
 COMPANION eBOOK

Shelve in
Programming / Mac / Mobile

User level:
Intermediate–Advancedwww.apress.com

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

OS X and iOS Kernel Programming combines essential operating system and
kernel architecture knowledge with a highly practical approach that will

help you write effective kernel-level code. You’ll learn fundamental concepts
such as memory management and thread synchronization, as well as the I/O
Kit framework. You’ll also learn how to write your own kernel-level extensions,
such as device drivers for USB and Thunderbolt devices, including networking,
storage and audio drivers.

OS X and iOS Kernel Programming provides an incisive and complete introduc-
tion to the XNU kernel, which runs iPhones, iPads, iPods, and Mac OS X servers
and clients. Then, you’ll expand your horizons to examine Mac OS X and iOS
system architecture. Understanding Apple’s operating systems will allow you to
write efficient device drivers, such as those covered in the book, using I/O Kit.

With OS X and iOS Kernel Programming, you’ll:

• Discover classical kernel architecture topics such as memory
 management and thread synchronization

• Become well-versed in the intricacies of the kernel development
 process by applying kernel debugging and profiling tools

• Learn how to deploy your kernel-level projects and how to successfully
 package them

• Write code that interacts with hardware devices

• Examine easy to understand example code that can also be used in your
 own projects

• Create network filters

Whether you’re a hobbyist, student, or professional engineer, turn to OS X and
iOS Kernel Programming and find the knowledge you need to start developing
your own device drivers and applications that control hardware devices.

Companion
eBook
Available

Master kernel programming for
efficiency and performance

OS X and iOS Kernel
Programming

Ole Henry Halvorsen | Douglas Clarke
OS X and iOS Kernel Program

m
ing

Halvorsen
Clarke

SOURCE CODE ONLINE

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

iv

Contents at a Glance

 About the Authors.. xiv
 About the Technical Reviewers .. xv
 Acknowledgments ... xvi
 Introduction .. xvii
 Chapter 1: Operating System Fundamentals ..1
 Chapter 2: Mac OS X and iOS ..15
 Chapter 3: Xcode and the Kernel Development Environment39
 Chapter 4: The I/O Kit Framework ..51
 Chapter 5: Interacting with Drivers from Applications..69
 Chapter 6: Memory Management ...99
 Chapter 7: Synchronization and Threading ..119
 Chapter 8: Universal Serial Bus ..141
 Chapter 9: PCI Express and Thunderbolt ..173
 Chapter 10: Power Management ..205
 Chapter 11: Serial Port Drivers...223
 Chapter 12: Audio Drivers...249
 Chapter 13: Networking..275
 Chapter 14: Storage Systems ...319
 Chapter 15: User-Space USB Drivers ..357
 Chapter 16: Debugging ...381
 Chapter 17: Advanced Kernel Programming ..411
 Chapter 18: Deployment ...429
 Index ...443

www.allitebooks.com

http://www.allitebooks.org

xvii

Introduction

Kernel development can be a daunting task and is very different from programming traditional user
applications. The kernel environment is more volatile and complex. Extraordinary care must be taken to
ensure that kernel code is free of bugs because any issue may have serious consequences to the stability,
security, and performance of the system. This book covers the fundamentals necessary to begin
programming in the kernel. We cover kernel development from a theoretical and practical point of view.
We cover concepts fundamental to kernel development such as virtual memory and synchronization, as
well as more practical knowledge. The book primarily focuses on Mac OS X, however the XNU kernel is
also used by iOS, and hence the theoretical material in this book will also apply to it. By far the most
common reason for doing development within the kernel’s execution environment is to implement a
device driver for controlling internal or external hardware devices. Because of this, much of the focus of
this book is centred on the development of device drivers. The primary framework for device driver
development in the XNU kernel is I/O Kit, which we cover extensively. As theory becomes boring quickly
we have provided working code samples which you can play with to learn more or use as a starting point
for your own drivers.

We hope you have as much fun reading this book as we have enjoyed writing it.

Who Is This Book For?
The book was written for anyone interested in Apple’s iOS and Mac OS X operating systems, with a focus
on practical kernel development, especially driver devel. Regardless of whether you are a hobbyist,
student, or professional engineer, we hope to provide you with material of interest. While the focus is on
kernel programming and development, we will cover many theoretical aspects of OS technology and
provide a detailed overview of the OS X and iOS kernel environments. The aim of the book is to provide
the knowledge necessary to start developing your own kernel extensions and drivers. We will focus in
particular on the I/O Kit framework for writing device drivers and extensions, but we will also cover
general knowledge that will give you a deeper understanding of how I/O Kit interacts with the OS. If you
are mainly interested in developing OS X or iOS user applications, this book may not be for you. We will
not cover Cocoa or any other framework used for developing end-user applications. This book covers
kernel-programming topics such as driver and kernel extension development on Apple’s OS X and iOS
platform.

Some knowledge of operating system internals will be useful in understanding the concepts
discussed in this book. Having completed an introductory computer science or engineering course will
be a helpful starting point. Additionally, knowledge of at least one programming language will be
required in order to understand examples throughout the book. Since we focus on I/O Kit, which is
written in a subset of C++ called Embedded C++, it would be highly beneficial to have some experience
with C++ (or at least C) to make the most of this book. The book does not cover general programming
topics or theory. We will briefly cover some fundamentals of OS theory to provide a context for further
discussions.

 INTRODUCTION

xviii

Book Structure
The following is a brief description of each chapter in this book:

Chapter 1, Operating System Fundamentals. Details the functionality of an operating system and
its role in managing the computer’s hardware resources. We describe the purpose of device drivers and
when they are needed, and introduce the differences between programming in the kernel environment
as compared to standard application development.

Chapter 2, Mac OS X and iOS. Provides a brief overview of the technical structure of XNU, the kernel
used by Mac OS X and iOS.

Chapter 3, Xcode and the Kernel Development Environment. Provides an overview of the
development tools provided by Apple for Mac OS X and iOS development. The chapter ends with a short
“Hello world” kernel extension.

Chapter 4, The I/O Kit Framework. Introduces the I/O Kit framework that provides the driver model
for Mac OS X and its object-oriented architecture. We explain how the I/O Kit finds the appropriate
device driver to manage a hardware device. We demonstrate a generic device driver to illustrate the basic
structure of any I/O Kit driver.

Chapter 5, Interacting with Drivers from Applications. Explains how application code can access a
kernel driver. We demonstrate how to search and match against a specific driver as well as how to install
a notification to wait for the arrival of a driver or a particular device. We will show how an application
can send commands to a driver and watch for events sent by the driver.

Chapter 6, Memory Management. Provides an overview of kernel memory management and the
different types of memory that a driver needs to work with. We describe the differences between physical
and kernel virtual addresses and user-space memory. We also introduce the reader to the concepts such
as memory descriptors and memory mapping.

Chapter 7, Synchronization and Threading. Describes the fundamentals of synchronization and
why it is a necessity for every kernel driver. We discuss the usage of kernel locking mechanisms such as
IOLock and IOCommandGate and their appropriate use. We explain how a typical driver requires
synchronization between its own threads, user-space threads, and hardware interrupts. We discuss the
kernel facilities for creating kernel threads and asynchronous timers.

Chapter 8, USB Drivers. Introduces the reader to the architecture of USB and how a driver
interfaces with them. We provide an overview of the I/O Kit USB API and the classes it provides for
enumerating devices and transferring data to or from a USB device. We also discuss steps needed to
support device removal and provide an example to show how a driver can enumerate resources such as
pipes.

Chapter 9, PCI and Thunderbolt. Provides an overview of the PCI architecture. We also describe the
concepts that are unique to PCI drivers, such as memory-mapped I/O, high-speed data transfer through
Direct Memory Access (DMA), and handling of device interrupts. We give an overview of the IOPCIDevice
class that the I/O Kit provides for accessing and configuring PCI devices. We also discuss the related and
more recent Thunderbolt technology.

Chapter 10, Power Management. Describes the methods that drivers need to implement in order to
allow the system to enter low power states such as machine sleep. We also describe advanced power
management that a driver can implement if it wishes to place its hardware into a low power state after a
period of inactivity.

Chapter 11, Serial Port Drivers. Describes how to implement a serial port driver on Mac OS X. We
introduce relevant data structures such as circular queues and techniques for managing data flow
through blocking I/O and notification events. We show how a user application can enumerate and
access a serial port driver.

www.allitebooks.com

http://www.allitebooks.org

 INTRODUCTION

xix

Chapter 12, Audo Drivers. Discusses how system-wide audio input and output devices can be
developed using the IOAudioFamily framework. We demonstrate a simple virtual audio device that
copies audio output to its input.

Chapter 13, Network Drivers. Describes how a network interface can be implemented using the
IONetworkingFamily. We also cover how to write network filters to filter, block, and modify network
packets. The chapter concludes with an example of how to write an Ethernet driver.

Chapter 14, Storage Drivers. Covers the storage driver stack on Mac OS X that provides support for
storage devices such as disks and CDs. We describe the drivers at each layer of the storage stack,
including how to write a RAM disk, a partition scheme, and a filter driver that provides disk encryption.

Chapter 15, User space USB Drivers. Describes how certain drivers can be implemented entirely
inside a user application. We describe the advantages to this approach and also when this may not be
applicable.

Chapter 16, Debugging. Contains practical information on how to debug drivers, as well as
common problems and pitfalls. It will enable a reader to work backwards from a kernel crash report to a
location in their code, a common scenario facing a kernel developer. We will discuss the tools OS X
provides to enable this, such as the GNU debugger (GDB).

Chapter 17, Advanced Kernel Programming. Explores some of the more advanced topics in kernel
programming, such as utilizing SSE and floating point or implementing advanced driver architectures.

Chapter 18, Deployment. Concludes the book by describing how to distribute a driver to the end
user. We cover the use of the Apple installation system for both first-time installation and upgrades. The
chapter includes practical tips on how to avoid common driver installation problems.

C H A P T E R 1

1

Operating System Fundamentals

The role of an operating system is to provide an environment in which the user is able to run application
software. The applications that users run rely on services provided by the operating system to perform
tasks while they execute, in many cases without the user—or even the programmer—giving much
thought to them. For an application to read a file from disk, for example, the programmer simply needs
to call a function that the operating system provides. The operating system handles the specific steps
required to perform that read. This frees the application programmer from having to worry about the
differences between reading a file that resides on the computer’s internal hard disk or a file on an
external USB flash drive; the operating system takes care of such matters.

Most programmers are familiar with developing code that is run by the user and perhaps uses a
framework such as Cocoa to provide a graphical user interface with which to interact with the user. All of
the applications available on the Mac or iPhone App Store fit into this category. This book is not about
writing application software, but rather about writing kernel extensions—that is, code that provides
services to applications. Two possible situations in which a kernel extension is necessary are allowing
the operating system to work with custom hardware devices and adding support for new file systems.
For example, a kernel extension could allow a new USB audio device to be used by iTunes or allow an
Ethernet card to provide an interface for networking applications, as shown in Figure 1-1. A file system
kernel extension could allow a hard disk formatted on a Windows computer to mount on a Mac as if it
were a standard Mac drive.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 OPERATING SYSTEM FUNDAMENTALS

2

Figure 1-1. The network interfaces listed in the Mac OS X system preferences represent network kernel

extensions.

An important role of the operating system is to manage the computer’s hardware resources, such as
memory and the CPU, and peripherals, such as disk storage and the keyboard. The collection of
hardware devices that the operating system needs to support varies greatly from machine to machine.
The hardware configuration of a MacBook Air is very different to that of a Mac Pro, although they both
run the same operating system. To allow the operating system to support multiple hardware
configurations without becoming bloated, the code required to support each hardware component is
packaged into a special type of kernel extension known as a driver. This modularity allows the operating
system to load drivers on demand, depending on the hardware that is present on the system. This
approach also allows for drivers to be installed into the system by vendors to support their custom
hardware. The standard installation of Mac OS X comes with over one hundred drivers, of which only a
subset is needed to run a particular system.

Developing a kernel extension is very different from writing an application. The execution of an
application tends to be driven by events originating from the user. The application runs when the user
launches it; it may then wait for the user to click a button or select a menu item, at which point the
application handles that request. Kernel extensions, on the other hand, have no user interface and do
not interact with the user. They are loaded by the operating system, and are called by the operating
system to perform tasks that it could not perform by itself, such as when the operating system needs to
access a hardware device that the kernel extension is driving.

CHAPTER 1 OPERATING SYSTEM FUNDAMENTALS

3

To help with the security and stability of the system, modern operating systems, such as Mac OS X,
isolate the core operating system code (the kernel) from the applications and services that are run by the
user. Any code that runs as part of the kernel, such as driver code, is said to run in “kernel space.” Code
that runs in kernel space is granted privileges that standard user applications do not have, such as the
ability to directly read and write to hardware devices connected to the computer.

In contrast, the standard application code that users work with are said to run in “user space.”
Software that runs in user space has no direct access to hardware. Therefore, to access hardware, user
code must send a request to the kernel, such as a disk read request, to request that the kernel perform a
task on behalf of the application.

There is a strict barrier between code that runs in user space and code that runs in the kernel.
Applications can only access the kernel by calling functions that the operating system publishes to user
space code. Similarly, code that executes in kernel space runs in a separate environment to user space
code. Rather than using the same rich programming APIs that are available to user space code, the
kernel provides its own set of APIs that developers of kernel extensions must use. If you are accustomed
to user space programming, these APIs may appear restrictive at first, since operations such as user
interaction and file system access are typically not available to kernel extensions. Figure 1-2 shows the
separation of user space code and kernel space code, and the interaction between each layer.

Figure 1-2. The separate layers of responsibility in a modern operating system

An advantage of forcing applications to make a request to the kernel to access hardware is that the
kernel (and kernel driver) becomes the central arbiter of a hardware device. Consider the case of a sound
card. There may be multiple applications on the system that are playing audio at any one time, but
because their requests are funneled through to a single audio driver, that driver is able to mix the audio
streams from all applications and provide the sound card with the resulting mixed stream.

In the remainder of this chapter, we provide an overview of the functionality provided by the
operating system kernel, with a focus on its importance in providing user applications with access to
hardware. We begin at the highest level, looking at application software, and then digging down into the
operating system kernel level, and finally down into the deepest level, the hardware driver. If you are
already familiar with these concepts, you can safely proceed to Chapter 2.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 OPERATING SYSTEM FUNDAMENTALS

4

The Role of the Operating System
As part of the boot sequence, the operating system determines the hardware configuration of the
system, finds any external devices connected to USB ports or plugged into PCI expansion slots, and
initializes them, loading drivers along the way, if necessary.

Once the operating system has completed loading, the user is able to run application software.
Application software may need to allocate memory or write a file to disk, and it is the operating system
that handles these requests. To the user, the involvement of the operating system is largely transparent.

The operating system provides a layer of abstraction between running applications and the physical
hardware. Applications typically communicate with hardware by issuing high-level requests to the
operating system. Because the operating system handles these requests, the application can be
completely unaware of the hardware configuration on which it is running, such as the amount of RAM
installed and whether the disk storage is an internal SSD or an external USB drive.

This abstraction allows application software to be run on a wide variety of different hardware
configurations without the programmer having to add support for each one, even if new hardware
devices are created after the program has been released.

Application developers can often ignore many of the details of the workings of a computer system,
because the operating system abstracts away the intricacies of the hardware platform on which the
application is running. As a driver developer, however, the code that you write becomes part of the
operating system and will interface directly with the computer’s hardware; you are not immune to the
inner-workings of a system. For this reason, a basic understanding of how the operating system
performs its duties is necessary.

Process Management
A user typically has many applications installed on his or her computer. These are purely passive
entities. The programs on disk contain data that is needed only when the program is run, consisting of
the executable code and application data. When the user launches an application, the operating system
loads the program’s code and data into memory from disk and begins executing its code. A program
being executed is known as a “process.” Unlike a program, a process is an active entity, and consists of a
snapshot of the state of the program at a single instance during execution. This includes the program’s
code, the memory that the program has allocated, and the current state of its execution, such as the CPU
instruction of the function that the program is currently executing, and the contents of its variables and
memory allocations.

There are typically many processes running on a system at once. These include applications that the
user has launched (such as iTunes or Safari), as well as processes that are started automatically by the
operating system and that run with no indication to the user. For example, the Time Machine backup
service will automatically run a background process every hour to perform a backup of your data. There
may even be multiple instances of the same program being executed at any one time, each of which is
considered a distinct process by the operating system. Figure 1-3 shows the Activity Monitor utility that
is included with Mac OS X, which allows all of the processes running on the system to be examined.

CHAPTER 1 OPERATING SYSTEM FUNDAMENTALS

5

Figure 1-3. Activity Monitor on Mac OS X showing all processes running on the system. Compare this to

the Dock, which shows the visible user applications.

Process Address Spaces
Although there are typically many processes running at any one time, each process is unaware of the
other processes running on the system. In fact, without explicit code, one process cannot interact or
influence the behavior of another process.

The operating system provides each process with a range of memory within which it is allowed to
operate; this is known as the process’s address space. The address space is dynamic and changes during
execution as a process allocates memory. If a process attempts to read or write to a memory address
outside of its address space, the operating system typically terminates it, and the user informed that the
application has crashed.

Although protected memory is not new, it is only within the last decade that it has been found on
consumer desktop systems. Prior to Mac OS X, a process running under Mac OS 9 was able to read or
write to any memory address, even if that address corresponded to a buffer that was allocated by
another process or belonged to the operating system itself.

Without memory protection, applications were able to bypass the operating system and implement
their own inter-process communication schemes based on directly modifying the memory and variables
of a different process, with or without the consent of that process. This was also true for operating

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 OPERATING SYSTEM FUNDAMENTALS

6

system structures. For example, Mac OS 9 had an internal global variable that contained a linked list of
every GUI window that was open. Although this linked list was nominally owned and manipulated by
the operating system, applications were able to walk and modify the list without making any calls to the
operating system.

Without memory protection, an operating system is susceptible to bugs in user applications. An
application running on a system with memory protection can, at worst, corrupt its own memory and
structures, but the damage is localized to the application itself. On a system without memory protection,
such as Mac OS 9, a bug in an application could potentially overwrite the internal structures of the
operating system, which could cause the system to crash entirely and require a reboot to recover.

It is worth noting that on a modern operating system such as Mac OS X, the kernel has an address
space of its own. This allows the kernel to operate independently of all running processes. On Mac OS X,
a single address space is used for both the kernel and all kernel extensions that are loaded. This means
that there is nothing protecting core operating system structures from being inadvertently overwritten
by a buggy driver. Unlike a user process, which can simply be aborted, if this situation occurs in the
kernel, the entire system is brought down and the computer must be rebooted. This type of error
presents itself as a kernel panic on Mac OS X, or the “blue screen of death” on Windows. For this reason,
developers of kernel extensions need to be careful with memory management to ensure that all memory
accesses are valid.

Operating System Services
With a modern operating system, there is a clear separation between the functions performed by the
operating system and the functions performed by the application. Whenever a process wishes to
perform a task such as allocating memory, reading data from disk, or sending data over a network, it
needs to go through the operating system using a set of well-defined programming interfaces that are
provided by the system. System functions such as malloc() and read() are examples of system calls that
provide operating system services. These system calls may be made directly by the application or
indirectly through a higher-level development framework such as the Cocoa framework on Mac OS X.
Internally, the Cocoa framework is implemented on top of these same system calls, and accesses
operating system services by invoking lower-level functions such as read().

However, because user processes have no direct access to hardware or to operating system
structures, a call to a function such as read() needs to break out of the confines of the process’s address
space. When a function call to an operating system service is made, control passes from the user
application to the privileged section of the operating system, known as the kernel. Transferring control
to the kernel is usually performed with the help of the CPU, which provides an instruction for this
purpose. For example, the Intel CPU found in modern-day Macs provides a syscall instruction that
jumps to a function that was set up when the operating system booted. This kernel function first needs
to identify which system call the user process executed (determined by a value written to a CPU register
by the calling process) and then reads the function parameters passed to the system call (again, set up by
the calling process through CPU registers). The kernel then performs the function call on behalf of the
user process and returns control to the process along with any result code. This is illustrated in Figure
1-4.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 1 OPERATING SYSTEM FUNDAMENTALS

7

Figure 1-4. The flow of control in a system call

The kernel is a privileged process and has the ability to perform operations that are not available to
user processes, but are necessary for configuring the system. When control transfers to the kernel, such
as following a system call, the CPU enters a privileged mode while kernel code is executed and then
drops back to restricted privileges before returning to the user process.

Since the kernel executes at a higher privilege level than the user process while it is executing a
system call on behalf of the process, it needs to be careful that it doesn’t inadvertently cause a security
breach. This could happen if the kernel were tricked into performing a task that the user process should
not be allowed to do, such as being asked to open a file for which the user does not have read
permission, or being provided with a destination buffer whose address is not within the process’s
address space. In the first case, although the kernel process itself has permission to open any file on the
system, because it is operating on behalf of a lesser-privileged user process, the request needs to be
denied. In the second case, if the kernel were to access an invalid address, the result would be an
unrecoverable error, which would lead to a kernel panic.

Kernel errors are catastrophic, requiring the entire system to be rebooted. To prevent this from
occurring, whenever the kernel performs a request on behalf of a user process, it needs to take care to
validate the parameters that have been provided by the process and should not assume that they are
valid. This applies to system calls implemented by the kernel and, as we will see in subsequent chapters,
whenever a driver accepts a control request from a user process.

Virtual Memory
The RAM in a computer system is a limited resource, with all of the running processes on the system
competing for a share of it. When there are multiple applications running on a system, it is not unusual
for the total amount of memory allocated by all processes to exceed the amount of RAM on the system.

An operating system that supports virtual memory allows a process to allocate and use more
memory than the amount of RAM installed on the system; that is, the address space of a process is not
constrained by the amount of physical RAM. With virtual memory, the operating system uses a backing
store on secondary storage, such as the hard disk, to keep portions of a process address space that will
not fit into RAM. The CPU, however, can still access only addresses that are resident in RAM, so the
operating system must swap data between the disk backing store and RAM in response to memory
accesses made by the process as it runs.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 OPERATING SYSTEM FUNDAMENTALS

8

At a particular time, a process may only need to reference a small subset of the total memory that
has been allocated. This is known as the working set of the process and, as long as the operating system
keeps this working set in RAM, there is negligible impact on the execution speed imposed by virtual
memory. The working set is a dynamic entity, and it changes based on the data that is actively being
used as the process runs. If a process accesses a memory address that is not resident in RAM, the
corresponding data is read from the backing store on disk and brought into RAM. If there is no free RAM
available to load the data into, some of the existing data in RAM will need to be swapped out to disk
beforehand, thus freeing up physical RAM.

Virtual memory is handled by the operating system. A user process plays no part in its
implementation, and is unaware that portions of its address space are not in physical RAM or that data it
has accessed needed to be swapped into main memory.

A consequence of virtual memory is that the addresses used by a process do not correspond to
addresses in physical RAM. This is apparent if you consider that a process’s address space may be larger
than the amount of RAM on the system. Therefore, the addresses that a process reads from and writes to
need to be translated from the process’s virtual address space into a physical RAM address. Since every
memory access requires an address translation, this is performed by the CPU to minimize the impact on
execution speed.

Operating systems typically use a scheme known as “paging” to implement virtual to physical
address translation. Under a paged memory scheme, physical memory is divided into fixed-sized blocks
known as page frames. Most operating systems, including both Mac OS X and iOS, use a frame size of
4096 bytes. Similarly, the virtual address space of each process is divided into fixed-size blocks, known as
pages. The number of bytes per page is always the same as the number of bytes per frame. Each page in
a process can then be mapped to a frame in physical memory, as shown in Figure 1-5.

Figure 1-5. The pages in a process’s address space can be mapped to any page frames in memory.

CHAPTER 1 OPERATING SYSTEM FUNDAMENTALS

9

Another advantage of virtual memory is it allows a buffer that occupies a contiguous range of pages
in the process’s virtual address space to be spread over a number of discontiguous frames in physical
memory, as seen in Figure 1-5. This solves the problem of fragmentation of physical memory, since a
process’s memory allocation can be spread over several physical memory segments and is not limited to
the size of the longest contiguous group of physical page frames.

As part of launching a process, the operating system creates a table to map addresses between the
process’s virtual address space and their corresponding physical address. This is known as a “page
table.” Conceptually, the page table contains an entry for each page in the process’s address space
containing the address of the physical page frame to which each page is mapped. A page table entry may
also contain access control bits that the CPU uses to determine whether the page is read-only and a bit
that indicates whether the page is resident in memory or has been swapped out to the backing store.
Figure 1-6 describes the steps that the CPU performs to translate a virtual address to a physical address.

Figure 1-6. Virtual to physical address translation for a 32-bit address with a page size of 4096 bytes (12

bits)

If a process accesses a memory address that the CPU cannot translate into a physical address, an
error known as a “page fault” occurs. Page faults are handled by the operating system, running at
privileged execution level. The operating system determines whether the fault occurred because the
address was not in the process’s address space, in which case the process has attempted to access an
invalid address and is terminated. If the fault occurred because the page containing the address has
been swapped out to the backing store, the operating system performs the following steps:

1. A frame in physical memory is allocated to hold the requested page; if no free
frames are available in memory, an existing frame is swapped out to the
backing store to make room.

2. The requested page is read from the backing store into memory.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 OPERATING SYSTEM FUNDAMENTALS

10

3. The page table for the process is updated so that the requested page is mapped
to the allocated frame.

4. Control returns to the calling process.

The calling process re-executes the instruction that caused the fault, but this time around, the CPU
finds a mapping for the requested page in the page table and the instruction completes successfully.

An understanding of virtual memory and paging is essential for kernel developers. Although the
kernel handles requests on behalf of user applications, it also has an address space of its own, so
parameters often need to be copied or mapped from a process’s address space to the kernel’s address
space. In addition, kernel code that interfaces to hardware devices often needs to obtain the physical
address of memory. Consider a disk driver that is handling a read request for a user process. The
destination for the data read from disk is a buffer that resides in the address space of the user process. As
with the CPU, the hardware controlled by the driver can write only to an address in main memory, and
not to a destination in the backing store. Therefore, to handle the read request, the driver needs to
ensure that the user buffer is swapped into main memory and remains in main memory for the duration
of the read operation. Finally, the driver needs to translate the address of the destination buffer from a
virtual address into a physical address that the hardware can access. We describe this in further detail in
Chapter 6.

It’s worth noting that although iOS provides a page table for each process, it does not support a
backing store. At first, it may seem that this completely defeats the purpose of paging. However, it serves
two very important purposes. First, it provides each process with the view that it has sole access to
memory. Second, it avoids problems caused by the fragmentation of physical memory.

Scheduling
Another resource that is under high contention in a computer system is the CPU. Each process requires
access to the CPU in order to execute, but typically, there are more active processes wanting access to
the CPU than there are CPU cores on the system. The operating system must therefore share the CPU
cores among the running processes and ensure that each process is provided regular access to the CPU
so that it can execute.

We have seen that processes run independent of each other and are given their own address spaces
to prevent one process from affecting the behavior of any other process. However, in many applications,
it is useful to allow two independent execution paths to run simultaneously, without the restriction of
having each path run within its own address space. This unit of execution is known as a “thread.”
Multiple threads all execute code from the same program code and are run within the same process (and
hence share the same address space), but otherwise run independently.

To the operating system, a thread is the basic unit of scheduling; the operating system scheduler
needs to look at only the active threads on the system when considering what to schedule next on the
CPU. For a process to execute, it must contain at least one thread; the operating system automatically
creates the initial thread for a new process when it begins running.

The goal of the scheduler is twofold: to prevent the CPU from becoming idle, since otherwise a
valuable hardware component is being wasted, and to provide all threads with access to the CPU in a
manner that is fair so that a single thread cannot monopolize the CPU and starve other threads from
running. To do this, a thread is scheduled on an available CPU core until one of two events occurs:

• A certain amount of time has elapsed, known as the time quantum, at which point
the thread is preempted by the operating system and another thread is scheduled.
On Mac OS X, the default time quantum is 10 milliseconds.

CHAPTER 1 OPERATING SYSTEM FUNDAMENTALS

11

• The thread can no longer execute because it is waiting for the completion of an
operation, such as for data to be read from disk, or for the result of another thread.
In this case, the scheduler allows another thread to run on the CPU while the
original thread is blocked. This prevents the CPU from sitting idle when a thread
has no work to do and maximizes the time that the CPU is spent executing code. A
thread can also voluntarily give up its time on the CPU by calling one of the
sleep() functions, which delay execution of the current thread for a specified
duration.

One reason for adding multiple threads to an application is to allow it to execute concurrently
across multiple CPU cores so that the application’s execution can be sped up by dividing a complex
operation into smaller steps that are run in parallel. However, multithreading has advantages even on a
computer with a single CPU core. By rapidly switching between active threads, the scheduler gives the
illusion that all threads are running concurrently. This allows a thread to block or sit in a tight loop with
negligible impact on the responsiveness of other threads, so a time-consuming task can be moved to a
background thread while leaving the rest of the application free to respond to user interaction.

A common design used in applications that interface with hardware is to place the code that
accesses the hardware in its own thread. Software code often has to block while it is waiting for the
hardware to respond; by removing this code from the main program thread, the program’s user interface
is not affected when the program needs to wait for the hardware.

Another common use of threads occurs when software needs to respond to an event from hardware
with minimal delay. The application can create a thread that is blocked until it receives notification from
hardware, which can be signaled using techniques discussed in later chapters. While the thread is
blocked, the scheduler does not need to provide it with access to the CPU, so the presence of the thread
has no impact on the performance of the system. However, once the hardware has signaled an event, the
thread becomes unblocked, is scheduled on the CPU, and it is free to take whatever action is necessary
to respond to the hardware.

Hardware and Drivers
In addition to managing essential hardware resources such as the CPU and memory, the operating
system is also responsible for managing hardware peripherals that may be added to the system. This
includes devices such as the keyboard and mouse, a USB flash drive, and the graphics card. Although the
operating system is responsible for managing these devices, it does so with the help of drivers, which can
be thought of as plug-ins that run inside the operating system kernel and allow the system to interface to
hardware devices.

The code to support a hardware device can be found in two places: on the device itself (known as
firmware) and on the computer (known as the driver). The role of the driver is to act on behalf of the
operating system in controlling the hardware device. Driver code is loaded into the operating system
kernel and is granted the same privileges as the rest of the kernel, including the ability to directly access
hardware.

The driver has the responsibility of initializing the hardware when the device is plugged into the
computer (or when the computer boots) and of translating requests from the operating system into a
sequence of hardware-specific operations that the device needs to perform to complete the operating
system’s request.

The type of requests that a driver will receive from the operating system depends on what function
the driver performs. For certain drivers, the operating system provides a framework for driver
developers. For example, a sound card requires an audio driver to be written. The audio driver receives
requests from the operating system that are specific to the world of audio, such as a request to create a
48 kHz audio output stream, followed by requests to output a provided packet of audio.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 OPERATING SYSTEM FUNDAMENTALS

12

Drivers may also be built on top of other drivers and may request services provided by other drivers.
For example, the driver of a USB audio input device uses the services of a lower-level generic USB driver
to access its hardware. This relieves the developer from having to become intimate with the USB
protocol, and the developer is instead free to concentrate on the specifics of his own device. As in the
previous example, the audio driver receives requests from the operating system that represent audio
stream operations, and in responding to these, the driver creates requests of its own that are passed to a
lower-level USB driver. This allows a separation in the responsibility of each driver: The audio driver
needs to concern itself only with handling audio requests and configuring the audio device, and the USB
driver needs to concern itself only with the USB protocol and performing data transfers over the USB
bus. An example of the way in which drivers can be layered is illustrated in Figure 1-7.

Figure 1-7. The chain of control requests in an audio request from application to hardware

Not all hardware fits into a specific class that is understood by the operating system. A specialized
device, such as a 3D printer, is unlikely to have support from the operating system. Instead, the
hardware manufacturer needs to write a generic driver for their hardware. As a generic driver, the
operating system does not recognize the device as a printer and issue printing requests to it, but instead
the driver is controlled by specialized application software, which communicates with the printer driver
directly. The operating system provides a special system call to allow a user application to request an
operation from a driver, known as an “i/o control” request, often shortened to “ioctl.” An ioctl specifies
the operation to be performed and provides the driver with parameters required by the operation, which
may include a buffer to place the result of the operation. Although the ioctl request is implemented as a
system call to the operating system, the request is passed directly to the driver.

CHAPTER 1 OPERATING SYSTEM FUNDAMENTALS

13

Summary
The operating system is responsible for managing the hardware resources in a computer. It provides an
abstract model of the computer system to user programs, giving the appearance that each program has
full access to the CPU and the entire memory range. Programs that are run by the user cannot touch
hardware without calling upon services provided by the operating system. In handling services that
involve peripheral hardware devices, the operating system may need to call functions provided by the
driver of that device.

In subsequent chapters, we will put the concepts we have covered here into practice. We will
introduce you to the interfaces provided by Mac OS X to allow drivers to work with virtual and physical
memory addresses, respond to requests from user applications, and communicate with PCI and USB
devices.

www.allitebooks.com

http://www.allitebooks.org

C H A P T E R 2

15

Mac OS X and iOS

Mac OS X is a modern Unix-based operating system developed by Apple Inc for their Macintosh
computer series. OS X is the tenth incarnation of Mac OS.

OS X features a graphical user interface known for its ease of use and visual appeal. Apple has
gained a cult-like following for their products, and any new feature addition to either OS X or iOS
receives widespread attention. In addition to the regular edition of OS X, Apple also provided a server
edition of OS X called Mac OS X Server.

The server version was later merged with the regular version in Mac OS X 10.7 (Lion). OS X was the
successor to Mac OS 9, and represented a radical departure from earlier versions. Unlike its
predecessors, OS X was based on the NeXTSTEP operating system. At present, there have been eight
releases of Mac OS X, with the latest being Mac OS X 10.7, codenamed Lion. The Mac OS X releases to
date are shown in Table 2-1.

Table 2-1. Mac OS X Releases to Date

Version Name Released

10.0 C heetah March 2001

10.1 Puma September 2001

10.2 Jagua r August 2002

10.3 Pant her October 2003

10.4 Ti ger April 2005

10.5 Leo pard October 2007

10.6 Snow Leopard August 2009

10.7 Li on July 2011

CHAPTER 2 MAC OS X AND IOS

16

Mac OS X comes with a range of tools for developers, including Xcode, which allow the development
of a wide range of applications, including the major topic of this book—kernel extensions.

For the end-user, OS X usually comes bundled with the iLife suite, which contains software for
photo, audio, and video editing, as well as software for authoring web pages.

NEXTSTEP

OS X and iOS are based on the NeXTSTEP OS developed by NeXT Computer Inc, which was founded by
Steve Jobs after he left Apple in 1985. The company was initially funded by Jobs himself, but later gained
significant outside investments. NeXT was later acquired by Apple, and NeXTSTEP technology made its
way into OS X. The aim of NeXT was to build a computer for academia and business. Despite limited
commercial success relative to the competition, the NeXT computers (most notably the NeXTcube) had a
highly innovative operating system, called NeXTSTEP, which was in many ways ahead of its time.

NeXTSTEP had a graphical user interface and command line interface like the current versions of OS X (iOS
does not provide a user accessible command line interface). Many core technologies introduced by
NeXTSTEP are still found in its successors, such as application bundles and Interface Builder. Interface
Builder is now part of the Xcode development environment and is widely used for both OS X and iOS Cocoa
applications. NeXTSTEP provided Driver Kit, an object-oriented framework for driver development, which
later evolved into I/O Kit, one of the major topics of this book.

iOS was later derived from OS X, and it is Apple’s OS for mobile devices. It was launched with the

release of the first iPhone, in 2007, and at that point it was called iPhone OS, though it was later renamed
iOS to better reflect the fact that it runs on other mobile devices, such as the iPod Touch, the iPad, and
more recently the Apple TV. iOS was built specifically for mobile devices with touch interfaces. Unlike
the biggest competitor, Windows, neither OS X nor iOS are licensed for use by third parties, and they can
officially only be used on Apple’s hardware products. A high-level view of the Mac OS X architecture is
shown in Figure 2-1.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 MAC OS X AND IOS

17

Figure 2-1. Mac OS X architecture

The core of Mac OS X and iOS is POSIX compliant and has since Mac OS X 10.5 (Leopard) complied
with the Unix 03 Certification. The core of OS X and iOS, which includes the kernel and the Unix base of
the OS, is known as Darwin, and it is an open source operating system published by Apple. Darwin,
unlike Mac OS X, does not include the characteristic user interface, as it is a bare bones system, in that it
only provides the kernel and user space base of tools and services typical of Unix systems. At its release,
the only supported architecture was the PowerPC platform, but Intel 32 and 64-bit support was
subsequently added as part of Apple’s shift to the Intel architecture. Apple has thus far not released the
ARM version of Darwin that iOS is based on. Darwin is currently downloadable in source form only, and
has to be compiled. The Darwin distribution includes the source code for the XNU kernel. The kernel
sources are a particularly useful resource for people wanting to know more about the inner workings of
the OS, and for developing kernel extensions. You can often find more detailed explanations in the
source code headers, or the code itself, than are documented on Apple’s developer website.

The Darwin OS (and therefore OS X and iOS) runs the XNU kernel, which is based on code from the
Mach kernel, as well as parts of the FreeBSD operating system. Figure 2-2 shows the Mac OS X desktop.

4

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 2 MAC OS X AND IOS

18

Figure 2-2. The Mac OS X desktop

Programming APIs
As you can see from Figure 2-1, OS X has a layered architecture. Between the Darwin core and the user
application there is a rich set of programming APIs. The most significant of these is Cocoa, which is the
preferred framework for GUI-based applications. The iOS equivalent is Cocoa Touch, which is
principally the same, but offers GUI elements specialized for touch-based user interaction. Both Cocoa
and Cocoa Touch are written in the Objective-C language. Objective-C is a superset of C, with support
for Smalltalk style messages.

OBJECTIVE-C

Objective-C was the language of choice for application development under Mac OS X and iOS, as well as
their predecessor, NeXTSTEP. Objective-C is a superset of the C language and provides support for object-
oriented programming, but it lacks many of the advanced capabilities provided by languages like C++,
such as multiple inheritance, templates, and operator overloading. Objective-C uses Smalltalk-style
messaging and dynamic binding (which in many ways removes the need for multiple inheritance). The
language was invented in the early 1980s by Brad Cox and Tom Love. Objective-C is still the de-facto
standard language for application development on both OS X and iOS, although driver or system level
programming is typically done in C or C++. Many core frameworks still use the NS (for NeXTSTEP) prefix in
their class names, such as NSString and NSArray.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 MAC OS X AND IOS

19

Other programming APIs include the BSD API, which provides application access to low-level file
and device access, as well as the POSIX threading API (pthreads). The BSD layer, unlike Cocoa, does not
provide facilities for programming applications with a graphical user interface. Mac OS X has another
major API, called Carbon. Carbon is a C-based API that overlaps with Cocoa in terms of functionality. It
originally provided some backward compatibility with earlier versions of Mac OS. The Carbon API is now
deprecated in favor of Cocoa for GUI applications, but remains in OS X to support legacy applications,
such as Apple’s Final Cut Pro 7. The publically available version of Carbon remains 32-bit only, so Cocoa
is needed for 64-bit compatibility. The fourth major API is Java, which has now also been deprecated.
Java was removed from default installation in Mac OS X 10.7, although it is still provided as an optional
install.

Graphics and multimedia are key differentiators that OS X and iOS offer over other operating
systems. Both offer a rich set of APIs for working with graphics and multimedia. The core of the graphics
system is the Quartz system. Quartz encompasses the windowing system (Quartz Compositor), as well as
the API known as Quartz 2D. Quartz is based on the PDF (Portable Document Format) model. It offers
resolution independent user interfaces, as well as anti-aliased rendering of text and graphics. The Quartz
Extreme interface offers hardware-assisted OpenGL rendering of windows, where supported by the
graphics hardware. Here’s a short overview of some important graphics and multimedia frameworks:

• Quartz: Consists of the Quartz 2D API and the Quartz Compositor, which provides
the graphical window server. Cocoa Drawing offers an object-oriented interface
on top of Quartz for use in Cocoa applications.

• OpenGL: The industry standard API for developing 3D applications. iOS supports
a version of OpenGL called OpenGL ES, a subset designed for embedded devices.

• Core Animation: A layer-based API integrated with Cocoa that makes it easy to
create animated content and do transformations.

• Core Image: Provides support for working with images, including adding effects,
cropping, or color correction.

• Core Audio: Offers support for audio playback, recording, mixing, and processing.

• QuickTime: An advanced library for working with multimedia. It allows playback
and the recording of audio and video, including professional formats.

• Core Text: A C-based API for text rendering and layout. The Cocoa Text API is
based on Core Text.

Supported Platforms
At its release, OS X was only supported on the PowerPC platform. In January 2006, Apple released
version 10.4.4, which finally brought Mac OS X to the Intel x86-platform, as announced at WWDC 2005.
The reason for transitioning away from the PowerPC platform was, according to Apple, their
disappointment in IBM’s ability to deliver a competitive microprocessor, especially for low-power
processors intended for laptops. The transition to Intel was smooth for Apple, and indeed it is one of the
few examples of a successful platform shift within the industry.

Apple provided an elegant solution, called Rosetta, which is a dynamic translator that would allow
existing PowerPC applications to run on x86-based Macs (naturally with some performance penalties).
Apple also provided developers with Universal Binaries, which allowed native code for more than one
architecture to exist within a single binary executable (also referred to as fat binaries). While support for

CHAPTER 2 MAC OS X AND IOS

20

PowerPC was discontinued, as of Mac OS X 10.6 (Snow Leopard), Universal Binaries is still used to
provide 32-bit, and 64-bit x86 or x86_64, executables.

64-bit Operating System
Mac OS X 10.5 (Leopard) allowed, for the first time, GUI applications to be 64-bit native, accomplished
through a new 64-bit version of Cocoa, which allowed developers to tap the additional benefits provided
by the 64-bit CPUs found in the current generation of Macs. Applications based on the Carbon API are
still 32-bit only. The subsequent release of Mac OS X 10.6 (Snow Leopard) took things one-step further
by allowing the kernel to run in 64-bit mode.

While most applications and APIs were already 64-bit in Leopard, the kernel itself was still running
in 32-bit mode. Although Snow Leopard made a 64-bit mode kernel possible, only some of the models
defaulted to 64-bit, while other models required it to be enabled manually. Snow Leopard was the first
release that did not include support for PowerPC computers, although PowerPC applications could still
be run with Rosetta. Support for Rosetta was removed in Lion, along with support for the 32-bit kernel.
While user space is able to support both 64-bit and 32-bit applications side by side, the kernel is
incompatible with 32-bit drivers and extensions when running in 64-bit mode. A 64-bit kernel provides
many advantages, and a larger address space means large amounts of memory can be supported.

iOS
iOS, or iPhone OS 1.0 as it was initially called, was released in June 2007 (see Table 2-2 for iOS releases).
It was based on Mac OS X and shared most of its fundamental architecture with its older sibling. It
featured, however, a new and innovative user interface provided by the Cocoa Touch API (sharing many
traits and parts with the original Cocoa), which was specifically designed for the iPhone’s capacitive
touch screen. In addition to Cocoa Touch, iOS had a number of other programming APIs, like the
Accelerate framework, which provided math and other related functions, optimized for the iOS
hardware. The External Accessory Framework allows iOS devices to communicate with third-party
hardware devices via Bluetooth or the inbuilt 30-pin connector.

Table 2-2. iOS Releases

Version Device Released

iPhone OS 1.0 iPhone, iPod Touch (1.1) June 2007

iPhone OS 2.0 iPhone 3G July 2008

iPhone OS 3.0 iPhone 3GS, iPad (3.2) June 2009

iOS 4.0 iPhone 4 June 2010

iOS 5.0 iPhone 4S October 2011

At its launch, iPhone OS was not able to run native third party applications, but it could run web

applications tailored to the iPhone, which could be added to the iPhone’s home screen. An SDK for the
iPhone was later announced at the beginning of 2008, which allowed development of third party
applications. Unlike most computer platforms, however, Apple requires all iPhone applications to be
submitted and pre-approved, and thus digitally signed, before a customer can install it through the App

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 MAC OS X AND IOS

21

Store. While many criticized the approach (and still do), it allowed Apple to weed out poorly written,
slow, and malicious software, thereby improving the overall user experience, and ultimately the
popularity of the platform. Unofficially, it has been possible to “Jailbreak” iOS and gain access to the
underlying Unix and kernel environment, but this voids the warranty. Due to concerns about battery life,
the iPhone was not able to properly multitask third-party applications until the release of iOS 4.0. iOS
now supports the iPhone, iPod Touch, and iPad, and also runs on the latest generation of Apple TVs,
which were previously based on OS X, running on Intel x86 CPUs. Apple does not support third party
applications on the Apple TV at this time.

The XNU Kernel
The XNU kernel is large and complex, and a full architectural description is beyond the scope of this
book (there are other books that fill this need), but we will, in the following sections, outline some of the
major components that make up XNU and offer a brief description of their responsibilities and mode of
operation. In most cases when programming for the kernel you will be writing extensions rather than
modifying the core kernel itself (unless you happen to be an Apple Engineer or contributor to Darwin),
but it is useful to have a basic understanding of the kernel as a whole, as it will give a better
understanding of how a kernel extension fit within the bigger picture. Subsequent chapters will focus on
some of the more important programming frameworks that the kernel provides such as I/O Kit.

The XNU kernel is the core of Mac OS X and iOS. XNU has a layered architecture consisting of three
major components. The inner ring of the kernel is referred to as the Mach layer, derived from the Mach
3.0 kernel developed at Carnegie Mellon University. References to Mach throughout the book will refer
to Mach as it is implemented in OS X and iOS and not the original project. Mach was developed as a
microkernel, a thin layer providing only fundamental services, such as processor management and
scheduling, as well as IPC (inter-process communication), which is a core concept of the Mach kernel.
Because of the layered architecture, there are minimal differences between the iOS and Mac OS X
versions of XNU.

While the Mach layer in XNU has the same responsibilities as in the original project, other operating
system services, such as file systems and networking, run in the same memory space as Mach. Apple
cites performance as the key reason for doing this, as switching between address spaces (context
switching) is an expensive operation.

Because the Mach layer is still, to some degree, an isolated component, many refer to XNU as a
hybrid kernel, as opposed to a microkernel or a monolithic kernel, where all OS services run in the same
context. Figure 2-3 shows a simplified view of XNU’s architecture.

CHAPTER 2 MAC OS X AND IOS

22

Figure 2-3. The XNU kernel architecture

The second major component of XNU is the BSD layer, which can be thought of as an outer ring
around the Mach layer. BSD again provides a programming interface to end-user applications.
Responsibilities include process management, file systems, and networking.

The last major component is the I/O Kit, which provides an object-oriented framework for device
drivers.

While it would be nice if each layer had clear responsibilities, reality is somewhat more complicated
and the lines between each layer are blurred, as many OS services and tasks span the borders of multiple
components.

■ Tip You can download the full source code for XNU at Apple’s open source website:
http://www.opensource.apple.com.

Kernel Extensions (KEXTs)
The XNU kernel, like most, if not all, modern operating systems, supports dynamically loading code into
the kernel’s address space at runtime. This allows extra functionality, such as drivers, to be loaded and
unloaded while the kernel is running. A main focus of this book will be the development of such kernel
extensions, with a particular focus on drivers, as this is the most common reason to implement a kernel
extension. There are two principal classes of kernel extensions. The first class is for I/O Kit-based kernel
extensions, which are used for hardware drivers. These extensions are written in C++. The second class is
for generic kernel extensions, which are typically written in C (though C++ is possible here, too). These
extensions can implement anything from new network protocols to file systems. Generic kernel
extensions usually interface with the BSD or Mach layers.

www.allitebooks.com

http://www.opensource.apple.com
http://www.allitebooks.org

CHAPTER 2 MAC OS X AND IOS

23

Mach
The Mach layer can be seen as the core of the kernel, a provider of lower-level services to higher-level
components like the BSD layer and I/O Kit. It is responsible for hardware abstraction, hiding the
differences between the PowerPC architecture and the Intel x86 and x86-64 architectures. This includes
details for handling traps and interrupts, as well as managing memory, including virtual memory and
paging. This design allows the kernel to be easily adapted to new hardware architectures, as proven with
Apple’s move to Intel x86, and later to ARM for iOS. In addition to hardware abstraction, Mach is
responsible for the scheduling of threads. It supports symmetric multiprocessing (SMP), which refers to
the ability to schedule processes between multiple CPUs or CPU cores. In fact, the difficulty of
implementing proper SMP support in the existing BSD Unix kernel was instrumental in the development
of Mach.

Interprocess communication (IPC) is the core tenet of Mach’s design. IPC in Mach is implemented
as a client/server system. A task (the client) is able to request services from another task (the server). The
endpoints in this system are known as ports. A port has associated rights, which determine if a client has
access to a particular service. This IPC mechanism is used internally throughout the XNU kernel. The
following sections will outline the key abstractions and services provided by the Mach layer.

■ Tip Mach API documentation can be found in the osfmk/man directory of the XNU source package.

Tasks and Threads
A task is a group consisting of zero or more executable threads that share resources and memory address
space. A task needs at least one thread to be executed. A Mach task maps one to one to a Unix (BSD
layer) process. The XNU kernel is also a task (known as the kernel_task) consisting of multiple threads.
Task resources are private and cannot normally be accessed by the threads of another task.

Unlike a task, a thread is an executable entity that can be scheduled and run by the CPU. A thread
shares resources, such as open files or network sockets, with other threads in the same task. Threads of
the same task can execute on different CPUs concurrently. A thread has its own state, which includes a
copy of the processor state (registers and instruction counter) and its own stack. The state of a thread is
restored when it is scheduled to run on a CPU. Mach supports preemptive multitasking, which means
that a thread’s execution can be interrupted before its allocated time slice (10ms in XNU) is up.
Preemption happens under a variety of circumstances, such as when a high priority OS event occurs,
when a higher priority thread needs to run, or when waiting for long I/O operations to complete. A
thread can also voluntarily preempt itself by going to sleep. A Mach thread is scheduled independently
from other threads, regardless of the task to which it belongs. The scheduler is also unaware of process
parent-child relationships traditional in Unix systems (the BSD layer, however, is aware).

Scheduling
The scheduler is responsible for coordinating the access of threads to the CPU. Most modern kernels,
including XNU, use a timesharing scheduler, where each thread is allocated a finite (10ms in XNU, as
we’ve seen) time quantum in which the thread is allowed to execute. Upon expiration of the thread’s
quantum, it is put to sleep so that other threads can run. While it may seem reasonable and fair that each
thread gets to run for an equal amount of time, this is impractical, as some threads have a greater need

CHAPTER 2 MAC OS X AND IOS

24

for low latencies, for example to perform audio and video playback. The XNU scheduler employs a
priority-based algorithm to schedule threads. Table 2-3 shows the priority levels used by the scheduler.

Table 2-3. Scheduler Priority Levels

Priority Level Description

Normal 0–51 Normal applications. The default priority for a regular
application thread is 31. Zero is the idle priority.

High Priority 52–79 High priority threads.

Kernel Mode 80–95 Range is reserved for high priority kernel threads, for
example those used by a device driver.

Real-time 96–127 Real-time threads (user space threads can run in real-
time).

The kernel organizes threads in doubly-linked lists. This collection of lists is known as the run

queue. There is one list per priority level (currently 0–127). Each processor (core) in the system maintains
its own run queue structure (osfmk/kern/sched.h):

 struct run_queue {
 int highq; /* highest runnable queue */
 int bitmap[NRQBM]; /* run queue bitmap array */
 int count; /* # of threads total */
 int urgency; /* level of preemption urgency */
 queue_head_t queues[NRQS]; /* one for each priority */
 };

A regular application thread starts with a priority of 31. Its priority may decrease over time, as a side
effect of the scheduling algorithm. This will happen, for example, if a thread is highly compute intensive.
By lowering the priority of such threads, it will improve the scheduling latency of I/O bound threads,
which spend most of their time sleeping in-between issuing I/O requests, thus usually going back to
sleep before their quantum expires, and thus allowing compute intensive threads access to the CPU
again. The end result is improved system responsiveness.

