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Introduction 

Kernel development can be a daunting task and is very different from programming traditional user 
applications. The kernel environment is more volatile and complex. Extraordinary care must be taken to 
ensure that kernel code is free of bugs because any issue may have serious consequences to the stability, 
security, and performance of the system. This book covers the fundamentals necessary to begin 
programming in the kernel. We cover kernel development from a theoretical and practical point of view. 
We cover concepts fundamental to kernel development such as virtual memory and synchronization, as 
well as more practical knowledge. The book primarily focuses on Mac OS X, however the XNU kernel is 
also used by iOS, and hence the theoretical material in this book will also apply to it. By far the most 
common reason for doing development within the kernel’s execution environment is to implement a 
device driver for controlling internal or external hardware devices. Because of this, much of the focus of 
this book is centred on the development of device drivers. The primary framework for device driver 
development in the XNU kernel is I/O Kit, which we cover extensively. As theory becomes boring quickly 
we have provided working code samples which you can play with to learn more or use as a starting point 
for your own drivers.  

We hope you have as much fun reading this book as we have enjoyed writing it. 

Who Is This Book For? 
The book was written for anyone interested in Apple’s iOS and Mac OS X operating systems, with a focus 
on practical kernel development, especially driver devel. Regardless of whether you are a hobbyist, 
student, or professional engineer, we hope to provide you with material of interest. While the focus is on 
kernel programming and development, we will cover many theoretical aspects of OS technology and 
provide a detailed overview of the OS X and iOS kernel environments. The aim of the book is to provide 
the knowledge necessary to start developing your own kernel extensions and drivers. We will focus in 
particular on the I/O Kit framework for writing device drivers and extensions, but we will also cover 
general knowledge that will give you a deeper understanding of how I/O Kit interacts with the OS. If you 
are mainly interested in developing OS X or iOS user applications, this book may not be for you. We will 
not cover Cocoa or any other framework used for developing end-user applications. This book covers 
kernel-programming topics such as driver and kernel extension development on Apple’s OS X and iOS 
platform. 

Some knowledge of operating system internals will be useful in understanding the concepts 
discussed in this book. Having completed an introductory computer science or engineering course will 
be a helpful starting point. Additionally, knowledge of at least one programming language will be 
required in order to understand examples throughout the book. Since we focus on I/O Kit, which is 
written in a subset of C++ called Embedded C++, it would be highly beneficial to have some experience 
with C++ (or at least C) to make the most of this book. The book does not cover general programming 
topics or theory. We will briefly cover some fundamentals of OS theory to provide a context for further 
discussions.  
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Book Structure 
The following is a brief description of each chapter in this book: 

Chapter 1, Operating System Fundamentals. Details the functionality of an operating system and 
its role in managing the computer’s hardware resources. We describe the purpose of device drivers and 
when they are needed, and introduce the differences between programming in the kernel environment 
as compared to standard application development.  

Chapter 2, Mac OS X and iOS. Provides a brief overview of the technical structure of XNU, the kernel 
used by Mac OS X and iOS.  

Chapter 3, Xcode and the Kernel Development Environment. Provides an overview of the 
development tools provided by Apple for Mac OS X and iOS development. The chapter ends with a short 
“Hello world” kernel extension.  

Chapter 4, The I/O Kit Framework. Introduces the I/O Kit framework that provides the driver model 
for Mac OS X and its object-oriented architecture. We explain how the I/O Kit finds the appropriate 
device driver to manage a hardware device. We demonstrate a generic device driver to illustrate the basic 
structure of any I/O Kit driver. 

Chapter 5, Interacting with Drivers from Applications. Explains how application code can access a 
kernel driver. We demonstrate how to search and match against a specific driver as well as how to install 
a notification to wait for the arrival of a driver or a particular device. We will show how an application 
can send commands to a driver and watch for events sent by the driver. 

Chapter 6, Memory Management. Provides an overview of kernel memory management and the 
different types of memory that a driver needs to work with. We describe the differences between physical 
and kernel virtual addresses and user-space memory. We also introduce the reader to the concepts such 
as memory descriptors and memory mapping. 

Chapter 7, Synchronization and Threading. Describes the fundamentals of synchronization and 
why it is a necessity for every kernel driver. We discuss the usage of kernel locking mechanisms such as 
IOLock and IOCommandGate and their appropriate use. We explain how a typical driver requires 
synchronization between its own threads, user-space threads, and hardware interrupts. We discuss the 
kernel facilities for creating kernel threads and asynchronous timers. 

Chapter 8, USB Drivers. Introduces the reader to the architecture of USB and how a driver 
interfaces with them. We provide an overview of the I/O Kit USB API and the classes it provides for 
enumerating devices and transferring data to or from a USB device. We also discuss steps needed to 
support device removal and provide an example to show how a driver can enumerate resources such as 
pipes. 

Chapter 9, PCI and Thunderbolt. Provides an overview of the PCI architecture. We also describe the 
concepts that are unique to PCI drivers, such as memory-mapped I/O, high-speed data transfer through 
Direct Memory Access (DMA), and handling of device interrupts. We give an overview of the IOPCIDevice 
class that the I/O Kit provides for accessing and configuring PCI devices. We also discuss the related and 
more recent Thunderbolt technology. 

Chapter 10, Power Management. Describes the methods that drivers need to implement in order to 
allow the system to enter low power states such as machine sleep. We also describe advanced power 
management that a driver can implement if it wishes to place its hardware into a low power state after a 
period of inactivity. 

Chapter 11, Serial Port Drivers. Describes how to implement a serial port driver on Mac OS X. We 
introduce relevant data structures such as circular queues and techniques for managing data flow 
through blocking I/O and notification events. We show how a user application can enumerate and 
access a serial port driver.  
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Chapter 12, Audo Drivers. Discusses how system-wide audio input and output devices can be 
developed using the IOAudioFamily framework. We demonstrate a simple virtual audio device that 
copies audio output to its input.  

Chapter 13, Network Drivers. Describes how a network interface can be implemented using the 
IONetworkingFamily. We also cover how to write network filters to filter, block, and modify network 
packets. The chapter concludes with an example of how to write an Ethernet driver. 

Chapter 14, Storage Drivers. Covers the storage driver stack on Mac OS X that provides support for 
storage devices such as disks and CDs. We describe the drivers at each layer of the storage stack, 
including how to write a RAM disk, a partition scheme, and a filter driver that provides disk encryption. 

Chapter 15, User space USB Drivers. Describes how certain drivers can be implemented entirely 
inside a user application. We describe the advantages to this approach and also when this may not be 
applicable. 

Chapter 16, Debugging. Contains practical information on how to debug drivers, as well as 
common problems and pitfalls. It will enable a reader to work backwards from a kernel crash report to a 
location in their code, a common scenario facing a kernel developer. We will discuss the tools OS X 
provides to enable this, such as the GNU debugger (GDB). 

Chapter 17, Advanced Kernel Programming. Explores some of the more advanced topics in kernel 
programming, such as utilizing SSE and floating point or implementing advanced driver architectures. 

Chapter 18, Deployment. Concludes the book by describing how to distribute a driver to the end 
user. We cover the use of the Apple installation system for both first-time installation and upgrades. The 
chapter includes practical tips on how to avoid common driver installation problems. 
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Operating System Fundamentals 

The role of an operating system is to provide an environment in which the user is able to run application 
software. The applications that users run rely on services provided by the operating system to perform 
tasks while they execute, in many cases without the user—or even the programmer—giving much 
thought to them. For an application to read a file from disk, for example, the programmer simply needs 
to call a function that the operating system provides. The operating system handles the specific steps 
required to perform that read. This frees the application programmer from having to worry about the 
differences between reading a file that resides on the computer’s internal hard disk or a file on an 
external USB flash drive; the operating system takes care of such matters. 

Most programmers are familiar with developing code that is run by the user and perhaps uses a 
framework such as Cocoa to provide a graphical user interface with which to interact with the user. All of 
the applications available on the Mac or iPhone App Store fit into this category. This book is not about 
writing application software, but rather about writing kernel extensions—that is, code that provides 
services to applications. Two possible situations in which a kernel extension is necessary are allowing 
the operating system to work with custom hardware devices and adding support for new file systems. 
For example, a kernel extension could allow a new USB audio device to be used by iTunes or allow an 
Ethernet card to provide an interface for networking applications, as shown in Figure 1-1. A file system 
kernel extension could allow a hard disk formatted on a Windows computer to mount on a Mac as if it 
were a standard Mac drive. 
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Figure 1-1. The network interfaces listed in the Mac OS X system preferences represent network kernel 

extensions. 

An important role of the operating system is to manage the computer’s hardware resources, such as 
memory and the CPU, and peripherals, such as disk storage and the keyboard. The collection of 
hardware devices that the operating system needs to support varies greatly from machine to machine. 
The hardware configuration of a MacBook Air is very different to that of a Mac Pro, although they both 
run the same operating system. To allow the operating system to support multiple hardware 
configurations without becoming bloated, the code required to support each hardware component is 
packaged into a special type of kernel extension known as a driver. This modularity allows the operating 
system to load drivers on demand, depending on the hardware that is present on the system. This 
approach also allows for drivers to be installed into the system by vendors to support their custom 
hardware. The standard installation of Mac OS X comes with over one hundred drivers, of which only a 
subset is needed to run a particular system. 

Developing a kernel extension is very different from writing an application. The execution of an 
application tends to be driven by events originating from the user. The application runs when the user 
launches it; it may then wait for the user to click a button or select a menu item, at which point the 
application handles that request. Kernel extensions, on the other hand, have no user interface and do 
not interact with the user. They are loaded by the operating system, and are called by the operating 
system to perform tasks that it could not perform by itself, such as when the operating system needs to 
access a hardware device that the kernel extension is driving. 
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To help with the security and stability of the system, modern operating systems, such as Mac OS X, 
isolate the core operating system code (the kernel) from the applications and services that are run by the 
user. Any code that runs as part of the kernel, such as driver code, is said to run in “kernel space.” Code 
that runs in kernel space is granted privileges that standard user applications do not have, such as the 
ability to directly read and write to hardware devices connected to the computer. 

In contrast, the standard application code that users work with are said to run in “user space.” 
Software that runs in user space has no direct access to hardware. Therefore, to access hardware, user 
code must send a request to the kernel, such as a disk read request, to request that the kernel perform a 
task on behalf of the application. 

There is a strict barrier between code that runs in user space and code that runs in the kernel. 
Applications can only access the kernel by calling functions that the operating system publishes to user 
space code. Similarly, code that executes in kernel space runs in a separate environment to user space 
code. Rather than using the same rich programming APIs that are available to user space code, the 
kernel provides its own set of APIs that developers of kernel extensions must use. If you are accustomed 
to user space programming, these APIs may appear restrictive at first, since operations such as user 
interaction and file system access are typically not available to kernel extensions. Figure 1-2 shows the 
separation of user space code and kernel space code, and the interaction between each layer. 

 

Figure 1-2. The separate layers of responsibility in a modern operating system 

An advantage of forcing applications to make a request to the kernel to access hardware is that the 
kernel (and kernel driver) becomes the central arbiter of a hardware device. Consider the case of a sound 
card. There may be multiple applications on the system that are playing audio at any one time, but 
because their requests are funneled through to a single audio driver, that driver is able to mix the audio 
streams from all applications and provide the sound card with the resulting mixed stream. 

In the remainder of this chapter, we provide an overview of the functionality provided by the 
operating system kernel, with a focus on its importance in providing user applications with access to 
hardware. We begin at the highest level, looking at application software, and then digging down into the 
operating system kernel level, and finally down into the deepest level, the hardware driver. If you are 
already familiar with these concepts, you can safely proceed to Chapter 2. 
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The Role of the Operating System 
As part of the boot sequence, the operating system determines the hardware configuration of the 
system, finds any external devices connected to USB ports or plugged into PCI expansion slots, and 
initializes them, loading drivers along the way, if necessary. 

Once the operating system has completed loading, the user is able to run application software. 
Application software may need to allocate memory or write a file to disk, and it is the operating system 
that handles these requests. To the user, the involvement of the operating system is largely transparent. 

The operating system provides a layer of abstraction between running applications and the physical 
hardware. Applications typically communicate with hardware by issuing high-level requests to the 
operating system. Because the operating system handles these requests, the application can be 
completely unaware of the hardware configuration on which it is running, such as the amount of RAM 
installed and whether the disk storage is an internal SSD or an external USB drive. 

This abstraction allows application software to be run on a wide variety of different hardware 
configurations without the programmer having to add support for each one, even if new hardware 
devices are created after the program has been released. 

Application developers can often ignore many of the details of the workings of a computer system, 
because the operating system abstracts away the intricacies of the hardware platform on which the 
application is running. As a driver developer, however, the code that you write becomes part of the 
operating system and will interface directly with the computer’s hardware; you are not immune to the 
inner-workings of a system. For this reason, a basic understanding of how the operating system 
performs its duties is necessary. 

Process Management 
A user typically has many applications installed on his or her computer. These are purely passive 
entities. The programs on disk contain data that is needed only when the program is run, consisting of 
the executable code and application data. When the user launches an application, the operating system 
loads the program’s code and data into memory from disk and begins executing its code. A program 
being executed is known as a “process.” Unlike a program, a process is an active entity, and consists of a 
snapshot of the state of the program at a single instance during execution. This includes the program’s 
code, the memory that the program has allocated, and the current state of its execution, such as the CPU 
instruction of the function that the program is currently executing, and the contents of its variables and 
memory allocations. 

There are typically many processes running on a system at once. These include applications that the 
user has launched (such as iTunes or Safari), as well as processes that are started automatically by the 
operating system and that run with no indication to the user. For example, the Time Machine backup 
service will automatically run a background process every hour to perform a backup of your data. There 
may even be multiple instances of the same program being executed at any one time, each of which is 
considered a distinct process by the operating system. Figure 1-3 shows the Activity Monitor utility that 
is included with Mac OS X, which allows all of the processes running on the system to be examined. 
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Figure 1-3. Activity Monitor on Mac OS X showing all processes running on the system. Compare this to 

the Dock, which shows the visible user applications. 

Process Address Spaces 
Although there are typically many processes running at any one time, each process is unaware of the 
other processes running on the system. In fact, without explicit code, one process cannot interact or 
influence the behavior of another process. 

The operating system provides each process with a range of memory within which it is allowed to 
operate; this is known as the process’s address space. The address space is dynamic and changes during 
execution as a process allocates memory. If a process attempts to read or write to a memory address 
outside of its address space, the operating system typically terminates it, and the user informed that the 
application has crashed. 

Although protected memory is not new, it is only within the last decade that it has been found on 
consumer desktop systems. Prior to Mac OS X, a process running under Mac OS 9 was able to read or 
write to any memory address, even if that address corresponded to a buffer that was allocated by 
another process or belonged to the operating system itself. 

Without memory protection, applications were able to bypass the operating system and implement 
their own inter-process communication schemes based on directly modifying the memory and variables 
of a different process, with or without the consent of that process. This was also true for operating 
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system structures. For example, Mac OS 9 had an internal global variable that contained a linked list of 
every GUI window that was open. Although this linked list was nominally owned and manipulated by 
the operating system, applications were able to walk and modify the list without making any calls to the 
operating system. 

Without memory protection, an operating system is susceptible to bugs in user applications. An 
application running on a system with memory protection can, at worst, corrupt its own memory and 
structures, but the damage is localized to the application itself. On a system without memory protection, 
such as Mac OS 9, a bug in an application could potentially overwrite the internal structures of the 
operating system, which could cause the system to crash entirely and require a reboot to recover. 

It is worth noting that on a modern operating system such as Mac OS X, the kernel has an address 
space of its own. This allows the kernel to operate independently of all running processes. On Mac OS X, 
a single address space is used for both the kernel and all kernel extensions that are loaded. This means 
that there is nothing protecting core operating system structures from being inadvertently overwritten 
by a buggy driver. Unlike a user process, which can simply be aborted, if this situation occurs in the 
kernel, the entire system is brought down and the computer must be rebooted. This type of error 
presents itself as a kernel panic on Mac OS X, or the “blue screen of death” on Windows. For this reason, 
developers of kernel extensions need to be careful with memory management to ensure that all memory 
accesses are valid. 

Operating System Services 
With a modern operating system, there is a clear separation between the functions performed by the 
operating system and the functions performed by the application. Whenever a process wishes to 
perform a task such as allocating memory, reading data from disk, or sending data over a network, it 
needs to go through the operating system using a set of well-defined programming interfaces that are 
provided by the system. System functions such as malloc() and read() are examples of system calls that 
provide operating system services. These system calls may be made directly by the application or 
indirectly through a higher-level development framework such as the Cocoa framework on Mac OS X. 
Internally, the Cocoa framework is implemented on top of these same system calls, and accesses 
operating system services by invoking lower-level functions such as read(). 

However, because user processes have no direct access to hardware or to operating system 
structures, a call to a function such as read() needs to break out of the confines of the process’s address 
space. When a function call to an operating system service is made, control passes from the user 
application to the privileged section of the operating system, known as the kernel. Transferring control 
to the kernel is usually performed with the help of the CPU, which provides an instruction for this 
purpose. For example, the Intel CPU found in modern-day Macs provides a syscall instruction that 
jumps to a function that was set up when the operating system booted. This kernel function first needs 
to identify which system call the user process executed (determined by a value written to a CPU register 
by the calling process) and then reads the function parameters passed to the system call (again, set up by 
the calling process through CPU registers). The kernel then performs the function call on behalf of the 
user process and returns control to the process along with any result code. This is illustrated in Figure  
1-4. 
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Figure 1-4. The flow of control in a system call 

The kernel is a privileged process and has the ability to perform operations that are not available to 
user processes, but are necessary for configuring the system. When control transfers to the kernel, such 
as following a system call, the CPU enters a privileged mode while kernel code is executed and then 
drops back to restricted privileges before returning to the user process. 

Since the kernel executes at a higher privilege level than the user process while it is executing a 
system call on behalf of the process, it needs to be careful that it doesn’t inadvertently cause a security 
breach. This could happen if the kernel were tricked into performing a task that the user process should 
not be allowed to do, such as being asked to open a file for which the user does not have read 
permission, or being provided with a destination buffer whose address is not within the process’s 
address space. In the first case, although the kernel process itself has permission to open any file on the 
system, because it is operating on behalf of a lesser-privileged user process, the request needs to be 
denied. In the second case, if the kernel were to access an invalid address, the result would be an 
unrecoverable error, which would lead to a kernel panic. 

Kernel errors are catastrophic, requiring the entire system to be rebooted. To prevent this from 
occurring, whenever the kernel performs a request on behalf of a user process, it needs to take care to 
validate the parameters that have been provided by the process and should not assume that they are 
valid. This applies to system calls implemented by the kernel and, as we will see in subsequent chapters, 
whenever a driver accepts a control request from a user process. 

Virtual Memory 
The RAM in a computer system is a limited resource, with all of the running processes on the system 
competing for a share of it. When there are multiple applications running on a system, it is not unusual 
for the total amount of memory allocated by all processes to exceed the amount of RAM on the system. 

An operating system that supports virtual memory allows a process to allocate and use more 
memory than the amount of RAM installed on the system; that is, the address space of a process is not 
constrained by the amount of physical RAM. With virtual memory, the operating system uses a backing 
store on secondary storage, such as the hard disk, to keep portions of a process address space that will 
not fit into RAM. The CPU, however, can still access only addresses that are resident in RAM, so the 
operating system must swap data between the disk backing store and RAM in response to memory 
accesses made by the process as it runs. 
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At a particular time, a process may only need to reference a small subset of the total memory that 
has been allocated. This is known as the working set of the process and, as long as the operating system 
keeps this working set in RAM, there is negligible impact on the execution speed imposed by virtual 
memory. The working set is a dynamic entity, and it changes based on the data that is actively being 
used as the process runs. If a process accesses a memory address that is not resident in RAM, the 
corresponding data is read from the backing store on disk and brought into RAM. If there is no free RAM 
available to load the data into, some of the existing data in RAM will need to be swapped out to disk 
beforehand, thus freeing up physical RAM. 

Virtual memory is handled by the operating system. A user process plays no part in its 
implementation, and is unaware that portions of its address space are not in physical RAM or that data it 
has accessed needed to be swapped into main memory. 

A consequence of virtual memory is that the addresses used by a process do not correspond to 
addresses in physical RAM. This is apparent if you consider that a process’s address space may be larger 
than the amount of RAM on the system. Therefore, the addresses that a process reads from and writes to 
need to be translated from the process’s virtual address space into a physical RAM address. Since every 
memory access requires an address translation, this is performed by the CPU to minimize the impact on 
execution speed. 

Operating systems typically use a scheme known as “paging” to implement virtual to physical 
address translation. Under a paged memory scheme, physical memory is divided into fixed-sized blocks 
known as page frames. Most operating systems, including both Mac OS X and iOS, use a frame size of 
4096 bytes. Similarly, the virtual address space of each process is divided into fixed-size blocks, known as 
pages. The number of bytes per page is always the same as the number of bytes per frame. Each page in 
a process can then be mapped to a frame in physical memory, as shown in Figure 1-5. 

 

Figure 1-5. The pages in a process’s address space can be mapped to any page frames in memory. 
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Another advantage of virtual memory is it allows a buffer that occupies a contiguous range of pages 
in the process’s virtual address space to be spread over a number of discontiguous frames in physical 
memory, as seen in Figure 1-5. This solves the problem of fragmentation of physical memory, since a 
process’s memory allocation can be spread over several physical memory segments and is not limited to 
the size of the longest contiguous group of physical page frames. 

As part of launching a process, the operating system creates a table to map addresses between the 
process’s virtual address space and their corresponding physical address. This is known as a “page 
table.” Conceptually, the page table contains an entry for each page in the process’s address space 
containing the address of the physical page frame to which each page is mapped. A page table entry may 
also contain access control bits that the CPU uses to determine whether the page is read-only and a bit 
that indicates whether the page is resident in memory or has been swapped out to the backing store. 
Figure 1-6 describes the steps that the CPU performs to translate a virtual address to a physical address. 

 

Figure 1-6. Virtual to physical address translation for a 32-bit address with a page size of 4096 bytes (12 

bits) 

If a process accesses a memory address that the CPU cannot translate into a physical address, an 
error known as a “page fault” occurs. Page faults are handled by the operating system, running at 
privileged execution level. The operating system determines whether the fault occurred because the 
address was not in the process’s address space, in which case the process has attempted to access an 
invalid address and is terminated. If the fault occurred because the page containing the address has 
been swapped out to the backing store, the operating system performs the following steps: 

1. A frame in physical memory is allocated to hold the requested page; if no free 
frames are available in memory, an existing frame is swapped out to the 
backing store to make room. 

2. The requested page is read from the backing store into memory. 
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3. The page table for the process is updated so that the requested page is mapped 
to the allocated frame. 

4. Control returns to the calling process. 

The calling process re-executes the instruction that caused the fault, but this time around, the CPU 
finds a mapping for the requested page in the page table and the instruction completes successfully. 

An understanding of virtual memory and paging is essential for kernel developers. Although the 
kernel handles requests on behalf of user applications, it also has an address space of its own, so 
parameters often need to be copied or mapped from a process’s address space to the kernel’s address 
space. In addition, kernel code that interfaces to hardware devices often needs to obtain the physical 
address of memory. Consider a disk driver that is handling a read request for a user process. The 
destination for the data read from disk is a buffer that resides in the address space of the user process. As 
with the CPU, the hardware controlled by the driver can write only to an address in main memory, and 
not to a destination in the backing store. Therefore, to handle the read request, the driver needs to 
ensure that the user buffer is swapped into main memory and remains in main memory for the duration 
of the read operation. Finally, the driver needs to translate the address of the destination buffer from a 
virtual address into a physical address that the hardware can access. We describe this in further detail in 
Chapter 6. 

It’s worth noting that although iOS provides a page table for each process, it does not support a 
backing store. At first, it may seem that this completely defeats the purpose of paging. However, it serves 
two very important purposes. First, it provides each process with the view that it has sole access to 
memory. Second, it avoids problems caused by the fragmentation of physical memory. 

Scheduling 
Another resource that is under high contention in a computer system is the CPU. Each process requires 
access to the CPU in order to execute, but typically, there are more active processes wanting access to 
the CPU than there are CPU cores on the system. The operating system must therefore share the CPU 
cores among the running processes and ensure that each process is provided regular access to the CPU 
so that it can execute. 

We have seen that processes run independent of each other and are given their own address spaces 
to prevent one process from affecting the behavior of any other process. However, in many applications, 
it is useful to allow two independent execution paths to run simultaneously, without the restriction of 
having each path run within its own address space. This unit of execution is known as a “thread.” 
Multiple threads all execute code from the same program code and are run within the same process (and 
hence share the same address space), but otherwise run independently. 

To the operating system, a thread is the basic unit of scheduling; the operating system scheduler 
needs to look at only the active threads on the system when considering what to schedule next on the 
CPU. For a process to execute, it must contain at least one thread; the operating system automatically 
creates the initial thread for a new process when it begins running. 

The goal of the scheduler is twofold: to prevent the CPU from becoming idle, since otherwise a 
valuable hardware component is being wasted, and to provide all threads with access to the CPU in a 
manner that is fair so that a single thread cannot monopolize the CPU and starve other threads from 
running. To do this, a thread is scheduled on an available CPU core until one of two events occurs: 

• A certain amount of time has elapsed, known as the time quantum, at which point 
the thread is preempted by the operating system and another thread is scheduled. 
On Mac OS X, the default time quantum is 10 milliseconds. 
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• The thread can no longer execute because it is waiting for the completion of an 
operation, such as for data to be read from disk, or for the result of another thread. 
In this case, the scheduler allows another thread to run on the CPU while the 
original thread is blocked. This prevents the CPU from sitting idle when a thread 
has no work to do and maximizes the time that the CPU is spent executing code. A 
thread can also voluntarily give up its time on the CPU by calling one of the 
sleep() functions, which delay execution of the current thread for a specified 
duration. 

One reason for adding multiple threads to an application is to allow it to execute concurrently 
across multiple CPU cores so that the application’s execution can be sped up by dividing a complex 
operation into smaller steps that are run in parallel. However, multithreading has advantages even on a 
computer with a single CPU core. By rapidly switching between active threads, the scheduler gives the 
illusion that all threads are running concurrently. This allows a thread to block or sit in a tight loop with 
negligible impact on the responsiveness of other threads, so a time-consuming task can be moved to a 
background thread while leaving the rest of the application free to respond to user interaction. 

A common design used in applications that interface with hardware is to place the code that 
accesses the hardware in its own thread. Software code often has to block while it is waiting for the 
hardware to respond; by removing this code from the main program thread, the program’s user interface 
is not affected when the program needs to wait for the hardware. 

Another common use of threads occurs when software needs to respond to an event from hardware 
with minimal delay. The application can create a thread that is blocked until it receives notification from 
hardware, which can be signaled using techniques discussed in later chapters. While the thread is 
blocked, the scheduler does not need to provide it with access to the CPU, so the presence of the thread 
has no impact on the performance of the system. However, once the hardware has signaled an event, the 
thread becomes unblocked, is scheduled on the CPU, and it is free to take whatever action is necessary 
to respond to the hardware. 

Hardware and Drivers 
In addition to managing essential hardware resources such as the CPU and memory, the operating 
system is also responsible for managing hardware peripherals that may be added to the system. This 
includes devices such as the keyboard and mouse, a USB flash drive, and the graphics card. Although the 
operating system is responsible for managing these devices, it does so with the help of drivers, which can 
be thought of as plug-ins that run inside the operating system kernel and allow the system to interface to 
hardware devices. 

The code to support a hardware device can be found in two places: on the device itself (known as 
firmware) and on the computer (known as the driver). The role of the driver is to act on behalf of the 
operating system in controlling the hardware device. Driver code is loaded into the operating system 
kernel and is granted the same privileges as the rest of the kernel, including the ability to directly access 
hardware. 

The driver has the responsibility of initializing the hardware when the device is plugged into the 
computer (or when the computer boots) and of translating requests from the operating system into a 
sequence of hardware-specific operations that the device needs to perform to complete the operating 
system’s request. 

The type of requests that a driver will receive from the operating system depends on what function 
the driver performs. For certain drivers, the operating system provides a framework for driver 
developers. For example, a sound card requires an audio driver to be written. The audio driver receives 
requests from the operating system that are specific to the world of audio, such as a request to create a 
48 kHz audio output stream, followed by requests to output a provided packet of audio. 
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Drivers may also be built on top of other drivers and may request services provided by other drivers. 
For example, the driver of a USB audio input device uses the services of a lower-level generic USB driver 
to access its hardware. This relieves the developer from having to become intimate with the USB 
protocol, and the developer is instead free to concentrate on the specifics of his own device. As in the 
previous example, the audio driver receives requests from the operating system that represent audio 
stream operations, and in responding to these, the driver creates requests of its own that are passed to a 
lower-level USB driver. This allows a separation in the responsibility of each driver: The audio driver 
needs to concern itself only with handling audio requests and configuring the audio device, and the USB 
driver needs to concern itself only with the USB protocol and performing data transfers over the USB 
bus. An example of the way in which drivers can be layered is illustrated in Figure 1-7. 

 

Figure 1-7. The chain of control requests in an audio request from application to hardware 

Not all hardware fits into a specific class that is understood by the operating system. A specialized 
device, such as a 3D printer, is unlikely to have support from the operating system. Instead, the 
hardware manufacturer needs to write a generic driver for their hardware. As a generic driver, the 
operating system does not recognize the device as a printer and issue printing requests to it, but instead 
the driver is controlled by specialized application software, which communicates with the printer driver 
directly. The operating system provides a special system call to allow a user application to request an 
operation from a driver, known as an “i/o control” request, often shortened to “ioctl.” An ioctl specifies 
the operation to be performed and provides the driver with parameters required by the operation, which 
may include a buffer to place the result of the operation. Although the ioctl request is implemented as a 
system call to the operating system, the request is passed directly to the driver. 
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Summary 
The operating system is responsible for managing the hardware resources in a computer. It provides an 
abstract model of the computer system to user programs, giving the appearance that each program has 
full access to the CPU and the entire memory range. Programs that are run by the user cannot touch 
hardware without calling upon services provided by the operating system. In handling services that 
involve peripheral hardware devices, the operating system may need to call functions provided by the 
driver of that device. 

In subsequent chapters, we will put the concepts we have covered here into practice. We will 
introduce you to the interfaces provided by Mac OS X to allow drivers to work with virtual and physical 
memory addresses, respond to requests from user applications, and communicate with PCI and USB 
devices. 
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Mac OS X and iOS 

Mac OS X is a modern Unix-based operating system developed by Apple Inc for their Macintosh 
computer series. OS X is the tenth incarnation of Mac OS. 

OS X features a graphical user interface known for its ease of use and visual appeal. Apple has 
gained a cult-like following for their products, and any new feature addition to either OS X or iOS 
receives widespread attention. In addition to the regular edition of OS X, Apple also provided a server 
edition of OS X called Mac OS X Server. 

The server version was later merged with the regular version in Mac OS X 10.7 (Lion). OS X was the 
successor to Mac OS 9, and represented a radical departure from earlier versions. Unlike its 
predecessors, OS X was based on the NeXTSTEP operating system. At present, there have been eight 
releases of Mac OS X, with the latest being Mac OS X 10.7, codenamed Lion. The Mac OS X releases to 
date are shown in Table 2-1. 

Table 2-1. Mac OS X Releases to Date 

Version Name Released 

10.0 C heetah March 2001 

10.1 Puma September 2001 

10.2 Jagua r August 2002 

10.3 Pant her October 2003 

10.4 Ti ger April 2005 

10.5 Leo pard October 2007 

10.6 Snow Leopard August 2009 

10.7 Li on July 2011 
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Mac OS X comes with a range of tools for developers, including Xcode, which allow the development 
of a wide range of applications, including the major topic of this book—kernel extensions. 

For the end-user, OS X usually comes bundled with the iLife suite, which contains software for 
photo, audio, and video editing, as well as software for authoring web pages. 

NEXTSTEP 

OS X and iOS are based on the NeXTSTEP OS developed by NeXT Computer Inc, which was founded by 
Steve Jobs after he left Apple in 1985. The company was initially funded by Jobs himself, but later gained 
significant outside investments. NeXT was later acquired by Apple, and NeXTSTEP technology made its 
way into OS X. The aim of NeXT was to build a computer for academia and business. Despite limited 
commercial success relative to the competition, the NeXT computers (most notably the NeXTcube) had a 
highly innovative operating system, called NeXTSTEP, which was in many ways ahead of its time. 

NeXTSTEP had a graphical user interface and command line interface like the current versions of OS X (iOS 
does not provide a user accessible command line interface). Many core technologies introduced by 
NeXTSTEP are still found in its successors, such as application bundles and Interface Builder. Interface 
Builder is now part of the Xcode development environment and is widely used for both OS X and iOS Cocoa 
applications. NeXTSTEP provided Driver Kit, an object-oriented framework for driver development, which 
later evolved into I/O Kit, one of the major topics of this book. 

 
iOS was later derived from OS X, and it is Apple’s OS for mobile devices. It was launched with the 

release of the first iPhone, in 2007, and at that point it was called iPhone OS, though it was later renamed 
iOS to better reflect the fact that it runs on other mobile devices, such as the iPod Touch, the iPad, and 
more recently the Apple TV. iOS was built specifically for mobile devices with touch interfaces. Unlike 
the biggest competitor, Windows, neither OS X nor iOS are licensed for use by third parties, and they can 
officially only be used on Apple’s hardware products. A high-level view of the Mac OS X architecture is 
shown in Figure 2-1. 
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Figure 2-1. Mac OS X architecture 

The core of Mac OS X and iOS is POSIX compliant and has since Mac OS X 10.5 (Leopard) complied 
with the Unix 03 Certification. The core of OS X and iOS, which includes the kernel and the Unix base of 
the OS, is known as Darwin, and it is an open source operating system published by Apple. Darwin, 
unlike Mac OS X, does not include the characteristic user interface, as it is a bare bones system, in that it 
only provides the kernel and user space base of tools and services typical of Unix systems. At its release, 
the only supported architecture was the PowerPC platform, but Intel 32 and 64-bit support was 
subsequently added as part of Apple’s shift to the Intel architecture. Apple has thus far not released the 
ARM version of Darwin that iOS is based on. Darwin is currently downloadable in source form only, and 
has to be compiled. The Darwin distribution includes the source code for the XNU kernel. The kernel 
sources are a particularly useful resource for people wanting to know more about the inner workings of 
the OS, and for developing kernel extensions. You can often find more detailed explanations in the 
source code headers, or the code itself, than are documented on Apple’s developer website. 

The Darwin OS (and therefore OS X and iOS) runs the XNU kernel, which is based on code from the 
Mach kernel, as well as parts of the FreeBSD operating system. Figure 2-2 shows the Mac OS X desktop. 
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Figure 2-2. The Mac OS X desktop 

Programming APIs 
As you can see from Figure 2-1, OS X has a layered architecture. Between the Darwin core and the user 
application there is a rich set of programming APIs. The most significant of these is Cocoa, which is the 
preferred framework for GUI-based applications. The iOS equivalent is Cocoa Touch, which is 
principally the same, but offers GUI elements specialized for touch-based user interaction. Both Cocoa 
and Cocoa Touch are written in the Objective-C language. Objective-C is a superset of C, with support 
for Smalltalk style messages. 

OBJECTIVE-C 

Objective-C was the language of choice for application development under Mac OS X and iOS, as well as 
their predecessor, NeXTSTEP. Objective-C is a superset of the C language and provides support for object-
oriented programming, but it lacks many of the advanced capabilities provided by languages like C++, 
such as multiple inheritance, templates, and operator overloading. Objective-C uses Smalltalk-style 
messaging and dynamic binding (which in many ways removes the need for multiple inheritance). The 
language was invented in the early 1980s by Brad Cox and Tom Love. Objective-C is still the de-facto 
standard language for application development on both OS X and iOS, although driver or system level 
programming is typically done in C or C++. Many core frameworks still use the NS (for NeXTSTEP) prefix in 
their class names, such as NSString and NSArray. 

www.allitebooks.com

http://www.allitebooks.org


CHAPTER 2  MAC OS X AND IOS 

19 

Other programming APIs include the BSD API, which provides application access to low-level file 
and device access, as well as the POSIX threading API (pthreads). The BSD layer, unlike Cocoa, does not 
provide facilities for programming applications with a graphical user interface. Mac OS X has another 
major API, called Carbon. Carbon is a C-based API that overlaps with Cocoa in terms of functionality. It 
originally provided some backward compatibility with earlier versions of Mac OS. The Carbon API is now 
deprecated in favor of Cocoa for GUI applications, but remains in OS X to support legacy applications, 
such as Apple’s Final Cut Pro 7. The publically available version of Carbon remains 32-bit only, so Cocoa 
is needed for 64-bit compatibility. The fourth major API is Java, which has now also been deprecated. 
Java was removed from default installation in Mac OS X 10.7, although it is still provided as an optional 
install. 

Graphics and multimedia are key differentiators that OS X and iOS offer over other operating 
systems. Both offer a rich set of APIs for working with graphics and multimedia. The core of the graphics 
system is the Quartz system. Quartz encompasses the windowing system (Quartz Compositor), as well as 
the API known as Quartz 2D. Quartz is based on the PDF (Portable Document Format) model. It offers 
resolution independent user interfaces, as well as anti-aliased rendering of text and graphics. The Quartz 
Extreme interface offers hardware-assisted OpenGL rendering of windows, where supported by the 
graphics hardware. Here’s a short overview of some important graphics and multimedia frameworks: 

• Quartz: Consists of the Quartz 2D API and the Quartz Compositor, which provides 
the graphical window server. Cocoa Drawing offers an object-oriented interface 
on top of Quartz for use in Cocoa applications. 

• OpenGL: The industry standard API for developing 3D applications. iOS supports 
a version of OpenGL called OpenGL ES, a subset designed for embedded devices. 

• Core Animation: A layer-based API integrated with Cocoa that makes it easy to 
create animated content and do transformations. 

• Core Image: Provides support for working with images, including adding effects, 
cropping, or color correction. 

• Core Audio: Offers support for audio playback, recording, mixing, and processing. 

• QuickTime: An advanced library for working with multimedia. It allows playback 
and the recording of audio and video, including professional formats.  

• Core Text: A C-based API for text rendering and layout. The Cocoa Text API is 
based on Core Text. 

Supported Platforms 
At its release, OS X was only supported on the PowerPC platform. In January 2006, Apple released 
version 10.4.4, which finally brought Mac OS X to the Intel x86-platform, as announced at WWDC 2005. 
The reason for transitioning away from the PowerPC platform was, according to Apple, their 
disappointment in IBM’s ability to deliver a competitive microprocessor, especially for low-power 
processors intended for laptops. The transition to Intel was smooth for Apple, and indeed it is one of the 
few examples of a successful platform shift within the industry.  

Apple provided an elegant solution, called Rosetta, which is a dynamic translator that would allow 
existing PowerPC applications to run on x86-based Macs (naturally with some performance penalties). 
Apple also provided developers with Universal Binaries, which allowed native code for more than one 
architecture to exist within a single binary executable (also referred to as fat binaries). While support for 
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PowerPC was discontinued, as of Mac OS X 10.6 (Snow Leopard), Universal Binaries is still used to 
provide 32-bit, and 64-bit x86 or x86_64, executables. 

64-bit Operating System 
Mac OS X 10.5 (Leopard) allowed, for the first time, GUI applications to be 64-bit native, accomplished 
through a new 64-bit version of Cocoa, which allowed developers to tap the additional benefits provided 
by the 64-bit CPUs found in the current generation of Macs. Applications based on the Carbon API are 
still 32-bit only. The subsequent release of Mac OS X 10.6 (Snow Leopard) took things one-step further 
by allowing the kernel to run in 64-bit mode. 

While most applications and APIs were already 64-bit in Leopard, the kernel itself was still running 
in 32-bit mode. Although Snow Leopard made a 64-bit mode kernel possible, only some of the models 
defaulted to 64-bit, while other models required it to be enabled manually. Snow Leopard was the first 
release that did not include support for PowerPC computers, although PowerPC applications could still 
be run with Rosetta. Support for Rosetta was removed in Lion, along with support for the 32-bit kernel. 
While user space is able to support both 64-bit and 32-bit applications side by side, the kernel is 
incompatible with 32-bit drivers and extensions when running in 64-bit mode. A 64-bit kernel provides 
many advantages, and a larger address space means large amounts of memory can be supported. 

iOS 
iOS, or iPhone OS 1.0 as it was initially called, was released in June 2007 (see Table 2-2 for iOS releases). 
It was based on Mac OS X and shared most of its fundamental architecture with its older sibling. It 
featured, however, a new and innovative user interface provided by the Cocoa Touch API (sharing many 
traits and parts with the original Cocoa), which was specifically designed for the iPhone’s capacitive 
touch screen. In addition to Cocoa Touch, iOS had a number of other programming APIs, like the 
Accelerate framework, which provided math and other related functions, optimized for the iOS 
hardware. The External Accessory Framework allows iOS devices to communicate with third-party 
hardware devices via Bluetooth or the inbuilt 30-pin connector. 

Table 2-2. iOS Releases 

Version Device Released 

iPhone OS 1.0 iPhone, iPod Touch (1.1) June 2007 

iPhone OS 2.0 iPhone 3G July 2008 

iPhone OS 3.0 iPhone 3GS, iPad (3.2) June 2009 

iOS 4.0 iPhone 4 June 2010 

iOS 5.0 iPhone 4S October 2011 

 
At its launch, iPhone OS was not able to run native third party applications, but it could run web 

applications tailored to the iPhone, which could be added to the iPhone’s home screen. An SDK for the 
iPhone was later announced at the beginning of 2008, which allowed development of third party 
applications. Unlike most computer platforms, however, Apple requires all iPhone applications to be 
submitted and pre-approved, and thus digitally signed, before a customer can install it through the App 
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Store. While many criticized the approach (and still do), it allowed Apple to weed out poorly written, 
slow, and malicious software, thereby improving the overall user experience, and ultimately the 
popularity of the platform. Unofficially, it has been possible to “Jailbreak” iOS and gain access to the 
underlying Unix and kernel environment, but this voids the warranty. Due to concerns about battery life, 
the iPhone was not able to properly multitask third-party applications until the release of iOS 4.0. iOS 
now supports the iPhone, iPod Touch, and iPad, and also runs on the latest generation of Apple TVs, 
which were previously based on OS X, running on Intel x86 CPUs. Apple does not support third party 
applications on the Apple TV at this time. 

The XNU Kernel 
The XNU kernel is large and complex, and a full architectural description is beyond the scope of this 
book (there are other books that fill this need), but we will, in the following sections, outline some of the 
major components that make up XNU and offer a brief description of their responsibilities and mode of 
operation. In most cases when programming for the kernel you will be writing extensions rather than 
modifying the core kernel itself (unless you happen to be an Apple Engineer or contributor to Darwin), 
but it is useful to have a basic understanding of the kernel as a whole, as it will give a better 
understanding of how a kernel extension fit within the bigger picture. Subsequent chapters will focus on 
some of the more important programming frameworks that the kernel provides such as I/O Kit. 

The XNU kernel is the core of Mac OS X and iOS. XNU has a layered architecture consisting of three 
major components. The inner ring of the kernel is referred to as the Mach layer, derived from the Mach 
3.0 kernel developed at Carnegie Mellon University. References to Mach throughout the book will refer 
to Mach as it is implemented in OS X and iOS and not the original project. Mach was developed as a 
microkernel, a thin layer providing only fundamental services, such as processor management and 
scheduling, as well as IPC (inter-process communication), which is a core concept of the Mach kernel. 
Because of the layered architecture, there are minimal differences between the iOS and Mac OS X 
versions of XNU.  

While the Mach layer in XNU has the same responsibilities as in the original project, other operating 
system services, such as file systems and networking, run in the same memory space as Mach. Apple 
cites performance as the key reason for doing this, as switching between address spaces (context 
switching) is an expensive operation. 

Because the Mach layer is still, to some degree, an isolated component, many refer to XNU as a 
hybrid kernel, as opposed to a microkernel or a monolithic kernel, where all OS services run in the same 
context. Figure 2-3 shows a simplified view of XNU’s architecture. 
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Figure 2-3. The XNU kernel architecture 

The second major component of XNU is the BSD layer, which can be thought of as an outer ring 
around the Mach layer. BSD again provides a programming interface to end-user applications. 
Responsibilities include process management, file systems, and networking. 

The last major component is the I/O Kit, which provides an object-oriented framework for device 
drivers. 

While it would be nice if each layer had clear responsibilities, reality is somewhat more complicated 
and the lines between each layer are blurred, as many OS services and tasks span the borders of multiple 
components. 

■ Tip  You can download the full source code for XNU at Apple’s open source website: 
http://www.opensource.apple.com.  

Kernel Extensions (KEXTs) 
The XNU kernel, like most, if not all, modern operating systems, supports dynamically loading code into 
the kernel’s address space at runtime. This allows extra functionality, such as drivers, to be loaded and 
unloaded while the kernel is running. A main focus of this book will be the development of such kernel 
extensions, with a particular focus on drivers, as this is the most common reason to implement a kernel 
extension. There are two principal classes of kernel extensions. The first class is for I/O Kit-based kernel 
extensions, which are used for hardware drivers. These extensions are written in C++. The second class is 
for generic kernel extensions, which are typically written in C (though C++ is possible here, too). These 
extensions can implement anything from new network protocols to file systems. Generic kernel 
extensions usually interface with the BSD or Mach layers. 
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Mach 
The Mach layer can be seen as the core of the kernel, a provider of lower-level services to higher-level 
components like the BSD layer and I/O Kit. It is responsible for hardware abstraction, hiding the 
differences between the PowerPC architecture and the Intel x86 and x86-64 architectures. This includes 
details for handling traps and interrupts, as well as managing memory, including virtual memory and 
paging. This design allows the kernel to be easily adapted to new hardware architectures, as proven with 
Apple’s move to Intel x86, and later to ARM for iOS. In addition to hardware abstraction, Mach is 
responsible for the scheduling of threads. It supports symmetric multiprocessing (SMP), which refers to 
the ability to schedule processes between multiple CPUs or CPU cores. In fact, the difficulty of 
implementing proper SMP support in the existing BSD Unix kernel was instrumental in the development 
of Mach. 

Interprocess communication (IPC) is the core tenet of Mach’s design. IPC in Mach is implemented 
as a client/server system. A task (the client) is able to request services from another task (the server). The 
endpoints in this system are known as ports. A port has associated rights, which determine if a client has 
access to a particular service. This IPC mechanism is used internally throughout the XNU kernel. The 
following sections will outline the key abstractions and services provided by the Mach layer. 

■ Tip  Mach API documentation can be found in the osfmk/man directory of the XNU source package. 

Tasks and Threads  
A task is a group consisting of zero or more executable threads that share resources and memory address 
space. A task needs at least one thread to be executed. A Mach task maps one to one to a Unix (BSD 
layer) process. The XNU kernel is also a task (known as the kernel_task) consisting of multiple threads. 
Task resources are private and cannot normally be accessed by the threads of another task. 

Unlike a task, a thread is an executable entity that can be scheduled and run by the CPU. A thread 
shares resources, such as open files or network sockets, with other threads in the same task. Threads of 
the same task can execute on different CPUs concurrently. A thread has its own state, which includes a 
copy of the processor state (registers and instruction counter) and its own stack. The state of a thread is 
restored when it is scheduled to run on a CPU. Mach supports preemptive multitasking, which means 
that a thread’s execution can be interrupted before its allocated time slice (10ms in XNU) is up. 
Preemption happens under a variety of circumstances, such as when a high priority OS event occurs, 
when a higher priority thread needs to run, or when waiting for long I/O operations to complete. A 
thread can also voluntarily preempt itself by going to sleep. A Mach thread is scheduled independently 
from other threads, regardless of the task to which it belongs. The scheduler is also unaware of process 
parent-child relationships traditional in Unix systems (the BSD layer, however, is aware). 

Scheduling 
The scheduler is responsible for coordinating the access of threads to the CPU. Most modern kernels, 
including XNU, use a timesharing scheduler, where each thread is allocated a finite (10ms in XNU, as 
we’ve seen) time quantum in which the thread is allowed to execute. Upon expiration of the thread’s 
quantum, it is put to sleep so that other threads can run. While it may seem reasonable and fair that each 
thread gets to run for an equal amount of time, this is impractical, as some threads have a greater need 
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for low latencies, for example to perform audio and video playback. The XNU scheduler employs a 
priority-based algorithm to schedule threads. Table 2-3 shows the priority levels used by the scheduler. 

Table 2-3. Scheduler Priority Levels 

Priority Level Description 

Normal 0–51 Normal applications. The default priority for a regular 
application thread is 31. Zero is the idle priority. 

High Priority 52–79 High priority threads. 

Kernel Mode 80–95 Range is reserved for high priority kernel threads, for 
example those used by a device driver. 

Real-time 96–127 Real-time threads (user space threads can run in real-
time). 

 
The kernel organizes threads in doubly-linked lists. This collection of lists is known as the run 

queue. There is one list per priority level (currently 0–127). Each processor (core) in the system maintains 
its own run queue structure (osfmk/kern/sched.h): 

  struct run_queue { 
        int                         highq;                  /* highest runnable queue */ 
        int                         bitmap[NRQBM];          /* run queue bitmap array */ 
        int                         count;                  /* # of threads total */ 
        int                         urgency;                /* level of preemption urgency */ 
        queue_head_t                queues[NRQS];           /* one for each priority */ 
  }; 

A regular application thread starts with a priority of 31. Its priority may decrease over time, as a side 
effect of the scheduling algorithm. This will happen, for example, if a thread is highly compute intensive. 
By lowering the priority of such threads, it will improve the scheduling latency of I/O bound threads, 
which spend most of their time sleeping in-between issuing I/O requests, thus usually going back to 
sleep before their quantum expires, and thus allowing compute intensive threads access to the CPU 
again. The end result is improved system responsiveness. 

To avoid getting into a situation where the thread’s priority will be too low for it to run, the Mach 
scheduler will decay a thread’s processor usage accounting over time, eventually resetting it, and thus a 
thread’s priority will fluctuate over time. 

The Mach scheduler provides support for real-time threads, although it does not provide 
guaranteed latency; however, every effort is made to ensure it will run for the required amount of clock 
cycles. A real-time thread may be downgraded to normal priority if it does not block/sleep frequently 
enough, for example if it is highly compute bound. 

Mach IPC: Ports and Messages 
A port is a unidirectional communications endpoint, which represents a resource referred to as an 
object. If you are familiar with TCP/IP networking, many parallels can be drawn between Mach’s IPC 
and the UDP protocol, though unlike the UDP protocol, Mach IPC is used for more than just data 
transfers. It can be used to provide synchronization, or to send notifications between tasks. An IPC client 
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can send messages to a port. The owner of the port receives the messages. For bidirectional 
communication, two ports are needed. A port is implemented as a message queue (though other 
mechanisms exist). Messages for the port are queued until a thread is available to service them. A port 
can receive messages from multiple senders, but there can be only one receiver per port.  

Ports have protection mechanisms known as port rights. A task must have the proper permissions in 
order to interact with a port. Port rights are associated with a task; therefore, all threads in a task share 
the same privileges to a port. The following are examples of port rights: send, send once, and receive. 
The rights can be copied or moved between tasks. Unlike Unix permissions, port rights are not inherited 
from parent to child processes (Mach tasks do not have this concept). Table 2-4 shows the available port 
right types. 

Table 2-4. Port Right Types (from mach/port.h) 

Port Right Type Description 

MACH_PORT_RIGHT_SEND The holder of the right has permission to send messages to a 
port. 

MACH_PORT_RIGHT_RECIEVE The holder has the right to receive messages from a port. 
Receive rights provide automatic send rights.  

MACH_PORT_RIGHT_SEND_ONCE Same as send rights, but only valid for one message. 

MACH_PORT_RIGHT_PORT_SET Receive (and send) rights to a group of ports. 

MACH_PORT_RIGHT_DEAD_NAME Denotes rights that have become invalid or been destroyed, 
such as after messaging a port with send once rights.  

 
A group of ports are collectively known as a port set. The message queue is shared between all ports 

in a set. A 32-bit integer number addresses ports in the system. There is no global register or namespace 
for ports.  

The Mach IPC system is also available in user space programs and can be used to pass messages 
between tasks or from a task to the kernel. It offers an alternative to system calls, though the mechanism 
uses system calls under the hood.  

Mach Exceptions 
Exceptions are interrupts sent by a CPU when certain (exceptional) events or conditions occur during 
the execution of a thread. An exception will result in the interruption of a thread’s execution, while the 
OS (Mach) processes the exception. The task may resume afterwards, depending on the type of 
exception that occurred. Common causes for exceptions include access to invalid or non-existing 
memory, execution of an invalid processor instruction, passing invalid arguments, or division by zero. 
These exceptions usually result in the termination of the offending task, but there are also a number of 
non-erroneous exceptions that can occur. 

A system call is one such exception. A user space application may issue a system call exception 
when it needs to perform a low-level operation involving the kernel, such as writing from a file, or 
receiving data on a network socket. When the OS handles the system call, it inspects a register for the 
system call number, which is then used to look up the handler for that call, for example read() or recv(). 
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A task may also generate an exception if attempting to access paged out memory. In this case, a page 
fault exception is generated, which will be handled by retrieving the missing page from the backing 
store, or result in an invalid memory access. A task may also issue deliberate exceptions with the 
EXC_BREAKPOINT exception, which are typically used in debugging or tracing applications, such as Xcode, 
to temporarily halt the execution of a thread. 

It is possible, of course, for the kernel itself to misbehave and cause exceptions. In this case, the OS 
will be halted and the grey screen of death will be shown (unless the kernel debugger is activated), 
informing the user to reboot the computer. Table 2-5 shows a subset of defined Mach exceptions. 

Table 2-5. Common Mach Exception Types 

Exception Type Description 

EXC_BAD_ACCESS Invalid memory access. 

EXC_BAD_INSTRUCTION The thread attempted to access an illegal/invalid instruction or 
gave an invalid parameter (operand) to the instruction. 

EXC_ARITMETHIC Issued on division by zero or integer overflow/underflow.  

EXC_SYSCALL and 
EXC_MACH_SYSCALL 

Issued by an application to access kernel services such as file I/O or 
network access. 

… Other Mach exceptions are defined in mach/exception_types.h. 
Processor dependent exceptions are defined in mach/(i386,ppc, 
…)/exception.h. 

 
When an exception occurs, the kernel will suspend the thread which caused the exception, and send 

an IPC message to the thread’s exception port. If the thread does not handle the exception, it’s 
forwarded to the containing task’s exception port, and finally to the system’s (host) exception port. The 
following structure encapsulates a thread, task, or processor’s (host) exception ports: 

struct exception_action { 
        struct ipc_port*               port;               /* exception port */ 
        thread_state_flavor_t          flavor;             /* state flavor to send */ 
        exception_behavior_t           behavior;           /* exception type to raise */ 
        boolean_t                      privileged;         /* survives ipc_task_reset */ 
}; 

Each thread, task, and host has an array of the structure exception_action, which specifies 
exception behavior, one structure is defiend for each exception type (as defined in Table 2-5). The flavor 
and behavior fields specify the type of information that should be sent with the exception message, such 
as the state of general purpose, or other specialized CPU registers, and the handler, which should be 
executed. The handler will be either catch_mach_exception_raise(), 
catch_mach_exception_raise_state() or catch_mach_exception_raise_state_identity(). When an 
exception has been dispatched, the kernel waits for a reply in order to determine the course of action. A 
return of KERN_SUCCESS means the exception was handled, and the thread will be allowed to resume. 

A thread’s exception port defaults to PORT_NULL, unless a port is explicitly allocated, exceptions will 
be handled by task’s exception port instead. When a process issues the fork() system call to spawn a 

www.allitebooks.com

http://www.allitebooks.org


CHAPTER 2  MAC OS X AND IOS 

27 

child process, the child will inherit exception ports from the parent task. The Unix signaling mechanism 
is implemented on top of the Mach’s exception system. 

Time Management 
Proper timekeeping is a vital responsibility of any OS, not only to serve user applications, but also to 
serve other important kernel functions such as scheduling processes. In Mach, the abstraction for time 
management is known as a clock. A clock object in Mach represents time in nanoseconds as a 
monotonically increasing value. There are three main clocks defined: the real-time clock, the calendar 
clock, and the high-resolution clock. The real-time clock keeps the time since the last boot, while the 
calendar clock is typically battery backed, so its value is persistent across system reboots, or in periods 
when the computer is powered off. It has a resolution of seconds and as the name implies, it is used to 
keep track of the current time. The Mach time KPI consists of three functions: 

void clock_get_uptime(uint64_t* result); 
void clock_get_system_nanotime(uint32_t* secs, uint32_t* nanosecs); 
void clock_get_calendar_nanotime(uint32_t* secs, uint32_t* nanosecs); 

The calendar clock is typically only used by applications, as the kernel itself rarely needs to concern 
itself with the current time or date, and doing so, in fact, is considered poor design. The kernel uses the 
relative time provided by the real-time clock. The time from the real-time clock typically comes from a 
circuit on the computer’s motherboard that contains an oscillating crystal. The real-time clock circuit 
(RTC) is programmable, and wired to the CPUs’ (every CPU/core) interrupt pins. The RTC gets 
programmed in XNU with a deadline of 100 Hz (using clock_set_timer_deadline()). 

Memory Management 
The Mach layer is responsible for coordinating the use of physical memory in a machine independent 
manner, providing a consistent interface to higher-level components. The virtual memory subsystem of 
Mach, the Mach VM, provides protected memory and facilities to applications, and the kernel itself, for 
allocating, sharing, and mapping memory. A solid understanding of memory management is essential to 
a successful kernel programmer. 

Task Address Space 
Each Mach task has its own virtual address (VM) space. For a 32-bit task, the address space is 4 GB, while 
for a 64-bit task it is substantially larger, with 51-bits (approximately 2 petabytes) of usable address 
space. Specialized applications, such as video editing or effects software, often exceed the 32-bit address 
space. Support for 64-bit virtual address space became available in OS X 10.4. 

■ Note  While 32-bit applications are limited to a 4 GB address space, this does not correlate with the amount of 
physical memory that can be used in a system. Technologies such as Physical Address Extensions (PAE) are 
supported by OS X and allow 32-bit x86 processors (or 64-bit processors running in 32-bit mode) to address up to 
36-bits (64 GB) of physical memory; however, a task’s address space remains limited to 4 GB. 
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A task’s address space is fundamental to the concept of protected memory. A task is not allowed to 
access the address space, and thus the underlying physical memory containing the data of another task, 
unless explicitly allowed to do so, through the use of shared memory or other mechanisms. 

KERNEL ADDRESS SPACE MANAGEMENT 

The kernel itself has its own task, the kernel_task, which has its own seperate address space. Let’s 
assume a 32-bit OS such as iOS. Some Unix-based operating systems, including Linux, have a design 
where the kernel’s address space is mapped into each task’s address space. The kernel has 1GB of 
address space available, while a task has 3GB available. When a task context switches into kernel space, 
the MMU (memory management unit) can avoid reconfiguring the translation lookaside buffer (TLB) with a 
new address space, as the kernel is already at a known location, thus speeding up the otherwise 
expensive context switch. The drawback, of course, is the limited amount of address space available for 
the kernel, as well as having only 3GB available for the task. In XNU, the kernel runs in its own virtual 
address space, which is not shared with user tasks, leaving 4GB for the kernel and 4GB for the user task. 

VM Maps and Entries 
The virtual memory (VM) map is the actual representation of a task’s address space. Each task has its 
own VM map. The map is represented by the structure vm_map. There is no map associated with a thread 
as they share the VM map of the task that owns them. 

A VM map represents a doubly-linked list of memory regions that is mapped into the process 
address space. Each region is a virtually contiguous range of memory addresses (not necessarily backed 
by contiguous physical memory) described by a start and end address, as well as other meta-data, such 
as protection flags, which can be any combination of read, write, and execute. The regions are 
represented by the vm_map_entry structure. A VM map entry may be merged with another adjacent entry 
when more memory is allocated before or after an existing entry or split into smaller regions. Splitting 
will occur if the protection flags are modified for a range of addresses described by an entry, as 
protection flags can only be set on VM map entries. Figure 2-4 shows a VM map with two VM map 
entries. 
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Figure 2-4. Relationship between VM subsystem structures 

■ Tip  The relevant structures pertaining to task address spaces are defined in mach/vm_map.h and 
mach/vm_region.h in the XNU source package. 

The Physical Map 
Each VM map has an associated physical map, or pmap structure. This structure helps hold information 
on virtual to physical memory mappings being used by the task. The portion of the Mach VM that deals 
with physical mappings is machine dependent, as it interacts with the memory management unit 
(MMU), a specialized hardware component of the system that takes care of address translation. 

VM Objects 
A VM map entry can point to either a VM object or a VM submap. A submap is a container for other (VM 
map) mappings. A submap is used to share memory between addresses spaces. The VM object is a 
representation of the location, or rather how the described memory is accessed. Memory pages 
underlying the object may not be present in physical memory, but could be located on an external 
backing store (a hard drive on OS X). In this case, the VM object will have information on how to page in 
the external pages. Transfer to or from a backing store is handled by the pager discussed next. 

A VM object describes memory in units of pages. A page in XNU is currently 4096 bytes. A virtual 
page is described by the vm_page structure. A VM object may contain many pages, but a page is only ever 
associated with one VM object. 
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PAGES 

A page is the smallest unit of the virtual memory system. On Mac OS X and iOS, as well as many other 
operating systems, the size of a page is 4096 bytes (4KB). The page size is determined by the processor, 
as the processor, or rather its memory management unit (MMU), is responsible for virtual to physical 
mappings and manages the VM page table cache, also called a TLB. The page size of many architectures 
can be set by the operating system, and can be, for architectures such as the x86, up to 4 MB, or even a 
mixture between more than one page size. The operating system maintains a data structure called the 
page table, which contains one struct vm_page for each page-sized block of physical memory. The 
structure contains metadata, such as whether the page is in use. 

 
When memory needs to be shared between tasks, a VM map entry will point into the foreign address 

space via a submap, as opposed to a VM object. This commonly happens when a shared library is used. 
The shared library gets mapped into the task’s address space.  

Let’s consider another example. When a Unix process issues the fork() system call to create a child 
process, a new process will be created as a copy of the parent. To avoid having to copy the memory from 
the parent to the child, an optimization known as copy-on-write (COW) is employed. Read access to a 
child’s memory will simply reference the same pages as the parent. If the child process modifies its 
memory, the page describing that memory will be copied, and a shadow VM object will be created. On 
the next read to that memory region, a check is performed to see if the shadow object has a copy of the 
page, and if not the original shared page is referenced. The previously described behavior is only true 
when the inheritance property of the original VM map entry from the parent is set to copy. Other 
possible values are shared, in which case the child will continue both the read and write operation to the 
original memory location. If the setting is none, the memory pages referenced by the map entry will not 
be mapped into the child’s address space. The fourth possible value is copy and delete, where the 
memory will be copied to the child and deleted from the parent. 

■ Note  Copy-on-write is also used by Mach IPC to optimize the transfer of data between tasks. 

Examining a Task’s Address Space 
The vmmap command line utility allows you to inspect a process virtual memory map and its VM map 
entries. It clearly illustrates how memory regions are mapped into a task’s VM address space. The vmmap 
command takes a process identifier (PID) as an argument. The following shows the output of vmmap 
executed with the PID of a simple Hello World C application (a.out), which prints a message and then 
goes to sleep: 

==== Non-writable regions for process 46874 
__PAGEZERO           00000000-00001000   [     4K] ---/--- SM=NUL  /Users/ole/a.out 
__TEXT               00001000-00002000   [     4K] r-x/rwx SM=COW  /Users/ole/a.out 
__LINKEDIT           00003000-00004000   [     4K] r--/rwx SM=COW  /Users/ole/a.out 
MALLOC guard page    00004000-00005000   [     4K] ---/rwx SM=NUL   
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MALLOC metadata     00021000-00022000   [     4K] r--/rwx SM=PRV   
__TEXT              8fe00000-8fe42000   [   264K] r-x/rwx SM=COW  /usr/lib/dyld 
__LINKEDIT          8fe70000-8fe84000   [    80K] r--/rwx SM=COW  /usr/lib/dyld 
__TEXT              9703b000-971e3000   [  1696K] r-x/r-x SM=COW  /usr/lib/libSystem.B.dylib 
STACK GUARD         bc000000-bf800000   [  56.0M] ---/rwx SM=NUL  stack guard for thread 0 
==== Writable regions for process 46874 
__DATA              00002000-00003000   [     4K] rw-/rwx SM=PRV  /Users/ole/a.out 
MALLOC metadata     00015000-00020000   [    44K] rw-/rwx SM=PRV   
MALLOC_TINY         00100000-00200000   [  1024K] rw-/rwx SM=PRV  DefaultMallocZone_0x5000 
MALLOC_SMALL        00800000-01000000   [  8192K] rw-/rwx SM=PRV  DefaultMallocZone_0x5000 
__DATA              8fe42000-8fe6f000   [   180K] rw-/rwx SM=PRV  /usr/lib/dyld 
__IMPORT            8fe6f000-8fe70000   [     4K] rwx/rwx SM=COW  /usr/lib/dyld 
shared pmap         a0800000-a093a000   [  1256K] rw-/rwx SM=COW   
__DATA              a093a000-a0952000   [    96K] rw-/rwx SM=COW  /usr/lib/libSystem.B.dylib 
shared pmap         a0952000-a0a00000   [   696K] rw-/rwx SM=COW   
Stack               bf800000-bffff000   [  8188K] rw-/rwx SM=ZER  thread 0 
Stack               bffff000-c0000000   [     4K] rw-/rwx SM=COW  thread 0 

The result has been trimmed for readability. The output is divided between non-writable regions 
and writable regions. The former, as you can see, includes the page zero mapping, which is read-only 
and will generate an exception if an application tries to write to memory addresses 0-4096 (4096 decimal 
= 0x1000 hex). This is why your application will crash if you try to dereference a null-pointer. The next 
map entry is the text segment of the application, which contains the executable code of the application. 
You will see that the text segment is marked as having a share mode (SM) of COW, which means that if 
this process spawns a child, it will inherit this mapping from the parent, thus avoiding a copy until pages 
in that segment are modified. 

In addition to the text segment for the a.out program itself, you will also see a mapping for 
libSystem.B.dylib. On Mac OS X and iOS, libSystem implements the standard C Library and the POSIX 
thread API, as well as other system APIs. The a.out process inherited the mapping for libSystem from its 
parent process /sbin/launchd, the parent of all user space processes. This ensures the library is only 
loaded once, saving memory and improving the launch speed of applications, as fetching a library from 
secondary storage, such as a hard drive, is usually slow. 

In the writable regions you can see the data segment of a.out and libSystem. These segments 
contain variables defined by the program/library. Obviously, these can be modified, so each process 
needs a copy of the data segment for a shared library, however it is COW, so no overhead is necessary 
until a process makes modifications to the mapping.  

■ Tip  If you want to inspect the virtual memory map of a system process, such as launchd, you need to run 
vmmap with sudo, as by default your user will only be able to inspect its own processes. 

Pagers 
Virtual memory allows a process to have a virtual address space larger than the available physical 
memory, and it is possible for tasks running on the system to be combined, consuming more than the 
available amount of memory. The mechanism that makes this possible is known as a pager. The pager 
controls the transfer of memory pages to and from the system memory (RAM), to a secondary backing 
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store, usually a hard drive. When a task that has high memory requirements needs to run, the pager can 
temporarily transfer (page out) memory pages belonging to inactive tasks to the backing store, thereby 
freeing up enough memory to allow the demanding task to execute. Similarly, if a process is found to be 
largely idle, the system can opt to page out the task’s memory to free memory for current or future tasks. 
When an application runs, and it tries to access memory that has been paged out, an exception known as 
a page fault will occur, which is also the exception that occurs if a task tries to access an invalid memory 
address. When the page fault occurs, the kernel will attempt to transfer back (page in) the page 
corresponding to the memory address, and if the page cannot be transferred back, it will be treated as an 
invalid memory access, and the task will be aborted. The XNU kernel supports three different pagers: 

• Default Pager: Performs traditional paging and transfers between the main 
memory and a swap file on the system hard drive (/var/vm/swapfile*). 

• Vnode Pager: Ties in with the Unified Buffer Cache (UBC) used by file systems and 
is used to cache files in memory. 

• Device Pager: Used for managing memory mappings of hardware devices, such as 
PCI devices that map registers into memory. Mapped memory is commonly used 
by I/O Kit drivers, and I/O Kit provides abstractions for working with such 
memory. 

Which pager is in use is more or less transparent to higher-level parts, such as the VM object. Each 
VM object has an associated memory object, which provides (via ports) an interface to the current pager. 

Memory Allocation in Mach 
Some fundamental routines for memory allocation in Mach are:  

kern_return_t kmem_alloc(vm_map_t map, vm_offset_t *addrp, vm_size_t  size); 
kern_return_t kmem_alloc_contig(vm_map_t map, vm_offset_t *addrp,  
                                vm_size_t size, vm_offset_t mask, int flags); 
void kmem_free(vm_map_t map, vm_offset_t addr, vm_size_t size); 

kmem_alloc() provides the main interface to obtaining memory in Mach. In order to allocate 
memory, you must provide a VM map. For most work within the kernel, kernel_map is defined and points 
to the VM map of kernel_task. The second variant, kmem_alloc_contig(), attempts to allocate memory 
that is physically contiguous, as opposed to the former, which allocates virtually contiguous memory. 
Apple recommends against making this type of allocation, as there is a significant penalty incurred in 
searching for free contiguous blocks. Mach also provides kmem_alloc_aligned() function, which 
allocates memory aligned to a power of two, as well as a few other variants that are less commonly used. 
The kmem_free() function is provided to free allocated memory. You have to take care to pass the same 
VM map as you used when you allocated, as well as the size of the original allocation. 

The BSD Layer 
Unlike Mach, which only provides a few fundamental services, the BSD layer sits between Mach and the 
user applications and implements many core OS functions, building on the services provided by Mach. 
In OS X and iOS, the BSD layer is running with the processor in privileged mode and not as a user task, as 
originally intended by the Mach project. The layer therefore does not have memory protection, and runs 
in the same address space as Mach and I/O Kit. The BSD layer refers to a portion of the kernel derived 
from the FreeBSD 5 operating system, and it is not a complete system in itself, but rather a portion of 
code originating from it. 

www.allitebooks.com

http://www.allitebooks.org


CHAPTER 2  MAC OS X AND IOS 

33 

The BSD layer provides services such as process management, system calls, file systems, and 
networking. Table 2-6 shows a brief overview of the services provided by the BSD layer. 

Table 2-6. BSD Layer Services Overview 

Service Description 

Process and User Management Provides support for user (uid), group (gid), and process (pid) ids, as 
well as process creation (fork) and the Unix security model. POSIX 
threads and synchronization. Shared library support, signal 
handling. 

File Management Files, pipes, sockets, and POSIX IPC. The VFS, as well as the HFS, 
HFS+, ISO, and NFS file systems. Asynchronous I/O. 

Security Security auditing and cryptographic algorithms, such as AES, 
Blowfish, DES, MD5, and SHA-1. 

Memory Management The vnode file-based pager. Facilities for memory allocation. Unified 
Buffer Cache (UBC). 

Drivers Various drivers, including the console and other character device 
drivers such as /dev/null, /dev/zero, /dev/random, and RAM disk 
driver (/dev/md*). 

Networking TCP/IP 4&6, DHCP, ICMP, ARP, Ethernet, Routing and Firewall, 
Packet filters (BPF), and BSD sockets. Low-level network drivers are 
found in I/O Kit. 

System Calls Provides an API for granting user space applications access to 
basic/low-level kernel services such as file and process management. 

 
The BSD layer provides abstractions on top of the services provided by Mach. For example, its 

process management and memory management is implemented on top of Mach services. 

System Calls 
When an application needs services from the file system, or wishes to access the network, it needs to 
issue a system call to the kernel. The BSD layer implements all system calls. When a system call handler 
executes, the kernel context switches from user mode to kernel mode to service a request by the 
application, such as to read a file. This API is referred to as the syscall API, and it is the traditional Unix 
API for calling functions in the kernel from user space. There are hundreds of system calls available, 
ranging from calls related to process control, such as fork() and execve(), or file management calls, 
such as open(), close(), read(), and write(). 

The BSD layer also provides ioctl() function (itself a system call), which is short for I/O control, 
and this is typically used to send commands to device drivers. The sysctl() function is provided to set or 
get a variety of kernel parameters, including but not limited to the scheduler, memory, and networking 
subsystems. 
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■ Tip  Available system calls are defined in /usr/include/sys/syscall.h. 

Mach traps are mechanisms similar to system calls, used for crossing the kernel/user space 
boundary. Unlike system calls that provide direct services to an application, the Mach traps are used to 
carry IPC messages from a user space client to a kernel server.  

Networking 
Networking is a major subsystem of the BSD portion of XNU. BSD handles most aspects of networking, 
such as the details of socket communication and the implementation of protocols like TCP/IP, except for 
low-level communication with actual hardware devices, which is typically handled by an I/O Kit driver. 
The I/O Kit network driver will interface with the network stack that is responsible for handling received 
buffers from the networking device, inspect them, and ensure they make their way down to the initiator, 
for example your web browser. Similarly, the BSD networking stack will accept outgoing data from an 
application, format the data in a packet, then route or dispatch it to the appropriate network interface. 
BSD also implements the IPFW firewall, which will filter packets to/from the computer according to 
policy set by the system administrator. 

The BSD networking layer supports a wide range of network and transport layer protocols, including 
IPv4 and IPv6, TCP, and UDP. At the higher level we find support for BOOTP, DHCP, and ICMP, among 
others. Other networking-related functions include routing, bridging, and Network Address Translation 
(NAT), as well as device level packet filtering with Berkeley Packet Filter (BPF). 

NETWORK KERNEL EXTENSIONS (NKE) 

The Network Kernel Extensions KPI (kernel programming interface) is a mechanism that allows various parts of 
the networking stack to be extended. NKEs allow new protocols to be defined, and for hooks or filters to be 
inserted at various levels in the networking stack. For example, it would be possible to create a filter that 
intercepted TCP connections to a certain address by a certain application or user. It is also possible to 
temporarily block network packets, or modify them before transmission to a higher/lower level. NKEs originate 
from Apple and are not part of the traditional BSD networking stack, but, due to their nature, they are now 
intimately tied to it. NKEs are discussed in Chapter 13. 

File Systems 
The kernel has inbuilt support for a range of different file systems, as shown in Table 2-7. The primary 
file system used by Mac OS X and iOS is HFS+. It was developed as a replacement for the Mac OS file 
system HFS. 
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Table 2-7. File Systems Support by XNU 

Name Description 

HFS+ The standard file system used by Mac OS X and iOS 

HFS Legacy Mac OS file system 

UFS The BSD Unix file system  

NFS Networked File System 

ISO 9660 and UDF Standard file systems used by CDs and DVDs 

SMB Server Message Block, a networked file system used to connect with 
Microsoft Windows computers 

AFP Apple Filing Protocol 

 
HFS+ gained support for journaling in Mac OS X 10.2.2. Journaling improves the reliability of a file 

system by recording transactions in a journal prior to carrying them out. This makes the file system 
resilient to events such as a power failure or a crash of the kernel, as the data can be replayed after 
reboot in order to bring the file system to a consistent state. 

HFS+ supports very large files, up to 8 EiB in size (1 Exbibyte = 260 bytes), which is also the maximum 
possible volume size. The file system has full support for Unicode characters in file names and is case 
insensitive by default. Support for both Unix style file permissions and access control lists (ACLs) exists. 

The Virtual File System 
The virtual file system, or VFS, provides an abstraction over specific file systems, such as HFS+ and AFP, 
and makes it possible for applications to access them using a single consistent interface. The VFS allows 
support for new file systems to be easily added as kernel extensions through the VFS Kernel 
Programming Interface (KPI), without the OS as a whole knowing anything about its implementation. 
The fundamental data structure of the VFS is the vnode. The vnode is how both a file and a directory are 
represented in the kernel. A vnode structure exists for every file active in the kernel.  

Unified Buffer Cache 
The Unified Buffer Cache (UBC) is a cache for files. When a file is written to, or read from, it will be 
loaded into physical memory from a backing store, such as a hard drive. The UBC is intimately linked 
with the VM subsystem and the UBC also caches VM objects. The structure used to cache a vnode is 
shown in Listing 2-1. 
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Listing 2-1. The ubc_info Structure 

struct ubc_info { 
      memory_object_t             ui_pager;       /* pager */ 
      memory_object_control_t     ui_control;     /* VM control for the pager */ 
      uint32_t                    ui_flags;       /* flags */ 
      vnode_t                     ui_vnode;       /* vnode for this ubc_info */ 
      kauth_cred_t                ui_ucred;       /* holds credentials for NFS paging */ 
      off_t                       ui_size;        /* file size for the vnode */ 
    
      struct  cl_readahead*       cl_rahead;      /* cluster read ahead context */ 
      struct  cl_writebehind*     cl_wbehind;     /* cluster write behind context */ 
    
      struct  cs_blob*            cs_blobs;       /* for CODE SIGNING */ 
}; 

Prior to the introduction of the UBC, the system had two caches, a page cache and a buffer cache. 
The buffer cache was indexed by a device and block number that addressed a chunk of data on the 
physical device, whereas the page cache performed caching of memory mappings.  

The size of the UBC shrinks and grows dynamically depending on the needs of the system. If a file in 
the cache is modified, it is marked as dirty, to indicate that the cached copy differs from the original 
found on disk. Dirty entries are periodically flushed to disk. It is possible for a user space program to 
bypass UBC, and go directly to disk, by using the F_NOCACHE option of the fcntl system call, which may 
improve I/O performance for workloads that do not benefit from such caching, such as large sets of data 
that are unlikely to be reused. 

The I/O Kit 
The last major component that makes up XNU is the I/O Kit, which is an object-oriented framework for 
writing device drivers and other kernel extensions. It provides an abstraction of system hardware, with 
pre-defined base classes for many types of hardware, making it simple to implement a new driver, as it is 
able to inherit much of its functionality from a base class driver, achieving a high degree of code reuse. 
The I/O Kit framework consists of the kernel level framework, as well as a user space framework called 
IOKit.framework. The kernel framework is written in Embedded C++, a subset of C++, whereas the user 
space framework is C-based.  

The I/O Kit maintains a database known as the I/O Catalog. The I/O Catalog is a registry of all 
available I/O Kit classes. Another database, the I/O Registry tracks object instances of classes in the I/O 
Catalog. Objects in the I/O Registry typically represent devices, drivers, or supporting classes, and are 
structured in a hierarchical manner, which mimics the way hardware devices are physically connected 
to each other. For example a USB device is a child of the USB controller it is connected to. The ioreg 
command line utility allows you to inspect the I/O Registry. 

The I/O Kit is based around three major concepts: 

• Families 

• Drivers 

• Nubs 

Families represent common abstractions for devices of a particular type. For example, an 
IOUSBFamily handles many of the technicalities of implementing support for USB related devices. 
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Drivers are responsible for managing a specific device or bus. A driver may have a relationship with 
more than one family. In the case of a USB-based storage device, it might depend on the IOUSBFamily, as 
well as the IOStorageFamily. Nubs are interfaces for a controllable entity, such as a PCI or USB device, 
which a higher-level driver may use to communicate with the device. 

As a kernel programmer, you will probably spend most of your time working with the I/O Kit, and 
thus much of this book will be devoted to it, and a full description of I/O Kit is provided in Chapter 4. 

The Libkern Library 
The libkern library, unlike Mach and BSD, which provide APIs for interacting with the system, provides 
supporting routines and classes to the rest of the kernel, and in particular the I/O Kit. That is, building 
blocks and utilities useful to the kernel itself, as well as extensions. The limited C++ runtime is 
implemented in libkern, which provides implementation for services such as the new and delete 
operators.  

In addition to standard C++ runtime, libkern also provides a number of useful classes, the most 
fundamental being OSObject, the superclass of every class in I/O Kit. It provides support for reference 
counting, which works conceptually the same as NSObject in Cocoa, or Cocoa Touch in user space. 
Other classes of interest include OSDictionary, OSArray, OSString, and OSInteger. These classes, and 
others, are also used to provide a dictionary of values from the kernel extension’s Info.plist. 

The libkern library is not all about core C++ classes and runtime, as it also provides the 
implementation of many functions normally found in the standard C library. Examples of this are the 
printf() and sccanf() functions, as well as others such as strtol() and strsep(). Other functions 
provided by libkern include cryptographic hash algorithms (MD5 and SHA-1), UUID generation, and the 
zlib compression library. The library is also home to kxld, the library used to manage dynamically loaded 
kernel extensions. 

Last, but not least, we find functions, such as OSMalloc(), for allocating memory and for the 
implementation of locking mechanisms and synchronization primitives. 

■ Note  The sources for libkern are found in the libkern/ and bsd/libkern/ directories in the XNU source 
distribution. 

The Platform Expert 
The platform expert contains an abstraction layer for the system. Parts of it are available as part of the 
public XNU source code distribution, but the remainder is implemented in the 
com.apple.driver.AppleACPIPlatform KEXT, for which no source code is available. The platform expert 
handles device enumeration and detection for the system bus. It can be seen as the driver for the 
motherboard. The platform expert is responsible for the initial construction of the I/O Kit device tree 
after the system boots (known as the I/O Registry). The platform expert itself will form the root node of 
the tree, IOPlatformExpertDevice. 

Summary 
In this chapter we have: 
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• Given an overview of the Mac OS X and iOS operating systems. We have discussed 
their general background and origin, with a particular focus on the kernel, the 
major topic of this book.  

• Looked at the XNU kernel, which is the kernel for both OS X and iOS.  

• Discussed the layered architecture of the XNU kernel, which consists of three 
major components: the Mach, the BSD, and the I/O Kit. The Mach layer can be 
seen as the inner ring, closest to the hardware, which provides services to the rest 
of the kernel. Services provided by the Mach layer include hardware abstraction, 
virtual memory, and task scheduling. 

• Discussed the operation of the Mach scheduler, and the difference between tasks 
and threads. A task can be seen as a container for threads that share a common 
memory address space, as well as other resources, such as open files.  

• Discussed Mach IPC, which is the mechanism used for communication within the 
kernel and the various layers it contains. Furthermore, we broke down the various 
components involved in providing virtual memory in Mach. Namely, the VM map, 
VM map entry, and VM objects.  

• Discussed the role and operation of pagers. 

• Discussed the BSD layer, which was derived from the FreeBSD operating system 
and runs on top of the Mach core, but in the same kernel address space. It 
provides the interface applications used to communicate with the kernel, most 
importantly the system calls. The BSD layer implements the networking stack, 
including TCP/IP and other protocols. It also provides support for file systems 
such as HFS+ that are implemented on top of the virtual file system layer (VFS), 
which is a unified interface for file systems. 

• Discussed the I/O Kit, a C++ based kernel framework for writing device drivers and 
other extensions. The libkern library provides many utility functions and building 
blocks, including the set of classes that I/O Kit is built in top of, such as OSObject. 
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Xcode and the Kernel  
Development Environment 

Apple has a good track record of taking care of its developers and providing them with intuitive, user-
friendly tools and APIs to develop for the Mac and iOS platforms. Anyone who has written application 
software for the Mac or iPhone will be familiar with the object-oriented Cocoa framework, which 
provides a rich set of interfaces to support graphical user interfaces and other services required by user 
applications. Likewise, kernel developers are provided with APIs that are designed to help with the tasks 
performed by a kernel extension. For driver development, Apple provides the I/O Kit, which is an object-
oriented framework for interfacing with hardware. The following chapter discusses the tools and 
frameworks you will need to get started with kernel development and includes a tutorial for building and 
installing a simple kernel extension. 

Language of Choice: C++ 
The C language has been the de facto system-level language for decades. Indeed, the language was 
originally developed as an alternative to writing non-portable assembly code specifically for the original 
Unix system. The XNU kernel and many Mac OS X core services are written in C, while the I/O Kit 
framework used for driver development is written in a subset of the C++ language. Apple chose C++ for 
the I/O Kit because it is an object-oriented language and therefore allows a driver model that abstracts 
the physical hardware connections. Apple did toy with the idea of an Objective-C-based framework for 
drivers, but finally settled on C++. Despite the widespread use of C++ for the development of application 
software, Mac OS X is still one of the few operating systems that allows and in fact encourages C++ code 
to be run in its kernel. However, this is not to say the Mac OS X kernel is immune from the same 
problems that make C++ code problematic in other kernels. To avoid some of these problems, Mac OS X 
kernel code must use a restricted subset of the features provided by C++, referred to as Embedded C++. 
The features that are not available include the following: 

• Exceptions 

• Multiple inheritance 

• Templates 

• Runtime type information 

It is worth noting that, because Embedded C++ is a subset of the standard C++ language, any code 
written for Embedded C++ is compatible with a regular C++ compiler. 
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While technically possible to include these language features in the kernel, Apple decided to disable 
them because they can greatly increase the size of the compiled code, which in turn increases the 
memory footprint of the kernel. Support for exceptions was disabled not only because of the additional 
code size but also because failure to catch an exception would result in a kernel panic. 

Although the standard runtime type information is disabled, the I/O Kit does provide its own 
limited implementation, which is discussed in the following chapter. Kernel developers also have access 
to a limited implementation of the C++ runtime library and with language support for templates 
disabled, the STL classes are unavailable. 

As a general rule, C++ is used when writing kernel extensions based on the I/O Kit framework, 
whereas C is used for everything else, including implementation of file systems and low-level networking 
code. 

Xcode 
To begin developing a kernel extension, you will need to install Apple’s development tools, known as 
Xcode. These are available from the Mac App Store. Installing the Xcode package adds a directory to the 
root level of your hard disk named “Developer,” which includes everything that is required for both Mac 
OS X and iOS development, including the following: 

• An integrated development environment (the Xcode application) 

• Compilers for C, C++, and Objective-C 

• A source code debugger 

• The APIs and header files used for kernel and application development 

• Profiling tools for measuring your code’s execution time and identifying 
performance bottlenecks 

• Utilities for examining the hardware devices connected to the system and the 
driver that has been loaded for each device 

Of these tools, the Xcode application is the one in which you will spend most of your time when 
writing a kernel extension, since it provides the source code editor and a front-end to the compiler. 
Figure 3-1 shows the Xcode 4 user interface. 
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Figure 3-1. The Xcode 4 user interface 

Under the hood, Xcode is a front-end to the command-line compiler and debugger. In fact, there is 
nothing to stop you from bypassing Xcode completely and building your kernel extensions by invoking 
GCC directly on the command line. However, as we will see in the next section, Xcode provides project 
templates that pass the appropriate compiler flags for building a kernel extension. 

Previous versions of Xcode used the GCC compiler; however, starting from Xcode 4, an alternative 
and modern compiler based on LLVM is provided as the default compiler. The LLVM compiler is an 
open source project led by Apple that supports Objective-C, C, and C++. The goal of LLVM is to provide 
faster compile times than GCC and to provide tighter integration into IDEs, such as Xcode, by providing 
more legible warning and error messages and by allowing syntax highlighting and code completion to be 
driven by the semantic analysis performed by the compiler itself. 

■ Note  More information about Xcode, including information about how to obtain it, can be found at 
http://developer.apple.com/xcode. 

“Hello World” Kernel Extension 
To get started with kernel programming, let’s begin by implementing a very simple example, the much 
beloved “Hello World” application or, in our case, kernel extension. First, launch Xcode and choose 
“Create a new Xcode project” from the welcome screen. This will present you with a list of templates for 
the new project. If you select the “System Plug-in” category, you will see that Xcode provides templates 
for both a “Generic Kernel Extension” and an “I/O Kit Driver.” Although both templates create a kernel 
extension, an I/O Kit driver requires us to nominate a hardware device it will match against and will load 
only if that device is present. A generic kernel extension, on the other hand, is not a hardware driver and 
can be loaded any time by the user. 
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For this tutorial, we will create a project based on the “Generic Kernel Extension” template, so select 
that item and click the “Next” button. We are now asked for a product name and company identifier. 
The product name corresponds to the name of the executable file as seen by the user, so for this 
example, we will use “HelloWorld.” The company identifier should be a reverse DNS style string for a 
domain name you or your company has registered. For this example, you are free to use 
“com.osxkernel,” which is a domain registered for the purpose of this book. By appending the product 
name to the company identifier, Xcode creates a string that is guaranteed to be unique for the project 
and will not collide with the name of any existing kernel extension (the unique identifier for this tutorial 
would be “com.osxkernel.HelloWorld.”) 

■ Note  The reverse DNS convention is used throughout Mac OS X in places where a unique identifier is required. 
We will see in later chapters that the I/O Kit uses a similar scheme to ensure the names of C++ classes are 
unique. Previous versions of Mac OS 9 used a unique four-character constant to identify applications, which 
required developers to register their chosen string with Apple. Using reverse DNS allows developers to generate 
their own unique identifier without having to register them with Apple. 

After clicking the “Create” button, Xcode will generate a project for you, including an 
implementation file named “HelloWorld.c.” You can examine the contents of the source file named 
“HelloWorld.c” by clicking on its icon in the left part of the project window. For this tutorial, modify the 
generated source code to include the header file <libkern/libkern.h> and to add two calls to printf(). 
The function named HelloWorld_start() will be called when our kernel extension is loaded and the 
function named HelloWorld_stop() will be called when the kernel extension is unloaded. When you have 
finished editing the file, the code should look like Listing 3-1. 

Listing 3-1. The “HelloWorld.c” Tutorial 

#include <mach/mach_types.h> 
#include <libkern/libkern.h> 
 
kern_return_t   HelloWorld_start (kmod_info_t * ki, void * d) { 
    printf("Hello world\n"); 
    return KERN_SUCCESS; 
} 
 
 
kern_return_t   HelloWorld_stop (kmod_info_t * ki, void * d) { 
    printf("Goodbye world\n"); 
    return KERN_SUCCESS; 
} 

As we mentioned in Chapter 1, the APIs used for writing kernel code are generally different to those 
available to user applications; this applies even to functions such as printf(). Rather than including the 
user space header <stdio.h>, the kernel has its own implementation of printf that is declared in the 
header file <libkern/libkern.h>. If you try to include <stdio.h> in a kernel project, the compiler will 
report that it cannot find the included header file. 
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As well as including the header file that defines the printf() function, we also need to link our 
kernel extension against the library that provides the actual implementation of printf. Rather than a 
compile-time linking, the kernel resolves any library dependencies of a kernel extension only when the 
kernel extension is loaded. To inform the kernel of our dependencies, we need to declare the libraries we 
wish to link against in our kernel extension’s property list, a file that goes by the name “HelloWorld-
Info.plist” in this tutorial project. 

To modify the property list, click on the file named “HelloWorld-Info.plist” in the project window. 
Although the format of the file is text-based XML, Xcode contains a graphical editor for manipulating 
property list files, as shown in Figure 3-2. Add a new item to the OSBundleLibraries dictionary of your 
property list to include an item with the key name com.apple.kpi.libkern and the value 9.0.0 When 
you are finished, your property list should look identical to Figure 3-2. 

 

Figure 3-2. The graphical property list editor in Xcode 

The XML that corresponds to the addition we made to the property list file is shown in Listing 3-2. 

Listing 3-2. The Value of the OSBundleLibraries Entry for Our Tutorial Kernel Extension 

<key>OSBundleLibraries</key> 
<dict> 
        <key>com.apple.kpi.libkern</key> 
        <string>9.0.0</string> 
</dict> 

The project’s property list is not used by the compiler (other than to perform some preprocessing, 
which replaces variables such as ${PRODUCT_NAME} with their actual value), but is intended for the kernel. 
The property list is copied to the compiled kernel extension and is read when the extension is loaded. 
The entry we added to the dictionary consists of a key-value pair; the key identifies a kernel library on 
which we depend and the value corresponds to the minimum required version of that library. In our 
case, we are informing the kernel that we require a library with the unique identifier 
com.apple.kpi.libkern and that we require version 9.0.0 or later of this library. The library identifier uses 
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a reverse DNS prefix to ensure the name is unique; in this case, the prefix “com.apple” allows us to 
recognize the library as a standard library provided by Apple. 

■ Tip  The version of the library, in our case 9.0.0, is the version of the Mac OS X kernel, not the version of Mac 
OS X itself. Version 9.0.0 corresponds to Mac OS X 10.5.0. You can determine the version of the kernel on your 
machine by typing the command uname –r into Terminal. 

■ Note  You may have noticed that the project created from the Xcode template includes an item named 
“Kernel.framework” in the “Frameworks” group. This is not used by the linker when the project is built, but is 
simply included to help the developer by providing easy access to kernel headers. 

The kernel extension project is now complete and is ready to be built. To do this, choose “Build” 
from the “Project” menu. You should not receive any build errors, but if you do, make sure the contents 
of your “HelloWorld.c” file match those shown in Listing 3-1. 

Before we run this kernel extension, it is worth taking a moment to understand how the kernel 
knows which entry points to call, given that the two functions contained in the source file appear to be 
user-defined. As you may have suspected, Xcode gives us a gentle push and generates some of the 
boilerplate code for us automatically. In generating this code, Xcode uses two values that are defined in 
the project’s settings, which define the kernel extension’s start and stop routines. These values are 
shown in Figure 3-3. You are free to rename the entry points from HelloWorld_start and 
HelloWorld_stop, as long as you change the name of the functions defined in the source code and the 
values in the project build settings. 
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Figure 3-3. The project settings for the “Hello World” kernel extension 

Following a successful compile of the project, Xcode will have created a kernel extension with the 
name “HelloWorld.kext.” This file is packaged into a special file known as a KEXT bundle. If you are not 
familiar with bundles, they are essentially a directory that contains all the files required by the 
executable, but which the Finder presents to the user as a single file. Listing 3-3 shows the contents of 
the bundle created when we built the “Hello World” kernel extension. 

Listing 3-3. The Contents of the HelloWorld.kext Bundle 

HelloWorld.kext/ 
HelloWorld.kext/Contents/Info.plist 
HelloWorld.kext/Contents/MacOS 
HelloWorld.kext/Contents/MacOS/HelloWorld 
HelloWorld.kext/Contents/Resources 
HelloWorld.kext/Contents/Resources/en.lproj 
HelloWorld.kext/Contents/Resources/en.lproj/InfoPlist.strings 

The file named “Info.plist” should be familiar, since this is a copy of the property list we modified 
earlier (with some minor processing applied by Xcode along the way). The other file that deserves a 
mention is simply named “HelloWorld” and is located in the subdirectory of the bundle with the path 
“Contents/MacOS.” This file contains the actual executable code of the kernel extension. 

Loading and Unloading Kernel Extensions 
A kernel extension is a code module that runs inside the operating system kernel. Having built our kernel 
extension, it now needs to be loaded into the kernel where it can be run. While Xcode is great for writing 
and building kernel extensions, it cannot be used for testing or debugging a kernel extension; in fact, for 
a kernel extension, the button named “Run” in the Xcode window will build the project only, but won’t 
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actually load or run the resulting output. Instead, kernel extensions on Mac OS X can be loaded one of 
two ways, automatically, by copying the kernel extension bundle to the directory 
/System/Library/Extensions, or manually through the command line. 

To load the kernel extension, we first need to locate the compiled binary that was built by Xcode. By 
default, Xcode 4 will place the output from the compiler in a different location than the project directory 
that contains the source code, which can make it difficult to find the path to the kernel extension in 
order to load it on the command line. To locate the path in which Xcode has written the kernel 
extension, right-click on the product named “HelloWorld.kext,” which displays a contextual menu, and 
select the item “Show in Finder,” as shown in Figure 3-4. 

 

Figure 3-4. Locating the path to the built kernel extension 

A kernel extension that is copied to the /System/Library/Extensions directory will be loaded when 
needed by the operating system. This could be when the system boots or, in the case of a driver, when a 
hardware device that requires the driver is connected to the computer. However, during development, it 
is typically more convenient to load the kernel extension manually from the command line. 

For security, because a kernel extension is granted the same elevated privileges as the core 
operating system code, kernel extensions can only be installed or loaded by a user with administrative 
access to the system. As a further security measure, the system has strict requirements regarding the file 
permissions of the kernel extension’s bundle and will refuse to load a kernel extension that does not 
meet these requirements, particularly the following.  

• The KEXT bundle and all files and folders inside it must be owned by the user 
“root” (user id 0). 
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• The KEXT bundle and all files and folders inside it must be owned by the group 
“wheel” group id 0). 

• The KEXT bundle and any directory inside it must have the permissions mask 
0755 (rwxr-xr-x). 

• All files inside the KEXT bundle must have the permissions mask 0644 (rw-r--r--). 

When you build a kernel extension in Xcode, the KEXT bundle it produces will have the correct 
permission mask for the bundle and its contents, but user and group ownership will correspond to the 
user who ran the compiler. To correct the file ownership to that required by a kernel extension, you can 
use the following command in Terminal. 

sudo chown -R root:wheel HelloWorld.kext 

Note that if you change the ownership of the KEXT inside the Xcode build directory, Xcode will not 
have sufficient permission to overwrite the KEXT when the project is next built, which will result in a 
build error. To overcome this, you can copy the KEXT from the Xcode build directory to another 
directory (such as /tmp) before changing its ownership and loading it. 

Mac OS X contains a number of command line utilities for the purpose of working with kernel 
extensions. Some of the commonly used commands include: 

• kextload, which loads a KEXT into the kernel 

• kextunload, which stops a loaded KEXT and unloads it from the kernel 

• kextutil, which is a developer-oriented utility for loading KEXTs into the kernel 
and can provide diagnostic information detailing why a kernel extension failed to 
load and can produce symbols that are useful when debugging an active kernel 
extension 

• kextstat, which displays a list of all KEXTs loaded into the kernel 

With the exception of kextstat, which does not actively modify the state of the kernel, all these 
commands must be run with super-user permissions. This can be accomplished by prefixing commands 
with sudo. 

We are now ready to load the “Hello World” kernel extension. To do this, run the following 
command in Terminal: 

sudo kextload HelloWorld.kext  

Although the “Hello World” kernel extension has been loaded and its start entry point called, you 
won’t see the result of our call to printf in the terminal window. Instead, the output from calling the 
kernel’s implementation of printf is written to a log file. To confirm the “Hello World” kernel extension 
was loaded, you can use the kextstat command, as follows: 

kextstat  

This will print a list of the running kernel extensions. Since the “Hello World” extension will be one 
of the most recent extensions to have been loaded, it should appear at the end of the list. An example of 
the output from kextstat is shown in Listing 3-4. 
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Listing 3-4. The Output from the kextstat Command, with Our Kernel Extension Highlighted 

Index  Refs   Address             Size        Wired     Name (Version) <Linked Against> 
  1      85  0xffffff7f80742000   0x683c      0x683c    com.apple.kpi.bsd (11.1.0) 
  2       6  0xffffff7f8072e000   0x3d0       0x3d0     com.apple.kpi.dsep (11.1.0) 
  3     110  0xffffff7f8074c000   0x1b9d8     0x1b9d8   com.apple.kpi.iokit (11.1.0) 
  4     116  0xffffff7f80738000   0x9b54      0x9b54    com.apple.kpi.libkern (11.1.0) 
  5     103  0xffffff7f8072f000   0x88c       0x88c     com.apple.kpi.mach (11.1.0) 
... 
130       0  0xffffff7f810ce000   0x51000     0x51000   com.apple.filesystems.afpfs (9.8) <129 7 6 5 4 3 1> 
144       0  0xffffff7f807b8000   0x2000      0x2000    com.osxkernel.HelloWorld (1) <4> 

Finally, we will unload the “Hello World” extension, which will result in the HelloWorld_stop() 
function being called and the kernel extension being unloaded from the kernel. This can be 
accomplished with the following command: 

sudo kextunload HelloWorld.kext  

Using Console to View Output 
The resulting output from calling printf() in the kernel is written to a log file on disk. This log takes the 
format of a plain text file that allows it to be examined with the standard Unix commands tail and cat, 
passing the path to the logfile /var/log/kernel.log. Alternatively, the contents of the log can be inspected 
with an application included with Mac OS X named “Console,” which can be found in the 
/Applications/Utilities directory. The Console application consolidates logs from a wide range of system 
services and applications, including the kernel logfile. A screenshot of the output from our tutorial 
viewed through Console is shown in Figure 3-5. 
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Figure 3-5. The output from a successful load and unload of our kernel extension, as shown in the Console 

utility 

Although it may seem primitive if you are accustomed to source level debuggers from user-space 
development, being able to print debug output to the console remains one of the fundamental debug 
techniques for kernel code. You can find more information on debugging in Chapter 16. 

Summary 
Kernel extensions for Mac OS X are developed using the tools contained within the Xcode package 
provided by Apple. In this chapter, we created a tutorial “Hello World” kernel extension, showed how to 
import symbols from other kernel libraries, and introduced the command line utilities commonly used 
to load and work with kernel extensions.  
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The I/O Kit Framework 

Device drivers for Mac OS X are written using a framework known as the I/O Kit. The I/O Kit consists of 
header files and libraries that provide the services required by drivers, as well as header files and libraries 
that are used by user space code to locate a kernel driver and interact with it. There are two main parts of 
the I/O Kit: 

• Kernel.framework 

• IOKit.framework 

Although it is slightly counterintuitive, the I/O Kit framework is designed for user space applications 
and not for developing I/O Kit drivers in the kernel. Instead, the Kernel framework contains the header 
files used for kernel space driver development. If you examine the contents of the Kernel framework, you 
will see that it contains a directory named IOKit that consists of the header files used for kernel space 
driver development. Another important directory in the Kernel framework is named libkern, which 
contains the foundation classes and types on which the kernel I/O Kit framework is built. 

The user space I/O Kit framework serves two purposes. It provides user applications with functions 
for determining the hardware devices present on the machine on which it is running, functions for 
locating the appropriate driver for a particular hardware device, and functions for sending control 
requests and request statuses from that driver. These topics are further discussed in Chapter 5. In 
addition, the user I/O Kit framework provides the user space application the ability to communicate 
with certain hardware devices directly, removing the need for a kernel driver. This is possible for a select 
range of devices, most notably USB and FireWire devices that do not need to be shared between 
multiple running applications. We discuss this aspect of the I/O Kit in Chapter 15. 

The I/O Kit Model 
The I/O Kit is an object-oriented framework, thus it requires a language that provides an object-oriented 
programming abstraction. Apple chose to implement the I/O Kit in the C++ language, and consequently, 
drivers that are written for Mac OS X are developed in C++. 

While the choice of C++ for driver development is unique among operating systems, it reflects the 
modern nature of Mac OS X. The initial version of Mac OS X was released in 2001, and Apple took the 
opportunity to design a completely new model for driver development. The choice of C++ reflects the 
state of both computer hardware and compilers when the I/O Kit was designed. 

The choice of an object-oriented language has considerable advantages. Hardware in a computer 
system is, by its nature, an interconnected series of devices connected via a number of different buses. 
For example, a USB device may be connected to the internal USB hub of a keyboard, which itself is 
connected to the USB port on an iMac. Internally, the USB port is handled by a USB controller chip on 
the iMac’s motherboard, which is connected to the motherboard’s chipset controller via an internal PCI 
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bus. By adopting an object-oriented driver model, the I/O Kit is able to mirror this same hardware 
connection through the driver objects. 

The role of a driver is to enable the operating system—and ultimately the user—to take advantage of 
the services that are implemented by hardware. The operating system helps the driver by loading the 
driver when its hardware device is present, providing the driver with a way to access and interact with its 
hardware device, and by providing access points for the driver to plug its own services into the operating 
system. 

■ Note  The I/O Kit uses the term “nub” to describe a driver that provides services to other drivers. For example, 
the driver of a USB hub would be a nub because it provides services to the drivers of the USB devices that connect 
to it. 

The choice of an object-oriented design serves the I/O Kit well. Each driver is implemented as a C++ 
class, which allows the I/O Kit to instantiate a new driver object for each instance of the hardware device 
present on the system. The driver’s hardware device is accessed through an object known as the driver’s 
“provider,” which is provided to the driver at initialization. The I/O Kit will use a provider class that is 
appropriate for the hardware bus used by the device. For example, a USB device will have a provider 
class that is an instance of an IOUSBDevice, whereas a driver for a PCI card will have a provider class that 
is an instance of an IOPCIDevice. The different capabilities of these bus interfaces are abstracted by the 
different provider class types. For example, USB devices have a number of endpoints that data is 
transferred to or read from, so the IOUSBDevice class contains methods for reading or writing a data 
buffer to a specified endpoint. On the other hand, a PCI card is accessed by mapping a set of registers 
into the kernel’s address space, which can then be read from and written to by the driver the same way 
in which it writes to any other memory address. 

Lastly, drivers need a way to provide their services to the rest of the operating system. This is 
perhaps the area where the object-oriented design of the I/O Kit shines. The main class of the driver can 
be implemented as the subclass of one of the specialized classes provided by the I/O Kit for certain types 
of driver. For example, a driver that implements a serial port will subclass the standard 
IOSerialStreamSync class. Similarly, a driver that implements an audio output device will subclass the 
IOAudioDevice class. 

The advantage of implementing a driver by subclassing is that your driver inherits the behavior and 
implementation from the parent class. There are certain operations that are common to every serial port 
and to every audio device, and this behavior is implemented by the superclass, saving driver developers 
from having to write boilerplate code. Developers can then concentrate on code that is specific to their 
particular hardware device. The superclass will call the driver when a device-specific action is required. 

If you’ve implemented a driver for any other operating system, you have no doubt had to implement 
a dispatch routine that usually takes the form of one large switch statement in order to handle all the 
possible requests that the operating system may make and then calling the appropriate function in your 
driver that implements that request. The I/O Kit takes a different approach. Driver requests take the 
form of method calls. The driver simply needs to implement or override methods that are provided by its 
superclass. These methods are specific to the driver type. For example, a serial driver is concerned with 
transmitting bytes and receiving bytes over the serial port, so the IOSerialStreamSync class provides 
pure virtual methods enqueueData() and dequeueData() to be implemented by the subclass when these 
actions need to be performed. 

For a specialized device, the I/O Kit may not provide a suitable superclass. For example, there is no 
suitable superclass provided by the I/O Kit to implement a driver for a specialized medical imaging 
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device. The driver for such a device would be implemented by a class that subclasses from the generic 
IOService class. The IOService provides methods to manage the driver’s lifecycle, including 
initialization and destroying the driver object. 

Lastly, a driver may provide an interface to user space applications. In I/O Kit terminology, this is 
handled by implementing a class known as a “user client.” The user client is a custom class 
implemented by the driver that subclasses the IOUserClient class. Whenever an application opens a 
connection to the driver, the I/O Kit instantiates a new user client object that handles all the requests 
coming from that application’s connection to the driver. When the application closes that connection to 
the driver, or the application terminates (or crashes), the user client is destroyed. If an application opens 
multiple connections to the driver, the I/O Kit will instantiate as many user client objects as there are 
connections made. 

Object Relationship 
As we have seen, there are two important classes for an I/O Kit driver, one being the superclass that the 
main driver class inherits from and the other being the provider class that the driver uses to access its 
hardware. This design means that the functionality that the driver implements is separate from the way 
in which the driver’s hardware device connects to the computer. For example, a driver that supports a 
PCI sound card and a driver that supports a USB audio output device will both inherit from the same 
IOAudioDevice superclass, and the operating system will interface to both drivers by making the same 
calls to each driver. After all, the operating system’s audio subsystem shouldn’t need to care how an 
audio output device connects to the computer. 

This separation also encourages code reuse. A company that manufactures both PCI and USB based 
audio devices could potentially use the same driver for both devices, with the driver receiving a provider 
class that is of type IOPCIDevice or IOUSBDevice, depending on which of the two hardware devices is 
connected to the computer. Or, perhaps more conceivably, the hardware vendor could create its own 
superclass that implements the common functionality for both devices, which is itself a subclass of 
IOAudioDevice. The driver for the vendor’s PCI and USB devices would need only a minimal 
implementation, with much of the common functionality coming from their custom superclass. Such an 
arrangement is shown in Figure 4-1. 

 

Figure 4-1. An example of the relationship between an I/O Kit driver and its superclass and provider class 

The Info.plist File 
The Macintosh platform has always supported a plug-and-play design for devices, which requires no 
configuration after installing the driver. Mac OS X, with the help of the I/O Kit, is no exception. Unlike 
the kernel extension that we developed in the previous chapter, which loads as soon as it is added to the 
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system, a driver is loaded only when one of the devices that it supports is connected to the computer. In 
this way, even though there may be hundreds of drivers installed on a system, only those that 
correspond to hardware that is actually connected to the computer will be loaded and taking up 
memory. 

In Chapter 3, we saw that a kernel extension requires a property list file to define such things as its 
entry points. The property list is even more important for a kernel extension that implements an I/O Kit 
driver. For an I/O Kit driver, the property list specifies the list of hardware devices that the driver is able 
to support. Each device supported by a driver contains its own “personality” in the property list, which 
consists of a “matching dictionary” that consists of an array that describes each hardware device to 
match against. The driver will be loaded only if one of the hardware devices described in its matching 
dictionary is connected to the computer. 

One of the most important values contained in each matching dictionary is the “IOProviderClass,” 
which defines the class type of the driver’s provider, such as IOUSBDevice or IOPCIDevice. Whenever a 
new hardware device is connected to the computer, the I/O Kit creates an appropriate nub for that 
device, and then begins the process of finding a suitable driver for that nub. For example, a USB device 
connection is handled as follows: 

1. The user connects a USB device to the computer. 

2. A new instance of IOUSBDevice is created to represent the device. 

3. The I/O Kit iterates over all drivers that contain a matching dictionary listing a 
provider class of IOUSBDevice. 

4. The IOUSBDevice examines the entire contents of the matching dictionary for 
the driver. 

5. If the requested properties of the matching dictionary correspond to the 
properties of the device, the driver is added to a list of potential drivers for the 
device. 

Importantly, it is the provider class that decides whether a driver is suitable for a particular 
hardware device. It does this by examining the properties from a potential driver’s matching dictionary; 
however, the particular properties that are used will be specific to the driver family. For example, a USB 
driver may match against a specific vendor ID and product ID of the USB device, or may match against a 
generic class of device such as any USB keyboard. A PCI device may be matched on the vendor ID and 
device ID specified in the device’s PCI configuration space or against any PCI class, such as a network 
card or a display card. 

Following the preceding steps, the I/O Kit has narrowed the list of drivers for the device down to an 
array of potential matches. To determine the best driver for the hardware device, the I/O Kit uses the 
notion of a “probe score” for each driver. Each driver nominates a probe score that provides a relative 
measure, in some way, of that driver’s suitability for the device. The driver with the highest probe score 
is the one that is ultimately chosen to work with the device. 

The driver’s probe score can be set in two ways. One way is for a driver to provide a probe score in 
its matching dictionary. For example, a company that manufactures a custom USB keyboard could 
provide a driver whose matching dictionary matches against the exact product ID of the company’s 
keyboard, with a probe score that is higher than the system’s default keyboard driver. Another way that 
the probe score can be set is through “active matching,” in which the I/O Kit instantiates each potential 
driver, temporarily attaches it to the hardware device, and provides it with a chance to interrogate the 
device and determine its probe score. During probe, the driver has full access to the hardware, so it can 
perform as much interrogation of the device as is required to determine its suitability to drive that 
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device. The driver can adjust its probe score, or more commonly, can use the probe method to opt-out 
of matching against a device if it determines that it is unable to work with the connected hardware.  

For example, a driver’s implementation of probe could determine the version of firmware that is 
loaded on the device, and if the firmware is of a later version than that supported by the driver, it could 
refuse to load. Failing during the probe stage is more efficient than failing later on, when the driver has 
been selected as the driver for the device, because the I/O Kit does not need to continue on and start 
your driver, although, in both cases, the I/O Kit will continue by attempting to load the driver with the 
next highest probe score. 

While in almost all cases only one driver is attached to a device, the I/O Kit does allow multiple 
drivers to be loaded for a single device. By adding an extra key to a driver’s matching dictionary known 
as a “match category,” the I/O Kit will load the driver with the highest probe score in each match 
category and attach it to the device. If no match category is given in the driver’s matching dictionary, a 
default category is assumed. 

The matching process is recursive, and drivers may themselves be nubs that act as a provider to 
other classes. For example, the driver for a PCI card that implements a USB host controller would match 
against an IOPCIDevice, but would create IOUSBDevice instances of its own to represent devices that have 
been connected to its own ports. In this way, the IOUSBDevice instances created by the driver would in 
turn become the provider class for other drivers, as shown in Figure 4-2. Rather than instantiate a class 
of type IOUSBDevice directly, a driver of this type would likely provide its own implementation of a class 
that inherits from IOUSBDevice, which is shown in Figure 4-2 as “MyUSBDevice.”  

Any driver that uses an instance of MyUSBDevice as a provider would talk to the provider through its 
standard IOUSBDevice interface, but the use of virtual methods would allow the MyUSBDevice 
implementation to override these methods and provide its own implementation. 

 

Figure 4-2. An example of a driver that is also a nub, creating objects that serve as the provider class to 

other drivers 

Another example of a driver that acts as a nub, which is in fact a far more common scenario, is a 
driver that accepts connections from user applications. As mentioned earlier, for each connection that a 
user application makes to a driver, the I/O Kit instantiates a new object known as a “user client” to 
handle the control requests from the application and to pass them on to the driver. Like the main driver 
class, the user client class is also an I/O Kit service and it inherits from the same IOService base class as 
any other driver object. Each user client uses the main driver object as its provider class. Unlike the main 
driver, however, a user client doesn’t need to go through the matching stage because the driver 
nominates the specific class name of its user client. 
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Listing 4-1. The Driver Personalities for a Hypothetical External Disk, Containing Matching Dictionaries 

for both FireWire and USB Connections 

<key>IOKitPersonalities</key> 
<dict> 
        <key>MyExternalDiskFireWire</key> 
        <dict> 
                <key>CFBundleIdentifier</key> 
                <string>com.mycompany.driver.MyExternalDiskDriver</string> 
                <key>IOClass</key> 
                <string>com_mycompany_driver_MyExternalDiskDriver</string> 
                <key>IOProviderClass</key> 
                <string>IOFireWireUnit</string> 
                <key>Unit_SW_Version</key> 
                <integer>1111</integer> 
                <key>Unit_Spec_ID</key> 
                <integer>2222</integer> 
        </dict> 
        <key>MyExternalDiskUSB</key> 
        <dict> 
                <key>CFBundleIdentifier</key> 
                <string>com.mycompany.driver.MyExternalDiskDriver</string> 
                <key>IOClass</key> 
                <string>com_mycompany_driver_MyExternalDiskDriverUSB</string> 
                <key>IOProviderClass</key> 
                <string>IOUSBDevice</string> 
                <key>idProduct</key> 
                <integer>3333</integer> 
                <key>idVendor</key> 
                <integer>4444</integer> 
                <key>IOProbeScore</key> 
                <integer>9000</integer> 
 
        </dict> 
</dict> 

Listing 4-1 shows the matching dictionary for a hypothetical external disk device that features both 
FireWire and USB connections. As such, it contains two entries in its matching dictionary, the first of 
which matches against a specific FireWire device, and another that matches against a specific USB 
device. The driver class com_mycompany_driver_MyExternalDiskDriver will be instantiated and given a 
chance to probe the device whenever a FireWire device with a unit software version of 1111 and a unit 
spec ID of 2222 is plugged in to the computer. Likewise, the driver class 
com_mycompany_driver_MyExternalDiskDriverUSB will be instantiated and given a chance to probe the 
device whenever a USB device with a product ID of 3333 and a vendor ID of 4444 is plugged into the 
computer. The USB device will have a default probe score of 9000, which should make it the preferred 
driver for this device. 
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The Driver Class 
As we saw in the previous section, when the I/O Kit loads a driver, it does so by instantiating a class that 
is designated in the driver’s property list. This class must be a subclass of the IOService class, either 
directly or by subclassing a class that is itself a child of the IOService class. The IOService class provides 
virtual methods that are called at various points during the lifetime of the driver—for example, when it is 
loaded and initialized, when it should probe its provider, and when the driver is stopped. Because these 
methods are declared as virtual methods in the definition of the IOService class, they can be easily 
overridden in the custom driver class that inherits from IOService. 

At this point, it may be a good time to put what you have learned into practice by creating a simple 
I/O Kit driver. To begin, open Xcode and create a new project based on the “IOKit Driver” template. 
When prompted for a product name, enter “IOKitTest”. You can use the company identifier 
“com.osxkernel”, which is a domain name that has been registered for the purposes of this book. Xcode 
will create a project for you with two files, a C++ implementation file named “IOKitTest.cpp” and its 
corresponding header file named “IOKitTest.h”.  

Let’s begin by declaring the class definition of our driver. Given that we are implementing a generic 
driver, and not one that provides specialized functionality such as a serial port or disk storage, we will 
define our driver’s main class as a subclass of IOService and not one of the more specialized classes that 
the I/O Kit provides. Enter in the text from Listing 4-2 as the contents of IOKitTest.h. 

Listing 4-2. The “IOKitTest.h” Tutorial 

#include <IOKit/IOService.h> 
 
class com_osxkernel_driver_IOKitTest : public IOService 
{ 
        OSDeclareDefaultStructors(com_osxkernel_driver_IOKitTest) 
         
public:  
        virtual bool    init (OSDictionary* dictionary = NULL); 
        virtual void    free (void); 
         
        virtual IOService*      probe (IOService* provider, SInt32* score); 
        virtual bool    start (IOService* provider); 
 virtual void    stop (IOService* provider); 
}; 

The contents of the header file should be fairly straightforward, with the possible exception of the 
macro OSDeclareDefaultStructors. As you will recall from Chapter 3, the I/O Kit is implemented in a 
subset of the C++ language that does not include exceptions and runtime type information. The macro 
OSDeclareDefaultStructors is needed as a consequence of both of these limitations; it provides the 
declaration of the class’s constructor and destructor and metadata that provides the custom 
implementation of the I/O Kit’s version of runtime type information. We discuss this in greater depth 
later in this chapter. 
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■ Note  You may be wondering why we used such an elaborate name for our class. The kernel has a global 
namespace into which all symbols (including class names, functions, and global variables) exported by any active 
kernel extensions are loaded. The kernel will refuse to load an extension that contains symbols that collide with an 
extension that is already loaded, and so to avoid this, Apple recommends that all global functions, classes, and 
variables are decorated with a reverse-DNS naming scheme. 

The implementation of the driver class should be placed in the file named “IOKitTest.cpp.” The 
contents of this file are given in Listing 4-3. 

Listing 4-3. The “IOKitTest.cpp” Tutorial 

#include "IOKitTest.h" 
#include <IOKit/IOLib.h> 
 
// Define the superclass. 
#define super IOService 
 
OSDefineMetaClassAndStructors(com_osxkernel_driver_IOKitTest, IOService) 
 
 
bool com_osxkernel_driver_IOKitTest::init (OSDictionary* dict) 
{ 
        bool res = super::init(dict); 
        IOLog("IOKitTest::init\n"); 
        return res; 
} 
 
void com_osxkernel_driver_IOKitTest::free (void) 
{ 
        IOLog("IOKitTest::free\n");     
        super::free(); 
} 
 
IOService* com_osxkernel_driver_IOKitTest::probe (IOService* provider, SInt32* score) 
{ 
        IOService *res = super::probe(provider, score); 
        IOLog("IOKitTest::probe\n");     
        return res; 
} 
 
bool com_osxkernel_driver_IOKitTest::start (IOService *provider) 
{ 
        bool res = super::start(provider);       
        IOLog("IOKitTest::start\n");     
        return res; 
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} 
 
void com_osxkernel_driver_IOKitTest::stop (IOService *provider) 
{ 
        IOLog("IOKitTest::stop\n");     
        super::stop(provider); 
} 

■ Note  It is a convention of the I/O Kit to define a macro named “super” as the name of the superclass of the 
current class. This allows a method to be delegated to the superclass implementation easily, as is shown in Listing 
4-3. 

Finally, we need to define the driver’s matching dictionary and library dependencies through the 
Info.plist file. Add a new dictionary key named “IOKitTest” to the IOKitPersonalities dictionary that 
contains the following values: 

 

Key Type Value 

CFBundleIdentifier String com.osxkernel.${PRODUCT_NAME:rfc1034identifier} 

IOClass St ring com_osxkernel_driver_IOKitTest 

IOMatchCategory String com_osxkernel_driver_IOKitTest 

IOProviderClass St ring IOResources 

IOResourceMatch String IOKit 

 
We also need to add two entries to the OSBundleLibraries dictionary: 
 

Key Type Value 

com.apple.kpi.iokit St ring 9.0.0 

com.apple.kpi.libkern St ring 9.0.0 

 
The final version of the project’s property list is shown in Figure 4-3. 
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Figure 4-3. The property list, including the matching dictionary, for the IOKitTest tutorial 

Given that the purpose of a driver is to control hardware, and that the I/O Kit will load a driver only 
when its hardware device is present, you may be wondering how it is possible to test this driver. 
Thankfully, the I/O Kit provides a special nub known as IOResources that can be used as the provider 
class of a driver that has no hardware device, such as the tutorial driver listed here. In a system, there will 
be multiple drivers matching against the IOResources nub, and so to allow more than one driver to 
attach itself to IOResources, the IOMatchCategory key in the driver’s matching dictionary must be 
defined.  

Since the I/O Kit allows a nub to have one driver attached to it per match category, specifying a 
unique category allows the driver to load and doesn’t prevent other drivers from matching against the 
IOResources provider class after we have loaded. To complete the matching dictionary, we need to 
specify matching criteria that are unique for the provider class. If the provider class is a USB device, this 
may take the form of a USB product ID and vendor ID. In the case of our tutorial, the provider class is 
IOResources. A single key named “IOResourceMatch” is the matching criteria used by IOResources. In the 
sample driver’s matching dictionary, this value is set to “IOKit”. This tells the provider class to defer 
loading the driver until the IOKit subsystem has been fully loaded and initialized during system startup. 

You can now build the IOKitTest project, which can be loaded using the same “kextload” command 
that was used in Chapter 3. If you open the “Console” utility and examine the contents of the 
“kernel.log” file, you should see that the various methods of the driver’s class have been called. 

The order in which the methods of the driver class are called is as follows: 

1. init(). This method is guaranteed to be called before any other method in the 
class. Its purpose is the same as a constructor of a C++ class. A driver’s init() 
method should first call the implementation provided by the superclass, and if 
this fails, it should abort immediately. This method is passed one parameter, a 
copy of the matching dictionary corresponding to the selected driver 
personality in the Info.plist file. If this method succeeds, it should return true; 
otherwise, it should return false. 
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2. probe(). This method is called during matching to give the driver a chance to 
examine the hardware device, which is passed to the method through the 
argument named “provider.” Although the parameter “provider” is a pointer 
to an IOService, it can be cast to the more specialized provider class specified 
in the matching dictionary (such as IOUSBDevice). The driver’s implementation 
of probe() should first call the superclass’s implementation, and if this 
succeeds, perform any investigation of the hardware required to determine 
whether the driver is able to control it. If the driver is unable to control the 
hardware, it should return NULL from the probe() method; otherwise, it should 
return an instance of the IOService subclass that should control this device. In 
almost all cases, this method will return the current IOService instance 
(“this”).  

3. start(). If the previous call to probe() succeeded, and the driver has been 
chosen as being the best suited to control the hardware device (based on its 
probe score), its start() method is called. The implementation should first call 
the superclass’s implementation of start(), and if this fails, it should abort 
immediately. The driver should use the start() method to configure the 
hardware for operation, and should initialize any resources that it needs while 
running. If for any reason the method fails and the driver is unable to go on to 
control the hardware, the method should return false. The I/O Kit will then 
provide the driver with the next highest probe score a chance to control the 
device. 

4. stop(). This method isn’t called until either the device is removed or the driver 
is manually unloaded. This method is the opposite of start(); any 
configuration or allocation that was performed in the start() method should 
be released when stop() is called. Finally, the implementation should call the 
superclass’s implementation of stop(). 

5. free(). Finally, before the driver’s object is destroyed, the I/O Kit calls its 
free() method. Its purpose is the same as a destructor of a C++ class. This 
provides the driver with a chance to release any resources that were allocated 
in its init() method. This method is called even if a driver was never selected 
as the best match for a particular device. The implementation should end by 
calling the superclass’s implementation of free(). 

A consequence of limited exception support is that rather than using the traditional C++ approach 
of performing object initialization in the class’s constructor and throwing an exception if an error 
occurs, the initialization of I/O Kit objects is performed in a custom method named “init,” which 
returns a Boolean value to signal success. 

IORegistryExplorer 
Apple provides a very useful tool for visualizing the drivers loaded on a system, known as 
“IORegistryExplorer.” This is included as part of the Xcode tools. IORegistryExplorer displays a graphical 
representation of the drivers that are currently loaded on the system and their relationship to other 
drivers. This relationship is shown as a hierarchical representation, with a provider class having a parent 
relationship to the clients that are connected to it. 

IORegistryExplorer shows a representation of an entity known as the I/O Registry. If you’re coming 
from a Windows background, don’t confuse the I/O Registry with the Windows Registry. The I/O 
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Registry is a tree of I/O Kit objects that is created when the system is started, and then it dynamically 
grows or shrinks as hardware devices and their corresponding drivers are loaded or unloaded from the 
system. Unlike the Windows Registry, the I/O Registry is never written to disk or saved between reboots 
of the computer. 

