stored procedure
 .CommandType = CommandType.StoredProcedure
 'provide the name of stored procedure
 .CommandText = "pck_emp_Curdemo.GetList"
 'provide parameter details
 .Parameters.Add("cur_emp",
 OracleDbType.RefCursor,
 ParameterDirection.Output)
 'proceed with execution
 .Connection = cn
 .Connection.Open()
 'get the DataReader object from command object
 Dim rdr As OracleDataReader =
 cmd.ExecuteReader(CommandBehavior.CloseConnection)
 'check if it has any rows
 If rdr.HasRows Then
 With Me.DataGridView1
 'remove existing rows from grid
 .Rows.Clear()
 'get the number of columns
 Dim ColumnCount As Integer = rdr.FieldCount
 'add grid header row
 For i As Integer = 0 To ColumnCount - 1

Chapter 5

[125]

Once the reader is ready, we filled up the grid with rows and columns.

Filling a Dataset from REF CURSOR
In the previous section, we used OracleDataReader to pull the information from
REF CURSOR. In this section, we will use OracleDataAdapter to do the same and
fill a DataSet. We will be still using the same PL/SQL package listed in the
previous section.

The following code makes use of OracleDataAdapter to fill a DataSet by pulling
the information out of REF CURSOR:

Private Sub btnGetEmployeesDS_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnGetEmployeesDS.Click
 Me.DataGridView1.Rows.Clear()
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 'create command object
 Dim cmd As New OracleCommand
 With cmd
 'specify that you are working with
 'stored procedure
 .CommandType = CommandType.StoredProcedure
 'provide the name of stored procedure
 .CommandText = "pck_emp_Curdemo.GetList"
 'provide parameter details
 .Parameters.Add("cur_emp",
 OracleDbType.RefCursor,
 ParameterDirection.Output)
 'proceed with execution
 .Connection = cn
 End With
 Dim ds As New DataSet
 Dim da As New OracleDataAdapter(cmd)
 da.Fill(ds, "emp")
 da.Dispose()
 Me.DataGridView1.DataSource = ds.Tables("emp")
 MessageBox.Show("Succesfully executed")
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then

Programming ODP.NET with PL/SQL

[126]

 cn.Close()
 End If
 End Try
End Sub

Even in this program, there is nothing new again except that OracleParameter is
defined of type OracleDbType.RefCursor as follows:

.CommandType = CommandType.StoredProcedure

.CommandText = "pck_emp_Curdemo.GetList"

.Parameters.Add("cur_emp", OracleDbType.RefCursor, ParameterDirection.
Output)

Once the parameters are set, the dataset is filled using the following set of statements:

Dim ds As New DataSet
Dim da As New OracleDataAdapter(cmd)
da.Fill(ds, "emp")
da.Dispose()

Finally, we display the information back to the user by showing the grid as follows:

Me.DataGridView1.DataSource = ds.Tables("emp")
MessageBox.Show("Succesfully executed")

Working with Multiple Active Result Sets (MARS)
Now that we have seen REF CURSOR and how to access it from .NET, it is time to
work with multiple Ref Cursors simultaneously. A routine in a PL/SQL package
can even return more than one REF CURSOR. Following is a sample PL/SQL package,
which does this:

CREATE OR REPLACE PACKAGE pck_emp IS
 PROCEDURE get_all(p_emp OUT SYS_REFCURSOR,
 p_dept OUT SYS_REFCURSOR);
END pck_emp;
/

CREATE OR REPLACE PACKAGE BODY pck_emp IS
 PROCEDURE get_all(p_emp OUT SYS_REFCURSOR,
 p_dept OUT SYS_REFCURSOR) IS
 BEGIN
 OPEN p_emp FOR SELECT empno,ename,sal,deptno FROM emp;
 OPEN p_dept FOR SELECT deptno,dname,loc FROM dept;
 END;
END pck_emp;
/

Chapter 5

[127]

From this PL/SQL package, you can observe that the get_all routine is returning
two Ref Cursors back to the calling program or our .NET application. It is declared as
follows:

PROCEDURE get_all(p_emp OUT SYS_REFCURSOR,
 p_dept OUT SYS_REFCURSOR);

As two Ref Cursors are used, we need to work with two OPEN statements as follows:

OPEN p_emp FOR SELECT empno,ename,sal,deptno FROM emp;
OPEN p_dept FOR SELECT deptno,dname,loc FROM dept;

The following code reads both of those Ref Cursors using OracleDataReader and
displays the result in two different grids:

Private Sub btnGetDataset_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnGetDataset.Click
 Me.DataGridView1.Rows.Clear()
 Me.DataGridView2.Rows.Clear()
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 'create command object
 Dim cmd As New OracleCommand
 With cmd
 'specify that you are working with stored
 'procedure
 .CommandType = CommandType.StoredProcedure
 'provide the name of stored procedure
 .CommandText = "pck_emp.Get_All"
 'provide parameter details
 .Parameters.Add("p_emp", OracleDbType.RefCursor,
 ParameterDirection.Output)
 .Parameters.Add("p_dept",OracleDbType.RefCursor,
 ParameterDirection.Output)
 'proceed with execution
 .Connection = cn
 .Connection.Open()
 'execute the query
 .ExecuteNonQuery()
 'get the DataReader objects from
 'parameter objects
 Dim rdr_emp As OracleDataReader = _
 CType(.Parameters("p_emp").Value,
 Oracle.DataAccess.Types.OracleRefCursor)
 .GetDataReader

Programming ODP.NET with PL/SQL

[128]

 Dim rdr_dept As OracleDataReader = _
 CType(.Parameters("p_dept").Value,
 Oracle.DataAccess.Types.OracleRefCursor)
 .GetDataReader
 'check if rdr_emp has any rows
 If rdr_emp.HasRows Then
 With Me.DataGridView1
 'remove existing rows from grid
 .Rows.Clear()
 'get the number of columns
 Dim ColumnCount As Integer = _
 rdr_emp.FieldCount
 'add grid header row
 For i As Integer = 0 To ColumnCount - 1
 .Columns.Add(rdr_emp.GetName(i),
 rdr_emp.GetName(i))
 Next
 .AutoSizeColumnsMode =
 DataGridViewAutoSizeColumnsMode.ColumnHeader
 'loop through every row
 While rdr_emp.Read
 'get all row values into an array
 Dim objCells(ColumnCount - 1) As Object
 rdr_emp.GetValues(objCells)
 'add array as a row to grid
 .Rows.Add(objCells)
 End While
 End With
 End If

 'check if rdr_dept has any rows
 If rdr_dept.HasRows Then
 With Me.DataGridView2
 'remove existing rows from grid
 .Rows.Clear()
 'get the number of columns
 Dim ColumnCount As Integer = _
 rdr_dept.FieldCount
 'add grid header row
 For i As Integer = 0 To ColumnCount - 1
 .Columns.Add(rdr_dept.GetName(i),
 rdr_emp.GetName(i))
 Next
 .AutoSizeColumnsMode =
 DataGridViewAutoSizeColumnsMode.ColumnHeader
 'loop through every row
 While rdr_dept.Read

Chapter 5

[129]

 'get all row values into an array
 Dim objCells(ColumnCount - 1) As Object
 rdr_dept.GetValues(objCells)
 'add array as a row to grid
 .Rows.Add(objCells)
 End While
 End With
 End If
 'clear up the resources
 rdr_emp.Close()
 'clear up the resources
 rdr_dept.Close()

 .Connection.Close()
 .Dispose()
 MessageBox.Show("Succesfully executed")
 End With

 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

From the highlighted code, you can observe that two OracleParameter objects
(which are of type REF CURSOR) are defined. They are as follows:

.Parameters.Add("p_emp", OracleDbType.RefCursor,
 ParameterDirection.Output)
.Parameters.Add("p_dept", OracleDbType.RefCursor,
 ParameterDirection.Output)

After that, we executed the routine in the PL/SQL package with ExecuteNonQuery.
This is very important to note. We are not using ExecuteReader anymore, when
dealing with multiple result sets. Instead, we are using the GetDataReader method
of OracleRefCursor ��������������� (which creates OracleDataReader objects) to pull information
from the output parameters. The first statement that uses it is as follows:

Dim rdr_emp As OracleDataReader = _
 CType(.Parameters("p_emp").Value, _
 Oracle.DataAccess.Types.OracleRefCursor).GetDataReader

Programming ODP.NET with PL/SQL

[130]

This returns the result set of of the first REF CURSOR in the form of an
OracleDataReader. Immediately after that, we used another similar statement to
retrieve the next result set as follows:

Dim rdr_dept As OracleDataReader = _
 CType(.Parameters("p_dept").Value, _
 Oracle.DataAccess.Types.OracleRefCursor).GetDataReader

Once both the readers were ready, we filled up the grids and finally closed the
readers using the following statements:

rdr_emp.Close()
rdr_dept.Close()

Summary
In this chapter, we mainly concentrated on working with PL/SQL blocks, stored
procedures, PL/SQL packages, PL/SQL tables, and Ref Cursors. While dealing with
stored procedures, we also covered passing and retrieving parameter values with
different types of parameters (IN, OUT, IN OUT). We have also seen techniques for
sending arrays to and receiving arrays from Oracle database using packages and
finally concluded with working on Multiple Active Result Sets (MARS).

Dealing with Large Objects
(LOBs)

Oracle database offers the capability of storing and retrieving images, music, video,
and any other binary information in the form of large objects. The large objects are
typically of type BFILE, BLOB, and CLOB (or NCLOB).

BFILE is generally used when you have files residing in the file system of the Oracle
database server, outside the database. A BFILE value is simply a pointer to an
existing file in the host operating system and does not store the file itself within the
database. However, BLOB (Binary Large Object) gives the capability to store the
binary file or binary information typically of huge size directly within the database
without having any relation with the file system of Oracle server. CLOB (Character
Large Object) is very similar to BLOB, except that it is optimized to store huge text
information efficiently. And finally, NCLOB is very similar to CLOB and enhanced
towards storing multi-byte national character set (synonymous with UNICODE).

In simple words, BFILE data is stored externally on the database server and BLOB,
CLOB, and NCLOB data is stored internally within the database. Now, we shall
examine how ODP.NET handles each of these objects.

Working with BFILEs
As explained previously, BFILE-related files are always stored external to the
database. Within the database, we only store the pointers of those files, without
affecting the database size. As the files always stay outside the database, they are
always automatically made read-only for security purposes. Before working with
BFILE type, we need to set up the environment to deal with sample BFILE data.

Chapter 6

[133]

Following is the sample form designed to work with the BFILE demonstration:

Adding a New Row Containing BFILE
To work with BFILEs, you need not learn anything new. It is just the same INSERT
or UPDATE statement you will use, while inserting or updating rows containing
BFILE information.

Dealing with Large Objects (LOBs)

[134]

The following code adds an entry into the table created according to our BFILE setup:

Private Sub btnAdd_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles btnAdd.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 'create command object
 Dim sb As New System.Text.StringBuilder
 sb.Append(" INSERT INTO EmpPhotos")
 sb.Append(" (empno, photo)")
 sb.Append(" VALUES")
 sb.Append(" (" & Me.txtEmpno.Text & ", ")
 sb.Append(" BFILENAME('EMPPHOTOSDIR', '" &
 Me.txtPhotoPath.Text & "'))")

 Dim cmd As New OracleCommand
 With cmd
 .CommandText = sb.ToString
 'proceed with execution
 .Connection = cn
 .Connection.Open()
 .ExecuteNonQuery()
 .Connection.Close()
 .Dispose()
 End With
 MessageBox.Show("Succesfully Uploaded")
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

From the above highlighted code, you can observe that an Oracle built-in function
BFILENAME is used. It simply accepts the logical Oracle directory name and the file
name; the rest is automatically taken care of by Oracle!

While executing the application, you must only provide the file
name without any path of the file at the database server (it is
identified by the logical directory object).

Chapter 6

[135]

If everything gets executed fine, you should get output similar to the following:

Updating an Existing BFILE Row
The code for updating an existing BFILE is very similar to that for inserting except
that we need to replace the INSERT statement with an appropriate UPDATE statement.

The following code updates an existing entry in the table containing BFILE
information.

Private Sub btnUpdate_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnUpdate.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 'create command object
 Dim sb As New System.Text.StringBuilder
 sb.Append(" UPDATE EmpPhotos SET")
 sb.Append(" photo=")
 sb.Append(" BFILENAME('EMPPHOTOSDIR', '" &
 Me.txtPhotoPath.Text & "')")
 sb.Append(" WHERE empno=" & Me.txtEmpno.Text)

 Dim cmd As New OracleCommand
 With cmd
 .CommandText = sb.ToString
 'proceed with execution

Dealing with Large Objects (LOBs)

[136]

 .Connection = cn
 .Connection.Open()
 .ExecuteNonQuery()
 .Connection.Close()
 .Dispose()
 End With
 MessageBox.Show("Succesfully Uploaded")
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

You can observe from the highlighted code that we replaced the entire INSERT
statement with an UPDATE statement.

Retrieving BFILE Information from a Database
Now that we have seen how to update BFILE information to the database, it is
time to retrieve BFILE information from the table. When we try to retrieve BFILE
information from the database, it doesn't retrieve a pointer or link to that file.
Instead, it directly returns you the file (using the BFILE pointer) stored in the file
system of Oracle database server!

The following code retrieves the BFILE information from the database:

Private Sub btnShow_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles btnShow.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 'create command object
 Dim sb As New System.Text.StringBuilder
 sb.Append(" SELECT photo FROM EmpPhotos")
 sb.Append(" WHERE empno = " & Me.txtEmpno.Text)

 Dim cmd As New OracleCommand(sb.ToString, cn)
 With cmd
 .Connection.Open()
 Dim rdr As OracleDataReader = .ExecuteReader
 If rdr.Read Then
 Me.PictureBox1.Image =

Chapter 6

[137]

 Image.FromStream(New IO.MemoryStream
 (rdr.GetOracleBFile(rdr.GetOrdinal
 ("photo")).Value))
 End If
 .Connection.Close()
 .Dispose()
 End With
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

In the above code, OracleDataReader is used for convenience. You can also use
OracleDataAdapter and populate the same into data tables or data sets. The most
important method is GetOracleBFile. It is the method that returns the BFILE
information back to the application. As we would like to transform that file into an
image, we are temporarily reading the whole BFILE information into a temporary
MemoryStream and later we get it displayed on the form using the static method
Image.FromStream.

You should receive output similar to the following if everything gets successfully
executed:

Dealing with Large Objects (LOBs)

[138]

Retrieving Properties of a BFILE
You can even retrieve some extra information about a BFILE, when you are using
OracleBFile. You can retrieve and test for certain properties like whether the file
exists at the server, whether it is readable, filename, size, etc.