To avoid getting into a situation where the thread’s priority will be too low for it to run, the Mach
scheduler will decay a thread’s processor usage accounting over time, eventually resetting it, and thus a
thread’s priority will fluctuate over time.

The Mach scheduler provides support for real-time threads, although it does not provide
guaranteed latency; however, every effort is made to ensure it will run for the required amount of clock
cycles. A real-time thread may be downgraded to normal priority if it does not block/sleep frequently
enough, for example if it is highly compute bound.

Mach IPC: Ports and Messages
A port is a unidirectional communications endpoint, which represents a resource referred to as an
object. If you are familiar with TCP/IP networking, many parallels can be drawn between Mach’s IPC
and the UDP protocol, though unlike the UDP protocol, Mach IPC is used for more than just data
transfers. It can be used to provide synchronization, or to send notifications between tasks. An IPC client

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 MAC OS X AND IOS

25

can send messages to a port. The owner of the port receives the messages. For bidirectional
communication, two ports are needed. A port is implemented as a message queue (though other
mechanisms exist). Messages for the port are queued until a thread is available to service them. A port
can receive messages from multiple senders, but there can be only one receiver per port.

Ports have protection mechanisms known as port rights. A task must have the proper permissions in
order to interact with a port. Port rights are associated with a task; therefore, all threads in a task share
the same privileges to a port. The following are examples of port rights: send, send once, and receive.
The rights can be copied or moved between tasks. Unlike Unix permissions, port rights are not inherited
from parent to child processes (Mach tasks do not have this concept). Table 2-4 shows the available port
right types.

Table 2-4. Port Right Types (from mach/port.h)

Port Right Type Description

MACH_PORT_RIGHT_SEND The holder of the right has permission to send messages to a
port.

MACH_PORT_RIGHT_RECIEVE The holder has the right to receive messages from a port.
Receive rights provide automatic send rights.

MACH_PORT_RIGHT_SEND_ONCE Same as send rights, but only valid for one message.

MACH_PORT_RIGHT_PORT_SET Receive (and send) rights to a group of ports.

MACH_PORT_RIGHT_DEAD_NAME Denotes rights that have become invalid or been destroyed,
such as after messaging a port with send once rights.

A group of ports are collectively known as a port set. The message queue is shared between all ports

in a set. A 32-bit integer number addresses ports in the system. There is no global register or namespace
for ports.

The Mach IPC system is also available in user space programs and can be used to pass messages
between tasks or from a task to the kernel. It offers an alternative to system calls, though the mechanism
uses system calls under the hood.

Mach Exceptions
Exceptions are interrupts sent by a CPU when certain (exceptional) events or conditions occur during
the execution of a thread. An exception will result in the interruption of a thread’s execution, while the
OS (Mach) processes the exception. The task may resume afterwards, depending on the type of
exception that occurred. Common causes for exceptions include access to invalid or non-existing
memory, execution of an invalid processor instruction, passing invalid arguments, or division by zero.
These exceptions usually result in the termination of the offending task, but there are also a number of
non-erroneous exceptions that can occur.

A system call is one such exception. A user space application may issue a system call exception
when it needs to perform a low-level operation involving the kernel, such as writing from a file, or
receiving data on a network socket. When the OS handles the system call, it inspects a register for the
system call number, which is then used to look up the handler for that call, for example read() or recv().

CHAPTER 2 MAC OS X AND IOS

26

A task may also generate an exception if attempting to access paged out memory. In this case, a page
fault exception is generated, which will be handled by retrieving the missing page from the backing
store, or result in an invalid memory access. A task may also issue deliberate exceptions with the
EXC_BREAKPOINT exception, which are typically used in debugging or tracing applications, such as Xcode,
to temporarily halt the execution of a thread.

It is possible, of course, for the kernel itself to misbehave and cause exceptions. In this case, the OS
will be halted and the grey screen of death will be shown (unless the kernel debugger is activated),
informing the user to reboot the computer. Table 2-5 shows a subset of defined Mach exceptions.

Table 2-5. Common Mach Exception Types

Exception Type Description

EXC_BAD_ACCESS Invalid memory access.

EXC_BAD_INSTRUCTION The thread attempted to access an illegal/invalid instruction or
gave an invalid parameter (operand) to the instruction.

EXC_ARITMETHIC Issued on division by zero or integer overflow/underflow.

EXC_SYSCALL and
EXC_MACH_SYSCALL

Issued by an application to access kernel services such as file I/O or
network access.

… Other Mach exceptions are defined in mach/exception_types.h.
Processor dependent exceptions are defined in mach/(i386,ppc,
…)/exception.h.

When an exception occurs, the kernel will suspend the thread which caused the exception, and send

an IPC message to the thread’s exception port. If the thread does not handle the exception, it’s
forwarded to the containing task’s exception port, and finally to the system’s (host) exception port. The
following structure encapsulates a thread, task, or processor’s (host) exception ports:

struct exception_action {
 struct ipc_port* port; /* exception port */
 thread_state_flavor_t flavor; /* state flavor to send */
 exception_behavior_t behavior; /* exception type to raise */
 boolean_t privileged; /* survives ipc_task_reset */
};

Each thread, task, and host has an array of the structure exception_action, which specifies
exception behavior, one structure is defiend for each exception type (as defined in Table 2-5). The flavor
and behavior fields specify the type of information that should be sent with the exception message, such
as the state of general purpose, or other specialized CPU registers, and the handler, which should be
executed. The handler will be either catch_mach_exception_raise(),
catch_mach_exception_raise_state() or catch_mach_exception_raise_state_identity(). When an
exception has been dispatched, the kernel waits for a reply in order to determine the course of action. A
return of KERN_SUCCESS means the exception was handled, and the thread will be allowed to resume.

A thread’s exception port defaults to PORT_NULL, unless a port is explicitly allocated, exceptions will
be handled by task’s exception port instead. When a process issues the fork() system call to spawn a

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 MAC OS X AND IOS

27

child process, the child will inherit exception ports from the parent task. The Unix signaling mechanism
is implemented on top of the Mach’s exception system.

Time Management
Proper timekeeping is a vital responsibility of any OS, not only to serve user applications, but also to
serve other important kernel functions such as scheduling processes. In Mach, the abstraction for time
management is known as a clock. A clock object in Mach represents time in nanoseconds as a
monotonically increasing value. There are three main clocks defined: the real-time clock, the calendar
clock, and the high-resolution clock. The real-time clock keeps the time since the last boot, while the
calendar clock is typically battery backed, so its value is persistent across system reboots, or in periods
when the computer is powered off. It has a resolution of seconds and as the name implies, it is used to
keep track of the current time. The Mach time KPI consists of three functions:

void clock_get_uptime(uint64_t* result);
void clock_get_system_nanotime(uint32_t* secs, uint32_t* nanosecs);
void clock_get_calendar_nanotime(uint32_t* secs, uint32_t* nanosecs);

The calendar clock is typically only used by applications, as the kernel itself rarely needs to concern
itself with the current time or date, and doing so, in fact, is considered poor design. The kernel uses the
relative time provided by the real-time clock. The time from the real-time clock typically comes from a
circuit on the computer’s motherboard that contains an oscillating crystal. The real-time clock circuit
(RTC) is programmable, and wired to the CPUs’ (every CPU/core) interrupt pins. The RTC gets
programmed in XNU with a deadline of 100 Hz (using clock_set_timer_deadline()).

Memory Management
The Mach layer is responsible for coordinating the use of physical memory in a machine independent
manner, providing a consistent interface to higher-level components. The virtual memory subsystem of
Mach, the Mach VM, provides protected memory and facilities to applications, and the kernel itself, for
allocating, sharing, and mapping memory. A solid understanding of memory management is essential to
a successful kernel programmer.

Task Address Space
Each Mach task has its own virtual address (VM) space. For a 32-bit task, the address space is 4 GB, while
for a 64-bit task it is substantially larger, with 51-bits (approximately 2 petabytes) of usable address
space. Specialized applications, such as video editing or effects software, often exceed the 32-bit address
space. Support for 64-bit virtual address space became available in OS X 10.4.

■ Note While 32-bit applications are limited to a 4 GB address space, this does not correlate with the amount of
physical memory that can be used in a system. Technologies such as Physical Address Extensions (PAE) are
supported by OS X and allow 32-bit x86 processors (or 64-bit processors running in 32-bit mode) to address up to
36-bits (64 GB) of physical memory; however, a task’s address space remains limited to 4 GB.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 2 MAC OS X AND IOS

28

A task’s address space is fundamental to the concept of protected memory. A task is not allowed to
access the address space, and thus the underlying physical memory containing the data of another task,
unless explicitly allowed to do so, through the use of shared memory or other mechanisms.

KERNEL ADDRESS SPACE MANAGEMENT

The kernel itself has its own task, the kernel_task, which has its own seperate address space. Let’s
assume a 32-bit OS such as iOS. Some Unix-based operating systems, including Linux, have a design
where the kernel’s address space is mapped into each task’s address space. The kernel has 1GB of
address space available, while a task has 3GB available. When a task context switches into kernel space,
the MMU (memory management unit) can avoid reconfiguring the translation lookaside buffer (TLB) with a
new address space, as the kernel is already at a known location, thus speeding up the otherwise
expensive context switch. The drawback, of course, is the limited amount of address space available for
the kernel, as well as having only 3GB available for the task. In XNU, the kernel runs in its own virtual
address space, which is not shared with user tasks, leaving 4GB for the kernel and 4GB for the user task.

VM Maps and Entries
The virtual memory (VM) map is the actual representation of a task’s address space. Each task has its
own VM map. The map is represented by the structure vm_map. There is no map associated with a thread
as they share the VM map of the task that owns them.

A VM map represents a doubly-linked list of memory regions that is mapped into the process
address space. Each region is a virtually contiguous range of memory addresses (not necessarily backed
by contiguous physical memory) described by a start and end address, as well as other meta-data, such
as protection flags, which can be any combination of read, write, and execute. The regions are
represented by the vm_map_entry structure. A VM map entry may be merged with another adjacent entry
when more memory is allocated before or after an existing entry or split into smaller regions. Splitting
will occur if the protection flags are modified for a range of addresses described by an entry, as
protection flags can only be set on VM map entries. Figure 2-4 shows a VM map with two VM map
entries.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 MAC OS X AND IOS

29

Figure 2-4. Relationship between VM subsystem structures

■ Tip The relevant structures pertaining to task address spaces are defined in mach/vm_map.h and
mach/vm_region.h in the XNU source package.

The Physical Map
Each VM map has an associated physical map, or pmap structure. This structure helps hold information
on virtual to physical memory mappings being used by the task. The portion of the Mach VM that deals
with physical mappings is machine dependent, as it interacts with the memory management unit
(MMU), a specialized hardware component of the system that takes care of address translation.

VM Objects
A VM map entry can point to either a VM object or a VM submap. A submap is a container for other (VM
map) mappings. A submap is used to share memory between addresses spaces. The VM object is a
representation of the location, or rather how the described memory is accessed. Memory pages
underlying the object may not be present in physical memory, but could be located on an external
backing store (a hard drive on OS X). In this case, the VM object will have information on how to page in
the external pages. Transfer to or from a backing store is handled by the pager discussed next.

A VM object describes memory in units of pages. A page in XNU is currently 4096 bytes. A virtual
page is described by the vm_page structure. A VM object may contain many pages, but a page is only ever
associated with one VM object.

CHAPTER 2 MAC OS X AND IOS

30

PAGES

A page is the smallest unit of the virtual memory system. On Mac OS X and iOS, as well as many other
operating systems, the size of a page is 4096 bytes (4KB). The page size is determined by the processor,
as the processor, or rather its memory management unit (MMU), is responsible for virtual to physical
mappings and manages the VM page table cache, also called a TLB. The page size of many architectures
can be set by the operating system, and can be, for architectures such as the x86, up to 4 MB, or even a
mixture between more than one page size. The operating system maintains a data structure called the
page table, which contains one struct vm_page for each page-sized block of physical memory. The
structure contains metadata, such as whether the page is in use.

When memory needs to be shared between tasks, a VM map entry will point into the foreign address

space via a submap, as opposed to a VM object. This commonly happens when a shared library is used.
The shared library gets mapped into the task’s address space.

Let’s consider another example. When a Unix process issues the fork() system call to create a child
process, a new process will be created as a copy of the parent. To avoid having to copy the memory from
the parent to the child, an optimization known as copy-on-write (COW) is employed. Read access to a
child’s memory will simply reference the same pages as the parent. If the child process modifies its
memory, the page describing that memory will be copied, and a shadow VM object will be created. On
the next read to that memory region, a check is performed to see if the shadow object has a copy of the
page, and if not the original shared page is referenced. The previously described behavior is only true
when the inheritance property of the original VM map entry from the parent is set to copy. Other
possible values are shared, in which case the child will continue both the read and write operation to the
original memory location. If the setting is none, the memory pages referenced by the map entry will not
be mapped into the child’s address space. The fourth possible value is copy and delete, where the
memory will be copied to the child and deleted from the parent.

■ Note Copy-on-write is also used by Mach IPC to optimize the transfer of data between tasks.

Examining a Task’s Address Space
The vmmap command line utility allows you to inspect a process virtual memory map and its VM map
entries. It clearly illustrates how memory regions are mapped into a task’s VM address space. The vmmap
command takes a process identifier (PID) as an argument. The following shows the output of vmmap
executed with the PID of a simple Hello World C application (a.out), which prints a message and then
goes to sleep:

==== Non-writable regions for process 46874
__PAGEZERO 00000000-00001000 [4K] ---/--- SM=NUL /Users/ole/a.out
__TEXT 00001000-00002000 [4K] r-x/rwx SM=COW /Users/ole/a.out
__LINKEDIT 00003000-00004000 [4K] r--/rwx SM=COW /Users/ole/a.out
MALLOC guard page 00004000-00005000 [4K] ---/rwx SM=NUL

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 MAC OS X AND IOS

31

MALLOC metadata 00021000-00022000 [4K] r--/rwx SM=PRV
__TEXT 8fe00000-8fe42000 [264K] r-x/rwx SM=COW /usr/lib/dyld
__LINKEDIT 8fe70000-8fe84000 [80K] r--/rwx SM=COW /usr/lib/dyld
__TEXT 9703b000-971e3000 [1696K] r-x/r-x SM=COW /usr/lib/libSystem.B.dylib
STACK GUARD bc000000-bf800000 [56.0M] ---/rwx SM=NUL stack guard for thread 0
==== Writable regions for process 46874
__DATA 00002000-00003000 [4K] rw-/rwx SM=PRV /Users/ole/a.out
MALLOC metadata 00015000-00020000 [44K] rw-/rwx SM=PRV
MALLOC_TINY 00100000-00200000 [1024K] rw-/rwx SM=PRV DefaultMallocZone_0x5000
MALLOC_SMALL 00800000-01000000 [8192K] rw-/rwx SM=PRV DefaultMallocZone_0x5000
__DATA 8fe42000-8fe6f000 [180K] rw-/rwx SM=PRV /usr/lib/dyld
__IMPORT 8fe6f000-8fe70000 [4K] rwx/rwx SM=COW /usr/lib/dyld
shared pmap a0800000-a093a000 [1256K] rw-/rwx SM=COW
__DATA a093a000-a0952000 [96K] rw-/rwx SM=COW /usr/lib/libSystem.B.dylib
shared pmap a0952000-a0a00000 [696K] rw-/rwx SM=COW
Stack bf800000-bffff000 [8188K] rw-/rwx SM=ZER thread 0
Stack bffff000-c0000000 [4K] rw-/rwx SM=COW thread 0

The result has been trimmed for readability. The output is divided between non-writable regions
and writable regions. The former, as you can see, includes the page zero mapping, which is read-only
and will generate an exception if an application tries to write to memory addresses 0-4096 (4096 decimal
= 0x1000 hex). This is why your application will crash if you try to dereference a null-pointer. The next
map entry is the text segment of the application, which contains the executable code of the application.
You will see that the text segment is marked as having a share mode (SM) of COW, which means that if
this process spawns a child, it will inherit this mapping from the parent, thus avoiding a copy until pages
in that segment are modified.

In addition to the text segment for the a.out program itself, you will also see a mapping for
libSystem.B.dylib. On Mac OS X and iOS, libSystem implements the standard C Library and the POSIX
thread API, as well as other system APIs. The a.out process inherited the mapping for libSystem from its
parent process /sbin/launchd, the parent of all user space processes. This ensures the library is only
loaded once, saving memory and improving the launch speed of applications, as fetching a library from
secondary storage, such as a hard drive, is usually slow.

In the writable regions you can see the data segment of a.out and libSystem. These segments
contain variables defined by the program/library. Obviously, these can be modified, so each process
needs a copy of the data segment for a shared library, however it is COW, so no overhead is necessary
until a process makes modifications to the mapping.

■ Tip If you want to inspect the virtual memory map of a system process, such as launchd, you need to run
vmmap with sudo, as by default your user will only be able to inspect its own processes.

Pagers
Virtual memory allows a process to have a virtual address space larger than the available physical
memory, and it is possible for tasks running on the system to be combined, consuming more than the
available amount of memory. The mechanism that makes this possible is known as a pager. The pager
controls the transfer of memory pages to and from the system memory (RAM), to a secondary backing

CHAPTER 2 MAC OS X AND IOS

32

store, usually a hard drive. When a task that has high memory requirements needs to run, the pager can
temporarily transfer (page out) memory pages belonging to inactive tasks to the backing store, thereby
freeing up enough memory to allow the demanding task to execute. Similarly, if a process is found to be
largely idle, the system can opt to page out the task’s memory to free memory for current or future tasks.
When an application runs, and it tries to access memory that has been paged out, an exception known as
a page fault will occur, which is also the exception that occurs if a task tries to access an invalid memory
address. When the page fault occurs, the kernel will attempt to transfer back (page in) the page
corresponding to the memory address, and if the page cannot be transferred back, it will be treated as an
invalid memory access, and the task will be aborted. The XNU kernel supports three different pagers:

• Default Pager: Performs traditional paging and transfers between the main
memory and a swap file on the system hard drive (/var/vm/swapfile*).

• Vnode Pager: Ties in with the Unified Buffer Cache (UBC) used by file systems and
is used to cache files in memory.

• Device Pager: Used for managing memory mappings of hardware devices, such as
PCI devices that map registers into memory. Mapped memory is commonly used
by I/O Kit drivers, and I/O Kit provides abstractions for working with such
memory.

Which pager is in use is more or less transparent to higher-level parts, such as the VM object. Each
VM object has an associated memory object, which provides (via ports) an interface to the current pager.

Memory Allocation in Mach
Some fundamental routines for memory allocation in Mach are:

kern_return_t kmem_alloc(vm_map_t map, vm_offset_t *addrp, vm_size_t size);
kern_return_t kmem_alloc_contig(vm_map_t map, vm_offset_t *addrp,
 vm_size_t size, vm_offset_t mask, int flags);
void kmem_free(vm_map_t map, vm_offset_t addr, vm_size_t size);

kmem_alloc() provides the main interface to obtaining memory in Mach. In order to allocate
memory, you must provide a VM map. For most work within the kernel, kernel_map is defined and points
to the VM map of kernel_task. The second variant, kmem_alloc_contig(), attempts to allocate memory
that is physically contiguous, as opposed to the former, which allocates virtually contiguous memory.
Apple recommends against making this type of allocation, as there is a significant penalty incurred in
searching for free contiguous blocks. Mach also provides kmem_alloc_aligned() function, which
allocates memory aligned to a power of two, as well as a few other variants that are less commonly used.
The kmem_free() function is provided to free allocated memory. You have to take care to pass the same
VM map as you used when you allocated, as well as the size of the original allocation.

The BSD Layer
Unlike Mach, which only provides a few fundamental services, the BSD layer sits between Mach and the
user applications and implements many core OS functions, building on the services provided by Mach.
In OS X and iOS, the BSD layer is running with the processor in privileged mode and not as a user task, as
originally intended by the Mach project. The layer therefore does not have memory protection, and runs
in the same address space as Mach and I/O Kit. The BSD layer refers to a portion of the kernel derived
from the FreeBSD 5 operating system, and it is not a complete system in itself, but rather a portion of
code originating from it.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 MAC OS X AND IOS

33

The BSD layer provides services such as process management, system calls, file systems, and
networking. Table 2-6 shows a brief overview of the services provided by the BSD layer.

Table 2-6. BSD Layer Services Overview

Service Description

Process and User Management Provides support for user (uid), group (gid), and process (pid) ids, as
well as process creation (fork) and the Unix security model. POSIX
threads and synchronization. Shared library support, signal
handling.

File Management Files, pipes, sockets, and POSIX IPC. The VFS, as well as the HFS,
HFS+, ISO, and NFS file systems. Asynchronous I/O.

Security Security auditing and cryptographic algorithms, such as AES,
Blowfish, DES, MD5, and SHA-1.

Memory Management The vnode file-based pager. Facilities for memory allocation. Unified
Buffer Cache (UBC).

Drivers Various drivers, including the console and other character device
drivers such as /dev/null, /dev/zero, /dev/random, and RAM disk
driver (/dev/md*).

Networking TCP/IP 4&6, DHCP, ICMP, ARP, Ethernet, Routing and Firewall,
Packet filters (BPF), and BSD sockets. Low-level network drivers are
found in I/O Kit.

System Calls Provides an API for granting user space applications access to
basic/low-level kernel services such as file and process management.

The BSD layer provides abstractions on top of the services provided by Mach. For example, its

process management and memory management is implemented on top of Mach services.

System Calls
When an application needs services from the file system, or wishes to access the network, it needs to
issue a system call to the kernel. The BSD layer implements all system calls. When a system call handler
executes, the kernel context switches from user mode to kernel mode to service a request by the
application, such as to read a file. This API is referred to as the syscall API, and it is the traditional Unix
API for calling functions in the kernel from user space. There are hundreds of system calls available,
ranging from calls related to process control, such as fork() and execve(), or file management calls,
such as open(), close(), read(), and write().

The BSD layer also provides ioctl() function (itself a system call), which is short for I/O control,
and this is typically used to send commands to device drivers. The sysctl() function is provided to set or
get a variety of kernel parameters, including but not limited to the scheduler, memory, and networking
subsystems.

CHAPTER 2 MAC OS X AND IOS

34

■ Tip Available system calls are defined in /usr/include/sys/syscall.h.

Mach traps are mechanisms similar to system calls, used for crossing the kernel/user space
boundary. Unlike system calls that provide direct services to an application, the Mach traps are used to
carry IPC messages from a user space client to a kernel server.

Networking
Networking is a major subsystem of the BSD portion of XNU. BSD handles most aspects of networking,
such as the details of socket communication and the implementation of protocols like TCP/IP, except for
low-level communication with actual hardware devices, which is typically handled by an I/O Kit driver.
The I/O Kit network driver will interface with the network stack that is responsible for handling received
buffers from the networking device, inspect them, and ensure they make their way down to the initiator,
for example your web browser. Similarly, the BSD networking stack will accept outgoing data from an
application, format the data in a packet, then route or dispatch it to the appropriate network interface.
BSD also implements the IPFW firewall, which will filter packets to/from the computer according to
policy set by the system administrator.

The BSD networking layer supports a wide range of network and transport layer protocols, including
IPv4 and IPv6, TCP, and UDP. At the higher level we find support for BOOTP, DHCP, and ICMP, among
others. Other networking-related functions include routing, bridging, and Network Address Translation
(NAT), as well as device level packet filtering with Berkeley Packet Filter (BPF).

NETWORK KERNEL EXTENSIONS (NKE)

The Network Kernel Extensions KPI (kernel programming interface) is a mechanism that allows various parts of
the networking stack to be extended. NKEs allow new protocols to be defined, and for hooks or filters to be
inserted at various levels in the networking stack. For example, it would be possible to create a filter that
intercepted TCP connections to a certain address by a certain application or user. It is also possible to
temporarily block network packets, or modify them before transmission to a higher/lower level. NKEs originate
from Apple and are not part of the traditional BSD networking stack, but, due to their nature, they are now
intimately tied to it. NKEs are discussed in Chapter 13.

File Systems
The kernel has inbuilt support for a range of different file systems, as shown in Table 2-7. The primary
file system used by Mac OS X and iOS is HFS+. It was developed as a replacement for the Mac OS file
system HFS.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 MAC OS X AND IOS

35

Table 2-7. File Systems Support by XNU

Name Description

HFS+ The standard file system used by Mac OS X and iOS

HFS Legacy Mac OS file system

UFS The BSD Unix file system

NFS Networked File System

ISO 9660 and UDF Standard file systems used by CDs and DVDs

SMB Server Message Block, a networked file system used to connect with
Microsoft Windows computers

AFP Apple Filing Protocol

HFS+ gained support for journaling in Mac OS X 10.2.2. Journaling improves the reliability of a file

system by recording transactions in a journal prior to carrying them out. This makes the file system
resilient to events such as a power failure or a crash of the kernel, as the data can be replayed after
reboot in order to bring the file system to a consistent state.

HFS+ supports very large files, up to 8 EiB in size (1 Exbibyte = 260 bytes), which is also the maximum
possible volume size. The file system has full support for Unicode characters in file names and is case
insensitive by default. Support for both Unix style file permissions and access control lists (ACLs) exists.

The Virtual File System
The virtual file system, or VFS, provides an abstraction over specific file systems, such as HFS+ and AFP,
and makes it possible for applications to access them using a single consistent interface. The VFS allows
support for new file systems to be easily added as kernel extensions through the VFS Kernel
Programming Interface (KPI), without the OS as a whole knowing anything about its implementation.
The fundamental data structure of the VFS is the vnode. The vnode is how both a file and a directory are
represented in the kernel. A vnode structure exists for every file active in the kernel.

Unified Buffer Cache
The Unified Buffer Cache (UBC) is a cache for files. When a file is written to, or read from, it will be
loaded into physical memory from a backing store, such as a hard drive. The UBC is intimately linked
with the VM subsystem and the UBC also caches VM objects. The structure used to cache a vnode is
shown in Listing 2-1.

CHAPTER 2 MAC OS X AND IOS

36

Listing 2-1. The ubc_info Structure

struct ubc_info {
 memory_object_t ui_pager; /* pager */
 memory_object_control_t ui_control; /* VM control for the pager */
 uint32_t ui_flags; /* flags */
 vnode_t ui_vnode; /* vnode for this ubc_info */
 kauth_cred_t ui_ucred; /* holds credentials for NFS paging */
 off_t ui_size; /* file size for the vnode */

 struct cl_readahead* cl_rahead; /* cluster read ahead context */
 struct cl_writebehind* cl_wbehind; /* cluster write behind context */

 struct cs_blob* cs_blobs; /* for CODE SIGNING */
};

Prior to the introduction of the UBC, the system had two caches, a page cache and a buffer cache.
The buffer cache was indexed by a device and block number that addressed a chunk of data on the
physical device, whereas the page cache performed caching of memory mappings.

The size of the UBC shrinks and grows dynamically depending on the needs of the system. If a file in
the cache is modified, it is marked as dirty, to indicate that the cached copy differs from the original
found on disk. Dirty entries are periodically flushed to disk. It is possible for a user space program to
bypass UBC, and go directly to disk, by using the F_NOCACHE option of the fcntl system call, which may
improve I/O performance for workloads that do not benefit from such caching, such as large sets of data
that are unlikely to be reused.

The I/O Kit
The last major component that makes up XNU is the I/O Kit, which is an object-oriented framework for
writing device drivers and other kernel extensions. It provides an abstraction of system hardware, with
pre-defined base classes for many types of hardware, making it simple to implement a new driver, as it is
able to inherit much of its functionality from a base class driver, achieving a high degree of code reuse.
The I/O Kit framework consists of the kernel level framework, as well as a user space framework called
IOKit.framework. The kernel framework is written in Embedded C++, a subset of C++, whereas the user
space framework is C-based.

The I/O Kit maintains a database known as the I/O Catalog. The I/O Catalog is a registry of all
available I/O Kit classes. Another database, the I/O Registry tracks object instances of classes in the I/O
Catalog. Objects in the I/O Registry typically represent devices, drivers, or supporting classes, and are
structured in a hierarchical manner, which mimics the way hardware devices are physically connected
to each other. For example a USB device is a child of the USB controller it is connected to. The ioreg
command line utility allows you to inspect the I/O Registry.

The I/O Kit is based around three major concepts:

• Families

• Drivers

• Nubs

Families represent common abstractions for devices of a particular type. For example, an
IOUSBFamily handles many of the technicalities of implementing support for USB related devices.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 MAC OS X AND IOS

37

Drivers are responsible for managing a specific device or bus. A driver may have a relationship with
more than one family. In the case of a USB-based storage device, it might depend on the IOUSBFamily, as
well as the IOStorageFamily. Nubs are interfaces for a controllable entity, such as a PCI or USB device,
which a higher-level driver may use to communicate with the device.

As a kernel programmer, you will probably spend most of your time working with the I/O Kit, and
thus much of this book will be devoted to it, and a full description of I/O Kit is provided in Chapter 4.

The Libkern Library
The libkern library, unlike Mach and BSD, which provide APIs for interacting with the system, provides
supporting routines and classes to the rest of the kernel, and in particular the I/O Kit. That is, building
blocks and utilities useful to the kernel itself, as well as extensions. The limited C++ runtime is
implemented in libkern, which provides implementation for services such as the new and delete
operators.

In addition to standard C++ runtime, libkern also provides a number of useful classes, the most
fundamental being OSObject, the superclass of every class in I/O Kit. It provides support for reference
counting, which works conceptually the same as NSObject in Cocoa, or Cocoa Touch in user space.
Other classes of interest include OSDictionary, OSArray, OSString, and OSInteger. These classes, and
others, are also used to provide a dictionary of values from the kernel extension’s Info.plist.

The libkern library is not all about core C++ classes and runtime, as it also provides the
implementation of many functions normally found in the standard C library. Examples of this are the
printf() and sccanf() functions, as well as others such as strtol() and strsep(). Other functions
provided by libkern include cryptographic hash algorithms (MD5 and SHA-1), UUID generation, and the
zlib compression library. The library is also home to kxld, the library used to manage dynamically loaded
kernel extensions.

Last, but not least, we find functions, such as OSMalloc(), for allocating memory and for the
implementation of locking mechanisms and synchronization primitives.

■ Note The sources for libkern are found in the libkern/ and bsd/libkern/ directories in the XNU source
distribution.

The Platform Expert
The platform expert contains an abstraction layer for the system. Parts of it are available as part of the
public XNU source code distribution, but the remainder is implemented in the
com.apple.driver.AppleACPIPlatform KEXT, for which no source code is available. The platform expert
handles device enumeration and detection for the system bus. It can be seen as the driver for the
motherboard. The platform expert is responsible for the initial construction of the I/O Kit device tree
after the system boots (known as the I/O Registry). The platform expert itself will form the root node of
the tree, IOPlatformExpertDevice.

Summary
In this chapter we have:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 2 MAC OS X AND IOS

38

• Given an overview of the Mac OS X and iOS operating systems. We have discussed
their general background and origin, with a particular focus on the kernel, the
major topic of this book.

• Looked at the XNU kernel, which is the kernel for both OS X and iOS.

• Discussed the layered architecture of the XNU kernel, which consists of three
major components: the Mach, the BSD, and the I/O Kit. The Mach layer can be
seen as the inner ring, closest to the hardware, which provides services to the rest
of the kernel. Services provided by the Mach layer include hardware abstraction,
virtual memory, and task scheduling.

• Discussed the operation of the Mach scheduler, and the difference between tasks
and threads. A task can be seen as a container for threads that share a common
memory address space, as well as other resources, such as open files.

• Discussed Mach IPC, which is the mechanism used for communication within the
kernel and the various layers it contains. Furthermore, we broke down the various
components involved in providing virtual memory in Mach. Namely, the VM map,
VM map entry, and VM objects.

• Discussed the role and operation of pagers.

• Discussed the BSD layer, which was derived from the FreeBSD operating system
and runs on top of the Mach core, but in the same kernel address space. It
provides the interface applications used to communicate with the kernel, most
importantly the system calls. The BSD layer implements the networking stack,
including TCP/IP and other protocols. It also provides support for file systems
such as HFS+ that are implemented on top of the virtual file system layer (VFS),
which is a unified interface for file systems.

• Discussed the I/O Kit, a C++ based kernel framework for writing device drivers and
other extensions. The libkern library provides many utility functions and building
blocks, including the set of classes that I/O Kit is built in top of, such as OSObject.

www.allitebooks.com

http://www.allitebooks.org

C H A P T E R 3

39

Xcode and the Kernel
Development Environment

Apple has a good track record of taking care of its developers and providing them with intuitive, user-
friendly tools and APIs to develop for the Mac and iOS platforms. Anyone who has written application
software for the Mac or iPhone will be familiar with the object-oriented Cocoa framework, which
provides a rich set of interfaces to support graphical user interfaces and other services required by user
applications. Likewise, kernel developers are provided with APIs that are designed to help with the tasks
performed by a kernel extension. For driver development, Apple provides the I/O Kit, which is an object-
oriented framework for interfacing with hardware. The following chapter discusses the tools and
frameworks you will need to get started with kernel development and includes a tutorial for building and
installing a simple kernel extension.

Language of Choice: C++
The C language has been the de facto system-level language for decades. Indeed, the language was
originally developed as an alternative to writing non-portable assembly code specifically for the original
Unix system. The XNU kernel and many Mac OS X core services are written in C, while the I/O Kit
framework used for driver development is written in a subset of the C++ language. Apple chose C++ for
the I/O Kit because it is an object-oriented language and therefore allows a driver model that abstracts
the physical hardware connections. Apple did toy with the idea of an Objective-C-based framework for
drivers, but finally settled on C++. Despite the widespread use of C++ for the development of application
software, Mac OS X is still one of the few operating systems that allows and in fact encourages C++ code
to be run in its kernel. However, this is not to say the Mac OS X kernel is immune from the same
problems that make C++ code problematic in other kernels. To avoid some of these problems, Mac OS X
kernel code must use a restricted subset of the features provided by C++, referred to as Embedded C++.
The features that are not available include the following:

• Exceptions

• Multiple inheritance

• Templates

• Runtime type information

It is worth noting that, because Embedded C++ is a subset of the standard C++ language, any code
written for Embedded C++ is compatible with a regular C++ compiler.

CHAPTER 3 XCODE AND THE KERNEL DEVELOPMENT ENVIRONMENT

40

While technically possible to include these language features in the kernel, Apple decided to disable
them because they can greatly increase the size of the compiled code, which in turn increases the
memory footprint of the kernel. Support for exceptions was disabled not only because of the additional
code size but also because failure to catch an exception would result in a kernel panic.

Although the standard runtime type information is disabled, the I/O Kit does provide its own
limited implementation, which is discussed in the following chapter. Kernel developers also have access
to a limited implementation of the C++ runtime library and with language support for templates
disabled, the STL classes are unavailable.

As a general rule, C++ is used when writing kernel extensions based on the I/O Kit framework,
whereas C is used for everything else, including implementation of file systems and low-level networking
code.

Xcode
To begin developing a kernel extension, you will need to install Apple’s development tools, known as
Xcode. These are available from the Mac App Store. Installing the Xcode package adds a directory to the
root level of your hard disk named “Developer,” which includes everything that is required for both Mac
OS X and iOS development, including the following:

• An integrated development environment (the Xcode application)

• Compilers for C, C++, and Objective-C

• A source code debugger

• The APIs and header files used for kernel and application development

• Profiling tools for measuring your code’s execution time and identifying
performance bottlenecks

• Utilities for examining the hardware devices connected to the system and the
driver that has been loaded for each device

Of these tools, the Xcode application is the one in which you will spend most of your time when
writing a kernel extension, since it provides the source code editor and a front-end to the compiler.
Figure 3-1 shows the Xcode 4 user interface.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 XCODE AND THE KERNEL DEVELOPMENT ENVIRONMENT

41

Figure 3-1. The Xcode 4 user interface

Under the hood, Xcode is a front-end to the command-line compiler and debugger. In fact, there is
nothing to stop you from bypassing Xcode completely and building your kernel extensions by invoking
GCC directly on the command line. However, as we will see in the next section, Xcode provides project
templates that pass the appropriate compiler flags for building a kernel extension.

Previous versions of Xcode used the GCC compiler; however, starting from Xcode 4, an alternative
and modern compiler based on LLVM is provided as the default compiler. The LLVM compiler is an
open source project led by Apple that supports Objective-C, C, and C++. The goal of LLVM is to provide
faster compile times than GCC and to provide tighter integration into IDEs, such as Xcode, by providing
more legible warning and error messages and by allowing syntax highlighting and code completion to be
driven by the semantic analysis performed by the compiler itself.

■ Note More information about Xcode, including information about how to obtain it, can be found at
http://developer.apple.com/xcode.

“Hello World” Kernel Extension
To get started with kernel programming, let’s begin by implementing a very simple example, the much
beloved “Hello World” application or, in our case, kernel extension. First, launch Xcode and choose
“Create a new Xcode project” from the welcome screen. This will present you with a list of templates for
the new project. If you select the “System Plug-in” category, you will see that Xcode provides templates
for both a “Generic Kernel Extension” and an “I/O Kit Driver.” Although both templates create a kernel
extension, an I/O Kit driver requires us to nominate a hardware device it will match against and will load
only if that device is present. A generic kernel extension, on the other hand, is not a hardware driver and
can be loaded any time by the user.

http://developer.apple.com/xcode

CHAPTER 3 XCODE AND THE KERNEL DEVELOPMENT ENVIRONMENT

42

For this tutorial, we will create a project based on the “Generic Kernel Extension” template, so select
that item and click the “Next” button. We are now asked for a product name and company identifier.
The product name corresponds to the name of the executable file as seen by the user, so for this
example, we will use “HelloWorld.” The company identifier should be a reverse DNS style string for a
domain name you or your company has registered. For this example, you are free to use
“com.osxkernel,” which is a domain registered for the purpose of this book. By appending the product
name to the company identifier, Xcode creates a string that is guaranteed to be unique for the project
and will not collide with the name of any existing kernel extension (the unique identifier for this tutorial
would be “com.osxkernel.HelloWorld.”)

■ Note The reverse DNS convention is used throughout Mac OS X in places where a unique identifier is required.
We will see in later chapters that the I/O Kit uses a similar scheme to ensure the names of C++ classes are
unique. Previous versions of Mac OS 9 used a unique four-character constant to identify applications, which
required developers to register their chosen string with Apple. Using reverse DNS allows developers to generate
their own unique identifier without having to register them with Apple.

After clicking the “Create” button, Xcode will generate a project for you, including an
implementation file named “HelloWorld.c.” You can examine the contents of the source file named
“HelloWorld.c” by clicking on its icon in the left part of the project window. For this tutorial, modify the
generated source code to include the header file <libkern/libkern.h> and to add two calls to printf().
The function named HelloWorld_start() will be called when our kernel extension is loaded and the
function named HelloWorld_stop() will be called when the kernel extension is unloaded. When you have
finished editing the file, the code should look like Listing 3-1.

Listing 3-1. The “HelloWorld.c” Tutorial

#include <mach/mach_types.h>
#include <libkern/libkern.h>

kern_return_t HelloWorld_start (kmod_info_t * ki, void * d) {
 printf("Hello world\n");
 return KERN_SUCCESS;
}

kern_return_t HelloWorld_stop (kmod_info_t * ki, void * d) {
 printf("Goodbye world\n");
 return KERN_SUCCESS;
}

As we mentioned in Chapter 1, the APIs used for writing kernel code are generally different to those
available to user applications; this applies even to functions such as printf(). Rather than including the
user space header <stdio.h>, the kernel has its own implementation of printf that is declared in the
header file <libkern/libkern.h>. If you try to include <stdio.h> in a kernel project, the compiler will
report that it cannot find the included header file.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 XCODE AND THE KERNEL DEVELOPMENT ENVIRONMENT

43

As well as including the header file that defines the printf() function, we also need to link our
kernel extension against the library that provides the actual implementation of printf. Rather than a
compile-time linking, the kernel resolves any library dependencies of a kernel extension only when the
kernel extension is loaded. To inform the kernel of our dependencies, we need to declare the libraries we
wish to link against in our kernel extension’s property list, a file that goes by the name “HelloWorld-
Info.plist” in this tutorial project.

To modify the property list, click on the file named “HelloWorld-Info.plist” in the project window.
Although the format of the file is text-based XML, Xcode contains a graphical editor for manipulating
property list files, as shown in Figure 3-2. Add a new item to the OSBundleLibraries dictionary of your
property list to include an item with the key name com.apple.kpi.libkern and the value 9.0.0 When
you are finished, your property list should look identical to Figure 3-2.

Figure 3-2. The graphical property list editor in Xcode

The XML that corresponds to the addition we made to the property list file is shown in Listing 3-2.

Listing 3-2. The Value of the OSBundleLibraries Entry for Our Tutorial Kernel Extension

<key>OSBundleLibraries</key>
<dict>
 <key>com.apple.kpi.libkern</key>
 <string>9.0.0</string>
</dict>

The project’s property list is not used by the compiler (other than to perform some preprocessing,
which replaces variables such as ${PRODUCT_NAME} with their actual value), but is intended for the kernel.
The property list is copied to the compiled kernel extension and is read when the extension is loaded.
The entry we added to the dictionary consists of a key-value pair; the key identifies a kernel library on
which we depend and the value corresponds to the minimum required version of that library. In our
case, we are informing the kernel that we require a library with the unique identifier
com.apple.kpi.libkern and that we require version 9.0.0 or later of this library. The library identifier uses

CHAPTER 3 XCODE AND THE KERNEL DEVELOPMENT ENVIRONMENT

44

a reverse DNS prefix to ensure the name is unique; in this case, the prefix “com.apple” allows us to
recognize the library as a standard library provided by Apple.

■ Tip The version of the library, in our case 9.0.0, is the version of the Mac OS X kernel, not the version of Mac
OS X itself. Version 9.0.0 corresponds to Mac OS X 10.5.0. You can determine the version of the kernel on your
machine by typing the command uname –r into Terminal.

■ Note You may have noticed that the project created from the Xcode template includes an item named
“Kernel.framework” in the “Frameworks” group. This is not used by the linker when the project is built, but is
simply included to help the developer by providing easy access to kernel headers.

The kernel extension project is now complete and is ready to be built. To do this, choose “Build”
from the “Project” menu. You should not receive any build errors, but if you do, make sure the contents
of your “HelloWorld.c” file match those shown in Listing 3-1.

Before we run this kernel extension, it is worth taking a moment to understand how the kernel
knows which entry points to call, given that the two functions contained in the source file appear to be
user-defined. As you may have suspected, Xcode gives us a gentle push and generates some of the
boilerplate code for us automatically. In generating this code, Xcode uses two values that are defined in
the project’s settings, which define the kernel extension’s start and stop routines. These values are
shown in Figure 3-3. You are free to rename the entry points from HelloWorld_start and
HelloWorld_stop, as long as you change the name of the functions defined in the source code and the
values in the project build settings.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 XCODE AND THE KERNEL DEVELOPMENT ENVIRONMENT

45

Figure 3-3. The project settings for the “Hello World” kernel extension

Following a successful compile of the project, Xcode will have created a kernel extension with the
name “HelloWorld.kext.” This file is packaged into a special file known as a KEXT bundle. If you are not
familiar with bundles, they are essentially a directory that contains all the files required by the
executable, but which the Finder presents to the user as a single file. Listing 3-3 shows the contents of
the bundle created when we built the “Hello World” kernel extension.

Listing 3-3. The Contents of the HelloWorld.kext Bundle

HelloWorld.kext/
HelloWorld.kext/Contents/Info.plist
HelloWorld.kext/Contents/MacOS
HelloWorld.kext/Contents/MacOS/HelloWorld
HelloWorld.kext/Contents/Resources
HelloWorld.kext/Contents/Resources/en.lproj
HelloWorld.kext/Contents/Resources/en.lproj/InfoPlist.strings

The file named “Info.plist” should be familiar, since this is a copy of the property list we modified
earlier (with some minor processing applied by Xcode along the way). The other file that deserves a
mention is simply named “HelloWorld” and is located in the subdirectory of the bundle with the path
“Contents/MacOS.” This file contains the actual executable code of the kernel extension.

Loading and Unloading Kernel Extensions
A kernel extension is a code module that runs inside the operating system kernel. Having built our kernel
extension, it now needs to be loaded into the kernel where it can be run. While Xcode is great for writing
and building kernel extensions, it cannot be used for testing or debugging a kernel extension; in fact, for
a kernel extension, the button named “Run” in the Xcode window will build the project only, but won’t

CHAPTER 3 XCODE AND THE KERNEL DEVELOPMENT ENVIRONMENT

46

actually load or run the resulting output. Instead, kernel extensions on Mac OS X can be loaded one of
two ways, automatically, by copying the kernel extension bundle to the directory
/System/Library/Extensions, or manually through the command line.

To load the kernel extension, we first need to locate the compiled binary that was built by Xcode. By
default, Xcode 4 will place the output from the compiler in a different location than the project directory
that contains the source code, which can make it difficult to find the path to the kernel extension in
order to load it on the command line. To locate the path in which Xcode has written the kernel
extension, right-click on the product named “HelloWorld.kext,” which displays a contextual menu, and
select the item “Show in Finder,” as shown in Figure 3-4.

Figure 3-4. Locating the path to the built kernel extension

A kernel extension that is copied to the /System/Library/Extensions directory will be loaded when
needed by the operating system. This could be when the system boots or, in the case of a driver, when a
hardware device that requires the driver is connected to the computer. However, during development, it
is typically more convenient to load the kernel extension manually from the command line.

For security, because a kernel extension is granted the same elevated privileges as the core
operating system code, kernel extensions can only be installed or loaded by a user with administrative
access to the system. As a further security measure, the system has strict requirements regarding the file
permissions of the kernel extension’s bundle and will refuse to load a kernel extension that does not
meet these requirements, particularly the following.

• The KEXT bundle and all files and folders inside it must be owned by the user
“root” (user id 0).

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 XCODE AND THE KERNEL DEVELOPMENT ENVIRONMENT

47

• The KEXT bundle and all files and folders inside it must be owned by the group
“wheel” group id 0).

• The KEXT bundle and any directory inside it must have the permissions mask
0755 (rwxr-xr-x).

• All files inside the KEXT bundle must have the permissions mask 0644 (rw-r--r--).

When you build a kernel extension in Xcode, the KEXT bundle it produces will have the correct
permission mask for the bundle and its contents, but user and group ownership will correspond to the
user who ran the compiler. To correct the file ownership to that required by a kernel extension, you can
use the following command in Terminal.

sudo chown -R root:wheel HelloWorld.kext

Note that if you change the ownership of the KEXT inside the Xcode build directory, Xcode will not
have sufficient permission to overwrite the KEXT when the project is next built, which will result in a
build error. To overcome this, you can copy the KEXT from the Xcode build directory to another
directory (such as /tmp) before changing its ownership and loading it.

Mac OS X contains a number of command line utilities for the purpose of working with kernel
extensions. Some of the commonly used commands include:

• kextload, which loads a KEXT into the kernel

• kextunload, which stops a loaded KEXT and unloads it from the kernel

• kextutil, which is a developer-oriented utility for loading KEXTs into the kernel
and can provide diagnostic information detailing why a kernel extension failed to
load and can produce symbols that are useful when debugging an active kernel
extension

• kextstat, which displays a list of all KEXTs loaded into the kernel

With the exception of kextstat, which does not actively modify the state of the kernel, all these
commands must be run with super-user permissions. This can be accomplished by prefixing commands
with sudo.

We are now ready to load the “Hello World” kernel extension. To do this, run the following
command in Terminal:

sudo kextload HelloWorld.kext

Although the “Hello World” kernel extension has been loaded and its start entry point called, you
won’t see the result of our call to printf in the terminal window. Instead, the output from calling the
kernel’s implementation of printf is written to a log file. To confirm the “Hello World” kernel extension
was loaded, you can use the kextstat command, as follows:

kextstat

This will print a list of the running kernel extensions. Since the “Hello World” extension will be one
of the most recent extensions to have been loaded, it should appear at the end of the list. An example of
the output from kextstat is shown in Listing 3-4.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 3 XCODE AND THE KERNEL DEVELOPMENT ENVIRONMENT

48

Listing 3-4. The Output from the kextstat Command, with Our Kernel Extension Highlighted

Index Refs Address Size Wired Name (Version) <Linked Against>
 1 85 0xffffff7f80742000 0x683c 0x683c com.apple.kpi.bsd (11.1.0)
 2 6 0xffffff7f8072e000 0x3d0 0x3d0 com.apple.kpi.dsep (11.1.0)
 3 110 0xffffff7f8074c000 0x1b9d8 0x1b9d8 com.apple.kpi.iokit (11.1.0)
 4 116 0xffffff7f80738000 0x9b54 0x9b54 com.apple.kpi.libkern (11.1.0)
 5 103 0xffffff7f8072f000 0x88c 0x88c com.apple.kpi.mach (11.1.0)
...
130 0 0xffffff7f810ce000 0x51000 0x51000 com.apple.filesystems.afpfs (9.8) <129 7 6 5 4 3 1>
144 0 0xffffff7f807b8000 0x2000 0x2000 com.osxkernel.HelloWorld (1) <4>

Finally, we will unload the “Hello World” extension, which will result in the HelloWorld_stop()
function being called and the kernel extension being unloaded from the kernel. This can be
accomplished with the following command:

sudo kextunload HelloWorld.kext

Using Console to View Output
The resulting output from calling printf() in the kernel is written to a log file on disk. This log takes the
format of a plain text file that allows it to be examined with the standard Unix commands tail and cat,
passing the path to the logfile /var/log/kernel.log. Alternatively, the contents of the log can be inspected
with an application included with Mac OS X named “Console,” which can be found in the
/Applications/Utilities directory. The Console application consolidates logs from a wide range of system
services and applications, including the kernel logfile. A screenshot of the output from our tutorial
viewed through Console is shown in Figure 3-5.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 XCODE AND THE KERNEL DEVELOPMENT ENVIRONMENT

49

Figure 3-5. The output from a successful load and unload of our kernel extension, as shown in the Console

utility

Although it may seem primitive if you are accustomed to source level debuggers from user-space
development, being able to print debug output to the console remains one of the fundamental debug
techniques for kernel code. You can find more information on debugging in Chapter 16.

Summary
Kernel extensions for Mac OS X are developed using the tools contained within the Xcode package
provided by Apple. In this chapter, we created a tutorial “Hello World” kernel extension, showed how to
import symbols from other kernel libraries, and introduced the command line utilities commonly used
to load and work with kernel extensions.

C H A P T E R 4

51

The I/O Kit Framework

Device drivers for Mac OS X are written using a framework known as the I/O Kit. The I/O Kit consists of
header files and libraries that provide the services required by drivers, as well as header files and libraries
that are used by user space code to locate a kernel driver and interact with it. There are two main parts of
the I/O Kit:

• Kernel.framework

• IOKit.framework

Although it is slightly counterintuitive, the I/O Kit framework is designed for user space applications
and not for developing I/O Kit drivers in the kernel. Instead, the Kernel framework contains the header
files used for kernel space driver development. If you examine the contents of the Kernel framework, you
will see that it contains a directory named IOKit that consists of the header files used for kernel space
driver development. Another important directory in the Kernel framework is named libkern, which
contains the foundation classes and types on which the kernel I/O Kit framework is built.

The user space I/O Kit framework serves two purposes. It provides user applications with functions
for determining the hardware devices present on the machine on which it is running, functions for
locating the appropriate driver for a particular hardware device, and functions for sending control
requests and request statuses from that driver. These topics are further discussed in Chapter 5. In
addition, the user I/O Kit framework provides the user space application the ability to communicate
with certain hardware devices directly, removing the need for a kernel driver. This is possible for a select
range of devices, most notably USB and FireWire devices that do not need to be shared between
multiple running applications. We discuss this aspect of the I/O Kit in Chapter 15.

The I/O Kit Model
The I/O Kit is an object-oriented framework, thus it requires a language that provides an object-oriented
programming abstraction. Apple chose to implement the I/O Kit in the C++ language, and consequently,
drivers that are written for Mac OS X are developed in C++.