The IOService plane includes all objects in the I/O Registry. As such, it can be a little overwhelming 
when trying to locate a particular driver. To help find a particular driver in the I/O Registry, 
IORegistryExplorer provides a search field that can be used to filter the objects shown to those whose 
name matches a particular string. 

IORegistryExplorer also displays the property table for each driver object. When the I/O Kit loads a 
driver, it initializes its property table to the contents of the matching dictionary that corresponds to the 
driver personality that was loaded; this corresponds to the OSDictionary object that was passed to the 
driver class’s init() method. As the driver runs, it may manipulate its property list by adding or 
removing additional key/value pairs or by changing the value of a particular key. These changes are local 
to the driver instance (and so if the same driver is loaded multiple times for several devices in the 
system, they each have their own property table). Figure 4-4 shows IORegistryExplorer for the sample 
IOKit driver that we developed earlier.  

 

Figure 4-4. IORegistryExplorer displaying the IOKitTest sample. The property table shown on the right was 

initialized from the contents of the driver’s matching dictionary in its Info.plist file. 

Objects in the I/O Registry are organized into several planes. Each plane shows only those objects 
that share certain functionality. When launched, IORegistryExplorer will default to showing the 
relationship of objects in the “IOService” plane, which includes all objects in the I/O Registry. Some of 
the other planes that are commonly used include: 
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• IODeviceTree: This is a static plane that reflects the hardware configuration of the 
system; it does not change as hardware devices are connected to the system. The 
contents of the device tree largely depend on the system motherboard and will 
consist of a static snapshot of the computer’s configuration at boot time, 
including PCI slots, built-in USB ports, and any hardware controllers that are on 
the motherboard, such as the CPU, memory, and USB controllers. 

• IOPower. This plane shows all driver objects that have implemented power 
management and will receive notifications from the I/O Kit when the system is 
switching to a different power state such as when entering sleep mode. 

• IOUSB. This plane shows all USB devices and hubs that are connected to the 
system. It includes the USB devices only; the corresponding driver that has been 
loaded for a device can be seen in the IOService plane. 

The I/O Registry is also accessible on the command line through the tool “ioreg.” Unlike 
IORegistryExplorer, which is available if the Xcode tools have been installed, ioreg is a standard part of a 
Mac OS X installation and is useful when debugging on an end-user’s machine or any other system in 
which the developer tools are unlikely to be installed. 

The Kernel Library: libkern 
The runtime support and base classes on which the I/O Kit is built are implemented in a library known 
as libkern. The libkern library provides support that makes up for much of the functionality that is 
excluded in the embedded C++ language. The libkern library defines a class known as OSObject, which 
provides the base class that is used by all I/O Kit classes. Since the base driver class IOService is a 
subclass of OSObject, the main class of a driver will also be derived from OSObject. Any class that is 
derived from OSObject gets the following functionality: 

• Runtime Type Information, which is implemented through custom macros 
provided by libkern. These macros provide functionality that includes 

• Type introspection, which is the ability at runtime to determine the type of 
an object or whether it is derived from a given base class 

• Dynamic casting, which is the ability to cast an object to the type of one of 
its derived classes (for example, to cast the provider class from an object of 
type IOService to IOUSBDevice) 

• Object creation, including the ability to instantiate an object based on a string 
representation of its class name 

• Object reference counting based on retain/release semantics 

• Object tracking, that is, the ability to determine how many instances of a certain 
class have been instantiated but not yet released 

OSObject 
Some of the features provided by libkern should be very familiar if you have written user applications 
with Apple’s Cocoa framework. In particular, the OSObject class can be thought of as the kernel 
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equivalent of the NSObject class in Cocoa, and the dynamic type introspection capabilities are almost 
identical to their counterparts provided by the Objective-C runtime. 

There is no requirement to use OSObject as the superclass for classes that are private to your driver, 
although you may find that the reference counting and object tracking that OSObject provides (without 
any extra work from you) is reason enough to adopt it. 

Adopting OSObject as the base class involves the following steps: 

1. Using the standard C++ syntax, declare your class to be a subclass of OSObject, 
or a class that is derived from OSObject (such as IOService). If you are 
subclassing from OSObject, you may need to include the header file 
<libkern/c++/OSObject.h>. 

2. As the first line of your class’s declaration (in your class’s header file), include 
the macro OSDeclareDefaultDestructors(), passing the name of your class as 
its argument. This macro, among other things, declares the standard C++ 
constructor and destructor for your class, and so you should not add either to 
your class declaration. Instead, add a method named init() to your class to 
act as the constructor, and a method named free() to act as the destructor. 
You are free to add any arguments that your class requires to the init() 
method, as is shown in the following example. 

class com_osxkernel_driver_MyObject : public OSObject 
{ 
   OSDeclareDefaultStructors(com_osxkernel_driver_MyObject) 
public: 
   virtual bool     init (const char* name); 
   virtual void     free (); 
   … 
}; 

3. In the file that implements your class, place the macro 
OSDefineMetaClassAndStructors(), which takes two arguments, the name of 
the class, and the name of its direct superclass. The first few lines of an 
implementation file typically follow the pattern 

#include "MyObject.h" 
 
// Define super as a convenience macro to refer to the superclass 
#define super OSObject 
 
OSDefineMetaClassAndStructors(com_osxkernel_driver_MyObject, OSObject) 

4. Provide an implementation of the methods init() and free(). These two 
methods play the role of the constructor and destructor, respectively, as shown 
in the following example. 

bool com_osxkernel_driver_MyObject::init (const char* name) 
{ 
   if (! super::init()) 
           return false; 
    
   // Additional initialization 
   return true; 
} 
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void com_osxkernel_driver_MyObject::free () 
{ 
   // Release resources allocated in init() 
   super::free(); 
} 

Having defined an object that subclasses from OSObject, it can be instantiated in your code by 
calling the C++ new operator followed by the init() method. As a convenience, many classes provide a 
static method that performs both of these steps, and return a non-NULL object on success, as shown in 
Listing 4-4. 

Listing 4-4. The Definition of a Static Helper Method to Construct a New Instance of a Custom Class 

com_osxkernel_driver_MyObject* 
        com_osxkernel_driver_MyObject::withName (const char* name) 
{ 
        com_osxkernel_driver_MyObject* me = new com_osxkernel_driver_MyObject; 
         
        if (me && !me->init(name)) 
        { 
                me->release(); 
                return NULL; 
        } 
         
        return me; 
} 

The lifetime of any object that is based on OSObject is determined by reference counting. When an 
object is first created, its reference count is initialized to 1. To free an object, rather than using the C++ 
operator delete (which the OSDeclareDefaultStructors macros declare as a protected method), your 
code should instead call the release() method. This method is implemented by the OSObject class and 
decrements the reference count of the object by 1. When the object’s final reference is released, and the 
object’s reference count becomes 0, the object is released and the free() method is called. If your code 
takes a pointer to an object that it needs to hold on to, it will need to extend the lifetime of that object to 
ensure that the object is not released while your code is holding a reference to it. This is done by calling 
the retain() method, which increments the reference count of the target object by 1. To prevent 
memory leaks, it is important that each call to retain() is matched with a call to release(). 

Any object that is derived from OSObject allows type introspection. To cast an object into another 
type, libkern provides a macro named OSDynamicCast(type, object), which performs the equivalent of 
the C++ operator dynamic_cast<type>(object). The macro verifies whether the object is derived from the 
requested class, and if so, a pointer to the object is returned; otherwise, the macro returns NULL. The 
most common use of dynamic casting is to safely convert an object from a base class to a more 
specialized class. For example, the driver’s start() method is passed a pointer to its provider class as an 
IOService object. However, the provider is actually a more specialized class such as IOUSBDevice or 
IOPCIDevice, and a dynamic cast allows this conversion to be made safely. For example, a driver that 
controls a USB device will contain the following code in its start() method to convert the provider from 
an IOService to an IOUSBDevice: 

IOUSBDevice* usbDevice = OSDynamicCast(IOUSBDevice, provider); 
if (usbDevice == NULL) 
{ 
        IOLog("Unknown provider class\n"); 
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        return false; 
} 

The OSObject base class can also track the number of instances of each of its derived classes that 
have been instantiated but not yet released. This information is not only useful for the I/O Kit; it also 
provides an invaluable mechanism for tracking memory leaks. Internally, the I/O Kit uses the instance 
count of each class to ensure that it does not unload a kernel extension that has outstanding objects, 
which would lead to a kernel panic. When a kernel extension no longer has any outstanding instances 
for all classes that it defines, the kernel will unload that kernel extension. The number of instances of 
each OSObject-derived class can be examined through the command line tool “ioclasscount.” 

■ Tip  If you open Terminal and run the command ioclasscount after loading the IOKitTest tutorial, you will see a 
single instance of the class com_osxkernel_driver_IOKitTest. 

Container Classes 
As well as defining the base class and providing a runtime environment for the kernel, libkern also 
defines a number of container classes to manage a collection of objects. The container classes provided 
by libkern include arrays, dictionaries, and both ordered and unordered sets. While all these containers 
can contain objects of varying types and can even contain objects of differing types within the same 
container, a container can contain only objects that are derived from the OSObject class. 

■ Note  If you are familiar with user space programming on Mac OS X, the libkern container classes are 
equivalent to NSMutableArray, NSMutableDictionary, and NSMutableSet, or the Core Foundation types 
CFMutableDictionary, CFMutableArray, and CFMutableSet. 

To allow non-object scalar types such as Booleans, integers, and strings to be included in the 
container types, libkern provides the corresponding classes OSBoolean, OSNumber, and OSString for 
wrapping a bool, an integer value of up to 64 bits in length, and a C-string, respectively.  

The handling of strings in libkern deserves special mention. The libkern library provides two classes 
for representing a string, OSString and OSSymbol (which is a subclass of OSString). The purpose of 
OSSymbol is not to provide a general wrapper for a string, but rather to hold string values that represent 
“symbols” in the kernel, such as commonly used keys in a matching dictionary. When a new instance of 
OSSymbol is created, the constructor checks for an existing OSSymbol object that contains the same string 
value, and if one is found, returns an instance of the existing object rather than creating a new instance. 
This means that for a given string value, there is at most one OSSymbol object representing that value. As 
a consequence, a dictionary that is keyed on OSSymbol values needs to compare the address of only two 
OSSymbol values rather than performing a more expensive string comparison. 

All the container classes follow the same behavior with regard to object ownership. Any object 
added to a container is retained by that container class, and objects are released by the container class 
once they are removed from the container or the final reference of the container itself is released and so 
the container is deallocated. After inserting an object into a container, if the caller no longer requires its 
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own reference to that object, it is free to release the inserted object since the container class will 
maintain a reference to the object.  

After querying a container for an object that it contains, the caller should retain that object if there is 
any chance that the container could be released while the caller is still using the returned object. The 
libkern container classes do not increment the reference of their content objects before returning it to 
the caller (for example, the OSArray method getLastObject() will not increment the reference count of 
its last object before returning it to the caller). 

It is important to note that the container classes do not provide any synchronization for use in a 
multi-threaded environment. That is not to say that they cannot be used in a driver that contains multi-
threaded code, but rather that it is the caller’s responsibility to add its own locking to ensure that calls to 
the container classes are serialized. 

The container classes provided by libkern include the following:  

• OSArray, which provides storage and retrieval of objects based on the index within 
the array  

• OSDictionary, which provides storage and retrieval based on a provided string 
value (which is known as the “key”)  

• OSSet, which provides storage for objects and the ability to test whether an object 
is in the set  

• OSOrderedSet, which provides storage that is sorted based on a provided 
comparison function and retrieval based on an index 

All libkern container classes can be iterated over using the class OSCollectionIterator, as shown in 
Listing 4-5. When iterating over an OSDictionary, the objects returned by the iterator represent the keys 
of the dictionary, and not the values contained in the dictionary itself. 

Listing 4-5. A Sample Function to Iterate Over the Objects Contained in an OSArray 

void    IterateArray (OSArray* array) 
{ 
        OSCollectionIterator*   iter; 
 
        iter = OSCollectionIterator::withCollection(array); 
        if (iter != NULL) 
        { 
                OSObject*       anObject; 
                 
                while ((anObject = iter->getNextObject()) != NULL) 
                { 
                        // Assume the array only contains string values: 
                        // OSString* aString = OSDynamicCast(OSString, anObject); 
                } 
                 
                iter->release(); 
        } 
} 

A special container object for drivers is their property table. This is a dictionary that contains a 
number of key/value pairs that are local to a particular driver instance. When a driver is loaded, the I/O 
Kit fills its property table with the entries of the matching dictionary from the driver’s Info.plist file. 
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However, as the driver runs, it is free to add or remove additional values from its property table. A 
driver’s property table is special because it can be accessed by user space applications, including 
IORegistryExplorer. This makes it a perfect means for passing small amounts of data, such as integer 
values, between the driver and user space.  

Alternatively, a driver can write the values of certain important variables to keys in its property table, 
which can then be monitored in IORegistryExplorer (or a custom application) to track the state of the 
driver. 

Summary 
• The I/O Kit provides an object-oriented framework for developing drivers on Mac 

OS X. 

• Drivers written using the framework inherit from a suitable base class that is 
chosen based on the functionality that the driver implements. The I/O Kit 
provides base classes for drivers such as audio input and output streams, serial 
ports, and disk devices. 

• A driver accesses its hardware through an object known as its provider, which 
allows communication with hardware in a way that is natural to the bus on which 
the hardware is connected. 

• A driver is loaded only when its hardware is present in the system, as described by 
matching criteria described in the driver’s property list. 

• The I/O Kit is built on top of a library known as libkern, which provides runtime 
support to the kernel by way of object instantiation, reference counting, and 
container classes. 
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Interacting with Drivers  
from Applications 

In the previous chapter, we learnt about I/O Kit drivers, which live in the kernel. On the other hand, the 
applications that users interact with live in user space. So, if the user is going to use the services provided 
by your driver, the kernel/user space boundary needs to be crossed. 

Mac OS X provides several different mechanisms through which a driver can provide its services to 
user space applications. The method that a developer chooses to allow a particular driver to provide its 
services to user space applications is dependent on the type of functionality that the driver implements. 
For example, all serial ports, audio drivers, and storage devices have their own interface that is defined 
by the I/O Kit. This interface allows a user space application to work with these devices. An application 
will work with devices provided by any hardware vendor, provided that the vendor’s driver implements 
the standard I/O Kit interface for that device. From a driver developer’s point of view, using the common 
interface provided by the I/O Kit is in their best interest because it ensures that the driver is accessible to 
a large number of user space applications without forcing developers to adopt a custom interface for the 
driver. It also requires less work on your part. 

A good example of this is a serial port driver. A Mac OS X user space application accesses serial ports 
through a character device that is represented by a file in the /dev path of the file system. To 
communicate over a serial device, a user application calls the same functions as it would to open, read, 
or write to any other file on the file system; that is open(), read(), and write(). In the kernel, a driver that 
provides a serial port will create an instance of the standard I/O Kit class IOSerialStreamSync. The I/O 
Kit’s serial family will create a device node in the /dev directory, publishing the path of the node in the 
I/O Registry so that applications can find it. It will also pass requests from user applications to method 
calls in the driver’s implementation, which is a subclass of the standard IOSerialDriverSync class. There 
was no work required by the driver developer in publishing its services to user space. This is illustrated in 
Figure 5-1. 
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Figure 5-1. The classes involved in communicating with a serial port from a user space application. With 

the exception of MySerialDriver, all of the objects and their connections are created by the I/O Kit. 

Not all driver developers are as fortunate as the developers of a serial port driver in having the I/O 
Kit take care of crossing the user space/kernel boundary. For a hardware device that provides custom 
functionality, the I/O Kit may not provide an appropriate client interface that your driver is able to use. 
In this case, your driver will need to implement a custom interface for user space applications to use 
when interacting with it. As we saw in Chapter 1, Mac OS X has a strict barrier between user space and 
the kernel. This places restrictions on the nature of how this interaction takes place. This chapter 
describes the methods provided by the I/O Kit to cross the user/kernel boundary and allow 
communication between user applications and a kernel driver. 

The I/O Kit Framework 
The user space API through which a process communicates with a kernel driver is provided by a 
framework known as “IOKit.framework,” which will hereafter be referred to as the “I/O Kit framework.” 
The I/O Kit framework allows a user space application to determine the hardware devices and kernel 
drivers that are present on the system, to watch for the arrival or removal of hardware that can be hot-
plugged (such as USB devices), and to interact with I/O Kit drivers. The I/O Kit framework defines the 
data types that provide a user space representation of kernel objects and the functions that are needed 
to manipulate these kernel objects. Although the I/O Kit is a C++ based framework in the kernel, the user 
space I/O Kit framework is provided as a set of C-based functions, so it can be used by projects that are 
written in both C and C++ or by projects that are written in Objective-C, which is of particular 
importance for GUI applications. 

The I/O Kit framework provides access to the kernel objects that are present in the I/O Registry, 
which can be examined with the IORegistryExplorer utility (see Chapter 4). The I/O Registry consists of 
kernel objects that represent hardware devices that are connected to the computer or drivers that have 
matched against connected hardware devices and have been loaded into the kernel. The objects in the 
I/O Registry can be created only within the kernel, including by kernel drivers, but the I/O Kit framework 
provides a way for applications in user space to examine the contents of the I/O Registry, including 
iterating the registry, determining the relationship between objects (for example, to determine which 
driver has been loaded against a particular hardware device), and to read and write the properties of an 
object in the I/O Registry. 

The I/O Registry contains kernel objects that may represent either loaded drivers or connected 
hardware devices. This means that the functionality provided by the I/O Kit framework can be applied to 
both a driver and to a hardware device. In some cases, an application can directly manipulate a 
hardware device through its corresponding I/O Registry object without the need for a kernel driver; this 
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is discussed in Chapter 15 for USB devices. The I/O Kit framework also allows an application to install a 
notification to watch for the arrival of a particular driver or hardware device. 

Finding a Driver 
The first step in communicating with a kernel driver from a user space application is to locate the 
running instances of the driver of interest. On a system such as Mac OS X, hardware devices can be 
plugged into the machine at any time and there may be several instances of a driver loaded if the user 
has connected multiple hardware devices that are supported by your driver. To handle these cases, the 
I/O Kit framework provides functions to not only iterate over all devices and drivers in the I/O Registry 
that match certain criteria, but also allows a callback function to be installed to watch for the arrival or 
removal of a driver or a device that matches certain criteria. 

To locate a specific driver in the I/O Registry, the I/O Kit framework uses a matching dictionary that 
includes the properties of the driver or device that you are interested in. The beauty of the I/O Kit design 
is that the matching dictionary that a user space application uses to locate a driver or a hardware device 
takes exactly the same form as the matching dictionary found in the driver personality of a kernel 
driver’s property list (see Chapter 4). In fact, the same code that the kernel uses to compare a driver’s 
matching dictionary when deciding whether to load a driver against a device is the very code that is used 
to decide whether a device or driver is of interest to the application when comparing a user space 
application’s matching dictionary.  

As with the matching dictionary in a driver’s property list, an application can create a matching 
dictionary that is as generic or specific as required. For example, depending on the properties you add to 
the matching dictionary, it could match against all USB devices or, by adding a specific USB vendor ID to 
the matching dictionary, against any USB device produced by a certain manufacturer. Adding a further 
USB product ID to the matching dictionary would allow it to match against only a specific USB device. 

As an example, Listing 5-1 creates a matching dictionary that will match against any USB device and 
uses it to iterate over the I/O Registry, printing the name of all matching devices. To compile this sample, 
a new project in Xcode that is based on the Mac OS X application template named “Command Line 
Tool” is created. When prompted to name the project, enter “DriverIterator” and select “Core 
Foundation” as the project type. You will need to add the framework “I/OKit.framework” to the project; 
otherwise, you will receive a link error when the project is built. 

The structure of the code should be fairly straightforward: 

1. It creates a matching dictionary that specifies the properties of the hardware 
device or drivers that we are interested in. This example uses the helper 
function IOServiceMatching(), which creates a dictionary with a single entry 
for the IOProviderClass key with the specified value. This has the same effect 
as adding an IOProviderClass entry to the matching dictionary of a driver’s 
property list; any kernel object that is a subclass of the specified class, 
IOUSBDevice in this example, will match against the dictionary. 

2. It calls IOServiceGetMatchingServices() passing in the matching dictionary 
and receives as output an iterator that can be used to traverse all kernel objects 
in the I/O Registry that match the matching dictionary. The iterator represents 
the state of the system at the time that the function was called; once the 
iterator object has been created, it will not be modified, even if additional 
matching devices are added to the system. 

3. The function IOIteratorNext() is called repeatedly, and on each call it returns 
the next object that matched the specified dictionary. When the final object 
has been received, any further calls to IOIteratorNext() will return 0. Any 
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object returned by the iterator has had its reference count incremented and 
needs to be released by the caller through a call to IOObjectRelease(). 

4. To refine this sample, the code excludes USB hubs and only lists the names of 
actual USB devices. This also allows the sample to demonstrate the type 
introspection functionality that user space applications can perform on kernel 
objects. To do this, the function IOObjectCopyClass() is called, which returns 
the object’s class type as a CoreFoundation string. The matching dictionary 
will include all objects that are either instances of IOUSBDevice or instances of 
classes that are derived from IOUSBDevice, which includes the IOUSBHubDevice 
class. To exclude USB hub devices from the listing, this sample will ignore any 
objects whose class name is not an exact match of the string “IOUSBDevice.” 

Listing 5-1. Code To Iterate All Connected USB Hardware Devices 

#include <CoreFoundation/CoreFoundation.h> 
#include <IOKit/IOKitLib.h> 
 
int main (int argc, const char * argv[]) 
{ 
        CFDictionaryRef         matchingDict = NULL; 
        io_iterator_t           iter = 0; 
        io_service_t            service = 0; 
        kern_return_t           kr; 
         
        // Create a matching dictionary that will find any USB device. 
        matchingDict = IOServiceMatching("IOUSBDevice"); 
         
        // Create an iterator for all I/O Registry objects that match the dictionary. 
        kr = IOServiceGetMatchingServices(kIOMasterPortDefault, matchingDict, &iter); 
        if (kr != KERN_SUCCESS) 
                return -1; 
         
        // Iterate over all matching objects. 
        while ((service = IOIteratorNext(iter)) != 0) 
        { 
                CFStringRef     className; 
                io_name_t       name; 
                 
                // List all IOUSBDevice objects, ignoring objects that subclass IOUSBDevice. 
                className = IOObjectCopyClass(service); 
                if (CFEqual(className, CFSTR("IOUSBDevice")) == true) 
                { 
                        IORegistryEntryGetName(service, name); 
                        printf("Found device with name: %s\n", name); 
                } 
                CFRelease(className); 
                IOObjectRelease(service); 
        } 
         
        // Release the iterator. 
        IOObjectRelease(iter); 
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        return 0; 
} 

 Note  The function IOServiceGetMatchingServices() is guaranteed to release a reference on the matching 
dictionary that is passed in. This is why the code in Listing 5-1 does not need to call CFRelease() on the 
CFDicionaryRef that it creates. 

Listing 5-1 uses a function named IOServiceGetMatchingServices() to create a matching dictionary 
for kernel objects that the application is interested in. The first parameter to the function 
IOServiceGetMatchingServices() is a Mach port that is used for communicating between the user space 
process and the I/O Kit. In Mac OS X 10.2 and later, a convenience macro named kIOMasterPortDefault 
was introduced, although some of the Apple sample code still uses the pre-Mac OS X 10.2 approach of 
calling the IOMasterPort() function to obtain the I/O Kit’s Mach port. 

On a system such as Mac OS X, hardware devices can be plugged into the system at any time. The 
problem with the approach that we used in the previous section is that it requires the application to poll 
for a list of connected devices. A better approach is to have the I/O Kit notify your application whenever 
a device that you are interested in is connected to the computer. The I/O Kit framework provides an 
alternative approach in which the application specifies a matching dictionary and a callback function to 
be notified when an object that meets the matching dictionary is added to the I/O Registry. As with 
similar functions in Mac OS X, notifications from the I/O Kit framework are delivered using the standard 
event dispatch mechanism known as a “run loop.” 

The run loop is the fundamental means by which a Mac OS X or iOS application is notified of events 
from multiple sources without having to spend CPU time polling each source. The run loop is a Core 
Foundation object that monitors multiple “run loop sources.” Whenever any of them generates an event 
that requires processing, the run loop dispatches the event to a registered callback function. Each thread 
on Mac OS X contains a run loop, including the main thread. The event loop on Mac OS X, which runs on 
the main thread, is simply a run loop that contains sources for keyboard and mouse events. For example, 
in response to the user clicking the mouse button, the main thread’s run loop will awake and generate a 
Cocoa mouse down event for the application window in which the user clicked. 

Listing 5-2 demonstrates how a command line utility can register to receive notifications whenever 
a USB device is connected to the computer. You will notice that the same matching dictionary can be 
used whether using a polling method or the notification callback. 

Listing 5-2. Code To Watch for the Arrival of USB Devices 

#include <CoreFoundation/CoreFoundation.h> 
#include <IOKit/IOKitLib.h> 
 
int main (int argc, const char * argv[]) 
{ 
        CFDictionaryRef                 matchingDict = NULL; 
        io_iterator_t                   iter = 0; 
        IONotificationPortRef           notificationPort = NULL; 
        CFRunLoopSourceRef              runLoopSource; 
        kern_return_t                   kr; 
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        // Create a matching dictionary that will find any USB device 
        matchingDict = IOServiceMatching("IOUSBDevice"); 
         
        notificationPort = IONotificationPortCreate(kIOMasterPortDefault); 
        runLoopSource = IONotificationPortGetRunLoopSource(notificationPort); 
        CFRunLoopAddSource(CFRunLoopGetCurrent(), runLoopSource, kCFRunLoopDefaultMode); 
         
        kr = IOServiceAddMatchingNotification(notificationPort, kIOFirstMatchNotification,  
             matchingDict, DeviceAdded, NULL, &iter); 
        DeviceAdded(NULL, iter); 
         
        CFRunLoopRun(); 
         
        IONotificationPortDestroy(notificationPort); 
         
        // Release the iterator 
        IOObjectRelease(iter); 
         
        return 0; 
} 

To create a notification callback for device and driver objects that meet certain criteria, the code in 
Listing 5-2 performs the following steps: 

1. A matching dictionary is created that describes the properties of the device 
that the application is interested in. 

2. The function IONotificationPortCreate() is called to set up the 
communication channel through which the I/O Kit is able to deliver 
notification messages to the user space application. 

3. Because we want to use a run loop to dispatch notifications to our application, 
we create a run loop source to represent the notification port and install that 
source on the current thread’s run loop. 

4. We then call IOServiceAddMatchingNotification() to associate the matching 
dictionary with the notification port (and run loop source). This function 
allocates and returns an iterator object, which plays an important role in the 
operation of notification messages. Following the call to 
IOServiceAddMatchingNotification(), the iterator contains all objects from the 
I/O Registry that match the matching dictionary. The I/O Kit framework won’t 
deliver notifications for these devices, so we need to manually call our callback 
function, passing in the returned iterator. It’s also important to do this 
because, until the end of the iterator is reached by calling IOIteratorNext(), 
no notifications will be delivered and the callback function will not be called. 
Similarly, the device callback must run through the iterator until the final 
object is reached. The caller must not release the iterator until the notification 
callback is no longer needed. As with the IOServiceGetMatchingServices() 
function, when IOServiceAddMatchingNotification() is called, it will always 
decrement the reference count of the matching dictionary. Therefore, if the 
caller requires the dictionary after installing the notification, it should 
manually retain the object beforehand. 
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5. Since this example is a command line utility, we need to manually run the run 
loop by calling CFRunLoopRun(). If this were a Cocoa-based application and we 
were installing the notification into the main run loop, the run loop would be 
started for us by the NSApplicationMain() function. 

6. Finally, when the application exits, we destroy the notification port. This 
automatically removes the run loop source from the run loop into which it was 
added and releases the iterator object. 

The callback function DeviceAdded is shown in Listing 5-3. You will notice that it is identical to the 
code that we used in the polling implementation. The iterator object that is passed to the callback 
function is the same object that is returned from the initial call to IOServiceAddMatchingNotification(). 
Because the same object is re-used for all devices that the notification informs us of, it is important that 
the callback does not release the iterator object, since the iterator must remain valid while the 
notification is installed. 

Listing 5-3. Code To Watch for the Arrival of USB Devices 

void DeviceAdded (void* refCon, io_iterator_t iterator) 
{ 
        io_service_t            service = 0; 
         
        // Iterate over all matching objects. 
        while ((service = IOIteratorNext(iterator)) != 0) 
        { 
                CFStringRef     className; 
                io_name_t       name; 
                 
                // List all IOUSBDevice objects, ignoring objects that subclass IOUSBDevice. 
                className = IOObjectCopyClass(service); 
                if (CFEqual(className, CFSTR("IOUSBDevice")) == true) 
                { 
                        IORegistryEntryGetName(service, name); 
                        printf("Found device with name: %s\n", name); 
                } 
                CFRelease(className); 
                IOObjectRelease(service); 
         } 
} 

 Tip  A common cause of problems with device notification callbacks is failing to empty the iterator by calling 
IOIteratorNext() until 0 is returned. Once the end of the iterator is reached, the iterator is re-armed and the 
callback is enabled. 

For hardware devices that have a kernel driver, user space applications will control the hardware by 
sending control requests to the driver rather than interacting with the hardware device directly. In this 
case, the application isn’t so much interested in the arrival of a particular hardware device as it is 
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interested in when the driver for the hardware has loaded. This can be performed by creating a 
dictionary that matches the class name of the driver using the function IOServiceMatching(). For 
example, to create a dictionary that will match against the sample I/O Kit driver that was developed in 
Chapter 4, an application would use the following code: 

IOServiceMatching("com_osxkernel_driver_IOKitTest"); 

The reverse-DNS naming scheme ensures that the driver’s class name is unique, which means that 
any driver that matches the matching dictionary is guaranteed to be our driver. 

Observing Device Removal 
As well as watching for the arrival of devices, an application may wish to watch for a device being 
removed from the system, such as a USB device being unplugged. Unlike device arrival messages, which 
are delivered for any device that meets the criteria described by a matching dictionary, a device removal 
message is delivered only for a particular device that the application has registered an interest in. An 
application will typically register an interest in all devices that it has opened, since the application will 
want to respond to the removal of a device that it is accessing. 

In our previous code examples, such as Listing 5-3, we obtained a reference to a driver object, read 
properties from the driver, and then released the driver object, all within the one function. It is far more 
common that an application will hold on to the driver object beyond the device arrival callback function, 
perhaps only releasing it when the application exits or the device is removed. 

 Note  In our previous examples, we were able to use the local variables of a function to hold the driver object, 
since the driver was released before we returned from the function. However, if an application wishes to use the 
driver object after returning from the function, it will need to allocate a structure on the heap to hold the driver 
state. 

Having obtained a reference to a driver instance, an application can register to receive notifications 
when the driver’s state changes, including when the driver has terminated in response to its hardware 
device being removed. This notification callback is installed by calling the function named 
IOServiceAddInterestNotification(), which is defined in the I/O Kit framework. As with the notification 
for device arrival, the application needs to provide a port on which the I/O Kit will signal the application 
when the driver’s state has changed. This can be created with the function IONotificationPortCreate(), 
as was shown in Listing 5-2. If the application has already created a notification port for device arrival 
events, it can share that same notification port and its corresponding run loop source to receive device 
removal notifications. This is done by passing the existing notification port to the function 
IOServiceAddInterestNotification(). 

When the application receives a notification that a driver instance has terminated, it should release 
its reference to that driver and take any action that is necessary to inform the user that the device has 
been removed. 

Listing 5-4 demonstrates a modification to the DeviceAdded() function from Listing 5-3 that creates 
a structure to represent an instance of a driver within the application and then installs a callback to 
receive notifications from the driver (such as driver termination). 
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Listing 5-4. Code Snippet Demonstrating How an Application Can Install a Callback Function To Receive 

a Notification When a Driver Terminates 

#include <IOKit/IOMessage.h> 
 
// Structure to describe a driver instance. 
typedef struct { 
        io_service_t    service; 
        io_object_t     notification; 
} MyDriverData; 
 
// Notification port used for both device arrival and driver state changes. 
IONotificationPortRef   gNotificationPort = NULL; 
 
void DeviceAdded (void* refCon, io_iterator_t iterator) 
{ 
        io_service_t            service = 0; 
         
        // Iterate over all matching objects. 
        while ((service = IOIteratorNext(iterator)) != 0) 
        { 
                MyDriverData*   myDriverData; 
                kern_return_t   kr; 
                 
                // Allocate a structure to hold the driver instance. 
                myDriverData = (MyDriverData*)malloc(sizeof(MyDriverData)); 
                // Save the io_service_t for this driver instance. 
                myDriverData->service = service; 
                 
                // Install a callback to receive notification of driver state changes. 
                kr = IOServiceAddInterestNotification(gNotificationPort, 
                                        service,                        // driver object 
                                        kIOGeneralInterest, 
                                        DeviceNotification,             // callback 
                                        myDriverData,           // refCon passed to callback 
                                        &myDriverData->notification); 
        } 
} 
 
void DeviceNotification (void* refCon, io_service_t service, natural_t messageType,  
     void* messageArgument) 
{ 
        MyDriverData*   myDriverData = (MyDriverData*)refCon; 
        kern_return_t   kr; 
         
        // Only handle driver termination notifications. 
        if (messageType == kIOMessageServiceIsTerminated) 
        { 
                // Print the name of the removed device. 
                io_name_t       name; 
                IORegistryEntryGetName(service, name); 
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                printf("Device removed: %s\n", name); 
                 
                // Remove the driver state change notification. 
                kr = IOObjectRelease(myDriverData->notification); 
 
                // Release our reference to the driver object. 
                IOObjectRelease(myDriverData->service); 
 
                // Release our structure that holds the driver connection. 
                free(myDriverData); 
        } 
} 

Modifying Driver Properties 
Once an application has located the driver object that it is interested in, it can interact with the driver 
and the hardware device that it controls. The I/O Kit framework provides two ways to interact with a 
driver from user space. One method requires the application to open a connection to the driver and then 
to use that connection to send control requests to the driver and receive status. A connection-based 
approach is necessary if the driver needs to maintain the state of a client or needs access control to 
ensure that only one client at a time can access the hardware device. This is discussed later in this 
chapter. 

Another method, which is far simpler, is to allow an application to read and write key/value 
property values to the driver. The driver can perform certain types of operations without having to know 
which client sent the request, such as reading or writing driver preference values or configuring the 
settings of a hardware device. For example, the volume level of an audio device is a single value that 
could be read or written by any user application. When that value is set, the driver can reconfigure the 
hardware device for the new volume setting, regardless of which application set the value. 

As we saw in Chapter 4, each I/O Kit driver contains a property table that is a dictionary of key/value 
pairs. A driver’s property table is accessible from any user space application without restriction (which is 
how the I/ORegistryExplorer utility is able to display each driver’s properties). Furthermore, an 
application can add new key/value pairs to a driver’s property table and can modify the value of an 
existing property. This can be used to easily exchange small amounts of data between a user space 
application and a kernel driver. Since this approach is not connection based, the driver cannot modify 
its behavior for different user applications; every user application can access the same property table 
values. However, if there are multiple instances of the same driver loaded, each instance has its own 
property table. It should be noted that the driver’s property table is volatile and will not be saved when 
the driver is unloaded. 

Once an application has located the driver that it is interested in, the I/O Kit framework contains 
functions that make it very easy to read and write a driver’s property table. The function 
IORegistryEntryCreateCFProperties() provides the calling application with a snapshot of the state of a 
driver’s property table as a Core Foundation dictionary. If the application is interested in the value of a 
particular key, then the function IORegistryEntryCreateCFProperty() can be used. For example, 
suppose we wished to modify the callback function from Listing 5-3 so that it prints the name of the 
manufacturer for each USB device that is connected to the computer rather than printing the device 
name. The IOUSBDevice class makes the manufacturer string available through its property table with a 
key “USB Vendor Name.” The code in Listing 5-5 shows the modified callback function, which reads the 
vendor name from the device’s property table. 
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Listing 5-5. Reading the Property Table of a USB Device To Obtain the Device’s Manufacturer String 

void DeviceAdded (void* refCon, io_iterator_t iterator) 
{ 
        io_service_t            service = 0; 
         
        // Iterate over all matching objects 
        while ((service = IOIteratorNext(iterator)) != 0) 
        { 
                CFStringRef     className; 
                 
                // List all IOUSBDevice objects, ignoring objects that subclass IOUSBDevice. 
                className = IOObjectCopyClass(service); 
                if (CFEqual(className, CFSTR("IOUSBDevice")) == true) 
                { 
                        CFTypeRef               vendorName; 
                         
                        vendorName = IORegistryEntryCreateCFProperty(service,  
                              CFSTR("USB Vendor Name"), kCFAllocatorDefault, 0); 
                        CFShow(vendorName); 
                } 
                CFRelease(className); 
                IOObjectRelease(service); 
        } 
} 

As the code in Listing 5-5 shows, the property table is a very convenient way for a driver to publish 
information to user applications, such as a description of its hardware, the driver’s current state, or 
debugging information. Another use of a driver’s property table is to allow an application to pass small 
amounts of data to a driver. As an example, let’s modify the sample I/O Kit driver that was developed in 
Chapter 4 to allow an application to specify a custom message to be printed when the driver is unloaded. 
We will do this by adding a string value to the property table under the key “StopMessage.” This key will 
be added to the property table by a user space application but will be read from the property table by the 
kernel driver when it is being unloaded. 

Let’s begin by modifying the user space application. First, it needs to locate the I/O Kit driver that 
was written in Chapter 4. This can be done by creating the following matching dictionary: 

matchingDict = IOServiceMatching("com_osxkernel_driver_IOKitTest"); 

Next, we will write string value “The driver has stopped” to the driver’s property table and make it 
accessible under the key “StopMessage”: 

IORegistryEntrySetCFProperty(service, CFSTR("StopMessage"), CFSTR("The driver has stopped")); 

That’s all that is required from the user space application. In this example, we have chosen to use a 
string value, although the value of a driver’s property may be any of the Core Foundation types CFString, 
CFNumber, CFBoolean, CFData, or a CFArray or CFDictionary containing objects of the supported Core 
Foundation types. 

When a driver’s property is set from a user space application, the method setProperties() in the 
corresponding driver object is called with a parameter containing a dictionary of the properties that 
have been set. The method setProperties() is defined in the IORegistryEntry class, but since every I/O 
Kit driver class is a subclass of IOService, which is itself a subclass of IORegistryEntry, every driver 
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object can override this method. By default, the base class implementation of setProperties() does 
nothing. So unless your driver provides an implementation, any properties set on your driver by a user 
space application will be ignored. 

The setProperties() method provides a driver with a chance to immediately respond to a value that 
has been set from a user space application. If the modified property requires the driver to reconfigure 
the underlying hardware device, the setProperties() method is the place in which this should be 
performed. For our sample driver, when an application changes the StopMessage property, we will have 
the driver update its property table and insert the provided string value. This will also make the property 
available so that it can be read by user applications, including I/ORegistryExplorer. The code to handle 
this is shown in Listing 5-6. 

Listing 5-6. A Sample Implementation of the Driver’s setProperties() Method 

IOReturn com_osxkernel_driver_IOKitTest::setProperties (OSObject* properties) 
{ 
        OSDictionary*   propertyDict; 
         
        // The provided properties object should be an OSDictionary object. 
        propertyDict = OSDynamicCast(OSDictionary, properties); 
        if (propertyDict != NULL) 
        { 
                OSObject*               theValue; 
                OSString*               theString; 
                 
                // Read the value corresponding to the key "StopMessage" from the dictionary. 
                theValue = propertyDict->getObject("StopMessage"); 
                theString = OSDynamicCast(OSString, theValue); 
                if (theString != NULL) 
                { 
                        // Add the value to the driver's property table. 
                        setProperty("StopMessage", theString); 
                        return kIOReturnSuccess; 
                } 
        } 
         
        return kIOReturnUnsupported; 
} 

Finally, when the sample driver unloads, it should print the custom stop message if one was set 
from a user space application. This can be done by querying the driver’s property table for the value of 
the key “StopMessage,” as shown in Listing 5-7. In this example, we have chosen to write the property to 
the driver’s property table. There is no requirement for a driver to handle the setProperties() method in 
this way. We could have saved the provided string value in an instance variable or, if the value was used 
to reconfigure hardware, we could have written the value to hardware in the setProperties() method, 
after which the driver would have no further need for the value and could discard it. 

Listing 5-7. Using the Custom String Value That Has Been Set by the User Application 

void com_osxkernel_driver_IOKitTest::stop (IOService *provider) 
{ 
        OSString*       stopMessage; 
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        // Read a possible custom string to print from the driver property table. 
        stopMessage = OSDynamicCast(OSString, getProperty("StopMessage")); 
        if (stopMessage) 
                IOLog("%s\n", stopMessage->getCStringNoCopy()); 
         
        super::stop(provider); 
} 

State-Based Interaction 
Although the approach of getting and setting driver properties provides a very easy way to interact with a 
driver and a hardware device, it is rather inflexible, which makes it suitable only for very specific uses. 
The I/O Kit Framework provides another method for interacting with drivers from user space 
applications that is based on a connection between a user application and the driver. The use of a 
connection allows the driver to determine which user application a request has originated from and can 
therefore associate a state with the connection. (Alternatively, because an application can have multiple 
connections open to a driver, the driver can determine which connection a request is originating from.) 
This allows for the implementation of complex protocols and state-based control. 

For example, a hardware device may be accessible to one user space application at a time, which 
requires an application to request exclusive access to the device. Having obtained exclusive access, it 
may then need to configure the device before reading or writing data. With a connection-based 
approach, the driver can allow control of the hardware to the client that has been granted exclusive 
access to the device and reject requests from other connections. Furthermore, it can ensure that a client 
cannot read or write data if that connection hasn’t previously configured the hardware as required. The 
use of a connection also allows a driver to implement asynchronous operations. An application can send 
a request to the driver to begin a background operation and could then poll the driver to determine 
whether the transaction has been completed. Because the driver sees the request to begin the operation 
and each request to poll the status of the operation is being made from the same connection, it can use 
this to determine which operation the application is polling. Alternatively, the driver could use the 
application’s connection to send a notification to the application when the background operation has 
completed and thus eliminate the need for the status to be polled. 

In the kernel, each connection made to the driver from a user application is represented by a class 
known as IOUserClient. For each connection made to a driver, the I/O Kit instantiates an IOUserClient 
object, and that object is destroyed only when the application closes its connection to the driver or when 
the application terminates. All control requests that the application makes to the driver are handled by 
the user client object that represents that particular connection. A driver provides its own 
implementation of a class that subclasses from IOUserClient, adding any methods and instance 
variables that it needs to maintain the state of an application’s connection.  

The ingenuity of the I/O Kit design is that user client objects are themselves a driver object: the 
IOUserClient class inherits from IOService and, as with any other IOService instance, each user client 
has a provider class that, for a user client, is the instance of the driver that the application is controlling. 
An example of the relationship between a driver and its user client instances is shown in Figure 5-2. 
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Figure 5-2. The relationship between a driver object and its user client objects that provide the kernel-side 

representation of an application’s connection to the driver. 

To establish a connection to a driver, an application simply has to call the function IOServiceOpen() 
as follows: 

task_port_t     owningTask = mach_task_self(); 
uint32_t        type = 0; 
io_connect_t    driverConnection; 
kern_return_t   kr; 
 
kr = IOServiceOpen(service, owningTask, type, &driverConnection); 

In the preceding code, service represents the driver that the application wishes to connect to, 
which is found using the standard driver matching techniques described earlier, owningTask represents 
the running application, and type is an unsigned 32-bit integer whose value is interpreted by the driver 
in any way that it chooses. The driverConnection parameter is returned to the caller if the function 
completes successfully and represents the established connection to the driver. Any request that the 
application sends to the driver will be made by calling a function that takes this connection object as a 
parameter. When the application is no longer interested in controlling the driver, it makes a call to the 
function IOServiceClose(). 

When an application calls the function IOServiceOpen(), the operating system calls the specified 
driver object in the kernel, which handles the request. The driver’s class receives the following method 
call: 

IOReturn    DriverClass::newUserClient (task_t owningTask, void* securityID, UInt32 type,  
OSDictionary* properties, IOUserClient** handler) 

Many of the parameters to the newUserClient() method should look familiar. They are simply the 
values that the user space application passed to the IOServiceOpen() function. The kernel 
implementation of newUserClient() is responsible for instantiating a new user client object and 
returning it to the caller through the handler parameter. However, most drivers will never need to 
implement the newUserClient() method because an implementation that is suitable for nearly all uses 
is provided by the IOService base class. To take advantage of this standard implementation, all that a 
driver needs to do is add a string value to its property table with the key “IOUserClientClass.” The value 
of this property is a string value that contains the class name of a driver’s user client class. This can be 
done either by adding an entry to the driver’s personality in the Info.plist file (because the driver’s 
property table is initialized from the values in the Info.plist file) or by manually setting the property 
when the driver loads. For example, the driver in Figure 5-2 has a user client that is implemented by a 
class named MyUserClient and, as a result, would set its user client class with the following call: 
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setProperty("IOUserClientClass", "MyUserClient"); 

The standard implementation of newUserClient() will instantiate the driver’s specified user client 
class and initialize the new user client, making the main driver class its provider. 

Let’s look at how we would implement a user client class for the tutorial I/O Kit driver that was 
developed in Chapter 4. The header file for a skeleton user client class for this driver is shown in Listing 
5-8. You will notice that many of the methods that the user client implements are similar to the methods 
implemented by the main driver class, which is because the class IOUserClient is derived from the same 
IOService class that every driver is ultimately derived from. A user client therefore implements the same 
initialization and termination methods that any other driver class must implement. 

Listing 5-8. The Header File for a Basic User Client Class 

class com_osxkernel_driver_IOKitTestUserClient : public IOUserClient 
{ 
        OSDeclareDefaultStructors(com_osxkernel_driver_IOKitTestUserClient) 
         
private: 
        task_t                          m_task; 
        com_osxkernel_driver_IOKitTest* m_driver; 
         
public:  
        virtual bool    initWithTask (task_t owningTask, void* securityToken, 
                                        UInt32 type, OSDictionary* properties); 
        virtual bool    start (IOService* provider); 
 
        virtual IOReturn        clientClose (void);      
        virtual void    stop (IOService* provider); 
        virtual void    free (void); 
}; 

Along with the familiar methods start(), stop(), and free(), the user client provides an additional 
method that is part of a user client’s object management, namely clientClose(). This method is called 
when the user space application has closed its connection to the driver, either through a call to 
IOServiceClose() or because the application has terminated or crashed. A driver should not trust a user 
space application to be well-written and to tidy up after itself before the user client is closed. Therefore, 
the clientClose() method is a good place for a driver to make sure that the hardware is returned to an 
idle state and ready for the next user space application that wishes to use it. 

 Tip  The IOUserClient class provides a method named clientDied(). A subclass can choose to implement 
this method if it needs to distinguish between a client connection closing as a result of the user space process 
terminating without calling IOServiceClose(). Since the default implementation of clientDied() simply calls 
clientClose(), most user client implementations can get by with an implementation of the clientClose() 
method which handles both cases. 
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The implementation of a sample user client class is shown in Listing 5-9. For brevity, the 
implementation methods of stop() and free() have been omitted because, for our basic user client, 
these methods are simply calling through to the implementation provided by the superclass. 

Listing 5-9. The Implementation of a Basic User Client Class 

// Define the superclass. 
#define super IOUserClient 
 
OSDefineMetaClassAndStructors(com_osxkernel_driver_IOKitTestUserClient, IOUserClient) 
 
bool    com_osxkernel_driver_IOKitTestUserClient::initWithTask (task_t owningTask, void* 
securityToken, UInt32 type, OSDictionary* properties) 
{ 
        if (!owningTask) 
                return false; 
         
        if (! super::initWithTask(owningTask, securityToken , type, properties)) 
                return false; 
         
        m_task = owningTask; 
         
        // Optional:  Determine whether the calling process has admin privileges. 
        IOReturn ret = clientHasPrivilege(securityToken, kIOClientPrivilegeAdministrator); 
        if ( ret == kIOReturnSuccess ) 
        { 
                // m_taskIsAdmin = true; 
        } 
         
        return true; 
} 
 
bool    com_osxkernel_driver_IOKitTestUserClient::start (IOService* provider) 
{ 
        if (! super::start(provider)) 
                return false; 
         
        m_driver = OSDynamicCast(com_osxkernel_driver_IOKitTest, provider); 
        if (!m_driver) 
                return false; 
         
        return true; 
} 
 
IOReturn        com_osxkernel_driver_IOKitTestUserClient::clientClose (void) 
{ 
        terminate(); 
        return kIOReturnSuccess; 
} 

There are several important points to note about the implementation of the three user client 
methods shown in Listing 5-9: 
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• In the initWithTask() method, we save the parameter owningTask to an instance 
variable. As we will see later in the chapter, this value is needed when we wish to 
access memory in the client’s address space, such as when writing data from the 
driver to a buffer that has been allocated by the client process. The initWithTask() 
method is also an opportunity to determine the privileges of the calling process. 
Although not commonly needed, it is possible that the user client may wish to 
limit certain operations to tasks that are running with administrative privileges. 
For example, an Ethernet card could use this to prevent a non-privileged process 
from enabling promiscuous mode and having access to all network packets. 

• The start() method is fairly straightforward, although it is worth noting that the 
provider class that is passed in as an argument is an instance to the main driver 
class. Since the user client’s role is to accept control requests from a user space 
application and pass these requests on to the driver, the provider class will need a 
reference to the main driver class. This can be obtained by saving the provider 
class from the start() method to an instance variable. 

• The clientClose() method is called in response to the calling process closing its 
driver connection by calling the IOServiceClose() function or otherwise 
terminating without closing its connection to the driver. The user client receives 
clientClose() before any other methods that are called as part of an IOService 
termination, such as stop() and free(). An implementation of clientClose() 
should release any resources that were allocated on behalf of the calling process 
and return the hardware to an idle state. Finally, it is important that the 
implementation calls the terminate() method, which begins the process of 
destroying the user client object.  

The role of the user client is to act as an intermediary between all communications between an 
application in user space and a kernel driver. Requests from user space are identified by a 32-bit integer 
control code that is defined by the driver developer. Along with each request, the application can also 
provide parameters and receive results back from the control request. Having created the user client 
class, all that remains is for us to define an interface to expose the driver’s functionality to user space 
applications. This interface will consist of two parts: 

• A library of functions that can be called by user space applications that wish to 
take advantage of services provided by the kernel driver 

• A number of methods in the user client class that correspond to each user 
function and that provide the kernel-side implementation of the interface 

Both the library functions in user space and the user client methods in the kernel require only a 
basic implementation, since the functionality itself comes from the main driver class. The role of the 
functions in the user space interface is to encode the operation and its parameters and pass the request 
on to the driver. When the user client receives the request, its role is to decode the operation and 
parameters and to call the appropriate driver function that implements the requested functionality. 

For our simple user client, we will define an interface that provides timing functionality to 
applications. The user space interface will implement the following functions: 

kern_return_t   StartTimer (io_connect_t connection); 
kern_return_t   StopTimer (io_connect_t connection); 
kern_return_t   GetElapsedTimerTime (io_connect_t connection, uint32_t* timerTime); 
kern_return_t   GetElapsedTimerValue (io_connect_t connection, TimerValue* timerValue); 
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kern_return_t   DelayForMs (io_connect_t connection, uint32_t milliseconds); 
kern_return_t   DelayForTime (io_connect_t connection, const TimerValue* timerValue);  

All driver interfaces have values and type definitions that are needed by both the user space 
implementation and the kernel’s user client implementation. For the interface that we have defined, the 
shared definitions include the request codes and the definition of types, such as the TimerValue 
structure. To allow these definitions to be shared between both projects, such definitions are usually 
placed in a common header file that can be included by both the user space application and the kernel 
project. The shared definitions for our driver are shown in Listing 5-10. 

Listing 5-10. The Contents of “TestDriverInterface.h” Containing Definitions That Are Required by Both 

the Kernel User Client and the User Space Interface. 

typedef struct TimerValue 
{ 
        uint64_t        time; 
        uint64_t        timebase; 
} TimerValue; 
 
// Control request codes for user client methods. 
enum TimerRequestCode { 
        kTestUserClientStartTimer, 
        kTestUserClientStopTimer, 
        kTestUserClientGetElapsedTimerTime, 
        kTestUserClientGetElapsedTimerValue, 
        kTestUserClientDelayForMs, 
        kTestUserClientDelayForTime, 
         
        kTestUserClientMethodCount 
}; 

 Note  The interface by which IOUserClient dispatches a control requests to an appropriate handler was 
changed in Mac OS X 10.5 to support a 64-bit kernel. The new implementation is not backwards compatible with 
older versions of Mac OS X. This chapter describes the updated interface only. 

The I/O Kit framework contains a number of functions that an application can use to invoke a 
method in a driver’s user client. The choice of which function an application should use for a particular 
control request depends on the type of parameters that are required by the operation. For a request 
whose parameters are integer-based, the function IOConnectCallScalarMethod() is an appropriate 
choice since it allows a variable-sized array of 64-bit integers to be passed from the user process to the 
kernel user client and receives an array of 64-bit integers from the kernel driver containing the result of 
the operation: 

kern_return_t   IOConnectCallScalarMethod( 
                        io_connect_t            connection, 
                        uint32_t                selector, 
                        const uint64_t*         inputValues, 
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                        uint32_t                inputCount, 
                        uint64_t*               outputValues, 
                        uint32_t*               outputCount); 

The first argument to the function is a connection to a driver’s user client, which the caller will have 
previously obtained by calling IOServiceOpen(). The next argument, selector, is the control code that is 
defined by the driver and describes which operation the user client should perform. This will be a value 
from the TimerRequestCode enumeration defined in Listing 5-10. The remaining arguments to the 
function allow the application to pass any parameters that are needed by the user client when it 
performs the operation and to receive any results back from the user client following the operation. 
Parameters that are labeled as inputs are provided by the calling application to the user client. 
Parameters that are labeled as outputs are returned to the application by the user client. The 
outputCount argument is both an input and an output argument; the caller initializes its value to the 
number of elements in the outputValues array, which tells the user client how many values it can safely 
write to the array. When the function completes, the number of values that were actually written to the 
outputValues array is returned in the value of outputCount. If the caller isn’t expecting any values to be 
returned by the user client, it can simply pass NULL as the outputCount argument. 

If a control request takes parameters of different types, it may be more natural to define a structure 
that combines all of the parameters that are provided to the user client and a structure to receive the 
result of the method. This is provided by the I/O Kit framework’s IOConnectCallStructMethod() function: 

kern_return_t   IOConnectCallStructMethod( 
                        io_connect_t    connection, 
                        uint32_t        selector, 
                        const void*     inputStruct, 
                        size_t          inputStructSize, 
                        void*           outputStruct, 
                        size_t*         outputStructSize); 

A pointer to the structure containing the input parameters is provided through the inputStruct 
argument, and the size of the input structure in bytes is passed as the inputStructSize argument. As 
with the scalar function, the argument outputStructSize is both an input and an output argument. The 
caller initializes its value to the maximum size in bytes of the outputStruct buffer and, on completion, 
the user client returns through the outputStructSize argument the number of bytes written to the 
outputStruct buffer.  

You may be wondering why the size of the returned structure would ever differ from the expected 
size of the output structure. The function IOConnectCallStructMethod() may be used to read a variable-
length array or a variable-length string from the user client. In these instances, the caller doesn’t know 
beforehand the number of bytes that will be returned. If the control request takes no input structure, 
then NULL can be passed as the inputStruct argument with an inputStructSize of 0 bytes. If the control 
request returns no output structure, then NULL can be passed for both the outputStruct and the 
outputStructSize arguments. 

The I/O Kit framework also allows a mix of both scalar parameters and structure parameters for 
functions that have some integer-based input or output parameters, as well as requiring an input or 
output structure parameter: 

kern_return_t   IOConnectCallMethod( 
                        io_connect_t    connection, 
                        uint32_t        selector, 
                        const uint64_t* inputValues, 
                        uint32_t        inputCount, 
                        const void*     inputStruct, 
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                        size_t          inputStructSize, 
                        uint64_t*       outputValues, 
                        uint32_t*       outputCount, 
                        void*           outputStruct, 
                        size_t*         outputStructSize); 

Although the I/O Kit framework provides three functions for calling user client methods, the 
functions IOConnectCallScalarMethod() and IOConnectCallStructMethod() are merely convenience 
functions that are built on top of IOConnectCallMethod(). 

Given the three methods that the I/O Kit framework provides for calling user client methods, let’s 
look at how we can implement the user space interface for our sample driver. The functions 
StartTimer() and StopTimer() pass no additional parameters to the user client, so they could be 
implemented by calling any of the three IOConnectCallXXX() functions. We have chosen to implement 
StartTimer() and StopTimer() using the IOConnectCallMethod() function. The user space 
implementation for StartTimer() is as follows: 

kern_return_t   StartTimer (io_connect_t connection) 
{ 
        return IOConnectCallMethod(connection, kTestUserClientStartTimer, 
                                NULL, 0, NULL, 0, NULL, NULL, NULL, NULL); 
} 

The implementation of GetElapsedTimerTime() reads a 32-bit integer from the user client, and so it 
seems natural to implement it using the function IOConnectCallScalarMethod(). The integer type used to 
represent scalar values used by the I/O Kit is a 64-bit unsigned integer and not the 32-bit value that our 
caller is expecting so we need to thunk the result that is received from the user client through a 
temporary 64-bit variable. We don’t check the value of scalarOutCount after the 
IOConnectCallScalarMethod() function completes, because we can trust our driver’s implementation to 
have returned a single integer if the operation completes successfully. 

kern_return_t   GetElapsedTimerTime (io_connect_t connection, uint32_t* timerTime) 
{ 
        uint64_t                scalarOut[1]; 
        uint32_t                scalarOutCount; 
        kern_return_t           result; 
         
        scalarOutCount = 1;     // Initialize to the size of scalarOut array 
        result = IOConnectCallScalarMethod(connection, kTestUserClientGetElapsedTimerTime, 
                                        NULL, 0, scalarOut, &scalarOutCount); 
        if (result == kIOReturnSuccess) 
                *timerTime = (uint32_t)scalarOut[0]; 
         
        return result; 
} 

Finally, let’s take a look at the implementation of the function DelayForTime() in our user space 
library. This function passes its parameters to the user client through a structure, so we have 
implemented it using the function IOConnectCallStructMethod(). 

kern_return_t   DelayForTime (io_connect_t connection, const TimerValue* timerValue) 
{ 
        return IOConnectCallStructMethod(connection, kTestUserClientDelayForTime, 
                                        timerValue, sizeof(TimerValue), NULL, 0); 
} 
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All requests from a user space application will invoke a method named externalMethod() in the user 
client class, which has the responsibility of dispatching the appropriate method to handle the control 
request and unpacking the parameters that were provided by the user space application. The 
IOUserClient base class provides an implementation of externalMethod(); however, any user client that 
provides support for control requests should override the base class’s implementation. Before looking 
any further into how a driver’s user client should implement externalMethod(), it is worth taking a look 
at its interface: 

IOReturn IOUserClient::externalMethod (uint32_t selector, IOExternalMethodArguments* args, 
                        IOExternalMethodDispatch* dispatch, OSObject* target,  
                        void* reference); 

When the I/O Kit calls your class’s implementation of externalMethod(), only the first two 
arguments will be filled in; the value of dispatch, target, and reference will all be set to NULL. The first 
argument, selector, is the 32-bit control code that specifies which operation the client application is 
requesting. The next argument, args, contains all of the scalar and structure parameters that the 
application passed to the user client. The definition of the IOExternalMethodArguments structure is 
shown in the following listing, with some fields omitted for clarity: 

struct IOExternalMethodArguments 
{ 
        … 
        const uint64_t*         scalarInput; 
        uint32_t                scalarInputCount; 
 
        const void*             structureInput; 
        uint32_t                structureInputSize; 
 
        IOMemoryDescriptor*     structureInputDescriptor; 
    
        uint64_t*               scalarOutput; 
        uint32_t                scalarOutputCount; 
 
        void*                   structureOutput; 
        uint32_t                structureOutputSize; 
 
        IOMemoryDescriptor*     structureOutputDescriptor; 
        uint32_t                structureOutputDescriptorSize; 
}; 

The fields of the IOExternalMethodArguments structure should look familiar since they are an almost 
perfect match of the arguments list of the user space IOConnectCallMethod() function. Two fields that 
deserve an explanation are structureInputDescriptor and structureOutputDescriptor. These fields are 
used to pass structures that are larger than 4096 bytes between the user process and the kernel driver. 
For structures that are smaller than the virtual memory page size, the I/O Kit will copy the entire 
structure between the user buffer and a kernel memory buffer. For larger buffers, the I/O Kit creates an 
IOMemoryDescriptor object to reference the buffer from the user process’s address space directly. The 
IOMemoryDescriptor class is described in Chapter 6 “Memory Management.” 

Given that the first two arguments to externalMethod() provide the implementation with all the 
information that it requires to perform the requested operation, you may be wondering where the 
remaining three arguments fit in. The conventional approach taken by a driver’s user client in 
implementing externalMethod() is to call the IOUserClient superclass’s implementation, passing the 
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values for selector and args that were provided to its method but filling in the dispatch, target, and 
reference arguments to describe the class method that should be called to handle the control request. 

Although there is nothing to stop a driver from implementing externalMethod() without calling 
through to the superclass, the advantage of using the implementation provided by the IOUserClient 
class is that its implementation performs validation of the parameters that have been provided by the 
calling process. The validation performed by the IOUserClient is limited to ensuring that the user client 
has received the expected parameters from the calling process—for example, ensuring that the process 
has provided the correct number of scalar input and output parameters and that the size of structure 
parameters that has been provided by the process matches the size of the structures that the driver will 
be reading and writing. To do this, the IOUserClient’s implementation of externalMethod() needs to 
know the parameters that the driver is expecting for a control request; this information comes from the 
IOExternalMethodDispatch structure that is passed to the superclass implementation through the 
dispatch argument. The type definition of IOExternalMethodDispatch is as follows: 

struct IOExternalMethodDispatch 
{ 
        IOExternalMethodAction          function; 
        uint32_t                        checkScalarInputCount; 
        uint32_t                        checkStructureInputSize; 
        uint32_t                        checkScalarOutputCount; 
        uint32_t                        checkStructureOutputSize; 
}; 

The IOExternalMethodDispatch structure describes the callback function that should be invoked to 
handle the control request, the number of scalar input and output parameters, and the size of any input 
and output structure parameters that the callback function is expecting. For a callback function that can 
accept a variable number of scalar parameters or a variable-length structure, the constant 
kIOUCVariableStructureSize can be written to the corresponding field of the IOExternalMethodDispatch 
structure. 

The callback function has the following signature: 

typedef IOReturn (*IOExternalMethodAction)(OSObject* target, void* reference, 
                        IOExternalMethodArguments* args); 

You will notice that the arguments to the callback function correspond to three of the arguments of 
IOUserClient::externalMethod(), including target and reference. This is more than just a coincidence. 
When your driver calls through to the superclass implementation of externalMethod(), it validates the 
parameters that were provided by the user space process and, if the correct parameters were provided, it 
calls the specified handler function, passing the values of target, reference, and args to the callback. 
Since the callback function is a static method, it cannot access any instance variables of the user client 
through the “this” pointer. Therefore, the value of target should be set to the instance of the user client 
that will handle the control request or, if the control request will be handled by a method in a different 
class, target should be set to the instance of that class. The value of reference is free for the user client 
for passing arbitrary data to the callback function. 

The entire process of handling a control request from a user space client, including the steps that 
are performed by the driver’s custom user client implementation and the steps performed by the 
standard IOUserClient implementation, is described in the following pseudocode: 
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// Implementation provided by the driver’s IOUserClient subclass 
IOReturn           MyUserClient::externalMethod (selector, args, dispatch, target, reference) 
{ 
 
        Use “selector” to determine which control request has been requested 
         
        Initialize “newDispatch” to the appropriate callback function to handle the control  
        request 
        Initialize “newTarget” to the current MyUserClient instance 
        Initialize “newReference” if we wish to provide additional data to the callback  
        function 
         
        Call the superclass: 
        IOUserClient::externalMethod(selector, args, newDispatch, newTarget, newReference) 
} 
 
// Implementation provided by the I/O Kit’s superclass 
IOReturn           IOUserClient::externalMethod(selector, args, dispatch, target, reference) 
{ 
        Check that the parameters provided by the user process through “args” match the  
        parameters expected by the user client as described in “dispatch”. 
         
        If the parameters do not match, exit with the result kIOReturnBadArgument 
         
        Otherwise, call the callback handler for this control request: 
        dispatch->function(target, reference, args) 
} 

By convention, most drivers implement externalMethod() by adding a dispatch table to their user 
client class that contains the value of IOExternalMethodDispatch for each of the selector values that the 
user client accepts. For example, a possible dispatch table for our timer user client is shown in Listing  
5-11. 

Listing 5-11. The Dispatch Table for the Tutorial User Client Interface 

const IOExternalMethodDispatch 
com_osxkernel_driver_IOKitTestUserClient::sMethods[kTestUserClientMethodCount] = 
{ 
        // kTestUserClientStartTimer   (void) 
        { sStartTimer, 0, 0, 0, 0 }, 
 
        // kTestUserClientStopTimer   (void) 
        { sStopTimer, 0, 0, 0, 0 }, 
 
        // kTestUserClientGetElapsedTimerTime   (uint32_t* timerValue) 
        { sGetElapsedTimerTime, 0, 0, 1, 0 }, 
 
        // kTestUserClientGetElapsedTimerValue   (TimerValue* timerValue) 
        { sGetElapsedTimerValue, 0, 0, 0, sizeof(TimerValue) }, 
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        // kTestUserClientDelayForMs   (uint32_t milliseconds) 
        { sDelayForMs, 1, 0, 0, 0 }, 
         
 
        // kTestUserClientDelayForTime  (const TimerValue* timerValue) 
        { sDelayForTime, 0, sizeof(TimerValue), 0, 0 } 
}; 

For convenience, we will be accessing items in the dispatch table using values from the 
TimerRequestCode enumeration as an index into the array, so it is important that the order of items in the 
dispatch table match the order of the request codes that were defined in Listing 5-10. 

With a dispatch table defined, the implementation of our user client’s externalMethod() becomes 
significantly easier, since nearly all of the values that it requires come straight from the dispatch table. A 
possible implementation is shown in Listing 5-12. 

Listing 5-12. An Implementation of a Custom User Client’s externalMethod() 

IOReturn        com_osxkernel_driver_IOKitTestUserClient:: 
                externalMethod (uint32_t selector, IOExternalMethodArguments* arguments, 
                                IOExternalMethodDispatch* dispatch, OSObject* target, 
                                void* reference) 
{ 
        // Ensure the requested control selector is within range. 
        if (selector >= kTestUserClientMethodCount) 
            return kIOReturnUnsupported; 
         
        dispatch = (IOExternalMethodDispatch*)&sMethods[selector]; 
        target = this; 
        reference = NULL; 
        return super::externalMethod(selector, arguments, dispatch, target, reference); 
} 

Finally, to complete our user client, let’s take a look at the possible implementation for two of the 
selectors provided by our custom user client: GetElapsedTimerTime() and DelayForTime(). As we have 
seen, each selector that a user client implements has a corresponding callback function that is invoked 
to handle the selector. That callback function’s arguments are passed through the 
IOExternalMethodArguments structure. It would be much easier to work with the parameters if they were 
instead passed as parameters to the function, so it is common for each control selector to have two 
method handlers: the static callback handler and an instance method that provides the actual 
implementation.  

The static callback method unpacks the parameters from the IOExternalMethodArguments structure 
and passes them to an instance method in the user client class or the main driver class to perform the 
actual work. This arrangement is shown in Listing 5-13 for the implementation of the 
GetElapsedTimerTime() and DelayForTime() methods. 

Listing 5-13. An Implementation of Two User Client Methods 

IOReturn        com_osxkernel_driver_IOKitTestUserClient:: 
                sGetElapsedTimerTime (OSObject* target, void* reference, 
                                        IOExternalMethodArguments* arguments) 
{ 
        com_osxkernel_driver_IOKitTestUserClient*       me; 
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        uint32_t                timerTime; 
        IOReturn                result; 
         
        me = (com_osxkernel_driver_IOKitTestUserClient*)target; 
         
        // Call the method that implements the operation. 
        result = me->getElapsedTimerTime(&timerTime); 
        // Return the scalar result of the operation to the calling process. 
        arguments->scalarOutput[0] = timerTime; 
         
        return result; 
} 
 
IOReturn        com_osxkernel_driver_IOKitTestUserClient:: 
                sDelayForTime (OSObject* target, void* reference, 
                                IOExternalMethodArguments* arguments) 
{ 
        com_osxkernel_driver_IOKitTestUserClient*       me; 
         
        me = (com_osxkernel_driver_IOKitTestUserClient*)target; 
        return me->delayForTime((TimerValue*)arguments->structureInput); 
} 

Notice that we do not need to verify the size of the array scalarOutput in the implementation of 
sGetElapsedTimerTime() or the size of the buffer structureInput in the implementation of 
sDelayForTime(). This is because we can know that these parameters have been verified by the 
IOUserClient superclass’s implementation of externalMethod(), which has compared the provided 
parameters against the driver’s expected parameters. However, the actual implementation of 
getElapsedTimerTime() would verify that the client has previously started the timer by calling 
StartTimer() before attempting to read the timer’s time. 

 Note  A driver’s user client should always validate the value of parameters that it receives from a user process. 
The process may have been compromised or may be developed by a third party whose code provides parameter 
values that your driver does not expect to receive. Failing to reject illegal parameter values could cause your driver 
to kernel panic or could introduce vulnerabilities into the system. 

Notifications from the Driver 
The methods that we have implemented in the sample driver’s user client are designed to be blocking 
functions; that is, the user process does not continue execution until the user client has completed the 
requested operation. For example, the method in our user client DelayForMs() would suspend the thread 
on which it was called until the specified delay has elapsed. While this may not be a bad thing for a 
function whose aim is to explicitly delay the calling thread, a user space application may not always wish 
to wait for a driver operation to complete, particularly if that operation may take an indeterminate 
amount of time or is dependent on an event over which the driver has no control, such as the arrival of 
data on a serial port. 
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Two approaches are used to overcome this problem. Unlike the Windows driver model, which, 
unless explicitly enabled, does not allow an application to send multiple control requests to a driver 
simultaneously, the I/O Kit allows as many threads to send requests to a user client as the application 
requires. This means that one solution for blocking operations is for the application to create a 
secondary thread on which to call blocking user client methods. This frees up the rest of the application 
to continue executing while the driver processes the request. The second approach is for the user client 
to implement asynchronous operations and notify the application when the operation completes 
through a callback function. 

The I/O Kit framework makes it easy for a developer to turn an operation from a synchronous, 
blocking operation into an asynchronous operation. To see how it is done, let’s extend the driver 
interface that we have developed in this chapter to include a function named InstallTimer(), which will 
delay for a specified period and then notify the application through a callback function. In this way, the 
InstallTimer() function can be thought of as an asynchronous implementation of our existing function 
DelayForTime(). 

The I/O Kit framework uses an implementation for asynchronous notifications that is very similar to 
the delivery of notifications for device arrival that was described at the start of this chapter (See Listing 5-
2). In fact, the notifications received for device arrival can be thought of as a special asynchronous 
completion callback that is implemented by the I/O Kit framework itself. To initialize our driver library 
to support the delivery of completion callbacks, we need to create a notification port on which the kernel 
driver will signal the user space process when an operation has completed. This is done in the same way 
in which we created a notification port for the delivery of device arrival notifications, by calling the 
IONotificationPortCreate() function. Although this notification port will be allocated by the driver’s 
user space library, it’s good design practice to provide a function that allows the application to access 
the port so that the application can install the notification port on the run loop of its choice. A possible 
implementation of an accessor function for a driver’s notification port is shown in Listing 5-14. 

Listing 5-14. Allocating a Port on Which an Application Can Receive Notifications When an Asynchronous 

Operation Completes 

IONotificationPortRef   gAsyncNotificationPort = NULL; 
 
IONotificationPortRef   MyDriverGetAsyncCompletionPort () 
{ 
        // If the port has been allocated, return the existing instance. 
        if (gAsyncNotificationPort != NULL) 
                return gAsyncNotificationPort; 
         
        gAsyncNotificationPort = IONotificationPortCreate(kIOMasterPortDefault); 
        return gAsyncNotificationPort; 
} 

An application can then allocate and install the notification port in one of its run loops, as follows: 

CFRunLoopSourceRef      runLoopSource; 
notificationPort = MyDriverGetAsyncCompletionPort (); 
runLoopSource = IONotificationPortGetRunLoopSource(notificationPort); 
CFRunLoopAddSource(CFRunLoopGetCurrent(), runLoopSource, kCFRunLoopDefaultMode); 

Having allocated a notification port on which the user space application can receive messages from 
the kernel driver, we now need to provide the port to our kernel driver so that it has a port on which it 
can signal the completion of asynchronous operations. The notification port is provided to the driver’s 
user client on each asynchronous control request. The I/O Kit framework provides asynchronous 
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variations of each of the IOConnectCallXXX() functions named IOConnectCallAsyncXXX(). The 
asynchronous form of these functions take additional arguments, including a notification port, a 
callback function, and a context parameter that is passed to the callback function.  

In all regards, the asynchronous variation of the IOConnect functions behave identically to their 
synchronous counterparts; for example, IOConnectCallAsyncScalarMethod() passes an array of integer 
values to the user client and receives an array of integer values from the user client. As with the 
synchronous form of these functions, any output parameters are written as soon as the function returns 
and not when the asynchronous operation completes (the driver may still be handling the operation 
when the function returns). 

To provide an example of how the asynchronous functions are used, let’s examine the 
implementation of our sample InstallTimer() function. The user space code is shown in Listing 5-15. 

Listing 5-15. The User Space Implemenation of an Asynchronous Control Request for Our Driver’s 

InstallTimer() Function 

kern_return_t   InstallTimer (io_connect_t connection, uint32_t milliseconds, 
                        IOAsyncCallback0 timerCallback, void* context) 
{ 
        io_async_ref64_t        asyncRef; 
        uint64_t                scalarIn[1]; 
         
        // Set up the callback function. 
        asyncRef[kIOAsyncCalloutFuncIndex] = (uint64_t)timerCallback; 
        asyncRef[kIOAsyncCalloutRefconIndex] = (uint64_t)context; 
         
        // Set up the input parameter. 
        scalarIn[0] = milliseconds; 
        return  IOConnectCallAsyncScalarMethod(connection, kTestUserClientInstallTimer,  
                IONotificationPortGetMachPort(gAsyncNotificationPort),  
                asyncRef,  kIOAsyncCalloutCount, 
                scalarIn, 1, NULL, NULL); 
} 

If you compare the preceding function to the implementation for DelayForTime(), you will notice 
that both functions have a lot in common and pass the same input and output parameters to the user 
client. The only difference between the two functions is the addition of the timerCallback and context 
arguments. The callback function and its context parameter are provided to the IOConnectCallAsync 
functions through the structure io_async_ref64_t, which is defined as an array of unsigned 64-bit 
integers. Because certain elements of the io_async_ref64_t array are used internally by the I/O Kit, an 
application should use the constants kIOAsyncCalloutFuncIndex and kIOAsyncCalloutRefconIndex to 
access the array, as shown in the example. 

This is all that an application needs to do to perform an asynchronous operation. When the 
operation completes, the provided callback function will be notified and will execute on the run loop on 
which the application installed the run loop source. The callback function has the following signature: 

typedef void (*IOAsyncCallback0)(void* context, IOReturn result); 

Note that the “0” in IOAsyncCallback0 refers to the number of parameters from the driver that the 
function receives. These are separate from the output scalar count passed to the function 
IOConnectCallAsyncScalarMethod() and are specified by the kernel when the asynchronous operation is 
complete. 
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Of course, for an operation to be asynchronous, the kernel driver must ensure that it returns 
immediately from the user client but will continue to handle the requested operation in the background 
and signal the process when the operation completes. An asynchronous method call is received by the 
user client no differently than from any other method call and is dispatched by externalMethod() to a 
handler function that receives its arguments through an IOExternalMethodArguments structure. However, 
unlike a synchronous method, the IOExternalMethodArguments structure contains fields that are useful to 
an asynchronous operation, as shown in the following definition: 

struct IOExternalMethodArguments 
{ 
        … 
        mach_port_t             asyncWakePort; 
        io_user_reference_t*    asyncReference; 
        uint32_t                asyncReferenceCount; 
        … 
}; 

By checking the value of asyncWakePort, the method that implements a control request can 
determine whether the user application invoked it through an asynchronous function call. If it is non-
zero, an asynchronous operation was requested. Given that the handler function will perform the 
requested operation in the background (since an asynchronous control request should avoid blocking 
the calling application), it needs to save any values from the IOExternalMethodArguments structure that it 
will need to refer to while performing the operation. This includes copying any scalar and structure 
input parameter values that were provided by the caller (noting that the output values are returned to 
the calling application as soon as the user client returns and not when the asynchronous operation is 
completed). An important value from the IOExternalMethodArguments structure that needs to be saved is 
the asyncReference buffer, since this is used to signal the application when the operation has completed. 

An example of how an asynchronous operation is performed is shown below in Listing 5-16. 

Listing 5-16. The User Client Implementation of an Asynchronous Operation. This Implements the Kernel-

side of the InstallTimer() Function. 

// A structure to hold parameters required by the background operation. 
struct TimerParams 
{ 
        OSAsyncReference64              asyncRef; 
        uint32_t                        milliseconds; 
        OSObject*                       userClient; 
}; 
 
IOReturn  com_osxkernel_driver_IOKitTestUserClient:: 
       sInstallTimer (OSObject* target, void* reference, IOExternalMethodArguments* arguments) 
{ 
        TimerParams*    timerParams; 
        thread_t        newThread; 
         
        // Allocate a structure to store parameters required by the timer. 
        timerParams = (TimerParams*)IOMalloc(sizeof(TimerParams)); 
        // Take a copy of the asyncReference buffer. 
        bcopy(arguments->asyncReference, timerParams->asyncRef, sizeof(OSAsyncReference64)); 
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        // Take a copy of the "milliseconds" value provided by the user application. 
        timerParams->milliseconds = (uint32_t)arguments->scalarInput[0]; 
        // Take a reference to the userClient object. 
        timerParams->userClient = target; 
        // Retain the user client while an asynchronous operation is in progress. 
        target->retain(); 
         
        // Start a background thread to continue the operation after returning to the caller. 
        kernel_thread_start(DelayThreadFunc, timerParams, &newThread); 
        thread_deallocate(newThread); 
         
        // Return immediately to the calling application. 
        return kIOReturnSuccess; 
} 
 
void    com_osxkernel_driver_IOKitTestUserClient:: 
                DelayThreadFunc (void *parameter, wait_result_t) 
{ 
        TimerParams*    timerParams = (TimerParams*)parameter; 
         
        // Sleep for the requested time. 
        IOSleep(timerParams->milliseconds); 
        // Send a notification to the user application that the operation has competed. 
        sendAsyncResult64(timerParams->asyncRef, kIOReturnSuccess, NULL, 0); 
         
        // The background operation has completed, release the extra reference to the  
        // user client object. 
        timerParams->userClient->release(); 
         
        IOFree(timerParams, sizeof(TimerParams)); 
} 

Although there is a lot to take in from the preceding code, it is important to note the way that it 
allocates an object to hold the parameters that are required while the driver completes the requested 
operation on a background thread. To prevent the user client object from being released while the 
operation is in progress, the method increments its retain count when starting the operation and 
decrements its retain count when the operation completes. Finally, when the background operation has 
completed, the user client (or driver) signals the user application by calling sendAsyncResult64(). The 
final two parameters of sendAsyncResult64(), which are unused in this example, allow a driver to 
provide additional values to the application’s callback function. For example, an asynchronous read 
operation could use this to return the number of bytes that it read.  

Summary 
• Nearly all drivers will need to expose their services to applications run by the user. 

• To allow applications to interact with a kernel driver, the driver needs to cross the 
barrier that exists between user space code and kernel code. A driver written using 
the I/O Kit framework achieves this by implementing a class that derives from the 
IOUserClient class. 
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• Applications can iterate loaded kernel drivers or can install a callback function to 
receive notifications when drivers are loaded and unloaded. 

• The I/O Kit provides several functions that allow a user application to request 
services provided by a driver, including by reading and writing driver properties, 
or by establishing a connection to the driver and sending control requests to the 
driver over that connection. 
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Memory Management 

Memory management in the kernel is significantly more complex than it is for a user space program. A 
user space program typically deals with a flat linear address space and can allocate memory in more or 
less arbitrary blocks without worrying about the source or arrangement of this memory. It has simple 
interfaces that typically take a size in bytes as an argument and deliver a yay or nay result, depending on 
the availability of the requested memory. At worst, the consequence of a failed allocation or misuse of 
memory is the termination of the offending process. However, things are not as straightforward in the 
kernel. The kernel has to deal with multiple memory spaces, including its own, as well as the mapping of 
memory between those memory spaces and physical memory. While user space programs deal with 
virtual memory, where the underlying physical arrangement is irrelevant, the kernel often needs to know 
whether the memory is contiguous and where it is located. This is because some hardware devices are 
unable to read from certain memory addresses or have specific requirements regarding the alignment of 
the memory, for example, because it can read only from memory that has been aligned to a 16-byte 
boundary or because it cannot read from addresses higher than 32-bit. However, the most obvious 
challenge of kernel memory management is to use as little as possible because it is a scarce resource, 
especially for embedded devices such as the iPhone or iPad. Incorrect use of memory in the kernel can 
lead to subtle and not so subtle consequences. 

In this chapter, we aim to explain the various types of memory you will encounter as a kernel 
programmer, their purpose, and the most effective and safe use of memory. We also discuss 
mechanisms and methods for allocating and managing memory, as well as some low-level mechanisms 
used by the OS to manage memory. We will also look at how to perform memory mapping operations, 
where memory from one address space can be mapped into the address space of another task. 

Types of Memory 
The kernel deals with multiple types of memory, so understanding the difference is key to implementing 
a successful driver or kernel extension.  

The types of memory can be categorized as: 

• CPU physical address 

• bus physical address 

• user and kernel virtual addresses 

In addition to the three types of memory addresses, the amount of addressable memory differs 
between architectures and can be from 32-bit to 64-bit. Memory may also be ordered differently 
depending on the architecture and can be of little or big endian. 

The following sections will discuss the importance and usage of each type of memory as it applies to 
kernel programming. 
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CPU Physical Address 
A physical address refers to the addressing system used by the CPU to access physical memory. 
Typically, physical addresses are hidden behind the Memory Management Unit (MMU) of the CPU. The 
MMU translates virtual addresses normally used by the kernel and user space into physical addresses. 
The physical address space is linear and goes from 0 to 0xffffffff (232) for 32-bit systems and 0 to 
0xffffffffffffffff (264) for 64-bit systems. Access to physical memory is cached in smaller memory buffers, 
such as L1 and L2 caches typically contained on the CPU die.  

It is generally unnecessary to deal directly with physical addresses, even when writing drivers. 

PHYSICAL ADDRESS EXTENSIONS 

Physical Address Extensions (PAE) is a feature developed by Intel to allow a larger physical address space, 
which works around the 4 GB memory limit on 32-bit systems. PAE is available on all versions of Mac OS X 
that support Intel processors (10.4.4 and higher). PAE expands available address space up to 36 bits 
(obviously, there are no 36-bit data types so addresses are represented with a 64-bit type), which allows it 
to address up to 64 GB of physical memory. However, PAE does not change the size of the virtual address 
space used by a process, which is still limited to 4 GB. While no process (or the kernel) can use more than 
4 GB, the system collectively can use up to 64 GB. 

Bus Physical Addresses 
The introduction of 64-bit computing presented a challenge as legacy I/O buses such as PCI and PCI-X 
were unable to access memory addresses over 32-bit. To work around this, PowerPC G5-based Macs had 
an additional MMU on their north bridge, used for remapping memory from 64-bit addresses into 32-bit 
addresses the device can read from. This MMU is referred to as the Device Address Resolution Table 
(DART). The DART presents the translated memory as physical addresses to the device, however these 
addresses are translated and not the same physical address as the CPU use. Intel-based computers have 
similar capabilities known as I/O memory management unit (IOMMU), one of the virtualization 
technologies for directed I/O (VT-d).  

A bus physical address appears to be a physical address to a hardware device, though in reality, it is a 
virtual address translated by the DART. If you are confused, don’t worry; you rarely have to deal with 
these addresses. In fact, if you use I/O Kit, it will do all the required translations for you automatically if 
you use IOMemoryDescriptor, which is discussed later in this chapter. Drivers can use the 
IOPhysicalAddress type to handle physical addresses. The size of the type depends on the underlying 
architecture. Because of PAE, it may be 64-bit, even on 32-bit systems. 

User and Kernel Virtual Addresses 
Virtual addresses are linear addresses that are translated into physical addresses by a special chip on the 
CPU called the Memory Management Unit (MMU). Each user space process has its own memory 
address space, and for all intents and purposes it looks like a process owns all physical memory. It may 
use any memory location in its address space, even on addresses located beyond the amount of physical 
memory. The virtual address space appears linear to a process, although the memory that backs it may 
be fragmented. 

In Mac OS X, the entire virtual address space is available for a process to use. On a 32-bit system this 
includes memory addresses from 0–4 GB. Operating systems such as Microsoft Windows or Linux use a 
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split model, where the kernel is mapped into the virtual address space of each process. For example, on 
Windows (32-bit), user space virtual memory occupies addresses from 0 to 0x7FFFFFFF, whereas 
memory addresses reserved for the kernel go from 0x80000000 to 0xFFFFFFFF. Because the kernel is 
already mapped, the CPU doesn’t have to change the page tables when a process context switches into 
kernel mode (an already expensive operation). The downside of this approach is that the kernel and user 
space processes have less address space available, and hence in the case of Windows, only 2 GB can be 
accessed at any given time by either the kernel or a user space process. On Linux, the split is typically 3 
GB/1 GB, with only 1 GB available to the kernel (though everything in Linux is configurable and other 
configurations are also available). If the system has a GPU enabled, this typically comes with onboard 
memory of up to 1 GB, which has to be mapped into virtual address space and may result in some 
physical memory being unable to be used as the GPU’s large frame buffer shadows it.  

To avoid the shadowing problem, Mac OS X has completely separate address spaces for the kernel 
(4GB) and user space processes (4GB), but as mentioned the downside is more expensive context 
switching.  

The 64-bit kernel introduced in Mac OS X 10.6 Snow Leopard solved the problem of limited address 
space once for all. In 64-bit kernels, the kernel address space is always mapped in. Mac OS X splits the 
address space so the upper 128 terabytes (!) are reserved for the kernel, while the lower 128 terabytes 
belong to the currently running user space task. Though the address space is shared with user space, 
tasks are not able to access kernel memory due to page protection flags. 

A virtual memory address may not always be backed by a physical memory location, as memory 
may have been migrated to an external backing store, such as a hard drive, because it was infrequently 
used or because a running process required more memory than was available. If the CPU accesses an 
address and the memory for the address is not resident, it will result in a page fault exception. The pager, 
a component of the OS, will attempt to fetch the page containing the given memory address.  

The first page (0–4 KB) of the virtual address space is inaccessible to a process and an exception will 
be generated if access is attempted. 

The architecture agnostic type IOVirtualAddress can be used to handle virtual addresses in I/O Kit 
code. This type is, again, the alias of mach_vm_address_t, the type for virtual memory addresses in the 
Mach layer. 

 Tip  For a more detailed discussion about virtual memory, see Chapter 1, or for details about the OS X and iOS 
implementation, see Chapter 2. 

Memory Ordering: Big vs. Little Endian 
Endianess refers to the ordering of the components of a binary word in memory. The ordering will be 
either little-endian or big-endian depending on the CPU architecture that is used. The effects of this can 
be illustrated with a simple C program, as shown in Listing 6-1. 

Listing 6-1. Print the Byte Order of a 32-bit Word 

#include <stdio.h> 
#include <stdint.h> 
int main(int argc, char *argv[]) 
{ 
        uint32_t word = 0xaabbccdd; 
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        uint8_t* ptr = (uint8_t*)&word; 
        printf("%02x %02x %02x %02x\n", ptr[0], ptr[1], ptr[2], ptr[3]); 
        return 0; 
} 

The result of executing on a system with little endinaness will be: 

dd cc bb aa 

While on a big endian system: 

aa bb cc dd 

As you can see, the ordering is reversed on little-endian systems. All current-generation Macs are 
little-endian, as the Intel x86/x86_64 processors are little-endian; so too are ARM-based iOS devices. The 
older PowerPC-based Macs were big-endian. Why should you care about big-endian then? Well, some 
hardware architectures or network protocols, such as TCP/IP, use big-endian; additionally, your driver 
or kernel extensions may have to be compatible with older Macs that are based on the PowerPC 
architecture. Furthermore, OS X has support for Rosetta, which emulates PowerPC applications on Intel-
based Macs. It is possible your driver will be accessed by a Rosetta client task. Some user space APIs, 
such as the Carbon File Manager, also work with big-endian data structures. 

The C pre-processor macros __LITTLE_ENDIAN__ and __BIG_ENDIAN__ are defined by the compiler 
and can be used to determine the byte order at compile time. 

32-bit vs. 64-bit Memory Addressing 
Modern Mac OS X systems are now 64-bit. By 64-bit, we mean the CPU’s ability to work with addresses 
of a 64-bit width, including general-purpose registers, and the ability to use a 64-bit data bus and 64-bit 
virtual memory addressing.  

THE INTEL 64 ARCHITECTURE 

The Intel 64 (x86-64) architecture is an extension of the traditional Intel x86 instruction set, which enables 
it to operate in 64-bit mode and allows it to support large quantities of physical memory. While Intel 
invented the x86 compatible processors, this extension was originally created by AMD and was marketed 
as AMD64. Intel subsequently released their version of the 64-bit extensions, initially named EM64T and 
IA-32e, which provided compatibility with AMD’s solution. Intel originally placed their bets on the 
designed-from-scratch IA64 (Itainum). IA64 ditched the legacy of x86. HP and other high-performance 
server vendors, such as SGI, pushed IA64 heavily but adoption was slow. Intel 64 / AMD64 remain the 
dominant architectures today. Intel 64-capable CPUs are found in all current-generation Macs. An x86-64 
processor can operate in two modes, long mode or legacy mode. The former is the 64-bit mode and offers 
compatibility, which allows 32-bit and 16-bit applications to execute. The OS has to be 64-bit aware to 
operate in this mode. The latter is a 32-bit mode, for 32-bit only operating systems. 
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Table 6-1 shows the supported addressing modes and native pointer sizes of architectures 
supported by OS X and iOS. 

Table 6-1. Memory Addressing for OS X and iOS Under Various Platforms 

Architecture 64-bit kernel 64-bit apps 
32-bit apps  
(in 64-bit mode) 32-bit kernel Pointer size 

32-bit PowerPC No No N/A Yes 4 

64-bit PowerPC No Yes Yes No 8 

32-bit Intel No No N/A No 4 

64-bit Intel Yes Yes Yes Yes 8 

iOS No No Yes Yes 4 

 
Because it is possible for the kernel to be running in 32-bit mode while an application runs in 64-bit 

mode, great care must be taken when a 64-bit process exchanges data with the kernel, for example, 
through an ioctl() or an IOUserClient method. The same is true when running a 64-bit kernel and 
communicating with a 32-bit application. The problem is that 32-bit and 64-bit compilers may define 
data types differently. For example, the C data type long is 4 bytes wide in 32-bit programs and 8 bytes in 
a program compiled for a 64-bit instruction set. 

Memory Allocation 
The XNU kernel provides a rich set of tools for allocating memory. Kernel memory allocation is not as 
trivial and straightforward as the malloc()/free() interface found in user space libraries. Kernel memory 
allocation facilities range from high-level mechanisms analogous to the user space malloc() interface to 
direct allocation of raw pages. There are dozens of various functions for obtaining memory. Which one 
to use depends on the subsystem you are working within—for example, Mach, BSD, or the I/O Kit—as 
well as the requirements for the memory, such as size or alignment. Memory is arguably one of the most 
limited resources on a computer system, especially for the iOS platform, which has limited amounts of 
physical memory compared to most Mac OS X-based computers.  

At the fundamental level, the kernel keeps track of physical memory using the structure vm_page. A 
vm_page structure exists for every physical page of memory. Available pages are part of one of the 
following page lists: 

• Active List: Contains physical pages mapped into at least one virtual address space 
and have recently been used.  

• Inactive List: Contains pages that are allocated but have not recently been used.  

• Free List: Contains unallocated pages. 

Getting a free page from the free list is done with the vm_page_grab() function or its higher-level 
interface vm_page_alloc(), which unlike the former, places the page in a vm_object as opposed to merely 
removing it from the free list. The kernel will signal the pageout daemon if it detects that the level of free 
pages falls behind a threshold. In this case, the pager will evict pages from the inactive list in a least 
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recently used (LRU) fashion. Pages, which are mapped from an on-disk file, are prime candidates and 
can simply be discarded. The VM page cache and file system cache are combined on Mac OS X and iOS, 
which avoids duplication, and are collectively referred to as the Universal Buffer Cache (UBC). Pages 
originating from the file system are managed by the vnode pager, while pages in the VM cache are 
managed by the default pager. 

The following sections will provide an overview of the various mechanisms for memory allocation 
available to kernel developers, as well as of their use and restrictions. 

Low-Level Allocation Mechanisms 
The kernel has several families of memory allocation routines. Each major subsystem, such as Mach, 
BSD, or I/O Kit, has their own families of functions. The VM subsystem lives in the Mach portion of the 
kernel, which implements the fundamental interfaces for allocating memory. These interfaces are in 
turn used to form higher-level memory allocation mechanisms for use in other subsystems such as BSD 
and I/O Kit. 

For working in the Mach sections of the kernel, the kmem_alloc*() family of functions is used. These 
functions are fairly low-level and are only a few levels away from the raw vm_page_alloc() function. The 
following functions are available: 

kern_return_t kmem_alloc(vm_map_t map, vm_offset_t* addrp, vm_size_t  size); 
kern_return_t mem_alloc_aligned(vm_map_t map, vm_offset_t* addrp, vm_size_t size); 
kern_return_t kmem_alloc_wired(vm_map_t map, vm_offset_t* addrp, vm_size_t size); 
kern_return_t kmem_alloc_pageable(vm_map_t map, vm_offset_t* addrp, vm_size_t size); 
kern_return_t kmem_alloc_contig(vm_map_t map, vm_offset_t* addrp, vm_size_t size,  
                                vm_offset_t mask, int flags); 
void kmem_free(vm_map_t map, vm_offset_t addr, vm_size_t size); 

All the functions require you to specify a VM Map belonging to either a user space task or 
kernel_map. All the above functions allocate wired memory, which cannot be paged out, with the 
exception of kmem_alloc_pageable(). 

The Mach Zone Allocator 
The Mach zone allocator is an allocation mechanism that can allocate fixed-size blocks of memory 
called zones. A zone usually represents a commonly used kernel data structure, such as a file descriptor 
or a task descriptor, but can also point to blocks of memory for more general use. Examples of data 
structures allocated by the zone allocator include: 

• file descriptors 

• BSD sockets 

• tasks (struct task) 

• virtual memory structures (VM Maps, VM Objects) 

As a kernel programmer, you can create your own zones with the zinit() function if you have a 
need for frequent and fast allocation and de-allocation of data objects of the same type. To create a new 
zone, you need to tell the allocator the size of the object, the maximum size of the queue, and the 
allocation size, which specifies how much memory will be added when the zone is exhausted. 
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The kalloc Family 
The kalloc family provides a slightly higher-level interface for fast memory allocation. The API would be 
familiar to those who have used the malloc() interface in user space. In fact, the kernel also has a 
malloc() function defined by the libkern kernel library, which again uses memory sourced by kalloc(). 

void* kalloc(vm_size_t size); 
void* kalloc_noblock(vm_size_t size); 
void* kalloc_canblock(vm_size_t size, boolean_t canblock); 
void* krealloc(void** addrp, vm_size_t old_size, vm_size_t new_size); 
void kfree(void *data, vm_size_t size); 

Memory for the kalloc family of functions is obtained via the Mach zone allocator discussed in the 
previous section. Larger memory allocations are handled by kmem_alloc() function. Because memory 
can come from two sources, the kfree() function needs to know the size of the original allocation to 
determine its origin and to free the memory in the appropriate place. The kalloc family provides the API 
upon which fundamental memory functions in I/O Kit and the BSD layer are built. It is also the function 
used to provide memory for the C++ new and new[] operators for memory allocation. 

The kalloc functions and variants, except kalloc_noblock(), may block (sleep) to obtain memory. 
The same is true for the kfree() function. Therefore, you must use kalloc_noblock() if you need 
memory in an interrupt context or while holding a simple lock. 

The available zones can be queried; following is the trimmed output of the zprint command 
showing the zones used by the kalloc functions. 

                      elem   cur      max    cur      max    cur    alloc    alloc 
zone name             size   size    size   #elts    #elts   inuse   size    count 
----------------------------------------------------------------------------------- 
kalloc.16               16    660K    922K   42240   59049   30284    4K     256 C 
kalloc.32               32   3356K   4920K  107392  157464   73407    4K     128 C 
kalloc.64               64   4792K   6561K   76672  104976   75837    4K      64 C 
kalloc.128             128   2732K   3888K   21856   31104   20571    4K      32 C 
kalloc.256             256   4248K   5184K   16992   20736   15950    4K      16 C 
kalloc.512             512    968K   1152K    1936    2304    1870    4K       8 C 
kalloc.1024           1024    784K   1024K     784    1024     735    4K       4 C 
kalloc.2048           2048   3396K   4608K    1698    2304    1586    4K       2 C 
kalloc.4096           4096   2204K   4096K     551    1024     508    4K       1 C 
kalloc.8192           8192   3160K  32768K     395    4096     383    8K       1 C 
kalloc.large         41375   5697K   6743K     141     166     141   40K       1 C 

There is one zone for each size up to 8 KB. Allocations smaller than 8 KB return an element from the 
smallest matching zone. It is not possible to partially allocate an element, so, for example, if you need 
5000 bytes of memory, you will actually be allocated 8192 bytes (3192 bytes wasted per allocation!). 
Allocations greater than 8 KB are handled by the appropriate kmem_alloc() function instead of the zone 
allocator, but are nevertheless recorded in the virtual zone kalloc.large. 

Memory Allocation in BSD 
Memory allocation in the BSD subsystem is implemented by the following functions and macros: 

#define MALLOC(space, cast, size, type, flags)  (space) = (cast)_MALLOC(size, type, flags) 
#define FREE(addr, type)_   FREE((void *)addr, type) 
#define MALLOC_ZONE(space, cast, size, type, flags)  
                   (space) = (cast)_MALLOC_ZONE(size, type, flags) 
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#define FREE_ZONE(addr, size, type) _FREE_ZONE((void *)addr, size, type) 
 
void* _MALLOC(size_t size, int type, int flags); 
void _FREE(void *addr, int type); 
void* _MALLOC_ZONE(size_t size, int type, int flags); 
void _FREE_ZONE(void *elem, size_t size, int type); 

Under the hood, the _MALLOC() function allocates memory using some variant of kalloc(), depending 
on the flags that are passed; for example, if non-blocking allocation is required, (M_NOWAIT) 
kalloc_noblock() is called. The _MALLOC_ZONE() function invokes the zone allocator directly instead of 
indirectly through kalloc(). Instead of using the general purpose kalloc.X zones, it allows you to access 
zones of commonly used object types, such as file descriptors, network sockets, or mbuf descriptors, used 
by the networking subsystem. The type argument is used to determine which zone to access. Although 
_MALLOC() also takes a type argument, it is ignored, except to check that the value is less than the 
maximum allowed. There are over a hundred different types defined. The flags parameter can be one of 
the following: 

#define M_WAITOK                0x0000 
#define M_NOWAIT                0x0001 
#define M_ZERO                  0x0004          /* bzero the allocation */  

 Tip  MALLOC family of functions, along with zone types, are defined in sys/malloc.h. 

The M_ZERO flag, if specified, will use the bzero() function to overwrite the memory with zeros before 
the memory is returned to the caller. If not, the memory will still have the contents written there by the 
last user or will contain random garbage if never used. 

I/O Kit Memory Allocation 
The I/O Kit provides a full set of functions for memory allocation. All the following functions return 
kernel virtual addresses, which can be accessed directly:  

void* IOMalloc(vm_size_t size); 
void* IOMallocAligned(vm_size_t size, vm_size_t alignment); 
void* IOMallocPageable(vm_size_t size, vm_size_t alignment); 

The corresponding functions for freeing memory are as follows. 

void IOFree(void* address, vm_size_t size); 
void IOFreeAligned(vm_size_t size); 
void IOFreePageable(void* address, vm_size_t size); 

The first function, IOMalloc(), is a wrapper for kalloc() and is subject to the same restrictions. 
Specifically, it cannot be used in an atomic context, such as a primary interrupt handler, as it may block 
(sleep) to obtain memory. Nor can IOMalloc() be used if aligned memory is required, as no guarantees 
are made. IOFree() is a wrapper for the kfree() function and may also block (sleep). It is also possible to 
deadlock the system if you call either IOMalloc() or IOFree() while holding a simple lock, such as 
OSSpinLock, as the thread may be preempted if either function sleeps. It could cause a deadlock if an 
interrupt handler attempted to claim the same lock. Furthermore, memory from IOMalloc() is intended 
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for small and fast allocations and is not suitable for mapping into user space. Because the memory 
reserved for IOMalloc() comes from a small fixed-size pool, excessive use of IOMalloc() can drain this 
pool and panic the kernel if the pool is exhausted. 

 Caution  It is a bug to free memory allocated by, for example, IOMallocAligned() with IOFree(). Always use 
the free function corresponding to the original allocation function. Even if it works now (by accident), the 
mechanism could change in a future update and cause a crash.  

IOMallocAligned() is subject to the same restrictions as IOMalloc(), but unlike IOMalloc(), it will 
return memory addresses aligned to a specific value. For example, if you need page-aligned memory you 
can pass in 4096 to get an address aligned to the beginning of a page. Following are some reasons for 
requesting aligned memory. 

• Hardware cannot access memory that is not aligned to a specific boundary, or it 
does so slowly. 

• Memory used in vector computation may be excessively slow from addresses not 
aligned to a specific byte boundary (typically 16 bytes for SSE). 

• Memory will be used for mapping into a user space process. Since mapping is only 
possible for whole pages, you may wish to ensure the buffer starts on a page 
boundary. 

• You want a data structure that is friendly to the CPU cache.  

IOMallocPageable() allocates memory that can be paged, unlike the other variants, which always 
create memory that is wired and cannot be paged out. The restrictions that apply to IOMalloc() and 
IOMallocAligned() are also valid for IOMallocPageable(). Memory obtained by it cannot be used for 
device I/O such as DMA or in a code path that is not able to block/sleep without it being wired down 
first. 

There is also a last variant, IOMallocContiguous(), that allocates memory that is physically 
contiguous. Its use is now deprecated. Apple recommends using IOBufferMemoryDescriptor instead. 

Each of the memory allocation functions has a corresponding function to free the memory. It is 
important to call the right free function that matches the function you used for allocating the memory. 
Each of the variants source memory from different low-level mechanisms, hence they are not 
interchangeable. In fact, IOMalloc() may source its memory from more than one source. Larger 
allocations (>8 KB) may be allocated with kmem_alloc(); however, smaller allocations come from the 
zone allocator.  

This happens to be the reason why you must pass in the size of the original allocation to the 
IOFree*() functions, as it is used to determine where the memory came from. 

Allocating Memory with the C++ New Operator 
The libkern library implements a basic C++ runtime, upon which I/O Kit is built. Memory allocation in 
C++ is typically done with the new and new[] operators for single objects and arrays, respectively. In 
libkern, the new operator is implemented internally by calling kalloc() to obtain memory. Because 
kfree() requires the size of the original allocation, libkern modifies the size passed to the new operator 
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to include space for a small structure that can hold the size of the allocation, so that when the delete 
operator calls kfree(), it can retrieve the size in the four bytes preceding the address returned by new. 

Memory allocated by new or new[] is always zeroed out, unlike most implementations of these 
operators in user space. 

 Tip  The implementation of the new, new[], delete, delete[] operators can be found in the XNU source 
distribution under libkern/c++/OSRuntime.cpp.  

Memory Descriptors 
Memory descriptors are implemented by the IOMemoryDescriptor class and is fundamental to working 
with memory in I/O Kit. The class also serves as a super class for other important memory-related 
classes, which we will discuss later in this chapter. Many parts of the I/O Kit accept an 
IOMemoryDescriptor as an argument. For example, the USB family uses the class to describe memory 
used for USB read and write requests. 

The IOMemoryDescriptor describes the properties of a memory buffer or range of memory, but does 
not allocate (or free) the described memory. It contains metadata and allows some operations to be 
performed on the memory. It can describe virtual and physical memory. The class is versatile and can be 
used for a number of purposes. Consequently, there are also a number of ways to construct an 
IOMemoryDescriptor. A common way is to use the withAddressRange() method, as follows. 

static IOMemoryDescriptor* withAddressRange(mach_vm_address_t address,  
                                            mach_vm_size_t length, IOOptionBits options, 
                                            task_t task); 

• The first argument, address, is the start address of the memory buffer the 
descriptor should operate on.  

• The length argument is the number of bytes of the buffer pointed to by address. 
The task argument specifies the task, which owns the virtual memory.  

• The options argument specifies the direction of the descriptor in the event that it 
is used for I/O transfers. It may affect the behaviour of prepare() and complete(). 
The following flags are possible: 

• kIODirectionNone 

• kIODirectionIn 

• kIODirectionOut 

• kIODirectionOutIn 

• kIODirectionInOut 

• The last paramter is the task that owns the memory. If the kernel owns the 
memory, you can pass kernel_task, which is a global variable pointing to the 
task_t structure for the kernel. 
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The options flags indicate the direction of an I/O transfer and may be used to determine if it is necessary 
to flush processor caches to ensure cache coherency. 

If the descriptor is to be used for an I/O transfer you must first call its prepare() method, which will 
do the following: 

• page in memory, if the underlying memory is paged out 

• pin the memory down, so it cannot be paged out until the transfer is complete 

• configure device address translation mappings if necessary 

 Caution  Calls to prepare() must be balanced with a call to complete(). Care must also be taken not to call 
complete() unless prepare() was called first. 

The prepare() method is not thread safe. However, it is valid to call prepare() multiple times, but 
you must then call complete() the same number of times. Calling the descriptors’ release() method will 
not undo the effects of prepare() or call complete() for you, so complete() must be called before calling 
release(). If the descriptor is mapped into an address space, it will be unmapped automatically on 
release(). IOMemoryDescriptor can also be used to describe other types of memory, such as physical 
addresses. With physical addresses, the prepare() and complete() methods do nothing, but return 
successfully. Moreover, a physical memory descriptor is not associated with a task. The static member 
method withPhysicalAddress() can be used to construct an IOMemoryDescriptor for a physical segment, 
as in the following. 

static IOMemoryDescriptor* withPhysicalAddress(IOPhysicalAddress address,   
                                                                                                  
IOByteCount withLength, IODirection withDirection);  

The IOBufferMemoryDescriptor 
The IOBufferMemoryDescriptor is a subclass of IOMemoryDescriptor, but unlike its super class, it also 
allocates memory. It is currently the preferred way of allocating memory intended to be mapped to user 
space or for performing device I/O from a kernel-allocated buffer. However, the allocation method used 
internally depends on the size of the request and the options passed during construction. The 
IOBufferMemoryDescriptor is also the preferred way for obtaining physically contiguous memory. 
IOBufferMemoryDescriptors can be allocated by the static factory method inTaskWithOptions() or 
inTaskWithPhysicalMask(), as follows. 

static IOBufferMemoryDescriptor* inTaskWithOptions( 
    task_t                       inTask,  
    IOOptionBits                 options,  
    vm_size_t                    capacity,  
    vm_offset_t                  alignment = 1); 
 
static IOBufferMemoryDescriptor* inTaskWithPhysicalMask(  
    task_t                       inTask,  
    IOOptionBits                 options,  
    mach_vm_size_t               capacity,  
    mach_vm_address_t            physicalMask); 
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The inTask argument specifies which task the memory should be mapped to. For a kernel buffer, 
this should be set to kernel_task. If you specify another task identifier, the memory will be allocated and 
reachable in that task’s address space. In addition to the flags and options available to 
IOMemoryDescriptor, the following options can be passed to control the allocation behavior. 

• kIOMemoryPhysicallyContiguous allocates memory that is physically contiguous.  

• kIOMemoryPageable allocates memory that can be paged out. All memory is non-
pageable by default. 

• kIOMemoryPurgeable applies only to pageable memory. If this option is specified, 
the memory pages can be discarded instead of paged out. 

• kIOMemoryKernelUserShared should be specified if the memory will be mapped 
into the kernel and a user space task. It ensures memory will be page-aligned. 

The second way to construct an IOBufferMemoryDescriptor is via the inTaskWithPhysicalMask(), 
which allows one to specify a bit mask used to restrict the physical address range of the buffer. This is 
mainly useful when allocating memory for DMA for a device unable to access certain address ranges. For 
example, some older devices may be unable to access physical memory over 32 bits.  

It is generally frowned upon to request physically contiguous memory, particularly after the system 
has booted, as the memory becomes fragmented quickly. This would make it difficult to find free 
contiguous buffers, particularly larger ones. Requesting contiguous memory may also result in some 
memory being paged out to handle the request, which can take a long time. Hardware devices generally 
support scatter/gather operations, where multiple smaller buffers are chained together in a list and 
passed to the device, which then reads the list to work out where in physical memory to find its data. 
Thus, contiguous memory is often unnecessary. 

Just like the IOMalloc() family of functions, IOBufferMemoryDescriptor may sleep, so it should not 
be called from interrupt contexts or while holding simple locks. In fact, IOBufferMemoryDescriptor uses 
IOMalloc() and IOMallocAligned() internally to allocate memory. 

Other Memory Descriptors 
IOMemoryDescriptor has a number of other related subclasses, as follows. 

• IODeviceMemory is used to describe a range of memory mapped from a device. 

• IOMultiMemoryDescriptor can be used to represent a larger contiguous buffer 
consisting of smaller IOMemoryDescriptor objects. 

Mapping Memory 
Mapping memory refers to the function of making a range of memory from one task available to 
another. At the lowest level, mapping is handled by the Mach VM subsystem, as discussed in Chapter 2. 
Memory mapping provides a fast way for tasks to share resources without copying memory, as mapping 
makes the same memory available between tasks. Writable mappings can be shared until a modification 
is made, in which case the copy-on-write (COW) optimization is used to copy only the memory that was 
modified. Memory mappings can occur in a variety of different ways, between multiple tasks, or from 
the kernel to a user space task or vice versa. 
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Mapping Memory from a User Space Task into Kernel Space 
Mapping memory from a user space task is a common operation performed by a driver. Let’s use the 
example of an audio device driver where an application wants to send us a data buffer containing audio 
samples for play out on a hardware device. To do this, the user task—that is, the audio player—passes us 
a memory pointer, which describes where in memory the buffer is located. In user space, the copying of 
memory is as simple as calling the memcpy() function. 

Things are not so simple in the kernel. The address passed by the user task is meaningless to the 
kernel, as it is valid only within the task’s private address space. In order to access the memory in the 
kernel, we need to create a mapping for the underlying physical memory of the buffer in the kernel’s 
own address space. At the low level, this process happens by manipulating the kernel’s VM Map. While it 
is possible to do this using the Mach low-level interfaces, it is most commonly performed with the help 
of the I/O Kit IOMemoryDescriptor and IOMemoryMap classes. Listing 6-2 shows the portion of our 
imaginary audio driver that copies memory from the user space audio player by mapping the memory 
buffer into the kernel’s address space. 

Listing 6-2. Mapping a User Space Buffer into the Kernel 

void copyBufferFromUserTask(task_t userTask, void* userBuffer,  
                            uint32_t userBufferSize, void* dstBuffer) 
{ 
     uint32_t                 bytesWritten = 0; 
     bool                     wasPrepared = false; 
     IOMemoryDescriptor*      memoryDescriptor = NULL; 
     IOMemoryMap*             memoryMap = NULL; 
 
     memoryDescriptor = IOMemoryDescriptor::withAddressRange 
                            (userBuffer, userBufferSize,                       
                            kIODirectionOut, userTask); 
     if (memoryDescriptor == NULL) 
         goto bail; 
         
     if (memoryDescriptor->prepare() != kIOReturnSuccess) 
         goto bail; 
     wasPrepared = true; 
         
     memoryMap = memoryDescriptor->createMappingInTask 
                     (kernel_task, 0, kIOMapAnywhere | kIOMapReadOnly); 
     if (memoryMap == NULL) 
         goto bail; 
 
    void* srcBufferVirtualAddress = (void*)memoryMap->getVirtualAddress(); 
 
    if (srcBufferVirtualAddress != NULL) 
        bcopy(srcBufferVirtualAddress, dstBuffer, userBufferSize); 
         
    memoryMap->release(); // This will unmap the memory 
    memoryMap = NULL; 
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bail: 
    if (memoryDescriptor) 
    { 
        if (wasPrepared) 
            memoryDescriptor->complete(); 
        memoryDescriptor->release(); 
        memoryDescriptor = NULL; 
    } 
} 

To map the memory, we first create an IOMemoryDescriptor for the user space buffer. The 
IOMemoryDescriptor provides an interface to create the memory mapping, but it also allows us to pin the 
memory down while we copy from the buffer. This prevents the memory from being paged out to 
secondary storage or disappearing if the audio player should crash or the user exits the application while 
we are performing the copy. 

 Note  You may have noticed the use of goto in the preceding method, which language purists often consider a 
bad practice. However, it is often used in kernel code and provides a convenient way of providing centralized 
cleanup if an error occurs, in lieu of exceptions that cannot be used in the kernel. 

The actual mapping occurs with the invocation of the createMappingInTask() method: 

    IOMemoryMap* createMappingInTask( 
        task_t                  intoTask, 
        mach_vm_address_t       atAddress, 
        IOOptionBits            options, 
        mach_vm_size_t          offset = 0, 
        mach_vm_size_t          length = 0 ); 

 Tip  You can use IOMemoryDescriptor::map() method as a shortcut to create a standard mapping into the 
kernel’s address space. Also beware that the overloaded variant of map() is deprecated in favor of 
createMappingInTask(), which was introduced in Mac OS X 10.5. 

• The first argument, intoTask, is the task we want to create the mapping in. For our 
purposes, this is the kernel_task, though it would be possible to provide the task 
structure of another task, thereby making memory available from one task to 
another. 
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• The second argument, atAddress, is interesting as well. It specifies an optional 
destination address in the address space of intoTask. This allows the target task to 
locate the mapping at a fixed address. In our example, we don’t really care where 
in our address space the mapping will be made; we just want one address to 
access it, so we pass in zero instead of a fixed address and set kIOMapAnywhere in 
options. 

• The third argument, options, controls how the mapping will be performed using 
the flags described in the Memory Descriptors section, for example, read-only or 
read/write. Options also exist to control how the memory should behave in 
relation to the CPU cache. The following options can be set: 

• kIOMapDefaultCache, which specifies the caching policy for the mapping. It 
will disable the cache for I/O memory; otherwise, kIOMapCopybackCache is 
used. 

• kIOMapInhibitCache, which disables caching of this mapping. 

• kIOMapWriteThruCache, which uses write-thru caching. 

• kIOMapCopybackCache, which uses copy-back caching. 

• kIOMapReadOnly, which specifies the mapping will be read-only. 

• kIOMapReference, which is used when mapping an already existing 
mapping and will fail if the memory is not previously mapped. 

• kIOMapUnique, which ensures no previous mapping exists for the memory. 

• The last two arguments are used to specify an optional offset and length into the 
buffer, if you want to map up only parts of it. However, note that mappings are a 
concept of the virtual memory system and operate on pages. You can map 
memory only in units of the page size (4096 bytes). The rounding happens 
internally and gives the illusion of working with byte boundaries. 

The IOMemoryMap Class 
The createMappingInTask() method in Listing 6-2 will return an instance of IOMemoryMap to represent the 
mapping. In our previous example, we call the IOMemoryMap::getVirtualAddress() method, which 
returns a value of the IOVirtualAddress type. The exact primitive data type of IOVirtualAddress depends 
on the architecture, but for 64-bit kernels, a 64-bit unsigned integer (uin64_t) is used and not a pointer 
type. 

When we no longer need the mapping, we simply release the IOMemoryMap object, which takes care of 
unmapping. You may wonder why we do not call the IOMemoryMap::unmap() function to release the 
mapping. When you create a mapping, it is possible for another thread or the same thread to map the 
buffer again. While the mapping will of course only be created once, performing the mapping multiple 
times will increment an internal reference counter. However, calling unmap() will not simply decrement 
the reference count and remove the mapping if the count hits zero, it will destroy the mapping 
regardless of how many times it is referenced. This may lead to the kernel accessing an invalid address; 
hence, care should be taken when using unmap(). Simply calling release() for the map will decrement or 
remove the mapping if required. A collection of other interesting IOMemoryMap methods are described in 
Table 6-2. 
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Note that in the Listing 6-2 example, we could just as well have copied memory into the mapped 
buffer with some small modifications to create a writable mapping. 

Table 6-2. IOMemoryMap Member Function Overview 

Function Description 

getAddressTask() Gets the task of the mapping. 

getMemoryDescriptor() Returns the memory descriptor this map was created from. 

getPhysicalAddress() Gets the physical address of the first byte in the mapping. 

getPhysicalSegment() Takes and offsets into the mapping and returns the address as well 
the length of the physical segment backing this virtual memory. 
The length may be the entire mapping if it is backed by contiguous 
memory. 

redirect() Allows the memory for the map to be swapped with new physical 
memory. This is done by supplying a new IOMemoryDescriptor and 
consequently, the mapping will be updated to point to the new 
physical memory owned by the passed descriptor. The redirect() 
function will only succeed if the memory map was created by 
kIOMapUnique. If NULL is passed in place of an IOMemoryDescriptor, 
any access to the memory range of the mapping by a user task will 
block until a valid memory descriptor has been supplied.  

… The full definition for the IOMemoryMap class can be found in 
IOMemoryDescriptor.h. 

 Note  It is not necessary to map memory into the kernel unless the kernel needs to actively modify it. If DMA is 
performed from a user space buffer and the data in the buffer does not have to be modified by the kernel, it is not 
necessary to map it into the kernel’s address space, the buffer can be transferred directly to a hardware device. 
See Chapter 9 for more information about DMA. 

Mapping Memory from the Kernel to a User Space Task 
The previous sections showed how we can take memory allocated in user space and map that memory 
into the kernel’s address space so the kernel can access it. While it is possible for the kernel to both read 
and write from the mapping, it may sometimes be desirable for a user space task to map kernel memory 
into its address space. It should be noted that Apple recommends against this practice for security and 
stability reasons and it should be avoided whenever possible. One possible reason for doing it might be 
the need to map device memory (for example, from a PCI device) to user space so it can access the 
device’s registers. 
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In I/O Kit this form of memory mapping is usually done through the IOUserClient class. Available 
memory mappings should be returned via the clientMemoryForType() method. A generic example of 
how this can be achieved is shown in Listing 6-3. 

Listing 6-3. Mapping Kernel Memory to User Space via IOUserClient 

#define kTestUserClientDriverBuffer             0  
IOReturn com_osxkernel_TestUserClient:: 
clientMemoryForType(UInt32 type, UInt32 *flags, IOMemoryDescriptor **memory) 
{ 
     IOReturn ret = kIOReturnUnsupported; 
     switch (type) 
     { 
          case kTestUserClientDriverBuffer: 
              // Returns a pointer to an IOMemoryDescriptor or 
              // if a hardware device, an IODeviceMemory pointer which is a 
              // subclass of IOMemoryDescriptor 
              *memory = driver->getBufferMemoryDescriptor(); 
              *memory->retain(); 
              ret = kIOReturnSuccess; 
              break; 
          default: 
              break; 
     } 
     return ret; 
} 

Note that we need to call retain() on the IOMemoryDescriptor before returning it, as it will be 
released when the user client closes and we do not want the descriptor to be de-allocated as it is a shared 
resource owned by the driver. In this example, we call a hypothetical driver that, for the sake of the 
example, has a method called getBufferMemoryDescriptor() that returns an IOMemoryDescriptor for a 
kernel-allocated buffer (or it could even be device memory mapped into the kernel’s address space). The 
type argument here is simply an integer and can be anything; the important thing is that the user space 
program that will access the memory knows the value so it can reference the right memory mapping. 

In user space code, you can do the following to map the memory from the IOUserClient. 

void* addressOfMappedBuffer = NULL; 
int sizeOfMappedBuffer; 
IOConnectMapMemory(openDeviceHandleHere, 
                   kTestUserClientDriverBuffer, 
                   mach_task_self(), 
                   (vm_address_t *) &addressOfMappedBuffer, 
                   &sizeOfMappedBuffer, 
                   kIOMapAnywhere); 

You may notice the similarity to creating a mapping in the kernel. The kIOMapAnywhere here signifies 
that we don’t care where in our address space the mapping is made; the addressOfMappedBuffer 
argument will contain the address of the mapping if the call succeeds and can be used to access the 
mapped memory. If kIOMapAnywhere is not specified, the addressOfMappedBuffer argument is used to 
specify the preferred address for the mapping. The second last argument will tell us the size of the 
mapping. The smallest amount that can be mapped is a single page; therefore, if you map buffers 
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smaller than 4096, it would allow a client to see the memory of the entire page the buffer is contained 
within, which could be a potential security problem. 

Mapping Memory to a Specific User Space Task 
The preceding example allows any task to map the memory and our driver code does not need to know 
which task the memory will be mapped to. However, if you know the specific task memory should be 
mapped to, you can use the approach from Listing 6-2. The difference is simply that the user space task 
identifier is passed to IOMemoryDescriptor::createMappingInTask() in place of kernel_task. 

Apple recommends not mapping memory obtained from functions such as IOMalloc() and 
IOMallocAligned() (though it is possible using the latter) because they come from the zone allocator, 
which is intended for private and temporary allocations and not for sharing. The recommended way of 
mapping memory is to use the IOBufferMemoryDescriptor, a subclass of IOMemoryDescriptor that also 
allocates memory, as follows. 

IOBufferMemoryDescriptor* memoryDescriptor = NULL;   
memoryDescriptor = IOBufferMemoryDescriptor::withOptions( 
    kIODirectionOutIn | kIOMemoryKernelUserShared, sizeInBytes, 4096); 

An interesting parameter to note is kIOMemoryKernelUserShared, which indicates to the allocator that 
we wish to share the memory with a user task. We pass 4096 (the page size) to get page-aligned memory, 
as memory mappings can only be done on page-sized units. 

Physical Address Mapping 
Virtual memory addresses are only available to the CPU and are meaningless to a hardware device, 
which requires physical addresses. In order to communicate with hardware outside the CPU, we need to 
translate virtual memory from the kernel or a user space task into physical addresses the device can use 
to access information from RAM. This task is not always trivial as virtual memory is often fragmented. 
Let’s look at an example, a 128 KB virtual memory buffer we want to send to a hardware device. The 
buffer can in the worst case consist of 32 individual 4 KB pages scattered anywhere throughout the 
system memory. Because of this, we cannot simply translate the address of the first byte of the buffer 
and tell the device the buffer is 128 KB long; we need to work out how many fragments the buffer 
consists of and instead send a list/array of addresses and lengths. This is often referred to as a 
scatter/gather table or list. The IOMemoryDescriptor and classes derived from it provide two methods to 
help with physical address translation, as follows. 

• getPhysicalAddress(): Translates the address of the first byte to its physical 
address. This is mainly useful if the buffer is known to be contiguous.  

• getPhysicalSegment(): Translates the address at a specified offset into the buffer 
and returns the length of the physical segment from that offset. For a contiguous 
buffer, this will always be the size of the buffer minus the offset. 

 Caution  This method can cause a kernel panic if used improperly. See the following discussion for correct 
usage. 
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Note that there are two versions of getPhysicalSegment() depending on if you are using a 64-bit 
kernel or 32-bit kernel, as follows: 

#ifdef __LP64__ 
    virtual addr64_t getPhysicalSegment( IOByteCount   offset, 
                                         IOByteCount * length, 
                                         IOOptionBits  options = 0 ) = 0; 
#else /* !__LP64__ */ 
    virtual addr64_t getPhysicalSegment( IOByteCount   offset, 
                                         IOByteCount * length, 
                                         IOOptionBits  options ); 
#endif /* !__LP64__ */ 

For the 32-bit version (!__LP64__) the options argument must specify: kIOMemoryMapperNone or the 
method will panic for addresses over the 4 GB mark. A more flexible, safer and easier approach to 
memory translation is to use IODMACommand class, which works in conjunction with IOMemoryDescriptor. 
We discuss IODMACommand and this topic in much more detail in Chapter 9. 