The following code retrieves the BFILE along with extra information from
the database:

Private Sub btnShowPhoto_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnShowPhoto.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 'create command object
 Dim sb As New System.Text.StringBuilder
 sb.Append(" SELECT photo FROM EmpPhotos")
 sb.Append(" WHERE empno = " & Me.txtEmpno.Text)

 Dim cmd As New OracleCommand(sb.ToString, cn)
 With cmd
 .Connection.Open()
 Dim rdr As OracleDataReader = .ExecuteReader
 If Not rdr.Read Then
 MessageBox.Show("No employee exists")
 Else
 Dim bfile As _
 Oracle.DataAccess.Types.OracleBFile =
 rdr.GetOracleBFile(rdr.GetOrdinal("photo"))
 If Not bfile.FileExists Then
 MessageBox.Show("Photo File does not exist
 at server")
 Else
 If Not bfile.CanRead Then
 MessageBox.Show("You do not have
 permission to view the photo")
 Else
 If bfile.IsEmpty Or bfile.IsNull Then
 MessageBox.Show("Photo not assigned
 to the employee")
 Else
 Dim dir As String = bfile.DirectoryName
 Dim fn As String = bfile.FileName

Chapter 6

[139]

 Dim size As Long = bfile.Length
 Me.PictureBox1.Image =
 Image.FromStream(New IO.MemoryStream
 (bfile.Value))
 Dim bfiledetails As New _
 System.Text.StringBuilder
 bfiledetails.Append("Directory:" & dir
 & ControlChars.NewLine)
 bfiledetails.Append("File Name:" & fn
 & ControlChars.NewLine)
 bfiledetails.Append("Size:" & size
 & ControlChars.NewLine)
 MessageBox.Show(bfiledetails.ToString)
 End If 'is null or is empty
 End If 'can read
 End If 'is file exists
 End If 'rdr
 .Connection.Close()
 rdr.Dispose()
 .Dispose()

 End With
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

The highlighted code shows you how to retrieve several properties of a BFILE object.
The following table summarizes the properties used in this code:

Property Description
FileExists Indicates whether or not the file exists at the server
CanRead Indicates whether or not the file can be read
IsEmpty, IsNull Indicates whether the file is empty or not
DirectoryName Gives the directory (folder) name of the file
FileName The name of the file
Length The size of the file in bytes

Chapter 6

[141]

 p_empno.Value = Me.txtEmpno.Text
 Dim p_remarks As New OracleParameter(":2", _
 OracleDbType.Clob)
 p_remarks.Size = Me.txtRemarks.Text.Length
 p_remarks.Value = Me.txtRemarks.Text
 .Parameters.Add(p_empno)
 .Parameters.Add(p_remarks)
 'proceed with execution
 .Connection = cn
 .Connection.Open()
 .ExecuteNonQuery()
 .Connection.Close()
 End With
 MessageBox.Show("Succesfully added")
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

The highlighted section creates an OracleParameter which is of the type
OracleDbType.Clob as shown.��� �� Once the parameter is defined, we specify the size of
text being inserted and assign the text directly. Following is the sample screen for the
above code:

Dealing with Large Objects (LOBs)

[142]

Updating CLOB Information Using OracleClob
Updating CLOB information is very similar to inserting it. However, I would like to
introduce the OracleClob class to deal with CLOB. You can make use of this class
for both inserting and updating CLOBs.

The following code uses the OracleClob class to update a row having a
CLOB column:

Private Sub btnUpdate_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnUpdate.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 'create command object
 Dim sb As New System.Text.StringBuilder
 sb.Append(" UPDATE EmpRemarks SET")
 sb.Append(" remarks = :1")
 sb.Append(" WHERE empno = :2")

 Dim cmd As New OracleCommand
 With cmd
 .CommandText = sb.ToString
 'open the connection first
 .Connection = cn
 .Connection.Open()
 'define parameters
 Dim objClob As New _
 Oracle.DataAccess.Types.OracleClob(cn)
 objClob.Write(Me.txtRemarks.Text.ToCharArray,
 0, Me.txtRemarks.Text.Length)
 .Parameters.Add(New OracleParameter(":1",
 objClob))
 .Parameters.Add(New OracleParameter(":2",
 Me.txtEmpno.Text))
 'proceed with execution
 .ExecuteNonQuery()
 .Connection.Close()
 End With
 MessageBox.Show("Succesfully updated")
 Catch ex As Exception

Chapter 6

[143]

 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

Let us go step by step.

Dim objClob As New Oracle.DataAccess.Types.OracleClob(cn)

The above statement declares an objClob object of the type OracleClob (available in
Oracle.DataAccess.Types).

objClob.Write(Me.txtRemarks.Text.ToCharArray, 0,
 Me.txtRemarks.Text.Length)

Using the Write method of OracleClob, the above statement dumps the entire
information of text into the CLOB object (objClob).

.Parameters.Add(New OracleParameter(":1", objClob))

Once the CLOB is filled with information, the above statement adds it as a parameter
to the OracleCommand.

Retrieving CLOB Information from Oracle
Database
Now that we understand how to insert or update CLOB information in a database, it
is time to retrieve CLOB information from the table. The following code retrieves the
CLOB information (huge text) from Oracle database:

Private Sub btnShow_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles btnShow.Click
 Me.txtRemarks.Text = ""
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 'create command object
 Dim sb As New System.Text.StringBuilder
 sb.Append(" SELECT remarks FROM EmpRemarks")

Dealing with Large Objects (LOBs)

[144]

 sb.Append(" WHERE empno = " & Me.txtEmpno.Text)

 Dim cmd As New OracleCommand(sb.ToString, cn)
 With cmd
 .Connection.Open()
 Dim rdr As OracleDataReader = .ExecuteReader
 If rdr.Read Then
 Me.txtRemarks.Text =
 rdr.GetOracleClob(rdr.GetOrdinal
 ("remarks")).Value
 End If
 .Connection.Close()
 End With
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
 End Sub

In the above code, OracleDataReader is used for convenience. You can also use
OracleDataAdapter and populate the same into data tables or data sets. The most
important method from the highlighted code above is GetOracleCLOB. It is the
method that returns the CLOB information back to the application.

Reading a Text File and Uploading as CLOB
Now, let us read a text file and upload that information as CLOB into Oracle
database. Before going for the code, let us have a look at the screen design:

Chapter 6

[145]

The following code uploads a text file into a CLOB column in a table:

Private Sub btnAdd_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles btnAdd.Click

 If Me.txtRemarksFileName.Text.Trim.Length = 0 Then
 MessageBox.Show("No file chosen")
 Exit Sub
 End If

 'reading the file
 Dim contents As String = _
 File.ReadAllText(Me.txtRemarksFileName.Text)
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")

Dealing with Large Objects (LOBs)

[146]

 Try
 'create command object
 Dim sb As New System.Text.StringBuilder
 sb.Append(" INSERT INTO EmpRemarks")
 sb.Append(" (empno, remarks)")
 sb.Append(" VALUES")
 sb.Append(" (:1,:2)")

 Dim cmd As New OracleCommand
 With cmd
 .CommandText = sb.ToString
 'define parameters
 Dim p_empno As New OracleParameter(":1",
 OracleDbType.Int16)
 p_empno.Value = Me.txtEmpno.Text
 Dim p_remarks As New OracleParameter(":2",
 OracleDbType.Clob)
 p_remarks.Size = contents.Length
 p_remarks.Value = contents
 .Parameters.Add(p_empno)
 .Parameters.Add(p_remarks)
 'proceed with execution
 .Connection = cn
 .Connection.Open()
 .ExecuteNonQuery()
 .Connection.Close()
 .Dispose()
 End With
 MessageBox.Show("Succesfully added")
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

Let us go step by step:

Dim contents As String = _
 File.ReadAllText(Me.txtRemarksFileName.Text)

Chapter 6

[147]

This statement reads the entire information available in a file using File.
ReadAllText and assigns it as a string to the variable contents.

sb.Append(" INSERT INTO EmpRemarks")
sb.Append(" (empno, remarks)")
sb.Append(" VALUES")
sb.Append(" (:1,:2)")

The above INSERT statement tries to insert a row that includes CLOB information.
You can observe that we are using two bind variables for providing the values.
The first is simply an employee number. The second is the CLOB, which is specified
as follows:

Dim p_remarks As New OracleParameter(":2",
 OracleDbType.Clob)
p_remarks.Size = contents.Length
p_remarks.Value = contents

The above parameter makes use of the contents variable, which contains the
entire file content (which is read previously). The rest is the same as provided in
previous sections.

How about NCLOB?
To deal with NCLOB, just replace OracleDbType.Clob with
OracleDbType.NClob or work directly with OracleNClob.

Working with BLOBs
BLOB (Binary Large Object) gives us the capability to store binary files or binary
information typically of huge size directly within the database (without having any
relation with file system at the Oracle server).

Before trying to design databases with BLOB functionality, you
may have to consider the issues of storage and performance.

Chapter 6

[149]

The following is an illustration of a sample form designed to work with
BLOB images:

Dealing with Large Objects (LOBs)

[150]

The following is an illustration of a sample form designed to work with
BLOB documents:

Uploading Images to Oracle Database Using
BLOB
It is very simple to upload BLOB information into Oracle database. All we need to do
is read the entire file (in the form of bytes) and use OracleParameter together with
OracleCommand to upload it.

Chapter 6

[151]

The following code uploads an image into the EmpImages table:

 Private Sub btnAdd_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles btnAdd.Click
 If Me.txtImageFile.Text.Trim.Length = 0 Then
 MessageBox.Show("No file chosen")
 Exit Sub
 End If

 'Now, read the entire file into a string
 Dim contents() As Byte = _
 File.ReadAllBytes(Me.txtImageFile.Text)

 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 'create command object
 Dim sb As New System.Text.StringBuilder
 sb.Append(" INSERT INTO EmpImages")
 sb.Append(" (empno, image)")
 sb.Append(" VALUES")
 sb.Append(" (:1,:2)")

 Dim cmd As New OracleCommand
 With cmd
 .CommandText = sb.ToString
 'define parameters
 Dim p_empno As New OracleParameter(":1",_
 OracleDbType.Int16)
 p_empno.Value = Me.txtEmpno.Text
 Dim p_img As New OracleParameter(":2", _
 OracleDbType.Blob)
 p_img.Size = contents.Length
 p_img.Value = contents
 .Parameters.Add(p_empno)
 .Parameters.Add(p_img)
 'proceed with execution
 .Connection = cn
 .Connection.Open()
 .ExecuteNonQuery()
 .Connection.Close()
 .Dispose()
 End With

Dealing with Large Objects (LOBs)

[152]

 MessageBox.Show("Succesfully added")
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

Using the ReadAllBytes() method is the fastest way to read the entire information
from a file in the form of bytes. Once the file is read in the form of bytes, we need
to set up an OracleParameter of the type OracleDbType.Blob and provide other
properties as follows:

Dim p_img As New OracleParameter(":2", OracleDbType.Blob)
p_img.Size = contents.Length
p_img.Value = contents

Finally, the BLOB parameter must be added to the OracleCommand object. Once you
execute it, a message box confirming that the file has been successfully added will
be displayed.

Chapter 6

[153]

Retrieving Images from Oracle Database
Using BLOB
Now that we have seen how to insert BLOB information in to the database, it is time
to retrieve BLOB information from the table. The following code retrieves BLOB
information (images) from Oracle database:

Private Sub btnShow_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles btnShow.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 'create command object
 Dim sb As New System.Text.StringBuilder
 sb.Append(" SELECT image FROM EmpImages")
 sb.Append(" WHERE empno = " & Me.txtEmpno.Text)

 Dim cmd As New OracleCommand(sb.ToString, cn)
 With cmd
 .Connection.Open()
 Dim rdr As OracleDataReader = .ExecuteReader
 If rdr.Read Then
 Me.PictureBox1.Image = Image.FromStream
 (New MemoryStream(rdr.GetOracleBlob
 (rdr.GetOrdinal("image")).Value))
 End If
 .Connection.Close()
 .Dispose()
 End With
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

Earlier, we used GetOracleCLOB to work with CLOBs. In the above highlighted
code, we are using GetOracleBLOB,�� which returns the BLOB information back to
the application. As we need to transform that file as an image, we begin by reading
the whole BLOB information into a temporary MemoryStream and later we get it
displayed on the form using the static method Image.FromStream.

Dealing with Large Objects (LOBs)

[154]

You should receive output similar to the following if everything gets successfully
executed:

Uploading Documents to and Retrieving
Documents from Oracle Database
Until now, we have worked with images. Now, we shall concentrate on inserting
documents into and retrieving documents from Oracle database.

Even though the coding in this section is mainly concentrated on
Microsoft Word Documents, it works fine for any other binary files like
Excel documents, music files (MP3, Wav, etc.), video files (AVI, RM,
etc.) by changing the filename and extension.

The following code uploads a Microsoft Word document into the Oracle database (it
is very similar to the code provided in previous sections):

Private Sub btnUpload_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnUpload.Click
 If Me.txtDocFile.Text.Trim.Length = 0 Then
 MessageBox.Show("No file chosen")
 Exit Sub
 End If

 'Now, read the entire file into a string

Chapter 6

[155]

 Dim contents() As Byte = _
 File.ReadAllBytes(Me.txtDocFile.Text)

 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 'create command object
 Dim sb As New System.Text.StringBuilder
 sb.Append(" INSERT INTO EmpDocs")
 sb.Append(" (empno, doc)")
 sb.Append(" VALUES")
 sb.Append(" (:1,:2)")

 Dim cmd As New OracleCommand
 With cmd
 .CommandText = sb.ToString
 'define parameters
 Dim p_empno As New OracleParameter(":1", _
 OracleDbType.Int16)
 p_empno.Value = Me.txtEmpno.Text
 Dim p_doc As New OracleParameter(":2", _
 OracleDbType.Blob)
 p_doc.Size = contents.Length
 p_doc.Value = contents
 .Parameters.Add(p_empno)
 .Parameters.Add(p_doc)
 'proceed with execution
 .Connection = cn
 .Connection.Open()
 .ExecuteNonQuery()
 .Connection.Close()
 .Dispose()
 End With
 MessageBox.Show("File Succesfully uploaded")
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

Chapter 6

[157]

 File.WriteAllBytes(DesktopPath & "\temp.doc",
 buf)
 End If
 .Connection.Close()
 .Dispose()
 MessageBox.Show("File Succesfully downloaded
 to desktop")
 End With
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

From the highlighted code, you can observe that a byte array is declared to hold the
entire binary information being retrieved from database. Further on, we have the
following statement:

buf = rdr.GetOracleBlob(rdr.GetOrdinal("doc")).Value

Just as in the previous section, the GetOracleBlob method is used to retrieve binary
information (in this case, it is going to be a Microsoft Word document) from the
database and assign it to a byte array. To retrieve the path of the local desktop (to
which to save the file) into the variable DesktopPath, we can use the Environment
object as follows:

Dim DesktopPath As String = _
 Environment.GetFolderPath
 (Environment.SpecialFolder.Desktop)

Once the path is available, we simply copy all the bytes into a new file named temp.
doc on the desktop using the following statement:

File.WriteAllBytes(DesktopPath & "\temp.doc", buf)

Dealing with Large Objects (LOBs)

[158]

Once the download is complete, we should be able to see a confirmation message as
shown below.

Summary
In this chapter, we concentrated on working with BFILE, CLOB, and BLOB using
ODP.NET. Using different types of LOBs (Large Objects) in Oracle, we have seen
how to upload and download images, documents, and textual information to and
from Oracle database server.

XML and XML DB
Development with ODP.NET

XML (eXtensible Markup Language) is a standard for representing structured data
in a readable text format. The data in XML is surrounded with user-defined open and
close tags (similar to those of HTML). The beauty of XML is that it can be used for
information exchange by any number of applications, irrespective of any platform.

XML is very useful when the data is semi-structured. That is, it has a regular
structure, but that structure varies enough that mapping it to a relational database
results in either a large number of columns with null values or a large number of
tables. This makes the database design inefficient. To face the challenges of storing
semi-structured data (XML), database vendors started supporting XML as part of the
database itself.

Any database used for managing XML must be able to contain XML documents
within the same database. Oracle database offers the capability of storing XML data
natively. Apart from simply storing XML, we can also benefit from other features
like indexing, parsing, navigating, searching (querying) XML data using other XML
technologies like XPath, XQuery, etc. All these features are available as a part of
Oracle XML DB, an add‑on feature of Oracle database.

Oracle XML DB is a new feature of Oracle database 9i and 10g that provides
high-performance, native XML storage and retrieval technology together with full
support for XML Schema, which defines the structure of an XML document.

Oracle XML DB is not included as part of Oracle 10g Express
Edition (Oracle 10g XE) installation.

XML and XML DB Development with ODP.NET

[160]

A Fast Track on XML with Oracle
Before directly jumping into ODP.NET and trying to access XML data, let us have a
fast‑track introduction (only for dummies) to XML in Oracle and how to work with
it. If you are already familiar with XML in Oracle, you can skip this section.

Let us start with generating an XML document based on a SELECT statement. The
following command automatically generates an XML document based on the output
of the internal SELECT statement:

SELECT
DBMS_XMLGEN.GETXML('SELECT empno, ename, sal,
 deptno FROM emp')
FROM DUAL;

You can observe that we are simply generating an XML document and not really
storing or retrieving native XML data.

To store and retrieve native XML data, we need to create a table with a column of
type XMLType; XMLType is a special data type (object type) in Oracle, which is mainly
optimized to work with XML data. It gives more flexibility (towards searching,
modifying, validating, etc.) to work with XML data compared to a VARCHAR2 �������field.

To understand completely about XMLType, you should have
some basic knowledge on Object Types (or Object Oriented topics)
available in Oracle, which is beyond the scope this book.