While the choice of C++ for driver development is unique among operating systems, it reflects the
modern nature of Mac OS X. The initial version of Mac OS X was released in 2001, and Apple took the
opportunity to design a completely new model for driver development. The choice of C++ reflects the
state of both computer hardware and compilers when the I/O Kit was designed.

The choice of an object-oriented language has considerable advantages. Hardware in a computer
system is, by its nature, an interconnected series of devices connected via a number of different buses.
For example, a USB device may be connected to the internal USB hub of a keyboard, which itself is
connected to the USB port on an iMac. Internally, the USB port is handled by a USB controller chip on
the iMac’s motherboard, which is connected to the motherboard’s chipset controller via an internal PCI

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4 THE I/O KIT FRAMEWORK

52

bus. By adopting an object-oriented driver model, the I/O Kit is able to mirror this same hardware
connection through the driver objects.

The role of a driver is to enable the operating system—and ultimately the user—to take advantage of
the services that are implemented by hardware. The operating system helps the driver by loading the
driver when its hardware device is present, providing the driver with a way to access and interact with its
hardware device, and by providing access points for the driver to plug its own services into the operating
system.

■ Note The I/O Kit uses the term “nub” to describe a driver that provides services to other drivers. For example,
the driver of a USB hub would be a nub because it provides services to the drivers of the USB devices that connect
to it.

The choice of an object-oriented design serves the I/O Kit well. Each driver is implemented as a C++
class, which allows the I/O Kit to instantiate a new driver object for each instance of the hardware device
present on the system. The driver’s hardware device is accessed through an object known as the driver’s
“provider,” which is provided to the driver at initialization. The I/O Kit will use a provider class that is
appropriate for the hardware bus used by the device. For example, a USB device will have a provider
class that is an instance of an IOUSBDevice, whereas a driver for a PCI card will have a provider class that
is an instance of an IOPCIDevice. The different capabilities of these bus interfaces are abstracted by the
different provider class types. For example, USB devices have a number of endpoints that data is
transferred to or read from, so the IOUSBDevice class contains methods for reading or writing a data
buffer to a specified endpoint. On the other hand, a PCI card is accessed by mapping a set of registers
into the kernel’s address space, which can then be read from and written to by the driver the same way
in which it writes to any other memory address.

Lastly, drivers need a way to provide their services to the rest of the operating system. This is
perhaps the area where the object-oriented design of the I/O Kit shines. The main class of the driver can
be implemented as the subclass of one of the specialized classes provided by the I/O Kit for certain types
of driver. For example, a driver that implements a serial port will subclass the standard
IOSerialStreamSync class. Similarly, a driver that implements an audio output device will subclass the
IOAudioDevice class.

The advantage of implementing a driver by subclassing is that your driver inherits the behavior and
implementation from the parent class. There are certain operations that are common to every serial port
and to every audio device, and this behavior is implemented by the superclass, saving driver developers
from having to write boilerplate code. Developers can then concentrate on code that is specific to their
particular hardware device. The superclass will call the driver when a device-specific action is required.

If you’ve implemented a driver for any other operating system, you have no doubt had to implement
a dispatch routine that usually takes the form of one large switch statement in order to handle all the
possible requests that the operating system may make and then calling the appropriate function in your
driver that implements that request. The I/O Kit takes a different approach. Driver requests take the
form of method calls. The driver simply needs to implement or override methods that are provided by its
superclass. These methods are specific to the driver type. For example, a serial driver is concerned with
transmitting bytes and receiving bytes over the serial port, so the IOSerialStreamSync class provides
pure virtual methods enqueueData() and dequeueData() to be implemented by the subclass when these
actions need to be performed.

For a specialized device, the I/O Kit may not provide a suitable superclass. For example, there is no
suitable superclass provided by the I/O Kit to implement a driver for a specialized medical imaging

CHAPTER 4 THE I/O KIT FRAMEWORK

53

device. The driver for such a device would be implemented by a class that subclasses from the generic
IOService class. The IOService provides methods to manage the driver’s lifecycle, including
initialization and destroying the driver object.

Lastly, a driver may provide an interface to user space applications. In I/O Kit terminology, this is
handled by implementing a class known as a “user client.” The user client is a custom class
implemented by the driver that subclasses the IOUserClient class. Whenever an application opens a
connection to the driver, the I/O Kit instantiates a new user client object that handles all the requests
coming from that application’s connection to the driver. When the application closes that connection to
the driver, or the application terminates (or crashes), the user client is destroyed. If an application opens
multiple connections to the driver, the I/O Kit will instantiate as many user client objects as there are
connections made.

Object Relationship
As we have seen, there are two important classes for an I/O Kit driver, one being the superclass that the
main driver class inherits from and the other being the provider class that the driver uses to access its
hardware. This design means that the functionality that the driver implements is separate from the way
in which the driver’s hardware device connects to the computer. For example, a driver that supports a
PCI sound card and a driver that supports a USB audio output device will both inherit from the same
IOAudioDevice superclass, and the operating system will interface to both drivers by making the same
calls to each driver. After all, the operating system’s audio subsystem shouldn’t need to care how an
audio output device connects to the computer.

This separation also encourages code reuse. A company that manufactures both PCI and USB based
audio devices could potentially use the same driver for both devices, with the driver receiving a provider
class that is of type IOPCIDevice or IOUSBDevice, depending on which of the two hardware devices is
connected to the computer. Or, perhaps more conceivably, the hardware vendor could create its own
superclass that implements the common functionality for both devices, which is itself a subclass of
IOAudioDevice. The driver for the vendor’s PCI and USB devices would need only a minimal
implementation, with much of the common functionality coming from their custom superclass. Such an
arrangement is shown in Figure 4-1.

Figure 4-1. An example of the relationship between an I/O Kit driver and its superclass and provider class

The Info.plist File
The Macintosh platform has always supported a plug-and-play design for devices, which requires no
configuration after installing the driver. Mac OS X, with the help of the I/O Kit, is no exception. Unlike
the kernel extension that we developed in the previous chapter, which loads as soon as it is added to the

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4 THE I/O KIT FRAMEWORK

54

system, a driver is loaded only when one of the devices that it supports is connected to the computer. In
this way, even though there may be hundreds of drivers installed on a system, only those that
correspond to hardware that is actually connected to the computer will be loaded and taking up
memory.

In Chapter 3, we saw that a kernel extension requires a property list file to define such things as its
entry points. The property list is even more important for a kernel extension that implements an I/O Kit
driver. For an I/O Kit driver, the property list specifies the list of hardware devices that the driver is able
to support. Each device supported by a driver contains its own “personality” in the property list, which
consists of a “matching dictionary” that consists of an array that describes each hardware device to
match against. The driver will be loaded only if one of the hardware devices described in its matching
dictionary is connected to the computer.

One of the most important values contained in each matching dictionary is the “IOProviderClass,”
which defines the class type of the driver’s provider, such as IOUSBDevice or IOPCIDevice. Whenever a
new hardware device is connected to the computer, the I/O Kit creates an appropriate nub for that
device, and then begins the process of finding a suitable driver for that nub. For example, a USB device
connection is handled as follows:

1. The user connects a USB device to the computer.

2. A new instance of IOUSBDevice is created to represent the device.

3. The I/O Kit iterates over all drivers that contain a matching dictionary listing a
provider class of IOUSBDevice.

4. The IOUSBDevice examines the entire contents of the matching dictionary for
the driver.

5. If the requested properties of the matching dictionary correspond to the
properties of the device, the driver is added to a list of potential drivers for the
device.

Importantly, it is the provider class that decides whether a driver is suitable for a particular
hardware device. It does this by examining the properties from a potential driver’s matching dictionary;
however, the particular properties that are used will be specific to the driver family. For example, a USB
driver may match against a specific vendor ID and product ID of the USB device, or may match against a
generic class of device such as any USB keyboard. A PCI device may be matched on the vendor ID and
device ID specified in the device’s PCI configuration space or against any PCI class, such as a network
card or a display card.

Following the preceding steps, the I/O Kit has narrowed the list of drivers for the device down to an
array of potential matches. To determine the best driver for the hardware device, the I/O Kit uses the
notion of a “probe score” for each driver. Each driver nominates a probe score that provides a relative
measure, in some way, of that driver’s suitability for the device. The driver with the highest probe score
is the one that is ultimately chosen to work with the device.

The driver’s probe score can be set in two ways. One way is for a driver to provide a probe score in
its matching dictionary. For example, a company that manufactures a custom USB keyboard could
provide a driver whose matching dictionary matches against the exact product ID of the company’s
keyboard, with a probe score that is higher than the system’s default keyboard driver. Another way that
the probe score can be set is through “active matching,” in which the I/O Kit instantiates each potential
driver, temporarily attaches it to the hardware device, and provides it with a chance to interrogate the
device and determine its probe score. During probe, the driver has full access to the hardware, so it can
perform as much interrogation of the device as is required to determine its suitability to drive that

CHAPTER 4 THE I/O KIT FRAMEWORK

55

device. The driver can adjust its probe score, or more commonly, can use the probe method to opt-out
of matching against a device if it determines that it is unable to work with the connected hardware.

For example, a driver’s implementation of probe could determine the version of firmware that is
loaded on the device, and if the firmware is of a later version than that supported by the driver, it could
refuse to load. Failing during the probe stage is more efficient than failing later on, when the driver has
been selected as the driver for the device, because the I/O Kit does not need to continue on and start
your driver, although, in both cases, the I/O Kit will continue by attempting to load the driver with the
next highest probe score.

While in almost all cases only one driver is attached to a device, the I/O Kit does allow multiple
drivers to be loaded for a single device. By adding an extra key to a driver’s matching dictionary known
as a “match category,” the I/O Kit will load the driver with the highest probe score in each match
category and attach it to the device. If no match category is given in the driver’s matching dictionary, a
default category is assumed.

The matching process is recursive, and drivers may themselves be nubs that act as a provider to
other classes. For example, the driver for a PCI card that implements a USB host controller would match
against an IOPCIDevice, but would create IOUSBDevice instances of its own to represent devices that have
been connected to its own ports. In this way, the IOUSBDevice instances created by the driver would in
turn become the provider class for other drivers, as shown in Figure 4-2. Rather than instantiate a class
of type IOUSBDevice directly, a driver of this type would likely provide its own implementation of a class
that inherits from IOUSBDevice, which is shown in Figure 4-2 as “MyUSBDevice.”

Any driver that uses an instance of MyUSBDevice as a provider would talk to the provider through its
standard IOUSBDevice interface, but the use of virtual methods would allow the MyUSBDevice
implementation to override these methods and provide its own implementation.

Figure 4-2. An example of a driver that is also a nub, creating objects that serve as the provider class to

other drivers

Another example of a driver that acts as a nub, which is in fact a far more common scenario, is a
driver that accepts connections from user applications. As mentioned earlier, for each connection that a
user application makes to a driver, the I/O Kit instantiates a new object known as a “user client” to
handle the control requests from the application and to pass them on to the driver. Like the main driver
class, the user client class is also an I/O Kit service and it inherits from the same IOService base class as
any other driver object. Each user client uses the main driver object as its provider class. Unlike the main
driver, however, a user client doesn’t need to go through the matching stage because the driver
nominates the specific class name of its user client.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4 THE I/O KIT FRAMEWORK

56

Listing 4-1. The Driver Personalities for a Hypothetical External Disk, Containing Matching Dictionaries

for both FireWire and USB Connections

<key>IOKitPersonalities</key>
<dict>
 <key>MyExternalDiskFireWire</key>
 <dict>
 <key>CFBundleIdentifier</key>
 <string>com.mycompany.driver.MyExternalDiskDriver</string>
 <key>IOClass</key>
 <string>com_mycompany_driver_MyExternalDiskDriver</string>
 <key>IOProviderClass</key>
 <string>IOFireWireUnit</string>
 <key>Unit_SW_Version</key>
 <integer>1111</integer>
 <key>Unit_Spec_ID</key>
 <integer>2222</integer>
 </dict>
 <key>MyExternalDiskUSB</key>
 <dict>
 <key>CFBundleIdentifier</key>
 <string>com.mycompany.driver.MyExternalDiskDriver</string>
 <key>IOClass</key>
 <string>com_mycompany_driver_MyExternalDiskDriverUSB</string>
 <key>IOProviderClass</key>
 <string>IOUSBDevice</string>
 <key>idProduct</key>
 <integer>3333</integer>
 <key>idVendor</key>
 <integer>4444</integer>
 <key>IOProbeScore</key>
 <integer>9000</integer>

 </dict>
</dict>

Listing 4-1 shows the matching dictionary for a hypothetical external disk device that features both
FireWire and USB connections. As such, it contains two entries in its matching dictionary, the first of
which matches against a specific FireWire device, and another that matches against a specific USB
device. The driver class com_mycompany_driver_MyExternalDiskDriver will be instantiated and given a
chance to probe the device whenever a FireWire device with a unit software version of 1111 and a unit
spec ID of 2222 is plugged in to the computer. Likewise, the driver class
com_mycompany_driver_MyExternalDiskDriverUSB will be instantiated and given a chance to probe the
device whenever a USB device with a product ID of 3333 and a vendor ID of 4444 is plugged into the
computer. The USB device will have a default probe score of 9000, which should make it the preferred
driver for this device.

CHAPTER 4 THE I/O KIT FRAMEWORK

57

The Driver Class
As we saw in the previous section, when the I/O Kit loads a driver, it does so by instantiating a class that
is designated in the driver’s property list. This class must be a subclass of the IOService class, either
directly or by subclassing a class that is itself a child of the IOService class. The IOService class provides
virtual methods that are called at various points during the lifetime of the driver—for example, when it is
loaded and initialized, when it should probe its provider, and when the driver is stopped. Because these
methods are declared as virtual methods in the definition of the IOService class, they can be easily
overridden in the custom driver class that inherits from IOService.

At this point, it may be a good time to put what you have learned into practice by creating a simple
I/O Kit driver. To begin, open Xcode and create a new project based on the “IOKit Driver” template.
When prompted for a product name, enter “IOKitTest”. You can use the company identifier
“com.osxkernel”, which is a domain name that has been registered for the purposes of this book. Xcode
will create a project for you with two files, a C++ implementation file named “IOKitTest.cpp” and its
corresponding header file named “IOKitTest.h”.

Let’s begin by declaring the class definition of our driver. Given that we are implementing a generic
driver, and not one that provides specialized functionality such as a serial port or disk storage, we will
define our driver’s main class as a subclass of IOService and not one of the more specialized classes that
the I/O Kit provides. Enter in the text from Listing 4-2 as the contents of IOKitTest.h.

Listing 4-2. The “IOKitTest.h” Tutorial

#include <IOKit/IOService.h>

class com_osxkernel_driver_IOKitTest : public IOService
{
 OSDeclareDefaultStructors(com_osxkernel_driver_IOKitTest)

public:
 virtual bool init (OSDictionary* dictionary = NULL);
 virtual void free (void);

 virtual IOService* probe (IOService* provider, SInt32* score);
 virtual bool start (IOService* provider);
 virtual void stop (IOService* provider);
};

The contents of the header file should be fairly straightforward, with the possible exception of the
macro OSDeclareDefaultStructors. As you will recall from Chapter 3, the I/O Kit is implemented in a
subset of the C++ language that does not include exceptions and runtime type information. The macro
OSDeclareDefaultStructors is needed as a consequence of both of these limitations; it provides the
declaration of the class’s constructor and destructor and metadata that provides the custom
implementation of the I/O Kit’s version of runtime type information. We discuss this in greater depth
later in this chapter.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4 THE I/O KIT FRAMEWORK

58

■ Note You may be wondering why we used such an elaborate name for our class. The kernel has a global
namespace into which all symbols (including class names, functions, and global variables) exported by any active
kernel extensions are loaded. The kernel will refuse to load an extension that contains symbols that collide with an
extension that is already loaded, and so to avoid this, Apple recommends that all global functions, classes, and
variables are decorated with a reverse-DNS naming scheme.

The implementation of the driver class should be placed in the file named “IOKitTest.cpp.” The
contents of this file are given in Listing 4-3.

Listing 4-3. The “IOKitTest.cpp” Tutorial

#include "IOKitTest.h"
#include <IOKit/IOLib.h>

// Define the superclass.
#define super IOService

OSDefineMetaClassAndStructors(com_osxkernel_driver_IOKitTest, IOService)

bool com_osxkernel_driver_IOKitTest::init (OSDictionary* dict)
{
 bool res = super::init(dict);
 IOLog("IOKitTest::init\n");
 return res;
}

void com_osxkernel_driver_IOKitTest::free (void)
{
 IOLog("IOKitTest::free\n");
 super::free();
}

IOService* com_osxkernel_driver_IOKitTest::probe (IOService* provider, SInt32* score)
{
 IOService *res = super::probe(provider, score);
 IOLog("IOKitTest::probe\n");
 return res;
}

bool com_osxkernel_driver_IOKitTest::start (IOService *provider)
{
 bool res = super::start(provider);
 IOLog("IOKitTest::start\n");
 return res;

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 4 THE I/O KIT FRAMEWORK

59

}

void com_osxkernel_driver_IOKitTest::stop (IOService *provider)
{
 IOLog("IOKitTest::stop\n");
 super::stop(provider);
}

■ Note It is a convention of the I/O Kit to define a macro named “super” as the name of the superclass of the
current class. This allows a method to be delegated to the superclass implementation easily, as is shown in Listing
4-3.

Finally, we need to define the driver’s matching dictionary and library dependencies through the
Info.plist file. Add a new dictionary key named “IOKitTest” to the IOKitPersonalities dictionary that
contains the following values:

Key Type Value

CFBundleIdentifier String com.osxkernel.${PRODUCT_NAME:rfc1034identifier}

IOClass St ring com_osxkernel_driver_IOKitTest

IOMatchCategory String com_osxkernel_driver_IOKitTest

IOProviderClass St ring IOResources

IOResourceMatch String IOKit

We also need to add two entries to the OSBundleLibraries dictionary:

Key Type Value

com.apple.kpi.iokit St ring 9.0.0

com.apple.kpi.libkern St ring 9.0.0

The final version of the project’s property list is shown in Figure 4-3.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4 THE I/O KIT FRAMEWORK

60

Figure 4-3. The property list, including the matching dictionary, for the IOKitTest tutorial

Given that the purpose of a driver is to control hardware, and that the I/O Kit will load a driver only
when its hardware device is present, you may be wondering how it is possible to test this driver.
Thankfully, the I/O Kit provides a special nub known as IOResources that can be used as the provider
class of a driver that has no hardware device, such as the tutorial driver listed here. In a system, there will
be multiple drivers matching against the IOResources nub, and so to allow more than one driver to
attach itself to IOResources, the IOMatchCategory key in the driver’s matching dictionary must be
defined.

Since the I/O Kit allows a nub to have one driver attached to it per match category, specifying a
unique category allows the driver to load and doesn’t prevent other drivers from matching against the
IOResources provider class after we have loaded. To complete the matching dictionary, we need to
specify matching criteria that are unique for the provider class. If the provider class is a USB device, this
may take the form of a USB product ID and vendor ID. In the case of our tutorial, the provider class is
IOResources. A single key named “IOResourceMatch” is the matching criteria used by IOResources. In the
sample driver’s matching dictionary, this value is set to “IOKit”. This tells the provider class to defer
loading the driver until the IOKit subsystem has been fully loaded and initialized during system startup.

You can now build the IOKitTest project, which can be loaded using the same “kextload” command
that was used in Chapter 3. If you open the “Console” utility and examine the contents of the
“kernel.log” file, you should see that the various methods of the driver’s class have been called.

The order in which the methods of the driver class are called is as follows:

1. init(). This method is guaranteed to be called before any other method in the
class. Its purpose is the same as a constructor of a C++ class. A driver’s init()
method should first call the implementation provided by the superclass, and if
this fails, it should abort immediately. This method is passed one parameter, a
copy of the matching dictionary corresponding to the selected driver
personality in the Info.plist file. If this method succeeds, it should return true;
otherwise, it should return false.

CHAPTER 4 THE I/O KIT FRAMEWORK

61

2. probe(). This method is called during matching to give the driver a chance to
examine the hardware device, which is passed to the method through the
argument named “provider.” Although the parameter “provider” is a pointer
to an IOService, it can be cast to the more specialized provider class specified
in the matching dictionary (such as IOUSBDevice). The driver’s implementation
of probe() should first call the superclass’s implementation, and if this
succeeds, perform any investigation of the hardware required to determine
whether the driver is able to control it. If the driver is unable to control the
hardware, it should return NULL from the probe() method; otherwise, it should
return an instance of the IOService subclass that should control this device. In
almost all cases, this method will return the current IOService instance
(“this”).

3. start(). If the previous call to probe() succeeded, and the driver has been
chosen as being the best suited to control the hardware device (based on its
probe score), its start() method is called. The implementation should first call
the superclass’s implementation of start(), and if this fails, it should abort
immediately. The driver should use the start() method to configure the
hardware for operation, and should initialize any resources that it needs while
running. If for any reason the method fails and the driver is unable to go on to
control the hardware, the method should return false. The I/O Kit will then
provide the driver with the next highest probe score a chance to control the
device.

4. stop(). This method isn’t called until either the device is removed or the driver
is manually unloaded. This method is the opposite of start(); any
configuration or allocation that was performed in the start() method should
be released when stop() is called. Finally, the implementation should call the
superclass’s implementation of stop().

5. free(). Finally, before the driver’s object is destroyed, the I/O Kit calls its
free() method. Its purpose is the same as a destructor of a C++ class. This
provides the driver with a chance to release any resources that were allocated
in its init() method. This method is called even if a driver was never selected
as the best match for a particular device. The implementation should end by
calling the superclass’s implementation of free().

A consequence of limited exception support is that rather than using the traditional C++ approach
of performing object initialization in the class’s constructor and throwing an exception if an error
occurs, the initialization of I/O Kit objects is performed in a custom method named “init,” which
returns a Boolean value to signal success.

IORegistryExplorer
Apple provides a very useful tool for visualizing the drivers loaded on a system, known as
“IORegistryExplorer.” This is included as part of the Xcode tools. IORegistryExplorer displays a graphical
representation of the drivers that are currently loaded on the system and their relationship to other
drivers. This relationship is shown as a hierarchical representation, with a provider class having a parent
relationship to the clients that are connected to it.

IORegistryExplorer shows a representation of an entity known as the I/O Registry. If you’re coming
from a Windows background, don’t confuse the I/O Registry with the Windows Registry. The I/O

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4 THE I/O KIT FRAMEWORK

62

Registry is a tree of I/O Kit objects that is created when the system is started, and then it dynamically
grows or shrinks as hardware devices and their corresponding drivers are loaded or unloaded from the
system. Unlike the Windows Registry, the I/O Registry is never written to disk or saved between reboots
of the computer.

The IOService plane includes all objects in the I/O Registry. As such, it can be a little overwhelming
when trying to locate a particular driver. To help find a particular driver in the I/O Registry,
IORegistryExplorer provides a search field that can be used to filter the objects shown to those whose
name matches a particular string.

IORegistryExplorer also displays the property table for each driver object. When the I/O Kit loads a
driver, it initializes its property table to the contents of the matching dictionary that corresponds to the
driver personality that was loaded; this corresponds to the OSDictionary object that was passed to the
driver class’s init() method. As the driver runs, it may manipulate its property list by adding or
removing additional key/value pairs or by changing the value of a particular key. These changes are local
to the driver instance (and so if the same driver is loaded multiple times for several devices in the
system, they each have their own property table). Figure 4-4 shows IORegistryExplorer for the sample
IOKit driver that we developed earlier.

Figure 4-4. IORegistryExplorer displaying the IOKitTest sample. The property table shown on the right was

initialized from the contents of the driver’s matching dictionary in its Info.plist file.

Objects in the I/O Registry are organized into several planes. Each plane shows only those objects
that share certain functionality. When launched, IORegistryExplorer will default to showing the
relationship of objects in the “IOService” plane, which includes all objects in the I/O Registry. Some of
the other planes that are commonly used include:

CHAPTER 4 THE I/O KIT FRAMEWORK

63

• IODeviceTree: This is a static plane that reflects the hardware configuration of the
system; it does not change as hardware devices are connected to the system. The
contents of the device tree largely depend on the system motherboard and will
consist of a static snapshot of the computer’s configuration at boot time,
including PCI slots, built-in USB ports, and any hardware controllers that are on
the motherboard, such as the CPU, memory, and USB controllers.

• IOPower. This plane shows all driver objects that have implemented power
management and will receive notifications from the I/O Kit when the system is
switching to a different power state such as when entering sleep mode.

• IOUSB. This plane shows all USB devices and hubs that are connected to the
system. It includes the USB devices only; the corresponding driver that has been
loaded for a device can be seen in the IOService plane.

The I/O Registry is also accessible on the command line through the tool “ioreg.” Unlike
IORegistryExplorer, which is available if the Xcode tools have been installed, ioreg is a standard part of a
Mac OS X installation and is useful when debugging on an end-user’s machine or any other system in
which the developer tools are unlikely to be installed.

The Kernel Library: libkern
The runtime support and base classes on which the I/O Kit is built are implemented in a library known
as libkern. The libkern library provides support that makes up for much of the functionality that is
excluded in the embedded C++ language. The libkern library defines a class known as OSObject, which
provides the base class that is used by all I/O Kit classes. Since the base driver class IOService is a
subclass of OSObject, the main class of a driver will also be derived from OSObject. Any class that is
derived from OSObject gets the following functionality:

• Runtime Type Information, which is implemented through custom macros
provided by libkern. These macros provide functionality that includes

• Type introspection, which is the ability at runtime to determine the type of
an object or whether it is derived from a given base class

• Dynamic casting, which is the ability to cast an object to the type of one of
its derived classes (for example, to cast the provider class from an object of
type IOService to IOUSBDevice)

• Object creation, including the ability to instantiate an object based on a string
representation of its class name

• Object reference counting based on retain/release semantics

• Object tracking, that is, the ability to determine how many instances of a certain
class have been instantiated but not yet released

OSObject
Some of the features provided by libkern should be very familiar if you have written user applications
with Apple’s Cocoa framework. In particular, the OSObject class can be thought of as the kernel

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4 THE I/O KIT FRAMEWORK

64

equivalent of the NSObject class in Cocoa, and the dynamic type introspection capabilities are almost
identical to their counterparts provided by the Objective-C runtime.

There is no requirement to use OSObject as the superclass for classes that are private to your driver,
although you may find that the reference counting and object tracking that OSObject provides (without
any extra work from you) is reason enough to adopt it.

Adopting OSObject as the base class involves the following steps:

1. Using the standard C++ syntax, declare your class to be a subclass of OSObject,
or a class that is derived from OSObject (such as IOService). If you are
subclassing from OSObject, you may need to include the header file
<libkern/c++/OSObject.h>.

2. As the first line of your class’s declaration (in your class’s header file), include
the macro OSDeclareDefaultDestructors(), passing the name of your class as
its argument. This macro, among other things, declares the standard C++
constructor and destructor for your class, and so you should not add either to
your class declaration. Instead, add a method named init() to your class to
act as the constructor, and a method named free() to act as the destructor.
You are free to add any arguments that your class requires to the init()
method, as is shown in the following example.

class com_osxkernel_driver_MyObject : public OSObject
{
 OSDeclareDefaultStructors(com_osxkernel_driver_MyObject)
public:
 virtual bool init (const char* name);
 virtual void free ();
 …
};

3. In the file that implements your class, place the macro
OSDefineMetaClassAndStructors(), which takes two arguments, the name of
the class, and the name of its direct superclass. The first few lines of an
implementation file typically follow the pattern

#include "MyObject.h"

// Define super as a convenience macro to refer to the superclass
#define super OSObject

OSDefineMetaClassAndStructors(com_osxkernel_driver_MyObject, OSObject)

4. Provide an implementation of the methods init() and free(). These two
methods play the role of the constructor and destructor, respectively, as shown
in the following example.

bool com_osxkernel_driver_MyObject::init (const char* name)
{
 if (! super::init())
 return false;

 // Additional initialization
 return true;
}

CHAPTER 4 THE I/O KIT FRAMEWORK

65

void com_osxkernel_driver_MyObject::free ()
{
 // Release resources allocated in init()
 super::free();
}

Having defined an object that subclasses from OSObject, it can be instantiated in your code by
calling the C++ new operator followed by the init() method. As a convenience, many classes provide a
static method that performs both of these steps, and return a non-NULL object on success, as shown in
Listing 4-4.

Listing 4-4. The Definition of a Static Helper Method to Construct a New Instance of a Custom Class

com_osxkernel_driver_MyObject*
 com_osxkernel_driver_MyObject::withName (const char* name)
{
 com_osxkernel_driver_MyObject* me = new com_osxkernel_driver_MyObject;

 if (me && !me->init(name))
 {
 me->release();
 return NULL;
 }

 return me;
}

The lifetime of any object that is based on OSObject is determined by reference counting. When an
object is first created, its reference count is initialized to 1. To free an object, rather than using the C++
operator delete (which the OSDeclareDefaultStructors macros declare as a protected method), your
code should instead call the release() method. This method is implemented by the OSObject class and
decrements the reference count of the object by 1. When the object’s final reference is released, and the
object’s reference count becomes 0, the object is released and the free() method is called. If your code
takes a pointer to an object that it needs to hold on to, it will need to extend the lifetime of that object to
ensure that the object is not released while your code is holding a reference to it. This is done by calling
the retain() method, which increments the reference count of the target object by 1. To prevent
memory leaks, it is important that each call to retain() is matched with a call to release().

Any object that is derived from OSObject allows type introspection. To cast an object into another
type, libkern provides a macro named OSDynamicCast(type, object), which performs the equivalent of
the C++ operator dynamic_cast<type>(object). The macro verifies whether the object is derived from the
requested class, and if so, a pointer to the object is returned; otherwise, the macro returns NULL. The
most common use of dynamic casting is to safely convert an object from a base class to a more
specialized class. For example, the driver’s start() method is passed a pointer to its provider class as an
IOService object. However, the provider is actually a more specialized class such as IOUSBDevice or
IOPCIDevice, and a dynamic cast allows this conversion to be made safely. For example, a driver that
controls a USB device will contain the following code in its start() method to convert the provider from
an IOService to an IOUSBDevice:

IOUSBDevice* usbDevice = OSDynamicCast(IOUSBDevice, provider);
if (usbDevice == NULL)
{
 IOLog("Unknown provider class\n");

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4 THE I/O KIT FRAMEWORK

66

 return false;
}

The OSObject base class can also track the number of instances of each of its derived classes that
have been instantiated but not yet released. This information is not only useful for the I/O Kit; it also
provides an invaluable mechanism for tracking memory leaks. Internally, the I/O Kit uses the instance
count of each class to ensure that it does not unload a kernel extension that has outstanding objects,
which would lead to a kernel panic. When a kernel extension no longer has any outstanding instances
for all classes that it defines, the kernel will unload that kernel extension. The number of instances of
each OSObject-derived class can be examined through the command line tool “ioclasscount.”

■ Tip If you open Terminal and run the command ioclasscount after loading the IOKitTest tutorial, you will see a
single instance of the class com_osxkernel_driver_IOKitTest.

Container Classes
As well as defining the base class and providing a runtime environment for the kernel, libkern also
defines a number of container classes to manage a collection of objects. The container classes provided
by libkern include arrays, dictionaries, and both ordered and unordered sets. While all these containers
can contain objects of varying types and can even contain objects of differing types within the same
container, a container can contain only objects that are derived from the OSObject class.

■ Note If you are familiar with user space programming on Mac OS X, the libkern container classes are
equivalent to NSMutableArray, NSMutableDictionary, and NSMutableSet, or the Core Foundation types
CFMutableDictionary, CFMutableArray, and CFMutableSet.

To allow non-object scalar types such as Booleans, integers, and strings to be included in the
container types, libkern provides the corresponding classes OSBoolean, OSNumber, and OSString for
wrapping a bool, an integer value of up to 64 bits in length, and a C-string, respectively.

The handling of strings in libkern deserves special mention. The libkern library provides two classes
for representing a string, OSString and OSSymbol (which is a subclass of OSString). The purpose of
OSSymbol is not to provide a general wrapper for a string, but rather to hold string values that represent
“symbols” in the kernel, such as commonly used keys in a matching dictionary. When a new instance of
OSSymbol is created, the constructor checks for an existing OSSymbol object that contains the same string
value, and if one is found, returns an instance of the existing object rather than creating a new instance.
This means that for a given string value, there is at most one OSSymbol object representing that value. As
a consequence, a dictionary that is keyed on OSSymbol values needs to compare the address of only two
OSSymbol values rather than performing a more expensive string comparison.

All the container classes follow the same behavior with regard to object ownership. Any object
added to a container is retained by that container class, and objects are released by the container class
once they are removed from the container or the final reference of the container itself is released and so
the container is deallocated. After inserting an object into a container, if the caller no longer requires its

CHAPTER 4 THE I/O KIT FRAMEWORK

67

own reference to that object, it is free to release the inserted object since the container class will
maintain a reference to the object.

After querying a container for an object that it contains, the caller should retain that object if there is
any chance that the container could be released while the caller is still using the returned object. The
libkern container classes do not increment the reference of their content objects before returning it to
the caller (for example, the OSArray method getLastObject() will not increment the reference count of
its last object before returning it to the caller).

It is important to note that the container classes do not provide any synchronization for use in a
multi-threaded environment. That is not to say that they cannot be used in a driver that contains multi-
threaded code, but rather that it is the caller’s responsibility to add its own locking to ensure that calls to
the container classes are serialized.

The container classes provided by libkern include the following:

• OSArray, which provides storage and retrieval of objects based on the index within
the array

• OSDictionary, which provides storage and retrieval based on a provided string
value (which is known as the “key”)

• OSSet, which provides storage for objects and the ability to test whether an object
is in the set

• OSOrderedSet, which provides storage that is sorted based on a provided
comparison function and retrieval based on an index

All libkern container classes can be iterated over using the class OSCollectionIterator, as shown in
Listing 4-5. When iterating over an OSDictionary, the objects returned by the iterator represent the keys
of the dictionary, and not the values contained in the dictionary itself.

Listing 4-5. A Sample Function to Iterate Over the Objects Contained in an OSArray

void IterateArray (OSArray* array)
{
 OSCollectionIterator* iter;

 iter = OSCollectionIterator::withCollection(array);
 if (iter != NULL)
 {
 OSObject* anObject;

 while ((anObject = iter->getNextObject()) != NULL)
 {
 // Assume the array only contains string values:
 // OSString* aString = OSDynamicCast(OSString, anObject);
 }

 iter->release();
 }
}

A special container object for drivers is their property table. This is a dictionary that contains a
number of key/value pairs that are local to a particular driver instance. When a driver is loaded, the I/O
Kit fills its property table with the entries of the matching dictionary from the driver’s Info.plist file.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4 THE I/O KIT FRAMEWORK

68

However, as the driver runs, it is free to add or remove additional values from its property table. A
driver’s property table is special because it can be accessed by user space applications, including
IORegistryExplorer. This makes it a perfect means for passing small amounts of data, such as integer
values, between the driver and user space.

Alternatively, a driver can write the values of certain important variables to keys in its property table,
which can then be monitored in IORegistryExplorer (or a custom application) to track the state of the
driver.

Summary
• The I/O Kit provides an object-oriented framework for developing drivers on Mac

OS X.

• Drivers written using the framework inherit from a suitable base class that is
chosen based on the functionality that the driver implements. The I/O Kit
provides base classes for drivers such as audio input and output streams, serial
ports, and disk devices.

• A driver accesses its hardware through an object known as its provider, which
allows communication with hardware in a way that is natural to the bus on which
the hardware is connected.

• A driver is loaded only when its hardware is present in the system, as described by
matching criteria described in the driver’s property list.

• The I/O Kit is built on top of a library known as libkern, which provides runtime
support to the kernel by way of object instantiation, reference counting, and
container classes.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

C H A P T E R 5

69

Interacting with Drivers
from Applications

In the previous chapter, we learnt about I/O Kit drivers, which live in the kernel. On the other hand, the
applications that users interact with live in user space. So, if the user is going to use the services provided
by your driver, the kernel/user space boundary needs to be crossed.

Mac OS X provides several different mechanisms through which a driver can provide its services to
user space applications. The method that a developer chooses to allow a particular driver to provide its
services to user space applications is dependent on the type of functionality that the driver implements.
For example, all serial ports, audio drivers, and storage devices have their own interface that is defined
by the I/O Kit. This interface allows a user space application to work with these devices. An application
will work with devices provided by any hardware vendor, provided that the vendor’s driver implements
the standard I/O Kit interface for that device. From a driver developer’s point of view, using the common
interface provided by the I/O Kit is in their best interest because it ensures that the driver is accessible to
a large number of user space applications without forcing developers to adopt a custom interface for the
driver. It also requires less work on your part.

A good example of this is a serial port driver. A Mac OS X user space application accesses serial ports
through a character device that is represented by a file in the /dev path of the file system. To
communicate over a serial device, a user application calls the same functions as it would to open, read,
or write to any other file on the file system; that is open(), read(), and write(). In the kernel, a driver that
provides a serial port will create an instance of the standard I/O Kit class IOSerialStreamSync. The I/O
Kit’s serial family will create a device node in the /dev directory, publishing the path of the node in the
I/O Registry so that applications can find it. It will also pass requests from user applications to method
calls in the driver’s implementation, which is a subclass of the standard IOSerialDriverSync class. There
was no work required by the driver developer in publishing its services to user space. This is illustrated in
Figure 5-1.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5 INTERACTING WITH DRIVERS FROM APPLICATIONS

70

Figure 5-1. The classes involved in communicating with a serial port from a user space application. With

the exception of MySerialDriver, all of the objects and their connections are created by the I/O Kit.

Not all driver developers are as fortunate as the developers of a serial port driver in having the I/O
Kit take care of crossing the user space/kernel boundary. For a hardware device that provides custom
functionality, the I/O Kit may not provide an appropriate client interface that your driver is able to use.
In this case, your driver will need to implement a custom interface for user space applications to use
when interacting with it. As we saw in Chapter 1, Mac OS X has a strict barrier between user space and
the kernel. This places restrictions on the nature of how this interaction takes place. This chapter
describes the methods provided by the I/O Kit to cross the user/kernel boundary and allow
communication between user applications and a kernel driver.

The I/O Kit Framework
The user space API through which a process communicates with a kernel driver is provided by a
framework known as “IOKit.framework,” which will hereafter be referred to as the “I/O Kit framework.”
The I/O Kit framework allows a user space application to determine the hardware devices and kernel
drivers that are present on the system, to watch for the arrival or removal of hardware that can be hot-
plugged (such as USB devices), and to interact with I/O Kit drivers. The I/O Kit framework defines the
data types that provide a user space representation of kernel objects and the functions that are needed
to manipulate these kernel objects. Although the I/O Kit is a C++ based framework in the kernel, the user
space I/O Kit framework is provided as a set of C-based functions, so it can be used by projects that are
written in both C and C++ or by projects that are written in Objective-C, which is of particular
importance for GUI applications.

The I/O Kit framework provides access to the kernel objects that are present in the I/O Registry,
which can be examined with the IORegistryExplorer utility (see Chapter 4). The I/O Registry consists of
kernel objects that represent hardware devices that are connected to the computer or drivers that have
matched against connected hardware devices and have been loaded into the kernel. The objects in the
I/O Registry can be created only within the kernel, including by kernel drivers, but the I/O Kit framework
provides a way for applications in user space to examine the contents of the I/O Registry, including
iterating the registry, determining the relationship between objects (for example, to determine which
driver has been loaded against a particular hardware device), and to read and write the properties of an
object in the I/O Registry.

The I/O Registry contains kernel objects that may represent either loaded drivers or connected
hardware devices. This means that the functionality provided by the I/O Kit framework can be applied to
both a driver and to a hardware device. In some cases, an application can directly manipulate a
hardware device through its corresponding I/O Registry object without the need for a kernel driver; this

CHAPTER 5 INTERACTING WITH DRIVERS FROM APPLICATIONS

71

is discussed in Chapter 15 for USB devices. The I/O Kit framework also allows an application to install a
notification to watch for the arrival of a particular driver or hardware device.

Finding a Driver
The first step in communicating with a kernel driver from a user space application is to locate the
running instances of the driver of interest. On a system such as Mac OS X, hardware devices can be
plugged into the machine at any time and there may be several instances of a driver loaded if the user
has connected multiple hardware devices that are supported by your driver. To handle these cases, the
I/O Kit framework provides functions to not only iterate over all devices and drivers in the I/O Registry
that match certain criteria, but also allows a callback function to be installed to watch for the arrival or
removal of a driver or a device that matches certain criteria.

To locate a specific driver in the I/O Registry, the I/O Kit framework uses a matching dictionary that
includes the properties of the driver or device that you are interested in. The beauty of the I/O Kit design
is that the matching dictionary that a user space application uses to locate a driver or a hardware device
takes exactly the same form as the matching dictionary found in the driver personality of a kernel
driver’s property list (see Chapter 4). In fact, the same code that the kernel uses to compare a driver’s
matching dictionary when deciding whether to load a driver against a device is the very code that is used
to decide whether a device or driver is of interest to the application when comparing a user space
application’s matching dictionary.

As with the matching dictionary in a driver’s property list, an application can create a matching
dictionary that is as generic or specific as required. For example, depending on the properties you add to
the matching dictionary, it could match against all USB devices or, by adding a specific USB vendor ID to
the matching dictionary, against any USB device produced by a certain manufacturer. Adding a further
USB product ID to the matching dictionary would allow it to match against only a specific USB device.

As an example, Listing 5-1 creates a matching dictionary that will match against any USB device and
uses it to iterate over the I/O Registry, printing the name of all matching devices. To compile this sample,
a new project in Xcode that is based on the Mac OS X application template named “Command Line
Tool” is created. When prompted to name the project, enter “DriverIterator” and select “Core
Foundation” as the project type. You will need to add the framework “I/OKit.framework” to the project;
otherwise, you will receive a link error when the project is built.

The structure of the code should be fairly straightforward:

1. It creates a matching dictionary that specifies the properties of the hardware
device or drivers that we are interested in. This example uses the helper
function IOServiceMatching(), which creates a dictionary with a single entry
for the IOProviderClass key with the specified value. This has the same effect
as adding an IOProviderClass entry to the matching dictionary of a driver’s
property list; any kernel object that is a subclass of the specified class,
IOUSBDevice in this example, will match against the dictionary.

2. It calls IOServiceGetMatchingServices() passing in the matching dictionary
and receives as output an iterator that can be used to traverse all kernel objects
in the I/O Registry that match the matching dictionary. The iterator represents
the state of the system at the time that the function was called; once the
iterator object has been created, it will not be modified, even if additional
matching devices are added to the system.

3. The function IOIteratorNext() is called repeatedly, and on each call it returns
the next object that matched the specified dictionary. When the final object
has been received, any further calls to IOIteratorNext() will return 0. Any

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5 INTERACTING WITH DRIVERS FROM APPLICATIONS

72

object returned by the iterator has had its reference count incremented and
needs to be released by the caller through a call to IOObjectRelease().

4. To refine this sample, the code excludes USB hubs and only lists the names of
actual USB devices. This also allows the sample to demonstrate the type
introspection functionality that user space applications can perform on kernel
objects. To do this, the function IOObjectCopyClass() is called, which returns
the object’s class type as a CoreFoundation string. The matching dictionary
will include all objects that are either instances of IOUSBDevice or instances of
classes that are derived from IOUSBDevice, which includes the IOUSBHubDevice
class. To exclude USB hub devices from the listing, this sample will ignore any
objects whose class name is not an exact match of the string “IOUSBDevice.”

Listing 5-1. Code To Iterate All Connected USB Hardware Devices

#include <CoreFoundation/CoreFoundation.h>
#include <IOKit/IOKitLib.h>

int main (int argc, const char * argv[])
{
 CFDictionaryRef matchingDict = NULL;
 io_iterator_t iter = 0;
 io_service_t service = 0;
 kern_return_t kr;

 // Create a matching dictionary that will find any USB device.
 matchingDict = IOServiceMatching("IOUSBDevice");

 // Create an iterator for all I/O Registry objects that match the dictionary.
 kr = IOServiceGetMatchingServices(kIOMasterPortDefault, matchingDict, &iter);
 if (kr != KERN_SUCCESS)
 return -1;

 // Iterate over all matching objects.
 while ((service = IOIteratorNext(iter)) != 0)
 {
 CFStringRef className;
 io_name_t name;

 // List all IOUSBDevice objects, ignoring objects that subclass IOUSBDevice.
 className = IOObjectCopyClass(service);
 if (CFEqual(className, CFSTR("IOUSBDevice")) == true)
 {
 IORegistryEntryGetName(service, name);
 printf("Found device with name: %s\n", name);
 }
 CFRelease(className);
 IOObjectRelease(service);
 }

 // Release the iterator.
 IOObjectRelease(iter);

CHAPTER 5 INTERACTING WITH DRIVERS FROM APPLICATIONS

73

 return 0;
}

 Note The function IOServiceGetMatchingServices() is guaranteed to release a reference on the matching
dictionary that is passed in. This is why the code in Listing 5-1 does not need to call CFRelease() on the
CFDicionaryRef that it creates.

Listing 5-1 uses a function named IOServiceGetMatchingServices() to create a matching dictionary
for kernel objects that the application is interested in. The first parameter to the function
IOServiceGetMatchingServices() is a Mach port that is used for communicating between the user space
process and the I/O Kit. In Mac OS X 10.2 and later, a convenience macro named kIOMasterPortDefault
was introduced, although some of the Apple sample code still uses the pre-Mac OS X 10.2 approach of
calling the IOMasterPort() function to obtain the I/O Kit’s Mach port.

On a system such as Mac OS X, hardware devices can be plugged into the system at any time. The
problem with the approach that we used in the previous section is that it requires the application to poll
for a list of connected devices. A better approach is to have the I/O Kit notify your application whenever
a device that you are interested in is connected to the computer. The I/O Kit framework provides an
alternative approach in which the application specifies a matching dictionary and a callback function to
be notified when an object that meets the matching dictionary is added to the I/O Registry. As with
similar functions in Mac OS X, notifications from the I/O Kit framework are delivered using the standard
event dispatch mechanism known as a “run loop.”

The run loop is the fundamental means by which a Mac OS X or iOS application is notified of events
from multiple sources without having to spend CPU time polling each source. The run loop is a Core
Foundation object that monitors multiple “run loop sources.” Whenever any of them generates an event
that requires processing, the run loop dispatches the event to a registered callback function. Each thread
on Mac OS X contains a run loop, including the main thread. The event loop on Mac OS X, which runs on
the main thread, is simply a run loop that contains sources for keyboard and mouse events. For example,
in response to the user clicking the mouse button, the main thread’s run loop will awake and generate a
Cocoa mouse down event for the application window in which the user clicked.

Listing 5-2 demonstrates how a command line utility can register to receive notifications whenever
a USB device is connected to the computer. You will notice that the same matching dictionary can be
used whether using a polling method or the notification callback.

Listing 5-2. Code To Watch for the Arrival of USB Devices

#include <CoreFoundation/CoreFoundation.h>
#include <IOKit/IOKitLib.h>

int main (int argc, const char * argv[])
{
 CFDictionaryRef matchingDict = NULL;
 io_iterator_t iter = 0;
 IONotificationPortRef notificationPort = NULL;
 CFRunLoopSourceRef runLoopSource;
 kern_return_t kr;

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5 INTERACTING WITH DRIVERS FROM APPLICATIONS

74

 // Create a matching dictionary that will find any USB device
 matchingDict = IOServiceMatching("IOUSBDevice");

 notificationPort = IONotificationPortCreate(kIOMasterPortDefault);
 runLoopSource = IONotificationPortGetRunLoopSource(notificationPort);
 CFRunLoopAddSource(CFRunLoopGetCurrent(), runLoopSource, kCFRunLoopDefaultMode);

 kr = IOServiceAddMatchingNotification(notificationPort, kIOFirstMatchNotification,
 matchingDict, DeviceAdded, NULL, &iter);
 DeviceAdded(NULL, iter);

 CFRunLoopRun();

 IONotificationPortDestroy(notificationPort);

 // Release the iterator
 IOObjectRelease(iter);

 return 0;
}

To create a notification callback for device and driver objects that meet certain criteria, the code in
Listing 5-2 performs the following steps:

1. A matching dictionary is created that describes the properties of the device
that the application is interested in.

2. The function IONotificationPortCreate() is called to set up the
communication channel through which the I/O Kit is able to deliver
notification messages to the user space application.

3. Because we want to use a run loop to dispatch notifications to our application,
we create a run loop source to represent the notification port and install that
source on the current thread’s run loop.

4. We then call IOServiceAddMatchingNotification() to associate the matching
dictionary with the notification port (and run loop source). This function
allocates and returns an iterator object, which plays an important role in the
operation of notification messages. Following the call to
IOServiceAddMatchingNotification(), the iterator contains all objects from the
I/O Registry that match the matching dictionary. The I/O Kit framework won’t
deliver notifications for these devices, so we need to manually call our callback
function, passing in the returned iterator. It’s also important to do this
because, until the end of the iterator is reached by calling IOIteratorNext(),
no notifications will be delivered and the callback function will not be called.
Similarly, the device callback must run through the iterator until the final
object is reached. The caller must not release the iterator until the notification
callback is no longer needed. As with the IOServiceGetMatchingServices()
function, when IOServiceAddMatchingNotification() is called, it will always
decrement the reference count of the matching dictionary. Therefore, if the
caller requires the dictionary after installing the notification, it should
manually retain the object beforehand.

CHAPTER 5 INTERACTING WITH DRIVERS FROM APPLICATIONS

75

5. Since this example is a command line utility, we need to manually run the run
loop by calling CFRunLoopRun(). If this were a Cocoa-based application and we
were installing the notification into the main run loop, the run loop would be
started for us by the NSApplicationMain() function.

6. Finally, when the application exits, we destroy the notification port. This
automatically removes the run loop source from the run loop into which it was
added and releases the iterator object.

The callback function DeviceAdded is shown in Listing 5-3. You will notice that it is identical to the
code that we used in the polling implementation. The iterator object that is passed to the callback
function is the same object that is returned from the initial call to IOServiceAddMatchingNotification().
Because the same object is re-used for all devices that the notification informs us of, it is important that
the callback does not release the iterator object, since the iterator must remain valid while the
notification is installed.

Listing 5-3. Code To Watch for the Arrival of USB Devices

void DeviceAdded (void* refCon, io_iterator_t iterator)
{
 io_service_t service = 0;

 // Iterate over all matching objects.
 while ((service = IOIteratorNext(iterator)) != 0)
 {
 CFStringRef className;
 io_name_t name;

 // List all IOUSBDevice objects, ignoring objects that subclass IOUSBDevice.
 className = IOObjectCopyClass(service);
 if (CFEqual(className, CFSTR("IOUSBDevice")) == true)
 {
 IORegistryEntryGetName(service, name);
 printf("Found device with name: %s\n", name);
 }
 CFRelease(className);
 IOObjectRelease(service);
 }
}

 Tip A common cause of problems with device notification callbacks is failing to empty the iterator by calling
IOIteratorNext() until 0 is returned. Once the end of the iterator is reached, the iterator is re-armed and the
callback is enabled.

For hardware devices that have a kernel driver, user space applications will control the hardware by
sending control requests to the driver rather than interacting with the hardware device directly. In this
case, the application isn’t so much interested in the arrival of a particular hardware device as it is

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5 INTERACTING WITH DRIVERS FROM APPLICATIONS

76

interested in when the driver for the hardware has loaded. This can be performed by creating a
dictionary that matches the class name of the driver using the function IOServiceMatching(). For
example, to create a dictionary that will match against the sample I/O Kit driver that was developed in
Chapter 4, an application would use the following code:

IOServiceMatching("com_osxkernel_driver_IOKitTest");

The reverse-DNS naming scheme ensures that the driver’s class name is unique, which means that
any driver that matches the matching dictionary is guaranteed to be our driver.

Observing Device Removal
As well as watching for the arrival of devices, an application may wish to watch for a device being
removed from the system, such as a USB device being unplugged. Unlike device arrival messages, which
are delivered for any device that meets the criteria described by a matching dictionary, a device removal
message is delivered only for a particular device that the application has registered an interest in. An
application will typically register an interest in all devices that it has opened, since the application will
want to respond to the removal of a device that it is accessing.