Summary 
In this chapter, we have discussed: 

• Types of memory addresses in use by the kernel. The kernel typically works with 
virtual addresses both for its own threads as well as those of user space tasks. 
Physical memory addresses are used between the CPU and memory, as well as 
hardware devices.  

• The significance of 32-bit and 64-bit memory addressing and modes. 

• How memory allocation is performed across the different kernel subsystems, 
Mach, BSD, and I/O Kit. In I/O Kit, the preferred mechanism is to use the 
IOMalloc*() functions or the IOBufferMemoryDescriptor. 

• How the IOMemoryDescriptor and related subclasses are used by many parts of the 
I/O Kit to manage and describe memory buffers. The IOBufferMemoryDescriptor is 
one such subclass, which in addition to providing a memory descriptor also 
allocates memory in various forms, with alignment or even physically contiguous 
memory. 

• How the IOMemoryMap class is used to manage memory mappings and allows the 
kernel to map a user space buffer into its virtual address space so memory can be 
manipulated by the kernel. 

• How the IOUserClient class provides a useful method, clientMemoryForType(), 
which will handle the details of mapping a kernel buffer into user space. 

• How the IOMemoryDescriptor provides methods such as getPhysicalSegment() 
that allow mapping of virtual memory addresses to physical addresses. 
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Synchronization and Threading 

As we have seen throughout this book, the role of a driver is to make the functionality that is provided by 
a hardware device available to the operating system and to user applications. This means that the code 
inside a driver may be called from any number of running applications at any time, depending on when 
an application wishes to request the services of the hardware device. In handling these requests, the 
driver runs in the thread context of the application that made the control call. In addition to these 
requests, the hardware itself can require servicing and may generate interrupts at arbitrary times that the 
driver must respond to. The end result for the driver developer is that driver code runs in a complex 
multithreaded environment, even without the driver creating any additional threads of its own. 

The computer hardware on which a driver will execute will likely have multiple CPU cores. So, in 
addition to the driver code being preempted by an interrupt from the device or a request from a thread 
in another application, it’s possible for your driver to be running on multiple cores simultaneously. This 
applies even to the interrupt service routine for your driver, which can run in parallel to the non-
interrupt code of your driver on another CPU core. 

As is the case with multithreaded application code, it’s important that a driver provides 
synchronized access to its internal structures and any data that could potentially be read or written from 
multiple threads. How a driver provides the arbitration between multiple threads that are attempting to 
access its hardware is dependent on the type of device. Some hardware can only be accessed by one 
client at a time. For example, a serial port device will grant exclusive access to one user process at a time; 
the driver will make sure that an attempt by another process to open the serial port will be rejected. On 
the other hand, a disk device can expect to receive requests from multiple processes and, since the 
hardware itself can handle only one request at a time, it is the responsibility of the driver to queue the 
incoming requests and issue them to the disk device in a serial manner. 

The I/O Kit provides several different mechanisms that a driver can use to implement a scheme that 
provides arbitrated access to its hardware while ensuring that the driver’s internal structures remain 
valid in a multithreaded environment. This chapter assumes that you have a basic understanding of 
code synchronization and have previously written multithreaded application code. 

Synchronization Primitives 
Synchronization problems occur when code that is executing on two or more threads attempts to access 
a common resource or structure. A common synchronization problem for I/O Kit drivers arises when a 
driver needs to access its instance variables, since these are shared between all of the threads that the 
driver is executing. To give a concrete example, let’s consider an actual example from the I/O Kit, 
namely, the OSObject base class’s implementation of reference counting. 

The OSObject class is the base class for all objects in the I/O Kit, and one of its roles is to maintain a 
reference count for each object instance and to release an object when its reference count is 
decremented to 0. A simplified version of the OSObject implementation, without the synchronization 
provided by the actual implementation, is shown in Listing 7-1. 
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Listing 7-1. A Possible Implementation of Object Reference Counting 

void    Object::retain () 
{ 
        retainCount += 1;               // An instance variable defined as an int 
} 
 
void    Object::release () 
{ 
        retainCount -= 1; 
        if (retainCount == 0) 
                this->free(); 
} 

Although the preceding code looks correct and will run perfectly well if all calls to retain() and 
release() are made from a single thread, the code is not thread-safe and may fail if multiple threads 
were to simultaneously call retain() and release() for the same object. To understand the problem, it is 
necessary to examine the compiler output for the previous code. In this case, the assembler instructions 
that follow were generated when the implementation was compiled for the 64-bit Intel architecture 
under a Debug build. The code for retain() contains the following sequence of instructions: 

        mov     eax, retainCount          ; Load retainCount into CPU register EAX 
        add     eax, 0x1                  ; Increment value in EAX 
        mov     retainCount, eax          ; Write value in EAX to retainCount 

And the code for release() contains the following sequence of instructions: 

        mov    eax, retainCount           ; Load retainCount into CPU register EAX 
        sub    eax, 0x1                   ; Decrement value in EAX 
        mov    retainCount, eax           ; Write value in EAX to retainCount 
        mov    eax, retainCount           ; Load retainCount into CPU register EAX 
        cmp    eax, 0x0                   ; Determine whether the value of EAX is 0 
        jne    skipFree                   ; If EAX is not zero, jump over the next instruction 
        call   free()                     ; Otherwise, call the free() method 
skipFree: 
        … 

The cause of the problem in a multithreaded environment is that the C code both to increment and 
to decrement the instance variable retainCount compiles to three CPU instructions: the value held by 
the instance variable retainCount is loaded from memory into a CPU register, the value of the CPU 
register is either incremented or decremented, and the result is then written back to memory. Let’s see 
what can happen if two threads were to call retain() simultaneously for the same object. For simplicity, 
let us assume that the code is executing on a machine with a single CPU core and that the operating 
system’s scheduler preempts the first thread at the point where the initial mov instruction has been 
executed. 
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Thread 1 Thread 2 

mov    eax, retainCount  

 mov    eax, retainCount 

 add     eax, 0x1 

 mov    retainCount, eax 

add    eax, 0x1  

mov    retainCount, eax  

 
In this scenario, thread 1 will read the value of retainCount from memory into the EAX register. At 

this point, the operating system’s scheduler preempts thread 1 and switches to thread 2 (after saving the 
state of thread 1’s CPU registers). Thread 2 now runs and will read the same value of retainCount into 
the EAX register as was read by thread 1. It then increments the value and writes the incremented value 
back to memory. The operating system scheduler then preempts thread 2 and switches execution back 
to thread 1 after restoring the state of thread 1’s saved CPU registers. Thread 1 now continues executing 
from where it left off, incrementing the original value of retainCount, and writing the result back to 
memory. Following this, retainCount has only increased in value by 1, even though the retain() method 
was called twice. 

Note that this problem will only show up under specific conditions: Either the retainCount instance 
variable must be modified by two threads, with one preempting the other in the way illustrated, or the 
two threads must be running simultaneously on two CPU cores. A problem such as this, in which the 
result of executing code depends on the timing and the order in which the code runs, is known as a race 
condition. Race conditions can lead to problems that are very difficult to debug since the problem by its 
nature is timing-dependent and therefore may not occur every time the code is run. In fact, the code 
may appear to run perfectly fine during testing and it will only become apparent that the driver has 
problems when reports come in from users. 

As well as being difficult to reproduce, race conditions can be very difficult to diagnose when they 
do cause problems. Take the example of the race condition outlined previously in which an object’s 
retain count is incremented by 1, even though two calls to retain() were made. This wouldn’t cause any 
immediate problems and the driver would continue to function as if nothing were wrong until much 
later, when the object is released. Since the object was retained twice, the calling code should be 
expected to release the object twice. However, since the value of the retain count is one less than the 
value it should be, the object will be destroyed while the driver still holds one reference to it. This means 
that, at some later time, the driver will try to access the object that it thinks it holds a reference to. But 
that object will have been destroyed and the driver will crash with an access to invalid memory. Note 
that the code that ends up crashing may be in a completely different function to the function that 
contains the race condition. As a result, tracing the cause of the bug back to retain() and release() will 
involve considerable sleuth work. 
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Atomic Operations 
Since the race condition in the previous example was caused by the compiler generating a sequence of 
three instructions to increment and decrement the instance variable retainCount, one solution is to 
replace the compiler output from the sequence load-modify-store with a single instruction that 
performs an equivalent operation. In this way, there is no chance for the operation to be interrupted 
when execution is preempted by another thread. In reality, however, it may not always be possible to 
replace an operation with a single instruction. Instead, we use a sequence of instructions that behave as 
if they were a single instruction. This is referred to as an “atomic” operation because the result of the 
operation is the same as if the instruction sequence had executed as a single, indivisible group. 

The implementation of an atomic operation requires support from the CPU. For example, the Intel 
CPU used in Macintosh computers provides an instruction to atomically add one value to another value 
in memory. However, this alone is not enough to make the operation atomic in a multiprocessor 
environment. So the Intel instruction set provides a LOCK prefix that prevents any other CPU in the 
system from accessing memory while the instruction is executing. Since the implementation of atomic 
operations relies on support that is specific to the CPU architecture, iOS devices, which use the ARM 
instruction set, require a different implementation for each atomic operation. 

To make it easy to access atomic operations in driver code, the I/O Kit includes a number of 
functions that provide an atomic implementation of basic operations, such as integer addition, 
incrementing and decrementing a value, and bitwise operations. These functions are listed in Table 7-1, 
which are defined in the header file <libkern/OSAtomic.h>. 

Table 7-1. Atomic Operations Provided By the Libkern Framework 

Function Description 

OSIncrementAtomic(address); 

OSIncrementAtomic8/16/64(address); 

Adds 1 to the signed 8-, 16-, 32-, or 64-bit value 
at the specified address. The original value 
prior to the increment is returned. 

OSDecrementAtomic(address); 

OSDecrementAtomic8/16/64(address); 

Subtracts 1 from the signed 8-, 16-, 32-, or 64-
bit value at the specified address. The original 
value prior to the decrement is returned. 

OSAddAtomic(amount, address); 

OSAddAtomic8/16/64(amount, address); 

Adds the value in “amount” to the signed 8-, 16-, 
32-, or 64-bit value at the specified address. 
The original value prior to addition is returned. 

OSBitAndAtomic(mask, address); 

OSBitAndAtomic8/16(mask, address); 

Performs a bitwise AND operation of the value 
in “mask” and the 8-, 16-, or 32-bit unsigned 
value at the specified address. The original 
value prior to the bitwise operation is returned. 

OSBitOrAtomic(mask, address); 

OSBitOrAtomic8/16(mask, address); 

Performs a bitwise OR operation of the value in 
“mask” and the 8-, 16-, or 32-bit unsigned value 
at the specified address. The original value 
prior to the bitwise operation is returned. 
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Function Description 

OSBitXorAtomic(mask, address); 

OSBitXorAtomic8/16(mask, address); 

Performs a bitwise XOR operation of the value 
in “mask” and the 8-. 16-, or 32-bit unsigned 
value at the specified address. The original 
value prior to the bitwise operation is returned. 

OSCompareAndSwap(oldValue, newValue, address); 

OSCompareAndSwapPtr(oldValue,newValue, 
address); 

OSCompareAndSwap64(oldValue, newValue, 
address); 

If the value of the 32- or 64-bit integer at the 
specified address is equal to “oldValue”, then 
“newValue” is written to the address. Otherwise, 
the value stored at the address is not modified. 
The function returns a Boolean that indicates 
whether newValue was written. 

OSTestAndSet(bit, address); Sets a bit within the byte at the specified 
address. Returns a Boolean that indicates 
whether the bit was already set. 

OSTestAndClear(bit, address); Clears a bit within the byte at the specified 
address. Returns a Boolean that indicates 
whether the bit was already clear. 

 
With these functions at our disposal, we are now in a position to provide an implementation of 

retain() and release() that avoids the race condition that was present in the previous example. This is 
shown in Listing 7-2, which assumes that the instance variable retainCount is a 32-bit integer. 

Listing 7-2. An Implementation of Object Reference Counting in a Multithreaded Environment 

void    Object::retain () 
{ 
        OSIncrementAtomic(&retainCount); 
} 
 
void    Object::release () 
{ 
        uint32_t                originalValue; 
         
        originalValue = OSDecrementAtomic(&retainCount); 
        if (originalValue == 1) 
                this->free(); 
} 

If we go back and examine the original implementation in Listing 7-1 and the corresponding 
compiler output for the release() method, we can see that the code actually contained two race 
conditions. The conditional call to free() occurs when the value of retainCount has been decremented 
to 0. However, since the compiled code reloads the value of retainCount from memory before testing its 
value against 0, it’s possible that two calls to release() both read the value 0 and the free() method is 
called twice for the object, which will likely result in a crash. To illustrate how this could occur, assume 
that one thread executing release() has decremented the retainCount from 2 to 1 and has written the 
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decremented value back to memory. Also assume that, before it can reload the value of retainCount 
from memory and test whether its value is 0, the thread is preempted. Another thread now has a chance 
to run and, if it were to execute release(), the retainCount would be decremented from 1 to 0 and the 
object would be destroyed. When execution returns to the original thread, it will reload the value of 
retainCount, find that it is 0, and destroy the object a second time. 

This race condition is avoided in Listing 7-2 by using the value returned by OSDecrementAtomic() to 
determine when the final reference count has been released. The function OSDecrementAtomic() returns 
the original value of its parameter before it was decremented. We know that if the original value was 1, 
the value of retainCount has now been decremented to 0 and the object can safely be destroyed. 

One group of atomic operations that deserves special mention is the compare-and-swap family of 
functions. The compare-and-swap operation writes a value to a memory address but, importantly, the 
write will only take place if the value that is being overwritten is equal to some expected value that is 
provided by the caller. The result of the operation is a Boolean value that indicates whether the write 
succeeded. Importantly, for the purposes of synchronization, the entire operation is performed 
atomically. 

The compare and swap function can be used to build more complex atomic operations. For 
example, suppose we wish to implement a function to perform a bitwise AND followed by a bitwise OR, 
with the overall operation being atomic. Clearly, we cannot simply call OSBitAndAtomic() followed by 
OSBitOrAtomic() because there is nothing to prevent the execution from being preempted between the 
two functions. With the OSCompareAndSwap() function at our disposal, we can implement a function that 
atomically performs a bitwise AND followed by a bitwise OR as follows: 

uint32_t        AtomicBitAndOr (uint32_t andMask, uint32_t orMask, volatile uint32_t* address) 
{ 
        uint32_t        oldValue; 
        uint32_t        newValue; 
         
        do { 
                oldValue = *address; 
                newValue = oldValue & andMask; 
                newValue = newValue | orMask; 
        } while (OSCompareAndSwap(oldValue, newValue, address) == false); 
         
        return oldValue; 
} 

You will note that we have no synchronization at all while we perform the two bitwise operations. 
The reason that this implementation works and is atomic is because it uses the OSCompareAndSwap() 
function to ensure that the value at address hasn’t changed from the original value on which we based 
our calculation of the new value to be written. If another thread had modified the value at address while 
this function was executing, then the OSCompareAndSwap() function would return false and would not 
perform the write. As a result, we would have to go back to the beginning of the loop and repeat the 
entire bitwise operation after re-reading the value at address. On this next attempt, we hope to have 
better luck in performing the operation without another thread modifying the value at address 
underneath us, although we will continue retrying until we successfully write the result to memory. 
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 Note  All atomic operations, such as OSAddAtomic(), OSIncrementAtomic(), and OSBitOrAtomic() can be 
implemented using only OSCompareAndSwap(). In fact, a number of atomic functions provided by the libkern 
library are implemented this way, including all bitwise atomic operations and the 8-bit and 16-bit variations of 
each operation, which perform a compare and swap on the full 32-bit word containing the value being modified. 

Locking 
The use of atomic operations is a good solution for synchronizing access to a single variable. We often 
need to synchronize more complex sections of code, such as algorithms that rely on the value of multiple 
variables or functions that touch hardware. To remove the possibility of race conditions from these more 
complex areas of code, we rely on mutual exclusion; that is, any other thread that wishes to execute code 
which could interfere with the result of our operation is blocked until the operation is complete. The act 
of obtaining exclusive access is referred to as “acquiring a lock.” 

The basic idea behind locking is that any code that accesses a shared resource, such as the instance 
variables of a driver, will first acquire a lock before executing the code. It will then release the lock when 
it has finished accessing the shared resource. The important point about a lock is that it can be held by 
only one client at a time; any other thread that wishes to access the same shared resource will block 
when it attempts to obtain the lock and will remain blocked until the lock is released. Obtaining a lock 
will prevent any other thread that relies on the same lock from executing so it’s good practice to hold a 
lock for as short a time as is needed. 

The I/O Kit provides several different styles of locking mechanisms, each of which is appropriate in 
different situations. The locks provided by the I/O Kit include: 

• IOSimpleLock, which implements a spin lock 

• IOLock, which implements a traditional mutex 

• IORecursiveLock, which implements a mutex that can safely be acquired multiple 
times from the thread that is holding the lock 

• IORWLock, which implements a read/write lock that can be shared between 
multiple threads that need to read the shared resource but provides exclusive 
access to a thread that wishes to write to the shared resource. 

Spin locks 
The most basic implementation of locking is the spin lock, which can be implemented using nothing 
more than atomic operations (which may explain why the spin lock is known as IOSimpleLock in the I/O 
Kit implementation). A spin lock may consist of nothing more than a Boolean flag that indicates whether 
the lock is currently held by any thread. When a thread wishes to acquire the lock, the implementation 
determines whether the lock is held and, if not, performs an atomic set of the lock’s flag. If the lock is 
held, then the function will simply repeatedly try to obtain the lock until the lock becomes available. An 
example implementation for a spin lock is shown in the following code. This implementation uses an 
unsigned 32-bit integer to represent the lock state, with a value of 0 indicating the lock is available and a 
value of 1 indicating that the lock is held. 
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typedef    uint32_t    MySpinLock; 
 
void    MyAcquireSpinLock (MySpinLock* lock) 
{ 
        // If the value of the lock is 0, set its value to 1.   
        // Keep trying until the value of lock is successfully set. 
        while (OSCompareAndSwap(0, 1, lock) == false) 
                ; 
} 

A thread that holds a spin lock must be careful not to obtain the lock that it is currently holding a 
second time. If this were to happen, then the thread would attempt to acquire the lock and spin because 
the lock is not available. However, in this case, the thread will spin indefinitely since the only thread that 
can release the lock is blocked waiting for the lock. This situation is known as a deadlock. 

The actual implementation of IOSimpleLock used by the I/O Kit is slightly more advanced than the 
example given, since it disables preemption of the running thread while the lock is held. This means that 
while a simple lock is held, the thread holding the lock will not be taken off the CPU on which it is 
running until the lock is released. Consequently, an IOSimpleLock should only be acquired for very brief 
periods (such as while a driver’s instance variables are being updated) and should never perform an 
operation that may block the running thread, such as allocating memory or acquiring a mutex, since this 
could result in a deadlock. 

Although it may seem that spin locks are an inefficient locking mechanism because a thread spends 
CPU cycles spinning if it cannot immediately obtain a lock, they can actually be more efficient than 
other locking mechanisms, provided that the lock is only held for short periods of time. On a machine 
with a single CPU, IOSimpleLock will never spin because, with thread preemption disabled, there is no 
possibility of lock contention (in effect, synchronization is provided by disabling thread preemption and 
preventing the execution of any other thread that may acquire the lock). On a multiprocessor system, 
disabling preemption when an IOSimpleLock is acquired does not prevent a thread running on another 
CPU from attempting to access the same lock (in fact, thread preemption is only disabled for the CPU 
core that has acquired the lock). However, providing that a spin lock is held for only a short period of 
time, the time spent by a thread spinning while it waits for the lock to become free will typically be much 
less than the overhead of blocking the thread had a mutex been used instead of a spin lock. 

Unlike a mutex, an IOSimpleLock will never suspend the running thread. Instead it will spin until the 
lock becomes available. This makes IOSimpleLock perfect for providing synchronization between code 
that runs within a primary interrupt handler and non-interrupt code. In reality, this functionality is 
rarely needed within an I/O Kit driver since most drivers won’t ever have to handle an interrupt directly 
and, if they do, most will defer the interrupt to a secondary interrupt handler. The I/O Kit provides other 
locking mechanisms that are appropriate for secondary interrupt handlers, which are discussed later in 
this chapter. 

To provide synchronization with code that runs inside a primary interrupt handler, we need to 
make sure that code that acquires an IOSimpleLock at non-interrupt time is never preempted by code 
running inside an interrupt handler that attempts to acquire the same lock, since this would result in a 
deadlock. To solve this, the I/O Kit provides a function that disables interrupts for the running CPU 
before acquiring the spin lock and a counterpart that releases the spin lock and then re-enables 
interrupts. Just as disabling thread preemption guarantees that a thread holding an IOSimpleLock will 
not be preempted by another thread on the same CPU, disabling interrupts guarantees that a thread 
holding an IOSimpleLock will not be preempted by an interrupt handler on the same CPU. An interrupt 
may fire on another CPU on the system and may attempt to acquire an IOSimpleLock that is held by a 
thread on another CPU core (resulting in the interrupt handler spinning) but, because the thread is 
running on another CPU, it can continue to execute and will release the IOSimpleLock shortly afterwards. 

A summary of the IOSimpleLock functions provided by the I/O Kit is given in Table 7-2. 
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Table 7-2. Spin Lock Synchronization Functions Provided By the I/O Kit 

Function Description 

IOSimpleLock*   IOSimpleLockAlloc(void); Allocates a new IOSimpleLock and returns a 
pointer to the initialized object or NULL on 
failure. 

void    IOSimpleLockFree(IOSimpleLock* lock); Deallocates an IOSimpleLock object that was 
allocated by IOSimpleLockAlloc(). 

void    IOSimpleLockLock (IOSimpleLock* lock); Acquires a simple lock, spinning if the lock is 
currently held by another client. When the 
function returns, preemption for the current 
CPU is disabled. 

boolean_t 
IOSimpleLockTryLock(IOSimpleLock* lock); 

Acquires a simple lock, but only if the lock is 
not already held. The function returns a 
Boolean that indicates whether the function 
was able to acquire the lock. 

void    IOSimpleLockUnlock(IOSimpleLock* 
lock); 

Releases a simple lock that has been acquired 
by either IOSimpleLockLock() or a successful 
call to IOSimpleLockTryLock(). Preemption for 
the current CPU is re-enabled. 

IOInterruptState 
IOSimpleLockLockDisableInterrupt 
(IOSimpleLock* lock); 

Acquires a simple lock and disables thread 
preemption and interrupts for the current 
CPU. This function is only needed for locks that 
are shared between interrupt context and 
thread context. The value returned by the 
function is required when releasing the lock to 
ensure that the CPU’s interrupt state is 
restored to its original condition. 

void 
IOSimpleLockUnlockEnableInterrupt 
(IOSimpleLock* lock, IOInterruptState state); 

Releases a simple lock that has been acquired 
by IOSimpleLockLockDisableInterrupt(). 
Thread preemption is re-enabled and the 
interrupt state is restored to the parameter 
“state”. 

Mutexes 
Although spin locks are efficient for certain applications, they are not suitable in cases in which a thread 
needs to hold the lock for a long time or when a thread performs an operation that may block while the 
lock is held, such as allocating memory or acquiring a second lock. In these cases, the use of a spin lock 
would be very inefficient, since any lock contention will result in a thread spinning continuously while it 
attempts to obtain the lock, which would prevent the CPU from performing any useful work. A mutex 
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lock does not have this problem because a thread that attempts to acquire a mutex lock that is already 
taken will be suspended until the lock becomes available. Rather than spending CPU time spinning, the 
operating system is able to schedule another thread on the CPU. The I/O Kit provides support for mutex 
locks through an object known as an IOLock. Because a mutex may block if it cannot be acquired 
immediately, mutex locks cannot be used within an interrupt handler. 

The functionality provided by IOLock is very similar to that provided by the POSIX mutex lock 
functions that are available to user space applications. You can use an IOLock in driver code in similar 
ways to how you would use a POSIX mutex in user space code. Unlike an IOSimpleLock, which shouldn’t 
be held for long periods because it disables preemption (and possibly interrupts), a mutex has no such 
effect on the state of the CPU or operating system’s scheduler. A thread holding a mutex will still be 
preempted by another thread once its time quantum has expired and a thread holding a mutex can still 
be preempted if the CPU needs to handle an interrupt. However, these points can be seen as advantages 
of using a mutex, since they mean that there are no restrictions on what operations can be performed 
while a mutex is held. While a mutex is held, a thread can allocate memory, map memory from user 
space into the kernel (which may result in memory paging), and can obtain another mutex (which is an 
operation that may block). 

As with a spin lock, a thread that holds a mutex must be careful not to obtain a mutex that it is 
currently holding a second time. Otherwise, a deadlock will occur. At first, this may seem like an artificial 
problem, since it’s simply a matter of ensuring that a thread doesn’t attempt to obtain a lock that it is 
already holding. However, this can become complicated if the code that is executed while a lock is held 
calls other functions that may themselves call other functions that end up acquiring the lock. 

For example, let’s pretend that we have a function named ListEnqueue() that requires 
synchronization because it can be called from multiple threads. The ListEnqueue() function may be 
called from many locations in our project’s codebase and some of the calling functions may already hold 
the synchronization lock but other calling functions nay not hold the lock. If our sample ListEnqueue() 
function were to acquire a lock to ensure that it is synchronized when called from functions that do not 
already hold the lock, we would introduce a deadlock when ListEnqueue() is called from functions that 
do hold the lock. This situation can be solved by using a recursive mutex. 

Once a thread has acquired a recursive mutex, any code that runs on that same thread is able to 
reacquire the mutex multiple times without resulting in a deadlock. The shared resource is still 
synchronized, since any other thread that attempts to acquire the mutex will be blocked until all 
acquisitions made by the owning thread have been released. The I/O Kit provides support for a recursive 
mutex through the IORecursiveLock object. 

A summary of the mutex operations provided by the I/O Kit is given in Table 7-3. 

Table 7-3. Mutex Synchronization Functions Provided By the I/O Kit 

Function Description 

IOLock* IOLockAlloc(void); 

IORecursiveLock* 
IORecursiveLockAlloc(void); 

Allocates a new IOLock or IORecursiveLock and 
returns a pointer to the initialized object or 
NULL on failure. 

void    IOLockFree(IOLock* lock); 

void    IORecursiveLockFree(IORecursiveLock* 
lock); 

Deallocates an IOLock object that was allocated 
by IOLockAlloc() or an IORecursiveLock object 
that was allocated by IORecursiveLockAlloc(). 
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Function Description 

void    IOLockLock(IOLock* lock); 

void    IORecursiveLockLock(IORecursiveLock* 
lock); 

Acquires a mutex, blocking the calling thread if 
the lock is held by another thread. Once a 
thread has acquired a recursive lock, it can 
safely reacquire the same lock multiple times. 

boolean_t 
IOLockTryLock(IOLock* lock); 

boolean_t 
IORecursiveLockTryLock(IORecursiveLock* lock); 

Acquires a mutex lock but only if the lock is not 
held by another thread. This function will 
never block the calling thread if the lock could 
not be acquired, but will return a Boolean that 
indicates whether the function was able to 
acquire the lock. 

void    IOLockUnlock(IOLock* lock); 

void    IORecursiveLockUnlock(IORecursiveLock* 
lock); 

Releases a mutex that has been acquired by 
either IOLockLock() or a successful call to 
IOLockTryLock(). Or, for a recursive mutex, it 
releases a lock that was acquired by either 
IORecursiveLockLock() or a successful call to 
IORecursiveLockTryLock(). 

boolean_t 
IORecursiveLockHaveLock 
(const IORecursiveLock* lock); 

Tests whether a recursive mutex is held by the 
calling thread. If the mutex has been acquired 
by the thread, then the value true is returned. If 
the mutex has either not been acquired or has 
been acquired by another thread, the value 
false is returned. 

Condition Variables 
As well as providing a mutex for exclusive access to a shared resource, the IOLock and IORecursiveLock 
objects provide support for a synchronization primitive known as a condition variable. A condition 
variable allows synchronization between multiple threads by providing a mechanism by which one 
thread can suspend its execution until a particular condition (or event) occurs. 

As an example, let’s consider the driver for a serial port. Our hypothetical driver will receive blocking 
read requests from a user space application. These requests will block and only return to user space once 
data has been received on the serial port. Rather than continually polling inside the driver until data is 
available, a better approach is to create a condition variable and suspend the thread so that it does not 
use any CPU time while it is waiting. When the driver receives data from hardware, it will wake any 
threads that are waiting on the condition variable. This is illustrated in the following sample code: 

void    MyDriver::read (void* buffer, uint32_t* bytesRead) 
{ 
        IOLockLock(m_lock); 
        do { 
                // Attempt to read from hardware 
                *bytesRead = readFromHardware(buffer); 
                 
                // If no data available, sleep until the hardware receives data 
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                if (*bytesRead == 0) 
                { 
                        int     result; 
                         
                        result = IOLockSleep(m_lock, m_readEvent, THREAD_ABORTSAFE); 
                        if (result != THREAD_AWAKENED) 
                                break; 
                } 
        } while (*bytesRead == 0); 
        IOLockUnlock(m_lock); 
} 
 
void    MyDriver::DataAvailable () 
{ 
        // Wake any threads that are sleeping on m_readEvent 
        IOLockWakeup(m_lock, m_readEvent, false); 
} 

In the preceding example, the read() method will attempt to receive any data from the hardware 
device, but if no data is available, then it will block the current thread until the hardware has data. When 
the hardware has data available, the DataAvailable() method is called (which could be called in 
response to a hardware interrupt) and any blocked thread is woken. Note that the entire contents of the 
read() method are protected by an IOLock. This ensures that all attempts to read data from the hardware 
device are serialized. Otherwise, a potential race condition would exist when the hardware signals the 
availability of data as multiple threads are awoken and simultaneously attempt to read data from the 
device. The behavior of IOLockSleep() is similar to that of its equivalent user space function 
pthread_cond_wait(). The first parameter is a lock that must be held by the caller; IOLockSleep() will 
atomically release the lock when it sleeps and reacquire the lock once the event has been signaled. In 
this way, the lock is not held while the thread is suspended. 

The parameter m_readEvent is the condition variable; the waiting thread specifies the event that it is 
waiting on through the condition variable. The signaling thread indicates the event that has occurred by 
providing the same condition variable. A driver will define a number of condition variables that 
correspond to events that it uses to coordinate between its threads. Condition variables in the I/O Kit do 
not have a specific type, rather a condition variable is an arbitrary void* that uniquely identifies an 
event. A driver will usually use the address of an instance variable (such as the address of the lock itself) 
as a condition variable, since the use of an address guarantees that the value will be unique among 
multiple instances of the driver and other drivers in the system. 

A summary of the condition variable synchronization operations provided by the I/O Kit is given in 
Table 7-4. 
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Table 7-4. Condition Variable Synchronization Functions Provided By the I/O Kit 

Function Description 

int 
IOLockSleep(IOLock* lock, void* event, UInt32 
interruptType); 

int 
IORecursiveLockSleep(IORecursiveLock* lock, 
void* event, UInt32 interruptType); 

Atomically unlocks the provided lock, which 
must be held by the caller, and waits on the 
specified event. 

If the caller is running on a user space thread 
as part of a control request, the interruptType 
parameter specifies whether the sleep should 
be aborted if the user process receives a 
signal such as SIGHUP or SIGKILL. 

The lock is reacquired before the function 
returns. 

int 
IOLockSleepDeadline(IOLock* lock, void* event, 
AbsoluteTime deadline, UInt32 interruptType); 

int 
IORecursiveLockSleepDeadline(IORecursiveLock* 
lock, void* event, AbsoluteTime deadline, UInt32 
interruptType); 

Performs a sleep on an event with a specified 
timeout parameter. If the event is not 
signaled before the specified time, the 
function will wake and return to the caller, 
with the lock reacquired. 

void 
IOLockWakeup(IOLock * lock, void *event, bool 
oneThread); 

void 
IORecursiveLockWakeup(IORecursiveLock* lock, 
void* event, bool oneThread); 

Signals that an event has occurred and wakes 
any threads that are sleeping on that same 
event. The parameter oneThread allows the 
caller to specify whether only one sleeping 
thread should be awoken or whether all 
threads that are sleeping on the event should 
be awoken. 

 
The interruptType parameter that is provided to the sleep functions determines whether the 

function should return if the process that owns the thread receives a signal such as SIGHUP or SIGKILL. 
This is useful if the wait is being performed by a user client in response to a control request in which case 
the driver function will be running on a thread that was created by the user space application. 
Depending on the situation, the driver may wish to abort the wait if the process receives a signal, since 
the client process may have been terminated. The possible values for interruptType are: 

• THREAD_UNINT specifies that the sleep should not be aborted by any signal 

• THREAD_INTERRUPTIBLE specifies that the sleep may be aborted if a SIGKILL signal is 
received 

• THREAD_ABORTSAFE specifies that the sleep may be aborted if any signal is received 

Upon waking from a sleep, the function will return one of the following result values: 

• THREAD_AWAKENED indicates the function returned normally and the event was 
signaled by a call to IOLockWakeup() 
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• THREAD_TIMED_OUT indicates that the event was not signaled by the specified 
deadline 

• THREAD_INTERRUPTED indicates the user process that owns the thread on which the 
driver was sleeping received a signal 

• THREAD_RESTART indicates that the wait operation should be restarted entirely 

Read/Write Mutexes 
One of the problems with a mutex is that allowing only a single thread to hold the lock can often be 
unnecessarily restrictive. In many cases, there is no reason why multiple threads should not be allowed 
to read a shared resource. It is only when a thread wishes to write to the shared resource or otherwise 
modify it that exclusive access is required. This problem is solved by a specialized type of mutex known 
as a read/write mutex. 

The I/O Kit provides read/write mutexes through an object known as IORWLock. A read/write mutex 
can be used in a similar way to a standard mutex. The one distinction is the caller must determine 
whether it intends to read the shared resource (in which case it can share the mutex with other readers) 
or intends to write to the shared resource (in which case it requires exclusive access to the mutex). The 
I/O Kit provides two separate functions depending on the action that the calling code wishes to take. 

A summary of the read/write mutex synchronization operations provided by the I/O Kit is given in 
Table 7-5. 

Table 7-5. Read/Write Mutex Synchronization Functions Provided By the I/O Kit 

Function Description 

IORWLock*       IORWLockAlloc(void); Allocates a new IORWLock and returns a 
pointer to the initialized object or NULL on 
failure. 

void    IORWLockFree(IORWLock* lock); Deallocates an IORWLock that was allocated by 
IORWLockAlloc(). 

void    IORWLockRead(IORWLock* lock); Acquires a read/write mutex with the 
intention of reading the shared resource. The 
mutex may be shared with other readers but 
will block if the mutex is held by a writer. 

void    IORWLockWrite(IORWLock* lock); Acquires a read/write mutex with the 
intention of writing to the shared resource. 
The caller is granted exclusive access to the 
shared resource and will block if the 
read/write mutex is held by any readers or 
writers. 

void    IORWLockUnlock(IORWLock* lock); Releases a read/write mutex that has been 
acquired by either IORWLockRead() or 
IORWLockWrite(). 
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 Note  The I/O Kit locking primitives are all built on top of Mach types. The I/O Kit contains functions to get at the 
underlying Mach locking types, including IOSimpleLockGetMachLock(), IOLockGetMachLock(), 
IORecursiveLockGetMachLock(), and IORWLockGetMachLock(). These functions can be useful to take 
advantage of behavior that is implemented at the Mach level but not exposed by the I/O Kit functions. For example, 
Mach read/write locks can be upgraded from shared read access to exclusive write access, but the I/O Kit provides 
no equivalent function. 

Synchronizing Asynchronous Events: Work Loops 
Synchronization within a driver becomes difficult if the driver needs to respond to asynchronous events 
such as hardware interrupts or timers. This adds an extra layer of complexity since, in addition to 
requiring synchronization between multiple threads of execution, the driver now has to contend with 
the synchronization of code that runs on multiple threads and code that runs in response to 
asynchronous events. To simplify the work required by the driver developer, the I/O Kit provides a class 
known as IOWorkLoop that creates a single thread on which all asynchronous events are handled. In I/O 
Kit nomenclature, this thread is known as a “work loop” and a driver registers any of its asynchronous 
event sources, such as interrupt handlers and timers, with an IOWorkLoop object. 

For much of the time, the work loop thread will be idle, consuming no CPU time and simply waiting 
for an event to occur. Once an event occurs, the corresponding event source will signal the work loop. 
The work loop thread will wake up, handle the event, and then return to the sleep state. Since all events 
are handled on the same work loop thread, this design provides an elegant solution for synchronizing 
multiple sources within a driver. Another advantage of this design is that, since all event sources are 
handled on the same thread, the handler functions do not need to provide any additional locking 
because there is no possibility of multiple handlers running at the same time.  

The work loop is an intrinsic part of every I/O Kit driver. The IOService class, which is the base class 
from which every driver object is ultimately derived, provides a method named getWorkLoop() through 
which a provider class can share its work loop with its child drivers. A driver can choose to use the 
IOWorkLoop object created by its provider class (by calling IOService::getWorkLoop()) or can opt to create 
its own IOWorkLoop object. If a driver expects to receive only the occasional asynchronous event and the 
latency of the event handler doesn’t need to be kept to a minimum, then sharing the work loop of its 
provider class is an attractive approach. This will also simplify the code that forms the driver’s 
constructor and destructor and eliminate the overhead of creating an additional kernel thread for the 
driver’s own work loop. Drivers that handle hardware interrupts should create their own dedicated 
IOWorkLoop object since this guarantees minimum latency because the work loop is not shared with 
event sources from its provider driver. 

A driver will typically initialize its work loop inside the driver’s start() method. If a driver decides 
that it will share the work loop of its provider, then it can obtain a work loop in the following way: 

m_workLoop = getWorkLoop();        // Implemented by the IOService superclass 
if (m_workLoop == NULL) 
        abort with error; 
m_workLoop->retain(); 

If a driver decides that it will create a dedicated work loop of its own, then it can instantiate a new 
IOWorkLoop object as follows: 
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m_workLoop = IOWorkLoop::workLoop(); 
if (m_workLoop == NULL) 
        abort with error; 

If a driver instantiates its own IOWorkLoop object, then it should consider overriding the IOService 
method getWorkLoop() to expose its work loop to any child drivers of its own. 

Having obtained an IOWorkLoop object, the driver next needs to register the event sources that it 
wishes to handle on the work loop thread. Event sources are objects that inherit from the IOEventSource 
base class. The I/O Kit provides specializations, including the IOInterruptEventSource class and the 
IOTimerEventSource class, for creating an event source for a PCI card’s interrupt handler and a timer 
event, respectively. When an event source is instantiated, a callback function is provided, which will be 
invoked when the event requires servicing. The callback function is guaranteed to either be called from 
the work loop thread or to be synchronized with any code running on the work loop thread. An example 
of code to create an event source for a timer and add it to a work loop is given here: 

m_timerEventSource = IOTimerEventSource::timerEventSource(this, TimerFiredFunc); 
if (m_timerEventSource == NULL) 
        abort with error; 
 
result = m_workLoop->addEventSource(m_timerEventSource); 
if (result != kIOReturnSuccess) 
        abort with error; 

 Note  In the case of an interrupt handler, the callback that is run on the work loop thread corresponds to the 
secondary interrupt handler; the primary interrupt is still taken at the hardware interrupt level and will run in an 
arbitrary thread context. 

A driver will typically specify a static method in its main driver class as the callback function of an 
IOEventSource. Although the arguments provided to the callback function differ depending on the type 
of event source that is being invoked, the first argument is always a pointer to an OSObject class that can 
be used to pass the driver’s instance to the callback function. Depending on the complexity of the 
callback function, the implementation may either handle the event directly in the static class function or 
call through to an instance method of the driver. 

IOCommandGate 
One problem that remains is that a driver may need to synchronize code running on its own threads 
against event actions that run on the work loop thread. For example, consider the driver for a disk device 
that receives requests for read and write transactions from user space applications. Since the hardware 
can only service one transaction at a time, any additional transactions will be added to a queue and, 
whenever a transaction has completed (which is signaled through an interrupt), the driver will remove 
the next transaction from the head of the queue and service it. Since this hypothetical driver 
manipulates the transaction queue both from within its interrupt handler (which will run on the work 
loop) and from its user client, it requires some way of synchronizing code that runs on the work loop 
thread with code that runs in an arbitrary thread context. 
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To solve this problem, the I/O Kit provides a special event source known as a command gate, 
implemented by a class named IOCommandGate. A command gate is installed on a work loop like any other 
event source but, instead of generating events itself, it is used to execute an arbitrary callback function 
on the work loop thread. The IOCommandGate class contains a method named runAction() that takes a 
function pointer and runs that function such that it is synchronized with any other work loop event. A 
function that is executed through an IOCommandGate object is said to be a “gated” function. The gated 
function isn’t actually run on the work loop thread. It is simply serialized against all other work loop 
sources, including other gated functions that are called through the same IOCommandGate. The command 
gate actually runs the function on whichever thread made the call to runAction(). This removes the 
overhead of a context switch to the work loop thread. An example of calling a function through an 
IOCommandGate is shown in the following code: 

// Method called outside the gate 
IOReturn MyDriver::startTransaction(Transaction* transaction) 
{ 
        // Call the function StartTransactionAction through the command gate 
        return m_commandGate->runAction((IOCommandGate::Action)StartTransactionAction); 
} 
 
// IOCommandGate::Action 
IOReturn MyDriver::StartTransactionAction(MyDriver* self, Transaction* transaction) 
{ 
        // This static method is synchronized against all work loop methods 
        ... 
        return kIOReturnSuccess; 
} 

In the previous example, we provided a single parameter to the action function, namely the 
argument “transaction”. The IOCommandGate allows up to four parameters to be provided to an action 
function. 

The IOCommandGate achieves its synchronization through a recursive lock. This allows a function that 
has been called through the IOCommandGate to call other functions through the same IOCommandGate 
without causing a deadlock. It also allows a gated function to sleep and wake on condition variables, 
using an approach that is similar to that discussed earlier in this chapter. The IOCommandGate class 
contains two methods for sleeping on a condition variable, one which will timeout after a specified 
period and one which will sleep until the condition variable is signaled. These two methods are 
described as follows: 

IOReturn             commandSleep(void* event, UInt32 interruptType); 
IOReturn             commandSleep(void* event, AbsoluteTime deadline, UInt32 interruptType); 

The parameters event, interruptType, and deadline have the same meaning as the parameters of 
the same name that are passed to the functions IOLockSleep() and IOLockSleepDeadline() described in 
Table 7-4. As we saw in the section on “Condition Variables,” a thread can only sleep on a condition 
variable if it is holding a synchronization lock. The same rule applies for the commandSleep() method, 
which must be called from a function that has been called through an IOCommandGate object. 

To signal a command gate’s condition variable when an event has occurred, the IOCommandGate class 
provides the following method that takes the same form as the IOLockWakeup() function described in 
Table 7-4: 

void    commandWakeup(void* event, bool oneThread); 
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The IOCommandGate object provides all of the synchronization capabilities of an IORecursiveLock, 
including mutex locking and condition variable support. This allows a driver to use an IOCommandGate 
object instead of an I/O Kit lock for all of its synchronization. This can be useful if a driver needs a work 
loop to provide synchronization against asynchronous events; the driver can create an IOCommandGate 
and use the work loop throughout its implementation instead of creating additional locks. 

Timers 
The final event source that we will discuss is the IOTimerEventSource, which provides a basic, non-
periodic timer. A common use of an IOTimerEventSource is for creating a watchdog timer to cancel 
operations that have not completed within a certain period of time. 

When a timer is created, the caller provides a callback function that will be run when the timer 
expires. Like any other event source, a timer must be added to an IOWorkLoop object and its callback 
function will be run from a context that is synchronized to all other event sources installed on the work 
loop. 

A timer can be initialized and added to an existing work loop as shown in the following code: 

m_timer = IOTimerEventSource::timerEventSource(this, TimerFired); 
if (m_timer == NULL) 
        abort with error; 
 
result = m_workLoop->addEventSource(m_timer); 
if (result != kIOReturnSuccess) 
        abort with error; 

The method IOTimerEventSource::timerEventSource() instantiates a new IOTimerEventSource 
object. Its first parameter is a pointer to an OSObject, which is passed to the callback function, allowing it 
to access the driver object. 

Next, the timer needs to be activated. This is done by specifying a timeout period from the current 
time until the timer fires. The IOTimerEventSource class provides methods to specify the timeout in 
milliseconds, microseconds, nanoseconds, or in arbitrary time units: 

IOReturn         setTimeoutMS(UInt32 ms); 
IOReturn         setTimeoutUS(UInt32 us); 
IOReturn         setTimeout(UInt32 interval, UInt32 scale_factor = kNanosecondScale); 

When the timer fires, the specified callback function will be run, which has the following signature: 

void    MyDriver::TimerFired(OSObject* owner, IOTimerEventSource* sender) 
{ 
} 

Although the timer provided by IOTimerEventSource is not periodic, the timer’s next timeout value 
can be set from within its callback function. You will notice that the IOTimerEventSource instance is 
provided as a parameter to the callback function, which allows the callback to easily re-install the timer. 
If the drift between subsequent firings of the timer needs to be avoided for a specific application, the 
IOTimerEventSource provides a wakeAtTime() method that allows the timeout to be specified as an 
absolute time. A periodic timer that does not drift over time can be created by specifying an absolute 
time each time the timer is reinstalled. 

If a timer needs to be cancelled, for example, because the operation that a watchdog timer was 
guarding has successfully completed, the IOTimerEventSource class includes a method named 
cancelTimeout(). This method is also a synchronization point, and will guarantee that the timer’s 
callback function will not be called by the time this method has returned. 
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Releasing Work Loops 
When a driver is unloaded, it will need to release any work loop that it has created. This is a two-step 
process and involves removing event sources from the work loop and then releasing the IOWorkLoop 
object. The first part is usually performed by a driver in its stop() method, but the work loop itself is 
typically not released until the driver’s free() method is called. A possible implementation follows: 

void    MyDriver::stop(IOService* provider) 
{ 
        // Remove and release the command gate event source. 
        if (m_commandGate != NULL) 
        { 
                m_workLoop->removeEventSource(m_commandGate); 
                m_commandGate->release(); 
                m_commandGate = NULL; 
        } 
         
        // Remove and release the timer event source. 
        if (m_timer != NULL) 
        { 
                m_timer->cancelTimeout(); 
                m_workLoop->removeEventSource(m_timer); 
                m_timer->release(); 
                m_timer = NULL; 
        } 
         
        super::stop(provider); 
} 
 
 
void    MyDriver::free() 
{ 
        // Release the work loop 
        if (m_workLoop != NULL) 
        { 
                m_workLoop->release(); 
                m_workLoop = NULL; 
        } 
         
        super::free(); 
} 

Kernel Threads 
Unlike a user space application, a driver doesn’t have a main thread that is always running while the 
driver is active. Instead, a driver typically executes on existing threads in response to certain events. For 
example, when a user space process makes a control request through the driver’s user client, the driver 
executes within the context of the calling thread owned by the user process. Similarly, when a driver’s 
hardware generates an interrupt, the driver’s secondary interrupt handler is executed from the work 
loop thread. Because a driver executes in response to such events, if a driver isn’t handling an event, 
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such as a control request or an interrupt handler, it will typically have no code executing on any thread 
in the system. 

The lack of an equivalent of a main thread can be a problem for a driver, particularly if it needs to 
have code executing continually so that it can periodically poll its hardware device or if it wishes to 
perform a time-consuming operation such as downloading firmware to its hardware. In these cases, a 
driver can create its own kernel thread on which to continue executing code without tying up the thread 
of a user process or the work loop thread. 

A good example of the use of a kernel thread is shown in Listing 5-16 from Chapter 5. In this 
example, a user space application made a control request to the driver to perform a delay operation. 
Rather than performing the delay within the context of the process thread, which would have blocked 
the calling process, the driver instead chose to create a background thread on which to perform the sleep 
operation. Once the delay had completed, the driver then signaled the user process with an 
asynchronous notification. This simple design pattern demonstrates how a driver can use a kernel 
thread to turn a synchronous operation that would block the thread from the calling process into an 
operation that appears to be asynchronous to the calling process. 

The APIs for creating a kernel thread come from the lower-level Mach layer and are declared in the 
header file <kern/thread.h>. You should never need to include this header file directly though, since it is 
included by the header file <IOKit/IOLib.h>. If you look at the contents of IOLib.h, you will see that it 
contains a small number of threading functions, including support for creating a thread. Starting in Mac 
OS X 10.6, however, these functions have been deprecated by Apple in favor of the Mach functions. 

The function kernel_thread_start() can be used to create kernel thread. Its prototype is given as 
follows: 

kern_return_t   kernel_thread_start(thread_continue_t continuation, void* parameter, 
                        thread_t* new_thread); 

The argument “continuation” is actually a function pointer to the start routine of the newly created 
thread. If a thread was successfully created, the return value from kernel_thread_start() will be 
kIOReturnSuccess and the argument “new_thread” will contain a reference to the newly created thread, 
much like the reference that is returned by the user space function pthread_create(). The thread_t 
object that is returned isn’t terribly useful to the caller, since there are very few public kernel APIs for 
thread manipulation. However, the thread_t value can be compared against the value returned by 
current_thread() to determine whether the active function is running on a particular thread. 

In most cases, the caller immediately releases the thread_t object after successfully creating a 
thread; this does not impact the execution of the background thread itself. To release the thread_t 
object, the function thread_deallocate() should be used, which has the following prototype: 

void    thread_deallocate(thread_t thread); 

 Note  It is important that the thread_t object that is returned by kernel_thread_start() is released to 
prevent a memory leak. 

The start routine for the thread has the following signature: 

void    ThreadFunction (void* parameter, wait_result_t waitResult) 

The first argument to the function, parameter, corresponds to the value that was passed to 
kernel_thread_start() and allows the creator of the thread to pass context to the thread’s function. The 
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second argument to the function, waitResult, is not useful for threads created through 
kernel_thread_start(); its presence is simply a consequence of the thread function being defined as the 
type thread_continue_t. Internally, the kernel makes use of the type thread_continue_t elsewhere and 
the value of waitResult is used in these cases. 

Finally, once a thread has completed its operation and wishes to terminate, the thread function 
should call the function thread_terminate(), as demonstrated: 

thread_terminate(current_thread()); 

Note that although it might seem that it is possible to terminate a background thread from another 
thread, this will fail with an error returned to the caller. The thread_terminate() function only allows the 
current thread to be terminated. To terminate a background thread, for example, when a driver is 
unloaded, the driver should instead signal the background thread that it needs to exit and allow the 
thread to terminate itself. This signaling can be done either by setting a Boolean flag that the 
background thread checks periodically or by setting a condition variable that the background thread 
sleeps on. 

Summary 
• A driver runs in a multithreaded environment. 

• The methods of a driver class can potentially be called from an arbitrary thread. 
This means that, even if a driver creates no threads of its own, it cannot escape the 
need for synchronized access to its shared instance variables and hardware. 

• The I/O Kit provides synchronization functions that a driver can use to prevent 
multiple threads from modifying shared data at the same time. 

• A spin lock is a suitable synchronization mechanism for code that will hold the 
lock only for a short period of time or for code that will execute inside a primary 
interrupt handler. 

• A mutex is a better choice if the lock will be held for longer periods, but it cannot 
be used inside a primary interrupt handler. 

• To synchronize events that can occur at an arbitrary time, such as a hardware 
interrupt or a software timer, the I/O Kit provides a dedicated thread on which the 
handler for these events is run. This is known as the work loop thread and the I/O 
Kit ensures that all event sources that are installed on the work loop are executed 
in a serial manner. 
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Universal Serial Bus 

The Universal Serial Bus (USB) is a ubiquitous technology found in a wide variety of products, notably 
computer peripherals, including mice, keyboards, hard drives, and printers, as well as almost any other 
type of device or equipment that can be connected to a computer. The USB is a specification that 
defines the communication between a device, such as a printer or mobile phone, and a host controlled 
by a computer device, such as your Mac or iPad. The USB specification was developed in 1996 by a 
consortium of companies, including Compaq, DEC, IBM, Intel, Microsoft, NEC, and Nortel. The 
motivation was to replace a series of connectors with a universal connector, making it easier to connect 
external devices to personal computers. The USB specification is currently at version 3.0. Support for 3.0 
is still emerging, and support for version 2.0 is by far the most ubiquitous at this time. Apple has yet to 
release hardware capable of supporting the latest USB 3.0 specification, but Apple computers have 
shipped with USB support since before OS X. The iOS series of devices are themselves USB devices, but 
they can also act as USB hosts. An example of this is the iPad, which can act as a host for USB devices, 
such as digital cameras. 

USB is based on a master-slave system, where a controller (host) communicates with slave devices. 
A host commonly has a one-to-one relationship with a bus. 

As a kernel programmer, if you are tasked with writing a driver for a hardware device, there is a 
major chance that it would be for a USB device. The good news (for us lazy programmers, anyway) is that 
you can get away without having a driver if your device conforms to one of the classes defined by the 
USB Implementers Forum (USB-IF). For example, keyboards and mice comply with the human interface 
device (HID) specification, which makes it unnecessary for a vendor to supply a driver, as the OS will 
already have a generic driver that can be used to communicate with these devices. However, the vendor 
could still elect to develop a driver—for example, if the device has advanced capabilities, such as 
additional customizable buttons on a mouse. 

This chapter will provide a broad overview of the USB specification and architecture. The 
specification is much longer than this book, so obviously a detailed discussion is out of the question. We 
will instead focus on the parts that matter when implementing a driver for a USB device. We will also 
discuss the architecture of the USB subsystem provided by I/O Kit, as well as provide code for a fictional 
USB device driver. It is worth mentioning that USB drivers can be written both in the kernel and in user 
space. A kernel driver is generally needed when a driver/device can be accessed concurrently by many 
applications, or if the primary client of the driver is the kernel itself. Examples of devices typically 
implemented in the kernel are storage, networking, audio, and display drivers, whereas drivers for 
printers, mice, and keyboards may be handled fully or partially by a user space driver. In this chapter, we 
will focus on the USB in general, and on the implementation of kernel space drivers. A discussion about 
user space drivers is provided in Chapter 15. 
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USB Architecture 
In a USB system, the host controller is the master and the USB devices are the subordinates. The USB 
topology is organized in a tree-like structure, which forms a bus, with the host controller being the root 
and the controller of the subordinated device. The host controller is responsible for coordinating 
activities on the bus, and a device is not able to perform I/O, or any other activity on the bus, without 
first being asked to do so by the host. 

The tree structure branches out with the help of hubs, which allow connected devices to become 
part of the bus, and thus extend it, as a new branch. The subordinate devices of a hub can have other 
hubs connected to them— up to four levels deep is possible. The root hub is usually embedded into, and 
part of, the host controller itself. Figure 8-1 shows the USB topology for a MacBook computer. 

 

Figure 8-1. System Information showing the USB topology of a MacBook, with external devices connected 

The system in Figure 8-1 has four built-in USB buses, but only two buses are actually connected to 
external USB ports. While most people associate USB devices with external devices, USB is often used to 
communicate with fixed internal devices in the computer system. The first two USB buses of the 
MacBook in Figure 8-1 are internal to the notebook, and are used to connect to the internal keyboard, 
the trackpad, and the IR Receiver. The second internal bus connects to the Bluetooth USB host 
controller. Both of these buses are USB 1.1 buses, which is fine because the devices connected to them 
all have low bandwidth requirements. 

This MacBook has two external USB devices connected, an external hard drive and an iPhone, each 
connected to a separate physical USB port on the system. Although you would think that an external 
USB port has its own dedicated bus, this may not always be the case. As you can see in Figure 8-1, one of 
the buses has an additional USB device attached to it, namely the built-in iSight camera. The camera 
requires more bandwidth than the 1.1 USB buses/controllers can provide, so it is instead attached to one 
of the two USB 2.0 controllers, likely to avoid having a separate controller just for the iSight, saving 
space, parts, cost, and battery power. The downside is that an external device will share bandwidth with 
the iSight camera (when it is in use). 
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The exact USB topology will vary from system to system, and this is just one example of how it can 
be organized. 

Each bus in a USB system can support up to 127 devices, including hub devices, which are also USB 
devices. Bandwidth on a USB bus is shared between the connected devices, so having a large number of 
active devices will incur a significant penalty, which is why it is now common to have physical USB ports 
on separate host controllers—each providing a bus, rather than having ports connected to a single 
controller. 

A USB is designed to be hot-pluggable, which means that the system can handle the insertion or 
removal of any device at any time during operation, although, depending on the type of device, this may 
not necessarily be safe to do—the prime example is a hard drive, which, if unplugged at the wrong time, 
can lead to corruption of the drive’s file system. From a developer’s perspective, this means that your 
driver code needs to be designed to anticipate the arrival or removal of a device. 

The USB specification also supports power for devices through the bus, a major advantage over 
older bus technologies, as this, for example, will allow you to charge an iPhone simply by plugging it in 
to your laptop, or to self-power a device such as a hard drive. 

The key characteristics of the USB can be summarized as follows: 

• Single connector type for all devices, designed to replace a variety of older 
connectors, such as the PS/2. 

• Ability to connect many devices to the same connector. 

• USB buses can be expanded with the help of hubs, supporting up to 127 devices 
per bus. 

• Devices are hot-pluggable. 

• Devices can be powered by the bus, which enables them to be charted or fully 
powered through the bus, depending on power requirements. 

• Bandwidth is shared between devices on a bus. 

• A USB device is a slave device and cannot initiate any activity on the bus without 
the permission of the host. 

One key characteristic that sets the USB apart from traditional hardware architectures, such as the 
PCI, is that it does not directly generate system interrupts. The ability for a device to asynchronously 
notify the system of some event is essential for the operation of many types of common devices—for 
example, a network device that will notify the system each time a new network packet arrives, or a 
mouse or keyboard that relies on telling the system its current position or which key was pressed.  

A USB device can still provide interrupt-like capabilities, but it is not able to directly interrupt a CPU 
in the same way that a PCI device can. To receive an interrupt from a USB device, an interrupt transfer 
has to be issued to the device. Once the transfer is issued, and an event occurs, such as the arrival of a 
network packet, the USB device is not simply free to signal the host controller—it has to be polled by the 
host controller. A USB device can only interact on the bus if told to do so by the host. The host controller 
provides a maximum latency guarantee for interrupt transfers. The lowest achievable latency is 125 
microseconds. A device can specify the desired interval for interrupt polling in its endpoint descriptors. 

It should be noted that although a USB device cannot directly interrupt a CPU itself, a USB host 
controller certainly can, and may do so in response to a completed interrupt transfer from a device. Most 
modern computer systems talk to USB controllers via PCI. 
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 Tip  The USB specifications are governed by the USB Implementers Forum (USB-IF), a not-for-profit 
organization. Their website can be found at http://www.usb.org. 

USB Transfer Speeds 
The first iteration of the USB standard supported two speeds: a low speed, at 1.5 Mbit/s, and a full speed, 
at 12 Mbit/s. Low speed devices are less susceptible to electromagnetic interference, and therefore these 
can be made cheaper, as they can be created using lower quality parts. This reduces the cost of simpler 
USB devices, which do not require the additional bandwidth needed for a full speed device. The USB 2.0 
standard included the full speed mode, capable of operating at speeds up to 480 Mbits/s, while also 
being backward compatible with USB 1.0. This made the USB competitive with the Firewire 
specification, which at the time operated at 400 Mbits/s (see Table 8-1 for USB transfer speeds). 

Table 8-1. USB Transfer Speeds 

Name Rate Introduced In 

Low-speed 1.5 Mbits/s USB 1.0 

Full-speed 12 Mbits/s USB 1.0 

High-speed 480 Mbits/s USB 2.0 

SuperSpeed 5.0 Gbits/s USB 3.0 
 
The USB 3.0 specification supports speeds up to 5 Gbits/s, and it was the fastest generally available 

external bus until Thunderbolt was released in 2011. Apple has so far not opted to include USB 3.0 
compatible devices in its computers, although there are third party offerings available for Macs that 
support ExpressCard or PCI-Express. 

Host Controllers 
Host controllers are governed by separate specifications that determine how the computer system will 
communicate with the host controller. Modern systems typically embed the USB host controller on the 
motherboard’s I/O controller (south bridge). Most host controllers have a PCI interface that is used by 
the system for communication with the controller. When a driver talks to a USB device, it does not do so 
directly—it talks to the host controller over PCI, although to the driver it looks as if it is communicating 
with the device directly, due to the object-oriented abstraction layer provided by the I/O Kit. The USB 
does not generate interrupts directly; however, the host controller uses both DMA and interrupts. 

Typically, a 32-bit x86 system has only 16 interrupt lines, and often as few as 2–3 interrupt lines, 
available for use by external peripherals. The USB solves this problem, as the computer system needs 
only a single interrupt line to the USB host controller to communicate with all of the devices connected 
to the controller. The USB specifications standardize the way in which a host communicates with a USB 
device; however, there are several standards for how a computer system communicates with a host 
controller: 
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• Universal Host Controller Interface (UHCI): UHCI was developed by Intel. The 
UHCI specification supports USB 1.x devices at low and full speed. 

• Open Host Controller Interface (OHCI): OHCI was developed by Microsoft and 
Compaq, among others, also for USB 1.x devices. The OCHI controller is smarter 
than UHCI, in that it has more logic embedded in the controller itself, as opposed 
to UHCI, which is simpler on a hardware level, but requires a more complicated 
host controller driver in the OS. 

• Enhanced Host Controller Interface (EHCI): EHCI was created for USB 2.0 and 
supports 480 Mbits/s high-speed devices. The EHCI does not handle USB 1.x 
devices, so it needs to incorporate a UCHI- or OHCI-based controller to handle 
devices based on the 1.x series of specifications. 

• Extensible Host Controller Interface (xHCI): xHCI was designed by Intel and 
supports the USB 3.0 specification. It was designed as a unified host controller, 
making EHCI, OHCI, and UHCI redundant. 

It is not uncommon for a computer system to have several host controllers, each supporting a 
different host controller interface. For example, the MacBook in Figure 8-1 has two OHCI controllers and 
two EHCI controllers for USB 2.0 support. Mac OS X presently has controller drivers to support OCHI, 
UHCI, and EHCI, but not xHCI. 

USB ON-THE-GO 

An additional standard exists as part of the USB 2.0 specification, called USB On-The-Go (OTG). While 
embedded devices, such as mobile phones, typically act as USB (slave) devices, USB OTG allows for a role 
switch, with the mobile device itself acting as a USB host. The USB OTG only works between two devices 
and does not support hubs. The iPad is a good example of this, as the iPad can be connected to a 
computer system as a USB device. However, using a special adapter, the iPad can also act as a USB host, 
to which you can connect digital cameras or memory cards. 

The USB Protocol 
Unlike serial port devices, where there are no protocols (it’s up to the application to implement one) and 
just streams of bits and bytes, the USB has a packet-based protocol. This is necessary as the bus is shared 
and there can be many devices connected to it, which has to be individually addressed. Unless you are a 
hardware engineer programming the firmware for a USB device, you don’t really need to understand, or 
even know about, the specifics of how this communication occurs, but it may be helpful, in some cases, 
to have a basic understanding of how the communication happens at the protocol level, in order to 
debug problems. 

The USB protocol is implemented between the host controller and the device, and it determines 
how data is transferred on the bus. A driver does not really have insight or influence over this process, as 
the details are handled by the electronics of the host and the device, and not the driver—unlike with 
networking, where many aspects of the communication protocol are under software control. In order to 
see or intercept what is actually crossing the wire, a USB packet analyzer is needed. A USB analyzer is a 
specialized (usually very expensive) device that can be connected between the device and the host to 
capture the traffic between them. 
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USB packets consist of 8-bit words in little-endian format (LSB). The USB protocol has four main 
packet types: 

• Token packet: This acts a header, and tells the recipient what type of packet/data 
follows. The three types of token packets are IN, OUT, and Setup. The first two 
specify the direction of the packet and the last is used to initiate a control transfer. 
The direction is seen from the host side, so IN means a transfer from the device to 
the host, and OUT means a transfer from the host to the device. 

• Data packet: This can carry arbitrary data, with 0–1024 bytes per data packet. 

• Handshake packet: This is sent to acknowledge the successful (ACK) or 
unsuccessful (NAK) delivery of a packet, as well as to report stalls (STALL). 

• Start of Frame packet: This is sent at regular intervals to synchronize data flow for 
isochronous transfer modes. 

The layout of each packet type can be seen in Figure 8-2. 

Token Packet

Data Packet

Handshake Packet

SOF Packet

Sync

Sync

Sync

Sync PID

PID

PID

PID

EOP

Frame number 11 -bit

Data 0 - 1023 bytes

EndpointAddress

CRC

CRC

CRC EOP

EOP

EOP

 

Figure 8-2. Layout of USB packet types 

All USB packets start with the sync and PID (packet identifier) fields. The sync field precedes other 
data and can be used by the receiver for clock synchronization. The field is 8-bits for low and full speed 
devices, and 32-bits for high-speed devices. The PID (packet identifier) field allows the decoder to 
determine the packet type that follows it. Possible values for the PID field are shown in Table 8-2. The 
PID is 4-bits wide, though it is 8-bits in total. The last four bits are a check field containing a complement 
of the first four bits, which helps determine if the packet is valid and has not been corrupted.  
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Table 8-2. Possible Packet Identifier (PID) Values 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Token packets are used for addressing a specific device. The address field specifies which device the 

packet is to or from, and is a number from 1–127, which addresses the device on the bus. A USB device 
may have several endpoints, which are independent communication channels, and the endpoint field 
specifies to which endpoint on a device the packet will be delivered. Endpoints are discussed later in this 
chapter. 

All packet types have a CRC (Cyclic Redundancy Check—used to verify the integrity of the data) 
field. All packet types have a CRC field that is 5-bits wide, except data packets, which instead have a 
wider 16-bit CRC field. 

Type PID Description 

Token 0001 OUT Token 

Token 100 1 IN Token 

Token 0101 SOF Token 

Token 1101 Setup Token 

Data 001 1 DATA0 

Data 101 1 DATA1 

Data 011 1 DATA2 

Data 111 1 MDATA 

Handshake 0 010 ACK Handshake 

Handshake 1 010 NAK Handshake 

Handshake 111 0 STALL Handshake 

Handshake 011 0 NYET—Not yet 

Other 110 0 Preamble 

Other 110 0 Error 

Other 100 0 Split 

Other 010 0 Ping 
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The end of packet (EOP) field is used as a delimiter. 
A USB transaction can consist of up to three data packets. Data packets are indicated by the PID 

field and can be one of the following: DATA0, DATA1, DATA2, and MDATA, though the latter two are 
used only for isochronous transfer modes. The PID field determines which of the data packets are 
transmitted, as shown in Table 8-2.  

A data transfer from the host to a device might look like this: 

1. Token Packet containing the address of the device and the endpoint. PID 
indicates an OUT transfer. 

2. Data 0 Packet containing 1024 bytes of payload data. 

3. Data 1 Packet containing 322 bytes of payload data. 

4. Handshake Packet sent from the device to the host indicating the status of the 
transfer, such as ACK, NAK, or STALL. 

Endpoints 
Communication between a host controller and a USB device is based on the concept of endpoints. An 
endpoint is uni-directional, and the direction is either IN or OUT—that is, communication from the 
device to the host, or communication from the host to the device. The connection from a host controller 
to an endpoint is referred to as a pipe. There are two types of pipes: a stream pipe, which carries data, 
and a message pipe, which carries control requests. A USB device can support up to 32 endpoints, with a 
maximum of 16 IN endpoints and 16 OUT endpoints. Endpoint address 0 is special, reserved for device 
configuration. There are four different types of endpoints available: 

• Bulk endpoints: These are used for transferring large amounts of data. Bulk 
transfers offer no guarantees about timely delivery or bandwidth, but do offer 
guaranteed delivery and error detection. Bulk transfers are not available for low 
speed modes. Hard drives, scanners, printers, and network cards typically use 
bulk transfers.  

• Control endpoints: These are used for device configuration and status retrieval. 
Requests to a control endpoint are guaranteed delivery by using reserved 
bandwidth. 

• Interrupt endpoints: These are intended for exchanging small amounts of time-
sensitive data with guaranteed delivery. 

• Isochronous endpoints: These provide guaranteed bandwidth, but not guaranteed 
delivery. Data is not re-sent if it is lost, which is ideal for video and audio 
applications.  

USB Descriptors 
A USB descriptor is used to describe a device’s capabilities, type, requirements, and more. Descriptors 
are organized in a hierarchy consisting of the following main descriptor types: 



CHAPTER 8  UNIVERSAL SERIAL BUS 

149 

• Device Descriptor: This contains the product ID (idProduct) and vendor ID 
(idVendor) of the USB device. There is only one device descriptor per device. It 
also contains information on how many descriptors follow it. Both the vendor ID 
and product ID are 16-bit integers. The vendor ID is assigned by the USB-IF. A 
vendor can choose any 16-bit value for the product ID. The vendor/product ID 
combination must be unique to avoid problems, as they are used to determine the 
correct drivers for a device. The device descriptor also contains two fields to 
indicate the type of device: bDeviceClass and bDeviceSubClass.  

• Configuration Descriptor: This specifies an alternate configuration in which a 
device can operate. For example, a device might have two configurations: one 
configuration when it is self-powered and one configuration when it is bus-
powered. The latter can operate in a limited mode that only allows a subset of 
overall functionality, or perhaps only provide the ability to program the device’s 
firmware. Only one configuration can be active at any given time. The 
configuration descriptor may have several interfaces underneath it, and it is 
uncommon for a device to have more than one configuration descriptor. 

• Interface Descriptor: This is a collection or group of endpoints that together 
perform a function. It can be useful to think of it as a logical subdevice. An 
interface may have zero or more endpoints. For example, in Figure 8-3, we see a 
multifunction USB device, which contains two interfaces: interface #0 is a printer, 
while interface #1 is a scanner device. Multiple interfaces may be active and 
operate simultaneously. Just like the device descriptor, the interface descriptor 
has fields to indicate the class of interface, which is given by bInterfaceClass and 
bInterfaceSubClass. 

• Endpoint Descriptor: This describes the type (bulk, interrupt, isochronous, or 
control) and the direction (IN, OUT) of an endpoint. 

USB Device - Muiti-function Printer

Interface #0 (Printer)

Interface #1 (Scanner)

EP 0 OUT

EP 1 IN

EP 1 OUT

EP 0 IN

EP 0 OUT

EP 1 IN

EP 1 OUT

EP 0 IN

EP 2 IN

EP 2 OUT

Firmware /
Hardware

ADDR 1

Host
Controller

Printer
Driver

Scanner
Driver

 

Figure 8-3. USB compound device with two interfaces 
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USB Device Classes 
The USB descriptors contain class codes, which identify the class of a device to the system and can be 
used to identify the appropriate driver to load for the device. The class code may be specified in the 
device descriptor, the interface descriptor, or both. A class code of 00h specified in the device descriptor 
means that the actual class code should be read from the interface descriptors instead. There is also a 
subclass field that further narrows down the type of device. Table 8-3 shows a small subset of available 
class codes. 

Table 8-3. A Subset of Standard USB Class Codes  

Base Class Descriptors Used Type of device 

0x00 Device Class information is provided in 
interface descriptors. 

0x01 Int erface Audio 

0x03 Interface Human Interface Device (HID), 
mouse, keyboard, trackpad etc. 

0x08 Interface Mass Storage, hard drives, thumb 
drives etc. 

0xFF Both Vendor Specific 

 
Many operating systems, including Mac OS X and iOS, provide default drivers for devices that 

conform to the standard classes, and therefore the OS can handle any mass storage or audio USB device 
without having to install a third party driver. It is still possible for a vendor to supply an optional driver 
for devices that provide additional capabilities not found in the generic driver supplied by the OS. For 
this, the I/O Kit matching system can be used to ensure that the more specific driver is matched, rather 
than the default driver. 

 Tip  The full list of class codes, as well as more detailed descriptions, can be found at 
http://www.usb.org/developers/defined_class. 

I/O Kit USB Support 
USB support in the I/O Kit is provided by the IOUSBFamily, which is a dynamically loadable KEXT, 
identified by the bundle identifier com.apple.iokit.IOUSBFamily. The USB family provides the central 
core of USB handling in the kernel and contains drivers for the host controllers, as well as abstraction 
classes for representing USB devices, interfaces, and pipes. The class hierarchy of the USB Family is 
shown in Figure 8-4. 
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IOUSBPipe IOUSBNub

IOUSBDevice IOUSBInterface

IOUSBController

IOUSBBus

IOServiceOSObject

IOUSBHub IOUSBLog

IOUSBFamily

 

Figure 8-4. IOUSBFamily class hierarchy 

Most of these classes are irrelevant if you only want to implement a driver for a USB device. The 
main classes used for USB driver development are shown in gray, in Figure 8-4, and include IOUSBPipe, 
IOUSBDevice, and IOUSBInterface, which we will discuss in detail later. 

If you need to implement support for a new host controller, this can be done by inheriting from 
IOUSBController; however, kernel already provides drivers for UHCI-, OHCI-, and EHCI-compliant host 
controllers. Although not shown in Figure 8-4, these are subclasses of IOUSBController, and they are 
called AppleUSBUHCI, AppleUSBOHCI, and AppleUSBEHCI, respectively. 

 Tip  The USB Family is not part of the XNU source distribution, but is nevertheless available in source code form 
as a download from http://opensource.apple.com. The source package includes source for the entire USB 
Family, including the implementation of the UHCI, OCHI, and EHCI controllers. It also includes sample code for USB 
drivers, and how to enumerate and access USB devices from user space. 

USB Device and Driver Handling 
When a USB device is inserted, the USB Family will create an instance of the IOUSBDevice class, a 
subclass of IOService, and insert it into the I/O Registry. Exactly one instance of IOUSBDevice will be 
created for each device inserted onto the bus. The provider for an IOUSBDevice is the IOUSBController to 
which the device is attached. The IOUSBDevice class provides an abstraction of the USB device’s device 
and configuration descriptors. Interface descriptors can be accessed from the IOUSBInterface class. The 
IOUSBDevice acts as a provider for IOUSBInterface classes, as seen in Figure 8-5. 
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Figure 8-5. USB device and driver provider relationships 

Figure 8-5 shows three USB devices and how they relate to their higher-level providers: 

• The driver on the left: This is a driver for an audio device. You may have noticed 
that there is an additional driver between IOUSBDevice and IOUSBInterface called 
IOUSBCompositeDriver. This composite driver is matched against, and loaded for, 
any USB device that has its device class and subclass set to zero in its device 
descriptor and that has no other vendor specific driver matched against it. The 
name of the driver may suggest that it is only for composite drivers with multiple 
functions, but the driver is loaded even for devices with a single interface. The 
only function the composite driver performs is to select the device’s active 
configuration (if it has multiple configuration descriptors), and then ensure that 
other drivers can be matched against the selected configuration’s interfaces.  

• The driver in the middle: This is a vendor specific driver attached directly to the 
IOUSBDevice nub. The IOUSBCompositeDriver was not loaded as the device class, 
and the subclass fields in the device descriptor were set to 0xFF/0xFF, indicating a 
vendor specific device, and a driver was properly matched against the device. 

• The driver on the right: This has the same organization as on the left, with an 
IOUSBCompositeDriver attached to the IOUSBDevice nub. The composite driver will 
enumerate all device interfaces and ensure that they are made available for 
matching. In this case, there are two interfaces, each with an attached 
independent driver. 
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Loading USB Drivers 
To have your driver loaded automatically when a device is inserted, you must configure your driver’s 
Info.plist, as we learned in Chapter 4. As we saw in the previous section, a single driver may handle a 
USB device, or it may have several drivers, one for each interface (function) presented. For a USB device, 
a driver is matched against it using keys from the device’s device descriptor. The I/O Kit follows the rules 
for driver matching set by the Universal Serial Bus Common Class Specification. The following 
combinations of keys are valid for matching a driver against a USB device: 

• idVendor & idProduct & bcdDevice 

• idVendor & idProduct 

• idVendor & bDeviceSubClass & bDeviceProtocol (only if bDeviceClass == 0xff) 

• idVendor & bDeviceSubClass (only if bDeviceClass == 0xff) 

• bDeviceClass & bDeviceSubClass & bDeviceProtocol (only if bDeviceClass != 0xff) 

• bDeviceClass & bDeviceSubClass (only if bDeviceClass != 0xff) 

Each key represents an entry in the device’s device descriptor. The bcdDevice field is used to store 
the device’s revision number. If the bDeviceClass field is 0xff, it means the device class is vendor specific. 
A matching dictionary in Info.plist, which matches against a vendor ID, a product ID, and a revision 
number (bcdDevice), is shown in Listing 8-1. 

Listing 8-1. Matching Dictionary for Matching Against Vendor ID, Product ID, and Device Revision 

<key>MyUSBDriver</key> 
<dict> 
<key>CFBundleIdentifier</key> 
    <string>com.osxkernel.MyUSBDriver</string> 
    <key>IOClass</key> 
    <string>com_osxkernel_MyUSBDriver</string> 
    <key>IOProviderClass</key> 
    <string>IOUSBDevice</string> 
    <key>bcdDevice</key> 
    <integer>1</integer> 
    <key>idProduct</key> 
    <integer>2323</integer> 
    <key>idVendor</key> 
    <integer>0001</integer> 
</dict> 

The entry must be located in the IOKitPersonalities section of your driver’s Info.plist file to have 
any effect.  

Devices that are not matched by the previous rules will be handled by the IOUSBCompositeDriver, 
which selects a device configuration, if the device has multiple configurations present, and then initiates 
matching against the device’s interfaces instead. The keys that can be used to match against device 
interfaces are shown here: 

• idVendor & idProduct & bcdDevice & bConfigurationValue & bInterfaceNumber  

• idVendor & idProduct & bConfigurationValue & bInterfaceNumber 
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• idVendor & bInterfaceSubClass & bInterfaceProtocol (only if bInterfaceClass == 
0xff) 

• idVendor & bInterfaceSubClass (only if bInterfaceClass == 0xff) 

• bInterfaceClass & bInterfaceSubClass & bInterfaceProtocol (only if 
bInterfaceClass != 0xff) 

• bInterfaceClass & bInterfaceSubClass (only if bInterfaceClass != 0xff)  

 Note  You cannot create your own combinations of keys; you have to use one of the combinations shown above 
for either an interface or a device. However, you can add several personalities to your driver, which can each 
match against a different combination, but it has to be one of the valid combinations. 

Each key represents a field in an interface descriptor. The matching rules are ordered according to 
how specific they are. The last rule, for example, which matches against the interface class and subclass, 
is used by Apple’s USB Mass Storage driver to match all devices that conform to that interface, regardless 
of vendor or product ID. The Info.plist for the Apple mass storage driver is shown in Listing 8-2 
(though some keys unrelated to matching were trimmed for readability). 

Listing 8-2. Matching Dictionary for Matching Against a USB Interface Class and Subclass 

<key>IOUSBMassStorageClass6</key> 
<dict> 
    <key>CFBundleIdentifier</key> 
    <string>com.apple.iokit.IOUSBMassStorageClass</string> 
    <key>IOClass</key> 
    <string>IOUSBMassStorageClass</string> 
    <key>IOProviderClass</key> 
    <string>IOUSBInterface</string> 
    <key>bInterfaceClass</key> 
    <integer>8</integer> 
    <key>bInterfaceSubClass</key> 
    <integer>6</integer> 
</dict> 

Unlike the example in Listing 8-1, the IOProviderClass is specified as IOUSBInterface, which will be 
the provider passed to your driver’s start() method instead of IOUSBDevice. 

USB Prober 
Before we start looking at actual code, it is worth mentioning a highly useful tool called USB Prober. USB 
Prober is a utility that is bundled with the Xcode distribution. The USB Prober tool is shown in Figure  
8-6. 
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Figure 8-6. USB Prober utility 

USB Prober allows you to probe available USB buses on your system and inspect the hierarchy of 
devices attached to each bus. It also allows you to inspect the device, configuration, interface, and 
endpoint descriptors. The IORegistry tab allows you to inspect the IOService plane of the I/O Registry as 
it pertains to USB devices, which is very useful during development of a USB driver, as it allows you to 
verify that your driver was matched correctly. USB prober can also perform USB specific tracing from the 
IOUSBFamily, which may be useful for debugging your driver in some cases. This requires some setup, 
including downloading the USB Debug Kit from Apple’s developer website. The kit contains an alternate 
version of IOUSBFamily, which provides verbose logging. Access to the debug kit is restricted to 
members of the Mac developer program. 

Driver Example: USB Mass Storage Device Driver 
Let’s put what we’ve learned so far into practice by putting together a simple USB-based driver, which 
will print log messages as various events occur. Now we could make a purely virtual driver, but that 
wouldn’t be any fun, so let’s instead create a driver that piggybacks on a real USB device so that we can 
see what happens when the device is plugged in and removed from the bus, but without interfering with 
the device’s operation. The object-oriented nature of the I/O Kit makes it such that writing a device 
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driver requires relatively little effort. Moreover, writing a device driver for a USB device is very similar to 
writing a driver for Firewire, PCI, or the virtual IOKitTest driver from Chapter 4. 

To try this example, you need a thumb/flash drive or external USB hard drive. It doesn’t have to be 
formatted for Mac, as we are not going to access the data. 

 Caution  It is recommended to try examples in this book on a Mac that is not being used to store important 
data. A kernel crash may corrupt your files or operating system. If you do not have a dedicated Mac for this 
purpose, ensure you have working backups of your data. 

Our driver will be called MyFirstUSBDriver, and the class declaration is shown in Listing 8-3. 

Listing 8-3. MyFirstUSBDriver.h: Class Declaration for MyFirstUSBDriver 

#include <IOKit/usb/IOUSBDevice.h> 
 
class com_osxkernel_MyFirstUSBDriver : public IOService 
{ 
    OSDeclareDefaultStructors(com_osxkernel_MyFirstUSBDriver) 
     
public: 
    virtual bool init(OSDictionary *propTable); 
    virtual IOService* probe(IOService *provider, SInt32 *score );  
    virtual bool attach(IOService *provider); 
    virtual void detach(IOService *provider); 
    virtual bool start(IOService *provider); 
    virtual void stop(IOService *provider); 
    virtual bool terminate(IOOptionBits options = 0); 
}; 

You will notice that the class is structurally nearly identical to the IOKitTest driver, with a few minor 
changes, which we will discuss later. The implementation of MyFirstUSBDriver is shown in Listing 8-4. 

Listing 8-4. MyFirstUSBDriver.cpp: Implementation of MyFirstUSBDriver Class 

#include <IOKit/IOLib.h> 
#include <IOKit/usb/IOUSBInterface.h> 
#include "MyFirstUSBDriver.h" 
 
OSDefineMetaClassAndStructors(com_osxkernel_MyFirstUSBDriver, IOService) 
#define super IOService 
 
void logEndpoint(IOUSBPipe* pipe) 
{ 
    IOLog("Endpoint #%d ", pipe->GetEndpointNumber()); 
    IOLog("--> Type: "); 
    switch (pipe->GetType()) 
    { 
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        case kUSBControl: IOLog("kUSBControl "); break; 
        case kUSBBulk: IOLog("kUSBBulk "); break; 
        case kUSBIsoc: IOLog("kUSBIsoc "); break; 
        case kUSBInterrupt: IOLog("kUSBInterrupt "); break; 
    } 
    IOLog("--> Direction: "); 
    switch (pipe->GetDirection())  
    { 
        case kUSBOut: IOLog("OUT (kUSBOut) "); break; 
        case kUSBIn: IOLog("IN (kUSBIn) "); break; 
        case kUSBAnyDirn: IOLog("ANY (Control Pipe) "); break; 
    }         
    IOLog("maxPacketSize: %d interval: %d\n", pipe->GetMaxPacketSize(), pipe->GetInterval());     
} 
 
bool com_osxkernel_MyFirstUSBDriver::init(OSDictionary* propTable) 
{ 
    IOLog("com_osxkernel_MyFirstUSBDriver::init(%p)\n", this); 
    return super::init(propTable); 
} 
 
IOService* com_osxkernel_MyFirstUSBDriver::probe(IOService* provider, SInt32* score) 
{ 
    IOLog("%s(%p)::probe\n", getName(), this); 
    return super::probe(provider, score); 
} 
 
bool com_osxkernel_MyFirstUSBDriver::attach(IOService* provider) 
{ 
    IOLog("%s(%p)::attach\n", getName(), this); 
    return super::attach(provider); 
} 
 
void com_osxkernel_MyFirstUSBDriver::detach(IOService* provider) 
{ 
    IOLog("%s(%p)::detach\n", getName(), this); 
    return super::detach(provider); 
} 
 
bool com_osxkernel_MyFirstUSBDriver::start(IOService* provider) 
{ 
    IOUSBInterface* interface; 
    IOUSBFindEndpointRequest request; 
    IOUSBPipe* pipe = NULL; 
     
    IOLog("%s(%p)::start\n", getName(), this); 
 
    if (!super::start(provider)) 
        return false; 
     
    interface = OSDynamicCast(IOUSBInterface, provider); 
    if (interface == NULL) 
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    { 
        IOLog("%s(%p)::start -> provider not a IOUSBInterface\n", getName(), this); 
        return false; 
    } 
     
    // Mass Storage Devices use two bulk pipes, one for reading and one for writing. 
     
    // Find the Bulk In Pipe. 
    request.type = kUSBBulk; 
    request.direction = kUSBIn; 
    pipe = interface->FindNextPipe(NULL, &request, true); 
    if (pipe) 
    { 
        logEndpoint(pipe); 
        pipe->release(); 
    } 
     
    // Find the Bulk Out Pipe. 
    request.type = kUSBBulk; 
    request.direction = kUSBOut; 
    pipe = interface->FindNextPipe(NULL, &request, true); 
    if (pipe) 
    { 
        logEndpoint(pipe); 
        pipe->release(); 
    }   
    return true; 
} 
 
void com_osxkernel_MyFirstUSBDriver::stop(IOService *provider) 
{ 
    IOLog("%s(%p)::stop\n", getName(), this); 
    super::stop(provider); 
} 
 
bool com_osxkernel_MyFirstUSBDriver::terminate(IOOptionBits options) 
{ 
    IOLog("%s(%p)::terminate\n", getName(), this); 
    return super::terminate(options); 
} 

As you may see, there is very little logic in this driver, with the exception of logging when the various 
methods of our driver are called. The start() method will also attempt to find the bulk IN and bulk OUT 
endpoints, and log information about the endpoints. We will test the driver shortly, but first we have to 
create a matching dictionary so that the I/O Kit will know when to load our driver. The matching 
dictionary for MyFirstUSBDriver is shown in Listing 8-5. 

Listing 8-5. Matching Dictionary for MyFirstUSBDriver 

<key>IOKitPersonalities</key> 
<dict> 
    <key>MyFirstUSBDriver</key> 
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    <dict> 
        <key>bInterfaceClass</key> 
        <integer>8</integer> 
        <key>bInterfaceSubClass</key> 
        <integer>6</integer> 
        <key>CFBundleIdentifier</key> 
        <string>com.osxkernel.MyFirstUSBDriver</string> 
        <key>IOClass</key> 
        <string>com_osxkernel_MyFirstUSBDriver</string> 
        <key>IOMatchCategory</key> 
        <string>com_osxkernel_MyFirstUSBDriver</string> 
        <key>IOProviderClass</key> 
        <string>IOUSBInterface</string> 
    </dict> 
</dict> 

The matching dictionary is more or less the same as the example in Listing 8-2. It will match against 
a USB interface rather than a USB device. We set bInterfaceClass to 8, which is the class code for mass 
storage devices, and we set bInterfaceSubClass to 6, which indicates that it uses the SCSI command set 
to communicate with the device (which doesn’t necessarily imply that the drive/storage itself 
understands the SCSI protocol, but it is used to tunnel commands to the device over the bus, where 
another controller may translate it into, for example, ATA commands). 

Because Apple’s default IOUSBMassStorageClass matches against the same keys as us, we need to 
specify a match category so that our driver will also be loaded. We do this by adding the IOMatchCategory 
key. We set it to the name of our class, but it could be any string. 

 Tip  When you open a Info.plist file in Xcode, it is opening in the property list editor by default. If you wish to 
cut and paste to the property list, or you are curious about the format it is stored in, you can right-click the file and 
choose “Open as,” and then choose “Source Code,” which will present it in XML format. 

There is one additional change we need to make to our driver’s property list file, and that is to 
include our dependencies under the OSBundleLibraries dictionary; otherwise, the driver will fail to load. 
Dependencies can be found using the kextlibs tool. We used the following section to add a dependency 
to libkern and IOUSBFamily: 

<key>OSBundleLibraries</key> 
<dict> 
        <key>com.apple.iokit.IOUSBFamily</key> 
        <string>4.1.8</string> 
        <key>com.apple.kernel.libkern</key> 
        <string>6.0</string> 
</dict> 

We are now ready to load the driver, or rather to allow I/O Kit to load the driver for us. For the driver 
to load automatically, as the USB device is plugged in, it must be located in the directory 
/System/Library/Extensions, the standard location for all KEXTs.  
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When all is done, you should now be able to plug the device in. Before you do, however, you can 
bring up the Console application, and select kernel.log from the log list. Once you insert your compatible 
device, you should see the following entries being printed to the log in response to the insertion: 

Jun 16 22:37:56 macbook kernel[0]: com_osxkernel_MyFirstUSBDriver::init(0x1361f900) 
Jun 16 22:37:56 macbook kernel[0]: com_osxkernel_MyFirstUSBDriver(0x1361f900)::attach 
Jun 16 22:37:56 macbook kernel[0]: com_osxkernel_MyFirstUSBDriver(0x1361f900)::probe 
Jun 16 22:37:56 macbook kernel[0]: com_osxkernel_MyFirstUSBDriver(0x1361f900)::detach 
Jun 16 22:37:56 macbook kernel[0]: com_osxkernel_MyFirstUSBDriver(0x1361f900)::attach 
Jun 16 22:37:56 macbook kernel[0]: com_osxkernel_MyFirstUSBDriver(0x1361f900)::start 
Jun 16 22:37:56 macbook kernel[0]: Endpoint #4 --> Type: kUSBBulk --> Direction: IN (kUSBIn) 
maxPacketSize: 512 interval: 0 
Jun 16 22:37:56 macbook kernel[0]: Endpoint #3 --> Type: kUSBBulk --> Direction: OUT 
(kUSBOut) maxPacketSize: 512 interval: 0 

The first five calls are part of the matching process. The first method attach() is used to connect our 
driver into the IOService plane of the I/O Registry, which in this case will attach us as a client of the 
IOUSBInterface nub, which again is the client of the IOUSBDevice we just plugged in. As we know from 
Chapter 4, the probe method is used for active matching, and allows us to further interrogate the device, 
or interface in this case, to determine if we are a match for it. I/O Kit then calls detach(), and the 
decision to which driver to load is made once all possible matches have been examined. It is usually not 
recommended to allocate any resources in attach() as it can be called multiple times. Usually, it is not 
necessary to override attach() or detach(), as the default ones provided by IOService are almost always 
sufficient. Once I/O Kit has selected our driver, which is guaranteed in our case (as we specified a unique 
IOMatchCategory), we will be getting a call to our attach() method again, and then finally the start() 
method of our driver. We can now use USB Prober to verify where in the hierarchy our driver was placed, 
as shown in Figure 8-7. 

 

Figure 8-7. USB Prober showing the com_osxkernel_MyFirstUSBDriver attached to the IOService plane 
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You will notice that we are attached to the IOUSBInterface of the storage device, together with the 
IOUSBMassStorageClass driver, and that the USB device itself is managed by the composite driver 
IOUSBCompositeDriver. 

Driver Startup 
The implementation of our start() method in MyFirstUSBDriver is deliberately sparse because the 
IOUSBMassStorageClass driver is also managing the interface, and we do not wish to interfere with its use 
of the USB interface. We do a basic sanity check, which is commonly done in the start() method, to 
ensure that we get a provider that is of the type we expect. However, nothing is preventing you from 
writing a driver that can accept and work with multiple types of providers—for example, an IOUSBDevice 
and IOUSBInterface, or even an IOPCIDevice provider. 

Here’s an outline of the steps a USB driver typically must perform in its start() method: 

• Verify that the IOService provider object passed to us is of the type we expect. We 
do this with the help of the OSDynamicCast() macro, which works with I/O Kit’s 
runtime type identification system, and returns a pointer to the object if the cast is 
successful, or NULL otherwise. 

• Store a pointer to the provider for later use. 

• Attempt to open the provider by calling its open(IOService* forClient, …) 
method.  

• If your driver is operating on an IOUSBDevice you may have to set the device’s 
configuration. For IOUSBInterface-based drivers, the IOUSBCompositeDriver 
normally handles this. You can set the configuration using 
IOUSBDevice::SetConfiguration(). 

• Find and verify the interfaces you will use for a driver that has an IOUSBDevice 
provider. And search for the appropriate endpoints needed by your driver. More 
about this in the section “Enumerating Device Resources.”  

• Interrogate the device for status information, and perform the needed 
configuration of the device by issuing control requests to it. 

• Allocate any driver specific resources you may need, for example I/O buffers or 
auxiliary classes needed by your driver. 

• If your driver is a nub and intends to provide services to other drivers, it needs to 
allocate and register these. For example, in the case of IOUSBMassStorageClass it 
will allocate IOSCSILogicalUnitNub objects for each logical unit provided by the 
interface, and for each of these call registerService(), a method inherited from 
IOService. The method ensures that matching will begin for each 
IOSCSILogicalUnitNub object. 

• If everything succeeds, start() should return true. If false is returned, the driver 
will obviously not be loaded, and the I/O Kit will try to load a new driver, if any, 
possibly one that “lost” and got a lower score previously. Be aware that stop() will 
not be called if you return false from start().  
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 Tip  To uninstall MyFirstUSBDriver, simply use the command: sudo rm –rf 
/System/Library/Extensions/MyFirstUSBDriver.kext  

Handling Device Removals 
USB devices and drivers must be able to cope with the removal of a device at any point in time. When 
the IOUSBController detects that a device is removed, it will propagate this information recursively down 
the driver stack. The first notification to a driver is made by calling its terminate() method. The 
following sequence of calls is the result of unplugging the mass storage device that MyFirstUSBDriver is 
attached to: 

Jun 16 22:58:46 macbook kernel[0]: com_osxkernel_MyFirstUSBDriver(0xb4e6100)::terminate 
Jun 16 22:58:46 macbook kernel[0]: com_osxkernel_MyFirstUSBDriver(0xb4e6100)::stop 
Jun 16 22:58:46 macbook kernel[0]: com_osxkernel_MyFirstUSBDriver(0xb4e6100)::detach 

Any incomplete I/O can be cancelled using IOUSBPipe::Abort() and can be done when the 
terminate() method gets called, or in the willTerminate() or didTerminate() methods if overridden by 
the driver.  

The next step in the removal process is that the driver’s stop() method will be called, which should 
reverse actions taken in the start() method. After that detach() and finally free() will be called, which 
should clean up all remaining resources. 

If your driver is opened by a user application, for example through a IOUserClient, it will not be 
deallocated (the free() method will not be called) until the application releases its reference to the 
device. If the device happens to be re-inserted at this time, the application is not able to resume using 
the device, as a new instance of the driver is created each time a device is inserted. The application can 
handle this by using notifications, as described in Chapter 5. 

Enumerating Interfaces 
During a USB driver’s start() method, it is usually necessary to find and configure the endpoints and 
interfaces that will be used by the device. If your driver is based on the IOUSBDevice provider, chances are 
that you need to search for one or more of the interfaces that will be used by your driver. This can be 
done using the IOUSBDevice::FindNextInterface() method: 

virtual IOUSBInterface* FindNextInterface(IOUSBInterface* current, 
                                          IOUSBFindInterfaceRequest* request);  

The first parameter can be specified to start the search from an existing IOUSBInterface instance 
and ignore any interfaces before it. NULL can be specified to start the search from the first interface. 

The second parameter is a structure of the type IOUSBFindInterfaceRequest: 

typedef struct {  
    UInt16 bInterfaceClass; 
    UInt16 bInterfaceSubClass; 
    UInt16 bInterfaceProtocol; 
    UInt16 bAlternateSetting; 
} IOUSBFindInterfaceRequest; 
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To find an interface, you can fill out the IOUSBFindInterfaceRequest structure with the desired 
properties for the interface. 

• bInterfaceClass and bInterfaceSubClass can be filled in to search for an interface 
of a specific class and subclass. The values correspond to the codes in Table 8-3. 
The header file USBSpec.h in the IOUSBFamily source distribution define symbolic 
constants such as kUSBMassStorageInterfaceClass or kUSBPrintingClass.  

• The bInterfaceProtocol specifies the protocol used by the interface. The field is 
meaningless without the class and subclass. A HID (Human Interaction Device) 
may for example specify the protocol as kHIDKeyboardInterfaceProtocol or 
kHIDMouseInterfaceProtocol. 

• It is possible for an interface to have alternate versions of itself that uses a different 
set of endpoints, the bAlternateSetting field can therefore be set to request the 
specific interface desired. 

Fields that does not matter can be set to kIOUSBFindInterfaceDontCare. Setting every field to this 
value will simply return the next interface regardless. 

Listing 8-6 shows an extract from the Apple USB Ethernet driver which uses the 
FindNextInterface() method to search a USB device (IOUSBDevice) for an interface that supports 
Ethernet. 

Listing 8-6. Searching a IOUSBDevice for a Interface (from USBCDCEthernet.cpp) 

IOUSBFindInterfaceRequest               req; 
IOUSBInterface*                         fCommInterface = NULL; 
 
req.bInterfaceClass =    kUSBCommClass; 
req.bInterfaceSubClass = kEthernetControlModel; 
req.bInterfaceProtocol = kIOUSBFindInterfaceDontCare; 
req.bAlternateSetting =  kIOUSBFindInterfaceDontCare; 
     
fCommInterface = fpDevice->FindNextInterface(NULL, &req);     
if (!fCommInterface) 
{ 
     // not found 
     … 
} 

Enumerating Endpoints 
An interface does not do anything useful by itself, so once the correct interface is retrieved by the driver, 
it must enumerate the interface’s endpoints which are used for actual I/O. The enumeration/search is 
process is similar to that of finding an interface and is done with the IOUSBInterface::FindNextPipe() 
method: 

virtual IOUSBPipe *FindNextPipe(IOUSBPipe *current, IOUSBFindEndpointRequest *request);  
virtual IOUSBPipe* FindNextPipe(IOUSBPipe *current, IOUSBFindEndpointRequest *request, 
        bool withRetain); 

The first parameter if non-NULL tells the method to ignore pipes before it. The second parameter is a 
pointer to an IOUSBFindEndpointRequest: 
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typedef struct {  
    UInt8 type;  
    UInt8 direction;  
    UInt16 maxPacketSize;  
    UInt8 interval;  
} IOUSBFindEndpointRequest;  

• The type field can be kUSBControl, kUSBIsoc, kUSBBulk, kUSBInterrupt, or 
kUSBAnyType. 

• The direction field must be set to kUSBOut, kUSBIn, or kUSBAnyDirn. 

• The maxPacketSize field is the max packet size in bytes that endpoint zero 
supports, and should be 8, 16, 32, or 64. It can be set to 0 if irrelevant. 

• The interval field can be used to search for an endpoint that has a specific polling 
interval. The polling interval only applies to isochronous and interrupts 
endpoints. 

Listing 8-7 shows how the Apple USB Ethernet driver uses the FindNextPipe() method to enumerate 
endpoints.  

Listing 8-7. Enumerating IOUSBPipe Instances for an Interface (from USBCDCEthernet.cpp) 

IOUSBFindEndpointRequest        epReq;          // endPoint request struct on stack 
… 
// Open all the end points 
 
epReq.type = kUSBBulk; 
epReq.direction = kUSBIn; 
epReq.maxPacketSize     = 0; 
epReq.interval = 0; 
fInPipe = fDataInterface->FindNextPipe(0, &epReq); 
if (!fInPipe) 
{ 
    … 
    return false; 
} 
… 
epReq.direction = kUSBOut; 
fOutPipe = fDataInterface->FindNextPipe(0, &epReq); 
if (!fOutPipe) 
{ 
    … 
    return false; 
} 
fOutPacketSize = epReq.maxPacketSize; 
… 
// Interrupt pipe - Comm Interface 
 
epReq.type = kUSBInterrupt; 
epReq.direction = kUSBIn; 
fCommPipe = fCommInterface->FindNextPipe(0, &epReq); 
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if (!fCommPipe) 
{ 
      …. 
} 

The driver in Listing 8-7 is a USB Ethernet driver. It uses three endpoints for its operation. The first 
is a bulk IN endpoint, which is used to read network data from the device. The second endpoint is a bulk 
OUT pipe, which is used to transmit packets to the device. The last end point is an interrupt IN 
endpoint, which is used to signal the arrival of a network packet and for notification of other events. In 
the following sections, we will look at how endpoints are used to perform I/O. 

Performing Device Requests 
Device requests are I/O requests to the default bi-directional default control pipe zero of the USB device, 
typically used for device configuration and accessing device registers. There are three classes of device 
requests: 

• Standard USB requests: These are standard requests implemented by all device. 
An example of a standard device request is querying a device’s status. A list of 
symbolic constants for standard requests can be found in USBSpec.h. 

• Class specific requests: These are specific to a class of device. For example, an 
Ethernet device may provide a number of requests for configuring Ethernet 
related parameters. 

• Vendor specific requests 

To perform a device request, both IOUSBDevice and IOUSBInterface provide a special 
DeviceRequest() convenience method, which under the hood uses the IOUSBPipe object, representing 
the default pipe, to transmit the request. If you wish, you can enumerate the IOUSBPipe instance for the 
zero endpoint and use it directly as well. The method is declared as follows: 

DeviceRequest(IOUSBDevRequest *request, UInt32 noDataTimeout,  
              UInt32 completionTimeout, IOUSBCompletion *completion); 
DeviceRequest(IOUSBDevRequestDesc *, UInt32 noDataTimeout,  
              UInt32 completionTimeout, IOUSBCompletion *completion); 

In order to send a request, you must create an IOUSBDevRequest or IOUSBDeviceRequestDesc structure 
and fill in the appropriate fields. 

typedef struct {  
    UInt8 bmRequestType;  
    UInt8 bRequest;  
    UInt16 wValue;  
    UInt16 wIndex;  
    UInt16 wLength;  
    void *pData;  
    UInt32 wLenDone;  
} IOUSBDevRequest;  

typedef struct {  
    UInt8 bmRequestType;  
    UInt8 bRequest;  
    UInt16 wValue;  
    UInt16 wIndex;  
    UInt16 wLength;  
    IOMemoryDescriptor *pData;  
    UInt32 wLenDone;  
} IOUSBDevRequestDesc; 
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• The bmRequestType field: Is a composite field that specifies the type of request, the 
direction, the type, and the recpient. The field can be generated by using the 
USBmakebmRequestType(direction, type, recpient) macro with the following 
paramters: 

• The direction will be either kUSBIn, kUSBOut, or kUSBNone. 

• The type will be either kUSBStandard, kUSBClass, or kUSBVendor. 

• The recpient will be either kUSBInterface, kUSBEndpoint, or kUSBDevice. 

• The bRequest field: This is a 8-bit value that selects the request to be performed. 

• The wValue and wIndex: These can be used to pass arguments along with the 
request. Their meaning depends on the request. For interface and endpoint 
requests, the wIndex number specifies the index number of the endpoint/interface 
to which the request is addressed. You can get the index number by calling either 
IOUSBPipe::GetEndpointNumber() or IOUSBInterface->GetInterfaceNumber(). 

• The wLength field: This is the number of bytes for the pData field. 

• The pData field: This is either a pointer to a memory buffer or an 
IOMemoryDescriptor. The pData pointer may be set to NULL if no additional data is 
needed for the request. The buffer will either be read from or written to, 
depending on the direction of the request. If an IOMemoryDescriptor is used you 
should call prepare() on it first to ensure the memory is paged in and pinned 
down until the request is completed. The memory may come from user space if a 
memory descriptor is used. If the void* variant is used, the pointer must be in the 
kernel’s virtual address space. 

• The wLenDone field: This should not be filled in, as it is used to return the number 
of bytes actually transferred. 

Apart from the request parameters, the DeviceRequest() methods takes another three parameters.  

• noDataTimeout: This is the timeout, in milliseconds, to wait before aborting the 
request if no data has been sent/received.  

• completionTimeout: This specifies a timeout value for the entire command with 
data, and is also in milliseconds. 

• completion: This is optional, and if specified it allows us to perform the request 
asynchronously, which may often be desired to avoid blocking the calling thread. 
We will discuss asynchronous requests in more detail later in this chapter. 

Let’s look at an example of how a device request can be issued, again using the Apple USB Ethernet 
driver as an example. The code in Listing 8-8 is called by the driver from a periodic timer and is used to 
get statistics and status information from the Ethernet device, such as collisions, dropped packets, 
incoming packets, etc. 

Listing 8-8. Device Request for Downloading Statistics From An Ethernet Device (USBCDCEthernet.cpp) 

STREQ = (IOUSBDevRequest*)IOMalloc(sizeof(IOUSBDevRequest)); 
if (!STREQ) 
{ 
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     ... 
} else { 
     bzero(STREQ, sizeof(IOUSBDevRequest)); 
     // Now build the Statistics Request 
    STREQ->bmRequestType = USBmakebmRequestType(kUSBOut, kUSBClass, kUSBInterface); 
    STREQ->bRequest = kGet_Ethernet_Statistics; 
    STREQ->wValue = currStat; 
    STREQ->wIndex = fCommInterfaceNumber; 
    STREQ->wLength = 4; 
    STREQ->pData = &fStatValue; 
         
    fStatsCompletionInfo.parameter = STREQ; 
         
    rc = fpDevice->DeviceRequest(STREQ, &fStatsCompletionInfo); 
    if (rc != kIOReturnSuccess) 
    { 
    ... 
        IOFree(STREQ, sizeof(IOUSBDevRequest)); 
    } else { 
       fStatInProgress = true; 
    } 
} 

The request in Listing 8-8 is performed asynchronously. Because the IOUSBDevRequest structure 
must persist until the request finishes, it must not be allocated on the stack, although this is fine for a 
synchronous request. The request performed in Listing 8-8 is directed to a specific interface, and it is a 
class specific request, which means it will work the same on all interfaces with the same class code. The 
wValue field of the request is an index number specifying the statistic that should be transferred. 

Control Requests 
Device requests, discussed in the previous section, are I/O to the default control pipe (zero). The 
DeviceRequest() method cannot be used for control endpoints other than the default. If we wish to 
perform requests to another control endpoint, we must use the IOUSBPipe::ControlRequest() method 
instead. There are four ControlRequest() methods available: 

virtual IOReturn ControlRequest(IOUSBDevRequestDesc* request, 
        IOUSBCompletion* completion = 0); 
virtual IOReturn ControlRequest(IOUSBDevRequest* request, IOUSBCompletion* completion = 0); 
virtual IOReturn ControlRequest(IOUSBDevRequestDesc* request, 
        UInt32 noDataTimeout, 
        UInt32 completionTimeout, 
        IOUSBCompletion* completion = 0); 
virtual IOReturn ControlRequest(IOUSBDevRequest* request, 
        UInt32 noDataTimeout, 
        UInt32 completionTimeout, 
        IOUSBCompletion* completion = 0); 

The two first methods use the exact same arguments as the DeviceRequest() method discussed 
earlier. The two last also support the noDataTimeout and completionTimeout parameters. 
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Performing I/O to Bulk and Interrupt Endpoints 
Sending and Receiving data is performed with the help of the IOUSBPipe class, which represents an 
endpoint. The IOUSBPipe class presents a simple interface for performing I/O, which is reminiscent of 
how user space performs file I/O. USB does not utilize DMA directly, although the host controller does 
use DMA to transfer data, but the details of this are abstracted away from us. This also means that we do 
not need to worry about memory alignment, if the memory is physically contiguous, is in the correct 
address range, or translating memory addresses to physical addresses. We can also perform I/O from a 
user space buffer. 

The IOUSBPipe class supports I/O to all endpoint types: control, bulk, interrupt, and isochronous. 
The methods for performing bulk and interrupt I/O are the Read() and Write() methods: 

virtual IOReturn Read(IOMemoryDescriptor* buffer, 
                      UInt32 noDataTimeout, 
                      UInt32 completionTimeout, 
                      IOByteCount reqCount, 
                      IOUSBCompletion* completion = 0, 
                      IOByteCount* bytesRead = 0); 
 
virtual IOReturn Write(IOMemoryDescriptor* buffer, 
                       UInt32 noDataTimeout, 
                       UInt32 completionTimeout, 
                       IOByteCount reqCount, 
                       IOUSBCompletion* completion = 0); 

• The buffer is an IOMemoryDescriptor containing the buffer for which data should 
be read or written. The memory descriptor should have its prepare() method 
called to ensure memory is paged in and pinned down. The memory may be in the 
kernel or a user task’s address space. 

• The noDataTimeout argument specifies the amount of time, in milliseconds, to wait 
for data transfer on the bus before the request is considered unsuccessful. 

• The completionTimeout is the time to allow, in milliseconds, for the entire request 
to complete before it is considered unsuccessful. 

• The reqCount is the amount of data, in bytes, that should be read or written. It 
must be less or equal to the size of the buffer, as returned by 
IOMemoryDescriptor::getLength(). 

• The completion parameter is a structure of the type IOUSBCompletion, and is used 
for asynchronous requests. The parameter can be specified as NULL to perform the 
request synchronously, in which case the call will block until the request is 
complete or times out. We will look at asynchronous I/O later. 

• For the Read() method bytesRead will return the number of bytes that were read. It 
may be less than what was requested. The value is only set for synchronous 
requests. 

Listing 8-9 shows example invocations of the Read() and Write() methods. 
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Listing 8-9. Examples of Synchronous Read() and Write() to a Bulk Pipe 

UInt32 bytesRead; 
IOMemoryDescriptor* readBuffer; 
IOMemoryDescriptor* writeBuffer; 
… 
if (myBulkPipeIn->Read(readBuffer, 1000, 5000,  
                       readBuffer->GetLength(), 0, &bytesRead) != kIOReturnSuccess) 
{ 
     // Handle error 
} 
else 
    IOLog(“We read: %u bytes\n”, bytesRead); 
 
if (myBulkPipeOut->Write(writeBuffer, 1000, 5000,  
                         writeBuffer->GetLength()) != kIOReturnSuccess) 
{ 
    // Handle error 
} 

Since we didn’t specify the completion argument for either method, they will both be executed 
synchronously, which means that the request will be executed in its entirety by the time the method 
returns control to us. Recall that all pipes are uni-directional, with the exception of the default control 
pipe, so the IN and OUT requests are performed on two separate pipes. 

 Note  Another overloaded set of Read() and Write() exists that does not accept a reqCount parameter, but 
rather uses the GetLength() method of the IOMemoryDescriptor. These methods are now deprecated and 
should not be used. 

The example in Listing 8-9 will also work for an interrupt endpoint. There is no special 
programming interface needed to work with interrupt endpoints. I/O is handled in the same way as with 
bulk endpoints. The difference is in behavior. An interrupt endpoint provides bounded latency and the 
host controller guarantees to poll the device for data no less often than what is requested in the 
endpoint’s descriptor. The minimum-polling interval is 125 microseconds. Interrupt transfers use 
reserved bandwidth, which guarantees that the requests make it through even in the event that there are 
high amounts of activity on the bus. Unlike bulk transfers, interrupt transfers are not suitable for 
transferring large amounts of data and are limited to 8, 64, or, 1024 bytes for low-speed, full-speed, and 
high-speed, respectively. Note that interrupt endpoints are not related to system interrupts in any way. 
I/O to interrupt endpoints is performed in a normal kernel thread. 

Dealing with Errors and Pipe Stalls 
When an endpoint is unable to transmit or receive data due to an error, the host or device may set the 
HALT bit. Communicating with an endpoint in this state, or an endpoint with an error, will return a 
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STALL handshake packet. An error needs to be resolved before I/O can continue on the endpoint. The 
IOUSBPipe class provides two methods for clearing a pipe stall and allowing I/O to resume: 

virtual IOReturn ClearStall(void);  
virtual IOReturn ClearPipeStall(bool withDeviceRequest); 

The second version clears the error (toggle bit) on the controller, but it does not send out a device 
request to the endpoint if withDeviceRequest is false. Both methods will cause outstanding I/O to be 
completed with the return code kIOUSBTransactionReturned. 

Isochronous I/O 
Isochronous transfers are continuous in nature and are suitable for use with devices, such as audio and 
video, where information is continuously streaming and there is a need for guaranteed bandwidth and 
bounded latency. Data integrity can be verified using a CRC, but corrupted data is never re-sent 
automatically. The amount of bandwidth needed by a device is specified in the isochronous endpoint 
descriptor. If the host controller is unable to guarantee enough bandwidth to support the device, which 
can happen if another device already has reserved bandwidth on the bus, the device may be unable to 
function. If the device is able to operate with less bandwidth, it can define alternate interface descriptors 
with more conservative requirements. Maximum payloads for isochronous transfers are as follows: 

• High-speed devices have a maximum packet size of 1024 bytes. 

• Full-speed devices have a maximum packet size of 1023 bytes. 

• Low-speed devices do not support isochronous transfers. 

Isochronous transfers use the concept of microframes. A microframe is 125 microseconds long. For 
high-speed devices, up to three packets can be transmitted per microframe, giving a maximum data-rate 
of 3 x 1024 x 8000 microframes per second = 24 MB/s. This is slightly lower than the maximum 
bandwidth possible over a bulk endpoint. 

A microframe is represented by the IOUSBIsocFrame structure: 

typedef struct IOUSBIsocFrame { 
    IOReturn              frStatus; 
    UInt16                frReqCount; 
    UInt16                frActCount; 
} IOUSBIsocFrame; 

The structure describes how many bytes of data should be transmitted or received fromt the I/O 
buffer in each microframe. The frReqCount field is the amount of bytes requested, whereas the 
frActCount is the count actually transferred. The structure also contains a status field. 

The methods for reading and writing to an isochronous endpoint are similar to those used to read 
and write from interrupt and bulk endpoints:  

virtual IOReturn Read(IOMemoryDescriptor* buffer, UInt64 frameStart, UInt32 numFrames,  
                      IOUSBIsocFrame* frameList, IOUSBIsocCompletion* completion = 0); 
virtual IOReturn Write(IOMemoryDescriptor* buffer, UInt64 frameStart, UInt32 numFrames,  
                       IOUSBIsocFrame *frameList, IOUSBIsocCompletion * completion = 0); 

The methods take the following arguments: 
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• The buffer argument is a virtually contiguous buffer containing the data to be 
transferred. The memory descriptor should have its prepare() method called to 
ensure memory is paged in and pinned down for the duration of the transfer. 
There are no special requirements otherwise for the memory and it can be either 
user space or kernel memory. 

• The frameStart argument specifies the index of the USB frame from which to start. 
One USB frame corresponds to 8 microframes. 

• The numFrames argument is a count of the microframe descriptors contained in the 
frameList array. 

• The frameList argument is a pointer to an array of IOUSBIsocFrame structures. 

• An optional completion structure. If specified, this will perform the transfer 
asynchronously. 

Asynchronous Requests 
It is often necessary to perform requests to USB devices asynchronously—for example, when performing 
large bulk requests to a hard drive. Instead of having the caller thread blocked, the request can be 
handled by the USB controller, and it will notify us, through a callback method, when the request is 
completed.  

To do this, you must supply an IOUSBCompletion structure to the Read(), Write(), DeviceRequest(), 
or ControlRequest() methods: 

typedef struct IOUSBCompletion {  
    void* target;  
    IOUSBCompletionAction action;  
    void* parameter;  
} IOUSBCompletion;   

• The target field is a pointer that can contain user-defined data. Often it is used to 
pass the pointer to the class that sent the request, so that you can cast the pointer 
back to the original class in the completion function.  

• The action field is the actual callback, and should be a pointer to a function 
matching the IOUSBCompletionAction prototype. The method will be called once 
the request completes. 

• The parameter field can carry an additional parameter, which will also be passed 
to the completion function.  

The IOUSBCompletionAction callback has the following prototype: 

typedef void ( *IOUSBCompletionAction)(void* target, void* parameter,  
                                       IOReturn status, UInt32 bufferSizeRemaining); 

As you can see, the target and parameter fields of the IOUSBCompletion structure are passed directly 
to the callback. The callback will also get the status of the transfer, and the bufferSizeRemaining field 
will contain the number of bytes left to transfer if the request was not fully completed. 
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Asynchronous requests are completed on the IOUSBFamily work loop thread, which means that if 
you access data in the callback from your own driver, you must ensure that this access is properly 
synchronized. 

Generally speaking, USB drivers never operate in a primary interrupt context, with the exception of 
the low latency versions of the isochronous Read() and Write() methods, which allows asynchronous 
isochronous I/O to have the completion callback called at primary interrupt time. In this case, extreme 
care needs to be taken to avoid calling code that may block. The use of low latency isochronous I/O 
should be used sparingly, and is generally not required even for audio and video drivers. 

Summary 
• At the time of writing, the Universal Serial Bus Specification exists in three major 

revisions, the latest being USB 3.0. USB 3.0, although emerging rapidly in the PC 
segment, has not yet been adopted by Apple, which at the time of writing only 
supports USB 2.0, 

• A USB uses a shared bus topology, where up to 127 devices can be controlled by a 
single host. The host controller is the master of the bus, and controls all activity on 
the bus. A device is never allowed to use the bus without permission from the 
host.  

• A USB device is described by a hierarchical structure of descriptors, which contain 
information about the class, type, capabilities, and requirements of the device. 

• A USB device may consist of zero or more interfaces, which are groups of 
endpoints. An interface typically represents a logical device function, such as a 
printer or scanner.  

• There are four types of endpoints: control, bulk, interrupt, and isochronous. 
Control transfers are used for device configuration and control. Bulk endpoints 
are used for applications such as hard drives or network devices. Interrupt 
endpoints provide bounded latency, but they can only transfer small amounts. 
Isochronous is ideal for video and audio applications that require guaranteed and 
predictable bandwidth, as well as low latency. 

• The IOUSBFamily handles USB support in the kernel. The family implements 
support for common USB controllers. The three principal classes relevant to a 
driver developer are IOUSBDevice, IOUSBInterface, and IOUSBPipe. A USB driver 
can use either IOUSBDevice or IOUSBInterface as its provider. 

• The IOUSBPipe provides an abstraction around endpoints. It has methods to deal 
with all four endpoints. It supports synchronous and asynchronous I/O. 
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PCI Express and Thunderbolt 

PCI (Peripheral Component Interconnect) is a high-speed bus developed by Intel, in the early nineties, 
to replace various older and slower bus technologies such as EISA, ISA, MCA, and VESA. The term PCI is 
often used to describe the family of technologies based on the original PCI specification. Throughout 
this chapter, when we refer to PCI, we refer to commonalities found in the PCI–based technologies; 
namely, PCI Express, Thunderbolt, and to a lesser extent ExpressCard. Most people associate PCI with 
expansion boards plugged into a computer, but it is worth noting that PCI is fundamental to many 
computer systems—even those without PCI slots, such as iMacs— that have internal PCI buses that 
connect the CPU to USB, Firewire, and SATA controllers. Recent PCI-based advancements (like 
Thunderbolt) allow the PCI bus to be extended outside of the computer, much in the same way as USB 
and Firewire. 

PCI enjoyed widespread adoption and solved many of the problems found in older bus 
technologies; for example, it eliminated the need to configure jumpers on expansion cards, as resources 
such as memory regions and interrupts were configured automatically by the system BIOS and/or the 
OS itself.  

PCI was extended by the PCI-X and PCI-X 2.0 standards, which allowed for a 64-bit bus width as 
opposed to the Legacy PCI’s 32-bit bus width. PCI-X standards, having been succeeded by the PCI 
Express (PCIe) standard, have become obsolete. Unlike PCI-X however, PCIe uses a packet-based serial 
protocol, rather than the parallel interface characteristic of its predecessors. PCIe allows devices on a 
bus to have dedicated bandwidth instead of sharing bus bandwidth with other devices on the same bus. 
While PCIe and PCI are substantially different from an electrical and physical standpoint, they are 
backwards compatible from a software point of view; consequently, drivers require only minor (or no) 
changes to support newer standards. 

As previously mentioned, there are myriads of PCI-related standards. We will discuss only 
technologies currently sold by Apple, which include PCIe, Thunderbolt, and ExpressCard. Thunderbolt 
is found in most 2011 or newer Macs. Thunderbolt and ExpressCard are based on PCIe technology and 
connect to the PCI host bridge. However, ExpressCard is being phased out in favor of Thunderbolt on all 
Macs, and is now found only in the 17” MacBook Pro. The Mac Pro is currently the only Mac to have 
physically accessible PCI Express slots after the XServe was discontinued. 

This chapter begins with a discussion of the various PCI technologies that apply to the current 
generation of Macs. We will focus on the parts that are important to understand from a software point of 
view and necessary to build a functional driver for a PCI-based device. For example, we as programmers 
need not be concerned with how PCI functions at the electrical level. The second part of this chapter 
focuses on how we can interface with PCI-based devices in I/O Kit, how to match and configure them, 
read registers, and deal with the removal of devices. We will also address how to handle interrupts and 
perform DMA (Direct Memory Access), which are two typical tasks performed by a PCI-based driver.  
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PCI Express  
PCIe was designed to replace PCI and PCI-X, as well as the AGP (Accelerated Graphics Port), a stopgap 
employed by graphics cards allowing for higher bandwidths not possible with PCI-X. PCIe uses uni-
directional, point-to-point connections known as “lanes.” This approach avoids the PCI and PCI-X’s 
shared bus problem; although system designers could somewhat alleviate this issue by putting each 
physical PCI slot on its own dedicated bus. Still, PCIe is substantially faster than its predecessors. 

So far, three revisions of the PCIe standard have been released. The second generation doubled the 
possible bandwidth for a single PCIe lane from 250 MB/s to 500 MB/s. The third revision doubled that 
and can handle up to 1 GB/s per lane. PCIe typically uses lane configurations of 1x, 4x, 8x, 16x, and 32x; 
although, the latter is less common, especially for physical slots. Slots for graphics cards/GPUs are 
typically 16x lanes wide, as they require massive amounts of bandwidth. The latest revision of the Mac 
Pro conforms to the PCIe 2.0 standard. The latest version of Mac Pro (5,1) has four 16x lane slots, but 
only slots 1 and 2 are able to operate at 16x, while slots 3 and 4 operate at 4x. 

Thunderbolt 
Thunderbolt, a relatively new technology, was initially developed by Intel and later adopted by Apple; 
the latter is currently the only vendor shipping Thunderbolt-enabled computers. Although the 
availability of devices is limited, several companies, including Blackmagic Design, Promise Technology, 
and Western Digital, have announced their support for the technology. Thunderbolt is an external 
expansion interface that allows PCIe and DisplayPort 1.1 to be tunneled over the same cable. A cable can 
carry two bi-directional channels of up to 10 Gbps of data, which amounts to a total bandwidth of 40 
Gbps per cable. The channels are independent of each other, and it is not possible to aggregate the 
bandwidth between them. Thunderbolt is also able to provide up to 10 Watts of power to devices 
connected to the bus. The cable uses the Mini DisplayPort connector, which is indentical at both ends. 

The current specification of Thunderbolt allows up to six devices to be daisy chained. Later revisions 
will showcase a tree-like topology similar to that of USB. However, unlike USB, Thunderbolt allows host-
to-host connections like Firewire. Apple has also enabled a target disk mode using Thunderbolt, as well 
as the ability to boot the operating system from Thunderbolt attached storage. Due to the fact that 
Thunderbolt devices communicate directly with the PCIe host system, existing devices can be updated 
to support Thunderbolt with relatively few modifications to the hardware (ignoring the fact that an 
external case and possibly an external power source are needed). On the software side, very few changes 
are needed (devices are still managed by the IOPCIFamily); however, one requirement is that the driver 
must support being dynamically unloaded. 

Thunderbolt makes it possible for the Mac Mini, iMac or MacBook series computers to access high-
speed storage and storage area networks, as well as high-bandwidth uncompressed video capture, which 
was previously reserved for the high-end Mac Pro and Xserve.  

ExpressCard 
ExpressCard is an older expansion interface found in the MacBook Pro series. ExpressCard is being 
phased out in favour of Thunderbolt; however, laptops with both ExpressCard and Thunderbolt ports 
are available (at the time of writing). ExpressCard is the modern version of PCMCIA and is based on 
PCIe. The latest standard supports transfer speeds of up to 5 Gbps. 
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Configuration Space Registers 
All PCI devices (including bridges) have a set of registers known as the configuration space. This space is 
a minimum of 256 bytes for conventional PCI devices, but on technologies based on PCI-X 2.0 and PCI 
Express, the configuration space is up to 4096 bytes long and is referred to as the extended configuration 
space. The first 48 bytes of the configuration space registers are shown in Figure 9-1. 

 

Figure 9-1. Standard PCI configuration space registers 

The required registers are shown in gray; other registers are optional. The first 48 bytes are 
standardized and you will find the same layout regardless of whether the device is PCI, PCI-X, or PCIe-
based. Many of the registers are no longer applicable because PCI Express is point-to-point based— it 
doesn’t use a shared bus. 

Let’s look at the mandatory registers from Figure 9-1 in more detail. 