The following demonstration table will be used through out this chapter:

CREATE TABLE Employee
(
empno VARCHAR2(10) PRIMARY KEY,
ename VARCHAR2(20),
Address XMLType
);

The highlighted column (Address) declared is of type XMLType, which can be used to
store native XML information. It is important to understand that XMLType is an object
type. Unlike standard data types, to work with object types in Oracle, we need to
create an object by using the constructor (which will have the same name as the type
name) of that object type. Let us go through an example first.

The following INSERT ��� command can add a row to the table created above:

INSERT INTO Employee VALUES
(
'1001',

Chapter 7

[161]

'Jag',
XMLType('
 <Address>
 <Street>13-20-26, Nallam vari thota</Street>
 <City>Bhimavaram</City>
 <Zip>534201</Zip>
 <State>AP</State>
 </Address>')
);

You can observe a new keyword XMLType, which is nothing but the constructor of
object type XMLType. It is mainly used to convert raw information to native XML and
natively store XML information into the table. To retrieve the rows from the table
along with XML data, we can use a SELECT ��������������������� statement as follows:

SELECT a.empno, a.ename, a.Address.getStringVal()
FROM Employee a;

The above code simply gives all values along with the exact XML information we
inserted previously. getStringVal is a method available as part of the object
type XMLType. Every object type can have several methods and XMLType is a
pre-defined object type that has several methods designed to work with XML data
in a flexible manner.

Sometimes, we may want to display the XML information in the form of logical
columns not in the form of XML anymore. The following SELECT �������������������� statement does this:

SELECT
a.empno,
a.ename,
a.Address.extract('//Address/Street/text()')
 .getStringVal() as Street,
a.Address.extract('//Address/City/text()')
 .getStringVal() as City,
a.Address.extract('//Address/Zip/text()')
 .getStringVal() as Zip,
a.Address.extract('//Address/State/text()')
 .getStringVal() as State
FROM Employee a;

In the above SELECT statement, XPath expressions are used to extract XML
information and display it as separate columns. You can observe that extract is
another method available as part of the XMLType object. You can also work with
XQuery for greater flexibility of searching or querying XML data.

XML and XML DB Development with ODP.NET

[162]

Let us try to update a piece of data available in XML. The following command
modifies the Zip of a particular employee:

UPDATE Employee a
SET a.Address = updateXML(a.Address,
 '//Address/Zip/text()','534202')
 WHERE a.empno = '1001'
 AND EXISTSNODE(a.Address, '//Address/Zip') = 1;

updateXML and EXISTSNODE are two of the several built-in functions available in
Oracle to deal with XML data. EXISTSNODE can be used to test whether an XML
construct has a particular node or not. updateXML is mainly used to modify the
information available as part of an XML construct. Similar to updateXML, we also have
deleteXML to remove information from XML constructs. It is demonstrated as follows:

UPDATE Employee a
SET a.Address = deleteXML(a.Address, '//Address/Zip')
 WHERE a.empno = '1001'
 AND EXISTSNODE(a.Address, '//Address/Zip') = 1;

When we are able to modify and remove XML information from an XMLType column,
we should also be able to insert new information as part of XML. The following
command demonstrates this:

UPDATE Employee a
SET a.Address = INSERTXMLBEFORE(a.Address,
 '/Address/State',
 XMLType('<Zip>534201</Zip>'))
WHERE a.empno = '1001'

To remove the entire XML content from the XMLType column of a particular row, you
can simply update the column with null as follows:

UPDATE Employee a
SET a.Address = null
 WHERE a.empno = '1001'

And finally, to provide a complete XML construct to an already existing row, we can
use the following command:

UPDATE Employee a
SET a.Address = XMLType('
 <Address>
 <Street>13-20-26, Nallam vari thota</Street>
 <City>Bhimavaram</City>
 <Zip>534201</Zip>
 <State>AP</State>
 </Address>')
WHERE a.empno = '1001'

Chapter 7

[163]

Generating XML from Existing Rows
in Tables
Oracle database stores information into tables in the form of rows. In fact, Oracle is
primarily an RDBMS and later got enhanced with other features like Object Types,
Java, XML, .NET, etc. Most production databases still use Oracle to store RDBMS
information. Sometimes, it would be necessary to expose the existing RDBMS
information (rows of tables) in the form of XML, so that heterogeneous applications
can share information easily and flexibly.

Generate XML Using ADO.NET DataSet
There are several methods to generate XML from an existing set of rows. As the
internal framework of ADO.NET is completely based on XML, it is very easy to
generate XML from a DataSet.

The following code shows you XML generated by an ADO.NET-related DataSet:

Private Sub btnShowDS_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnShowDS.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=orcl; _
 User Id=scott;Password=tiger")
 Try
 'create command object
 Dim cmd As New OracleCommand(Me.txtSQL.Text, cn)
 'create adapter object
 Dim da As New OracleDataAdapter(cmd)
 'create dataset
 Dim ds As New DataSet("Result")
 'fill dataset
 da.Fill(ds, "Rows")
 'clear resources
 da.Dispose()
 cmd.Dispose()
 'display the information
 Me.txtXML.Text = ds.GetXml
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then

Chapter 7

[165]

 Dim cn As New OracleConnection("Data Source=orcl; _
 User Id=scott;Password=tiger")
 Try
 'create command object and set properties
 Dim cmd As New OracleCommand(Me.txtSQL.Text, cn)
 cmd.XmlCommandType = OracleXmlCommandType.Query
 cmd.XmlQueryProperties.RootTag = "Result"
 cmd.XmlQueryProperties.RowTag = "Rows"
 'open connection and execute the command
 cmd.Connection.Open()
 Dim dr As Xml.XmlReader = cmd.ExecuteXmlReader
 'load the XML into a document
 ������������������������������ Dim doc As New Xml.XmlDocument
 ������������doc.Load(dr)
 'release resources
 cmd.Connection.Close()
 cmd.Dispose()
 'display the information
 Me.txtXML.Text = doc.OuterXml
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

From the above highlighted code, you can understand that we are modifying
some of the properties of the OracleCommand object before executing it with
ExecuteXMLReader. The following are the statements that are new in the
above program:

cmd.XmlCommandType = OracleXmlCommandType.Query
cmd.XmlQueryProperties.RootTag = "Result"
cmd.XmlQueryProperties.RowTag = "Rows"

The first line specifies that the type of command is query. The second line specifies
that the root tag of the XML document being generated must be Result. The third
line specifies that each set of elements of a row must be embedded in the Rows tag.
The following statement executes the query and returns the result in the form of
XML or an XmlReader object.

Dim dr As Xml.XmlReader = cmd.ExecuteXmlReader

XML and XML DB Development with ODP.NET

[166]

To read the entire information from the XmlReader object, we used XmlDocument
as follows:

Dim doc As New Xml.XmlDocument
doc.Load(dr)

Load is a method of XmlDocument that can take an XmlReader as argument and
populate the XmlDocument.

Finally, to retrieve the XML from the XmlDocument, we can simply work with the
property OuterXml as follows.

Me.txtXML.Text = doc.OuterXml

Generate XML Using DBMS_XMLGEN
This is the simplest of all of the methods available. DBMS_XMLGEN ��������������������� is a built-in PL/SQL
package, which is mainly used to generate XML documents based on the SELECT
query passed to it.

You need to have Oracle XML DB installed on your database
to work with DBMS_XMLGEN package.

The following code uses DBMS_XMLGEN to generate XML:

Private Sub btnShowUsingXMLGEN_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnShowUsingXMLGEN.Click
 Dim cn As New OracleConnection("Data Source=orcl; _
 User Id=scott;Password=tiger")
 Try
 'create command object
 Dim sql As New System.Text.StringBuilder
 sql.Append(" SELECT ")
 sql.Append(" DBMS_XMLGEN.GETXML('" &
 Me.txtSQL.Text & "')")
 sql.Append(" FROM dual")
 Dim cmd As New OracleCommand(sql.ToString, cn)
 cmd.Connection.Open()
 'display the information
 Me.txtXML.Text = cmd.ExecuteScalar
 'release resources
 cmd.Connection.Close()
 cmd.Dispose()
 Catch ex As Exception

Chapter 7

[167]

 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try

There is nothing new from the above code except the SELECT statement, which uses
the DBMS_XMLGEN package. The DBMS_XMLGEN �������������������������� package contains a member GETXML,
which can accept a SELECT query as parameter. The GETXML first executes the SELECT
query passed to it and it automatically converts the output of the SELECT statement
to XML and returns this in the form of a string.

Converting Rows to HTML Using XML and XSLT
Anyone who designs web pages using any tool/designer would certainly know what
CSS is. We use HTML in combination with CSS to design and present web pages in
a more efficient manner. Basically a stylesheet presents a set of styles, which would
affect certain tag(s) in a web document. By modifying the underlying stylesheets,
sometimes the look and feel of an entire website gets changed dramatically.

As HTML is made up of standard pre-defined tags, we can simply design and
apply stylesheets for the necessary tags using CSS, and a browser can understand
all those details very easily. But any XML document is generally designed using
user-defined tags (elements); a browser may not understand all those new tags
(elements). Just as we use CSS to present HTML document in a well-formatted and
understandable manner, we use XSL to present (transform) an XML document into
any format we require.

XSL stands for eXtensible Stylesheet Language. It is a language used to design
and apply stylesheets especially for XML documents. Originally the research started
to provide stylesheet technology to XML using XSL, but finally ended up with
three divisions of XSL. So, XSL now consists of three parts, namely XSLT, XPath,
and XSL‑FO. XSLT is a language for transforming XML documents (even today,
some programmers call XSLT XSL). XPath is a language to filter, search, or sort
information available in XML documents. XSL-FO is a language for formatting
XML documents. In this article we mainly focus on XSLT, which stands for XSL
Transformations.

As of now, we can already generate XML based on a SELECT statement. Now, let us
try transforming the XML (which is generated) to HTML using XSLT together with
ODP.NET!

XML and XML DB Development with ODP.NET

[168]

The following XSLT script is used for transformation (ReportStyle.xsl):

<?xml version="1.0" encoding="ISO-8859-1" ?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
<html>
 <body>
 <table width="50%" cellspacing="0" cellpadding="0"
 style="font-family:verdana;font-size:X-Small"
 border="1">
 <tr bgcolor="#336699">
 <th align="left">
 Name
 </th>
 <th align="right">
 Salary
 </th>
 </tr>
 <xsl:for-each select="EMPLOYEES/EMPLOYEE">
 <tr>
 <td align="left">
 <xsl:value-of select="ENAME" />
 </td>
 <td align="right">
 <xsl:value-of select="SAL" />
 </td>
 </tr>
 </xsl:for-each>
 </table>
 </body>
</html>
</xsl:template>
</xsl:stylesheet>

Initially, when the above XSLT is applied to an XML document, the following
gets executed:

<html>
 <body>
 <table width="50%" cellspacing="0" cellpadding="0"
 style="font-family:verdana;font-size:X-Small"
 border="1">
 <tr bgcolor="#336699">
 <th align="left">
 Name
 </th>

Chapter 7

[169]

 <th align="right">
 Salary
 </th>
 </tr>

After that, for each EMPLOYEES/EMPLOYEE element found in the XML document, it
adds a new row to the table with the respective employee details as shown in the
following example:

<tr>
 <td align="left">Jag
 </td>
 <td align="right">3400
 </td>
</tr>

Once the whole XML document is parsed, the following code gets executed (which
closes the HTML document):

 </table>
 </body>
</html>

The following code applies the transformation to the XML generated from a SELECT
statement.

Private Sub btnShow_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles btnShow.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=orcl; _
 User Id=scott;Password=tiger")
 Try
 'get XSLT content from XSL file
 Dim XSL As String = _
 System.IO.File.ReadAllText("..\..\ReportStyle.xsl")
 'create command object and set properties
 Dim cmd As New OracleCommand("SELECT ename, _
 sal FROM emp", cn)
 With cmd
 .XmlCommandType = OracleXmlCommandType.Query
 .XmlQueryProperties.RootTag = "EMPLOYEES"
 .XmlQueryProperties.RowTag = "EMPLOYEE"
 .XmlQueryProperties.Xslt = XSL
 End With
 'open connection and execute the command
 cmd.Connection.Open()
 Dim dr As Xml.XmlReader = cmd.ExecuteXmlReader
 'load the XML into a document

XML and XML DB Development with ODP.NET

[170]

 ������������������������������ Dim doc As New Xml.XmlDocument
 ������������doc.Load(dr)
 'release resources
 cmd.Connection.Close()
 cmd.Dispose()
 'display the web report
 Me.WebBrowser1.DocumentText = doc.OuterXml
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

From this code, you can observe that we are reading and loading the entire XSL
file into a variable. After that, we create an OracleCommand object with a SELECT
statement. The properties of the object are specified in such a way that it returns
the result of query in the form of XML. While it is converting the rows to XML, it
takes our XSLT into consideration (as we assigned the XSLT to the Xslt property)
and applies the transformation immediately to the resultant XML (resulting in
HTML). Once this transformation is done, the result is read through XmlReader.
The transformation is loaded into an XmlDocument and finally presented in on a
WebBrowser control. The following is sample output of our transformation:

Chapter 7

[171]

Manipulating Rows in a Table Using XML
There are several methods to manipulate rows. We have already seen the concept of
manipulating rows in previous chapters. Now, let us try to manipulate traditional
RDBMS rows using XML! In simple words, we will try to insert or update existing
rows in a table using XML!

Inserting/updating rows using XML is quite different from
inserting/updating XML into rows.

Inserting Rows into Oracle Using XML
Let us now insert traditional rows into the emp table using XML. The following code
inserts a new row into an emp ������������������������� table, by only using XML:

Private Sub btnAddRow_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnAddRow.Click
 If Me.txtXML.Text.Trim.Length = 0 Then
 MessageBox.Show("No XML generated")
 Exit Sub
 End If

 'create connection to db
 Dim cn As New OracleConnection("Data Source=orcl; _
 User Id=scott;Password=tiger")
 Try
 'create command object
 Dim cmd As New OracleCommand()
 With cmd
 .Connection = cn
 .Connection.Open()
 .XmlCommandType = OracleXmlCommandType.Insert
 .CommandText = Me.txtXML.Text
 .XmlSaveProperties.RowTag = "EMPLOYEE"
 .XmlSaveProperties.Table = "emp"
 .XmlSaveProperties.UpdateColumnsList = New
 String() {"EMPNO", "ENAME", "SAL", "DEPTNO"}
 Dim result As Integer = .ExecuteNonQuery
 .Connection.Close()
 .Dispose()
 MessageBox.Show("Succesfully added " & result & "
 rows")

Chapter 7

[173]

 sb.Append("<EMPNO>" & Me.txtEmpno.Text & "</EMPNO>" &
 ControlChars.NewLine)
 sb.Append("<ENAME>" & Me.txtName.Text & "</ENAME>" &
 ControlChars.NewLine)
 sb.Append("<SAL>" & Me.txtSal.Text & "</SAL>" &
 ControlChars.NewLine)
 sb.Append("<DEPTNO>" & Me.txtDeptno.Text &
 "</DEPTNO>" & ControlChars.NewLine)
 sb.Append("</EMPLOYEE>" & ControlChars.NewLine)
 sb.Append("</EMPLOYEES>" & ControlChars.NewLine)
 Me.txtXML.Text = sb.ToString
End Sub

The above routine simply generates an XML construct by concatenating the row
information provided by the user (in text fields). You can also observe that the
root tag is defined as EMPLOYEES and the row tag is defined as EMPLOYEE. The
columns available as part of the XML construct should match exactly with the
UpdateColumnList. The following is sample output for the above:

XML and XML DB Development with ODP.NET

[174]

Updating Rows into Oracle Using XML
Now that we have seen how to insert rows using XML, let us deal with updating rows
using XML. The following code updates an existing row in an emp table using XML:

Private Sub btnUpdateRow_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnUpdateRow.Click
 If Me.txtXML.Text.Trim.Length = 0 Then
 MessageBox.Show("No XML generated")
 Exit Sub
 End If

 'create connection to db
 Dim cn As New OracleConnection("Data Source=orcl; _
 User Id=scott;Password=tiger")
 Try
 'create command object
 Dim cmd As New OracleCommand()
 With cmd
 .Connection = cn
 .Connection.Open()
 .XmlCommandType = OracleXmlCommandType.Update
 .CommandText = Me.txtXML.Text
 .XmlSaveProperties.RowTag = "EMPLOYEE"
 .XmlSaveProperties.Table = "emp"
 .XmlSaveProperties.UpdateColumnsList =
 New String() {"ENAME", "SAL", "DEPTNO"}
 .XmlSaveProperties.KeyColumnsList =
 New String() {"EMPNO"}
 Dim result As Integer = .ExecuteNonQuery
 .Connection.Close()
 .Dispose()
 MessageBox.Show("Succesfully updated " & result
 & " rows")
 End With
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

Chapter 7

[175]

The code opposite is very similar to the previously given "insert" code except
that we are providing different values to XmlCommandType, UpdateColumnsList,�
and KeyColumnsList. As we are trying to update existing rows, we are using
OracleXmlCommandType.Update. The names of all the columns that need to be
updated must be provided for UpdateColumnsList. The names of the columns that
are used for conditions must be provided for KeyColumnsList.