In our previous code examples, such as Listing 5-3, we obtained a reference to a driver object, read
properties from the driver, and then released the driver object, all within the one function. It is far more
common that an application will hold on to the driver object beyond the device arrival callback function,
perhaps only releasing it when the application exits or the device is removed.

 Note In our previous examples, we were able to use the local variables of a function to hold the driver object,
since the driver was released before we returned from the function. However, if an application wishes to use the
driver object after returning from the function, it will need to allocate a structure on the heap to hold the driver
state.

Having obtained a reference to a driver instance, an application can register to receive notifications
when the driver’s state changes, including when the driver has terminated in response to its hardware
device being removed. This notification callback is installed by calling the function named
IOServiceAddInterestNotification(), which is defined in the I/O Kit framework. As with the notification
for device arrival, the application needs to provide a port on which the I/O Kit will signal the application
when the driver’s state has changed. This can be created with the function IONotificationPortCreate(),
as was shown in Listing 5-2. If the application has already created a notification port for device arrival
events, it can share that same notification port and its corresponding run loop source to receive device
removal notifications. This is done by passing the existing notification port to the function
IOServiceAddInterestNotification().

When the application receives a notification that a driver instance has terminated, it should release
its reference to that driver and take any action that is necessary to inform the user that the device has
been removed.

Listing 5-4 demonstrates a modification to the DeviceAdded() function from Listing 5-3 that creates
a structure to represent an instance of a driver within the application and then installs a callback to
receive notifications from the driver (such as driver termination).

CHAPTER 5 INTERACTING WITH DRIVERS FROM APPLICATIONS

77

Listing 5-4. Code Snippet Demonstrating How an Application Can Install a Callback Function To Receive

a Notification When a Driver Terminates

#include <IOKit/IOMessage.h>

// Structure to describe a driver instance.
typedef struct {
 io_service_t service;
 io_object_t notification;
} MyDriverData;

// Notification port used for both device arrival and driver state changes.
IONotificationPortRef gNotificationPort = NULL;

void DeviceAdded (void* refCon, io_iterator_t iterator)
{
 io_service_t service = 0;

 // Iterate over all matching objects.
 while ((service = IOIteratorNext(iterator)) != 0)
 {
 MyDriverData* myDriverData;
 kern_return_t kr;

 // Allocate a structure to hold the driver instance.
 myDriverData = (MyDriverData*)malloc(sizeof(MyDriverData));
 // Save the io_service_t for this driver instance.
 myDriverData->service = service;

 // Install a callback to receive notification of driver state changes.
 kr = IOServiceAddInterestNotification(gNotificationPort,
 service, // driver object
 kIOGeneralInterest,
 DeviceNotification, // callback
 myDriverData, // refCon passed to callback
 &myDriverData->notification);
 }
}

void DeviceNotification (void* refCon, io_service_t service, natural_t messageType,
 void* messageArgument)
{
 MyDriverData* myDriverData = (MyDriverData*)refCon;
 kern_return_t kr;

 // Only handle driver termination notifications.
 if (messageType == kIOMessageServiceIsTerminated)
 {
 // Print the name of the removed device.
 io_name_t name;
 IORegistryEntryGetName(service, name);

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5 INTERACTING WITH DRIVERS FROM APPLICATIONS

78

 printf("Device removed: %s\n", name);

 // Remove the driver state change notification.
 kr = IOObjectRelease(myDriverData->notification);

 // Release our reference to the driver object.
 IOObjectRelease(myDriverData->service);

 // Release our structure that holds the driver connection.
 free(myDriverData);
 }
}

Modifying Driver Properties
Once an application has located the driver object that it is interested in, it can interact with the driver
and the hardware device that it controls. The I/O Kit framework provides two ways to interact with a
driver from user space. One method requires the application to open a connection to the driver and then
to use that connection to send control requests to the driver and receive status. A connection-based
approach is necessary if the driver needs to maintain the state of a client or needs access control to
ensure that only one client at a time can access the hardware device. This is discussed later in this
chapter.

Another method, which is far simpler, is to allow an application to read and write key/value
property values to the driver. The driver can perform certain types of operations without having to know
which client sent the request, such as reading or writing driver preference values or configuring the
settings of a hardware device. For example, the volume level of an audio device is a single value that
could be read or written by any user application. When that value is set, the driver can reconfigure the
hardware device for the new volume setting, regardless of which application set the value.

As we saw in Chapter 4, each I/O Kit driver contains a property table that is a dictionary of key/value
pairs. A driver’s property table is accessible from any user space application without restriction (which is
how the I/ORegistryExplorer utility is able to display each driver’s properties). Furthermore, an
application can add new key/value pairs to a driver’s property table and can modify the value of an
existing property. This can be used to easily exchange small amounts of data between a user space
application and a kernel driver. Since this approach is not connection based, the driver cannot modify
its behavior for different user applications; every user application can access the same property table
values. However, if there are multiple instances of the same driver loaded, each instance has its own
property table. It should be noted that the driver’s property table is volatile and will not be saved when
the driver is unloaded.

Once an application has located the driver that it is interested in, the I/O Kit framework contains
functions that make it very easy to read and write a driver’s property table. The function
IORegistryEntryCreateCFProperties() provides the calling application with a snapshot of the state of a
driver’s property table as a Core Foundation dictionary. If the application is interested in the value of a
particular key, then the function IORegistryEntryCreateCFProperty() can be used. For example,
suppose we wished to modify the callback function from Listing 5-3 so that it prints the name of the
manufacturer for each USB device that is connected to the computer rather than printing the device
name. The IOUSBDevice class makes the manufacturer string available through its property table with a
key “USB Vendor Name.” The code in Listing 5-5 shows the modified callback function, which reads the
vendor name from the device’s property table.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 5 INTERACTING WITH DRIVERS FROM APPLICATIONS

79

Listing 5-5. Reading the Property Table of a USB Device To Obtain the Device’s Manufacturer String

void DeviceAdded (void* refCon, io_iterator_t iterator)
{
 io_service_t service = 0;

 // Iterate over all matching objects
 while ((service = IOIteratorNext(iterator)) != 0)
 {
 CFStringRef className;

 // List all IOUSBDevice objects, ignoring objects that subclass IOUSBDevice.
 className = IOObjectCopyClass(service);
 if (CFEqual(className, CFSTR("IOUSBDevice")) == true)
 {
 CFTypeRef vendorName;

 vendorName = IORegistryEntryCreateCFProperty(service,
 CFSTR("USB Vendor Name"), kCFAllocatorDefault, 0);
 CFShow(vendorName);
 }
 CFRelease(className);
 IOObjectRelease(service);
 }
}

As the code in Listing 5-5 shows, the property table is a very convenient way for a driver to publish
information to user applications, such as a description of its hardware, the driver’s current state, or
debugging information. Another use of a driver’s property table is to allow an application to pass small
amounts of data to a driver. As an example, let’s modify the sample I/O Kit driver that was developed in
Chapter 4 to allow an application to specify a custom message to be printed when the driver is unloaded.
We will do this by adding a string value to the property table under the key “StopMessage.” This key will
be added to the property table by a user space application but will be read from the property table by the
kernel driver when it is being unloaded.

Let’s begin by modifying the user space application. First, it needs to locate the I/O Kit driver that
was written in Chapter 4. This can be done by creating the following matching dictionary:

matchingDict = IOServiceMatching("com_osxkernel_driver_IOKitTest");

Next, we will write string value “The driver has stopped” to the driver’s property table and make it
accessible under the key “StopMessage”:

IORegistryEntrySetCFProperty(service, CFSTR("StopMessage"), CFSTR("The driver has stopped"));

That’s all that is required from the user space application. In this example, we have chosen to use a
string value, although the value of a driver’s property may be any of the Core Foundation types CFString,
CFNumber, CFBoolean, CFData, or a CFArray or CFDictionary containing objects of the supported Core
Foundation types.

When a driver’s property is set from a user space application, the method setProperties() in the
corresponding driver object is called with a parameter containing a dictionary of the properties that
have been set. The method setProperties() is defined in the IORegistryEntry class, but since every I/O
Kit driver class is a subclass of IOService, which is itself a subclass of IORegistryEntry, every driver

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5 INTERACTING WITH DRIVERS FROM APPLICATIONS

80

object can override this method. By default, the base class implementation of setProperties() does
nothing. So unless your driver provides an implementation, any properties set on your driver by a user
space application will be ignored.

The setProperties() method provides a driver with a chance to immediately respond to a value that
has been set from a user space application. If the modified property requires the driver to reconfigure
the underlying hardware device, the setProperties() method is the place in which this should be
performed. For our sample driver, when an application changes the StopMessage property, we will have
the driver update its property table and insert the provided string value. This will also make the property
available so that it can be read by user applications, including I/ORegistryExplorer. The code to handle
this is shown in Listing 5-6.

Listing 5-6. A Sample Implementation of the Driver’s setProperties() Method

IOReturn com_osxkernel_driver_IOKitTest::setProperties (OSObject* properties)
{
 OSDictionary* propertyDict;

 // The provided properties object should be an OSDictionary object.
 propertyDict = OSDynamicCast(OSDictionary, properties);
 if (propertyDict != NULL)
 {
 OSObject* theValue;
 OSString* theString;

 // Read the value corresponding to the key "StopMessage" from the dictionary.
 theValue = propertyDict->getObject("StopMessage");
 theString = OSDynamicCast(OSString, theValue);
 if (theString != NULL)
 {
 // Add the value to the driver's property table.
 setProperty("StopMessage", theString);
 return kIOReturnSuccess;
 }
 }

 return kIOReturnUnsupported;
}

Finally, when the sample driver unloads, it should print the custom stop message if one was set
from a user space application. This can be done by querying the driver’s property table for the value of
the key “StopMessage,” as shown in Listing 5-7. In this example, we have chosen to write the property to
the driver’s property table. There is no requirement for a driver to handle the setProperties() method in
this way. We could have saved the provided string value in an instance variable or, if the value was used
to reconfigure hardware, we could have written the value to hardware in the setProperties() method,
after which the driver would have no further need for the value and could discard it.

Listing 5-7. Using the Custom String Value That Has Been Set by the User Application

void com_osxkernel_driver_IOKitTest::stop (IOService *provider)
{
 OSString* stopMessage;

CHAPTER 5 INTERACTING WITH DRIVERS FROM APPLICATIONS

81

 // Read a possible custom string to print from the driver property table.
 stopMessage = OSDynamicCast(OSString, getProperty("StopMessage"));
 if (stopMessage)
 IOLog("%s\n", stopMessage->getCStringNoCopy());

 super::stop(provider);
}

State-Based Interaction
Although the approach of getting and setting driver properties provides a very easy way to interact with a
driver and a hardware device, it is rather inflexible, which makes it suitable only for very specific uses.
The I/O Kit Framework provides another method for interacting with drivers from user space
applications that is based on a connection between a user application and the driver. The use of a
connection allows the driver to determine which user application a request has originated from and can
therefore associate a state with the connection. (Alternatively, because an application can have multiple
connections open to a driver, the driver can determine which connection a request is originating from.)
This allows for the implementation of complex protocols and state-based control.

For example, a hardware device may be accessible to one user space application at a time, which
requires an application to request exclusive access to the device. Having obtained exclusive access, it
may then need to configure the device before reading or writing data. With a connection-based
approach, the driver can allow control of the hardware to the client that has been granted exclusive
access to the device and reject requests from other connections. Furthermore, it can ensure that a client
cannot read or write data if that connection hasn’t previously configured the hardware as required. The
use of a connection also allows a driver to implement asynchronous operations. An application can send
a request to the driver to begin a background operation and could then poll the driver to determine
whether the transaction has been completed. Because the driver sees the request to begin the operation
and each request to poll the status of the operation is being made from the same connection, it can use
this to determine which operation the application is polling. Alternatively, the driver could use the
application’s connection to send a notification to the application when the background operation has
completed and thus eliminate the need for the status to be polled.

In the kernel, each connection made to the driver from a user application is represented by a class
known as IOUserClient. For each connection made to a driver, the I/O Kit instantiates an IOUserClient
object, and that object is destroyed only when the application closes its connection to the driver or when
the application terminates. All control requests that the application makes to the driver are handled by
the user client object that represents that particular connection. A driver provides its own
implementation of a class that subclasses from IOUserClient, adding any methods and instance
variables that it needs to maintain the state of an application’s connection.

The ingenuity of the I/O Kit design is that user client objects are themselves a driver object: the
IOUserClient class inherits from IOService and, as with any other IOService instance, each user client
has a provider class that, for a user client, is the instance of the driver that the application is controlling.
An example of the relationship between a driver and its user client instances is shown in Figure 5-2.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5 INTERACTING WITH DRIVERS FROM APPLICATIONS

82

Figure 5-2. The relationship between a driver object and its user client objects that provide the kernel-side

representation of an application’s connection to the driver.

To establish a connection to a driver, an application simply has to call the function IOServiceOpen()
as follows:

task_port_t owningTask = mach_task_self();
uint32_t type = 0;
io_connect_t driverConnection;
kern_return_t kr;

kr = IOServiceOpen(service, owningTask, type, &driverConnection);

In the preceding code, service represents the driver that the application wishes to connect to,
which is found using the standard driver matching techniques described earlier, owningTask represents
the running application, and type is an unsigned 32-bit integer whose value is interpreted by the driver
in any way that it chooses. The driverConnection parameter is returned to the caller if the function
completes successfully and represents the established connection to the driver. Any request that the
application sends to the driver will be made by calling a function that takes this connection object as a
parameter. When the application is no longer interested in controlling the driver, it makes a call to the
function IOServiceClose().

When an application calls the function IOServiceOpen(), the operating system calls the specified
driver object in the kernel, which handles the request. The driver’s class receives the following method
call:

IOReturn DriverClass::newUserClient (task_t owningTask, void* securityID, UInt32 type,
OSDictionary* properties, IOUserClient** handler)

Many of the parameters to the newUserClient() method should look familiar. They are simply the
values that the user space application passed to the IOServiceOpen() function. The kernel
implementation of newUserClient() is responsible for instantiating a new user client object and
returning it to the caller through the handler parameter. However, most drivers will never need to
implement the newUserClient() method because an implementation that is suitable for nearly all uses
is provided by the IOService base class. To take advantage of this standard implementation, all that a
driver needs to do is add a string value to its property table with the key “IOUserClientClass.” The value
of this property is a string value that contains the class name of a driver’s user client class. This can be
done either by adding an entry to the driver’s personality in the Info.plist file (because the driver’s
property table is initialized from the values in the Info.plist file) or by manually setting the property
when the driver loads. For example, the driver in Figure 5-2 has a user client that is implemented by a
class named MyUserClient and, as a result, would set its user client class with the following call:

CHAPTER 5 INTERACTING WITH DRIVERS FROM APPLICATIONS

83

setProperty("IOUserClientClass", "MyUserClient");

The standard implementation of newUserClient() will instantiate the driver’s specified user client
class and initialize the new user client, making the main driver class its provider.

Let’s look at how we would implement a user client class for the tutorial I/O Kit driver that was
developed in Chapter 4. The header file for a skeleton user client class for this driver is shown in Listing
5-8. You will notice that many of the methods that the user client implements are similar to the methods
implemented by the main driver class, which is because the class IOUserClient is derived from the same
IOService class that every driver is ultimately derived from. A user client therefore implements the same
initialization and termination methods that any other driver class must implement.

Listing 5-8. The Header File for a Basic User Client Class

class com_osxkernel_driver_IOKitTestUserClient : public IOUserClient
{
 OSDeclareDefaultStructors(com_osxkernel_driver_IOKitTestUserClient)

private:
 task_t m_task;
 com_osxkernel_driver_IOKitTest* m_driver;

public:
 virtual bool initWithTask (task_t owningTask, void* securityToken,
 UInt32 type, OSDictionary* properties);
 virtual bool start (IOService* provider);

 virtual IOReturn clientClose (void);
 virtual void stop (IOService* provider);
 virtual void free (void);
};

Along with the familiar methods start(), stop(), and free(), the user client provides an additional
method that is part of a user client’s object management, namely clientClose(). This method is called
when the user space application has closed its connection to the driver, either through a call to
IOServiceClose() or because the application has terminated or crashed. A driver should not trust a user
space application to be well-written and to tidy up after itself before the user client is closed. Therefore,
the clientClose() method is a good place for a driver to make sure that the hardware is returned to an
idle state and ready for the next user space application that wishes to use it.

 Tip The IOUserClient class provides a method named clientDied(). A subclass can choose to implement
this method if it needs to distinguish between a client connection closing as a result of the user space process
terminating without calling IOServiceClose(). Since the default implementation of clientDied() simply calls
clientClose(), most user client implementations can get by with an implementation of the clientClose()
method which handles both cases.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5 INTERACTING WITH DRIVERS FROM APPLICATIONS

84

The implementation of a sample user client class is shown in Listing 5-9. For brevity, the
implementation methods of stop() and free() have been omitted because, for our basic user client,
these methods are simply calling through to the implementation provided by the superclass.

Listing 5-9. The Implementation of a Basic User Client Class

// Define the superclass.
#define super IOUserClient

OSDefineMetaClassAndStructors(com_osxkernel_driver_IOKitTestUserClient, IOUserClient)

bool com_osxkernel_driver_IOKitTestUserClient::initWithTask (task_t owningTask, void*
securityToken, UInt32 type, OSDictionary* properties)
{
 if (!owningTask)
 return false;

 if (! super::initWithTask(owningTask, securityToken , type, properties))
 return false;

 m_task = owningTask;

 // Optional: Determine whether the calling process has admin privileges.
 IOReturn ret = clientHasPrivilege(securityToken, kIOClientPrivilegeAdministrator);
 if (ret == kIOReturnSuccess)
 {
 // m_taskIsAdmin = true;
 }

 return true;
}

bool com_osxkernel_driver_IOKitTestUserClient::start (IOService* provider)
{
 if (! super::start(provider))
 return false;

 m_driver = OSDynamicCast(com_osxkernel_driver_IOKitTest, provider);
 if (!m_driver)
 return false;

 return true;
}

IOReturn com_osxkernel_driver_IOKitTestUserClient::clientClose (void)
{
 terminate();
 return kIOReturnSuccess;
}

There are several important points to note about the implementation of the three user client
methods shown in Listing 5-9:

CHAPTER 5 INTERACTING WITH DRIVERS FROM APPLICATIONS

85

• In the initWithTask() method, we save the parameter owningTask to an instance
variable. As we will see later in the chapter, this value is needed when we wish to
access memory in the client’s address space, such as when writing data from the
driver to a buffer that has been allocated by the client process. The initWithTask()
method is also an opportunity to determine the privileges of the calling process.
Although not commonly needed, it is possible that the user client may wish to
limit certain operations to tasks that are running with administrative privileges.
For example, an Ethernet card could use this to prevent a non-privileged process
from enabling promiscuous mode and having access to all network packets.

• The start() method is fairly straightforward, although it is worth noting that the
provider class that is passed in as an argument is an instance to the main driver
class. Since the user client’s role is to accept control requests from a user space
application and pass these requests on to the driver, the provider class will need a
reference to the main driver class. This can be obtained by saving the provider
class from the start() method to an instance variable.

• The clientClose() method is called in response to the calling process closing its
driver connection by calling the IOServiceClose() function or otherwise
terminating without closing its connection to the driver. The user client receives
clientClose() before any other methods that are called as part of an IOService
termination, such as stop() and free(). An implementation of clientClose()
should release any resources that were allocated on behalf of the calling process
and return the hardware to an idle state. Finally, it is important that the
implementation calls the terminate() method, which begins the process of
destroying the user client object.

The role of the user client is to act as an intermediary between all communications between an
application in user space and a kernel driver. Requests from user space are identified by a 32-bit integer
control code that is defined by the driver developer. Along with each request, the application can also
provide parameters and receive results back from the control request. Having created the user client
class, all that remains is for us to define an interface to expose the driver’s functionality to user space
applications. This interface will consist of two parts:

• A library of functions that can be called by user space applications that wish to
take advantage of services provided by the kernel driver

• A number of methods in the user client class that correspond to each user
function and that provide the kernel-side implementation of the interface

Both the library functions in user space and the user client methods in the kernel require only a
basic implementation, since the functionality itself comes from the main driver class. The role of the
functions in the user space interface is to encode the operation and its parameters and pass the request
on to the driver. When the user client receives the request, its role is to decode the operation and
parameters and to call the appropriate driver function that implements the requested functionality.

For our simple user client, we will define an interface that provides timing functionality to
applications. The user space interface will implement the following functions:

kern_return_t StartTimer (io_connect_t connection);
kern_return_t StopTimer (io_connect_t connection);
kern_return_t GetElapsedTimerTime (io_connect_t connection, uint32_t* timerTime);
kern_return_t GetElapsedTimerValue (io_connect_t connection, TimerValue* timerValue);

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5 INTERACTING WITH DRIVERS FROM APPLICATIONS

86

kern_return_t DelayForMs (io_connect_t connection, uint32_t milliseconds);
kern_return_t DelayForTime (io_connect_t connection, const TimerValue* timerValue);

All driver interfaces have values and type definitions that are needed by both the user space
implementation and the kernel’s user client implementation. For the interface that we have defined, the
shared definitions include the request codes and the definition of types, such as the TimerValue
structure. To allow these definitions to be shared between both projects, such definitions are usually
placed in a common header file that can be included by both the user space application and the kernel
project. The shared definitions for our driver are shown in Listing 5-10.

Listing 5-10. The Contents of “TestDriverInterface.h” Containing Definitions That Are Required by Both

the Kernel User Client and the User Space Interface.

typedef struct TimerValue
{
 uint64_t time;
 uint64_t timebase;
} TimerValue;

// Control request codes for user client methods.
enum TimerRequestCode {
 kTestUserClientStartTimer,
 kTestUserClientStopTimer,
 kTestUserClientGetElapsedTimerTime,
 kTestUserClientGetElapsedTimerValue,
 kTestUserClientDelayForMs,
 kTestUserClientDelayForTime,

 kTestUserClientMethodCount
};

 Note The interface by which IOUserClient dispatches a control requests to an appropriate handler was
changed in Mac OS X 10.5 to support a 64-bit kernel. The new implementation is not backwards compatible with
older versions of Mac OS X. This chapter describes the updated interface only.

The I/O Kit framework contains a number of functions that an application can use to invoke a
method in a driver’s user client. The choice of which function an application should use for a particular
control request depends on the type of parameters that are required by the operation. For a request
whose parameters are integer-based, the function IOConnectCallScalarMethod() is an appropriate
choice since it allows a variable-sized array of 64-bit integers to be passed from the user process to the
kernel user client and receives an array of 64-bit integers from the kernel driver containing the result of
the operation:

kern_return_t IOConnectCallScalarMethod(
 io_connect_t connection,
 uint32_t selector,
 const uint64_t* inputValues,

CHAPTER 5 INTERACTING WITH DRIVERS FROM APPLICATIONS

87

 uint32_t inputCount,
 uint64_t* outputValues,
 uint32_t* outputCount);

The first argument to the function is a connection to a driver’s user client, which the caller will have
previously obtained by calling IOServiceOpen(). The next argument, selector, is the control code that is
defined by the driver and describes which operation the user client should perform. This will be a value
from the TimerRequestCode enumeration defined in Listing 5-10. The remaining arguments to the
function allow the application to pass any parameters that are needed by the user client when it
performs the operation and to receive any results back from the user client following the operation.
Parameters that are labeled as inputs are provided by the calling application to the user client.
Parameters that are labeled as outputs are returned to the application by the user client. The
outputCount argument is both an input and an output argument; the caller initializes its value to the
number of elements in the outputValues array, which tells the user client how many values it can safely
write to the array. When the function completes, the number of values that were actually written to the
outputValues array is returned in the value of outputCount. If the caller isn’t expecting any values to be
returned by the user client, it can simply pass NULL as the outputCount argument.

If a control request takes parameters of different types, it may be more natural to define a structure
that combines all of the parameters that are provided to the user client and a structure to receive the
result of the method. This is provided by the I/O Kit framework’s IOConnectCallStructMethod() function:

kern_return_t IOConnectCallStructMethod(
 io_connect_t connection,
 uint32_t selector,
 const void* inputStruct,
 size_t inputStructSize,
 void* outputStruct,
 size_t* outputStructSize);

A pointer to the structure containing the input parameters is provided through the inputStruct
argument, and the size of the input structure in bytes is passed as the inputStructSize argument. As
with the scalar function, the argument outputStructSize is both an input and an output argument. The
caller initializes its value to the maximum size in bytes of the outputStruct buffer and, on completion,
the user client returns through the outputStructSize argument the number of bytes written to the
outputStruct buffer.

You may be wondering why the size of the returned structure would ever differ from the expected
size of the output structure. The function IOConnectCallStructMethod() may be used to read a variable-
length array or a variable-length string from the user client. In these instances, the caller doesn’t know
beforehand the number of bytes that will be returned. If the control request takes no input structure,
then NULL can be passed as the inputStruct argument with an inputStructSize of 0 bytes. If the control
request returns no output structure, then NULL can be passed for both the outputStruct and the
outputStructSize arguments.

The I/O Kit framework also allows a mix of both scalar parameters and structure parameters for
functions that have some integer-based input or output parameters, as well as requiring an input or
output structure parameter:

kern_return_t IOConnectCallMethod(
 io_connect_t connection,
 uint32_t selector,
 const uint64_t* inputValues,
 uint32_t inputCount,
 const void* inputStruct,

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5 INTERACTING WITH DRIVERS FROM APPLICATIONS

88

 size_t inputStructSize,
 uint64_t* outputValues,
 uint32_t* outputCount,
 void* outputStruct,
 size_t* outputStructSize);

Although the I/O Kit framework provides three functions for calling user client methods, the
functions IOConnectCallScalarMethod() and IOConnectCallStructMethod() are merely convenience
functions that are built on top of IOConnectCallMethod().

Given the three methods that the I/O Kit framework provides for calling user client methods, let’s
look at how we can implement the user space interface for our sample driver. The functions
StartTimer() and StopTimer() pass no additional parameters to the user client, so they could be
implemented by calling any of the three IOConnectCallXXX() functions. We have chosen to implement
StartTimer() and StopTimer() using the IOConnectCallMethod() function. The user space
implementation for StartTimer() is as follows:

kern_return_t StartTimer (io_connect_t connection)
{
 return IOConnectCallMethod(connection, kTestUserClientStartTimer,
 NULL, 0, NULL, 0, NULL, NULL, NULL, NULL);
}

The implementation of GetElapsedTimerTime() reads a 32-bit integer from the user client, and so it
seems natural to implement it using the function IOConnectCallScalarMethod(). The integer type used to
represent scalar values used by the I/O Kit is a 64-bit unsigned integer and not the 32-bit value that our
caller is expecting so we need to thunk the result that is received from the user client through a
temporary 64-bit variable. We don’t check the value of scalarOutCount after the
IOConnectCallScalarMethod() function completes, because we can trust our driver’s implementation to
have returned a single integer if the operation completes successfully.

kern_return_t GetElapsedTimerTime (io_connect_t connection, uint32_t* timerTime)
{
 uint64_t scalarOut[1];
 uint32_t scalarOutCount;
 kern_return_t result;

 scalarOutCount = 1; // Initialize to the size of scalarOut array
 result = IOConnectCallScalarMethod(connection, kTestUserClientGetElapsedTimerTime,
 NULL, 0, scalarOut, &scalarOutCount);
 if (result == kIOReturnSuccess)
 *timerTime = (uint32_t)scalarOut[0];

 return result;
}

Finally, let’s take a look at the implementation of the function DelayForTime() in our user space
library. This function passes its parameters to the user client through a structure, so we have
implemented it using the function IOConnectCallStructMethod().

kern_return_t DelayForTime (io_connect_t connection, const TimerValue* timerValue)
{
 return IOConnectCallStructMethod(connection, kTestUserClientDelayForTime,
 timerValue, sizeof(TimerValue), NULL, 0);
}

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 5 INTERACTING WITH DRIVERS FROM APPLICATIONS

89

All requests from a user space application will invoke a method named externalMethod() in the user
client class, which has the responsibility of dispatching the appropriate method to handle the control
request and unpacking the parameters that were provided by the user space application. The
IOUserClient base class provides an implementation of externalMethod(); however, any user client that
provides support for control requests should override the base class’s implementation. Before looking
any further into how a driver’s user client should implement externalMethod(), it is worth taking a look
at its interface:

IOReturn IOUserClient::externalMethod (uint32_t selector, IOExternalMethodArguments* args,
 IOExternalMethodDispatch* dispatch, OSObject* target,
 void* reference);

When the I/O Kit calls your class’s implementation of externalMethod(), only the first two
arguments will be filled in; the value of dispatch, target, and reference will all be set to NULL. The first
argument, selector, is the 32-bit control code that specifies which operation the client application is
requesting. The next argument, args, contains all of the scalar and structure parameters that the
application passed to the user client. The definition of the IOExternalMethodArguments structure is
shown in the following listing, with some fields omitted for clarity:

struct IOExternalMethodArguments
{
 …
 const uint64_t* scalarInput;
 uint32_t scalarInputCount;

 const void* structureInput;
 uint32_t structureInputSize;

 IOMemoryDescriptor* structureInputDescriptor;

 uint64_t* scalarOutput;
 uint32_t scalarOutputCount;

 void* structureOutput;
 uint32_t structureOutputSize;

 IOMemoryDescriptor* structureOutputDescriptor;
 uint32_t structureOutputDescriptorSize;
};

The fields of the IOExternalMethodArguments structure should look familiar since they are an almost
perfect match of the arguments list of the user space IOConnectCallMethod() function. Two fields that
deserve an explanation are structureInputDescriptor and structureOutputDescriptor. These fields are
used to pass structures that are larger than 4096 bytes between the user process and the kernel driver.
For structures that are smaller than the virtual memory page size, the I/O Kit will copy the entire
structure between the user buffer and a kernel memory buffer. For larger buffers, the I/O Kit creates an
IOMemoryDescriptor object to reference the buffer from the user process’s address space directly. The
IOMemoryDescriptor class is described in Chapter 6 “Memory Management.”

Given that the first two arguments to externalMethod() provide the implementation with all the
information that it requires to perform the requested operation, you may be wondering where the
remaining three arguments fit in. The conventional approach taken by a driver’s user client in
implementing externalMethod() is to call the IOUserClient superclass’s implementation, passing the

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5 INTERACTING WITH DRIVERS FROM APPLICATIONS

90

values for selector and args that were provided to its method but filling in the dispatch, target, and
reference arguments to describe the class method that should be called to handle the control request.

Although there is nothing to stop a driver from implementing externalMethod() without calling
through to the superclass, the advantage of using the implementation provided by the IOUserClient
class is that its implementation performs validation of the parameters that have been provided by the
calling process. The validation performed by the IOUserClient is limited to ensuring that the user client
has received the expected parameters from the calling process—for example, ensuring that the process
has provided the correct number of scalar input and output parameters and that the size of structure
parameters that has been provided by the process matches the size of the structures that the driver will
be reading and writing. To do this, the IOUserClient’s implementation of externalMethod() needs to
know the parameters that the driver is expecting for a control request; this information comes from the
IOExternalMethodDispatch structure that is passed to the superclass implementation through the
dispatch argument. The type definition of IOExternalMethodDispatch is as follows:

struct IOExternalMethodDispatch
{
 IOExternalMethodAction function;
 uint32_t checkScalarInputCount;
 uint32_t checkStructureInputSize;
 uint32_t checkScalarOutputCount;
 uint32_t checkStructureOutputSize;
};

The IOExternalMethodDispatch structure describes the callback function that should be invoked to
handle the control request, the number of scalar input and output parameters, and the size of any input
and output structure parameters that the callback function is expecting. For a callback function that can
accept a variable number of scalar parameters or a variable-length structure, the constant
kIOUCVariableStructureSize can be written to the corresponding field of the IOExternalMethodDispatch
structure.

The callback function has the following signature:

typedef IOReturn (*IOExternalMethodAction)(OSObject* target, void* reference,
 IOExternalMethodArguments* args);

You will notice that the arguments to the callback function correspond to three of the arguments of
IOUserClient::externalMethod(), including target and reference. This is more than just a coincidence.
When your driver calls through to the superclass implementation of externalMethod(), it validates the
parameters that were provided by the user space process and, if the correct parameters were provided, it
calls the specified handler function, passing the values of target, reference, and args to the callback.
Since the callback function is a static method, it cannot access any instance variables of the user client
through the “this” pointer. Therefore, the value of target should be set to the instance of the user client
that will handle the control request or, if the control request will be handled by a method in a different
class, target should be set to the instance of that class. The value of reference is free for the user client
for passing arbitrary data to the callback function.

The entire process of handling a control request from a user space client, including the steps that
are performed by the driver’s custom user client implementation and the steps performed by the
standard IOUserClient implementation, is described in the following pseudocode:

CHAPTER 5 INTERACTING WITH DRIVERS FROM APPLICATIONS

91

// Implementation provided by the driver’s IOUserClient subclass
IOReturn MyUserClient::externalMethod (selector, args, dispatch, target, reference)
{

 Use “selector” to determine which control request has been requested

 Initialize “newDispatch” to the appropriate callback function to handle the control
 request
 Initialize “newTarget” to the current MyUserClient instance
 Initialize “newReference” if we wish to provide additional data to the callback
 function

 Call the superclass:
 IOUserClient::externalMethod(selector, args, newDispatch, newTarget, newReference)
}

// Implementation provided by the I/O Kit’s superclass
IOReturn IOUserClient::externalMethod(selector, args, dispatch, target, reference)
{
 Check that the parameters provided by the user process through “args” match the
 parameters expected by the user client as described in “dispatch”.

 If the parameters do not match, exit with the result kIOReturnBadArgument

 Otherwise, call the callback handler for this control request:
 dispatch->function(target, reference, args)
}

By convention, most drivers implement externalMethod() by adding a dispatch table to their user
client class that contains the value of IOExternalMethodDispatch for each of the selector values that the
user client accepts. For example, a possible dispatch table for our timer user client is shown in Listing
5-11.

Listing 5-11. The Dispatch Table for the Tutorial User Client Interface

const IOExternalMethodDispatch
com_osxkernel_driver_IOKitTestUserClient::sMethods[kTestUserClientMethodCount] =
{
 // kTestUserClientStartTimer (void)
 { sStartTimer, 0, 0, 0, 0 },

 // kTestUserClientStopTimer (void)
 { sStopTimer, 0, 0, 0, 0 },

 // kTestUserClientGetElapsedTimerTime (uint32_t* timerValue)
 { sGetElapsedTimerTime, 0, 0, 1, 0 },

 // kTestUserClientGetElapsedTimerValue (TimerValue* timerValue)
 { sGetElapsedTimerValue, 0, 0, 0, sizeof(TimerValue) },

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5 INTERACTING WITH DRIVERS FROM APPLICATIONS

92

 // kTestUserClientDelayForMs (uint32_t milliseconds)
 { sDelayForMs, 1, 0, 0, 0 },

 // kTestUserClientDelayForTime (const TimerValue* timerValue)
 { sDelayForTime, 0, sizeof(TimerValue), 0, 0 }
};

For convenience, we will be accessing items in the dispatch table using values from the
TimerRequestCode enumeration as an index into the array, so it is important that the order of items in the
dispatch table match the order of the request codes that were defined in Listing 5-10.

With a dispatch table defined, the implementation of our user client’s externalMethod() becomes
significantly easier, since nearly all of the values that it requires come straight from the dispatch table. A
possible implementation is shown in Listing 5-12.

Listing 5-12. An Implementation of a Custom User Client’s externalMethod()

IOReturn com_osxkernel_driver_IOKitTestUserClient::
 externalMethod (uint32_t selector, IOExternalMethodArguments* arguments,
 IOExternalMethodDispatch* dispatch, OSObject* target,
 void* reference)
{
 // Ensure the requested control selector is within range.
 if (selector >= kTestUserClientMethodCount)
 return kIOReturnUnsupported;

 dispatch = (IOExternalMethodDispatch*)&sMethods[selector];
 target = this;
 reference = NULL;
 return super::externalMethod(selector, arguments, dispatch, target, reference);
}

Finally, to complete our user client, let’s take a look at the possible implementation for two of the
selectors provided by our custom user client: GetElapsedTimerTime() and DelayForTime(). As we have
seen, each selector that a user client implements has a corresponding callback function that is invoked
to handle the selector. That callback function’s arguments are passed through the
IOExternalMethodArguments structure. It would be much easier to work with the parameters if they were
instead passed as parameters to the function, so it is common for each control selector to have two
method handlers: the static callback handler and an instance method that provides the actual
implementation.

The static callback method unpacks the parameters from the IOExternalMethodArguments structure
and passes them to an instance method in the user client class or the main driver class to perform the
actual work. This arrangement is shown in Listing 5-13 for the implementation of the
GetElapsedTimerTime() and DelayForTime() methods.

Listing 5-13. An Implementation of Two User Client Methods

IOReturn com_osxkernel_driver_IOKitTestUserClient::
 sGetElapsedTimerTime (OSObject* target, void* reference,
 IOExternalMethodArguments* arguments)
{
 com_osxkernel_driver_IOKitTestUserClient* me;

CHAPTER 5 INTERACTING WITH DRIVERS FROM APPLICATIONS

93

 uint32_t timerTime;
 IOReturn result;

 me = (com_osxkernel_driver_IOKitTestUserClient*)target;

 // Call the method that implements the operation.
 result = me->getElapsedTimerTime(&timerTime);
 // Return the scalar result of the operation to the calling process.
 arguments->scalarOutput[0] = timerTime;

 return result;
}

IOReturn com_osxkernel_driver_IOKitTestUserClient::
 sDelayForTime (OSObject* target, void* reference,
 IOExternalMethodArguments* arguments)
{
 com_osxkernel_driver_IOKitTestUserClient* me;

 me = (com_osxkernel_driver_IOKitTestUserClient*)target;
 return me->delayForTime((TimerValue*)arguments->structureInput);
}

Notice that we do not need to verify the size of the array scalarOutput in the implementation of
sGetElapsedTimerTime() or the size of the buffer structureInput in the implementation of
sDelayForTime(). This is because we can know that these parameters have been verified by the
IOUserClient superclass’s implementation of externalMethod(), which has compared the provided
parameters against the driver’s expected parameters. However, the actual implementation of
getElapsedTimerTime() would verify that the client has previously started the timer by calling
StartTimer() before attempting to read the timer’s time.

 Note A driver’s user client should always validate the value of parameters that it receives from a user process.
The process may have been compromised or may be developed by a third party whose code provides parameter
values that your driver does not expect to receive. Failing to reject illegal parameter values could cause your driver
to kernel panic or could introduce vulnerabilities into the system.

Notifications from the Driver
The methods that we have implemented in the sample driver’s user client are designed to be blocking
functions; that is, the user process does not continue execution until the user client has completed the
requested operation. For example, the method in our user client DelayForMs() would suspend the thread
on which it was called until the specified delay has elapsed. While this may not be a bad thing for a
function whose aim is to explicitly delay the calling thread, a user space application may not always wish
to wait for a driver operation to complete, particularly if that operation may take an indeterminate
amount of time or is dependent on an event over which the driver has no control, such as the arrival of
data on a serial port.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5 INTERACTING WITH DRIVERS FROM APPLICATIONS

94

Two approaches are used to overcome this problem. Unlike the Windows driver model, which,
unless explicitly enabled, does not allow an application to send multiple control requests to a driver
simultaneously, the I/O Kit allows as many threads to send requests to a user client as the application
requires. This means that one solution for blocking operations is for the application to create a
secondary thread on which to call blocking user client methods. This frees up the rest of the application
to continue executing while the driver processes the request. The second approach is for the user client
to implement asynchronous operations and notify the application when the operation completes
through a callback function.

The I/O Kit framework makes it easy for a developer to turn an operation from a synchronous,
blocking operation into an asynchronous operation. To see how it is done, let’s extend the driver
interface that we have developed in this chapter to include a function named InstallTimer(), which will
delay for a specified period and then notify the application through a callback function. In this way, the
InstallTimer() function can be thought of as an asynchronous implementation of our existing function
DelayForTime().

The I/O Kit framework uses an implementation for asynchronous notifications that is very similar to
the delivery of notifications for device arrival that was described at the start of this chapter (See Listing 5-
2). In fact, the notifications received for device arrival can be thought of as a special asynchronous
completion callback that is implemented by the I/O Kit framework itself. To initialize our driver library
to support the delivery of completion callbacks, we need to create a notification port on which the kernel
driver will signal the user space process when an operation has completed. This is done in the same way
in which we created a notification port for the delivery of device arrival notifications, by calling the
IONotificationPortCreate() function. Although this notification port will be allocated by the driver’s
user space library, it’s good design practice to provide a function that allows the application to access
the port so that the application can install the notification port on the run loop of its choice. A possible
implementation of an accessor function for a driver’s notification port is shown in Listing 5-14.

Listing 5-14. Allocating a Port on Which an Application Can Receive Notifications When an Asynchronous

Operation Completes

IONotificationPortRef gAsyncNotificationPort = NULL;

IONotificationPortRef MyDriverGetAsyncCompletionPort ()
{
 // If the port has been allocated, return the existing instance.
 if (gAsyncNotificationPort != NULL)
 return gAsyncNotificationPort;

 gAsyncNotificationPort = IONotificationPortCreate(kIOMasterPortDefault);
 return gAsyncNotificationPort;
}

An application can then allocate and install the notification port in one of its run loops, as follows:

CFRunLoopSourceRef runLoopSource;
notificationPort = MyDriverGetAsyncCompletionPort ();
runLoopSource = IONotificationPortGetRunLoopSource(notificationPort);
CFRunLoopAddSource(CFRunLoopGetCurrent(), runLoopSource, kCFRunLoopDefaultMode);

Having allocated a notification port on which the user space application can receive messages from
the kernel driver, we now need to provide the port to our kernel driver so that it has a port on which it
can signal the completion of asynchronous operations. The notification port is provided to the driver’s
user client on each asynchronous control request. The I/O Kit framework provides asynchronous

CHAPTER 5 INTERACTING WITH DRIVERS FROM APPLICATIONS

95

variations of each of the IOConnectCallXXX() functions named IOConnectCallAsyncXXX(). The
asynchronous form of these functions take additional arguments, including a notification port, a
callback function, and a context parameter that is passed to the callback function.

In all regards, the asynchronous variation of the IOConnect functions behave identically to their
synchronous counterparts; for example, IOConnectCallAsyncScalarMethod() passes an array of integer
values to the user client and receives an array of integer values from the user client. As with the
synchronous form of these functions, any output parameters are written as soon as the function returns
and not when the asynchronous operation completes (the driver may still be handling the operation
when the function returns).

To provide an example of how the asynchronous functions are used, let’s examine the
implementation of our sample InstallTimer() function. The user space code is shown in Listing 5-15.

Listing 5-15. The User Space Implemenation of an Asynchronous Control Request for Our Driver’s

InstallTimer() Function

kern_return_t InstallTimer (io_connect_t connection, uint32_t milliseconds,
 IOAsyncCallback0 timerCallback, void* context)
{
 io_async_ref64_t asyncRef;
 uint64_t scalarIn[1];

 // Set up the callback function.
 asyncRef[kIOAsyncCalloutFuncIndex] = (uint64_t)timerCallback;
 asyncRef[kIOAsyncCalloutRefconIndex] = (uint64_t)context;

 // Set up the input parameter.
 scalarIn[0] = milliseconds;
 return IOConnectCallAsyncScalarMethod(connection, kTestUserClientInstallTimer,
 IONotificationPortGetMachPort(gAsyncNotificationPort),
 asyncRef, kIOAsyncCalloutCount,
 scalarIn, 1, NULL, NULL);
}

If you compare the preceding function to the implementation for DelayForTime(), you will notice
that both functions have a lot in common and pass the same input and output parameters to the user
client. The only difference between the two functions is the addition of the timerCallback and context
arguments. The callback function and its context parameter are provided to the IOConnectCallAsync
functions through the structure io_async_ref64_t, which is defined as an array of unsigned 64-bit
integers. Because certain elements of the io_async_ref64_t array are used internally by the I/O Kit, an
application should use the constants kIOAsyncCalloutFuncIndex and kIOAsyncCalloutRefconIndex to
access the array, as shown in the example.

This is all that an application needs to do to perform an asynchronous operation. When the
operation completes, the provided callback function will be notified and will execute on the run loop on
which the application installed the run loop source. The callback function has the following signature:

typedef void (*IOAsyncCallback0)(void* context, IOReturn result);

Note that the “0” in IOAsyncCallback0 refers to the number of parameters from the driver that the
function receives. These are separate from the output scalar count passed to the function
IOConnectCallAsyncScalarMethod() and are specified by the kernel when the asynchronous operation is
complete.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5 INTERACTING WITH DRIVERS FROM APPLICATIONS

96

Of course, for an operation to be asynchronous, the kernel driver must ensure that it returns
immediately from the user client but will continue to handle the requested operation in the background
and signal the process when the operation completes. An asynchronous method call is received by the
user client no differently than from any other method call and is dispatched by externalMethod() to a
handler function that receives its arguments through an IOExternalMethodArguments structure. However,
unlike a synchronous method, the IOExternalMethodArguments structure contains fields that are useful to
an asynchronous operation, as shown in the following definition:

struct IOExternalMethodArguments
{
 …
 mach_port_t asyncWakePort;
 io_user_reference_t* asyncReference;
 uint32_t asyncReferenceCount;
 …
};

By checking the value of asyncWakePort, the method that implements a control request can
determine whether the user application invoked it through an asynchronous function call. If it is non-
zero, an asynchronous operation was requested. Given that the handler function will perform the
requested operation in the background (since an asynchronous control request should avoid blocking
the calling application), it needs to save any values from the IOExternalMethodArguments structure that it
will need to refer to while performing the operation. This includes copying any scalar and structure
input parameter values that were provided by the caller (noting that the output values are returned to
the calling application as soon as the user client returns and not when the asynchronous operation is
completed). An important value from the IOExternalMethodArguments structure that needs to be saved is
the asyncReference buffer, since this is used to signal the application when the operation has completed.

An example of how an asynchronous operation is performed is shown below in Listing 5-16.

Listing 5-16. The User Client Implementation of an Asynchronous Operation. This Implements the Kernel-

side of the InstallTimer() Function.

// A structure to hold parameters required by the background operation.
struct TimerParams
{
 OSAsyncReference64 asyncRef;
 uint32_t milliseconds;
 OSObject* userClient;
};

IOReturn com_osxkernel_driver_IOKitTestUserClient::
 sInstallTimer (OSObject* target, void* reference, IOExternalMethodArguments* arguments)
{
 TimerParams* timerParams;
 thread_t newThread;

 // Allocate a structure to store parameters required by the timer.
 timerParams = (TimerParams*)IOMalloc(sizeof(TimerParams));
 // Take a copy of the asyncReference buffer.
 bcopy(arguments->asyncReference, timerParams->asyncRef, sizeof(OSAsyncReference64));

CHAPTER 5 INTERACTING WITH DRIVERS FROM APPLICATIONS

97

 // Take a copy of the "milliseconds" value provided by the user application.
 timerParams->milliseconds = (uint32_t)arguments->scalarInput[0];
 // Take a reference to the userClient object.
 timerParams->userClient = target;
 // Retain the user client while an asynchronous operation is in progress.
 target->retain();

 // Start a background thread to continue the operation after returning to the caller.
 kernel_thread_start(DelayThreadFunc, timerParams, &newThread);
 thread_deallocate(newThread);

 // Return immediately to the calling application.
 return kIOReturnSuccess;
}

void com_osxkernel_driver_IOKitTestUserClient::
 DelayThreadFunc (void *parameter, wait_result_t)
{
 TimerParams* timerParams = (TimerParams*)parameter;

 // Sleep for the requested time.
 IOSleep(timerParams->milliseconds);
 // Send a notification to the user application that the operation has competed.
 sendAsyncResult64(timerParams->asyncRef, kIOReturnSuccess, NULL, 0);

 // The background operation has completed, release the extra reference to the
 // user client object.
 timerParams->userClient->release();

 IOFree(timerParams, sizeof(TimerParams));
}

Although there is a lot to take in from the preceding code, it is important to note the way that it
allocates an object to hold the parameters that are required while the driver completes the requested
operation on a background thread. To prevent the user client object from being released while the
operation is in progress, the method increments its retain count when starting the operation and
decrements its retain count when the operation completes. Finally, when the background operation has
completed, the user client (or driver) signals the user application by calling sendAsyncResult64(). The
final two parameters of sendAsyncResult64(), which are unused in this example, allow a driver to
provide additional values to the application’s callback function. For example, an asynchronous read
operation could use this to return the number of bytes that it read.

Summary
• Nearly all drivers will need to expose their services to applications run by the user.

• To allow applications to interact with a kernel driver, the driver needs to cross the
barrier that exists between user space code and kernel code. A driver written using
the I/O Kit framework achieves this by implementing a class that derives from the
IOUserClient class.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5 INTERACTING WITH DRIVERS FROM APPLICATIONS

98

• Applications can iterate loaded kernel drivers or can install a callback function to
receive notifications when drivers are loaded and unloaded.

• The I/O Kit provides several functions that allow a user application to request
services provided by a driver, including by reading and writing driver properties,
or by establishing a connection to the driver and sending control requests to the
driver over that connection.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

C H A P T E R 6

99

Memory Management

Memory management in the kernel is significantly more complex than it is for a user space program. A
user space program typically deals with a flat linear address space and can allocate memory in more or
less arbitrary blocks without worrying about the source or arrangement of this memory. It has simple
interfaces that typically take a size in bytes as an argument and deliver a yay or nay result, depending on
the availability of the requested memory. At worst, the consequence of a failed allocation or misuse of
memory is the termination of the offending process. However, things are not as straightforward in the
kernel. The kernel has to deal with multiple memory spaces, including its own, as well as the mapping of
memory between those memory spaces and physical memory. While user space programs deal with
virtual memory, where the underlying physical arrangement is irrelevant, the kernel often needs to know
whether the memory is contiguous and where it is located. This is because some hardware devices are
unable to read from certain memory addresses or have specific requirements regarding the alignment of
the memory, for example, because it can read only from memory that has been aligned to a 16-byte
boundary or because it cannot read from addresses higher than 32-bit. However, the most obvious
challenge of kernel memory management is to use as little as possible because it is a scarce resource,
especially for embedded devices such as the iPhone or iPad. Incorrect use of memory in the kernel can
lead to subtle and not so subtle consequences.

In this chapter, we aim to explain the various types of memory you will encounter as a kernel
programmer, their purpose, and the most effective and safe use of memory. We also discuss
mechanisms and methods for allocating and managing memory, as well as some low-level mechanisms
used by the OS to manage memory. We will also look at how to perform memory mapping operations,
where memory from one address space can be mapped into the address space of another task.

Types of Memory
The kernel deals with multiple types of memory, so understanding the difference is key to implementing
a successful driver or kernel extension.

The types of memory can be categorized as:

• CPU physical address

• bus physical address

• user and kernel virtual addresses

In addition to the three types of memory addresses, the amount of addressable memory differs
between architectures and can be from 32-bit to 64-bit. Memory may also be ordered differently
depending on the architecture and can be of little or big endian.

The following sections will discuss the importance and usage of each type of memory as it applies to
kernel programming.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 6 MEMORY MANAGEMENT

100

CPU Physical Address
A physical address refers to the addressing system used by the CPU to access physical memory.
Typically, physical addresses are hidden behind the Memory Management Unit (MMU) of the CPU. The
MMU translates virtual addresses normally used by the kernel and user space into physical addresses.
The physical address space is linear and goes from 0 to 0xffffffff (232) for 32-bit systems and 0 to
0xffffffffffffffff (264) for 64-bit systems. Access to physical memory is cached in smaller memory buffers,
such as L1 and L2 caches typically contained on the CPU die.

It is generally unnecessary to deal directly with physical addresses, even when writing drivers.