• Vendor ID: Contains a 16-bit identifier unique to each hardware manufacturer. 
Vendor IDs are assigned by the PCI-SIG (special interest group) of each hardware 
manufacturer. Apple, for example, is assigned the vendor ID 0x106b. The 
combination of vendor ID and device ID is often used by operating systems to 
determine which driver to load for a device. 0xffff is not a valid vendor ID. 

• Device ID: Also 16-bits wide. Unlike the vendor ID, the device ID can be assigned 
by the manufacturer and is not maintained in a central register. 

• Class Code: A 24-bit register that holds the type classification for the device. The 
first 8 bits hold the base class. Examples of base classes include Unclassified (0x0), 
Mass Storage controller (0x1), Network Controller (0x2), Display Controller (0x3), 
etc. The next 8 bits hold the subclass. If the base class is a display controller, for 
instance, the subclasses might be VGA (0x0), XGA (0x1), or other (0x80). The 
remaining 8 bits are used to specify the program interface (register-level interface) 
of the device if more than one is possible. This is used for USB controllers to verify 
whether they comply with the UHCI, OHCI, EHCI, or XCHI interfaces, which are 
register-level specifications that determine how a driver should interact with a 
device. 
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• Subsytem Vendor/Device ID: Follows the same rules and assignments as the vendor 
and device IDs. The subsystem IDs are used to identify the chip, when many 
different manufacturers sell products using the same chip (OEM). Prime examples 
of this are Nvidia and ATI. They manufacture GPU chips that are subsequently 
used by third-party manufacturers to make the final product. The PCI 
configuration space of such a device contains the third-party’s vendor ID and 
device ID, but uses either Nvidia or ATI as the subsystem vendor ID, as well as 
their device ID as the subsystem device ID. This allows ATI’s and Nvidia’s drivers 
to be used, even if they didn’t manufacture the board directly. 

• Base Address 0-5: Contains up to six I/O regions, which can be either I/O ports or 
memory regions. The latter is much more common. We will discuss I/O regions in 
more detail shortly. A base address is often abbreviated BAR (Base Address 
Register). 

PCI in I/O Kit 
PCI in the I/O Kit is handled by the IOPCIFamily, which, just like the IOUSBFamily, is implemented in its 
own KEXT. The IOPCIFamily is simpler than the IOUSBFamily in terms of the number of provided classes. 
This means there are fewer building blocks to help us out when implementing drivers. PCI is more low-
level than USB from a driver point-of-view, and, as such, the writing of drivers for PCI devices is often 
more complex. Figure 9-2 shows the class hierarchy of the IOPCIFamily.  

 

Figure 9-2. IOPCIFamily class hierarchy 

The IOPCIDevice object acts a nub or provider for all PCI-based devices, including PCIe, 
Thunderbolt, and ExpressCard. An IOPCIDevice subclass called IOAGPDevice handles older AGP 
(Advanced Graphics Port)-based graphics cards; however, no Intel-based Macs feature AGP. In many 
cases, you only need to interact with the IOPCIDevice class from the IOPCIFamily. An instance of this 
object is provided for each PCI device in the system; similarly, an IOPCIBridge instance exists for each 
PCI bridge in the system. There are cases where a driver may need to interact with its bridge to read or 
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write the bridge’s configuration space. Although uncommon, it is also possible to create your own PCI 
bridge driver. We will discuss device and bridge access later in this chapter. The root PCI bridge (also 
known as the host bridge and root complex) is implemented by a subclass of IOPCIBridge called 
AppleACPIPCI class. This class is part of the Platform Expert implemented by the AppleACPIPlatform 
KEXT and controls access to all devices and bridges in the system. There is only one instance of this 
class. The IOPCI2PCIBridge class is the driver for PCI-to-PCI bridges. 

■ Tip  As with the IOUSBFamily, the IOPCIFamily is not part of the xnu source distribution; rather, it is available 
as a separate download from http://opensource.apple.com. The source package contains the source code for 
the classes discussed above, as well as a sample PCI driver and source code for user space tools to dump 
information from a PCI device. 

Matching and Loading Drivers 
PCI drivers are commonly matched against properties found in their configuration space registers, such 
as the vendor ID, device ID, class, subsystem vendor ID, and subsystem device ID. Often, the latter two 
are needed if a PCI device is based on a generic chip. 

Though the configuration spaces contain more fields, they cannot be matched against using a 
matching dictionary (property-based matching). If you need more advanced matching, your driver will 
have to override the IOService::probe(IOProvider* service) method, and you will have to examine the 
IOPCIDevice yourself to determine if your driver matches the device. The keys listed in Table 9-1 can be 
used for matching against PCI-based devices. 

Table 9-1. Keys for Matching PCI Devices 

Key Description 

IOPCIMatch Match against vendor ID and device ID; if a 
match is not found, try to match against 
subsystem vendor ID and subsystem device 
ID. 

IOPCIPrimaryMatch Only match against vendor ID and device ID. 

IOPCISecondaryMatch Only match against subsystem vendor ID and 
subsystem device ID. 

IOPCIClassMatch Match against the PCI class code. 

IONameMatch Not PCI-specific; can be used to match 
against the name property. 

 
Listing 9-1 shows the matching dictionary for a typical PCI device with a vendor ID or subsystem 

vendor ID of 0xabcd and a device ID or subsystem device ID of 0x1234. 
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Listing 9-1. Simple Matching Dictionary for a PCI Driver 

<key>IOKitPersonalities</key> 
<dict> 
    <key>MyPCIDriver</key> 
    <dict> 
        <key>CFBundleIdentifier</key> 
        <string>com.osxkernel.MyPCIDriver</string> 
        <key>IOClass</key> 
        <string>com_osxkernel_MyPCIDriver</string> 
        <key>IOProviderClass</key> 
        <string>IOPCIDevice</string> 
        <key>IOPCIMatch</key> 
        <string>0x1234abcd</string> 
     </dict> 
</dict> 

The value is specified as a 32-bit hexadecimal string in little-endian format. The first four characters 
will represent the device ID and the last four characters will represent the vendor ID. It is worth noting 
that the value is of the string type and not an integer. The key IOProviderClass must have the value 
IOPCIDevice in order for the I/O Kit to pass your driver an IOPCIDevice instance. If you need to match 
against the vendor ID and device ID, you can substitute IOPCIMatch with IOPCIPrimaryMatch or, if you 
only wish to match the subsystem IDs, you can use IOPCISecondaryMatch. 

If your driver handles multiple devices, this can be done as a space-separated list as follows: 

<key>IOPCIMatch</key> 
<string>0x1234abcd 0x1235abcd 0x1236abcd</string> 

This will match device IDs 0x1234, 0x1235, and 0x1236 of vendor 0xabcd. If your driver supports a 
large family of devices, you can use masks to achieve the same effect, rather than enumerating each 
device separately. 

<key>IOPCIMatch</key> 
<string>0x1230abcd&0xfff0ffff</string> 

■ Note  If you are editing Info.plist directly, you must express the ampersand (&) as &amp, as the ampersand 
symbol is used to indicate an escape sequence in XML. 

This will match every device ID beginning with 0x123X; for example, the range from 0x1230 to 
0x123F, and a vendor ID of 0xabcd. Bits that should be ignored by the mask must be set to zero. 

You can also match against the class register. To do this, you must specify the IOPCIClassMatch key. 
The class register is 3 bytes wide. However, to match against it, the I/O Kit requires you to specify a 4 
byte value. The last byte is ignored. The following example matches display controllers (base class code 
0x03): 
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<key>IOPCIClassMatch</key> 
<string>0x03000000&amp;0xFF000000</string> 

As all PCI devices are assigned names according to their devices and vendor IDs, it is also possible to 
use IONameMatch to match PCI devices as shown in Listing 9-2. 

Listing 9-2. Matching Based on Name Property 

<key>IONameMatch</key> 
<array> 
    <string>pciabcd,1234</string> 
    <string>pciabcd,1235</string> 
    <string>pciabcd,1236</string> 
</array> 

The previous approach is perhaps more readable, but the downside is that it is not possible to 
match against the subsystem vendor and device ID. 

■ Note  Remember to add a dependency to the IOPCIFamily in your driver’s Info.plist file under the 
OSBundleLibraries section. 

During system boot, drivers for PCI devices installed in a physical slot or embedded on the 
motherboard are loaded. Thunderbolt and ExpressCard drivers are loaded at boot-time or on demand as 
they are plugged in. 

While Thunderbolt devices follow PCI devices’ rules for identification, they need an additional 
change in order for the driver to load. In the driver’s Info.plist file, under each personality specified, the 
following key needs to be set: 

<key>IOPCITunnelCompatible</key> 
<true/> 

This tells the system that the driver is Thunderbolt-ready, and therefore, is safe to unload. It is 
possible for a Thunderbolt and a PCIe device to share the same device driver; however, PCI drivers may 
in many cases be written under the assumption that the driver/device will never be removed during 
operation. A driver will not be loaded against a Thunderbolt device unless this key is set. 

THUNDERBOLT UNIQUE INDENTIFIER 

All Thunderbolt devices have a device ROM (DROM) that contains an additional ID identifying the vendor, 
referred to as an Authority ID. This ID is part of a 64-bit UID number, which is unique for every Thunderbolt 
device, just like the MAC address of a network interface. The authority ID is assigned by the Thunderbolt 
naming authority (Intel) and not the PCI-SIG. At the time of writing, there are no publications explaining 
how to access this number from the I/O Kit, or if it can be used to match Thunderbolt devices. 
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Driver Example: A Simple PCI Driver 
It’s time to get our hands dirty. In order to demonstrate a PCI driver in action, we will take advantage of 
the IOMatchCategory key to allow the loading of a secondary driver for a device. We will load our driver 
against the display controller (graphics card/GPU) in this case, as it is a device guaranteed to be present 
on all Macs—even laptops—as they all use PCIe internally. We will use the following to match against 
the display controller: 

<key>IOPCIClassMatch</key> 
<string>0x03000000&amp;0xFF000000</string> 

■ Caution  Be careful about making your own modifications to MyFirstPCIDriver, as it attaches to a device 
already controlled by another driver. Therefore, performing actions other than querying information may be unsafe 
and cause your system to crash or become corrupt.  

Recall that 0x03 is a base class for display controllers. If you have more than one GPU, this will cause 
multiple instances of the driver to be instantiated—one per device. 

Let’s start with the class declaration for our driver, as shown in Listing 9-3. 

Listing 9-3. MyFirstPCIDriver Class Declaration 

#include <IOKit/IOLib.h> 
#include <IOKit/pci/IOPCIDevice.h> 
 
class com_osxkernel_MyFirstPCIDriver : public IOService 
{ 
    OSDeclareDefaultStructors(com_osxkernel_MyFirstPCIDriver); 
     
private: 
    IOPCIDevice*        fPCIDevice; 
     
public: 
    virtual bool start(IOService* provider); 
    virtual void stop(IOService* provider); 
}; 

There should be few surprises here if you’ve followed earlier examples. We simply declare a sub-
class of IOService and override the start() and stop() methods. Note that we include the file 
IOKit/pci/IOPCIDevice.h that contains the definition of the IOPCIDevice class. 

The implementation of MyFirstPCIDriver is shown in Listing 9-4. 

Listing 9-4. MyFirstPCIDriver Class Implementation 

#include "MyFirstPCIDriver.h" 
 
#define super IOService 
OSDefineMetaClassAndStructors(com_osxkernel_MyFirstPCIDriver, IOService); 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 9  PCI EXPRESS AND THUNDERBOLT 

181 

 
bool com_osxkernel_MyFirstPCIDriver::start(IOService * provider) 
{     
    IOLog("%s::start\n", getName()); 
     
    if(!super::start(provider)) 
        return false ; 
     
    fPCIDevice = OSDynamicCast(IOPCIDevice, provider); 
    if (!fPCIDevice) 
        return false; 
     
    fPCIDevice->setMemoryEnable(true); 
   
    registerService(); 
     
    return true; 
} 
 
void com_osxkernel_MyFirstPCIDriver::stop( IOService * provider ) 
{ 
    IOLog("%s::stop\n", getName()); 
    super::stop(provider); 
} 

When a driver is matched successfully, either from the Info.plist dictionary or by invocation of the 
driver’s probe() method, your driver will have its start() method called. As with the USB driver in 
chapter 8, we check to ensure that the provider that is passed to us is in fact of the right type 
(IOPCIDevice), which is good practice although it shouldn’t happen if your Info.plist correctly specifies 
the IOProviderClass key. 

If we have a valid IOPCIDevice, the next step is to enable the I/O resources of the device by calling 
the IOPCIDevice::setMemoryEnable(bool enable) method. This will set a toggle bit in the device’s 
command register, letting it know that we want to access its resources. Finally, our driver calls 
registerService(), which will notify potential clients (possibly a higher-level driver) of our driver’s 
arrival. We return true to indicate to the I/O Kit that the driver was loaded successfully. 

We can now attempt to load MyFirstPCIDriver using the kextload utility. You can verify that it gets 
loaded correctly by checking kernel.log in Console.app or by searching for it using IORegistryExplorer 
as shown in Figure 9-3.  
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Figure 9-3. IORegistryExplorer showing MyFirstPCIDriver loaded 

Accessing Configuration Space Registers 
The IOPCIDevice class contains a number of helper methods that make it easy to access a device’s 
configuration space registers. The following methods allow you to read and write configuration space 
registers. 

virtual UInt8 configRead8(UInt8 offset); 
virtual UInt16 configRead16(UInt8 offset); 
virtual UInt32 configRead32(UInt8 offset); 
 
virtual void configWrite8(UInt8 offset, UInt8 data); 
virtual void configWrite16(UInt8 offset, UInt16 data); 
virtual void configWrite32(UInt8 offset, UInt32 data); 

There are three variants of read methods and three variants of write methods, which allow you to 
read or write an 8-bit value, a 16-bit value, or a 32-bit value from the offset specified. The offset 
parameter is a byte-offset into the configuration space and must be between 0-255. To read a device’s 
device ID and vendor ID, we can do the following: 

UInt16 vendorID = fPCIDevice->configRead16(0); 
UInt16 deviceID = fPCIDevice->configRead16(2);  
IOLog(“vendor ID = 0x%04x device ID = 0x%04x\n”, vendorID, deviceID); 

The previous request could also be achieved by a single call: 

UInt32 bothIDs = fPCIDevice->configRead32(0); 
IOLog(“vendor ID = 0x%04x device ID = 0x%04x\n”, bothIDs >> 16, bothIDs & 0x0000FFFF); 

The preceding call uses integer byte offsets, but the IOPCIDevice.h file specifies constants that can 
be used to address common register locations. So to make the code more readable, you can use 
kIOPCIConfigVendorID and kIOPCIConfigDeviceID instead of the hard coded values. The full list of 
available constants is shown in Listing 9-5. 
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Listing 9-5. Constants for Offsets of Common PCI Configuration Space Registers (IOPCIDevice.h) 

enum { 
    kIOPCIConfigVendorID = 0x00, 
    kIOPCIConfigDeviceID = 0x02, 
    kIOPCIConfigCommand = 0x04, 
    kIOPCIConfigStatus = 0x06, 
    kIOPCIConfigRevisionID = 0x08, 
    kIOPCIConfigClassCode = 0x09, 
    kIOPCIConfigCacheLineSize = 0x0C, 
    kIOPCIConfigLatencyTimer = 0x0D, 
    kIOPCIConfigHeaderType = 0x0E, 
    kIOPCIConfigBIST = 0x0F, 
    kIOPCIConfigBaseAddress0 = 0x10, 
    kIOPCIConfigBaseAddress1 = 0x14, 
    kIOPCIConfigBaseAddress2 = 0x18, 
    kIOPCIConfigBaseAddress3 = 0x1C, 
    kIOPCIConfigBaseAddress4 = 0x20, 
    kIOPCIConfigBaseAddress5 = 0x24, 
    kIOPCIConfigCardBusCISPtr = 0x28, 
    kIOPCIConfigSubSystemVendorID = 0x2C, 
    kIOPCIConfigSubSystemID = 0x2E, 
    kIOPCIConfigExpansionROMBase = 0x30, 
    kIOPCIConfigCapabilitiesPtr = 0x34, 
    kIOPCIConfigInterruptLine = 0x3C, 
    kIOPCIConfigInterruptPin = 0x3D, 
    kIOPCIConfigMinimumGrant = 0x3E, 
    kIOPCIConfigMaximumLatency = 0x3F 
}; 

IOPCIDevice also provides a convenient method for setting individual bits of a register called 
setConfigBits().  

A read request to a missing or malfunctioning device will return a value of 0xFFFF (0xFF or 
0xFFFFFFFF for the 8 and 32-bit variants), which is an invalid device/vendor ID. So if this value is 
returned while reading either register it can be used to determine if a problem has occurred or if a 
Thunderbolt device has been unplugged. 

Writing values to the configuration space is simple but there are a few things to note. Many areas of 
the configuration space are read-only. For example, the device ID and vendor ID are programmed into 
the device’s PCI controller firmware. Also note that it is not possible to determine if a write to a register 
location succeeded; you would have to read back the register or another that was affected by the write 
transaction in order to determine its success. 

■ Note  If your driver needs to maintain compatibility with PowerPC-based systems, be aware that the PCI config 
space is stored in little-endian format, however IOPCIDevice handles byte swapping for you. 

A number of methods of IOPCIDevice, such as setMemoryEnable(), are simply convenient 
abstractions that perform the appropriate configuration space reads or writes on your behalf. I/O to 
configuration space is forwarded by an IOPCIDevice to its parent (an IOPCIBridge in most cases) until it 
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reaches the root bridge, which is implemented by the Platform Expert, as the exact details are system 
dependent. 

Accessing the Extended Configuration Space 
You may have noticed an inconsistency with the I/O functions in the previous section. We saw earlier 
that the extended configuration space is 4096 bytes. How do you address offsets greater than 255 when 
the config*() functions take a UInt8 type for the offset argument? The answer is the following family of 
methods. 

UInt32 extendedConfigRead32(IOByteCount offset); 
UInt16 extendedConfigRead16(IOByteCount offset); 
UInt8 extendedConfigRead8(IOByteCount offset); 
 
void extendedConfigWrite32(IOByteCount offset, UInt32 data); 
void extendedConfigWrite16(IOByteCount offset, UInt16 data); 
void extendedConfigWrite8(IOByteCount offset, UInt8 data); 

The methods have the same interface as is shown above. However, they use the wider data-type 
IOByteCount for the offset parameter to allow access to offsets greater than 255. 

Searching for Capabilities Registers 
Because capability registers are not located at a fixed offset, the process of finding a capability register 
involves searching for a capability ID and then reading the next byte to determine the length of the 
capability, which also tells you the offset of the next capability. This process is followed moving down 
the list until the right capability is located. Fortunately, we do not need to write this code manually as the 
IOPCIDevice class provides two helper methods to locate capabilities: 

virtual UInt32 findPCICapability(UInt8 capabilityID, UInt8* offset = 0 ); 
virtual UInt32 extendedFindPCICapability(UInt32 capabilityID, IOByteCount* offset = 0 ); 

The following demonstrates how to fetch the PCIe link status register, which contains the number of 
active lanes (bits 4-9) and the link speed (bits 0-3) for the device. 

IOByteCount offset = 0; 
if (fPCIDevice->extendedFindPCICapability(kIOPCIPCIExpressCapability, &offset)) 
{ 
       UInt16 value = fPCIDevice->extendedConfigRead16(offset + 0x12); 
} 

The method will return the capability ID (kIOPCIExpressCapability in this case) or zero if the 
capability with the specified ID could not be found. The output argument offset is used to store the 
offset of the found capability. Once the capability is found we can read the link status register by adding 
0x12 (18) to the offset. 

PCI I/O Memory Regions 
PCI devices may have up to six I/O regions. Each region contains either I/O memory or I/O space 
(ports). The latter is seldom used in new devices as I/O ports are generally a very slow way of performing 
I/O and can only be accessed using special in/out CPU instructions. Some legacy devices, such as IDE 
controllers, may have both I/O ports and memory and can be controlled by either. On the other hand, 



CHAPTER 9  PCI EXPRESS AND THUNDERBOLT 

185 

I/O memory is more efficient and also easier to access, as it can simply be mapped into the system’s 
memory space and accessed like regular memory. I/O memory is commonly referred to as Memory 
Mapped I/O (MMIO). This concept is not to be confused with mapping of memory between virtual 
address spaces or the mapping of files in memory (mmap). 

Access to and from mapped device memory can be cached by the CPU if the region has the memory 
prefetchable bit set. 

How is a device controlled through a memory region? That is entirely up to the device. For example, 
one region could be used for control and status registers, while a second region could be used to read or 
write data, for example input video from a camera. If you are reading this in electronic form, then this 
very text may be continuously written to the memory region representing the frame buffer of your 
graphics card. Just like USB, there are a number of standardized interfaces for PCI-based devices as well. 
An example of this is VGA compatible graphics cards, which allow for the basic operation of a graphics 
card using a known interface including memory regions and/or ports. Standardized interfaces for IDE, 
SATA, and PCI-based USB controllers also exist, enabling an operating system to use its default driver for 
any device that complies with such an interface. 

Because PCI is “plug and play,” I/O resource for a PCI device is configured automatically by the 
kernel/EFI (or BIOS in traditional PCs), in contrast to the obsolete ISA bus, where jumpers had to be 
physically placed to select the base I/O addresses and interrupt line for each device separately in an 
attempt to avoid resource conflicts. 

When a device is configured, each region present in the configuration space will be configured with 
its own address range. The size of the range depends on the device. 

When a device is configured, it will be assigned a physical memory address range by the system. As 
you can see from Figure 9-1 there is no register for storing the size of each memory region. So how does 
the system know how big each region is? The size of a memory region is determined by the system by 
setting all bits in one of the base address slots in the configuration space and then reading back the 
value. A region must be of a size that is a power of two. Devices, if they support it, can combine two BARs 
to form a 64-bit address. 

Before the system or a driver can access any of the I/O regions, they need to be enabled by toggling a 
bit in the device’s command register. We already saw how this was done in MyFirstPCIDriver by calling 
fPCIDevice->setMemoryEnable(true) in the driver’s start() method. 

Enumerating I/O Regions 
To discover available memory regions of a PCI device (there may be up to six), let’s modify 
MyFirstPCIDriver to dump some additional information about the device in its start() method, by 
adding the code in Listing 9-6 after the call to setMemoryEnable(). 

Listing 9-6. Enumerating PCI I/O Memory Regions 

for (UInt32 i = 0; i < fPCIDevice->getDeviceMemoryCount(); i++)  
{ 
    IODeviceMemory* memoryDesc = fPCIDevice->getDeviceMemoryWithIndex(i); 
    if (!memoryDesc) 
        continue; 
    #ifdef __LP64__ 
        IOLog("region%u: length=%llu bytes\n", i, memoryDesc->getLength()); 
    #else 
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        IOLog("region%lu: length=%lu bytes\n", i, memoryDesc->getLength()); 
    #endif 
} 

If you compile and load the driver, you should see something like the following printed in the 
kernel.log: 

Apr 1 11:06:18 macbook kernel[0]: com_osxkernel_MyFirstPCIDriver::start 
Apr 1 11:06:18 macbook kernel[0]: region0: length=16777216 bytes 
Apr 1 11:06:18 macbook kernel[0]: region1: length=268435456 bytes 
Apr 1 11:06:18 macbook kernel[0]: region2: length=33554432 bytes 
Apr 1 11:06:18 macbook kernel[0]: region3: length=128 bytes 
Apr 1 11:06:18 macbook kernel[0]: region4: length=131072 bytes 

Your output may differ depending on your system model and graphics card (you may even have 
multiple). In this case, the largest region (256 MB) is region 1, which is the graphics card’s frame buffer. 

Mapping and Accessing Device Memory Regions 
The previous section showed us how we can obtain information about available I/O memory regions. 
We need to do some more work before we can actually access data from the regions. Furthermore, in 
most real-world drivers, it is unnecessary to explicitly enumerate the regions, as a driver usually knows 
exactly which regions, if not all that it needs to map. The following IOPCIDevice method can be used to 
map a BAR region directly: 

virtual IOMemoryMap * mapDeviceMemoryWithRegister(UInt8 reg, IOOptionBits options = 0); 

The following is an example of its use. 

IOMemoryMap *bar0Map = fPCIDevice->mapDeviceMemoryWithRegister(kIOPCIConfigBaseAddress0); 
IOMemoryMap *bar1Map = fPCIDevice->mapDeviceMemoryWithRegister(kIOPCIConfigBaseAddress1); 
if (bar0Map) 
{ 
     UInt8 *address = (UInt8*)bar0Map->getVirtualAddress(); 
     // do something with address 
} 
… 

If you have already obtained an IODeviceMemory (subclass of IOMemoryDescriptor) object by calling 
getDeviceMemoryWithIndex() as in Listing 9-6, you can simply call the map() method which does the 
same thing. In fact, that is exactly what mapDeviceMemoryWithRegister() does under the hood. Once an 
IOMemoryMap object is obtained, you can call the getVirtualAddress() method to obtain a kernel virtual 
address which can be used to access the mapping. The returned pointer can be read and written to in 
the same way as regular memory assuming it points to I/O memory and not I/O space. 

When a driver is done accessing the memory it should call the unmap() method. 

Accessing I/O Space 
I/O Space consists of a 16-bit address space and is an older way of communicating with devices. I/O 
ports were also used for communication with serial and parallel ports in older computers, so it is not 
specific to PCI, but rather a way for an external device (to the CPU) to interface with the processor. I/O 
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Space ranges assigned to a device can be accessed and mapped just like memory regions by using 
mapDeviceMemoryWithRegister() and getDeviceMemoryWithIndex(). The difference however, is that you 
cannot simply access the pointer returned by getVirtualAddress() as above directly. You have to use 
one of the following methods. 

virtual void ioWrite32(UInt16 offset, UInt32 value, IOMemoryMap* map = 0); 
virtual void ioWrite16(UInt16 offset, UInt16 value, IOMemoryMap* map = 0); 
virtual void ioWrite8(UInt16 offset, UInt8 value, IOMemoryMap* map = 0); 
virtual UInt32 ioRead32(UInt16 offset, IOMemoryMap* map = 0); 
virtual UInt16 ioRead16(UInt16 offset, IOMemoryMap* map = 0); 
virtual UInt8 ioRead8(UInt16 offset, IOMemoryMap* map = 0); 

Using I/O space in new devices is frowned upon, due to poor performance and the limited address 
space it provides. Accessing mapped memory can take as little as 1 CPU cycle, while accessing a port can 
take as many as 100 cycles on certain architectures. 

Before I/O space can be accessed, it needs to be enabled in the device’s command register. 
IOPCIDevice provides the setIOEnable() method for this purpose. 

Handling Device Removal 
Thunderbolt and ExpressCard devices may be unplugged during operation. Therefore, drivers that 
handle these devices need some additional modifications over traditional PCI drivers, which are usually 
not written with removal of the device in mind. Improper handling of device removal may lead to 
hanging applications, system crashes, or disruptions to system stability or performance. For 
Thunderbolt devices, removal is not an exceptional condition so a driver must be able to cope with the 
removal of the device. 

■ Caution  Storage devices with mounted file systems may NOT be unplugged without the user first “Ejecting” 
(unmounting) the file system. Failure to do so may result in loss or, in the worst-case scenario, corruption of the 
file system. Thunderbolt based storage drivers should call: 
setProperty(kIOPropertyPhysicalInterconnectLocationKey, kIOPropertyExternalKey) early in the 
driver’s start() method to indicate to the I/O Kit that the storage is externally connected. 

While it may seem complicated to handle device removals, the I/O Kit was designed specifically to 
allow removal of devices. The IOService class handles a lot of the heavy lifting for us automatically. 

Your driver may detect the first sign that a device has been removed if it receives the value 0xffffffff 
(assuming a 32-bit read) while reading a value from memory mapped I/O (MMIO) or PCI configuration 
space registers. Of course the value might actually be valid for some registers, however you can read an 
alternate register or memory location that you know is guaranteed never to contain that value to confirm 
if the device is unresponsive. The driver may detect this condition before the I/O Kit messages the driver 
informing it that the device has been removed. If a driver determines that a device is removed, it should 
cease all access to mapped memory and the configuration space as further requests will result in timing 
out requests, which can take up to several milliseconds and may affect overall system performance. 
Apple recommends funneling all accesses to MMIO through a single method, as follows: 
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UInt32 com_osxkernel_MyFirstPCIDriver::readRegister32(UInt32 offset) 
{ 
    UInt32 res = 0xffffffff; 
    if (!fDeviceRemoved) 
    { 
        res = OSReadLittleInt32(fBar0Address, offset); 
        if (res == 0xffffffff) 
            fDeviceRemoved = true; 
    } 
    return res; 
} 

The method will prevent further accesses to registers once the device has been removed. We can 
now use the member variable fDeviceRemoved in other parts of the driver to prevent operations that will 
communicate with the hardware.  

The I/O Kit handles device removal in three phases: 

1. The bus controller (PCI root) will call the terminate() method on its client nub, 
which will message its clients again and so forth until it reaches the bottom of 
the stack. An IOService object that overrides the message() method will also 
receive a kIOServicesIsTerminated message. The driver is now considered 
inactive and cannot be enumerated or attached to by new clients. Existing 
clients holding the driver open will still remain active. 

2. Drivers in the stack will have their willTerminate() method called, and 
thereafter didTerminate(). This process happens in reverse order, so clients 
will call their providers instead of the other way around, until it reaches the 
original provider that initiated the call to terminate() in the first place. 
Remember that these methods are optional, and you can choose to implement 
these based on your driver’s needs. In response to having its willTerminate() 
method called, a driver should clear all queued requests and cancel in-flight 
I/O such as unfinished DMA transfers. 

3. The last phase of the removal will call the drivers stop() method, then 
detach() which will remove it from the I/O Registry. If the driver’s retain count 
reaches zero, the driver will be deallocated and its free() method will be 
called. 

If a user plugs the same device back again, a new instance of the driver will be allocated. Any 
applications accessing the driver at the time will still be attached to the old instance of the driver. To 
handle this situation, the application must install a notification to detect when the driver/device is 
removed or added to the system. Because a driver instance is not reused when a device is reinserted, it 
doesn’t need to return to its default state once it has handled a device removal. However, it is important 
it properly release and free any used resources, as the new instance will reallocate or reclaim those 
which could result in a memory leak or the new driver instance not coming up properly. 
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■ Tip  Xcode supplies a command-line tool called ioclasscount that prints instance counts for OSObject derived 
classes and can be used to help debug memory leaks related to device removals. See Chapter 16 for more 
information. 

Interrupts 
Interrupts provide a mechanism for PCI and other hardware devices to signal the CPU asynchronously 
when an event of interest occurs, such as when a key on a keyboard is pressed or when the position of 
the mouse is moved or its buttons clicked. A web camera might send an interrupt every time a new video 
frame becomes available, which will allow its driver to know when the new frame can be read from its 
mapped memory region. Interrupts save the CPU from polling each device to determine if new data is 
available. Legacy PCI devices used dedicated interrupt pins that were physically wired from the PCI 
card/slot to a pin on the CPU. More modern Thunderbolt and PCIe-based technologies use message-
signaled interrupts (MSI), avoiding the need for dedicated physical lines between a device and the CPU 
or interrupt controller chip. Traditional PCI cards had four interrupt pins, which limited the amount of 
interrupts that could be used for a device. MSI however allow for up to 32 interrupts per device. While 
MSI is electrically different from traditional interrupts, they do appear to function identically from a 
driver’s point of view. 

When a CPU receives an interrupt, it puts the currently running thread to sleep, even if the thread 
belongs to the kernel itself. When the interrupt occur the CPU will try to locate an Interrupt Service 
Routine (ISR) for the interrupt that was triggered.  

The ISR gets routed to the driver that “owns” the device. It is possible for legacy interrupt based 
devices to share interrupt lines. In this case, the driver will need to interrogate the device, usually by 
reading a memory mapped register to determine if its device raised the interrupt. 

MSI interrupts are never shared, although it is still good practice to anticipate this scenario. 
Interrupts are not always generated just from hardware devices such as PCI. Interrupts are also sent by 
the system timer, which is used to drive OS services such as the scheduler. 

While an ISR runs, the CPU handling the interrupt will disable other interrupts, which means that 
nothing will execute on the CPU until the ISR has completed. 

As you can imagine, it would not be ideal for system performance if a driver performed large 
amounts of work in the ISR callback. In fact, it is highly recommended that a driver do nothing but 
acknowledge the interrupt. If the interrupt is not acknowledged, it may cause the ISR to go off 
continuously, which would affect both performance and stability. When an ISR runs, this is often 
referred to as the primary interrupt context. To improve system performance, most OSs, including OS X 
and iOS, have mechanisms to defer handling of interrupts to a kernel thread at a later time. This is often 
referred to as the secondary interrupt context. It is in the secondary interrupt context (thread) that the 
real work of handling an interrupt is performed, such as copying incoming packets from a network. The 
primary handler usually acknowledges the interrupt and then, if there is work to do, signals the 
secondary handler.  

In the primary context, it is not possible to do an operation that blocks or sleeps, which includes 
most memory allocation routines and holding locks other than spin locks. This is because 
blocking/sleeping is performed by giving up access to the CPU and temporarily yielding in favor of some 
other thread. However, the ISR is not associated with a task or thread descriptor. Therefore, the 
scheduler is not able to schedule the ISR back again as it is fired directly by the CPU. 

The secondary interrupt handler has no such restrictions and can happily allocate memory and 
block waiting for locks to become available. This is possible under OS X and iOS, but some operating 
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systems may run the secondary handler (also called bottom half, the primary being the top half) in a 
context that does not allow this. 

While OS X and iOS impose fewer restrictions for what you can do in a secondary interrupt handler, 
it still has to be very efficient. 

Handling of primary interrupts cannot be done by a user space program. If a user space program 
needs to know when an interrupt occur, it would need to be signaled by the driver instead. 

In OS X, all primary interrupts are routed to CPU 0 (core) and secondary interrupts are spread across 
all cores, which allows multiple drivers to run in parallel. Because secondary interrupts run in a separate 
kernel thread (high priority), it can be scheduled like any other thread and thus run while interrupts are 
enabled. Interrupt mechanisms are conceptually simple to implement. However, they can be 
complicated by their parallelism if data is shared between the primary and secondary handler, and also 
by user threads that may call into the driver that needs to access the same data. Great care needs to be 
taken to ensure that there are no deadlocks and also to reduce contention between the various threads 
of execution. This ensures that no thread will have to wait excessively to gain access to needed resources. 
For more information on synchronization, refer to Chapter 7. 

■ Note  The term primary interrupt is sometimes referred to as direct interrupt, and secondary interrupts as 
indirect interrupts.  

I/O Kit Interrupt Mechanisms 
The preferred way to handle both primary and secondary interrupts in I/O Kit is through the work loop 
system. However, direct handling is also possible. If you are unsure about how work loops operate, 
check out Chapter 7 for more details. There are three main mechanisms available to handle driver 
interrupts. Figure 9-4 shows how the three different mechanisms respond to primary interrupts. 

 

Figure 9-4. I/O Kit mechanisms for handling device interrupts 
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• IOInterruptEventSource: The standard and easiest way to handle device 
interrupts. You simply register a handler method, which is executed in the 
secondary interrupt context. Your driver never has to deal with primary interrupts. 
Interrupts will be disabled from the provider until the interrupt handler has 
completed, thus guaranteeing single-threaded handling of the interrupt, as 
another handler cannot run in parallel. IOInterruptEventSource is the preferred 
way of handling interrupts. 

• IOFilterInterruptEventSource: Shown on the left in Figure 9-4, it is a subclass of 
IOInterruptEventSource and provides more flexibility. It allows a custom filter 
action to be supplied. This filter action is invoked in primary interrupt context and 
allows a driver to interrogate a hardware device to see if it really has an interrupt. 
If the interrupt is shared between several devices or the device is a complex or 
multi-function device with many possible interrupts or have requirements for very 
low latency, this method is recommended. The secondary interrupts are 
scheduled based on the return value of the installed filter action (routine).  

• IOService::registerInterrupt(): The last method is to use 
IOService::registerInterrupt() to register a C function that will be invoked 
during primary interrupt. This method does not use the driver’s work loop and 
provides no means to invoke a secondary interrupt handler. If secondary 
interrupts are required, the mechanism for handling them would have to be 
implemented manually. 

Registering to Receive Interrupts 
As with many things in the I/O Kit, registering interrupts is simple and most of the heavy lifting is 
handled internally by the I/O Kit and the Platform Expert. We do not have to worry about assigning an 
IRQ number or interrupt routing because that is automatically handled. A typical block of code 
demonstrating how to register a driver to receive interrupts from its provider (IOPCIDevice) with a 
primary interrupt filter is shown in Listing 9-7. 

Listing 9-7. Creating a Filtering Interrupt Event Source 

bool MyFirstPCIDriver::start(IOService * provider) 
{ 
    ... 
    IOWorkLoop *workLoop = (IOWorkLoop*)getWorkLoop(); 
    if (!workLoop) 
        return false; 
  
    IOFilterInterruptEventSource* interruptSource = 
        IOFilterInterruptEventSource::filterInterruptEventSource(this, 
                (IOInterruptEventAction) &MyFirstPCIDriver::interruptOccurred, 
                (IOFilterInterruptAction) &MyFirstPCIDriver::interruptFilter, 
                provider, 0); 
     
    if (workLoop->addEventSource(interruptSource) != kIOReturnSuccess)  
            return false; 
    ... 
} 
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There are four steps involved: 

1. Obtain or allocate an IOWorkLoop instance. 

2. Allocate the event source, which is done using the factory method 
filterInterruptEventSource(). We pass five parameters:  

• A pointer to ourselves,  

• A pointer to the secondary interrupt handler interruptOccurred() method 

• The filter action method that will be executed in primary interrupt context. 

• The last argument is the interrupt index number of the provider and can be 
specified if a provider has more than one interrupt type. For example, the 
provider may support Message Signaled Interrupts (MSI) in addition to 
shared interrupts. 

• The index of the interrupt type. See the section “Enabling Message 
Signaled Interrupts” for details. 

3. Add the event source to the IOWorkLoop instance using addEventSource(). 

4. The last step is to enable the event source, as it is disabled by default, even 
after it is added to the work loop. To start receiving interrupts, simply call 
interruptSource->enable().  

It is important to make sure the driver is fully initialized and ready to receive interrupts before this is 
called or, if possible, ensure interrupts are deactivated on the hardware itself until the driver is ready to 
process them.  

To register an IOInterruptEventSource, the process is nearly identical and is shown in Listing 9-8. 

Listing 9-8. Creating an Interrupt Event Source 

IOWorkLoop *workLoop = (IOWorkLoop*)getWorkLoop(); 
if (!workLoop) 
        return false; 
  
IOInterruptEventSource* interruptSource = 
        IOInterruptEventSource::interruptEventSource(this, 
                    (IOInterruptEventAction) &MyFirstPCIDriver::interruptOccurred, 
                    provider, 0); 
     
if (workLoop->addEventSource(interruptSource) != kIOReturnSuccess)  
        return false; 
... 

The only difference is that it doesn’t accept a filter action, as is the case with 
IOFilterInterruptEventSource. 

Enabling Message Signaled Interrupts  
If you need to be sure that Message Signaled Interrupts (MSI) is used, you must first enumerate the index 
of the MSI interrupt type. In Listings 9-7 and 9-8, we simply passed 0 to get the first interrupt type of the 
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provider, which may or may not be MSI capable, depending on the device. The following method will 
enumerate available interrupt types of the provider and return the index of the MSI interrupt type, 
which can then be passed in as the index argument to 
IOInterruptEventSource::interruptEventSource(): 

int com_osxkernel_MyFirstPCIDriver::findMSIInterruptTypeIndex() 
{ 
    IOReturn ret; 
    int index, source = 0; 
     
    for (index = 0; ; index++) 
    { 
        int interruptType; 
        ret = fPCIDevice->getInterruptType(index, &interruptType); 
        if (ret != kIOReturnSuccess) 
            break; 
         
        if (interruptType & kIOInterruptTypePCIMessaged) 
        { 
            source = index; 
            break; 
        } 
    } 
    return source; 
} 

Handling Primary Interrupts 
Let’s have a look at the implementation of the primary interrupt filter and how to schedule the 
secondary interrupt handler. A Primary interrupt filter for an audio device might look something like 
shown in Listing 9-9. 

Listing 9-9. Primary Interrupt Filter Method 

bool com_osxkernel_MyAudioPCIDriver::interruptFilter(OSObject* owner, 
IOFilterInterruptEventSource * src) 
{ 
    bool scheduleSecondaryInterrupt = false; 
         
    com_osxkernel_MyAudioPCIDriver* me = (com_osxkernel_MyAudioPCIDriver*)owner;  
       
    uint32_t registerContents = me->readRegister(kHardwareInterruptRegisterOffset); 
    if (registerContents & kAudioInputInterruptBit) 
    { 
         scheduleSecondaryInterrupt = true; 
         me->fAudioInputInterruptPending = true; 
    } 
    else if (registerContents & kAudioOutputInterrupt) 
    { 
         scheduleSecondaryInterrupt = true; 
         me->fAudioOutputInterruptPending = true; 
     } 
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     return scheduleSecondaryInterrupt;  
} 

The method accepts two arguments. The first is an OSObject pointer, which value was passed during 
construction of the IOFilterInterruptEventSource instance. We used the this pointer to pass ourselves. 
The reason for this is that the interruptFilter() function is a static class member, as regular member 
functions cannot be used as function pointers in C++. We simply cast the owner argument back to a type 
of our driver class to retrieve our instance. We are also passed an instance of the event source. 

■ Caution  It may be tempting to put debug statements in the primary interrupt handler to see if it triggers or that 
the right registers are set in hardware with IOLog(). Do NOT do this. It is a very bad idea. Did we mention it was a 
bad idea? Your system will crash. 

Because the filter function runs in primary interrupt context, it is unsafe to call most parts of the I/O 
Kit framework, including memory allocation functions and most locking functions. You should also 
avoid doing I/O or other long-winded operations in primary interrupt context. In the hypothetical 
example shown in Listing 9-9, we are handling interrupts for a bi-directional audio device that has two 
interrupts, one for each direction. In our filter, we first read the device’s interrupt register. If either of the 
interrupts are set, we set the variable scheduleSecondaryInterrupt to true, which we use as a return 
value. A return of true means we want the secondary interrupt handler to run, and a return of false 
means that our device wasn’t interrupting. This either means we are sharing an interrupt line with 
another device, which was the one that raised the interrupt, or it could be a false interrupt due to 
malfunctioning hardware or interference. If we return true from the filter, our device’s interrupt will be 
disabled until the secondary handler is scheduled and it completes its execution. This ensures that an 
interrupt is serialized so our driver doesn’t need to worry about locking between the primary and 
secondary handlers, as they never run in parallel. 

There are some cases where this behavior is undesired, and we can prevent the interrupt from being 
disabled by modifying our interrupt filter to always return false, which will ensure the interrupt doesn’t 
get disabled, but that also prevents the secondary interrupt from being scheduled. However, we can 
manually schedule it as follows instead: 

bool com_osxkernel_MyFirstPCIDriver::interruptFilter(OSObject* owner, 
IOFilterInterruptEventSource * src) 
{ 
… 
… 
    if (scheduleSecondaryInterrupt) 
            src->signalInterrupt(); 
    return false; 
} 

This will have the effect of allowing the device to issue primary interrupts, even if our secondary 
interrupt handler is already running. In the case of our audio device, this may allow concurrent 
processing of input and output interrupts. 
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Handling Secondary Interrupts 
The secondary interrupt handler is the same regardless if it is used with an IOInterruptEventSource or 
an IOFilterInterruptEventSource. The prototype is similar to that of the primary interrupt filter 
function, but has an additional parameter that contains the index of the interrupt source of the provider, 
if a provider has more than one interrupt. Our audio device has only one interrupt, and we need to read 
the device’s register to determine which events were signaled. If the device had several interrupts, we 
could instead differentiate this by looking at the intCount parameter. A very simplistic implementation 
of the secondary interrupt handler for our imaginary audio device is shown in Listing 9-10.  

Listing 9-10. Secondary Interrupt Handler Method 

void com_osxkernel_MyAudioPCIDriver::interruptOccurred(OSObject* owner, 
IOInterruptEventSource* src, int intCount) 
{ 
    com_osxkernel_MyFirstPCIDriver* me; 
    me = (com_osxkernel_MyFirstPCIDriver*)owner; 
         
    if (me->fAudioInputInterruptPending) 
            me->handleAudioInputInterrupt();         // Start next DMA 
    if (me->fAudioOutputInterruptPending) 
            me->handleAudioOutputInterrupt();        // Start next DMA 
} 

We detect which interrupt that was pending and execute driver methods for handling the interrupts. 
The methods may, for example, signal a user application that data is now available and setup a new 
DMA transaction to fill another buffer. The reason why we use the instance variables 
fAudioInputInteruptPending and fAudioOutputInterruptPending rather than re-reading the interrupt 
status register from Listing 9-9 is that many hardware devices will automatically clear the interrupt 
register once the register is read, which also serves to acknowledge the interrupt. 

The secondary interrupt handler may run in parallel to user space threads calling our driver, so it is 
important to have proper synchronization in place to guard shared data. Note that the secondary 
interrupt handler itself runs on the driver’s work loop, which is single-threaded, so two secondary 
interrupt handlers are guaranteed not to run in parallel. 

Direct Memory Access 
Direct Memory Access (DMA) is a concept that allows a device to transfer data to or from system 
memory without the involvement of the CPU, leaving it free to perform other tasks, which has a 
significant impact on overall system performance, as I/O transfers are typically very slow relative to the 
CPU. DMA also allows for so-called zero-copy, in that we can transfer memory from a user space buffer 
directly to a device without any memory copies. PCI doesn’t have a central DMA controller, but uses the 
concept of bus mastering, which allows the device to take control over the bus and initiate transfers. The 
IOPCIDevice class offers the setBusMasterEnable() method, which gives the device permission to act as a 
bus master. DMA transfers are directional. When the CPU wishes to transfer data from system memory 
to a device, this is referred to as outbound DMA, whereas transfers from a device to the system memory 
are referred to as inbound DMA. 

There are no standard I/O Kit classes for controlling DMA to PCI devices as each device may 
implement DMA differently (the DMA function of a device is often referred to as a DMA engine). 
However, in most cases, the process is very similar. A device may support several concurrent DMA 
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transfers and each transfer is said to have its own DMA channel. The concept of a DMA transfer is 
simple. For an outbound DMA transfer, the following steps typically occur. 

1. The driver needs to identify the memory buffer to be transferred and pin the 
memory. 

2. The driver will inform the device of the location (physical address) and size of 
the memory, which is typically done by writing the values to a register. 

3.  The driver will toggle a bit in one of the device’s registers to indicate that it 
should start the DMA. 

4. The device will transfer the contents of the buffer directly from system 
memory without the involvement of the CPU. It sets another register bit to 
indicate the completion of the transfer and raise an interrupt. 

5. The driver will handle the interrupt, check if the DMA completion bit is set, 
and possibly prime another DMA transaction if there are more data to send. 

The process of setting up and handling an inbound DMA transfer is the same. The only difference is 
that the device writes to the buffer instead of reading from it. We still need to tell the device the memory 
location where the data is and we still get an interrupt once the transfer is done. For a device like a 
storage device, the driver always initiates I/O, and it will control when to read and when to write data. 
However, devices such as network controllers are slightly different, in that data may arrive on the device 
asynchronously in response to an external event. In this case, the device will raise an interrupt and set a 
flag in its registers so the driver knows that the device has data in its input buffer. The driver will then 
prime a new DMA buffer and start a transfer to empty the device’s input buffer. Once the device has 
completed the transaction, it will raise another interrupt to inform the driver that the transfer has 
completed. 

While DMA is simple from a conceptual point of view, it is complicated by the following factors: 

• Memory caching on the CPU can cause coherency issues because data written by 
the CPU may be held in a cache on the CPU and not be committed to system 
memory straight away. If a DMA transfer is started at this time, the device may 
read the incorrect data, the previous contents of the RAM, or simply garbage. On 
Intel systems, this issue is handled automatically by hardware and does not 
require a driver to intervene. For PowerPC processors, I/O Kit provides the 
IOFlushProcessorCache() function which flush the CPU caches to system memory 
ensure that the device will see the correct memory contents. The function exists 
but does nothing on Intel based systems. 

• On 64-bit platforms (or when PAE is used), some older PCI-based hardware 
devices may be unable to access memory addresses greater than 32-bit. Two 
strategies exist for handling these situations. The poorest, in terms of 
performance, uses a bounce buffer that is located at an address range the device 
can access. Contents of an I/O buffer located at addresses over 32-bit would have 
to be copied to the new buffer before the device can access the data. The second 
approach involves using special hardware circuitry found on modern computers 
that can dynamically remap any memory location into a “virtual” physical address 
that the device can access. 
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• Although, from a user application’s point of view, memory appears to be 
contiguous, user space memory is composed of physical pages that may be 
scattered across RAM. Let’s say an application wants to output a buffer containing 
a large HD video frame to a video device. Because the frame is severely 
fragmented in physical memory, it is not enough to simply tell the device the 
address and size of a single buffer. We need to tell it about all the fragments that 
make up the video frame. So instead of a telling the device a location and size of a 
buffer, we instead provide it with a buffer containing a list of locations for each 
fragment. This buffer is known as a scatter/gather list. We will discuss this concept 
in more detail shortly. 

Most of the complexity from a driver’s point of view exists in setting up and preparing the memory 
buffer for transfer. There are a number of steps to perform. The buffer needs to be pinned down, as a 
page-out operation on the underlying memory could be disastrous, particularly if the transfer is directed 
to a storage device. Since some devices can only access memory situated in a 32-bit physical address 
range, we need to ensure that the physical memory backing our buffer is located in a range the device 
can access, or we have to ensure it will be copied or remapped. We then need to work out the individual 
segments of physical memory that our buffer is backed by and capture each segment’s physical address 
and length to create a scatter/gather list. Things may be complicated further depending on the 
capabilities of the device, if it has special requirements for alignment, or limits on the length of 
individual segments. Figure 9-5 shows a simple scatter/gather list. 

  

Figure 9-5. Simple scatter/gather list 

An actual implementation might be more complex and have additional data associated with each 
descriptor, but we have kept it simple to illustrate the concept. Figure 9-5 shows how a 32K virtual buffer 
is composed of four physical segments of different lengths. The scatter/gather list is an array of DMA 
descriptor elements, each containing a pointer to the next descriptor in the list. Each element has an 
address and length of the physical segment it represents. When a DMA transfer is started, we can simply 
tell the device the location of the first descriptor, and the device will read memory from the first 
descriptor and then follow the next pointer to the next descriptor element until the end of the list, which 
is terminated by a NULL pointer in this case. Some devices may have S/G lists that connect the last 
descriptor to the first creating a circular buffer for continuous (streaming) DMA. 

In Figure 9-5, we are using a data structure, which in computer science and engineering parlance is 
known as a singly linked list. It would perhaps be simpler to just implement the list as a standard array. 
However, the singly linked list approach is more flexible as the S/G list itself can effectively be scatter-
gathered, as each DMA descriptor element doesn’t necessarily need to be adjacent to each other in 
memory either. 
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Translating Physical Addresses to Bus Addresses 
Modern computer systems may take advantage of a special memory management unit (MMU) referred 
to as the IOMMU, or I/O Memory Management Unit. The IOMMU is similar to the system MMU that 
provides virtual to physical memory translation for the CPU, but the IOMMU differs in that it provides 
translation to a hardware device instead. When an IOMMU is involved a hardware device will use 
addresses provided by the IOMMU instead of using physical addresses directly. The term bus address is 
typically used to avoid confusion with physical addresses. Figure 9-6 shows how the IOMMU interacts 
with a system conceptually. 

 

Figure 9-6. IOMMU address translation 

When an IOMMU is not used, a hardware device will use the same physical addresses as the CPU. 
The IOMMU offers many advantages that range from security to performance and solves some of the 
issues discussed earlier, such as DMA transfers to older devices that are limited to 32-bit addressing. The 
IOMMU can remap memory, even if the physical memory is located at high memory addresses, so that 
the device can access the memory. This helps system performance, as the only other solution for this 
problem is to have a “bounce buffer” that we can copy to and perform DMA from, should the original 
buffer be located at an address inaccessible to the device. From a security/stability point of view, the 
IOMMU works like protected/virtual memory does between tasks. PCI devices normally have full access 
to hardware, so if a driver or device is malfunctioning, it is possible for it to corrupt random parts of 
memory. The IOMMU can map up a limited aperture and prevent access to addresses outside that 
window. The IOMMU is traditionally used for virtualization on PC servers as it allows hardware to be 
shared without interference between virtual machine instances and prevents rogue drivers from 
performing DMA transfers to parts of memory belonging to other VM instances, which poses a serious 
security problem. 

Mac OS X will take advantage of the IOMMU where present. An IOMMU would be represented by a 
subclass of the IOMapper class, so you can search for that in IORegistryExplorer to determine if your 
system has one. Fortunately, we never have to deal with the IOMMU directly. Classes like 
IOMemoryDescriptor and IODMACommand (discussed later in this chapter) take care of setting this up 
internally, and we can remain blissfully unaware if the address from functions, such as 
getPhysicalAddress(), is a bus address mapped by the IOMMU or an actual physical address. Though 
there should be few reasons to do so, you can implement your own subclass of IOMapper to handle 
address translation yourself, and supply this to classes such as IODMACommand. IOMMUs were typically 
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only found in high-powered workstations and servers, but are now also found in consumer grade 
platforms such as Intel’s Core i7. 

Preparing Memory for DMA 
Before a DMA transfer can occur, there are a few things that need to be done to prepare the memory for 
transfer. The first is to ensure the memory is paged into resident memory, and that the memory pages 
backing the buffer are locked (pinned) so they will not be paged-out during the DMA transfer. To achieve 
this, you need to create an IOMemoryDescriptor for the buffer. The memory descriptor must be 
constructed with the task the buffer belongs to, kernel_task if the kernel owns the buffer, otherwise the 
task pointer of a user space process. If the direction of transfer is known at this time, you can pass that 
while constructing the descriptor. The direction will be kIODirectionOut, if memory is to be transferred 
to the device, and kIODirectionIn, if memory is to be transferred from the device. There is also 
kIODirectionInOut, which can be used for buffers that need to be used for transfers in either direction. It 
is important to specify the correct direction as it may have implications for cache-coherency as 
discussed above. 

If you need to DMA from a kernel buffer, the recommended way is to use 
IOBufferMemoryDescriptor, which is a subclass of IOMemoryDescriptor that also allocates memory for 
you. 

The prepare() method of IOMemoryDescriptor takes care of paging in memory and pinning it down. 
You can optionally pass the direction of the DMA transfer to prepare() if it wasn’t specified at the time 
the descriptor was initialized. 

■ Caution  Calls to IOMemoryDescriptor::prepare() must be matched with a call to 
IOMemoryDescriptor::complete(). It is a bug to call complete() on a descriptor that was not previously 
prepared or prepared unsuccessfully. 

Building a Scatter/Gather List 
There are several ways of building an S/G list. The most basic way is to use 
IOMemoryDescriptor::getPhysicalSegment() to enumerate the underlying physical segments as shown 
in Listing 9-11. 

Listing 9-11. Retrieving Physical Segments from a Buffer 

IOBufferMemoryDescriptor* fDMABuffer = 
IOBufferMemoryDescriptor::inTaskWithOptions(kernel_task, kIODirectionOut, 1024 * 1024, 4096); 
IOByteCount offset = 0; 
while (offset < fDMABuffer->getLength()) 
{    
    IOByteCount segmentLength = 0; 
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#ifdef __LP64__ 
    addr64_t address = fDMABuffer->getPhysicalSegment(offset, &segmentLength);  
    // In a real driver, we would store the address and length in a S/G list. 
    // We just log it here. 
    IOLog("Physical segment: address 0x%llx segmentLength: %llu\n", address, segmentLength); 
#else 
    addr64_t address = fDMABuffer->getPhysicalSegment(offset, &segmentLength, 
kIOMemoryMapperNone); 
    IOLog("Physical segment: address 0x%llx segmentLength: %lu\n", address, segmentLength); 
#endif 
    offset += segmentLength; 
} 

The output of Listing 9-11 will produce something similar to what is shown here: 

Jun 3 22:28:12 macpro kernel[0]:  Physical segment: address 0x13837000 segmentLength: 4096 
Jun 3 22:28:12 macpro kernel[0]:  Physical segment: address 0x143b6000 segmentLength: 4096 
Jun 3 22:28:12 macpro kernel[0]:  Physical segment: address 0x1c035000 segmentLength: 4096 
… 
… 
Jul 3 22:28:12 macbook kernel[0]: Physical segment: address 0x14172000 segmentLength: 4096 

In the preceding output, there were no contiguous segments so every segment consists of a separate 
page (4096 bytes). However, if we pass the kIOMemoryPhysicallyContiguous flag when we allocate the 
buffer, we get the following: 

Jun 3 22:21:08 macpro kernel[0]:  Physical segment: address 0x5975000 segmentLength: 1048576  

It’s not a good idea to allocate memory contiguously in a driver; for a full discussion why, see the 
section on IOBufferMemoryDescriptor in Chapter 6. We do it here for demonstration purposes. 

The approach in Listing 9-11 may work just fine depending on the capabilities of your device, but 
there are some problems with this technique: 

• Some hardware devices have constraints on the maximum or minimum length of 
a physical segment it can handle in an S/G list. 

• The device may require segments of a certain size, for example, page sized 
segments, so it will match the hardware’s buffer. In this case we may need to break 
larger segments into smaller chunks manually. 

• Many hardware devices work with big-endian addressing. Therefore, we need to 
manually byte swap the physical addresses to ensure that the device actually 
accesses the correct location. 

The IODMACommand Class 
The IODMACommand solves a number of the previously discussed problems associated with DMA. It can 
automatically divide segments to the correct size needed by the hardware, as well as ensure that devices 
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only capable of 32-bit addressing are guaranteed to be in the correct range. This is achieved by using the 
IOMMU to remap addresses if an IOMMU is present, or by employing a workaround if not. It is also 
capable of providing 32-bit or 64-bit physical or bus addresses in little or big-endian format. The 
IODMACommand class supersedes the IOMemoryCursor class, which performs many of the same functions, 
but offers fewer options. 

An instance of the IODMACommand can be constructed with the factory method withSpecification() 
as following. 

static IODMACommand * withSpecification( 
    SegmentFunction outSegFunc,  
    UInt8 numAddressBits,  
    UInt64 maxSegmentSize,  
    MappingOptions mappingOptions = kMapped,  
    UInt64 maxTransferSize = 0,  
    UInt32 alignment = 1,  
    IOMapper *mapper = 0,  
    void *refCon = 0); 

Let’s look at the parameters in more detail. The first parameter is a function pointer to a function 
that is used to output segment information. You can write your own if you are supporting an esoteric 
hardware device, however, for most cases, you can use one of the supplied ones: 

• kIODMACommandOutputHost32 outputs 32-bit addresses in host byte order 

• kIODMACommandOutputBig32 outputs 32-bit addresses in big-endian format 

• kIODMACommandOutputLittle32 outputs 32-bit addresses in little-endian format 

• kIODMACommandOutputHost64 outputs 64-bit addresses in host byte order 

• kIODMACommandOutputBig64 outputs 64-bit addresses in big-endian format 

• kIODMACommandOutputLittle64 outputs 64-bit addresses in little-endian format 

The next parameter, numAddressBits, allows you to specify the maximum number of address bits the 
hardware can address, which is not always 32-bit or 64-bit. It can, for example, be 36-bit or even less 
than 32-bit in some cases. If the value passed is greater than 32-bit, you must specify one of the 64-bit 
output segment functions.  

If physical pages are located at an address higher than what the device can address, some or all 
pages may be copied to temporary pages that meet the address requirements, unless there is an IOMMU 
present. Needless to say extra copying is expensive and can be avoided if you DMA from memory 
allocated by an IOBufferMemoryDescriptor with the inTaskWithPhysicalMask() factory method, as it 
allows you to allocate memory with physical addresses that are in the range specified by a bitmask. This 
method can also be used to allocate memory directly into the address space of a user space task. This is 
useful as DMA to/from user space allocated buffers can be problematic, as there is no way to control 
how the memory is allocated. 

The parameter maxSegmentSize should be set to the largest physical contiguous segment that a 
device can handle as a segment in a scatter/gather list. Zero can be passed if there are no such 
restrictions. 

The mappingOptions parameter allows bypassing of the IOMMU if one is present in the system. The 
default is to use the IOMMU. The mapper parameter allows you to specify an alternate IOMapper instance 
to be used instead of the default. 

www.allitebooks.com

http://www.allitebooks.org


CHAPTER 9  PCI EXPRESS AND THUNDERBOLT 

202 

The maxTransferSize is the total number of bytes that can be transferred per DMA transaction. For 
example, a hard drive may have 1MB cache buffer, so we would not want to transfer more information 
than what it can accept. 

If the hardware has specific alignment requirements, this can be specified with the alignment 
parameter. If the supplied memory is not aligned properly, it may again result in the copying or 
remapping of memory. 

Let’s modify the previous example in Listing 9-11 that used 
IOMemoryDescriptor::getPhysicalSegment() to instead use IODMACommand as shown in Listing 9-12. 

Listing 9-12. Generating a Scatter/Gather List Using IODMACommand 

IOReturn com_osxkernel_MyFirstPCIDriver::prepareDMATransfer() 
{     
    IODMACommand*      dmaCommand; 
    IOReturn                        ret = kIOReturnSuccess; 
     
    dmaCommand = IODMACommand::withSpecification(kIODMACommandOutputHost64, 36, 2048,                  
                 IODMACommand::kMapped, 0, 1); 
    if (!dmaCommand) 
    { 
        return kIOReturnNoMemory; 
    } 
     
    // Will also prepare the memory descriptor. 
    ret = dmaCommand->setMemoryDescriptor(fDMABuffer); 
    if (ret != kIOReturnSuccess) 
        return ret; 
             
    UInt64 offset = 0; 
    while (offset < fDMABuffer->getLength()) 
    { 
        IODMACommand::Segment64 segment; 
        UInt32 numSeg = 1; 
             
        ret = dmaCommand->gen64IOVMSegments(&offset, &segment, &numSeg); 
         
        IOLog("%s::gen64IOVMSegments() addr 0x%qx, len %llu bytes\n", 
              getName(), segment.fIOVMAddr, segment.fLength); 
     
        if (ret != kIOReturnSuccess) 
            break; 
    } 
     
    // 
    // Setup DMA transfer here for real hardware devices. 
    // 
     
    if (dmaCommand->clearMemoryDescriptor() != kIOReturnSuccess) 
    { 
        IOLog("Failed to clear/complete memory descriptor\n"); 
    } 
     



CHAPTER 9  PCI EXPRESS AND THUNDERBOLT 

203 

    dmaCommand->release(); 
    return ret; 
} 

In the previous example, we created an IODMACommand with constraints on the maximum physical 
address bits we want to 36 bits, and the maximum physical segment size to a half page, or 2048 bytes. 
The output of this code gives something as follows: 

kernel[0]: com_osxkernel_MyFirstPCIDriver::gen64IOVMSegments() addr 0x13b9d5000, len 2048 
kernel[0]: com_osxkernel_MyFirstPCIDriver::gen64IOVMSegments() addr 0x13b9d5800, len 2048 
kernel[0]: com_osxkernel_MyFirstPCIDriver::gen64IOVMSegments() addr 0x1335d4000, len 2048 
kernel[0]: com_osxkernel_MyFirstPCIDriver::gen64IOVMSegments() addr 0x1335d4800, len 2048 
kernel[0]: com_osxkernel_MyFirstPCIDriver::gen64IOVMSegments() addr 0x3f913000, len 2048 
kernel[0]: com_osxkernel_MyFirstPCIDriver::gen64IOVMSegments() addr 0x3f913800, len 2048 
kernel[0]: com_osxkernel_MyFirstPCIDriver::gen64IOVMSegments() addr 0x3b1d2000, len 2048 
kernel[0]: com_osxkernel_MyFirstPCIDriver::gen64IOVMSegments() addr 0x3b1d2800, len 2048 
kernel[0]: com_osxkernel_MyFirstPCIDriver::gen64IOVMSegments() addr 0x18b11000, len 2048 
kernel[0]: com_osxkernel_MyFirstPCIDriver::gen64IOVMSegments() addr 0x18b11800, len 2048 
…. 

You will notice first that we have some addresses that are greater than 32-bit, but still below our 36-
bit specification, and that segments are now limited to 2048 bytes, even though the first segment is 
physically contiguous with the second. 

Summary 
In this chapter, we have discussed: 

• A technology overview of the PCI related standards PCI Express, Thunderbolt and 
also the lesser-used ExpressCard standard. 

• The PCI configuration space, which is used by the operating system to enumerate, 
control, and operate PCI–based devices. Later in the chapter, we also discussed 
how accessing these from a driver using I/O Kit provided functionality. 

• PCI support in the I/O Kit with IOPCIFamily. The cornerstone of the kernel PCI 
layer is the IOPCIDevice class, which is used as a provider for PCI-based drivers. 

• Thunderbolt devices are compatible with PCI and also represented by the 
IOPCIDevice class. 

• How to create a matching dictionary for PCI-based devices so that a driver can be 
loaded automatically when the device is plugged in or at boot. 

• How to access and use memory mapped I/O memory and regions. 

• How to handle removal of externally connected devices, notably for Thunderbolt 
and ExpressCard. 

• Interrupt handling in the I/O Kit for primary and secondary interrupts using 
IOInterruptEventFilter and related classes. 
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• Direct Memory Access and how to create scatter/gather lists for transferring large 
non-contiguous chunks of memory. We also discussed common problems related 
to DMA. 

• The IODMACommand is used to help translate memory addresses into bus addresses 
and to help manage the complexity of building scatter/gather lists. 

 



C H A P T E R  10 
 

      
 

205 

Power Management 

Power management has become a fundamental feature across all computing devices. Every platform 
that runs Mac OS X can be put into a lower power mode, and so power management is just as important 
for a desktop computer that is always connected to a power supply as it is for a laptop or an iPhone that 
is running from a battery. 

Even a Mac Pro, for example, can be placed into “sleep” mode, which puts the computer and its 
connected peripherals into a low power mode. During sleep mode, the CPU is put into a suspended 
state, the computer’s display is powered off, and the hard drive is spun down. If the computer has PCI 
expansion slots, these will be powered down during sleep, with only a small amount of auxiliary power 
provided to allow a PCI card to initiate waking the computer from sleep. 

Not all drivers will need to handle power management events. Whether a driver needs to implement 
power management will depend on the capabilities of the device and where the device draws power 
from. For example, if the driver for a PCI device doesn’t support power management, the system must 
maintain full power to its PCI slots when it enters sleep mode because a PCI card is powered from the 
computer’s motherboard. This leaves the computer in a state called “doze”, which is not a complete 
sleep mode. Note that if the power to PCI slots is suspended during sleep, any PCI devices will lose their 
configuration and must be reinitialized by their driver when the system wakes, which can only happen if 
the driver receives power management events. 

As the example of a PCI card’s driver demonstrates, the drivers for hardware devices play a role in 
the system’s transition from one power state to another. Drivers can opt to receive a notification before 
the system goes into the low power sleep mode, at which time the driver can prepare its device for the 
new power state. Similarly, a driver can receive a notification when the system wakes from sleep, at 
which time the driver can restore its device to full operating functionality. 

The I/O Registry Power Plane 
Part of the complexities of power management is that the power state for one device usually cannot be 
looked at in isolation, since a device will typically be dependent on another device through which it 
draws power and, in turn, may have devices that are dependent on it for their power. Consider, for 
example, a PCI peripheral card that implements a USB host and provides USB ports. The card will be 
powered by the PCI bus and will provide power over the USB bus to devices that are connected to its 
ports. This has implications for the power management system; the PCI card can only enter a low power 
state if there are no USB devices connected to it or only if all of the USB devices connected to it are in a 
low power state themselves. Similarly, when the system is put to sleep, the PCI slot will lose power, and 
any USB devices that are connected to the card must be informed of the change in power state as well. 

To model this power dependency, the I/O Kit maintains a tree that represents the power 
dependencies between hardware devices in the system. This tree is stored in its own section of the I/O 
Registry in a plane known as the “power plane.” The power plane can be viewed using the 
IORegistryExplorer utility, as shown in Figure 10-1. 
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Figure 10-1. A view of the power plane in IORegistryExplorer 

Each driver that supports power management is represented as a node in the power plane 
connected to the parent nodes, which represents devices that provide it power, and with children nodes, 
which represent devices that it provides power to. The parent of a device in the power plane is typically 
the driver’s provider class (that is, the same object that the driver is connected to in the service plane of 
the I/O Registry), although this does not need to be the case. 

The tree representation makes it very easy to visualize the power dependencies between devices in 
the system and to see which devices draw their power from a particular hardware device. The tree 
structure also provides an important role for the system itself, since it allows the system to determine 
which devices will be affected when the power state of one device changes.  

Power Management in the I/O Kit 
The system’s power management, including transitions from one power state to another, is handled by 
the I/O Kit. Power management is performed by drivers that run in the kernel; user space drivers that 
can be written for hardware, such as USB devices, cannot play a part in the power management of that 
device. The I/O Kit provides support for power management in the IOService superclass from which all 
Mac OS X drivers are ultimately derived. This makes power management accessible to all drivers, 
providing that the driver has chosen to insert itself into the power plane. 

The IOService also manages synchronization between a parent device and the children devices that 
depend on it for power. For example, before transitioning into a lower power state, the system will 
ensure that all children devices have transitioned to the lower power state before the parent device, on 
which they rely on for power, is sent a request to lower its power state. Similarly, when waking from 
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sleep, the system will ensure that a parent device has become fully powered before sending a request to 
the dependent children devices to raise their power state. 

Transitions from one power state to another are incredibly difficult because it can take some time 
for hardware to change to the new state. This can lead to situations where a power state transition is 
initiated while an existing power state transition is in progress. For example, a hard disk may spin down 
due to inactivity, but then a read request may immediately be made, requiring the disk to spin up again. 
The IOService class handles a lot of the details that would otherwise make power management difficult 
to implement. Each power state transition is serialized by IOService, and a driver will never receive a 
power request until it has finished handling its previous power request. 

The support provided by the IOService class for power management means that a driver is free to 
concentrate only on the power management of its own device; the I/O Kit framework will take care of the 
details that would otherwise make power management difficult to implement. 

Power state changes can be initiated by two sources. The system may request that a device be 
placed into a new power state in response to the computer being put to sleep, or a device (or its driver) 
may initiate a change of its power state. An example of a device initiating a transition to a lower power 
state is the computer display switching itself off when the computer hasn’t been used for a period of 
time or a hard disk spinning down if it hasn’t received a read or write request for some time 

A driver can choose to implement support for either of these two types of power management; it can 
choose to respond to changes to system power, such as a sleep event, or it can volunteer to lower its 
power state itself, such as by spinning down its disk. Both of these cases are handled through the I/O Kit 
and are discussed in this chapter. 

In general, power management is necessary for a device that not only has hardware support for 
being placed into a lower power state but also has the opportunity to be placed into a low power state 
due to the way that it is used. Depending on the type of hardware device that your driver manages, there 
may be little work to support transitions between various power states. 

■ Note  This chapter describes the work that a generic I/O Kit driver needs to take to handle power management 
requests. Certain I/O Kit driver families, such as the audio family, will add their driver to the power plane and 
respond to power management requests on behalf of the driver. Before adding power management support to your 
driver, you should check that your driver’s superclass is not already handling power requests. 

Responding to Power State Changes 
The most basic level of power management support that a driver can implement is to opt-in to receive 
notifications for changes to the overall system power state. These include notifications before the system 
is put to sleep and a notification when the system wakes from sleep. This is particularly important for the 
driver of a PCI device, since these notifications need to be handled to allow the PCI bus to be powered 
down completely during system sleep. 

The I/O Kit’s power model is unique in that the framework doesn’t dictate the set of power states 
that a driver must implement; rather a driver defines its own list of power states that match the 
capabilities of the device that it controls. At the very least, a driver must define two states: one in which 
the device is off, and another in which the device is fully operational. During the off state, the device 
consumes no power (and so draws no power from its parent in the power plane). In this state, the device 
is unusable. During the on state, the device is drawing power and all of its functionality is available to the 
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user. When the system is put to sleep, the device is put into the off state, and when the system is awake, 
the device is put into the on state. 

In addition to the off and on states, a driver can define power states that correspond to states in 
which, for example, the device is still powered but at a lower power state where it is still usable but with 
reduced capabilities. For example, the driver for an LCD monitor could create a power state to describe a 
mode in which the display is still running but the backlight has been dimmed. 

Each power state that a device supports is described by a structure known as IOPMPowerState, which 
is defined in the header file <IOKit/pwr_mgt/IOPMpowerState.h>. The IOPMPowerState structure is defined 
as follows: 

struct IOPMPowerState 
{ 
        unsigned long   version; 
        IOPMPowerFlags  capabilityFlags; 
        IOPMPowerFlags  outputPowerCharacter; 
        IOPMPowerFlags  inputPowerRequirement; 
        unsigned long   staticPower; 
        unsigned long   unbudgetedPower; 
        unsigned long   powerToAttain; 
        unsigned long   timeToAttain; 
        unsigned long   settleUpTime; 
        unsigned long   timeToLower; 
        unsigned long   settleDownTime; 
        unsigned long   powerDomainBudget; 
}; 

The fields of this structure are described as follows: 

• version: Holds the version of this IOPMPowerState structure, allowing the structure 
to be extended in future versions of the I/O Kit while maintaining backwards 
compatibility. As of Mac OS X 10.7, the structure is still at version 1; the header file 
provides a definition kIOPMPowerStateVersion1 that can be used. 

• capabilityFlags: A bitmask of flags that describes the capabilities of the device in 
this power state. Possible flags are: 

• kIOPMPowerOn indicates that the device requires power from its parent and 
is able to provide power to its children. 

• kIOPMDeviceUsable indicates that the device is usable in this state. 

• kIOPMLowPower indicates that the device is running at a reduced power state 
compared to the kIOPMPowerOn state. The device may still be usable in this 
state, which can be indicated by setting both the kIOPMDeviceUsable and 
kIOPMLowPower bits. The device may or may not be able to provide power to 
its children while in the low power state. 

• kIOPMPreventIdleSleep is set to disable the system from going to sleep 
while this power state is active. Note that the user is still able to put the 
system to sleep (such as by selecting “Sleep” from the Apple menu). It only 
stops the system from automatically sleeping after a period of inactivity. 
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• kIOPMInitialDeviceState indicates that the device starts up in this state, 
and therefore the driver doesn’t need to be sent a power request after being 
loaded. Note that the I/O Kit may decide to start the driver in a power state 
that doesn’t have the kIOPMInitialDeviceState flag set, and in this case, the 
driver will receive a power request when it loads. 

• outputPowerCharacter: A flag that describes the power that the device is able to 
provide to devices that depend on it for power while in this state. This can be 
either kIOPMPowerOn, to indicate that the device is able to power its children, or 0, 
to indicate that the device cannot provide power to its children. 

• inputPowerRequirement: A flag that describes the power required by the device 
from its parent while in this state. This can be either kIOPMPowerOn, to indicate that 
the device requires its parent to provide it with power, or 0, to indicate that the 
device does not draw any power from its parent in this state. 

• staticPower: The average power consumption of the device while in this state (in 
milliwatts). Note that if this value is unknown, a driver can provide a value of 0 for 
this field (as is done by many of the Apple drivers in the Darwin repository). 

• unbudgetedPower: The power that this device draws from a separate power supply 
(and not from its parent) while in this state. This value is currently unused in Mac 
OS X, and so a driver can provide a value of 0 for this field. 

• powerToAttain: The power that this device requires to transition into this state 
from the previous lower power state. This value is currently unused in Mac OS X, 
and so a driver can provide a value of 0 for this field. 

• timeToAttain: The time required to transition the hardware into this state from the 
previous lower power state (in microseconds). If this value is unknown, a driver 
can provide a value of 0 for this field. 

• settleUpTime: The time required for the power to settle after entering this state 
from the previous lower power state (in microseconds). If this value is unknown, a 
driver can provide a value of 0 for this field. 

• timeToLower: The time required to transition the hardware from this state into the 
next lower power state (in microseconds). If this value is unknown, a driver can 
provide a value of 0 for this field. 

• settleDownTime: The time required for the power to settle after leaving this state 
and entering the next lower power state (in microseconds). If this value is 
unknown, a driver can provide a value of 0 for this field. 

• powerDomainBudget: The amount of power that the device is able to provide to its 
children while in this state. This value is currently unused in Mac OS X, and so a 
driver can provide a value of 0 for this field. 

Each power state that a device supports is described by an IOPMPowerState structure. The device’s 
driver creates an array of IOPMPowerState structures, each one of which corresponds to a device power 
state. Every driver that supports power management must contain a power state that corresponds to the 
off state (in which the device uses no power) and a power state that corresponds to the device’s fully on 
state (in which the device is fully operational). The off state must be the first element in the driver’s 
power state array, and the on state must be the final element in the driver’s power state array. The driver 
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can define as many power states as it needs to describe the distinct power states provided by its 
hardware device, with the only requirement being that the power state array must be sorted, starting 
with the off state, through the (optional) intermediate power states that require more power and are 
more functional, to the final state in which the device is running at its full power and is completely 
operational. 

Because the I/O Kit provides support for power management within the IOService class from which 
every driver is ultimately derived, all drivers have the ability to take part in the power management of the 
system. To demonstrate this, we will add power management notifications to the simple IOKitTest 
sample that was developed in Chapter 4 (see Listing 4-2 and Listing 4-3). 

To begin with, we need to define the power states that the device supports. This is typically done 
with a global array of IOPMPowerState structures that is defined at the top of the driver’s implementation 
file. The example in Listing 10-1 shows a very basic set of power states that provide an off state and an on 
state.  

Listing 10-1. Defining a Set of Power States for a Driver 

enum { 
     kOffPowerState, 
     kOnPowerState, 
     // 
     kNumPowerStates 
}; 
 
static IOPMPowerState gPowerStates[kNumPowerStates] = { 
     // kOffPowerState 
     {kIOPMPowerStateVersion1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 
     // kOnPowerState 
     {kIOPMPowerStateVersion1, (kIOPMPowerOn | kIOPMDeviceUsable), 
                                kIOPMPowerOn, kIOPMPowerOn, 0, 0, 0, 0, 0, 0, 0, 0} 
}; 

When the I/O Kit makes a request to change to a new power state, the requested state will be 
identified by the index of that state in the gPowerStates array. Rather than referring to a power state by 
its index, we define an enumeration that allows us to give each power state a symbolic constant, which 
makes the driver code easier to read and maintain. 

Having defined a set of power states, the IOService class, which provides the power management 
API, needs to be informed that our driver wishes to receive notifications when the system’s power state 
changes. This is done in the driver’s start() method, as shown in Listing 10-2. 

Listing 10-2. Registering a Driver for Power Management Support 

bool com_osxkernel_driver_IOKitTest::start (IOService *provider) 
{ 
        if (super::start(provider) == false) 
                return false; 
         
        // Register driver for power management 
        PMinit(); 
        provider->joinPMtree(this); 
        registerPowerDriver(this, gPowerStates, kNumPowerStates); 
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        return true; 
} 

The call to the PMinit() method initializes instance variables in the IOService superclass that are 
needed only for a driver that implements power management. To receive power management 
notifications, the driver needs to be part of the power plane. This is done by the joinPMtree() method, 
which is called on the driver object from which our device obtains its power (in this case, our provider 
class) and takes as its argument the child driver (our instance). Finally, we call the 
registerPowerDriver() method to provide the I/O Kit with the array of power states that our driver 
supports. 

A driver that registers for power management must make sure that it removes itself from the power 
plane before it is unloaded. If this is not done, the I/O Kit will attempt to send power notifications to 
your driver, even though it is no longer active, which could potentially result in a kernel panic. A driver 
removes itself from the power plane by calling PMStop(), which is shown in Listing 10-3. 

Listing 10-3. Removing a Driver from the Power Management System 

void com_osxkernel_driver_IOKitTest::stop (IOService *provider) 
{ 
        PMstop(); 
        super::stop(provider); 
}  

Having inserted the driver into the power plane and registered it for power management events, the 
driver will receive power requests from the I/O Kit in response to changes in the system. When the 
system’s power state changes, for example when the computer is put into a sleep state or wakes from 
sleep, the I/O Kit will choose one of the power states that the driver registered and request that the driver 
transition into that new state. These power requests are made to the driver through its setPowerState() 
method, which is a virtual method defined in the IOService base class. To receive these requests, a driver 
simply needs to provide its own implementation of setPowerState() in which to handle the change. A 
sample implementation is shown in Listing 10-4. 

Listing 10-4. Responding to a Request to Change the Device’s Power State 

IOReturn com_osxkernel_driver_IOKitTest::setPowerState (unsigned long powerStateOrdinal, 
IOService* device) 
{ 
        switch (powerStateOrdinal) 
        { 
                case kOffPowerState: 
                      // Save device configuration (if necessary) and prepare our hardware for 
                      // sleep 
                      // ... 
                      break; 
                case kOnPowerState: 
                      // Bring our hardware out of sleep and initialize it with the saved 
                      // configuration 
                      // ... 
                      break; 
        } 
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        return kIOPMAckImplied; 
} 

The parameter named powerStateOrdinal describes the power state that the driver should place its 
device into. The parameter is expressed as an index into the array of power states that the driver passed 
to the registerPowerDriver() method during its initialization. In the case of our sample driver, we 
registered two power states that we handle in a switch statement. 

The I/O Kit serializes calls to setPowerState(), so a driver can be sure that it will not receive a 
request to change power states while it is in the middle of handling an earlier power state transition. 
However, this does not guarantee that the driver won’t receive a request to change power states while it 
is handling other operations that do not relate to power management. For example, a driver may be 
performing an asynchronous read operation when a power request is made to transition a driver to the 
sleep state. In this case, the driver must wait until the read operation has completed before powering 
down the hardware. This can be achieved by using the standard synchronization primitives that are 
provided by the I/O Kit. Most I/O Kit drivers will use the combination of a command gate and a work 
loop to provide synchronization, and so a driver could obtain the command gate in its setPowerState() 
method to ensure that power events are synchronized with the rest of the driver’s code. 

As of Mac OS X 10.5, the setPowerState() method is called on its own thread, and so a driver is able 
to perform actions in its implementation that may block or may otherwise take some time to complete. 
When the driver has successfully placed the hardware into the new power state, it should return with the 
result code kIOPMAckImplied. 

If your driver will support versions of Mac OS X prior to Mac OS X 10.5, you should not perform 
blocking operations inside the setPowerState() method, but rather your driver should perform the tasks 
necessary to place the hardware into the new power state on a background thread. Instead of returning 
kIOPMAckImplied from the setPowerState() method, your driver should return a non-zero value that 
indicates the maximum time that your driver requires to place the hardware into the new power state 
(measured in microseconds). When your background thread has completed switching the hardware to 
the new device, it signals completion by calling acknowledgeSetPowerState(). Thankfully, none of this 
code is necessary if you are targeting Mac OS X 10.5 and later. 

Requesting Power State Changes 
So far we have looked at how a driver responds to requests from the system to change its power state in 
response to events such as the system being put into the sleep state. However, there are times when a 
driver may wish to initiate a change in the power state of its device independent of the overall power 
state of the system. For example, an LCD monitor may dim its backlight after a few minutes of inactivity, 
or a disk may spin down if it hasn’t been accessed for some time.  

A driver should use the I/O Kit’s power management API even for power state changes that affect 
only the device that it is controlling. Doing so will not only ensure that any change of power state that is 
initiated by the driver is synchronized with power state changes requested by the system but it also 
allows your driver to take advantage of support provided by the I/O Kit for such tasks as installing a 
timer to monitor the device’s activity and request a transition to a lower power state if the device is not 
accessed for a period of time. Lastly, if there are devices that rely on your hardware for their power, you 
will need to use the I/O Kit methods to transition your hardware’s power so that any children devices are 
informed of possible changes to their input power. 

There are three methods that can be called to change the current power state of a device: 

• changePowerStateTo(powerStateOrdinal): Requests a change to the power state at 
the specified index in the registered power state array. 
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• changePowerStateToPriv(powerStateOrdinal): Performs a similar function to the 
previous method, with the difference that this is a protected method in the 
IOService class, and so cannot be called by objects other than the driver itself. 

• makeUsable(): Requests a power change to the highest power state supported by 
the driver. This method is typically called by another client of this driver (such as 
the driver’s user client) to ensure that the device is fully functional before it makes 
further use of the device. 

These three methods are implemented by the IOService class, and there is typically no need for a 
driver to override any of these methods. Internally, the implementation of the makeUsable() method 
calls through to the same code path as changePowerStateToPriv(), which means that each driver has two 
power states associated with it: the value requested through changePowerStateTo() and the value 
requested through changePowerStateToPriv()/makeUsable(). 

The power state that the I/O Kit ultimately switches the device to is the maximum of the value 
requested by changePowerStateTo(), the value requested by changePowerStateToPriv(), and the 
maximum state that satisfies the requirements of any children that are dependent on the device for 
power. If the device has any children in the power plane that require power, then the parent device 
cannot be placed in a power state that has an outputPowerCharacter property that is not kIOPMPowerOn. 

You may be wondering why the I/O Kit provides two nearly identical methods for setting a device’s 
power state. The private method changePowerStateToPriv() allows a driver to set a minimum power 
level that cannot be affected by any clients of the driver, which only have the ability to call the public 
changePowerStateTo() method. A client may raise the power state above the level set by 
changePowerStateToPriv(), but the driver will never be placed into a power state lower than the value set 
by changePowerStateToPriv(). The one exception to this behavior is when the system is placed into the 
sleep state, at which time the device will be put into the lowest power state, overriding the power state 
that has been set through changePowerStateToPriv(). When the system wakes from sleep, it returns to 
the power state that was previously active. 

By convention, a driver should set its power state through the protected method 
changePowerStateToPriv(). To remove any influence from the public power level, a driver should place a 
call to the public method changePowerStateTo(0) in its start() method after registering the driver for 
power management. Setting the public power state to 0 allows the power state that is requested by 
changePowerStateToPriv() to be applied without alteration (providing that the power requirements of 
any children devices can be satisfied). 

Because the power state for the device is derived from three possible values, it is recalculated 
whenever the power state of one of its power children changes or a call it made to either the 
changePowerStateTo() or changePowerStateToPriv() method is called. If the calculated power state 
differs from the current power state of the driver, the I/O Kit will send the driver a request to change its 
power state. The driver will receive this request as described in the previous section of this chapter, 
“Responding to Power State Changes”, and should respond to the request in the way previously 
described. 

The methods changePowerStateTo(), changePowerStateToPriv(), and makeUsable() are all 
asynchronous, and may return to the caller before the device has transitioned to its new power state. 
The implication of this is that a driver that wishes to change its own power state (using, for example, the 
changePowerStateToPriv() method) should wait until its setPowerState() method is called before 
reprogramming its hardware to the new power state. A client that wishes to change the power state of 
another driver by calling a public method (such as changePowerStateTo() or makeUsable()) cannot 
assume that the device is running in the new power state when the method returns. Instead, it should 
register to receive notifications when the device’s state changes. This is discussed in the section 
“Observing Device Power State Changes” later in this chapter. 
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Handling Device Idle 
A common reason for a driver to lower the power state of its device is to reduce its power consumption 
when the device hasn’t been accessed for a certain period of time. This involves creating a timer for the 
idle period of the device. If the timer expires and the device hasn’t been accessed during that period, the 
driver places the device into a lower power state. After the device has been placed into a lower power 
state, the next time that the driver needs to access the device, it will need to place the hardware back in a 
usable state. Because these operations are common for all drivers that perform an idle power saving 
mode, this functionality is built into the I/O Kit and provided to driver developers through the IOService 
class. 

There are two basic methods that a driver needs to call to let the I/O Kit track when its device has 
been idle and lower its power state. 

• setIdleTimerPeriod(period): Installs a timer that expires after the specified 
number of seconds has elapsed. 

• activityTickle(type, powerState): Is called by the driver before every access of 
the device, which informs the I/O Kit of the time at which the hardware was last 
accessed. 

The method setIdleTimerPeriod() is typically called once, following the initialization of power 
management in the driver’s start() method. Once called, the I/O Kit creates a timer that runs at the 
specified timeout period (in seconds). If the device hasn’t been accessed during this period, the I/O Kit 
will lower the power state of the driver to the state below the driver’s current power level. If the device 
remains inactive for the next idle period, the driver’s power state is lowered again. In both cases, the 
driver receives a request to lower its power state through the same method, setPowerState(), that is used 
to deliver all power request changes, as described in the section “Responding to Power State Changes” 
earlier in this chapter. This continues until the device has been placed into the off state (power state 0). 

When the device’s power state is lowered as a result of inactivity, the I/O Kit sets the power state 
using the method changePowerStateToPriv(). Just as if the driver had called changePowerStateToPriv() 
itself, the new power state for the device cannot drop below the value set by the public method 
changePowerStateTo() or the power state required by the device’s children. This means that the public 
power level that is set through changePowerStateTo() determines the minimum power state that the 
device can be placed in when idle. Typically, a driver that uses an idle timer will make a call to 
changePowerStateTo(0) in its start() method, thereby allowing the idle timer to take the device all the 
way down to the off state. 

The idle timer requires the driver to inform the I/O Kit of every access to the hardware device, 
otherwise the idle timer will fire and lower the power state of the device while it is in use. To do this, the 
driver makes a call to the activityTickle() method when the device is used, typically at the start of each 
operation. The signature of the activityTickle() method is provided as follows: 

bool    activityTickle(unsigned long type, unsigned long stateNumber); 

The activityTickle() method takes two parameters, a type and a power state ordinal, that the 
caller uses to specify the minimum power level that the device must be in to handle the upcoming 
operation. The I/O Kit provides two pre-defined values for the type parameter in the header file 
<IOKit/pwr_mgt/IOPM.h>: 

• kIOPMSubclassPolicy 

• kIOPMSuperclassPolicy1 
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The type parameter defines which implementation should handle the activityTickle() request, 
either the driver itself (in which case kIOPMSubclassPolicy is passed) or the IOService superclass (in 
which case kIOPMSuperclassPolicy1 is passed). If the driver wishes to provide a custom implementation 
of activityTickle(), as well as passing kIOPMSubclassPolicy as the type parameter for each call to 
activityTickle(), it also needs to override the implementation of the activityTickle() method. 

Most drivers, however, will be able to use the default implementation of activityTickle() provided 
by the IOService superclass. It’s important that a driver that wishes to use the default implementation 
passes a value of kIOPMSuperclassPolicy1 for the type parameter of each call to activityTickle(), since 
the IOService implementation will ignore a request that has any other value passed as the type 
parameter. 

The default implementation of activityTickle() will raise the power level of the device to the 
power state specified by the stateNumber parameter. Internally, the IOService class raises the device’s 
power state by calling the changePowerStateToPriv() method, which the driver will receive through a call 
to its setPowerState() method. The Boolean value returned from the method indicates whether the 
device was already in the requested power state; a return value of true indicates that no power state 
transition was necessary, whereas a return value of false indicates that the power state of the device 
needed to be raised. 

Since the activityTickle() method is asynchronous, it is important that the caller wait until the 
driver has completed the transition to the power state, and should not assume that the device is in a 
usable state when the activityTickle() method returns. The means by which a driver can observe 
power changes in a driver, including power changes in other driver objects, is explained in the next 
section. 

Observing Device Power State Changes 
The I/O Kit allows a driver to observe the power state of any device in the system and to receive 
notifications when the device’s driver changes its power state. This can be used, for example, by a driver 
that is not part of the power plane but needs to interface with drivers that are power managed. 
Alternatively, these notifications allow a driver that initiates a change to its own power state through a 
method such as changePowerStateToPriv() or activityTickle() to determine when the power change 
has completed. 

To receive notifications when another driver’s power state changes, your driver must register for 
interest in that driver’s power state. The IOService superclass provides two methods for doing this: 

• registerInterestedDriver(IOService* driver) 

• deRegisterInterestedDriver(IOService* driver) 

Both of these methods are called on the driver object whose power state you are interested in 
observing. The parameter to the method is the driver that will receive the notifications, and so you will 
typically pass the “this” pointer. A driver can call either of these methods at any time to start and stop 
receiving notifications for changes to the power state of another driver. It is important that a driver 
deregister any notifications that are installed before it unloads; failure to do so could lead to a kernel 
panic. 

When a driver has registered interest in another driver’s power state changes, it will receive a 
notification before the device begins its transition to the new power state and another notification once 
the device has completed the transition to the new power state. These two notifications are delivered 
through the two methods described as follows: 

• IOReturn       powerStateWillChangeTo(IOPMPowerFlags capabilities, 

                     unsigned long stateNumber, IOService* whatDevice) 
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• IOReturn       powerStateDidChangeTo(IOPMPowerFlags capabilities, 

                     unsigned long stateNumber, IOService* whatDevice) 

These two notification methods are virtual methods that are implemented by the driver that wishes 
to receive the notifications. The notification powerStateWillChangeTo() is delivered before the observed 
driver’s setPowerState() method is called. The notification powerStateDidChangeTo() is delivered after 
the observed driver’s setPowerState() method is called. Both methods are passed an identical set of 
arguments. The capabilities argument is the value of the capabilityFlags bitmask from the 
IOPMPowerState that the observed driver is transitioning to. The stateNumber argument is the index of the 
power state that the observed driver is transitioning to. The whatDevice argument is the driver object 
whose power state is being changed. 

After handling either notification, the driver should return a value of IOPMAckImplied. If your driver 
wishes to handle the notification asynchronously, it can return a non-zero value from the notification 
method that indicates the maximum amount of time (in microseconds) that the driver requires to 
complete the request. The driver can then continue processing the notification on a background thread; 
once the driver has completed the notification, it should call the method acknowledgePowerChange() to 
inform the I/O Kit that the notification has been handled. The method acknowledgePowerChange() can be 
called to acknowledge both the willChange and didChange notifications. 

A driver that handles power management will automatically register for interest in itself, and so the 
two notification methods will be called for a driver that is responding to a change in its power state. Most 
drivers, however, will have no need to implement these two notification methods unless the driver is 
observing the state of another device, since a driver’s own power changes should be handled within the 
setPowerState() method. Instead, for this purpose, the I/O Kit provides another notification method 
that is sent to a driver when its own power state has been changed and all of its children drivers have 
acknowledged the power change. To receive this notification method, a driver should implement the 
following virtual method: 

void    powerChangeDone (unsigned long previousStateNumber); 

The method is sent once the driver has handled the power state change (through the 
setPowerState() method) and all drivers that have registered an interest for the device’s power state 
have been notified of the power change. The powerChangeDone() method provides a convenient way for a 
driver to determine when a power state change that it initiated has been completed and the device has 
become usable. It is important to note the parameter that is passed to the powerChangeDone() method is 
the power level that the device changed from and not the new power state of the device. To determine 
the power state that the device is currently in, the I/O Kit provides an accessor method named 
getPowerState(), as described as follows: 

UInt32  getPowerState(void); 

Putting It All Together 
In this section, we combine what we have covered in this chapter into a single sample that demonstrates 
one way of structuring a driver that not only responds to power state changes from the system, but also 
lowers its own power state when the device has been idle for 5 minutes. 

For demonstration purposes, the sample driver defines four power states consisting of the 
mandatory off and on states, as well as two lower power modes. The off and on state will be set by the 
power management system when the computer is put to sleep and woken from sleep. The two 
intermediate states are reached when the device has been left idle for a period; the driver sets up an idle 
timer in its start() method to lower the device’s power state after a period of inactivity. 
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This sample also demonstrates one approach to synchronizing changes in the device’s power state 
against hardware accesses that the driver makes while performing a requested operation. The driver 
includes a sample operation called myReadDataFromDevice(), which calls activityTickle() to ensure that 
the hardware is in a usable power state before attempting to perform the operation. However, since 
power state changes are asynchronous, the driver needs to wait until the device has fully transitioned to 
the new power state. The sample driver does this by sleeping on a condition variable that is signaled 
from the powerChangeDone() method. 

Another synchronization problem that this driver needs to handle is that the device cannot be 
placed into a sleep state if the driver is handling outstanding operations. The sample driver uses an 
instance variable named m_outstandingIO to keep count of the number of outstanding operations that 
the driver is processing. If a request is made to lower the power state of the device, the setPowerState() 
method will wait until all outstanding operations have been completed before it removes the power to 
the hardware. While waiting for operations to complete, the driver needs to make sure that no further 
operations are started; this is done by setting the instance variable m_devicePowerState to a lower power 
state at the start of the setPowerState() method. This means that the m_devicePowerState instance 
variable will be in the reduced power state while we are waiting for operations to complete but, more 
importantly, it also means that a new operation, such as myReadDataFromDevice(), will sleep and wait for 
the device’s power to transition to the on state. 

The implementation of this sample driver is given in Listing 10-5 and Listing 10-6. 

Listing 10-5. A Driver That Can Both Respond to Power State Changes and Can Control its Own Power 

State (header file) 

 

#include <IOKit/IOService.h> 

 

class com_osxkernel_driver_IOKitTest : public IOService 

{ 

       OSDeclareDefaultStructors(com_osxkernel_driver_IOKitTest) 

        

private: 

       IOLock*          m_lock; 

       unsigned long    m_devicePowerState; 

       SInt32           m_outstandingIO; 

        

protected: 

       virtual void             powerChangeDone (unsigned long stateNumber); 

        

public:   

       virtual void             free (void); 

       virtual bool             start (IOService* provider); 

       virtual void             stop (IOService* provider); 
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       virtual IOReturn setPowerState (unsigned long powerStateOrdinal, IOService* device); 

       

       IOReturn          myReadDataFromDevice (); 

}; 

 

Listing 10-6. A Driver That Can Both Respond to Power State Changes and Can Control its Own Power 

State (implementation file) 

#include "IOKitTest.h" 
#include <IOKit/IOLib.h> 
 
// Define the superclass 
#define super IOService 
 
OSDefineMetaClassAndStructors(com_osxkernel_driver_IOKitTest, IOService) 
 
// Define our power states 
enum { 
     kOffPowerState, 
     kStandbyPowerState, 
     kIdlePowerState, 
     kOnPowerState, 
     // 
     kNumPowerStates 
}; 
 
static IOPMPowerState gPowerStates[kNumPowerStates] = { 
     // kOffPowerState 
     {kIOPMPowerStateVersion1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 
     // kStandbyPowerState 
     {kIOPMPowerStateVersion1, kIOPMPowerOn, kIOPMPowerOn, kIOPMPowerOn, 0, 0, 0, 0, 0, 0, 0, 
0}, 
     // kIdlePowerState 
     {kIOPMPowerStateVersion1, kIOPMPowerOn, kIOPMPowerOn, kIOPMPowerOn, 0, 0, 0, 0, 0, 0, 0, 
0}, 
     // kOnPowerState 
     {kIOPMPowerStateVersion1, kIOPMPowerOn | kIOPMDeviceUsable, 
                                kIOPMPowerOn, kIOPMPowerOn, 0, 0, 0, 0, 0, 0, 0, 0} 
}; 
 
 
bool com_osxkernel_driver_IOKitTest::start (IOService *provider) 
{ 
     if (super::start(provider) == false) 
        return false; 
      
     // Create a lock for driver/power management synchronization 
     m_lock = IOLockAlloc(); 
     if (m_lock == NULL) 

3
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        return false; 
      
     // Register driver for power management 
     PMinit(); 
     provider->joinPMtree(this); 
     makeUsable();                      // Set the private power state to the highest level 
     changePowerStateTo(kOffPowerState);// Set the public power state to the lowest level 
     registerPowerDriver(this, gPowerStates, kNumPowerStates); 
      
     // Lower the device power level after 5 minutes of activity (expressed in seconds) 
     setIdleTimerPeriod(5*60); 
      
     return true; 
} 
 
void com_osxkernel_driver_IOKitTest::stop (IOService *provider) 
{ 
     PMstop(); 
     super::stop(provider); 
} 
 
void com_osxkernel_driver_IOKitTest::free (void) 
{ 
     if (m_lock) 
        IOLockFree(m_lock); 
     super::free(); 
} 
 
 
IOReturn com_osxkernel_driver_IOKitTest::setPowerState (unsigned long powerStateOrdinal, 
                                                        IOService* device) 
{ 
     // If lowering the power state, update the saved power state before powering down the 
     // hardware 
     if (powerStateOrdinal < m_devicePowerState) 
        m_devicePowerState = powerStateOrdinal; 
      
     switch (powerStateOrdinal) 
     { 
        case kOffPowerState: 
        case kStandbyPowerState: 
        case kIdlePowerState: 
                // Wait for outstanding IO to complete before putting device into a lower  
                // power state 
                IOLockLock(m_lock); 
                        while (m_outstandingIO != 0) 
                        { 
                                IOLockSleep(m_lock, &m_outstandingIO, THREAD_UNINT); 
                         } 
                IOLockUnlock(m_lock); 
                 
                // Prepare our hardware for sleep 
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                // ... 
                break; 
     } 
      
     // If raising the power state, update the saved power state after reinitializing the  
     // hardware 
     if (powerStateOrdinal > m_devicePowerState) 
        m_devicePowerState = powerStateOrdinal; 
      
     return kIOPMAckImplied; 
} 
 
void com_osxkernel_driver_IOKitTest::powerChangeDone (unsigned long stateNumber) 
{ 
     // Wake any threads that are waiting for a power state change 
     IOLockWakeup(m_lock, &m_devicePowerState, false); 
} 
 
 
// *** Sample Device Operation *** // 
IOReturn com_osxkernel_driver_IOKitTest::myReadDataFromDevice () 
{ 
     // Ensure the device is in the on power state 
     IOLockLock(m_lock); 
        if (activityTickle(kIOPMSuperclassPolicy1, kOnPowerState) == false) 
        { 
                // Wait until the device transitions to the on state 
                while (m_devicePowerState != kOnPowerState) 
                { 
                        IOLockSleep(m_lock, &m_devicePowerState, THREAD_UNINT); 
                } 
         } 
         
        // Increment the number of outstanding operations 
        m_outstandingIO += 1; 
     IOLockUnlock(m_lock); 
      
     // Perform device read ... 
      
     // When the operation is complete, decrement the number of outstanding operations 
     IOLockLock(m_lock); 
        m_outstandingIO -= 1; 
        // Wake any threads that are waiting for a change in the number of outstanding  
        // operations 
        IOLockWakeup(m_lock, &m_outstandingIO, false); 
     IOLockUnlock(m_lock); 
      
     return kIOReturnSuccess; 
} 

In an actual driver, the method named myReadDataFromDevice() would be called in response to an 
action taken by the user that requires the hardware device to be accessed. As such, the method can be 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 10  POWER MANAGEMENT 

221 

called irregularly and may be called at any time. Although we don’t call the method 
myReadDataFromDevice() in the example in Listing 10-6, the code could be extended to add a user client 
to the driver, allowing a user space process to call the method myReadDataFromDevice(). 

Summary 
• Every computer that runs Mac OS X has the ability to be placed in a low power 

mode known as “sleep”. While in sleep mode, most hardware components are 
either powered down completely or are provided with only a reduced current. 

• A device driver can register and respond to requests from the power management 
system to prepare its hardware for a loss of power before sleep and to restore the 
state of its hardware when the system is woken from sleep. 

• The I/O Kit’s power management API is implemented by the IOService base class. 
This makes it possible for every driver to provide support for power management. 

• A driver may opt to lower the power state of its device independently of whether 
the computer is in the sleep mode. This can be useful for reducing the power 
consumption of the device when it has not been used for a period of time. 

• A driver can observe the power state of any hardware device in the system. This 
can be used by a driver to receive a notification before a device changes its power 
state and a notification after the device has transitioned to its new power state. 
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Serial Port Drivers 

A serial port provides a basic communications interface for the purpose of getting low bandwidth data 
into and out of a computer. Although modern interfaces such as USB and FireWire have replaced many 
applications in which the traditional serial port was once used, the serial port driver is still well 
supported in modern day operating systems, including Mac OS X, despite the fact that Apple has not 
released hardware with a built-in serial port for over a decade. 

There are several reasons for the longevity of the serial port. First, a serial port is simple and 
inexpensive to implement in hardware, making it a popular choice for hobbyists who are adding 
computer communications to their electronic projects. Second, it is a very flexible interface. The serial 
driver is concerned only with transferring data bytes between the serial port and the user space 
application. The driver plays no role in interpreting the data stream; it simply deals with the 
transmission of the data. 

This leaves the user space application to implement the protocol of the connected device, which 
means that much of the work that would usually be done by a driver is instead left to the user space 
application. This means that a hardware vendor doesn’t have to provide a driver for their device; they 
can simply publish the protocol describing the format of the data that they transmit over their serial 
port, and leave the implementation of the protocol for others. Devices that use serial ports include GPS 
receivers and barcode scanners. They are also commonly used to provide debugging output on 
hardware. 

Serial ports are no longer found on Macintosh computers; they have been replaced by USB and 
FireWire ports. Serial devices, such as GPS receivers and barcode scanners, attach to a computer by USB, 
but they appear to the system as a USB-based serial port that a user space application can connect to. If 
you are interacting with a device that communicates over a serial port, in nearly all cases your 
application will be able to use an existing serial port driver. There are very few cases where you will need 
to implement your own serial port driver; even projects that use a USB-based serial port will use 
standard drivers to provide the serial port interface. 

This chapter describes how a serial port driver is implemented within the I/O Kit, and how to read 
and write from a serial port in a user space application. The implementation of a serial port driver can be 
seen as a practical example of driver techniques, including implementing blocking calls, circular buffers, 
and synchronization and notification. Therefore, even if a serial port driver is not directly relevant to 
you, the concepts that we will cover can be applied to other drivers. 

Mac OS X Serial Port Architecture Overview 
On Mac OS X, serial ports have an interesting architecture. In the kernel, a serial driver is implemented 
using the object-oriented I/O Kit framework, but in user space it is accessed through the BSD layer, and 
the serial port is presented as a traditional UNIX device file. For each serial driver that is loaded in the 
kernel, the I/O Kit’s serial family creates a corresponding device object in the /dev directory of the file 
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system. To interact with a serial port, applications open the device file and read and write to it as if it 
were an ordinary file. This is an alternative to communicating with a driver through a user client; in fact, 
serial drivers don’t have a user client. The advantage of this architecture is that it allows traditional UNIX 
applications that have been written using the POSIX APIs to access a serial port on Mac OS X without any 
changes to their code. 

Although serial port drivers are not accessed through the I/O Kit framework from user space, they 
are still implemented in the kernel as a full I/O Kit driver. This means that a serial driver can take 
advantage of all of the features that the I/O Kit brings, including object-oriented design and dynamic 
driver loading and matching. The I/O Kit includes a family that is specific to serial devices, known as the 
IOSerialFamily. The IOSerialFamily, which is available through the Darwin open source project, contains 
the header files for the base classes that a serial port driver is derived from, as well as the 
implementation of the serial port subsystem of Mac OS X. 

Figure 11-1 shows the various entities that are involved in handling communications over a serial 
port on Mac OS X. For this example, we have assumed that the serial port is implemented by a USB 
device (such as a USB to RS-232 adapter), which is why the leftmost provider object in the diagram is an 
IOUSBDevice. 

 

Figure 11-1. The objects involved in communicating with a serial port from a user space application 

Starting in user space, an application connects to a serial port driver by opening a character device 
file from the /dev directory that corresponds to the serial port driver. Each serial driver has two entries in 
the /dev directory, one whose name begins with the prefix “tty.” and another whose name begins with 
the prefix “cu.”. The reason for this is largely historical and comes from a time when the serial port was 
the means by which a modem or a fax was connected to a computer. In this situation, the “tty” device 
was the dial-in device that was used to receive a call, and the “cu” was the callout device that was used to 
make a call. 

A process that wished to receive a call would open the dial-in device; the open function would block 
until the carrier detect line was signaled, meaning that the modem had established a connection. 
However, to make an outgoing call, a process needed to be able to open the serial port without waiting 
for the carrier detect line, so it would open the callout device, which doesn’t block on the carrier detect 
signal. When communicating with modern serial devices, given that most devices will not be connected 
to a phone line, Apple recommends opening the callout device. 

The two device files in /dev are created by an I/O Kit class known as IOSerialBSDClient. This is a 
class that is provided by the IOSerialFamily and handles the kernel-side of operations that are made by a 
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user space process on the device file. The IOSerialBSDClient handles any system call made by a user 
space process to operate on a serial port, including any of the following the functions: open(), close(), 
read(), write(), ioctl(), and select(). In this way, the IOSerialBSDClient can be thought of as playing 
the role of the user client for a serial driver (although it isn’t derived from the IOUserClient class). Like a 
user client, the IOSerialBSDClient class is simply a conduit between a user space process and the kernel 
driver object. The class is responsible for handling the differences between blocking and non-blocking 
calls, but its main role is to translate function calls received from user space into method calls to the 
IOSerialStreamSync object. 

The IOSerialStreamSync class is another class that is provided by the I/O Kit in the IOSerialFamily 
package. Its role is nothing more than a conduit between the IOSerialBSDClient and the 
implementation of the actual serial driver. In fact, for each method of the IOSerialStreamSync class, it 
calls a method of the same name in the IOSerialDriverSync class. 

The IOSerialDriverSync class is a pure abstract interface that provides the base class for any serial 
driver on Mac OS X. It provides methods for reading and writing data, and for reporting changes in the 
state of the serial port, such as whether a carrier signal has been detected, the arrival of data on the serial 
port for reading, and whether the serial port can accept more bytes for transmission. 

Finally, the last object that is involved in the serial driver stack is the provider class of the serial 
driver. In this example, we are assuming that the serial port is implemented by a USB-to-serial adapter, 
which is why the provider class has the type IOUSBDevice. Whenever the serial port driver needs to read 
data from the serial port or write data over the serial port, it will access the underlying hardware device 
through the IOUSBDevice instance. 

The role of each class that plays a part in implementing a serial port driver is as follows:  

• The serial port driver’s provider class, IOUSBDevice in our example, performs the 
data transfer into and out of the computer to the serial port adapter. 

• The main driver, which is a subclass of IOSerialDriverSync, manages the serial 
port’s receive and transmit buffers, reading data from the hardware as it arrives, 
and writing data to the hardware when it is provided by user space.  

• The IOSerialBSDClient manages interaction with user space applications. 

Serial Port Drivers 
Serial port drivers on Mac OS X are implemented by creating a class that is derived from the 
IOSerialDriverSync class. In this section, we describe the implementation of a serial port driver by 
walking through the source code of a driver provided by Apple for USB serial communication devices. 
Although it is unlikely that you will need to implement your own serial driver directly, this section can be 
seen as providing a working application of I/O Kit techniques and driver design, and many of the 
techniques used by the Apple USB serial driver can potentially be applied to other drivers that you will 
develop. 

To follow along with this section, you may wish to download the source code for the serial port 
driver that we are discussing. The classes that play a part in the kernel serial driver stack are spread 
between the following two projects in the Darwin source code repository:  

• The base classes, on which all serial drivers are built, including the 
implementation of the IOSerialBSDClient class, are contained within the 
IOSerialFamily project. To implement your own serial port driver, you would need 
only the classes contained within the IOSerialFamily project. 
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• The driver that loads against USB-based serial communication devices is 
contained within the project named AppleUSBCDCDriver. (USBCDC is an acronym 
for USB Communications Device Class.)  

Given the number of supporting classes that are created to handle a serial port driver by the I/O Kit, 
it’s instructive to understand how these classes are instantiated. When a USB device that implements the 
Communications Device Class is connected to a Mac, the USB host controller will create a new 
IOUSBDevice object to represent that device. When this IOUSBDevice object is published, it initiates the 
I/O Kit’s driver matching process, which searches for an appropriate driver for the USB device. In this 
case, the I/O Kit will select the AppleUSBCDC driver, since its matching dictionary specifies that it should 
load against any USB device that supports the Communications Device Class. Note that the AppleUSBCDC 
driver is not a serial driver. It is a subclass of the generic IOService class, and its role is simply to 
configure the USB hardware for use as a serial device. It does this by iterating over the USB interfaces 
that the device supports and setting the active interface to one that provides communications support. 

Once the AppleUSBCDC driver has configured the active USB device interface, the I/O Kit’s USB family 
creates an IOUSBInterface object to represent the active interface. This kicks off another round of the I/O 
Kit’s driver matching process, which searches for an appropriate driver for the IOUSBInterface object. 
For the purpose of this section, we will examine the implementation of the AppleUSBCDCDMM class, which 
will match against any IOUSBInterface object that implements a specific type of USB Communications 
Devices. This class is implemented in the file AppleUSBCDCDMM.cpp, and the class is declared in the file 
AppleUSBCDCDMM.h. 

The AppleUSBCDCDMM class is a direct subclass of the IOSerialDriverSync class, so it is responsible for 
implementing the methods that are required for a serial port driver. To send and receive data over the 
hardware device, the AppleUSBCDCDMM class sends USB transfer requests to its provider class, which is an 
IOUSBInterface object. 

Manually Instantiating a Driver Object 
Until this point, the instantiation and loading of kernel objects has been fairly standard and has followed 
the same I/O Kit driver matching process that all drivers go through. However, a serial port driver is 
different from many drivers that you will write, in that it has a child driver. Thus, your serial port driver 
will act as the provider for another I/O Kit driver. 

The child of a serial port driver is an object that inherits from the IOSerialStreamSync class (or a 
class that is derived from IOSerialStreamSync). For a serial port driver, its child driver isn’t created 
through the I/O Kit’s driver matching procedure; rather, the child driver object is explicitly instantiated 
and attached to the serial driver by the serial driver itself. 

In the case of the AppleUSBCDCDMM driver, the child driver has the type IOModemSerialStreamSync, a 
class that inherits directly from the IOSerialStreamSync class. The AppleUSBCDCDMM class instantiates its 
child object in a method named createSerialStream(), which is called from the serial port driver’s 
start() method. The method createSerialStream() is a custom method that is private to the 
AppleUSBCDCDMM class. A sample implementation of createSerialStream() that is based on the 
AppleUSBCDCDMM driver is shown in Listing 11-1. 

www.allitebooks.com

http://www.allitebooks.org


CHAPTER 11  SERIAL PORT DRIVERS 

227 

Listing 11-1. The Implementation of a Method to Create the IOSerialStreamSync Object of a Serial Port 

Driver 

#include <IOKit/serial/IOModemSerialStreamSync.h> 
#include <IOKit/serial/IOSerialKeys.h> 
 
bool   MySerialDriver::createSerialStream() 
{ 
       IOSerialStreamSync*    pChild; 
       bool                   result; 
        
       // Instantiate the child driver object 
       pChild = new IOModemSerialStreamSync; 
       if (pChild == NULL) 
              return false; 
        
       // Initialize the child driver 
       result = pChild->init(0, 0); 
       if (result == false) 
              goto bail; 
        
       // Attach pChild as a child device of ourself 
       result = pChild->attach(this);   // Pass "this" as the child driver's provider 
       if (result == false) 
              goto bail; 
        
       // Setup the properties used when naming the device file in /dev 
       pChild->setProperty(kIOTTYBaseNameKey, "my_serial"); 
       pChild->setProperty(kIOTTYSuffixKey, ""); 
        
       // Allow matching of drivers that use pChild as their provider class 
       pChild->registerService(); 
        
       // Fall-through on success 
bail: 
       pChild->release(); 
       return result; 
} 

The code in Listing 11-1 provides an example of how a driver can instantiate its own child driver 
explicitly, without having to create a property list file for the child driver and have the I/O Kit’s matching 
mechanism invoked. The three basic steps to creating a new driver object are: (1) allocating an instance 
of the driver class by calling the C++ new operator, (2) initializing the returned object by calling its init() 
method, and (3) attaching the driver object to its parent through the attach() method. The parameter 
passed to attach() is the provider class of the child device, which will typically be the object that 
instantiated the child driver. 

You will notice that because the embedded C++ language used by the I/O Kit does not support 
exceptions, to check whether the call to the C++ new operator has failed, we check to see if the returned 
value is NULL. Note that we unconditionally release a reference to the child object before returning from 
the method; if the call to attach() succeeded, the child driver object will be retained by the I/O Kit, so 
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the call to release() at the end of the method won’t destroy the object but will release the reference to 
the object that we hold (preventing a leak). On the other hand, if the child driver failed in its init() 
method or couldn’t be attached, we need to release (and destroy) the child driver object. 

The IOModemSerialStreamSync class that is instantiated by the createSerialStream() method 
performs the role of a conduit between two classes, namely the IOSerialBSDClient class that handles 
operations on the serial port that are performed by user space applications, and the implementation of 
the serial port driver (MySerialDriver in the previous example). However, the serial port driver has no 
direct access to the IOSerialBSDClient class. To specify the name of the character device file that is 
created in the /dev directory, it needs to be able to pass certain parameters to the IOSerialBSDClient’s 
initialization method. To do this, it sets two properties on the IOSerialStreamSync object before the 
IOSerialBSDClient class is created, and the IOSerialBSDClient object is then able to read these 
properties in its initialization. 

The serial port driver calls the registerService() method on the IOSerialStreamSync object, which 
informs the I/O Kit that it should begin the matching procedure for the child device. Any driver that 
wishes to use the IOSerialStreamSync object as its parent (provider class) will be loaded. This is the 
means by which the IOSerialBSDClient class is loaded and attached to the IOSerialStreamSync object 
created by the serial port driver. The IOSerialFamily kernel module contains a matching dictionary for 
the IOSerialBSDClient class which matches against any IOSerialStreamSync object (or a class derived 
from IOSerialStreamSync). 

■ Note  In general, a driver that explicitly instantiates and attaches a child driver to itself should not need to call 
registerSerivce() for the child driver, since this will usually be taken care of by the child driver itself. However, 
in the case of the IOSerialStreamSync class, it does not register itself for driver matching, so after instantiating it 
we explicitly call its registerDriver() method. 

When the IOSerialStreamSync class is registered with the I/O Kit, an instance of the 
IOSerialBSDClient class is created and attached, completing the set of driver objects that are required 
for a serial port. When the IOSerialBSDClient class is initialized, it creates two device nodes for the serial 
port in the /dev directory, one corresponding to the dial-in character device file and the other 
corresponding to the callout character device file. To determine the name to give these files, the 
IOSerialBSDClient class reads the value of the kIOTTYBaseNameKey and the kIOTTYSuffixKey properties 
and then creates two files using the format: 

“tty.” + kIOTTYBaseNameKey + kIOTTYSuffixKey 

and 

“cu.” + kIOTTYBaseNameKey + kIOTTYSuffixKey 

For the example in Listing 11-1, this results in a character device file with the name tty.my_serial 
for the dial-in device and a character device file with the name cu.my_serial for the callout device. 
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Implementing the IOSerialDriverSync Class 
Serial drivers on Mac OS X must be derived from the IOSerialDriverSync class. The IOSerialDriverSync 
class is a pure abstract class that provides an interface that must be implemented by the serial driver. 
The methods that must be implemented by a serial driver are given in Listing 11-2. 

Listing 11-2. The Interface of IOSerialDriverSync, Which Declares the Methods That Must Be Implemented 

by a Serial Port Driver 

class IOSerialDriverSync : public IOService 
{ 
       OSDeclareAbstractStructors(IOSerialDriverSync); 
 
public: 
       virtual IOReturn  acquirePort(bool sleep, void *refCon) = 0; 
 
       virtual IOReturn  releasePort(void *refCon) = 0; 
 
       virtual IOReturn  setState(UInt32 state, UInt32 mask, void *refCon) = 0; 
 
       virtual UInt32    getState(void *refCon) = 0; 
 
       virtual IOReturn  watchState(UInt32 *state, UInt32 mask, void *refCon) = 0; 
 
       virtual UInt32    nextEvent(void *refCon) = 0; 
 
       virtual IOReturn  executeEvent(UInt32 event, UInt32 data, void *refCon) = 0; 
 
       virtual IOReturn  requestEvent(UInt32 event, UInt32 *data, void *refCon) = 0; 
 
       virtual IOReturn  enqueueEvent(UInt32 event, UInt32 data, 
                                   bool sleep, void *refCon) = 0; 
 
       virtual IOReturn  dequeueEvent(UInt32 *event, UInt32 *data, 
                                   bool sleep, void *refCon) = 0; 
 
       virtual IOReturn  enqueueData(UInt8 *buffer, UInt32 size, UInt32 *count, 
                                   bool sleep, void *refCon) = 0; 
 
       virtual IOReturn  dequeueData(UInt8 *buffer, UInt32 size, UInt32 *count, 
                                   UInt32 min, void *refCon) = 0; 
}; 

You will notice that each method is provided with a parameter named “refCon”. The refCon value 
can be used by a serial port driver to identify which serial port the method is operating on. The refCon 
value is actually specified by the serial port driver itself, and is passed to the IOSerialStramSync object at 
instantiation. In return, the IOSerialStreamSync class passes this refCon value back to the driver 
whenever it calls a method from the driver’s class. In most cases, the refCon value is not needed, since 
any data that the serial port driver needs can be added as instance variables to the driver class. However, 
in the case of a serial port driver that manages hardware with multiple serial ports, such as a USB 
adapter with a COM1 and a COM2 port, the driver would need some way to identify which port is being 
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referred to in a method call. To do this, the serial driver would create two instances of the 
IOSerialStreamSync class, one for each of its hardware ports, and provide a unique refCon value for each 
port. 

The interface may appear to be daunting, but the methods can be broken into three categories:  

• Methods that adjust the serial port’s status and watch for changes in the serial 
port’s state  

• Methods that get or set properties of the serial port  

• Methods that read and write data over the serial port  

The following are brief descriptions of the methods defined by the IOSerialDriverSync interface: 

• Opening and closing the serial port: 
acquirePort() 
releasePort() 

• Managing a bitmask that represents the state of the serial port, and blocking the 
calling thread until a particular condition occurs. State bits describe such 
conditions as whether the serial port has been opened, whether data has been 
received over the serial port and is available for reading, and whether the serial 
port can accept bytes for writing: 
setState() 
getState() 
watchState() 

• Setting properties of the serial port: 
executeEvent() 
enqueueEvent() 

• Getting properties of the serial port: 
nextEvent() 
requestEvent() 

• Writing data over the serial port: 
enqueueData() 

• Reading data that has been received from the serial port: 
dequeueData() 

One of the complexities in implementing the IOSerialDriverSync interface is that it requires careful 
synchronization. The interface methods may be called from multiple threads at any time, meaning that 
the implementation needs to make sure that each method is correctly synchronized to prevent such 
situations as the dequeueData() method returning data once the serial port has been closed. To further 
complicate matters, several methods may block the calling thread until a particular event occurs; this is 
particularly true of the watchState() method, which doesn’t return until the serial port has entered a 
requested state. Both of these synchronization problems can be solved by using a mutex lock and a 
condition variable to signal changes in the serial port’s state. 

In the case of the AppleUSBCDCDMM driver, there is an even greater synchronization problem; the 
methods called through the IOSerialDriverSync interface need to be coordinated with callbacks that fire 
upon the completion of an asynchronous transfer over USB. This is necessary to prevent the completion 
callback for a USB write from placing data into a buffer at the same time that the dequeueData() method 
attempts to read out of that same buffer. 
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Although this description paints the picture of a very difficult synchronization problem, the I/O Kit 
design offers a surprisingly elegant solution. All USB completion callbacks are run on the USB work loop, 
so to synchronize serial port methods with USB code, the AppleUSBCDCDMM driver ensures that all serial 
port methods are handled on the USB work loop. This is performed as follows: 

bool AppleUSBCDCDMM::start(IOService *provider) 
{ 
       … 
       // Get the USB work loop (superclass will use the provider class’ work loop) 
       fWorkLoop = getWorkLoop(); 
       … 
       // Create a command gate and install it on the USB work loop 
       fCommandGate = IOCommandGate::commandGate(this); 
       fWorkLoop->addEventSource(fCommandGate); 
       … 
} 

For each serial port method, the AppleUSBCDCDMM driver calls each method through the command 
gate, ensuring that it is synchronized to the USB work loop. This is shown below for the implementation 
of releasePort(): 

IOReturn AppleUSBCDCDMM::releasePort(void *refCon) 
{ 
       IOReturn       ret = kIOReturnSuccess; 
        
       // Call the static method releasePortAction() on the work loop, which requires no  
       // parameters 
       ret = fCommandGate->runAction(releasePortAction); 
 
       return ret; 
} 
 
IOReturn AppleUSBCDCDMM::releasePortAction(OSObject *owner, void *, void *, void *, void *) 
{ 
       // Call through to the method releasePortGated() 
       return ((AppleUSBCDCDMM*)owner)->releasePortGated(); 
} 
 
IOReturn AppleUSBCDCDMM::releasePortGated() 
{ 
       … 
       // Implementation of releasePort 
       … 
} 

The IOCommandGate also provides an object that a thread can sleep on and can be used to signal 
sleeping threads when an event occurs. As we will see, this provides a convenient means for 
implementing the serial port watchState() method.  
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Serial Port State 
A central part of implementing the IOSerialDriverSync interface is managing the serial port’s state. The 
serial port state is a bitfield of 32-bits that is used to report events, such as the arrival of data on the serial 
port, as well as to save the overall state of the port, such as whether it has been opened by a user space 
process or not. Although there are methods that are directly involved in manipulating the state bitmask, 
ultimately every method that the serial port implements from IOSerialDriverSync will need to access the 
serial port’s state, even if for no other reason than to verify that the serial port has been opened before 
attempting to perform an operation. 