Working with Native XML in Oracle
Database
Oracle database supports native XML storage (information will be directly stored in
the form of XML) very efficiently with the help of the data type XMLType. For the sake
of this demonstration, a table is created with a column of type XMLType as follows:

 CREATE TABLE Employee
 (
 empno VARCHAR2(4),
 ename VARCHAR2(20),
 address XMLType
)
 /

You can understand from the above command that a column address of type
XMLType ����������� is created.

Inserting XML Data into XMLType Using
Traditional INSERT
Oracle supports the traditional INSERT statement to work with XMLType directly. Let
us see how to insert a row using the INSERT statement together with ODP.NET code:

 Private Sub btnAdd_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles btnAdd.Click
 Dim SQL As New System.Text.StringBuilder
 SQL.Append("INSERT INTO Employee VALUES ")
 SQL.Append("(")
 SQL.Append(" '1001', ")
 SQL.Append(" 'Jag', ")
 SQL.Append(" XMLType('")
 SQL.Append(" <Address>")
 SQL.Append(" <Street>13-20-26, Gunupudi,
 Nallamvari thota</Street>")
 SQL.Append(" <City>Bhimavaram</City>")

XML and XML DB Development with ODP.NET

[176]

 SQL.Append(" <Zip>534201</Zip>")
 SQL.Append(" <State>AP</State>")
 SQL.Append(" </Address>')")
 SQL.Append(")")
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 'create command object
 Dim cmd As New OracleCommand(SQL.ToString, cn)
 cn.Open()
 Dim result As Integer = cmd.ExecuteNonQuery
 MessageBox.Show("Succesfully added " & result &
 " rows")
 cn.Close()
 cmd.Dispose()
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

There is nothing special about the previous code except that we are embedding XML
information as part of the INSERT statement itself. The INSERT statement is as follows:

 SQL.Append("INSERT INTO Employee VALUES ")
 SQL.Append("(")
 SQL.Append(" '1001', ")
 SQL.Append(" 'Jag', ")
 SQL.Append(" XMLType('")
 SQL.Append(" <Address>")
 SQL.Append(" <Street>13-20-26, Gunupudi,
 Nallamvari thota</Street>")
 SQL.Append(" <City>Bhimavaram</City>")
 SQL.Append(" <Zip>534201</Zip>")
 SQL.Append(" <State>AP</State>")
 SQL.Append(" </Address>')")
 SQL.Append(")")

The INSERT statement inserts three columns of which the last column is of the type
XMLType (which is object type). As explained previously, the object type data must be
created using a constructor and we used the same XMLType to create an instance of
XML data.

Chapter 7

[177]

Updating XML Data in XMLType Using
Traditional UPDATE
Oracle supports the traditional UPDATE statement to work with XMLType directly.
Here, we will update XML in an existing row using the UPDATE statement together
with ODP.NET as follows:

Private Sub btnUpdate_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnUpdate.Click
 Dim SQL As New System.Text.StringBuilder
 SQL.Append("UPDATE Employee a ")
 SQL.Append("SET a.Ename='Winner', ")
 SQL.Append("a.Address = XMLType('")
 SQL.Append(" <Address>")
 SQL.Append(" <Street>13-20-26</Street>")
 SQL.Append(" <City>Bvrm</City>")
 SQL.Append(" <Zip>534201</Zip>")
 SQL.Append(" <State>AP</State>")
 SQL.Append(" </Address>') ")
 SQL.Append("WHERE a.empno = '1001'")

 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 'create command object
 Dim cmd As New OracleCommand(SQL.ToString, cn)
 cn.Open()
 Dim result As Integer = cmd.ExecuteNonQuery
 MessageBox.Show("Succesfully updated " & result &
 " rows")
 cn.Close()
 cmd.Dispose()
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

XML and XML DB Development with ODP.NET

[178]

The following code generates the UPDATE statement used to update existing XML in
a row.

SQL.Append("UPDATE Employee a ")
SQL.Append("SET a.Ename='Winner', ")
SQL.Append("a.Address = XMLType('")
SQL.Append(" <Address>")
SQL.Append(" <Street>13-20-26</Street>")
SQL.Append(" <City>Bvrm</City>")
SQL.Append(" <Zip>534201</Zip>")
SQL.Append(" <State>AP</State>")
SQL.Append(" </Address>') ")
SQL.Append("WHERE a.empno = '1001'")

You can again observe that the constructor XMLType is being used to create an
instance (or object) of XMLType object type.

Inserting XML Data Using OracleXmlType
Apart from directly embedding XML as part of SQL commands, we can create and
use our own object of type OracleXMLType for greater flexibility. OracleXMLType
is available as part of ODP.NET and it automatically communicates with the
underlying columns of type XMLType.

The following code inserts XML data into a table using OracleXMLType:

Private Sub btnAdd2_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnAdd2.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 Dim SQL As New System.Text.StringBuilder
 SQL.Append("INSERT INTO Employee VALUES ")
 SQL.Append("(")
 SQL.Append(" :empno, ")
 SQL.Append(" :ename, ")
 SQL.Append(" :address")
 SQL.Append(")")

 Dim XML As New System.Text.StringBuilder
 XML.Append(" <Address>")
 XML.Append(" <Street>10-37-2,

Chapter 7

[179]

 Beside A.P. State warehouse,
 Indra Nagar</Street>")
 XML.Append(" <City>Tenali</City>")
 XML.Append(" <Zip>522202</Zip>")
 XML.Append(" <State>AP</State>")
 XML.Append(" </Address>")

 'create command object
 Dim cmd As New OracleCommand(SQL.ToString, cn)
 cn.Open()
 cmd.Parameters.Add(":empno", "1002")
 cmd.Parameters.Add(":ename", "Sunitha")
 Dim o_Address As New _
 Oracle.DataAccess.Types.OracleXmlType(cn,
 XML.ToString)
 cmd.Parameters.Add(":address", o_Address)
 Dim result As Integer = cmd.ExecuteNonQuery
 MessageBox.Show("Succesfully added " & result
 & " rows")
 cn.Close()
 cmd.Dispose()
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

The only new concept from the above code is the highlighted one. We created an
object o_Address of type OracleXmlType, by passing OracleConnection and an
XML construct (which needs to be inserted). ODP.NET automatically takes care of
the rest!

Retrieving and Updating XML Data Using
OracleXmlType
Once you know how to insert information, it is very easy to update information
as well. To make it a bit challenging, let us update the information available in a
particular node (rather than the entire XML).

Chapter 7

[181]

 MessageBox.Show("Succesfully updated " & result &
 " rows")
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

The following statement retrieves the XML information available in XMLType column
into an object xtAddress of type OracleXmlType:

Dim xtAddress As Oracle.DataAccess.Types.OracleXmlType _
 = dr.GetOracleXmlType(dr.GetOrdinal("Address"))

We can update the information available in OracleXmlType using the Update
method as follows:

xtAddress.Update("//Address/City/text()", "", "BVRM")

You can observe from the above statement that XPath is being used to identify
particular tag and replace the text with user-specified information. Once the
modifications are complete, we update back to database using an UPDATE statement
together with bind variables as shown below:

SQL = "UPDATE Employee SET "
SQL &= " address = :address "
SQL &= " WHERE empno = :empno "
cmd = New OracleCommand(SQL, cn)
cmd.Parameters.Add(":address", xtAddress)
cmd.Parameters.Add(":empno", "1001")

Extracting Individual Node Information of an
XMLType Value
Retrieving XML information can be easily done using OracleDataReader or
OracleDataAdapter. But, there are several ways to extract each node or a group
of nodes of information. Most of this searching or querying XML data can be
accomplished using the System.Xml namespace (along with its sub-namespaces).
But OracleXmlType supports extracting to the level of nodes as well.

XML and XML DB Development with ODP.NET

[182]

The following code sample gives you the text available in some nodes of a particular
XML construct stored as part of an XMLType column:

 Private Sub btnRead_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnRead.Click
 'create connection to db
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 Dim SQL As String
 SQL = "SELECT * FROM employee "
 SQL &= "WHERE empno=1001 "
 Dim cmd As New OracleCommand(SQL, cn)
 cmd.Connection.Open()
 Dim dr As OracleDataReader = cmd.ExecuteReader
 If Not dr.HasRows Then
 MessageBox.Show("No rows found")
 cmd.Connection.Close()
 cmd.Dispose()
 Exit Sub
 End If
 dr.Read()
 Dim empno As String = dr("empno")
 Dim ename As String = dr("ename")
 Dim xtAddress As _
 Oracle.DataAccess.Types.OracleXmlType = _
 dr.GetOracleXmlType(dr.GetOrdinal("Address"))
 Dim Street As String = _
 xtAddress.Extract("//Address/Street/text()",
 "").Value
 Dim City As String = _
 xtAddress.Extract("//Address/City/text()",
 "").Value
 Dim Zip As String = _
 xtAddress.Extract("//Address/Zip/text()",
 "").Value
 Dim State As String = _
 xtAddress.Extract("//Address/State/text()",
 "").Value
 dr.Dispose()
 cmd.Connection.Close()
 cmd.Dispose()

Chapter 7

[183]

 MessageBox.Show(String.Format("{0},{1},{2},
 {3},{4},{5}", empno, ename, Street, City,
 Zip, State))
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
End Sub

The XML information from XMLType column Address is being retrieved into an
object xtAddress of type OracleXmlType as follows:

Dim xtAddress As Oracle.DataAccess.Types.OracleXmlType _
 = dr.GetOracleXmlType(dr.GetOrdinal("Address"))

Once the information is available in xtAddress, we can retrieve the text information
of a particular tag by using XPath expression as follows:

Dim Street As String = _
 xtAddress.Extract("//Address/Street/text()",
 "").Value

In the above case, it simply finds the Street tag of the Address tag and returns the
text available in it. Similarly, after retrieving other tags' information into respective
variables, we display it to the user as follows:

MessageBox.Show(String.Format("{0},{1},{2},
 {3},{4},{5}", empno, ename, Street, City,
 Zip, State))

Summary
In this chapter, we started with an introduction to XML and XML DB, worked
through a few examples manipulating XML, generated XML from the database
using various methods and finally used ODP.NET to deal with inserting, updating,
retrieving, and extracting XML information from Oracle 10g database.

Application Development
Using ODP.NET

We have covered almost all the important ODP.NET classes in previous chapters. In
this chapter, we will make use of those ODP.NET classes (together with few more)
and develop simple real-time applications with various .NET technologies.

We will mainly focus on ODP.NET together with the following:

Notifying applications of database changes
Asynchronous and multi-thread development
Web application development using ASP.NET 2.0
ASP.NET 2.0 Web reporting
Object-Oriented Development
Developing Web Services
Smart Device (Pocket PC) application development

Notifying Applications of Database
Changes
All database-related applications generally interact with databases and manipulate
them based on the requirements. But, some applications need to have notifications
from the database itself. These applications need to be notified automatically,
when a change occurs at database level. This can be easily achieved using the
OracleDependency class in ODP.NET (available with version 10.2 or above).

•

•

•

•

•

•

•

Application Development Using ODP.NET

[186]

Before working with database change notifications, the respective
database user must be provided with CHANGE NOTIFICATION
privilege. For example:
GRANT CHANGE NOTIFICATION TO SCOTT

Catching Notifications
Let us start our discussion with providing only one notification to the application.
For this demonstration, a Windows form is designed with two buttons, a multi-lined
textbox, and a DataGridView as follows:

The entire code for the above is as follows:

Imports Oracle.DataAccess.Client

Public Class Form1

 Private cn As OracleConnection
 Private cmd As OracleCommand

 Private Sub btnStart_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnStart.Click
 'create connection to db
 cn = New OracleConnection("Data Source=xe; _

Chapter 8

[187]

 User Id=scott;Password=tiger")
 Try
 'create command object
 cmd = New OracleCommand
 With cmd
 'provide the sql to monitor
 .CommandText = "SELECT empno, ename FROM emp
 WHERE empno=7369"
 .Connection = cn
 .Connection.Open()
 'add the dependency & monitoring
 Dim dp As New OracleDependency(cmd)
 AddHandler dp.OnChange, AddressOf OnNotification
 Me.txtNotifications.Text = "Started listening..."
 & ControlChars.NewLine
 .ExecuteNonQuery()
 End With
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
 End Sub

 Private Sub OnNotification(ByVal src As System.Object,
 ByVal args As OracleNotificationEventArgs)
 Dim ResName As String = _
 args.Details.Rows(0)("ResourceName")
 Me.txtNotifications.Text &= ResName &
 ControlChars.NewLine
 Me.DataGridView1.DataSource = args.Details
 End Sub

 Private Sub btnStop_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnStop.Click
 Try
 cmd.Connection.Close()
 cmd.Dispose()
 Catch ex As Exception
 If cn.State = ConnectionState.Open Then

Chapter 8

[189]

Catching Multiple Notifications
The previous code works with only a single notification (or catches only one
notification). To get notified multiple times, we need to modify the code as follows:

 Private Sub btnStart_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnStart.Click
 'create connection to db
 cn = New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 'create command object
 cmd = New OracleCommand
 With cmd
 'provide the sql to monitor
 .CommandText = "SELECT empno, ename FROM
 emp WHERE empno=7369"
 .Connection = cn
 .Connection.Open()
 'add the dependency & monitoring
 Dim dp As New OracleDependency(cmd)
 AddHandler dp.OnChange, AddressOf OnNotification
 Me.txtNotifications.Text = "Started listening..."
 & ControlChars.NewLine
 .Notification.IsNotifiedOnce = False
 .ExecuteNonQuery()
 End With
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
 End Sub

Application Development Using ODP.NET

[190]

The single highlighted line in the code switches single notification to multiple
continuous notifications. When we have multiple notifications, the output looks like
the following:

Identifying Rows Modified During
Notifications
In both of the previous examples, we worked only on a single row. This section deals
with multiple rows. Following is the complete modified code to achieve this:

Imports Oracle.DataAccess.Client

Public Class Form3

 Private cn As OracleConnection
 Private cmd As OracleCommand

 Private Sub btnStart_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnStart.Click
 'create connection to db
 cn = New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 'create command object
 cmd = New OracleCommand

Chapter 8

[191]

 With cmd
 'provide the sql to monitor
 .CommandText = "SELECT empno, ename FROM emp "
 .AddRowid = True
 .Connection = cn
 .Connection.Open()
 'add the dependency & monitoring
 Dim dp As New OracleDependency(cmd)
 AddHandler dp.OnChange, AddressOf OnNotification
 Me.txtNotifications.Text = "Started listening..."
 & ControlChars.NewLine
 .Notification.IsNotifiedOnce = False
 .ExecuteNonQuery()
 End With
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
 End Sub

 Private Sub OnNotification(ByVal src As System.Object,
 ByVal args As OracleNotificationEventArgs)
 Dim ResName As String = _
 args.Details.Rows(0)("ResourceName")
 Dim RowID As String = args.Details.Rows(0)("RowID")
 Dim sql As String = "SELECT ename FROM emp WHERE
 ROWID='" & RowID & "'"
 Dim cmd As OracleCommand = cn.CreateCommand
 cmd.CommandText = sql
 Dim rdr As OracleDataReader = cmd.ExecuteReader
 Dim ename As String = String.Empty
 If rdr.Read Then EName = rdr(0)
 Me.txtNotifications.Text &= ResName & ", Employee:"
 & EName & ControlChars.NewLine
 Me.DataGridView1.DataSource = args.Details
 End Sub

 Private Sub btnStop_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnStop.Click
 Try
 cmd.Connection.Close()
 cmd.Dispose()

Application Development Using ODP.NET

[192]

 Catch ex As Exception
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
 Me.txtNotifications.Text &= "Stopped Listening..." &
 ControlChars.NewLine
 End Sub

 Private Sub Form1_Load(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles MyBase.Load
 Control.CheckForIllegalCrossThreadCalls = False
 End Sub

End Class

Once the Start button is clicked, a new connection is opened up and starts listening
(for changes) on all the rows of the emp table. As we would like to deal with multiple
notifications, the following line is included:

.Notification.IsNotifiedOnce = False

Another important line to concentrate on from the highlighted code is the following:

.AddRowid = True

The above line makes sure that ROWID of the row that got modified in database
is also carried back to the application along with the notification. Once the ROWID
is available to the application (during notification), we simply retrieve the details
of that specific row and present them on screen. This is achieved using the
following code:

Dim RowID As String = args.Details.Rows(0)("RowID")
 Dim sql As String = "SELECT ename FROM emp _
 WHERE ROWID='" & RowID & "'"
 Dim cmd As OracleCommand = cn.CreateCommand
 cmd.CommandText = sql
 Dim rdr As OracleDataReader = cmd.ExecuteReader
 Dim ename As String = String.Empty
 If rdr.Read Then EName = rdr(0)
 Me.txtNotifications.Text &= ResName & ", Employee:"
 & EName & ControlChars.NewLine

Chapter 8

[193]

The output should look similar to the following screen:

Developing Long-Running Applications
When we develop Windows-based desktop applications using .NET, we generally
work with existing or third-party user-interface controls (like textbox, drop-down
list, etc.). As long as those applications work with small tasks, we may not face any
problems during execution.