PHYSICAL ADDRESS EXTENSIONS

Physical Address Extensions (PAE) is a feature developed by Intel to allow a larger physical address space,
which works around the 4 GB memory limit on 32-bit systems. PAE is available on all versions of Mac OS X
that support Intel processors (10.4.4 and higher). PAE expands available address space up to 36 bits
(obviously, there are no 36-bit data types so addresses are represented with a 64-bit type), which allows it
to address up to 64 GB of physical memory. However, PAE does not change the size of the virtual address
space used by a process, which is still limited to 4 GB. While no process (or the kernel) can use more than
4 GB, the system collectively can use up to 64 GB.

Bus Physical Addresses
The introduction of 64-bit computing presented a challenge as legacy I/O buses such as PCI and PCI-X
were unable to access memory addresses over 32-bit. To work around this, PowerPC G5-based Macs had
an additional MMU on their north bridge, used for remapping memory from 64-bit addresses into 32-bit
addresses the device can read from. This MMU is referred to as the Device Address Resolution Table
(DART). The DART presents the translated memory as physical addresses to the device, however these
addresses are translated and not the same physical address as the CPU use. Intel-based computers have
similar capabilities known as I/O memory management unit (IOMMU), one of the virtualization
technologies for directed I/O (VT-d).

A bus physical address appears to be a physical address to a hardware device, though in reality, it is a
virtual address translated by the DART. If you are confused, don’t worry; you rarely have to deal with
these addresses. In fact, if you use I/O Kit, it will do all the required translations for you automatically if
you use IOMemoryDescriptor, which is discussed later in this chapter. Drivers can use the
IOPhysicalAddress type to handle physical addresses. The size of the type depends on the underlying
architecture. Because of PAE, it may be 64-bit, even on 32-bit systems.

User and Kernel Virtual Addresses
Virtual addresses are linear addresses that are translated into physical addresses by a special chip on the
CPU called the Memory Management Unit (MMU). Each user space process has its own memory
address space, and for all intents and purposes it looks like a process owns all physical memory. It may
use any memory location in its address space, even on addresses located beyond the amount of physical
memory. The virtual address space appears linear to a process, although the memory that backs it may
be fragmented.

In Mac OS X, the entire virtual address space is available for a process to use. On a 32-bit system this
includes memory addresses from 0–4 GB. Operating systems such as Microsoft Windows or Linux use a

CHAPTER 6 MEMORY MANAGEMENT

101

split model, where the kernel is mapped into the virtual address space of each process. For example, on
Windows (32-bit), user space virtual memory occupies addresses from 0 to 0x7FFFFFFF, whereas
memory addresses reserved for the kernel go from 0x80000000 to 0xFFFFFFFF. Because the kernel is
already mapped, the CPU doesn’t have to change the page tables when a process context switches into
kernel mode (an already expensive operation). The downside of this approach is that the kernel and user
space processes have less address space available, and hence in the case of Windows, only 2 GB can be
accessed at any given time by either the kernel or a user space process. On Linux, the split is typically 3
GB/1 GB, with only 1 GB available to the kernel (though everything in Linux is configurable and other
configurations are also available). If the system has a GPU enabled, this typically comes with onboard
memory of up to 1 GB, which has to be mapped into virtual address space and may result in some
physical memory being unable to be used as the GPU’s large frame buffer shadows it.

To avoid the shadowing problem, Mac OS X has completely separate address spaces for the kernel
(4GB) and user space processes (4GB), but as mentioned the downside is more expensive context
switching.

The 64-bit kernel introduced in Mac OS X 10.6 Snow Leopard solved the problem of limited address
space once for all. In 64-bit kernels, the kernel address space is always mapped in. Mac OS X splits the
address space so the upper 128 terabytes (!) are reserved for the kernel, while the lower 128 terabytes
belong to the currently running user space task. Though the address space is shared with user space,
tasks are not able to access kernel memory due to page protection flags.

A virtual memory address may not always be backed by a physical memory location, as memory
may have been migrated to an external backing store, such as a hard drive, because it was infrequently
used or because a running process required more memory than was available. If the CPU accesses an
address and the memory for the address is not resident, it will result in a page fault exception. The pager,
a component of the OS, will attempt to fetch the page containing the given memory address.

The first page (0–4 KB) of the virtual address space is inaccessible to a process and an exception will
be generated if access is attempted.

The architecture agnostic type IOVirtualAddress can be used to handle virtual addresses in I/O Kit
code. This type is, again, the alias of mach_vm_address_t, the type for virtual memory addresses in the
Mach layer.

 Tip For a more detailed discussion about virtual memory, see Chapter 1, or for details about the OS X and iOS
implementation, see Chapter 2.

Memory Ordering: Big vs. Little Endian
Endianess refers to the ordering of the components of a binary word in memory. The ordering will be
either little-endian or big-endian depending on the CPU architecture that is used. The effects of this can
be illustrated with a simple C program, as shown in Listing 6-1.

Listing 6-1. Print the Byte Order of a 32-bit Word

#include <stdio.h>
#include <stdint.h>
int main(int argc, char *argv[])
{
 uint32_t word = 0xaabbccdd;

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 6 MEMORY MANAGEMENT

102

 uint8_t* ptr = (uint8_t*)&word;
 printf("%02x %02x %02x %02x\n", ptr[0], ptr[1], ptr[2], ptr[3]);
 return 0;
}

The result of executing on a system with little endinaness will be:

dd cc bb aa

While on a big endian system:

aa bb cc dd

As you can see, the ordering is reversed on little-endian systems. All current-generation Macs are
little-endian, as the Intel x86/x86_64 processors are little-endian; so too are ARM-based iOS devices. The
older PowerPC-based Macs were big-endian. Why should you care about big-endian then? Well, some
hardware architectures or network protocols, such as TCP/IP, use big-endian; additionally, your driver
or kernel extensions may have to be compatible with older Macs that are based on the PowerPC
architecture. Furthermore, OS X has support for Rosetta, which emulates PowerPC applications on Intel-
based Macs. It is possible your driver will be accessed by a Rosetta client task. Some user space APIs,
such as the Carbon File Manager, also work with big-endian data structures.

The C pre-processor macros __LITTLE_ENDIAN__ and __BIG_ENDIAN__ are defined by the compiler
and can be used to determine the byte order at compile time.

32-bit vs. 64-bit Memory Addressing
Modern Mac OS X systems are now 64-bit. By 64-bit, we mean the CPU’s ability to work with addresses
of a 64-bit width, including general-purpose registers, and the ability to use a 64-bit data bus and 64-bit
virtual memory addressing.

THE INTEL 64 ARCHITECTURE

The Intel 64 (x86-64) architecture is an extension of the traditional Intel x86 instruction set, which enables
it to operate in 64-bit mode and allows it to support large quantities of physical memory. While Intel
invented the x86 compatible processors, this extension was originally created by AMD and was marketed
as AMD64. Intel subsequently released their version of the 64-bit extensions, initially named EM64T and
IA-32e, which provided compatibility with AMD’s solution. Intel originally placed their bets on the
designed-from-scratch IA64 (Itainum). IA64 ditched the legacy of x86. HP and other high-performance
server vendors, such as SGI, pushed IA64 heavily but adoption was slow. Intel 64 / AMD64 remain the
dominant architectures today. Intel 64-capable CPUs are found in all current-generation Macs. An x86-64
processor can operate in two modes, long mode or legacy mode. The former is the 64-bit mode and offers
compatibility, which allows 32-bit and 16-bit applications to execute. The OS has to be 64-bit aware to
operate in this mode. The latter is a 32-bit mode, for 32-bit only operating systems.

CHAPTER 6 MEMORY MANAGEMENT

103

Table 6-1 shows the supported addressing modes and native pointer sizes of architectures
supported by OS X and iOS.

Table 6-1. Memory Addressing for OS X and iOS Under Various Platforms

Architecture 64-bit kernel 64-bit apps
32-bit apps
(in 64-bit mode) 32-bit kernel Pointer size

32-bit PowerPC No No N/A Yes 4

64-bit PowerPC No Yes Yes No 8

32-bit Intel No No N/A No 4

64-bit Intel Yes Yes Yes Yes 8

iOS No No Yes Yes 4

Because it is possible for the kernel to be running in 32-bit mode while an application runs in 64-bit

mode, great care must be taken when a 64-bit process exchanges data with the kernel, for example,
through an ioctl() or an IOUserClient method. The same is true when running a 64-bit kernel and
communicating with a 32-bit application. The problem is that 32-bit and 64-bit compilers may define
data types differently. For example, the C data type long is 4 bytes wide in 32-bit programs and 8 bytes in
a program compiled for a 64-bit instruction set.

Memory Allocation
The XNU kernel provides a rich set of tools for allocating memory. Kernel memory allocation is not as
trivial and straightforward as the malloc()/free() interface found in user space libraries. Kernel memory
allocation facilities range from high-level mechanisms analogous to the user space malloc() interface to
direct allocation of raw pages. There are dozens of various functions for obtaining memory. Which one
to use depends on the subsystem you are working within—for example, Mach, BSD, or the I/O Kit—as
well as the requirements for the memory, such as size or alignment. Memory is arguably one of the most
limited resources on a computer system, especially for the iOS platform, which has limited amounts of
physical memory compared to most Mac OS X-based computers.

At the fundamental level, the kernel keeps track of physical memory using the structure vm_page. A
vm_page structure exists for every physical page of memory. Available pages are part of one of the
following page lists:

• Active List: Contains physical pages mapped into at least one virtual address space
and have recently been used.

• Inactive List: Contains pages that are allocated but have not recently been used.

• Free List: Contains unallocated pages.

Getting a free page from the free list is done with the vm_page_grab() function or its higher-level
interface vm_page_alloc(), which unlike the former, places the page in a vm_object as opposed to merely
removing it from the free list. The kernel will signal the pageout daemon if it detects that the level of free
pages falls behind a threshold. In this case, the pager will evict pages from the inactive list in a least

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 6 MEMORY MANAGEMENT

104

recently used (LRU) fashion. Pages, which are mapped from an on-disk file, are prime candidates and
can simply be discarded. The VM page cache and file system cache are combined on Mac OS X and iOS,
which avoids duplication, and are collectively referred to as the Universal Buffer Cache (UBC). Pages
originating from the file system are managed by the vnode pager, while pages in the VM cache are
managed by the default pager.

The following sections will provide an overview of the various mechanisms for memory allocation
available to kernel developers, as well as of their use and restrictions.

Low-Level Allocation Mechanisms
The kernel has several families of memory allocation routines. Each major subsystem, such as Mach,
BSD, or I/O Kit, has their own families of functions. The VM subsystem lives in the Mach portion of the
kernel, which implements the fundamental interfaces for allocating memory. These interfaces are in
turn used to form higher-level memory allocation mechanisms for use in other subsystems such as BSD
and I/O Kit.

For working in the Mach sections of the kernel, the kmem_alloc*() family of functions is used. These
functions are fairly low-level and are only a few levels away from the raw vm_page_alloc() function. The
following functions are available:

kern_return_t kmem_alloc(vm_map_t map, vm_offset_t* addrp, vm_size_t size);
kern_return_t mem_alloc_aligned(vm_map_t map, vm_offset_t* addrp, vm_size_t size);
kern_return_t kmem_alloc_wired(vm_map_t map, vm_offset_t* addrp, vm_size_t size);
kern_return_t kmem_alloc_pageable(vm_map_t map, vm_offset_t* addrp, vm_size_t size);
kern_return_t kmem_alloc_contig(vm_map_t map, vm_offset_t* addrp, vm_size_t size,
 vm_offset_t mask, int flags);
void kmem_free(vm_map_t map, vm_offset_t addr, vm_size_t size);

All the functions require you to specify a VM Map belonging to either a user space task or
kernel_map. All the above functions allocate wired memory, which cannot be paged out, with the
exception of kmem_alloc_pageable().

The Mach Zone Allocator
The Mach zone allocator is an allocation mechanism that can allocate fixed-size blocks of memory
called zones. A zone usually represents a commonly used kernel data structure, such as a file descriptor
or a task descriptor, but can also point to blocks of memory for more general use. Examples of data
structures allocated by the zone allocator include:

• file descriptors

• BSD sockets

• tasks (struct task)

• virtual memory structures (VM Maps, VM Objects)

As a kernel programmer, you can create your own zones with the zinit() function if you have a
need for frequent and fast allocation and de-allocation of data objects of the same type. To create a new
zone, you need to tell the allocator the size of the object, the maximum size of the queue, and the
allocation size, which specifies how much memory will be added when the zone is exhausted.

CHAPTER 6 MEMORY MANAGEMENT

105

The kalloc Family
The kalloc family provides a slightly higher-level interface for fast memory allocation. The API would be
familiar to those who have used the malloc() interface in user space. In fact, the kernel also has a
malloc() function defined by the libkern kernel library, which again uses memory sourced by kalloc().

void* kalloc(vm_size_t size);
void* kalloc_noblock(vm_size_t size);
void* kalloc_canblock(vm_size_t size, boolean_t canblock);
void* krealloc(void** addrp, vm_size_t old_size, vm_size_t new_size);
void kfree(void *data, vm_size_t size);

Memory for the kalloc family of functions is obtained via the Mach zone allocator discussed in the
previous section. Larger memory allocations are handled by kmem_alloc() function. Because memory
can come from two sources, the kfree() function needs to know the size of the original allocation to
determine its origin and to free the memory in the appropriate place. The kalloc family provides the API
upon which fundamental memory functions in I/O Kit and the BSD layer are built. It is also the function
used to provide memory for the C++ new and new[] operators for memory allocation.

The kalloc functions and variants, except kalloc_noblock(), may block (sleep) to obtain memory.
The same is true for the kfree() function. Therefore, you must use kalloc_noblock() if you need
memory in an interrupt context or while holding a simple lock.

The available zones can be queried; following is the trimmed output of the zprint command
showing the zones used by the kalloc functions.

 elem cur max cur max cur alloc alloc
zone name size size size #elts #elts inuse size count

kalloc.16 16 660K 922K 42240 59049 30284 4K 256 C
kalloc.32 32 3356K 4920K 107392 157464 73407 4K 128 C
kalloc.64 64 4792K 6561K 76672 104976 75837 4K 64 C
kalloc.128 128 2732K 3888K 21856 31104 20571 4K 32 C
kalloc.256 256 4248K 5184K 16992 20736 15950 4K 16 C
kalloc.512 512 968K 1152K 1936 2304 1870 4K 8 C
kalloc.1024 1024 784K 1024K 784 1024 735 4K 4 C
kalloc.2048 2048 3396K 4608K 1698 2304 1586 4K 2 C
kalloc.4096 4096 2204K 4096K 551 1024 508 4K 1 C
kalloc.8192 8192 3160K 32768K 395 4096 383 8K 1 C
kalloc.large 41375 5697K 6743K 141 166 141 40K 1 C

There is one zone for each size up to 8 KB. Allocations smaller than 8 KB return an element from the
smallest matching zone. It is not possible to partially allocate an element, so, for example, if you need
5000 bytes of memory, you will actually be allocated 8192 bytes (3192 bytes wasted per allocation!).
Allocations greater than 8 KB are handled by the appropriate kmem_alloc() function instead of the zone
allocator, but are nevertheless recorded in the virtual zone kalloc.large.

Memory Allocation in BSD
Memory allocation in the BSD subsystem is implemented by the following functions and macros:

#define MALLOC(space, cast, size, type, flags) (space) = (cast)_MALLOC(size, type, flags)
#define FREE(addr, type)_ FREE((void *)addr, type)
#define MALLOC_ZONE(space, cast, size, type, flags)
 (space) = (cast)_MALLOC_ZONE(size, type, flags)

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 6 MEMORY MANAGEMENT

106

#define FREE_ZONE(addr, size, type) _FREE_ZONE((void *)addr, size, type)

void* _MALLOC(size_t size, int type, int flags);
void _FREE(void *addr, int type);
void* _MALLOC_ZONE(size_t size, int type, int flags);
void _FREE_ZONE(void *elem, size_t size, int type);

Under the hood, the _MALLOC() function allocates memory using some variant of kalloc(), depending
on the flags that are passed; for example, if non-blocking allocation is required, (M_NOWAIT)
kalloc_noblock() is called. The _MALLOC_ZONE() function invokes the zone allocator directly instead of
indirectly through kalloc(). Instead of using the general purpose kalloc.X zones, it allows you to access
zones of commonly used object types, such as file descriptors, network sockets, or mbuf descriptors, used
by the networking subsystem. The type argument is used to determine which zone to access. Although
_MALLOC() also takes a type argument, it is ignored, except to check that the value is less than the
maximum allowed. There are over a hundred different types defined. The flags parameter can be one of
the following:

#define M_WAITOK 0x0000
#define M_NOWAIT 0x0001
#define M_ZERO 0x0004 /* bzero the allocation */

 Tip MALLOC family of functions, along with zone types, are defined in sys/malloc.h.

The M_ZERO flag, if specified, will use the bzero() function to overwrite the memory with zeros before
the memory is returned to the caller. If not, the memory will still have the contents written there by the
last user or will contain random garbage if never used.

I/O Kit Memory Allocation
The I/O Kit provides a full set of functions for memory allocation. All the following functions return
kernel virtual addresses, which can be accessed directly:

void* IOMalloc(vm_size_t size);
void* IOMallocAligned(vm_size_t size, vm_size_t alignment);
void* IOMallocPageable(vm_size_t size, vm_size_t alignment);

The corresponding functions for freeing memory are as follows.

void IOFree(void* address, vm_size_t size);
void IOFreeAligned(vm_size_t size);
void IOFreePageable(void* address, vm_size_t size);

The first function, IOMalloc(), is a wrapper for kalloc() and is subject to the same restrictions.
Specifically, it cannot be used in an atomic context, such as a primary interrupt handler, as it may block
(sleep) to obtain memory. Nor can IOMalloc() be used if aligned memory is required, as no guarantees
are made. IOFree() is a wrapper for the kfree() function and may also block (sleep). It is also possible to
deadlock the system if you call either IOMalloc() or IOFree() while holding a simple lock, such as
OSSpinLock, as the thread may be preempted if either function sleeps. It could cause a deadlock if an
interrupt handler attempted to claim the same lock. Furthermore, memory from IOMalloc() is intended

CHAPTER 6 MEMORY MANAGEMENT

107

for small and fast allocations and is not suitable for mapping into user space. Because the memory
reserved for IOMalloc() comes from a small fixed-size pool, excessive use of IOMalloc() can drain this
pool and panic the kernel if the pool is exhausted.

 Caution It is a bug to free memory allocated by, for example, IOMallocAligned() with IOFree(). Always use
the free function corresponding to the original allocation function. Even if it works now (by accident), the
mechanism could change in a future update and cause a crash.

IOMallocAligned() is subject to the same restrictions as IOMalloc(), but unlike IOMalloc(), it will
return memory addresses aligned to a specific value. For example, if you need page-aligned memory you
can pass in 4096 to get an address aligned to the beginning of a page. Following are some reasons for
requesting aligned memory.

• Hardware cannot access memory that is not aligned to a specific boundary, or it
does so slowly.

• Memory used in vector computation may be excessively slow from addresses not
aligned to a specific byte boundary (typically 16 bytes for SSE).

• Memory will be used for mapping into a user space process. Since mapping is only
possible for whole pages, you may wish to ensure the buffer starts on a page
boundary.

• You want a data structure that is friendly to the CPU cache.

IOMallocPageable() allocates memory that can be paged, unlike the other variants, which always
create memory that is wired and cannot be paged out. The restrictions that apply to IOMalloc() and
IOMallocAligned() are also valid for IOMallocPageable(). Memory obtained by it cannot be used for
device I/O such as DMA or in a code path that is not able to block/sleep without it being wired down
first.

There is also a last variant, IOMallocContiguous(), that allocates memory that is physically
contiguous. Its use is now deprecated. Apple recommends using IOBufferMemoryDescriptor instead.

Each of the memory allocation functions has a corresponding function to free the memory. It is
important to call the right free function that matches the function you used for allocating the memory.
Each of the variants source memory from different low-level mechanisms, hence they are not
interchangeable. In fact, IOMalloc() may source its memory from more than one source. Larger
allocations (>8 KB) may be allocated with kmem_alloc(); however, smaller allocations come from the
zone allocator.

This happens to be the reason why you must pass in the size of the original allocation to the
IOFree*() functions, as it is used to determine where the memory came from.

Allocating Memory with the C++ New Operator
The libkern library implements a basic C++ runtime, upon which I/O Kit is built. Memory allocation in
C++ is typically done with the new and new[] operators for single objects and arrays, respectively. In
libkern, the new operator is implemented internally by calling kalloc() to obtain memory. Because
kfree() requires the size of the original allocation, libkern modifies the size passed to the new operator

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 6 MEMORY MANAGEMENT

108

to include space for a small structure that can hold the size of the allocation, so that when the delete
operator calls kfree(), it can retrieve the size in the four bytes preceding the address returned by new.

Memory allocated by new or new[] is always zeroed out, unlike most implementations of these
operators in user space.

 Tip The implementation of the new, new[], delete, delete[] operators can be found in the XNU source
distribution under libkern/c++/OSRuntime.cpp.

Memory Descriptors
Memory descriptors are implemented by the IOMemoryDescriptor class and is fundamental to working
with memory in I/O Kit. The class also serves as a super class for other important memory-related
classes, which we will discuss later in this chapter. Many parts of the I/O Kit accept an
IOMemoryDescriptor as an argument. For example, the USB family uses the class to describe memory
used for USB read and write requests.

The IOMemoryDescriptor describes the properties of a memory buffer or range of memory, but does
not allocate (or free) the described memory. It contains metadata and allows some operations to be
performed on the memory. It can describe virtual and physical memory. The class is versatile and can be
used for a number of purposes. Consequently, there are also a number of ways to construct an
IOMemoryDescriptor. A common way is to use the withAddressRange() method, as follows.

static IOMemoryDescriptor* withAddressRange(mach_vm_address_t address,
 mach_vm_size_t length, IOOptionBits options,
 task_t task);

• The first argument, address, is the start address of the memory buffer the
descriptor should operate on.

• The length argument is the number of bytes of the buffer pointed to by address.
The task argument specifies the task, which owns the virtual memory.

• The options argument specifies the direction of the descriptor in the event that it
is used for I/O transfers. It may affect the behaviour of prepare() and complete().
The following flags are possible:

• kIODirectionNone

• kIODirectionIn

• kIODirectionOut

• kIODirectionOutIn

• kIODirectionInOut

• The last paramter is the task that owns the memory. If the kernel owns the
memory, you can pass kernel_task, which is a global variable pointing to the
task_t structure for the kernel.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 6 MEMORY MANAGEMENT

109

The options flags indicate the direction of an I/O transfer and may be used to determine if it is necessary
to flush processor caches to ensure cache coherency.

If the descriptor is to be used for an I/O transfer you must first call its prepare() method, which will
do the following:

• page in memory, if the underlying memory is paged out

• pin the memory down, so it cannot be paged out until the transfer is complete

• configure device address translation mappings if necessary

 Caution Calls to prepare() must be balanced with a call to complete(). Care must also be taken not to call
complete() unless prepare() was called first.

The prepare() method is not thread safe. However, it is valid to call prepare() multiple times, but
you must then call complete() the same number of times. Calling the descriptors’ release() method will
not undo the effects of prepare() or call complete() for you, so complete() must be called before calling
release(). If the descriptor is mapped into an address space, it will be unmapped automatically on
release(). IOMemoryDescriptor can also be used to describe other types of memory, such as physical
addresses. With physical addresses, the prepare() and complete() methods do nothing, but return
successfully. Moreover, a physical memory descriptor is not associated with a task. The static member
method withPhysicalAddress() can be used to construct an IOMemoryDescriptor for a physical segment,
as in the following.

static IOMemoryDescriptor* withPhysicalAddress(IOPhysicalAddress address,

IOByteCount withLength, IODirection withDirection);

The IOBufferMemoryDescriptor
The IOBufferMemoryDescriptor is a subclass of IOMemoryDescriptor, but unlike its super class, it also
allocates memory. It is currently the preferred way of allocating memory intended to be mapped to user
space or for performing device I/O from a kernel-allocated buffer. However, the allocation method used
internally depends on the size of the request and the options passed during construction. The
IOBufferMemoryDescriptor is also the preferred way for obtaining physically contiguous memory.
IOBufferMemoryDescriptors can be allocated by the static factory method inTaskWithOptions() or
inTaskWithPhysicalMask(), as follows.

static IOBufferMemoryDescriptor* inTaskWithOptions(
 task_t inTask,
 IOOptionBits options,
 vm_size_t capacity,
 vm_offset_t alignment = 1);

static IOBufferMemoryDescriptor* inTaskWithPhysicalMask(
 task_t inTask,
 IOOptionBits options,
 mach_vm_size_t capacity,
 mach_vm_address_t physicalMask);

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 6 MEMORY MANAGEMENT

110

The inTask argument specifies which task the memory should be mapped to. For a kernel buffer,
this should be set to kernel_task. If you specify another task identifier, the memory will be allocated and
reachable in that task’s address space. In addition to the flags and options available to
IOMemoryDescriptor, the following options can be passed to control the allocation behavior.

• kIOMemoryPhysicallyContiguous allocates memory that is physically contiguous.

• kIOMemoryPageable allocates memory that can be paged out. All memory is non-
pageable by default.

• kIOMemoryPurgeable applies only to pageable memory. If this option is specified,
the memory pages can be discarded instead of paged out.

• kIOMemoryKernelUserShared should be specified if the memory will be mapped
into the kernel and a user space task. It ensures memory will be page-aligned.

The second way to construct an IOBufferMemoryDescriptor is via the inTaskWithPhysicalMask(),
which allows one to specify a bit mask used to restrict the physical address range of the buffer. This is
mainly useful when allocating memory for DMA for a device unable to access certain address ranges. For
example, some older devices may be unable to access physical memory over 32 bits.

It is generally frowned upon to request physically contiguous memory, particularly after the system
has booted, as the memory becomes fragmented quickly. This would make it difficult to find free
contiguous buffers, particularly larger ones. Requesting contiguous memory may also result in some
memory being paged out to handle the request, which can take a long time. Hardware devices generally
support scatter/gather operations, where multiple smaller buffers are chained together in a list and
passed to the device, which then reads the list to work out where in physical memory to find its data.
Thus, contiguous memory is often unnecessary.

Just like the IOMalloc() family of functions, IOBufferMemoryDescriptor may sleep, so it should not
be called from interrupt contexts or while holding simple locks. In fact, IOBufferMemoryDescriptor uses
IOMalloc() and IOMallocAligned() internally to allocate memory.

Other Memory Descriptors
IOMemoryDescriptor has a number of other related subclasses, as follows.

• IODeviceMemory is used to describe a range of memory mapped from a device.

• IOMultiMemoryDescriptor can be used to represent a larger contiguous buffer
consisting of smaller IOMemoryDescriptor objects.

Mapping Memory
Mapping memory refers to the function of making a range of memory from one task available to
another. At the lowest level, mapping is handled by the Mach VM subsystem, as discussed in Chapter 2.
Memory mapping provides a fast way for tasks to share resources without copying memory, as mapping
makes the same memory available between tasks. Writable mappings can be shared until a modification
is made, in which case the copy-on-write (COW) optimization is used to copy only the memory that was
modified. Memory mappings can occur in a variety of different ways, between multiple tasks, or from
the kernel to a user space task or vice versa.

CHAPTER 6 MEMORY MANAGEMENT

111

Mapping Memory from a User Space Task into Kernel Space
Mapping memory from a user space task is a common operation performed by a driver. Let’s use the
example of an audio device driver where an application wants to send us a data buffer containing audio
samples for play out on a hardware device. To do this, the user task—that is, the audio player—passes us
a memory pointer, which describes where in memory the buffer is located. In user space, the copying of
memory is as simple as calling the memcpy() function.

Things are not so simple in the kernel. The address passed by the user task is meaningless to the
kernel, as it is valid only within the task’s private address space. In order to access the memory in the
kernel, we need to create a mapping for the underlying physical memory of the buffer in the kernel’s
own address space. At the low level, this process happens by manipulating the kernel’s VM Map. While it
is possible to do this using the Mach low-level interfaces, it is most commonly performed with the help
of the I/O Kit IOMemoryDescriptor and IOMemoryMap classes. Listing 6-2 shows the portion of our
imaginary audio driver that copies memory from the user space audio player by mapping the memory
buffer into the kernel’s address space.

Listing 6-2. Mapping a User Space Buffer into the Kernel

void copyBufferFromUserTask(task_t userTask, void* userBuffer,
 uint32_t userBufferSize, void* dstBuffer)
{
 uint32_t bytesWritten = 0;
 bool wasPrepared = false;
 IOMemoryDescriptor* memoryDescriptor = NULL;
 IOMemoryMap* memoryMap = NULL;

 memoryDescriptor = IOMemoryDescriptor::withAddressRange
 (userBuffer, userBufferSize,
 kIODirectionOut, userTask);
 if (memoryDescriptor == NULL)
 goto bail;

 if (memoryDescriptor->prepare() != kIOReturnSuccess)
 goto bail;
 wasPrepared = true;

 memoryMap = memoryDescriptor->createMappingInTask
 (kernel_task, 0, kIOMapAnywhere | kIOMapReadOnly);
 if (memoryMap == NULL)
 goto bail;

 void* srcBufferVirtualAddress = (void*)memoryMap->getVirtualAddress();

 if (srcBufferVirtualAddress != NULL)
 bcopy(srcBufferVirtualAddress, dstBuffer, userBufferSize);

 memoryMap->release(); // This will unmap the memory
 memoryMap = NULL;

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 6 MEMORY MANAGEMENT

112

bail:
 if (memoryDescriptor)
 {
 if (wasPrepared)
 memoryDescriptor->complete();
 memoryDescriptor->release();
 memoryDescriptor = NULL;
 }
}

To map the memory, we first create an IOMemoryDescriptor for the user space buffer. The
IOMemoryDescriptor provides an interface to create the memory mapping, but it also allows us to pin the
memory down while we copy from the buffer. This prevents the memory from being paged out to
secondary storage or disappearing if the audio player should crash or the user exits the application while
we are performing the copy.

 Note You may have noticed the use of goto in the preceding method, which language purists often consider a
bad practice. However, it is often used in kernel code and provides a convenient way of providing centralized
cleanup if an error occurs, in lieu of exceptions that cannot be used in the kernel.

The actual mapping occurs with the invocation of the createMappingInTask() method:

 IOMemoryMap* createMappingInTask(
 task_t intoTask,
 mach_vm_address_t atAddress,
 IOOptionBits options,
 mach_vm_size_t offset = 0,
 mach_vm_size_t length = 0);

 Tip You can use IOMemoryDescriptor::map() method as a shortcut to create a standard mapping into the
kernel’s address space. Also beware that the overloaded variant of map() is deprecated in favor of
createMappingInTask(), which was introduced in Mac OS X 10.5.

• The first argument, intoTask, is the task we want to create the mapping in. For our
purposes, this is the kernel_task, though it would be possible to provide the task
structure of another task, thereby making memory available from one task to
another.

CHAPTER 6 MEMORY MANAGEMENT

113

• The second argument, atAddress, is interesting as well. It specifies an optional
destination address in the address space of intoTask. This allows the target task to
locate the mapping at a fixed address. In our example, we don’t really care where
in our address space the mapping will be made; we just want one address to
access it, so we pass in zero instead of a fixed address and set kIOMapAnywhere in
options.

• The third argument, options, controls how the mapping will be performed using
the flags described in the Memory Descriptors section, for example, read-only or
read/write. Options also exist to control how the memory should behave in
relation to the CPU cache. The following options can be set:

• kIOMapDefaultCache, which specifies the caching policy for the mapping. It
will disable the cache for I/O memory; otherwise, kIOMapCopybackCache is
used.

• kIOMapInhibitCache, which disables caching of this mapping.

• kIOMapWriteThruCache, which uses write-thru caching.

• kIOMapCopybackCache, which uses copy-back caching.

• kIOMapReadOnly, which specifies the mapping will be read-only.

• kIOMapReference, which is used when mapping an already existing
mapping and will fail if the memory is not previously mapped.

• kIOMapUnique, which ensures no previous mapping exists for the memory.

• The last two arguments are used to specify an optional offset and length into the
buffer, if you want to map up only parts of it. However, note that mappings are a
concept of the virtual memory system and operate on pages. You can map
memory only in units of the page size (4096 bytes). The rounding happens
internally and gives the illusion of working with byte boundaries.

The IOMemoryMap Class
The createMappingInTask() method in Listing 6-2 will return an instance of IOMemoryMap to represent the
mapping. In our previous example, we call the IOMemoryMap::getVirtualAddress() method, which
returns a value of the IOVirtualAddress type. The exact primitive data type of IOVirtualAddress depends
on the architecture, but for 64-bit kernels, a 64-bit unsigned integer (uin64_t) is used and not a pointer
type.

When we no longer need the mapping, we simply release the IOMemoryMap object, which takes care of
unmapping. You may wonder why we do not call the IOMemoryMap::unmap() function to release the
mapping. When you create a mapping, it is possible for another thread or the same thread to map the
buffer again. While the mapping will of course only be created once, performing the mapping multiple
times will increment an internal reference counter. However, calling unmap() will not simply decrement
the reference count and remove the mapping if the count hits zero, it will destroy the mapping
regardless of how many times it is referenced. This may lead to the kernel accessing an invalid address;
hence, care should be taken when using unmap(). Simply calling release() for the map will decrement or
remove the mapping if required. A collection of other interesting IOMemoryMap methods are described in
Table 6-2.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 6 MEMORY MANAGEMENT

114

Note that in the Listing 6-2 example, we could just as well have copied memory into the mapped
buffer with some small modifications to create a writable mapping.

Table 6-2. IOMemoryMap Member Function Overview

Function Description

getAddressTask() Gets the task of the mapping.

getMemoryDescriptor() Returns the memory descriptor this map was created from.

getPhysicalAddress() Gets the physical address of the first byte in the mapping.

getPhysicalSegment() Takes and offsets into the mapping and returns the address as well
the length of the physical segment backing this virtual memory.
The length may be the entire mapping if it is backed by contiguous
memory.

redirect() Allows the memory for the map to be swapped with new physical
memory. This is done by supplying a new IOMemoryDescriptor and
consequently, the mapping will be updated to point to the new
physical memory owned by the passed descriptor. The redirect()
function will only succeed if the memory map was created by
kIOMapUnique. If NULL is passed in place of an IOMemoryDescriptor,
any access to the memory range of the mapping by a user task will
block until a valid memory descriptor has been supplied.

… The full definition for the IOMemoryMap class can be found in
IOMemoryDescriptor.h.

 Note It is not necessary to map memory into the kernel unless the kernel needs to actively modify it. If DMA is
performed from a user space buffer and the data in the buffer does not have to be modified by the kernel, it is not
necessary to map it into the kernel’s address space, the buffer can be transferred directly to a hardware device.
See Chapter 9 for more information about DMA.

Mapping Memory from the Kernel to a User Space Task
The previous sections showed how we can take memory allocated in user space and map that memory
into the kernel’s address space so the kernel can access it. While it is possible for the kernel to both read
and write from the mapping, it may sometimes be desirable for a user space task to map kernel memory
into its address space. It should be noted that Apple recommends against this practice for security and
stability reasons and it should be avoided whenever possible. One possible reason for doing it might be
the need to map device memory (for example, from a PCI device) to user space so it can access the
device’s registers.

CHAPTER 6 MEMORY MANAGEMENT

115

In I/O Kit this form of memory mapping is usually done through the IOUserClient class. Available
memory mappings should be returned via the clientMemoryForType() method. A generic example of
how this can be achieved is shown in Listing 6-3.

Listing 6-3. Mapping Kernel Memory to User Space via IOUserClient

#define kTestUserClientDriverBuffer 0
IOReturn com_osxkernel_TestUserClient::
clientMemoryForType(UInt32 type, UInt32 *flags, IOMemoryDescriptor **memory)
{
 IOReturn ret = kIOReturnUnsupported;
 switch (type)
 {
 case kTestUserClientDriverBuffer:
 // Returns a pointer to an IOMemoryDescriptor or
 // if a hardware device, an IODeviceMemory pointer which is a
 // subclass of IOMemoryDescriptor
 *memory = driver->getBufferMemoryDescriptor();
 *memory->retain();
 ret = kIOReturnSuccess;
 break;
 default:
 break;
 }
 return ret;
}

Note that we need to call retain() on the IOMemoryDescriptor before returning it, as it will be
released when the user client closes and we do not want the descriptor to be de-allocated as it is a shared
resource owned by the driver. In this example, we call a hypothetical driver that, for the sake of the
example, has a method called getBufferMemoryDescriptor() that returns an IOMemoryDescriptor for a
kernel-allocated buffer (or it could even be device memory mapped into the kernel’s address space). The
type argument here is simply an integer and can be anything; the important thing is that the user space
program that will access the memory knows the value so it can reference the right memory mapping.

In user space code, you can do the following to map the memory from the IOUserClient.

void* addressOfMappedBuffer = NULL;
int sizeOfMappedBuffer;
IOConnectMapMemory(openDeviceHandleHere,
 kTestUserClientDriverBuffer,
 mach_task_self(),
 (vm_address_t *) &addressOfMappedBuffer,
 &sizeOfMappedBuffer,
 kIOMapAnywhere);

You may notice the similarity to creating a mapping in the kernel. The kIOMapAnywhere here signifies
that we don’t care where in our address space the mapping is made; the addressOfMappedBuffer
argument will contain the address of the mapping if the call succeeds and can be used to access the
mapped memory. If kIOMapAnywhere is not specified, the addressOfMappedBuffer argument is used to
specify the preferred address for the mapping. The second last argument will tell us the size of the
mapping. The smallest amount that can be mapped is a single page; therefore, if you map buffers

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 6 MEMORY MANAGEMENT

116

smaller than 4096, it would allow a client to see the memory of the entire page the buffer is contained
within, which could be a potential security problem.

Mapping Memory to a Specific User Space Task
The preceding example allows any task to map the memory and our driver code does not need to know
which task the memory will be mapped to. However, if you know the specific task memory should be
mapped to, you can use the approach from Listing 6-2. The difference is simply that the user space task
identifier is passed to IOMemoryDescriptor::createMappingInTask() in place of kernel_task.

Apple recommends not mapping memory obtained from functions such as IOMalloc() and
IOMallocAligned() (though it is possible using the latter) because they come from the zone allocator,
which is intended for private and temporary allocations and not for sharing. The recommended way of
mapping memory is to use the IOBufferMemoryDescriptor, a subclass of IOMemoryDescriptor that also
allocates memory, as follows.

IOBufferMemoryDescriptor* memoryDescriptor = NULL;
memoryDescriptor = IOBufferMemoryDescriptor::withOptions(
 kIODirectionOutIn | kIOMemoryKernelUserShared, sizeInBytes, 4096);

An interesting parameter to note is kIOMemoryKernelUserShared, which indicates to the allocator that
we wish to share the memory with a user task. We pass 4096 (the page size) to get page-aligned memory,
as memory mappings can only be done on page-sized units.

Physical Address Mapping
Virtual memory addresses are only available to the CPU and are meaningless to a hardware device,
which requires physical addresses. In order to communicate with hardware outside the CPU, we need to
translate virtual memory from the kernel or a user space task into physical addresses the device can use
to access information from RAM. This task is not always trivial as virtual memory is often fragmented.
Let’s look at an example, a 128 KB virtual memory buffer we want to send to a hardware device. The
buffer can in the worst case consist of 32 individual 4 KB pages scattered anywhere throughout the
system memory. Because of this, we cannot simply translate the address of the first byte of the buffer
and tell the device the buffer is 128 KB long; we need to work out how many fragments the buffer
consists of and instead send a list/array of addresses and lengths. This is often referred to as a
scatter/gather table or list. The IOMemoryDescriptor and classes derived from it provide two methods to
help with physical address translation, as follows.

• getPhysicalAddress(): Translates the address of the first byte to its physical
address. This is mainly useful if the buffer is known to be contiguous.

• getPhysicalSegment(): Translates the address at a specified offset into the buffer
and returns the length of the physical segment from that offset. For a contiguous
buffer, this will always be the size of the buffer minus the offset.

 Caution This method can cause a kernel panic if used improperly. See the following discussion for correct
usage.

CHAPTER 6 MEMORY MANAGEMENT

117

Note that there are two versions of getPhysicalSegment() depending on if you are using a 64-bit
kernel or 32-bit kernel, as follows:

#ifdef __LP64__
 virtual addr64_t getPhysicalSegment(IOByteCount offset,
 IOByteCount * length,
 IOOptionBits options = 0) = 0;
#else /* !__LP64__ */
 virtual addr64_t getPhysicalSegment(IOByteCount offset,
 IOByteCount * length,
 IOOptionBits options);
#endif /* !__LP64__ */

For the 32-bit version (!__LP64__) the options argument must specify: kIOMemoryMapperNone or the
method will panic for addresses over the 4 GB mark. A more flexible, safer and easier approach to
memory translation is to use IODMACommand class, which works in conjunction with IOMemoryDescriptor.
We discuss IODMACommand and this topic in much more detail in Chapter 9.

Summary
In this chapter, we have discussed:

• Types of memory addresses in use by the kernel. The kernel typically works with
virtual addresses both for its own threads as well as those of user space tasks.
Physical memory addresses are used between the CPU and memory, as well as
hardware devices.

• The significance of 32-bit and 64-bit memory addressing and modes.

• How memory allocation is performed across the different kernel subsystems,
Mach, BSD, and I/O Kit. In I/O Kit, the preferred mechanism is to use the
IOMalloc*() functions or the IOBufferMemoryDescriptor.

• How the IOMemoryDescriptor and related subclasses are used by many parts of the
I/O Kit to manage and describe memory buffers. The IOBufferMemoryDescriptor is
one such subclass, which in addition to providing a memory descriptor also
allocates memory in various forms, with alignment or even physically contiguous
memory.

• How the IOMemoryMap class is used to manage memory mappings and allows the
kernel to map a user space buffer into its virtual address space so memory can be
manipulated by the kernel.

• How the IOUserClient class provides a useful method, clientMemoryForType(),
which will handle the details of mapping a kernel buffer into user space.

• How the IOMemoryDescriptor provides methods such as getPhysicalSegment()
that allow mapping of virtual memory addresses to physical addresses.

www.allitebooks.com

http://www.allitebooks.org

C H A P T E R 7

119

Synchronization and Threading

As we have seen throughout this book, the role of a driver is to make the functionality that is provided by
a hardware device available to the operating system and to user applications. This means that the code
inside a driver may be called from any number of running applications at any time, depending on when
an application wishes to request the services of the hardware device. In handling these requests, the
driver runs in the thread context of the application that made the control call. In addition to these
requests, the hardware itself can require servicing and may generate interrupts at arbitrary times that the
driver must respond to. The end result for the driver developer is that driver code runs in a complex
multithreaded environment, even without the driver creating any additional threads of its own.

The computer hardware on which a driver will execute will likely have multiple CPU cores. So, in
addition to the driver code being preempted by an interrupt from the device or a request from a thread
in another application, it’s possible for your driver to be running on multiple cores simultaneously. This
applies even to the interrupt service routine for your driver, which can run in parallel to the non-
interrupt code of your driver on another CPU core.

As is the case with multithreaded application code, it’s important that a driver provides
synchronized access to its internal structures and any data that could potentially be read or written from
multiple threads. How a driver provides the arbitration between multiple threads that are attempting to
access its hardware is dependent on the type of device. Some hardware can only be accessed by one
client at a time. For example, a serial port device will grant exclusive access to one user process at a time;
the driver will make sure that an attempt by another process to open the serial port will be rejected. On
the other hand, a disk device can expect to receive requests from multiple processes and, since the
hardware itself can handle only one request at a time, it is the responsibility of the driver to queue the
incoming requests and issue them to the disk device in a serial manner.

The I/O Kit provides several different mechanisms that a driver can use to implement a scheme that
provides arbitrated access to its hardware while ensuring that the driver’s internal structures remain
valid in a multithreaded environment. This chapter assumes that you have a basic understanding of
code synchronization and have previously written multithreaded application code.

Synchronization Primitives
Synchronization problems occur when code that is executing on two or more threads attempts to access
a common resource or structure. A common synchronization problem for I/O Kit drivers arises when a
driver needs to access its instance variables, since these are shared between all of the threads that the
driver is executing. To give a concrete example, let’s consider an actual example from the I/O Kit,
namely, the OSObject base class’s implementation of reference counting.

The OSObject class is the base class for all objects in the I/O Kit, and one of its roles is to maintain a
reference count for each object instance and to release an object when its reference count is
decremented to 0. A simplified version of the OSObject implementation, without the synchronization
provided by the actual implementation, is shown in Listing 7-1.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 7 SYNCHRONIZATION AND THREADING

120

Listing 7-1. A Possible Implementation of Object Reference Counting

void Object::retain ()
{
 retainCount += 1; // An instance variable defined as an int
}

void Object::release ()
{
 retainCount -= 1;
 if (retainCount == 0)
 this->free();
}

Although the preceding code looks correct and will run perfectly well if all calls to retain() and
release() are made from a single thread, the code is not thread-safe and may fail if multiple threads
were to simultaneously call retain() and release() for the same object. To understand the problem, it is
necessary to examine the compiler output for the previous code. In this case, the assembler instructions
that follow were generated when the implementation was compiled for the 64-bit Intel architecture
under a Debug build. The code for retain() contains the following sequence of instructions:

 mov eax, retainCount ; Load retainCount into CPU register EAX
 add eax, 0x1 ; Increment value in EAX
 mov retainCount, eax ; Write value in EAX to retainCount

And the code for release() contains the following sequence of instructions:

 mov eax, retainCount ; Load retainCount into CPU register EAX
 sub eax, 0x1 ; Decrement value in EAX
 mov retainCount, eax ; Write value in EAX to retainCount
 mov eax, retainCount ; Load retainCount into CPU register EAX
 cmp eax, 0x0 ; Determine whether the value of EAX is 0
 jne skipFree ; If EAX is not zero, jump over the next instruction
 call free() ; Otherwise, call the free() method
skipFree:
 …

The cause of the problem in a multithreaded environment is that the C code both to increment and
to decrement the instance variable retainCount compiles to three CPU instructions: the value held by
the instance variable retainCount is loaded from memory into a CPU register, the value of the CPU
register is either incremented or decremented, and the result is then written back to memory. Let’s see
what can happen if two threads were to call retain() simultaneously for the same object. For simplicity,
let us assume that the code is executing on a machine with a single CPU core and that the operating
system’s scheduler preempts the first thread at the point where the initial mov instruction has been
executed.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 7 SYNCHRONIZATION AND THREADING

121

Thread 1 Thread 2

mov eax, retainCount

 mov eax, retainCount

 add eax, 0x1

 mov retainCount, eax

add eax, 0x1

mov retainCount, eax

In this scenario, thread 1 will read the value of retainCount from memory into the EAX register. At

this point, the operating system’s scheduler preempts thread 1 and switches to thread 2 (after saving the
state of thread 1’s CPU registers). Thread 2 now runs and will read the same value of retainCount into
the EAX register as was read by thread 1. It then increments the value and writes the incremented value
back to memory. The operating system scheduler then preempts thread 2 and switches execution back
to thread 1 after restoring the state of thread 1’s saved CPU registers. Thread 1 now continues executing
from where it left off, incrementing the original value of retainCount, and writing the result back to
memory. Following this, retainCount has only increased in value by 1, even though the retain() method
was called twice.

Note that this problem will only show up under specific conditions: Either the retainCount instance
variable must be modified by two threads, with one preempting the other in the way illustrated, or the
two threads must be running simultaneously on two CPU cores. A problem such as this, in which the
result of executing code depends on the timing and the order in which the code runs, is known as a race
condition. Race conditions can lead to problems that are very difficult to debug since the problem by its
nature is timing-dependent and therefore may not occur every time the code is run. In fact, the code
may appear to run perfectly fine during testing and it will only become apparent that the driver has
problems when reports come in from users.

As well as being difficult to reproduce, race conditions can be very difficult to diagnose when they
do cause problems. Take the example of the race condition outlined previously in which an object’s
retain count is incremented by 1, even though two calls to retain() were made. This wouldn’t cause any
immediate problems and the driver would continue to function as if nothing were wrong until much
later, when the object is released. Since the object was retained twice, the calling code should be
expected to release the object twice. However, since the value of the retain count is one less than the
value it should be, the object will be destroyed while the driver still holds one reference to it. This means
that, at some later time, the driver will try to access the object that it thinks it holds a reference to. But
that object will have been destroyed and the driver will crash with an access to invalid memory. Note
that the code that ends up crashing may be in a completely different function to the function that
contains the race condition. As a result, tracing the cause of the bug back to retain() and release() will
involve considerable sleuth work.

CHAPTER 7 SYNCHRONIZATION AND THREADING

122

Atomic Operations
Since the race condition in the previous example was caused by the compiler generating a sequence of
three instructions to increment and decrement the instance variable retainCount, one solution is to
replace the compiler output from the sequence load-modify-store with a single instruction that
performs an equivalent operation. In this way, there is no chance for the operation to be interrupted
when execution is preempted by another thread. In reality, however, it may not always be possible to
replace an operation with a single instruction. Instead, we use a sequence of instructions that behave as
if they were a single instruction. This is referred to as an “atomic” operation because the result of the
operation is the same as if the instruction sequence had executed as a single, indivisible group.

The implementation of an atomic operation requires support from the CPU. For example, the Intel
CPU used in Macintosh computers provides an instruction to atomically add one value to another value
in memory. However, this alone is not enough to make the operation atomic in a multiprocessor
environment. So the Intel instruction set provides a LOCK prefix that prevents any other CPU in the
system from accessing memory while the instruction is executing. Since the implementation of atomic
operations relies on support that is specific to the CPU architecture, iOS devices, which use the ARM
instruction set, require a different implementation for each atomic operation.

To make it easy to access atomic operations in driver code, the I/O Kit includes a number of
functions that provide an atomic implementation of basic operations, such as integer addition,
incrementing and decrementing a value, and bitwise operations. These functions are listed in Table 7-1,
which are defined in the header file <libkern/OSAtomic.h>.

Table 7-1. Atomic Operations Provided By the Libkern Framework

Function Description

OSIncrementAtomic(address);

OSIncrementAtomic8/16/64(address);

Adds 1 to the signed 8-, 16-, 32-, or 64-bit value
at the specified address. The original value
prior to the increment is returned.

OSDecrementAtomic(address);

OSDecrementAtomic8/16/64(address);

Subtracts 1 from the signed 8-, 16-, 32-, or 64-
bit value at the specified address. The original
value prior to the decrement is returned.

OSAddAtomic(amount, address);

OSAddAtomic8/16/64(amount, address);

Adds the value in “amount” to the signed 8-, 16-,
32-, or 64-bit value at the specified address.
The original value prior to addition is returned.

OSBitAndAtomic(mask, address);

OSBitAndAtomic8/16(mask, address);

Performs a bitwise AND operation of the value
in “mask” and the 8-, 16-, or 32-bit unsigned
value at the specified address. The original
value prior to the bitwise operation is returned.

OSBitOrAtomic(mask, address);

OSBitOrAtomic8/16(mask, address);

Performs a bitwise OR operation of the value in
“mask” and the 8-, 16-, or 32-bit unsigned value
at the specified address. The original value
prior to the bitwise operation is returned.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 7 SYNCHRONIZATION AND THREADING

123

Function Description

OSBitXorAtomic(mask, address);

OSBitXorAtomic8/16(mask, address);

Performs a bitwise XOR operation of the value
in “mask” and the 8-. 16-, or 32-bit unsigned
value at the specified address. The original
value prior to the bitwise operation is returned.

OSCompareAndSwap(oldValue, newValue, address);

OSCompareAndSwapPtr(oldValue,newValue,
address);

OSCompareAndSwap64(oldValue, newValue,
address);

If the value of the 32- or 64-bit integer at the
specified address is equal to “oldValue”, then
“newValue” is written to the address. Otherwise,
the value stored at the address is not modified.
The function returns a Boolean that indicates
whether newValue was written.

OSTestAndSet(bit, address); Sets a bit within the byte at the specified
address. Returns a Boolean that indicates
whether the bit was already set.

OSTestAndClear(bit, address); Clears a bit within the byte at the specified
address. Returns a Boolean that indicates
whether the bit was already clear.