The state bits are defined in the header file IOSerialStreamSync.h. The meaning of each bit is 
described as follows: 

• PD_S_ACQUIRED indicates that the serial port has been opened and is in use by a 
user space application. This state bit is never set or cleared through the setState() 
method but rather is set in the acquirePort() method and cleared in the 
releasePort() method. 

• PD_S_ACTIVE is set immediately following the acquisition of the serial port and is 
cleared immediately before the serial port is released. This state bit is never set or 
cleared through the setState() method; instead, the bit is set or cleared through 
the executeEvent() method, which uses an event type of PD_E_ACTIVE to 
manipulate this state bit. 

• PD_S_TX_ENABLE and PD_S_RX_ENABLE are set to indicate that the serial port’s 
transmit and receive interfaces are enabled. Most implementations, including the 
AppleUSBCDCDMM driver, set these bits when the serial port is opened and clear them 
when the serial port is closed, but otherwise make no other use of these state bits. 

• PD_S_TX_BUSY and PD_S_RX_BUSY are set to indicate that the serial port driver is in 
the middle of sending data from its transmit buffer to the serial port hardware, or 
it is in the middle of reading data that has been sent over the serial port hardware 
into a driver buffer. 

• PD_S_TX_EVENT and PD_S_RX_EVENT are two states that are used internally by the 
IOSerialBSDClient class to signal the beginning of a write or read operation. 
Although these state bits are unused by the serial driver, it needs to set the 
corresponding bit in setState() and allow a client to observe the bit through 
watchState() to ensure that the IOSerialBSDClient operates correctly. 

A number of bits describe the status of the serial driver’s transmit and receive buffers. The transmit 
buffer is used by the serial driver to hold bytes that it has been provided with through the enqueueData() 
method but that it has yet to send over the serial port hardware. The receive buffer holds bytes that the 
serial driver has read from the serial port hardware but has yet to pass on through the dequeueData() 
method. Following are descriptions of the serial driver buffer state bits: 

• PD_S_TXQ_EMPTY and PD_S_RXQ_EMPTY indicate that the transmit buffer or receive 
buffer is empty and contains no bytes. 

• PD_S_TXQ_LOW_WATER and PD_S_RXQ_LOW_WATER indicate that the number of bytes in 
the transmit buffer or receive buffer is below a “low water level.” The 
AppleUSBCDCDMM driver sets the low water level to be one-third of the size of the 
overall transmit buffer or receive buffer. 
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• PD_S_TXQ_HIGH_WATER and PD_S_RXQ_HIGH_WATER indicate that the number of bytes 
in the transmit buffer or receive buffer is above a “high water level.” The 
AppleUSBCDCDMM driver sets the high water level to be two-thirds of the size of the 
overall transmit buffer or receive buffer. 

• PD_S_TXQ_FULL and PD_S_RXQ_FULL indicate that the transmit buffer or receive 
buffer is completely full and cannot accept any further data. 

The header file IORS232SerialStreamSync.h defines status bits for the standard RS-232 signals. For 
example, definitions are provided for signals such as Clear To Send (PD_RS232_S_CTS) and Data Terminal 
Ready (PD_RS232_S_DTR). The state of software flow control, which uses the transmission of special XON 
and XOFF characters, is indicated through state bits PD_RS232_S_TXO and PD_RS232_S_RXO.  

A serial port driver maintains a 32-bit integer that holds a bitmask of the state bits that describe the 
current state of the serial port. A serial driver must implement the following three methods to allow the 
serial port state to be manipulated: getState(), setState(), and watchState(). As well as being called by 
the IOSerialBSDClient class when it requires access to the state of the serial port, these three methods 
are called in the implementation of many other methods in the serial port class. 

For example, the serial port method acquirePort(), which is called to open a serial port for exclusive 
access, and releasePort(), which is called to close the serial port, do so by setting the state bit 
PD_S_ACQUIRED. A possible implementation of the acquirePort() method is shown in Listing 11-3. This 
sample uses setState() to set the PD_S_ACQUIRED bit. If the serial port has already been acquired and the 
caller has requested that the method should block until the serial port becomes free, the implementation 
calls watchState() to wait until the PD_S_ACQUIRED state bit has been cleared. 

Listing 11-3. A Sample Implementation of the acquirePort() Method. The Method Is Assumed to Have 

Been Called Through an IOCommandGate. 

IOReturn       MySerialDriver::acquirePortGated (bool sleep, void* refCon) 
{ 
       UInt32      state; 
       IOReturn    rtn; 
        
       // If the serial port is already acquired, wait until it is released 
       while (m_currentState & PD_S_ACQUIRED) 
       { 
              // Abort if the caller has requested non-blocking operation 
              if (sleep == false) 
                     return kIOReturnExclusiveAccess; 
               
              // Sleep until the acquired bit becomes clear 
              state = 0; 
              rtn = watchState(&state, PD_S_ACQUIRED, refCon); 
              if (rtn != kIOReturnSuccess) 
                     return rtn; 
       } 
               
       // Set the acquired bit and clear all other state bits 
       setState(PD_S_ACQUIRED, 0xFFFFFFFF, refCon); 
        
       // Serial port has been acquired, perform further initialization 
       ... 
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       return kIOReturnSuccess; 
} 

A possible implementation of the releasePort() method, which uses setState() to clear the 
PD_S_ACQUIRED state is given in Listing 11-4. 

Listing 11-4. A Sample Implementation of the releasePort() Method. The Method Is Assumed to Have 

Been Called Through an IOCommandGate. 

IOReturn       MySerialDriver::releasePortGated (void* refCon) 
{ 
       // Return an error if trying to release a port that hasn’t been acquired 
       if ((m_currentState & PD_S_ACQUIRED) == 0) 
              return kIOReturnNotOpen; 
        
       // Clear the entire state word, which also deactivates the port 
       setState(0, 0xFFFFFFFF, refCon); 
        
       return kIOReturnSuccess; 
} 

Often, the IOSerialBSDClient class, or even the serial port driver itself, needs to block the current 
thread until a particular state has become active or inactive. The serial driver provides this functionality 
through a method named watchState(). The events that the caller wishes to observe are described by 
two parameters. The “mask” parameter contains a bitmask of the state bits that the caller wishes to 
observe. The “state” parameter describes the corresponding value of each state bit that the caller wishes 
to observe. For example, if a bit is set in “mask”, but not set in “state”, the caller is interested in that state 
becoming inactive. If a bit is set in “mask” and also set in “state”, the caller is interested in that state 
becoming active. 

The watchState() method will return as soon as any of the observed state bits match the current 
state of the serial port. Upon return, the current state of the serial port is returned to the caller through 
the “state” parameter. If the serial port is closed while a thread is blocked in watchState(), the sleep will 
be aborted and the method will fail and return an error code to the caller, such as kIOReturnNotOpen. The 
following code gives an example of how watchState() can be used; this code will block until either the 
driver’s transmit buffer becomes empty (PD_S_TXQ_EMPTY is set) or the hardware finishes a write to the 
serial port hardware (PD_S_TX_BUSY is clear): 

UInt32       state; 
IOReturn     rtn; 
 
state = PD_S_TXQ_EMPTY; 
rtn = watchState(&state, PD_S_TXQ_EMPTY | PD_S_TX_BUSY, refCon); 
if (rtn != kIOReturnSuccess) 
       handle error; 

The implementation of the watchState() method is closely related to the implementation of the 
setState() method. As well as setting bits in the serial port state word, the setState() method is also 
responsible for waking any threads that are waiting for a particular state to be set. In Chapter 7, we 
introduced condition variables and saw how one thread could sleep on a condition variable and remain 
blocked until another thread signaled the condition variable to indicate that an event had occurred. This 
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provides a mechanism that a serial port driver can use to suspend a thread in the watchState() method 
and to signal it from the setState() method when the observed state has changed. 

When the setState() method is called, the serial driver updates a variable that maintains the 
current serial port state, and then signals all threads that are blocked in the watchState() method, 
allowing them to test whether the state on which they are waiting has become active. As an optimization, 
rather than waking up threads blocked in watchState() for every change to the serial port state, the 
AppleUSBCDCDMM driver maintains a union of all state bits that are being waited on across all current calls 
to watchState(), and will only unblock the threads if the value of a state bit that is being watched has 
changed. 

A sample implementation of the setState() and watchState() methods is provided in Listing 11-5. 

Listing 11-5. A Sample Implementation of the setState() and watchState() Methods. The Methods Are 

Assumed to Have Been Called Through an IOCommandGate. 

IOReturn       MySerialDriver::setStateGated(UInt32 state, UInt32 mask, void* refCon) 
{ 
       UInt32 newState; 
       UInt32 deltaState; 
        
       // Verify that the serial port has been acquired or is being acquired by this call 
       if ((m_currentState & PD_S_ACQUIRED) || (state & PD_S_ACQUIRED)) 
       { 
              // Compute the new state 
              newState = (m_currentState & ~mask) | (state & mask); 
              // Determine the mask of changed state bits 
              deltaState = newState ^ m_currentState; 
              // Set the new state 
              m_currentState = newState; 
               
              // If any state that is being observed by a thread in watchState() has changed, 
              // wake up all threads asleep on watchState() 
              if (deltaState & m_watchStateMask) 
              { 
                     // Reset watchStateMask; it will be regenerated as each watchStateGated()  
                     // sleeps 
                     m_watchStateMask = 0; 
                     fCommandGate->commandWakeup((void*)&m_currentState); 
              } 
               
              return kIOReturnSuccess; 
               
       } 
        
       return kIOReturnNotOpen; 
} 
 
IOReturn       MySerialDriver::watchStateGated(UInt32* state, UInt32 mask, void* refCon) 
{ 
       UInt32      watchState; 
       bool        autoActiveBit = false; 
       IOReturn    ret; 
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       // Abort if the serial port has not been acquired 
       if ((m_currentState & PD_S_ACQUIRED) == 0) 
              return kIOReturnNotOpen; 
        
       watchState = *state; 
       // If the caller is not waiting on the acquired or active state, register 
       // interest in the active state so that we can abort if the serial port closes. 
       if ((mask & (PD_S_ACQUIRED | PD_S_ACTIVE)) == 0) 
       { 
              watchState &= ~PD_S_ACTIVE; 
              mask |= PD_S_ACTIVE; 
              autoActiveBit = true; 
       } 
        
       while (true) 
       { 
              // Check port state for any bits that match the watchState value 
              // NB. the '^ ~' is a XNOR and tests for equality of bits. 
              UInt32 matchedStates = (watchState ^ ~m_currentState) & mask; 
              if (matchedStates) 
              { 
                     *state = m_currentState; 
                     // Abort if the serial port was closed and the caller didn't watch  
                     // PD_S_ACTIVE 
                     if (autoActiveBit && (matchedStates & PD_S_ACTIVE)) 
                            return kIOReturnIOError; 
                     else 
                            return kIOReturnSuccess; 
              } 
               
              // Add the bits we are sleeping on to watchStateMask 
              m_watchStateMask |= mask; 
              // Sleep until the serial port state changes 
              ret = fCommandGate->commandSleep((void*)&m_currentState); 
              if (ret == THREAD_INTERRUPTED) 
                     return kIOReturnAborted; 
       } 
        
       return kIOReturnSuccess; 
} 

Note that the implementation of watchState() in Listing 11-5 will make sure that either the 
PD_S_ACQUIRED or PD_S_ACTIVE bits are being watched, and if not, will add an extra state to the mask to 
watch for the PD_S_ACTIVE bit becoming clear. This ensures that when the serial port is closed, all threads 
that are blocked in a call to watchState() will wake up and return to the caller. If the mask for serial port 
deactivation were not explicitly added, the blocked thread would never wake up, causing the serial port 
driver to deadlock. 
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Serial Port Events 
The hardware serial port will need to be configured to match the settings used by the device on the other 
end of the serial connection. Configurable settings include parameters such as the baud rate at which 
data is sent, the number of bits in a data character, whether parity bits are transmitted, and the number 
of stop bits that are sent at the end of each character. 

These serial port settings are determined by the user space process that has opened the serial port 
and are configured through functions such as tcsetattr() and tcgetattr(). These functions enter the 
kernel through the I/O Kit’s IOSerialBSDClient class, which passes the individual configuration options 
to the serial port driver through its executeEvent() method. 

The executeEvent() method is paired with the method requestEvent(), which is used by the 
IOSerialBSDClient class to query the current configuration of the serial port. The prototypes for the 
executeEvent() and requestEvent() methods are as follows: 

IOReturn              executeEvent(UInt32 event, UInt32 data, void* refCon); 
IOReturn              requestEvent(UInt32 event, UInt32* data, void* refCon); 

The parameter “event” is an enumeration from IOSerialStreamSync.h and identifies the property 
that is being configured or queried. The parameter “data” is used to pass the new value for the property 
that is being set through executeEvent(), or the current value of the property that is being queried 
through requestEvent(). Most drivers implement the executeEvent() and requestEvent() methods with 
a large switch statement on the value of the event parameter. A description of the possible event types is 
given below in Table 11-1. 

Table 11-1. Event Types Handled by executeEvent() or requestEvent() 

Event Description 

PD_E_ACTIVE This event is used to start or stop the serial port hardware. The data 
parameter is a Boolean value, with a non-zero value indicating that the 
serial port hardware should be started, and a value of zero indicating 
that the serial port hardware should be stopped. The driver should 
respond by changing the state of the hardware, and then setting or 
clearing the state bit PD_S_ACTIVE to reflect the state of the hardware. 

This property can be queried by requestEvent(), at which point the 
driver should return the current state of the hardware to the caller 
through the data parameter. 

PD_E_TXQ_SIZE 

PD_E_RXQ_SIZE 

The data parameter specifies the allocation size of the serial driver’s 
internal transmit buffer or receive buffer. The buffer size is specified as 
the number of characters that the buffer can hold. 

This property can be both queried and set, although an implementation 
is free to ignore a caller’s request to set this value. 

PD_E_TXQ_LOW_WATER 

PD_E_RXQ_LOW_WATER 

PD_E_TXQ_HIGH_WATER 

The data parameter specifies the number of characters in the serial 
driver’s internal transmit buffer or receive buffer that is considered to 
be the low water level or high water level. This parameter governs the 
point at which the status bits PD_S_TXQ_LOW_WATER, PD_S_RXQ_LOW_WATER, 
PD_S_TXQ_HIGH_WATER, and PD_S_RXQ_HIGH_WATER are set. 
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Event Description 
PD_E_RXQ_HIGH_WATER This property can be both queried and set, although an implementation 

is free to ignore a caller’s request to set this value. 

PD_E_TXQ_AVAILABLE 

PD_E_RXQ_AVAILABLE 

The data parameter returns the number of additional characters that 
can be written to the driver’s transmit buffer until it becomes full, or the 
number of characters that are currently held in the driver’s receive 
buffer. 

This property can be queried, but not set. 

PD_E_TXQ_FLUSH 

PD_E_RXQ_FLUSH 

This event, specified through executeEvent(), indicates that the serial 
driver should discard all characters from its internal transmit buffer or 
receive buffer. 

PD_E_DATA_RATE This event is used to get or set the baud rate of the serial port. The value 
in the data parameter uses half-bits to express the speed, meaning that 
the baud rate, which is measured in bits, is found by dividing the value 
in of the data parameter by 2. 

There is also a PD_E_RX_DATA_RATE event that allows the baud rate used 
for data input to be specified independently, although most 
implementations will ignore this event. 

PD_E_DATA_SIZE This event is used to get or set the number of bits in each character sent 
over the serial port. The value in the data parameter specifies the data 
size in bits. 

There is also a PD_E_RX_DATA_SIZE event that allows the size of the data 
input to be specified independently, although most implementations 
will ignore this event. 

PD_E_DATA_INTEGRITY This event is used to get or set the parity of data sent over the serial port. 
The value in the data parameter will be one of the following values: 
PD_RS232_PARITY_NONE, PD_RS232_PARITY_ODD, or PD_RS232_PARITY_EVEN. 

There is also a PD_E_RX_DATA_INTEGRITY event that allows the parity of 
data input to be specified independently, although most 
implementations will ignore this event. 

PD_RS232_E_STOP_BITS This event is used to get or set the number of stop bits sent after each 
character has been sent over the serial port. This value in the data 
parameter is expressed in half-bits, meaning that a data value of 2 
configures the serial port for 1 stop bit. 

There is also a PD_RS232_E_RX_STOP_BITS event that allows the stop bits 
of data input to be specified independently, although most 
implementations will ignore this event. 
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Event Description 

PD_E_FLOW_CONTROL This event is used to pass on the flow control state that has been 
requested by the user space process. The value in the data parameter is 
a bitfield in which each bit corresponds to a bit from the user space 
termios structure. The following list gives the bits that are defined for 
the data value, along with the flag that each bit corresponds to from the 
user space termios structure: 

PD_RS232_A_TXO (equivalent to IXON) 

PD_RS232_A_XANY (equivalent to IXANY) 

PD_RS232_A_RXO (equivalent to IXOFF) 

PD_RS232_A_RFR (equivalent to CRTS_IFLOW) 

PD_RS232_A_CTS (equivalent to CCTS_OFLOW) 

PD_RS232_A_DTR (equivalent to CDTR_IFLOW) 

PD_RS232_E_XON_BYTE 

PD_RS232_E_XOFF_BYTE 

These events are used to get or set the start and stop characters that are 
used if software flow control is enabled. 

PD_RS232_E_LINE_BREAK This event takes a Boolean data value that specifies whether an RS-232 
break condition is signaled on the transmit line. 

 
In addition to the method executeEvent(), you will notice that the IOSerialDriverSync interface 

also defines a method named enqueueEvent() that is used for setting the properties of a serial port. There 
is a subtle difference between the two methods; a call to the executeEvent() method causes a change in 
the serial port’s configuration to take effect as soon as the method is called, whereas a call to 
enqueueEvent() won’t take effect until all of the characters that are currently in the serial driver’s 
transmit buffer have been written to hardware. 

Implementing the correct behavior of enqueueEvent() requires the serial driver to define a transmit 
buffer that consists of a queue of events and the data associated with each event. Then, each call to 
enqueueEvent() appends the pair of values {event, data} to the transmit queue. Similarly, character data 
for transmission also needs to be treated as an event and appended to the end of the transmit buffer. 
Whenever the transmit buffer is not empty, the serial driver pulls the next event off the queue, which is 
either an event that changes the configuration of the serial port or a character to be sent over the serial 
port. 

A serial driver isn’t required to adhere this closely to the correct implementation of enqueueEvent(). 
If you examine the source code for the AppleUSBCDCDMM driver, you will see that it implements 
enqueueEvent() by calling through to executeEvent(), which applies the requested change to the serial 
port’s configuration immediately. 

Similarly, the serial driver’s receive buffer allows events to be inserted between data bytes read from 
the serial port. For the receive queue, events represent errors that have occurred while reading data from 
the serial port. Some of the errors that can be reported are described here: 

• PD_RS232_E_RX_LINE_BREAK indicates that a break condition was detected by the 
receiver. 
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• PD_E_FRAMING_ERROR indicates that the character data was incorrectly framed. (The 
stop bit was not in the expected position.) 

• PD_E_INTEGRITY_ERROR indicates a parity error was detected. 

• PD_E_HW_OVERRUN_ERROR and PD_E_SW_OVERRUN_ERROR indicate that character data 
was not pulled from the hardware or the software buffers fast enough to prevent 
the buffer from filling and data being lost. 

Before reading any data from the serial port, the IOSerialBSDClient class will make a call to the 
serial driver’s nextEvent() method. If the next element in the serial driver’s receive queue is an error 
event, nextEvent() will return the event type to the caller, and the caller will respond by calling the 
driver’s dequeueEvent() method. Otherwise, if the next element in the serial driver’s receive queue is a 
data byte that has been read from the serial port, it should return PD_E_EOQ. 

As with the transmit side of the serial driver, it is not strictly necessary for a driver to fully implement 
the queuing of events in its receive queue. In fact, the implementation provided by the AppleUSBCDCDMM 
driver reports no events on its receive queue at all; its implementation of nextEvent() and 
dequeueEvent() will check that the serial port has been activated and, if so, will always return a value of 
kIOReturnSuccess. Note that kIOReturnSuccess has a value of 0, and therefore, corresponds to the event 
PD_E_EOQ, which also has a value of 0. 

Serial Data Transfer 
The remaining methods to be implemented from the IOSerialDriverSync interface are the data transfer 
methods. The serial driver will be provided with data to be transmitted over the serial port through the 
method enqueueData(), and the data that the driver has received from the serial port is provided to 
clients through the dequeueData() method. 

When a user space process writes data to a serial port, it is first handled in the kernel by the 
IOSerialBSDClient class, which is responsible for passing the data on to the serial port driver. The 
IOSerialBSDClient will provide the data to the serial driver by calling its enqueueData() method, which 
has the following signature: 

IOReturn  enqueueData(UInt8 *buffer, UInt32 size, UInt32 *count, bool sleep, void *refCon); 

The data bytes to be sent are held in the buffer parameter, and the number of bytes to be sent is 
described by the size parameter. The typical design of a serial driver is to copy the data that has been 
provided into an internal buffer that it has allocated (known as the transmit buffer) and then return to 
the caller immediately. The driver will then continue handling the write request by transferring data 
from its transmit buffer to the hardware serial port asynchronously. Before returning from the 
enqueueData() method, the driver will return, through the count parameter, the number of bytes that it 
accepted; note that this is simply the number of bytes that the driver was able to copy to its transmit 
buffer, not the number of bytes that have been written over the hardware serial port. The sleep 
parameter allows the caller to request that, if the driver cannot accept all of the bytes that it has been 
provided, the driver should block and not return to the caller until all bytes have been copied to the 
driver’s internal transmit buffer. 

The current implementation of the IOSerialBSDClient will never request that the serial driver sleep 
if it cannot accept all of the data bytes that have been provided. Rather, it will make sure that it doesn’t 
provide the serial driver with more data than it can accept, which is done by calling the driver’s 
requestEvent() method with the event PD_E_TXQ_AVAILABLE. The IOSerialBSDClient will watch various 
states of the driver’s transmit buffer to determine when the driver is able to accept more data, including 
the states PD_S_TXQ_LOW_WATER, PD_S_TXQ_EMPTY, and PD_S_TX_BUSY. 
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A sample implementation of the enqueueData() method is provided in Listing 11-6. Note that this 
implementation copies the data bytes to a transmit buffer that has been allocated by the serial driver, 
and then checks whether the hardware is currently writing data out on the serial port. If not, a 
hypothetical function named StartHardwareTransmit() is called which, although implementation 
specific, has the purpose of telling the hardware to begin sending data bytes from the driver’s transmit 
buffer out over the serial port. 

Listing 11-6. A Sample Implementation of the enqueueData() Method. The Method Is Assumed to Have 

Been Called Through an IOCommandGate. 

IOReturn           MySerialDriver::enqueueDataGated(UInt8* buffer, UInt32 size, UInt32* count,  
                                          bool sleep, void* refCon) 
{ 
       // Abort if the serial port has not been acquired 
       *count = 0; 
       if ((m_currentState & PD_S_ACTIVE) == 0) 
              return kIOReturnNotOpen; 
        
       // Copy the provided data to the driver's transmit buffer 
       *count = AddToTransmitQueue(buffer, size); 
       // Regenerate the status bits for the transmit buffer 
       CheckQueues(refCon); 
        
       // If no hardware transmission is in progress, begin outputting bytes from the driver’s  
       // buffer 
       if ((m_currentState & PD_S_TX_BUSY) == 0) 
              StartHardwareTransmit(); 
 
       // Block if the caller has requested we send all bytes before returning 
       while ((*count < size) && sleep) 
       { 
              UInt32      state; 
              IOReturn    ret; 
               
              // Wait until the driver's transmit buffer falls below the low waterlevel,   
              // and try again 
              state = PD_S_TXQ_LOW_WATER; 
              ret = watchState(&state, PD_S_TXQ_LOW_WATER, refCon); 
              if (ret != kIOReturnSuccess) 
                     return ret; 
               
              // Copy further bytes to the driver's transmit buffer 
              *count += AddToTransmitQueue(buffer + *count, size - *count); 
              CheckQueues(refCon); 
              if ((m_currentState & PD_S_TX_BUSY) == 0) 
                     StartHardwareTransmit(); 
       } 
        
       return kIOReturnSuccess; 
} 
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The other part of data transfer is reading bytes that have been received from the hardware serial 
port. A serial driver will obtain data that has been received from its hardware device and copy it into its 
internal receive buffer. The exact means by which the hardware will notify the serial driver that data has 
been received will be implementation-specific, but may be signaled by a PCI interrupt or the completion 
of a USB transaction. The driver now needs to pass the received data on to the IOSerialBSDClient, which 
in turn will provide the data to a user space process. 

The I/O Kit uses a pull model to return data from the serial driver to the IOSerialBSDClient class. 
The IOSerialBSDClient will call the driver’s dequeueData() method to obtain data that has been received 
on the hardware serial port; the signature for this method is as follows: 

IOReturn    dequeueData(UInt8* buffer, UInt32 size, UInt32* count, UInt32 min, void* refCon); 

Upon receiving this method, the serial driver should copy data from its internal receive buffer to the 
provided parameter buffer. The parameter size describes the maximum number of bytes that the 
provided buffer can hold. The parameter count is used to return the actual number of bytes that were 
written to the provided buffer. The caller can request that the dequeueData() method block and not 
return to the caller until a minimum number of bytes are available; this is done by specifying a non-zero 
value in the min parameter, which provides the minimum number of bytes that the caller should return. 

Rather than continually polling the dequeueData() method until data is available, the 
IOSerialBSDClient class will specify a minimum read size of 1 byte. The effect of this is to block in the 
call to dequeueData() but have the method return immediately as soon as the serial port has received 
data. The AppleUSBCDCDMM serial port driver implements this method by calling through to the 
watchState() method, and waiting until the PD_S_RXQ_EMPTY state is clear, indicating that data is available 
in the driver’s receive buffer. An advantage of this design is that it ensures that the driver will unblock a 
wait in the dequeueData() method when the serial port is closed, since the watchState() method will 
abort if the PD_S_ACTIVE flag is ever cleared (which happens when the user process closes the serial port). 

A sample implementation of the dequeueData() method is given in Listing 11-7. This 
implementation copies data out of the driver’s internal receive buffer and into a buffer that has been 
provided by the caller of the method. 

Listing 11-7. A Sample Implementation of the dequeueData() Method. The Method Is Assumed to Have 

Been Called Through an IOCommandGate. 

IOReturn           MySerialDriver::dequeueDataGated(UInt8* buffer, UInt32 size, UInt32* count,  
                                                    UInt32 min, void* refCon) 
{ 
       // Abort if the serial port has not been acquired 
       *count = 0; 
       if ((m_currentState & PD_S_ACTIVE) == 0) 
              return kIOReturnNotOpen; 
        
       // Copy data from the driver's receive buffer 
       *count = RemovefromReceiveQueue(buffer, size); 
       // Regenerate the status bits for the receive buffer 
       CheckQueues(refCon); 
        
       // Block if the caller has requested a minimum number of bytes 
      while ((min > 0) && (*count < min)) 
       { 
              UInt32          state; 
              IOReturn        ret; 
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              // Wait until the driver's receive buffer is not empty, and try again 
              state = 0; 
              ret = watchState(&state, PD_S_RXQ_EMPTY, refCon); 
              if (ret != kIOReturnSuccess) 
                     return ret; 
               
              // Copy further bytes from the driver's receive buffer 
              *count += RemovefromReceiveQueue(buffer + *count, size - *count); 
              CheckQueues(refCon); 
       } 
        
       return kIOReturnSuccess; 
} 

The sample implementations of enqueueData() in Listing 11-6 and dequeueData() in Listing 11-7 
both call a hypothetical function named CheckQueues() after reading or writing to the internal transmit 
buffer or receive buffer. Although CheckQueues() is a hypothetical function, its role is one that is needed 
by any serial port driver. Its purpose is to examine the number of bytes held in the driver’s internal 
transmit buffer or receive buffer, and to update the state flags that describe the driver’s queues. These 
flags describe whether the transmit or receive queue is empty, full, contains fewer bytes than the low 
water level, or contains more bytes than the high water level. Since there may be threads that are waiting 
for the transmit buffer or receive buffer to reach a certain level, it is important that the serial port driver 
updates these status flags whenever it reads or writes to its internal buffers. 

As well as being called from the methods enqueueData() and dequeueData(), as shown in Listing 11-
6 and Listing 11-7, a serial port driver would also call the CheckQueues() function when data from the 
transmit buffer is removed and written over the hardware serial port, and when the hardware adds data 
that is has read from the serial port to the receive buffer. A sample implementation of the CheckQueues() 
method is provided in Listing 11-8. 

Listing 11-8. A Sample Method to Update the Status Flags for the Driver’s Internal Transmit Buffer. The 

Method Is Assumed to Have Been Called Through an IOCommandGate. 

void MySerialDriver::CheckQueues(void* refCon) 
{ 
       UInt32        usedSpace; 
       UInt32        freeSpace; 
       UInt32        newState; 
       UInt32        deltaState; 
        
       // Initialize newState with the state at function entry. 
       newState = m_currentState; 
        
       // Check the number of bytes used and free in the transmit buffer 
       usedSpace = GetUsedSpaceInTransmitQueue(); 
       freeSpace = GetFreeSpaceInTransmitQueue(); 
        
       // Set the full/empty state for the transmit buffer 
       if (freeSpace == 0) 
       { 
              newState |=  PD_S_TXQ_FULL; 
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              newState &= ~PD_S_TXQ_EMPTY; 
       } 
       else if (usedSpace == 0) 
       { 
              newState &= ~PD_S_TXQ_FULL; 
              newState |=  PD_S_TXQ_EMPTY; 
       } 
       else 
       { 
              newState &= ~PD_S_TXQ_FULL; 
              newState &= ~PD_S_TXQ_EMPTY; 
       } 
        
       // Set the low/high waterlevel state for the transmit buffer 
       if (usedSpace < m_txLowWaterlevel) 
              newState |=  PD_S_TXQ_LOW_WATER; 
       else 
              newState &= ~PD_S_TXQ_LOW_WATER; 
        
       if (usedSpace > m_txHighWaterlevel) 
              newState |= PD_S_TXQ_HIGH_WATER; 
       else 
              newState &= ~PD_S_TXQ_HIGH_WATER; 
        
       // Perform the same checks on the receive buffer 
       …       
 
       // Update any changed state bits 
       deltaState = newState ^ m_currentState; 
       setState(newState, deltaState, refCon); 
} 

Accessing a Serial Port from User Space 
To a user space application, a serial port driver is accessed as a standard character device in the /dev 
directory. This should be familiar territory for anyone who has accessed a serial port on any other UNIX 
system. Where the I/O Kit approach differs, however, is in how a user space application enumerates the 
serial ports that are present in a system. For many traditional UNIX applications, the user must specify 
the full path of the serial port’s character file. The approach taken by Mac OS X is to shield users from the 
/dev directory, and to present available serial ports through a descriptive name. This is where the I/O Kit 
comes in. 

Since a serial port is implemented by an I/O Kit driver, its driver object can be found by user space 
applications in the I/O Registry, as described in Chapter 5. Like all entries in the I/O Registry, the entry 
for a serial port driver contains a property table that can be used to obtain a descriptive name for the 
serial port, and a full path to the serial port’s character device file. Having obtained the path to the serial 
port’s device file, the user space application can then proceed to open and access the device, as would 
be done by a traditional UNIX program. 

As with any application that wishes to locate a driver through the I/O Registry, the first step in 
finding a serial port driver is to create a matching dictionary. The role of a matching dictionary is to 
locate entries in the I/O Registry that meet certain criteria, and filter out all other entries. A user space 
process accesses a serial port not through the serial port driver itself, but rather through the driver’s 
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associated IOSerialBSDClient class. Therefore, to find serial ports in the system, a user space process 
just needs to create a matching dictionary to find all IOSerialBSDClient objects in the registry. This can 
be done as follows: 

#include <IOKit/serial/IOSerialKeys.h> 
 
CFMutableDictionaryRef    matchingDict; 
matchingDict = IOServiceMatching(kIOSerialBSDServiceValue); 

To further refine the matches, the user process can add the key kIOSerialBSDTypeKey to the 
matching dictionary, and limit the results to modem devices (serial drivers that created an 
IOModemSerialStreamSync object) or generic serial port devices (serial drivers that created an 
IORS232SerialStreamSync object). For example, to limit the matches to modem devices, a user space 
application would create the following matching dictionary: 

matchingDict = IOServiceMatching(kIOSerialBSDServiceValue); 
CFDictionarySetValue(matchingDict, CFSTR(kIOSerialBSDTypeKey), CFSTR(kIOSerialBSDModemType)); 

Having created a matching dictionary to locate the serial devices that it is interested in, the process 
is then able to iterate the registry for drivers that meet the criteria specified by that dictionary. All 
instances of IOSerialBSDClient contain registry properties that are specific to a serial port driver, 
namely: 

• kIOTTYDeviceKey: a CFStringRef containing a descriptive name for the serial port 

• kIOCalloutDeviceKey: a CFStringRef containing the full path to the callout 
character device file for the serial port 

• kIODialinDeviceKey: a CFStringRef containing the full path to the dial-in character 
device file for the serial port 

To show how these properties can be used, the code in Listing 11-9 demonstrates how to enumerate 
all serial devices in the system and how to open each device. 

Listing 11-9. A Sample Application That Uses the I/O Kit to Enumerate all Serial Devices Present in the 

System and Find the Path of the Character Device for each Serial Port 

#include <CoreFoundation/CoreFoundation.h> 
#include <IOKit/IOKitLib.h> 
#include <IOKit/serial/IOSerialKeys.h> 
#include <sys/param.h> 
#include <fcntl.h> 
#include <unistd.h> 
 
int main (int argc, const char * argv[]) 
{ 
       CFMutableDictionaryRef             matchingDict; 
       io_iterator_t                      iter = 0; 
       io_service_t                       service = 0; 
       kern_return_t                      kr; 
        
       // Create a matching dictionary that will find any serial device 
       matchingDict = IOServiceMatching(kIOSerialBSDServiceValue); 
       kr = IOServiceGetMatchingServices(kIOMasterPortDefault, matchingDict, &iter); 
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       if (kr != KERN_SUCCESS) 
              return -1; 
        
       // Iterate over all matching objects 
       while ((service = IOIteratorNext(iter)) != 0) 
       { 
              CFStringRef           cfDeviceName; 
              CFStringRef           cfCalloutPath; 
              Char                  deviceName[256]; 
              Char                  calloutPath[MAXPATHLEN]; 
              Int                   fd; 
               
              // Get the device name 
              cfDeviceName = IORegistryEntryCreateCFProperty(service, CFSTR(kIOTTYDeviceKey), 
                                    kCFAllocatorDefault, 0); 
              CFStringGetCString(cfDeviceName, deviceName, sizeof(deviceName),  
                                    kCFStringEncodingUTF8); 
              CFRelease(cfDeviceName); 
               
              // Get the character device path 
              cfCalloutPath = IORegistryEntryCreateCFProperty(service,  
                                    CFSTR(kIOCalloutDeviceKey), kCFAllocatorDefault, 0); 
              CFStringGetCString(cfCalloutPath, calloutPath, sizeof(calloutPath), 
                                    kCFStringEncodingUTF8); 
              CFRelease(cfCalloutPath); 
               
              // The I/O Registry object is no longer needed 
              IOObjectRelease(service); 
               
              // Proceed to open and use the device at "calloutPath" as usual 
              printf("Found device %s at path %s\n", deviceName, calloutPath); 
               
              fd = open(calloutPath, O_RDWR | O_NOCTTY | O_NONBLOCK); 
              // Clear the O_NONBLOCK flag so subsequent I/O will block 
              fcntl(fd, F_SETFL, 0); 
               
              // Configure serial device with tcsetattr() 
              // Read and write with read() / write() 
               
              close(fd); 
       } 
        
       // Release the I/O Registry iterator 
       IOObjectRelease(iter); 
        
       return 0; 
} 
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Summary 
• A serial port provides a simple means of low-bandwidth data transfer between 

devices. Although you can no longer find an RS-232 or RS-422 serial port on 
modern Macs, many USB devices present themselves as a serial port, so support 
for serial port drivers is still part of the Mac OS X operating system. 

• A user space application accesses a serial port through a device file in the /dev 
directory, as is standard for the UNIX environment. 

• A serial port driver is implemented in the I/O Kit by implementing a subclass of 
the IOSerialDriverSync interface. This interface contains methods for opening 
and closing the serial port, configuring the port, and reading and writing data. 

• The I/O Kit provides a class known as IOSerialBSDClient that publishes the serial 
port driver to user space applications. This class receives requests from user space 
applications to read and write to the serial port, and passes the requests on to the 
kernel serial port driver. 

• The I/O Kit design allows a serial port driver to be implemented using the modern, 
object-oriented design of the I/O Kit, without having to deal with the legacy user 
space interface of a serial port device. 
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Audio Drivers 

Audio devices are among the most common peripherals attached to a computer apart from storage 
devices. They are used for everything from voice recorders to MP3 players, headsets with microphones, 
security systems, and DJ and professional recording systems. Many video devices also have audio 
capabilities and come with their own audio drivers that allow you to use the audio features of the device 
independently or together with the video features, for example, a web camera with a built-in 
microphone. The microphone will have its own audio driver, representing the microphone in the system 
as an audio device that can be used independently of the camera. 

Programming drivers for audio devices present a few unique challenges. Audio devices have strict 
latency requirements and must be fed a constant stream of data to avoid holes or glitches during 
playback or recording. The human ear is extremely sensitive and can detect even small glitches in only a 
few samples worth of data. Furthermore, audio data cannot be excessively buffered, as this will cause an 
unacceptable delay. For example, suppose you were playing loud music and received a phone call. You 
would not be happy if it took five seconds from when you pressed the pause button until the music 
actually stopped. Similarly, if you were playing a game firing a gun, you would expect to hear the sound 
of the gun firing almost immediately, not several seconds after you pulled the trigger. Therefore, an 
audio device must minimize buffering in order to alleviate these effects. 

While the preceding examples specifically mentioned playback, buffering must also be minimized 
when capturing audio with an input device. For example, if you had a telephone connected via the input 
device, you wouldn’t want to hear the other person’s voice several seconds late. Because an audio buffer 
must be kept small in order to keep the latency or lag down, it will also need to respond to the hardware 
with as little latency as possible to avoid situations where the audio producer overtakes the audio 
consumer, or vice versa, which would lead to audible distortions. Because of these constraints and the 
fact that an audio driver needs to respond to multiple clients, it is a prime candidate for a kernel-level 
driver. 

Core Audio is the term used to describe the entirety of audio support under Mac OS X. This includes 
a myriad of user space APIs as well as the kernel KPI, implemented by the IOAudioFamily interface that 
will be the subject of this chapter. 

An Introduction to Digital Audio and Audio Devices 
Sound waves are analog by nature, and as we know, analog signals aren't easily stored or manipulated by 
a computer system that stores and processes information digitally. Other devices, such as CD, DVD, and 
Blu-Ray players, also operate with digital audio.  

Digital audio information is mainly derived from an analog audio wave by a process known as Pulse 
Code Modulation (PCM). PCM works by sampling or taking a measurement of the analog audio wave at 
fixed intervals. The number of measurements taken per second is known as the sample rate. Audio on a 
CD is sampled at 44.1 kHz. Other sources, such as HD video, may use 48 kHz, which means there are 
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48000 measurements of the audio wave performed per second. Each measurement is known as a 
sample. 

The sample is a measurement of the analog signal's amplitude at the time of the measurement, 
which is then quantized to a digital scale. The range of this scale is known as the bit depth or sample 
depth. For CD audio and many other applications, the bit depth is 16 bits, which gives each sample a 
possible value between −32768 and 32767. When a sample is taken, the value is converted into this scale 
by rounding it to the nearest integer value. The higher the sample rate and sample width, the more 
accurate the representation of the original audio wave. 

As computer programmers, we rarely need to care about the conversion of a signal from analog to 
digital or vice versa, as that is handled by circuitry on the audio hardware (ADC/DAC). However, a 
programmer needs to be aware of what digital PCM samples represent and understand the significance 
of the sample rate and depth. PCM samples are typically stored with channels interleaved in memory, as 
shown in Figure 12-1. 

 

Figure 12-1. Buffer of interleaved 16-bit signed PCM samples 

As you can see in Figure 12-1, the data corresponding to each channel are not stored sequentially 
but are interleaved in the buffer. The buffer above uses 16 bits per sample, which means that each 
sample occupies two bytes. A pair of left/right samples is referred to as a sample frame (or sample 
group). If there were more than two channels, for example, eight (as used by HDMI), a sample group 
would instead consist of channels 1–8. Most digital audio systems expect audio data in this format and 
usually this is how audio is stored in a file on a computer, assuming the audio is uncompressed. File 
formats such as MP3 compress the audio data; however, they have to decompress the audio back to 
interleaved PCM samples before it can be played back by the audio hardware. Audio at 44.1 kHz will give 
us 44100 sample frames per second. If the sample depth is 16 bits and there are two channels, we need 
176.4 KB (44100 Hz * (16/8 bits) * 2 channels = 176400 bytes) of data to store a single second of audio. 
PCM samples aren’t necessarily always 16 bits wide, however. The sample depth can also be 8, 20, 24, or 
32 bits. Furthermore, samples can be stored as unsigned or signed, or even in floating point, which is the 
preferred audio format of Core Audio. Table 12-1 shows some commonly used PCM formats. 

Table 12-1. Examples of PCM Sample Formats 

Sample Depth Sample Width Storage Type 

8 8 signed integer 

16 16 signed integer 

24 32 signed integer 

32 32 signed integer 

32 32 signed floating point 
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An audio device and driver usually revolve around the concept of a sample buffer. The sample 
buffer usually contains interleaved PCM samples (assuming there is more than one channel). The 
sample buffer is a circular buffer allocated by the driver. For audio playback, the hardware device usually 
continuously reads the buffer. The device will access the memory of the buffer directly via direct 
memory access (DMA) without involving the CPU and issue an interrupt at some fixed interval to let the 
driver know the current location the device is reading from. This is necessary so that whatever is 
producing the audio data can write to the correct location without interfering with the device. After a 
period has elapsed, we know that a certain number of samples have been played by the device. In this 
case, it is common for the driver to erase the played samples. This ensures that silence will be outputted 
rather than repeating previous data should the buffer wrap around to the start without any new audio 
being inserted into the buffer. In the case of audio input, the process is simply reversed. Instead of 
reading from the buffer, the device will be writing audio samples into the sample buffer. It will also issue 
an interrupt, letting you know when/where audio samples can be read. 

Some audio devices may have multiple independent inputs and outputs. In this case, each input 
and output may have its own sample buffer. Mac OS X comes with a USB audio device driver so no third 
party driver is generally needed for devices that conform to the USB audio interface. 

Core Audio 
Core Audio is an umbrella term used to describe the collective audio support under Mac OS X and iOS. 
This support consists of a number of frameworks, including the CoreAudio.Framework itself. The audio 
architecture is shown in Figure 12-2. 

 

Figure 12-2. Mac OS X and iOS audio architecture 

The core of the architecture is implemented in the Audio HAL (hardware abstraction layer), which 
acts as an intermediary between the frameworks, applications, and the audio hardware and driver. The 
current architecture exists to address a number of limitations with the previous audio architecture found 
in Mac OS 9. In OS 9, an application using an audio device wrote directly into the driver’s double-
buffered sample buffer. As a consequence, OS 9 could only handle audio output from a single 
application at a time. Furthermore, because of the direct access, the application had to write audio in a 
format supported by the audio device, which limited it to only support mono or stereo 16-bit PCM 
samples.  
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Under OS X and iOS, this limitation is removed. Instead of having an application talk directly to the 
driver, it instead interfaces with the Audio HAL. Core Audio takes care of combining audio from multiple 
applications and threads into a single buffer. Each application is free to choose any audio format 
supported by the HAL. The HAL will convert the audio buffer into 32-bit floating-point samples before 
handing the buffer to the driver. The driver is then responsible for converting the buffer from floating-
point format to the native format supported by the audio hardware. The same is also the case for audio 
input. The driver is expected to convert incoming audio into 32-bit floating samples before the audio can 
be transferred back to the HAL. 32-bit floating-point format is used as it has a very high dynamic range, 
which ensures that precision will not be lost during conversion to or from another format. 

While the Core Audio framework itself provides low-level access to audio drivers, Core Audio as the 
collective audio architecture provides numerous other frameworks built on top of it, such as follows: 

• Audio Toolbox framework provides a diverse set of APIs for tasks such as audio 
clock synchronization, reading and writing of audio files, APIs for music playback, 
Audio conversion API, Audio graph API, and much more. 

• Audio Units framework provides support for writing filters, such as equalizers and 
band-pass filters. 

• Core Audio Kit framework allows the creation of Cocoa GUIs for Audio Units. 

• Core MIDI / MIDI Server framework contains APIs for working MIDI. 

• OpenAL is the Mac OS X implementation of the Open Audio Library. 

I/O Kit Audio Support 
The IOAudioFamily handles audio in the kernel and facilitates the creation of drivers for audio hardware. 
The responsibility of an audio driver is conceptually very simple; it merely transfers data to and from the 
hardware on behalf of clients (much like any hardware driver). It is also responsible for performing 
actions like muting, controlling the volume, or other configurable attributes. Core Audio uses 32-bit 
floating-point format as its native audio format and because not all devices will support this, a driver 
must handle conversion to and from a format the hardware is able to handle. Figure 12-3 shows the 
hierarchy of classes that make up the IOAudioFamily. 

 

Figure 12-3. IOAudioFamily classes 
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Let’s have a look at the role of each class in the family. 

• The IOAudioDevice class serves as a central coordination point for an audio driver. 
It is responsible for attaching to a hardware provider and configuring and 
initializing the hardware. The class itself is not usually directly involved in the I/O 
of audio, which instead is the role of IOAudioEngine. The IOAudioDevice class also 
centralizes timing and synchronization services. 

• The IOAudioEngine represents the DMA or I/O engine of an audio driver. Because 
an audio device can have many inputs and outputs that operate independently, it 
makes sense to encapsulate their behavior into their own class. If you look at the 
I/O Registry entries for the Apple built-in audio device on a Mac Pro, you will see 
the Apple audio driver has five instances of IOAudioEngine representing Line 
input, S/PDIF optical input, Headphone output, Line output, and S/PDIF optical 
output. An IOAudioEngine must allocate at least one IOAudioStream. The 
IOAudioEngine is an abstract class. 

• The IOAudioStream represents a sample buffer. A sample buffer has a direction 
associated with it, which can be either input or output. It also has metadata that 
describes the formats it is capable of supporting, such as the numeric format of 
the contained samples, the sample rate, and the number of channels supported. 
The class is not abstract and can be instantiated directly. The class does not 
allocate memory for the sample buffer itself. It has to be told the location of the 
buffer. It is responsible for exposing the sample buffer to user space consumers. 
The audio stream also maintains an internal mix buffer where audio from multiple 
sources is mixed together into a single stream. 

• The IOAudioControl class represents a tunable parameter of the device, such as 
the input volume, output volume, and mute. The IOAudioControl class is directly 
usable, but you can also subclass it yourself to create custom controls. Three 
subclasses of IOAudioControl exist, IOAudioLevelControl, IOAudioSelectorControl, 
and IOAudioToggleControl. A control may belong to the device itself, the engine, 
or an IOAudioPort. 

•  IOAudioPort can be used to represent a logical or physical port, such as Line out 
or Headphone out. The use of this class is not required for an audio driver. 

• The Core Audio framework communicates with an IOAudioEngine through the 
IOAudioEngineUserClient, which allows it to interact with the engine’s sample 
buffers for the purpose of playing back or capturing audio. 

• The IOAudioControlUserClient serves as a user client for IOAudioControl instances 
and allows manipulation. This is how an application, such as System Preferences, 
can control volume or mute. 

Implementing an Audio Driver 
Now let’s look at how a kernel audio driver can be implemented using the example project 
MyAudioDevice. We only show excerpts from this as it pertains to the topic in question; however, you can 
inspect the full source code of MyAudioDevice by downloading it from the Apress web site. For the sake of 
simplicity, we will make the driver as basic as possible. As there is no standardized widely available 
audio hardware we can build a driver for, we will build a virtual audio driver. The driver will have one 
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output and one input so we can perform both functions. The driver will operate as a loopback device, 
which means that audio we play will be transferred from the output buffer to the input buffer. We leave 
it as an exercise for you, the reader, to do something more interesting, perhaps attach it to an actual 
audio device and forward audio data to or from it, or route audio to or from a network. 

If everything works, we should be able to play a song using an application like iTunes and then 
capture the results using the audio recording feature of the QuickTime player. We will not be able to hear 
the audio as it plays, as it is not routed to a speaker. Additionally, the OS X sound preferences only allow 
output on a single device at a time, which prevents us from hearing the audio played on a different audio 
output. However, we will be able to hear the recording once we play it back again (after having selected 
an output other than our device). Once the driver is loaded, it should be visible under System Preferences 
➤ Sound, as shown in Figure 12-4. 

 

Figure 12-4. The Audio pane of System Preferences showing MyAudioDevice selected as the active output 

The driver will be based on the example driver provided by the IOAudioFamily source code 
distribution called SampleAudioDevice. If you wish to learn more about audio drivers, you can look at its 
implementation as well as the second example, SamplePCIAudioDevice. Note that neither example is 
actually functional; rather, they serve as skeletons or starting points for a new driver, unlike 
MyAudioDevice, which is a working implementation of an audio driver. 

In order to interface with the Core Audio system, our driver needs to implement an instance of 
IOAudioDevice. Note that it is entirely possible to implement a driver for an audio device without using 
the IOAudioFamily at all. The downside is that you would need to provide your own API for applications 
to access the device. Furthermore, existing applications would need modifications to be able to use your 
device because most applications depend on Core Audio or a framework that uses Core Audio instead. 

Our driver will use IOAudioFamily. The architecture of MyAudioDevice and how it interacts with the 
classes of the IOAudioFamily can be seen in Figure 12-5. 
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Figure 12-5. MyAudioDevice architecture 

The virtual device will consist of a subclass of IOAudioDevice called MyAudioDevice. This will in turn 
allocate a single instance of the MyAudioEngine class, which is derived from IOAudioEngine. The main 
class will also allocate a number of IOAudioControl instances, which will be used to represent controls 
for adjusting the output and input volume levels for the left and right channels, as well as controls to 
mute the output and input. Because we do not have an actual hardware device, these controls will not 
do anything, but we implement them anyway for demonstration purposes. The MyAudioEngine class will 
represent the I/O engine in lieu of actual hardware. The class will allocate two IOAudioStream instances, 
one for the output sample buffer and one for the input sample buffer. When data enters the output 
buffer, we will simply copy the data over to the input buffer. 

Driver and Hardware Initialization 
IOAudioEngine primarily performs hardware initialization and its implementation is often quite 
minimalistic, as much of the complexity of an audio driver will be implemented as a subclass of 
IOAudioEngine. Nevertheless, the class performs some important tasks internally, such as providing a 
central IOWorkLoop and IOCommandGate, which are shared by subordinate classes such as IOAudioEngine 
and are used to serialize access to the driver and hardware. The IOAudioEngine class also provides a 
shared timer service that can be used by other objects in the driver. An object can register to receive 
timer events with the addTimerEvent() function, as follows: 

virtual IOReturn addTimerEvent(OSObject *target, TimerEvent event, AbsoluteTime interval);  

The target argument should be a pointer to the object that will be notified of the timer event. The 
interval specifies the frequency of the timer event in units of AbsoluteTime (nanoseconds). The event 
argument specifies the callback function. An audio driver may typically need several timer events, for 
example, to poll the status of an output connector to sense if a jack was connected. 

The following steps are typically performed by an audio driver’s IOAudioDevice subclass. 
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• Configure the hardware device’s provider and enumerate any needed resources. 
For PCI or Thunderbolt, this means mapping device memory or I/O regions. For 
USB devices, enumerate interfaces and/or pipes. 

• Configure the device for operation. For example, take it out of reset/sleep mode by 
accessing the device’s registers or sending control requests. 

• If your driver supports multiple audio chips or a chip with a varying number of 
DMA channels, inputs, or outputs, the driver will need to interrogate the device to 
work out its exact capabilities. 

• Set the name and description of the audio device, which will identify it to Core 
Audio and user space applications. 

• Based on information extracted from the device, create the appropriate number of 
IOAudioEngine instances, which in turn will allocate one or more IOAudioStream 
instances, along with associated sample buffers. 

The header file for the MyAudioDevice class is shown in Listing 12-1. 

Listing 12-1. Header File for the MyAudioDevice Class 

#ifndef _MYAUDIODEVICE_H__ 
#define _MYAUDIODEVICE_H__ 
 
#include <IOKit/audio/IOAudioDevice.h> 
 
#define MyAudioDevice com_osxkernel_MyAudioDevice 
 
class MyAudioDevice : public IOAudioDevice 
{     
    OSDeclareDefaultStructors(MyAudioDevice); 
     
    virtual bool initHardware(IOService *provider); 
    bool createAudioEngine(); 
     
    // Control callbacks 
    static IOReturn volumeChangeHandler(OSObject* target, IOAudioControl *volumeControl,  
                                        SInt32 oldValue, SInt32 newValue); 
    virtual IOReturn volumeChanged(IOAudioControl *volumeControl, SInt32 oldValue, SInt32  
                                   newValue); 
     
    static IOReturn outputMuteChangeHandler(OSObject* target, IOAudioControl *muteControl,  
                                            SInt32 oldValue, SInt32 newValue); 
    virtual IOReturn outputMuteChanged(IOAudioControl* muteControl, SInt32 oldValue, SInt32  
                                       newValue); 
     
    static IOReturn gainChangeHandler(OSObject* target, IOAudioControl* gainControl, SInt32  
                                      oldValue, SInt32 newValue); 
    virtual IOReturn gainChanged(IOAudioControl* gainControl, SInt32 oldValue, SInt32  
                                 newValue); 
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    static IOReturn inputMuteChangeHandler(OSObject* target, IOAudioControl *muteControl,  
                                           SInt32 oldValue, SInt32 newValue); 
    virtual IOReturn inputMuteChanged(IOAudioControl* muteControl, SInt32 oldValue, SInt32  
                                      newValue); 
}; 
 
#endif 

As you may have noticed, a number of the usual I/O Kit lifecycle methods, such as start() and 
stop(), are missing. This is because the super-class IOAudioDevice implements them for us. The start() 
method will take care of registering for power management and will then call the initHardware() 
method, which a driver should implement. Our class also implements a number of callbacks for audio 
controls, which we will discuss in more detail later in this chapter. The initHardware() is the preferred 
method for performing hardware-related initialization. Before the method returns, it should create at 
least one instance of an IOAudioEngine and activate it, which is done by calling the 
activateAudioEngine() method. The initHardware() method of MyAudioDevice is implemented as 
follows: 

bool MyAudioDevice::initHardware(IOService *provider) 
{ 
    bool result = false; 
     
    IOLog("MyAudioDevice[%p]::initHardware(%p)\n", this, provider); 
     
    if (!super::initHardware(provider)) 
        goto done; 
         
    setDeviceName("My Audio Device"); 
    setDeviceShortName("MyAudioDevice"); 
    setManufacturerName("osxkernel.com"); 
         
    if (!createAudioEngine()) 
        goto done; 
     
    result = true; 
     
done: 
    return result; 
} 

Since MyAudioDevice is not backed by a real hardware device, there is not much to do. We set the 
device name, a short name, and the manufacturer name, which will be used by Core Audio for various 
purposes. The device name will be visible in the OS X System Preferences. Strings set by an audio driver 
should be localized if possible because OS X is multi-lingual. If you have a descriptive string such as 
“Headphone Output” or “Microphone Input,” these may not be meaningful to someone who doesn’t 
speak English. 

The final step of the function is to call an internal method called createAudioEngine(), which will 
initialize and create an instance of the IOAudioEngine subclass, MyAudioEngine. The method simply 
allocates an instance and then calls activateAudioEngine() on the created instance before returning. 
The method also creates the audio controls, as you shall see next. 
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■ Note  Once activateAudioEngine() returns, you can call release() on the instance if you no longer need it, 
because it will be retained and released internally by the IOAudioEngine super class anyway. 

Registering Audio Controls 
An audio device will usually have one or more controllable attributes, such as the ability to adjust the 
volume level, mute, or perform some other adjustment. In order to make these controls visible to user 
space clients, an IOAudioControl is needed to describe each attribute. As previously mentioned, there are 
three subclasses of IOAudioControl provided by IOAudioFamily. The first is IOAudioLevelControl, which is 
used to control volume level. The control can also be used for creating any type of control that allows 
you to select a value out of a range. Following is an example of how to create and register a volume 
control for the left channel from Apple’s SampleAudioDevice driver. 

    control = IOAudioLevelControl::createVolumeControl 
                  (65535,   // Initial value 0,                  // min value 
                   65535,                                        // max value 
                  (-22 << 16) + (32768),                         // -22.5 in IOFixed (16.16) 
                   0,                                            // max 0.0 in IOFixed 
                   kIOAudioControlChannelIDDefaultLeft, 
                   kIOAudioControlChannelNameLeft, 
                   0,                                           // control ID - driver-defined 
                   kIOAudioControlUsageOutput); 
    if (!control) { 
        goto Done; 
    } 
     
    control->setValueChangeHandler(volumeChangeHandler, this); 
    audioEngine->addDefaultAudioControl(control); 
    control->release(); 

The volume control is created using the special factory method createVolumeControl(). The three 
first parameters of the method represent the initial volume value, the minimum value, and the 
maximum value. You may specify different values to match your hardware’s register specification or you 
can translate the values in the callback to match the range expected by the hardware’s volume control 
register. The two next parameters set the dB values the minimum and maximum values correspond to. 
The volume scale usually goes from 0.0 dB, which represents full volume, to some negative dB value. The 
volume is at its default level at 0.0 dB and is attenuated in order to lower the volume of the signal. The dB 
value is stored as a fixed-point value. The next parameter is the channel ID. We specify 
kIOAudioControlChannelIDDefaultLeft to indicate that this control is for the left stereo channel. The 
IOAudioFamily specifies constant names for other channels as well, such as 
kIOAudioControlChannelIDDefaultCenter, kIOAudioControlChannelIDDefaultSub, and 
kIOAudioControlChannelIDDefaultLeftRear. The channel definitions are declared in 
IOKit/audio/AudioDefines.h. 

The next parameter is a string with a descriptive name for the channel. As with the channel ID, we 
use a predefined constant. The next parameter is an identifier that can be used by the driver to pass a 
value, which will not be interpreted by either IOAudioFamily or Core Audio. The last argument specifies 
what the control will be used for. In our case, we set it to kIOAudioControlUsageOutput, which indicates 
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to Core Audio this is an output volume control. Other possible values are kIOAudioControlUsageInput, 
kIOAudioControlUsagePassThru, or kIOAudioControlUsageCoreAudioProperty. 

Once a control is constructed successfully, you need to set the callback function, which will be 
invoked when the control is manipulated from user space. This callback must be a static member 
function, which can be implemented as follows: 

IOReturn SampleAudioDevice::volumeChangeHandler(IOService *target, IOAudioControl 
*volumeControl, SInt32 oldValue, SInt32 newValue) 
{ 
    IOReturn result = kIOReturnBadArgument; 
    SampleAudioDevice *audioDevice; 
     
    audioDevice = (SampleAudioDevice *)target; 
    if (audioDevice) { 
        result = audioDevice->volumeChanged(volumeControl, oldValue, newValue); 
    } 
    return result; 
} 
 
IOReturn SampleAudioDevice::volumeChanged(IOAudioControl *volumeControl, SInt32 oldValue, 
SInt32 newValue) 
{ 
    IOLog("SampleAudioDevice[%p]::volumeChanged(%p, %ld, %ld)\n",  
           this, volumeControl, oldValue, newValue); 
    if (volumeControl) { 
        IOLog("\t-> Channel %ld\n", volumeControl->getChannelID()); 
    } 
     
    // Add hardware volume code change  
 
    return kIOReturnSuccess; 
} 

The callback will provide a pointer to the control whose value was changed, which lets the same 
callback function service multiple controls. The callback will be passed the old value as well as the new 
value. For most hardware drivers, the method would then write the new value to a hardware register, 
which will have the effect of increasing or reducing the volume or performing some other action. 

Either an IOAudioEngine instance or an IOAudioStream can have controls attached. In either case, 
you attach to the parent by calling the addDefaultAudioControl() method, as shown above. Mute 
controls are implemented similarly to volume controls, but using the createMuteControl() factory 
method instead, as follows: 

    // Create an input mute control 
    control = IOAudioToggleControl::createMuteControl(false,    // initial state - unmuted 
                               AudioControlChannelIDAll,        // Affects all channels 
                               kIOAudioControlChannelNameAll, 
                               0,                               // control ID - driver-defined 
                               kIOAudioControlUsageInput); 

Unlike the volume control, which operates on a single channel, the mute control in this case is 
specified to apply to all channels in this case. 
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Implementing an Audio Engine 
The audio engine performs the actual I/O in an audio driver. An audio engine is implemented as a 
subclass of the abstract IOAudioEngine class. It controls the I/O behavior and handles the transfer of one 
or more related sample buffers. Many audio devices can drive multiple independent inputs and outputs 
at the same time; in this case, it is recommended to create more than one instance of IOAudioEngine, one 
for each I/O channel. The following steps are needed to implement an IOAudioEngine subclass: 

• Override the initHardware() method to perform any additional hardware 
initialization needed. 

• Allocate sample buffers and associated IOAudioStream instances. 

• Implement the performAudioEngineStart() and performAudioEngineStop() 
methods to start and stop the I/O. 

• Implement the free() method to clean up any used resources. 

• Implement the getCurrentSampleFrame() method. 

• Implement the performFormatChange() method to respond to change of format 
requests from Core Audio. 

• Implement a mechanism to inform the super class of the timestamp of when the 
sample buffer wraps back to the beginning. 

• Implement the clipOutputSamples() method for output streams and/or the 
convertInputSamples() method for input streams. 

We will discuss the preceding steps in more detail in the following sections by examining the 
implementation of the MyAudioDevice example driver.  

An IOAudioEngine subclass is started and stopped directly by Core Audio through the 
IOAudioEngineUserClient. Once started, the engine will continuously run through the sample buffer. The 
IOAudioEngine subclass is responsible for telling the super class when the buffer wraps around to the 
start of the buffer by taking a timestamp. The Core Audio framework uses the timestamp to accurately 
predict the position of the sample buffer. The audio engine will also ensure that played samples in the 
sample buffer are erased. 

The header file for MyAudioDevice’s IOAudioEngine subclass is shown in Listing 12-2. 

Listing 12-2. Header File for the MyAudioEngine Class 

#ifndef _MYAUDIOENGINE_H_ 
#define _MYAUDIOENGINE_H_ 
 
#include <IOKit/audio/IOAudioEngine.h> 
 
#include "MyAudioDevice.h" 
 
#define MyAudioEngine com_osxkernel_MyAudioEngine 
 
class MyAudioEngine : public IOAudioEngine 
{ 
    OSDeclareDefaultStructors(MyAudioEngine) 
 



CHAPTER 12  AUDIO DRIVERS 

261 

public: 
   virtual void free(); 
    
   virtual bool initHardware(IOService* provider); 
   virtual void stop(IOService *provider); 
    
   virtual IOAudioStream *createNewAudioStream(IOAudioStreamDirection direction,  
                                               void* sampleBuffer, UInt32 sampleBufferSize); 
    
   virtual IOReturn performAudioEngineStart(); 
   virtual IOReturn performAudioEngineStop(); 
    
   virtual UInt32 getCurrentSampleFrame(); 
    
   virtual IOReturn performFormatChange(IOAudioStream* audioStream, const IOAudioStreamFormat*  
                                        newFormat, const IOAudioSampleRate* newSampleRate); 
    
   virtual IOReturn clipOutputSamples(const void* mixBuf, void* sampleBuf, UInt32  
                                      firstSampleFrame, UInt32 numSampleFrames,  
                                      const IOAudioStreamFormat* streamFormat,  
                                      IOAudioStream* audioStream); 
   virtual IOReturn convertInputSamples(const void* sampleBuf, void* destBuf, UInt32  
                                        firstSampleFrame, UInt32 numSampleFrames,  
                                        const IOAudioStreamFormat* streamFormat,  
                                        IOAudioStream* audioStream); 
    
private: 
   IOTimerEventSource*     fAudioInterruptSource; 
   SInt16*                 fOutputBuffer; 
   SInt16*                 fInputBuffer; 
   UInt32                  fInterruptCount; 
   SInt64                  fNextTimeout; 
    
   static void             interruptOccured(OSObject* owner, IOTimerEventSource* sender); 
   void                    handleAudioInterrupt(); 
}; 
 
#endif 

I/O Engine Initialization 
An IOAudioEngine has its own initHardware() method, which should be overridden to perform any I/O 
engine-specific hardware initialization, as well as allocation and initialization of other needed resources. 
Once the method returns, the engine should be ready to start I/O. performAudioEngineStart() can then 
be called to start the actual I/O. The initHardware() method gets called by the 
IOAudioDevice::activateAudioEngine() method in our case. Although IOAudioEngine derives from 
IOService, we do not override or call the start() method in this case. This is because the class is 
allocated and initialized by MyAudioDevice rather than by I/O Kit. The IOAudioEngine provides a default 
implementation of the start() method, which is hardwired to use an IOAudioDevice as its provider. 
Unlike start(), however, we do declare the stop() method. The stop() method can be implemented to 
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reverse any action performed in initHardware(). The initHardware() method of our MyAudioDevice 
driver is shown in Listing 12-3. 

Listing 12-3. The Implementation of initHardware() in MyAudioDevice 

#define kAudioSampleRate                  48000 
#define kAudioNumChannels                 2 
#define kAudioSampleDepth                 16 
#define kAudioSampleWidth                 16 
#define kAudioBufferSampleFrames          kAudioSampleRate/2 
// Buffer holds half second's worth of audio. 
#define kAudioSampleBufferSize           (kAudioBufferSampleFrames * kAudioNumChannels *  
                                         (kAudioSampleDepth / 8)) 
 
#define kAudioInterruptInterval           10000000 // nanoseconds (1000 ms / 100 hz = 10ms). 
#define kAudioInterruptHZ                 100 
 
bool MyAudioEngine::initHardware(IOService *provider) 
{ 
    bool result = false; 
    IOAudioSampleRate initialSampleRate; 
    IOAudioStream*    audioStream; 
    IOWorkLoop*       workLoop = NULL; 
     
    IOLog("MyAudioEngine[%p]::initHardware(%p)\n", this, provider); 
     
    if (!super::initHardware(provider)) 
        goto done; 
     
    fAudioInterruptSource = IOTimerEventSource::timerEventSource(this, interruptOccured); 
    if (!fAudioInterruptSource) 
        return false; 
         
    workLoop = getWorkLoop(); 
        if (!workLoop) 
                return false; 
 
    if (workLoop->addEventSource(fAudioInterruptSource) != kIOReturnSuccess) 
        return false; 
     
    // Setup the initial sample rate for the audio engine 
    initialSampleRate.whole = kAudioSampleRate; 
    initialSampleRate.fraction = 0; 
     
    setDescription("My Audio Device"); 
    setSampleRate(&initialSampleRate); 
     
    // Set the number of sample frames in each buffer 
    setNumSampleFramesPerBuffer(kAudioBufferSampleFrames); 
    setInputSampleLatency(kAudioSampleRate / kAudioInterruptHZ); 
    setOutputSampleOffset(kAudioSampleRate / kAudioInterruptHZ); 
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    fOutputBuffer = (SInt16 *)IOMalloc(kAudioSampleBufferSize); 
    if (!fOutputBuffer) 
        goto done; 
     
    fInputBuffer = (SInt16 *)IOMalloc(kAudioSampleBufferSize); 
    if (!fInputBuffer) 
        goto done; 
 
    // Create an IOAudioStream for each buffer and add it to this audio engine 
    audioStream = createNewAudioStream(kIOAudioStreamDirectionOutput,  
                                       fOutputBuffer, kAudioSampleBufferSize); 
    if (!audioStream) 
        goto done; 
     
    addAudioStream(audioStream); 
    audioStream->release(); 
     
    audioStream = createNewAudioStream(kIOAudioStreamDirectionInput,  
                                       fInputBuffer, kAudioSampleBufferSize); 
    if (!audioStream) 
        goto done; 
     
    addAudioStream(audioStream); 
    audioStream->release(); 
     
    result = true; 
done: 
    return result; 
} 

The first task the method performs is to allocate an IOTimerEventSource, used to simulate interrupts 
in lieu of hardware. We also set the description using the setDescription() method. This string will be 
visible to the user in several places, including in the sound pane of System Preferences, as show in Figure 
12-4. 

The next step is to set the sample rate of our engine. The sample rate is a property of the 
IOAudioEngine. Therefore, if the engine manages multiple streams, they must all have the same sample 
rate. In the case of MyAudioDevice, we set the current sample rate to kAudioSampleRate, which is defined 
as 48000 for a 48 kHz sample rate. We also need to define the number of samples our sample buffers will 
contain. If there are multiple streams in the same engine, the buffers must be of the same size. In 
MyAudioEngine, we use two streams, one for input and one for output. The number of samples contained 
in the buffer is set using the setNumSampleFramesPerBuffer() method. We currently set it to 
kAudioBufferSampleFrames, which is defined as the sample rate divided by two, corresponding to 24000 
samples or half a second worth of audio. To calculate how many bytes 24000 samples correspond to, use 
the following formula: 

24000 samples * 2 channels * (16 bits / 8 bits = 2 bytes) =  96000 bytes 

This sample buffer size was chosen arbitrarily in our case; for a real world device, it will depend on 
the hardware’s capabilities and often the size may be configurable. The buffer and other parameters 
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must be defined such that Core Audio doesn’t write samples to a location before the hardware has had 
the chance to play them.  

The setInputSampleLatency() and setOutputSampleLatency() methods can be used to indicate to 
Core Audio the time it takes from when samples were scheduled to be played until they actually start 
playing in hardware. Some hardware devices may have additional buffering or delay before the audio 
goes out on the DAC. You can also specify input and output latency together using setSampleLatency(). 
We set the latency to a single interrupt period (10 miliseconds) as we do not have any hardware delay, 
but we want to give Core Audio some headroom before reading and writing samples. We have 100 virtual 
interrupts per second and a sample rate of 48000, the delay corresponds to 480 samples. Again, we have 
simply chosen the value 100 Hz for simplicity; the rate of interrupts for an actual device is determined by 
the audio hardware. 

We also have to allocate memory for the sample buffers. In MyAudioDevice, we are not performing 
DMA to a hardware device, so we simply allocate the input and output buffer using IOMalloc(). For a 
hardware-based driver, you need to either allocate IOBufferMemoryDescriptor or create a separate 
IOMemoryDescriptor for the buffer. The former is preferred. The buffers will then need to be prepared for 
DMA or I/O transfer. For DMA, you will need to translate the buffers’ addresses into physical addresses 
so they can be read by the hardware or set up a scatter/gather table, all of which can be achieved using 
the IODMACommand class. Each buffer needs to be associated with an IOAudioStream, which coordinates 
client access to the buffer. The IOAudioStream instances are allocated using the method 
createNewAudioStream(), which is not a member of IOAudioEngine but is defined to avoid duplicating 
code. An IOAudioStream is added to the engine using the addAudioStream() method. Once the streams 
have been added, the reference can be released; the super class will take care of the final release. 

Creating and Initializing Audio Streams 
An IOAudioEngine needs at least one IOAudioStream in order to do anything useful. A stream is associated 
with exactly one sample buffer and describes the formats and sample rate supported by the buffer. A 
stream is either an output or an input stream. Under the hood, IOAudioStream handles the mechanics of 
getting data in and out from the sample buffer. Internally, it maintains a mix buffer, in which audio data 
from multiple clients is mixed together in a single stream before ending up in the final sample buffer 
destined for the hardware. Maintaining the mix and sample buffers are the most complicated tasks an 
audio driver performs, and it’s all handled for us by the IOAudioStream class. For most cases, the default 
behavior of IOAudioStream should be sufficient; however, if your driver needs more advanced 
capabilities, you can override most methods in IOAudioStream to provide custom behavior. Shown below 
is the createNewAudioStream() method of MyAudioEngine responsible for creating the input and output 
stream. 

IOAudioStream *MyAudioEngine::createNewAudioStream(IOAudioStreamDirection direction,  
                                                   void* sampleBuffer, UInt32 sampleBufferSize) 
{ 
    IOAudioStream* audioStream; 
     
    audioStream = new IOAudioStream; 
    if (audioStream) { 
        if (!audioStream->initWithAudioEngine(this, direction, 1)) { 
            audioStream->release(); 
        } else { 
            IOAudioSampleRate rate; 
            IOAudioStreamFormat format = { 
                2,                                                  // num channels 
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                kIOAudioStreamSampleFormatLinearPCM,            // sample format 
                kIOAudioStreamNumericRepresentationSignedInt,   // numeric format 
                kAudioSampleDepth,                              // 16-bit 
                kAudioSampleWidth,                              // 16-bit 
                kIOAudioStreamAlignmentHighByte,                // high byte aligned - unused  
                                                                // because bit depth == bit  
                                                                // width 
                kIOAudioStreamByteOrderBigEndian,                
                true,                                           // format is mixable 
                0                                               // driver-defined tag - unused  
                                                                // by this driver 
            };  
            audioStream->setSampleBuffer(sampleBuffer, sampleBufferSize);             
            rate.fraction = 0; 
            rate.whole = kAudioSampleRate; 
            audioStream->addAvailableFormat(&format, &rate, &rate); 
            audioStream->setFormat(&format); 
        } 
    } 
    return audioStream; 
} 

The format of the sample buffer is described by the IOAudioStreamFormat structure. In the 
preceding case, we only added a single format and a single sample rate. You can define multiple 
supported formats and rates and add them by calling addAvailableFormat() for each defined format. 
The specification for our stream is Linear PCM signed integer samples at 16-bit depth/width in big-
endian byte order. In most cases, bit depth and bit width are the same, such as for 16-bit samples. The 
depth specifies the number of bits used by the audio sample, whereas the width specifies the width in 
bits of the data word it’s stored in. For example, this is used if you have 24-bit samples. A 24-bit sample 
occupies three bytes, which is awkward to work with and to align properly, so we instead use a 32-bit 
word to store each sample, which is more efficient in terms of performance (though it will waste eight 
bits per sample). If the width and depth do not match, the next field in the IOAudioStreamFormat 
structure must be set to either kIOAudioStreamAlignmentHighByte or kIOAudioStreamAlignmentLowByte to 
specify the alignment of the sample within the data word. 

Handling Format Changes 
Your IOAudioEngine will need to respond to requests from Core Audio to change the format of the 
engine’s audio streams. Requests to change format are handled with the performFormatChange() 
method, which should be overridden as the default is a stub that simply returns an error. The Apple 
IOAudioFamily sample implements the format change method, as follows: 

IOReturn SampleAudioEngine::performFormatChange(IOAudioStream *audioStream,  
                                                const IOAudioStreamFormat *newFormat,  
                                                const IOAudioSampleRate *newSampleRate) 
{ 
    IOLog("SampleAudioEngine[%p]::peformFormatChange(%p, %p, %p)\n", this, audioStream, 
newFormat, newSampleRate); 
     
    // Since we only allow one format, we only need to be concerned with sample rate changes 
    // In this case, we only allow two sample rates, 44100 and 48000,  
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    // so those are the only ones we check for. 
    if (newSampleRate) { 
        switch (newSampleRate->whole) { 
            case 44100: 
                IOLog("/t-> 44.1kHz selected\n"); 
                // Add code to switch hardware to 44.1khz 
                break; 
            case 48000: 
                IOLog("/t-> 48kHz selected\n"); 
                // Add code to switch hardware to 48kHz 
                break; 
            default: 
                // This should not be possible since we only specified 44100 and 48000  
                // as valid sample rates 
                IOLog("/t Internal Error - unknown sample rate selected.\n"); 
                break; 
        } 
    } 
    return kIOReturnSuccess; 
} 

■ Note  The performFormatChange() method will be called only for formats specified when IOAudioStreams 
were created. 

Clipping and Converting Samples 
Because Core Audio (Audio HAL) works with high-precision 32-bit floating-point samples, we must 
convert (unless supported natively by hardware) audio samples from floating-point format into a format 
the hardware can understand when outputting audio. Most audio hardware may only handle integer 
samples, as is the case with our virtual MyAudioDevice driver.  

The IOAudioEngine subclass should override the IOAudioEngine::clipOutputSamples() method if the 
engine has an output IOAudioStream. Similarly, it will need to override the 
IOAudioEngine::convertInputSamples() method if it has an input IOAudioStream. The methods are 
responsible for converting audio data to or from the native format as well as to clip samples. Clipping 
refers to the process of checking each sample to ensure it is within the valid range. For example, a 
floating-point sample has to be in the range of –1.0 to 1.0, and values lower or higher must be clipped to 
the nearest valid value. The clipOutputSamples() method for MyAudioDevice is implemented as follows: 

IOReturn MyAudioEngine::clipOutputSamples(const void *mixBuf, void *sampleBuf,  
                                                UInt32 firstSampleFrame,  
                                                UInt32 numSampleFrames,  
                                                const IOAudioStreamFormat* streamFormat,  
                                                IOAudioStream* audioStream) 
{ 
    UInt32 sampleIndex, maxSampleIndex; 
    float *floatMixBuf; 
    SInt16 *outputBuf; 
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    floatMixBuf = (float *)mixBuf; 
    outputBuf = (SInt16 *)sampleBuf; 
     
    maxSampleIndex = (firstSampleFrame + numSampleFrames) * streamFormat->fNumChannels; 
     
    for (sampleIndex = (firstSampleFrame * streamFormat->fNumChannels); sampleIndex < 
maxSampleIndex; sampleIndex++)  
{ 
        float inSample; 
         
        inSample = floatMixBuf[sampleIndex]; 
         
        if (inSample > 1.0) { 
            inSample = 1.0; 
        } else if (inSample < -1.0) { 
            inSample = -1.0; 
        } 
         
        // Scale the -1.0 to 1.0 range to the appropriate scale for signed 16-bit samples  
        // and then convert to SInt16 and store in the hardware sample buffer 
        if (inSample >= 0) { 
            outputBuf[sampleIndex] = (SInt16) (inSample * 32767.0); 
        } else { 
            outputBuf[sampleIndex] = (SInt16) (inSample * 32768.0); 
        } 
    }  
    return kIOReturnSuccess; 
} 

The method takes samples from the mix buffer containing the combined audio stream for all clients 
using our device, converts the samples, and transfers them into the final I/O buffer (fOutputBuffer). The 
method takes six arguments, as follows: 

1. A pointer to the mix buffer, from which you should get samples. 

2. The sampleBuf parameter is the sample buffer of the IOAudioStream given by 
the audioStream parameter.  

3. firstSampleFrame is the offset into the buffers you should start from.  

4. The numSampleFrames parameter is the number of samples you should convert 
and clip.  

5. The streamFormat parameter is an IOAudioStreamFormat structure, which 
describes the current format of the audio stream. 

6. A pointer to the IOAudioStream that owns the sample buffer.  

The implementation of convertInputSamples() is very similar, only the reverse is done; convert to 
floating-point samples instead of from floating-point samples. Check the source code for MyAudioDevice 
to see its implementation. If your driver supports multiple audio formats, your clip functions will be 
more complicated than the preceding, which handle only conversion to 16-bit signed integer samples. 

The MyAudioDevice implementation is taken from Apple’s example driver and is intended to be as 
simple as possible for demonstration purposes. Because the method has to manipulate every channel of 
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every sample frame, it is crucial that the method is as efficient as possible. To speed the code up, it 
would be possible to use a vector-based instruction set such as SSE to process multiple samples at a 
time. See Chapter 17 for information about how SSE instructions can be used in the kernel. 

The clip and convert methods are the best location to manipulate the audio data should your driver 
need to perform any sort of adjustment, such as filtering certain frequencies. If you are implementing a 
virtual audio device, you can perform virtual volume level adjustments simultaneously by attenuating 
the samples to the desired level or muting them by zeroing each sample. Can you modify MyAudioDevice 
to do this? 

The convertInputSamples() method is very similar to the output version, but one difference is that it 
should always write to the beginning of the destination, unlike clipOutputSamples(), which may start at 
an offset into the buffer. 

■ Tip  Consult the source of MyAudioDevice to see how the convertInputSamples() method is implemented. 

Starting and Stopping the Audio Engine 
The audio engine is started and stopped as needed by the Core Audio HAL. However, the start and stop 
actions don’t relate to the IOService lifecycle methods start() and stop(), which are called once when 
the driver loads for the first time and once before the driver is about to unload. Instead, the 
IOAudioEngine class provides the performAudioEngineStart() and performAudioEngineStop() methods, 
which, unlike the aforementioned, start and stop audio I/O only. In MyAudioDevice, the 
performAudioEngineStart() method is implemented as follows: 

IOReturn MyAudioEngine::performAudioEngineStart() 
{ 
    UInt64  time, timeNS; 
 
    IOLog("MyAudioEngine[%p]::performAudioEngineStart()\n", this); 
    fInterruptCount = 0; 
    takeTimeStamp(false); 
    fAudioInterruptSource->setTimeoutUS(kAudioInterruptInterval / 1000); 
     
    clock_get_uptime(&time); 
    absolutetime_to_nanoseconds(time, &timeNS); 
     
    fNextTimeout = timeNS + kAudioInterruptInterval; 
    return kIOReturnSuccess; 
} 

The performAudioEngineStart() method should do two things, ensure the device starts playing or 
capturing in hardware and ensure the initial timestamp of the sample buffer(s) is set by calling the 
takeTimeStamp() function. We will discuss the purpose and meaning of the takeTimeStamp() method in 
the next section. In MyAudioEngine, we simply take the first timestamp and schedule the interrupt timer 
to timeout in 10 ms. 

The performAudioEngineStop() will reverse the actions taken when the engine was started and 
disable interrupts so the device no longer performs I/O from the sample buffer and reset it into a state 
where it will be ready to run again. The MyAudioDevice driver implements the method as follows: 
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IOReturn MyAudioEngine::performAudioEngineStop() 
{ 
    IOLog("MyAudioEngine[%p]::performAudioEngineStop()\n", this); 
    fAudioInterruptSource->cancelTimeout(); 
    return kIOReturnSuccess; 
} 

The method simply cancels any further interrupts; however, the engine is left in a state where it is 
ready for I/O to be started again. When the driver is about to unload, its stop() method will be called and 
can be used to tear down anything performed in initHardware(). Audio streams and any controls 
attached to the class are cleaned up automatically by the super class. In our case, this leaves the stop() 
method looking much like performAudioEngineStop(), with the only additional step being to remove the 
interrupt source, as follows: 

void MyAudioEngine::stop(IOService *provider) 
{ 
    IOLog("MyAudioEngine[%p]::stop(%p)\n", this, provider); 
     
    if (fAudioInterruptSource) 
    { 
        fAudioInterruptSource->cancelTimeout(); 
        getWorkLoop()->removeEventSource(fAudioInterruptSource); 
    } 
    super::stop(provider); 
} 

Engine Operation: Handling Interrupts and Timestamps 
In an audio engine for a DMA-based device, there is actually not that much to do. The device will 
continuously read from the buffer for an audio output stream and write to the buffer for an audio input 
stream. The DMA engine will run more or less without any intervention once started. However, there is 
one very important task to perform, which is to inform the IOAudioEngine of the time when a sample 
buffer wraps around to the start and to keep track of how many times it has wrapped. It is critical that 
the timestamp is as accurate as possible. The information is used by the Audio HAL to keep track of the 
sample buffer position at any given time. This is important because Core Audio, unlike other audio 
architecture, does not receive direct notifications from the driver once an I/O cycle completes (i.e., the 
buffer wraps). Instead, it relies on the timestamps taken by the driver to predict the future position of the 
sample buffer. Taking a timestamp is achieved by calling the takeTimeStamp() method, which will store 
the current time in nanoseconds to an internal instance variable in the IOAudioEngine class 
(fLastLoopTime) and the loop count (fCurrentLoopCount). 

In the performAudioEngineStart() method, it takes the initial timestamp once the I/O begins. You 
will notice it passed false as an argument, which ensures the loop count is not incremented since we 
have not yet completed any loops. 

Therefore, at the basic level, assuming the hardware device issues an interrupt once it wraps around 
to the beginning of the buffer, an interrupt routine simply consisting of a call to takeTimeStamp() can be 
implemented. Some hardware devices allow the driver to program the rate of interrupts. In this case, you 
may want to count the interrupts and only call takeTimeStamp() once N interrupts have occurred. This is 
the case of MyAudioDevice, which is driven by a timer that “interrupts” every 10 ms. Our device operates 
at a rate of 48 kHz (48000 samples) and our buffer fits half a second of audio, which means it takes 500 
ms before our buffer wraps back to the beginning; therefore, we want to count 50 interrupts (50 * 10 ms) 
before calling takeTimeStamp().The code for MyAudioDevice’s interrupt handler is as follows: 
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void MyAudioEngine::interruptOccured(OSObject* owner, IOTimerEventSource* sender) 
{ 
    UInt64      thisTimeNS; 
    uint64_t    time; 
    SInt64      diff; 
     
    MyAudioEngine* audioEngine = (MyAudioEngine*)owner; 
 
    if (audioEngine) 
        audioEngine->handleAudioInterrupt(); 
    if (!sender) 
        return; 
     
    clock_get_uptime(&time); 
    absolutetime_to_nanoseconds(time, &thisTimeNS); 
    diff = ((SInt64)audioEngine->fNextTimeout - (SInt64)thisTimeNS); 
         
    sender->setTimeoutUS((UInt32)(((SInt64)kAudioInterruptInterval + diff) / 1000)); 
    audioEngine->fNextTimeout += kAudioInterruptInterval; 
} 
 
void MyAudioEngine::handleAudioInterrupt() 
{ 
    UInt32 bufferPosition = fInterruptCount % (kAudioInterruptHZ / 2); 
    UInt32 samplesBytesPerInterrupt =  
        (kAudioSampleRate / kAudioInterruptHZ) * (kAudioSampleWidth/8) * kAudioNumChannels; 
    UInt32 byteOffsetInBuffer = bufferPosition * samplesBytesPerInterrupt; 
     
    UInt8* inputBuf = (UInt8*)inputBuffer + byteOffsetInBuffer; 
    UInt8* outputBuf = (UInt8*)outputBuffer + byteOffsetInBuffer; 
         
    // Copy samples from the output buffer to the input buffer. 
    bcopy(outputBuf, inputBuf, samplesBytesPerInterrupt); 
    // Tell the buffer to wrap 
    if (bufferPosition == 0) 
    { 
        takeTimeStamp(); 
    } 
     
    fInterruptCount++;     
} 

In addition to taking timestamps whenever the buffer wraps, you are also required to implement the 
getCurrentSampleFrame() method, which should return the current position of the sample buffer. The 
sample position is used by IOAudioEngine to erase (set to zero/silence) samples that have already been 
played. The method is not required to return a 100% accurate position, but the position returned should 
be behind the hardware read head. Otherwise, you risk overwriting samples that have not yet been 
played, which again will result in pops, clicks, or other audio distortions. The buffer will be erased up to 
but not including the sample frame returned by the function. There are several ways of getting the 
position, such as reading it from a hardware register, using timestamps to calculate the position based 
on the sample rate, or using an interrupt count. MyAudioDevice uses the latter, as shown in the following 
example: 
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UInt32 MyAudioEngine::getCurrentSampleFrame() 
{ 
    UInt32 periodCount = (UInt32) fInterruptCount % (kAudioInterruptHZ/2); 
    UInt32 sampleFrame = periodCount * (kAudioSampleRate / kAudioInterruptHZ);         
    return sampleFrame; 
} 

Additional Audio Engine Functionality 
Previous sections have discussed the basic operation of the IOAudioEngine class. It does, however, have a 
number of other useful methods and capabilities. Some useful methods of IOAudioEngine we haven’t 
discussed so far are outlined in Table 12-2.  

Table 12-2. Summary of Additional IOAudioEngine Methods 

Method Description 

virtual void clearAllSampleBuffers() Zeros (silences) out all mix and sample buffers 
attached to the IOAudioEngine. 

virtual void 
clientClosed(IOAudioEngineUserClient 
*client); 

Called when a user space client closes the 
connection to the IOAudioEngine. 

virtual IOReturn convertInputSamplesVBR( 
const void* sampleBuf,  
void* destBuf,  
UInt32 firstSampleFrame,  
UInt32 &numSampleFrames,  
const IOAudioStreamFormat* streamFormat, 
IOAudioStream* audioStream) 

If overridden, provides an alternative to 
convertInputSamples() for returning a 
different number of samples from what was 
requested. 

virtual IOReturn eraseOutputSamples( 
const void* mxBuf, 
void* sampleBuf, 
UInt32 firstSampleFrame, 
UInt32 numSampleFrames, 
const IOAudioStreamFormat* streamFormat, 
IOAudioStream* audioStream) 

This is the method used internally by 
IOAudioEngine to erase the sample buffers. It 
is declared virtual so it is possible to override 
it if you need to alter how erasure is 
performed. You do not need to override this if 
you simply want to prevent erase from 
happening, as this can be achieved by calling 
setRunEraseHead(false).   

virtual bool getRunEraseHead() Returns true if the audio engine’s erase 
process is active. See setRunEraseHead(). 

virtual const IOAudioSampleRate* 
getSampleRate() 

Gets the current sample rate of the audio 
engine in samples per second. 
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Method Description 

virtual const IOAudioEngineStatus* 
getState() 

Gets the state of the audio engine, which can 
be either kIOAudioEngineRunning or 
kIOAudioEngineStopped. 

virtual const IOAudioEngineStatus* 
getStatus() 

Returns a pointer to the internal status buffer 
of the audio engine. This is a structure that 
contains the current loop count and 
timestamps, as well as the location of the 
erase head. 

virtual void setClockDomain(UInt32 
clockDomain = kIOAudioNewClockDomain) 

The method sets a property Core Audio can 
use to determine how an audio device clock is 
synchronized. 

virtual void setClockIsStable(bool 
clockIsStable) 

Used by Core Audio to determine how it 
should track the sample rate of the audio 
device. A device with an unstable clock source 
experiencing audio distortions may benefit 
from setting this to false. 

virtual void setInputSampleOffset(UInt32 
numSamples) 

Sets the position in the sample buffer where 
Core Audio will read. 

virtual void setMixClipOverhead(UInt32 
nexMixClipOverhead) 

This method can be called to hint to the 
IOAudioFamily the time taken by the mix and 
clip routine. The value should be a number 
between 1 and 99 and represents percentage 
of the sample buffer time. 

virtual void setOutputSampleOffset(UInt32 
numSamples) 

Sets the position where Core Audio will write 
to in the sample buffer. 

virtual void setRunEraseHead(bool 
runEraseHead) 

Disable the erase process. For an engine that 
only does input, this is disabled by default. 

Summary 
In this chapter, we have covered the following areas: 

• Digital audio and Pulse Code Modulation (PCM), which is a technique for 
converting an analog audio signal into a digital representation. We have also 
looked at how PCM samples are encoded and interleaved channel by channel. 
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• The Core Audio architecture, which collectively provides sound/audio support to 
Mac OS X and iOS. The cornerstone of Core Audio is the HAL, which coordinates 
the use of audio hardware on behalf of clients and allows multiple clients to access 
audio hardware simultaneously. 

• The Core Audio HAL, which always uses 32-bit floating-point format to represent 
audio samples. A driver is therefore responsible for converting the native format of 
the hardware to or from this format. 

• IOAudioFamily, which provides the kernel-level side of the audio architecture. The 
key classes of the family are IOAudioDevice, IOAudioEngine, and IOAudioStream. 

• The IOAudioDevice class, which represents a hardware audio device in the kernel. 

• The IOAudioEngine class, which represents a single I/O engine for which an 
IOAudioDevice may have more than one. The class is abstract. The audio engine 
class may have one or more IOAudioStreams associated with it. 

• An IOAudioStream is used to represent a single sample buffer. 

• The operation of an audio engine is conceptually simple, the engine simply needs 
to tell the super class (which again communicates with Core Audio/Audio HAL) 
when the device has wrapped to the beginning of the sample buffer and how 
many times this event has occurred. 
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Networking 

Network support in the kernel is implemented primarily in the BSD layer. The BSD flavors of UNIX are 
renowned for their robust and secure networking support. Consequently, code from the BSD networking 
stack has made its way into a wide variety of operating systems, including Mac OS X and iOS. While the 
networking support is primarily in the BSD layer, it has hooks into I/O Kit, which provides the interface 
for building hardware-based network drivers. A conceptual view of the kernel network architecture is 
shown in Figure 13-1. 

 

Figure 13-1. Conceptual view of the kernel network architecture 

From a user space application’s perspective, networking services are accessed through the 
BSD/POSIX socket API, with functions such as connect(), listen(), and bind(). However, the socket API 
is not only about networking. It also handles various forms of inter-process communication (IPC), such 
as UNIX domain sockets. Unlike most BSD versions, the XNU kernel also implements an in-kernel 
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socket API (KPI). This KPI allows the kernel and KEXTs to use sockets much the same way as in user 
space applications. The key difference is that functions in the socket KPI are named with a “sock_” 
prefix. For example, the connect() function is named sock_connect() in the kernel KPI.  

Higher-level APIs, like Core Foundation or Cocoa, build their network support on top of the socket 
API interface. The socket API communicates with the kernel through the standard system call interface. 
The socket layer shares many commonalities with the file system APIs; indeed, a socket is just a special 
type of file descriptor. In fact, the read() and write() system call functions can be used on socket 
descriptors as well. 

The kernel part of the socket API is responsible for queuing and routing data to and from the 
appropriate protocol handler in the protocol stack, which handles the tasks of constructing network 
packets and dividing the data into appropriately sized packets, adding checksums, etc. It’s in the 
protocol stack that TCP, UDP, and IP are handled. The protocol stack is also responsible for handling the 
details of routing, the firewall, and auxiliary protocols, such as ARP. Packets destined for external hosts 
end up in the interface layer of the BSD network stack. The interface layer again plugs into the network 
interface classes in the I/O Kit, which again communicates with a physical network device through its 
driver. 

Four key data structures are used in the BSD network stack: 

• The socket structure represents open sockets in user space or kernel space and is 
accessed using file descriptors from user space. 

• The domain structure is used to describe protocol families, such as IP version 4 
(PF_INET), IP version 6 (PF_INET6), or the local domain (PF_LOCAL/PF_UNIX). 

• The protosw describes individual protocol handlers for each supported protocol, 
such as IPv4, IPv6, TCP, UDP, ICMP, IGMP, or RAW. Protocols accessible through 
the sockets interface, such as TCP and UDP, are referred to by the identifiers 
SOCK_STREAM and SOCK_DGRAM, respectively, when an AF_INET socket is used. 

• The ifnet structure describes a network interface. Each interface listed by the 
command ifconfig, such as en0, en1, and lo0, is backed by an ifnet structure. An 
ifnet structure is also defined for each I/O Kit network driver. An I/O Kit driver 
doesn’t need to interface with the structure directly, as the IONetworkInterface 
class provides an abstraction for it. 

Another feature of the XNU kernel is the network kernel extensions (NKE) mechanism. NKE allows 
filters to be inserted at various levels of the network stack, such as in the sockets layer or IP layer. The 
NKE architecture allows you to write custom routing algorithms, and implement new protocols and 
virtual network interfaces. It can also be used for packet filtering and logging. Furthermore, the kernel 
supports the Berkeley Packet Filter (BPF), which allows raw network traffic to be routed to user space for 
analysis with tools such as tcpdump. We will look at the NKE system in more detail later in this chapter, as 
well as how to implement drivers for network devices in the I/O Kit. 

To get the most out of this chapter, it is necessary that you have some understanding of networking, 
of concepts such as TCP/IP and Ethernet, and that you are familiar with the layers of the OSI model. 

Network Memory Buffers 
Network Memory Buffers, or mbufs, is a fundamental data structure in BSD UNIX systems, including Mac 
OS X and iOS. While it is mostly a concept of the BSD network layer, you will also encounter the mbuf 
data structure when writing I/O network drivers. The structure is used to represent network packets and 
their metadata. The structure is not exposed to user space. The mbuf structure is shown in Listing 13-1. 
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Listing 13-1. The mbuf Data Structure 

struct mbuf { 
    struct  m_hdr m_hdr; 
    union { 
        struct { 
            struct  pkthdr MH_pkthdr;            /* M_PKTHDR set */ 
            union { 
                struct  m_ext MH_ext;           /* M_EXT set */ 
                char    MH_databuf[_MHLEN]; 
            } MH_dat; 
         } MH; 
         char    M_databuf[_MLEN];              /* !M_PKTHDR, !M_EXT */ 
    } M_dat; 
 }; 

The complete mbuf structure is fixed size and is currently 256 bytes long. This size includes both the 
header and the data held by the structure. To get the number of bytes available for data storage: (256 – 
sizeof(struct m_hdr)). To describe larger packets, multiple mbufs are linked together in a linked list as 
shown in Figure 13-2. 

 

Figure 13-2. A chain of mbuf structures 

A list of mbufs is called a chain. In Figure 13-2, a chain of three mbufs, each describing a packet, is 
shown. Each mbuf may contain chains of other mbufs making up the complete network packet. 

To reduce overhead with large packets, mbufs can have their structure point to an external buffer 
instead of using the internal storage of the mbuf. An mbuf structure with an external buffer is referred to as 
a cluster. The MH_ext field is used to describe the external buffer. The mbuf header (m_hdr) is located at the 
start of the structure and contains the length of the mbuf’s data, which is stored in the mh_len field. The 
header also contains the pointers for the next buffer in the chain, and the next entry in a list/or queue, 
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which usually represent a new packet; however, mbufs can also be used for storage of other control 
information. The mh_type and mh_flags are used to determine the type and options of an mbuf—for 
example, whether it has an associated external buffer. If an mbuf represents the start of a packet, the 
MH_PKTHDR will be set, and if the mbuf has external data, the MH_EXT flag will be set, which means that it is 
safe to access the mbuf’s MH_pkthdr or MH_ext structures. 

Working with Memory Buffers 
While the mbuf structure is found in many UNIX variants, the programming interface for working with 
them differs between platforms. The XNU kernel offers the mbuf KPI for working with mbufs. The idea of 
the KPI is to treat the mbuf as an opaque structure, which is only manipulated by KPI functions instead of 
accessing structure fields directly. This allows the mbuf implementation to change under the hood but 
still remain binary and source compatible with code that uses KPI. For this reason, when manipulating 
mbufs, we do not use the mbuf structure directly but rather use the handle mbuf_t as a reference. 

 Tip  The mbuf KPI header file is bsd/sys/mbuf.h. The full documentation for the KPI can be found at 
http://developer.apple.com/library/mac/#documentation/Darwin/Reference/KernelIOKitFramework/kp

i_mbuf_h/. 

Getting data in and out of mbufs can be achieved with the following functions: 

errno_t mbuf_copydata(const mbuf_t mbuf, size_t offset, size_t length, void *out_data); 
errno_t mbuf_copyback(mbuf_t mbuf, size_t offset, size_t length, const void *data, mbuf_how_t 
how);  

It is not always possible to use bcopy() or similar functions directly, because data in mbufs may be 
scattered over several structures or external buffers. The preceding functions simplify this task 
significantly. However, if the buffer is known to be contiguous, the mbuf_data() function can retrieve the 
pointer to the data area of the mbuf. The mbuf_copydata() function copies data from an mbuf (chain) to 
the memory location pointed to by the out_data parameter, which should be large enough to hold 
length bytes. 

The mbuf_copyback() does the reverse and allows you to copy data back to an mbuf. If the mbuf is not 
large enough, the function will grow the buffer by appending more mbufs to form a chain. The last 
parameter how should be either MBUF_WAITOK or MBUF_DONTWAIT, which indicates to the function whether it 
is allowed to block while allocating memory. In an interrupt routine or performance critical path, 
MBUF_DONTWAIT must be used and, generally, where possible, MBUF_DONTWAIT is preferred. 

The mbuf KPI offers several ways to construct new mbufs as shown here: 

errno_t mbuf_allocpacket(mbuf_how_t how, size_t packetlen, unsigned int *maxchunks, mbuf_t 
*mbuf);  
errno_t mbuf_allocpacket_list(unsigned int numpkts, mbuf_how_t how, 
                              size_t packetlen, unsigned int *maxchunks, mbuf_t *mbuf); 
errno_t mbuf_tag_allocate(mbuf_t mbuf, mbuf_tag_id_t module_id,  
                          mbuf_tag_type_t type, size_t length, mbuf_how_t how, void **data_p);  

Following is a brief description of the preceding functions: 
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• mbuf_allocpacket() allocates a chain of mbufs with a leading packet header of the 
specified length. maxchunks is an input/output parameter that specifies the 
maximum length of the chain. If NULL is specified, there is no limit. 

• mbuf_allocpacket_list() is identical to mbuf_allocpacket() but generates a list of 
mbuf chains instead. 

• mbuf_tag_allocate() allocates an mbuf but also allows one to specify additional 
data (tag) that will be passed along with the mbuf as it travels through the stack. 
The tag can be retrieved again by using the mbuf_tag_find() function. 

Besides allocating and copying data in and out of an mbuf, a common operation is to iterate through 
an mbuf chain using the mbuf_next() macro: 

void walk_mbuf(mbuf_t mbuf_head) 
{ 
    mbuf_t mb; 
    unsigned char* data; 
    size_t len; 
     
    for (mb = mbuf_head; mb; mb = mbuf_next(mb)) 
    { 
         data = (unsigned char*)mbuf_data(mb); // get pointer to data 
         len = mbuf_len(mb);                   // get length of this segment 
    } 
} 

Network Kernel Extensions 
The kernel supports extending the network stack at multiple levels through the Network Kernel 
Extensions (NKE) mechanism. An NKE is no different from a regular KEXT; it is merely a term used to 
describe a KEXT that interfaces with or extends the network stack. 

As such, NKEs are also dynamically loadable and unloadable at runtime. NKEs are not part of the 
I/O Kit, but located in the BSD layer. The NKE mechanism is unique to Mac OS X and not found in BSD 
UNIX flavors, such as FreeBSD. 

An NKE can be used for many purposes. Some examples of use include, but are not limited to, the 
following: 

• Custom firewall or security mechanisms, such as encryption 

• Adding support for new protocols 

• Adding support for new network interfaces 

• Creating virtual network interfaces 

• Creating custom routing schemes 

• Delaying, modifying, inspecting, or blocking network packets 

• Debugging network stack and drivers 

An NKE typically utilizes one of the following KPI/filtering mechanisms: 
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• Socket filter: Allows filters to be inserted at various points in the socket layer, and 
can filter inbound and outbound traffic as well as out-of-band communication. It 
can filter most protocols supported by the socket API. It is possible to modify, 
delay, or reject traffic. 

• IP filter: Allows filtering of IP version 4 and 6 traffic. 

• Interface filter: Allows traffic to be monitored and modified on a specific network 
interface. Since this happens at the end of the stack, all protocols and traffic 
destined for that interface will be visible. 

• Interface KPI: A programming interface for creating new network interfaces. 

• Protocol plumber: Provides the glue that connects a network protocol to a network 
interface. 

Kernel Control KPI 
The kernel control interface <sys/kern_control.h> is a KPI that allows a KEXT to communicate bi-
directionally with user space processes. This mechanism is often used in conjunction with NKEs to allow 
user space programs to control and configure a KEXT. A full discussion of the Kernel Control KPI is 
provided in Chapter 17. 

Socket Filters 
A socket filter is a powerful mechanism that allows intercepting of network and IPC traffic in the kernel’s 
socket layer. The socket layer (and hence the socket filter) is situated between user space and the 
network protocol stack in the kernel. Because of this, socket filters cannot peek at the IP or TCP header 
of an outgoing network packet because that happens later in the processing chain. However, it is still 
possible to filter IP-based traffic using a socket filter, as metadata, such as the IP address the packet is 
destined for, is known. The same is true for incoming traffic. The protocol stack will strip header 
information before it enters the socket layer. In effect, we are seeing the reassembled data that will 
eventually be read by a user space application. Because of this, a socket filter is not suitable for use when 
information from protocol headers is required, and one should use the lower level IP or interface filters 
instead. 

Another thing to note is that a socket filter cannot filter traffic from protocols that are not initiated 
through the socket API, because some auxiliary protocols are handled directly in the protocol stack. An 
example would be ARP and RARP requests, which are handled by the kernel and aren’t usually initiated 
by a user application but rather happen as a side effect of some other type of traffic. The socket API is 
most commonly used by user space applications or libraries, however, as previously mentioned, a socket 
KPI also exists, allowing the kernel to use socket communication in much the same way as user space. 
Kernel-initiated sockets can also be filtered. 

The socket interface isn’t restricted to just filtering data packets. It can also intercept out-of-band 
communication, such as calls to socket-related system calls like bind() and listen(). 

A socket filter is registered by filling out desired callbacks in the sflt_filter structure, as shown in 
Listing 13-2. 

www.allitebooks.com

http://www.allitebooks.org


CHAPTER 13  NETWORKING 

281 

Listing 13-2. The sflt_filter Structure Used to Register a Socket Filter (kpi_socketfilter.h) 

struct sflt_filter { 
        sflt_handle                       sf_handle; 
        int                               sf_flags; 
        char                             *sf_name; 
        sf_unregistered_func              sf_unregistered; 
        sf_attach_func                    sf_attach; 
        sf_detach_func                    sf_detach; 
        sf_notify_func                    sf_notify; 
        sf_getpeername_func               sf_getpeername; 
        sf_getsockname_func               sf_getsockname; 
        sf_data_in_func                   sf_data_in; 
        sf_data_out_func                  sf_data_out; 
        sf_connect_in_func                sf_connect_in; 
        sf_connect_out_func               sf_connect_out; 
        sf_bind_func                      sf_bind; 
        sf_setoption_func                 sf_setoption; 
        sf_getoption_func                 sf_getoption; 
        sf_listen_func                    sf_listen; 
        sf_ioctl_func                     sf_ioctl; 
        struct sflt_filter_ext { 
                unsigned int              sf_ext_len; 
                sf_accept_func            sf_ext_accept; 
                void                     *sf_ext_rsvd[5];        /* Reserved */ 
        } sf_ext; 
#define sf_len                            sf_ext.sf_ext_len 
#define sf_accept                         sf_ext.sf_ext_accept 
}; 

As you can see, there are quite a few callbacks, but only a few, such as sf_attach and sf_detach, are 
mandatory. Non-mandatory callbacks not needed by a filter can be set to NULL. A socket filter can 
operate in two modes; which mode is used depends on the flags set in the sf_flags field. There are two 
possible values: 

• SFLT_GLOBAL If set, the filter attaches itself to every socket that matches the 
protocol domain and protocol specified when the filter was registered. Once 
registered, the filter will be invoked for every new socket created matching the 
criteria. 

• SFLT_PROG The filter will be activated, only if an owner of the socket specifically 
requests it, by using the SO_NKE socket option to the setsockopt() system call. 

The first field of the structure sf_handle is used to identify the filter to clients when the filter is 
operating in programmatic mode (SFLT_PROG is set). It is also used to deregister the socket filter after use. 
The handle consists of a four-character sequence, which should be unique. Apple provides a registration 
process to apply for a unique character sequence called a creator code. The sft_name field is used for 
debug purposes and is commonly set to the bundle ID of the containing KEXT, but it can be anything. 

A socket filter is registered with the system using the sflt_register() function. 
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Building an Application-Level Firewall Using Socket Filters 
To better understand how the socket filter mechanism works, let’s look at an example of what it can be 
used for. While Mac OS X ships with an application-level firewall already (ALF.kext), we will do a very 
simplistic version to demonstrate the power of socket filters. The AppWall architecture consists of an 
NKE KEXT, which contains the socket filter. AppWall will solve the problem of preventing unauthorized 
programs from accessing the network. The socket filter can also log information about data transferred 
in either direction for a specified program, without interfering with its operation. Because AppWall will 
be proof-of-concept, we will limit it to support IP version 4 using the TCP protocol. 

Let’s get started by defining the socket filter: 

#define APPWALL_FLT_TCP_HANDLE       'apw0'      // codes should registered with Apple 
 
static struct sflt_filter socket_tcp_filter = { 
        APPWALL_FLT_TCP_HANDLE, 
        SFLT_GLOBAL, 
        “com_osxkernel_AppWall”, 
        appwall_unregistered, 
        appwall_attach,    
        appwall_detach, 

NULL, 
... 
        appwall_data_in, 
        appwall_data_out, 
        appwall_connect_in, 
        appwall_connect_out, 
        NULL, 
... 
}; 

 Tip  The unabridged source for AppWall will be made available on the publisher’s website: www.apress.com. 

Because of our requirements, we have left out a number of function pointers as NULL, as they are not 
relevant to our filter’s design. If you wish, you can easily modify AppWall to implement these as well.  

Let’s have a look at how we register the filter: 

kern_return_t AppWall_start (kmod_info_t * ki, void * d)  
{ 
... 
   ret = sflt_register(&socket_tcp_filter, PF_INET, SOCK_STREAM, IPPROTO_TCP); 
    if (ret != KERN_SUCCESS) 
        goto bail; 
     
    add_entry("ssh", 1);    // block the ssh application. 
    add_entry("nc", 0);     // log data from the nc application. 
    
    g_filter_registered = TRUE; 
... 
} 
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For brevity, we have left out general housekeeping code, such as allocating locks or error handling. 
Once the sflt_register() function returns, the filter may be active and we may start seeing our 
callbacks invoked. Therefore, it is vital that any needed resources, such as locks, are initialized prior to 
registering the filter.  

The sflt_register() function takes four arguments:  

• The pointer to the socket filter structure, as mentioned earlier. 

• The protocol domain, which we specify as PF_INET, which is the IP version 4 
family. 

• The type. We specify SOCK_STREAM, which refers to a full duplex stream-based 
socket. 

• And finally the protocol, which we specify as IPPROTO_TCP. 

 Tip  The domain, type and protocol values are the same as those used in the user space socket API. Check the 
man 2 socket manual page for more details about available domains, types, and protocols. 

If you wish to handle other protocols, such as UDP, a second call to sflt_register() is needed. 
Each registered filter needs its own unique handle, so you will need to declare a second structure for the 
UDP filter. If desired, the second structure may share some or all callbacks with the first. 

The last step is to add some entries to our list of blocked/monitored applications using the AppWall 
add_entry() function. In a real NKE, you would most likely have a kernel control that allowed a user 
space utility to configure this instead of hard coding. The add_entry() function creates an appwall_entry 
structure, as shown in Listing 13-3. 

AppWall Operation and Data Structures 
Before we start implementing the filter callbacks, we need to declare data structures to store information 
collected from the filter. We declare the data structures in a shared header file, which can be used by a 
user space utility in the future, but for now, is only used by the AppWall KEXT. The data structure is 
shown in Listing 13-3. 

Listing 13-3. AppWall Header File 

#define BUNDLE_ID   "com.osxkernel.AppWall" 
 
struct app_descriptor 
{ 
    char name[PATH_MAX]; 
    unsigned long bytes_in; 
    unsigned long bytes_out; 
    unsigned long packets_in; 
    unsigned long packets_out; 
    int           do_block; 
    int           outbound_blocked; 
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    int           inbound_blocked; 
 
}; 
 
#if defined (KERNEL) 
struct appwall_entry 
{ 
    TAILQ_ENTRY(appwall_entry)   link;  
    struct app_descriptor        desc; 
    int                          users;    
}; 
#endif 
 
#endif 

The first structure app_descriptor is used to hold the name of an application to be blocked or 
monitored. Entries with the do_block field set to non-zero are blocked, whereas a zero value means we 
will simply collect and report statistics for it.  

We use the name of the application and not a process indentifier (PID) to track every instance of 
that program. While this is not secure, because you can bypass by renaming the executable, it is fine for 
the sake of example.  

The field do_block will be non-zero, if we wish to block this particular application; if it is zero, we 
will instead collect statistics only. If we see a socket from an application for which no appwall_entry 
exists, our filter will ignore it. 

Attaching and Detaching the Filter 
The attach (sf_attach) and detach (sf_detach) functions are called whenever our filter attaches itself to a 
socket. This happens either because the client that owns the socket specifically request that we attach or 
for a global filter, when the socket is created. It is not possible to attach to a socket that is already 
established.  

Because a filter may intercept a high volume of sockets, the callbacks should avoid doing any heavy 
processing, as it may impact the system’s network performance. AppWall was designed for 
demonstration and to be as simple as possible, not as a high-performance socket filter.   

Let’s look at the implementation of the attach callback in AppWall: 

static   errno_t appwall_attach(void** cookie, socket_t so) 
{ 
    errno_t                 result = 0; 
    struct appwall_entry*   entry; 
    char                    name[PATH_MAX]; 
     
    *cookie = NULL; 
     
    proc_selfname(name, PATH_MAX); 
     
    lck_mtx_lock(g_mutex); 
     
    entry = find_entry_by_name(name); 
    if (entry) 
    { 
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        entry->users++; 
        *cookie = (void*)entry; 
        printf("AppWall: attaching to process: %s\n", name); 
    } 
    else 
        result = ENOPOLICY; // don't attach to this socket. 
     
    lck_mtx_unlock(g_mutex); 
    
    return result; 
} 

We are passed two arguments: The first is a cookie parameter that we can use to assign per-socket 
data. The cookie pointer will be passed back to us in every callback. The second argument is an opaque 
reference to the socket itself. Since the socket is opaque, it must be accessed with the socket KPI. 

RETRIEVING THE IP ADDRESS OF A SOCKET 

The following example shows how to use the socket KPI to get the IP address the socket is bound 
to: 

unsigned char addstr[256]; 
struct sockaddr_in  addr; 
sock_getsockname(so, (struct sockaddr*)&addr, sizeof(addr)); 
inet_ntop(AF_INET, &addr.sin_addr, (char*)addstr, sizeof(addstr)); 
printf("%s:%d\n", addstr, ntohs(addr.sin_port)); 

 

 
When the appwall_attach() function gets called, we are executing in the context of the task that 

created the socket, and we can, therefore, call proc_selfname(), which returns the process name of the 
current task. Once we have a name, we search the global linked list of appwall_entry structures to see if 
we can find a match. If a match is found, we increment its users count, and assign to the cookie return 
argument. 

All manipulation of the linked list is performed under a global mutex to protect against concurrent 
access. If a match is not found, we return ENOPOLICY. Any non-zero return code from the function will 
have the effect of preventing the filter from being attached to this socket (without affecting the sockets 
lifecycle) and, hence, no further callbacks will be seen for that socket. 

If you have a socket_t handle, you can manually attach to the socket by calling the sf_attach() 
function. 

The sf_detach() callback will be invoked when the filter should be detached from the socket, which 
occurs when a socket closes or as a result of the filter being unregistered with sflt_unregister(). The 
detach callback in AppWall is implemented as follows: 

static void 
appwall_detach(void* cookie, socket_t so) 
{ 
    struct appwall_entry*       entry; 
 
    if (cookie) 
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    { 
        entry = (struct appwall_entry*)cookie; 
         
        lck_mtx_lock(g_mutex); 
 
        entry->users--; 
        if (entry->users == 0) 
        { 
            printf("report for: %s\n", entry->desc.name); 
            printf("===================================\n"); 
             
            if (entry->desc.do_block) 
            { 
                printf("inbound_blocked: %d\n", entry->desc.inbound_blocked); 
                printf("outbound_blocked: %d\n", entry->desc.outbound_blocked);                   
            } 
            else 
            { 
                printf("bytes_in: %lu\n", entry->desc.bytes_in); 
                printf("bytes_out: %lu\n", entry->desc.bytes_out); 
                printf("entry->desc.packets_in: %lu\n", entry->desc.packets_in); 
                printf("entry->desc.packets_out: %lu\n",entry->desc.packets_out); 
            } 
            cookie = NULL; 
        }         
        lck_mtx_unlock(g_mutex); 
    } 
    return; 
} 

The function simply prints a report of how many times connections were blocked, or if the 
application was monitored, dumps statistics for how many bytes and packets were transmitted. 

Handling Connections 
A socket filter can intercept calls to the connect() system call for outgoing connections. The system call 
handler calls our filter by using the sf_connect_out filter function. The filter function is passed the 
following three arguments.  

• The cookie 

• A handle to the socket itself 

• A sockaddr structure describing the intended destination of the socket  

Returning non-zero from the callback will have the effect of propagating the error directly back to 
the caller of the connect() function (from kernel or user space) and will prevent the socket from being 
established without any packets going out on the network, which is how AppWall is able to block 
outgoing connections. 

There is a catch here for UDP. UDP is connectionless and is not required to call connect() at all; it 
will do so only to set the default address for send() and recv(), which does not result in outgoing 
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network traffic. Blocking UDP traffic can instead be done in the data out or in callbacks on a per packet 
basis. 

The sf_connect_in function, on the other hand, is not called in response to a system call like 
sf_connect_out but called by a protocol handler just before a new connection is established. The 
sf_connect_in callback is currently only invoked for TCP and does not apply to UDP. (It’s 
connectionless.) 

As with the output filter, it is possible to reject the connection by returning non-zero, preventing it 
from being established and sending any further data to the socket. The sf_connect_in callback takes the 
same arguments as the output callback, but the sockaddr structure will describe the remote address 
instead. AppWall implements the sf_connect_in filter function as follows: 

static  errno_t  
appwall_connect_in(void* cookie, socket_t so, const struct sockaddr* from) 
{ 
    struct appwall_entry*       entry; 
    errno_t                     result = 0; 
             
    entry = (struct appwall_entry*)cookie; 
    if (!entry) 
        goto bail; 
     
    lck_mtx_lock(g_mutex); 
 
    if (entry->desc.do_block) 
    { 
        printf("blocked incoming connection to: %s", entry->desc.name);  
        if (from) 
        { 
            printf(" from: "); 
            log_ip_and_port_addr((struct sockaddr_in*)from); 
        }         
        entry->desc.inbound_blocked++; 
        result = EPERM; 
    } 
    lck_mtx_unlock(g_mutex); 
bail: 
     
    return result; 
} 

The function looks for a non-NULL cookie, and if one is present, checks if the application owning the 
current socket should be blocked. 

Socket Data Input and Output 
The real power of socket filters are in the sf_data_in and sf_data_out filter functions. They allow 
interception of incoming and outgoing packets. Packets seen by a socket filter’s data functions are 
stripped of (or have not yet had attached) protocol header information, such as IP, TCP, or UDP headers. 
In the case of TCP and UDP, the information will represent the actual payload data, which will be 
delivered to or from a socket. If you need data from the protocol headers, you may wish to write an IP or 
interface filter instead. For incoming data packets, you can determine the network interface a packet 
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received by calling mbuf_pkthdr_rcvif() on the mbuf. For outgoing packets, this information isn’t 
available because the filter function executes before the packet is routed to a network interface. The 
sf_data_out function in AppWall is implemented as follows: 

static  errno_t  
appwall_data_out(void* cookie, socket_t so, const struct sockaddr* to, mbuf_t* data, 
                 mbuf_t* control, sflt_data_flag_t flags) 
{ 
   struct appwall_entry*       entry; 
   errno_t                     result = 0; 
             
    entry = (struct appwall_entry*)cookie; 
    if (!entry) 
        goto bail; 
 
    lck_mtx_lock(g_mutex); 
    entry->desc.bytes_out += mbuf_pkthdr_len(*data); 
    entry->desc.packets_out++; 
     
    if (entry->desc.do_block) 
        result = EPERM; 
    lck_mtx_unlock(g_mutex); 
bail: 
    return result; 
} 

The function accepts the following six parameters:  

• The cookie containing the pointer to the appwall_entry structure. 

• A socket_t reference to socket transmitting data.  

• A sockaddr structure containing the address of the host to which the packet is 
destined. The argument is NULL for TCP packets, but set for UDP. The destination 
of a TCP socket can be determined at the time the connection is created 
(sf_connect_out). 

• A pointer to an mbuf_t handle. Note that you cannot use the mbuf_t directly, as it is 
merely a handle, you have to use the mbuf KPI to extract data and information 
from it. Also note that the mbuf argument is a pointer, so it also functions as an 
output argument. It is possible to assign a different mbuf_t, which will be 
transmitted in lieu of the original. 

• A pointer to an mbuf_t handle containing additional control data.  

• The sixth parameter is used to indicate the type of data, such as normal, out-of-
band or records data. There are two valid flags: sock_data_filt_flag_oob and 
sock_data_filt_flag_record. A value of zero indicates normal data. 

In the AppWall case, the data in function is implemented in a similar way to the connect function by 
checking if the calling socket has a cookie attached, which in turn means that the packet should either be 
logged or blocked. We return EPERM to signal the caller that it should free the packet and halt further 
processing if the packet should be blocked (filtered). If you wish to keep the packet, but prevent it from 
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progressing further, you can return EJUSTRETURN instead, which will prevent the caller from freeing the 
packet. 

AppWall implements the data input function nearly identically. It will block an incoming packet by 
returning EPERM. 

 Tip  If you wish to learn more about socket filters, Apple provides a more comprehensive socket filter example, 
called: tcplognke, which can be found on their developer website. It shows how to log connections as well as how 
to swallow (delay) and re-inject packets at a later time. It also demonstrates some of the other filter functions we 
have not covered here and the user of the kernel control mechanism. 

Internet Protocol Filters 
Internet Protocol (IP) filters allow filtering and injection of incoming and outgoing IP packets. The IP 
filter mechanism works both for IPv4 and for IPv6. Because the IP operates at the network layer, there is 
no concept of connections or sessions, as that is handled by higher layer protocols and mechanisms. At 
the IP level, there are only packets going in and out. As a result, IP filters are significantly less complex 
than socket filters. The programming interface is similar to that of socket filters. An IP filter is defined by 
the structure ipf_filter: 

struct ipf_filter {  
    void*           cookie;  
    const char*     name;  
    ipf_input_func  ipf_input;  
    ipf_output_func ipf_output;  
    ipf_detach_func ipf_detach;  
};  

The structure consists of the following fields and callbacks: 

• The cookie field is used to assign a pointer containing some data that should be 
passed along to all the filter functions.  

• The name is used for debugging purposes and should be set to something 
identifying your filter/KEXT.  

• The ipf_input and ipf_output fields define the actual filter functions, which will 
be called for incoming and outgoing IP packets, respectively. 

• The ipf_detach function will be called when the filter is detached. Unlike a socket 
filter, which detaches when a socket close is terminated, IP filters need to be 
detached/removed explicitly by calling ipf_remove(). Note that the ipf_remove() 
function may defer removal of the filter if one of the filter functions are executing 
when the function is called. Therefore, you need to wait for the ipf_detach filter 
function to complete before a KEXT can be unloaded to avoid a kernel panic when 
the IP stack tries to call ipf_detach after it has been unloaded from memory. 