If the applications work with long-running tasks like CPU-intensive processes,
waiting for the network/database to be connected, executing a long-running stored
procedure etc., the user interface becomes unresponsive till the process completes.
This is an embarrassing situation to the end user who could even terminate (kill) the
application abnormally. As long as we show the progress or messages and keep the
user interface responsive, the user can be convinced that all is well.

To develop such applications dealing with long-running tasks, we may have to work
with asynchronous programming together with multi-threading. Delving into the
complete details of such techniques is beyond the scope of this book.

Just to introduce a practical example, we shall develop a user interface that calls a
sample long-running stored procedure. The user interface becomes non-responsive
when it is executed. After that, we will enhance it to work with asynchronous
programming together with multi-threading to make it responsive to the user.

Application Development Using ODP.NET

[194]

The Devil of Applications: "Not Responding"
Let us now try to develop an application that tries to execute a stored procedure
given below:

 CREATE OR REPLACE PROCEDURE p_Longtask AS
 i NUMBER;
 BEGIN
 FOR i IN 1..10000
 LOOP
 UPDATE emp SET sal = sal;
 COMMIT;
 END LOOP;
 END;
 /

You may have to modify the maximum limit of the loop based on the speed of the
processor (without waiting too much or too little time). The above stored procedure
would never harm the database information. It simply makes the server busy (not
recommended on a production server)!

The following code tries to execute the above stored procedure:

 Private Sub btnExecute_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnExecute.Click
 'create connection to db
 Me.lblMsg.Text = "creating connection object..."
 Dim cn As New OracleConnection("Data Source=xe; _
 User Id=scott;Password=tiger")
 Try
 Me.lblMsg.Text = "creating command object..."
 'create command object
 Dim cmd As New OracleCommand
 With cmd
 'provide the sql to monitor
 .CommandText = "p_longtask"
 .CommandType = CommandType.StoredProcedure
 .Connection = cn
 Me.lblMsg.Text = "Opening connection to
 database.."
 .Connection.Open()
 Me.lblMsg.Text = "executing the
 stored procedure..."
 .ExecuteNonQuery()
 End With
 Me.lblMsg.Text = ""

Chapter 8

[195]

 MessageBox.Show("Succesfully executed")
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
 End Sub

The above code simply opens up a connection, creates an OracleCommand object
and tries to execute the stored procedure named p_longtask. Once the execution of
stored procedure gets completed, it pops up a message showing success.

The following output is received while executing the stored procedure. You can
observe that the form became Not Responding on the title bar (and sometimes even
a plain white window that doesn't repaint or refresh).

Asynchronous Task with Multi-Threading
Let us modify the previous form to make it responsive to the user along with
notifying the stages of execution to the user. The following code is completely
modified to achieve this:

Imports Oracle.DataAccess.Client
Imports System.Threading

Public Class Async02

 Private Sub btnExecute_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 btnExecute.Click
 StartExecuteTaskAsync()

Chapter 8

[197]

 'access delegate to show status on GUI
 Invoke(ShowStatus, New Object() {"Done!"})
 Catch ex As Exception
 'display if any error occurs
 MessageBox.Show("Error: " & ex.Message)
 'close the connection if it is still open
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try

 End Sub

 '===
 ========== ''DELEGATE declaration
 ''(generally used when the task needs to
 communicate with GUI)
 '''
 Private Delegate Sub delShowStatus(ByVal msg As
 String)
 Dim ShowStatus As New delShowStatus(AddressOf ShowMsg)
 Private Sub ShowMsg(ByVal msg As String)
 Me.lblMsg.Text = msg
 End Sub
 '===
 ==============
 Private Sub Form1_FormClosing(ByVal sender As Object,
 ByVal e As System.Windows.Forms.FormClosingEventArgs)
 Handles Me.FormClosing
 'this is necessary if the form is trying to close,
 'even before the completion of task
 If Not thExecuteTaskAsync Is Nothing Then
 thExecuteTaskAsync.Abort()
 End Sub

#End Region
End Class

Let us go through the code step by step.

When the button Execute is clicked, the following method gets executed:

StartExecuteTaskAsync()

A reference to a new thread will be maintained in thExecuteTaskAsync, which is
declared as follows:

Dim thExecuteTaskAsync As Thread = Nothing

Application Development Using ODP.NET

[198]

The StartExecuteTaskAsync method starts with checking the thread
thExecuteTaskAsync. If the thread is already busy, we terminate it using the
following snippet:

If Not thExecuteTaskAsync Is Nothing Then
 thExecuteTaskAsync.Abort()
 thExecuteTaskAsync.Join()
 thExecuteTaskAsync = Nothing
End If

After that, we start a new thread, different from the main thread, which executes the
method ExecuteTaskAsync as follows:

thExecuteTaskAsync = New Thread(AddressOf
 ExecuteTaskAsync)
thExecuteTaskAsync.Start()

The ExecuteTaskAsync method simply opens up a connection to the database and
tries to execute the stored procedure using an OracleCommand object. It is not much
different from the previous program except that it has few Invoke statements, which
look like the following:

Invoke(ShowStatus, New Object() {"Opening connection
 to database.."})

The above statement invokes ShowStatus ��������������������������������������� synchronously. That means the messages
are shown to user on an urgent basis! The delegate and the respective method
ShowMsg are defined as follows:

Private Delegate Sub delShowStatus(ByVal msg As String)
 Dim ShowStatus As New delShowStatus(AddressOf ShowMsg)
 Private Sub ShowMsg(ByVal msg As String)
 Me.lblMsg.Text = msg
End Sub

While the thread is still in the process of execution (say, still executing the stored
procedure) if the user closes the form, we need to abort the thread as well. This is
implemented in the following snippet.

Private Sub Form1_FormClosing(ByVal sender As Object,
 ByVal e As System.Windows.Forms.FormClosingEventArgs)
 Handles Me.FormClosing
 'this is necessary if the form is trying to close,
 'even before the completion of task
 If Not thExecuteTaskAsync Is Nothing Then
 thExecuteTaskAsync.Abort()
 End Sub

Chapter 8

[199]

The following is the output we receive while executing the stored procedure (and
while keeping the user interface responsive to the user).

Developing Web Applications Using
ASP.NET and ODP.NET
ASP.NET is the part of .NET Framework that is mainly meant for web-application
development on IIS. Now, we shall look into a few of the widely used methods to
develop ASP.NET applications together with ODP.NET.

Web Development Using Smart Data Binding
Data binding is the feature available in ASP.NET that is mainly used to populate the
controls with database information and write back to the database when the user
modifies this information. It helps the developer to be more productive without
writing any, or writing much less, code.

Populating an ASP.NET DropDownList Control
Let us now develop a simple ASP.NET web application that contains a drop-down
list bound to the department table of the user SCOTT. The following are the steps to
achieve this:

1.	 Open Visual Studio 2005 environment.
2.	 Go to File | New | Web site.
3.	 Within the New Web Site dialog box, select ASP.NET Web Site as the

template, select Location as File System, Language as Visual Basic, provide
the folder as WebDemo1,��� as shown in the following figure, and click OK.

Application Development Using ODP.NET

[200]

4.	 By default, you will be provided with Source mode. You can switch from
Source to Design and vice-versa using the bottom tabs shown in the
following figure:

5.	 Before proceeding further, you need to add a reference to ODP.NET. From
the Solution Explorer, right-click on the project (WebDemo1) and choose Add
Reference... as shown in the following figure:

Chapter 8

[201]

6.	 Within the Add Reference dialog box, select the .NET tab and scroll down to
select Oracle.DataAccess and click on OK.

7.	 Switch to Design mode, drag and drop a drop-down list on to the form and
name it ddlDept.

8.	 Similarly, drag and drop SqlDataSource (from the Data group of the
toolbox) on to the form and name it dsrcDept. At this point, the form should
look like the following:

9.	 Using the smart tag of SqlDataSource, click on Configure Data Source... as
seen in the following screenshot:

Application Development Using ODP.NET

[202]

10.	 In the Configure Data Source dialog box, click on New Connection.
11.	 In the Add Connection dialog box, it shows the default connectivity to SQL

Server. Click on the Change... button to connect to other data sources
as follows:

12.	 In the Change Data Source dialog box, select Oracle Database as data source
and click on OK as follows:

Chapter 8

[203]

13.	 In the Add Connection dialog box, provide your Oracle service name
together with user name and password (in this case scott and tiger) and
test the connection. Make sure that the test succeeds as seen in the
following screenshot:

Chapter 8

[205]

16.	 In the next screen, select DEPT as the table name and check DEPTNO and
DNAME as columns and click Next.

17.	 And finally click on Finish. This completes the configuration of the
data source.

18.	 Now, we need to map the data source to the drop-down list. Click on the
smart tag of drop-down list and click on Choose Data Source...:

Application Development Using ODP.NET

[206]

19.	 In the Data Source Configuration Wizard, select ��������������� data source���� as dsrcDept,
data field to display���� as DNAME,����������������������������� and ������������������������ data field for value���� as DEPTNO,����� and
click on OK.

20.	 Once you execute the application by pressing F5, you will be prompted to
modify Web.config as seen in the following screenshot. Just click on OK to
enable debugging and proceed.

Chapter 8

[207]

21.	 The output of the application looks similar to the following:

Linking an ASP.NET GridView Control with a
DropDownList Control
As we have already started populating an ASP.NET drop-down list control, let us
now extend the same with an ASP.NET GridView control. In this scenario, let us try
to display all the employee information in the GridView based on the department
selected in the drop‑down list.

The following are the steps to achieve this:

1.	 Using the same form designed previously, drag and drop a Gridview.
2.	 Drag and drop one more SqlDataSource and name it as dsrcEmp.

Application Development Using ODP.NET

[208]

3.	 Using the smart tag of dsrcEmp, configure the data source by selecting the
existing data source OrConnectionString and click Next.

4.	 Select the table name as EMP and check on the columns EMPNO, ENAME,
SAL,����� and DEPTNO as shown below:

Chapter 8

[209]

5.	 The SELECT statement created must be provided with a WHERE condition
based on the ����������������������� DropDownList����������� . Click on Advanced... and provide the details
as follows:

Application Development Using ODP.NET

[210]

6.	 Once you provide the details of the WHERE clause as shown, click on Add
and click on OK. At this point, the SELECT statement should look like
the following:

7.	 Click on Next and click on Finish.

Chapter 8

[211]

8.	 From the smart tag of DropDownList Tasks, switch on the Enable
AutoPostBack as follows:

9.	 Using the smart tag of GridView, choose the data source as dsrcEmp
as follows:

Chapter 8

[213]

3.	 Using the Solution Explorer, right-click on Departments.aspx and click on
Set as Start Page as shown in the following screenshot:

Application Development Using ODP.NET

[214]

4.	 Switch to the Design view of Departments.aspx, drag and drop a
SqlDataSource control, and name it dsrcDept.

5.	 Using the smart tag of dsrcDept, configure the data source with the existing
connection OrConnectionString and click Next.

6.	 Select the table name as DEPT, check on DEPTNO, DNAME,����� and LOC for
columns, and click on Advanced... as shown in the following screenshot:

7.	 Within the Advanced SQL Generation Options dialog box, check on
Generate INSERT, UPDATE, and DELETE statements and click OK.

Chapter 8

[215]

8.	 Click on Next and finally click on Finish.
9.	 Drag and drop a GridView from the toolbox on to the form, using the smart

tag configure the data source, and select the options as shown below:

Application Development Using ODP.NET

[216]

10.	 Using the properties of the GridView, provide DEPTNO as a value for the
DataKeyNames property as shown below:

11.	 Drag a FormView control from the toolbox and drop it on to the form. Using
its smart tag, configure its data source as dsrcDept. At this point, your form
should look like the following:

12.	 Again open up the smart tag of the FormView control and click on
Edit Templates.

Chapter 8

[217]

13.	 Select InsertItemTemplate as display mode:

14.	 Within the template, select Cancel and press Delete to remove from
the template.

15.	 Using the smart tag again, click on End Template Editing as shown below.

16.	 Using the properties of the FormView control change the DefaultMode to
Insert as shown below:

Application Development Using ODP.NET

[218]

17.	 You can execute the form by pressing F5 and play with all the Insert, Edit,
and Delete options as shown in the following figure:

Working with Web Controls Manually
In all of the previous examples, we didn't write one line of code! All the operations
were achieved by simply configuring the data sources and controls together with
mapping between them.

But, not every scenario would be solved using smart data binding. Let us now try to
develop a new form with drop-down list and GridView controls, and develop code
to bind those controls.

Add a new form to your project (set it as the start page) and drag and drop a drop-
down list control (ddlDept) and a GridView control (gvEmp). Just for the sake of
information, drag and drop a Label to provide the text Select Department. Make
sure that the AutoPostBack property of the drop-down list control is modified to
true. At this point, the form design should look like the following:

Chapter 8

[219]

Modify your connection strings in web.config as follows (with your own values):

<connectionStrings>
 <add name="OrConnectionString"
 connectionString="Data Source=xe;Persist
 Security Info=True;
 User ID=scott;Password=tiger;Unicode=True"
 providerName="System.Data.OracleClient"/>
 <add name="OraConnStr"
 connectionString="Data Source=xe;
 User Id=scott;Password=tiger"
 providerName="System.Data.OracleClient"/>
</connectionStrings>

Modify your code in such a way that it looks like the following:

 Protected Sub Page_Load(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles Me.Load
 If Not IsPostBack Then
 Me.ddlDept.DataSource = getResultSet("SELECT
 deptno,dname FROM dept")
 Me.ddlDept.DataTextField = "dname"
 Me.ddlDept.DataValueField = "deptno"
 Me.ddlDept.DataBind()
 ddlDept_SelectedIndexChanged(Nothing, Nothing)
 End If
 End Sub

 Private Function getResultSet(ByVal strSQL As String)
 As DataTable
 Try
 Dim dt As New DataTable
 Dim da As New OracleDataAdapter(strSQL,
 New OracleConnection
 (ConfigurationManager.ConnectionStrings
 ("OraConnStr").ConnectionString.ToString))
 da.Fill(dt)
 da.Dispose()
 Return dt
 Catch ex As Exception
 Return Nothing
 End Try
 End Function

 Protected Sub ddlDept_SelectedIndexChanged(ByVal

Chapter 8

[221]

Developing Web Reports Using ASP.NET
We have several methods to design and develop reports using ASP.NET. In most
scenarios, data web controls (like GridView, DataList, Repeater, etc.) are more than
enough. But, there do exist other robust methods, which are dedicated only for
reporting. One of these is .NET local or embedded reporting.