With these functions at our disposal, we are now in a position to provide an implementation of

retain() and release() that avoids the race condition that was present in the previous example. This is
shown in Listing 7-2, which assumes that the instance variable retainCount is a 32-bit integer.

Listing 7-2. An Implementation of Object Reference Counting in a Multithreaded Environment

void Object::retain ()
{
 OSIncrementAtomic(&retainCount);
}

void Object::release ()
{
 uint32_t originalValue;

 originalValue = OSDecrementAtomic(&retainCount);
 if (originalValue == 1)
 this->free();
}

If we go back and examine the original implementation in Listing 7-1 and the corresponding
compiler output for the release() method, we can see that the code actually contained two race
conditions. The conditional call to free() occurs when the value of retainCount has been decremented
to 0. However, since the compiled code reloads the value of retainCount from memory before testing its
value against 0, it’s possible that two calls to release() both read the value 0 and the free() method is
called twice for the object, which will likely result in a crash. To illustrate how this could occur, assume
that one thread executing release() has decremented the retainCount from 2 to 1 and has written the

CHAPTER 7 SYNCHRONIZATION AND THREADING

124

decremented value back to memory. Also assume that, before it can reload the value of retainCount
from memory and test whether its value is 0, the thread is preempted. Another thread now has a chance
to run and, if it were to execute release(), the retainCount would be decremented from 1 to 0 and the
object would be destroyed. When execution returns to the original thread, it will reload the value of
retainCount, find that it is 0, and destroy the object a second time.

This race condition is avoided in Listing 7-2 by using the value returned by OSDecrementAtomic() to
determine when the final reference count has been released. The function OSDecrementAtomic() returns
the original value of its parameter before it was decremented. We know that if the original value was 1,
the value of retainCount has now been decremented to 0 and the object can safely be destroyed.

One group of atomic operations that deserves special mention is the compare-and-swap family of
functions. The compare-and-swap operation writes a value to a memory address but, importantly, the
write will only take place if the value that is being overwritten is equal to some expected value that is
provided by the caller. The result of the operation is a Boolean value that indicates whether the write
succeeded. Importantly, for the purposes of synchronization, the entire operation is performed
atomically.

The compare and swap function can be used to build more complex atomic operations. For
example, suppose we wish to implement a function to perform a bitwise AND followed by a bitwise OR,
with the overall operation being atomic. Clearly, we cannot simply call OSBitAndAtomic() followed by
OSBitOrAtomic() because there is nothing to prevent the execution from being preempted between the
two functions. With the OSCompareAndSwap() function at our disposal, we can implement a function that
atomically performs a bitwise AND followed by a bitwise OR as follows:

uint32_t AtomicBitAndOr (uint32_t andMask, uint32_t orMask, volatile uint32_t* address)
{
 uint32_t oldValue;
 uint32_t newValue;

 do {
 oldValue = *address;
 newValue = oldValue & andMask;
 newValue = newValue | orMask;
 } while (OSCompareAndSwap(oldValue, newValue, address) == false);

 return oldValue;
}

You will note that we have no synchronization at all while we perform the two bitwise operations.
The reason that this implementation works and is atomic is because it uses the OSCompareAndSwap()
function to ensure that the value at address hasn’t changed from the original value on which we based
our calculation of the new value to be written. If another thread had modified the value at address while
this function was executing, then the OSCompareAndSwap() function would return false and would not
perform the write. As a result, we would have to go back to the beginning of the loop and repeat the
entire bitwise operation after re-reading the value at address. On this next attempt, we hope to have
better luck in performing the operation without another thread modifying the value at address
underneath us, although we will continue retrying until we successfully write the result to memory.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 7 SYNCHRONIZATION AND THREADING

125

 Note All atomic operations, such as OSAddAtomic(), OSIncrementAtomic(), and OSBitOrAtomic() can be
implemented using only OSCompareAndSwap(). In fact, a number of atomic functions provided by the libkern
library are implemented this way, including all bitwise atomic operations and the 8-bit and 16-bit variations of
each operation, which perform a compare and swap on the full 32-bit word containing the value being modified.

Locking
The use of atomic operations is a good solution for synchronizing access to a single variable. We often
need to synchronize more complex sections of code, such as algorithms that rely on the value of multiple
variables or functions that touch hardware. To remove the possibility of race conditions from these more
complex areas of code, we rely on mutual exclusion; that is, any other thread that wishes to execute code
which could interfere with the result of our operation is blocked until the operation is complete. The act
of obtaining exclusive access is referred to as “acquiring a lock.”

The basic idea behind locking is that any code that accesses a shared resource, such as the instance
variables of a driver, will first acquire a lock before executing the code. It will then release the lock when
it has finished accessing the shared resource. The important point about a lock is that it can be held by
only one client at a time; any other thread that wishes to access the same shared resource will block
when it attempts to obtain the lock and will remain blocked until the lock is released. Obtaining a lock
will prevent any other thread that relies on the same lock from executing so it’s good practice to hold a
lock for as short a time as is needed.

The I/O Kit provides several different styles of locking mechanisms, each of which is appropriate in
different situations. The locks provided by the I/O Kit include:

• IOSimpleLock, which implements a spin lock

• IOLock, which implements a traditional mutex

• IORecursiveLock, which implements a mutex that can safely be acquired multiple
times from the thread that is holding the lock

• IORWLock, which implements a read/write lock that can be shared between
multiple threads that need to read the shared resource but provides exclusive
access to a thread that wishes to write to the shared resource.

Spin locks
The most basic implementation of locking is the spin lock, which can be implemented using nothing
more than atomic operations (which may explain why the spin lock is known as IOSimpleLock in the I/O
Kit implementation). A spin lock may consist of nothing more than a Boolean flag that indicates whether
the lock is currently held by any thread. When a thread wishes to acquire the lock, the implementation
determines whether the lock is held and, if not, performs an atomic set of the lock’s flag. If the lock is
held, then the function will simply repeatedly try to obtain the lock until the lock becomes available. An
example implementation for a spin lock is shown in the following code. This implementation uses an
unsigned 32-bit integer to represent the lock state, with a value of 0 indicating the lock is available and a
value of 1 indicating that the lock is held.

CHAPTER 7 SYNCHRONIZATION AND THREADING

126

typedef uint32_t MySpinLock;

void MyAcquireSpinLock (MySpinLock* lock)
{
 // If the value of the lock is 0, set its value to 1.
 // Keep trying until the value of lock is successfully set.
 while (OSCompareAndSwap(0, 1, lock) == false)
 ;
}

A thread that holds a spin lock must be careful not to obtain the lock that it is currently holding a
second time. If this were to happen, then the thread would attempt to acquire the lock and spin because
the lock is not available. However, in this case, the thread will spin indefinitely since the only thread that
can release the lock is blocked waiting for the lock. This situation is known as a deadlock.

The actual implementation of IOSimpleLock used by the I/O Kit is slightly more advanced than the
example given, since it disables preemption of the running thread while the lock is held. This means that
while a simple lock is held, the thread holding the lock will not be taken off the CPU on which it is
running until the lock is released. Consequently, an IOSimpleLock should only be acquired for very brief
periods (such as while a driver’s instance variables are being updated) and should never perform an
operation that may block the running thread, such as allocating memory or acquiring a mutex, since this
could result in a deadlock.

Although it may seem that spin locks are an inefficient locking mechanism because a thread spends
CPU cycles spinning if it cannot immediately obtain a lock, they can actually be more efficient than
other locking mechanisms, provided that the lock is only held for short periods of time. On a machine
with a single CPU, IOSimpleLock will never spin because, with thread preemption disabled, there is no
possibility of lock contention (in effect, synchronization is provided by disabling thread preemption and
preventing the execution of any other thread that may acquire the lock). On a multiprocessor system,
disabling preemption when an IOSimpleLock is acquired does not prevent a thread running on another
CPU from attempting to access the same lock (in fact, thread preemption is only disabled for the CPU
core that has acquired the lock). However, providing that a spin lock is held for only a short period of
time, the time spent by a thread spinning while it waits for the lock to become free will typically be much
less than the overhead of blocking the thread had a mutex been used instead of a spin lock.

Unlike a mutex, an IOSimpleLock will never suspend the running thread. Instead it will spin until the
lock becomes available. This makes IOSimpleLock perfect for providing synchronization between code
that runs within a primary interrupt handler and non-interrupt code. In reality, this functionality is
rarely needed within an I/O Kit driver since most drivers won’t ever have to handle an interrupt directly
and, if they do, most will defer the interrupt to a secondary interrupt handler. The I/O Kit provides other
locking mechanisms that are appropriate for secondary interrupt handlers, which are discussed later in
this chapter.

To provide synchronization with code that runs inside a primary interrupt handler, we need to
make sure that code that acquires an IOSimpleLock at non-interrupt time is never preempted by code
running inside an interrupt handler that attempts to acquire the same lock, since this would result in a
deadlock. To solve this, the I/O Kit provides a function that disables interrupts for the running CPU
before acquiring the spin lock and a counterpart that releases the spin lock and then re-enables
interrupts. Just as disabling thread preemption guarantees that a thread holding an IOSimpleLock will
not be preempted by another thread on the same CPU, disabling interrupts guarantees that a thread
holding an IOSimpleLock will not be preempted by an interrupt handler on the same CPU. An interrupt
may fire on another CPU on the system and may attempt to acquire an IOSimpleLock that is held by a
thread on another CPU core (resulting in the interrupt handler spinning) but, because the thread is
running on another CPU, it can continue to execute and will release the IOSimpleLock shortly afterwards.

A summary of the IOSimpleLock functions provided by the I/O Kit is given in Table 7-2.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 7 SYNCHRONIZATION AND THREADING

127

Table 7-2. Spin Lock Synchronization Functions Provided By the I/O Kit

Function Description

IOSimpleLock* IOSimpleLockAlloc(void); Allocates a new IOSimpleLock and returns a
pointer to the initialized object or NULL on
failure.

void IOSimpleLockFree(IOSimpleLock* lock); Deallocates an IOSimpleLock object that was
allocated by IOSimpleLockAlloc().

void IOSimpleLockLock (IOSimpleLock* lock); Acquires a simple lock, spinning if the lock is
currently held by another client. When the
function returns, preemption for the current
CPU is disabled.

boolean_t
IOSimpleLockTryLock(IOSimpleLock* lock);

Acquires a simple lock, but only if the lock is
not already held. The function returns a
Boolean that indicates whether the function
was able to acquire the lock.

void IOSimpleLockUnlock(IOSimpleLock*
lock);

Releases a simple lock that has been acquired
by either IOSimpleLockLock() or a successful
call to IOSimpleLockTryLock(). Preemption for
the current CPU is re-enabled.

IOInterruptState
IOSimpleLockLockDisableInterrupt
(IOSimpleLock* lock);

Acquires a simple lock and disables thread
preemption and interrupts for the current
CPU. This function is only needed for locks that
are shared between interrupt context and
thread context. The value returned by the
function is required when releasing the lock to
ensure that the CPU’s interrupt state is
restored to its original condition.

void
IOSimpleLockUnlockEnableInterrupt
(IOSimpleLock* lock, IOInterruptState state);

Releases a simple lock that has been acquired
by IOSimpleLockLockDisableInterrupt().
Thread preemption is re-enabled and the
interrupt state is restored to the parameter
“state”.

Mutexes
Although spin locks are efficient for certain applications, they are not suitable in cases in which a thread
needs to hold the lock for a long time or when a thread performs an operation that may block while the
lock is held, such as allocating memory or acquiring a second lock. In these cases, the use of a spin lock
would be very inefficient, since any lock contention will result in a thread spinning continuously while it
attempts to obtain the lock, which would prevent the CPU from performing any useful work. A mutex

CHAPTER 7 SYNCHRONIZATION AND THREADING

128

lock does not have this problem because a thread that attempts to acquire a mutex lock that is already
taken will be suspended until the lock becomes available. Rather than spending CPU time spinning, the
operating system is able to schedule another thread on the CPU. The I/O Kit provides support for mutex
locks through an object known as an IOLock. Because a mutex may block if it cannot be acquired
immediately, mutex locks cannot be used within an interrupt handler.

The functionality provided by IOLock is very similar to that provided by the POSIX mutex lock
functions that are available to user space applications. You can use an IOLock in driver code in similar
ways to how you would use a POSIX mutex in user space code. Unlike an IOSimpleLock, which shouldn’t
be held for long periods because it disables preemption (and possibly interrupts), a mutex has no such
effect on the state of the CPU or operating system’s scheduler. A thread holding a mutex will still be
preempted by another thread once its time quantum has expired and a thread holding a mutex can still
be preempted if the CPU needs to handle an interrupt. However, these points can be seen as advantages
of using a mutex, since they mean that there are no restrictions on what operations can be performed
while a mutex is held. While a mutex is held, a thread can allocate memory, map memory from user
space into the kernel (which may result in memory paging), and can obtain another mutex (which is an
operation that may block).

As with a spin lock, a thread that holds a mutex must be careful not to obtain a mutex that it is
currently holding a second time. Otherwise, a deadlock will occur. At first, this may seem like an artificial
problem, since it’s simply a matter of ensuring that a thread doesn’t attempt to obtain a lock that it is
already holding. However, this can become complicated if the code that is executed while a lock is held
calls other functions that may themselves call other functions that end up acquiring the lock.

For example, let’s pretend that we have a function named ListEnqueue() that requires
synchronization because it can be called from multiple threads. The ListEnqueue() function may be
called from many locations in our project’s codebase and some of the calling functions may already hold
the synchronization lock but other calling functions nay not hold the lock. If our sample ListEnqueue()
function were to acquire a lock to ensure that it is synchronized when called from functions that do not
already hold the lock, we would introduce a deadlock when ListEnqueue() is called from functions that
do hold the lock. This situation can be solved by using a recursive mutex.

Once a thread has acquired a recursive mutex, any code that runs on that same thread is able to
reacquire the mutex multiple times without resulting in a deadlock. The shared resource is still
synchronized, since any other thread that attempts to acquire the mutex will be blocked until all
acquisitions made by the owning thread have been released. The I/O Kit provides support for a recursive
mutex through the IORecursiveLock object.

A summary of the mutex operations provided by the I/O Kit is given in Table 7-3.

Table 7-3. Mutex Synchronization Functions Provided By the I/O Kit

Function Description

IOLock* IOLockAlloc(void);

IORecursiveLock*
IORecursiveLockAlloc(void);

Allocates a new IOLock or IORecursiveLock and
returns a pointer to the initialized object or
NULL on failure.

void IOLockFree(IOLock* lock);

void IORecursiveLockFree(IORecursiveLock*
lock);

Deallocates an IOLock object that was allocated
by IOLockAlloc() or an IORecursiveLock object
that was allocated by IORecursiveLockAlloc().

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 7 SYNCHRONIZATION AND THREADING

129

Function Description

void IOLockLock(IOLock* lock);

void IORecursiveLockLock(IORecursiveLock*
lock);

Acquires a mutex, blocking the calling thread if
the lock is held by another thread. Once a
thread has acquired a recursive lock, it can
safely reacquire the same lock multiple times.

boolean_t
IOLockTryLock(IOLock* lock);

boolean_t
IORecursiveLockTryLock(IORecursiveLock* lock);

Acquires a mutex lock but only if the lock is not
held by another thread. This function will
never block the calling thread if the lock could
not be acquired, but will return a Boolean that
indicates whether the function was able to
acquire the lock.

void IOLockUnlock(IOLock* lock);

void IORecursiveLockUnlock(IORecursiveLock*
lock);

Releases a mutex that has been acquired by
either IOLockLock() or a successful call to
IOLockTryLock(). Or, for a recursive mutex, it
releases a lock that was acquired by either
IORecursiveLockLock() or a successful call to
IORecursiveLockTryLock().

boolean_t
IORecursiveLockHaveLock
(const IORecursiveLock* lock);

Tests whether a recursive mutex is held by the
calling thread. If the mutex has been acquired
by the thread, then the value true is returned. If
the mutex has either not been acquired or has
been acquired by another thread, the value
false is returned.

Condition Variables
As well as providing a mutex for exclusive access to a shared resource, the IOLock and IORecursiveLock
objects provide support for a synchronization primitive known as a condition variable. A condition
variable allows synchronization between multiple threads by providing a mechanism by which one
thread can suspend its execution until a particular condition (or event) occurs.

As an example, let’s consider the driver for a serial port. Our hypothetical driver will receive blocking
read requests from a user space application. These requests will block and only return to user space once
data has been received on the serial port. Rather than continually polling inside the driver until data is
available, a better approach is to create a condition variable and suspend the thread so that it does not
use any CPU time while it is waiting. When the driver receives data from hardware, it will wake any
threads that are waiting on the condition variable. This is illustrated in the following sample code:

void MyDriver::read (void* buffer, uint32_t* bytesRead)
{
 IOLockLock(m_lock);
 do {
 // Attempt to read from hardware
 *bytesRead = readFromHardware(buffer);

 // If no data available, sleep until the hardware receives data

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 7 SYNCHRONIZATION AND THREADING

130

 if (*bytesRead == 0)
 {
 int result;

 result = IOLockSleep(m_lock, m_readEvent, THREAD_ABORTSAFE);
 if (result != THREAD_AWAKENED)
 break;
 }
 } while (*bytesRead == 0);
 IOLockUnlock(m_lock);
}

void MyDriver::DataAvailable ()
{
 // Wake any threads that are sleeping on m_readEvent
 IOLockWakeup(m_lock, m_readEvent, false);
}

In the preceding example, the read() method will attempt to receive any data from the hardware
device, but if no data is available, then it will block the current thread until the hardware has data. When
the hardware has data available, the DataAvailable() method is called (which could be called in
response to a hardware interrupt) and any blocked thread is woken. Note that the entire contents of the
read() method are protected by an IOLock. This ensures that all attempts to read data from the hardware
device are serialized. Otherwise, a potential race condition would exist when the hardware signals the
availability of data as multiple threads are awoken and simultaneously attempt to read data from the
device. The behavior of IOLockSleep() is similar to that of its equivalent user space function
pthread_cond_wait(). The first parameter is a lock that must be held by the caller; IOLockSleep() will
atomically release the lock when it sleeps and reacquire the lock once the event has been signaled. In
this way, the lock is not held while the thread is suspended.

The parameter m_readEvent is the condition variable; the waiting thread specifies the event that it is
waiting on through the condition variable. The signaling thread indicates the event that has occurred by
providing the same condition variable. A driver will define a number of condition variables that
correspond to events that it uses to coordinate between its threads. Condition variables in the I/O Kit do
not have a specific type, rather a condition variable is an arbitrary void* that uniquely identifies an
event. A driver will usually use the address of an instance variable (such as the address of the lock itself)
as a condition variable, since the use of an address guarantees that the value will be unique among
multiple instances of the driver and other drivers in the system.

A summary of the condition variable synchronization operations provided by the I/O Kit is given in
Table 7-4.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 7 SYNCHRONIZATION AND THREADING

131

Table 7-4. Condition Variable Synchronization Functions Provided By the I/O Kit

Function Description

int
IOLockSleep(IOLock* lock, void* event, UInt32
interruptType);

int
IORecursiveLockSleep(IORecursiveLock* lock,
void* event, UInt32 interruptType);

Atomically unlocks the provided lock, which
must be held by the caller, and waits on the
specified event.

If the caller is running on a user space thread
as part of a control request, the interruptType
parameter specifies whether the sleep should
be aborted if the user process receives a
signal such as SIGHUP or SIGKILL.

The lock is reacquired before the function
returns.

int
IOLockSleepDeadline(IOLock* lock, void* event,
AbsoluteTime deadline, UInt32 interruptType);

int
IORecursiveLockSleepDeadline(IORecursiveLock*
lock, void* event, AbsoluteTime deadline, UInt32
interruptType);

Performs a sleep on an event with a specified
timeout parameter. If the event is not
signaled before the specified time, the
function will wake and return to the caller,
with the lock reacquired.

void
IOLockWakeup(IOLock * lock, void *event, bool
oneThread);

void
IORecursiveLockWakeup(IORecursiveLock* lock,
void* event, bool oneThread);

Signals that an event has occurred and wakes
any threads that are sleeping on that same
event. The parameter oneThread allows the
caller to specify whether only one sleeping
thread should be awoken or whether all
threads that are sleeping on the event should
be awoken.

The interruptType parameter that is provided to the sleep functions determines whether the

function should return if the process that owns the thread receives a signal such as SIGHUP or SIGKILL.
This is useful if the wait is being performed by a user client in response to a control request in which case
the driver function will be running on a thread that was created by the user space application.
Depending on the situation, the driver may wish to abort the wait if the process receives a signal, since
the client process may have been terminated. The possible values for interruptType are:

• THREAD_UNINT specifies that the sleep should not be aborted by any signal

• THREAD_INTERRUPTIBLE specifies that the sleep may be aborted if a SIGKILL signal is
received

• THREAD_ABORTSAFE specifies that the sleep may be aborted if any signal is received

Upon waking from a sleep, the function will return one of the following result values:

• THREAD_AWAKENED indicates the function returned normally and the event was
signaled by a call to IOLockWakeup()

CHAPTER 7 SYNCHRONIZATION AND THREADING

132

• THREAD_TIMED_OUT indicates that the event was not signaled by the specified
deadline

• THREAD_INTERRUPTED indicates the user process that owns the thread on which the
driver was sleeping received a signal

• THREAD_RESTART indicates that the wait operation should be restarted entirely

Read/Write Mutexes
One of the problems with a mutex is that allowing only a single thread to hold the lock can often be
unnecessarily restrictive. In many cases, there is no reason why multiple threads should not be allowed
to read a shared resource. It is only when a thread wishes to write to the shared resource or otherwise
modify it that exclusive access is required. This problem is solved by a specialized type of mutex known
as a read/write mutex.

The I/O Kit provides read/write mutexes through an object known as IORWLock. A read/write mutex
can be used in a similar way to a standard mutex. The one distinction is the caller must determine
whether it intends to read the shared resource (in which case it can share the mutex with other readers)
or intends to write to the shared resource (in which case it requires exclusive access to the mutex). The
I/O Kit provides two separate functions depending on the action that the calling code wishes to take.

A summary of the read/write mutex synchronization operations provided by the I/O Kit is given in
Table 7-5.

Table 7-5. Read/Write Mutex Synchronization Functions Provided By the I/O Kit

Function Description

IORWLock* IORWLockAlloc(void); Allocates a new IORWLock and returns a
pointer to the initialized object or NULL on
failure.

void IORWLockFree(IORWLock* lock); Deallocates an IORWLock that was allocated by
IORWLockAlloc().

void IORWLockRead(IORWLock* lock); Acquires a read/write mutex with the
intention of reading the shared resource. The
mutex may be shared with other readers but
will block if the mutex is held by a writer.

void IORWLockWrite(IORWLock* lock); Acquires a read/write mutex with the
intention of writing to the shared resource.
The caller is granted exclusive access to the
shared resource and will block if the
read/write mutex is held by any readers or
writers.

void IORWLockUnlock(IORWLock* lock); Releases a read/write mutex that has been
acquired by either IORWLockRead() or
IORWLockWrite().

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 7 SYNCHRONIZATION AND THREADING

133

 Note The I/O Kit locking primitives are all built on top of Mach types. The I/O Kit contains functions to get at the
underlying Mach locking types, including IOSimpleLockGetMachLock(), IOLockGetMachLock(),
IORecursiveLockGetMachLock(), and IORWLockGetMachLock(). These functions can be useful to take
advantage of behavior that is implemented at the Mach level but not exposed by the I/O Kit functions. For example,
Mach read/write locks can be upgraded from shared read access to exclusive write access, but the I/O Kit provides
no equivalent function.

Synchronizing Asynchronous Events: Work Loops
Synchronization within a driver becomes difficult if the driver needs to respond to asynchronous events
such as hardware interrupts or timers. This adds an extra layer of complexity since, in addition to
requiring synchronization between multiple threads of execution, the driver now has to contend with
the synchronization of code that runs on multiple threads and code that runs in response to
asynchronous events. To simplify the work required by the driver developer, the I/O Kit provides a class
known as IOWorkLoop that creates a single thread on which all asynchronous events are handled. In I/O
Kit nomenclature, this thread is known as a “work loop” and a driver registers any of its asynchronous
event sources, such as interrupt handlers and timers, with an IOWorkLoop object.

For much of the time, the work loop thread will be idle, consuming no CPU time and simply waiting
for an event to occur. Once an event occurs, the corresponding event source will signal the work loop.
The work loop thread will wake up, handle the event, and then return to the sleep state. Since all events
are handled on the same work loop thread, this design provides an elegant solution for synchronizing
multiple sources within a driver. Another advantage of this design is that, since all event sources are
handled on the same thread, the handler functions do not need to provide any additional locking
because there is no possibility of multiple handlers running at the same time.

The work loop is an intrinsic part of every I/O Kit driver. The IOService class, which is the base class
from which every driver object is ultimately derived, provides a method named getWorkLoop() through
which a provider class can share its work loop with its child drivers. A driver can choose to use the
IOWorkLoop object created by its provider class (by calling IOService::getWorkLoop()) or can opt to create
its own IOWorkLoop object. If a driver expects to receive only the occasional asynchronous event and the
latency of the event handler doesn’t need to be kept to a minimum, then sharing the work loop of its
provider class is an attractive approach. This will also simplify the code that forms the driver’s
constructor and destructor and eliminate the overhead of creating an additional kernel thread for the
driver’s own work loop. Drivers that handle hardware interrupts should create their own dedicated
IOWorkLoop object since this guarantees minimum latency because the work loop is not shared with
event sources from its provider driver.

A driver will typically initialize its work loop inside the driver’s start() method. If a driver decides
that it will share the work loop of its provider, then it can obtain a work loop in the following way:

m_workLoop = getWorkLoop(); // Implemented by the IOService superclass
if (m_workLoop == NULL)
 abort with error;
m_workLoop->retain();

If a driver decides that it will create a dedicated work loop of its own, then it can instantiate a new
IOWorkLoop object as follows:

CHAPTER 7 SYNCHRONIZATION AND THREADING

134

m_workLoop = IOWorkLoop::workLoop();
if (m_workLoop == NULL)
 abort with error;

If a driver instantiates its own IOWorkLoop object, then it should consider overriding the IOService
method getWorkLoop() to expose its work loop to any child drivers of its own.

Having obtained an IOWorkLoop object, the driver next needs to register the event sources that it
wishes to handle on the work loop thread. Event sources are objects that inherit from the IOEventSource
base class. The I/O Kit provides specializations, including the IOInterruptEventSource class and the
IOTimerEventSource class, for creating an event source for a PCI card’s interrupt handler and a timer
event, respectively. When an event source is instantiated, a callback function is provided, which will be
invoked when the event requires servicing. The callback function is guaranteed to either be called from
the work loop thread or to be synchronized with any code running on the work loop thread. An example
of code to create an event source for a timer and add it to a work loop is given here:

m_timerEventSource = IOTimerEventSource::timerEventSource(this, TimerFiredFunc);
if (m_timerEventSource == NULL)
 abort with error;

result = m_workLoop->addEventSource(m_timerEventSource);
if (result != kIOReturnSuccess)
 abort with error;

 Note In the case of an interrupt handler, the callback that is run on the work loop thread corresponds to the
secondary interrupt handler; the primary interrupt is still taken at the hardware interrupt level and will run in an
arbitrary thread context.

A driver will typically specify a static method in its main driver class as the callback function of an
IOEventSource. Although the arguments provided to the callback function differ depending on the type
of event source that is being invoked, the first argument is always a pointer to an OSObject class that can
be used to pass the driver’s instance to the callback function. Depending on the complexity of the
callback function, the implementation may either handle the event directly in the static class function or
call through to an instance method of the driver.

IOCommandGate
One problem that remains is that a driver may need to synchronize code running on its own threads
against event actions that run on the work loop thread. For example, consider the driver for a disk device
that receives requests for read and write transactions from user space applications. Since the hardware
can only service one transaction at a time, any additional transactions will be added to a queue and,
whenever a transaction has completed (which is signaled through an interrupt), the driver will remove
the next transaction from the head of the queue and service it. Since this hypothetical driver
manipulates the transaction queue both from within its interrupt handler (which will run on the work
loop) and from its user client, it requires some way of synchronizing code that runs on the work loop
thread with code that runs in an arbitrary thread context.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 7 SYNCHRONIZATION AND THREADING

135

To solve this problem, the I/O Kit provides a special event source known as a command gate,
implemented by a class named IOCommandGate. A command gate is installed on a work loop like any other
event source but, instead of generating events itself, it is used to execute an arbitrary callback function
on the work loop thread. The IOCommandGate class contains a method named runAction() that takes a
function pointer and runs that function such that it is synchronized with any other work loop event. A
function that is executed through an IOCommandGate object is said to be a “gated” function. The gated
function isn’t actually run on the work loop thread. It is simply serialized against all other work loop
sources, including other gated functions that are called through the same IOCommandGate. The command
gate actually runs the function on whichever thread made the call to runAction(). This removes the
overhead of a context switch to the work loop thread. An example of calling a function through an
IOCommandGate is shown in the following code:

// Method called outside the gate
IOReturn MyDriver::startTransaction(Transaction* transaction)
{
 // Call the function StartTransactionAction through the command gate
 return m_commandGate->runAction((IOCommandGate::Action)StartTransactionAction);
}

// IOCommandGate::Action
IOReturn MyDriver::StartTransactionAction(MyDriver* self, Transaction* transaction)
{
 // This static method is synchronized against all work loop methods
 ...
 return kIOReturnSuccess;
}

In the previous example, we provided a single parameter to the action function, namely the
argument “transaction”. The IOCommandGate allows up to four parameters to be provided to an action
function.

The IOCommandGate achieves its synchronization through a recursive lock. This allows a function that
has been called through the IOCommandGate to call other functions through the same IOCommandGate
without causing a deadlock. It also allows a gated function to sleep and wake on condition variables,
using an approach that is similar to that discussed earlier in this chapter. The IOCommandGate class
contains two methods for sleeping on a condition variable, one which will timeout after a specified
period and one which will sleep until the condition variable is signaled. These two methods are
described as follows:

IOReturn commandSleep(void* event, UInt32 interruptType);
IOReturn commandSleep(void* event, AbsoluteTime deadline, UInt32 interruptType);

The parameters event, interruptType, and deadline have the same meaning as the parameters of
the same name that are passed to the functions IOLockSleep() and IOLockSleepDeadline() described in
Table 7-4. As we saw in the section on “Condition Variables,” a thread can only sleep on a condition
variable if it is holding a synchronization lock. The same rule applies for the commandSleep() method,
which must be called from a function that has been called through an IOCommandGate object.

To signal a command gate’s condition variable when an event has occurred, the IOCommandGate class
provides the following method that takes the same form as the IOLockWakeup() function described in
Table 7-4:

void commandWakeup(void* event, bool oneThread);

CHAPTER 7 SYNCHRONIZATION AND THREADING

136

The IOCommandGate object provides all of the synchronization capabilities of an IORecursiveLock,
including mutex locking and condition variable support. This allows a driver to use an IOCommandGate
object instead of an I/O Kit lock for all of its synchronization. This can be useful if a driver needs a work
loop to provide synchronization against asynchronous events; the driver can create an IOCommandGate
and use the work loop throughout its implementation instead of creating additional locks.

Timers
The final event source that we will discuss is the IOTimerEventSource, which provides a basic, non-
periodic timer. A common use of an IOTimerEventSource is for creating a watchdog timer to cancel
operations that have not completed within a certain period of time.

When a timer is created, the caller provides a callback function that will be run when the timer
expires. Like any other event source, a timer must be added to an IOWorkLoop object and its callback
function will be run from a context that is synchronized to all other event sources installed on the work
loop.

A timer can be initialized and added to an existing work loop as shown in the following code:

m_timer = IOTimerEventSource::timerEventSource(this, TimerFired);
if (m_timer == NULL)
 abort with error;

result = m_workLoop->addEventSource(m_timer);
if (result != kIOReturnSuccess)
 abort with error;

The method IOTimerEventSource::timerEventSource() instantiates a new IOTimerEventSource
object. Its first parameter is a pointer to an OSObject, which is passed to the callback function, allowing it
to access the driver object.

Next, the timer needs to be activated. This is done by specifying a timeout period from the current
time until the timer fires. The IOTimerEventSource class provides methods to specify the timeout in
milliseconds, microseconds, nanoseconds, or in arbitrary time units:

IOReturn setTimeoutMS(UInt32 ms);
IOReturn setTimeoutUS(UInt32 us);
IOReturn setTimeout(UInt32 interval, UInt32 scale_factor = kNanosecondScale);

When the timer fires, the specified callback function will be run, which has the following signature:

void MyDriver::TimerFired(OSObject* owner, IOTimerEventSource* sender)
{
}

Although the timer provided by IOTimerEventSource is not periodic, the timer’s next timeout value
can be set from within its callback function. You will notice that the IOTimerEventSource instance is
provided as a parameter to the callback function, which allows the callback to easily re-install the timer.
If the drift between subsequent firings of the timer needs to be avoided for a specific application, the
IOTimerEventSource provides a wakeAtTime() method that allows the timeout to be specified as an
absolute time. A periodic timer that does not drift over time can be created by specifying an absolute
time each time the timer is reinstalled.

If a timer needs to be cancelled, for example, because the operation that a watchdog timer was
guarding has successfully completed, the IOTimerEventSource class includes a method named
cancelTimeout(). This method is also a synchronization point, and will guarantee that the timer’s
callback function will not be called by the time this method has returned.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 7 SYNCHRONIZATION AND THREADING

137

Releasing Work Loops
When a driver is unloaded, it will need to release any work loop that it has created. This is a two-step
process and involves removing event sources from the work loop and then releasing the IOWorkLoop
object. The first part is usually performed by a driver in its stop() method, but the work loop itself is
typically not released until the driver’s free() method is called. A possible implementation follows:

void MyDriver::stop(IOService* provider)
{
 // Remove and release the command gate event source.
 if (m_commandGate != NULL)
 {
 m_workLoop->removeEventSource(m_commandGate);
 m_commandGate->release();
 m_commandGate = NULL;
 }

 // Remove and release the timer event source.
 if (m_timer != NULL)
 {
 m_timer->cancelTimeout();
 m_workLoop->removeEventSource(m_timer);
 m_timer->release();
 m_timer = NULL;
 }

 super::stop(provider);
}

void MyDriver::free()
{
 // Release the work loop
 if (m_workLoop != NULL)
 {
 m_workLoop->release();
 m_workLoop = NULL;
 }

 super::free();
}

Kernel Threads
Unlike a user space application, a driver doesn’t have a main thread that is always running while the
driver is active. Instead, a driver typically executes on existing threads in response to certain events. For
example, when a user space process makes a control request through the driver’s user client, the driver
executes within the context of the calling thread owned by the user process. Similarly, when a driver’s
hardware generates an interrupt, the driver’s secondary interrupt handler is executed from the work
loop thread. Because a driver executes in response to such events, if a driver isn’t handling an event,

CHAPTER 7 SYNCHRONIZATION AND THREADING

138

such as a control request or an interrupt handler, it will typically have no code executing on any thread
in the system.

The lack of an equivalent of a main thread can be a problem for a driver, particularly if it needs to
have code executing continually so that it can periodically poll its hardware device or if it wishes to
perform a time-consuming operation such as downloading firmware to its hardware. In these cases, a
driver can create its own kernel thread on which to continue executing code without tying up the thread
of a user process or the work loop thread.

A good example of the use of a kernel thread is shown in Listing 5-16 from Chapter 5. In this
example, a user space application made a control request to the driver to perform a delay operation.
Rather than performing the delay within the context of the process thread, which would have blocked
the calling process, the driver instead chose to create a background thread on which to perform the sleep
operation. Once the delay had completed, the driver then signaled the user process with an
asynchronous notification. This simple design pattern demonstrates how a driver can use a kernel
thread to turn a synchronous operation that would block the thread from the calling process into an
operation that appears to be asynchronous to the calling process.

The APIs for creating a kernel thread come from the lower-level Mach layer and are declared in the
header file <kern/thread.h>. You should never need to include this header file directly though, since it is
included by the header file <IOKit/IOLib.h>. If you look at the contents of IOLib.h, you will see that it
contains a small number of threading functions, including support for creating a thread. Starting in Mac
OS X 10.6, however, these functions have been deprecated by Apple in favor of the Mach functions.

The function kernel_thread_start() can be used to create kernel thread. Its prototype is given as
follows:

kern_return_t kernel_thread_start(thread_continue_t continuation, void* parameter,
 thread_t* new_thread);

The argument “continuation” is actually a function pointer to the start routine of the newly created
thread. If a thread was successfully created, the return value from kernel_thread_start() will be
kIOReturnSuccess and the argument “new_thread” will contain a reference to the newly created thread,
much like the reference that is returned by the user space function pthread_create(). The thread_t
object that is returned isn’t terribly useful to the caller, since there are very few public kernel APIs for
thread manipulation. However, the thread_t value can be compared against the value returned by
current_thread() to determine whether the active function is running on a particular thread.

In most cases, the caller immediately releases the thread_t object after successfully creating a
thread; this does not impact the execution of the background thread itself. To release the thread_t
object, the function thread_deallocate() should be used, which has the following prototype:

void thread_deallocate(thread_t thread);

 Note It is important that the thread_t object that is returned by kernel_thread_start() is released to
prevent a memory leak.

The start routine for the thread has the following signature:

void ThreadFunction (void* parameter, wait_result_t waitResult)

The first argument to the function, parameter, corresponds to the value that was passed to
kernel_thread_start() and allows the creator of the thread to pass context to the thread’s function. The

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 7 SYNCHRONIZATION AND THREADING

139

second argument to the function, waitResult, is not useful for threads created through
kernel_thread_start(); its presence is simply a consequence of the thread function being defined as the
type thread_continue_t. Internally, the kernel makes use of the type thread_continue_t elsewhere and
the value of waitResult is used in these cases.

Finally, once a thread has completed its operation and wishes to terminate, the thread function
should call the function thread_terminate(), as demonstrated:

thread_terminate(current_thread());

Note that although it might seem that it is possible to terminate a background thread from another
thread, this will fail with an error returned to the caller. The thread_terminate() function only allows the
current thread to be terminated. To terminate a background thread, for example, when a driver is
unloaded, the driver should instead signal the background thread that it needs to exit and allow the
thread to terminate itself. This signaling can be done either by setting a Boolean flag that the
background thread checks periodically or by setting a condition variable that the background thread
sleeps on.

Summary
• A driver runs in a multithreaded environment.

• The methods of a driver class can potentially be called from an arbitrary thread.
This means that, even if a driver creates no threads of its own, it cannot escape the
need for synchronized access to its shared instance variables and hardware.

• The I/O Kit provides synchronization functions that a driver can use to prevent
multiple threads from modifying shared data at the same time.

• A spin lock is a suitable synchronization mechanism for code that will hold the
lock only for a short period of time or for code that will execute inside a primary
interrupt handler.

• A mutex is a better choice if the lock will be held for longer periods, but it cannot
be used inside a primary interrupt handler.

• To synchronize events that can occur at an arbitrary time, such as a hardware
interrupt or a software timer, the I/O Kit provides a dedicated thread on which the
handler for these events is run. This is known as the work loop thread and the I/O
Kit ensures that all event sources that are installed on the work loop are executed
in a serial manner.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

C H A P T E R 8

141

Universal Serial Bus

The Universal Serial Bus (USB) is a ubiquitous technology found in a wide variety of products, notably
computer peripherals, including mice, keyboards, hard drives, and printers, as well as almost any other
type of device or equipment that can be connected to a computer. The USB is a specification that
defines the communication between a device, such as a printer or mobile phone, and a host controlled
by a computer device, such as your Mac or iPad. The USB specification was developed in 1996 by a
consortium of companies, including Compaq, DEC, IBM, Intel, Microsoft, NEC, and Nortel. The
motivation was to replace a series of connectors with a universal connector, making it easier to connect
external devices to personal computers. The USB specification is currently at version 3.0. Support for 3.0
is still emerging, and support for version 2.0 is by far the most ubiquitous at this time. Apple has yet to
release hardware capable of supporting the latest USB 3.0 specification, but Apple computers have
shipped with USB support since before OS X. The iOS series of devices are themselves USB devices, but
they can also act as USB hosts. An example of this is the iPad, which can act as a host for USB devices,
such as digital cameras.

USB is based on a master-slave system, where a controller (host) communicates with slave devices.
A host commonly has a one-to-one relationship with a bus.

As a kernel programmer, if you are tasked with writing a driver for a hardware device, there is a
major chance that it would be for a USB device. The good news (for us lazy programmers, anyway) is that
you can get away without having a driver if your device conforms to one of the classes defined by the
USB Implementers Forum (USB-IF). For example, keyboards and mice comply with the human interface
device (HID) specification, which makes it unnecessary for a vendor to supply a driver, as the OS will
already have a generic driver that can be used to communicate with these devices. However, the vendor
could still elect to develop a driver—for example, if the device has advanced capabilities, such as
additional customizable buttons on a mouse.

This chapter will provide a broad overview of the USB specification and architecture. The
specification is much longer than this book, so obviously a detailed discussion is out of the question. We
will instead focus on the parts that matter when implementing a driver for a USB device. We will also
discuss the architecture of the USB subsystem provided by I/O Kit, as well as provide code for a fictional
USB device driver. It is worth mentioning that USB drivers can be written both in the kernel and in user
space. A kernel driver is generally needed when a driver/device can be accessed concurrently by many
applications, or if the primary client of the driver is the kernel itself. Examples of devices typically
implemented in the kernel are storage, networking, audio, and display drivers, whereas drivers for
printers, mice, and keyboards may be handled fully or partially by a user space driver. In this chapter, we
will focus on the USB in general, and on the implementation of kernel space drivers. A discussion about
user space drivers is provided in Chapter 15.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 8 UNIVERSAL SERIAL BUS

142

USB Architecture
In a USB system, the host controller is the master and the USB devices are the subordinates. The USB
topology is organized in a tree-like structure, which forms a bus, with the host controller being the root
and the controller of the subordinated device. The host controller is responsible for coordinating
activities on the bus, and a device is not able to perform I/O, or any other activity on the bus, without
first being asked to do so by the host.

The tree structure branches out with the help of hubs, which allow connected devices to become
part of the bus, and thus extend it, as a new branch. The subordinate devices of a hub can have other
hubs connected to them— up to four levels deep is possible. The root hub is usually embedded into, and
part of, the host controller itself. Figure 8-1 shows the USB topology for a MacBook computer.

Figure 8-1. System Information showing the USB topology of a MacBook, with external devices connected

The system in Figure 8-1 has four built-in USB buses, but only two buses are actually connected to
external USB ports. While most people associate USB devices with external devices, USB is often used to
communicate with fixed internal devices in the computer system. The first two USB buses of the
MacBook in Figure 8-1 are internal to the notebook, and are used to connect to the internal keyboard,
the trackpad, and the IR Receiver. The second internal bus connects to the Bluetooth USB host
controller. Both of these buses are USB 1.1 buses, which is fine because the devices connected to them
all have low bandwidth requirements.

This MacBook has two external USB devices connected, an external hard drive and an iPhone, each
connected to a separate physical USB port on the system. Although you would think that an external
USB port has its own dedicated bus, this may not always be the case. As you can see in Figure 8-1, one of
the buses has an additional USB device attached to it, namely the built-in iSight camera. The camera
requires more bandwidth than the 1.1 USB buses/controllers can provide, so it is instead attached to one
of the two USB 2.0 controllers, likely to avoid having a separate controller just for the iSight, saving
space, parts, cost, and battery power. The downside is that an external device will share bandwidth with
the iSight camera (when it is in use).

CHAPTER 8 UNIVERSAL SERIAL BUS

143

The exact USB topology will vary from system to system, and this is just one example of how it can
be organized.

Each bus in a USB system can support up to 127 devices, including hub devices, which are also USB
devices. Bandwidth on a USB bus is shared between the connected devices, so having a large number of
active devices will incur a significant penalty, which is why it is now common to have physical USB ports
on separate host controllers—each providing a bus, rather than having ports connected to a single
controller.

A USB is designed to be hot-pluggable, which means that the system can handle the insertion or
removal of any device at any time during operation, although, depending on the type of device, this may
not necessarily be safe to do—the prime example is a hard drive, which, if unplugged at the wrong time,
can lead to corruption of the drive’s file system. From a developer’s perspective, this means that your
driver code needs to be designed to anticipate the arrival or removal of a device.

The USB specification also supports power for devices through the bus, a major advantage over
older bus technologies, as this, for example, will allow you to charge an iPhone simply by plugging it in
to your laptop, or to self-power a device such as a hard drive.

The key characteristics of the USB can be summarized as follows:

• Single connector type for all devices, designed to replace a variety of older
connectors, such as the PS/2.

• Ability to connect many devices to the same connector.

• USB buses can be expanded with the help of hubs, supporting up to 127 devices
per bus.

• Devices are hot-pluggable.

• Devices can be powered by the bus, which enables them to be charted or fully
powered through the bus, depending on power requirements.

• Bandwidth is shared between devices on a bus.

• A USB device is a slave device and cannot initiate any activity on the bus without
the permission of the host.

One key characteristic that sets the USB apart from traditional hardware architectures, such as the
PCI, is that it does not directly generate system interrupts. The ability for a device to asynchronously
notify the system of some event is essential for the operation of many types of common devices—for
example, a network device that will notify the system each time a new network packet arrives, or a
mouse or keyboard that relies on telling the system its current position or which key was pressed.

A USB device can still provide interrupt-like capabilities, but it is not able to directly interrupt a CPU
in the same way that a PCI device can. To receive an interrupt from a USB device, an interrupt transfer
has to be issued to the device. Once the transfer is issued, and an event occurs, such as the arrival of a
network packet, the USB device is not simply free to signal the host controller—it has to be polled by the
host controller. A USB device can only interact on the bus if told to do so by the host. The host controller
provides a maximum latency guarantee for interrupt transfers. The lowest achievable latency is 125
microseconds. A device can specify the desired interval for interrupt polling in its endpoint descriptors.

It should be noted that although a USB device cannot directly interrupt a CPU itself, a USB host
controller certainly can, and may do so in response to a completed interrupt transfer from a device. Most
modern computer systems talk to USB controllers via PCI.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 8 UNIVERSAL SERIAL BUS

144

 Tip The USB specifications are governed by the USB Implementers Forum (USB-IF), a not-for-profit
organization. Their website can be found at http://www.usb.org.

USB Transfer Speeds
The first iteration of the USB standard supported two speeds: a low speed, at 1.5 Mbit/s, and a full speed,
at 12 Mbit/s. Low speed devices are less susceptible to electromagnetic interference, and therefore these
can be made cheaper, as they can be created using lower quality parts. This reduces the cost of simpler
USB devices, which do not require the additional bandwidth needed for a full speed device. The USB 2.0
standard included the full speed mode, capable of operating at speeds up to 480 Mbits/s, while also
being backward compatible with USB 1.0. This made the USB competitive with the Firewire
specification, which at the time operated at 400 Mbits/s (see Table 8-1 for USB transfer speeds).

Table 8-1. USB Transfer Speeds

Name Rate Introduced In

Low-speed 1.5 Mbits/s USB 1.0

Full-speed 12 Mbits/s USB 1.0

High-speed 480 Mbits/s USB 2.0

SuperSpeed 5.0 Gbits/s USB 3.0

The USB 3.0 specification supports speeds up to 5 Gbits/s, and it was the fastest generally available

external bus until Thunderbolt was released in 2011. Apple has so far not opted to include USB 3.0
compatible devices in its computers, although there are third party offerings available for Macs that
support ExpressCard or PCI-Express.

Host Controllers
Host controllers are governed by separate specifications that determine how the computer system will
communicate with the host controller. Modern systems typically embed the USB host controller on the
motherboard’s I/O controller (south bridge). Most host controllers have a PCI interface that is used by
the system for communication with the controller. When a driver talks to a USB device, it does not do so
directly—it talks to the host controller over PCI, although to the driver it looks as if it is communicating
with the device directly, due to the object-oriented abstraction layer provided by the I/O Kit. The USB
does not generate interrupts directly; however, the host controller uses both DMA and interrupts.

Typically, a 32-bit x86 system has only 16 interrupt lines, and often as few as 2–3 interrupt lines,
available for use by external peripherals. The USB solves this problem, as the computer system needs
only a single interrupt line to the USB host controller to communicate with all of the devices connected
to the controller. The USB specifications standardize the way in which a host communicates with a USB
device; however, there are several standards for how a computer system communicates with a host
controller:

http://www.usb.org

CHAPTER 8 UNIVERSAL SERIAL BUS

145

• Universal Host Controller Interface (UHCI): UHCI was developed by Intel. The
UHCI specification supports USB 1.x devices at low and full speed.

• Open Host Controller Interface (OHCI): OHCI was developed by Microsoft and
Compaq, among others, also for USB 1.x devices. The OCHI controller is smarter
than UHCI, in that it has more logic embedded in the controller itself, as opposed
to UHCI, which is simpler on a hardware level, but requires a more complicated
host controller driver in the OS.

• Enhanced Host Controller Interface (EHCI): EHCI was created for USB 2.0 and
supports 480 Mbits/s high-speed devices. The EHCI does not handle USB 1.x
devices, so it needs to incorporate a UCHI- or OHCI-based controller to handle
devices based on the 1.x series of specifications.

• Extensible Host Controller Interface (xHCI): xHCI was designed by Intel and
supports the USB 3.0 specification. It was designed as a unified host controller,
making EHCI, OHCI, and UHCI redundant.

It is not uncommon for a computer system to have several host controllers, each supporting a
different host controller interface. For example, the MacBook in Figure 8-1 has two OHCI controllers and
two EHCI controllers for USB 2.0 support. Mac OS X presently has controller drivers to support OCHI,
UHCI, and EHCI, but not xHCI.

USB ON-THE-GO

An additional standard exists as part of the USB 2.0 specification, called USB On-The-Go (OTG). While
embedded devices, such as mobile phones, typically act as USB (slave) devices, USB OTG allows for a role
switch, with the mobile device itself acting as a USB host. The USB OTG only works between two devices
and does not support hubs. The iPad is a good example of this, as the iPad can be connected to a
computer system as a USB device. However, using a special adapter, the iPad can also act as a USB host,
to which you can connect digital cameras or memory cards.

The USB Protocol
Unlike serial port devices, where there are no protocols (it’s up to the application to implement one) and
just streams of bits and bytes, the USB has a packet-based protocol. This is necessary as the bus is shared
and there can be many devices connected to it, which has to be individually addressed. Unless you are a
hardware engineer programming the firmware for a USB device, you don’t really need to understand, or
even know about, the specifics of how this communication occurs, but it may be helpful, in some cases,
to have a basic understanding of how the communication happens at the protocol level, in order to
debug problems.

The USB protocol is implemented between the host controller and the device, and it determines
how data is transferred on the bus. A driver does not really have insight or influence over this process, as
the details are handled by the electronics of the host and the device, and not the driver—unlike with
networking, where many aspects of the communication protocol are under software control. In order to
see or intercept what is actually crossing the wire, a USB packet analyzer is needed. A USB analyzer is a
specialized (usually very expensive) device that can be connected between the device and the host to
capture the traffic between them.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 8 UNIVERSAL SERIAL BUS

146

USB packets consist of 8-bit words in little-endian format (LSB). The USB protocol has four main
packet types:

• Token packet: This acts a header, and tells the recipient what type of packet/data
follows. The three types of token packets are IN, OUT, and Setup. The first two
specify the direction of the packet and the last is used to initiate a control transfer.
The direction is seen from the host side, so IN means a transfer from the device to
the host, and OUT means a transfer from the host to the device.

• Data packet: This can carry arbitrary data, with 0–1024 bytes per data packet.

• Handshake packet: This is sent to acknowledge the successful (ACK) or
unsuccessful (NAK) delivery of a packet, as well as to report stalls (STALL).

• Start of Frame packet: This is sent at regular intervals to synchronize data flow for
isochronous transfer modes.

The layout of each packet type can be seen in Figure 8-2.