A complete example of a minimal IP filter is shown in Listing 13-4. 
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Listing 13-4. MyIPFilter: Implementation of a Simple IP Filter 

#include <mach/mach_types.h> 
#include <sys/kernel_types.h> 
#include <sys/systm.h> 
#include <sys/kpi_mbuf.h> 
#include <netinet/ip.h> 
#include <netinet/kpi_ipfilter.h> 
 
enum { 
    kMyFiltDirIn, 
    kMyFiltDirOut, 
    kMyFiltNumDirs 
}; 
 
struct myfilter_stats { 
    unsigned long udp_packets[kMyFiltNumDirs]; 
    unsigned long tcp_packets[kMyFiltNumDirs]; 
    unsigned long icmp_packets[kMyFiltNumDirs]; 
    unsigned long other_packets[kMyFiltNumDirs]; 
}; 
 
static struct myfilter_stats g_filter_stats; 
static ipfilter_t g_filter_ref; 
static boolean_t g_filter_registered = FALSE; 
static boolean_t g_filter_detached = FALSE; 
 
static void log_ip_packet(mbuf_t* data, int dir) { 
    char src[32], dst[32]; 
    struct ip *ip = (struct ip*)mbuf_data(*data); 
     
    if (ip->ip_v != 4) 
        return; 
     
    bzero(src, sizeof(src)); 
    bzero(dst, sizeof(dst)); 
    inet_ntop(AF_INET, &ip->ip_src, src, sizeof(src)); 
    inet_ntop(AF_INET, &ip->ip_dst, dst, sizeof(dst)); 
     
    switch (ip->ip_p) { 
        case IPPROTO_TCP: 
            printf("TCP: "); 
            g_filter_stats.tcp_packets[dir]++; 
            break; 
        case IPPROTO_UDP: 
            printf("UDP: "); 
            g_filter_stats.udp_packets[dir]++; 
            break; 
        case IPPROTO_ICMP: 
            printf("ICMP: "); 
            g_filter_stats.icmp_packets[dir]++; 
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        default: 
            printf("OTHER: "); 
            g_filter_stats.other_packets[dir]++; 
            break; 
    }   
    printf("%s -> %s\n", src, dst); 
} 
 
static errno_t myipfilter_output(void* cookie, mbuf_t* data, ipf_pktopts_t options) { 
    if (data) 
        log_ip_packet(data, kMyFiltDirOut); 
    return 0; 
} 
 
static errno_t myipfilter_input(void* cookie, mbuf_t* data, int offset, u_int8_t protocol) { 
    if (data) 
        log_ip_packet(data, kMyFiltDirIn); 
    return 0; 
} 
 
static void myipfilter_detach(void* cookie) { 
    /* cookie isn't dynamically allocated, no need to free in this case */ 
    struct myfilter_stats* stats = (struct myfilter_stats*)cookie; 
    printf("UDP_IN %lu UDP OUT: %lu TCP_IN: %lu TCP_OUT: %lu ICMP_IN: %lu ICMP OUT: %lu 
OTHER_IN: %lu OTHER_OUT: %lu\n", 
           stats->udp_packets[kMyFiltDirIn], 
           stats->udp_packets[kMyFiltDirOut], 
           stats->tcp_packets[kMyFiltDirIn], 
           stats->tcp_packets[kMyFiltDirOut], 
           stats->icmp_packets[kMyFiltDirIn], 
           stats->icmp_packets[kMyFiltDirOut], 
           stats->other_packets[kMyFiltDirIn], 
           stats->other_packets[kMyFiltDirOut]); 
     
    g_filter_detached = TRUE; 
} 
 
static struct ipf_filter g_my_ip_filter = {  
    &g_filter_stats, 
    "com.osxkernel.MyIPFilter", 
    myipfilter_input, 
    myipfilter_output, 
    myipfilter_detach 
};   
 
kern_return_t MyIPFilter_start (kmod_info_t * ki, void * d) {   
    int result; 
   
    bzero(&g_filter_stats, sizeof(struct myfilter_stats)); 
    result = ipf_addv4(&g_my_ip_filter, &g_filter_ref); 
     
    if (result == KERN_SUCCESS) 
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        g_filter_registered = TRUE; 
     
    return result; 
} 
 
kern_return_t MyIPFilter_stop (kmod_info_t * ki, void * d) { 
     
    if (g_filter_registered) 
    { 
        ipf_remove(g_filter_ref); 
        g_filter_registered = FALSE; 
    } 
    /* We need to ensure filter is detached before we return */ 
    if (!g_filter_detached) 
        return KERN_NO_ACCESS; // Try unloading again. 
     
    return KERN_SUCCESS; 
} 

The filter will attach itself once the KEXT is loaded, and detach itself once it unloads. The filter will 
print the source and destination of each received IP packet to the console, as well as keep track of 
statistics for TCP, UDP, and ICMP packets, for which a summary is printed once the filter is detached. 

The ipf_filter structure is registered using the ipf_addv4() function, which registers an IPv4 filter. 
IPv6 filters can be registered with ipf_addv6(). 

The ipf_input and ipf_output callbacks are invoked from the IP stack on arrival or departure of an 
IP packet. For incoming IP packets, the filter function will be called just before the packet gets processed 
by a higher-level protocol handler, such as TCP or UDP. If the IP packet was fragmented, it is 
reassembled before being passed to the filter function. For outgoing packets, the filter function will be 
called before the packet is fragmented. Normally, a packet would only be seen by a filter function once. 
However, there is one exception, which is if the packet uses an encryption scheme like IPSec, where an 
IP packet may contain another encrypted IP packet. In this case, the filter function will be called once for 
the encrypted packet and once for the decrypted payload. 

IP filters work across interfaces, so you will see packets from and to all active interfaces in the 
system. If you need to know which interface the packet arrived from, this information can be obtained 
from the mbuf packet header. For outgoing packets, this information is not yet available, because 
routing of the packet to a network interface happens after the output filter function is called. This is by 
design, because it is possible for the filter function to alter the destination of a packet, as we will see 
shortly. 

IP filters are not limited to examining packets; it is also possible to modify packets, reject them, and 
inject your own packets. To illustrate the power of IP filters, we can modify the ipf_output filter function 
from Listing 13-4 with a new version: 

static errno_t myipfilter_output_redirect(void* cookie, mbuf_t* data, ipf_pktopts_t options) 
{ 
    struct in_addr addr_old; 
    struct in_addr addr_new; 
    int ret; 
     
    struct ip* ip = (struct ip*)mbuf_data(*data); 
    if (ip->ip_v != 4) 
        return 0; 
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    addr_old.s_addr = htonl(134744072); // 8.8.8.8 
    addr_new.s_addr = htonl(167837964); // 10.1.1.12 
     
    // redirect packets to 8.8.8.8 to the IP address 10.1.1.12. 
    if (ip->ip_dst.s_addr == addr_old.s_addr) 
    { 
        ip->ip_dst = addr_new; 
        myipfilter_update_cksum(*data); 
        ret = ipf_inject_output(*data, g_filter_ref, options); 
        return ret == 0 ? EJUSTRETURN : ret; 
    } 
    return 0; 
} 

The preceding example will redirect all IP traffic to the public IP address (8.8.8.8) to an internal IP 
address on our network (10.1.1.12). We do this by examining the destination of the IP address and, if it 
matches our address, we modify the packet’s destination to the new address. Because we have modified 
the packet, we need to re-inject it. This will have the effect of treating the modified packet as a new one 
and, hence, it will again pass through our filter. We can prevent the packet from being processed again 
by our filter by passing in the reference to our filter when we inject the packet, as shown in the preceding 
example.  

Since we have re-injected the packet, we need to stop the original packet from progressing further, 
which we do by returning EJUSTRETURN. This will tell the caller to stop processing the packet without 
freeing it. To discard a packet completely, we can return a value other than zero or EJUSTRETURN, which 
will cause the caller to stop processing and also free the packet. These rules apply for both incoming and 
outgoing packets. When modifying an IP packet’s header, we need to update its checksum (CRC) to 
prevent the packet from being discarded as corrupt. The IP checksum covers its own header, but not the 
payload. TCP and UDP checksums are calculated using some of the fields of the IP header, including the 
source and destination address. Consequently, UDP and TCP checksums also need to be recalculated if 
an IP header’s address fields are modified. IP, TCP, and UDP checksums can be calculated for an mbuf_t 
using the function mbuf_inet_cksum(). See the myipfilter_update_cksum() function in the book sample 
project MyIPFilter for an example of how to update the checksums. 

We can now test that our modified IP filter function works correctly using the ping command line 
utility:  

$ ping 8.8.8.8 
PING 8.8.8.8 (8.8.8.8): 56 data bytes 
64 bytes from 10.1.1.12: icmp_seq=0 ttl=64 time=307.636 ms 
64 bytes from 10.1.1.12: icmp_seq=1 ttl=64 time=2.513 ms 

As you can see, we will now get replies from 10.1.1.12 instead of the original IP address.  This 
happens to work with the ping utility, which uses a RAW socket. However, for a regular socket-based 
application like ssh, we also need to modify the source address of incoming packets to enable full two-
way communication, otherwise, the IP stack will be confused when it gets unsolicited packets from the 
10.1.1.12 host. You can modify the ipf_input filter function to modify incoming packets so that the 
source address is translated from 10.1.1.12 back to 8.8.8.8, thereby ensuring that the packet is directed 
to the right application (which still thinks we are talking to 8.8.8.8). This is conceptually similar to how 
Network Address Translation (NAT) technology is implemented. NAT is the technique used by Mac OS 
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X’s Internet sharing feature or how the iPhone can share its 3G connection to other wireless devices. 
Refer to the full source code of the MyIPFilter example to see how we can modify a packet on input. 

Although, in the previous example, we have only modified the destination address, it is possible to 
modify any part of the packet, including application layer data. It is also possible to completely replace a 
packet with a new one. The structure of a typical IP packet is shown in Figure 13-3. 

 

Figure 13-3. An Ethernet frame with an IP, TCP header, and data payload 

In the case of both incoming and outgoing packets, a filter function will see the complete packet, 
but the packet data passed to the filter function will not include any data-link layer headers, such as an 
Ethernet header, because that will be processed before the packet enters the IP stack where our filter 
function gets called. Similarly for outgoing packets, the Ethernet, or other data-link layer header, will be 
attached after the packet goes through the filter function. Again, if you update any part of the packet, you 
must ensure that relevant checksums are updated as well. 

Interface Filters 
Interface filters are as close to the metal as we can get using a filtering mechanism. Interface filters 
operate just before and after a packet is sent or received by a network interface. If a packet is destined for 
a physical interface, as opposed to a loopback or virtual interface, it will likely be sent to an I/O Kit driver 
for physical transmission. An interface filter is bound to only one interface, unlike an IP or socket filter, 
which sees the aggregate packet flow of all interfaces in the system. If you need to filter packets on 
multiple interfaces, you must register multiple filters, one for each interface. The interface filter 
mechanism is very similar to that of socket and IP filters. As with socket filters, interface filters can also 
intercept out-of-band events, such as ioctl() messages sent to the interface—for example, requests to 
set or get the IP address, network mask, or MTU (maximum transfer unit). An interface filter can also 
trap events to the interface sent via the kernel event API. As with socket and IP filters, interface filters 
allow insertion, modification, rejection, and delay of packets. An interface filter is defined by the 
iff_filter structure: 

struct iff_filter {  
    void*             iff_cookie;  
    const char*       iff_name;  
    protocol_family_t iff_protocol;  
    iff_input_func    iff_input;  
    iff_output_func   iff_output;  
    iff_event_func    iff_event; 
    iff_ioctl_func    iff_ioctl;  
    iff_detached_func iff_detached;  
}; 

All the filter functions are optional, and functions you do not care about can be left as NULL. Unlike 
an IP or socket filter, an interface filter will see all packets regardless of protocol, which will include 
protocols handled in the kernel, such as ARP. If your filter is interested only in IP packets, you can use 
the iff_protocol field to specify AF_INET for IPv4 or AF_INET6 for IPv6, which will ensure that the filter 
function will not be called for other protocols. It is only possible to specify protocol families, not 
individual protocols, like TCP or UDP. Furthermore, if your filter needs to examine IP packets, be aware 
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that the IP packets may now be fragmented, and you will not have the opportunity to examine encrypted 
IP headers when IPSec is used. Listing 13-5 shows the implementation of a simple interface filter. 

Listing 13-5. MyInterfaceFilter: A Simple Network Interface Filter 

#include <libkern/libkern.h> 
#include <sys/errno.h> 
#include <sys/kpi_mbuf.h> 
#include <mach/mach_types.h> 
#include <net/kpi_interfacefilter.h> 
 
#include <netinet/in.h> 
#include <netinet/ip.h> 
#include <net/ethernet.h> 
 
static boolean_t g_filter_registered = TRUE; 
static boolean_t g_filter_detached = FALSE; 
static interface_filter_t g_filter_ref; 
 
static errno_t myif_filter_input(void* cookie, ifnet_t interface, protocol_family_t protocol,  
                                 mbuf_t* data, char** frame_ptr) 
{ 
    printf("incoming packet: %lu bytes\n", mbuf_pkthdr_len(*data)); 
    return 0; 
} 
 
static errno_t myif_filter_output(void* cookie, ifnet_t interface, protocol_family_t protocol,  
                                  mbuf_t* data) 
{ 
    printf("outgoing packet: %lu bytes\n", mbuf_pkthdr_len(*data)); 
    return 0; 
} 
static void myif_filter_detached(void* cookie, ifnet_t interface)  
{ 
    g_filter_detached = TRUE; 
} 
 
static struct iff_filter g_my_iff_filter =  
{  
    NULL, 
    "com.osxkernel.MyInterfaceFilter", 
    0, 
    myif_filter_input, 
    myif_filter_output, 
    NULL, 
    NULL, 
    myif_filter_detached, 
};  
 
kern_return_t MyInterfaceFilter_start (kmod_info_t* ki, void* d)  
{ 
    ifnet_t interface; 



CHAPTER 13  NETWORKING 

296 

     
    if (ifnet_find_by_name("en1", &interface) != KERN_SUCCESS) // change to your own interface 
        return KERN_FAILURE; 
      
    if (iflt_attach(interface, &g_my_iff_filter, &g_filter_ref) == KERN_SUCCESS) 
    { 
        g_filter_registered = TRUE; 
    } 
     
    ifnet_release(interface); 
     
    return KERN_SUCCESS; 
} 
 
kern_return_t MyInterfaceFilter_stop (kmod_info_t* ki, void* d)  
{ 
    if (g_filter_registered) 
    { 
        iflt_detach(g_filter_ref); 
        g_filter_registered = FALSE; 
    } 
    if (!g_filter_detached) 
        return KERN_NO_ACCESS; // Don't allow unload until filter is detached. 
         
    return KERN_SUCCESS; 
} 

Interface filters can be attached to a network interface using the iflt_attach() function. You can 
register a single iff_filter against multiple interfaces. A network interface is represented by the opaque 
type ifnet_t, which can be manipulated using the interface KPI (kpi_interface.h). In the preceding 
example, we use the interface KPI function ifnet_find_by_name() to obtain a reference to the network 
interface with the BSD name “en1,” which, on a MacBook, corresponds to the Wi-Fi interface. 

The iff_input filter function is called when an incoming packet is received by the interface. The 
callback takes five arguments: 

• The cookie argument contains the pointer assigned to the iff_cookie field when 
the filter was registered. 

• The ifnet_t argument is a reference to the network interface that received the 
packet. This is especially useful in case the same filter function handles filters 
attached to more than one network interface.  

• The next parameter is the protocol family the incoming packet belongs to. Unless 
zero is specified for the iff_protocol field, this will always be the family you 
specified.  

• The mbuf_t represents the buffer containing the packet data.  
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• The last argument, frame_ptr, is a pointer to the data-link frame header of the 
interface. The size and structure of the frame header varies depending on the 
network interface. For an Ethernet interface, the frame header consists of a source 
and destination MAC address as well as a 16-bit “ethertype” field, which 
determines the encapsulated protocol. The field will be 0x0800 for an Ethernet 
frame containing an IP packet. You can determine the length of the frame header 
for an interface by calling the ifnet_hdrlen(ifnet_t) function. 

The output filter function iff_output is similar to the input function, but does not provide the frame 
header as a separate argument; rather the mbuf_t contains the entire frame including the data-link 
header, instead of pointing to the data after the data-link header. If we wish to examine the IP header of 
an incoming packet in an interface filter’s output function, we need to first parse the data-link header to 
find the offset of the IP header. An example of this is shown here: 

static errno_t myif_filter_output(void* cookie, ifnet_t interface, protocol_family_t protocol,  
                                  mbuf_t* data) 
{ 
    char                  src[64], dst[64]; 
    unsigned char*        pktbuf = mbuf_data(*data); 
    struct ether_header*  eth = (struct ether_header *)pktbuf; 
 
    if (ifnet_hdrlen(interface) != ETHER_HDR_LEN) 
        return 0; 
         
    if (ntohs(eth->ether_type) == ETHERTYPE_IP) 
    { 
        struct ip* iphdr = (struct ip*)(pktbuf + ETHER_HDR_LEN); 
        inet_ntop(AF_INET, &iphdr->ip_src, src, sizeof(src)); 
        inet_ntop(AF_INET, &iphdr->ip_dst, dst, sizeof(dst)); 
        printf("outgoing packet: %lu bytes ip_src: %s ip_dst: %s\n",  
                mbuf_pkthdr_len(*data), src, dst); 
    } 
    else 
        printf("outgoing packet: %lu bytes\n", mbuf_pkthdr_len(*data)); 
    return 0; 
} 

The interface filter KPI does not provide functions for injecting incoming and outgoing packets. This 
is provided by the interface KPI instead. Outgoing packets can be injected using the function 
ifnet_output_raw() or using the function ifnet_input() to inject an inbound packet. For an example of 
how inet_output_raw() can be used, refer to the source code of the sample driver MyEthernetDriver 
discussed later in this chapter. 

Debugging and Testing Network Extensions  
Apart from the general techniques discussed in Chapter 16, “Debugging and Profiling,” Mac OS X comes 
with some tools that allow debugging of network issues, the most notable of which are perhaps the 
command line tools tcpdump and netcat. The former utilizes the libpcap library, which again is built on 
top of the Berkeley Packet Filter (BPF) infrastructure, which is built into the kernel network stack. BPF 
can plug into each network interface and install hooks, which allow incoming and outgoing packets to 
be diverted to a character device file (/dev/bpfX) and can thereby be analyzed by tools such as tcpdump. 
The tcpdump utility allows you to view the packet flow live, or to capture it to a file for later analysis. A 
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wide range of third party tools can work with the packet traces captured from tcpdump. If possible, the 
tcpdump utility will put the monitored interface into promiscuous mode. Promiscuous mode is a 
firmware feature of most network devices that tells it to forward packets, even if they are not addressed 
to its own hardware address. Newer versions of Mac OS X require root privileges in order to run tcpdump, 
even if promiscuous mode is disabled.  Capturing packets from a busy network can be difficult due to 
the sheer amount of data. To address this, tcpdump takes advantage of the filtering capabilities of the 
BPF, which allows you to filter out packets based on a wide range of criteria ranging from the hardware 
address to the individual flags of the TCP header. The following is an example of tcpdump output: 

$ sudo tcpdump -i en0 
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode 
listening on en0, link-type EN10MB (Ethernet), capture size 65535 bytes 
20:43:40.911558 IP 192.168.1.2.ipp > 192.168.255.255.ipp: UDP, length 237 
20:43:51.113519 ARP, Request who-has 192.168.1.2 tell 192.168.1.3, length 28 
20:43:51.113785 ARP, Reply 192.168.1.2 is-at 00:17:f2:0a:86:60 (oui Unknown), length 46 
20:43:51.113831 IP 192.168.1.3 > 192.168.1.2: ICMP echo request, id 64769, seq 0, length 64 
20:43:51.114004 IP 192.168.1.2 > 192.168.1.3: ICMP echo reply, id 64769, seq 0, length 64 
20:44:11.911836 IP 192.168.1.2.ipp > 192.168.255.255.ipp: UDP, length 237 
20:46:01.413453 IP 192.168.1.2.netbios-ns > 192.168.255.255.netbios-ns: NBT UDP PACKET(137): 
QUERY; REQUEST; BROADCAST 
20:46:01.451950 IP 192.168.1.2.netbios-dgm > 192.168.255.255.netbios-dgm: NBT UDP 
PACKET(138) 

The netcat utility has many uses. For network debugging, it is useful in its ability to create TCP- and 
UDP-based clients or servers, as it can be used to generate traffic in either direction for the purpose of 
testing. This is especially useful in the development of IP or socket filters as well as network interface 
drivers. The netcat utility can be invoked from the terminal with the nc command. The following 
example shows how to create a socket to listen for UDP traffic on port 4040: 

$ nc –u -l 4040 

You can connect to the server using nc on a different system: 

$ nc –u 192.168.1.2 4040 
Stuff typed here will be echoed back to the server 

Networking in the I/O Kit 
The IONetworkingFamily of classes represents the bottom part of the kernel network stack. As previously 
discussed, the I/O Kit is the preferred layer for implementing drivers for hardware-based network 
devices. The class hierarchy of the IONetworkingFamily is shown in Figure 13-4. 
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Figure 13-4. The IONetworkingFamily class hierachy 

The family may look quite expansive, but many of the classes are auxiliary helper classes, and some, 
we do not need to worry about at all because they are only used internally in the family. The key classes 
in the family are the IONetworkController and IONetworkInterface. The former is used to represent a 
driver for network hardware, whereas the latter is used to interface with the data-link interface layer 
(DLIL) in the BSD layer. It serves as an adapter that allows I/O Kit network interfaces to be seen as BSD 
layer network interfaces, so you can use traditional UNIX tools, such as ifconfig, to configure the 
device. Let’s have a look at the responsibilities of the individual classes: 

• IOEthernetController is the base class for all Ethernet-based devices, including 
802.11-based wireless devices. You would normally subclass this when writing a 
driver for an Ethernet or Wi-Fi-based device driver. 

• IOEthernetInterface acts as a client of an IOEthernetController and provides the 
glue between the controller and the BSD networking layer. If you are 
implementing an Ethernet driver, you do not normally need to subclass 
IOEthernetInterface unless you have special requirements. 

• IOKernelDebugger is a replacement driver, which will be used against an 
IONetworkController in lieu of an IONetworkInterface when the kernel debugger is 
active. You do not need to support this if you are writing a third party network 
driver. 

• IOMbufMemoryCursor provides an object-oriented cursor around the mbuf structure, 
which allows translation of mbuf clusters to physical addresses for the purpose of 
DMA. Several specialized subclasses are available: IOMBufBigMemoryCursor, 
IOMbufDBMAMemoryCursor, IOMbufLittleMemoryCursor, IOMbufNaturalMemoryCursor. 

• IONetworkController is the base class of IOEthernetController. You must subclass 
IONetworkController if you are writing a driver for a non-Ethernet compatible 
device. 
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• IONetworkData represents a fixed size data buffer used by IONetworkInterface to 
export interface data to user space, notably, usage statistics such as information 
about dropped packets and collisions. 

• IONetworkInterface provides the glue to bind an IONetworkController to the BSD 
data-link layer (BDIL) and the rest of the network stack. The IONetworkInterface is 
an abstract class and must be re-implemented if your driver is based on 
IONetworkInterface. 

• IONetworkUserClient is a subclass of IOUserClient, providing a user-client for 
IONetworkInterface. 

• IOOutputQueue is a packet queue, which handles multiple producers and a single 
consumer (a device). Two specialized subclasses are available: 
IOBasicOutputQueue and IOGatedOutputQueue. 

• IOPacketQueue implements a FIFO queue of mbufs synchronized by a spinlock. 

You may have noticed the absence of any mention of 802.11x networking support. Apple does not 
publish a framework for development of wireless networking drivers. Apple’s own AirPort drivers are 
located in the IO802Family.kext, but no source or header files are published for this. This does not 
preclude writing of wireless network drivers, but it does mean that you can’t take advantage of pre-
written classes, and you may have to provide your own IOUserClient and possible user space tools for 
configuration of the device. Apple’s AirPort devices are subclasses of the private IO80211Controller, 
which, again, is a subclass of IOEthernetController. That being said all modern Macs have built-in 
wireless networking, so demand for third-party devices in this area is low. 

Building a Simple Ethernet Controller Driver 
Let’s get our hands dirty with I/O Kit networking, by building a simple Ethernet driver. Since 
implementing a full working driver is highly complex and hardware-dependent, it is difficult to 
demonstrate in its entirety, and probably not that useful to someone having to implement a driver for a 
completely different device. We will instead focus on the fundamentals and on familiarizing ourselves 
with the tools an I/O Kit provides to aid in developing network drivers. We will do this by implementing 
a virtual Ethernet driver called MyEthernetDriver. The driver will demonstrate how core elements of an 
I/O Kit network driver are implemented and will show how packets flow through it to interact with the 
rest of the system. Figure 13-5 shows how MyEthernetDriver interacts with other I/O Kit classes. 
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Figure 13-5. MyEthernetDriver: Interaction with I/O Kit and the network stack 

In this case, MyEthernetDriver uses the IOResources nub as a provider, but for a real network device 
backed by a physical device, it would more probably use IOPCIDevice, IOUSBDevice, IOUSBInterface, or 
another nub representing a hardware device. 

 Tip  If you are curious to see a network driver for a real device, the IOUSBFamily source distribution used to 
include the source code for AppleUSBCDCEthernet, which is the driver for devices that follow the USB Ethernet 
specification. The driver is not part of newer versions, but can still be found in older versions of IOUSBFamily at 
Apple’s open-source website (opensource.apple.com). There is also source code available for a driver for the 
popular PCI based Realtek 8139 chipset called AppleRTL8139Ethernet. For an example of a network driver 
derived directly from IONetworkController, have a look at IOFireWireIP, which implements TCP/IP networking 
over FireWire. 

The main driver class MyEthernetDriver will inherit from IOEthernetController, which again 
inherits from IONetworkController. The driver will also allocate an IOEthernetInterface instance, which 
will be used to interface with the network stack. The IOEthernetInterface class is not abstract and can 
be allocated and used directly. 

The Design of MyEthernetDriver 
To put the design of MyEthernetDriver into context, let’s say we are employed to develop a driver for a 
new Ethernet device. The device will be a dongle that can be connected to a Mac’s Thunderbolt port. As 
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this is an emerging technology at this point, there is some delay in getting the needed parts, so we do not 
yet have access to a proper device. As much as we would all like to get paid to surf the net all day, we 
need to earn our bread and butter. So we get started on the driver without a working device. Our aim is 
to implement what can be done without having a hardware device. However, we quickly realize that a 
major component of the Ethernet device is going to be handling actual network I/O. While you can build 
a virtual device driver quite quickly, assign it an IP, and start talking to it, there is one major problem. 
Network packets destined to another interface or itself on the same host will not actually be forwarded to 
the device at all, but instead loop through the protocol stack without involving the I/O Kit driver. The I/O 
Kit was designed specifically to interface with actual hardware devices, so if you need a virtual network 
interface, the BSD layer is the best place for it. 

Our solution to this problem will be to piggyback our virtual Ethernet device onto a real Ethernet 
interface and use it to send and receive packets on our behalf. The setup will look similar to the diagram 
in Figure 13-6. 

 

Figure 13-6. MyEthernetDriver test setup 

When MyEthernetDriver receives a packet from the network stack, it will queue the packet and then 
transmit the packet out on the network using the interface en0, which is attached to a physical network 
switch. If you do not have a network switch, you can test this by using a straight through cat5 cable to 
connect directly to a remote machine. Each interface in the test setup is configured with its own IP 
address all on the same subnet. The network stack is responsible for framing the packet, so by the time 
MyEthernetDriver receives it, it will already have an Ethernet frame header attached, where the 
destination address will be 00:17:f2:0a:86:60 and the arbitrarily picked source address 
be:ef:fe:ed:12:11 of MyEthernetDriver. Most Ethernet based network devices allow sending a packet 
with a (fake) source address that differs from its own. Therefore, if everything is correctly configured, we 
should be able to receive the packet on the remote host received from MyEthernetDriver’s MAC and IP 
address.  

Getting the reply from the remote host back to our driver is somewhat more problematic, as the en0 
interface will most likely ignore a frame not addressed to itself. To work around this, we will simply 
enable promiscuous mode on en0, which will enable it to receive packets not destined to itself. We will 
then install an interface filter on the input queue for en0 and check whether a packet is addressed to it, 
in which case, we leave it alone, or if it is addressed to MyEthernetDriver, steal it and divert it to its input 
queue instead. The end result is a virtual Ethernet bridge/switch. This is conceptually close to how 
virtual machine software, such as Parallels or VMWare fusion, enables a virtual machine guest’s 
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operating system to participate on the network in bridged mode. Because we have done this at the 
Ethernet level, the changes are completely transparent to higher-level protocols like IP, and we can even 
use an external DHCP server to obtain an IP address for our virtual interface.  

This should leave us with a more or less working device driver, which, for all intents and purposes, is 
able to send and receive actual network traffic and provide a good approximation of a real device for us 
to play with. As much as possible, we will hide the fact that this bridging occurs from the driver by 
putting the code in a separate class called MyEthernetHwAbstraction. The class will handle 
communication with the “hardware” while the main driver will interface with I/O Kit. This design would 
allow us to quickly swap out the hardware abstraction class with one that talks to actual hardware 
instead. The design would also make it possible to subclass the abstraction class so that new variants of 
the hardware can be supported gracefully. 

 Note  MyEthernetDriver needs a wired Ethernet device to piggyback onto. This is because a wireless device 
generally does not allow packets to be transmitted with a source address different from its own. This is a limitation 
of the device’s firmware.  

The header file for MyEthernetDriver is shown in Listing 13-6. 

Listing 13-6. MyEthernetDriver Header File 

#ifndef MyEthernetDriver_h 
#define MyEthernetDriver_h 
 
#include <IOKit/assert.h> 
#include <IOKit/IOTimerEventSource.h> 
#include <IOKit/IOBufferMemoryDescriptor.h> 
#include <IOKit/network/IOEthernetController.h> 
#include <IOKit/network/IOEthernetInterface.h> 
#include <IOKit/network/IOGatedOutputQueue.h> 
#include <IOKit/network/IOMbufMemoryCursor.h> 
#include <IOKit/network/IONetworkMedium.h> 
#include <IOKit/IOUserClient.h> 
 
#include "MyEthernetHwAbstraction.h" 
 
class com_osxkernel_MyEthernetDriver : public IOEthernetController 
{ 
    friend class com_osxkernel_MyEthernetHwAbstraction; 
     
    OSDeclareDefaultStructors(com_osxkernel_MyEthernetDriver); 
public: 
    virtual bool init(OSDictionary* properties); 
    virtual bool start(IOService* provider); 
    virtual void stop(IOService* provider); 
    virtual void free(); 
     
    virtual bool configureInterface(IONetworkInterface* netif); 
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    virtual IOReturn enable(IONetworkInterface* netif); 
    virtual IOReturn disable(IONetworkInterface* netif);  
     
    virtual IOReturn getHardwareAddress(IOEthernetAddress* addrP); 
     
    // Allow our driver's Mac address to be set 
    virtual IOReturn setHardwareAddress(const IOEthernetAddress* addrP);  
     
    virtual UInt32 outputPacket(mbuf_t m, void* param); 
     
    virtual IOReturn setPromiscuousMode(bool active) { return kIOReturnSuccess; } 
    virtual IOReturn setMulticastMode(bool active) { return kIOReturnSuccess; } 
     
    bool createMediumDict(); 
     
private:     
     
    static void  interruptOccured(OSObject* owner, IOTimerEventSource* sender); 
     
    IOTimerEventSource*    fInterruptSource;  // Simulate HW rx interrupt 
    IOEthernetInterface*   fNetworkInterface; 
    OSDictionary*          fMediumDict; 
    IOWorkLoop*            fWorkLoop; 
     
    IONetworkStats*        fNetworkStats; 
    IOEthernetStats*       fEthernetStats; 
     
    com_osxkernel_MyEthernetHwAbstraction* fHWAbstraction; // Low-level hardware access. 
}; 
 
#endif 

Driver Initialization and Startup  
Network drivers follow the usual IOService lifecycle. Initialization of a driver and the device happens in 
the driver’s start() method. For a typical device, the following steps may be performed: 

1. Configure the device’s provider and enumerate any needed resources. For PCI 
or Thunderbolt, this means mapping device memory or I/O regions. For USB 
devices, enumerate interfaces and pipes. 

2. Configure the device for operation—for example, take it out of sleep state by 
accessing the device’s registers or sending control requests. 

3. Extract information from the device, such as the MAC address, and 
information about the device’s capabilities, like supported media and speeds. 
Many Ethernet devices support the Media Independent Interface (MII) bus, 
which is a standard for accessing device status, information, and configuration 
in a consistent manner, decoupled from the part of the device that is 
concerned with physical transmission (usually referred to as the PHY). The MII 
registers contain information about the link status, supported network speeds, 
error reporting, and more. Gigabit or 10 Gigabit Ethernet devices are 
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supported by the GMII and XGMII specifications, respectively. MII, GMII, and 
XGMII are all IEEE standards. These standards do not, however, dictate how 
the DMA engine is implemented or how I/O to the device should occur. 

4. Allocate and configure IOInterruptEventSource or IOTimerEventSources as 
needed, depending on requirements and underlying hardware. Many network 
devices use a software timer as a watchdog timer to continuously monitor the 
device for fault and attempt to reset the device should a fault occur. 

5. Instantiate and register an instance of IOEthernetInterface, which will make 
our network controller visible to the BSD networking stack and the rest of the 
system.  

The start() method for MyEthernetDriver is shown in  Listing 13-7. 

Listing 13-7. MyEthernetDriver’s start() Method 

bool com_osxkernel_MyEthernetDriver::start(IOService* provider) 
{     
    if (!super::start(provider)) 
        return false; 
 
    fHWAbstraction = new com_osxkernel_MyEthernetHwAbstraction(); 
    if (!fHWAbstraction) 
        return false; 
    if (!fHWAbstraction->init(this)) 
        return false; 
     
    if (!createMediumDict()) 
        return false; 
     
    fWorkLoop = getWorkLoop(); 
    if (!fWorkLoop) 
        return false; 
    fWorkLoop->retain(); 
 
    if (attachInterface((IONetworkInterface**)&fNetworkInterface) == false) 
        return false; 
     
    fNetworkInterface->registerService(); 
     
    fInterruptSource = IOTimerEventSource::timerEventSource(this, interruptOccured); 
    if (!fInterruptSource) 
        return false; 
     
    if (fWorkLoop->addEventSource(fInterruptSource) != kIOReturnSuccess) 
        return false; 
     
    IOLog("%s::start() -> success\n", getName()); 
    return true; 
} 
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What needs to be done in the start() method is entirely dependent on the device’s capabilities. In 
this case, we do not have a provider representing a hardware device, so we can bypass opening the 
provider. The next step performed is to allocate an instance of the class 
com_osxkernel_MyEthernetHwAbstraction and initialize it. The class contains code to interface with the 
hardware device, such as methods to read its registers and setup I/O transfers. In our case it instead 
contains code that allows us to piggyback on another device. This step is not technically required—you 
could easily all code in the main driver. However, we made the design decision so that in the future, 
when the “MyEthernetDevice 2000 Pro” becomes available, we can simply handle the hardware 
differences by inheriting from our existing hardware abstraction class. This allows the main driver to be 
kept clean and makes it easy to support several hardware variants with the same driver. We will look at 
the hardware abstraction class shortly. 

After the “hardware” is initialized, we call the createMedium() function to publish details about 
which transmission standards and speeds our device support. We will discuss this process further in the 
next section. 

The next method called is attachInterface(), which will return an instance of an 
IONetworkInterface class, which provides the glue that exposes our driver to the kernel network layer. In 
our case, the returned instance will be an IOEthernetInterface instance. If you need to subclass 
IOEthernetInterace for any reason, you can override IONetworkController::createInterface(), which is 
called by attachInterface() internally to allocate the overrided class instead. Before attachInterface() 
returns, it will also call IONetworkController::configureInterface(), which you can also override to 
perform additional configuration for the interface class. MyEthernetDriver implements the 
configureInterface() method as follows: 

bool com_osxkernel_MyEthernetDriver::configureInterface(IONetworkInterface *netif) 
{ 
    IONetworkData* nd; 
         
    if (super::configureInterface(netif) == false) 
        return false; 
         
    nd = netif->getNetworkData(kIONetworkStatsKey); 
    if (!nd || !(fNetworkStats = (IONetworkStats *)nd->getBuffer())) 
        return false; 
         
    nd = netif->getParameter(kIOEthernetStatsKey); 
    if (!nd || !(fEthernetStats = (IOEthernetStats*)nd->getBuffer())) 
        return false; 
     
    return true; 
} 

The method obtains pointers to the interface’s network statistics buffers, which will be used to 
record information about received/transmitted packets, collisions, and other events. The information is 
used by user space in several places, such as the network tab in the Activity Monitor. 

To register an IOEthernetInterface instance with the system, we call its registerService() method. 
Our final action before start() returns is to create an interrupt source. We simulate interrupts using 

an IOTimerEventSource, however, a hardware device would likely use IOFilterInterruptEventSource or 
IOInterruptEventSource to respond to actual hardware interrupts. 

Most network drivers will also want to use a timer to provide watchdog functionality that 
periodically monitors the device for erroneous conditions, and check for things like the current link 
status, so that the network system and user space can be notified of events such as a cable being 
unplugged. Many drivers trigger their watchdog timer once every second. 
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Medium and Status Selection 
The createMedium() method creates a dictionary that will publish details about the device’s media 
capabilities to the BSD stack and user space. Most modern Ethernet devices can also support older 
Ethernet standards and transmission speeds. For example, the Ethernet device in a Macbook Pro can 
support the 1000BaseT, 100BaseTX and 10BaseT/UTP in full or half duplex modes with or without flow 
control. If the device and the driver support it, the media can be controlled via the UNIX command line 
tool ifconfig or via the Network pane in System Preferences. Most devices are able to auto-detect current 
media. Media capabilities are represented by the IONetworkMedium class. The implementation of the 
createMedium() class is shown in Listing 13-8. 

Listing 13-8. Method for Publishing Details about Supported Ethernet Media 

static struct MediumTable 
{ 
    UInt32      type; 
    UInt32      speed; 
} 
 
mediumTable[] = 
{ 
    {kIOMediumEthernetNone, 0}, 
    {kIOMediumEthernetAuto, 0}, 
    {kIOMediumEthernet10BaseT | kIOMediumOptionFullDuplex,  10}, 
    {kIOMediumEthernet100BaseTX | kIOMediumOptionFullDuplex, 100}, 
    {kIOMediumEthernet1000BaseT | kIOMediumOptionFullDuplex, 1000}, 
}; 
 
bool com_osxkernel_MyEthernetDriver::createMediumDict() 
{ 
    IONetworkMedium*  medium; 
    UInt32                            i; 
         
    fMediumDict = OSDictionary::withCapacity(sizeof(mediumTable) /  
                                             sizeof(struct MediumTable)); 
    if (fMediumDict == 0) 
        return false; 
     
    for (i = 0; i < sizeof(mediumTable) / sizeof(struct MediumTable); i++) 
    { 
        medium = IONetworkMedium::medium(mediumTable[i].type, mediumTable[i].speed); 
        if (medium) 
        { 
            IONetworkMedium::addMedium(fMediumDict, medium); 
            medium->release(); 
        } 
    } 
     
    if (publishMediumDictionary(fMediumDict) != true) 
        return false; 
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    medium = IONetworkMedium::getMediumWithType(fMediumDict, kIOMediumEthernetAuto); 
    setSelectedMedium(medium); 
    return true; 
} 

The method builds an OSDictionary containing the supported medium. The medium dictionary 
must be published with the method publishMediumDictionary() to advertise the driver’s capabilities to 
the OS. If you want your driver to support manual selection of media, you need to override the 
IONetworkController::selectMedium() method. The default method will simply return 
kIOReturnUnsupported. Your driver can call setSelectedMedium() to inform the system of its medium 
selection. The setLinkStatus() method can be used to set the medium and the link status together. The 
link status flags are: kIONetworkLinkValid or kIONetworkLinkActive, which, for an Ethernet device, can be 
used to indicate whether a cable is connected, as well as if the device is active. 

Configuring the Device Hardware Address 
Ethernet networks use the Media Access Control (MAC) address, which should be a 48-bit globally 
unique address identifying the network controller. A MAC address conflict on the network may cause 
confusion to switches, hosts, and other networking gear. The MAC address is usually programmed into 
the device’s EEPROM when it is being manufactured in a range assigned to each manufacturer by IEEE. 
Our driver needs to publish the MAC address to the networking stack and user space. The address serves 
no other purpose in user space other than to help uniquely identify the device for informational and 
configuration purposes. However, the networking stack does need to know the address to properly 
format outgoing packets and for address resolution for other protocols such as IP (ARP/RARP). The 
network stack will call the getHardwareAddress() function of our driver to get the MAC address. 
MyEthernetDriver implements it as follows: 

IOReturn com_osxkernel_MyEthernetDriver::getHardwareAddress(IOEthernetAddress *addrP) 
{ 
    addrP->bytes[0] = fHWAbstraction->readRegister8(kMyMacAddressRegisterOffset + 0); 
    addrP->bytes[1] = fHWAbstraction->readRegister8(kMyMacAddressRegisterOffset + 1); 
    addrP->bytes[2] = fHWAbstraction->readRegister8(kMyMacAddressRegisterOffset + 2); 
    addrP->bytes[3] = fHWAbstraction->readRegister8(kMyMacAddressRegisterOffset + 3); 
    addrP->bytes[4] = fHWAbstraction->readRegister8(kMyMacAddressRegisterOffset + 4); 
    addrP->bytes[5] = fHWAbstraction->readRegister8(kMyMacAddressRegisterOffset + 5); 
 
    return kIOReturnSuccess; 
} 

The getHardwareAddress() method is the only mandatory method (pure virtual) in the 
IOEthernetController and, hence, must be implemented. As we don’t have a valid MAC address for 
MyEthernetDriver, we arbitrarily chose the address: be:ef:6c:8e:12:11. The implementation shows how 
you would likely fetch the MAC address from a device’s registers. 

If your device supports changing the MAC address to a user-defined value, you can override the 
setHardwareAddress() method. The method should write the new MAC address to the device’s registers 
and return kIOReturnSuccess, if it was changed successfully. The default implementation will return 
kIOReturnUnsupported. 
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Enabling and Disabling the Device 
Although the start method could fully prepare and make the device operational, the preferred way is to 
make the device active (that is, in a state where it can receive and transmit) when the driver’s enable() 
method is called. Similarly, the device should become as dormant as it can, even sleep, if possible, when 
the driver’s disable() method is called. A driver should do this because a user may elect to turn the 
device off at times, in which case, it should refrain from using resources, which again is important to 
ensure it doesn’t drain a device’s battery or waste energy. MyEthernetDriver’s enable() method is 
shown here: 

IOReturn com_osxkernel_MyEthernetDriver::enable(IONetworkInterface* netif) 
{ 
    IOMediumType          mediumType = kIOMediumEthernet1000BaseT | kIOMediumOptionFullDuplex; 
    IONetworkMedium*      medium; 
 
    medium = IONetworkMedium::getMediumWithType(fMediumDict, mediumType); 
     
    if (!fHWAbstraction->enableHardware()) 
        return kIOReturnError; 
 
    setLinkStatus(kIONetworkLinkActive | kIONetworkLinkValid, medium, 1000 * 1000000);     
    return kIOReturnSuccess; 
} 

The exact implementation is highly hardware-dependent, of course. In our case, the 
implementation will call into the hardware abstraction class, which will attach to the “slave” network 
interface we will use to enable transmission and reception of packets. For a real device, the method 
would likely bring the device out of sleep, and then enable interrupts. The implementation of the 
hardware abstraction enableHardware() method is shown here: 

bool    com_osxkernel_MyEthernetHwAbstraction::enableHardware() 
{ 
    bool success = true; 
     
    fRxPacketQueue = IOPacketQueue::withCapacity(); 
    if (!fRxPacketQueue) 
        return false; 
     
    if (ifnet_find_by_name("en0", &interface) != KERN_SUCCESS) // change to your own interface 
        return false; 
     
    ifnet_set_promiscuous(interface, 1); 
     
    if (iflt_attach(interface, &interfaceFilter, &gFilterReference) != KERN_SUCCESS) 
        success = false; 
     
    filterRegistered = true;     
    return success; 
} 

The method will look for the device network interface en0, which should be an Ethernet device. It 
then puts the device into promiscuous mode, which is needed to ensure it will accept packets destined 
for MyEthernetDriver’s MAC address. Finally, an interface filter is installed on the slave interface to 
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intercept incoming packets. We will examine each incoming packet and divert packets addressed to us 
to our own input queue: fRxPacketQueue, while ignoring all other packets, and allow them to be 
processed by the original interface. 

The disable() method should reverse the actions we performed when we enabled the device, and 
bring the device back into its original state. For our purposes, this means removing the interface filter so 
that we will no longer get incoming packets: 

void    com_osxkernel_MyEthernetHwAbstraction::disableHardware() 
{ 
    if (filterRegistered == true) 
    { 
        iflt_detach(gFilterReference); 
        while (filterRegistered); 
         
        ifnet_set_promiscuous(interface, 0); 
        ifnet_release(interface); 
 
        fRxPacketQueue->flush(); 
        fRxPacketQueue->release(); 
        fRxPacketQueue = NULL; 
    } 
} 

Transmitting Network Packets 
Now that we have successfully configured and prepared the device, we are ready to start doing some 
actual I/O. Networking I/O is conceptually very simple for a network driver. The network stack handles 
the heavy lifting of formatting the packet as well as determining that a packet is actually destined for our 
interface. Our driver need only be concerned with transmitting the raw bytes to the device. Packets are 
delivered to a driver via IONetworkController::outputPacket(), which your driver should override to 
receive packets from the network stack. The outputPacket() method of MyEthernetDriver is shown here: 

UInt32 com_osxkernel_MyEthernetDriver::outputPacket(mbuf_t packet, void* param) 
{ 
    IOReturn result = kIOReturnOutputSuccess; 
    if (fHWAbstraction->transmitPacketToHardware(packet) != kIOReturnSuccess) 
    { 
        result = kIOReturnOutputStall; 
    } 
    return result; 
} 

 Note  A driver should free the mbuf_t if a packet was accepted by the outputPacket() method. 
MyEthernetDriver does not need to do this because it passes the packet to another driver that will be responsible 
for freeing it. 
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An implementation should return kIOReturnOutputSuccess if the packet was handled successfully. If 
the hardware is busy and cannot accept another packet at this time, you can return 
kIOReturnOutputStall, which will retry the same packet again at a later stage. To drop packets, simply 
return kIOReturnOutputDropped. The outputPacket() method should not block or sleep. 

By default, the outputPacket() method is called by the IONetworkInterface instance for the 
controller, unless an output queue was created manually by overriding the createOutputQueue() 
method, which should return a subclass of IOOutputQueue. It is highly recommended to implement an 
output queue (or provide your own queuing mechanism). If a queue is not present, you lose the ability to 
temporarily stall the queue, and you must handle the packet in your driver’s outputPacket() method, 
otherwise it will be dropped. If the hardware is already busy transmitting packets at the time 
outputPacket() is called, the only way to handle this situation is to queue the packet until the hardware 
is ready again. 

If you do implement a queue and it is stalled, the queue must be restarted when your hardware is 
ready to transmit packets again by calling IOOutputQueue::start(), or you will not receive further 
packets. 

 Note  Creating an output queue is highly recommended; however, MyEthernetDriver skips this step, as it 
transmits packets directly to another network interface, which implements its own queuing. 

Creating a queue can be done by overriding the createOutputQueue() method. When a device is 
disabled, you should call flush() on the queue to remove any queued packets. 

A typical network device will issue an (TX) interrupt whenever the hardware has put a packet (or 
packets) out on the wire, which also indicates there is now more room in its transmit buffer, or that a 
new DMA transaction can now be performed. You can notify the queue that the device is now ready for 
more data by calling the output queue’s service() method. A side-effect of this will be another call to the 
driver’s outputPacket() method, which will deliver a new packet, if one is available. 

The transmitPacketToHardware() method from the preceding section is implemented as follows: 

IOReturn    com_osxkernel_MyEthernetHwAbstraction::transmitPacketToHardware(mbuf_t packet) 
{     
    if (ifnet_output_raw(interface, 0, packet) != KERN_SUCCESS) 
        return kIOReturnOutputDropped; 
     
    // Raise an interrupt to the driver to inform it the packet was sent. 
    fRegisterMap.interruptStatusRegister |= kTXInterruptPending; 
    fDriver->fInterruptSource->setTimeoutUS(1); 
     
    return kIOReturnSuccess; 
} 

The method will inject the received packet to the slave device’s output queue. We simulate a 
hardware interrupt by setting the TX interrupt flag in our dummy interrupt register and then invoking 
our timer function to simulate an interrupt received from a hardware device a microsecond later. 

The transmission of the packet to the hardware is again hardware-dependent. A PCI or 
Thunderbolt-based device is likely to use DMA. In this case, there are two options: 
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• The first is to have a pre-allocated physically allocated buffer; for example, one 
allocated with IOBufferMemoryDescriptor, using the 
kIOMemoryPhysicallyContiguous option, which an mbuf will be copied into and 
then DMA’ed to the hardware. Because an mbuf may consist of several chained 
buffers, it is important to ensure that you walk the chain with mbuf_next() so that 
all the segments can be copied into the DMA buffer. 

• The second option, if the device supports it, is to create a scatter/gather list 
directly from the mbuf, using a variant of IOMbufMemoryCursor, which will avoid 
performing an extra copy. The cursor class takes care of generating the list of 
physical segments from the mbuf. Several IOMbufMemoryCursors subclasses exist; 
which one to use depends on the device and its limitations. For example, if you 
use a device that reads addresses in big-endian format, you can use the 
IOMbufBigMemoryCursor, which can be created with the withSpecification() 
factory method: 
 
static IOMbufBigMemoryCursor* withSpecification(UInt32 maxSegmentSize, 
UInt32 maxNumSegments); 
 
The maxSegmentSize can be used to limit the size of individual scatter/gather list 
elements. Similarly, the maxNumSegments controls the length of the list. 

Receiving Packets 
Incoming packets arrive asynchronously from the network and a network driver’s responsibility is to 
offload them from the hardware device when an RX interrupt occurs and deliver them to the network 
stack via its IONetworkInterface or IOEthernetInterface, in the case of an Ethernet driver. 
MyEthernetDriver’s interrupt handler is shown in Listing 13-9. 

Listing 13-9. Implementation of MyEthernetDriver’s Interrupt Handler 

void com_osxkernel_MyEthernetDriver::interruptOccured(OSObject* owner, IOTimerEventSource* 
sender) 
{ 
    mbuf_t packet; 
 
    com_osxkernel_MyEthernetDriver* me = (com_osxkernel_MyEthernetDriver*)owner; 
    com_osxkernel_MyEthernetHwAbstraction* hwAbstraction = me->fHWAbstraction; 
    if (!me) 
        return; 
     
    UInt32 interruptStatus = hwAbstraction->readRegister32(kMyInterruptStatusRegisterOffset); 
         
    // Recieve interrupt pending, grab packet from hardware.  
    if (interruptStatus & kRXInterruptPending) 
    { 
        while ((packet = hwAbstraction->receivePacketFromHardware())) 
        { 
            me->fNetworkInterface->inputPacket(packet); 
            me->fNetworkStats->inputPackets++; 
        } 
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        me->fNetworkInterface->flushInputQueue(); 
    } 
     
    if (interruptStatus & kTXInterruptPending) 
    { 
        // Packet transmitted succesfully. 
        me->fNetworkStats->outputPackets++; 
    } 
} 

The interrupt handler is shared for RX and TX interrupts. To find out which interrupt occurred, we 
read the device’s interrupt status register. Usually an interrupt status register is cleared on read, which 
will acknowledge and de-assert the interrupt. A quick note about the TX interrupt: we don’t do anything 
other than record the packet as transmitted in our statistics structure, as we do not have a queue and 
also don’t need to worry about setting up a new transaction. 

When a packet is received, it needs to be transferred from an input buffer and passed to the 
IONetworkInterface class that was attached to the network controller driver. A packet is delivered to the 
network stack through the IONetworkInterface::inputPacket() method. The method accepts an mbuf_t. 
To get the data into an mbuf_t you can pre-allocate buffers using 
IONetworkController::allocatePacket(), which can then be used as a destination for the DMA of an 
incoming packet. An IOMbufMemoryCursor subclass can be used to handle translation of the mbuf data into 
physical addresses. 

In the preceding example, we loop continuously until we have emptied the queue of incoming 
packets. A real hardware device may also receive multiple packets for a single interrupt. This process is 
often referred to as interrupt coalescing. Interrupt coalescing is necessary for modern network devices 
operating at speeds of 1 Gigabit or more, as network frames are often quite small and it would be 
inefficient to issue a hardware interrupt for every single packet received. Instead, the device may queue a 
number of packets in its onboard memory then issue an interrupt. Excessive queuing in hardware or by 
the driver should be avoided as it impacts latency, which may adversely affect some applications, such 
as real-time multiplayer games or audio/video conferencing. When inputPacket() is called, the packet is 
put in a queue internally by IONetworkInterface. We can drain this queue when we are ready by calling 
flushInputQueue(), which will forward packets to the BSD data-link layer for processing by protocol 
handlers. 

Listing 13-10 shows the method that issues our pretend RX interrupt, once a packet has been 
retrieved from the slave device. 

Listing 13-10. Method for Handling Incoming Packets from the Slave Device and Raising Virtual 

Interrupts 

bool    com_osxkernel_MyEthernetHwAbstraction::handleIncomingPacket(mbuf_t packet,  
                                                                    char** frameHdr) 
{ 
    bool passPacketToCaller = true; 
    bool copyPacket = false; 
     
    struct ether_header *hdr = (struct ether_header*)*framePtr; 
    if (!hdr) 
        return false; 
     
    // We only accept packets routed to us if it is addressed to our Mac address, 
    // the broadcast or a multicast address. 
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    if (memcmp(&fMacBcastAddress.bytes, &hdr->ether_dhost, ETHER_ADDR_LEN) == 0) 
    { 
        copyPacket = true; 
    } 
    else if (memcmp(&fRegisterMap.address, &hdr->ether_dhost, ETHER_ADDR_LEN) == 0) 
    { 
        passPacketToCaller = false; // Belongs to our interface. 
        copyPacket = true; 
    } 
    else if (hdr->ether_dhost[0] & 0x01) // multicast 
    { 
        copyPacket = true; 
    } 
     
    if (copyPacket) 
    { 
        mbuf_t newPacket; 
        newPacket = fDriver->allocatePacket((UInt32)mbuf_pkthdr_len(packet) + ETHER_HDR_LEN); 
                 
        if (newPacket) 
        { 
            unsigned char* data = (unsigned char*)mbuf_data(newPacket); 
            bcopy(*framePtr, data, ETHER_HDR_LEN); 
            data += ETHER_HDR_LEN; 
            mbuf_copydata(packet, 0, mbuf_pkthdr_len(packet),data); 
             
            IOLog("input packet is %lu bytes long\n", mbuf_pkthdr_len(packet)); 
             
            fRxPacketQueue->lockEnqueue(newPacket); 
            fRegisterMap.interruptStatusRegister |= kRXInterruptPending; 
            // Raise an interrupt to the driver to inform it of the new packet 
            fDriver->fInterruptSource->setTimeoutUS(1); 
        } 
    } 
    return passPacketToCaller; 
} 

In Listing 13-10, the packet is copied from the original packet in response to the input filter on the 
slave device being called, then queued using an IOPacketQueue that simulates the hardware receive 
buffer. We then raise an interrupt to the driver by first setting the RX interrupt pending flag in the status 
register, then setting the timeout of the interrupt timer function. When the interrupt handler runs, it will 
call receivePacketFromHardware(), which simply grabs a new packet from the queue under lock: 

mbuf_t  com_osxkernel_MyEthernetHwAbstraction::receivePacketFromHardware() 
{ 
    if (!fRxPacketQueue) 
        return NULL; 
    return fRxPacketQueue->lockDequeue(); 
} 
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Taking MyEthernetDriver for a Test-Drive 
If you wish to test MyEthernetDriver, it is best to do so on an isolated network segment or with the 
blessing of your network administrator because, unlike other samples, it will actively interact with your 
network. Before you test it, you should modify MyEthernetHwAbstraction.cpp so that it points to the 
Ethernet device you wish to use to transmit and receive on behalf of MyEthernetDriver. 

You can load MyEthernetDriver by using kextload. Unlike an NKE, which has to be manually 
loaded, MyEthernetDriver uses IOResources as a provider so that it will be loaded automatically during 
boot, if installed to the proper location. For the purpose of testing the driver, it is recommended that you 
do not keep it in your systems extensions directory in case there is a problem. When the driver is loaded, 
you can verify its presence using IORegisterExplorer, as shown in Figure 13-7. 

 

Figure 13-7. IORegisteryExplorer showing MyEthernetDriver attached to the IOResources nub 

We should also be able to see the new network interface in System Preferences under the Network 
pane, as shown in Figure 13-8. 
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Figure 13-8. Network pane in System Preferences showing the configuration options for MyEthernetDriver 

If you have a DHCP server on your network, you may see that MyEthernetDriver was automatically 
assigned an IP address. If not, you can manually configure an IP address using System Preferences or 
using the ifconfig command line tool: 

$ sudo ifconfig en5 inet 192.168.1.50 netmask 255.255.255.0  
$ ifconfig en5 
en5: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500 
        ether be:ef:fe:ed:12:11  
        inet6 fe80::bcef:feff:feed:1211%en5 prefixlen 64 scopeid 0x7  
        inet 192.168.1.50 netmask 0xffffff00 broadcast 192.168.1.255 
        media: autoselect (1000baseT <full-duplex>) 
        status: active 

Note that you may be assigned a different BSD network interface name, depending on how many 
interfaces you have installed on your system. In this case, en5 is used. Provided that you have configured 
an IP address that is reachable by another host on the network, you should now be able to reach that 
host even if the slave interface is using a different IP/subnet. We can verify that it works correctly by 
using the ping utility on another host: 
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othermac$ ping 192.168.1.50 
PING 192.168.1.50 (192.168.1.50): 56 data bytes 
64 bytes from 192.168.1.50: icmp_seq=0 ttl=64 time=0.855 ms 
64 bytes from 192.168.1.50: icmp_seq=1 ttl=64 time=0.588 ms 
--- 192.168.1.50 ping statistics --- 
2 packets transmitted, 2 packets received, 0.0% packet loss 
round-trip min/avg/max/stddev = 0.588/0.722/0.855/0.133 ms 

othermac$ arp –a 
? (192.168.1.50) at be:ef:fe:ed:12:11 on en0 ifscope [ethernet] 
? (192.168.255.255) at ff:ff:ff:ff:ff:ff on en0 ifscope [ethernet] 

You will see that the other system has picked up the hardware address (MAC) of MyEthernetDriver 
and is not using the MAC of the slave interface to reach us. 

Going back to the system with MyEthernetDriver installed, we can check the statistics for our 
interface to see the amount of packets and data it has transferred: 

$ netstat -i -I en5 
Name  Mtu   Network       Address               Ipkts  Ierrs    Opkts  Oerrs  Coll 
en5   1500  <Link#7>      be:ef:fe:ed:12:11       61     0       67     0       0 
en5   1500  192.168.1     192.168.1.50            61      -      67     -     - 

Summary 
In this chapter, we have looked at the kernel network filtering KPIs as well as how to implement a driver 
for an Ethernet controller. Some key points are as follows: 

• The kernel network support is split into two parts: the BSD layer that implements 
support for all protocols and network services such as firewalls, and the I/O Kit, 
which provides facilities for writing drivers for network hardware. 

• The kernel filtering KPI allows one to filter and manipulate network packets at 
various levels, including the socket, IP, and interface levels. 

• The most important data-structure of the kernel network subsystem is the mbuf 
structure used to store network packets or other related data. In kernel extensions, 
mbufs can be manipulated using the opaque reference mbuf_t and the functions 
provided by the mbuf KPI. The concept of mbufs is used both in the BSD section of 
the kernel and in the I/O Kit.  

• A socket filter allows interception of socket-based communication and out-of-
band events. It can intercept incoming and outgoing data. Socket filters can be 
attached globally for every socket in the system, or programmatically per socket. 
With a socket filter, you can, among other things, modify, reject, or inject new 
packets. 
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• An IP filter is similar to a socket filter, but works at the IP layer. The IP filter will see 
all IP traffic in the system regardless of interface. It will also see IP packets that 
were not directly initiated through a socket. 

• An interface filter allows a filter to be attached to a specific network interface. An 
interface filter can see all traffic to or from that interface regardless of protocol. It 
is possible to restrict seen packets to a specific protocol family, such as IPv4 or 
IPv6. 

• The IONetworkingFamily provides the programming interfaces necessary to 
implement device drivers for network hardware. It includes classes for queuing 
and classes for abstracting the interface between the I/O Kit and the BSD layer. 

• The IONetworkController class represents a network driver. A specialized class for 
handling an Ethernet compatible device is provided by IOEthernetController. The 
IONetworkInterface provides the glue that connects network devices to other 
parts of the kernel network system. 
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Storage Systems 

Storage devices encompass many types of devices, including hard disk drives, CDs and DVDs, USB flash 
drives, FireWire-based hard disks, and a file-based disk image that has been mounted as a virtual drive. 
For the user, a storage device appears as a volume on their desktop that they can read files from and 
write files to, but what the user doesn’t see is the multiple drivers that work together in the kernel to 
make this possible. 

The reason why storage devices require multiple drivers is a result of the myriad of different forms 
that a storage device may take. If you consider the difference between an external USB flash drive and an 
internal hard disk, both of which appear to the user as storage devices, you can appreciate the 
differences that need to be handled. For example: 

• The interface through which a storage device is connected to the computer may 
be a USB or FireWire port (used for external storage devices), or through a SATA 
port (commonly used by the internal hard disk). 

• The computer may control the storage device by sending SCSI commands, as is 
done for USB mass storage devices or FireWire SPB-2 drives, or by sending 
ATA/ATAPI commands to the AHCI interface, as is done for the internally 
connected SATA disks. 

• The storage device may contain a single volume, or may be partitioned into 
multiple volumes. 

• Each volume will be formatted with a file system chosen by the user, and may be 
HFS+ (the default file system used by Mac OS X), NTFS (the default file system 
used by Windows), or one of the many file systems that Mac OS X supports. 

To handle all of these possible variations, the I/O Kit implements storage devices by building a 
layered stack of multiple drivers, where each layer is responsible for handling one aspect, such as the 
physical connection (USB, FireWire or SATA), the command protocol (SCSI or ATA/ATAPI), and the 
logical volume. Support for various file systems is provided by the Virtual File System layer (VFS layer), 
which, although a part of the kernel, resides in the BSD portion of the kernel and is located outside of the 
I/O Kit. 

This modularity in the design of the I/O Kit’s storage stack means that each layer of the driver stack 
is decoupled from the surrounding layers, and each driver needs to deal only with the functionality 
provided by its layer. This means that a new file system can be written without any knowledge of the 
types of storage devices on which the file system may reside, since the file system will never need to 
directly communicate with the disk device’s hardware. Similarly, in writing a driver for a new type of 
storage device, the developer doesn’t need to implement any details of the file system; instead, the disk 
can be formatted with any of the existing file systems supported by Mac OS X. The driver stack for a 
storage device is shown in Figure 14-1. 
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Figure 14-1. An abstract view of the drivers involved in supporting a storage device 

It is not necessary to implement a driver in each layer. For example, to implement support for a new 
hard disk, you would need only to write a driver in the transport layer; the rest of the driver stack would 
match against your custom driver, and your new disk device would be presented to the user as a 
standard disk. 

Transport Layer Drivers 
The driver for a storage device is implemented in the I/O Kit as a transport driver that resides within the 
Transport Layer of Figure 14-1. Like any other I/O Kit driver, a transport driver will match against the 
provider class that represents its hardware device; the provider class is also the means by which the 
driver accesses the underlying hardware. For example, a storage device that is USB-based will have a 
provider class that is an instance of IOUSBDevice or IOUSBInterface. 

The I/O Kit provides no restrictions on the superclass that a transport driver can be derived from, 
other than ultimately deriving from the IOService class, as is required by all I/O Kit drivers. This allows a 
transport driver a large degree of freedom, since it can use a set of methods that is natural for the 
communication protocol used by the disk device, rather than being forced to implement an interface 
that is imposed by the I/O Kit’s storage family. 

The lack of a common interface for transport drivers does provide a problem, since the upper layers 
of the driver stack, in particular, the generic block storage driver that sits immediately above the 
transport driver, has no common interface allowing it to call methods in the transport driver. To solve 
this, the I/O Kit defines a driver class known as IOBlockStorageDevice, which is a small lightweight 
“nub” driver that sits between the transport layer and generic block storage driver. 

The role of the IOBlockStorageDevice class is to provide an abstract representation of the disk to the 
generic block storage driver, and to pass on all requests to the transport driver, which in turn 
implements the behavior that is specific to the disk device. The transport driver is responsible for 
defining a concrete subclass of the IOBlockStorageDevice class and instantiating it. An illustration of the 
relationship between the transport driver and the layers above and below it in the storage driver stack is 
shown in Figure 14-2, which uses the Apple AHCI driver as an example. 

www.allitebooks.com

http://www.allitebooks.org


CHAPTER 14  STORAGE SYSTEMS 

321 

 

Figure 14-2. The relationship between drivers in the Apple AHCI storage driver stack 

 Note  Since the I/O Kit puts no restrictions on how a transport driver should be implemented, the transport 
driver may be built from a stack of several drivers. Apple takes advantage of this in the drivers for devices that use 
the SCSI command set, including USB Mass Storage devices and FireWire devices. The drivers for these devices 
all make use of a common driver that implements the SCSI protocol. 

The IOBlockStorageDevice Interface 
The upper layers of the storage driver stack communicate with the transport driver through a class that is 
derived from the IOBlockStorageDevice interface. The IOBlockStorageDevice presents a view of the 
storage device as a linear array of logical blocks that can be either read from or written to by the caller. A 
logical block is the minimum number of bytes that the disk is capable of reading or writing, and a disk 
operation must operate on a multiple of blocks. Depending on the disk, the block size will be anywhere 
from 512 bytes to 4096 bytes. All operations performed by the IOBlockStorageDevice class work on a 
contiguous range of disk blocks. 

The methods that must be implemented by a subclass of the IOBlockStorageDevice interface are 
described in Listing 14-1. The IOBlockStorageDevice class is not designed to provide a full 
implementation of the behavior of these methods; instead, it passes them on to its provider class, which 
is the transport driver within the storage driver stack. 
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Listing 14-1. The Methods to Be Implemented by a Subclass of the IOBlockStorageDevice Interface 

class IOBlockStorageDevice : public IOService 
{ 
        virtual bool            init(OSDictionary * properties); 
        virtual IOReturn        doEjectMedia(void) = 0; 
        virtual IOReturn        doFormatMedia(UInt64 byteCapacity) = 0; 
        virtual UInt32          doGetFormatCapacities(UInt64 * capacities, 
                                    UInt32   capacitiesMaxCount) const = 0; 
        virtual IOReturn        doLockUnlockMedia(bool doLock) = 0; 
        virtual IOReturn        doSynchronizeCache(void) = 0; 
        virtual char*           getVendorString(void) = 0; 
        virtual char*           getProductString(void) = 0; 
        virtual char*           getRevisionString(void) = 0; 
        virtual char*           getAdditionalDeviceInfoString(void) = 0; 
        virtual IOReturn        reportBlockSize(UInt64 *blockSize) = 0; 
        virtual IOReturn        reportEjectability(bool *isEjectable) = 0; 
        virtual IOReturn        reportLockability(bool *isLockable) = 0; 
        virtual IOReturn        reportMaxValidBlock(UInt64 *maxBlock) = 0; 
        virtual IOReturn        reportMediaState(bool *mediaPresent,bool *changedState) = 0; 
        virtual IOReturn        reportPollRequirements(bool *pollRequired,  
                                    bool *pollIsExpensive) = 0; 
        virtual IOReturn        reportRemovability(bool *isRemovable) = 0; 
        virtual IOReturn        reportWriteProtection(bool *isWriteProtected) = 0; 
        virtual IOReturn        getWriteCacheState(bool *enabled) = 0; 
        virtual IOReturn        setWriteCacheState(bool enabled) = 0; 
        virtual IOReturn        doAsyncReadWrite(IOMemoryDescriptor *buffer, UInt64 block,  
                                    UInt64 nblks, IOStorageAttributes *attributes, 
                                    IOStorageCompletion *completion) = 0; 
        virtual IOReturn        requestIdle(void); 
        virtual IOReturn        doDiscard(UInt64 block, UInt64 nblks); 
        virtual IOReturn        doUnmap(IOBlockStorageDeviceExtent* extents,  
                                    UInt32 extentsCount, UInt32 options); 
}; 

The following sections describe the methods that a subclass of IOBlockStorageDevice needs to 
implement, and they are ordered by functionality. The first methods described each return a human 
readable description of the device to the user. These strings are used to help the user to identify the 
storage device that corresponds to a mounted volume. If the storage medium has not been formatted, 
no volume will be associated with the device, and these identification strings will be the only means the 
user has of ensuring that the device they are about to format is the device they think it is. Therefore, 
these strings should return a descriptive name that, for example, identifies the manufacturer of a USB 
flash drive or provides a description of the connection interface (such as “USB to SATA adapter”), 
allowing the user to easily identify the device. These strings appear in utilities such as “Disk Utility” and 
the system profiles produced by “System Information.” 

• getVendorString returns the name of the manufacturer of the storage device. 

• getProductString returns a descriptive name of the product model. 
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• getRevisionString returns a string whose interpretation can be decided by the 
driver developer. This could be used to identify the firmware version running on 
the storage device, or it could provide an identification of the product design. Both 
values could also be included because the value is a string. 

• getAdditionalDeviceInfoString is currently unused by the I/O Kit 
implementation, but could be queried from the driver by proprietary disk utility 
software. 

The following methods are called to query the capabilities of the storage device: 

• reportRemovability and reportEjectability both return similar information. A 
device is considered removable if the media may come and go while the driver is 
present. This means that the I/O Kit may periodically poll the transport driver to 
determine whether a disk is currently present. Furthermore, a device that is 
removable is considered ejectable if it can be removed through software control 
(such as a CD drive). If a device is not ejectable, the user can still “eject” through 
the Finder or Disk Utility, although Mac OS X will perform an unmount of the file 
system, but won’t eject the media. 

• reportLockability is called to determine whether the media in a removable drive 
can be “locked down” and prevented from being removed by the user. An example 
of locking a device is a CD drive that has an eject button on its front case that can 
be disabled (locked) when a CD is mounted. 

• reportPollRequirements is called to determine whether the driver needs to be 
periodically called to check whether media has been inserted or removed, as 
opposed to the driver itself being able to generate a notification when media has 
arrived. If the device requires polling, the driver can return an additional flag 
through the reportPollRequirements method to indicate whether polling is 
expensive, for example, if media can be detected only by spinning up the device. 
The I/O Kit will poll a device only if it is not expensive. 

• reportMediaState is called to determine whether there is media present in the 
device. This method is called once when the storage driver stack is created, to read 
the initial state of the hardware, and thereafter, only if the driver has indicated 
that it requires polling to determine the presence of media. 

The following methods are called to query the capabilities of the media that is present. These 
methods are called whenever new media is detected. 

• reportBlockSize should return the size in bytes of a disk sector (or block) for the 
device. A user space process can access this value through the ioctl 
DKIOCGETBLOCKSIZE. 

• reportMaxValidBlock returns the capacity of the device, expressed in terms of the 
address of the final block of the device. Because disk blocks are indexed from 0, 
the maximum valid block is one less than the total block count of the device. 

• reportWriteProtection is called to determine whether the media can be written to 
or is write-protected, in which case it will be mounted as a read-only volume. A 
user space process can access this value through the ioctl DKIOCISWRITABLE. 
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The following methods perform low-level formatting of the media. Not all devices can support low-
level formatting. Even though these methods must be present in the implementation of the 
IOBlockStorageDevice interface, it is acceptable to return an error if the functionality is not provided. 

• doGetFormatCapacities is called to obtain a list containing each size (in bytes) that 
the media can be formatted to. The storage to hold the result of this method is 
provided by the caller, and the method returns the actual number of items that 
were written to the list. The caller can provide a NULL pointer for the list storage if 
it wishes to determine the number of formats that the implementation supports, 
without receiving the actual list. A user space process can request this list through 
the ioctl DKIOCGETFORMATCAPACITIES. 

• doFormatMedia is called to perform a low-level format of the device. If this 
functionality is not implemented, the method is free to return an error, such as 
kIOReturnUnsupported. A user space process can perform this action by sending 
the ioctl DKIOCFORMAT. 

• The doDiscard method is called not to format the entire disk but rather to wipe 
blocks that no longer store data that is required by the file system. For a solid state 
disk, this method provides an opportunity to issue a TRIM command for the 
discarded blocks. A user space process can perform this action by sending the ioctl 
DKIOCDISCARD. This method was deprecated in later versions of Mac OS X 10.6 and 
has been replaced with the doUnmap method. 

• The doUnmap method was introduced as a replacement for the doDiscard method. 
It performs a similar function, which is to release disk blocks that are not used by 
the file system. Unlike the doDiscard method, which is capable of releasing only a 
single physically contiguous run of disk blocks, the doUnmap method is provided 
with an array containing one or more ranges of disk blocks that are no longer in 
use. A user space process can perform this action by sending the ioctl DKIOCUNMAP. 

The following methods allow software control over ejecting the media: 

• doLockUnlockMedia is called to prevent the user from ejecting the media, such as 
disabling the eject button on the front of a CD drive. The method is passed a 
Boolean parameter that determines whether the driver should lock the media in 
the device (prevent user ejection) or unlock the media (allow user ejection). 

• doEjectMedia is called to eject the media from the device. A user space process can 
perform this action by sending the ioctl DKIOCEJECT. 

• requestIdle is called to place the disk in an idle state, such as spinning down a CD 
drive. While there is no corresponding method to take the device out of the idle 
state, the next read or write operation will implicitly do so. A user space process 
can perform this action by sending the ioctl DKIOCREQUESTIDLE. 
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Finally, and perhaps most importantly, are the following methods for reading and writing data to 
the device: 

• doAsyncReadWrite is the generic data read and write method of the 
IOBlockStorageDevice interface. It takes as its parameters an IOMemoryDescriptor 
object that describes the source buffer (for a disk read) or the destination buffer 
(for a disk write), a contiguous range of disk blocks to read from or write to, and 
associated attribute flags. The IOMemoryDescriptor also serves to determine 
whether the requested operation is a read or a write; the driver calls the method 
getDirection() on the IOMemoryDescriptor object, and if the returned value is 
kIODirectionIn, a read operation has been requested. If the returned value is 
kIODirectionOut, a write operation has been requested. The disk operation is 
performed asynchronously, and when it completes, the caller is notified through a 
callback function that is provided. 

• setWriteCacheState is called to enable or disable any hardware caching that the 
device has. The corresponding method getWriteCacheState returns the current 
state of the device cache. 

• doSynchronizeCache is called to flush the contents of the hardware cache to the 
media. This is a synchronous method that should not return until the contents of 
the cache have been written to a disk. This method is also called in response to the 
ioctl DKIOCSYNCHRONIZECACHE from a user space process. 

Building a RAM Disk Device 
Having examined the methods that must be implemented to support the IOBlockStorageDevice 
interface, we can now take a look at how a simple RAM disk device can be implemented in Mac OS X. As 
with the driver for any disk device in the I/O Kit, we will split our driver into two classes: the transport 
driver class, which implements the functionality and communicates with the hardware device, and a 
class that implements the IOBlockStorageDevice interface, which acts as an interface between the 
transport driver and the device services layer of the storage driver stack. 

As we have seen, the I/O Kit does not require the transport driver for a storage device to be written 
in any particular way or to subclass from any particular superclass. This allows the transport driver to be 
written in a way that is most natural for the type of hardware that provides access to the disk storage. For 
our RAM disk, the “hardware” controlled by the transport driver is nothing more than a memory 
allocation that provides the storage for the RAM disk. As we learned in Chapter 4, an I/O Kit driver that 
has no hardware device to match against will use the global IOResources class as its provider class. This 
will be the provider class of our RAM disk’s transport driver. Since our transport driver is implemented 
as a generic driver, we will implement it as a subclass of the generic IOService class. 

For simplicity, our RAM disk’s transport driver will allocate the storage for the disk when it loads, 
and will not release it until the driver unloads. The storage is a fixed-size memory allocation. Our 
transport driver will also be responsible for instantiating the IOBlockStorageDevice object, which will 
provide the interface, through which the upper layer of the driver stack will communicate, with our 
transport driver. The header file for a RAM disk’s transport driver is given in Listing 14-2. 

Listing 14-2. The Header File of the Transport Driver for a RAM Disk Device 

#include <IOKit/IOService.h> 
#include <IOKit/IOBufferMemoryDescriptor.h> 
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class com_osxkernel_driver_RAMDisk : public IOService 
{ 
        OSDeclareDefaultStructors(com_osxkernel_driver_RAMDisk) 
         
private: 
        IOBufferMemoryDescriptor*       m_memoryDesc; 
        void*                           m_buffer; 
         
protected: 
     bool                    createBlockStorageDevice (); 
      
public: 
     virtual bool            start (IOService* provider); 
     virtual void            free (void); 
      
     virtual IOByteCount     performRead (IOMemoryDescriptor* dstDesc, UInt64 byteOffset, 
                                             UInt64 byteCount); 
     virtual IOByteCount     performWrite (IOMemoryDescriptor* srcDesc, UInt64 byteOffset, 
                                             UInt64 byteCount); 
}; 

The implementation of a RAM disk’s transport driver is given in Listing 14-3. 

Listing 14-3. The Implementation of the Transport Driver for a RAM Disk Device 

// Define the superclass 
#define super IOService 
 
OSDefineMetaClassAndStructors(com_osxkernel_driver_RAMDisk, IOService) 
 
#define kDiskByteSize           (16*1024*1024) // Fix RAM disk size at 16MiB 
 
bool com_osxkernel_driver_RAMDisk::start (IOService *provider) 
{ 
        if (super::start(provider) == false) 
                return false; 
         
        // Allocate storage for the disk. 
        m_memoryDesc = IOBufferMemoryDescriptor::withCapacity(kDiskByteSize,  
                                                              kIODirectionOutIn); 
        if (m_memoryDesc == NULL) 
                return false; 
        m_buffer = m_memoryDesc->getBytesNoCopy(); 
         
        // Allocate an IOBlockStorageDevice nub. 
        if (createBlockStorageDevice() == false) 
                return false; 
         
        return true; 
} 
 
void com_osxkernel_driver_RAMDisk::free (void) 
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{ 
        if (m_memoryDesc != NULL) 
                m_memoryDesc->release(); 
         
        super::free(); 
} 
 
 
IOByteCount com_osxkernel_driver_RAMDisk::performRead (IOMemoryDescriptor* dstDesc,  
                                                       UInt64 byteOffset, UInt64 byteCount) 
{ 
        return dstDesc->writeBytes(0, (void*)((uintptr_t)m_buffer + byteOffset), byteCount); 
} 
 
IOByteCount com_osxkernel_driver_RAMDisk::performWrite (IOMemoryDescriptor* srcDesc,  
                                                        UInt64 byteOffset, UInt64 byteCount) 
{ 
        return srcDesc->readBytes(0, (void*)((uintptr_t)m_buffer + byteOffset), byteCount); 
} 

The implementation of the RAMDisk class should be fairly straightforward. In its start() method, the 
transport driver allocates a memory buffer that provides the storage for the disk device. This buffer isn’t 
released until the RAM disk driver is unloaded and its free() method is called. The RAMDisk driver class 
also defines two methods that provide access to the storage buffer, namely performRead() and 
performWrite(). 

As a general rule, the transport driver should be implemented in a way that matches the 
functionality and protocol of the device that it is controlling. The interface for the RAM disk in Listing 14-
2 certainly meets this requirement, with its very simple set of methods. A consequence of this freedom is 
that the transport driver needs a nub driver, which implements the IOBlockStorageDevice interface, to 
accept method calls from the upper layers of the storage driver stack and to pass them on to the 
transport driver. In our sample RAM disk driver, this functionality is provided by a class named 
com_osxkernel_driver_RAMDiskStorageDevice, which is derived from the IOBlockStorageDevice interface. 

A class that implements the IOBlockStorageDevice interface sits between the transport driver and 
the upper-layer drivers; it implements methods that are called by the upper-layer drivers, and in turn 
needs to call methods that are implemented in the transport driver. As such, it needs a reference to an 
instance of the transport driver class. This is usually done by making the transport driver the provider 
class of the IOBlockStorageDevice nub. 

In our RAM disk driver, the transport driver directly instantiates the RAMDiskStorageDevice nub and 
attaches it to itself. Attaching the RAMDiskStorageDevice to the transport driver sets up the transport 
driver as the provider class of the RAMDiskStorageDevice. This process is implemented in a private 
method named createBlockStorageDevice(), which the transport driver calls from its start() method. 
The implementation of this is given in Listing 14-4. 

Listing 14-4. Instantiating the IOBlockStorageDevice Nub from the RAM Disk Transport Driver 

bool com_osxkernel_driver_RAMDisk::createBlockStorageDevice () 
{ 
        com_osxkernel_driver_RAMDiskStorageDevice*      nub = NULL; 
        bool            result = false; 
         
        // Allocate a new IOBlockStorageDevice nub. 
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        nub = new com_osxkernel_driver_RAMDiskStorageDevice; 
        if (nub == NULL) 
                goto bail; 
         
        // Call the custom init method (passing the overall disk size). 
        if (nub->init(kDiskByteSize) == false) 
                goto bail; 
         
        // Attach the IOBlockStorageDevice to the this driver. 
        // This call increments the reference count of the nub object, 
        // so we can release our reference at function exit. 
        if (nub->attach(this) == false) 
                goto bail; 
         
        // Allow the upper level drivers to match against the IOBlockStorageDevice. 
        nub->registerService(); 
         
        result = true; 
         
bail: 
        // Unconditionally release the nub object. 
        if (nub != NULL) 
                nub->release(); 
         
        return result; 
} 

After instantiating the nub driver and attaching it as a client of the transport driver, it is important to 
call the method registerService() on the nub. This can either be performed by the implementation of 
the nub itself (such as in its start() method) or, as in this example, by the transport driver. The purpose 
of calling registerService() is to publish the IOBlockStorageDevice nub, allowing drivers to match 
against it, which begins the construction of the rest of the storage driver stack. The header file for the 
com_osxkernel_driver_RAMDiskStorageDevice nub driver is provided in Listing 14-5. 

Listing 14-5. The Header File for the RAMDiskStorageDevice Nub Class 

#include <IOKit/storage/IOBlockStorageDevice.h> 
 
class com_osxkernel_driver_RAMDisk; 
 
class com_osxkernel_driver_RAMDiskStorageDevice : public IOBlockStorageDevice 
{ 
        OSDeclareDefaultStructors(com_osxkernel_driver_RAMDiskStorageDevice) 
         
private: 
        UInt64                          m_blockCount; 
        com_osxkernel_driver_RAMDisk*   m_provider; 
         
public: 
        virtual bool    init(UInt64 diskSize, OSDictionary* properties = 0); 
         
        virtual bool    attach(IOService* provider); 
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        virtual void            detach(IOService* provider); 
         
        virtual IOReturn        doEjectMedia(void); 
        virtual IOReturn        doFormatMedia(UInt64 byteCapacity); 
        virtual UInt32          doGetFormatCapacities(UInt64 * capacities, UInt32  
                                    capacitiesMaxCount) const; 
        virtual IOReturn        doLockUnlockMedia(bool doLock); 
        virtual IOReturn        doSynchronizeCache(void); 
        virtual char*           getVendorString(void); 
        virtual char*           getProductString(void); 
        virtual char*           getRevisionString(void); 
        virtual char*           getAdditionalDeviceInfoString(void); 
        virtual IOReturn        reportBlockSize(UInt64 *blockSize); 
        virtual IOReturn        reportEjectability(bool *isEjectable); 
        virtual IOReturn        reportLockability(bool *isLockable); 
        virtual IOReturn        reportMaxValidBlock(UInt64 *maxBlock); 
        virtual IOReturn        reportMediaState(bool *mediaPresent,bool *changedState); 
        virtual IOReturn        reportPollRequirements(bool *pollRequired,  
                                    bool *pollIsExpensive); 
        virtual IOReturn        reportRemovability(bool *isRemovable); 
        virtual IOReturn        reportWriteProtection(bool *isWriteProtected); 
        virtual IOReturn        getWriteCacheState(bool *enabled); 
        virtual IOReturn        setWriteCacheState(bool enabled); 
        virtual IOReturn        doAsyncReadWrite(IOMemoryDescriptor *buffer, UInt64 block,  
                                    UInt64 nblks, IOStorageAttributes *attributes,  
                                    IOStorageCompletion *completion); 
}; 

The implementation of the com_osxkernel_driver_RAMDiskStorageDevice class is provided in Listing 
14-6. For brevity, methods with an empty implementation have been omitted. 

Listing 14-6. The Implementation of an IOBlockStorageDevice Nub Class 

#include <IOKit/storage/IOBlockStorageDevice.h> 
 
// Define the superclass 
#define super IOBlockStorageDevice 
 
OSDefineMetaClassAndStructors(com_osxkernel_driver_RAMDiskStorageDevice, IOBlockStorageDevice) 
 
#define kDiskBlockSize          512 
 
bool com_osxkernel_driver_RAMDiskStorageDevice::init(UInt64 diskSize, OSDictionary* 

properties) 
{ 
    if (super::init(properties) == false) 
      return false; 
    m_blockCount = diskSize / kDiskBlockSize; 
    return true; 
} 
 
bool com_osxkernel_driver_RAMDiskStorageDevice::attach (IOService* provider) 



CHAPTER 14  STORAGE SYSTEMS 

330 

{ 
    if (super::attach(provider) == false) 
      return false; 
    m_provider = OSDynamicCast(com_osxkernel_driver_RAMDisk, provider); 
    if (m_provider == NULL) 
      return false; 
    return true; 
} 
 
void com_osxkernel_driver_RAMDiskStorageDevice::detach(IOService* provider) 
{ 
    if (m_provider == provider) 
      m_provider = NULL; 
    super::detach(provider); 
} 
 
 
UInt32 com_osxkernel_driver_RAMDiskStorageDevice::doGetFormatCapacities(UInt64* capacities,  
                                                              UInt32 capacitiesMaxCount) const 
{ 
    // Ensure that the array is sufficient to hold all our formats (we require 1 element). 
    if ((capacities != NULL) && (capacitiesMaxCount < 1)) 
      return 0;               // Error, return an array size of 0. 
     
    // The caller may provide a NULL array if it wishes to query  
    // the number of formats that we support. 
    if (capacities != NULL) 
      capacities[0] = m_blockCount * kDiskBlockSize; 
    return 1; 
} 
 
char* com_osxkernel_driver_RAMDiskStorageDevice::getProductString(void) 
{ 
    return (char*)"RAM Disk"; 
} 
 
IOReturn com_osxkernel_driver_RAMDiskStorageDevice::reportBlockSize(UInt64 *blockSize) 
{ 
    *blockSize = kDiskBlockSize; 
    return kIOReturnSuccess; 
} 
 
IOReturn com_osxkernel_driver_RAMDiskStorageDevice::reportMaxValidBlock(UInt64 *maxBlock) 
{ 
    *maxBlock = m_blockCount-1; 
    return kIOReturnSuccess; 
} 
 
IOReturn com_osxkernel_driver_RAMDiskStorageDevice::reportMediaState(bool *mediaPresent, bool 

*changedState) 
{ 
    *mediaPresent = true; 
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    *changedState = false; 
    return kIOReturnSuccess; 
} 
 
IOReturn com_osxkernel_driver_RAMDiskStorageDevice::reportPollRequirements(bool *pollRequired, 

bool *pollIsExpensive) 
{ 
    *pollRequired = false; 
    *pollIsExpensive = false; 
    return kIOReturnSuccess; 
} 
 
IOReturn com_osxkernel_driver_RAMDiskStorageDevice::reportRemovability(bool *isRemovable) 
{ 
    *isRemovable = true; 
    return kIOReturnSuccess; 
} 
 
IOReturn com_osxkernel_driver_RAMDiskStorageDevice::doAsyncReadWrite(IOMemoryDescriptor 

*buffer, UInt64 block, UInt64 nblks, IOStorageAttributes *attributes, IOStorageCompletion 
*completion) 

{ 
    IODirection               direction; 
    IOByteCount               actualByteCount; 
     
    // Return errors for incoming I/O if we have been terminated. 
    if (isInactive() == true) 
      return kIOReturnNotAttached; 
    // Ensure the block range being targeted is within the disk’s capacity. 
    if ((block + nblks) > m_blockCount) 
      return kIOReturnBadArgument; 
     
    // Get the buffer’s direction, which indicates whether the operation is a read or a write. 
    direction = buffer->getDirection(); 
    if ((direction != kIODirectionIn) && (direction != kIODirectionOut)) 
      return kIOReturnBadArgument; 
     
    // Perform the read or write operation through the transport driver. 
    if (direction == kIODirectionIn) 
      actualByteCount = m_provider->performRead(buffer, (block*kDiskBlockSize),  
                                               (nblks*kDiskBlockSize)); 
    else 
      actualByteCount = m_provider->performWrite(buffer, (block*kDiskBlockSize),  
                                                (nblks*kDiskBlockSize)); 
     
    // Call the completion function. 
    (completion->action)(completion->target, completion->parameter, kIOReturnSuccess,  
                         actualByteCount); 
     
    return kIOReturnSuccess; 
} 
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Notice that although the transport driver for the RAM disk has no concept of a block size (since its 
minimum addressable unit was a byte), the IOBlockStorageDevice interface expresses the disk capacity 
in blocks, and operates on blocks when performing a read or write operation. For this reason, the nub 
driver’s implementation defines an arbitrary block size of 512 bytes. 

Finally, as with every I/O Kit driver, our RAM disk driver requires a property list that describes the 
requirements of the driver, including its matching dictionary. The IOBlockStorageDevice interface that 
the RAM disk driver implements is part of the I/O Kit’s IOStorageFamily framework, so we need to 
explicitly include this dependency in the RAM disk driver’s property list. This is done by adding an entry 
to the OSBundleLibraries section of the Info.plist file that references the kernel module 
com.apple.iokit.IOStorageFamily. In this sample, we import version 1.6 of the IOStorageFamily, which 
corresponds to the version that was included with Mac OS X 10.6. 

 Note  Any kernel extension that implements a driver that is a part of the storage driver stack will need to include 
the IOStorageFamily as a dependency in its property list. 

The property list for our sample RAM disk driver, including its matching dictionary and its library 
dependencies, is shown in Figure 14-3. 

 

Figure 14-3. The property list for the sample RAM disk driver 
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After building the RAM disk driver and loading the resulting kernel extension, you will be presented 
with a dialog similar to that displayed in Figure 14-4. This does not indicate a problem with the device, 
but it does indicate that Mac OS X was unable to find a readable file system on the disk. Given that the 
disk has yet to be written to, this is an expected error. 

 

Figure 14-4. The standard Mac OS X dialog that is displayed when a disk is inserted that does not contain 

a readable file system 

Clicking the “Initialize…” button in the dialog displayed in Figure 14-4 will launch the “Disk Utility” 
application, allowing the storage device to be partitioned and initialized with a file system. Before doing 
this, it is interesting to examine the state of the driver stack with the IORegisterExplorer utility. In 
addition to the RAMDisk transport driver and the RAMDiskStorageDevice nub, you will notice that the I/O 
Kit has constructed three drivers on top of the nub driver. The state of the driver stack is shown in Figure 
14-5. 

 

Figure 14-5. The driver stack that is created when a non-formatted storage device is loaded 

The Disk Utility application allows a disk to be formatted and initialized for a file system. This 
process involves writing a partition table to the disk, which is required even if the disk contains only a 
single partition, and then writing a file system to that partition. To format a disk using Disk Utility, select 
the device from the list of disks on the left, and click the Erase tab. The name of the device that is 
displayed in Disk Utility is derived from the descriptive strings returned by the IOBlockStorageDevice 
nub, so in the case of the sample RAM disk, this results in a device with the name “RAM Disk Media.” 

By default, Disk Utility will write a GUID partition table to the disk and will use the Mac OS 
Extended file system, also known as the HFS+ file system. Disk Utility won’t perform a low-level format 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 14  STORAGE SYSTEMS 

334 

of the volume, so the IOBlockStorageDevice method doFormatMedia does not need to be implemented. 
The process of initializing a volume is shown in Figure 14-6. 

 

Figure 14-6. Initializing a new volume in Disk Utility 

After a partition map and a file system has been written to the disk, the storage driver stack for the 
RAM disk will now contain three more drivers, as shown in Figure 14-7. On top of the IOMedia object that 
represents the entire disk is an I/O Kit class that represents the partition table that is present on the disk; 
in this case, it is the GUID partition table. Each partition has an IOMedia object that represents the logical 
volume of the partition. 
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Figure 14-7. The driver stack for a device that is partitioned with a GUID partition table containing a 

single partition 

When we implemented the driver for our RAM disk, all of the methods that we implemented were 
specific to accessing data from the device; it didn’t need to provide any methods to handle partition 
schemes or file systems, or to make the device accessible to a user space process. All of this functionality 
is handled by classes provided by the I/O Kit’s IOStorageFamily, in particular the IOBlockStorageDriver, 
IOMedia, and IOMediaBSDClient classes. The benefit of this design is that the functionality is largely 
common across all storage devices and can be implemented in shared classes, which removes the need 
for each storage device to rewrite the same functionality. 

The IOBlockStorageDevice and IOBlockStorageDriver classes represent the disk drive hardware, and 
the IOMedia class represents the disk that is currently present in that drive. In the case of our sample 
RAM disk driver, or a USB flash drive, there will always be media present when there is a storage device; 
the two are inseparable. However, this does not always have to be true; a CD drive for example, will 
create an IOBlockStorageDevice (for which the I/O Kit will create a corresponding 
IOBlockStorageDriver), but unless there is a CD in the drive, there will be no IOMedia object in the driver 
stack. 

The IOMedia class provides a logical representation of the disk. If the disk has been partitioned, a 
storage device will have multiple IOMedia objects, one for each partition, and another that represents the 
overall disk. In the case of a RAID, where a single volume has been created across multiple disks, there 
will be a single IOMedia object that represents the entire logical RAID volume. 

Each IOMedia object in the kernel has an accompanying object known as the IOMediaBSDClient, 
which is responsible for making the logical disk available to user space processes. In most cases, a 
process won’t need to interact with the disk driver directly. Rather, it will simply use the file system on 
the mounted volume to read and write files that are contained on that volume. In some cases, a user 
space process may need to read or write to the disk device directly or to send ioctl calls to the disk driver 
directly. 
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Following the convention of BSD, both a block device interface and a character device interface are 
created for every disk and every disk partition. The block device performs buffered I/O, with each read 
and write going through a buffer cache. When a process performs a read operation, the disk blocks that 
contain the accessed data are read from disk, placed into a buffer cache, and then copied into the 
destination buffer supplied by the user process. If a process reads a disk block that has recently been 
accessed, the data is likely to be present in the buffer cache, and the read request can be completed 
without having to access the disk. 

The character device provides raw access to the disk storage, and doesn’t go through the buffer 
cache. This means that every read or write to the device will result in a method call of the device’s 
IOBlockStorageDevice interface, which will read or write directly into the process’s buffer. As a 
consequence of this, all read and write operations performed to the character device must start on a disk 
block boundary, and the number of bytes transferred must be a multiple of the disk block size. 

The block device and character device interfaces are created by the IOMediaBSDClient class. The 
block device interface can be accessed through the path /dev/diskN, and the character device interface 
can be accessed through the path /dev/rdiskN, where N is an integer to give the device a unique name. 

After building and loading the RAM disk driver, a list of the disk devices that are present in the 
system can be examined by running the terminal command diskutil list. An example of the output 
from this command for the RAM disk device is shown in Listing 14-7. The interface disk1 corresponds to 
the entire storage device, and the interface disk1s1 corresponds to the HFS+ partition. 

Listing 14-7. The Output from the Command diskutil list for the RAM Disk Device 

/dev/disk1 
   #:   TYPE                    NAME            SIZE            IDENTIFIER 
   0:   GUID_partition_scheme                   *16.8 MB        disk1 
   1:   Apple_HFS               VolumeName      16.7 MB         disk1s1 

Partition Schemes 
A disk may be split into several smaller logical units, each of which appear as a separate disk to the user. 
Even if a hard disk only has a single partition it will contain a partition map, which lists the one or more 
partitions that have been created from the disk. Mac OS X provides support for many common partition 
schemes, including the GUID partition scheme that is the default on Mac OS X, the Master Boot Record 
that is still common on Windows, and the Apple Partition Map, which was the default partition scheme 
for Mac OS before the transition to Intel-based Macs. 

Support for new partition schemes can be added to Mac OS X by writing an I/O Kit driver that is 
derived from the IOPartitionScheme class. A partition scheme driver loads whenever a disk is inserted, 
and scans the disk for a partition table that it recognizes. If a partition table that is supported by the 
driver is found, it creates an IOMedia object for each entry in the partition table, and attaches these 
IOMedia objects above it on the driver storage stack. The IOMedia objects created by the partition driver 
will describe only the section of the disk that is covered by the partition, and not the entire disk contents. 

An IOMedia object can describe either the entire disk or a single partition consisting of a physically 
contiguous subset of blocks on the disk. When an IOMedia object is instantiated, its constructor takes a 
property that identifies whether the IOMedia object describes the entire disk or not. Although a partition 
driver will load against an IOMedia object, it will only load against one that describes the entire disk 
contents, because typically a partition table is not located within a partition. 

After the partition scheme driver has successfully scanned a disk, the end result is the construction 
of a storage driver stack similar to that shown in Figure 14-7, with an IOMedia object that describes the 
entire disk’s contents (the object above the IOBlockStorageDriver in the driver stack) and an IOMedia 
object for each partition (the object above the IOGUIDPartitionTableScheme in the driver stack). 
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It is worth noting that a partition scheme driver is responsible only for reading a partition table that 
already exists on the disk; the IOPartitionScheme class contains no methods for writing a partition table. 
A partition table could be created by providing a user space utility process that writes to the disk device 
directly. 

Implementing a Sample Partition Scheme 
In this section we will examine how the driver for a hypothetical partition map would be implemented in 
the I/O Kit. To begin with, let’s examine the property list of the driver, in particular its matching 
dictionary, as shown in Listing 14-8. 

Listing 14-8. A Sample Matching Dictionary from the Property List of a Partition Scheme Driver 

<key>IOKitPersonalities</key> 
<dict> 
        <key>SamplePartitionScheme</key> 
        <dict> 
                <key>CFBundleIdentifier</key> 
                <string>com.osxkernel.SamplePartitionScheme</string> 
                <key>IOClass</key> 
                <string>com_osxkernel_driver_SamplePartitionScheme</string> 
                <key>IOMatchCategory</key> 
                <string>IOStorage</string> 
                <key>IOProviderClass</key> 
                <string>IOMedia</string> 
                <key>IOPropertyMatch</key> 
                <dict> 
                        <key>Whole</key> 
                        <true/> 
                </dict> 
        </dict> 
</dict> 

There are three important aspects of the matching dictionary: 

• It specifies a provider class of IOMedia, so whenever a new disk is inserted (and an 
IOMedia object is created to represent that disk), the partition driver will be given 
the chance to examine the contents of that disk for a supported partition table.  

• The partition driver is interested only in an IOMedia object that represents the 
entire disk, since partition tables cannot be located within a disk partition. To 
narrow the match to IOMedia objects that represent an entire disk only, the 
matching dictionary uses the IOPropertyMatch key to specify that the I/O Kit 
should load the driver only against an IOMedia object that contains a property 
named “Whole” with the Boolean value of true. This is a standard property of 
IOMedia objects that specifies whether the object covers the entire disk, or a 
partition of that disk.  
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• The property list specifies an IOMatchCategory of IOStorage. This property appears 
in the property table of the partition driver, and is important for the correct 
construction of the storage driver stack. In particular, certain drivers will use the 
IOMatchCategory property to determine whether they are at the top of the driver 
stack, or whether the driver on top is also a part of the IOStorage stack. 

Although a partition scheme driver is part of the storage driver stack, and is unloaded only after the 
disk is removed, the driver itself plays a role only when the disk is first inserted, when it is responsible for 
reading the partition table from the disk and instantiating an IOMedia object for each partition that it 
finds. As a driver that is derived from the standard I/O Kit class IOService, the partition scheme driver 
does this through the init(), probe(), and start() methods and on unloading through the stop() and 
free() methods. 

The probe() method is of particular significance for an IOPartitionScheme driver. A partition 
scheme driver will be instantiated whenever a disk is added to the system, and it is up to the driver to 
determine whether the disk contains a supported partition table and, if not, to allow an 
IOPartitionScheme driver that is better suited to load instead. This is done through the standard 
IOService method probe(). In general, the purpose of the probe() method is to examine the hardware to 
determine whether the driver is able to support the device, and if so, to return an integer value that 
represents how well suited the driver is to the hardware. The driver with the highest probe score is the 
one that will be loaded by the I/O Kit. 

In the case of an IOPartitionScheme driver, the role of the probe() method is to read enough of the 
disk to determine whether the partition table on the disk is supported by the driver and, if so, to go on to 
read the partition table entries. It isn’t strictly necessary to read the entire partition table in the probe() 
method, but doing so prevents the need to rescan the partition table when the driver’s start() method 
is called. The partition scheme drivers provided by Apple as a part of Mac OS X go one step further and 
actually instantiate an IOMedia object for each partition that is found in the probe() method. 

If a disk contains a partition table that the partition scheme driver recognizes and the partition 
driver is selected by the I/O Kit as the most suitable driver, its start() method will be called. At this 
point, the partition scheme driver should create an IOMedia object for each partition entry and attach it 
to the storage driver stack. 

A sample implementation of the probe() and start() methods is demonstrated in Listing 14-9. This 
driver is based on the partition scheme drivers that are included as part of the Darwin source code in the 
IOStorage family. 

As with the partition drivers included in Darwin, the implementation in Listing 14-9 has a custom 
method named scan() to examine the disk, and if a supported partition table is found, to instantiate an 
IOMedia object for each partition and return the partition set to the caller through an OSSet object. If no 
IOMedia objects were found during the scan, the probe() method returns unsuccessfully, as indicated by 
a NULL result value, and the I/O Kit will continue searching for another partition scheme driver for the 
disk. If a supported partition table was found instead, the probe method saves the set of IOMedia objects 
representing each partition to an instance variable named m_partitions. 

Listing 14-9. An Implementation of the probe() and start() Methods for a Partition Scheme Driver 

#include <IOKit/storage/IOPartitionScheme.h> 
 
// Define the superclass 
#define super IOPartitionScheme 
 
OSDefineMetaClassAndStructors(com_osxkernel_driver_PartitionScheme, IOPartitionScheme) 
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IOService* com_osxkernel_driver_PartitionScheme::probe(IOService* provider, SInt32* score) 
{ 
        if (super::probe(provider, score) == NULL) 
                return NULL; 
         
        // Scan the IOMedia for a supported partition table. 
        m_partitions = scan(score); 
         
        // If no partition table was found, return NULL. 
        return m_partitions ? this : NULL; 
} 
 
bool com_osxkernel_driver_PartitionScheme::start (IOService *provider) 
{ 
        IOMedia*                partition; 
        OSIterator*             partitionIterator; 
         
        if (super::start(provider) == false) 
                return false; 
         
        // Create an iterator for the IOMedia objects that were  
        // found and instantiated during probe. 
        partitionIterator = OSCollectionIterator::withCollection(m_partitions); 
        if (partitionIterator == NULL) 
                return false; 
         
        // Attach and register each IOMedia object (representing found partitions). 
        while ((partition = (IOMedia*)partitionIterator->getNextObject())) 
        { 
                if (partition->attach(this)) 
                { 
                        attachMediaObjectToDeviceTree(partition); 
                        partition->registerService(); 
                } 
        } 
        partitionIterator->release(); 
 
        return true; 
} 

If the probe() method returns successfully and the I/O Kit doesn’t find a better driver, our partition 
driver will be added to the storage stack and its start() method will be called. The role of a partition 
driver’s start() method is to attach each of its IOMedia objects to the storage driver stack, where each 
IOMedia object represents a single partition entry on the disk. This is done through the IOService method 
named attach(), which inserts the IOMedia object into the service plane of the I/O Registry as a child of 
the partition driver (which is the provider class). 

As well as inserting the IOMedia object into the service plane of the I/O Registry, it may also be 
necessary to insert the IOMedia object into the device plane of the I/O Registry. This is only needed if the 
partition could potentially be used as the boot volume on a PowerPC-based Macintosh. This is because 
the boot volume on a PowerPC-based Macintosh is identified through its location in the I/O Registry 
device plane, so the IOMedia object that represents the boot partition needs to have an entry in the 
device plane. The IOPartitionScheme superclass provides a method named 
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attachMediaObjectToDeviceTree(), which will insert an IOMedia object into the I/O Registry’s device 
plane. 

The scan() method is a custom method that determines whether the disk contains a partition 
scheme that is supported by the driver and, if so, reads the partition table entries from the disk and 
creates a set of IOMedia objects that represent each partition. This requires the partition driver to be able 
to read the disk, which is performed through the driver’s provider object. As specified in the driver’s 
matching dictionary (see Listing 14-8), the partition driver’s provider class is an IOMedia object that 
represents the entire disk. An example implementation of the scan() method is provided in Listing  
14-10. 

Listing 14-10. A Method to Detect the Presence of a Sample Partition Table on a Disk and to Instantiate 

IOMedia Objects for that Partition Table 

OSSet*  com_osxkernel_driver_PartitionScheme::scan(SInt32* score) 
{ 
        IOBufferMemoryDescriptor*       buffer          = NULL; 
        SamplePartitionTable*           sampleTable; 
1       IOMedia*                        media           = getProvider(); 
        UInt64                          mediaBlockSize  = media->getPreferredBlockSize(); 
        bool                            mediaIsOpen     = false; 
        OSSet*                          partitions      = NULL; 
        IOReturn                        status; 
         
        // Determine whether this media is formatted. 
2       if (media->isFormatted() == false) 
                goto bail; 
        // Allocate a sector-sized buffer to hold data read from disk. 
3       buffer = IOBufferMemoryDescriptor::withCapacity(mediaBlockSize, kIODirectionIn); 
        if (buffer == NULL) 
                goto bail; 
         
        // Allocate a set to hold the media objects representing disk partitions. 
4       partitions = OSSet::withCapacity(8); 
        if (partitions == NULL) 
                goto bail; 
         
        // Open the storage driver stack that (of which this partition driver is part)  
        // for read access. 
5       mediaIsOpen = open(this, 0, kIOStorageAccessReader); 
        if (mediaIsOpen == false) 
                goto bail; 
         
        // Read the first sector of the disk. 
6       status = media->read(this, 0, buffer); 
        if (status != kIOReturnSuccess) 
                goto bail; 
        sampleTable = (SamplePartitionTable*)buffer->getBytesNoCopy(); 
         
        // Determine whether the first sector contains our recognized partition signature. 
7       if (strcmp(sampleTable->partitionIdentifier, kSamplePartitionIdentifier) != 0) 
                goto bail; 
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        // Scan for valid partition entries in the partition map. 
8       for (int index = 0; index < sampleTable->partitionCount; index++) 
        { 
9               if (isPartitionInvalid(&sampleTable->partitionEntries[index])) 
                        continue; 
                 
                IOMedia*        newMedia; 
10              newMedia = instantiateMediaObject(&sampleTable->partitionEntries[index],  
                                                  1+index); 
                if ( newMedia ) 
                { 
                        partitions->setObject(newMedia); 
                        newMedia->release(); 
                } 
        } 
         
        // Release temporary resources. 
11      close(this); 
        buffer->release(); 
         
        return partitions; 
         
bail: 
        // Non-successful return; release all allocated objects. 
12      if ( mediaIsOpen )      close(this); 
        if ( partitions )       partitions->release(); 
        if ( buffer )           buffer->release(); 
         
        return NULL; 
} 

Corresponding to the numbered lines in Listing 14-10, the following is an overview of the steps 
performed in the listing: 

1. We obtain a pointer to our provider class, which is an IOMedia object that 
represents the entire disk. All disk reads are performed through this object, 
which includes reading the partition table off the disk. 

2. We check any properties of the disk’s media before checking for a partition 
table. If the disk’s media is not formatted, we abort the scan. This is also a 
suitable place to verify requirements, such as a minimum disk block size that 
may be required by the partition scheme. 

3. All data that is read from the disk is written into an IOMemoryDescriptor as the 
destination. We therefore allocate an IOBufferMemoryDescriptor to hold the 
contents of the data that this method will read from the disk. Since this 
memory descriptor will be used in an operation that reads data from the disk, 
its direction must be set to kIODirectionIn. 

4. We allocate an OSSet container to hold the collection of IOMedia objects that 
represent each partition that is found on the disk. Although the initial capacity 
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of the OSSet collection is 8 objects, the OSSet will automatically expand if more 
than 8 IOMedia objects are inserted. 

5. The storage driver stack (of which the partition driver is a part of) is opened for 
read access. Since the partition driver will read the partition table from the 
disk, but not modify the disk contents, it only requires read access. 

6. The first disk sector is read from the disk. This is typically the location of the 
partition table’s header. The hypothetical partition scheme used in this sample 
stores its header in the first disk sector. The buffer parameter to the read() 
method specifies both the destination for the data that is read, and the number 
of bytes to read. 

7. Based on the data read from the disk, the partition driver determines whether 
the disk contains a partition scheme that it supports. This code will be specific 
to the partition scheme; the hypothetical partition scheme used by our sample 
driver is identified through a string constant that is written to the first block on 
the disk. As such, the driver uses the strcmp() function to determine whether 
this string exists, and if it cannot be found, it assumes that another partition 
scheme exists on the disk and returns unsuccessfully. 

8. The code iterates over each entry in the partition table that was read from the 
disk. This code will be specific to the partition scheme; the hypothetical 
partition scheme used in this sample stores the entire partition table in the 
initial disk sector. 

9. The partition entry is verified. This may involve such checks as making sure 
that the starting block and length of the partition entry do not exceed the 
capacity of the disk. 

10. A new IOMedia object is instantiated to represent the partition entry. 

11. If the partition table was successfully scanned, the storage driver stack is 
closed (to balance the call to open() that was made earlier), and the set of 
IOMedia objects is returned to the caller. 

12. If an error occurred, the code releases any resources that were partially 
allocated. 

The implementation of the instantiateMediaObject() method that is called as a part of Step 10 is 
provided in Listing 14-11. This is a custom method that is defined by our partition scheme driver. 

Listing 14-11. A Method to Instantiate IOMedia Objects That Represent an Individual Disk Partition 

IOMedia* com_osxkernel_driver_PartitionScheme::instantiateMediaObject 
                                (SamplePartitionEntry* sampleEntry, int index) 
{ 
        IOMedia*        media           = getProvider(); 
        UInt64          mediaBlockSize  = media->getPreferredBlockSize(); 
        IOMedia*        newMedia; 
         
1       newMedia = new IOMedia; 
        if ( newMedia ) 
        { 
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                UInt64          partitionBase, partitionSize; 
                 
2               partitionBase = OSSwapLittleToHostInt64(sampleEntry->blockStart) *  
                                      mediaBlockSize; 
                partitionSize = OSSwapLittleToHostInt64(sampleEntry->blockCount) *  
                                      mediaBlockSize; 
                 
3               if ( newMedia->init(partitionBase, partitionSize, mediaBlockSize,  
                     media->getAttributes(), false, media->isWritable())) 
                { 
4                       // Set a name for this partition. 
                        newMedia->setName(sampleEntry->name); 
                         
                        // Set a location value (the partition number) for this partition. 
                        char location[12]; 
                        snprintf(location, sizeof(location), "%d", index); 
                        newMedia->setLocation(location); 
                         
                        // Set the "Partition ID" key for this partition. 
                        newMedia->setProperty(kIOMediaPartitionIDKey, index, 32); 
                } 
                else 
                { 
5                       newMedia->release(); 
                        newMedia = NULL; 
                } 
        } 
         
6       return newMedia; 
} 

Corresponding to the numbered lines in Listing 14-11, the following is an overview of the steps 
performed in the listing: 

1. An IOMedia object is allocated using the C++ “new” operator. 

2. The initial disk block number of the partition and the size of the partition are 
read from the partition table entry. A partition scheme will have a standard 
endianness that may differ from the native byte order of the host on which the 
driver is running, so it’s important to use byte order macros such as 
OSSwapLittleToHostInt64() to make sure that the data is read correctly. 

3. The allocated IOMedia object is initialized. The parameters of the 
IOMedia::init() method are provided here: 

      virtual bool init(UInt64                base, 
                      UInt64                  size, 
                      UInt64                  preferredBlockSize, 
                      IOMediaAttributeMask    attributes, 
                      bool                    isWhole, 
                      bool                    isWritable, 
                      const char*             contentHint = 0, 
                      OSDictionary*           properties  = 0); 
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The parameters base and size define the location of the partition on the disk, 
specified in bytes. Another important parameter is the Boolean parameter 
isWhole, which is set false to indicate that this IOMedia object represents a 
partition, and not the entire disk. The parameter contentHint describes the 
content of the partition, such as the file system that the volume uses. A 
description of the contentHint property is described in the following section. 

4. Various properties of the partition are set on the partition’s IOMedia object. 
These include the partition name, and the location and partition IDs, both of 
which are derived from the index of this partition in the partition table. 

5. If the IOMedia object could not be successfully initialized, it is released. 

6. The initialized IOMedia object is returned to the caller or NULL if the object 
could not be successfully initialized. 

Finally, when the driver for the partition scheme is unloaded, it must remove its IOMedia objects 
from the driver stack and release them. A partition driver may be unloaded because the disk has been 
ejected, or because the disk has been reformatted, in which case a new partition table may have been 
written to the disk, and potentially even a different partition scheme.  

An example of the implementation of the stop() and free() methods for a partition scheme driver 
is shown in Listing 14-12. The stop() method removes each IOMedia object from the device plane of the 
I/O Registry, undoing the call to attachMediaObjectToDeviceTree() that the partition driver performed in 
its start() method. Before the partition driver is unloaded, its free() method is called, which releases 
the OSSet that holds the collection of IOMedia objects for each partition entry. 

Listing 14-12. An Implementation of the stop() and free() Methods for a Partition Scheme Driver 

void com_osxkernel_driver_PartitionScheme::stop(IOService* provider) 
{ 
        IOMedia*                partition; 
        OSIterator*             partitionIterator; 
         
        // Detach the media objects we previously attached to the device tree. 
        partitionIterator = OSCollectionIterator::withCollection(m_partitions); 
        if (partitionIterator) 
        { 
                while ((partition = (IOMedia*)partitionIterator->getNextObject())) 
                { 
                        detachMediaObjectFromDeviceTree(partition); 
                } 
                 
                partitionIterator->release(); 
        } 
         
        super::stop(provider); 
} 
 
void com_osxkernel_driver_PartitionScheme::free (void) 
{ 
        if (m_partitions != NULL) 
                m_partitions->release(); 
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        super::free(); 
} 

The Media Content Hint Property 
As we saw in Listing 14-11, the initialization method of the IOMedia class takes a parameter named 
contentHint. Although this parameter is not interpreted by the IOMedia object, it plays a very important 
role in the construction of the driver storage stack. The contentHint parameter is a string value that 
describes the content that is contained by the IOMedia object on the disk. For an IOMedia object that 
represents an entire disk, the content hint may identify the partition scheme that the disk contains. For 
an IOMedia object that represents a single partition, the content hint may identify the type of file system 
that the volume uses. The content hint can also be used for a custom purpose; for example, a driver that 
provides disk encryption could use the content hint to describe the encryption scheme that has been 
used on the disk. 

The content hint is not used to describe the content to the user, but rather to provide information 
that can be used by other drivers on the system. The contentHint parameter that is passed to the 
initialization method of the IOMedia class is set as an I/O Registry property on the IOMedia object. This 
makes the value of content hint accessible to other drivers in the storage stack, but more importantly, it 
provides a property that can be specified and matched against another driver’s matching dictionary. 

When we created our partition scheme driver, we specified an IOPropertyMatch item (see Listing 14-
8), which limited the driver to matching against specific IOMedia objects. In the case of the partition 
scheme driver, we matched against only IOMedia objects that represented the entire disk. This was done 
by informing the I/O Kit that the partition driver should only match against an IOMedia object that 
contained a property named “Whole” with the value true. Similarly, a driver can add an IOPropertyMatch 
item to its matching dictionary that contains the key “Content Hint”, and specify a value that contains 
the particular content type that the driver is interested in. This could be used, for example, to prevent a 
disk encryption driver from loading against IOMedia volumes that are not encrypted. 

Another important use of the content hint property is to identify the correct file system driver to 
load for an IOMedia volume. Mac OS X will load a file system driver only if the content hint value of the 
IOMedia object identifies a supported file system. 

Since the content hint value needs to be specified when an IOMedia object is initialized, any driver 
that instantiates an IOMedia object needs to know the content of the disk or partition that is represented 
by that object. For a partition scheme driver, the content hint will come from the partition table that is 
stored on the disk. For example, the Apple Partition Map contains a string value for each partition entry 
that is used as the content hint value directly. The GUID partition table contains a 128-bit GUID for each 
partition that identifies the file system and content of that partition. This GUID is converted to a string 
representation, which is then used as the content hint. This means that there may be multiple content 
hint values that identify a particular file system, so a file system driver must match against each possible 
value of the IOMedia’s content hint that could identify its file system. 

Media Filter Drivers 
The top of the driver storage stack may contain one or more media filter drivers. A media filter driver, 
also known as a filter scheme driver, matches against an existing IOMedia object in the storage stack, and 
creates a new IOMedia object that represents the filtered media object. All read and write requests to the 
disk pass through the filter scheme driver, allowing the filter driver to manipulate the blocks that are 
read, or even to manipulate the data as it travels between the original IOMedia object and the filtered 
IOMedia object above it in the storage stack. 
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A filter scheme driver can be used to implement various types of functionality. For example, a filter 
driver could be used to implement block-level disk encryption by matching against an IOMedia object 
that represents an encrypted partition on the disk, and publishing an IOMedia object that represents the 
unencrypted partition that is used by the file system. Another use of a filter scheme driver could be to 
implement a RAID driver, which matches against multiple IOMedia objects, each of which represents an 
individual disk in the RAID set, and creates a single IOMedia object that represents the logical volume. 
The relationship between a filter scheme driver and the IOMedia objects that it controls, and the IOMedia 
object that it publishes, is shown in Figure 14-8.  

 

Figure 14-8. The relationship between a filter scheme driver and its provider classes and the IOMedia 

objects that it creates for an encryption scheme (left) and a RAID driver (right) 

The partition scheme driver that was developed in the previous section can be thought of as a 
specialized form of a filter driver. Like a filter driver, the partition scheme driver loads against an existing 
IOMedia object and creates one or more IOMedia objects that represent the partitions on the disk. 
However, unlike the partition scheme, the general filter driver can have multiple provider classes, as in 
the case of the RAID driver shown in Figure 14-8. Another difference is that unlike a filter driver, a 
partition scheme driver typically isn’t involved in handling each read or write request that is made 
through the IOMedia objects that it creates. 

The I/O Kit provides a class known as IOFilterScheme that forms the superclass of any driver that 
implements a media filter scheme. A filter scheme driver will typically use the “Content Hint” property 
value of the IOMedia object that it matches against to restrict the filter scheme to loading only against an 
IOMedia object that the filter scheme can support. For example, the Apple software RAID driver formats 
each disk in the RAID set with the GUID partition table and, as such, each disk’s IOMedia object contains 
a GUID as its “Content Hint” property. Apple has defined a GUID to indicate that the disk partition 
forms part of a RAID set, which the Apple RAID driver will match against. When the Apple RAID driver 
creates its child IOMedia object to represent the logical volume, it gives this IOMedia object a content hint 
that represents the file system that was written to the overall RAID set. 

 Note  File system drivers will load against only the top-level (leaf) IOMedia object in the driver storage stack. 
This means that, even though a filter scheme driver may match against an IOMedia object that contains a 
readable file system, and creates another IOMedia object with a readable file system, only the object above the 
filter scheme driver in the stack will be mounted on the user’s desktop. 
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A Sample Filter Scheme for Encryption 
Let’s examine the implementation of a sample filter scheme driver by implementing a simple block-level 
encryption driver. The sample driver doesn’t do anything sophisticated in terms of security–it simply 
implements a basic XOR encryption scheme–but it does demonstrate the structure of a filter scheme 
driver. 

The filter scheme that we will develop will encrypt the contents of an entire partition, and our 
sample will require the disk to be formatted with the standard GUID partition table. To identify an 
encrypted partition, we will define a new GUID to describe the content of the partition, which we can 
generate using the command line tool uuidgen. Throughout this sample, we will use the GUID 8D7FD0BB-
39A8-43C0-9432-F4E1A269F070, which our sample driver has defined to describe an encrypted disk 
partition that contains the HFS file system. Hereafter, we will use the term Encrypted_HFS_GUID in the 
chapter text instead of writing the GUID in full. 

For this sample, we will use the standard GUID partition table, which means that the driver for the 
partition scheme in the storage driver stack will be the standard Apple GUID partition scheme driver. 
The Apple driver sets the “Content Hint” property of each partition’s IOMedia object to the partition type 
GUID from the partition header on the disk. This means that the IOMedia object that our encryption filter 
driver wishes to load against will have a content hint of Encrypted_HFS_GUID. The encryption filter driver 
can ignore all other IOMedia objects, since it knows that they do not represent an encrypted partition. 
This requirement can be expressed in the filter driver’s matching dictionary by adding an 
IOPropertyMatch key, as shown in Listing 14-13. 

Listing 14-13. The Matching Dictionary from the Property List of a Sample Filter Scheme Driver That 

Implements Encryption 

<key>IOKitPersonalities</key> 
<dict> 
        <key>SampleEncryptionFilter</key> 
        <dict> 
                <key>Content Mask</key> 
                <string>Sample_Encrypted_Data</string> 
                <key>CFBundleIdentifier</key> 
                <string>com.osxkernel.SampleEncryptionFilter</string> 
                <key>IOClass</key> 
                <string>com_osxkernel_driver_SampleEncryptionFilter</string> 
                <key>IOMatchCategory</key> 
                <string>IOStorage</string> 
                <key>IOProviderClass</key> 
                <string>IOMedia</string> 
                <key>IOPropertyMatch</key> 
                <dict> 
                        <key>Content Hint</key> 
                        <string>8D7FD0BB-39A8-43C0-9432-F4E1A269F070</string> 
                </dict> 
        </dict> 
</dict> 

When a filter scheme driver loads, it may need to probe its IOMedia provider class to determine 
whether it contains content supported by the filter driver. If it does, it creates one or more IOMedia 
children objects that represent the filtered volume. These steps are similar to the implementation of the 
probe() and start() methods of the partition scheme driver shown in Listing 14-9. However, unlike the 
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partition scheme driver, our sample encryption filter scheme driver can ignore the probe() method, 
since the driver’s property list has been set up to ensure that the driver will load only against an IOMedia 
object whose “Content Hint” property contains our Encrypted_HFS_GUID type. Therefore, if the driver 
loads, we can assume that it is loading against an encrypted partition. 

In our sample filter scheme driver’s start() method, we need to create a new IOMedia object that 
represents the filtered disk contents; this is the IOMedia object through which we expose the 
unencrypted data to the rest of the system (such as the file system). As with a partition scheme driver, it’s 
important that the filter driver correctly sets the contentHint parameter of any child IOMedia object that 
it creates, since this is the means by which the system is able to identify which file system (or even 
another filter scheme driver) to load against the IOMedia volume. In the case of our sample encryption 
filter, we have made the arbitrary design choice that it will encrypt an HFS file system, so the IOMedia 
child object that is published by the filter scheme will be created with a contentHint value of 
“Apple_HFS.” 

The implementation of the start() method for our sample encryption filter scheme is shown in 
Listing 14-14. Our sample filter scheme does not provide an implementation of the init() or probe() 
methods, because the implementation provided by the superclass is sufficient. 

Listing 14-14. An Implementation of the start() Method for a Sample Filter Scheme that Provides 

Encryption 

#include <IOKit/storage/IOFilterScheme.h> 
 
// Define the superclass. 
#define super IOFilterScheme 
 
OSDefineMetaClassAndStructors(com_osxkernel_driver_SampleEncryptionFilter, IOFilterScheme) 
 
bool com_osxkernel_driver_SampleEncryptionFilter::start (IOService *provider) 
{ 
        if (super::start(provider) == false) 
                return false; 
         
        // Save a reference to our provider class, and verify that it is an IOMedia object. 
        m_encryptedMedia = OSDynamicCast(IOMedia, provider); 
        if (m_encryptedMedia == NULL) 
                return false; 
         
        // Create a child IOMedia object to represent the unencrypted data. 
        m_childMedia = instantiateMediaObject(); 
        if (m_childMedia == NULL) 
                return false; 
         
        // Attach the unencrypted IOMedia object to the storage driver stack. 
        if (m_childMedia->attach(this) == false) 
                return false; 
        m_childMedia->registerService(); 
 
        return true; 
} 
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IOMedia* com_osxkernel_driver_SampleEncryptionFilter::instantiateMediaObject () 
{ 
        IOMedia*        newMedia; 
         
        // Allocate a new IOMedia object. 
        newMedia = new IOMedia; 
        if ( newMedia ) 
        { 
                // Initialize the child IOMedia object. 
                // Nearly all of its parameters can be obtained from the provider class. 
                if ( newMedia->init(0,                          // base 
                                m_encryptedMedia->getSize(), 
                                m_encryptedMedia->getPreferredBlockSize(), 
                                m_encryptedMedia->getAttributes(), 
                                false,                          // isWhole 
                                m_encryptedMedia->isWritable(), 
                                "Apple_HFS"))                   // contentHint 
                { 
                        // Set a location value (the partition number) for this media object. 
                        newMedia->setLocation("1"); 
                } 
                else 
                { 
                        newMedia->release(); 
                        newMedia = NULL; 
                } 
        } 
         
        return newMedia; 
} 

The method named instantiateMediaObject() is a custom method defined by the 
SampleEncryptionFilter class and is responsible for creating a child IOMedia object to represent the 
unencrypted disk contents. Many of the properties of the child IOMedia object can come straight from 
the filter driver’s encrypted IOMedia provider class. For a driver that implements block-level encryption, 
there is no need to modify properties such as the size of the volume and the size of a disk block for the 
child IOMedia object. In general, there is nothing to prevent a filter scheme driver from creating an 
IOMedia device of a different size or block size to that of its provider class, as may be required by the filter 
scheme of a RAID driver. 

For our sample encryption driver, we need to intercept all read and write operations that are 
performed on the unencrypted child IOMedia object. Because our filter scheme sits between the 
unencrypted IOMedia object (the child object that we created) and the encrypted IOMedia object (our 
provider class), all read and write operations made on the child IOMedia object pass through our filter 
driver, so intercepting these operations involves nothing more than overriding the superclass 
implementation of the read() and write() methods. 