Let us start with a basic report. Even though we can work with a new solution, the
previous solution is used to lessen the steps required. Before starting a report, we
need to generate a strongly-typed dataset. Later, the report gets bound to this dataset.

Creating a Strongly-Typed Dataset Using
Designer
The following are the steps to create a strongly-typed dataset:

1.	 Using the Solution Explorer, right-click on the project and go to
Add New Item.

2.	 Select Dataset as template, provide the name as Employee.xsd, and click Add.

Application Development Using ODP.NET

[222]

3.	 It will prompt you to place the dataset in a folder. Just press Yes and proceed.
4.	 The dataset gets created and����� the TableAdapter Configuration Wizard

automatically starts. Create a new connection or select an existing connection
to the database and click Next.

5.	 Select Use SQL statements as in the following screenshot and click Next.

6.	 In the next screen, you will be prompted to enter an SQL statement. At
this point, you can either use the Query Builder... button (to generate the
SQL statement dynamically) or provide your own query. Provide the SQL
statement as follows and click Next.

Chapter 8

[223]

7.	 Select all the checkboxes in the next screen and click Next as shown below:

Application Development Using ODP.NET

[224]

8.	 And finally click Finish. This causes the dataset to be automatically bound to
the SELECT statement provided. At this point, the screen should look like
the following:

Designing and Binding a Report to the Dataset
Now that we have completed generating a strongly-typed dataset, it is time to start
with a basic report design.

1.	 Using Solution Explorer, right-click on the project and go for Add New Item.
2.	 Within the Add New Item dialog box, select Report as template, provide

EmpReport.rdlc as file name, and click on Add.

Chapter 8

[225]

3.	 Once the report layout area is opened, you should also be able to see the Web
Data Sources tool window (showing the dataset) as follows:

4.	 Select a Table from the toolbox and drop it on to the report layout.

Application Development Using ODP.NET

[226]

5.	 Drag and drop each of the fields from Web Data Sources into the Detail
section of the table as follows:

6.	 You can add columns to the right by right-clicking on the last column
as follows:

7.	 Once all the necessary columns are dropped into the table, select all the
column headings (you can modify them according to your requirements) and
make them bold as follows:

Chapter 8

[227]

8.	 At this point, the basic report design is completed. Now, we need to display
the report as part of a web page. Add a new Web Form (make it a start page)
EmployeeReport.aspx to the solution and switch to the Design mode.

9.	 Select a ReportViewer control from the Toolbox (as follows) and drop it on
to the form.

10.	 Using the smart tag of the Report Viewer Tasks control, select
EmpReport.rdlc. This will automatically create a ObjectDataSource control.

Chapter 8

[229]

1.	 Open the previous report, select a row in the table, right-click and select
Insert Group as follows:

2.	 Select Expression as =Fields!JOB.Value as follows and click on OK.

Application Development Using ODP.NET

[230]

3.	 As we would like to display job in the first column, add a new first column
manually to the table as follows:

4.	 Drag the job-related cell (or field) into the group header cell of the first
column and delete the Job column as follows:

5.	 Press F5 to execute and have a look at the grouping achieved. The report
should look like the following:

Chapter 8

[231]

6.	 Switch back the Design mode and type Total in the Group footer of the
ENAME column.

7.	 Drag and drop the SAL column from Web Data Sources into the Group
footer of the SAL column.

Application Development Using ODP.NET

[232]

8.	 You can play with different formats like italics, bold, etc., and finally press F5
to execute the report.

9.	 The report should look like the following:

Embedding Charts (Graphs) in Reports
We shall further expand the previous report to embed charts (or graphs) as part of
the same report. The following are the steps to achieve this:

1.	 Open the previous report, select chart from the Toolbox (as shown next), and
drop it just to the right of the table in the report layout.

Chapter 8

[233]

2.	 Drag SAL from Web Data Sources and drop it into the ������������������������ data fields.������������ Similarly,
drag DEPTNO from Web Data Sources and drop it into the ���������������� category fields:

3.	 Right-click on the chart and go to its properties to modify the characteristics
of the chart.

Application Development Using ODP.NET

[234]

4.	 In the General tab, type Department wise Salaries Title as as follows:

5.	 Similarly, provide titles for X-Axis and Y-Axis as Departments and
Salaries respectively (using the respective tabs).

6.	 Remove the Legend just for clarity, switch on 3-D visual effect and click OK.

Chapter 8

[235]

7.	 Once you press F5, the report looks like the following:

Object-Oriented Development Using ASP.
NET and ODP.NET
In all of the previous sections, we simply programmed with traditional structured
development. For better scalability, maintainability, and reusability, it is highly
recommended to implement OOP (Object-Oriented Programming) in all of
our applications.

ASP.NET has a plenty of support for OOP. And, the ObjectDataSource control
is mainly meant for that. To make use of the full power of ObjectDataSource, we
need to define some classes that map tables and database interactions and finally
attach them to ObjectDataSource. Once the ObjectDataSource is configured,
it can be used as a data source to other data web controls (like GridView,
DropDownList, etc.).

Chapter 8

[237]

 Throw New Exception(ex.Message)
 End Try
 End Sub

 Public Shared Function getResultSet(ByVal strSQL As
 String) As DataSet
 Try
 Dim ds As New DataSet
 Dim da As New OracleDataAdapter(strSQL,
 New OracleConnection(ConnectionString))
 da.Fill(ds)
 da.Dispose()
 Return ds
 Catch ex As Exception
 Throw New Exception(ex.Message)
 End Try
 End Function

 Private Shared ReadOnly Property ConnectionString() As
 String
 Get
 Return ConfigurationManager.ConnectionStrings
 ("OraConnStr").ConnectionString.ToString
 End Get
 End Property
End Class

This class contains two methods, namely SQLExecute and GetResultSet. Both of
those methods are declared as Shared (static), which means they can be directly
called or executed without creating any instance of the class OraDBHelper.

SQLExecute is used to execute any DML command (the DML command should be
passed as parameter). The method is declared as follows:

Public Shared Sub SQLExecute(ByVal strSQL As String)

It simply opens a connection to the database and uses an OracleCommand to execute
the DML command as shown below:

cmd = New OracleCommand(strSQL,
 New OracleConnection(ConnectionString))
cmd.Connection.Open()
cmd.ExecuteNonQuery()
cmd.Connection.Close()
cmd.Dispose()

Application Development Using ODP.NET

[238]

GetResultSet is used to retrieve information from Oracle database. It accepts any
SELECT command as parameter and returns a Dataset object. It is declared as follows:

Public Shared Function getResultSet(ByVal strSQL As

 String) As DataSet

It works with the OracleDataAdapter object to fill the DataSet object as
shown below:

Dim ds As New DataSet
Dim da As New OracleDataAdapter(strSQL,
 New OracleConnection(ConnectionString))
da.Fill(ds)
da.Dispose()
Return ds

Finally, the connection string is retrieved from the web.config file using the
following statement (part of the ConnectionString property):

ConfigurationManager.ConnectionStrings("OraConnStr").

 ConnectionString.ToString

The class is simply for demonstration. You can further improve
it by providing support for automatic dataset updates, stored
procedures, etc.

Developing a Simple Business Logic Class
A business logic class or component implements business rules for validation and
processing besides providing information to the presentation layer (web form). In
this scenario, we will develop a simple business logic class that maps to the Emp
table. It in turn uses the Oracle database helper class discussed previously.

The following is a simple business logic class (Emp.vb) developed for demonstration:

Imports Microsoft.VisualBasic

Public Class Emp

 Private _empno As Integer
 Private _ename As String
 Private _sal As Double
 Private _deptno As Integer

#Region "Properties"

Chapter 8

[239]

 Public Property Empno() As Integer
 Get
 Return _empno
 End Get
 Set(ByVal value As Integer)
 _empno = value
 End Set
 End Property

 Public Property Ename() As String
 Get
 Return _ename
 End Get
 Set(ByVal value As String)
 _ename = value
 End Set
 End Property

 Public Property Sal() As Double
 Get
 Return _sal
 End Get
 Set(ByVal value As Double)
 _sal = value
 End Set
 End Property

 Public Property Deptno() As Integer
 Get
 Return _deptno
 End Get
 Set(ByVal value As Integer)
 _deptno = value
 End Set
 End Property

#End Region

#Region "Operations"

 Public Function Insert(ByVal Emp As Emp) As String
 Dim sql As String
 sql = "INSERT INTO emp (empno,ename,sal,deptno) "
 sql &= "VALUES "
 sql &= "(" & Emp.Empno & ",'" & Emp.Ename & "',"
 & Emp.Sal & "," & Emp.Deptno & ")"

Application Development Using ODP.NET

[240]

 Try
 OraDBHelper.SQLExecute(sql)
 Return Nothing
 Catch ex As Exception
 Return ex.Message
 End Try
 End Function

 Public Function Update(ByVal Emp As Emp) As String
 Dim sql As String
 sql = "UPDATE emp SET "
 sql &= " ename='" & Emp.Ename & "', sal=" & Emp.Sal
 & ", deptno=" & Emp.Deptno
 sql &= " WHERE empno=" & Emp.Empno
 Try
 OraDBHelper.SQLExecute(sql)
 Return Nothing
 Catch ex As Exception
 Return ex.Message
 End Try
 End Function

 Public Function Delete(ByVal Emp As Emp) As String
 Dim sql As String
 sql = "DELETE FROM emp "
 sql &= " WHERE empno=" & Emp.Empno
 Try
 OraDBHelper.SQLExecute(sql)
 Return Nothing
 Catch ex As Exception
 Return ex.Message
 End Try
 End Function

 Public Function GetEmpList() As System.Data.DataSet
 Dim sql As String
 sql = "SELECT empno,ename,sal,deptno FROM emp"
 Return OraDBHelper.getResultSet(sql)
 End Function

#End Region

End Class

Chapter 8

[241]

This class holds a row of employee information in the following fields:

Private _empno As Integer
Private _ename As String
Private _sal As Double
Private _deptno As Integer

All of the above fields (or private variables) are exposed with respective public
properties as shown below:

Public Property Empno() As Integer
Public Property Ename() As String
Public Property Sal() As Double
Public Property Deptno() As Integer

To update or list employee information from the database, the above class is
equipped with four methods declared as follows:

Public Function Insert(ByVal Emp As Emp) As String
Public Function Update(ByVal Emp As Emp) As String
Public Function Delete(ByVal Emp As Emp) As String
Public Function GetEmpList() As System.Data.DataSet

Each of those methods dynamically builds up its DML command and in turn works
with the OraDBHelper class to interact with database. The Insert, Update,����� and
Delete methods accept employee information as parameters of type Emp class itself.

Working with ObjectDataSource in an
ASP.NET 2.0 Web Form
Now that we have developed database helper and business logic, it is time to
develop a web form (or user interface) based on those classes. We will make use
of the ObjectDataSource control available as part of ASP.NET 2.0 to interact with
business logic.

The following are the steps to achieve this:

1.	 Add a new web form (EmpUI.aspx) to the solution and switch to design mode.
2.	 Drag and drop an ObjectDataSource control from the toolbox on to the web

form and name it odsrcEmp.
3.	 Using the smart tag, click on Configure Data Source.
4.	 For Choose your business object in the Configure Data Source dialog box��,

select Emp as the business object, and click Next.

Application Development Using ODP.NET

[242]

If the object is not visible, uncheck Show only data components and
try again.

5.	 Select GetEmpList() as the method of SELECT.

Chapter 8

[243]

6.	 Select Update(Emp Emp) as the method of UPDATE.

7.	 Similarly, select Insert as the method of INSERT, Delete as the method of
DELETE,�������������� and click on Finish.

8.	 Drag and drop a GridView and configure the smart tag as follows:

Chapter 8

[245]

14.	 Drag and drop a label and name it lblMsg (to display if any errors occur). At
this point, the screen layout should look similar to the following:

15.	 Modify your code to look similar to the following:
Partial Class EmpUI
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles Me.Load
 Me.lblMsg.Text = String.Empty
 End Sub

 Protected Sub odsrcEmp_Updated(ByVal sender As
 Object, ByVal e As System.Web.UI.WebControls.
 ObjectDataSourceStatusEventArgs) Handles
 odsrcEmp.Updated
 If Not e.ReturnValue = Nothing Then
 Me.lblMsg.Text &= e.ReturnValue
 End If
 End Sub

Application Development Using ODP.NET

[246]

 Protected Sub GridView1_RowUpdated(ByVal sender As
 Object, ByVal e As System.Web.UI.WebControls.
 GridViewUpdatedEventArgs) Handles
 GridView1.RowUpdated
 If Not e.Exception Is Nothing Then
 Me.lblMsg.Text = e.Exception.Message
 e.ExceptionHandled = True
 End If
 End Sub

End Class

In this code, during the Page_Load event, we clear the message area with the
following statement:

Me.lblMsg.Text = String.Empty

The odsrcEmp_Updated is an event that gets fired when the ObjectDataSource
control has finished executing the method related to the UPDATE operation (in this
case, it is the Update method of the Emp class). Any error message during update gets
displayed using the following construct:

If Not e.ReturnValue = Nothing Then
 Me.lblMsg.Text &= e.ReturnValue
End If

If the GridVew control receives any exception during the update, the message
gets updated using the following construct available as part of the GridView1_
RowUpdated event:

If Not e.Exception Is Nothing Then
 Me.lblMsg.Text = e.Exception.Message
 e.ExceptionHandled = True
End If

Chapter 8

[247]

Once you press F5, the output should look similar to the following:

Developing Web Services Using ODP.NET
In this section, we will develop a simple .NET XML Web Service, which serves
data from Oracle database to consuming applications. We will implement the
Object-Oriented three-tier approach (as discussed previously) in this web service.