Token Packet

Data Packet

Handshake Packet

SOF Packet

Sync

Sync

Sync

Sync PID

PID

PID

PID

EOP

Frame number 11 -bit

Data 0 - 1023 bytes

EndpointAddress

CRC

CRC

CRC EOP

EOP

EOP

Figure 8-2. Layout of USB packet types

All USB packets start with the sync and PID (packet identifier) fields. The sync field precedes other
data and can be used by the receiver for clock synchronization. The field is 8-bits for low and full speed
devices, and 32-bits for high-speed devices. The PID (packet identifier) field allows the decoder to
determine the packet type that follows it. Possible values for the PID field are shown in Table 8-2. The
PID is 4-bits wide, though it is 8-bits in total. The last four bits are a check field containing a complement
of the first four bits, which helps determine if the packet is valid and has not been corrupted.

CHAPTER 8 UNIVERSAL SERIAL BUS

147

Table 8-2. Possible Packet Identifier (PID) Values

Token packets are used for addressing a specific device. The address field specifies which device the

packet is to or from, and is a number from 1–127, which addresses the device on the bus. A USB device
may have several endpoints, which are independent communication channels, and the endpoint field
specifies to which endpoint on a device the packet will be delivered. Endpoints are discussed later in this
chapter.

All packet types have a CRC (Cyclic Redundancy Check—used to verify the integrity of the data)
field. All packet types have a CRC field that is 5-bits wide, except data packets, which instead have a
wider 16-bit CRC field.

Type PID Description

Token 0001 OUT Token

Token 100 1 IN Token

Token 0101 SOF Token

Token 1101 Setup Token

Data 001 1 DATA0

Data 101 1 DATA1

Data 011 1 DATA2

Data 111 1 MDATA

Handshake 0 010 ACK Handshake

Handshake 1 010 NAK Handshake

Handshake 111 0 STALL Handshake

Handshake 011 0 NYET—Not yet

Other 110 0 Preamble

Other 110 0 Error

Other 100 0 Split

Other 010 0 Ping

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 8 UNIVERSAL SERIAL BUS

148

The end of packet (EOP) field is used as a delimiter.
A USB transaction can consist of up to three data packets. Data packets are indicated by the PID

field and can be one of the following: DATA0, DATA1, DATA2, and MDATA, though the latter two are
used only for isochronous transfer modes. The PID field determines which of the data packets are
transmitted, as shown in Table 8-2.

A data transfer from the host to a device might look like this:

1. Token Packet containing the address of the device and the endpoint. PID
indicates an OUT transfer.

2. Data 0 Packet containing 1024 bytes of payload data.

3. Data 1 Packet containing 322 bytes of payload data.

4. Handshake Packet sent from the device to the host indicating the status of the
transfer, such as ACK, NAK, or STALL.

Endpoints
Communication between a host controller and a USB device is based on the concept of endpoints. An
endpoint is uni-directional, and the direction is either IN or OUT—that is, communication from the
device to the host, or communication from the host to the device. The connection from a host controller
to an endpoint is referred to as a pipe. There are two types of pipes: a stream pipe, which carries data,
and a message pipe, which carries control requests. A USB device can support up to 32 endpoints, with a
maximum of 16 IN endpoints and 16 OUT endpoints. Endpoint address 0 is special, reserved for device
configuration. There are four different types of endpoints available:

• Bulk endpoints: These are used for transferring large amounts of data. Bulk
transfers offer no guarantees about timely delivery or bandwidth, but do offer
guaranteed delivery and error detection. Bulk transfers are not available for low
speed modes. Hard drives, scanners, printers, and network cards typically use
bulk transfers.

• Control endpoints: These are used for device configuration and status retrieval.
Requests to a control endpoint are guaranteed delivery by using reserved
bandwidth.

• Interrupt endpoints: These are intended for exchanging small amounts of time-
sensitive data with guaranteed delivery.

• Isochronous endpoints: These provide guaranteed bandwidth, but not guaranteed
delivery. Data is not re-sent if it is lost, which is ideal for video and audio
applications.

USB Descriptors
A USB descriptor is used to describe a device’s capabilities, type, requirements, and more. Descriptors
are organized in a hierarchy consisting of the following main descriptor types:

CHAPTER 8 UNIVERSAL SERIAL BUS

149

• Device Descriptor: This contains the product ID (idProduct) and vendor ID
(idVendor) of the USB device. There is only one device descriptor per device. It
also contains information on how many descriptors follow it. Both the vendor ID
and product ID are 16-bit integers. The vendor ID is assigned by the USB-IF. A
vendor can choose any 16-bit value for the product ID. The vendor/product ID
combination must be unique to avoid problems, as they are used to determine the
correct drivers for a device. The device descriptor also contains two fields to
indicate the type of device: bDeviceClass and bDeviceSubClass.

• Configuration Descriptor: This specifies an alternate configuration in which a
device can operate. For example, a device might have two configurations: one
configuration when it is self-powered and one configuration when it is bus-
powered. The latter can operate in a limited mode that only allows a subset of
overall functionality, or perhaps only provide the ability to program the device’s
firmware. Only one configuration can be active at any given time. The
configuration descriptor may have several interfaces underneath it, and it is
uncommon for a device to have more than one configuration descriptor.

• Interface Descriptor: This is a collection or group of endpoints that together
perform a function. It can be useful to think of it as a logical subdevice. An
interface may have zero or more endpoints. For example, in Figure 8-3, we see a
multifunction USB device, which contains two interfaces: interface #0 is a printer,
while interface #1 is a scanner device. Multiple interfaces may be active and
operate simultaneously. Just like the device descriptor, the interface descriptor
has fields to indicate the class of interface, which is given by bInterfaceClass and
bInterfaceSubClass.

• Endpoint Descriptor: This describes the type (bulk, interrupt, isochronous, or
control) and the direction (IN, OUT) of an endpoint.

USB Device - Muiti-function Printer

Interface #0 (Printer)

Interface #1 (Scanner)

EP 0 OUT

EP 1 IN

EP 1 OUT

EP 0 IN

EP 0 OUT

EP 1 IN

EP 1 OUT

EP 0 IN

EP 2 IN

EP 2 OUT

Firmware /
Hardware

ADDR 1

Host
Controller

Printer
Driver

Scanner
Driver

Figure 8-3. USB compound device with two interfaces

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 8 UNIVERSAL SERIAL BUS

150

USB Device Classes
The USB descriptors contain class codes, which identify the class of a device to the system and can be
used to identify the appropriate driver to load for the device. The class code may be specified in the
device descriptor, the interface descriptor, or both. A class code of 00h specified in the device descriptor
means that the actual class code should be read from the interface descriptors instead. There is also a
subclass field that further narrows down the type of device. Table 8-3 shows a small subset of available
class codes.

Table 8-3. A Subset of Standard USB Class Codes

Base Class Descriptors Used Type of device

0x00 Device Class information is provided in
interface descriptors.

0x01 Int erface Audio

0x03 Interface Human Interface Device (HID),
mouse, keyboard, trackpad etc.

0x08 Interface Mass Storage, hard drives, thumb
drives etc.

0xFF Both Vendor Specific

Many operating systems, including Mac OS X and iOS, provide default drivers for devices that

conform to the standard classes, and therefore the OS can handle any mass storage or audio USB device
without having to install a third party driver. It is still possible for a vendor to supply an optional driver
for devices that provide additional capabilities not found in the generic driver supplied by the OS. For
this, the I/O Kit matching system can be used to ensure that the more specific driver is matched, rather
than the default driver.

 Tip The full list of class codes, as well as more detailed descriptions, can be found at
http://www.usb.org/developers/defined_class.

I/O Kit USB Support
USB support in the I/O Kit is provided by the IOUSBFamily, which is a dynamically loadable KEXT,
identified by the bundle identifier com.apple.iokit.IOUSBFamily. The USB family provides the central
core of USB handling in the kernel and contains drivers for the host controllers, as well as abstraction
classes for representing USB devices, interfaces, and pipes. The class hierarchy of the USB Family is
shown in Figure 8-4.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://www.usb.org/developers/defined_class

CHAPTER 8 UNIVERSAL SERIAL BUS

151

IOUSBPipe IOUSBNub

IOUSBDevice IOUSBInterface

IOUSBController

IOUSBBus

IOServiceOSObject

IOUSBHub IOUSBLog

IOUSBFamily

Figure 8-4. IOUSBFamily class hierarchy

Most of these classes are irrelevant if you only want to implement a driver for a USB device. The
main classes used for USB driver development are shown in gray, in Figure 8-4, and include IOUSBPipe,
IOUSBDevice, and IOUSBInterface, which we will discuss in detail later.

If you need to implement support for a new host controller, this can be done by inheriting from
IOUSBController; however, kernel already provides drivers for UHCI-, OHCI-, and EHCI-compliant host
controllers. Although not shown in Figure 8-4, these are subclasses of IOUSBController, and they are
called AppleUSBUHCI, AppleUSBOHCI, and AppleUSBEHCI, respectively.

 Tip The USB Family is not part of the XNU source distribution, but is nevertheless available in source code form
as a download from http://opensource.apple.com. The source package includes source for the entire USB
Family, including the implementation of the UHCI, OCHI, and EHCI controllers. It also includes sample code for USB
drivers, and how to enumerate and access USB devices from user space.

USB Device and Driver Handling
When a USB device is inserted, the USB Family will create an instance of the IOUSBDevice class, a
subclass of IOService, and insert it into the I/O Registry. Exactly one instance of IOUSBDevice will be
created for each device inserted onto the bus. The provider for an IOUSBDevice is the IOUSBController to
which the device is attached. The IOUSBDevice class provides an abstraction of the USB device’s device
and configuration descriptors. Interface descriptors can be accessed from the IOUSBInterface class. The
IOUSBDevice acts as a provider for IOUSBInterface classes, as seen in Figure 8-5.

www.allitebooks.com

http://opensource.apple.com
http://www.allitebooks.org

CHAPTER 8 UNIVERSAL SERIAL BUS

152

IOUSBController

IOUSBDevice IOUSBDevice

Cl
ie

nt

Provider

IOUSBInterface IOUSBInterface

Scanner
Driver

Printer DriverAudio Driver

IOUSBInterface

IOUSBDevice

IOUSBCompositeDriver IOUSBCompositeDriver
Vendor

Specific Driver

Figure 8-5. USB device and driver provider relationships

Figure 8-5 shows three USB devices and how they relate to their higher-level providers:

• The driver on the left: This is a driver for an audio device. You may have noticed
that there is an additional driver between IOUSBDevice and IOUSBInterface called
IOUSBCompositeDriver. This composite driver is matched against, and loaded for,
any USB device that has its device class and subclass set to zero in its device
descriptor and that has no other vendor specific driver matched against it. The
name of the driver may suggest that it is only for composite drivers with multiple
functions, but the driver is loaded even for devices with a single interface. The
only function the composite driver performs is to select the device’s active
configuration (if it has multiple configuration descriptors), and then ensure that
other drivers can be matched against the selected configuration’s interfaces.

• The driver in the middle: This is a vendor specific driver attached directly to the
IOUSBDevice nub. The IOUSBCompositeDriver was not loaded as the device class,
and the subclass fields in the device descriptor were set to 0xFF/0xFF, indicating a
vendor specific device, and a driver was properly matched against the device.

• The driver on the right: This has the same organization as on the left, with an
IOUSBCompositeDriver attached to the IOUSBDevice nub. The composite driver will
enumerate all device interfaces and ensure that they are made available for
matching. In this case, there are two interfaces, each with an attached
independent driver.

CHAPTER 8 UNIVERSAL SERIAL BUS

153

Loading USB Drivers
To have your driver loaded automatically when a device is inserted, you must configure your driver’s
Info.plist, as we learned in Chapter 4. As we saw in the previous section, a single driver may handle a
USB device, or it may have several drivers, one for each interface (function) presented. For a USB device,
a driver is matched against it using keys from the device’s device descriptor. The I/O Kit follows the rules
for driver matching set by the Universal Serial Bus Common Class Specification. The following
combinations of keys are valid for matching a driver against a USB device:

• idVendor & idProduct & bcdDevice

• idVendor & idProduct

• idVendor & bDeviceSubClass & bDeviceProtocol (only if bDeviceClass == 0xff)

• idVendor & bDeviceSubClass (only if bDeviceClass == 0xff)

• bDeviceClass & bDeviceSubClass & bDeviceProtocol (only if bDeviceClass != 0xff)

• bDeviceClass & bDeviceSubClass (only if bDeviceClass != 0xff)

Each key represents an entry in the device’s device descriptor. The bcdDevice field is used to store
the device’s revision number. If the bDeviceClass field is 0xff, it means the device class is vendor specific.
A matching dictionary in Info.plist, which matches against a vendor ID, a product ID, and a revision
number (bcdDevice), is shown in Listing 8-1.

Listing 8-1. Matching Dictionary for Matching Against Vendor ID, Product ID, and Device Revision

<key>MyUSBDriver</key>
<dict>
<key>CFBundleIdentifier</key>
 <string>com.osxkernel.MyUSBDriver</string>
 <key>IOClass</key>
 <string>com_osxkernel_MyUSBDriver</string>
 <key>IOProviderClass</key>
 <string>IOUSBDevice</string>
 <key>bcdDevice</key>
 <integer>1</integer>
 <key>idProduct</key>
 <integer>2323</integer>
 <key>idVendor</key>
 <integer>0001</integer>
</dict>

The entry must be located in the IOKitPersonalities section of your driver’s Info.plist file to have
any effect.

Devices that are not matched by the previous rules will be handled by the IOUSBCompositeDriver,
which selects a device configuration, if the device has multiple configurations present, and then initiates
matching against the device’s interfaces instead. The keys that can be used to match against device
interfaces are shown here:

• idVendor & idProduct & bcdDevice & bConfigurationValue & bInterfaceNumber

• idVendor & idProduct & bConfigurationValue & bInterfaceNumber

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 8 UNIVERSAL SERIAL BUS

154

• idVendor & bInterfaceSubClass & bInterfaceProtocol (only if bInterfaceClass ==
0xff)

• idVendor & bInterfaceSubClass (only if bInterfaceClass == 0xff)

• bInterfaceClass & bInterfaceSubClass & bInterfaceProtocol (only if
bInterfaceClass != 0xff)

• bInterfaceClass & bInterfaceSubClass (only if bInterfaceClass != 0xff)

 Note You cannot create your own combinations of keys; you have to use one of the combinations shown above
for either an interface or a device. However, you can add several personalities to your driver, which can each
match against a different combination, but it has to be one of the valid combinations.

Each key represents a field in an interface descriptor. The matching rules are ordered according to
how specific they are. The last rule, for example, which matches against the interface class and subclass,
is used by Apple’s USB Mass Storage driver to match all devices that conform to that interface, regardless
of vendor or product ID. The Info.plist for the Apple mass storage driver is shown in Listing 8-2
(though some keys unrelated to matching were trimmed for readability).

Listing 8-2. Matching Dictionary for Matching Against a USB Interface Class and Subclass

<key>IOUSBMassStorageClass6</key>
<dict>
 <key>CFBundleIdentifier</key>
 <string>com.apple.iokit.IOUSBMassStorageClass</string>
 <key>IOClass</key>
 <string>IOUSBMassStorageClass</string>
 <key>IOProviderClass</key>
 <string>IOUSBInterface</string>
 <key>bInterfaceClass</key>
 <integer>8</integer>
 <key>bInterfaceSubClass</key>
 <integer>6</integer>
</dict>

Unlike the example in Listing 8-1, the IOProviderClass is specified as IOUSBInterface, which will be
the provider passed to your driver’s start() method instead of IOUSBDevice.

USB Prober
Before we start looking at actual code, it is worth mentioning a highly useful tool called USB Prober. USB
Prober is a utility that is bundled with the Xcode distribution. The USB Prober tool is shown in Figure
8-6.

CHAPTER 8 UNIVERSAL SERIAL BUS

155

Figure 8-6. USB Prober utility

USB Prober allows you to probe available USB buses on your system and inspect the hierarchy of
devices attached to each bus. It also allows you to inspect the device, configuration, interface, and
endpoint descriptors. The IORegistry tab allows you to inspect the IOService plane of the I/O Registry as
it pertains to USB devices, which is very useful during development of a USB driver, as it allows you to
verify that your driver was matched correctly. USB prober can also perform USB specific tracing from the
IOUSBFamily, which may be useful for debugging your driver in some cases. This requires some setup,
including downloading the USB Debug Kit from Apple’s developer website. The kit contains an alternate
version of IOUSBFamily, which provides verbose logging. Access to the debug kit is restricted to
members of the Mac developer program.

Driver Example: USB Mass Storage Device Driver
Let’s put what we’ve learned so far into practice by putting together a simple USB-based driver, which
will print log messages as various events occur. Now we could make a purely virtual driver, but that
wouldn’t be any fun, so let’s instead create a driver that piggybacks on a real USB device so that we can
see what happens when the device is plugged in and removed from the bus, but without interfering with
the device’s operation. The object-oriented nature of the I/O Kit makes it such that writing a device

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 8 UNIVERSAL SERIAL BUS

156

driver requires relatively little effort. Moreover, writing a device driver for a USB device is very similar to
writing a driver for Firewire, PCI, or the virtual IOKitTest driver from Chapter 4.

To try this example, you need a thumb/flash drive or external USB hard drive. It doesn’t have to be
formatted for Mac, as we are not going to access the data.

 Caution It is recommended to try examples in this book on a Mac that is not being used to store important
data. A kernel crash may corrupt your files or operating system. If you do not have a dedicated Mac for this
purpose, ensure you have working backups of your data.

Our driver will be called MyFirstUSBDriver, and the class declaration is shown in Listing 8-3.

Listing 8-3. MyFirstUSBDriver.h: Class Declaration for MyFirstUSBDriver

#include <IOKit/usb/IOUSBDevice.h>

class com_osxkernel_MyFirstUSBDriver : public IOService
{
 OSDeclareDefaultStructors(com_osxkernel_MyFirstUSBDriver)

public:
 virtual bool init(OSDictionary *propTable);
 virtual IOService* probe(IOService *provider, SInt32 *score);
 virtual bool attach(IOService *provider);
 virtual void detach(IOService *provider);
 virtual bool start(IOService *provider);
 virtual void stop(IOService *provider);
 virtual bool terminate(IOOptionBits options = 0);
};

You will notice that the class is structurally nearly identical to the IOKitTest driver, with a few minor
changes, which we will discuss later. The implementation of MyFirstUSBDriver is shown in Listing 8-4.

Listing 8-4. MyFirstUSBDriver.cpp: Implementation of MyFirstUSBDriver Class

#include <IOKit/IOLib.h>
#include <IOKit/usb/IOUSBInterface.h>
#include "MyFirstUSBDriver.h"

OSDefineMetaClassAndStructors(com_osxkernel_MyFirstUSBDriver, IOService)
#define super IOService

void logEndpoint(IOUSBPipe* pipe)
{
 IOLog("Endpoint #%d ", pipe->GetEndpointNumber());
 IOLog("--> Type: ");
 switch (pipe->GetType())
 {

CHAPTER 8 UNIVERSAL SERIAL BUS

157

 case kUSBControl: IOLog("kUSBControl "); break;
 case kUSBBulk: IOLog("kUSBBulk "); break;
 case kUSBIsoc: IOLog("kUSBIsoc "); break;
 case kUSBInterrupt: IOLog("kUSBInterrupt "); break;
 }
 IOLog("--> Direction: ");
 switch (pipe->GetDirection())
 {
 case kUSBOut: IOLog("OUT (kUSBOut) "); break;
 case kUSBIn: IOLog("IN (kUSBIn) "); break;
 case kUSBAnyDirn: IOLog("ANY (Control Pipe) "); break;
 }
 IOLog("maxPacketSize: %d interval: %d\n", pipe->GetMaxPacketSize(), pipe->GetInterval());
}

bool com_osxkernel_MyFirstUSBDriver::init(OSDictionary* propTable)
{
 IOLog("com_osxkernel_MyFirstUSBDriver::init(%p)\n", this);
 return super::init(propTable);
}

IOService* com_osxkernel_MyFirstUSBDriver::probe(IOService* provider, SInt32* score)
{
 IOLog("%s(%p)::probe\n", getName(), this);
 return super::probe(provider, score);
}

bool com_osxkernel_MyFirstUSBDriver::attach(IOService* provider)
{
 IOLog("%s(%p)::attach\n", getName(), this);
 return super::attach(provider);
}

void com_osxkernel_MyFirstUSBDriver::detach(IOService* provider)
{
 IOLog("%s(%p)::detach\n", getName(), this);
 return super::detach(provider);
}

bool com_osxkernel_MyFirstUSBDriver::start(IOService* provider)
{
 IOUSBInterface* interface;
 IOUSBFindEndpointRequest request;
 IOUSBPipe* pipe = NULL;

 IOLog("%s(%p)::start\n", getName(), this);

 if (!super::start(provider))
 return false;

 interface = OSDynamicCast(IOUSBInterface, provider);
 if (interface == NULL)

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 8 UNIVERSAL SERIAL BUS

158

 {
 IOLog("%s(%p)::start -> provider not a IOUSBInterface\n", getName(), this);
 return false;
 }

 // Mass Storage Devices use two bulk pipes, one for reading and one for writing.

 // Find the Bulk In Pipe.
 request.type = kUSBBulk;
 request.direction = kUSBIn;
 pipe = interface->FindNextPipe(NULL, &request, true);
 if (pipe)
 {
 logEndpoint(pipe);
 pipe->release();
 }

 // Find the Bulk Out Pipe.
 request.type = kUSBBulk;
 request.direction = kUSBOut;
 pipe = interface->FindNextPipe(NULL, &request, true);
 if (pipe)
 {
 logEndpoint(pipe);
 pipe->release();
 }
 return true;
}

void com_osxkernel_MyFirstUSBDriver::stop(IOService *provider)
{
 IOLog("%s(%p)::stop\n", getName(), this);
 super::stop(provider);
}

bool com_osxkernel_MyFirstUSBDriver::terminate(IOOptionBits options)
{
 IOLog("%s(%p)::terminate\n", getName(), this);
 return super::terminate(options);
}

As you may see, there is very little logic in this driver, with the exception of logging when the various
methods of our driver are called. The start() method will also attempt to find the bulk IN and bulk OUT
endpoints, and log information about the endpoints. We will test the driver shortly, but first we have to
create a matching dictionary so that the I/O Kit will know when to load our driver. The matching
dictionary for MyFirstUSBDriver is shown in Listing 8-5.

Listing 8-5. Matching Dictionary for MyFirstUSBDriver

<key>IOKitPersonalities</key>
<dict>
 <key>MyFirstUSBDriver</key>

CHAPTER 8 UNIVERSAL SERIAL BUS

159

 <dict>
 <key>bInterfaceClass</key>
 <integer>8</integer>
 <key>bInterfaceSubClass</key>
 <integer>6</integer>
 <key>CFBundleIdentifier</key>
 <string>com.osxkernel.MyFirstUSBDriver</string>
 <key>IOClass</key>
 <string>com_osxkernel_MyFirstUSBDriver</string>
 <key>IOMatchCategory</key>
 <string>com_osxkernel_MyFirstUSBDriver</string>
 <key>IOProviderClass</key>
 <string>IOUSBInterface</string>
 </dict>
</dict>

The matching dictionary is more or less the same as the example in Listing 8-2. It will match against
a USB interface rather than a USB device. We set bInterfaceClass to 8, which is the class code for mass
storage devices, and we set bInterfaceSubClass to 6, which indicates that it uses the SCSI command set
to communicate with the device (which doesn’t necessarily imply that the drive/storage itself
understands the SCSI protocol, but it is used to tunnel commands to the device over the bus, where
another controller may translate it into, for example, ATA commands).

Because Apple’s default IOUSBMassStorageClass matches against the same keys as us, we need to
specify a match category so that our driver will also be loaded. We do this by adding the IOMatchCategory
key. We set it to the name of our class, but it could be any string.

 Tip When you open a Info.plist file in Xcode, it is opening in the property list editor by default. If you wish to
cut and paste to the property list, or you are curious about the format it is stored in, you can right-click the file and
choose “Open as,” and then choose “Source Code,” which will present it in XML format.

There is one additional change we need to make to our driver’s property list file, and that is to
include our dependencies under the OSBundleLibraries dictionary; otherwise, the driver will fail to load.
Dependencies can be found using the kextlibs tool. We used the following section to add a dependency
to libkern and IOUSBFamily:

<key>OSBundleLibraries</key>
<dict>
 <key>com.apple.iokit.IOUSBFamily</key>
 <string>4.1.8</string>
 <key>com.apple.kernel.libkern</key>
 <string>6.0</string>
</dict>

We are now ready to load the driver, or rather to allow I/O Kit to load the driver for us. For the driver
to load automatically, as the USB device is plugged in, it must be located in the directory
/System/Library/Extensions, the standard location for all KEXTs.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 8 UNIVERSAL SERIAL BUS

160

When all is done, you should now be able to plug the device in. Before you do, however, you can
bring up the Console application, and select kernel.log from the log list. Once you insert your compatible
device, you should see the following entries being printed to the log in response to the insertion:

Jun 16 22:37:56 macbook kernel[0]: com_osxkernel_MyFirstUSBDriver::init(0x1361f900)
Jun 16 22:37:56 macbook kernel[0]: com_osxkernel_MyFirstUSBDriver(0x1361f900)::attach
Jun 16 22:37:56 macbook kernel[0]: com_osxkernel_MyFirstUSBDriver(0x1361f900)::probe
Jun 16 22:37:56 macbook kernel[0]: com_osxkernel_MyFirstUSBDriver(0x1361f900)::detach
Jun 16 22:37:56 macbook kernel[0]: com_osxkernel_MyFirstUSBDriver(0x1361f900)::attach
Jun 16 22:37:56 macbook kernel[0]: com_osxkernel_MyFirstUSBDriver(0x1361f900)::start
Jun 16 22:37:56 macbook kernel[0]: Endpoint #4 --> Type: kUSBBulk --> Direction: IN (kUSBIn)
maxPacketSize: 512 interval: 0
Jun 16 22:37:56 macbook kernel[0]: Endpoint #3 --> Type: kUSBBulk --> Direction: OUT
(kUSBOut) maxPacketSize: 512 interval: 0

The first five calls are part of the matching process. The first method attach() is used to connect our
driver into the IOService plane of the I/O Registry, which in this case will attach us as a client of the
IOUSBInterface nub, which again is the client of the IOUSBDevice we just plugged in. As we know from
Chapter 4, the probe method is used for active matching, and allows us to further interrogate the device,
or interface in this case, to determine if we are a match for it. I/O Kit then calls detach(), and the
decision to which driver to load is made once all possible matches have been examined. It is usually not
recommended to allocate any resources in attach() as it can be called multiple times. Usually, it is not
necessary to override attach() or detach(), as the default ones provided by IOService are almost always
sufficient. Once I/O Kit has selected our driver, which is guaranteed in our case (as we specified a unique
IOMatchCategory), we will be getting a call to our attach() method again, and then finally the start()
method of our driver. We can now use USB Prober to verify where in the hierarchy our driver was placed,
as shown in Figure 8-7.

Figure 8-7. USB Prober showing the com_osxkernel_MyFirstUSBDriver attached to the IOService plane

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 8 UNIVERSAL SERIAL BUS

161

You will notice that we are attached to the IOUSBInterface of the storage device, together with the
IOUSBMassStorageClass driver, and that the USB device itself is managed by the composite driver
IOUSBCompositeDriver.

Driver Startup
The implementation of our start() method in MyFirstUSBDriver is deliberately sparse because the
IOUSBMassStorageClass driver is also managing the interface, and we do not wish to interfere with its use
of the USB interface. We do a basic sanity check, which is commonly done in the start() method, to
ensure that we get a provider that is of the type we expect. However, nothing is preventing you from
writing a driver that can accept and work with multiple types of providers—for example, an IOUSBDevice
and IOUSBInterface, or even an IOPCIDevice provider.

Here’s an outline of the steps a USB driver typically must perform in its start() method:

• Verify that the IOService provider object passed to us is of the type we expect. We
do this with the help of the OSDynamicCast() macro, which works with I/O Kit’s
runtime type identification system, and returns a pointer to the object if the cast is
successful, or NULL otherwise.

• Store a pointer to the provider for later use.

• Attempt to open the provider by calling its open(IOService* forClient, …)
method.

• If your driver is operating on an IOUSBDevice you may have to set the device’s
configuration. For IOUSBInterface-based drivers, the IOUSBCompositeDriver
normally handles this. You can set the configuration using
IOUSBDevice::SetConfiguration().

• Find and verify the interfaces you will use for a driver that has an IOUSBDevice
provider. And search for the appropriate endpoints needed by your driver. More
about this in the section “Enumerating Device Resources.”

• Interrogate the device for status information, and perform the needed
configuration of the device by issuing control requests to it.

• Allocate any driver specific resources you may need, for example I/O buffers or
auxiliary classes needed by your driver.

• If your driver is a nub and intends to provide services to other drivers, it needs to
allocate and register these. For example, in the case of IOUSBMassStorageClass it
will allocate IOSCSILogicalUnitNub objects for each logical unit provided by the
interface, and for each of these call registerService(), a method inherited from
IOService. The method ensures that matching will begin for each
IOSCSILogicalUnitNub object.

• If everything succeeds, start() should return true. If false is returned, the driver
will obviously not be loaded, and the I/O Kit will try to load a new driver, if any,
possibly one that “lost” and got a lower score previously. Be aware that stop() will
not be called if you return false from start().

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 8 UNIVERSAL SERIAL BUS

162

 Tip To uninstall MyFirstUSBDriver, simply use the command: sudo rm –rf
/System/Library/Extensions/MyFirstUSBDriver.kext

Handling Device Removals
USB devices and drivers must be able to cope with the removal of a device at any point in time. When
the IOUSBController detects that a device is removed, it will propagate this information recursively down
the driver stack. The first notification to a driver is made by calling its terminate() method. The
following sequence of calls is the result of unplugging the mass storage device that MyFirstUSBDriver is
attached to:

Jun 16 22:58:46 macbook kernel[0]: com_osxkernel_MyFirstUSBDriver(0xb4e6100)::terminate
Jun 16 22:58:46 macbook kernel[0]: com_osxkernel_MyFirstUSBDriver(0xb4e6100)::stop
Jun 16 22:58:46 macbook kernel[0]: com_osxkernel_MyFirstUSBDriver(0xb4e6100)::detach

Any incomplete I/O can be cancelled using IOUSBPipe::Abort() and can be done when the
terminate() method gets called, or in the willTerminate() or didTerminate() methods if overridden by
the driver.

The next step in the removal process is that the driver’s stop() method will be called, which should
reverse actions taken in the start() method. After that detach() and finally free() will be called, which
should clean up all remaining resources.

If your driver is opened by a user application, for example through a IOUserClient, it will not be
deallocated (the free() method will not be called) until the application releases its reference to the
device. If the device happens to be re-inserted at this time, the application is not able to resume using
the device, as a new instance of the driver is created each time a device is inserted. The application can
handle this by using notifications, as described in Chapter 5.

Enumerating Interfaces
During a USB driver’s start() method, it is usually necessary to find and configure the endpoints and
interfaces that will be used by the device. If your driver is based on the IOUSBDevice provider, chances are
that you need to search for one or more of the interfaces that will be used by your driver. This can be
done using the IOUSBDevice::FindNextInterface() method:

virtual IOUSBInterface* FindNextInterface(IOUSBInterface* current,
 IOUSBFindInterfaceRequest* request);

The first parameter can be specified to start the search from an existing IOUSBInterface instance
and ignore any interfaces before it. NULL can be specified to start the search from the first interface.

The second parameter is a structure of the type IOUSBFindInterfaceRequest:

typedef struct {
 UInt16 bInterfaceClass;
 UInt16 bInterfaceSubClass;
 UInt16 bInterfaceProtocol;
 UInt16 bAlternateSetting;
} IOUSBFindInterfaceRequest;

CHAPTER 8 UNIVERSAL SERIAL BUS

163

To find an interface, you can fill out the IOUSBFindInterfaceRequest structure with the desired
properties for the interface.

• bInterfaceClass and bInterfaceSubClass can be filled in to search for an interface
of a specific class and subclass. The values correspond to the codes in Table 8-3.
The header file USBSpec.h in the IOUSBFamily source distribution define symbolic
constants such as kUSBMassStorageInterfaceClass or kUSBPrintingClass.

• The bInterfaceProtocol specifies the protocol used by the interface. The field is
meaningless without the class and subclass. A HID (Human Interaction Device)
may for example specify the protocol as kHIDKeyboardInterfaceProtocol or
kHIDMouseInterfaceProtocol.

• It is possible for an interface to have alternate versions of itself that uses a different
set of endpoints, the bAlternateSetting field can therefore be set to request the
specific interface desired.

Fields that does not matter can be set to kIOUSBFindInterfaceDontCare. Setting every field to this
value will simply return the next interface regardless.

Listing 8-6 shows an extract from the Apple USB Ethernet driver which uses the
FindNextInterface() method to search a USB device (IOUSBDevice) for an interface that supports
Ethernet.

Listing 8-6. Searching a IOUSBDevice for a Interface (from USBCDCEthernet.cpp)

IOUSBFindInterfaceRequest req;
IOUSBInterface* fCommInterface = NULL;

req.bInterfaceClass = kUSBCommClass;
req.bInterfaceSubClass = kEthernetControlModel;
req.bInterfaceProtocol = kIOUSBFindInterfaceDontCare;
req.bAlternateSetting = kIOUSBFindInterfaceDontCare;

fCommInterface = fpDevice->FindNextInterface(NULL, &req);
if (!fCommInterface)
{
 // not found
 …
}

Enumerating Endpoints
An interface does not do anything useful by itself, so once the correct interface is retrieved by the driver,
it must enumerate the interface’s endpoints which are used for actual I/O. The enumeration/search is
process is similar to that of finding an interface and is done with the IOUSBInterface::FindNextPipe()
method:

virtual IOUSBPipe *FindNextPipe(IOUSBPipe *current, IOUSBFindEndpointRequest *request);
virtual IOUSBPipe* FindNextPipe(IOUSBPipe *current, IOUSBFindEndpointRequest *request,
 bool withRetain);

The first parameter if non-NULL tells the method to ignore pipes before it. The second parameter is a
pointer to an IOUSBFindEndpointRequest:

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 8 UNIVERSAL SERIAL BUS

164

typedef struct {
 UInt8 type;
 UInt8 direction;
 UInt16 maxPacketSize;
 UInt8 interval;
} IOUSBFindEndpointRequest;

• The type field can be kUSBControl, kUSBIsoc, kUSBBulk, kUSBInterrupt, or
kUSBAnyType.

• The direction field must be set to kUSBOut, kUSBIn, or kUSBAnyDirn.

• The maxPacketSize field is the max packet size in bytes that endpoint zero
supports, and should be 8, 16, 32, or 64. It can be set to 0 if irrelevant.

• The interval field can be used to search for an endpoint that has a specific polling
interval. The polling interval only applies to isochronous and interrupts
endpoints.

Listing 8-7 shows how the Apple USB Ethernet driver uses the FindNextPipe() method to enumerate
endpoints.

Listing 8-7. Enumerating IOUSBPipe Instances for an Interface (from USBCDCEthernet.cpp)

IOUSBFindEndpointRequest epReq; // endPoint request struct on stack
…
// Open all the end points

epReq.type = kUSBBulk;
epReq.direction = kUSBIn;
epReq.maxPacketSize = 0;
epReq.interval = 0;
fInPipe = fDataInterface->FindNextPipe(0, &epReq);
if (!fInPipe)
{
 …
 return false;
}
…
epReq.direction = kUSBOut;
fOutPipe = fDataInterface->FindNextPipe(0, &epReq);
if (!fOutPipe)
{
 …
 return false;
}
fOutPacketSize = epReq.maxPacketSize;
…
// Interrupt pipe - Comm Interface

epReq.type = kUSBInterrupt;
epReq.direction = kUSBIn;
fCommPipe = fCommInterface->FindNextPipe(0, &epReq);

CHAPTER 8 UNIVERSAL SERIAL BUS

165

if (!fCommPipe)
{
 ….
}

The driver in Listing 8-7 is a USB Ethernet driver. It uses three endpoints for its operation. The first
is a bulk IN endpoint, which is used to read network data from the device. The second endpoint is a bulk
OUT pipe, which is used to transmit packets to the device. The last end point is an interrupt IN
endpoint, which is used to signal the arrival of a network packet and for notification of other events. In
the following sections, we will look at how endpoints are used to perform I/O.

Performing Device Requests
Device requests are I/O requests to the default bi-directional default control pipe zero of the USB device,
typically used for device configuration and accessing device registers. There are three classes of device
requests:

• Standard USB requests: These are standard requests implemented by all device.
An example of a standard device request is querying a device’s status. A list of
symbolic constants for standard requests can be found in USBSpec.h.

• Class specific requests: These are specific to a class of device. For example, an
Ethernet device may provide a number of requests for configuring Ethernet
related parameters.

• Vendor specific requests

To perform a device request, both IOUSBDevice and IOUSBInterface provide a special
DeviceRequest() convenience method, which under the hood uses the IOUSBPipe object, representing
the default pipe, to transmit the request. If you wish, you can enumerate the IOUSBPipe instance for the
zero endpoint and use it directly as well. The method is declared as follows:

DeviceRequest(IOUSBDevRequest *request, UInt32 noDataTimeout,
 UInt32 completionTimeout, IOUSBCompletion *completion);
DeviceRequest(IOUSBDevRequestDesc *, UInt32 noDataTimeout,
 UInt32 completionTimeout, IOUSBCompletion *completion);

In order to send a request, you must create an IOUSBDevRequest or IOUSBDeviceRequestDesc structure
and fill in the appropriate fields.

typedef struct {
 UInt8 bmRequestType;
 UInt8 bRequest;
 UInt16 wValue;
 UInt16 wIndex;
 UInt16 wLength;
 void *pData;
 UInt32 wLenDone;
} IOUSBDevRequest;

typedef struct {
 UInt8 bmRequestType;
 UInt8 bRequest;
 UInt16 wValue;
 UInt16 wIndex;
 UInt16 wLength;
 IOMemoryDescriptor *pData;
 UInt32 wLenDone;
} IOUSBDevRequestDesc;

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 8 UNIVERSAL SERIAL BUS

166

• The bmRequestType field: Is a composite field that specifies the type of request, the
direction, the type, and the recpient. The field can be generated by using the
USBmakebmRequestType(direction, type, recpient) macro with the following
paramters:

• The direction will be either kUSBIn, kUSBOut, or kUSBNone.

• The type will be either kUSBStandard, kUSBClass, or kUSBVendor.

• The recpient will be either kUSBInterface, kUSBEndpoint, or kUSBDevice.

• The bRequest field: This is a 8-bit value that selects the request to be performed.

• The wValue and wIndex: These can be used to pass arguments along with the
request. Their meaning depends on the request. For interface and endpoint
requests, the wIndex number specifies the index number of the endpoint/interface
to which the request is addressed. You can get the index number by calling either
IOUSBPipe::GetEndpointNumber() or IOUSBInterface->GetInterfaceNumber().

• The wLength field: This is the number of bytes for the pData field.

• The pData field: This is either a pointer to a memory buffer or an
IOMemoryDescriptor. The pData pointer may be set to NULL if no additional data is
needed for the request. The buffer will either be read from or written to,
depending on the direction of the request. If an IOMemoryDescriptor is used you
should call prepare() on it first to ensure the memory is paged in and pinned
down until the request is completed. The memory may come from user space if a
memory descriptor is used. If the void* variant is used, the pointer must be in the
kernel’s virtual address space.

• The wLenDone field: This should not be filled in, as it is used to return the number
of bytes actually transferred.

Apart from the request parameters, the DeviceRequest() methods takes another three parameters.

• noDataTimeout: This is the timeout, in milliseconds, to wait before aborting the
request if no data has been sent/received.

• completionTimeout: This specifies a timeout value for the entire command with
data, and is also in milliseconds.

• completion: This is optional, and if specified it allows us to perform the request
asynchronously, which may often be desired to avoid blocking the calling thread.
We will discuss asynchronous requests in more detail later in this chapter.

Let’s look at an example of how a device request can be issued, again using the Apple USB Ethernet
driver as an example. The code in Listing 8-8 is called by the driver from a periodic timer and is used to
get statistics and status information from the Ethernet device, such as collisions, dropped packets,
incoming packets, etc.

Listing 8-8. Device Request for Downloading Statistics From An Ethernet Device (USBCDCEthernet.cpp)

STREQ = (IOUSBDevRequest*)IOMalloc(sizeof(IOUSBDevRequest));
if (!STREQ)
{

CHAPTER 8 UNIVERSAL SERIAL BUS

167

 ...
} else {
 bzero(STREQ, sizeof(IOUSBDevRequest));
 // Now build the Statistics Request
 STREQ->bmRequestType = USBmakebmRequestType(kUSBOut, kUSBClass, kUSBInterface);
 STREQ->bRequest = kGet_Ethernet_Statistics;
 STREQ->wValue = currStat;
 STREQ->wIndex = fCommInterfaceNumber;
 STREQ->wLength = 4;
 STREQ->pData = &fStatValue;

 fStatsCompletionInfo.parameter = STREQ;

 rc = fpDevice->DeviceRequest(STREQ, &fStatsCompletionInfo);
 if (rc != kIOReturnSuccess)
 {
 ...
 IOFree(STREQ, sizeof(IOUSBDevRequest));
 } else {
 fStatInProgress = true;
 }
}

The request in Listing 8-8 is performed asynchronously. Because the IOUSBDevRequest structure
must persist until the request finishes, it must not be allocated on the stack, although this is fine for a
synchronous request. The request performed in Listing 8-8 is directed to a specific interface, and it is a
class specific request, which means it will work the same on all interfaces with the same class code. The
wValue field of the request is an index number specifying the statistic that should be transferred.

Control Requests
Device requests, discussed in the previous section, are I/O to the default control pipe (zero). The
DeviceRequest() method cannot be used for control endpoints other than the default. If we wish to
perform requests to another control endpoint, we must use the IOUSBPipe::ControlRequest() method
instead. There are four ControlRequest() methods available:

virtual IOReturn ControlRequest(IOUSBDevRequestDesc* request,
 IOUSBCompletion* completion = 0);
virtual IOReturn ControlRequest(IOUSBDevRequest* request, IOUSBCompletion* completion = 0);
virtual IOReturn ControlRequest(IOUSBDevRequestDesc* request,
 UInt32 noDataTimeout,
 UInt32 completionTimeout,
 IOUSBCompletion* completion = 0);
virtual IOReturn ControlRequest(IOUSBDevRequest* request,
 UInt32 noDataTimeout,
 UInt32 completionTimeout,
 IOUSBCompletion* completion = 0);

The two first methods use the exact same arguments as the DeviceRequest() method discussed
earlier. The two last also support the noDataTimeout and completionTimeout parameters.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 8 UNIVERSAL SERIAL BUS

168

Performing I/O to Bulk and Interrupt Endpoints
Sending and Receiving data is performed with the help of the IOUSBPipe class, which represents an
endpoint. The IOUSBPipe class presents a simple interface for performing I/O, which is reminiscent of
how user space performs file I/O. USB does not utilize DMA directly, although the host controller does
use DMA to transfer data, but the details of this are abstracted away from us. This also means that we do
not need to worry about memory alignment, if the memory is physically contiguous, is in the correct
address range, or translating memory addresses to physical addresses. We can also perform I/O from a
user space buffer.

The IOUSBPipe class supports I/O to all endpoint types: control, bulk, interrupt, and isochronous.
The methods for performing bulk and interrupt I/O are the Read() and Write() methods:

virtual IOReturn Read(IOMemoryDescriptor* buffer,
 UInt32 noDataTimeout,
 UInt32 completionTimeout,
 IOByteCount reqCount,
 IOUSBCompletion* completion = 0,
 IOByteCount* bytesRead = 0);

virtual IOReturn Write(IOMemoryDescriptor* buffer,
 UInt32 noDataTimeout,
 UInt32 completionTimeout,
 IOByteCount reqCount,
 IOUSBCompletion* completion = 0);

• The buffer is an IOMemoryDescriptor containing the buffer for which data should
be read or written. The memory descriptor should have its prepare() method
called to ensure memory is paged in and pinned down. The memory may be in the
kernel or a user task’s address space.

• The noDataTimeout argument specifies the amount of time, in milliseconds, to wait
for data transfer on the bus before the request is considered unsuccessful.

• The completionTimeout is the time to allow, in milliseconds, for the entire request
to complete before it is considered unsuccessful.

• The reqCount is the amount of data, in bytes, that should be read or written. It
must be less or equal to the size of the buffer, as returned by
IOMemoryDescriptor::getLength().

• The completion parameter is a structure of the type IOUSBCompletion, and is used
for asynchronous requests. The parameter can be specified as NULL to perform the
request synchronously, in which case the call will block until the request is
complete or times out. We will look at asynchronous I/O later.

• For the Read() method bytesRead will return the number of bytes that were read. It
may be less than what was requested. The value is only set for synchronous
requests.

Listing 8-9 shows example invocations of the Read() and Write() methods.

CHAPTER 8 UNIVERSAL SERIAL BUS

169

Listing 8-9. Examples of Synchronous Read() and Write() to a Bulk Pipe

UInt32 bytesRead;
IOMemoryDescriptor* readBuffer;
IOMemoryDescriptor* writeBuffer;
…
if (myBulkPipeIn->Read(readBuffer, 1000, 5000,
 readBuffer->GetLength(), 0, &bytesRead) != kIOReturnSuccess)
{
 // Handle error
}
else
 IOLog(“We read: %u bytes\n”, bytesRead);

if (myBulkPipeOut->Write(writeBuffer, 1000, 5000,
 writeBuffer->GetLength()) != kIOReturnSuccess)
{
 // Handle error
}

Since we didn’t specify the completion argument for either method, they will both be executed
synchronously, which means that the request will be executed in its entirety by the time the method
returns control to us. Recall that all pipes are uni-directional, with the exception of the default control
pipe, so the IN and OUT requests are performed on two separate pipes.

 Note Another overloaded set of Read() and Write() exists that does not accept a reqCount parameter, but
rather uses the GetLength() method of the IOMemoryDescriptor. These methods are now deprecated and
should not be used.

The example in Listing 8-9 will also work for an interrupt endpoint. There is no special
programming interface needed to work with interrupt endpoints. I/O is handled in the same way as with
bulk endpoints. The difference is in behavior. An interrupt endpoint provides bounded latency and the
host controller guarantees to poll the device for data no less often than what is requested in the
endpoint’s descriptor. The minimum-polling interval is 125 microseconds. Interrupt transfers use
reserved bandwidth, which guarantees that the requests make it through even in the event that there are
high amounts of activity on the bus. Unlike bulk transfers, interrupt transfers are not suitable for
transferring large amounts of data and are limited to 8, 64, or, 1024 bytes for low-speed, full-speed, and
high-speed, respectively. Note that interrupt endpoints are not related to system interrupts in any way.
I/O to interrupt endpoints is performed in a normal kernel thread.

Dealing with Errors and Pipe Stalls
When an endpoint is unable to transmit or receive data due to an error, the host or device may set the
HALT bit. Communicating with an endpoint in this state, or an endpoint with an error, will return a

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 8 UNIVERSAL SERIAL BUS

170

STALL handshake packet. An error needs to be resolved before I/O can continue on the endpoint. The
IOUSBPipe class provides two methods for clearing a pipe stall and allowing I/O to resume:

virtual IOReturn ClearStall(void);
virtual IOReturn ClearPipeStall(bool withDeviceRequest);

The second version clears the error (toggle bit) on the controller, but it does not send out a device
request to the endpoint if withDeviceRequest is false. Both methods will cause outstanding I/O to be
completed with the return code kIOUSBTransactionReturned.

Isochronous I/O
Isochronous transfers are continuous in nature and are suitable for use with devices, such as audio and
video, where information is continuously streaming and there is a need for guaranteed bandwidth and
bounded latency. Data integrity can be verified using a CRC, but corrupted data is never re-sent
automatically. The amount of bandwidth needed by a device is specified in the isochronous endpoint
descriptor. If the host controller is unable to guarantee enough bandwidth to support the device, which
can happen if another device already has reserved bandwidth on the bus, the device may be unable to
function. If the device is able to operate with less bandwidth, it can define alternate interface descriptors
with more conservative requirements. Maximum payloads for isochronous transfers are as follows:

• High-speed devices have a maximum packet size of 1024 bytes.

• Full-speed devices have a maximum packet size of 1023 bytes.

• Low-speed devices do not support isochronous transfers.

Isochronous transfers use the concept of microframes. A microframe is 125 microseconds long. For
high-speed devices, up to three packets can be transmitted per microframe, giving a maximum data-rate
of 3 x 1024 x 8000 microframes per second = 24 MB/s. This is slightly lower than the maximum
bandwidth possible over a bulk endpoint.

A microframe is represented by the IOUSBIsocFrame structure:

typedef struct IOUSBIsocFrame {
 IOReturn frStatus;
 UInt16 frReqCount;
 UInt16 frActCount;
} IOUSBIsocFrame;

The structure describes how many bytes of data should be transmitted or received fromt the I/O
buffer in each microframe. The frReqCount field is the amount of bytes requested, whereas the
frActCount is the count actually transferred. The structure also contains a status field.

The methods for reading and writing to an isochronous endpoint are similar to those used to read
and write from interrupt and bulk endpoints:

virtual IOReturn Read(IOMemoryDescriptor* buffer, UInt64 frameStart, UInt32 numFrames,
 IOUSBIsocFrame* frameList, IOUSBIsocCompletion* completion = 0);
virtual IOReturn Write(IOMemoryDescriptor* buffer, UInt64 frameStart, UInt32 numFrames,
 IOUSBIsocFrame *frameList, IOUSBIsocCompletion * completion = 0);

The methods take the following arguments:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 8 UNIVERSAL SERIAL BUS

171

• The buffer argument is a virtually contiguous buffer containing the data to be
transferred. The memory descriptor should have its prepare() method called to
ensure memory is paged in and pinned down for the duration of the transfer.
There are no special requirements otherwise for the memory and it can be either
user space or kernel memory.

• The frameStart argument specifies the index of the USB frame from which to start.
One USB frame corresponds to 8 microframes.

• The numFrames argument is a count of the microframe descriptors contained in the
frameList array.

• The frameList argument is a pointer to an array of IOUSBIsocFrame structures.

• An optional completion structure. If specified, this will perform the transfer
asynchronously.

Asynchronous Requests
It is often necessary to perform requests to USB devices asynchronously—for example, when performing
large bulk requests to a hard drive. Instead of having the caller thread blocked, the request can be
handled by the USB controller, and it will notify us, through a callback method, when the request is
completed.

To do this, you must supply an IOUSBCompletion structure to the Read(), Write(), DeviceRequest(),
or ControlRequest() methods:

typedef struct IOUSBCompletion {
 void* target;
 IOUSBCompletionAction action;
 void* parameter;
} IOUSBCompletion;

• The target field is a pointer that can contain user-defined data. Often it is used to
pass the pointer to the class that sent the request, so that you can cast the pointer
back to the original class in the completion function.

• The action field is the actual callback, and should be a pointer to a function
matching the IOUSBCompletionAction prototype. The method will be called once
the request completes.

• The parameter field can carry an additional parameter, which will also be passed
to the completion function.

The IOUSBCompletionAction callback has the following prototype:

typedef void (*IOUSBCompletionAction)(void* target, void* parameter,
 IOReturn status, UInt32 bufferSizeRemaining);

As you can see, the target and parameter fields of the IOUSBCompletion structure are passed directly
to the callback. The callback will also get the status of the transfer, and the bufferSizeRemaining field
will contain the number of bytes left to transfer if the request was not fully completed.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 8 UNIVERSAL SERIAL BUS

172

Asynchronous requests are completed on the IOUSBFamily work loop thread, which means that if
you access data in the callback from your own driver, you must ensure that this access is properly
synchronized.

Generally speaking, USB drivers never operate in a primary interrupt context, with the exception of
the low latency versions of the isochronous Read() and Write() methods, which allows asynchronous
isochronous I/O to have the completion callback called at primary interrupt time. In this case, extreme
care needs to be taken to avoid calling code that may block. The use of low latency isochronous I/O
should be used sparingly, and is generally not required even for audio and video drivers.