In the case of a read operation, our encryption filter driver needs to pass the read request on to the 
encrypted IOMedia object and decrypt the data that is returned. This is complicated by the fact that the 
read is performed asynchronously, so the filter driver needs to provide completion callback to be 
notified when the read has completed. At this point, the data that was read back from the encrypted 
volume is decrypted, and the original read completion callback, as provided by the client that initiated 
the read, is called. The implementation of this is given in Listing 14-15. 
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Listing 14-15. An Implementation of the read() Method for a Sample Filter Scheme That Provides 

Encryption 

void    com_osxkernel_driver_SampleEncryptionFilter::read (IOService* client,  
                                UInt64 byteStart, 
                                IOMemoryDescriptor* buffer, IOStorageAttributes* attributes, 
                                IOStorageCompletion* completion) 
{ 
        ReadCompletionParams*   context; 
        IOStorageCompletion     newCompletion; 
         
        // Allocate a structure to hold state while the read  
        // is being performed asynchronously. 
1       context = (ReadCompletionParams*)IOMalloc(sizeof(ReadCompletionParams)); 
        if (context == NULL) 
        { 
                complete(completion, kIOReturnNoMemory); 
                return; 
        } 
         
2       context->completion = *completion; 
        context->buffer = buffer; 
        context->buffer->retain(); 
         
        // Setup a callback function so that we will be notified  
        // when the encrypted data has been read from disk. 
3       newCompletion.target = this; 
        newCompletion.action = readCompleted; 
        newCompletion.parameter = context; 
         
        // Perform a read of the encrypted data from disk. 
4       m_encryptedMedia->read(client, byteStart, buffer, attributes, &newCompletion); 
} 
 
void    com_osxkernel_driver_SampleEncryptionFilter::readCompleted (void* target,  
                                                                    void* parameter, 
                                                      IOReturn status, UInt64 actualByteCount) 
{ 
        ReadCompletionParams* context = (ReadCompletionParams*)parameter; 
         
        // Decrypt the data read from disk. 
5       if (status == kIOReturnSuccess) 
                status = decryptBuffer(context->buffer, actualByteCount); 
         
        // If  either the read from disk or the decryption operation failed,  
        // set the actualByteCount value to 0. 
        if (status != kIOReturnSuccess) 
                actualByteCount = 0; 
         
        // Call the original caller’s completion function. 
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6       complete(&context->completion, status, actualByteCount); 
         
7       context->buffer->release(); 
        IOFree(context, sizeof(ReadCompletionParams)); 
} 

Corresponding to the numbered lines in Listing 14-15, the following is an overview of the steps 
performed in the listing: 

1. Since the read is performed asynchronously, any variables or state that is 
needed in the completion callback for the read need to be saved to a 
temporary structure. We use the IOMalloc() function to allocate a structure in 
memory to save anything that we need to pass to the completion callback. 

2. The allocated context structure is initialized. One parameter that needs to be 
saved is the IOStorageCompletion structure provided by the caller; this 
contains the callback function that the caller wishes to be notified on when the 
read completes. We also save a reference to the IOMemoryDescriptor that the 
data from the disk is read into. Since we will be referencing this object in the 
callback, we retain it to prevent it from being released before the callback fires. 

3. We set up an IOStorageCompletion structure to pass our own callback function 
to be notified when the asynchronous read completes. 

4. We perform a read from the encrypted IOMedia object. 

5. When the read completes, our specified callback function (readCompleted) will 
be called. If the read completed successfully, we decrypt the data that was read 
back from the encrypted IOMedia object. 

6. We call the IOStorageCompletion callback that was provided by the caller, 
which notifies the caller that its buffer contains the decrypted data that it 
requested. 

7. We release our reference to the IOMemoryDescriptor that we took, and release 
the structure that was allocated in Step 1. 

The implementation of the encryption filter scheme’s write operation is quite straightforward 
because it can perform the encryption before writing the resulting data to the encrypted IOMedia object. 
As such, even though the write is performed asynchronously, it doesn’t need to replace the completion 
callback that was provided by the caller (unlike the read operation). 

Rather than encrypt the data in-place, we allocate a new IOMemoryDescriptor to hold the encrypted 
data. This allows us to leave the caller’s buffer unmodified, which is important because the write 
operation should not change the contents of the source buffer. Even though the write is performed 
asynchronously, the driver in the storage stack that performs the operation will retain the 
IOMemoryDescriptor buffer for the duration of the write. This allows us to release our own reference to 
the object immediately after issuing the write to the encrypted IOMedia object. 

The implementation of the encryption filter scheme’s write() method is provided in Listing 14-16. 
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Listing 14-16. An Implementation of the write() Method for a Sample Filter Scheme That Provides 

Encryption 

Void    com_osxkernel_driver_SampleEncryptionFilter::write (IOService* client,  
                                UInt64 byteStart, 
                                IOMemoryDescriptor* buffer, IOStorageAttributes* attributes, 
                                IOStorageCompletion* completion) 
{ 
        IOMemoryDescriptor*             newDesc; 
         
        // Allocate a buffer to hold the encrypted data and perform the encryption 
        newDesc = encryptBuffer(buffer); 
        if (newDesc == NULL) 
        { 
                // Return an error if a destination buffer could not be allocated. 
                complete(completion, kIOReturnNoMemory); 
                return; 
        } 
         
        // Perform a write of the encrypted data to the encrypted IOMedia object. 
        m_encryptedMedia->write(client, byteStart, newDesc, attributes, completion); 
         
        // Release our reference to the encrypted IOMemoryDescriptor 
        newDesc->release(); 
} 

Creating a Custom GUID Partition Table 
The encryption filter scheme that we developed in the previous section will load only against an IOMedia 
object whose “Content Hint” property is a custom value that we have defined for the purposes of the 
sample filter scheme. To test out the driver, we need to create a GUID partition table that contains a 
partition entry with our custom GUID type. 

This can be performed through various command line tools that are included with Mac OS X. For 
this tutorial we will create a volume containing a GUID partition table that we can use to test the 
encryption filter driver. The storage device for the encrypted volume will be provided by a disk image, 
which is a regular file that behaves as a virtual disk, and contains a file system (and possibly a partition 
scheme) that can be mounted as a volume on the Mac OS X desktop. Disk images provide a convenient 
way to test filter scheme and partition scheme drivers, since they can be easily created without having to 
format physical media. 

This section provides a tutorial of some of the command line tools that can be used while 
developing drivers in the storage stack. In this section, we will create a disk image, write a GUID 
partition table that contains a single partition of our specified partition type, and write an HFS file 
system to our encrypted volume. All of these tasks will be performed through command line tools. 

To begin, open the Terminal application. The first step is to create a blank disk image that will 
provide the storage for our media, and will play the role of a disk. The hdiutil command line utility is a 
tool for creating and manipulating disk image files. We can create a 25MiB blank disk image with the 
following command: 

hdiutil create -megabytes 25 -layout NONE EncryptedImage.dmg 
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This will create a file named “EncryptedImage.dmg” in the current working directory, consisting of a 
25MiB disk image. The option “-layout NONE” specifies that we do not want a partition table created on 
the disk image. Since the resulting disk image contains no partition map and no file system, it cannot be 
mounted. However, we can interact with the disk image by using the following command: 

hdiutil attach -nomount EncryptedImage.dmg 

With our understanding of how storage devices are implemented in the Mac OS X kernel, we are in a 
good position to examine what this command is doing behind the scenes. The “hdiutil attach” 
command will load the kernel driver supplied by Apple that manages disk images; this will be derived 
from the same IOBlockStorageDevice superclass that we used to implement the RAM disk. A storage 
driver stack will be constructed, consisting of a single IOMedia object that represents the entire disk 
image’s contents. The IOMedia object will have a corresponding IOMediaBSDClient object, which will 
publish the device interfaces for the disk image in the /dev directory. This results in the creation of a 
block device, such as /dev/disk1 and a character device, such as /dev/rdisk1, through which the disk 
image can be accessed. The path to the block device that was created as a result of attaching the disk 
image is printed to the terminal output. 

We can now read and write to the disk image through its block device interface, so the next step is to 
create a GUID partition table on the disk. The gpt command is a command line tool supplied by Apple 
with Mac OS X for creating and manipulating a disk’s GUID partition table. We can create a GUID 
partition table on a blank disk with the following command. Make sure to replace the path /dev/diskN 
with the path to the device interface that corresponds to the attached disk image on your system. 

gpt create /dev/diskN 

This writes a GUID partition table that contains no partitions to the disk. We wish to create a single 
partition on the disk, so the next command will insert an entry into the disk’s GUID partition table: 

gpt add -t 8D7FD0BB-39A8-43C0-9432-F4E1A269F070 /dev/diskN 

Although the “gpt add” command allows the partition size and initial block offset to be specified, if 
no partition range is specified, the utility will default to creating a partition that begins on the first 
unused range of disk blocks that it finds on the disk. This is perfect for our purposes, since it creates a 
single partition that fills the entire disk. The “-t” option can be used to specify the GUID type of the 
partition entry that is created. This allows us to create a partition entry that has our custom GUID type 
that we defined to identify an encrypted HFS volume. As a result of adding a partition to the disk, a new 
device interface is created that represents the partition. The path to the partition’s block device interface 
is printed to the terminal output, and will take the form /dev/diskNs1. 

 Note  BSD uses the term “slice” to refer to disk partitions. Therefore, disk2s1 refers to the first partition (slice) 
of the block device “disk2.” The slice number comes from IOMedia object’s location value. In our partition 
scheme driver and encryption filter scheme, we called the method setLocation() for each IOMedia object that 
we created. The string that we provided is used to generate the name of the device interfaces. 

At the kernel level, creating a partition table on the disk resulted in the Apple-supplied 
IOGUIDPartitionScheme driver loading. This driver, in response to us having added a partition entry, will 
instantiate an IOMedia object to represent the partition. The partition’s IOMedia object will have a 
“Content Hint” property that is equal to the custom GUID type that we gave the partition. At this point, 
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we are ready to load our encryption filter driver. As you will recall, our filter scheme driver will load 
against any IOMedia object that has our custom content hint GUID. If we had not created a partition 
entry with the specified content type, our encryption scheme driver would not find a suitable IOMedia 
object to match against, and we would be unable to test our driver. 

Our encryption filter scheme driver will create a new IOMedia object when it loads. This results in 
another block device being created, which will have an interface name similar to “diskNs1s1.” This 
interface represents the unencrypted content of the disk partition. In the case of our sample encryption 
filter driver, the IOMedia object that it created was given a “Content Hint” property of Apple_HFS, which 
informs Mac OS X that the media contains the default HFS file system, and causes the HFS file system to 
be loaded for the unencrypted volume. However, at this stage, the disk partition is empty and doesn’t 
contain any file system. We can create an HFS file system on the volume with the following command: 

newfs_hfs -v MyVolumeName /dev/diskNs1s1 

The option “–v” allows a volume name to be specified. In the preceding example, we are naming the 
HFS volume “MyVolumeName”. Having written an HFS file system to the (unencrypted) volume, we can 
now mount the file system on the Mac OS X desktop. This can be done with the following command: 

hdiutil mountvol /dev/diskNs1s1 

This will result in a new volume appearing on the desktop. Because of the presence of our 
encryption filter scheme in the storage stack, any files written to the disk will be modified by our XOR 
encryption before the data is written to the disk image file. The disk image file itself is just a regular file, 
so the contents of each disk block can be examined by opening the .dmg file in any hex editor. This 
makes disk images a very useful means for debugging or verifying that a partition scheme driver, or a 
filter scheme driver, is operating correctly. 

Having written a partition table and file system to the disk, the disk image can be mounted in the 
future by simply opening the disk image file. The I/O Kit will be able to automatically create the entire 
driver storage stack without any user involvement – from the transport driver for the disk image, the 
GUID partition scheme driver, the encryption filter scheme, and finally the HFS file system at the top of 
the stack. 

Summary 
• The functionality provided by a storage volume containing a file system is 

implemented through a stack of multiple drivers, each of which may be supplied 
by a different vendor. The driver at each level of the storage driver stack is 
responsible for performing a specific role. 

• At the bottom of the stack is the transport driver, which interfaces directly with the 
hardware device that provides the data storage. 

• The block storage driver provides an abstract representation of the storage device 
as a sequence of bytes that is organized into fixed-sized blocks and provides 
random-access to its data. The block storage driver sits above the transport driver 
in the driver stack. 

• A partition driver is responsible for reading the partition table from a disk and 
creating a driver object to represent each logical volume that exists in the partition 
table. The partition driver sits above the block storage driver in the driver stack. 
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• The I/O Kit represents a logical volume through a driver object called IOMedia. 
Each IOMedia object can be accessed by a user space process through an interface 
in the /dev directory. 

• The I/O Kit allows vendors to insert a filter scheme driver into the storage driver 
stack to intercept all read and write requests that are made to a disk. This can be 
used to implement a RAID driver, or to encrypt the data that is written to a disk. 

• The file system driver sits at the very top of the storage driver stack. Although file 
system drivers read and write through the I/O Kit storage driver stack indirectly, 
they are actually part of the BSD layer of Mac OS X and are not part of the I/O Kit. 

 



C H A P T E R  15 
 

      
 

357 

User-Space USB Drivers 

From a user’s perspective, an application that requires a kernel driver detracts from the user experience. 
To begin with, driver installation involves writing to the “Extensions” directory, which requires 
administrative privileges. Therefore, the user needs to run an installer and enter the password of an 
administrative account, and then possibly restart before they can begin using the application. If, on the 
other hand, the application doesn’t require a kernel driver, the installation procedure can be as simple 
as downloading an application from the Mac App Store. 

In some cases, an application that would typically require a kernel driver can instead be written 
without the developer having to write any code that runs inside the kernel. Instead, the actions that 
would usually be performed by the driver can be done by the application. The advantage of this 
approach is that there is no kernel driver that needs to be installed, so the user doesn’t need 
administrative privileges to install the application. Another advantage of moving the driver code out of 
the kernel and into the application is that any bugs that are present in the code can, at worst, crash the 
application, but they cannot cause a kernel panic that can bring down the entire system. 

Not all hardware devices can be controlled through a user-space driver; for example, devices that 
contain a memory-mapped address range require a kernel driver. Similarly, devices that generate 
interrupts need a kernel driver, since only kernel code can execute at primary interrupt level. This means 
that all PCI and Thunderbolt devices need to be supported by a kernel driver. However, USB- and 
FireWire-based hardware devices are perfect candidates for a user-space driver. In this chapter, we 
discuss writing a driver that exists solely in user space for a USB device, without the need to write a 
kernel driver. 

Not all USB and FireWire devices are suitable for a user-space driver. In particular, a driver that 
needs to create a device interface file in the /dev directory, such as a serial port driver or a storage device, 
needs a kernel driver. Also, a device that can be used by multiple applications simultaneously, or needs 
to be used by the system, such as an audio driver, should be written as a kernel driver. Thankfully, these 
cases are the exceptions, and most USB devices that require a custom driver can be controlled by a user-
space driver. 

Behind the Scenes 
Having spent the initial chapters of this book describing the architecture of Mac OS X, and in particular 
stating that a modern operating system only allows hardware to be directly accessed from the kernel, 
you are probably wondering how this is consistent with a chapter describing user-space drivers. 

Internally, user-space drivers do indeed require a kernel driver, but this is provided by the same 
IOUSBDevice and IOUSBInterface objects that would be used to interact with the USB device had the 
developer chosen to write a kernel driver for the hardware. To make these objects available to user-space 
applications, the IOUSBFamily publishes a user client for each instance of IOUSBDevice and 
IOUSBInterface that is created in the kernel. 
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The user client that is created for these classes is extremely generic and exists solely to expose the 
methods of the IOUSBDevice and IOUSBInterface class to user space. For example, the user client for the 
IOUSBDevice class contains methods for getting and setting the active device configuration, performing a 
device request, and iterating the device’s interfaces. The user client for the IOUSBInterface class contains 
methods for reading and writing data to a specified endpoint. 

An application doesn’t need to call the methods from the user client class directly; instead, the I/O 
Kit framework provides a high level API to control the hardware. This API is known as IOUSBLib. The 
layering involved in a user-space USB driver is shown in Figure 15-1. The custom code a developer needs 
to write exists only in the application layer; the layers below are common libraries provided by Apple as 
part of Mac OS X. 

Although it isn’t necessary to have an understanding of how the IOUSBLib is implemented, a little 
knowledge will help you understand each of the steps that an application performs to find and interact 
with a USB device from user space. 

 

Figure 15-1. The layers through which a user-space driver accesses its USB hardware 

The IOUSBLib Framework 
The library used to write a user-space driver for a USB device is known as IOUSBLib, which is part of the 
I/O Kit framework (that is, the same framework a user-space application includes if it is communicating 
with a user client it defined itself). 

The first task a user-space driver needs to perform is to watch for the arrival of the particular USB 
devices it is interested in. Since USB devices can be connected and disconnected from the computer at 
any time, there is no guarantee the device an application is interested in will be present when the 
application is launched. Therefore, it’s a good idea for an application to install a notification callback 
that watches for the arrival of the USB devices it controls. 

In Chapter 5, we saw how an application can create a matching dictionary to find each instance of a 
specified kernel driver. This same approach is used by an application that implements a user-space USB 
driver to locate the devices it will control. As in Chapter 5, we begin by creating a dictionary that specifies 
the class name of the driver objects our application is interested in matching against. For a USB device, 
this can be done as follows: 

matchingDictionary = IOServiceMatching(kIOUSBDeviceClassName);  // “IOUSBDevice” 

This matching dictionary is far too general for most applications since it will match against all USB 
devices connected to the computer, including the keyboard and mouse. An application is typically 
interested in only one particular USB device, so a matching dictionary such as this will be inappropriate. 
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We can narrow down the list of devices the matching dictionary satisfies by including the specific 
Product ID and Vendor ID of the USB device our application can support. 

A sample function that will create a matching dictionary for a USB device of a specified Vendor ID 
and Product ID is shown in Listing 15-1. 

Listing 15-1. Creating a USB Matching Dictionary 

#include <IOKit/IOKitLib.h> 
#include <IOKit/usb/IOUSBLib.h> 
#include <CoreFoundation/CoreFoundation.h> 
 
CFDictionaryRef         MyCreateUSBMatchingDictionary (SInt32 idVendor, SInt32 idProduct) 
{ 
        CFMutableDictionaryRef  matchingDictionary = NULL; 
        CFNumberRef             numberRef; 
         
        // Create a matching dictionary for IOUSBDevice 
        matchingDictionary = IOServiceMatching(kIOUSBDeviceClassName); 
        if (matchingDictionary == NULL) 
                goto bail; 
         
        // Add the USB Vendor ID to the matching dictionary 
        numberRef = CFNumberCreate(kCFAllocatorDefault, kCFNumberSInt32Type, &idVendor); 
        if (numberRef == NULL) 
                goto bail; 
        CFDictionaryAddValue(matchingDictionary, CFSTR(kUSBVendorID), numberRef); 
        CFRelease(numberRef); 
         
        // Add the USB Product ID to the matching dictionary 
        numberRef = CFNumberCreate(kCFAllocatorDefault, kCFNumberSInt32Type, &idProduct); 
        if (numberRef == NULL) 
                goto bail; 
        CFDictionaryAddValue(matchingDictionary, CFSTR(kUSBProductID), numberRef); 
        CFRelease(numberRef); 
         
        // Success - return the dictionary to the caller 
        return matchingDictionary; 
         
bail: 
        // Failure - release resources and return NULL 
        if (matchingDictionary != NULL) 
                CFRelease(matchingDictionary); 
                 
        return NULL; 
} 
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■ Note  An application can narrow the matching dictionary by adding any of the keys that could be placed in the 
property list of a kernel-based USB driver (see Chapter 8). For example, an application may include any of the keys 
idVendor, idProduct, bcdDevice, bDeviceSubClass, or bDeviceProtocol. 

For a composite USB device, a driver may prefer to match against a particular interface rather than 
the entire USB device. A user-space driver is able to do this by creating a matching dictionary for a 
specific instance of an IOUSBInterface object. This is because the I/O Kit defines a user client for every 
instance of both the IOUSBDevice class and the IOUSBInterface class that is created in the kernel, which 
makes both of these classes available to user processes. 

Having created a matching dictionary, an application is able to use the dictionary to iterate over all 
kernel objects that match its specifications or to install a callback to receive notifications when such a 
kernel object appears. This was described in Chapter 5. An example of a function to iterate over all kernel 
devices described by a given matching dictionary is given in Listing 15-2. 

Listing 15-2. Finding and Iterating Over Devices That Satisfy a Matching Dictionary 

void    MyFindMatchingDevices (CFDictionaryRef matchingDictionary) 
{ 
        io_iterator_t           iterator = 0; 
        io_service_t            usbDeviceRef; 
        kern_return_t           err; 
         
        // Find all kernel objects that match the dictionary. 
        err = IOServiceGetMatchingServices(kIOMasterPortDefault, matchingDictionary,  
                       &iterator); 
        if (err == 0) 
        { 
                // Iterate over all matching kernel objects. 
                while ((usbDeviceRef = IOIteratorNext(iterator)) != 0) 
                { 
                        IOUSBDeviceInterface300**       usbDevice; 
 
                        // Create a driver for this device instance 
                        usbDevice = MyStartDriver(usbDeviceRef); 
                        IOObjectRelease(usbDeviceRef); 
                } 
                 
                IOObjectRelease(iterator); 
        } 
} 

The iterator for a matching dictionary, such as that shown in Listing 15-2, will return a number of 
io_service_t objects, each of which represents a kernel object. The io_service_t object is a user- space 
representation of an IOUSBDevice or IOUSBInterface object that resides in the kernel. Like any I/O Kit 
class, both IOUSBDevice and IOUSBInterface are each implemented by a C++ class. These classes contain 
a public interface that defines the methods through which a kernel driver interacts with a USB hardware 
device. 



CHAPTER 15  USER-SPACE USB DRIVERS 

361 

The IOUSBLib interface is implemented through a C++ class that wraps an io_service_t object 
representing either an IOUSBDevice or an IOUSBInterface. The user-space equivalent of the IOUSBDevice 
class is implemented by a class named IOUSBDeviceInterface and the user-space equivalent of the 
IOUSBInterface class is implemented by a class named IOUSBInterfaceInterface. The declaration of 
these classes can be found in the header file <IOKit/usb/IOUSBLib.h>. The code sample in Listing 15-3 
demonstrates how a user-space application can instantiate an IOUSBDeviceInterface class from an 
io_service_t.  

Listing 15-3. Instantiating an IOUSBDeviceInterface object from an io_service_t 

IOUSBDeviceInterface300**       MyStartDriver (io_service_t usbDeviceRef) 
{ 
        SInt32                          score; 
        IOCFPlugInInterface**           plugin; 
        IOUSBDeviceInterface300**       usbDevice = NULL; 
        kern_return_t                   err; 
 
        err = IOCreatePlugInInterfaceForService(usbDeviceRef, kIOUSBDeviceUserClientTypeID, 
                                                   kIOCFPlugInInterfaceID, &plugin, &score); 
        if (err == 0) 
        { 
                err = (*plugin)->QueryInterface(plugin,  
                        CFUUIDGetUUIDBytes(kIOUSBDeviceInterfaceID300), 
                        (LPVOID)&usbDevice); 
                IODestroyPlugInInterface(plugin); 
        } 
         
        return usbDevice; 
} 

If the application had created a matching dictionary that specified an IOUSBInterface, each of the 
io_service_t values it receives would represent a kernel IOUSBInterface object and not an IOUSBDevice 
object. In this case, the user-space class the application would instantiate to represent the kernel object 
would be an IOUSBInterfaceInterface. This only requires one change to the parameters that are passed 
to two of the functions called in Listing 15-3. The call to IOCreatePlugInInterfaceForService would be 
called as follows. 

err = IOCreatePlugInInterfaceForService(usbDeviceRef, kIOUSBInterfaceUserClientTypeID, 
                                                kIOCFPlugInInterfaceID, &plugin, &score); 

Similarly, the call to QueryInterface on the returned plugin object would take the following 
parameters: 

IOUSBInterfaceInterface300**            usbInterface = NULL; 
err = (*plugin)->QueryInterface(plugin,  
                        CFUUIDGetUUIDBytes(kIOUSBInterfaceInterfaceID300), 
                        (LPVOID)&usbInterface); 

Whether the application is instantiating an IOUSBDeviceInterface or an IOUSBInterfaceInterface, 
the structure of the code is the same. In both cases, the first step is to call the function 
IOCreatePlugInInterfaceForService(), which returns an object that has the type IOCFPlugInInterface. 
This object serves as a factory for instantiating the user-space I/O Kit classes and serves no purpose once 
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this has been done. In fact, as Listing 15-3 shows, the object is released with a call to 
IODestroyPlugInInterface() as soon as the IOUSBDeviceInterface object has been created. 

The IOCFPlugInInterface class contains a method named QueryInterface() that an application uses 
to receive a pointer to the IOUSBDeviceInterface or the IOUSBInterfaceInterface object. The IOUSBLib 
provides a way of versioning classes. This allows a future release of Mac OS X to extend a class, such as 
IOUSBDeviceInterface, to include additional functionality while maintaining backwards compatibility 
with applications that were written for an older version of the class. 

When an application requests an interface, such as IOUSBDeviceInterface, it must also specify the 
version of that class it expects to receive. The version of the class is part of the class name; for example, 
IOUSBDeviceInterface300 identifies the version of the IOUSBDeviceInterface class included with the 
IOUSBFamily version 3.0.0. This was shipped with Mac OS X 10.5. A full set of the class names and their 
version, and the minimum version of the operating system required to support that class is provided in 
the IOUSBLib.h header file. 

■ Tip  As a general rule, the version of the IOUSBDeviceInterface and IOUSBInterfaceInterface classes you 
should use will be tied to the minimum version of Mac OS X your application needs to support. For example, an 
application that requires Mac OS X 10.5 or later should use IOUSBDeviceInterface300 and 
IOUSBInterfaceInterface300. 

One aspect of the user client classes that can take some time to get used to is that IOUSBLib returns 
a pointer to the object pointer. This means that before calling a method from the object, the variable 
holding the interface requires an additional dereference. Another idiosyncrasy of the IOUSBLib classes is 
that each method requires a reference to the object to be passed as the first parameter. For example, 
consider the method QueryInterface() implemented by the IOCFPlugInInterface class, although you 
would expect to call the method with the following line of code:  

plugin->QueryInterface(parameters);     // INCORRECT 

Instead, because the “plugin” variable will have the type IOCFPlugInInterface** and is therefore a 
pointer to a pointer, the method must actually be called using the following structure: 

(*plugin)->QueryInterface(plugin, parameters); 

■ Note  If you are familiar with Microsoft’s Component Object Model (COM), you will instantly recognize the 
method name QueryInterface(). All IOUSBLib classes are based on the COM programming model and are 
derived from the base class IUnknown. The biggest impact of this design on an application using IOUSBLib is that 
all IOUSBLib objects are reference counted; they can be retained by calling the method AddRef() and can be 
released by calling the method Release(). 
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Handling Asynchronous Operations 
As we will see in our later discussion of IOUSBLib classes, many methods perform operations that 
complete asynchronously. All such asynchronous methods take two parameters, a pointer to a callback 
function and a parameter named “refcon” that allows the application to pass an arbitrary context value 
to its callback. The callback function has the following signature:  

void    MyCallbackFunction (void* refcon, IOReturn result, void* arg0); 

The first parameter, refcon, is the application’s arbitrary context parameter. The second parameter 
reports the overall result of the operation; a value of kIOReturnSuccess indicates the operation 
completed successfully. The final argument, arg0, is provided by the IOUSBLib and is dependent on the 
type of operation performed. In this chapter, when we describe an asynchronous method, we will also 
describe the value passed by IOUSBLib to the callback function through the arg0 parameter. 

Just as a kernel driver uses a work loop to synchronize its completion routines against other driver 
code, a user-space application can synchronize completion callbacks from IOUSBLib against the rest of 
its code using a run loop. 

To begin, an application must create a run loop source for the IOUSBLib class that will be 
performing asynchronous operations. The IOUSBLib classes contain methods for creating either a run 
loop source or a mach port to receive asynchronous notifications; however, most applications will need 
to work only with the run loop source.  

It’s important to note the IOUSBLib classes provide a method with the prefix “Create” and with the 
prefix “Get”(such as CreateDeviceAsyncEventSource and GetDeviceAsyncEventSource). However, the 
“Get” method will only return an object that has previously been initialized through the “Create” 
method. An example function to create and install a run loop source that will be used to receive 
asynchronous notifications from the IOUSBDeviceInterface class is shown in the following snippet. 

IOReturn   InstallRunLoopSourceForUSBDevice (IOUSBDeviceInterface300** usbDevice) 
{ 
     CFRunLoopSourceRef         runLoopSource; 
     IOReturn                   error; 
      
     error = (*usbDevice)->CreateDeviceAsyncEventSource(usbDevice, &runLoopSource); 
     if (error == kIOReturnSuccess) 
           CFRunLoopAddSource(CFRunLoopGetCurrent(), runLoopSource, kCFRunLoopDefaultMode); 
      
     return error; 
} 

An application is free to install the run loop source on the run loop of any particular thread it 
wishes, including the run loop for the application’s main thread. The object ownership rules follow the 
same convention as all Core Foundation functions: If an application obtains an object from a “Create” 
method, it owns that object and is responsible for releasing it. If an application obtains an object from a 
“Get” method, it does not own a reference to that object, so if the application wishes to hold on to that 
object, it must explicitly retain the object first. 

The IOUSBDeviceInterface Class 
The IOUSBDeviceInterface class is a user-space class that provides equivalent functionality to the 
IOUSBDevice class used by kernel drivers. It’s worth noting that although the user client class provides 
similar functionality to its kernel counterpart, it implements it through a different set of methods. 
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Therefore, a kernel USB driver written to work with the IOUSBDevice class cannot simply be brought into 
a user-space USB driver. 

After obtaining a reference to the user-space IOUSBDeviceInterface, the first thing an application 
will need to do is to configure the USB hardware. The steps an application will take to do this will closely 
match those explained in Chapter 8 for a kernel driver. First, the application needs to obtain exclusive 
access to the USB hardware and prevent the hardware’s configuration from being changed by another 
driver, which could either be another user-space driver or a kernel driver. This is achieved by calling the 
IOUSBDeviceInterface method USBDeviceOpen(), as follows: 

error = (*usbDevice)->USBDeviceOpen(usbDevice); 

If the error code returned from the method is kIOReturnSuccess, the application has been granted 
exclusive access to configure the hardware. If another application or driver has already obtained 
exclusive access to the hardware, the call to USBDeviceOpen() will fail with the error code 
kIOReturnExclusiveAccess and the application should abort all further access to the device, possibly 
reporting an error to the user. 

When an application has finished using the device, it should relinquish its exclusive access to the 
hardware by calling the IOUSBDeviceInterface method USBDeviceClose(), as follows: 

error = (*usbDevice)->USBDeviceClose(usbDevice); 

What follows is a summary of the methods provided by the IOUSBDeviceInterface class that provide 
access to the information contained in the USB device descriptor. In this chapter, we describe the 
IOUSBDeviceInterface300 class, so some of the following methods will not be present in earlier versions 
of the IOUSBDeviceInterface class. 

• GetDeviceClass, GetDeviceSubClass, and GetDeviceProtocol: Returns the device 
class (bDeviceClass), subclass (bDeviceSubClass), and protocol (bDeviceProtocol) 
from the USB device descriptor. Together, these three values define the function 
of the device based on values defined in the USB specification. 

• GetDeviceVendor: Returns the USB Vendor ID of the device (idVendor). 

• GetDeviceProduct: Returns the USB Product ID of the device (idProduct). 

• GetDeviceReleaseNumber: Returns the device release number (bcdDevice). 

• USBGetManufacturerStringIndex: Returns the index of the string for the device’s 
manufacturer name (iManufacturer). To read the actual string from the device, an 
application must follow up by sending the standard device request “get 
descriptor” to read an entry from the device’s string table. 

• USBGetProductStringIndex: Returns the index of the string for the device’s product 
name (iProduct). 

• USBGetSerialNumberStringIndex: Returns the index of the string for the device’s 
serial number (iSerialNumber). 

• GetNumberOfConfigurations: Returns the number of configurations the device 
supports at its current speed (bNumConfigurations). 

The following methods allow an application to read dynamic properties that relate to the current 
state of the USB device: 
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• GetDeviceAddress: Returns the address of the USB device, which is unique for the 
bus it is connected to. 

• GetDeviceSpeed: Returns the speed of the device. Possible values include 
kUSBDeviceSpeedLow, kUSBDeviceSpeedFull, or kUSBDeviceSpeedHigh. 

• GetLocationID: Returns a 32-bit value that uniquely identifies a USB device on the 
system, based on the USB hub and port the device is connected to. The Location 
ID won’t change following a restart of the computer, but will change if the device 
is connected to another hub or port. Therefore, if the USB device provides a serial 
number string, it is a preferable way to track a device across reboots and 
disconnections. 

• GetBusFrameNumber: Returns the current frame number of the USB bus to which 
the device is connected. The function also returns the system host time that 
corresponds to the time at which the kernel driver handled the request. The 
system time may fall anywhere within the returned USB frame. 

• GetBusFrameNumberWithTime returns the current frame number of the USB bus to 
which the device is connected, but also returns the system host time that 
corresponds to the start of that frame. This method was introduced in later 
versions of the IOUSBDeviceInterface class and supersedes the method 
GetBusFrameNumber(). 

• GetBusMicroFrameNumber: Returns the current microframe number of the USB bus 
to which the device is connected. The function also returns the system host time 
that corresponds to the time at which the kernel driver handled the request (and 
so this method behaves like GetBusFrameNumber()). 

The following methods provide a way for an application to reset the USB device:  

• ResetDevice: Resets the USB device, returning it to the non-configured state. 

• USBDeviceReEnumerate: Instructs the hub to which this device is connected to reset 
the port that this device is connected to. This is equivalent to disconnecting the 
device from the USB port and reconnecting it. 

• USBDeviceSuspend: Despite the name of this method, it can either suspend or 
resume the port to which the USB device is connected, depending on the value of 
a Boolean parameter. If the method suspends the device, any outstanding 
transactions to the device will be aborted. 

• USBDeviceAbortPipeZero: Aborts any outstanding transaction on the control 
endpoint. 

The IOUSBDeviceInterface class provides the following methods to allow an application to send 
control requests to the device on endpoint zero:  

• DeviceRequest: Is a synchronous method and will not return until the device 
request has completed. The device request is described by the same 
IOUSBDevRequest structure used by kernel USB drivers. 
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• DeviceRequestTO: Is a synchronous method that takes two timeout values, 
expressed in milliseconds. The method will return once the device request has 
completed or a specified timeout period has elapsed (whichever comes first). The 
caller provides two timeout values. The device may stop sending or receiving data 
while handling the request, so one timeout value specifies the maximum amount 
of time to wait since the last data transfer before aborting the control request. The 
other timeout value specifies the maximum amount of time to allow for the 
control request to complete from start to finish. A control request is aborted if 
either of the specified timeout conditions occurs. 

• DeviceRequestAsync: Is an asynchronous equivalent of the method DeviceRequest. 
The method takes a callback function the I/O Kit uses to notify the caller once the 
request has completed. It’s important to note that a return value of 
kIOReturnSuccess from this method doesn’t indicate the request completed 
successfully; rather, it indicates the operation was successfully started. The actual 
result of the operation will be returned through the callback function. The value of 
the arg0 parameter passed to the completion callback holds the number of bytes 
that were either read from the device or written to the device. 

Listing 15-4 lists a sample function that uses the DeviceRequest method to read the manufacturer 
string from the USB string table. The function starts by calling USBGetManufacturerStringIndex to obtain 
the index of the manufacturer string. Next, the device request structure is prepared. The bmRequestType 
field specifies that the request is a data read (kUSBIn), is a standard request (as opposed to a request 
defined by the device class or is vendor-specific), and that the recipient of the request is the device (as 
opposed to an interface or an endpoint). Since the string table is treated as just another descriptor table 
by the USB Specification, the control request that is sent to the device to read a string is the 
kUSBRqGetDescriptor request. The wValue field indicates we are reading a string descriptor and also 
contains the index of the string to be read. 

Finally, if the string data is successfully read from the device, the function creates a CFStringRef 
from the returned data, which is returned from the device with an encoding of UTF-16 little-endian. 

Listing 15-4. A Function That Demonstrates a Device Request Through the IOUSBDeviceInterface Class 

#include <IOKit/usb/IOUSBLib.h> 
#include <IOKit/usb/USBSpec.h> 
#include <CoreFoundation/CoreFoundation.h> 
 
IOReturn                PrintDeviceManufacturer (IOUSBDeviceInterface300** usbDevice) 
{ 
        UInt8                   stringIndex; 
        IOUSBDevRequest         devRequest; 
        UInt8                   buffer[256]; 
        CFStringRef             manufString; 
        IOReturn                error; 
         
        // Get the index in the string table for the manufacturer. 
        error = (*usbDevice)->USBGetManufacturerStringIndex(usbDevice, &stringIndex); 
        if (error != kIOReturnSuccess) 
                return error; 
         
        // Perform a device request to read the string descriptor. 
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        devRequest.bmRequestType = USBmakebmRequestType(kUSBIn, kUSBStandard, kUSBDevice); 
        devRequest.bRequest = kUSBRqGetDescriptor; 
        devRequest.wValue = (kUSBStringDesc << 8) | stringIndex; 
        devRequest.wIndex = 0x409;              // Language setting - specify US English 
        devRequest.wLength = sizeof(buffer); 
        devRequest.pData = &buffer[0]; 
        bzero(&buffer[0], sizeof(buffer)); 
        // 
        error = (*usbDevice)->DeviceRequest(usbDevice, &devRequest); 
        if (error != kIOReturnSuccess) 
                return error; 
         
        // Create a CFString representation of the returned data. 
        int             strLength; 
        strLength = buffer[0] - 2;              // First byte is length (in bytes) 
        manufString = CFStringCreateWithBytes(kCFAllocatorDefault, &buffer[2], strLength, 
                                                kCFStringEncodingUTF16LE, false); 
        // Print the manufacturer string. 
        CFShow(manufString); 
        CFRelease(manufString); 
         
        return error; 
} 

The following methods are used by an application to examine and set the device configuration, and 
to iterate the device’s interfaces. These methods are usually called by an application to initialize the USB 
device when it is first detected: 

• GetConfigurationDescriptionPtr: Returns a pointer to the descriptor for the 
specified configuration; note that although the caller receives a pointer to an 
IOUSBConfigurationDescriptorPtr structure, the buffer is owned by the 
IOUSBDeviceInterface object and should not be released by the caller. 

• GetConfiguration: Returns the active configuration number of the device. Note 
that this is not the index of the configuration, but rather the value of 
bConfigurationValue from the active configuration description. 

• SetConfiguration: Sets the active configuration of the device. The configuration is 
specified by passing the bConfigurationValue from the desired configuration 
description. 

• CreateInterfaceIterator: Creates an iterator over the device’s interfaces. Like its 
kernel equivalent, the caller provides an IOUSBFindInterfaceRequest structure that 
specifies the properties that returned interfaces must match. 

Having examined the functionality provided by the IOUSBDeviceInterface class, we are now in a 
position to consider the steps an application will typically take to initialize a new USB device that has 
been attached to the system. A sample initialization function is given in Listing 15-5. 

Listing 15-5. A Sample Function for Configuring a USB Device During Initialization 

IOReturn         MyConfigureDevice (IOUSBDeviceInterface300** usbDevice) 
{ 
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        UInt8                            numConfigurations; 
        IOUSBConfigurationDescriptorPtr  configDesc; 
        IOUSBFindInterfaceRequest        interfaceRequest; 
        io_iterator_t                    interfaceIterator; 
        io_service_t                     usbInterfaceRef; 
        IOReturn                         error; 
         
        // Get the count of the device's configurations. 
        error = (*usbDevice)->GetNumberOfConfigurations(usbDevice, &numConfigurations); 
        if (error != kIOReturnSuccess) 
                return error; 
        // Ensure the device has at least one configuration 
        if (numConfigurations == 0) 
                return kIOReturnError; 
         
        // Read the descriptor for the first configuration. 
        error = (*usbDevice)->GetConfigurationDescriptorPtr(usbDevice, 0, &configDesc); 
        if (error != kIOReturnSuccess) 
                return error; 
         
        // Make the first configuration the active configuration. 
        error = (*usbDevice)->SetConfiguration(usbDevice, configDesc->bConfigurationValue); 
        if (error != kIOReturnSuccess) 
                return error; 
         
        // Create an iterator over all interfaces in the active configuration. 
        interfaceRequest.bInterfaceClass = kIOUSBFindInterfaceDontCare; 
        interfaceRequest.bInterfaceSubClass = kIOUSBFindInterfaceDontCare; 
        interfaceRequest.bInterfaceProtocol = kIOUSBFindInterfaceDontCare; 
        interfaceRequest.bAlternateSetting = kIOUSBFindInterfaceDontCare; 
         
        error = (*usbDevice)->CreateInterfaceIterator(usbDevice, &interfaceRequest,  
                     &interfaceIterator); 
        if (error != kIOReturnSuccess) 
                return error; 
         
        // Iterate over all interfaces. 
        while ((usbInterfaceRef = IOIteratorNext(interfaceIterator)) != 0) 
        { 
                MySetupInterface(usbInterfaceRef); 
                IOObjectRelease(usbInterfaceRef); 
        } 
        IOObjectRelease(interfaceIterator); 
         
        return kIOReturnSuccess; 
} 

The code in Listing 15-5 begins by setting the active configuration of the device to a known 
configuration, in this case the device’s first configuration. This step is necessary because the device may 
have been used by another application before our application was launched, so the device may be in an 
unknown state. 
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Next, the application iterates over all interfaces in the active configuration. If we were interested in a 
particular interface, we could narrow down the list of interfaces returned by the iterator by specifying 
the desired class, subclass, protocol, or alternate setting for the interface. Obtaining a USB interface 
object is particularly important, since the only way an application can access the device’s endpoints, 
other than the control endpoint, is through the IOUSBInterfaceInterface class. 

The IOUSBInterfaceInterface Class 
The IOUSBInterfaceInterface class is a user-space class that provides equivalent functionality to the 
IOUSBInterface class used by kernel drivers. An application can obtain a reference to an 
IOUSBInterfaceInterface class by iterating over the device’s interfaces, as shown in Listing 15-5, or an 
application can obtain an IOUSBInterfaceInterface object directly by creating a matching dictionary 
that specifies the service name kIOUSBInterfaceClassName. 

A USB interface contains one or more endpoints, which allow data to either be written to the device 
or data to be read from the device. A user-space USB driver is not limited in any way regarding the type 
of endpoints it is able to use; all endpoint types, including bulk, isochronous, and interrupt endpoints 
are available to a user-space driver. A user-space driver is able to achieve similar data bandwidth to that 
of a kernel driver, meaning that even applications that require large data transfers can be written in user 
space. 

Whether an application uses the IOUSBDeviceInterface to iterate over USB interfaces or obtains a 
USB interface directly using a matching dictionary to create an iterator, the application will receive an 
io_service_t that provides a user-space representation of the underlying IOUSBInterface object in the 
kernel. Listing 15-6 demonstrates how to create an IOUSBInterfaceInterface object from the 
io_service_t object. 

Listing 15-6. Instantiating an IOUSBInterfaceInterface object from an io_service_t 

IOUSBInterfaceInterface300**     MyCreateInterfaceClass (io_service_t usbInterfaceRef) 
{ 
        SInt32                          score; 
        IOCFPlugInInterface**           plugin; 
        IOUSBInterfaceInterface300**    usbInterface = NULL; 
        kern_return_t                   err; 
 
        err = IOCreatePlugInInterfaceForService(usbInterfaceRef,  
                    kIOUSBInterfaceUserClientTypeID,          
                    kIOCFPlugInInterfaceID, &plugin, &score); 
        if (err == 0) 
        { 
                err = (*plugin)->QueryInterface(plugin,  
                        CFUUIDGetUUIDBytes(kIOUSBInterfaceInterfaceID300), 
                        (LPVOID)&usbInterface); 
                IODestroyPlugInInterface(plugin); 
        } 
         
        return usbInterface; 
} 

As with the USB device class, an application must obtain exclusive access to the USB interface 
object before it is able to transfer any data to or from an endpoint on the USB interface. This is achieved 
by calling the IOUSBInterfaceInterface method USBInterfaceOpen(), as follows: 
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error = (*usbInterface)->USBInterfaceOpen(usbInterface); 

When an application has finished using the interface, it should relinquish its exclusive access by 
calling the IOUSBInterfaceInterface method USBInterfaceClose(), as follows: 

error = (*usbInterface)->USBInterfaceClose(usbInterface); 

The methods provided by the IOUSBInterfaceInterface class fall into two categories, those that 
either get or set the properties of the USB device or interface and those that relate to transferring data to 
or from one of the endpoints on the interface. What follows is a summary of the methods provided by 
the IOUSBInterfaceInterface class. In this chapter, we describe the IOUSBInterfaceInterface300 class, 
so some of the methods that follow will not be present in earlier versions of the IOUSBInterfaceInterface 
class. 

Property Methods 
The IOUSBInterfaceInterface class contains methods to both get and set properties relating to the 
interface and the USB device. Although some of these methods may seem to duplicate functionality 
provided by the IOUSBDeviceInterface class that was previously described, this is intentional, as it allows 
an application that has matched against the USB interface class and not the USB device class to still have 
access to common device functionality. 

The following methods, although in the IOUSBInterfaceInterface class, relate to the USB device: 

• GetDeviceVendor: Returns the USB Vendor ID of the USB device. 

• GetDeviceProduct: Returns the USB Product ID of the USB device. 

• GetDeviceReleaseNumber: Returns the device release number of the USB device. 

• GetLocationID: Returns a 32-bit value that uniquely identifies a USB device on the 
system, based on the USB hub and port the device is connected to. 

• GetDevice: Returns an io_service_t that corresponds to the kernel IOUSBDevice 
object. From this object, an application can instantiate an IOUSBDeviceInterface 
that represents the USB device. 

• GetBusFrameNumber: Returns the current frame number of the USB bus on which 
the device is connected. 

• GetBusFrameNumberWithTime: Returns the current frame number of the USB bus to 
which the device is connected and also returns the system host time that 
corresponds to the start of that frame. 

• GetBusMicroFrameNumber: Returns the current microframe number of the USB bus 
to which the device is connected. 

• GetFrameListTime: Performs a similar role to the IOUSBDeviceInterface method 
GetDeviceSpeed, although the device’s speed is returned as the number of 
microseconds per USB frame at its current speed. A full speed device will return 
kUSBFullSpeedMicrosecondsInFrame (1000 microseconds), whereas a high speed 
device will return kUSBHighSpeedMicrosecondsInFrame (125 microseconds). 
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The following methods relate to getting and setting properties of the interface: 

• GetInterfaceClass, GetInterfaceSubClass, and GetInterfaceProtocol: Return the 
interface class (bInterfaceClass), subclass (bInterfaceSubClass), and protocol 
(bInterfaceProtocol) from the USB interface descriptor. Together, these three 
values define the function of the interface based on values defined in the USB 
specification. 

• GetConfigurationValue: Identifies the device configuration that contains this 
interface. The returned value is the bConfigurationValue from the active 
configuration’s description. 

• GetInterfaceNumber: Returns the zero-based index of this interface within the 
active configuration (bInterfaceNumber). 

• GetAlternateSetting: Returns the active alternate setting of this interface 
(bAlternateSetting). 

• SetAlternateInterface: Sets the active alternate setting for this interface. The 
alternate setting is specified by passing the bAlternateSetting value of the desired 
interface description. 

• USBInterfaceGetStringIndex: Returns the index of the string for the interface 
description, which comes from the iInterface field from the interface descriptor. 

Endpoint Data Transfer Methods 
A USB interface can contain one or more endpoints from which data can be read from or written to. 
Unlike a kernel USB driver, the IOUSBLib contains no user-space object to represent the pipe to an 
endpoint; instead, all data transfers are made through the IOUSBInterfaceInterface class. An 
application can determine the endpoints present on an interface using the following methods:  

• GetNumEndpoints: Returns the number of endpoints provided by the interface. 

• GetEndpointProperties: Returns the type (bDescriptorType), maximum packet size 
(wMaxPacketSize), and polling interval (bInterval) of a specified endpoint. The 
endpoint is specified by three values—the alternate interface setting it is on, its 
endpoint number, and the transfer direction of the endpoint. 

• GetPipeProperties: This method allows an application to specify the index of an 
endpoint from 0 up to and including the value returned by GetNumEndpoints, 
unlike GetEndpointProperties, which requires the caller to know the endpoint 
number and direction of an endpoint it is interested in. The endpoint at index 0 
corresponds to the default control endpoint. The information returned by this 
method consists of almost all the data for an endpoint descriptor, including the 
endpoint’s number, direction, type, maximum packet size, and polling interval (if 
an interrupt or isochronous endpoint). 

• GetPipeStatus: Can be used to determine whether a specified pipe is stalled. This 
method will return kIOUSBPipeStalled if the pipe is stalled and kIOReturnSuccess 
otherwise. It will return kIOUSBUnknownPipeErr if the caller has specified an invalid 
pipe index.  
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• AbortPipe: Aborts an outstanding transaction from a specified pipe index. Any 
operations that are aborted will complete, with the result kIOReturnAborted. 

• ResetPipe and ClearPipeStall: Although these two methods are identical, the use 
of ClearPipeStall is preferred. Either method is called by an application to reset 
an endpoint that has stalled. The endpoint’s halt bit is cleared and its data toggle 
bit is reset. 

• ClearPipeStallBothEnds: Is equivalent to ClearPipeStall, with the distinction that 
in addition to clearing the halt bit and resetting the data toggle on the host side, 
the halt bit is cleared on the device and the device’s data toggle is reset. This 
ensures that, since both the host and device have been reset, there is no loss of 
data when data is next transferred to or from the endpoint. 

To transfer data to or from an endpoint, an application must determine the pipe index that 
corresponds to the endpoint it wants to access. Although an endpoint address is constant, since it comes 
from a descriptor supplied by the device, the pipe index is assigned by the I/O Kit. Therefore, the only 
way to determine a pipe index for a given endpoint is to enumerate over each pipe contained within a 
USB interface. An example of this is given in Listing 15-7. 

Listing 15-7. A Function to Find a Pipe Reference for a Bulk Output Endpoint 

IOReturn        MyFindBulkOutEndpoint (IOUSBInterfaceInterface300** usbInterface,  
                                       UInt8* pipeRef) 
{ 
        UInt8           numEndpoints; 
        UInt8           i; 
        IOReturn        error; 
         
        // Determine the number of endpoints in this interface. 
        error = (*usbInterface)->GetNumEndpoints(usbInterface, &numEndpoints); 
        if (error != kIOReturnSuccess) 
                return error; 
         
        // Iterate over all endpoints in the interface (skipping endpoint 0, the control  
        // endpoint). 
        for (i = 1; i <= numEndpoints; i++) 
        { 
                UInt8           direction, number, transferType; 
                UInt16          maxPacketSize; 
                UInt8           interval; 
                 
                error = (*usbInterface)->GetPipeProperties(usbInterface, i, &direction,  
                                                &number, 
                                                &transferType, &maxPacketSize, &interval); 
                if (error != kIOReturnSuccess) 
                        continue; 
                 
                // If we find a bulk output endpoint, return its pipe index the caller. 
                if ((transferType == kUSBBulk) && (direction == kUSBOut)) 
                { 
                        *pipeRef = i; 

s
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                        return kIOReturnSuccess; 
                } 
        } 
         
        return kIOReturnNotFound; 
} 

Having determined the pipe index (referred to as the pipe reference by methods in IOUSBLib), an 
application can read or write data over the pipe. Which methods an application uses to manage a pipe 
will depend on the type of endpoint the pipe represents. The IOUSBInterfaceInterface class provides 
different methods depending on whether the pipe is connected to a control, bulk, interrupt, or 
isochronous endpoint. 

The IOUSBInterfaceInterface class provides several methods for transferring data to or from an 
endpoint. Depending on the method called, the operation may complete synchronously or 
asynchronously. Other methods allow the caller to provide a timeout value that specifies the maximum 
amount of time to allow the operation to complete before aborting the request. Finally, there are 
methods that complete asynchronously and allow the caller to specify a timeout value. 

The convention adopted by IOUSBLib is that a method completes synchronously unless the method 
contains “Async” in its name. An asynchronous method takes two extra parameters in addition to those 
passed to its synchronous counterpart—a callback function that runs when the operation completes and 
an arbitrary pointer that can be used to pass context information to the callback function. 

A method that allows the caller to specify a timeout contains the letters “TO” in its name. The 
timeout value is described by two additional parameters that are passed to the method. The device may 
stop sending or receiving data while handling the request, so one timeout value specifies the maximum 
amount of time to wait from the last data transfer before aborting the operation. The second timeout 
value specifies the maximum amount of time to allow the operation to complete from start to finish. The 
request is aborted if either of the specified timeout conditions occurs. 

The following methods are provided by the IOUSBInterfaceInterface class to perform a control 
transfer. These methods are similar to those provided by the IOUSBDeviceInterface class, with the 
exception that they each take an additional parameter, the pipe reference. If a value of 0 is passed for the 
pipe reference, the control request is sent to the default control endpoint, endpoint 0. 

• ControlRequest: Performs a control request synchronously. This method takes an 
IOUSBDevRequest structure describing a control request, and sends it to the 
specified control endpoint. 

• ControlRequestAsync: Performs a control request asynchronously. This method 
takes an IOUSBDevRequest structure and sends it to the specified control endpoint. 
When the request has completed, a callback function that was provided to the 
function is executed. The value of the arg0 parameter that is passed to the 
completion callback specifies the number of bytes that were either read from the 
device or written to the device. 

• ControlRequestTO: Performs a control request synchronously and allows the caller 
to specify timeout parameters. 

• ControlRequestAsyncTO: Performs a control request asynchronously, with a 
maximum time limit placed on how long the request is allowed to take. 

A device is likely to use a bulk endpoint for its data transfer. As we saw in Chapter 8, bulk endpoints 
allow large amounts of data to be read or written to the device with high throughput and guaranteed 
data delivery, but with variable latency (depending on whether other devices are attempting to transfer 
data over the USB bus at the same time). The IOUSBInterfaceInterface class provides the following 

www.allitebooks.com

http://www.allitebooks.org


CHAPTER 15  USER-SPACE USB DRIVERS 

374 

methods to allow an application to read and write buffers over a pipe to a bulk endpoint. The following 
methods are also applicable to transferring data over an interrupt endpoint: 

• ReadPipe: Performs a data transfer synchronously from a bulk or interrupt 
endpoint on the USB device to an application-supplied buffer. The application’s 
buffer is described by its address and the size of the buffer in bytes. The buffer size 
is also an output parameter; if the method completes successfully, the number of 
bytes that were read into the buffer is reported to the caller through the same size 
parameter. 

• WritePipe: Performs a data transfer synchronously from an application-supplied 
buffer to a bulk or interrupt endpoint on the USB device. The application’s buffer 
is described by its address and the size of the buffer in bytes. 

• ReadPipeAsync: Performs a data transfer asynchronously from a bulk or interrupt 
endpoint on the USB device to an application-supplied buffer. When the transfer 
has completed, the provided callback function is passed the result of the operation 
and the number of bytes that were read from the device (which is passed through 
the arg0 argument). 

• WritePipeAsync: Performs a data transfer asynchronously from an application-
supplied buffer to a bulk or interrupt endpoint on the USB device. When the 
transfer has completed, the provided callback function is passed the result of the 
operation and the number of bytes that were written to the device (which is 
passed through the arg0 argument). 

• ReadPipeTO: Performs a data transfer synchronously from a bulk or interrupt 
endpoint to an application buffer with a timeout value specified for the operation. 

• WritePipeTO: Performs a data transfer synchronously from an application buffer to 
a bulk or interrupt endpoint with a timeout value specified for the operation. 

• ReadPipeAsyncTO: Is an asynchronous equivalent of the ReadPipeTO method. When 
the transfer has completed or has timed out, a callback function that has been 
provided by the application is called. 

• WritePipeAsyncTO: Is an asynchronous equivalent of the WritePipeTO method. 
When the transfer has completed or has timed out, a callback function that has 
been provided by the application is called. 

An example of a function that reads data from a bulk endpoint using the asynchronous method 
ReadPipeAsyncTO is provided in Listing 15-8. 
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Listing 15-8. A Function That Demonstrates the Use of the ReadPipeAsyncTO Method 

IOReturn        MyAsyncBulkRead (IOUSBInterfaceInterface300** usbInterface, UInt8 pipeRef) 
{ 
        void*           dataBlock; 
        const UInt32    noDataTimeout = 50;             // 50 ms 
        const UInt32    completionTimeout = 500;        // 500 ms 
        void*           refcon; 
        IOReturn        error; 
         
        // Allocate a buffer to hold the read data. 
        dataBlock = malloc(kMyTransferSize); 
         
        // Perform an asynchronous read, with specified timeout values. 
        // We pass dataBlock to the callback function through the refcon parameter 
        refcon = dataBlock; 
        error = (*usbInterface)->ReadPipeAsyncTO(usbInterface, pipeRef, dataBlock,  
                                                kMyTransferSize, 
                                                noDataTimeout, completionTimeout, 
                                                ReadCompletedCallback, refcon); 
         
        // If the method returns an error, the callback will not be called. 
        if (error != kIOReturnSuccess) 
                free(dataBlock); 
         
        return error; 
} 
 
void    ReadCompletedCallback (void* refcon, IOReturn result, void* arg0) 
{ 
        void*           dataBlock = refcon; 
        UInt32          byteCount = (UInt32)arg0; 
         
        // If the read completed successfully, process any data that was read from the device. 
        if (result == kIOReturnSuccess) 
        { 
                ProcessReadData(dataBlock, byteCount); 
        } 
         
        // Release the buffer that was allocated in MyAsyncBulkRead. 
        free(dataBlock); 
} 

The remaining USB endpoint type is the isochronous endpoint. As we saw in Chapter 8, 
isochronous endpoints are designed for use by devices that transfer a stream of data that must be 
delivered in a timely manner with minimal latency, such as an audio or video data stream. The 
IOUSBLib provides full support for isochronous data transfers to a user-space application. 

An isochronous pipe has guaranteed bandwidth on the USB bus. The device reports its bandwidth 
requirements and if the USB host is able to meet those requirements, the device is granted access to the 
USB bus. A full-speed device is able to transfer data over an isochronous pipe on every frame (once a 
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millisecond), whereas a high speed or a super speed device is able to transfer data on each microframe 
(once every 125 microseconds). 

As with the kernel implementation, an isochronous data transfer from an application is set up by 
filling out an array of IOUSBIsocFrame structures, which describe the number of bytes the application 
wishes to read or write over the isochronous pipe on each microframe (or frame, for a full speed device). 
The IOUSBIsocFrame structure is defined as shown below. 

typedef struct IOUSBIsocFrame { 
   IOReturn     frStatus;     // On return, the result for the transfer for this frame 
   UInt16       frReqCount;   // The requested number of bytes to read or write on this frame 
   UInt16       frActCount;   // On return, the actual number of bytes read or written on this  
                              // frame 
} IOUSBIsocFrame; 

A read or write over an isochronous pipe will typically describe the transfer over several tens of 
milliseconds, with the application issuing a new isochronous transfer request whenever an outstanding 
request completes. The following methods are provided by the IOUSBInterfaceInterface class for 
performing transfers over an isochronous pipe: 

• ReadIsochPipeAsync: Performs an asynchronous data transfer from an 
isochronous pipe. The data transfer is described by passing a buffer address to 
hold the data read from the device and an array of IOUSBIsocFrame elements that 
describes the maximum amount of data that can be accepted on each frame. The 
method takes a parameter named “frameStart” that determines the USB frame 
number on which the data transfer will begin, usually a USB frame shortly after 
the current frame. The current USB frame can be determined by calling the 
GetBusFrameNumber method. Once the transfer has completed, the callback 
function supplied by the application is called; the value of arg0 that is passed to 
the callback function is the address of the IOUSBIsocFrame array. The application 
can examine this array to determine the number of bytes that were actually read 
on each frame. 

• WriteIsochPipeAsync: Performs an asynchronous data transfer to an isochronous 
pipe. The caller provides the address of a buffer containing the data to be written 
to the device and an array of IOUSBIsocFrame elements that describes the number 
of bytes to be transferred from the buffer on each USB frame. The method takes a 
parameter named “frameStart” that determines the USB frame number on which 
the data transfer will begin, usually a USB frame shortly after the current frame. 
The current USB frame can be determined by calling the GetBusFrameNumber 
method. Once the transfer has completed, a callback function supplied by the 
application is called; the value of arg0 that is passed to the callback function is the 
address of the IOUSBIsocFrame array. 

• GetBandwidthAvailable: Returns the bandwidth that is available on the USB bus; 
this is the maximum bandwidth a device can allocate. The bandwidth is reported 
as the maximum number of bytes that can be allocated to an isochronous pipe for 
each frame (for a full speed device) or microframe (for a high speed device). 
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• SetPipePolicy : Allows an application to modify the bandwidth reservation of an 
isochronous or interrupt pipe. For an isochronous pipe, the maximum allowable 
packet size that can be transferred on a frame (for a full speed device) or a 
microframe (for a high speed device) can be changed. The packet size, however, 
cannot be set to a value larger than the maximum packet size in the device’s 
endpoint descriptor. For an interrupt pipe, this method allows the maximum 
allowable packet size and the polling interval to be set. The packet size and polling 
interval, however, cannot exceed the values requested in the endpoint descriptor. 
If the initial bandwidth requested in a device’s endpoint descriptor cannot be 
satisfied, the USB host will not allow data to be transferred over the isochronous 
pipe; this method can be used to assign a reduced bandwidth allocation to the 
pipe, allowing it to be used. 

An example of a function that performs an isochronous read operation is given in Listing 15-9. Note 
that before issuing the request, the function initializes an array of IOUSBIsocFrame elements to describe 
the maximum number of bytes it can accept on each frame (or microframe, for a high speed device). 
Once the request has completed, the device is able to process the data that was received on each frame, 
which may be less than the maximum number of bytes requested. 

The frame number on which the request begins is specified by the parameter “startFrame” which, in 
the example function, is determined by adding a fixed delay to the current frame. More generally, an 
application would typically set the initial frame number of an isochronous request to the final frame 
number of the previous isochronous request. In this way, the driver can read continually from the device 
without any gaps. 

Listing 15-9. A Function That Demonstrates an Isochronous Data Transfer from a User-space Driver 

const int      framesPerRequest = 512; 
const int      bytesPerFrame = 1024; 
 
IOReturn MyScheduleIsocRead (IOUSBInterfaceInterface300** usbInterface, UInt8 pipeRef,  
                              void* destinationBuffer) 
{ 
     UInt64             startFrame; 
     AbsoluteTime       timeNow; 
     IOUSBIsocFrame*    frameList; 
     void*              refcon; 
     IOReturn           error; 
      
     // Read the current frame number. 
     // (Alternatively, we could issue this isoc request to follow  
     // on from the previous request.) 
     error = (*usbInterface)->GetBusFrameNumber(usbInterface, &startFrame, &timeNow); 
     if (error != kIOReturnSuccess) 
         return error; 
     // Add an offset to the frame on which the request will start,  
     // so it starts just ahead of the current frame. 
     startFrame += 8; 
      
     // Allocate an array of IOUSBIsocFrame elements. 
     frameList = (IOUSBIsocFrame*)malloc(framesPerRequest * sizeof(IOUSBIsocFrame)); 
     // Set up the number of bytes to read on each frame of the isochronous request. 
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     for (int i = 0; i < framesPerRequest; i++) 
         frameList[i].frReqCount = bytesPerFrame; 
      
     // Perform the isochronous request. 
     // We pass destinationBuffer to the callback function through the refcon parameter. 
     refcon = destinationBuffer; 
     error = (*usbInterface)->ReadIsochPipeAsync(usbInterface, pipeRef, destinationBuffer,  
                                startFrame, 
                                framesPerRequest, frameList, IsocReadCompletedCallback,  
                                refcon); 
     // If the method returns an error, the callback will not be called. 
     if (error != kIOReturnSuccess) 
          free(frameList); 
      
     return error; 
} 
 
void IsocReadCompletedCallback (void* refcon, IOReturn result, void* arg0) 
{ 
     uint8_t*           destinationBuffer = (uint8_t*)refcon; 
     IOUSBIsocFrame*    frameList = (IOUSBIsocFrame*)arg0; 
      
     // If the read completed successfully, process any data that was read from the device. 
     if (result == kIOReturnSuccess) 
     { 
         for (int i = 0; i < framesPerRequest; i++) 
         { 
              if (frameList[i].frStatus == kIOReturnSuccess) 
              { 
                UInt16          bytesRead; 
                 
                // Process the data that was read on this frame 
                bytesRead = frameList[i].frActCount; 
                ProcessReadData(destinationBuffer, bytesRead); 
              } 
               
              // Calculate the starting address for the next frame's data 
              destinationBuffer += frameList[i].frReqCount; 
         } 
     } 
      
     // Release the frame list that was allocated in MyScheduleIsocRead. 
     free(frameList); 
} 

Low-Latency Isochronous Transfers 
Isochronous endpoints are typically used to transfer multimedia data, such as audio or video that is 
continually streamed to or from the USB device. An application that processes this data typically wishes 
to do so with minimal latency; for example, an application may wish to begin processing audio data that 
has been read from a microphone as soon as it is received by the USB device. One of the problems with 



CHAPTER 15  USER-SPACE USB DRIVERS 

379 

the isochronous methods described previously is that the application must wait until the completion 
callback function is notified before it can begin processing the data that was read. If an application 
issues an isochronous request that spans 10 milliseconds worth of USB frames, this means there is a 
latency of at least 10 milliseconds from the start of the request until the application can begin to process 
the data that was read from the device. 

As a solution to this, the IOUSBInterfaceInterface class contains low-latency isochronous transfer 
methods that give an application access to data as soon as it has been received by the device, even if the 
overall isochronous request hasn’t completed. To do this, the I/O Kit updates the values of the frame list 
while the isochronous transaction is in flight; the values of frStatus and frActCount are written and 
available to the application during the transfer. Rather than waiting for the completion callback to fire, 
an application can periodically examine the values of its frame list and determine when new data is 
available to be processed. This can be done from a real-time thread in a user-space application, for 
example. 

An application specifies how often the I/O Kit should update the frame list while the operation is in 
flight by specifying the number of milliseconds between updates (a value between 0–8). For example, an 
update frequency of 1 means the application’s frame list will be updated by the I/O Kit every millisecond 
during the transfer. A value of 0 means the I/O Kit will not update the frame list until the end of the 
transfer, although the updated frame list will be available to the application as soon as the transaction 
has completed but before the application receives the completion callback. 

To use low-latency isochronous transfers, the buffers used for the frame list array and to hold the 
source or destination data from the transfer must be allocated using methods provided by the 
IOUSBInterfaceInterface class. This allows the I/O Kit to ensure the buffers are available to both the 
kernel, which updates the buffers during the transfer, and the application, which reads the result during 
the transfer. 

Note that instead of using the IOUSBIsocFrame structure to describe the transfer for a USB frame, the 
low-latency methods use the IOUSBLowLatencyIsocFrame structure. This structure includes an additional 
field, frTimeStamp, which holds the time at which the I/O Kit updated the structure’s values. 

The following methods are provided for low-latency isochronous transfers: 

• LowLatencyCreateBuffer: Allocates a buffer used to hold either the source data for 
a low-latency isochronous write, the destination data for a low-latency 
isochronous read, or the array of IOUSBLowLatencyIsocFrame elements that 
describes an isochronous transfer. The application’s intent for the buffer must be 
specified by providing one of the enumeration values— 
kUSBLowLatencyWriteBuffer, kUSBLowLatencyReadBuffer, or 
kUSBLowLatencyFrameListBuffer. 

• LowLatencyDestroyBuffer: Releases a buffer that has previously been allocated by 
the method LowLatencyCreateBuffer. 

• LowLatencyReadIsochPipeAsync: Performs a read from an isochronous endpoint on 
the USB device. The parameters to this method extend those of the method 
ReadIsochPipeAsync to include a parameter named updateFrequency that specifies 
how often the I/O Kit should update the frame list during the transfer (specified in 
milliseconds). The IOUSBLowLatencyIsocFrame array and the destination buffer 
must both have been allocated by the method LowLatencyCreateBuffer. 
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• LowLatencyWriteIsochPipeAsync: Performs a write to an isochronous endpoint on 
the USB device. The parameters to this method extend those of the method 
WriteIsochPipeAsync to include a parameter named updateFrequency that 
specifies how often the I/O Kit should update the frame list during the transfer 
(specified in milliseconds). The IOUSBLowLatencyIsocFrame array and the source 
buffer must both have been allocated by the method LowLatencyCreateBuffer. 

Summary 
• For certain types of devices, including USB devices, the I/O Kit makes it possible 

to forgo a kernel driver and implement the driver completely in user space. For the 
end user, this provides a much better experience. 

• Not all USB devices are suitable for a user-space driver. A device that needs to be 
used by the system itself, such as a system-wide audio device or a USB storage 
device, must be implemented in the kernel. 

• The I/O Kit provides a user-space library known as IOUSBLib that an application 
uses to interact with a USB device. The IOUSBLib provides a user- space 
equivalent to the IOUSBDevice and IOUSBInterface kernel classes, known as 
IOUSBDeviceInterface and IOUSBInterfaceInterface, respectively. 

• An application can watch for the arrival and removal of the USB devices it 
supports by creating a matching dictionary and installing a notification callback, 
as described in Chapter 5. Once an application has been notified that a USB 
device or a USB interface it is interested in has been attached to the computer, it 
can instantiate an IOUSBDeviceInterface or IOUSBInterfaceInterface object to 
provide access to the USB hardware. 

• The IOUSBLib provides full support for the functionality of a USB device to a user-
space driver. All endpoint types are supported in user space, including control, 
bulk, interrupt, and isochronous transfers. 

• An application can perform either synchronous or asynchronous operations with 
IOUSBLib. A callback is used to notify the application of the completion of an 
asynchronous request. 
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Debugging 

Debugging is part of the development process and the ongoing maintenance of a kernel level driver or 
extension. Therefore, having the skills and knowledge to debug the kernel effectively is an important part 
of a kernel engineer’s job description. Although great care is taken during the development and quality 
assurance process, bugs are often unavoidable. This is partly because, once released, your driver is likely 
to run against hardware/software combinations that haven’t been as well tested, if at all. For example, 
your driver may run on a faster or slower CPU than was tested initially, thus uncovering timing issues. 

Many regard kernel debugging as a black art, and with good reason. When an application crashes, it 
can be dumped into the debugger and it then is often possible to pinpoint the exact code line that 
caused the problem. In the kernel, things are not that easy; although debugging with the GNU Debugger 
(GDB) is possible, it requires some setup and often two computers. Furthermore, crashes in the kernel 
can often manifest themselves in completely unrelated parts of your extension, making it hard to prove if 
your driver was involved. You may be lucky enough to extract information or attach a debugger after a 
crash; however, the memory may be corrupted and the values of data structures or the call stack may not 
be trustworthy. 

If you are writing drivers for hardware devices, things may be even more complicated as 
malfunctioning devices (more common if using a prototype device) may also corrupt memory or cause 
the computer to lock up or crash. This sometimes makes it difficult to determine if it’s a hardware or 
software problem. 

In this chapter, we will look at various techniques and strategies to help debug common problems. 

Common Types of Problems 
There are many reasons why the kernel may crash or why other problems may happen. However, they 
are usually variations on common errors and once you know what class of problem you are dealing with, 
it makes it a lot easier to start examining your code for problems. Let’s have a broad look at some of the 
problems you may encounter during kernel development. 

• Race Conditions: A general class of bugs used to describe a problem where 
multiple threads of execution conflict with each other and the outcome depends 
on which thread gets there first. Race conditions are quite common and are often 
due to poor design or poor locking in multi-threaded environments. They can 
sometimes be tricky to reproduce and may be hiding a long time before discovery. 
Things go wrong when a particular sequence of events happen in a specific order, 
for example, because it is dependent on user input. 
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• Deadlocks: Happen when locking is poorly implemented and when one thread is 
waiting on an event or lock that will never happen, possibly because a second 
thread failed to release the lock after use. Once this happens, the condition can 
spread to new threads in the system also needing the lock. From a user’s point of 
view, it can look like their application hangs and they may be unable to force 
quitting it because it is stuck waiting for an event in the kernel. 

• Lock Contention: A performance problem, which happens when many threads 
need the same lock and spend excessive time waiting for the lock rather than 
doing anything useful. Lock contention is usually the result of poor design and can 
be prevented by implementing a proper locking scheme. The general rule is to 
lock access to data and not to code. Having large blocks of code protected may 
seem easier than fine-grained locking of shared data only; however, it will 
decrease performance and make it more likely for deadlocks to occur.  

• Access to Invalid Memory: The most common cause for kernel panics. Unlike user 
space programs, which are aborted, the kernel simply panics if the CPU causes an 
invalid memory exception. If a debugger is enabled, the kernel will dump into the 
debugger instead of showing the grey screen of death on Mac OS X or rebooting, 
which is the behavior under iOS. Buffer overruns will sometimes cause an invalid 
memory exception, unless the buffer happens to be followed by valid memory, in 
which case silent memory corruption may occur. 

• Memory and Resource Leaks: Can happen, for example, if a driver unloads and 
resources such as objects and buffers were not properly disposed of. It can also be 
that an extension allocates some memory each time it receives a request, but fails 
to free the memory after it is finished. The kernel has no garbage collection 
capabilities, so leaks can accumulate over time and cause a kernel panic. 

• Illegal Instruction/Operand: These exceptions are issued by the CPU if it detects 
an invalid instruction or an invalid argument to an instruction. This can happen 
as the result of memory corruption or a poorly written driver that attempts to use 
features not present on the CPU, for example, using the SSE3 instruction set on 
machines that do not support it. You could also see this exception as a result of 
memory corruption. 

• Blocking in Primary Interrupt Context: Results in a panic, as you cannot block 
during primary interrupt context. Blocking requires a scheduled thread, as 
blocking is implemented by putting the thread to sleep voluntarily. In this case the 
thread’s state is saved and later restored when the scheduler determines it is time 
to run that thread again. A primary interrupt handler cannot be resumed; it must 
run to completion without being interrupted. Many kernel APIs may block under 
certain circumstances. For example, memory allocation may block if the system is 
low on memory, which will result in some memory being paged out to disk to free 
up memory for the request. Because of this, functions such as IOMalloc() or even 
IOLog() cannot be used during primary interrupt context.   

• Volunteered Panics: Happen when the kernel voluntarily decides to crash because 
it has determined that something is about to go horribly wrong or an exceptional 
condition has occurred that it can’t recover from. An example of this is if a 
memory allocation that cannot block fails. Your driver can panic the kernel by 
calling IOPanic(), which is a wrapper for the panic() function. 
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There are of course many other problems that can occur, but most are variants of the preceding 
typical ones. 

Kernel Panics 
A panic is the kernel’s main defense mechanism for dealing with exceptional conditions, such as the 
preceding list of problems. Instead of attempting to keep going on a fault, the safest course of action is to 
terminate execution of the system immediately to avoid damage to the file system. When a Mac OS X 
system panics, the user is likely met by the multilingual panic screen, unless the kernel has been 
configured with debugging options instructing the user to restart the computer, as shown in Figure 16-1.  

 

Figure 16-1. Mac OS X Panic Screen, the Mac OS X equivalent of Window’s blue screen of death 

Behind the scenes, the system will preserve a panic log, which contains a stack trace of the 
processor (core) the panic happened on. The panic log will be written to the system’s non-volatile 
random-access memory (NVRAM) temporarily, as it is generally unsafe to access the file system after a 
system has panicked. After all, the purpose of the panic is not to annoy the user but to shut down the 
party before it gets out of hand and protect the file systems from damage. 

Once the system boots again, the panic log is copied to the /Library/Logs/DiagnosticReports/ 
directory. The system will also show the crash reporter dialog window, which allows users to report the 
problem to Apple. 

Debugging Mechanisms 
There are many debugging techniques; which one to use typically depends on the nature of the problem 
at hand. Here, we will look at some of the techniques that can help aid in debugging kernel problems. 
Table 16-1 provides a brief overview of some of the mechanisms we will discuss in this chapter. 
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Table 16-1. Overview of Kernel Debugging Mechanisms 

Name Description 

IOLog(), kprintf(), printf() These carry out basic tracing to the system log (kernel.log). It is 
also possible to direct kprintf() over a FireWire connection or 
serial port (if available) to a remote system. 

Remote debugging over Ethernet 
or FireWire using GDB 

This allows you to attach the GDB to a remote system that is 
either crashed or halted. The protocol for remote debugging is 
called KDP (Kernel Debug Protocol) and is built in to the kernel, 
but must be enabled manually. The FireWireKDP 
implementation can also capture core dumps (mirror image of 
the system’s memory). 

Live debugging of a running 
kernel using GDB 

This allows GDB to be attached to the kernel it is running on 
while the system is live.  

KDB This is an in-kernel debugger not built in to the kernel by default. 
It only works over a traditional serial port and is only found on 
Xserve servers (and Virtual Machine instances of OS X). 

Remote core dumps over Ethernet The kdumpd server can be configured to automatically 
download core dumps from crashed Macs on the network. 

 
Most of the preceding debugging technologies are included by default, but are not always enabled 

in the kernel by default because they may cause interference with the running kernel or hardware 
devices, or may pose a security risk, as it may be possible to obtain sensitive contents of the target’s 
memory. 

Enabling debugging mechanisms or controlling the kernel’s debug behavior can be done by setting 
kernel boot arguments. Boot arguments can be set in two ways, either by using the nvram command or 
by adding it to the boot arguments key in 
/Library/Preferences/SystemConfiguration/com.apple.Boot.plist. There are a heap of available boot 
arguments, but we are most interested in the debug argument, which controls debugger and system 
debug behavior. The argument is an integer value and can consist of the flags shown in Table 16-2. 
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Table 16-2. Flags for the Debug Boot Paramter 

Name Value Description 

DB_HALT 0x01 The kernel will halt at boot and wait for the debugger to 
be attached. 

DB_PRT 0x02 This sends the output of printf() to the console. 

DB_NMI 0x04 Makes the system drop into GDB on panic or when the 
power button or Command-Option-Control-Shift-
Escape is pressed. 

DB_KPRT 0x08 This sends the kprintf() output to the serial port (if 
available) or a FireWire remote log. 

DB_KDB 0x10 This makes KDB the default debugger (requires building 
a custom kernel). 

DB_SLOG 0x20 This outputs additional diagnostic info to the system log. 

DB_ARP 0x40 This allows the debugger to issue ARP requests, allowing 
debugging across a router without configuring 
permanent ARP entries. 

DB_KDP_BP_DIS 0x80 This allows older versions of GDB to attach to newer 
systems. 

DB_LOG_PI_SCRN 0x100 This disables the graphical panic dialog shown in Figure 
16-1. 

DB_KDP_GETC_ENA 0x200 This is a prompt for c = continue, r = reboot, and k = 
enter KDB after a panic. 

DB_KERN_DUMP_ON_PANIC 0x400 This triggers a core dump upon kernel panic. 

DB_KERN_DUMP_ON_NMI 0x800 This enables a core dump upon an NMI event. 

DB_DBG_POST_CORE 0x1000 This waits in the debugger after an NMI core dump. 

DBG_PANICLOG_DUMP 0x2000 If set, a panic log is transmitted instead of a core dump. 

DBPG_REBOOT_POST_CORE 0x4000 This initiates a reboot after a core/panic log dump. 
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The values form a bitmask and you can combine multiple values together by ORing them. For 
example, to enable NMI, disable the graphical panic screen and enter the debugger upon panic. We can 
combine the values so that: 

0x04 | 0x100 = 0x104 

The value can be set in the com.apple.Boot.plist or using the nvram command: 

$ sudo nvram boot-args=”original_contents debug=0x104” 

To disable or remove debugging options, simply do the following: 

$ sudo nvram boot-args=”original_contents” 

If you have existing boot arguments set, this command will overwrite them, so be sure to query the 
boot-args argument first to prevent overwriting them. 

Recovering from Crashes During Boot 
Your extension may be installed in the /System/Library/Extensions directory and get loaded 
automatically during system boot. If there is a problem that causes the extension to crash repeatedly 
during system boot, the system can be recovered in the following different ways.  

• Boot in safe mode by holding the shift key down after you hear the startup tone 
and release the key when the Apple logo appears. This should ensure only 
essential kernel extensions (KEXTs) are loaded and you will be able to remove 
your KEXT so the system can boot manually. 

• Attach the system to another computer and boot it in target disk mode using a 
FireWire or Thunderbolt cable by holding down the T key during boot. You should 
then be able to remove the offending extension form the system’s disk. 

• Boot into a different partition if one is available. 

• If the offending KEXT is a driver for a piece of hardware, removing it from the 
system will likely prevent the driver from loading. 

• Perform an NVRAM reset if you need to reset boot arguments. 

If you are unsure what causes the crash, you can boot the system in verbose mode by pressing 
Command-V.  

■ Tip  Details of startup key combinations supported by Intel-based Macs are available at 
http://support.apple.com/kb/ht1533. 

Tracing with IOLog() 
We have already seen tracing in action throughout this book. Tracing involves strategically placing 
IOLog(...) statements in your code to print variables and to test if conditional blocks are triggered. 
IOLog() output eventually ends up in the kernel.log file. The kernel has quite a limited buffer for storing 
messages from IOLog(), so if you write a large amount of long messages too quickly, the buffer will wrap 
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and you may overwrite data before the syslog daemon has the chance to store it to the log. This may 
cause confusion and lead to incorrect assumptions when expected output is not seen. 

Many functions of your driver may end up being called hundreds or even thousands of times per 
second, so printing a message on each invocation may be counterproductive. Although the logging 
daemon has features to coalesce identical messages, this falls apart if there are slight variations between 
them. It also does nothing to prevent the buffer wrapping around and potentially overwriting some 
messages. 

You can change the size of the system log buffer that IOLog() writes into by re-compiling the kernel 
or using the much simpler way of adding the kernel flag msgbuf=n, where n is the size of the buffer in 
bytes, to the kernel’s boot configuration property list com.apple.Boot.plist. This file is found in the 
/Library/Preferences/SystemConfiguration/ directory. 

Even though a larger buffer may decrease the likelihood of data going missing, it doesn’t prevent the 
log from being flooded with messages when printing from functions in the “hot path” of the driver. To 
avoid this, you can use variations of the technique shown in Listing 16-1.   

Listing 16-1. Limiting IOLog Output 

static uint32_t        conditionCount = 0; 
com_osxkernel_MyDriver::driverMethod() 
{ 
    ... 
    if (someCondition) 
    { 
        conditionCount++; 
        if (conditionCount % 1000 == 0) 
            IOLog(“condition has occurred: %u times\n”, conditionCount); 
    } 
} 

This will log the amount of times a condition occurs, but prints a message to the log only every 
thousandth time. If you wish to debug a primary interrupt filter, you can use a variant of this approach. 
However, the IOLog() call needs to be moved out of the primary interrupt filter routine to a place it can 
be safely called, for example, the secondary interrupt handler or a custom IOUserClient method. 

If your driver has multiple instances, you may wish to print additional information so you can tell 
which instance is doing what. If you are in the context of an IOService, you can print the “this” pointer 
address to help uniquely identify each instance. 

Should you always leave IOLog() statements in your driver code? Yes and no. Opinions differ on this, 
but it is definitely frowned upon for a driver to spam the system logs with unnecessary output that may 
hide other potentially important messages from other parts of the system. However, it may be 
acceptable to print a few messages about exceptional conditions. If you prefer to leave IOLog() 
statements in your code, you can prevent them from being outputted, using a conditional variable, 
which can be toggled on or off by a user space client. The problem with this is a slight increase in the 
executable size, as well as extra work to be done by the CPU in executing the conditional debug 
statements. The other approach is to use pre-processor directives, such as #ifdef DEBUG … #endif, so 
the statements will be compiled away from the resulting executable. Of course, there is also an option to 
leave most debug statements out entirely, which may make the code more readable. If a user reports a 
problem, the downside to the two last approaches is that there is no way to enable debugging once the 
driver is in the field, short of asking the user to install a debug version of the driver. A combination of all 
three is certainly also possible, but the general advice here is not to litter your code with debug logging, 
but to place them at strategic places where they are likely to be of use to you even for problems you 
didn’t anticipate.  

www.allitebooks.com

http://www.allitebooks.org


CHAPTER 16  DEBUGGING 

388 

While tracing using IOLog() seems like a primitive approach, it is often very effective in finding bugs. 
Of course, this approach works best when the system doesn’t actually crash so you can observe the 
behavior through the system log. However, if the system crashes, the syslog daemon will not be able to 
write the latest contents of the log buffer to the log file. Consequently, the output may be lost at the next 
reboot. There are ways to get around this, including remote tracing over FireWire, which is discussed 
later in this chapter. 

Printing Stack Traces 
The IOLog() function is good enough for many purposes; but in some cases, it is not enough to know a 
function is called. You also need to know the call stack that led to a call to your function as it may be 
called from multiple code paths. Printing the call stack can be achieved using the 
OSReportWithBackTrace() function, as demonstrated in Listing 16-2. 

Listing 16-2. Using OSReportWithBackTrace() to Dump the Call Stack 

void testFunc3() { 
    IOLog("address of testFunc3: %p\n", &testFunc3); 
    OSReportWithBacktrace("OSReportWithBacktrace() called from testFunc3()"); 
} 
void testFunc2() { 
    IOLog("address of testFunc2: %p\n", &testFunc2); 
    testFunc3(); 
} 
void testFunc1() { 
    IOLog("address of testFunc1: %p\n", &testFunc1); 
    testFunc2(); 
} 
bool com_osxkernel_MyDebugDriver::start(IOService * provider) {         
    testFunc1(); 
    …. 
} 

The code in Listing 16-2 should give the following results: 

address of testFunc1: 0x9ac280 
address of testFunc2: 0x9ac250 
address of testFunc3: 0x9ac220 
OSReportWithBacktrace() called from testFunc3() 
Backtrace 0x9ac26f 0x9ac29f 0x9ac2ee 0x543f60 0x542137 0x5426e9 0x5443d5 
    Kernel Extensions in backtrace (with dependencies): 
         com.osxkernel.MyDebugDriver(1)@0x9ab000->0x9acfff 

You may notice the printed addresses of the test functions are similar, but not the same as the ones 
printed in the back trace. The addresses printed by IOLog() are relative to the start of each function; 
however, in the back trace, you instead see the address of where each test function is calling the next test 
function. The OSReportWithBacktrace() function also prints the start and end addresses of any KEXTs 
involved in the back trace. We see our KEXT is loaded at the memory address 0x9ab000 and you may 
notice that testFunc1(), testFunc2(), and testFunc3() are all within the address range of the 
MyDebugDriver. Using this information, we can also work out the offset where a function is located within 
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its executable image by subtracting the address of a function from the base address, for example, for 
testFunc1(): 0x9ac280 - 0x9ab000 = 4736 bytes. You can then use the GDB debugger with the 
disassemble <offset> command. 

Remote Tracing over FireWire 
It is possible to redirect output from the krprintf() function over a FireWire connection to another 
system. This method is more robust than using IOLog(), as log output will be preserved on the remote 
system in the event of a crash. Another advantage of this approach is that it is available in the very early 
boot process, which is useful for debugging a driver that’s involved with the system boot process, such as 
storage and display drivers. It also allows debugging of shutdown and sleep events. Your driver does not 
need any special support or modifications to support outputting log information over FireWire.  

Everything needed to configure remote logging over FireWire is already included in Mac OS X from 
versions 10.5 and above and there is no need to install additional KEXTs. You need two Macs to set this 
up. It is not necessary for both systems to run the same version of Mac OS X.  

On the target machine, the machine you wish to send log output from, do the following. 

$ sudo nvram boot-args="debug=0x8" 

This boot option enables redirection of the kprintf() function so output will be mirrored to the 
FireWire interface as well as the system log. The system should be rebooted for this option to take effect. 
The next step is to connect a FireWire cable between the two systems. Unlike IOLog(), the kprintf() 
function is synchronous, which means by the time it returns, it will have transmitted the message over 
FireWire. The kprintf() disables interrupts until it completes, which can affect timing-related issues 
when used excessively. Because interrupts are disabled, the function may cause a crash if memory 
referenced by the functions arguments happens to be paged out.   

■ Caution  It is recommended that both the target and debug machines have all other FireWire devices 
disconnected during debugging. 

On the machine that will receive the debug output, run the fwkpfv command, which is the FireWire 
log viewer utility. If the target machine was connected correctly and the cable properly attached, you will 
receive debug output after a few seconds. The following example shows an extract from a session 
captured while the target machine boots: 

Welcome to FireWireKPrintf. (viewer v2.6) 
AppleFWOHCI_KPF: version 4.7.1 – init 
u>626665 AppleFWOHCI_KPF: Time format-> Microseconds = 'u>clock_uptime_micro' 
u>1141021 AppleUSBHub::setPowerState(0x4fbe200, 0 -> 4) took 301 ms 
u>2065689 [Bluetooth::CSRHIDTransition] DeviceRequest error: e00002ed 
u>2109928 AppleUSBHub::powerStateWillChangeTo(0x4f13200, AppleUSBHub, 4 -> 3) took 100 ms 
u>2117294 AppleUSBHub::powerStateWillChangeTo(0x4f70e00, AppleUSBHub, 4 -> 3) took 100 ms 
u>2130057 AppleUSBHub::powerStateWillChangeTo(0x4f70a00, AppleUSBHub, 4 -> 3) took 100 ms 
… 
… 
… 
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u>20236388 Adding domain PPP (family 34) 
u>24073549 kPEDisableScreen -1 
u>24158956 kPEDisableScreen 1 
u>25568081 initialize_screen: b=4645B000, w=00000690, h=0000041A, r=00002000, d=00000001 
u>25568131 kPEEnableScreen 1 
u>304129579 IOSCSIPeripheralDeviceType00::setPowerState(0x4fe3500, 3 -> 4) async took 351 ms 
u>1070371211 IOSCSIPeripheralDeviceType00::setPowerState(0x4fe3500, 3 -> 2) async took 1153 
ms 

If you wish to log over FireWire from your own KEXT, you will have to use the kprintf() function to 
log with rather than IOLog(), which doesn’t use kprintf internally but rather calls printf(), which only 
goes to the kernel log. A strategy to deal with this is to create your own wrapper function for IOLog() and 
kprintf() that calls the former for a release build and the latter for a debug build.  

Listing 16-3 shows an example of how to log using kprintf(). 

Listing 16-3. Logging Messages to a Remote Machine over FireWire Using kprintf() 

#include <kern/debug.h> // Declares kprintf() 
bool com_osxkernel_MyDebugDriver::start(IOService * provider) 
{     

kprintf("%s::start - Hello FireWire Listeners\n", getName()); 
return true; 

} 

Running this yields the following on the remote system: 

u>1071578492 com_osxkernel_MyDebugDriver::start - Hello FireWire Listeners 

If the kernel crashes, you can also get the panic log through the FireWire log viewer. It is also 
possible to use FireWire to attach the GNU debugger remotely to the kernel, as we will see later in this 
chapter. 

Remote Kernel Core Dumps 
Mac OS X provides a mechanism for transmitting core dumps from a crashed (or hung) system to a 
remote machine over the network. A core dump is a binary image of the wired contents of the system’s 
memory. By capturing a core dump, we can retain evidence of the exact state the system was in at the 
time of the crash and we can use this image with the GDB to get stack traces for all threads in the system 
and examine memory contents as well as kernel data structures. 

Conveniently, everything you need to enable core dumps is already present in Mac OS X. Only 
minor configuration is required. On the dump server, the machine that receives the core dumps from 
crashed machines, you need to activate the kdumpd daemon, as follows.: 

# sudo vi /System/Library/LaunchDaemons/com.apple.kdumpd.plist 

Change the Disabled key from true to false. If you wish, you can also configure the directory where 
dumps will be located. The default is /PanicDumps. The kdumpd daemon is started as follows: 

# sudo launchctl load /System/Library/LaunchDaemons/com.apple.kdumpd.plist 
# sudo launchctl start com.apple.kdumpd 
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The server uses UDP on port 1069, so you should ensure there is no firewall between the target 
machines and the server. The target and server do not need to be running the same version of Mac OS X. 

■ Note  To use kdumpd, the target machine (the crashing system) needs to be connected to the network using 
Ethernet. It is not possible to use an AirPort device, as the driver for KDB (Kernel Debugging Protocol), which 
handles transmission of the dump, only works with Ethernet devices. When loaded, you can check where the 
kernel debugging driver is attached using IORegisteryExplorer and search for the driver named IOKernelDebugger. 

The kdumpd daemon is able to receive core dumps from multiple machines and will archive each 
dump with the machine’s IP address. If you work for a company that develops software that runs in the 
kernel, you can configure all your Macs to automatically send dumps to a central server when a crash 
occurs. This saves a lot of time when quality assurance testers encounter problems during testing, as 
engineering can simply start debugging the dumped image immediately. 

■ Caution  Care should be taken to only to use kdumpd in trusted networks, as memory contents of the crashed 
system are transmitted unencrypted over the network and may contain sensitive information, such as passwords 
and private keys. 

Configuring the target machine is equally simple and is done by setting kernel boot arguments 
either in /Library/Preferences/SystemConfiguration/com.apple.Boot.plist or using the nvram 
command, as follows: 

# sudo nvram boot-args=”debug=0xd44 _panicd_ip=192.168.1.1” 

The preceding instructs the kernel to dump core when it panics or if an NMI (non-maskable 
interrupt) event was triggered. The latter is highly useful in the cases where the system hangs completely 
and appears unresponsive but does not actually panic. In this case, you can use the power button on the 
computer to trigger the NMI event, which will start the core dump. During this time, the machine will be 
frozen and no processes will run. If the machine is responsive and you do this, the machine will simply 
resume as if nothing had happened after the core dump is transferred. 

The _panicd_ip parameter specifies the IP address of the machine running kdumpd. If you plan on 
having a permanently running panic server, it is recommended this IP be static. It is not possible to use a 
hostname or DNS name for the server, as name resolution is not possible. 

The following output will appear on the screen of the target machine if you press the power button: 
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Entering system dump routine 
Attempting connection to panic server configured at IP 192.168.1.1, port 1069 
Resolved 192.168.1.1’s (or proxy’s) link level address 
Transmitting packets to link level address: 00:16:cb:a6:73:8b 
Kernel map size is 4546437120 
Sending write request for core-xnu-1699.22.73-192.168.1.2-2fe8a6d9 
Protocol features: 0x1 
Kernel map has 1389 entries 
Generated Mach-O header size was 100224 

The target machine will write dots (.) to the screen until the dump is complete. If it was an NMI 
event that triggered the dump, the system will resume; if it was a panic, the system will wait for a remote 
debugger to be attached. 

KDB 
The kernel supports an in-kernel debugger called KDB. KDB only supports debugging over the serial 
port. It is not included in the kernel build by default; therefore, you need to compile and install a custom 
kernel in order to use it. KDB has some applications for very low-level debugging where neither FireWire 
nor Ethernet is available. KDB requires a native serial port on the machine being debugged, which is 
only found on the now discontinued Xserve (although a serial port is available if Mac OS X is used under 
a virtual machine). For all intents and purposes, the GNU Debugger (GDB) is recommended; we only 
mention KDB here to avoid confusion with GDB. 

Remote Debugging with GDB over Ethernet or FireWire 
The kernel has support for using the GDB over Ethernet (IP/UDP) or FireWire connections. Again, this 
requires two computers running Mac OS X. While GDB is supported through Xcode, you cannot debug 
the kernel using Xcode; you will have to use the command-line interface. GDB is, however, part of 
Xcode. It is not necessary to install Xcode on the machine being debugged; it is only needed on the 
remote system (the client). 

■ Note  Strictly speaking, it would be possible to use another operating system running GDB as the host to debug 
a Mac OS X target system. Although there is no documentation for doing this, some documentation suggests it is 
possible, however non-trivial, to configure. 

The debugging support is built in to the kernel by default, unlike KDB. However, the debugging 
capabilities are disabled by default, but can easily be enabled by adding the appropriate boot arguments 
on the target machine, for example: 

$ sudo nvram boot-args="debug=0x144 -v". 

The “-v” (verbose) flag isn’t strictly necessary. It has the effect of disabling the grey screen with the 
Apple logo during boot and instead showing a text console, commonly found on UNIX and Linux 
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systems, which shows log messages as the system boots. Once the boot arguments have been set, the 
system needs to be rebooted for the changes to take effect. 

Configuring the Host Machine 
Setting up the target is straightforward. However, the host machine requires a little more preparation. 
Before you can start debugging, you need to download the correct Kernel Debug Kit for the kernel 
version used by the target system. Apple doesn’t appear to publish a version for every build in a timely 
manner, so the target system would have to be downgraded or upgraded to match a published version of 
the Kernel Debug Kit. If you use the wrong version, GDB may fail to resolve the correct symbols and data 
structures and the results may be wrong and cause great confusion, for example, functions getting called 
that should not have. 

■ Tip  Kernel Debug Kits are not part of Xcode and can be downloaded from 
http://developer.apple.com/hardwaredrivers/download/kerneldebugkits.html. This page contains legacy 
versions, while newer versions are published in the Downloads ➤ Developer Tools section on the Apple developer 
site. This page is restricted to members of the Mac developer program (there’s an annual fee to become a 
member). 

The Kernel Debug Kit contains the following: 

• Debug version of the kernel (mach_kernel) 

• Debug version of I/O Kit families and selected KEXTs 

• Symbol files 

• Various scripts 

• Macros for GDB 

■ Caution  Do not replace files on your system with files from the Kernel Debug Kit; they do not need to be 
installed on the target or host system. In fact, you do not need to install any files from the kit; you can access them 
directly through the mounted image. 

You can replace the default kernel (mach_kernel) of a Mac OS X system with the debug version 
found in the Kernel Debug Kit. This will help you get more accurate results and stack traces, as 
optimization has been disabled. 

If you have the sources for the XNU kernel installed on the host system, it is possible to link this with 
the debugger, which allows you to see source code instead of assembly code in the debugger, though this 
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is often not needed if you are only debugging your own extension (in which case you can link the source 
for your own extension only). 

Attaching to the Remote Target 
If you have set the appropriate boot arguments with the nvram command on the target system and have 
the Kernel Debug Kit ready on the host machine, you can now trigger an NMI event on the target system 
by pressing the system’s power button. This should cause the following text to appear on the top left 
corner of the screen: 

Debugger called: <Button SCI> 
ethernet MAC address: 00:16:cb:a6:74:8b 
ip address: 192.168.1.1 
 
Waiting for remote debugger connection. 

Starting GDB and attaching to the remote target can be done using the following steps: 

$ gdb -arch i386 /Volumes/KernelDebugKit/mach_kernel 

The arch argument can specified if the debug host is running on a different architecture from the 
target system. For example, in this case, we are debugging a target running a 32-bit kernel on a system 
with a 64-bit kernel. You can also do the reverse by specifying x86_64. 

(gdb) source /Volumes/KernelDebugKit/kgmacros 

The preceding line will load specialized GDB macros, which will help you examine the state of the 
target system’s kernel. You can, for example, dump a list of running tasks or threads. Type help kgm to 
get a full list of available macros. 

To attach to the target, use the following: 

(gdb) target remote-kdp    
(gdb) attach 192.168.1.1 
Connected. 
(gdb) 

The preceding will attach to the remote target so we can begin our debugging session. We can then 
start issuing commands, for example, bt to get a stack trace, which will look something like the 
following: 

#0  Debugger (message=0xba97e4 "Button SCI") at /SourceCache/xnu/xnu-
1504.15.3/osfmk/i386/AT386/model_dep.c:867 
#1  0x00ba8de3 in ?? () 
#2  0x00556636 in IOFilterInterruptEventSource::normalInterruptOccurred (this=0x4eab980) at 
/SourceCache/xnu/xnu-1504.15.3/iokit/Kernel/IOFilterInterruptEventSource.cpp:140 
#3  0x00b73a50 in ?? () 
#4  0x00b72ccd in ?? () 
#5  0x00b85fc5 in ?? () 
#6  0x00b89621 in ?? () 
#7  0x0056ac20 in IOSharedInterruptController::handleInterrupt (this=0x4e9cd80, 
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nub=0x4e9cd80) at /SourceCache/xnu/xnu-1504.15.3/iokit/Kernel/IOInterruptController.cpp:727 
#8  0x00bcf5bb in ?? () 
#9  0x00b66213 in ?? () 
#10 0x00b71911 in ?? () 
#11 0x00580d96 in PE_incoming_interrupt (interrupt=73) at /SourceCache/xnu/xnu-
1504.15.3/pexpert/i386/pe_interrupt.c:65 
#12 0x002ab432 in interrupt (state=0x4e9dd20) at /SourceCache/xnu/xnu-
1504.15.3/osfmk/i386/trap.c:511 
#13 0x002a1c2e in lo_allintrs () at cpu_data.h:397 
#14 0x00225bba in processor_idle (thread=0x10bff0, processor=0x4cf0dac) at 
/SourceCache/xnu/xnu-1504.15.3/osfmk/kern/sched_prim.c:2982 
#15 0x0022698c in thread_select (thread=0x5e407a8, processor=<value temporarily unavailable, 
due to optimizations>) at /SourceCache/xnu/xnu-1504.15.3/osfmk/kern/sched_prim.c:1327 
#16 0x002275b0 in thread_block_reason (continuation=0, parameter=0x0, reason=<value 
temporarily unavailable, due to optimizations>) at /SourceCache/xnu/xnu-
1504.15.3/osfmk/kern/sched_prim.c:1856 
#17 0x00227654 in thread_block (continuation=0) at /SourceCache/xnu/xnu-
1504.15.3/osfmk/kern/sched_prim.c:1875 
#18 0x464debbc in ?? () 

The command will show the kernel stack, which is the sequence of function calls the CPU was 
executing at the time of the NMI event. We can see in this case that the last thing the system did before 
we halted it was to respond to the NMI interrupt. If you are curious what the other CPUs (cores) were 
doing at the time, you can issue the command showcurrentstacks, which will print a stack trace for each 
CPU (core) in the system.  

You can now set breakpoints or examine the state of the kernel. Issuing the continue command will 
resume the kernel. We will look at how GDB can be used in more detail later in this chapter. 

Debugging Using FireWire 
In addition to Ethernet, the Kernel Debugging Protocol can also be used over FireWire, using the 
FireWireKDP mechanism. The fwkdp tool can be used to help set the appropriate debug parameters, but 
you can also set them manually. FireWireKDP is also compatible with logging over FireWire and can be 
used to transmit core dumps to a remote system.  

To configure FireWireKDP on the target system, you can do as follows: 

$ sudo fwkdp --setargs 
FireWire KDP Tool (v1.3) 
Boot-args helper mode: 
*** Would you like to enable kernel core dumps? y|[n] > y 
Setting boot-args with 'sudo nvram boot-args="debug=0xd46 kdp_match_name=firewire 
_panicd_ip=1.2.3.4"' 
Setting boot-args... done. 
Restart for the nvram changes to take effect. 

■ Tip  The manual (man) page for fwkdp has more info.  
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On the host system, where you will run the debugger, you will need to run fwkdp as well. Be sure to 
start it in proxy mode. Once that is done, you can use GDB to debug in the same way as with Ethernet. 
The process of attaching to the remote target is nearly identical; the only major difference is that you 
attach to localhost, not the target’s IP address. Once the target system is rebooted, you can enter the 
debugger by pressing the power button to generate an NMI event as before, which should give the 
following results on the target’s screen: 

Debugger Called: <Button SCI> 
Entering system dump routine 
Attempting connection to panic server configured at 1.2.3.4 port 1069 
AppleFWOHCI_KDP: Darwin Kernel Version 10.8.0: Tue Jun 7 16:33:36 PDT 2011; root:xnu-
1504.15.3~1/RELEASE_i386 
AppleFWOHCI_KDP: v4.7.3 configured as KDP sender/receiver. 
Recevied a debugger packet, transferring control to the debugger 
Transmitting packets to link level address: 00:1c:df:f7:e0:72 
Kernel map size is 1187131392 
Sending write request for core-xnu-1504.15.3-0.0.0.0-ff28cfb5 
Kernel map has 850 entries 
Generated Mach-O header size was 79932 
Transmitting kernel state, please wait: …… 
Total number of packets transmitted: 502848 
Waiting for remote debugger connection. 
Connected to remote debugger. 

If all goes well, the fwkdp proxy running on the host will download the core file to its working 
directory. The core dump in the preceding example was named core-xnu-1504.15.3-0.0.0.0-ff28cfb5. 
After the core is downloaded, the remote system will wait for a debugger to be attached. 

Live Debugging of a Running Kernel 
A less known but powerful feature available in Mac OS X (since version 10.5) is the ability to attach the 
debugger to a running system. Live debugging requires you to enable support for the /dev/kmem 
character device file, which allows a user space process to read and write to the kernel’s memory address 
space. You can enable support for /dev/kmem with the following command: 

$ sudo nvram boot-args=”kmem=1” 

■ Note  The preceding command will clear existing boot arguments, so you would need to add this in addition to 
any other arguments you want, for example, to enable remote debugging or FireWire logging. 

You can test if it worked by checking that the /dev/kmem file is present after a reboot. The process of 
attaching to the live kernel is similar to that of attaching to a remote target. The steps are as follows: 

$ sudo gdb /Volumes/KernelDebugKit/mach_kernel 

(gdb) target darwin-kernel 



CHAPTER 16  DEBUGGING 

397 

(gdb) source /Volumes/KernelDebugKit/kgmacros 

Loading Kernel GDB Macros package. Type "help kgm" for more info. 

(gdb) attach 
Connected. 

At this point, you can examine the state of the kernel, for example, using the showcurrentthreads 
command. 

Live debugging is useful in a number of cases, for example, if an application using your driver hangs 
in the kernel while executing a user client method. You can attach to the kernel and find out where the 
issue is. You can also examine the memory of your driver and its data structures. Live debugging can 
only be used when the system is operational and cannot be used to debug a crashed or deadlocked 
system. 

Debugging Using a Virtual Machine 
If you do not have a second machine available, it is possible to perform kernel debugging using a virtual 
machine. Software such as VMWare Fusion or Parallels desktop allows another copy of Mac OS X to run 
virtualized. Enabling the kernel debug features on the virtual machine can be done by putting the 
desired boot arguments in the/Library/Preferences/SystemConfiguration/com.apple.Boot.plist. 
Debugging hardware drivers may not be possible under a virtual machine, as you cannot use PCI or 
Thunderbolt devices directly under a virtual machine. However, it is possible to assign USB devices to a 
virtual machine instance. Mac OS X Lion is able to run as a virtualized instance, however, prior to that, 
only the server version of Mac OS X could be virtualized. 

Debugging in the Kernel Using GDB 
There are several ways GDB can be used to debug the kernel or KEXTs loaded into it, such as: 

• Remotely over Ethernet 

• Remotely over FireWire 

• On a captured core dump file 

• On a Live live system 

• Using a virtual machine 

Additionally, a kernel can drop into the debugger in the following ways: 

• Because of a kernel panic 

• Manually triggered NMI event 

• Because the DB_HALT option was set to halt the system at boot and enter the 
debugger 

• Programmatically in code by calling the PE_enter_debugger() function 

Programmatically entering the debugger is only possible with a remote debugging setup; live 
debugging cannot occur during boot, when the system is crashed, or halted with an NMI event, nor 
programmatically, as this stops the system until a remote debugger is attached and thereby the gdb 
instance running the debugging session as well. 
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Kernel GDB Macros 
The Kernel Debug Kit comes with a wealth of helpful GDB macro functions, which greatly simplify the 
task of examining the kernel. The macros can help interpret common kernel data structures, such as task 
and thread descriptors, and memory-related data structures, such as VM maps. Furthermore, it provides 
functions for accessing PCI configuration space, I/O space, and un-translated access to physical 
memory. A small subset of available macros is shown in Table 16-3. 

Table 16-3. Useful Kernel GDB Macros 

Name Description 

showalltasks Displays a list of all system tasks 

showallthreads Displays a list of all system threads 

showallstacks Prints stack trace for every single thread (be prepared for a 
massive amount of data) 

showallkmods Displays list of all loaded KEXTs and the addresses where they are 
loaded in memory 

showallclasses Shows all known classes, their size, and instance count 

showregistry Dumps the I/O Registry information to screen (similar to ioreg) 

paniclog Shows the panic log 

systemlog Shows the kernel log 

showcurrentstacks Shows the task/thread executing on each processor and stack 
trace 

hexdump Dumps HEX/ASCII from a memory address 

pci_cfg_(read|write)(8|16|32) Allows you to examine the state of a PCI device 

Creating Symbol Information for KEXTs 
Before you can debug your own KEXTs in GDB, you need to generate symbol information for the KEXT. 
Because a KEXT is dynamically loadable, we have no way of knowing where in memory it will be located. 
Although our KEXT includes symbol information, the addresses of functions and data are relative to the 
KEXT binary. The absolute address of a function in a KEXT will be the kernel_load_address + 
relative_address once the KEXT is loaded. 

Fortunately, the Kernel Debug Kit gives us a helping hand by providing a small script that helps 
generate the final symbol table containing the absolute addresses within the kernel address space. The 
script is called createsymbolfiles and can be used as follows: 
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$ /Volumes/KernelDebugKit/createsymbolfiles -a i386 -s ./ MyDebugDriver.kext 
MyDebugDriver.kext appears to be loadable (not including linkage for on-disk libraries). 
 
Enter the hexadecimal load addresses for these extensions 
(press Return to skip symbol generation for an extension): 
 
com.osxkernel.MyDebugDriver: 0x9b9000 

The load address can be found in several places, for example, with kextstat, as follows: 

$ kextstat                     
Index Refs Address    Size       Wired      Name (Version) <Linked Against> 
  126    0 0x9b9000   0x3000     0x2000     com.osxkernel.MyDebugDriver (1) <5 4 3> 

In the preceding case, the KEXT had no additional dependencies; however, in a real world situation, 
a KEXT may have dependencies on one or more other KEXTs, such as an I/O Kit family, in which case 
you will be prompted to enter their addresses as well. If you are debugging a crash dump from a remote 
system or directly debugging a crashed system, the load address of your extension and any 
dependencies will be found in the panic log if your extension was involved in the crash. Note that your 
KEXT may be given a different address each time it loads, so you will need to regenerate the symbol 
information each time. 

The above is enough to get us basic symbol information, but it is restricted to symbolic names of 
functions only and is not able to give us source code line information. You can get this by configuring 
your extension’s debug information format, as shown in Figure 16-2. 

 

Figure 16-2. Setting the debug information format with Xcode 

DWARF with dSYM creates a separate file for you containing a full set of symbols and information 
needed to map a code location back to a source code line. This information is normally embedded into 
an executable when doing a debug build; however, you can generate that information in an external file 
for release builds of the driver. It is good practice to archive this debug information for later use. This will 
make debugging easier if crashes should be reported by a user. The dSYM file (actually bundle) will be 
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named MyDebugDriver.kext.dSYM in our case. The dSYM bundle should be placed together with the 
KEXT before the createsymbolfiles script is run. 

Debugging KEXTs with GDB 
In the following sections, we will analyze a crash caused by a hypothetical driver named 
MyDebugDriver. The header file specification for MyDebugDriver is shown in Listing 16-4. 

Listing 16-4. MyDebugDriver Header File 

class com_osxkernel_MyDebugDriver : public IOService 
{ 
    OSDeclareDefaultStructors(com_osxkernel_MyDebugDriver); 
public: 
    virtual bool init(OSDictionary* dict); 
    virtual bool start(IOService* provider); 
    virtual void stop(IOService* provider); 
     
    void testFunc1(UInt32 arg1, UInt32 arg2, UInt32 arg3, UInt32 arg4); 
    void testFunc2(UInt32 arg1, UInt32 arg2, UInt32 arg3, UInt32 arg4); 
    void testFunc3(UInt32 arg1, UInt32 arg2, UInt32 arg3, UInt32 arg4); 
     
    static void  timerFired(OSObject* owner, IOTimerEventSource* sender); 
private: 
     
    IOTimerEventSource*     fTimer; 
    int                     fVariable1; 
    int                     fVariable2; 
}; 

The driver starts a timer, from which testFunc1() is called, which in turn calls testFunc2(), which 
calls testFunc3(), which causes a kernel panic due to a null pointer dereference. Each function accepts 
four integers that have no significance (picked randomly) and are passed unchanged from the first 
function to the last. The values passed as arguments are 65261, 48879, 0, and 5380. 

We have successfully generated a core dump from a crash system using the FireWire core dump 
mechanism and previously, we built symbol information for our driver using the correct load address. 
We are now ready to load it up in the GDB and get our hands dirty. The steps we need to perform to find 
the bug in our driver are as follows: 

• Create a symbol file with the correct load address (see the last section) 

• Start GDB and load the core dump 

• Add symbol information from the kernel 

• Load Kernel Debug Kit GDB macros 

• Load our KEXT binary of MyDebugDriver into GDB 

• Load symbol information for MyDebugDriver (if GDB cannot find them in the 
same location as the KEXT) 

• Tell GDB the location of the source code for MyDebugDriver (optional) 
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Following is a complete debug session for MyDebugDriver: 

$ gdb -c core-xnu-1504.15.3-0.0.0.0-fb3a74d3 
GNU gdb 6.3.50-20050815 (Apple version gdb-1704) (Thu Jun 23 10:48:29 UTC 2011) 
… 
This GDB was configured as "x86_64-apple-darwin". 
#0  0x002b1e3e in ?? () 
(gdb) add-symbol-file /Volumes/KernelDebugKit/mach_kernel 
add symbol table from file "/Volumes/KernelDebugKit/mach_kernel"? (y or n) y 
Reading symbols from /Volumes/KernelDebugKit/mach_kernel...Reading symbols from 
/Volumes/KernelDebugKit/mach_kernel.dSYM/Contents/Resources/DWARF/mach_kernel...done. 
done. 
(gdb) source /Volumes/KernelDebugKit/kgmacros  
Loading Kernel GDB Macros package.  Type "help kgm" for more info. 

The preceding sequence of commands loads the core dump file, adds symbol information for the 
kernel from the Kernel Debug Kit, and finally loads the GDB macros, which must be loaded after the 
kernel symbol information to initialize properly. 

We can now issue the backtrace command to see where the system crashed, as follows: 

(gdb) backtrace 
#0  0x002b1e3e in Debugger (message=0x5dd7fc "panic") 
#1  0x0021b837 in panic (str=0x59e3d0 "Kernel trap at 0x%08x, type %d=%s, registers:\nCR0: 
0x%08x, CR2: 0x%08x, CR3: 0x%08x, CR4: 0x%08x\nEAX: 0x%08x, EBX: 0x%08x, ECX: 0x%08x, EDX: 
0x%08x\nCR2: 0x%08x, EBP: 0x%08x, ESI: 0x%08x, EDI: 0x%08x\nE"...) at /SourceCache/xnu/xnu-
1504.15.3/osfmk/kern/debug.c:303 
#2  0x002abf6a in panic_trap [inlined] () at :1052 
#3  0x002abf6a in kernel_trap (state=0x46ee3e10) at /SourceCache/xnu/xnu-
1504.15.3/osfmk/i386/trap.c:1001 
#4  0x002a1a78 in trap_from_kernel () at cpu_data.h:397 
#5  0x009ba0b7 in last_kernel_symbol () 
#6  0x009ba356 in last_kernel_symbol () 
#7  0x009ba3b8 in last_kernel_symbol () 
#8  0x009ba45b in last_kernel_symbol () 
#9  0x005571d5 in IOTimerEventSource::timeoutAndRelease (self=0x2a17b0, c=0x5022071) at 
/SourceCache/xnu/xnu-1504.15.3/iokit/Kernel/IOTimerEventSource.cpp:122 
#10 0x00230235 in thread_call_thread (group=0x863ea0) at /SourceCache/xnu/xnu-
1504.15.3/osfmk/kern/thread_call.c:848 

Because we have not yet loaded our KEXT, symbols #5–#8 are showing up as bogus, as the debugger 
is unable to resolve the addresses of the functions to their symbolic names. To fix this, we will load the 
MyDebugDriver KEXT into GDB along with its symbol information, as follows: 

(gdb) add-kext MyDebugDriver.kext  
Reading symbols from com.osxkernel.MyDebugDriver.sym...Reading symbols from 
MyDebugDriver.kext.dSYM/Contents/Resources/DWARF/MyDebugDriver...done. 
(gdb) directory MyDebugDriver/ 
Source directories searched: MyDebugDriver:$cdir:$cwd 

We have now loaded the driver along with its symbol information and informed GDB of the location 
where it should look for the source code of MyDebugDriver. The location of the kernel’s own source 
code is hard wired into the debug kernel image. If you wish to show the source code in GDB, you need to 
create a symlink for the location where you downloaded the XNU source to the directory: /SourceCache/.  
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Let’s try the backtrace command again with the KEXT and symbols loaded, as follows: 

(gdb) backtrace  
… 
#5  0x009ba0b7 in com_osxkernel_MyDebugDriver::testFunc3 (this=0x4e80f80, arg1=65261, 
arg2=48879, arg3=0, arg4=5380) at MyDebugDriver.cpp:14 
#6  0x009ba356 in com_osxkernel_MyDebugDriver::testFunc2 (this=0x4e80f80, arg1=65261, 
arg2=48879, arg3=0, arg4=5380) at MyDebugDriver.cpp:21 
#7  0x009ba3b8 in com_osxkernel_MyDebugDriver::testFunc1 (this=0x4e80f80, arg1=65261, 
arg2=48879, arg3=0, arg4=5380) at MyDebugDriver.cpp:27 
#8  0x009ba45b in com_osxkernel_MyDebugDriver::timerFired (owner=0x4e80f80, sender=0xb63adc0) 
at MyDebugDriver.cpp:64 
… 

That’s much more readable. We have now identified the exact call stack and we can see which 
methods in our in our driver that was involved, down to the file and line number. We can also see the 
arguments that were passed to the methods and that they correspond to the values we picked earlier. 
Let’s examine the crash further by jumping to the fifth stack frame, the location where the crash 
occurred, as follows: 

(gdb) frame 5 
#5  0x009ba0b7 in com_osxkernel_MyDebugDriver::testFunc3 (this=0x4e80f80, arg1=65261, 
arg2=48879, arg3=0, arg4=5380) at MyDebugDriver.cpp:14 
14                     thisWillNotWork->fVariable1 = arg3; 
Current language:  auto; currently c++ 
(gdb) print thisWillNotWork 
$1 = (com_osxkernel_MyDebugDriver *) 0x0 

I think we found the problem! We are trying to assign a value to the member variable fVariable1 but 
the object is not initialized. We can also list the source code of testFunc3(), as follows: 

(gdb) list com_osxkernel_MyDebugDriver::testFunc3,15 
9      void com_osxkernel_MyDebugDriver::testFunc3(UInt32 arg1, UInt32 arg2, UInt32 arg3, 
UInt32 arg4) 
10     { 
11         if (arg3 == 0) 
12         { 
13             com_osxkernel_MyDebugDriver *thisWillNotWork = NULL; 
14             thisWillNotWork->fVariable1 = arg3; 
15         } 

Well, that would never work! We have found our bug, which appears to be triggered only when the 
third argument passed is set to zero. 

If you only have symbol information and lack the debug information required to map addresses to a 
specific source code location, you can use the disassemble command in GDB to show a dump 
disassembly of the method from its address. Let’s look at the disassembly of testFunc3(), as follows: 

(gdb) disassemble 0x009ba0b7 
… 
0x009ba09f <testFunc3Emmmm+35>:     mov    %eax,-0x1c(%ebp) 
0x009ba0a2 <testFunc3Emmmm+38>:     mov    -0x18(%ebp),%eax 
0x009ba0a5 <testFunc3Emmmm+41>:     cmp    $0x0,%eax 
0x009ba0a8 <testFunc3Emmmm+44>:     jne    0x9ba0ba <testFunc3Emmmm+62> 
0x009ba0aa <testFunc3Emmmm+46>:     movl   $0x0,-0x20(%ebp) 



CHAPTER 16  DEBUGGING 

403 

0x009ba0b1 <testFunc3Emmmm+53>:     mov    -0x18(%ebp),%eax 
0x009ba0b4 <testFunc3Emmmm+56>:     mov    -0x20(%ebp),%ecx 
0x009ba0b7 <testFunc3Emmmm+59>:     mov    %eax,0x54(%ecx) 
0x009ba0ba <testFunc3Emmmm+62>:     add    $0x18,%esp 
... 

While this looks very uninviting if you are not familiar with assembly, you will be able to infer a 
number of things by comparing the disassembly to the original source code. For example, the cmp 
instruction compares the value of the eax register against the constant value $0x0, which we can 
correctly guess corresponds to the if statement on line 11. 

Although we have already found the source of the problem, let’s pretend for a moment we are 
curious as to why a zero value was passed for the third argument. Perhaps our driver used an internal 
state to calculate the value passed to testFunc3(). In this case, we could continue our examination by 
looking at the state of the driver was in at the time of the crash. Because testFunc3() is a member 
method of the com_osxkernel_MyDebugDriver, we know that a pointer to the class instance is always 
passed automatically to the member function as the this pointer. We can dereference the this pointer 
address from the previous stack trace as follows:   

(gdb) print *(com_osxkernel_MyDebugDriver*)0x4e80f80 
$9 = { 
  <IOService> = { 
    <IORegistryEntry> = { 
      <OSObject> = { 
        <OSMetaClassBase> = { 
          _vptr$OSMetaClassBase = 0x9baa00 
        },  
        members of OSObject:  
        retainCount = 65537 
      },  
      members of IORegistryEntry:  
      reserved = 0x4e71a40,  
      fRegistryTable = 0xb693800,  
      fPropertyTable = 0x503a400 
    },  
    members of IOService:  
    reserved = 0x0,  
    __provider = 0x4d17f00,  
……. 
  },  
  members of com_osxkernel_MyDebugDriver:  
  fTimer = 0xb63adc0,  
  fVariable1 = 2,  
  fVariable2 = 4,  
  static gMetaClass = { 
    <OSMetaClass> = { 
      <OSMetaClassBase> = { 
        _vptr$OSMetaClassBase = 0x9ba980 
      },  
      members of OSMetaClass:  
      reserved = 0xb63ba00,  
      superClassLink = 0x85fac8,  
      className = 0x4e5b5a0,  
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      classSize = 92,  
      instanceCount = 1 
    }, <No data fields>},  
  static metaClass = 0x9ba000,  
  static superClass = 0x9ba020 

We can now examine the internal state of our driver instance and we can see the values of its 
member variables fVariable1 and fVariable2. We can also see how many instances of our class exist 
from the meta class information and determine the retain count of the driver. 

Understanding Kernel Panic Logs 
A panic log can be found in the /Library/Logs/DiagnosticReports/ directory after a crash or can be 
obtained by extracting it from a core dump or a remote GDB session to a crashed target. As a kernel 
programmer, you might be expected to analyze kernel panic logs sent from customers’ computers, 
which you will rarely have, physical access to. Furthermore, the customer may be reluctant or unable to 
assist you in getting a core dump. It is therefore vital to be able to understand and extract as much 
information as possible from the logs. Let’s start to look at the panic log and what information we can 
extract from it. A panic log for the MyDebugDriver crash discussed in the previous sections is shown in 
Listing 16-5. 