Creating the .NET XML Web Service
The following are the steps to create the Web Service:

1.	 Open your Visual Studio 2005 environment and go to File | New | Web Site.
2.	 In the New Web Site dialog box, select ASP.NET Web Service as the

template, select Location as HTTP and provide the place as
http://localhost/OraService as shown overleaf:

Application Development Using ODP.NET

[248]

3.	 Add a reference to Oracle.DataAccess (as explained previously).
4.	 Add a new class file OraDbLib.vb and modify the code as follows:

Imports Oracle.DataAccess.Client
Imports Oracle.DataAccess.Types
Imports System.Xml
Imports System.Data

Public Class OraDbLib

 Dim _ConnStr As String
 Dim _DBConnError As String = ""

 Public Sub New()
 _ConnStr = ConfigurationManager.
 ConnectionStrings("OraConnStr").
 ConnectionString.ToString
 End Sub

 Public ReadOnly Property
 ConnectionErrorDescription() As String
 Get
 Return _DBConnError

Chapter 8

[249]

 End Get
 End Property

 Public Sub SQLExecute(ByVal sqlDML As String)
 Dim cn As New OracleConnection(_ConnStr)
 Try
 Dim SQL As String = sqlDML
 Dim cmd As New OracleCommand(SQL, cn)
 cmd.Connection.Open()
 cmd.ExecuteNonQuery()
 cmd.Connection.Close()
 cmd.Dispose()
 Catch ex As Exception
 Throw New Exception("Command cannot be executed.
 Received Error '" & ex.Message & "'
 when trying to execute the statement '"
 & sqlDML & "'")
 Finally
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
 End Sub

 Public Function getResultset(ByVal sqlSELECT As
 String) As DataTable
 Dim cn As New OracleConnection(_ConnStr)
 Try
 Dim SQL As String = sqlSELECT
 Dim da As New OracleDataAdapter(SQL, cn)
 Dim dt As New DataTable
 da.Fill(dt)
 da.Dispose()
 Return dt
 Catch ex As Exception
 Throw New Exception("Command cannot be executed.
 Received Error '" & ex.Message & "' when
 trying to execute the statement '"
 & sqlSELECT & "'")
 Finally
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
 End Function

Application Development Using ODP.NET

[250]

 Public Function getRowValue(ByVal sqlSELECT As
 String) As Object
 Dim cn As New OracleConnection(_ConnStr)
 Try
 Dim SQL As String = sqlSELECT
 Dim cmd As New OracleCommand(sqlSELECT, cn)
 cmd.Connection.Open()
 Dim value As Object = cmd.ExecuteScalar
 cmd.Connection.Close()
 cmd.Dispose()
 Return value
 Catch ex As Exception
 Throw New Exception("Command cannot be executed.
 Received Error '" & ex.Message & "' when trying
 to execute the statement '" & sqlSELECT & "'")
 Finally
 If cn.State = ConnectionState.Open Then
 cn.Close()
 End If
 End Try
 End Function

End Class

The class OraDbLib is very similar to the class OraDBHelper explained
previously. Instead of working with Shared (static) methods (as in the
OraDBHelper class), the above class defines normal methods, which are ac-
cessible only by creating an instance. SQLExecute and getResultset are
already part of the OraDBHelper class and we have a new method added to
this class called getRowValue, which is defined as follows:
Dim cn As New OracleConnection(_ConnStr)
Dim SQL As String = sqlSELECT
Dim cmd As New OracleCommand(sqlSELECT, cn)
cmd.Connection.Open()
Dim value As Object = cmd.ExecuteScalar
cmd.Connection.Close()
cmd.Dispose()
Return value

I removed the rest of the code for clarity. The above snippet simply connects
to Oracle database, executes a SELECT statement, and returns only a single
value or the value available in the first column of the first row.
Continuing from the previous steps, we need to proceed with
the following:

Chapter 8

[251]

5.	 Add a new class file Emp.vb and modify the code as follows:
Imports Microsoft.VisualBasic
Imports System.Data
Imports System.Xml.Serialization

Public Class Emp

 Private _empno As Integer
 Private _ename As String
 Private _sal As Double
 Private _deptno As Integer

 <XmlElement("Empno")> _
 Public Property Empno() As Integer
 Get
 Return _empno
 End Get
 Set(ByVal value As Integer)
 _empno = value
 End Set
 End Property

 <XmlElement("Ename")> _
 Public Property Ename() As String
 Get
 Return _ename
 End Get
 Set(ByVal value As String)
 _ename = value
 End Set
 End Property

 <XmlElement("Sal")> _
 Public Property Sal() As Double
 Get
 Return _sal
 End Get
 Set(ByVal value As Double)
 _sal = value
 End Set
 End Property

 <XmlElement("Deptno")> _
 Public Property Deptno() As Integer
 Get

Chapter 8

[253]

 Dim SQL As New System.Text.StringBuilder
 SQL.Append("INSERT INTO Emp(empno,ename,sal,deptno) VALUES ")
 SQL.Append("(")
 SQL.Append(" " & oEmp.Empno & ", ")
 SQL.Append(" '" & oEmp.Ename & "', ")
 SQL.Append(" " & oEmp.Sal & ", ")
 SQL.Append(" " & oEmp.Deptno & " ")
 SQL.Append(")")
 Try
 Dim oDB As New OraDbLib()
 oDB.SQLExecute(SQL.ToString)
 Catch ex As Exception
 Throw New Exception(ex.Message)
 End Try
 End Sub

 Public Sub Update(ByVal oEmp As Emp)
 Dim SQL As New System.Text.StringBuilder
 SQL.Append("UPDATE Emp ")
 SQL.Append("SET Ename='" & oEmp.Ename & "', ")
 SQL.Append(" Sal=" & oEmp.Sal & ", ")
 SQL.Append(" Deptno=" & oEmp.Deptno & " ")
 SQL.Append(" WHERE empno = " & oEmp.Empno)
 Try
 Dim oDB As New OraDbLib()
 oDB.SQLExecute(Sql.ToString)
 Catch ex As Exception
 Throw New Exception(ex.Message)
 End Try
 End Sub

 Public Sub Delete(ByVal empno As String)
 Dim SQL As String
 SQL = "DELETE FROM Emp "
 SQL &= "WHERE empno = " & empno
 Try
 Dim oDB As New OraDbLib()
 oDB.SQLExecute(SQL)
 Catch ex As Exception
 Throw New Exception(ex.Message)
 End Try
 End Sub

End Class

Application Development Using ODP.NET

[254]

This class has four properties declared with support for serialization as
shown in the following:
<XmlElement("Empno")> _
Public Property Empno() As Integer

<XmlElement("Ename")> _
Public Property Ename() As String

<XmlElement("Sal")> _
Public Property Sal() As Double

<XmlElement("Deptno")> _
Public Property Deptno() As Integer

It is further declared with five methods as follows:
Public Function getList() As DataTable
Public Sub Find(ByVal empno As String)
Public Sub Add(ByVal oEmp As Emp)
Public Sub Update(ByVal oEmp As Emp)
Public Sub Delete(ByVal empno As String)

Each of those methods is specific to the respective operation with the database
and all the operations are dealt with by an instance of the class OraDbLib.
To access a method (say SQLExecute) in the OraDbLib class, we simply need
to create an instance out of it and directly access the method as shown below:
Dim oDB As New OraDbLib()
oDB.SQLExecute(Sql)

All of the methods in the above class interact with the database using an
instance of the OraDbLib class.
Further continuing from the previous steps, we need to proceed with
the following:

6.	 Modify the connection string section of web.config as follows:
<connectionStrings>
 <add name="OraConnStr" connectionString="Data
 Source=xe;User Id=scott;Password=tiger"
 providerName="System.Data.OracleClient"/>
</connectionStrings>

7.	 Make sure that service.asmx is set as start page and press F5 to execute and
test the web service. If it prompts to modify web.config for debugging,
press OK.

Chapter 8

[255]

Consuming the Web Service from ASP.NET
Now, we will develop an ASP.NET web application that consumes the web service
developed previously. The following are the steps:

1.	 Open Visual Studio 2005 environment.
2.	 Create a new website by going to File | New | Web Site and provide the

information as shown in the following screenshot:

3.	 Using the Solution Explorer, right-click on the project and go to Add Web
Reference... as follows:

Application Development Using ODP.NET

[256]

4.	 Browse the Web services on the local machine as shown below (if the web
service is available on your local machine).

5.	 Select the web service created earlier:

Chapter 8

[257]

6.	 Provide the Web reference name as EmpService and click on Add Reference:

7.	 Drag a GridView control and an ObjectDataSource control on to the web
form and configure the data source of ObjectDataSource (using the smart
tag) as follows:

Application Development Using ODP.NET

[258]

8.	 Click Next and provide the SELECT method as getList() as follows:

9.	 Similarly, provide the UPDATE method as Update(), INSERT method as
Add(), DELETE method as Delete(),���������������������� and finally click on Finish.

Chapter 8

[259]

10.	 Using the smart tag of the GridView, configure its properties as follows:

11.	 Using the Properties window provide the DataKeyNames property of the
GridView as empno.

12.	 Press F5 to test and execute the application.

Developing Smart Device Applications
Microsoft Windows Mobile Platform is now fully supported with .NET technology.
We can develop and deploy .NET-based applications directly on to smart devices
enabled with Microsoft Windows Mobile operating system. Before proceeding with
developing smart device applications, let us discuss Microsoft Windows Mobile
platform and the devices supporting it.

Introducing Microsoft Windows Mobile
There exist several types of smart devices in the market including Smart Phones,
Pocket PCs, Pocket PC Phones, Tablet PCs, etc. Every smart device is installed with a
mobile‑based operating system with respect to the features of the device. One of such
operating systems is Microsoft Windows CE.

Microsoft Windows CE is a small, embedded operating system (runs from ROM)
that has a look and feel similar to Microsoft Windows 95/98. It includes scaled down
versions of Microsoft Excel, Microsoft Word, Microsoft Internet Explorer, etc.

Chapter 8

[261]

We can simply use existing emulators available as part of Visual Studio 2005. The
following are the steps:

1.	 Open Visual Studio 2005 Environment.
2.	 Go to File | New | Project.
3.	 Select and provide information as shown in the following figure:

4.	 Add a Web Reference for the web service you created earlier.

Application Development Using ODP.NET

[262]

5.	 Drag and drop a DataGrid on to the Pocket PC emulator as shown below:

6.	 Modify the existing code as follows:
Public Class Form1
 Private Sub Form1_Load(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 MyBase.Load
 Me.DataGrid1.DataSource =
 (New EmpService.Service).getList.Tables(0)
 End Sub
End Class

Chapter 8

[263]

7.	 Press F5,�� and select any Emulator for deployment. The output should look
like the following:

Summary
In this chapter, we concentrated on real-world application development covering
the aspects of asynchronous and multi-threaded development, web applications
(ASP.NET), web reporting, object-oriented development, web services development,
and smart device (Pocket PC) application development.

Introduction to Oracle
Developer Tools for Visual

Studio 2005
Oracle Developer Tools for Visual Studio is an "add-in" for Microsoft Visual Studio
2003/2005, which helps developers to work with Oracle database and develop
Oracle‑based .NET applications without leaving the Visual Studio Environment. You
can download it for free from http://www.oracle.com/technology/software/
tech/windows/odpnet/index.html.

In this chapter, we will mainly focus on the following:

Features of Oracle Developer Tools for Visual Studio
Creating and debugging PL/SQL stored procedures using Visual Studio
Developing applications using the Automatic Code Generation feature of ODT
Developing and deploying .NET CLR stored procedures in Oracle database
using Visual Studio

Features of Oracle Developer Tools
Oracle has released Oracle Developer Tools (ODT in short) for Visual Studio .NET
2003/2005 to provide integrated support for developing .NET applications that
access Oracle databases.

When ODT gets installed, the most important feature we notice is the Oracle
Explorer (available through the View menu of Visual Studio.NET). It allows us to
browse existing Oracle objects (like tables, views, stored procedures, etc.), create or
modify tables using table designer, view or edit data, execute SQL statements, etc.

•

•

•

•

Introduction to Oracle Developer Tools for Visual Studio 2005

[266]

Some of the other major features are the following:

Designers and Wizards
Automatic Code Generation
PL/SQL Editor
Stored Procedure Testing
Oracle Data Window
SQL Query Window
Integrated Help System

In this section, we will have a glimpse at the most commonly used features along
with sample screenshots.

Before working with ODT, make sure that you configure your
connection to connect to Oracle database using Oracle client.

Connecting to Oracle from Visual Studio
Using Oracle Explorer
Once ODT is installed on your system, you should be able to observe the Oracle
Explorer option in the View menu as follows:

•

•

•

•

•

•

•

Chapter 9

[267]

Oracle Explorer allows you to connect to and work with Oracle database from
within the Visual Studio environment. It is very similar to Server Explorer (in Visual
Studio) except that it works only with Oracle databases.

Once you click on Oracle Explorer, you should be able to see the following:

Using the Oracle Explorer window, you can connect to Oracle database using Add
Connection as follows:

Once you are prompted with the Add Connection dialog box, you can provide your
own connection parameters similar to following:

Chapter 9

[269]

After hitting OK twice, you will see scott.xe added to Data Connections. Once
you open the scott.xe tree and further open the Tables folder, you should be able to
view the following:

Introduction to Oracle Developer Tools for Visual Studio 2005

[270]

Retrieving Oracle Information from Visual
Studio Using ODT
One of the easiest ways to retrieve Oracle table or column information is by using
Oracle Explorer together with the Properties window. The moment we select a
database object, the details will be shown in the properties as follows:

Chapter 9

[271]

Similarly, when a column is selected, the details get pulled out as follows:

Introduction to Oracle Developer Tools for Visual Studio 2005

[272]

To retrieve all rows in a table, we can simply right-click on the table and select
Retrieve Data... as follows:

That would automatically bring all the rows into the Visual Studio environment
where we can view or modify the information as follows:

Chapter 9

[273]

If you would like to write your own query, execute it, and view the results, you can
use the Query Window option as follows:

Once the Query Window is opened, you can provide your own query and execute it
as follows:

Introduction to Oracle Developer Tools for Visual Studio 2005

[274]

Working with Oracle Database Objects from
Visual Studio Using ODT
We can create, modify, and drop different database objects from within the Visual
Studio environment using ODT. All of the most important database objects that are
frequently used by developers are accessible through ODT.

Dealing with Tables, Views, and Sequences Using ODT
You can create a new table by right-clicking on Tables and selecting New Relational
Table... as follows:

You can modify the existing table design by selecting Design... as follows:

Once a table is opened in Design mode, you can modify all the information
(including columns, constrains, indexes, etc.) visually as follows:

Chapter 9

[275]

You can create or modify views in Oracle as follows:

Chapter 9

[277]

Very similar to sequences, we can even define synonyms with the following layout:

Another nice feature of ODT is the support for stored procedures, functions, and
packages. We can straight away create, modify, test, and execute these objects from
within the Visual Studio Environment together with other features like IntelliSense,
automatic script generation, etc.

Creating Stored Procedures Using ODT
You can observe the following sequence of figures to create a stored procedure using
ODT. The following initiates the creation of a new PL/SQL stored procedure:

Introduction to Oracle Developer Tools for Visual Studio 2005

[278]

The following are the details of the stored procedure being created:

The moment Preview SQL is hit, you will observe the script generation as follows:

Chapter 9

[279]

The moment we save the stored procedure, the Visual Studio environment
automatically opens the stored procedure for editing (along with automatic code
generation and IntelliSense support) as follows:

Debugging PL/SQL Stored Procedures
from Visual Studio
ODT is tightly integrated with Visual Studio even to the level of debugging PL/
SQL stored procedures. Before using the PL/SQL debugging feature, we need to
configure the database and Visual Studio environment to enable PL/SQL debugging.
Let us start configuring the database first.

We need to provide a few privileges for user Scott, to allow him to debug PL/SQL
stored procedures. Once he is provided with the privileges, we will create a sample
stored procedure and develop a small Windows (desktop) application, and finally
debug the application together with a PL/SQL stored procedure.

Introduction to Oracle Developer Tools for Visual Studio 2005

[280]

Log in with DBA privileges (or log in as SYSTEM user) and execute the following
two commands:

SQL>grant debug any procedure to scott;
SQL>grant debug connect session to scott;

Open your Visual Studio IDE and create a new Windows Application project. In
the �� Project properties������������������������������������ of the application, make sure that Enable the Visual Studio
hosting process is checked off (in the Debug tab) as follows. This is required as the
debugging process crosses beyond the Visual Studio Debugger level.

Chapter 9

[281]

Go to the Tools menu and switch on Oracle Application Debugging as follows:

Go to the Tools menu again and within the Options, switch on PL/SQL debugging
(of ODT) for all the necessary connections (you may have to connect to the database
using Oracle Explorer prior to doing this) as follows:

Introduction to Oracle Developer Tools for Visual Studio 2005

[282]

Develop a stored procedure in Oracle database (in SCOTT user) as follows:

CREATE OR REPLACE PROCEDURE p_emp_details(p_empno
 emp.empno%TYPE, p_ename OUT emp.ename%TYPE,
 p_AnnSal OUT NUMBER, p_deptno OUT emp.deptno%TYPE)AS
 v_Sal emp.sal%TYPE;
 v_AnnSal NUMBER(11,2);
BEGIN
 SELECT ename, sal, deptno
 INTO p_ename, v_Sal, p_deptno
 FROM emp
 WHERE empno = p_empno;
 v_AnnSal := v_Sal * 12;
 p_AnnSal := v_AnnSal;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR(-20001,
 'Employee not found');
 WHEN TOO_MANY_ROWS THEN
 /* this would not happen generally */
 RAISE_APPLICATION_ERROR(-20002,
 'More employees exist with the same number');
 WHEN OTHERS THEN
 RAISE_APPLICATION_ERROR(-20003, SQLERRM);
END;

Drag a button from the toolbox on to the Windows form, add reference to
Oracle.DataAccess.dll, and copy the following code, which executes the above
stored procedure:

Imports Oracle.DataAccess.Client

Public Class Form1

 Private Sub Button1_Click(ByVal sender As
 System.Object, ByVal e As System.EventArgs) Handles
 Button1.Click
 Dim cn As New OracleConnection("data source=xe; _
 user id=scott;password=tiger")
 Dim cmd As New OracleCommand("p_emp_details", cn)
 cmd.CommandType = CommandType.StoredProcedure
 cmd.Parameters.Add("p_empno", OracleDbType.Double)
 cmd.Parameters.Add("p_ename", OracleDbType.Varchar2,
 20, Nothing, ParameterDirection.Output)
 cmd.Parameters.Add("p_AnnSal", OracleDbType.Double,
 ParameterDirection.Output)
 cmd.Parameters.Add("p_deptno", OracleDbType.Int16,
 ParameterDirection.Output)

Chapter 9

[283]

 cmd.Parameters("p_empno").Value = 7369
 cmd.Connection.Open()
 cmd.ExecuteNonQuery()
 cn.Close()
 MsgBox(cmd.Parameters("p_ename").Value.ToString & ","
 & Convert.ToString(cmd.Parameters("p_AnnSal").Value))
 End Sub

End Class

This code starts with creating an OracleConnection and adds an OracleCommand,�
which is linked with the stored procedure p_emp_details. As the stored procedure
accepts four parameters, all of them are added using OracleCommand. Once the
stored procedure gets executed using the ExecuteQuery method, the output
parameters (p_ename, p_AnnSal,����� and p_deptno) get filled with values, which are
finally displayed using MsgBox.