Listing 16-5. Panic Log from MyDebugDriver Crash 

panic(cpu 1 caller 0xffffff80002c268d): Kernel trap at 0xffffff7f81345570, type 14=page fault, 
registers: 
CR0: 0x000000008001003b, CR2: 0x0000000000000090, CR3: 0x0000000000100000, CR4: 
0x0000000000000660 
RAX: 0x0000000000000000, RBX: 0x0000000000000000, RCX: 0x0000000000000000, RDX: 
0x000000000000beef 
RSP: 0xffffff808e973e80, RBP: 0xffffff808e973ea0, RSI: 0x000000000000feed, RDI: 
0xffffff801ab61100 
R8:  0x0000000000001504, R9:  0x000000000000beef, R10: 0x0000000000000000, R11: 
0x0000000000001504 
R12: 0xffffff7f8134591a, R13: 0xffffff800c81d200, R14: 0xffffff800c81d200, R15: 
0xffffff800b735880 
RFL: 0x0000000000010246, RIP: 0xffffff7f81345570, CS:  0x0000000000000008, SS:  
0x0000000000000010 
CR2: 0x0000000000000090, Error code: 0x0000000000000002, Faulting CPU: 0x1 
 
Backtrace (CPU 1), Frame : Return Address 
0xffffff808e973b40 : 0xffffff8000220702  
0xffffff808e973bc0 : 0xffffff80002c268d  
0xffffff808e973d60 : 0xffffff80002d7a3d  
0xffffff808e973d80 : 0xffffff7f81345570  
0xffffff808e973ea0 : 0xffffff7f813458b6  
0xffffff808e973ed0 : 0xffffff7f81345914  
0xffffff808e973f00 : 0xffffff7f813459f4  
0xffffff808e973f40 : 0xffffff800063bc61  
0xffffff808e973f70 : 0xffffff800023dafc  
0xffffff808e973fb0 : 0xffffff8000820057  
      Kernel Extensions in backtrace: 
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         com.osxkernel.MyDebugDriver(1.0)[FF6F45C8-68F8-3150-9C43-
99A2F19B3FB1]@0xffffff7f81345000->0xffffff7f81348fff 
 
BSD process name corresponding to current thread: kernel_task 
Boot args: debug=0xd44 _panicd_ip=192.168.1.1 panicd_ip=192.168.1.1 
 
Mac OS version: 
11A511 
 
Kernel version: 
Darwin Kernel Version 11.0.0: Sat Jun 18 12:56:35 PDT 2011; root:xnu-
1699.22.73~1/RELEASE_X86_64 
Kernel UUID: 24CC17EB-30B0-3F6C-907F-1A9B2057AF78 
System model name: MacBook5,1 (Mac-F42D89C8) 
 
System uptime in nanoseconds: 200305435891999 
last loaded kext at 200285007562702: com.osxkernel.MyDebugDriver  1 (addr 0xffffff7f81345000, 
size 16384) 
last unloaded kext at 187374587106276: com.apple.driver.AppleUSBCDC     4.1.15 (addr 
0xffffff7f8133d000, size 12288) 
loaded kexts: 
com.osxkernel.MyDebugDriver  1 
com.apple.driver.AppleUSBDisplays   302.1.2 
com.apple.driver.AppleIntelProfile  83 
com.apple.filesystems.afpfs 9.8 

The panic log in Listing 16-5 was generated on a different system than before. This system is 
running a newer version of Mac OS X Lion, which only runs the 64-bit version of the kernel. The panic 
log consists of the following elements: 

• The type of panic/problem that occurred and the CPU (core) number it occurred 
on 

• A dump of the CPU state (register values) 

• Back trace of what the CPU was doing at the time of the crash 

• Kernel extensions involved in the crash and their dependencies (none above) 

• The name of the process (task) that caused the crash 

• Kernel build and version numbers  

• System model 

• Information about recently loaded/unloaded KEXTs 

• A complete list of KEXTs loaded 

The first thing you may notice is that the panic was caused by a page fault, which gives us a clue 
about what to look for later in our code. It is often useful to look at the task that caused the problem as 
well. In this case, our driver was executing in kernel context (kernel_task) when the crash occurred and 
not on the behalf of a user space thread. 

First let’s look at the back race and try to prove that our driver was indeed involved. There is a very 
good chance that it was, as our driver is listed as being part of the back trace. You will also notice two 
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addresses after our driver: 0xffffff7f81345000->0xffffff7f81348fff. This is the load address where the 
instructions and data for our KEXT were loaded into the kernel’s address space. To determine which 
functions on the stack belong to our driver, we can simply look for addresses on the stack that are within 
that range. Four addresses can be identified—0xffffff7f81345570, 0xffffff7f813458b6, 0xffffff7f81345914, 
and 0xffffff7f813459f4. 

We already know from earlier that they will most likely correspond to testFunc3(), testFunc2(), 
testFunc1(), and timerFired(). 

■ Tip  In the previous back trace, the first address in the column is the address of the stack frame entry, while the 
second address is the return address, which is the point where execution returns to when the previous function 
call completes. It’s the return address that is interesting to us in this case. You may notice that the stack frame 
addresses contain increasing addresses and are all within a single page in this case. If the values look random and 
all over the place, it is likely the stack frame has been corrupted and the back trace may then be useless as the 
information cannot be trusted. 

Assuming we had no clue what functions the addresses corresponded to within our driver, we can 
employ a simple trick. By simply subtracting the address of one of the functions from the load address, 
we can determine the offset of the function in the executable image of the driver, as follows: 

0xffffff7f81345570 - 0xffffff7f81345000 = 1392 bytes 

We now know that the function is 1392 bytes from the start of the KEXT and assuming we have the 
executable image (the exact version and build that was involved in the crash) of the driver available, we 
can do the following:  

$ gdb MyDebugDriver.kext/Contents/MacOS/MyDebugDriver 
GNU gdb 6.3.50-20050815 (Apple version gdb-1704) (Thu Jun 23 10:48:29 UTC 2011) 
This GDB was configured as "x86_64-apple-darwin"... 
(gdb) disassemble 1392 
Dump of assembler code for function _ZN27com_osxkernel_MyDebugDriver9testFunc3Ejjjj: 
0x0000000000000540 <testFunc3Ejjjj+0>:       push   %rbp 
0x0000000000000541 <testFunc3Ejjjj+1>:       mov    %rsp,%rbp 
0x0000000000000544 <testFunc3Ejjjj+4>:       sub    $0x20,%rsp 
0x0000000000000548 <testFunc3Ejjjj+8>:       mov    %rdi,-0x8(%rbp) 
0x000000000000054c <testFunc3Ejjjj+12>:      mov    %esi,-0xc(%rbp) 
0x000000000000054f <testFunc3Ejjjj+15>:      mov    %edx,-0x10(%rbp) 
0x0000000000000552 <testFunc3Ejjjj+18>:      mov    %ecx,-0x14(%rbp) 
0x0000000000000555 <testFunc3Ejjjj+21>:      mov    %r8d,-0x18(%rbp) 
0x0000000000000559 <testFunc3Ejjjj+25>:      mov    -0x14(%rbp),%eax 
0x000000000000055c <testFunc3Ejjjj+28>:      cmp    $0x0,%eax 
0x000000000000055f <testFunc3Ejjjj+31>:      jne    0x576 
<_ZN27com_osxkernel_MyDebugDriver9testFunc3Ejjjj+54> 
… 
End of assembler dump. 
(gdb) info line *1392 
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Line 14 of "MyDebugDriver.cpp" starts at address 0x569 
<_ZN27com_osxkernel_MyDebugDriver9testFunc3Ejjjj+41> and ends at 0x576 
<_ZN27com_osxkernel_MyDebugDriver9testFunc3Ejjjj+54>. 

And we have found the location of the crash! A full description of CPU registers is outside the scope 
of this book, but suffice it to say they contain a wealth of useful information. We will discuss how we can 
use register information to retrieve function arguments in the next section. The processor in the panic 
log was running in 64-bit mode. The x86_64 has a larger amount of registers available than i386 systems, 
and local variables are usually passed in general purpose registers instead of the stack. 

■ Tip  Technical Note 2063 discusses how to debug and understand kernel panics in much more detail and 
includes debugging panic logs from PowerPC systems: 
http://developer.apple.com/library/mac/#technotes/tn2063/_index.html. 

x86-64 Calling Conventions 
A calling convention is a scheme for how functions are passed their arguments. The calling convention 
depends on the programming language, operating system, architecture, and compiler. Understanding 
the calling convention used can help us decode the register state when a crash occurs. For example, on 
Mac OS X running a 64-bit executable or kernel, the System V AMD64 ABI convention is used (note that 
Windows uses a different calling convention, so the register usage will be different). On Mac OS X for a 
64-bit task, the register assignments for function call arguments are shown in Table 16-4. 

Table 16-4. Register Usage for Function Paramters on x86_64 

Argument Register 

First argument RDI  

Second argument RSI 

Third argument RDX 

Fourth argument RCX 

Fifth argument R8 

Sixth argument R9 

Vector/Floating Point arguments 0–7 XMM0–XMM7 
 
If a function takes more than six arguments, the remaining arguments will be passed on the stack. 

One thing to consider when examining C++ code is that a non-static C++ member method always passes 
the this pointer as the first argument, so the actual first argument to the method is passed in RDI 
whereas the this pointer will be put in the register RSI. 
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Let’s look at the registers in the panic log shown in Listing 16-5 and see if we can work out which 
arguments were passed to our function by examining the register state, as follows: 

• RDI: 0xffffff801ab61100 (this pointer) 

• RSI: 0x000000000000feed (decimal = 65261) 

• RDX: 0x000000000000beef (decimal = 48879) 

• RCX: 0x0000000000000000 (decimal = 0) 

• R8: 0x0000000000001504 (decimal = 5380) 

As you can see, the register contents from Listing 16-5 match exactly the four arguments passed to 
testFunc3(): 65261, 48879, 0, and 5380. We can also see that the first argument looks like a pointer and is 
likely to be the this pointer representing the current instance of MyDebugDriver.  

Assuming testFunc3() was a longer and more complicated method and that the crash happened 
further down in the function, it is possible that the registers may have been reused and overwritten at 
the point of the crash. In that case, you may not be able to recover the original values of the arguments. 

Diagnosing Hung Processes with Activity Monitor 
The Mac OS X activity monitor shown in Figure 16-3 can be helpful in diagnosing kernel problems.  

 

Figure 16-3. Sample process output from Acitivty Monitor 

Any task shown in the Activity Monitor can be sampled (except the kernel_task), which will generate 
call graphs for all the threads of that task during the sample period. This is useful from a kernel 
debugging point of view in that you are able to see if a process has threads that are calling in to your 
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driver through system calls like IOConnectCallMethod(). If a process is hung, force quitting it will start the 
Crash Reporter, which will give you a more detailed log, including the kernel stack of a thread if it is 
currently running in the kernel. The sample process function can also help you determine performance 
issues and find where an application is spending the most time. 

Finding Memory and Resource Leaks 
Preventing memory and resource leaks is particularly important for extensions that can be dynamically 
loaded and unloaded during runtime. A handy tool to detect leaks is the ioclasscount utility, which 
shows the instance count of each known class (loaded into the kernel). Typical output will look like the 
following:  

CHUDUtils = 1 
com_apple_AppleFSCompression_AppleFSCompressionTypeZlib = 1 
com_apple_BootCache = 1 
com_apple_driver_AudioIPCDevice = 1 
com_apple_driver_AudioIPCEngine = 1 
com_belkin_f2cd0007_adapter = 0 
com_osxkernel_MyDebugDriver = 5 
com_vmware_kext_KeyboardState = 1 
com_vmware_kext_UsbDevice = 2 
com_vmware_kext_UsbPortArbiter = 1 
..... 

It shows that our driver has been retained (retain()) five times. The driver’s free() function will 
not be called until the retain count reaches zero, even if the hardware device it controls is removed. This 
will prevent the kernel extension from being completely unloaded. The retain count typically increases 
for each user space application that opens the driver, or it can increase because another driver or 
ancillary support class used by the driver calls retain() on it. Failure to balance a call to retain() with a 
call release() will result in a leak. The ioclasscount utility can be used without changes to kernel boot 
parameters; it is not installed on a system by default, but is installed as part of the Xcode distribution. It 
can be copied onto a system without Xcode for debugging purposes. A driver that has been unloaded 
and has all references to it released (retain count = 0) will be unloaded by the kextd daemon. Although 
the reference count has dropped to zero, it may take up to a minute for the KEXT to be fully unloaded. 

If you are able to live debug the kernel using GDB, you can use macros such as showallclasses or 
showregistry, as follows: 

(gdb) showallclasses 
… 
1    x    84 bytes com_vmware_kext_VmmonService 
2    x    80 bytes com_vmware_kext_UsbDevice 
1    x   104 bytes com_vmware_kext_UsbPortArbiter 
1    x   136 bytes com_vmware_kext_UsbPortArbiterUserClient 
1    x   132 bytes com_vmware_kext_KeyboardState 
1    x    92 bytes com_osxkernel_MyDebugDriver 
.... 
(gdb) showregistry 
... 
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      +-o com_osxkernel_MyDebugDriver  <object 0x0703e680, id 0x1000007a9, vtable 0xcbc980, 
!registered, !matched, active, busy 0, retain count 5> 
... 

■ Tip  The zprint and showioalloc macros can further assist in tracking memory usage. 

To further help debug reference counting bugs, it is possible to override 
OSObject::taggedRetain(const void *tag) and OSObject::taggedRelease(const void *). For example, 
print a message or print a back trace of the caller’s stack to help identify where the leak comes from. 

Summary 
• Some common problems are likely to occur in the kernel, such as deadlocks and 

invalid memory accesses, which in turn can cause a kernel panic. 

• A kernel panic is a defense mechanism against exceptional or erroneous 
conditions the kernel cannot recover from. It basically disables the system in order 
to prevent corruption of the file system or other file storage. 

• Mac OS X provides a wide range of useful debugging mechanisms out of the box, 
ranging from a simple tracing and logging mechanism to the built-in support for 
remote kernel debugging. 

• Mac OS X can be configured using the kdumpd to accept a core dump from a 
remote system when it crashes (or if triggered manually). The core dump consists 
of active/wired memory and can be loaded into GDB. 

• The kernel can be debugged from a remote system over FireWire and Ethernet. 
This mechanism is built in, but not activated by default. Remote debugging can be 
enabled by setting the appropriate NVRAM parameters and flags. 

• Apple usually provides a Kernel Debug Kit for each released build of Mac OS X. 
The kit contains scripts, a debug version of the kernel, and I/O Kit family KEXTs. 
The debug kit also contains macros for simplifying kernel debugging in GDB. The 
macros allow you to get information about call stacks and examine the kernel’s 
key data structures. The kernel can also be live debugged with GDB while running 
from the same machine. 

• To debug your own KEXT, you have to generate debugging symbols for it. Because 
a KEXT is dynamically loaded in the kernel, we need to generate the correct 
symbol addresses for a KEXT. The Kernel Debug Kit provides the 
createsymbolfiles script to help with this. 

• A kernel panic log contains a lot of useful information we can use to backtrack and 
find the location that caused the crash. 

• The ioclasscount tool tracks instance counts of classes in I/O Kit and can be used 
to detect memory leaks or other problems. 
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Advanced Kernel Programming 

This chapter covers miscellaneous topics that are of interest to more advanced kernel programmers. 
We’ll discuss how Streaming SIMD Extensions (SSE) and floating point can be used in the kernel. (SIMD 
is short for Single Input Multiple Data.) We will also examine strategies for dealing with drivers for multi-
function devices, and discuss the implementation of I/O Kit families. We’ll cover the kernel control KPI 
that can be used for user space communication with KEXTs such as Network Kernel Extensions (NKE) 
that does not use the I/O Kit. We also show how to work with and manipulate processes from the kernel, 
such as getting the process identifier (PID) of a process and sending signals to the process. Some drivers 
may need additional resources loaded from the file system, such as firmware images. This chapter 
provides a discussion of how these resources can be loaded using the OSKextRequestResource() function. 
The chapter concludes with a discussion of how a driver can send messages to a user space daemon 
using notifications. 

SSE and Floating Point in the Kernel 
Streaming SIMD Extensions (SSE) is the successor to MMX and is a special instruction set found on most 
modern Intel and AMD processors that allow common instructions such as add, multiply, and shift to be 
performed on arrays (vectors) of values instead of single values (scalar). This can greatly speed up many 
computation tasks, especially in areas such as digital signal processing, audio, graphics, and video. 
Normally the kernel is not a great place to perform heavy computation, but there are some areas where it 
is unavoidable—for example, in the case of audio drivers, which need to convert audio samples from 
multiple user space applications and mix them into a single buffer for output. Software implementations 
of the RAID-5 and RAID-6 algorithms are also examples of computations that may need to occur in the 
kernel and which can be optimized using SSE. 

Traditionally, SSE and floating point have been non-trivial for use in kernel environments. Some 
operating systems, such as Linux, require you to explicitly save the floating point/SSE state and restore it 
after use; otherwise, a thread’s floating point state may be overwritten. In Mac OS X, however, the kernel 
is free to use both floating point and SSE without needing to manually save and restore the registers’ 
states. Normally, when a thread finishes its time-slice or is preempted in favor of another thread, the 
state of the CPU registers at the time when the thread stopped executing is saved to memory and 
subsequently restored when the thread continues execution. To optimize performance, the kernel only 
stores the general-purpose registers and not the floating point and SSE registers, as they are less 
frequently used. In fact, many programs will not use floating point or SSE at all. When a different thread 
attempts to use the registers, the CPU issues an exception/trap, which will save the previous contents 
and clear the registers for the new thread. When the orginal thread is about to resume execution, floating 
point and/or SSE registers will be restored to the previous state.  

There are two ways of using SSE:  
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• By directly using the CPU instructions through the use of assembly or inline 
assembly.  

• By using the intrinsic functions provided by GCC, which provides user-friendlier C 
function wrappers around most instructions. For SSE2, these are provided in the 
header file emmintrin.h, which is not part of the kernel framework. However, you 
can copy the file and include it in your project. This is possible as the functions are 
all inline and do not depend on any external libraries. 

There are many revisions of the SSE instruction set. The latest major version is currently SSE4. Some 
older systems may not support SSE4, which became available in 2007. Attempting to execute SSE4 
instructions on a CPU that doesn’t support it will result in a kernel panic. To prevent this, you need to 
provide run-time detection of the CPU’s capabilities prior to executing the SSE instructions, or target an 
older version such as SSE2, which predates all Intel-based Macs. 

Multi-Function Drivers 
USB and PCI devices may be composite devices that include multiple independent devices in which 
each device’s separate driver can handle each function. Other devices may consist of one logical device 
handled by multiple drivers. Let’s consider a modern graphics card with an HDMI output port as an 
example. HDMI is able to carry both audio and video, so it would be nice to provide an audio driver that 
allowed the device to be used with Core Audio. The device is a graphics card, so the hardware doesn’t 
have the typical DMA engine of most audio hardware. Instead, audio data is sent along with video 
frames at regular vertical blanking intervals. This design means that the audio and video parts are 
intimately linked and need a shared state between them in order to operate. Since there is no clear 
separation, the driver can be structured as shown in Figure 17-1. 

 

Figure 17-1. Multi-function driver 

The design in Figure 17-1 uses a central driver, which coordinates the hardware and manages the 
provider. The central driver is used for matching against the hardware provider. The central driver then 
creates an audio driver based on the IOAudioFamily and a video/graphics driver based on the 
IOGraphicsFamily. There are two ways of managing the relationship of the subordinate drivers to the 
central driver: 

• The central, audio, and video drivers can be in separate KEXTs. The central driver 
matches against the hardware resource, whereas the audio and video drivers will 
match against the central driver and use it as the provider.  

• All drivers can be located in the same KEXT. The central driver would then need to 
manage the lifecycle of the subordinated drivers manually. 
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Writing I/O Kit Families 
Until now we have looked at how to implement various forms of drivers, most of which interact with one 
or more family. In some circumstances, you may want to implement a family instead of a driver—for 
example, if you need to support a new bus technology or have a family of hardware devices that all 
depend on the same infrastructure or general services. A family can be characterized and differentiated 
from a driver by the following traits: 

• A family usually consists of more than one IOService classes bundled together in a 
KEXT providing related services. 

• A family can be thought of as the kernel analog of a user space shared library. 

• A driver has a dependency on a family, not the other way around. 

• A family is not loaded directly; it is loaded because a driver has expressed a 
dependency. 

• A family does not have a matching dictionary and does not partake in either 
passive or active matching. 

• Just like any other KEXT, a family is installed under /System/Library/Extensions. 

There is no special API or approach to writing a family. It is simply done in the same way as any 
other driver. Apple recommends focusing on a good fundamental object-oriented design and allowing it 
to evolve naturally, rather than specifically setting out to create a family. A driver can express a 
dependency on a family (or any other KEXT) using the OSBundleLibraries key in its property list file. A 
driver cannot be loaded and linked into the kernel until all dependencies have been resolved and loaded 
first. The kextd daemon is responsible for performing this task. When a driver needs to be loaded, the 
kextd daemon will examine the driver’s Info.plist file for its dependencies. If the Info.plist has 
incorrectly specified or has failed to list some dependencies, this will result in a link failure and the driver 
will not be loaded. In order to depend on a family, a driver has to list the family’s bundle ID—for 
example, com.apple.iokit.IOAudioFamily—and version number—for example, 1.7.9fc8. 

I/O Kit guarantees that a dependent family is loaded before the driver that depends on it, which is 
necessary, otherwise symbols in the driver would be left unresolved. 

Since many of Apple’s I/O Kit families are open-source code, it is possible to modify the families and 
replace the original versions with modified version. This is not recommended, however, as the family 
KEXT might be overwritten by a subsequent software update from Apple, which means that functionality 
of the modified KEXT might be lost. In some situations, modifying a family by inserting additional 
tracing might help you with debugging. 

Extending a family is a better option than modifying it directly. Extending is easy, since most classes 
in I/O Kit families declare their methods as virtual, even if the class itself is non-abstract. There are many 
reasons why you might wish to do so. For example, if you were required to support a new type of USB 
controller not supported by the IOUSBFamily, you could create your own IOUSBController subclass to 
represent the new controller. The extended class can be compiled into the same KEXT as the driver that 
needs it, or in your own library/family KEXT. The IONetworkingFamily and other families were designed 
specifically to allow this form of extension. 
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Kernel Control KPI 
The kernel control interface <sys/kern_control.h> is a KPI, which allows a KEXT to communicate bi-
directionally with user space processes. The kernel control system lives in the BSD portion of the kernel 
and is therefore written in C and not C++ (I/O Kit uses C++). 

The KPI is intended to allow a user space program to control and configure a KEXT. For example, 
let’s say you had implemented a custom firewall NKE (Network Kernel Extension). You could then use 
the kernel control API to tell your firewall which addresses or ports it should block traffic from, as well as 
retrieving logs and statistics. 

The KPI is relatively simple to use in both kernel space and user space. In fact, there is no special API 
required to use the kernel control mechanism for user space, because it is accessed via a regular socket. 
The getsockopt() or setsockopt() system call functions can be used to issue control requests from user 
space. The kernel control system may be compared to the ioctl() system call, but unlike the ioctl() 
system call the kernel control system is better suited for transferring large amounts of data across the 
kernel/user space boundary. Sending and receiving data are supported using the send() and recv() 
system call functions from user space. In the kernel, data transfers are handled using the mbuf data 
structure discussed earlier. 

To use the kernel control interface, you must first register a new interface, which ensures that user 
space clients can find it and connect to it. This is accomplished by declaring and filling out a C structure 
containing callbacks for various events, as well as an identifying name. The C language is not object-
oriented, and therefore “objects” are often represented by structures containing data and function 
pointers. The registration structure is shown in Listing 17-1.  

Listing 17-1. The kern_ctl_reg Structure from <sys/kern_control.h> 

struct kern_ctl_reg 
{ 
    /* control information */ 
    char              ctl_name[MAX_KCTL_NAME]; 
    u_int32_t         ctl_id; 
    u_int32_t         ctl_unit; 
    /* control settings */ 
    u_int32_t     ctl_flags; 
    u_int32_t     ctl_sendsize; 
    u_int32_t     ctl_recvsize; 
    /* Dispatch functions */ 
    ctl_connect_func     ctl_connect; 
    ctl_disconnect_func  ctl_disconnect; 
    ctl_send_func              ctl_send; 
    ctl_setopt_func            ctl_setopt; 
    ctl_getopt_func            ctl_getopt; 
}; 

Let’s look at the fields of the structure in more detail: 

• The ctl_name should be set to the bundle ID for the KEXT.  

• The ctl_id field is used for additional addressing because a KEXT may have 
several kernel controls registered at once. The ctl_id field can be dynamically 
registered or assigned by Apple’s developer technical support (DTS).  
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• The ctl_unit field is used only with a DTS-assigned ID. There are only two flags 
for the ctl_flags. The first is CTL_FLAG_PRIVILEGED, which if set means that a user 
space program must have root privileges in order to connect to the kernel control. 
The second flag is CTL_FLAG_REG_ID_UNIT, which should be set if using a DTS 
assigned ID.  

• The ctl_sendsize and ctl_recvsize fields can be used to tune the size of the send 
and receive buffers for sending data using send() and recv(). 

The remaining fields are function pointers, which will be called when their corresponding events 
occur:  

• The ctl_connect and ctl_disconnect callbacks will be called when a user space 
client connects or disconnects.  

• The ctl_setopt and ctl_getopt callbacks are invoked when a client uses the 
setsockopt() or getsockopt() functions. These are often used to get or set 
configuration parameters. The next callback is ctl_send, which may be a bit 
confusing, as it’s used not to send data but to receive data from a sending client. 
To actually send data, use the ctl_enqueuedata() function. 

Kernel Control Registration 
Let’s look at an example (HelloKernControl) of how a kernel control interface is used. In this example, 
you will implement a very minimal kernel control with one get and one set operation. The get operation 
returns a string stored in the kernel. The set operation overwrites this string so that subsequent get 
operations return the new string instead. The following is an example of a filled out kernel control 
registration structure: 

static struct kern_ctl_reg g_kern_ctl_reg = { 
    "com.osxkernel.HelloKernControl",               
    0, 
    0, 
    CTL_FLAG_PRIVILEGED, 
    0, 
    0, 
    hello_ctl_connect, 
    hello_ctl_disconnect, 
    NULL, 
    hello_ctl_set, 
    hello_ctl_get 
}; 

We use a dynamically assigned ID and specify that our kernel control will be accessible only by 
privileged clients (root). We defined four callbacks, but we leave the ctl_send callback as NULL because 
we don’t support it in this example. The following is the code used to register and deregister the kernel 
control: 

static boolean_t g_filter_registered = FALSE; 
static kern_ctl_ref g_ctl_ref; 
 
kern_return_t HelloKernControl_start (kmod_info_t* ki, void* d)  
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{     
    strncpy(g_string_buf, DEFAULT_STRING, strlen(DEFAULT_STRING)); 
     
    /* Register the control */ 
    int ret = ctl_register(&g_kern_ctl_reg, &g_ctl_ref); 
     
    if (ret == KERN_SUCCESS) 
    { 
        g_filter_registered = TRUE; 
        return KERN_SUCCESS; 
    } 
    return KERN_FAILURE; 
} 
 
kern_return_t HelloKernControl_stop (kmod_info_t* ki, void* d)  
{     
    if (g_clients_connected != 0) 
        return KERN_FAILURE; 
     
    if (g_filter_registered) 
        ctl_deregister(g_ctl_ref); 
     
    return KERN_SUCCESS; 
} 

You register the interface in the KEXT’s start() function and deregister it in the stop() function, 
which will be called before the KEXT is unloaded. Because a kernel control often shares some data with 
user space, it is necessary to define a shared header file to store common declarations used by both the 
kernel and user space. The shared header file for HelloKernControl is shown in the following example: 

#ifndef HelloKernControl_HelloKernControl_h 
#define HelloKernControl_HelloKernControl_h 
 
#define BUNDLE_ID "com.osxkernel.HelloKernControl" 
 
#define HELLO_CONTROL_GET_STRING  1 
#define HELLO_CONTROL_SET_STRING  2 
 
#define DEFAULT_STRING            "Hello World" 
#define MAX_STRING_LEN            256 
 
#endif 

Client Connections 
The following are the implementation of the connect and disconnect callbacks: 

static int hello_ctl_connect(kern_ctl_ref ctl_ref, struct sockaddr_ctl *sac, void** unitinfo) 
{ 
    printf("process with pid=%d connected\n", proc_selfpid()); 
    return 0; 
} 
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static errno_t hello_ctl_disconnect(kern_ctl_ref ctl_ref, u_int32_t unit, void* unitinfo) 
{     
    printf("process with pid=%d disconnected\n", proc_selfpid()); 
    return 0; 
} 

In the preceding example the hello_ctl_connect() function, logs the PID of the client that opened 
the kernel control. It is often necessary to maintain some per-client data structure. The data structure 
should be assigned to the unitinfo parameter—for example: *uinitinfo = myStructure;. The structure 
can now be retrieved in other callbacks. If you allocate memory when the client connects, you should 
free the memory in the disconnect callback. If you wish to refuse a client—for example, because only 
one client is allowed at a time, or the maximum number of clients is already connected—you can simply 
return an error code, such as EBUSY or EPERM. 

Getting and Setting Options 
Once a client is successfully connected, it can start issuing get/set option requests to the 
kernel control. The implementation of the control get function is as follows: 

static int hello_ctl_get(kern_ctl_ref ctl_ref, u_int32_t unit, void *unitinfo, int opt,  
                         void *data, size_t *len) 
{ 
    int ret = 0; 
    switch (opt) { 
        case HELLO_CONTROL_GET_STRING: 
            *len = min(MAX_STRING_LEN, *len); 
            strncpy(data, g_string_buf, *len); 
            break; 
        default: 
            ret = ENOTSUP; 
            break; 
    } 
    return ret; 
} 

The opt argument comes from the client and specifies which option the client is interested in. A 
common approach is to create a shared header file, which contains option definitions that are shared 
between the KEXT and the user space program. 

■ Caution  Be careful about sharing data structures, because the KEXT and the user space program may pad the 
structure differently. This can cause bugs, corruptions, or worse.  

The preceding case only handles one option. This option is defined by HELLO_CONTROL_GET_STRING, 
which returns the string in the global g_string_buf variable shared between all clients. If you had 
allocated private data during the connect callback, you could retrieve it by casting the type of the data 
from the unitinfo argument.  

To return the string to the client, you will copy it to the memory address given in the data argument. 
The len argument is an input/output argument and contains the length of the data buffer. Obviously, 
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you must ensure that you do not write out of bounds. If you write to the buffer, you should modify len to 
reflect how many bytes were actually written. 

The implementation of the set option function is very similar: 

static int hello_ctl_set(kern_ctl_ref ctl_ref, u_int32_t unit, void* unitinfo, int opt,  
                         void* data, size_t len) 
{ 
    int ret = 0; 
    switch (opt) { 
        case HELLO_CONTROL_SET_STRING: 
            strncpy(g_string_buf, (char*)data, min(MAX_STRING_LEN, len)); 
            printf("HELLP_CONTROL_SET_STRING: new string set to: \"%s\"\n", g_string_buf); 
            break; 
       default: 
            ret = ENOTSUP; 
            break; 
   } 
   return ret; 
}  

As with the control get option function, we are passed a buffer with data coming from user space 
and the length of the buffer in the data and len arguments. The data is not valid once the function 
returns, so you must copy any data you want to preserve. 

Accessing Kernel Controls from User Space 
The example in Listing 17-2 demonstrates how we can connect the kernel control interface described in 
the previous sections. 

Listing 17-2. User Space Tool for Connecting to a Kernel Control Interface 

#include <stdio.h> 
#include <stdlib.h> 
#include <strings.h> 
#include <unistd.h> 
 
#include <sys/socket.h> 
#include <sys/ioctl.h> 
#include <sys/kern_control.h> 
#include <sys/sys_domain.h> 
 
#include "HelloKernControl.h" 
 
int main(int argc, char* const*argv) 
{ 
    struct ctl_info ctl_info; 
    struct sockaddr_ctl sc; 
    char str[MAX_STRING_LEN]; 
     
    int sock = socket(PF_SYSTEM, SOCK_DGRAM, SYSPROTO_CONTROL); 
       if (sock < 0)  
       return -1; 
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    bzero(&ctl_info, sizeof(struct ctl_info)); 
    strcpy(ctl_info.ctl_name, "com.osxkernel.HelloKernControl"); 
     
    if (ioctl(sock, CTLIOCGINFO, &ctl_info) == -1)  
       return -1; 
     
    bzero(&sc, sizeof(struct sockaddr_ctl)); 
    sc.sc_len = sizeof(struct sockaddr_ctl); 
    sc.sc_family = AF_SYSTEM; 
    sc.ss_sysaddr = SYSPROTO_CONTROL; 
    sc.sc_id = ctl_info.ctl_id; 
    sc.sc_unit = 0; 
     
    if (connect(sock, (struct sockaddr *)&sc, sizeof(struct sockaddr_ctl)))  
        return -1; 
     
    /* Get an existing string from the kernel */ 
    unsigned int size = MAX_STRING_LEN; 
    if (getsockopt(sock, SYSPROTO_CONTROL, HELLO_CONTROL_GET_STRING, &str, &size) == -1) 
        return -1; 
     
    printf("kernel string is: %s\n", str); 
     
    /* Set a new string */ 
    strcpy(str, "Hello Kernel, here's your new string, enjoy!"); 
    if (setsockopt(sock, SYSPROTO_CONTROL, HELLO_CONTROL_SET_STRING,  
                   str, (socklen_t)strlen(str)) == -1) 
        return -1; 
 
    close(sock); 
 
    return 0; 
} 

When the program in Listing 17-2 is executed, you should see the following results: 

$ sudo kextload HelloKernControl.kext 

$ sudo ./hello_tool  
kernel string is: Hello World 
$ sudo ./hello_tool  
kernel string is: Hello Kernel, here's your new string, enjoy! 

Working with Processes in the Kernel 
The BSD portion of the kernel provides a KPI for getting information about active processes in the 
system. Note that the term process is used in BSD as opposed to task, which is used in the Mach portion 
of the kernel, though they really refer to the same thing. 
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KERNEL PRIVATE KPIS 

If you are digging around in the kernel headers, you may come across the preprocessor directive 
KERNEL_PRIVATE. Functions or other symbols defined within these sections are not available for use by 
third-party kernel extensions, and attempting to use one even if the correct header is included will result in 
a failure to load that KEXT due to unresolved symbols. Apple’s own KEXTs are able to access these 
symbols by adding a dependency to com.apple.kpi.private. If you add a dependency for this KPI in your 
own KEXT it will fail to load, as only Apple-signed KEXTs can use it. 

 
You have already seen examples of how to get information about a process in the AppWall example 

in Chapter 13, where we used the proc_selfname() function to get the process name of the currently 
running process. If the function is called in a thread owned by the kernel, the kernel process name 
“kernel_task” will be returned.  

If you need to know the PID of the currently running process instead of its name, you can call 
proc_selfpid(). You can also find the name of a process if you know its PID by using the proc_name(int 
pid, char * buf, int size); function. An overview of functions in the process KPI is outlined in Table 
17-1. 

Table 17-1. Functions for Process Manipulation (See sys/proc.h for Full List) 

Function Description 

int proc_selfpid(void) Returns the PID of the current process 

int proc_selfppid(void) Returns the PID of the current 
process’s parent 

void proc_signal(int pid, int signum) Sends a signal (e.g. SIGTERM, SIGKILL) 
to the process with the specified PID 

int proc_issignal(int pid, sigset_t mask) Checks if any of the signals given by 
mask is pending for the process with 
the specified PID 

int proc_isinferior(int pid1, int pid2) Returns 1 if pid1 is subordinated to 
pid2 

void proc_name(int pid, char * buf, int size) Copies the process name into buf. If 
the name is shorter than size, it will 
be truncated. 

void proc_selfname(char * buf, int size) Same as preceding but for the current 
process 
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Function Description 

proc_t proc_find(int pid) Gets the process handle of the process 
with the specified PID. This causes a 
reference to be added to the process, 
which must be released with 
proc_rele(). 

proc_t proc_self(void) Returns the process handle for the 
current process 

int proc_rele(proc_t p) Releases the process handle p 

int proc_pid(proc_t p) Returns the PID of process p 

int proc_ppid(proc_t p) Returns the PID of the parent process 
of p 

int proc_is64bit(proc_t p) Returns 1 if the process is running 
with a 64-bit address space 

int proc_exiting(proc_t p) Returns 1 if the process is exiting 

int proc_suser(proc_t p) Returns 1 if the process is running 
with superuser privileges 

Loading Resources 
The I/O Kit does not provide any classes or functions that provide a driver with access to the file system. 
This is a deliberate design decision, not an oversight in the I/O Kit design. In theory, a driver should not 
need to access files on disk. The driver’s role is to respond to requests from the operating system to 
manage its own hardware device, and not to initiate requests of its own. In practice, however, there are 
many reasons why a driver may need to access data from the file system. One of the most common 
reasons is to read resource data, such as the firmware data for the driver’s hardware. 

Although the I/O Kit doesn’t allow general file system access, it does provide a means for a driver to 
access files from the “Resources” directory inside the driver bundle. The I/O Kit’s resource-loading API is 
defined in the header file <libkern/OSKextLib.h>. The API is asynchronous; a driver makes a request for 
the resource that it wishes to load and provides a callback function that the I/O Kit uses to notify the 
driver when the data is available. 

We mentioned that the I/O Kit doesn’t provide general file system access, but in addition to this, the 
I/O Kit itself doesn’t have access to the file system. In order to load the resource file for a driver, the I/O 
Kit relies on a user space helper process, which reads the requested file on behalf of the I/O Kit and 
passes the file’s contents back to the I/O Kit. The I/O Kit then notifies the driver that made the request. 

Since the I/O Kit relies on a user space helper process to load resources, it is not possible to load 
resources in the boot process until the helper process has been launched. However, in most cases this 
does not cause a problem for the driver, since the I/O Kit will queue the request until the helper process 
is available to receive requests from the kernel. 
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A driver can request that the I/O Kit load a file from the driver’s resources directory by calling the 
function OSKextRequestResource(). This function’s definition is as follows: 

 
OSReturn OSKextRequestResource(const char* kextIdentifier, 
                               const char* resourceName, 
                               OSKextRequestResourceCallback  callback, 
                               void* context, 
                               OSKextRequestTag* requestTagOut); 

 
The first parameter, kextIdentifier, specifies the bundle identifier of the driver that contains the 

resource to load; this will almost always be the value specified by the CFBundleIdentifier key of the 
driver’s Info.plist file. The second parameter, resourceName, is the name of the resource file to be 
loaded from the driver’s bundle. The next two parameters are the callback function and an associated 
context argument that is passed to the callback function when the resource has been loaded. The final 
parameter, requestTagOut, is returned immediately to the caller and can be used to track the operation 
to load the resource. 

If the call to OSKextRequestResource succeeds, the driver will be notified through its specified 
callback function when the request has completed. The completion callback has the following signature: 

 
typedef void (*OSKextRequestResourceCallback)(OSKextRequestTag requestTag, 
                                              OSReturn result, 
                                              const void* resourceData, 
                                              uint32_t resourceDataLength, 
                                              void* context); 

 
The first parameter provided to the callback, requestTag, identifies the resource that this 

completion callback refers to. The second parameter, result, informs the caller whether the operation 
was completed successfully. If the value of result is kIOReturnSuccess, the resource data has been 
successfully read from the disk and the next two parameters, resourceData and resourceDataLength, 
contain the contents of the requested resource file. The resourceData buffer is valid only within the 
callback, so if the driver wishes to refer to the resource data outside the callback, it must make a copy of 
the data. The final parameter, context, contains the value of the context parameter that was passed to 
the OSKextRequestResource function. 

The remaining step is to add the resource file to the driver’s bundle. Any resource loaded through 
the OSKextRequestResource function must be present in the “Resources” subdirectory of the driver’s 
bundle. In most cases, this can be achieved by adding the file to the Xcode project for the driver. For file 
types other than source code, Xcode will default to copying the file to the bundle’s resource directory 
when the project is built. 

Beyond KEXT Resources 
The resource loading functions discussed in the previous section are designed for a specific purpose. 
The I/O Kit functions provide a driver with read-only access to the contents of a file within its Resources 
directory. However, there are many situations where it is useful for a driver to access a file outside of its 
bundle and to write to a file on disk. For example, a driver that provides persistent settings will need 
some way to read those settings from a file on disk. It will also need a way to write those settings to disk. 

Although the I/O Kit contains no functions that provide such functionality to a driver, its 
implementation of the resource loading functions provides us with a hint of how we might add such 
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functionality to our own drivers. Just as the I/O Kit relies upon a user space daemon process to load 
resource files on behalf of the kernel, a driver can implement the reading and writing of its persistent 
settings from a file on disk by providing its own user space daemon process to handle requests on its 
behalf. This design, covered in the following section, opens up a more general solution that can be 
extended beyond driver preferences. 

Notifications from Kernel Drivers 
A general solution to the problem of accessing arbitrary file system items from a kernel driver is to 
implement a user space daemon process that acts as a helper process on behalf of the kernel driver. This 
process will handle requests from the driver, perform the specified operation, and then pass the result of 
the operation back to the driver. This approach can be extended beyond requests such as reading and 
writing files, and can be used to perform operations that are not possible within the kernel, such as 
displaying a dialog to the user. A good example of user interaction that originates from the kernel is the 
standard USB family, which presents a warning dialog if a device is connected that requires more power 
than the USB bus can deliver. 

■ Note  The IOUSBFamily currently uses a deprecated interface known as the Kernel-User Notification Center to 
display alert messages, such as the lower power warning. The I/O Kit used to provide an API that allowed a driver 
to display a dialog box through a standard system daemon process. However, this API is now deprecated and a 
driver must now provide its own daemon process. 

Any operation that a driver wishes to perform that is not possible within the kernel, such as writing 
to a file, displaying an error message, or even launching an application, can be performed through a user 
space daemon process. In effect, the driver code is split into two parts: the kernel driver and the user 
space daemon. This design uses the same techniques that were discussed in Chapter 5. However, 
instead of the user launching the user space process, the process will be a background daemon that is 
launched automatically by the system. 

The user space daemon process and the driver work together to perform certain operations. Most of 
the time, the user space daemon is idle. It only acts when it receives a request from the kernel driver. 
There are three notifications that the user space daemon will need to respond to: 

• The arrival of a new kernel driver 

• The unloading of a kernel driver 

• A request to perform an operation from a driver 

Since the daemon process will be launched at system startup, it may be launched before its 
corresponding kernel driver has started. For this reason, the process should install a callback to receive 
notifications when its kernel driver is started or is stopped. In most cases, the daemon will have a one-
to-many relationship with driver instances, and a single daemon will handle requests from all instances 
of its driver that are currently loaded. 

A daemon can watch for instances of its kernel driver arriving and unloading by installing a 
matching dictionary for its driver, as described in Chapter 5. A process performs the same steps to do 
this whether it is a background daemon or an application with a user interface. The daemon process is 
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able to communicate with its kernel driver by sending requests through the driver’s IOUserClient class, 
using the functions from the I/O Kit framework that were described in Chapter 5. 

In Chapter 5, you saw how a user space process can issue requests and send data to a kernel driver. 
This is important, since this is the approach that the daemon will use to send the results of an operation 
back to the kernel driver. Now, we’ll cover how a process receives notifications from the kernel, such as a 
request to perform an operation on behalf of the driver—for example, display an error message to the 
user. 

Communication from the kernel driver to the user space daemon occurs over a mach port. The 
following steps are involved in setting up a communication channel that a kernel driver can use to send 
a notification to a user space process: 

1. The user space daemon locates an instance of its driver and opens a 
connection to the driver’s user client by calling IOServiceOpen(), as described 
in Chapter 5. 

2. The daemon creates a mach port that is able to receive notifications from the 
kernel driver. This is done using the function CFMachPortCreate(). The 
function accepts a number of arguments including a callback function, which 
is used to deliver notifications. 

3. The daemon creates a run loop source for the mach port and installs the 
source into one of its thread’s run loops. Later, when a notification is received 
on the mach port, the daemon’s callback is run on the run loop thread. 

4. The daemon passes the mach port to the kernel driver, using the function 
IOConnectSetNotificationPort(). In response, the driver’s user client receives 
a call to its method registerNotificationPort(). 

5. In the kernel, the user client implements the virtual method 
registerNotificationPort(). The client receives the mach port that was 
created by the user space daemon and saves the value in an instance variable. 

6. When the driver wishes to notify the user space daemon of an event, it calls the 
function mach_msg_send_from_kernel() and provides any data that it wishes to 
pass to the user space daemon. 

7. In response, the daemon’s callback function is invoked. The callback function 
receives any data that was passed from the kernel driver, and it handles the 
kernel’s request. If the result of the operation needs to be passed back to the 
kernel, the user space daemon can do so by calling any of the methods defined 
by the driver’s user client, as described in Chapter 5.  

In the rest of this section, we’ll go through an example of sending a notification from a kernel driver 
to a user space process. To begin with, you need to define a structure that will describe the data to be 
sent from the kernel driver to the user space daemon. This structure must begin with the 
mach_msg_header_t structure, since this describes the destination mach port within the user space 
daemon that will receive the data. Following the mach_msg_header_t field, the structure may contain a 
number of fields that allow arbitrary data to be sent along with the notification to the user space 
daemon. The definition of this structure must be accessible to both the user space daemon and the 
kernel driver, so it should be placed in a header file that can be included by both projects. The following 
is a sample definition for a structure that allows two integer parameters to be passed from the kernel to 
the user daemon: 
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typedef struct { 
       mach_msg_header_t       messageHeader; 
       uint32_t                customParameter1; 
       uint32_t                customParameter2; 
} MyNotificationMessage; 

An example of the user space callback function that receives the notification sent from the kernel is 
given in the following listing. The parameter named msg contains the entire MyNotificationMessage 
structure, including the two arbitrary integers that were added. These extra fields that follow the 
message header can be used both to describe the operation that the driver wishes the user space 
daemon to perform and to pass additional parameters that are needed for the operation. 

void   MyDriverRequestCallback (CFMachPortRef port, void *msg, CFIndex size, void *info) 
{ 
       MyNotificationMessage* notify = (MyNotificationMessage*)msg; 
 
       printf("Param 1 is %x, param 2 is %x\n", notify->customParameter1,  
               notify->customParameter2); 
} 

The code snippet shown in Listing 17-3 demonstrates the steps that the user space daemon must 
take to install a mach port where it will receive notifications from the kernel driver. The first step is to 
allocate a mach port and a corresponding run loop source, and to install the mach port into its run loop. 
Next, the mach port is provided to the kernel driver. Whenever the driver wishes to send a notification to 
the user space process, that request is delivered over the provided mach port. 

Listing 17-3. User Space Code to Install a Callback to Receive Notifications from a Kernel Driver 

CFMachPortContext      portContext; 
CFMachPortRef          notificationPort = NULL; 
CFRunLoopSourceRef     runLoopSource = NULL; 
kern_return_t          kr; 
 
// Set up the CFMachPortContext structure that is needed when creating the mach port. 
portContext.version = 0; 
portContext.info = (void*)context; // Aribtrary pointer provided to the callback 
portContext.retain = NULL; 
portContext.release = NULL; 
portContext.copyDescription = NULL; 
 
// Create a mach port. 
notificationPort = CFMachPortCreate(kCFAllocatorDefault, MyDriverRequestCallback, 
&portContext,  NULL); 
if (notificationPort) 
{ 
     // Create a run loop source for the mach port. 
     runLoopSource = CFMachPortCreateRunLoopSource(kCFAllocatorDefault, notificationPort, 0); 
     // Install the run loop source on the run loop that corresponds to the current thread. 
     CFRunLoopAddSource(CFRunLoopGetCurrent(), runLoopSource, kCFRunLoopDefaultMode); 
} 
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// Pass the notification port to the driver. 
kr = IOConnectSetNotificationPort(driverConnection, 0,  
                                  CFMachPortGetPort(notificationPort), 0); 

The user space function IOConnectSetNotificationPort() results in a call to the driver’s user client 
of the method registerNotificationPort(). This is a virtual method that is defined in the IOUserClient 
base class, but which needs to be implemented by each subclass. In the following sample 
implementation, the registerNotificationPort() method takes a copy of the mach port that 
corresponds to the user space process’s notification port so that it can be used in the future whenever 
the driver wishes to signal the user space process. 

IOReturn       com_osxkernel_driver_IOKitTestUserClient:: 
       registerNotificationPort (mach_port_t port, UInt32 type, io_user_reference_t refCon) 
{ 
     m_notificationPort = port; 
     return kIOReturnSuccess; 
} 

Having set up the process’s notification port, the kernel driver is now able to signal the user space 
daemon when needed. This is typically performed through the IOUserClient subclass, since the 
notification port is specific to a particular user client. An example of a custom user client method that 
can be called to pass two arbitrary integers to the user space process is shown in Listing 17-4. 

Listing 17-4. A Custom Method to Send a Notification from a Driver to a User Space Process 

IOReturn       com_osxkernel_driver_IOKitTestUserClient:: 
       mySendNotification (uint32_t parameter1, uint32_t parameter2) 
{ 
     MyNotificationMessage  notification; 
     IOReturn               result; 
 
     if (m_notificationPort == MACH_PORT_NULL) 
         return kIOReturnError; 
 
     // Set up the standard mach_msg_header_t fields. 
     notification.messageHeader.msgh_bits = MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND, 0); 
     notification.messageHeader.msgh_size = sizeof(MyNotificationMessage); 
     notification.messageHeader.msgh_remote_port = m_notificationPort; 
     notification.messageHeader.msgh_local_port = MACH_PORT_NULL; 
     notification.messageHeader.msgh_reserved = 0; 
     notification.messageHeader.msgh_id = 0; 
 
     notification.customParameter1 = parameter1; 
     notification.customParameter2 = parameter2; 
 
     // Send the request to user space 
     result = mach_msg_send_from_kernel( 
                  &notification.messageHeader, sizeof(MyNotificationMessage)); 
      
     return result; 
} 
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Summary 
This chapter covered: 

• How to use floating point and SSE in the kernel. You learned that OS X, unlike 
other operating systems, does not require any special actions to support these 
activities. 

• Strategies for writing multi-function drivers. 

• The kernel control KPI is a BSD KPI that can be used for communicating between 
a kernel extension and user space. It is commonly used in conjunction with 
Network Kernel Extensions (NKE) but rarely used in I/O Kit. 

• We covered the KPI for working with processes from the kernel. The KPI has 
functions for sending signals and getting the name and process identifier (PID) of 
a process. 

• How a kernel extension can load external resources from its bundle and how to 
handle driver preferences. 

• How a kernel extension can message and notify a user space process.  
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Deployment 

Thus far, we have provided background information and looked at the practical implementation of 
several types of drivers and kernel extensions. This chapter focuses on how we prepare our work for 
end–user delivery. Apple is known for providing user–friendly software (and hardware) solutions; both 
Apple and its customers have come to expect the same level of customer experience from third-party 
vendors. Frustrating customers or users with complex installation procedures is a good way to lose 
business to competitors on any platform. Deploying a piece of software like a kernel extension may seem 
easy at first, but there are a multitude of issues to consider, such as how to accommodate a wide range of 
different hardware and operating system versions. Many customers may be reluctant to upgrade. This is 
especially true for larger business or government installations— so, you may be required to support 
bleeding edge, as well as legacy operating system versions— all of which may have different features that 
require special handling. Besides the external factors, your software’s distribution may be complicated. 
Rarely will you distribute only the KEXT itself; it often requires additional bundled software. For 
example, a computer graphics card may be delivered with a system preferences pane, a framework used 
to access the device’s special features, applications for upgrading firmware, and perhaps bundled 
applications that show off the card’s capabilities like games. You will also need to handle the possibility 
that a customer will upgrade or downgrade your software distribution. 

While all this may seem daunting—and it is—there is hope. Apple, as usual, provides tools that 
simplify this process. For deployment, the tool of choice for more advanced software installation is 
PackageMaker. PackageMaker allows installation wizards to be created from an easy–to–use graphical 
user–interface. PackageMaker also has a command line utility feature, which can be used to integrate 
package building into a larger build system. 

Installing and Loading Kernel Extensions 
KEXT bundles will normally be installed in the system directory/System/Library/Extensions. You can 
keep KEXTs outside of this directory; however, you will then need to take care of loading the KEXT 
yourself by using the method outlined in the next section. The KEXT will still need to have the correct 
permissions set. A KEXT needs to be owned by the root user, belong to the wheel group, and have the 
permissions mask 0755 in order to be loadable by the KEXT daemon (kextd). 

For I/O Kit-based drivers, the KEXT is usually loaded automatically by the KEXT daemon when its 
provider is registered in the I/O Registry (assuming the KEXT has a proper personality defined in its 
Info.plist file). A KEXT not associated with a hardware provider can load itself automatically at system 
startup by using the IOResources nub as a provider. For non-I/O Kit based KEXTs, such as NKEs or 
virtual network drivers, this will not be possible, as IOResources is not available for KEXTs outside the 
I/O Kit.  

For non I/O Kit KEXTs, a Launch Daemon can be created. Launch Daemons and Agents are Apple’s 
replacements for a number of traditional UNIX services including init.d, cron, and inetd. Agents are 
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run as a user logs into the system based on that user’s security permissions. Daemons, on the other 
hand, are system–wide and are generally run with root permissions. We can use a Launch Daemon to 
execute a shell script when the computer starts, which will in turn load our KEXT. To create a launch 
agent, simply define a plist file as shown in Listing 18-1. 

Listing 18-1. Launch Daemon Property List File 

<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" 
        "http://www.apple.com/DTDs/PropertyList-1.0.dtd"> 
<plist version="1.0"> 
<dict> 
    <key>Label</key> 
    <string>com.osxkernel.launchd.HelloWorld</string> 
    <key>ProgramArguments</key> 
    <array> 
        <string>/Library/Application\ Support/HelloWorld/loadkext.sh</string> 
        <string>load</string> 
    </array> 
    <key>RunAtLoad</key> 
    <true/> 
</dict> 
</plist>  

This file should be installed to /System/Library/LaunchDaemon or ~/Library/LaunchDaemon, as 
com.osxkernel.launchd.HelloWorld.plist. The Launch Daemon will now trigger the loadkext.sh script 
during startup. The script itself can be implemented as shown in Listing 18-2. 

Listing 18-2. UNIX Shell Script for Loading a KEXT 

#!/bin/sh 
COMMAND=$1 
     
THEKEXT=/System/Library/Extensions/HelloWorld.kext 
 
if [ -f "$THEKEXT" ] 
then 
    echo "KEXT does not exist" 
    exit 1 
fi 
if [ "$COMMAND" = "load" ] 
then 
        kextload $THEKEXT 
elif [ "$COMMAND" = "unload" ] 
then 
        kextunload $THEKEXT 
fi 

In some cases, it may be desirable to load the KEXT on demand, rather than at system boot. For 
example, in the case of a VPN (Virtual Private Network) application, it may come with a KEXT to handle a 
custom network level encryption scheme or install a virtual VPN interface. This KEXT is only needed for 
as long as the application remains active. Having it active wastes memory resources, and loading it at 
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boot may potentially impact startup time. Furthermore, since the KEXT interacts with the network stack, 
it may actually get in the way and impact the system’s network performance. In this case, the application 
may wish to load and unload the KEXT dynamically. This can be achieved by using a script like the 
preceding one. The application would need to run with root privileges in order to load and unload the 
KEXT. It is not a good idea, however, to make an entire application setuid root, as this can lead to a 
serious security problem. An alternative solution involves executing a minimal helper program using the 
AuthorizationExecuteWithPrivileges() API to temporarily escalate the privileges of the executed 
program. This will prompt the user for the computer’s system password. It is possible to allow a KEXT to 
be loaded by a non–root user by modifying its plist file to include the following: 

    <key>OSBundleAllowUserLoad</key> 
    <true/> 

While this will allow a non–privileged process or user to load the KEXT, root privileges are still 
required to unload the KEXT afterward. As such, the former technique is preferred and is also more 
secure, as users will have to approve the action explicitly. 

KERNEL EXTENSIONS ON THE APP STORE 

Apple does not currently permit applications to install KEXTs on either the Mac App Store or the iOS App 
Store (which doesn’t have any means of building KEXTs without violating license agreements). If your 
application depends on a kernel extension, you would need to distribute it outside of the App Store. Mac 
App Store applications are not allowed to request root privileges either, which would be needed to install 
and load a KEXT. It is possible, however, to submit applications even though they may depend on a specific 
hardware device, but in this case you would need to talk to it through an approved user–space API (see 
Chapter 15 for details on how this can be done). 

Loading Preferences and Settings 
Many drivers may need some user–configurable per–device preferences or settings. For example, an 
audio device may have settings to control output volume level, which need to persist across system 
reboots. A driver cannot trivially access the file system (which is considered bad design anyway), so it 
cannot read the preferences from a file; however, An I/O Kit driver will have access to information stored 
in its plist file. The plist file is read-only and shared for all driver instances instantiated by a KEXT. 
Since a driver may create many instances, all which require different settings the plist file is unsuitable 
for this purpose. 

Although you could implement your own scheme to put per–device settings in a plist file, it is not 
considered “good” design. Furthermore, it is difficult for an application to modify a plist file, as root 
privileges are usually required. Mac OS X does not offer a standardized mechanism or API for handling 
driver or KEXT preferences or settings. Therefore, if you need this capability, you must implement a 
user–space application to handle this for you. This can be done by installing a notification to wait for the 
device’s arrival and then call the driver’s user client using IOConnectCall*() functions to restore settings 
from a file. For information on how to install driver or device notifications, please refer to Chapter 5: 
“Interacting with Drivers from Applications.” 

If you are implementing a driver for a non–removable device, you can have your user space settings 
helper run at boot or start time using a Launch Daemon or a Startup Item. You will have to register for a 
notification for your driver to ensure that the helper doesn’t run before your device has appeared. The 
process can exit once the device has appeared. If you have a removable–type device, such as a USB, 
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FireWire, or Thunderbolt, you may instead wish to implement a persistent daemon (Launch Daemon) 
that listens for device arrival and restore settings once a device is plugged in. If the settings are specific to 
an application that uses the driver or device exclusively, you can manage the settings from the 
application itself and optionally restore the settings to a previous state once the application exits. The 
helper program or daemon may be able to run with the privileges of a normal user if the user client or 
kernel control it interacts with permits it. 

If your driver handles multiple instances of the same device, it may be a challenge to figure out 
which settings belong to which device—either the ordering may not be consistent across reboots—or 
USB devices may be plugged in in a different order, or into different ports. To combat this, you can use a 
unique serial number or another identifier the device may have. A network interface should have a 
unique MAC address; a USB device usually has a serial number or something similar. Thunderbolt 
devices are guaranteed (in theory) to have a globally unique identifier (UID). 

Versioning Kernel Extensions 
If your kernel extension is directly accessible to a user–space application, you may wish to provide a 
versioning system to prevent an older user–space application from accessing a newer kernel extension 
or vice versa. This is not necessary, for say, audio drivers or other drivers that use a system–supplied 
IOUserClient; however, in the case that it does not, your KEXT will essentially present an API to the 
application, which needs to be remain compatible. If the KEXT has been updated, an older application 
may break or even cause a crash. There is no standardized way to deal with this issue, and the solution is 
largely dependent on the nature of the KEXT and the applications that access it. One strategy is to 
include a version number in a shared header file: 

// 
// SharedHeaderFile.h 
// 
#ifndef Shared_Header_H_ 
#define Shared_Header_H_ 
 
const int KernelUserClientAPIVersion = 1001; 
 
#endif 

Since both the KEXT and the user application compile the KernelUserClientAPIVersion version 
number into their binary images, the user application can determine if the KEXT’s version number 
matches that of its own. Every time the interface is changed; for example, if an IOUserClient method is 
added, removed, or changed, the version number must be updated to reflect this. If your KEXT presents 
an API available to third party developers, the best approach is to provide an API that takes care of this 
versioning internally rather than allowing developers access to the IOUserClient directly. This allows the 
interface between the kernel and user space to change without breaking existing applications; it even 
allows you to present the same API to a completely different driver or KEXT. 

Testing and Quality Assurance 
Testing a kernel extension can be a challenge. Modern computer systems and devices are usually very 
complex, and even if your component is fairly isolated from the rest of the system, unwanted side effects 
happen as result of it being another cog in the machinery. Proper testing, preferably conducted by those 
not directly involved in the engineering process, is essential—those directly involved may have 
preconceived notions of how the product works and fail to discover issues an end-user would. Testing 
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kernel extensions is very dependent on the nature and type of the extension; so, providing an exhaustive 
list of things to test for is impossible. The following are some general suggestions: 

• Test that the driver handles going to sleep and waking up. You can stress test this 
easily by using the SleepX tool included as part of Xcode. The application allows 
you to execute a script or external program every time the computer wakes up. 
You can also tune sleep intervals and the number of cycles you wish to test. It is 
extremely important that your driver handles sleep properly, especially for mobile 
devices and laptops, as having the driver still active means the CPU will need to be 
active—this will drain the system’s battery and could even cause a laptop to 
overheat if it is operating with the lid closed. 

• Test that the driver handles repeated loading and unloading with kextload and 
kextunload. You can test for reference leaks or memory allocation leaks using the 
ioclasscount and ioalloccount tools. 

• Test applications that use the driver by performing common user tasks. For 
example, for an audio device, playback and capture audio with as many 
permutations of settings and formats as possible. 

• Test on all supported platforms and operating systems, such as Macbook Pro, Mac 
Mini, iMac, Mac Pro or iPod, iPhone, and iPad. For Macs, be sure to test both 32-
bit and 64-bit versions and all supported OS versions; e.g., Snow Leopard, Lion, 
etc. 

• For hot–pluggable devices: 

• Test that drivers and devices continue to work correctly after repeated 
plugging and unplugging. You may wish to do a minimum of 100+ 
repetitions to be confident no issue will happen in the field. 

• Test that the driver handles the system going to sleep. The driver should 
also be prepared to handle the device being removed while the system was 
sleeping. 

• Test 32-bit and 64-bit versions of a KEXT. If you support pre-Lion operating 
systems, you will want to provide universal binaries with support for both 32-bit 
and 64-bit systems. 

• Test the installer package; make sure that all files are installed correctly—with the 
correct permissions, and in the correct location. 

If a problem is discovered either during testing or reported by a customer, it is a good idea to have 
pre-archived symbol information and/or debug versions for every released KEXT, so you can quickly 
attempt to reproduce a problem and debug it. This may seem obvious to most people, but it does 
happen more often than you might think: someone passes on a release of a software component, such as 
a KEXT, without incrementing its version number. Every time a change is made and released/given to 
some external entity (or even the internal QA group), the version number should be unique, or you will 
quickly lose track and confuse everyone involved. 
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Packaging KEXTs and Software 
PackageMaker is the preferred tool for packaging and distributing software consisting of multiple 
components. Unlike simple applications where every needed component is self–contained and 
embedded within the application’s bundle, more advanced software distributions, such as those 
containing KEXTs, may need to install components to multiple locations on the file system. For example, 
a driver will need to place itself within the /System/Library/Extensions directory, and it may further 
contain helper programs to load preferences or upgrade firmware, which require Launch Agents or 
Daemons to be installed. PackageMaker is able to do this and more. The PackageMaker user interface is 
shown in Figure 18-1. 

 

Figure 18-1. PackageMaker user interface 

PackageMaker’s output is a binary compressed package file with the extension “.pkg” that can be 
installed using the Installer.app program or the installer UNIX command, by executing something 
like the following: 

sudo installer -pkg HelloWorld.pkg -target / 

Installing using Installer.app brings up a GUI–based wizard that guides the user through the 
installation procedure. If the package has multiple optional sub-components, the user will have the 
opportunity to select or deselect them. The user can also change the target volume, where the package 
will be installed, provided that the package explicitly allows this, by setting the “Volume selected by 
user” option. 

PackageMaker isn’t just limited to placing software components in the file system. It can also check 
for system requirements and pre-requisites, including whether the operating system version is 
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supported, or check if some other software component it depends on is present. It can also trigger 
custom UNIX scripts before and after the software is installed for each component. For hardware drivers, 
PackageMaker also allows you to verify that your device is present before the user is allowed to continue. 
This works for FireWire, PCI, and USB. 

■ Tip  When packaging KEXTs for distribution, ensure that Xcode builds for the architectures you intend to 
support. By using the file command on the KEXT’s binary, you can check which architectures it supports. You 
may also wish to ensure you are not distributing the debug version of your KEXT. 

Building a Package for the Hello World Kernel Extension 
Now, you can build a quick package for installing the sample Hello World KEXT. You will also need to 
install a Launch Daemon property lists file (Listing 18-1) and a shell script (Listing 18-2) that will be 
executed by the Launch Daemon, which will again load the KEXT. Before designing your own package, 
you will need to determine its components. For example, if you are distributing drivers for an audio 
device, you may wish to bundle the driver with some software that allows playback or capture of audio, 
and perhaps an SDK that other developers can use to write their own applications using the card. A 
developer may only want the driver, whereas an end–user may only want the bundled application and 
not the SDK, etc. In this scenario, you can create three sub-components: the driver, the application, and 
the SDK, and allow the user to select which components should be installed. For the HelloWorld 
package, you only need to add a single component.  

To get started, open PackageMaker and chose “new” from the menu. You will then be prompted by 
a dialog, as shown in Figure 18-2. 

 

Figure 18-2. Install Properties dialog 

The “Organization” field should be the reverse–DNS name of your organization. The value is used to 
identify the package and uniquely name it. The minimum target drop–down allows you to select the 
oldest OS version you wish to target. The package will refuse to install on versions older than the install 
target. Once you have entered your selection, you can give your package a title. 
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Adding Contents to the Package 
You can now start adding files to your package. This can be done by either choosing “Project ➤ Add 
Contents . . .” from the main menu, or simply by dragging files into the left pane of PackageMaker. 
Figure 18-3 shows the content pane populated with the files required for the HelloWorld distribution.  

 

Figure 18-3. The HelloWorld distribution 

Our HelloWorld package consists of only three files (shown on the left in Figure 18-3): The KEXT 
itself and two helper files to allow the KEXT to load at boot–time. When you drag or add some files to the 
package, PackageMaker will automatically create a choice, which, in this case, we have named “Driver.” 
The choice represents a sub-component that can be individually selected by the user. However, if the 
“User Sees” field in the main pane is set to “Easy Install Only,” a user will not be prompted to select 
individual components, even though there may be more than one. The “Installation Destination” 
selection allows you to set the location where the package will be installed. At this point, we do not check 
any of the options, as all of our files go into absolute paths. If the “Volume selected by user” is selected, 
the instillation wizard will ask which volume (hard drive) the user wishes to install to. It is recommended 
to allow this choice to give the user more flexibility—particularly for large software packages, which a 
user may wish to store on a second, larger data drive.  

Configuring the Package 
Choosing the “Edit Interface” option from the configuration pane in Figure 18-3 will bring up a view of 
how the package will be presented when opened with Installer.app. PackageMaker allows you to 
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interactively edit text and set a background image. You can also add localizations for enabling 
instructions in other languages. 

The main pane has three tabs, as shown in Figure 18-3. The “Requirements” tab allows for the 
configuration of requirements that are global to the whole package. You can also set requirements for 
choices individually, which would allow a user to install some components even if the system didn’t 
meet the requirements for others. Requirements can be specified in the requirements editor, which has 
many pre-defined checks that can be configured. The following is a subset of available tests: 

• Megabytes Available on Target 

• Minimum CPU Frequency (HZ) 

• Memory Available (Bytes) 

• System OS Version /Target OS Version 

• File Exists on System 

• FireWire, USB, PCI Device Exists 

• Result of Script 

The last option, “Result of Script,” is particularly useful when none of the pre-defined tests are 
suitable. You can write a shell script to perform your own tests and have the installer take action based 
on the return code of the script. You can also specify custom error messages that will appear if a 
requirements test fails. The “Actions” tab allows you to configure actions that can be performed 
automatically, either pre- or post-installation. For example, in the case of the HelloWorld package, we 
may wish to ensure that any previously installed HelloWorld.kext is unloaded before we install the new 
one. We can define this action as shown in Figure 18-4. 

 

Figure 18-4. The action editor 
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In some cases, suppose you have a driver for a USB device: you may want to ensure that all 
applications using the device are killed before installing a new driver. An open application may prevent 
the driver from unloading properly. You may notice that there is no option for running a program or 
script; this can, however, be done on a per–file basis by selecting a file and choosing the “Scripts” tab. 

 

Figure 18-5. Configuration pane for individual packages 

For now, we have used the term Package to refer to the entire project as a whole, but in 
PackageMaker terminology, we are actually referring to a distribution that consists of several smaller 
packages. The smaller packages are made up of the individual files or objects added to the distributions, 
such as KEXTs, application bundles, or PDF files. Each object has meta-data and version information 
associated with it.  

Figure 18-5 shows the main configuration pane for a package added to the distribution. The 
“Install” field specifies the source location, whereas the “Destination” field specifies the location in the 
file system where the object will be installed. Selecting the “Allow custom location” option allows the 
user to specify an alternative location. Both the source and destination location can be a relative or 
absolute path. In most cases, the former is recommended. In the preceding example (Figure 18-5), we 
have used a relative location for the source file and an absolute path in the file system for the 
destination, as the file must go into that directory and cannot be relocated based on the user’s 
preferences. The same will apply to the KEXT, which we require to be located in 
/System/Library/Extensions. A relative path is relative to the location of the PackageMaker project.  

The “Patch” field allows you to specify an older version of the object you are installing, so that the 
installer can patch an existing file, rather than install a completely new file. 

In the configuration pane, you can also specify a version number and identifier individually for each 
package. The “Restart Action” allows you to prompt users to restart their computers after the installation 
is complete. You may want to do this if you have Launch Agents or Daemons that must be started, or you 
have replaced a driver that is difficult reload (e.g., a storage or graphics driver) while the system is 
running. You can also require the user to logout or shutdown the system. The “Require admin 
authentication” checkbox will prompt the user for the administrator password before allowing the 
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package to be installed. If you install files outside of the user’s home directory, usually, you must specify 
this, as the installer does not have admin rights by default. Most KEXTs, particularly drivers, must be 
installed under/System, which is not normally writable by a regular user. 

Finally, the “Package Location” field allows one to specify an alternate location where the package 
object file will be installed from; for example, you can specify an HTTP URL. 

The “Contents” tab of a package is shown in Figure 18-6.  

 

Figure 18-6. Contents tab of the package configuration pane 

The “Contents” tab allows you to examine individual files of a package. Usually, packages consist of 
either a bundle or an individual file. A bundle can contain other bundles or arbitrary files within it. If you 
need to exclude some files, you can specify regular expression patterns to do so. For instance, the meta-
data directories from a source code versioning system, such as Subversion, can be excluded with the 
pattern “/\.svn$”. You can also configure the file permissions the individual files should have once they 
are installed in the file system. The “Apply Recommendations” button will guess the correct permissions 
based on the file types and the intended destinations. 

■ Caution  Kernel Extensions are picky about their permissions and must be owned by the root user and the 
wheel group. Additionally, the owner must have read, write and execute rights, whereas the group should have 
only read and execute rights. This corresponds to the UNIX permissions mask 0755. Meta data files (such as the 
Info.plist file) do not need to have the executable bit set. 
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The “Scripts” tab allows for the defining of pre- and post-installation scripts for a package. These 
can be used to perform custom installation steps that cannot be defined by the “Actions” editor. You 
may wish to use a pre-install script to shut down daemons or applications before they are replaced with 
new versions. You can also clean up files that are no longer needed by the newer versions. The scripts are 
typically written in Bash or another scripting language. If you remove older files from your scripts, be 
careful about using the “rm” command, as your package may run with administrative privileges, and an 
incorrectly specified filename may lead to the wrong files or directories being deleted. As an example, 
consider the following: rm –rf /System/Library/$MYKEXT. If the $MYKEXT variable ends up being empty, 
the command will instead delete the /System/Library directory. A very unhappy customer will follow. 

Building the Package 
Once you have finished adding and configuring all the parts you want included in the distribution, you 
can build it by pressing the “Build” or “Build and Run” on the toolbar. The latter will open the package in 
Installer.app once the building finishes. During the build phase, the package will be validated and 
checked; if there are errors or warnings, you can correct them and rebuild the package. The end result 
will look something like Figure 18-7. 

 

Figure 18-7. Package as presented when launched with Installer.app 

The resulting package will be written to the filename <Title>.pkg. The package is compressed and 
not a bundle, so the contents cannot readily be inspected in Finder. When you save a PackageMaker 
project, it will be saved as a bundle named <Title>.pmdoc. The project bundle contains XML files that 
define the project. You can edit these with a text editor or automatically replace or update contents with 
a script during your product’s build process. If you wish to build the package from the command line, 
you can do the following: 
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$ /Developer/Applications/Utilities/PackageMaker.app/Contents/MacOS/PackageMaker --doc 
HelloWorld.pmdoc --version 2.0 --title 'HelloWorld' 

The preceding command builds <Title>.pkg with a version number of 2.0. 

Uninstalling Packages 
Unfortunately, no mechanism exists for automatically uninstalling packages created with 
PackageMaker. To uninstall a package manually, you would need to identify the files installed by the 
package and delete them. You would also have to stop and remove any Launch Agents or Daemons 
installed by the package. A better option would be to provide your users with a script or program that 
performs the uninstall for them. PackageMaker are able to handle upgrades, however. 

Summary 
In this chapter, we have looked at the following: 

• How the system loads I/O Kit kernel extensions automatically and how to 
manually load other types of KEXTs (such as Network Kernel Extensions) that are 
not loaded automatically. The latter is usually achieved using a Launch Daemon. 

• Versioning the interface between a KEXT and user space is important in order to 
avoid breaking older/newer applications that run against it. One strategy to deal 
with this is to include a version number in a shared header file. 

• Quality assurance and testing is an important part of the development cycle and is 
the last point of defense before software is distributed to a customer. It is 
important to properly test all aspects and usage patterns of the software on all 
supported platforms. 

• The PackageMaker software is the preferred way of distributing more complex 
software packages on Mac OS X; i.e., things that include multiple components, 
such as KEXTs, helper daemons, and end–user applications. 

• PackageMaker is a tool distributed with Xcode. PackageMaker can be used via a 
graphical user interface or the command line. Packages created with 
PackageMaker are installed using the Installer.app application. 

• PackageMaker does not provide a mechanism for uninstalling packages. 
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kernel panic logs, 408, 410, 411 
Mac OS X, 394 
MyDebugDriver Header File, 403, 404 
pointer, 407, 408 
remote debugging setup, 400 
remote target, 396, 397 
running kernel, 399 
symbol information, 401, 403 
symlink, 405 
UNIX and Linux systems, 395 
verbose flag, 395 
x86-64 calling conventions, 411, 412 
Xcode, 394 

Hung processes, 412, 413 
illegal instruction/operand, 382 
invalid memory access, 382 
IOLog() tracing, 388, 389 
KDB, 394 
kernel panics, 383 
kernel problems, 384 
lock contention, 382 
memory and resource leaks, 382, 413, 414 
nvram command, 385, 387 
primary interrupt context, 383 
race conditions, 382 
remote kernel core dumps, 392, 393, 394 
stack traces, 389 
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Debugging (cont,) 
virtual machine, 399 
volunteered panics, 383 

deRegisterInterestedDriver(IOService* driver) 
method, 218 

detach() method, 191 
Device Address Resolution Table (DART), 100 
Device ID, 175 
DeviceRequest, 367 
DeviceRequest method, 367 
DeviceRequestAsync, 367 
DeviceRequestTO, 367 
didChange notification, 219 
didTerminate() method, 191 
Direct memory access (DMA), 251 
Direct Memory Access (DMA) 

64-bit platforms, 201 
buffer, 200, 201 
data structure, 202 
definition, 199 
inbound DMA, 199 
IODMACommand class 

32-bit addressing, 206 
alignment parameter, 208 
code output, 209 
esoteric hardware device, 206 
generation, 208–9 
inTaskWithPhysicalMask() factory 

method, 207 
IOBufferMemoryDescriptor, 207 
IOMemoryCursor class, 206 
IOMMU, 206 
mappingOptions parameter, 207 
maxSegmentSize parameter, 207 
maxTransferSize, 208 

memory caching, 200 
memory preparation, 203–4 
NULL pointer, 202 
outbound DMA, 199 
outbound DMA transfer, 199–200 
page-out operation, 201 
physical–bus address translation, 202–3 
scatter/gather list, 201, 204–6 
setBusMasterEnable(), 199 
user space memory, 201 
zero-copy, 199 

DKIOCEJECT, 326 
DKIOCGETFORMATCAPACITIES, 325 
DKIOCISWRITABLE, 325 
DKIOCREQUESTIDLE, 326 
DKIOCSYNCHRONIZECACHE, 327 

DKIOCUNMAP, 326 
do_block field, 286 
doDiscard method, 326 
doFormatMedia, 337 
domain structure, 276 
Driver class, Info.plist file 

“IOKitTest.cpp” tutorial, 59–60 
“IOKitTest.h” tutorial, 58 
com.osxkernel, 58 
IOKitPersonalities dictionary, 60 
IOKitTest dictionary, 60 
IOKitTest.cpp, 58 
IOMatchCategory key, 61 
IOResourceMatch, 61 
IOResources nub, 61 
IOResources provider class, 61 
IOService class, 58 
kernel.log file, 62 
methods calling order, 62–63 
object initialization, 63 
OSBundleLibraries dictionary, 60–61 
OSDeclareDefaultStructors macro, 58 
project’s property list, 61 
super macro, 60 

Drivers, 69 
chain of control requests, 13 
device removal 

callback function, 77 
callback function installation, 78–79 
DeviceAdded() function, 77 
driver object, 77 
IONotificationPortCreate() function, 77 
IOServiceAddInterestNotification() 

function, 77 
driver properties 

connection-based approach, 79 
Core Foundation, 82 
Core Foundation dictionary, 80 
custom string value, 83 
CustomMessage, 81 
debugging information, 81 
IOUSBDevice class, 80 
key/value pairs, 79 
manufacturer string, 81 
setProperties() Method, 82 
StopMessage, 81, 83 
table, 79 

i/o control, 14 
I/O Kit framework, 70–71 
IO registry, 71 
kernel/user space boundary, 69 
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lower-level USB driver, 13 
matching dictionary 

callback function, 73 
CFRunLoopRun() function, 75 
code structure, 71 
Command Line Tool, 71 
Core Foundation, 71 
DeviceAdded, 75 
DriverIterator, 71 
event loop, 74 
IOIteratorNext() function, 75 
IOMasterPort() function, 73 
IONotificationPortCreate() function, 75 
IOServiceAddMatchingNotification() 

function, 75 
IOServiceGetMatchingServices() 

function, 75 
IOServiceMatching() function, 76 
kernel driver’s property list, 71 
kIOMasterPortDefault macro, 73 
NSApplicationMain() function, 75 
run loop, 74 
USB devices, 71 
USB devices arrival, 74–75, 76 
USB hardware devices, 72–73 

notifications 
asynchronous operations, 99 
asyncReference buffer, 102 
blocking operations, 99 
DelayForMs() method, 99 
DelayForTime() function, 99 
InstallTimer() function, 99, 100–101, 

102–3 
IOConnectCallAsyncXXX() function, 100 
IOConnectCallXXX() functions, 100 
IOExternalMethodArguments structure, 

101–2 
IONotificationPortCreate() function, 99 
kIOAsyncCalloutFuncIndex and 

kIOAsyncCalloutRefconIndex 
constants, 101 

port allocation, 99–100 
sendAsyncResult64(), 103 
timerCallback and context arguments, 

101 
operating system kernel, 12 
printer, 14 
serial port driver, 69, 70 
state-based interaction 

asynchronous operations, 83 
background operation, 83, 84 

connection-based approach, 83 
driverConnection parameter, 84 
IOServiceClose() function, 85 
IOServiceOpen() function, 84, 85 
user client. See User client methods 

user space application, 69, 70 

 E 
Embedded C++, 39–40 
emmintrin.h header file, 412 
Enhanced host controller interface (ECHI), 145 
EPERM, 291 
ExpressCard, 175 
Extensible host controller interface (xHCI), 145 

 F 
fAudioInputInteruptPending, 199 
fAudioOutputInterruptPending, 199 
fCurrentLoopCount, 273 
File descriptors, 105 
Filter scheme driver. See Media filter drivers 
filterInterruptEventSource() method, 195 
Firmware, 12 
firstSampleFrame, 271 
flush(), 317 
flushInputQueue(), 319 
frActCount value, 383 
frame_ptr argument, 300 
frameStart parameter, 380, 381 
Free List, 104 
free() method, 142–43, 191 
frStatus value, 383 
frTimeStamp field, 384 

 G 
g_string_buf variable, 419 
GCC compiler, 41 
GetAlternateSetting, 374 
getBufferMemoryDescriptor() method, 119 
GetBusFrameNumber, 366, 372 
GetBusFrameNumber method, 380, 381 
GetBusFrameNumber() method, 366 
GetBusFrameNumberWithTime, 366, 372 
GetBusMicroFrameNumber, 366, 372 
GetConfiguration, 369 
GetConfigurationDescriptionPtr, 369 
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GetConfigurationValue, 374 
getCurrentSampleFrame() method, 274 
GetDevice, 372 
GetDeviceAddress, 366 
GetDeviceAsyncEventSource method, 364 
GetDeviceClass, 365 
getDeviceMemoryWithIndex() method, 188, 189 
GetDeviceProduct, 365, 372 
GetDeviceProtocol, 365 
GetDeviceReleaseNumber, 365, 372 
GetDeviceSpeed, 366, 373 
GetDeviceSubClass, 365 
GetDeviceVendor, 365, 372 
getDirection() method, 327 
GetEndpointProperties, 374, 375 
GetFrameListTime, 373 
getHardwareAddress() function, 314 
getHardwareAddress() method, 314 
GetInterfaceClass, 374 
GetInterfaceNumber, 374 
GetInterfaceProtocol, 374 
GetInterfaceSubClass, 374 
GetLocationID, 366, 372 
GetNumberOfConfigurations, 366 
GetNumEndpoints, 374, 375 
getPhysicalAddress() function, 203 
getPhysicalAddress() method, 120 
getPhysicalSegment() method, 120 
GetPipeProperties, 375 
GetPipeStatus, 375 
getVirtualAddress() method, 188, 189 

 H 
Hardware abstraction layer (HAL), 252 
HELLO_CONTROL_GET_STRING, 419 
hello_ctl_connect() function, 418 
HelloWorld distribution, 437 
Hot–pluggable devices, 434 

 I, J 
I/O Kit framework, 51 

“nub”, 52 
boilerplate code, 52 
C++ language, 51 
driver’s provider, 52 
Info.plist file 

active matching, 55 

com_mycompany_driver_MyExternalDi
skDriver class, 57 

com_mycompany_driver_MyExternalDi
skDriverUSB class, 57 

driver class. See Driver class, Info.plist 
file 

driver personalities, 57 
IOPCIDevice, 55 
IOProviderClass, 54 
IORegistryExplorer, 63–65 
IOUSBDevice, 55–56 
kernel extension, 54 
match category, 55 
matching dictionary, 54, 55, 57 
MyUSBDevice, 56 
property list, 54 
USB device connection, 54 
user client, 56 

IOAudioDevice class, 52 
IOSerialStreamSync class, 52 
IOService class, 53 
IOUSBDevice class, 52 
Kernel framework, 51 
libkern. See libkern 
object relationship, 53–54 
object-oriented programming abstraction, 

51 
role of driver, 52 
user space application, 51 

I/O memory management unit (IOMMU), 100, 
202–3 

I/O memory regions 
control and status registers, 186 
enumeration 

frame buffer, 188 
graphics card, 188 
kernel.log, 188 
setMemoryEnable(), 187–88 

frame buffer, 186 
I/O ports, 186 
I/O space access, 189 
IDE controllers, 186 
mapping and accessing, 188 
size, 186 
standardized interfaces, 186 

ifconfig tool, 312 
iff_input filter function, 300 
iff_protocol field, 300 
ifnet structure, 276 
ifnet_hdrlen(ifnet_t) function, 300 
ifnet_t argument, 300 
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iInterface field, 374 
Inactive List, 104 
Info.plist file, 413 
inputPacket(), 319 
inputPowerRequirement, 209 
inputStructSize argument, 90 
Installation Destination, 437 
inTask argument, 111 
inTaskWithOptions() method, 111 
inTaskWithPhysicalMask(), 112 
inTaskWithPhysicalMask() method, 111 
intCount parameter, 199 
Intel 64 Architecture, 103 
Interface filters 

AF_INET, 298 
callback arguments, 300 
iff_filter structure, 298 
ifnet_find_by_name() KPI function, 300 
ifnet_output_raw() function, 301 
ioctl() messages, 297 
MyInterfaceFilter, 298–300 
output filter function, 300–301 
physical interface, 297 

Internet Protocol (IP) filters 
EJUSTRETURN, 296 
encrypted IP packet, 295 
Ethernet, 297 
ipf_addv4() function, 295 
ipf_input and ipf_output callbacks, 295 
ipf_output filter function, 296 
IPv4 and IPv6, 292 
MyIPFilter implementation, 292–95 
NAT, 297 
ping command line utility, 296 
structure, 292 
TCP and UDP checksums, 296 
UDP and TCP checksums, 296 

Interrupt event source filtering, 195–96 
Interrupt handler code, 273–74 
Interrupt Service Routine (ISR), 192 
interruptFilter() function, 197 
interruptOccurred() method, 195 
intoTask argument, 116 
ioalloccount tool, 433 
IOAudioControl, 254 
IOAudioControlUserClient, 254 
IOAudioDevice, 253 
IOAudioDevice superclass, 53 
IOAudioEngine, 253, 254 
IOAudioEngineUserClient, 254 
IOAudioFamily, 249, 253, 412 

IOAudioLevelControl, 254 
IOAudioPort, 254 
IOAudioSelectorControl, 254 
IOAudioStream, 254 
IOAudioStreamFormat structure, 268 
IOAudioToggleControl, 254 
IOBasicOutptuQueue class, 304 
IOBlockStorageDevice class, 320, 321, 339 
IOBlockStorageDriver class, 339 
IOBufferMemoryDescriptor, 109, 203, 205, 267, 

318 
IOCFPlugInInterface class, 362 
ioclasscount tool, 192, 433 
IOConnectCall*() functions, 432 
IOConnectSetNotificationPort() function, 427 
IODeviceMemory, 188 
IODeviceTree, 64 
IODMACommand class, 120, 203 
IOEthernetController class, 303, 304 
IOEthernetInterface, 310, 312 
IOEthernetInterface class, 303, 311 
IOEventSource base class, 139 
IOExternalMethodArguments structure, 92–93, 

97, 101–2 
IOExternalMethodDispatch structure, 94 
IOFilterInterruptEventSource, 194, 196, 198, 312 
IOFilterInterruptEventSource instance, 197 
IOFireWireIP, 305 
IOGatedOutputQueue class, 304 
IOGraphicsFamily, 413 
IOInterruptEventSource, 194, 196, 198, 310, 312 
IOInterruptEventSource class, 139 
IOInterruptEventSource::interruptEventSource(), 

196 
IOIteratorNext() function, 72 
IOKernelDebugger class, 303 
IOKitPersonalities dictionary, 60 
IOLock, 127, 131 
IOLockSleep() function, 141 
IOLockSleepDeadline() function, 141 
IOLockWakeup() function, 141 
IOLog(), 198 
IOMalloc() family, 112 
IOMalloc() function, 108 
IOMallocAligned(), 112 
IOMallocAligned() function, 108, 109 
IOMallocContiguous() function, 109 
IOMallocPageable() function, 109 
IOMatchCategory, 342 
IOMBufBigMemoryCursor subclass, 304 
IOMbufDBMAMemoryCursor subclass, 304 
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IOMbufLittleMemoryCursor subclass, 304 
IOMbufMemoryCursor, 318 
IOMbufMemoryCursor class, 304 
IOMbufMemoryCursor subclass, 319 
IOMbufNaturalMemoryCursor subclass, 304 
IOMedia class, 339 
IOMediaBSDClient class, 339, 340 
IOMemoryDescriptor, 115, 188, 203, 359 
IOMemoryDescriptor class, 113, 203 
IOMemoryDescriptor object, 327 
IOMemoryDescriptor::getPhysicalSegment(), 204, 

208 
IOMemoryDescriptor::map() method, 115 
IOMemoryDescriptor::prepare(), 100 
IOMemoryMap class, 113 
IOMemoryMap member function, 117 
IOMemoryMap::getVirtualAddress() method, 116 
IOMemoryMap::unmap() function, 117 
IONetworkController class, 304 
IONetworkController::selectMedium() method, 

313 
IONetworkData class, 304 
IONetworkInterface class, 304, 311, 319 
IONetworkMedium class, 312 
IONetworkUserClient class, 304 
IOObjectCopyClass() function, 72 
IOObjectRelease() function, 72 
IOOutputQueue class, 304 
IOPacketQueue, 321 
IOPacketQueue class, 304 
IOPCI2PCIBridge class, 177 
IOPCIDevice method, 188 
IOPCIDevice provider class, 53, 54 
IOPhysicalAddress, 100 
IOPMAckImplied value, 218 
IOPower, 64 
IOPropertyMatch, 342 
IOPropertyMatch item, 351 
IOProviderClass key, 71 
IORecursiveLock, 141 
IORegistryEntry class, 82 
IORegistryEntryCreateCFProperties() function,  

79 
IORegistryEntryCreateCFProperty() function, 80 
IORegistryExplorer, 203, 206 
IORWLock, 127, 136 
IOSerialDriverSync class, 69 
IOSerialStreamSync class, 53 
IOService class, 207, 320 
IOService lifecycle methods, 272 
IOService::registerInterrupt(), 194 

IOServiceGetMatchingServices() function, 72,  
73 

IOServiceMatching() function, 71 
IOServiceOpen() function, 426 
IOSimpleLock. See Spin locks: 
IOStorage stack, 342 
IOStorageCompletion, 359 
IOTimerEventSource, 312 
IOTimerEventSource class, 139, 141–42 
IOTimerEventSources, 310 
IOUSB, 65 
IOUSBConfigurationDescriptorPtr structure, 369 
IOUSBController subclass, 414 
IOUSBDevice, 72 
IOUSBDevice class, 320 
IOUSBDevice provider class, 53, 54 
IOUSBDeviceInterface class 

bmRequestType field, 367 
CFStringRef, 368 
control requests, 367 
device configuration, 369–70 
device request function, 368–69 
IOUSBDevice class, 361, 364 
IOUSBDeviceInterface300 class, 365–66 
kIOReturnExclusiveAccess error code, 365 
kIOReturnSuccess error code, 365 
kUSBIn, 367 
kUSBRqGetDescriptor request, 367 
loop source, 364 
QueryInterface method, 362 
read dynamic properties, 366 
reset USB device, 366–67 
USBDeviceClose(), 365 
USBDeviceOpen(), 365 
USBGetManufacturerStringIndex, 367 
wValue field, 367 

IOUSBFindInterfaceRequest structure, 369 
IOUSBHubDevice, 72 
IOUSBInterface class, 320 
IOUSBInterfaceInterface class, 372–73 

endpoint data transfer methods 
Async, 376 
bulk endpoint, 377 
callback function, 376 
control request, 377 
endpoints determination, 374–75 
interrupt endpoint, 377–78 
isochronous data transfers. See 

Isochronous data transfers 
pipe index, 375, 376 
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pipe reference, 375–76 
ReadPipeAsyncTO, 378–79 

endpoint types, 371 
getting and setting properties, 373–74 
io_service_t, 361–62 
io_service_t object, 371 
IOUSBInterface class, 361, 371 
IOUSBInterfaceInterface300 class, 372 
kIOUSBInterfaceClassName, 371 
matching dictionary, 371 
QueryInterface method, 362 
USBInterfaceClose(), 372 
USBInterfaceOpen(), 371 

IOUSBIsocFrame array, 380, 381 
IOUSBIsocFrame structure, 384 
IOUSBLowLatencyIsocFrame array, 384 
IOUSBLowLatencyIsocFrame structure, 384 
IOUserClient class, 53, 85, 118 
IOUserClient method, 432, 433 
IOVirtualAddress, 101, 116 
IOWorkLoop, 195 
ipf_detach function, 292 
ipf_remove() function, 292 
iPhone OS, 16 
Isochronous data transfers 

bandwidth, USB bus, 380 
GetBandwidthAvailable, 381 
IOUSBIsocFrame structure, 380 
low-latency isochronous transfers, 383–84 
read operation function, 381–83 
ReadIsochPipeAsync, 380 
SetPipePolicy, 381 
WriteIsochPipeAsync, 381 

isWhole, 349 

 K 
kAudioBufferSampleFrames, 266 
kAudioSampleRate, 266 
Kernel address space management, 29 
Kernel Control KPI, 281 
Kernel development 

C++ language, 39–40 
Console untility, 50–51 
kernel extension. See Kernel extension 
Xcode, 40–41 

Kernel extension 
“Hello World” application 

“System Plug-in” category, 41 
<libkern/libkern.h> header file, 42, 43 

com.apple.kpi.libkern, 44 
HelloWorld.c, 42–43, 44 
HelloWorld-Info.plist file, 43 
I/O Kit driver, 42 
Info.plist file, 46 
Kernel.framework, 44 
KEXT bundle, 46 
Mac OS X kernel, 44 
printf() function, 43 
project settings, 44, 46 
property list, 43–44, 43–44 
reverse DNS convention, 42 
reverse DNS prefix, 44 

loading and unloading 
compiled binary, 47 
HelloWorld.kext, 47 
HelloWorld_stop() function, 50 
KEXT bundle, 48 
kextload command, 48 
kextstat command, 48–50 
kextunload command, 48 
kextutil command, 48 
path location, 47 
security, 47 

Kernel extension:, 43 
Kernel extensions (KEXT), 429 

loading and installation 
AuthorizationExecuteWithPrivileges(), 

431 
I/O Registry, 429 
Info.plist files, 429 
IOResources, 429 
iOS App Store, 431 
kextd, 429 
LaunchDaemon, 430 
Mac App Store, 431 
plist file, 431 
preferences and settings, 431–32 
root user, 429 
UNIX shell script, 430–31 
VPN application, 431 

packaging:. See PackageMaker, KEXT 
software distribution, 429 
testing and quality assurance, 433–34 
versioning system, 432–33 

Kernel library. See libkern 
Kernel private, 422 
KernelUserClientAPIVersion, 433 
kextd daemon, 413 
kextload, 433 
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kextunload, 433 
kfree() function, 106, 108 
kIOAudioStreamAlignmentHighByte, 268 
kIOAudioStreamAlignmentLowByte, 268 
kIODirectionIn, 203 
kIODirectionIn value, 327 
kIODirectionInOut, 203 
kIODirectionOut, 203 
kIODirectionOut value, 327 
kIOMapAnywhere, 116, 119 
kIOMapCopybackCache, 116 
kIOMapDefaultCache, 116 
kIOMapInhibitCache, 116 
kIOMapReadOnly, 116 
kIOMapReference, 116 
kIOMapUnique, 116 
kIOMapWriteThruCache, 116 
kIOMemoryKernelUserShared, 112 
kIOMemoryMapperNone, 120 
kIOMemoryPageable, 111 
kIOMemoryPhysicallyContiguous, 111, 318 
kIOMemoryPhysicallyContiguous flag, 205 
kIOMemoryPurgeable, 112 
kIONetworkLinkActive flag, 313 
kIONetworkLinkValid flag, 313 
kIOPCIConfigDeviceID, 184 
kIOPCIConfigVendorID, 184 
kIOPCIExpressCapability, 186 
kIOPMDeviceUsable, 209 
kIOPMInitialDeviceState, 209 
kIOPMLowPower, 209 
kIOPMPowerOn, 209 
kIOPMPowerStateVersion1, 208 
kIOPMPreventIdleSleep, 209 
kIOPMSubclassPolicy parameter, 217 
kIOPMSuperclassPolicy1 parameter, 217 
kIOPropertyExternalKey, 189 
kIOPropertyPhysicalInterconnectLocationKey, 

189 
kIOReturnSuccess, 144, 314, 367, 375 
kIOReturnSuccess value, 364 
kIOReturnUnsupported, 313, 314, 325 
kIOServicesIsTerminated message, 191 
kIOUSBPipeStalled, 375 
kIOUSBUnknownPipeErr, 375 
kmem_alloc() function, 107 
kmem_alloc*() family, 105 
kmem_alloc_pageable() function, 105 
kUSBFullSpeedMicrosecondsInFrame, 373 
kUSBHighSpeedMicrosecondsInFrame, 373 

 L 
Launch Daemon, 430, 432 
Legacy mode, 103 
len argument, 419 
libkern, 51 

OSObject class 
adoption procedure, 65–67 
command ioclasscount, 68 
container classes, 68–70 
free() method, 67 
functionality, 65 
init() method, 67 
ioclasscount command, 68 
kernel extension, 68 
NSObject class, 65 
OSDeclareDefaultStructors macros, 67 
retain() method, 67 
start() method, 68 
static helper method, 67 

libkern kernel library, 105 
libkern library, 109 
libpcap library, 301 
LLVM compiler, 41 
Long mode, 103 
LowLatencyCreateBuffer, 384 
LowLatencyCreateBuffer method, 384 
LowLatencyDestroyBuffer, 384 
LowLatencyReadIsochPipeAsync, 384 
LowLatencyWriteIsochPipeAsync, 384 

 M 
m_devicePowerState, 220 
m_outstandingIO variable, 220 
Mac OS 9, 5 
Mac OS X, 224, 225, 226 
Mac OS X and iOS 

64-bit operating system, 20 
architecture, 16, 17 
Darwin distribution, 17 
desktop, 17, 18 
iLife suite, 16 
Intel x86-platform, 20 
NeXTSTEP OS, 16 
objective-C, 18, 19 
POSIX, 17 
powerPC platform, 17, 20 
programming API, 18, 19 
release date, 15, 20 
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Unix 03 Certification, 17 
XNU kernel. See XNU kernel 

Mac OS X and iOS audio architecture, 252 
mach_msg_send_from_kernel() function, 427 
mach_vm_address_t, 101 
makeUsable() method, 215, 216 
malloc() function, 105 
map() method, 188 
mapDeviceMemoryWithRegister() method, 188, 

189 
Matching and loading drivers 

32-bit hexadecimal string, 179 
Info.plist, 179 
Info.plist file, 180 
IONameMatch, 180 
IOPCIClassMatch, 179 
IOPCISecondaryMatch, 179 
IOProvider* service method, 178 
IOProviderClass, 179 
keys, 178 
matching dictionary, 178–79 
name property, 180 
Thunderbolt devices, 180–81 

maxNumSegments, 318 
maxSegmentSize, 318 
mbuf_pkthdr_rcvif() function, 290 
mbuf_t buffer, 300 
Media Access Control (MAC) address, 313–14 
Media filter drivers 

block-level disk encryption, 352 
Content Hint property, 353 
encryption 

Encrypted_HFS_GUID, 353 
HFS file system, 353 
instantiateMediaObject() method, 356 
IOPropertyMatch, 353 
matching dictionary, property list, 353–

54 
probe() method, 354 
read() method, 357–59 
SampleEncryptionFilter class, 356 
start() method implementation, 354–56 
uuidgen command line tool, 353 
write() method, 360–61 
write() methods, 356 
XOR encryption scheme, 353 

GUID partition table 
.dmg file, 363 
“gpt add” command, 362 
“hdiutil attach” command, 362 
Apple_HFS, 363 

Content Hint property, 361, 363 
disk image, 361, 362 
disk2, 363 
disk2s1, 363 
EncryptedImage.dmg file, 362 
gpt command, 362 
hdiutil command line utility, 362 
HFS file system, 361, 363, 364 
IOBlockStorageDevice superclass, 362 
IOGUIDPartitionScheme driver, 363 
IOMediaBSDClient object, 362 
MyVolumeName, 363 
setLocation() method, 363 

IOFilterScheme class, 352 
RAID driver, 352, 353 

Media independent interface (MII) bus, 310 
memcpy() function, 113 
Memory management, 99 

IOMemoryDescriptor 
complete() method, 111 
IOBufferMemoryDescriptor, 111–12 
IODeviceMemory, 112 
IOMultiMemoryDescriptor, 112 
prepare() method, 110–11 
release() method, 111 
virtual and physical memory, 110 
withAddressRange() method, 110 
withPhysicalAddress() method, 111 

kernel memory allocation 
BSD, 107 
C++ new operator, 109 
I/O Kit, 107–9 
kalloc family, 105–7 
low-level allocation mechanisms, 104–5 
Mach zone allocator, 105 
malloc()/free() interface, 104 
VM page cache and file system cache, 

104 
vm_page structure, 104 
xnu kernel, 104 

mapping memory 
COW optimization, 112 
definition, 112 
IOBufferMemoryDescriptor, 119 
IOMalloc() and IOMallocAligned() 

functions, 119 
IOMemoryDescriptor::createMappingIn

Task(), 119, 120 
IOMemoryMap class, 116–18 
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Memory management, mapping memory (cont.) 
IOMemoryMap::getVirtualAddress(), 120 
kernel to user space task, 118–19 
kIOMemoryKernelUserShared, 119 
physical address mapping, 120 
user space task into kernel space, 101–2 

types 
32-bit vs. 64-bit memory addressing, 

103–4 
big vs. little endian, 102 
bus physical addresses, 100 
CPU physical sddress, 100 
user and kernel virtual addresses, 101–2 

memory management unit (MMU), 202 
Memory Management Unit (MMU), 100, 101 
Memory mapped I/O (MMIO), 190 
Memory Mapped I/O (MMIO), 186 
Message signaled interrupts (MSI), 196–97 
Message Signaled Interrupts (MSI), 195 
message() method, 191 
Message-signaled interrupts (MSI). See 
Mutexes 

advantages, 131 
deadlock, 131 
functions, 131–32 
IOLock, 127, 131 
ListEnqueue() function, 131 
POSIX mutex lock functions, 131 
recursive mutex, 131 

MyEthernetDriver, 301 
BSD layer, 306 
configureInterface() method, 311–12 
DHCP server, 323 
en5, 323 
enable() method, 314–15 
header file, 307–9 
ifconfig command line tool, 323 
interaction, 305 
interrupt handler, 318–19 
IOEthernetController, 306 
IOEthernetInterface, 306 
IONetworkController, 305, 306 
IORegisterExplorer, 321 
IORegisteryExplorer, 322 
IOResources, 321 
IOResources nub, 305 
IOUSBFamily source distribution, 305 
kextload, 321 
MAC address, 314 
Mac’s Thunderbolt port, 306 

MyEthernetHwAbstraction class, 307 
MyEthernetHwAbstraction.cpp, 321 
network stack, 306 
outputPacket() function, 316 
packets and data transfer, 324 
physical network switch, 306 
ping utility, 324 
start() method, 310–11 
System Preferences, network pane, 322, 323 
test setup, 306 
virtual Ethernet bridge/switch, 307 

MyFirstPCIDriver class 
declaration, 181–82 
implementation, 182 
Info.plist, 182 
IOProviderClass key, 182 
IORegistryExplorer, 183 
kextload utility, 183 
modifications, 181 
probe() method, 182 
registerService() function, 182 
start() method, 182 

myReadDataFromDevice() method, 224 
myReadDataFromDevice() operation, 219 

 N 
netcat, 302 
Network Address Translation (NAT), 297 
Network Kernel Extension (NKE), 414 
Network kernel extensions (NKE) 

architecture, 276 
interface filter. See Interface filter 
interface KPI, 281 
IP filter. See Internet Protocol filter 
kernel control interface, 281 
protocol plumber, 281 
socket filter. See Socket filter 

Network memory buffers (mbufs) 
cluster, 278 
data structure, 277–78 
KPI, 279 
linked list, 278 
mbuf_allocpacket() function, 280 
mbuf_allocpacket_list function, 280 
mbuf_copyback() function, 279 
mbuf_copydata() function, 279 
MBUF_DONTWAIT, 280 
mbuf_tag_allocate() function, 280 
MBUF_WAITOK, 280 
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MH_ext field, 279 
the mbuf_next() macro, 280 

Networking, 275 
BSD layer, 275 
BSD network stack, 276 
data structures, 276 
debugging and testing, 301 
I/O Kit 

AirPort drivers, 304 
disable() method, 315–16 
driver initialization and startup 

attachInterface() method, 311 
configureInterface() method, 311–12 
createMedium() function, 311 
registerService() method, 312 
start() method, 309–11 

enable() method, 314–15 
enableHardware() method, 315 
Ethernet controller driver. See 

MyEthernetDriver 
fRxPacketQueue, 315 
IO80211Controller, 304 
IO802Family.kext, 304 
IONetworkController class, 303 
IONetworkingFamily class hierachy, 

302, 303 
IONetworkInterface class, 303 
IOUserClient, 304 
MAC address configuration, 313–14 
medium and status selection, 312–13 
packets transmission, 316–18 
receiving packets, 318–21 

kernel network architecture, 275 
KPI, 276 
mbufs. See Network memory buffers 
NKE. See Network kernel extensions 
socket API, 276 

numSampleFrames, 271 

 O 
Objective-C, 18 
Open host controller interface (OHCI), 145 
OpenAL, 253 
Operating system fundamentals, 1 

boot sequence, 4 
driver, 2 
hardware and drivers, 12–14 
hardware configuration, 2 
kernel extension, 1, 2 

kernel space code, 3 
network interfaces, 1, 2 
process address spaces, 5–6 
process management, 4–5 
scheduling, 11–12 
services, 6–7 
sound card, 3 
user space code, 3 
virtual memory 

buffer, 11 
page fault, 10 
page frames, 8–9 
page table, 9 
paging, 8, 10, 11 
physical address translation, 9, 10 
RAM, 7–8 

opt argument, 418 
options argument, 116 
OSArray, 69, 70 
OSBoolean class, 69 
OSBundleLibraries, 44, 180, 413 
OSBundleLibraries dictionary, 43, 60–61 
OSDeclareDefaultDestructors() macro, 66 
OSDefineMetaClassAndStructors() macro, 66 
OSDictionary, 69, 313 
OSDictionary object, 63 
OSKextRequestResource function, 424–25 
OSNumber class, 69 
OSOBject, 192 
OSOrderedSet, 69 
OSSet, 69 
OSString class, 69 
OSSwapLittleToHostInt64(), 349 
OSSymbol class, 69 
outputPacket() method, 316–17 
outputPowerCharacter, 209 
outputStructSize argument, 90 
outputStructSize arguments, 91 

 P, Q 
PackageMaker, 429 
PackageMaker, KEXT 

.user interface, 434 
“Volume selected by user” option, 435 
binary compressed package file, 435 
contents addition, 436–37 
file command, 435 
FireWire, PCI, and USB, 435 
GUI–based wizard, 435 
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PackageMaker, KEXT (cont.) 
Hello World Kernel Extension, 436 
Installer.app program, 435 
Launch Agents/Daemons, 434 
package building, 441–42 
package configuration 

“Actions” editor, 441 
“Actions” tab, 438 
“Allow custom location” option, 439 
“Apply Recommendations” button, 440 
“Contents” tab, 440 
“Destination” field, 439 
“Edit Interface” option, 437 
“Install” field, 439 
“Package Location” field, 440 
“Patch” field, 439 
“Require admin authentication”, 440 
“Requirements” tab, 438 
“Restart Action”, 439 
“rm” command, 441 
“Scripts” tab, 439, 441 
action editor, 438 
bundle/individual file, 440 
HelloWorld.kext, 438 
Installer.app, 437 
Launch Agents/Daemons, 440 
meta data files, 441 
meta-data and version information, 439 
root user, 441 
test subset, 438 
wheel group, 441 

software distributions, 434 
uninstallation, 442 
UNIX scripts, 435 
user interface, 435 
Xcode, 435 

PCI Express (PCIe), 174 
performAudioEngineStart() method, 272, 273 
performAudioEngineStop() method, 272–73 
performRead() and performWrite() methods,  

329 
Peripheral component interconnect (PCI), 173 

configuration space registers, 175–76 
DMA. See Direct Memory Access 
ExpressCard, 175 
I/O Kit 

Configuration space registers. See 
Configuration space registers 

display controller, 181 
handling device removal, 189–92 
IOAGPDevice, 177 

IOMatchCategory, 181 
IOPCIBridge, 177 
IOPCIDevice object, 177 
IOPCIFamily class hierarchy, 176, 177 
matching and loading drivers, 178–80 
memory regions. See I/O memory 

regions 
MyFirstPCIDriver class. See 

MyFirstPCIDriver class 
interrupts 

direct interrupt, 193 
handling primary interrupts, 197–98 
handling secondary interrupts, 198– 

99 
I/O Kit mechanisms, 193–94 
indirect interrupts, 193 
ISR, 192–93 
MSI, 192, 196–97 
OS X and iOS, 193 
primary interrupt context, 192 
registration, 195–96 
secondary interrupt context, 192 

PCI Express, 174 
PCI-X and PCI-X 2.0 standards, 173 
Thunderbolt, 174 

Physical Address Extensions (PAE), 100 
Power management, 205 

doze state, PCI card, 205 
I/O Kit, 206–7 
I/O registry power plane, 205–6 
power state changes 

acknowledgeSetPowerState(), 214 
driver registration, 211–12 
driver removal, 212 
for driver, 211 
gPowerStates array, 211 
handling device idle, 216–17 
header file, 220–21 
implementation file, 221–24 
IOPMPowerState structure, 208 
IOPMPowerState structures, 210 
IOService class, 210 
joinPMtree() method, 212 
kIOPMAckImplied code, 214 
myReadDataFromDevice() method, 224 
notifications, 208 
observation, 218–19 
off and on states, 208, 219 
PMinit() method, 212 
powerStateOrdinal parameter, 214 
registerPowerDriver() method, 212, 214 
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request response, 212–14 
requesting, 214–16 
setPowerState() method, 212, 214 
structure fields, 208–10 

sleep mode, 205 
powerChangeDone() method, 219 
powerDomainBudget, 210 
PowerPC architecture, 102 
powerStateDidChangeTo() notification, 218 
powerStateWillChangeTo() notification, 218 
powerToAttain, 210 
pre-Lion operating systems, 434 
prepare() method, 203 
Primary interrupt filter method, 197 
proc_selfname() function, 422 
proc_selfpid() function, 422 
protosw, 276 
publishMediumDictionary() method, 313 
Pulse Code Modulation (PCM), 250 

 R 
RAM, 7–8 
RAMDiskStorageDevice nub class header file, 

331–32 
ReadIsochPipeAsync method, 384 
ReadPipe, 377 
ReadPipeAsync, 378 
ReadPipeAsyncTO, 378 
ReadPipeTO, 378 
receivePacketFromHardware(), 321 
registerInterestedDriver(IOService* driver) 

method, 218 
registerNotificationPort() method, 427 
ResetDevice, 366 
ResetPipe, 375 
Rosetta, 20, 102 
runAction(), 140 

 S 
Sample depth, 250 
Sample frame, 250 
Sample rate, 250 
sampleBuf parameter, 271 
scheduleSecondaryInterrupt variable, 198 
sDelayForTime(), 98 
Secondary interrupt handler function, 199 
Serial port drivers 

Apple USB serial driver, 226 

AppleUSBCDC driver, 226 
AppleUSBCDCDMM class, 227 
attach() method, 228 
C++ new operator, 228 
Communications Device Class, 226 
createSerialStream() method, 227, 229 
Darwin source code repository, 226 
data transmission, 223 
executeEvent() and requestEvent() method, 

239, 241, 242 
I/O Kit, 226 
init() method, 228 
IOModemSerialStreamSync class, 229 
IOSerialDriverSync Class, 226 

AppleUSBCDCDMM driver, 232, 233 
dequeueData() method, 232 
IOSerialDriverSync interface, 230, 231, 

232 
refCon value, 231 
watchState() method, 232 

IOSerialFamily kernel module, 229 
IOSerialStreamSync class, 227 
IOSerialStreamSync Object, 228 
IOUSBDevice object, 226 
kernel serial driver stack, 226 
kIOTTYBaseNameKey and 

kIOTTYSuffixKey properties, 230 
Mac OS X, 224, 225, 226 
PD_E_FRAMING_ERROR, 242 
PD_E_HW_OVERRUN_ERROR and 

PD_E_SW_OVERRUN_ERROR, 242 
PD_E_INTEGRITY_ERROR, 242 
PD_RS232_E_RX_LINE_BREAK, 242 
registerService() method, 229 
serial data transfer 

CheckQueues() function, 246 
dequeueData() method, 243, 245, 246 
driver internal transmit buffer, 246, 247 
enqueueData() method, 243, 244 
IOSerialBSDClient, 243 
requestEvent() method, 243 
StartHardwareTransmit() function, 244 
transmit buffer, 243 

serial port settings, 239 
tcsetattr() and tcgetattr() functions, 239 
user space application, 223 

/dev directory, 248 
character device, 249, 250 
I/O Registry, 248 
IOSerialBSDClient objects, 248 
kIOCalloutDeviceKey, 249 
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Serial port drivers, user space application (cont.) 
kIODialinDeviceKey, 249 
kIOTTYDeviceKey, 248 
matching dictionary, 248 

Set option function, 419 
SetAlternateInterface, 374 
SetConfiguration, 369 
setHardwareAddress() method, 314 
setIdleTimerPeriod(period) method, 216 
setIOEnable() method, 189 
setLinkStatus() method, 313 
setNumSampleFramesPerBuffer() method, 266 
setPowerState() method, 216, 217, 218, 220 
setProperties() method, 82 
setProperty, 189 
setSelectedMedium(), 313 
settleDownTime, 210 
settleUpTime, 210 
sf_connect_in filter function, 289–90 
sf_connect_in function, 289 
sf_connect_out filter function, 289 
sf_data_out function, 290–91 
sf_handle structure, 283 
sflt_register() function, 284, 285 
sflt_register() function add_entry() function, 285 
sft_name, 284 
sGetElapsedTimerTime(), 98 
SleepX tool, 433 
sock_data_filt_flag_oob flag, 291 
sock_data_filt_flag_record flag, 291 
sockaddr structure, 289, 291 
Socket filters 

AppWall 
ALF.kext, 284 
IP version 4, 284 
operation and data structures, 286 
registration, 284–85 
unabridged source, 284 

attachment and detachment 
attach callback, 287 
cookie parameter, 287 
detach callback, 288–89 
ENOPOLICY, 288 
IP address retrieval, 287 
proc_selfname(), 288 
sf_attach function, 286 
sf_attach() function, 288 
sf_detach function, 286 
sflt_unregister(), 288 

auxiliary protocols, 282 
bind() and listen(), 282 

connections handling, 289–90 
data input and output, 290–92 
definition, 284 
filter IP-based traffic, 281 
sf_attach and sf_detach, 283 
sf_flags field, 283 
sflt_filter structure, 282–83 
SFLT_GLOBAL, 283 
SFLT_PROG, 283 

socket structure, 276 
Spin locks 

Boolean flag, 128 
CPU cycles spinning, 128 
deadlock, 128 
interrupt handler, 129 
IOSimpleLock functions, 129–30 
multiprocessor system, 128 
unsigned 32-bit integer, 128 

startFrame parameter, 381 
stateNumber argument, 218 
staticPower, 209 
stop() method, 191 
Storage systems, 319 

driver stack, 320 
external USB flash drive vs. internal hard 

disk, 319 
I/O Kit, 319 
IOBlockStorageDevice interface 

Disk Utility, 324 
doAsyncReadWrite, 327 
doDiscard method, 325 
doEjectMedia, 326 
doFormatMedia, 325 
doGetFormatCapacities, 325 
doLockUnlockMedia, 326 
doSynchronizeCache, 327 
doUnmap method, 326 
getAdditionalDeviceInfoString, 324 
getProductString, 324 
getRevisionString, 324 
getVendorString, 324 
getWriteCacheState, 327 
logical blocks, 321 
reportBlockSize, 325 
reportLockability, 324 
reportMaxValidBlock, 325 
reportMediaState, 324 
reportPollRequirements, 324 
reportRemovability and 

reportEjectability, 324 
reportWriteProtection, 325 
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requestIdle, 326 
setWriteCacheState, 327 
subclass implementation methods, 

322–23 
System Information, 324 

layered stack, 319 
media filter drivers. See Media filter drivers 
multiple drivers, 319 
partition schemes 

attachMediaObjectToDeviceTree() 
method, 345 

hypothetical partition scheme, 347 
instantiateMediaObject() method 

implementation, 348–50 
IOBufferMemoryDescriptor, 347 
IOGUIDPartitionTableScheme, 341 
IOMemoryDescriptor, 347 
IOPartitionScheme class, 340, 341 
IOService method, 344 
kIODirectionIn, 347 
Mac OS X, 340 
matching dictionary, property list, 341–

42 
media content hint property, 351 
OSSet, 347 
partition entry verification, 348 
probe() method, 342–44 
read() method, 347 
scan() method, 345–46 
start() method, 342–44 
stop() and free() methods, 350–51 
strcmp() function, 347 

RAM disk device 
block and character device interface, 

340 
block and character device interfaces, 

340 
buffer cache, 340 
com_osxkernel_driver_RAMDiskStorage

Device class, 330 
com_osxkernel_driver_RAMDiskStorage

Device class implementation, 332–35 
createBlockStorageDevice() method, 

330 
Disk Utility application, 336–38 
diskutil list command, 340 
driver stack, 337 
GUID partition table, 338, 339 
I/O Kit, 327 
IOBlockStorageDevice class, 339 
IOBlockStorageDevice nub, 330–31 

IOBlockStorageDriver class, 339 
IOMedia class, 339 
IOMediaBSDClient class, 339 
IOMediaBSDClient object, 339 
IORegisterExplorer utility, 336 
IOResources class, 327 
IOService class, 327 
IOStorageFamily, 339 
IOStorageFamily framework, 335 
kernel extension, 335, 336 
Mac OS X implementation, 327 
matching dictionary, 335 
memory allocation, 327 
OSBundleLibraries, 335 
property list, 335, 336 
RAMDisk class, 329 
RAMDiskStorageDevice, 330 
registerService() method, 331 
standard Mac OS X dialog, 336 
transport driver header file, 328 
transport driver implementation, 328–

29 
transport layer drivers, 320–21 
VFS layer, 319 

streamFormat parameter, 271 
Streaming SIMD Extensions (SSE), 411–12 
Struct task, 105 
Subsytem vendor/device ID, 176 
Synchronization and threading, 119 

arbitration, 119 
asynchronous events. See Work loops 
atomic operations 

ARM instruction set, 123 
bitwise AND and OR, 125–26 
definition, 123 
functions, 123–24 
LOCK prefix, 123 
object reference counting 

implementation, 124–25 
OSBitAndAtomic() function, 125 
OSBitOrAtomic() function, 125 
OSCompareAndSwap() function, 125, 

126 
OSDecrementAtomic(), 125 
race condition, 123 
release() method, 125 
retain() and release() implementation, 

124 
retainCount value, 125 

interrupt service routine, 119 
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Synchronization and threading (cont.) 
kernel threads 

<IOKit/IOLib.h> header file, 143 
<kern/thread.h> header file, 143 
continuation argument, 144 
delay operation, 143 
interrupt handler, 143 
kernel_thread_start() function, 144 
new_thread argument, 144 
parameter function, 144 
pthread_create() function, 144 
sleep operation, 143 
thread_terminate() function, 144 
time-consuming operation, 143 
user space process, 143 
waitResult function, 144 

locks 
condition variables. See Condition 

variables 
I/O Kit, 127 
mutexes. See Mutexes 
race conditions, 127 
read/write mutexes, 136–37 
shared resource, 127 
spin. See Spin locks 

multiple CPU cores, 119 
primitives 

EAX register, 122 
mov instruction, 121 
OSObject class, 120 
OSObject implementation, 120 
race condition, 122 
release() function, 120 
retain() function, 120–21 
retainCount, 122 

 T 
takeTimeStamp(), 273 
takeTimeStamp() function, 272 
takeTimeStamp() method, 273 
tcpdump, 301–2 
tcplognke, 292 
terminate() method, 191 
Thread, 11–12 
Thunderbolt, 174 
timeToAttain, 210 
timeToLower, 210 
transaction argument, 140 
transmitPacketToHardware() method, 317–18 

 U 
unbudgetedPower, 210 
Unified buffer cache (UBC), 37, 38 
unique identifier (UID), 432 
unitinfo parameter, 418 
Universal Buffer Cache (UBC), 104 
Universal host controller interface (UHCI), 145 
Universal serial bus (USB) 

bulk endpoints, 149 
configuration descriptor, 150 
control endpoints, 149 
control requests, 171 
device and driver handling, 153, 154 
device classes, 151 
device descriptor, 150 
device removals, 164, 165 
device requests, 168, 170, 171 
driver loading, 154, 156 
driver startup, 163, 164 
endpoint descriptor, 150 
endpoint enumeration, 166, 167, 168 
host controller, 142, 144, 145 
I/O bulk and interrupt 

asynchronous requests, 175, 176 
completion parameter, 172 
completionTimeout, 172 
endpoints, 173 
errors and pipe stalls, 174 
IOMemoryDescriptor, 172 
IOUSBPipe class, 171 
isochronous I/O, 174, 175 
Read() and Write() method, 171, 172 
reqCount, 172 

I/O kit, 152 
implementers forum, 141 
interface descriptor, 150 
interface enumeration, 165, 166 
interrupt endpoints, 149 
interrupt transfer, 143 
iSight camera, 143 
isochronous endpoints, 149 
key characteristics, 143 
MacBook, 142 
mass storage device driver 

attach() method, 162 
bInterfaceClass, 161 
IOMatchCategory key, 161 
IOUSBInterface, 163 
IOUSBMassStorageClass, 161 
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kernel.log, 162 
kextlibs tools, 162 
matching dictionary, 161 
MyFirstUSBDriver.cpp, 158, 159, 160 
MyFirstUSBDriver.h, 158 
OSBundleLibraries dictionary, 162 
start() method, 161 
thumb/flash drive, 158 
virtual driver, 157 

master-slave system, 141 
message pipe, 149 
On-The-Go (OTG), 145 
prober, 156, 157 
protocol, 146 

communication protocol, 146 
cyclic redundancy check field, 148 
data packet, 146 
data packets, 148 
end of packet (EOP) field, 148 
endpoint field, 148 
frame packet, 146 
handshake packet, 146 
isochronous transfer modes, 149 
little-endian format (LSB), 146 
packet identifier values, 147, 148 
packet type layout, 147 
token packet, 146 
transaction, 148 

stream pipe, 149 
topology, 142 
transfer speeds, 144 
version 3.0, 141 

unmap() method, 189 
updateFrequency parameter, 384 
USBDeviceAbortPipeZero, 367 
USBDeviceReEnumerate, 366 
USBGetManufacturerStringIndex, 365 
USBGetProductStringIndex, 365 
USBGetSerialNumberStringIndex, 365 
USBInterfaceGetStringIndex, 374 
User client methods 

callback function, 94 
clientClose() method, 86, 88 
clientDied() method, 86 
DelayForTime(), 97 
DelayForTime() function, 92 
dispatch table, 95–97 
driver object and user client objects, 84 
externalMethod(), 93, 95, 98 
externalMethod() implementation, 92, 97 
getElapsedTimerTime(), 98 

GetElapsedTimerTime() and 
DelayForTime() methods, 98 

GetElapsedTimerTime() implementation, 
91 

GetElapsedTimerTimer(), 97 
header file, 85–86 
implementation, 86–87 
initWithTask() method, 87 
inputStruct argument, 90 
IOConnectCallMethod() function, 91 
IOConnectCallScalarMethod() function, 89, 

91 
IOConnectCallStructMethod() function, 90, 

91 
IOExternalMethodArguments structure, 

92–93, 97 
IOExternalMethodDispatch, 95 
IOExternalMethodDispatch structure, 93 
IOMemoryDescriptor class, 93 
IOService, 84 
IOService class, 85 
IOServiceClose() function, 86 
IOUserClient class, 84 
library functions, 88 
MyUserClient class, 85 
newUserClient() method, 85 
outputCount argument, 90 
outputStruct buffer, 90 
outputValues array, 90 
pseudocode, 94–95 
scalarOutput array, 98 
start() method, 88 
StartTimer() and StopTimer() functions,  

91 
structureInput buffer, 98 
structureInputDescriptor and 

structureOutputDescriptor, 93 
TestDriverInterface.h, 89 
TimerRequestCode enumeration, 90, 97 
user space interface, 88 

User-space USB drivers, 357 
asynchronous operations, 363–64 
extensions directory, 357 
IOUSBDevice class, 358 
IOUSBDeviceInterface class. See 

IOUSBDeviceInterface class 
IOUSBInterface class, 358 
IOUSBInterfaceInterface class. See 

IOUSBInterfaceInterface class 
IOUSBLib, 358 
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User-space USB drivers (cont.) 
IOUSBLib framework 

AddRef() method, 363 
IOCFPlugInInterface class, 363 
IOCreatePlugInInterfaceForService,  

362 
IOCreatePlugInInterfaceForService() 

function, 362 
IODestroyPlugInInterface(), 362 
IOUSBLib.h header file, 362 
IUnknown class, 363 
matching dictionary, 359–62 
notification callback, 358 
plugin variable, 363 
QueryInterface, 362 
QueryInterface() method, 362, 363 
Release() method, 363 

layers, 358 
PCI and Thunderbolt devices, 357 
primary interrupt level, 357 

 V 
Vendor ID, 175 
Virtual File System layer (VFS layer), 319 
Virtual memory addresses, 120 
Virtual memory structure, 105 
Virtual Private Network (VPN), 431 
vm_page_alloc() function, 105 
vm_page_grab function, 104 

 W 
whatDevice argument, 218 
willChange notification, 219 
willTerminate() method, 191 
Windows Registry, 63 
withSpecification() factory method, 318 
wMaxPacketSize, 374 
Work loops 

advantages, 138 
callback function, 139 
getWorkLoop() method, 138, 139 
hardware interrupts/timers, 137 
interrupt handler, 139 
IOCommandGate, 139–41 

IOEventSource function, 139 
IOWorkLoop object, 137, 138–39 
OSObject class, 139 
release, 142–43 
timers, 141–42 

WriteIsochPipeAsync method, 384 
WritePipe, 377 
WritePipeAsync, 378 
WritePipeAsyncTO, 378 
WritePipeTO, 378 

 X, Y 
Xcode, 433 
Xcode 4 user interface, 40, 41 
XNU kernel 

architecture, 22 
BSD layer, 22 

file systems, 36 
FreeBSD 5 operating system, 34 
networking, 36 
services overview, 34 
system calls, 35 
UBC, 37, 38 
virtual file system, 37 

I/O kit, 38, 40 
I/O Kit, 22 
KEXT, 22 
Mach layer, 21 

exceptions, 26, 27 
hardware abstraction, 23 
interprocess communication, 25, 26 
memory allocation, 34 
memory management, 28 
pagers, 33, 34 
physical map, 30 
scheduling, 24, 25 
task address space, 28, 31, 32, 33 
tasks and threads, 23 
time management, 27, 28 
virtual memory map, 29, 30 
virtual memory objects, 30, 31 

 Z 
zinit() function, 105 
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