Using the Oracle Explorer, right-click on P_EMP_DETAILS and click on Compile
Debug as follows:

Chapter 9

[285]

Similarly, double-click on the stored procedure (in Oracle Explorer) and place break
points as shown in the following screenshot:

Introduction to Oracle Developer Tools for Visual Studio 2005

[286]

Finally hit F5 to debug the application. It runs through each of the break points
available in the .NET code as follows:

Chapter 9

[287]

On hitting F5 again��� , it starts to debug the stored procedure as follows:

Introduction to Oracle Developer Tools for Visual Studio 2005

[288]

You can also observe the local variables and their values during debugging. Hitting
F5 further, you should be able to observe that the values get assigned to variables
as follows:

Chapter 9

[289]

Finally, the control comes back to the Visual Studio environment (after debugging
the PL/SQL stored procedure) and waits at the final break point as follows:

.NET CLR Stored Procedures in Oracle
Every programmer knows that Oracle database supports native stored procedures
with the help of PL/SQL. The trend of "native stored procedures" expanded even to
the capability of supporting external language-based stored procedures.

Oracle started supporting Java (external language) stored procedures from Oracle
version 8i onwards. And now, it has further expanded its capability, even to the .NET-
based CLR stored procedures (using any .NET language like VB.NET, C#, etc.) with
Oracle version 10.2 onwards (Windows version). In this section, we will completely
focus on working with .NET CLR stored procedures on Oracle 10.2 database.

Now, let us develop a small .NET stored procedure, which is very much a rewrite of
IncrementSalary. The following are the steps to achieve this:

1.	 Open Microsoft Visual Studio.
2.	 Go to File | New | Project.

Introduction to Oracle Developer Tools for Visual Studio 2005

[290]

3.	 In the New Project dialog box, select Oracle Project as the template and
provide the project name as SampleCLR,�������������� and click on OK.

4.	 Delete the existing class (class1.vb) and add a new class named
Employee.vb.

5.	 Copy the following code:
Imports Oracle.DataAccess.Client
Imports Oracle.DataAccess.Types

Public Class Employee

 Public Shared Sub IncrementSalary(ByVal empno As
 Integer, ByVal incrementValue As Double)
 ' Add code here.
 Dim conn As New OracleConnection("context
 connection=true")
 conn.Open()
 Dim cmd As OracleCommand = conn.CreateCommand
 cmd.CommandText = "UPDATE scott.emp SET sal =
 sal + " & incrementValue & " WHERE
 empno = " & empno

Chapter 9

[291]

 cmd.ExecuteNonQuery()
 cmd.Dispose()
 conn.Close()
 End Sub

End Class

6.	 Rebuild the solution.
7.	 Right-click on the solution and click on Deploy:

8.	 Oracle Deployment Wizard for .NET opens up; simply click on Next.
9.	 Click on New Connection... in the Configure your OracleConnection screen:

Chapter 9

[293]

12.	 Click Next, select Copy assembly and generate stored procedures,����������� and click
on Next:

13.	 Leave the library name as SAMPLECLR_DLL and click on Next:

Introduction to Oracle Developer Tools for Visual Studio 2005

[294]

14.	 In the Specify copy options screen, you can provide the Destination
subdirectory. At this moment, simply leave it blank and click on Next.

15.	 Select as shown in the following screenshot and click on Next:

Chapter 9

[295]

16.	 Check the final summary screen and hit Finish:

17.	 Once it gets deployed, it should show up in Oracle Explorer. Right-click on the
same stored procedure and click on Run as shown in the following screenshot:

Introduction to Oracle Developer Tools for Visual Studio 2005

[296]

18.	 In the Run Procedure dialog box, provide parameter values as follows and
click on OK:

19.	 If it gets successfully executed, you should see the following output:

Taking Advantage of Automatic .NET
Code Generation
Let us consider that we would like to develop a simple Windows form that lists out
all the employees in a grid. To develop this application using ODP.NET, generally,
we would need to add a reference to Oracle.DataAccess.dll, create objects based on
OracleConnection, OracleCommand,����� and OracleDataAdapter, create a DataSet, fill
it with data, and finally bind it to the ��� GridView������������������������������������� . If we need to work with a strongly-
typed dataset, we would need to add a ��� dataset ��������������������������������������� to our project using Visual Studio and
use the BindingSource tool to easily bind the dataset to the ���������GridView�.

Chapter 9

[297]

Instead of achieving all of these steps manually, we can make use of the Automatic
Code Generation feature available through ODT. This is a great feature, which
provides a drag‑and‑drop facility to create all the necessary objects (including
adding references) and to develop code automatically.

Let us try to develop the same application by making use of the ��������������� Automatic Code
Generation��������������������������������������� feature. The following are the steps:

1.	 Open ������������������������ Microsoft Visual Studio.
2.	 Go to File | New | Project.
3.	 In the New Project dialog box, select Windows Application as the template

and provide the project name as AutoCodeGen,�������������� and click on OK:

Introduction to Oracle Developer Tools for Visual Studio 2005

[298]

4.	 With Oracle Explorer already opened and connected, simply drag the Emp
table from Oracle Explorer on to the Form1 as follows:

5.	 You will be prompted to save the connection password in the generated
code. Just press Yes:

6.	 OracleDataAdapter and OracleConnection objects (along with adding
references to Oracle.DataAccess.dll) are automatically added below the
form as follows:

Chapter 9

[299]

7.	 Using the smart tag of empOracleDataAdapter1, click on Generate Dataset...
as follows:

8.	 This brings up the OracleDataAdapter Wizard as follows:

Chapter 9

[301]

11.	 In the Configure your SELECT statement screen, you can modify the SELECT
statement or simply hit Next as shown in the following screenshot:

12.	 In the next screen simply select Automatic (which automatically generates all
DML statements for the table) as follows and hit Next:

Introduction to Oracle Developer Tools for Visual Studio 2005

[302]

13.	 Make sure that the Summary screen looks like the following, and then
hit Finish.

14.	 When it prompts for saving of the connection password, hit Yes.
15.	 Using the smart tag of the empOracleDataAdapter1 object, click on Preview

Results... to give you the list of employees:

16.	 Using the same smart tag, click on Generate DataSet... to generate a strongly-
typed dataset along with code:

Chapter 9

[303]

17.	 You should be able to see a new dataset named Emp11 created as follows:

18.	 You will also see a new file named Emp1.xsd ��������� added to Solution Explorer
as follows:

19.	 You can check the dataset with fields using the option Edit in DataSet
Designer... of Emp11 as follows:

20.	 The dataset designer looks like the following:

Introduction to Oracle Developer Tools for Visual Studio 2005

[304]

21.	 We can modify the attributes of each of the fields using the Properties
window.

22.	 To view the automatic code generated by the designer, click on the Show All
Files button���� in Solution Explorer as shown below:

23.	 Go down to Emp1.Designer.vb and double-click on it.

Chapter 9

[305]

24.	 The code that is automatically created, looks like the following:

25.	 Now, go back to Form design, drag a GridView control onto the form and
using the smart tag choose the data source as follows:

Introduction to Oracle Developer Tools for Visual Studio 2005

[306]

26.	 When the data source is selected, you can observe a new object
EmpBindingSource at the bottom:

27.	 The GridView also gets automatically populated with the columns
(as available in the dataset) at design time itself as shown in the
following screenshot:

28.	 In the Form Load event, just add the code that simply fills the dataset, as seen
in the following screenshot:

Chapter 9

[307]

29.	 Hit F5 to execute the application, and the output should look like
the following:

Summary
In this last chapter, we have gone through the features of Oracle Developer Tools for
Visual Studio, creating and debugging PL/SQL stored procedures, developing and
deploying .NET CLR stored procedures in Oracle database, and finally concluded
with developing applications with the Automatic Code Generation feature of ODT.

[310]

D
data, manipulating

DDL statements executing, OracleCommand
used 71

DML statements executing, OracleCommand
 used 71

offline data, updating to database 82-84
OracleCommandBuilder, working with 84, 85
OracleDataAdapter, working with 84, 85
transaction, working with 86, 87

data, retrieving
data sets, working with 48
data tables, working with 48
from Oracle, ODP.NET used 37
fundamental classes 37
OracleDataReader used 39
performance improving techniques 67-69

database, Oracle
arrays, passing 116
arrays, receiving 116-121
arrays, sending 117, 118
changes, notifying to applications 185
CLOB information, retrieving 143
documents, retrieving 154-158
documents, uploading 154-157
images retrieving, BLOB used 153
images uploading, BLOB used 150
large objects 131
LOBs 131
text information, inserting 140, 141

data sets
master-detail information, presenting 58-61
populating, with multiple data tables 56, 57
populating, with single data table 55, 56
web reports, binding 224
working with 48

DataTableReader
working with 54

data tables
DataTableReader, working with 54, 55
filling, OracleDataReader used 51, 52
multiple rows retrieving, OracleDataAdapter

 used 48-50
single row retrieving, OracleDataAdapter

used 52, 53
working with 48

DDL. See statements, executing
DML. See statements, executing

E
error handling

first error, displaying 88, 89
multiple errors, displaying 89-91
single error, displaying 88, 89

eXtensible Markup Language. See XML

F
factory class 15
features, ODT

Oracle, connecting to 266, 267
Oracle database objects 274-278
Oracle information, retrieving 270-273

functions. See user-defined functions
fundamental classes

for retrieving data 37

L
large objects

about 131
BFILE 131
BLOBs 131
CLOBs 131
types 131

LOBs. See large objects
long running applications

developing 193-198
multi-threading 195-198
Not Responding error 194

M
MARS

working with 126
Microsoft Windows CE 259
Multiple Active Result Sets. See MARS

N
native XML

node information, extracting 181-183
working with 175

[311]

XML data, inserting 178, 179
XML data, retrieving 179-181
XML data, updating 179-181
XML data into XMLType, inserting 175, 176
XML data into XMLType, updating 177, 178

notifications
applications, notifying 185
catching 186
modified rows, identifying 190-193
multiple notifications, catching 189, 190

Not Responding error 194

O
Object Oriented Programming

about 235, 236
business logic class, developing 238-241
ObjectDataSource, working with 241-246
Oracle database helper class, developing

236-238
ODP.NET

applications, developing 185
data in Oracle, manipulating 71
data retrieving, from Oracle 37
fundamental classes, for retrieving data 37, 38
Object Oriented Programming 235
Oracle, connecting to 15
Oracle accessing, from .NET applications 8, 9
Oracle Database Extensions for .NET 10
Oracle Developer tools for Visual Studio 11
prerequisites 9, 10
programming 93
transaction, working with 86
web applications, developing 199
web services, developing 247

ODT. See Oracle Developer Tools for
Visual Studio

OOP. See Object Oriented Programming
Oracle

connecting to 15
database 116
data manipulating, ODP.NET used 71
data retrieving, ODP.NET used 37
errors, handling 88
exception, handling 88
Oracle XML DB 159
rows. manipulating 171

Oracle, connecting to
.NET data provider factory classes used 20, 21
.NET data provider for ODBC used 23
.NET data provider for OLEDB used 22
connection pooling 27, 28
connection string, embedding 31-33
DBA privileges 28
dynamic connecting string,

OracleConnectionStringBuilder used 29-31
from .NET 19
Microsoft’s .NET data provider for Oracle

used 24, 25
Oracle data provider for .NET used 25-27
system-level privileges 28
Windows authentication used 33, 35

OracleCommand object
about 61
bind variables, working with 64-66
DDL statements, executing 71
DML statements, executing 71
INSERT, using 72
nulls, handling 62, 63
nulls, handling with ExecuteScalar 62, 63
nulls, handling with OracleDataReader 63, 64
OracleDataAdapter, working with 66, 67
single value, retrieving from database 61

OracleDataAdapter
multiple rows, retrieving 48-50
offline data, updating to database 82-84
OracleCommand object 66
single row, retrieving 52, 53

Oracle Database Extensions for .NET 10
OracleDataReader, data retrieving

about 39
data tables, filling 51, 52
multiple rows retrieving, Grid used 43-46
nulls, handling 63
OracleCommand object 61
pulling information, table name used 46, 47
single row of information, retrieving 39-41
typed data, retrieving 47, 48
using statement 42, 43

Oracle Developer Tools for Visual Studio
about 11, 265
features 265, 266
Oracle, connecting to 266-268
Oracle database objects 274-279

[312]

Oracle information, retrieving 270-272
PL/SQL stored procedures, debugging 279

Oracle XML DB
about 159
XML, generating from existing rows 163-170

P
packages, PL/SQL

procedure, executing 112-114
routines, executing 111-116
user-defined function, executing 114, 115

PL/SQL
anonymous blocks, executing 94
anonymous blocks, passing information

to 95, 96
anonymous blocks, retrieving information

from 96-98
anonymous blocks, working with 93
arrays, passing 116
arrays, receiving 116
debugging 279-289
functions 98
ODP.NET, programming 93
packages 111
REF CURSOR, working with 122
rountines, executing 111
stored procedures 98

procedure
executing, in PL/SQL package 112-114

provider independent model
about 15
installed .NET data providers, listing 16, 17
Oracle data sources, enumerating 17-19

R
REF CURSOR

accessing, .NET application used 122-124
dataset, filling 125, 126
MARS, working with 126-130
working with 122

rows manipulating, XML used
rows. inserting 171-173
rows. updating 174, 175

S
SELECT statement

XML document, generating 160
smart data binding

web developing for 199
smart device applications

developing 259
Microsoft Windows CE 259
web service, consuming 260, 263

statement catching 76
statements, executing

DELETE, using 75
INSERT, using 72, 73
multiple inserts, array binding used 78-81
multiple inserts, statement caching

used 76-78
OracleCommand used 71
Oracle table dynamically creating, ODP.

NET used 81, 82
UPDATE, using 73, 74

stored procedures, PL/SQL
about 98
executing 98, 99
executing, anonymous block used 102, 103
IN and OUT parameters, working simulta-

neously 105-107
output parameters, retreving from 103-105
parameter values, passing to 100, 101
user defined application errors, handling

107-109
user defined functions, executing 109-111
working with 98

T
TNS 19
transaction 86
Transparent Network Substrate 19
typed data

retrieving 47
retrieving, column names used 47
retrieving, ordinals used 47

[313]

U
user-defined functions

executing 109-111
executing, in PL/SQL package 114-116
working with 98

W
web applications

ASP.NET DropDownList control, populat-
ing 199-206

ASP.NET GridView control, linking 207,
210, 211

developing 199
developing, smart data binding used 199
rows, adding 212-218
rows, deleting 212-218
rows, updating 212-218
web control, working manually 218-220

web controls
working manually 218-220

web reports
charts, embedding 232-234
dataset, binding to 224-228
designing 224-227
developing, ASP.NET used 221
graphs, embedding 232-234
strongly-typed dataset creating, designer

used 221-224
sub-totals, displaying 228-232
sub-totals, grouping 228-232

web services
.NET XML service, creating 247-254
consuming 255-259
consuming, from Pocket PC 260-263
developing 247

X
XML

about 159, 160
document generating, SELECT used 160
Oracle XML DB 159
rows. manipulating 171
SELECT statement 160

XML, generating from existing rows
ADO.NET Dataset used 163, 164
DBMS_XMLGEN used 166, 167
ExecuteXMLReader used 164-166
rows to HTML converting, XML and XSLT

used 167-170