Summary
• At the time of writing, the Universal Serial Bus Specification exists in three major

revisions, the latest being USB 3.0. USB 3.0, although emerging rapidly in the PC
segment, has not yet been adopted by Apple, which at the time of writing only
supports USB 2.0,

• A USB uses a shared bus topology, where up to 127 devices can be controlled by a
single host. The host controller is the master of the bus, and controls all activity on
the bus. A device is never allowed to use the bus without permission from the
host.

• A USB device is described by a hierarchical structure of descriptors, which contain
information about the class, type, capabilities, and requirements of the device.

• A USB device may consist of zero or more interfaces, which are groups of
endpoints. An interface typically represents a logical device function, such as a
printer or scanner.

• There are four types of endpoints: control, bulk, interrupt, and isochronous.
Control transfers are used for device configuration and control. Bulk endpoints
are used for applications such as hard drives or network devices. Interrupt
endpoints provide bounded latency, but they can only transfer small amounts.
Isochronous is ideal for video and audio applications that require guaranteed and
predictable bandwidth, as well as low latency.

• The IOUSBFamily handles USB support in the kernel. The family implements
support for common USB controllers. The three principal classes relevant to a
driver developer are IOUSBDevice, IOUSBInterface, and IOUSBPipe. A USB driver
can use either IOUSBDevice or IOUSBInterface as its provider.

• The IOUSBPipe provides an abstraction around endpoints. It has methods to deal
with all four endpoints. It supports synchronous and asynchronous I/O.

C H A P T E R 9

173

PCI Express and Thunderbolt

PCI (Peripheral Component Interconnect) is a high-speed bus developed by Intel, in the early nineties,
to replace various older and slower bus technologies such as EISA, ISA, MCA, and VESA. The term PCI is
often used to describe the family of technologies based on the original PCI specification. Throughout
this chapter, when we refer to PCI, we refer to commonalities found in the PCI–based technologies;
namely, PCI Express, Thunderbolt, and to a lesser extent ExpressCard. Most people associate PCI with
expansion boards plugged into a computer, but it is worth noting that PCI is fundamental to many
computer systems—even those without PCI slots, such as iMacs— that have internal PCI buses that
connect the CPU to USB, Firewire, and SATA controllers. Recent PCI-based advancements (like
Thunderbolt) allow the PCI bus to be extended outside of the computer, much in the same way as USB
and Firewire.

PCI enjoyed widespread adoption and solved many of the problems found in older bus
technologies; for example, it eliminated the need to configure jumpers on expansion cards, as resources
such as memory regions and interrupts were configured automatically by the system BIOS and/or the
OS itself.

PCI was extended by the PCI-X and PCI-X 2.0 standards, which allowed for a 64-bit bus width as
opposed to the Legacy PCI’s 32-bit bus width. PCI-X standards, having been succeeded by the PCI
Express (PCIe) standard, have become obsolete. Unlike PCI-X however, PCIe uses a packet-based serial
protocol, rather than the parallel interface characteristic of its predecessors. PCIe allows devices on a
bus to have dedicated bandwidth instead of sharing bus bandwidth with other devices on the same bus.
While PCIe and PCI are substantially different from an electrical and physical standpoint, they are
backwards compatible from a software point of view; consequently, drivers require only minor (or no)
changes to support newer standards.

As previously mentioned, there are myriads of PCI-related standards. We will discuss only
technologies currently sold by Apple, which include PCIe, Thunderbolt, and ExpressCard. Thunderbolt
is found in most 2011 or newer Macs. Thunderbolt and ExpressCard are based on PCIe technology and
connect to the PCI host bridge. However, ExpressCard is being phased out in favor of Thunderbolt on all
Macs, and is now found only in the 17” MacBook Pro. The Mac Pro is currently the only Mac to have
physically accessible PCI Express slots after the XServe was discontinued.

This chapter begins with a discussion of the various PCI technologies that apply to the current
generation of Macs. We will focus on the parts that are important to understand from a software point of
view and necessary to build a functional driver for a PCI-based device. For example, we as programmers
need not be concerned with how PCI functions at the electrical level. The second part of this chapter
focuses on how we can interface with PCI-based devices in I/O Kit, how to match and configure them,
read registers, and deal with the removal of devices. We will also address how to handle interrupts and
perform DMA (Direct Memory Access), which are two typical tasks performed by a PCI-based driver.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 9 PCI EXPRESS AND THUNDERBOLT

174

PCI Express
PCIe was designed to replace PCI and PCI-X, as well as the AGP (Accelerated Graphics Port), a stopgap
employed by graphics cards allowing for higher bandwidths not possible with PCI-X. PCIe uses uni-
directional, point-to-point connections known as “lanes.” This approach avoids the PCI and PCI-X’s
shared bus problem; although system designers could somewhat alleviate this issue by putting each
physical PCI slot on its own dedicated bus. Still, PCIe is substantially faster than its predecessors.

So far, three revisions of the PCIe standard have been released. The second generation doubled the
possible bandwidth for a single PCIe lane from 250 MB/s to 500 MB/s. The third revision doubled that
and can handle up to 1 GB/s per lane. PCIe typically uses lane configurations of 1x, 4x, 8x, 16x, and 32x;
although, the latter is less common, especially for physical slots. Slots for graphics cards/GPUs are
typically 16x lanes wide, as they require massive amounts of bandwidth. The latest revision of the Mac
Pro conforms to the PCIe 2.0 standard. The latest version of Mac Pro (5,1) has four 16x lane slots, but
only slots 1 and 2 are able to operate at 16x, while slots 3 and 4 operate at 4x.

Thunderbolt
Thunderbolt, a relatively new technology, was initially developed by Intel and later adopted by Apple;
the latter is currently the only vendor shipping Thunderbolt-enabled computers. Although the
availability of devices is limited, several companies, including Blackmagic Design, Promise Technology,
and Western Digital, have announced their support for the technology. Thunderbolt is an external
expansion interface that allows PCIe and DisplayPort 1.1 to be tunneled over the same cable. A cable can
carry two bi-directional channels of up to 10 Gbps of data, which amounts to a total bandwidth of 40
Gbps per cable. The channels are independent of each other, and it is not possible to aggregate the
bandwidth between them. Thunderbolt is also able to provide up to 10 Watts of power to devices
connected to the bus. The cable uses the Mini DisplayPort connector, which is indentical at both ends.

The current specification of Thunderbolt allows up to six devices to be daisy chained. Later revisions
will showcase a tree-like topology similar to that of USB. However, unlike USB, Thunderbolt allows host-
to-host connections like Firewire. Apple has also enabled a target disk mode using Thunderbolt, as well
as the ability to boot the operating system from Thunderbolt attached storage. Due to the fact that
Thunderbolt devices communicate directly with the PCIe host system, existing devices can be updated
to support Thunderbolt with relatively few modifications to the hardware (ignoring the fact that an
external case and possibly an external power source are needed). On the software side, very few changes
are needed (devices are still managed by the IOPCIFamily); however, one requirement is that the driver
must support being dynamically unloaded.

Thunderbolt makes it possible for the Mac Mini, iMac or MacBook series computers to access high-
speed storage and storage area networks, as well as high-bandwidth uncompressed video capture, which
was previously reserved for the high-end Mac Pro and Xserve.

ExpressCard
ExpressCard is an older expansion interface found in the MacBook Pro series. ExpressCard is being
phased out in favour of Thunderbolt; however, laptops with both ExpressCard and Thunderbolt ports
are available (at the time of writing). ExpressCard is the modern version of PCMCIA and is based on
PCIe. The latest standard supports transfer speeds of up to 5 Gbps.

CHAPTER 9 PCI EXPRESS AND THUNDERBOLT

175

Configuration Space Registers
All PCI devices (including bridges) have a set of registers known as the configuration space. This space is
a minimum of 256 bytes for conventional PCI devices, but on technologies based on PCI-X 2.0 and PCI
Express, the configuration space is up to 4096 bytes long and is referred to as the extended configuration
space. The first 48 bytes of the configuration space registers are shown in Figure 9-1.

Figure 9-1. Standard PCI configuration space registers

The required registers are shown in gray; other registers are optional. The first 48 bytes are
standardized and you will find the same layout regardless of whether the device is PCI, PCI-X, or PCIe-
based. Many of the registers are no longer applicable because PCI Express is point-to-point based— it
doesn’t use a shared bus.

Let’s look at the mandatory registers from Figure 9-1 in more detail.

• Vendor ID: Contains a 16-bit identifier unique to each hardware manufacturer.
Vendor IDs are assigned by the PCI-SIG (special interest group) of each hardware
manufacturer. Apple, for example, is assigned the vendor ID 0x106b. The
combination of vendor ID and device ID is often used by operating systems to
determine which driver to load for a device. 0xffff is not a valid vendor ID.

• Device ID: Also 16-bits wide. Unlike the vendor ID, the device ID can be assigned
by the manufacturer and is not maintained in a central register.

• Class Code: A 24-bit register that holds the type classification for the device. The
first 8 bits hold the base class. Examples of base classes include Unclassified (0x0),
Mass Storage controller (0x1), Network Controller (0x2), Display Controller (0x3),
etc. The next 8 bits hold the subclass. If the base class is a display controller, for
instance, the subclasses might be VGA (0x0), XGA (0x1), or other (0x80). The
remaining 8 bits are used to specify the program interface (register-level interface)
of the device if more than one is possible. This is used for USB controllers to verify
whether they comply with the UHCI, OHCI, EHCI, or XCHI interfaces, which are
register-level specifications that determine how a driver should interact with a
device.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 9 PCI EXPRESS AND THUNDERBOLT

176

• Subsytem Vendor/Device ID: Follows the same rules and assignments as the vendor
and device IDs. The subsystem IDs are used to identify the chip, when many
different manufacturers sell products using the same chip (OEM). Prime examples
of this are Nvidia and ATI. They manufacture GPU chips that are subsequently
used by third-party manufacturers to make the final product. The PCI
configuration space of such a device contains the third-party’s vendor ID and
device ID, but uses either Nvidia or ATI as the subsystem vendor ID, as well as
their device ID as the subsystem device ID. This allows ATI’s and Nvidia’s drivers
to be used, even if they didn’t manufacture the board directly.

• Base Address 0-5: Contains up to six I/O regions, which can be either I/O ports or
memory regions. The latter is much more common. We will discuss I/O regions in
more detail shortly. A base address is often abbreviated BAR (Base Address
Register).

PCI in I/O Kit
PCI in the I/O Kit is handled by the IOPCIFamily, which, just like the IOUSBFamily, is implemented in its
own KEXT. The IOPCIFamily is simpler than the IOUSBFamily in terms of the number of provided classes.
This means there are fewer building blocks to help us out when implementing drivers. PCI is more low-
level than USB from a driver point-of-view, and, as such, the writing of drivers for PCI devices is often
more complex. Figure 9-2 shows the class hierarchy of the IOPCIFamily.

Figure 9-2. IOPCIFamily class hierarchy

The IOPCIDevice object acts a nub or provider for all PCI-based devices, including PCIe,
Thunderbolt, and ExpressCard. An IOPCIDevice subclass called IOAGPDevice handles older AGP
(Advanced Graphics Port)-based graphics cards; however, no Intel-based Macs feature AGP. In many
cases, you only need to interact with the IOPCIDevice class from the IOPCIFamily. An instance of this
object is provided for each PCI device in the system; similarly, an IOPCIBridge instance exists for each
PCI bridge in the system. There are cases where a driver may need to interact with its bridge to read or

CHAPTER 9 PCI EXPRESS AND THUNDERBOLT

177

write the bridge’s configuration space. Although uncommon, it is also possible to create your own PCI
bridge driver. We will discuss device and bridge access later in this chapter. The root PCI bridge (also
known as the host bridge and root complex) is implemented by a subclass of IOPCIBridge called
AppleACPIPCI class. This class is part of the Platform Expert implemented by the AppleACPIPlatform
KEXT and controls access to all devices and bridges in the system. There is only one instance of this
class. The IOPCI2PCIBridge class is the driver for PCI-to-PCI bridges.

■ Tip As with the IOUSBFamily, the IOPCIFamily is not part of the xnu source distribution; rather, it is available
as a separate download from http://opensource.apple.com. The source package contains the source code for
the classes discussed above, as well as a sample PCI driver and source code for user space tools to dump
information from a PCI device.

Matching and Loading Drivers
PCI drivers are commonly matched against properties found in their configuration space registers, such
as the vendor ID, device ID, class, subsystem vendor ID, and subsystem device ID. Often, the latter two
are needed if a PCI device is based on a generic chip.

Though the configuration spaces contain more fields, they cannot be matched against using a
matching dictionary (property-based matching). If you need more advanced matching, your driver will
have to override the IOService::probe(IOProvider* service) method, and you will have to examine the
IOPCIDevice yourself to determine if your driver matches the device. The keys listed in Table 9-1 can be
used for matching against PCI-based devices.

Table 9-1. Keys for Matching PCI Devices

Key Description

IOPCIMatch Match against vendor ID and device ID; if a
match is not found, try to match against
subsystem vendor ID and subsystem device
ID.

IOPCIPrimaryMatch Only match against vendor ID and device ID.

IOPCISecondaryMatch Only match against subsystem vendor ID and
subsystem device ID.

IOPCIClassMatch Match against the PCI class code.

IONameMatch Not PCI-specific; can be used to match
against the name property.

Listing 9-1 shows the matching dictionary for a typical PCI device with a vendor ID or subsystem

vendor ID of 0xabcd and a device ID or subsystem device ID of 0x1234.

www.allitebooks.com

http://opensource.apple.com
http://www.allitebooks.org

CHAPTER 9 PCI EXPRESS AND THUNDERBOLT

178

Listing 9-1. Simple Matching Dictionary for a PCI Driver

<key>IOKitPersonalities</key>
<dict>
 <key>MyPCIDriver</key>
 <dict>
 <key>CFBundleIdentifier</key>
 <string>com.osxkernel.MyPCIDriver</string>
 <key>IOClass</key>
 <string>com_osxkernel_MyPCIDriver</string>
 <key>IOProviderClass</key>
 <string>IOPCIDevice</string>
 <key>IOPCIMatch</key>
 <string>0x1234abcd</string>
 </dict>
</dict>

The value is specified as a 32-bit hexadecimal string in little-endian format. The first four characters
will represent the device ID and the last four characters will represent the vendor ID. It is worth noting
that the value is of the string type and not an integer. The key IOProviderClass must have the value
IOPCIDevice in order for the I/O Kit to pass your driver an IOPCIDevice instance. If you need to match
against the vendor ID and device ID, you can substitute IOPCIMatch with IOPCIPrimaryMatch or, if you
only wish to match the subsystem IDs, you can use IOPCISecondaryMatch.

If your driver handles multiple devices, this can be done as a space-separated list as follows:

<key>IOPCIMatch</key>
<string>0x1234abcd 0x1235abcd 0x1236abcd</string>

This will match device IDs 0x1234, 0x1235, and 0x1236 of vendor 0xabcd. If your driver supports a
large family of devices, you can use masks to achieve the same effect, rather than enumerating each
device separately.

<key>IOPCIMatch</key>
<string>0x1230abcd&0xfff0ffff</string>

■ Note If you are editing Info.plist directly, you must express the ampersand (&) as &, as the ampersand
symbol is used to indicate an escape sequence in XML.

This will match every device ID beginning with 0x123X; for example, the range from 0x1230 to
0x123F, and a vendor ID of 0xabcd. Bits that should be ignored by the mask must be set to zero.

You can also match against the class register. To do this, you must specify the IOPCIClassMatch key.
The class register is 3 bytes wide. However, to match against it, the I/O Kit requires you to specify a 4
byte value. The last byte is ignored. The following example matches display controllers (base class code
0x03):

CHAPTER 9 PCI EXPRESS AND THUNDERBOLT

179

<key>IOPCIClassMatch</key>
<string>0x03000000&0xFF000000</string>

As all PCI devices are assigned names according to their devices and vendor IDs, it is also possible to
use IONameMatch to match PCI devices as shown in Listing 9-2.

Listing 9-2. Matching Based on Name Property

<key>IONameMatch</key>
<array>
 <string>pciabcd,1234</string>
 <string>pciabcd,1235</string>
 <string>pciabcd,1236</string>
</array>

The previous approach is perhaps more readable, but the downside is that it is not possible to
match against the subsystem vendor and device ID.

■ Note Remember to add a dependency to the IOPCIFamily in your driver’s Info.plist file under the
OSBundleLibraries section.

During system boot, drivers for PCI devices installed in a physical slot or embedded on the
motherboard are loaded. Thunderbolt and ExpressCard drivers are loaded at boot-time or on demand as
they are plugged in.

While Thunderbolt devices follow PCI devices’ rules for identification, they need an additional
change in order for the driver to load. In the driver’s Info.plist file, under each personality specified, the
following key needs to be set:

<key>IOPCITunnelCompatible</key>
<true/>

This tells the system that the driver is Thunderbolt-ready, and therefore, is safe to unload. It is
possible for a Thunderbolt and a PCIe device to share the same device driver; however, PCI drivers may
in many cases be written under the assumption that the driver/device will never be removed during
operation. A driver will not be loaded against a Thunderbolt device unless this key is set.

THUNDERBOLT UNIQUE INDENTIFIER

All Thunderbolt devices have a device ROM (DROM) that contains an additional ID identifying the vendor,
referred to as an Authority ID. This ID is part of a 64-bit UID number, which is unique for every Thunderbolt
device, just like the MAC address of a network interface. The authority ID is assigned by the Thunderbolt
naming authority (Intel) and not the PCI-SIG. At the time of writing, there are no publications explaining
how to access this number from the I/O Kit, or if it can be used to match Thunderbolt devices.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 9 PCI EXPRESS AND THUNDERBOLT

180

Driver Example: A Simple PCI Driver
It’s time to get our hands dirty. In order to demonstrate a PCI driver in action, we will take advantage of
the IOMatchCategory key to allow the loading of a secondary driver for a device. We will load our driver
against the display controller (graphics card/GPU) in this case, as it is a device guaranteed to be present
on all Macs—even laptops—as they all use PCIe internally. We will use the following to match against
the display controller:

<key>IOPCIClassMatch</key>
<string>0x03000000&0xFF000000</string>

■ Caution Be careful about making your own modifications to MyFirstPCIDriver, as it attaches to a device
already controlled by another driver. Therefore, performing actions other than querying information may be unsafe
and cause your system to crash or become corrupt.

Recall that 0x03 is a base class for display controllers. If you have more than one GPU, this will cause
multiple instances of the driver to be instantiated—one per device.

Let’s start with the class declaration for our driver, as shown in Listing 9-3.

Listing 9-3. MyFirstPCIDriver Class Declaration

#include <IOKit/IOLib.h>
#include <IOKit/pci/IOPCIDevice.h>

class com_osxkernel_MyFirstPCIDriver : public IOService
{
 OSDeclareDefaultStructors(com_osxkernel_MyFirstPCIDriver);

private:
 IOPCIDevice* fPCIDevice;

public:
 virtual bool start(IOService* provider);
 virtual void stop(IOService* provider);
};

There should be few surprises here if you’ve followed earlier examples. We simply declare a sub-
class of IOService and override the start() and stop() methods. Note that we include the file
IOKit/pci/IOPCIDevice.h that contains the definition of the IOPCIDevice class.

The implementation of MyFirstPCIDriver is shown in Listing 9-4.

Listing 9-4. MyFirstPCIDriver Class Implementation

#include "MyFirstPCIDriver.h"

#define super IOService
OSDefineMetaClassAndStructors(com_osxkernel_MyFirstPCIDriver, IOService);

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 9 PCI EXPRESS AND THUNDERBOLT

181

bool com_osxkernel_MyFirstPCIDriver::start(IOService * provider)
{
 IOLog("%s::start\n", getName());

 if(!super::start(provider))
 return false ;

 fPCIDevice = OSDynamicCast(IOPCIDevice, provider);
 if (!fPCIDevice)
 return false;

 fPCIDevice->setMemoryEnable(true);

 registerService();

 return true;
}

void com_osxkernel_MyFirstPCIDriver::stop(IOService * provider)
{
 IOLog("%s::stop\n", getName());
 super::stop(provider);
}

When a driver is matched successfully, either from the Info.plist dictionary or by invocation of the
driver’s probe() method, your driver will have its start() method called. As with the USB driver in
chapter 8, we check to ensure that the provider that is passed to us is in fact of the right type
(IOPCIDevice), which is good practice although it shouldn’t happen if your Info.plist correctly specifies
the IOProviderClass key.

If we have a valid IOPCIDevice, the next step is to enable the I/O resources of the device by calling
the IOPCIDevice::setMemoryEnable(bool enable) method. This will set a toggle bit in the device’s
command register, letting it know that we want to access its resources. Finally, our driver calls
registerService(), which will notify potential clients (possibly a higher-level driver) of our driver’s
arrival. We return true to indicate to the I/O Kit that the driver was loaded successfully.

We can now attempt to load MyFirstPCIDriver using the kextload utility. You can verify that it gets
loaded correctly by checking kernel.log in Console.app or by searching for it using IORegistryExplorer
as shown in Figure 9-3.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 9 PCI EXPRESS AND THUNDERBOLT

182

Figure 9-3. IORegistryExplorer showing MyFirstPCIDriver loaded

Accessing Configuration Space Registers
The IOPCIDevice class contains a number of helper methods that make it easy to access a device’s
configuration space registers. The following methods allow you to read and write configuration space
registers.

virtual UInt8 configRead8(UInt8 offset);
virtual UInt16 configRead16(UInt8 offset);
virtual UInt32 configRead32(UInt8 offset);

virtual void configWrite8(UInt8 offset, UInt8 data);
virtual void configWrite16(UInt8 offset, UInt16 data);
virtual void configWrite32(UInt8 offset, UInt32 data);

There are three variants of read methods and three variants of write methods, which allow you to
read or write an 8-bit value, a 16-bit value, or a 32-bit value from the offset specified. The offset
parameter is a byte-offset into the configuration space and must be between 0-255. To read a device’s
device ID and vendor ID, we can do the following:

UInt16 vendorID = fPCIDevice->configRead16(0);
UInt16 deviceID = fPCIDevice->configRead16(2);
IOLog(“vendor ID = 0x%04x device ID = 0x%04x\n”, vendorID, deviceID);

The previous request could also be achieved by a single call:

UInt32 bothIDs = fPCIDevice->configRead32(0);
IOLog(“vendor ID = 0x%04x device ID = 0x%04x\n”, bothIDs >> 16, bothIDs & 0x0000FFFF);

The preceding call uses integer byte offsets, but the IOPCIDevice.h file specifies constants that can
be used to address common register locations. So to make the code more readable, you can use
kIOPCIConfigVendorID and kIOPCIConfigDeviceID instead of the hard coded values. The full list of
available constants is shown in Listing 9-5.

CHAPTER 9 PCI EXPRESS AND THUNDERBOLT

183

Listing 9-5. Constants for Offsets of Common PCI Configuration Space Registers (IOPCIDevice.h)

enum {
 kIOPCIConfigVendorID = 0x00,
 kIOPCIConfigDeviceID = 0x02,
 kIOPCIConfigCommand = 0x04,
 kIOPCIConfigStatus = 0x06,
 kIOPCIConfigRevisionID = 0x08,
 kIOPCIConfigClassCode = 0x09,
 kIOPCIConfigCacheLineSize = 0x0C,
 kIOPCIConfigLatencyTimer = 0x0D,
 kIOPCIConfigHeaderType = 0x0E,
 kIOPCIConfigBIST = 0x0F,
 kIOPCIConfigBaseAddress0 = 0x10,
 kIOPCIConfigBaseAddress1 = 0x14,
 kIOPCIConfigBaseAddress2 = 0x18,
 kIOPCIConfigBaseAddress3 = 0x1C,
 kIOPCIConfigBaseAddress4 = 0x20,
 kIOPCIConfigBaseAddress5 = 0x24,
 kIOPCIConfigCardBusCISPtr = 0x28,
 kIOPCIConfigSubSystemVendorID = 0x2C,
 kIOPCIConfigSubSystemID = 0x2E,
 kIOPCIConfigExpansionROMBase = 0x30,
 kIOPCIConfigCapabilitiesPtr = 0x34,
 kIOPCIConfigInterruptLine = 0x3C,
 kIOPCIConfigInterruptPin = 0x3D,
 kIOPCIConfigMinimumGrant = 0x3E,
 kIOPCIConfigMaximumLatency = 0x3F
};

IOPCIDevice also provides a convenient method for setting individual bits of a register called
setConfigBits().

A read request to a missing or malfunctioning device will return a value of 0xFFFF (0xFF or
0xFFFFFFFF for the 8 and 32-bit variants), which is an invalid device/vendor ID. So if this value is
returned while reading either register it can be used to determine if a problem has occurred or if a
Thunderbolt device has been unplugged.

Writing values to the configuration space is simple but there are a few things to note. Many areas of
the configuration space are read-only. For example, the device ID and vendor ID are programmed into
the device’s PCI controller firmware. Also note that it is not possible to determine if a write to a register
location succeeded; you would have to read back the register or another that was affected by the write
transaction in order to determine its success.

■ Note If your driver needs to maintain compatibility with PowerPC-based systems, be aware that the PCI config
space is stored in little-endian format, however IOPCIDevice handles byte swapping for you.

A number of methods of IOPCIDevice, such as setMemoryEnable(), are simply convenient
abstractions that perform the appropriate configuration space reads or writes on your behalf. I/O to
configuration space is forwarded by an IOPCIDevice to its parent (an IOPCIBridge in most cases) until it

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 9 PCI EXPRESS AND THUNDERBOLT

184

reaches the root bridge, which is implemented by the Platform Expert, as the exact details are system
dependent.

Accessing the Extended Configuration Space
You may have noticed an inconsistency with the I/O functions in the previous section. We saw earlier
that the extended configuration space is 4096 bytes. How do you address offsets greater than 255 when
the config*() functions take a UInt8 type for the offset argument? The answer is the following family of
methods.

UInt32 extendedConfigRead32(IOByteCount offset);
UInt16 extendedConfigRead16(IOByteCount offset);
UInt8 extendedConfigRead8(IOByteCount offset);

void extendedConfigWrite32(IOByteCount offset, UInt32 data);
void extendedConfigWrite16(IOByteCount offset, UInt16 data);
void extendedConfigWrite8(IOByteCount offset, UInt8 data);

The methods have the same interface as is shown above. However, they use the wider data-type
IOByteCount for the offset parameter to allow access to offsets greater than 255.

Searching for Capabilities Registers
Because capability registers are not located at a fixed offset, the process of finding a capability register
involves searching for a capability ID and then reading the next byte to determine the length of the
capability, which also tells you the offset of the next capability. This process is followed moving down
the list until the right capability is located. Fortunately, we do not need to write this code manually as the
IOPCIDevice class provides two helper methods to locate capabilities:

virtual UInt32 findPCICapability(UInt8 capabilityID, UInt8* offset = 0);
virtual UInt32 extendedFindPCICapability(UInt32 capabilityID, IOByteCount* offset = 0);

The following demonstrates how to fetch the PCIe link status register, which contains the number of
active lanes (bits 4-9) and the link speed (bits 0-3) for the device.

IOByteCount offset = 0;
if (fPCIDevice->extendedFindPCICapability(kIOPCIPCIExpressCapability, &offset))
{
 UInt16 value = fPCIDevice->extendedConfigRead16(offset + 0x12);
}

The method will return the capability ID (kIOPCIExpressCapability in this case) or zero if the
capability with the specified ID could not be found. The output argument offset is used to store the
offset of the found capability. Once the capability is found we can read the link status register by adding
0x12 (18) to the offset.

PCI I/O Memory Regions
PCI devices may have up to six I/O regions. Each region contains either I/O memory or I/O space
(ports). The latter is seldom used in new devices as I/O ports are generally a very slow way of performing
I/O and can only be accessed using special in/out CPU instructions. Some legacy devices, such as IDE
controllers, may have both I/O ports and memory and can be controlled by either. On the other hand,

CHAPTER 9 PCI EXPRESS AND THUNDERBOLT

185

I/O memory is more efficient and also easier to access, as it can simply be mapped into the system’s
memory space and accessed like regular memory. I/O memory is commonly referred to as Memory
Mapped I/O (MMIO). This concept is not to be confused with mapping of memory between virtual
address spaces or the mapping of files in memory (mmap).

Access to and from mapped device memory can be cached by the CPU if the region has the memory
prefetchable bit set.

How is a device controlled through a memory region? That is entirely up to the device. For example,
one region could be used for control and status registers, while a second region could be used to read or
write data, for example input video from a camera. If you are reading this in electronic form, then this
very text may be continuously written to the memory region representing the frame buffer of your
graphics card. Just like USB, there are a number of standardized interfaces for PCI-based devices as well.
An example of this is VGA compatible graphics cards, which allow for the basic operation of a graphics
card using a known interface including memory regions and/or ports. Standardized interfaces for IDE,
SATA, and PCI-based USB controllers also exist, enabling an operating system to use its default driver for
any device that complies with such an interface.

Because PCI is “plug and play,” I/O resource for a PCI device is configured automatically by the
kernel/EFI (or BIOS in traditional PCs), in contrast to the obsolete ISA bus, where jumpers had to be
physically placed to select the base I/O addresses and interrupt line for each device separately in an
attempt to avoid resource conflicts.

When a device is configured, each region present in the configuration space will be configured with
its own address range. The size of the range depends on the device.

When a device is configured, it will be assigned a physical memory address range by the system. As
you can see from Figure 9-1 there is no register for storing the size of each memory region. So how does
the system know how big each region is? The size of a memory region is determined by the system by
setting all bits in one of the base address slots in the configuration space and then reading back the
value. A region must be of a size that is a power of two. Devices, if they support it, can combine two BARs
to form a 64-bit address.

Before the system or a driver can access any of the I/O regions, they need to be enabled by toggling a
bit in the device’s command register. We already saw how this was done in MyFirstPCIDriver by calling
fPCIDevice->setMemoryEnable(true) in the driver’s start() method.

Enumerating I/O Regions
To discover available memory regions of a PCI device (there may be up to six), let’s modify
MyFirstPCIDriver to dump some additional information about the device in its start() method, by
adding the code in Listing 9-6 after the call to setMemoryEnable().

Listing 9-6. Enumerating PCI I/O Memory Regions

for (UInt32 i = 0; i < fPCIDevice->getDeviceMemoryCount(); i++)
{
 IODeviceMemory* memoryDesc = fPCIDevice->getDeviceMemoryWithIndex(i);
 if (!memoryDesc)
 continue;
 #ifdef __LP64__
 IOLog("region%u: length=%llu bytes\n", i, memoryDesc->getLength());
 #else

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 9 PCI EXPRESS AND THUNDERBOLT

186

 IOLog("region%lu: length=%lu bytes\n", i, memoryDesc->getLength());
 #endif
}

If you compile and load the driver, you should see something like the following printed in the
kernel.log:

Apr 1 11:06:18 macbook kernel[0]: com_osxkernel_MyFirstPCIDriver::start
Apr 1 11:06:18 macbook kernel[0]: region0: length=16777216 bytes
Apr 1 11:06:18 macbook kernel[0]: region1: length=268435456 bytes
Apr 1 11:06:18 macbook kernel[0]: region2: length=33554432 bytes
Apr 1 11:06:18 macbook kernel[0]: region3: length=128 bytes
Apr 1 11:06:18 macbook kernel[0]: region4: length=131072 bytes

Your output may differ depending on your system model and graphics card (you may even have
multiple). In this case, the largest region (256 MB) is region 1, which is the graphics card’s frame buffer.

Mapping and Accessing Device Memory Regions
The previous section showed us how we can obtain information about available I/O memory regions.
We need to do some more work before we can actually access data from the regions. Furthermore, in
most real-world drivers, it is unnecessary to explicitly enumerate the regions, as a driver usually knows
exactly which regions, if not all that it needs to map. The following IOPCIDevice method can be used to
map a BAR region directly:

virtual IOMemoryMap * mapDeviceMemoryWithRegister(UInt8 reg, IOOptionBits options = 0);

The following is an example of its use.

IOMemoryMap *bar0Map = fPCIDevice->mapDeviceMemoryWithRegister(kIOPCIConfigBaseAddress0);
IOMemoryMap *bar1Map = fPCIDevice->mapDeviceMemoryWithRegister(kIOPCIConfigBaseAddress1);
if (bar0Map)
{
 UInt8 *address = (UInt8*)bar0Map->getVirtualAddress();
 // do something with address
}
…

If you have already obtained an IODeviceMemory (subclass of IOMemoryDescriptor) object by calling
getDeviceMemoryWithIndex() as in Listing 9-6, you can simply call the map() method which does the
same thing. In fact, that is exactly what mapDeviceMemoryWithRegister() does under the hood. Once an
IOMemoryMap object is obtained, you can call the getVirtualAddress() method to obtain a kernel virtual
address which can be used to access the mapping. The returned pointer can be read and written to in
the same way as regular memory assuming it points to I/O memory and not I/O space.

When a driver is done accessing the memory it should call the unmap() method.

Accessing I/O Space
I/O Space consists of a 16-bit address space and is an older way of communicating with devices. I/O
ports were also used for communication with serial and parallel ports in older computers, so it is not
specific to PCI, but rather a way for an external device (to the CPU) to interface with the processor. I/O

CHAPTER 9 PCI EXPRESS AND THUNDERBOLT

187

Space ranges assigned to a device can be accessed and mapped just like memory regions by using
mapDeviceMemoryWithRegister() and getDeviceMemoryWithIndex(). The difference however, is that you
cannot simply access the pointer returned by getVirtualAddress() as above directly. You have to use
one of the following methods.

virtual void ioWrite32(UInt16 offset, UInt32 value, IOMemoryMap* map = 0);
virtual void ioWrite16(UInt16 offset, UInt16 value, IOMemoryMap* map = 0);
virtual void ioWrite8(UInt16 offset, UInt8 value, IOMemoryMap* map = 0);
virtual UInt32 ioRead32(UInt16 offset, IOMemoryMap* map = 0);
virtual UInt16 ioRead16(UInt16 offset, IOMemoryMap* map = 0);
virtual UInt8 ioRead8(UInt16 offset, IOMemoryMap* map = 0);

Using I/O space in new devices is frowned upon, due to poor performance and the limited address
space it provides. Accessing mapped memory can take as little as 1 CPU cycle, while accessing a port can
take as many as 100 cycles on certain architectures.

Before I/O space can be accessed, it needs to be enabled in the device’s command register.
IOPCIDevice provides the setIOEnable() method for this purpose.

Handling Device Removal
Thunderbolt and ExpressCard devices may be unplugged during operation. Therefore, drivers that
handle these devices need some additional modifications over traditional PCI drivers, which are usually
not written with removal of the device in mind. Improper handling of device removal may lead to
hanging applications, system crashes, or disruptions to system stability or performance. For
Thunderbolt devices, removal is not an exceptional condition so a driver must be able to cope with the
removal of the device.

■ Caution Storage devices with mounted file systems may NOT be unplugged without the user first “Ejecting”
(unmounting) the file system. Failure to do so may result in loss or, in the worst-case scenario, corruption of the
file system. Thunderbolt based storage drivers should call:
setProperty(kIOPropertyPhysicalInterconnectLocationKey, kIOPropertyExternalKey) early in the
driver’s start() method to indicate to the I/O Kit that the storage is externally connected.

While it may seem complicated to handle device removals, the I/O Kit was designed specifically to
allow removal of devices. The IOService class handles a lot of the heavy lifting for us automatically.

Your driver may detect the first sign that a device has been removed if it receives the value 0xffffffff
(assuming a 32-bit read) while reading a value from memory mapped I/O (MMIO) or PCI configuration
space registers. Of course the value might actually be valid for some registers, however you can read an
alternate register or memory location that you know is guaranteed never to contain that value to confirm
if the device is unresponsive. The driver may detect this condition before the I/O Kit messages the driver
informing it that the device has been removed. If a driver determines that a device is removed, it should
cease all access to mapped memory and the configuration space as further requests will result in timing
out requests, which can take up to several milliseconds and may affect overall system performance.
Apple recommends funneling all accesses to MMIO through a single method, as follows:

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 9 PCI EXPRESS AND THUNDERBOLT

188

UInt32 com_osxkernel_MyFirstPCIDriver::readRegister32(UInt32 offset)
{
 UInt32 res = 0xffffffff;
 if (!fDeviceRemoved)
 {
 res = OSReadLittleInt32(fBar0Address, offset);
 if (res == 0xffffffff)
 fDeviceRemoved = true;
 }
 return res;
}

The method will prevent further accesses to registers once the device has been removed. We can
now use the member variable fDeviceRemoved in other parts of the driver to prevent operations that will
communicate with the hardware.

The I/O Kit handles device removal in three phases:

1. The bus controller (PCI root) will call the terminate() method on its client nub,
which will message its clients again and so forth until it reaches the bottom of
the stack. An IOService object that overrides the message() method will also
receive a kIOServicesIsTerminated message. The driver is now considered
inactive and cannot be enumerated or attached to by new clients. Existing
clients holding the driver open will still remain active.

2. Drivers in the stack will have their willTerminate() method called, and
thereafter didTerminate(). This process happens in reverse order, so clients
will call their providers instead of the other way around, until it reaches the
original provider that initiated the call to terminate() in the first place.
Remember that these methods are optional, and you can choose to implement
these based on your driver’s needs. In response to having its willTerminate()
method called, a driver should clear all queued requests and cancel in-flight
I/O such as unfinished DMA transfers.

3. The last phase of the removal will call the drivers stop() method, then
detach() which will remove it from the I/O Registry. If the driver’s retain count
reaches zero, the driver will be deallocated and its free() method will be
called.

If a user plugs the same device back again, a new instance of the driver will be allocated. Any
applications accessing the driver at the time will still be attached to the old instance of the driver. To
handle this situation, the application must install a notification to detect when the driver/device is
removed or added to the system. Because a driver instance is not reused when a device is reinserted, it
doesn’t need to return to its default state once it has handled a device removal. However, it is important
it properly release and free any used resources, as the new instance will reallocate or reclaim those
which could result in a memory leak or the new driver instance not coming up properly.

CHAPTER 9 PCI EXPRESS AND THUNDERBOLT

189

■ Tip Xcode supplies a command-line tool called ioclasscount that prints instance counts for OSObject derived
classes and can be used to help debug memory leaks related to device removals. See Chapter 16 for more
information.

Interrupts
Interrupts provide a mechanism for PCI and other hardware devices to signal the CPU asynchronously
when an event of interest occurs, such as when a key on a keyboard is pressed or when the position of
the mouse is moved or its buttons clicked. A web camera might send an interrupt every time a new video
frame becomes available, which will allow its driver to know when the new frame can be read from its
mapped memory region. Interrupts save the CPU from polling each device to determine if new data is
available. Legacy PCI devices used dedicated interrupt pins that were physically wired from the PCI
card/slot to a pin on the CPU. More modern Thunderbolt and PCIe-based technologies use message-
signaled interrupts (MSI), avoiding the need for dedicated physical lines between a device and the CPU
or interrupt controller chip. Traditional PCI cards had four interrupt pins, which limited the amount of
interrupts that could be used for a device. MSI however allow for up to 32 interrupts per device. While
MSI is electrically different from traditional interrupts, they do appear to function identically from a
driver’s point of view.

When a CPU receives an interrupt, it puts the currently running thread to sleep, even if the thread
belongs to the kernel itself. When the interrupt occur the CPU will try to locate an Interrupt Service
Routine (ISR) for the interrupt that was triggered.

The ISR gets routed to the driver that “owns” the device. It is possible for legacy interrupt based
devices to share interrupt lines. In this case, the driver will need to interrogate the device, usually by
reading a memory mapped register to determine if its device raised the interrupt.

MSI interrupts are never shared, although it is still good practice to anticipate this scenario.
Interrupts are not always generated just from hardware devices such as PCI. Interrupts are also sent by
the system timer, which is used to drive OS services such as the scheduler.

While an ISR runs, the CPU handling the interrupt will disable other interrupts, which means that
nothing will execute on the CPU until the ISR has completed.

As you can imagine, it would not be ideal for system performance if a driver performed large
amounts of work in the ISR callback. In fact, it is highly recommended that a driver do nothing but
acknowledge the interrupt. If the interrupt is not acknowledged, it may cause the ISR to go off
continuously, which would affect both performance and stability. When an ISR runs, this is often
referred to as the primary interrupt context. To improve system performance, most OSs, including OS X
and iOS, have mechanisms to defer handling of interrupts to a kernel thread at a later time. This is often
referred to as the secondary interrupt context. It is in the secondary interrupt context (thread) that the
real work of handling an interrupt is performed, such as copying incoming packets from a network. The
primary handler usually acknowledges the interrupt and then, if there is work to do, signals the
secondary handler.

In the primary context, it is not possible to do an operation that blocks or sleeps, which includes
most memory allocation routines and holding locks other than spin locks. This is because
blocking/sleeping is performed by giving up access to the CPU and temporarily yielding in favor of some
other thread. However, the ISR is not associated with a task or thread descriptor. Therefore, the
scheduler is not able to schedule the ISR back again as it is fired directly by the CPU.

The secondary interrupt handler has no such restrictions and can happily allocate memory and
block waiting for locks to become available. This is possible under OS X and iOS, but some operating

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 9 PCI EXPRESS AND THUNDERBOLT

190

systems may run the secondary handler (also called bottom half, the primary being the top half) in a
context that does not allow this.

While OS X and iOS impose fewer restrictions for what you can do in a secondary interrupt handler,
it still has to be very efficient.

Handling of primary interrupts cannot be done by a user space program. If a user space program
needs to know when an interrupt occur, it would need to be signaled by the driver instead.

In OS X, all primary interrupts are routed to CPU 0 (core) and secondary interrupts are spread across
all cores, which allows multiple drivers to run in parallel. Because secondary interrupts run in a separate
kernel thread (high priority), it can be scheduled like any other thread and thus run while interrupts are
enabled. Interrupt mechanisms are conceptually simple to implement. However, they can be
complicated by their parallelism if data is shared between the primary and secondary handler, and also
by user threads that may call into the driver that needs to access the same data. Great care needs to be
taken to ensure that there are no deadlocks and also to reduce contention between the various threads
of execution. This ensures that no thread will have to wait excessively to gain access to needed resources.
For more information on synchronization, refer to Chapter 7.

■ Note The term primary interrupt is sometimes referred to as direct interrupt, and secondary interrupts as
indirect interrupts.

I/O Kit Interrupt Mechanisms
The preferred way to handle both primary and secondary interrupts in I/O Kit is through the work loop
system. However, direct handling is also possible. If you are unsure about how work loops operate,
check out Chapter 7 for more details. There are three main mechanisms available to handle driver
interrupts. Figure 9-4 shows how the three different mechanisms respond to primary interrupts.

Figure 9-4. I/O Kit mechanisms for handling device interrupts

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 9 PCI EXPRESS AND THUNDERBOLT

191

• IOInterruptEventSource: The standard and easiest way to handle device
interrupts. You simply register a handler method, which is executed in the
secondary interrupt context. Your driver never has to deal with primary interrupts.
Interrupts will be disabled from the provider until the interrupt handler has
completed, thus guaranteeing single-threaded handling of the interrupt, as
another handler cannot run in parallel. IOInterruptEventSource is the preferred
way of handling interrupts.

• IOFilterInterruptEventSource: Shown on the left in Figure 9-4, it is a subclass of
IOInterruptEventSource and provides more flexibility. It allows a custom filter
action to be supplied. This filter action is invoked in primary interrupt context and
allows a driver to interrogate a hardware device to see if it really has an interrupt.
If the interrupt is shared between several devices or the device is a complex or
multi-function device with many possible interrupts or have requirements for very
low latency, this method is recommended. The secondary interrupts are
scheduled based on the return value of the installed filter action (routine).

• IOService::registerInterrupt(): The last method is to use
IOService::registerInterrupt() to register a C function that will be invoked
during primary interrupt. This method does not use the driver’s work loop and
provides no means to invoke a secondary interrupt handler. If secondary
interrupts are required, the mechanism for handling them would have to be
implemented manually.

Registering to Receive Interrupts
As with many things in the I/O Kit, registering interrupts is simple and most of the heavy lifting is
handled internally by the I/O Kit and the Platform Expert. We do not have to worry about assigning an
IRQ number or interrupt routing because that is automatically handled. A typical block of code
demonstrating how to register a driver to receive interrupts from its provider (IOPCIDevice) with a
primary interrupt filter is shown in Listing 9-7.

Listing 9-7. Creating a Filtering Interrupt Event Source

bool MyFirstPCIDriver::start(IOService * provider)
{
 ...
 IOWorkLoop *workLoop = (IOWorkLoop*)getWorkLoop();
 if (!workLoop)
 return false;

 IOFilterInterruptEventSource* interruptSource =
 IOFilterInterruptEventSource::filterInterruptEventSource(this,
 (IOInterruptEventAction) &MyFirstPCIDriver::interruptOccurred,
 (IOFilterInterruptAction) &MyFirstPCIDriver::interruptFilter,
 provider, 0);

 if (workLoop->addEventSource(interruptSource) != kIOReturnSuccess)
 return false;
 ...
}

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 9 PCI EXPRESS AND THUNDERBOLT

192

There are four steps involved:

1. Obtain or allocate an IOWorkLoop instance.

2. Allocate the event source, which is done using the factory method
filterInterruptEventSource(). We pass five parameters:

• A pointer to ourselves,

• A pointer to the secondary interrupt handler interruptOccurred() method

• The filter action method that will be executed in primary interrupt context.

• The last argument is the interrupt index number of the provider and can be
specified if a provider has more than one interrupt type. For example, the
provider may support Message Signaled Interrupts (MSI) in addition to
shared interrupts.

• The index of the interrupt type. See the section “Enabling Message
Signaled Interrupts” for details.

3. Add the event source to the IOWorkLoop instance using addEventSource().

4. The last step is to enable the event source, as it is disabled by default, even
after it is added to the work loop. To start receiving interrupts, simply call
interruptSource->enable().

It is important to make sure the driver is fully initialized and ready to receive interrupts before this is
called or, if possible, ensure interrupts are deactivated on the hardware itself until the driver is ready to
process them.

To register an IOInterruptEventSource, the process is nearly identical and is shown in Listing 9-8.

Listing 9-8. Creating an Interrupt Event Source

IOWorkLoop *workLoop = (IOWorkLoop*)getWorkLoop();
if (!workLoop)
 return false;

IOInterruptEventSource* interruptSource =
 IOInterruptEventSource::interruptEventSource(this,
 (IOInterruptEventAction) &MyFirstPCIDriver::interruptOccurred,
 provider, 0);

if (workLoop->addEventSource(interruptSource) != kIOReturnSuccess)
 return false;
...

The only difference is that it doesn’t accept a filter action, as is the case with
IOFilterInterruptEventSource.

Enabling Message Signaled Interrupts
If you need to be sure that Message Signaled Interrupts (MSI) is used, you must first enumerate the index
of the MSI interrupt type. In Listings 9-7 and 9-8, we simply passed 0 to get the first interrupt type of the

CHAPTER 9 PCI EXPRESS AND THUNDERBOLT

193

provider, which may or may not be MSI capable, depending on the device. The following method will
enumerate available interrupt types of the provider and return the index of the MSI interrupt type,
which can then be passed in as the index argument to
IOInterruptEventSource::interruptEventSource():

int com_osxkernel_MyFirstPCIDriver::findMSIInterruptTypeIndex()
{
 IOReturn ret;
 int index, source = 0;

 for (index = 0; ; index++)
 {
 int interruptType;
 ret = fPCIDevice->getInterruptType(index, &interruptType);
 if (ret != kIOReturnSuccess)
 break;

 if (interruptType & kIOInterruptTypePCIMessaged)
 {
 source = index;
 break;
 }
 }
 return source;
}

Handling Primary Interrupts
Let’s have a look at the implementation of the primary interrupt filter and how to schedule the
secondary interrupt handler. A Primary interrupt filter for an audio device might look something like
shown in Listing 9-9.

Listing 9-9. Primary Interrupt Filter Method

bool com_osxkernel_MyAudioPCIDriver::interruptFilter(OSObject* owner,
IOFilterInterruptEventSource * src)
{
 bool scheduleSecondaryInterrupt = false;

 com_osxkernel_MyAudioPCIDriver* me = (com_osxkernel_MyAudioPCIDriver*)owner;

 uint32_t registerContents = me->readRegister(kHardwareInterruptRegisterOffset);
 if (registerContents & kAudioInputInterruptBit)
 {
 scheduleSecondaryInterrupt = true;
 me->fAudioInputInterruptPending = true;
 }
 else if (registerContents & kAudioOutputInterrupt)
 {
 scheduleSecondaryInterrupt = true;
 me->fAudioOutputInterruptPending = true;
 }

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 9 PCI EXPRESS AND THUNDERBOLT

194

 return scheduleSecondaryInterrupt;
}

The method accepts two arguments. The first is an OSObject pointer, which value was passed during
construction of the IOFilterInterruptEventSource instance. We used the this pointer to pass ourselves.
The reason for this is that the interruptFilter() function is a static class member, as regular member
functions cannot be used as function pointers in C++. We simply cast the owner argument back to a type
of our driver class to retrieve our instance. We are also passed an instance of the event source.

■ Caution It may be tempting to put debug statements in the primary interrupt handler to see if it triggers or that
the right registers are set in hardware with IOLog(). Do NOT do this. It is a very bad idea. Did we mention it was a
bad idea? Your system will crash.

Because the filter function runs in primary interrupt context, it is unsafe to call most parts of the I/O
Kit framework, including memory allocation functions and most locking functions. You should also
avoid doing I/O or other long-winded operations in primary interrupt context. In the hypothetical
example shown in Listing 9-9, we are handling interrupts for a bi-directional audio device that has two
interrupts, one for each direction. In our filter, we first read the device’s interrupt register. If either of the
interrupts are set, we set the variable scheduleSecondaryInterrupt to true, which we use as a return
value. A return of true means we want the secondary interrupt handler to run, and a return of false
means that our device wasn’t interrupting. This either means we are sharing an interrupt line with
another device, which was the one that raised the interrupt, or it could be a false interrupt due to
malfunctioning hardware or interference. If we return true from the filter, our device’s interrupt will be
disabled until the secondary handler is scheduled and it completes its execution. This ensures that an
interrupt is serialized so our driver doesn’t need to worry about locking between the primary and
secondary handlers, as they never run in parallel.

There are some cases where this behavior is undesired, and we can prevent the interrupt from being
disabled by modifying our interrupt filter to always return false, which will ensure the interrupt doesn’t
get disabled, but that also prevents the secondary interrupt from being scheduled. However, we can
manually schedule it as follows instead:

bool com_osxkernel_MyFirstPCIDriver::interruptFilter(OSObject* owner,
IOFilterInterruptEventSource * src)
{
…
…
 if (scheduleSecondaryInterrupt)
 src->signalInterrupt();
 return false;
}

This will have the effect of allowing the device to issue primary interrupts, even if our secondary
interrupt handler is already running. In the case of our audio device, this may allow concurrent
processing of input and output interrupts.

CHAPTER 9 PCI EXPRESS AND THUNDERBOLT

195

Handling Secondary Interrupts
The secondary interrupt handler is the same regardless if it is used with an IOInterruptEventSource or
an IOFilterInterruptEventSource. The prototype is similar to that of the primary interrupt filter
function, but has an additional parameter that contains the index of the interrupt source of the provider,
if a provider has more than one interrupt. Our audio device has only one interrupt, and we need to read
the device’s register to determine which events were signaled. If the device had several interrupts, we
could instead differentiate this by looking at the intCount parameter. A very simplistic implementation
of the secondary interrupt handler for our imaginary audio device is shown in Listing 9-10.

Listing 9-10. Secondary Interrupt Handler Method

void com_osxkernel_MyAudioPCIDriver::interruptOccurred(OSObject* owner,
IOInterruptEventSource* src, int intCount)
{
 com_osxkernel_MyFirstPCIDriver* me;
 me = (com_osxkernel_MyFirstPCIDriver*)owner;

 if (me->fAudioInputInterruptPending)
 me->handleAudioInputInterrupt(); // Start next DMA
 if (me->fAudioOutputInterruptPending)
 me->handleAudioOutputInterrupt(); // Start next DMA
}

We detect which interrupt that was pending and execute driver methods for handling the interrupts.
The methods may, for example, signal a user application that data is now available and setup a new
DMA transaction to fill another buffer. The reason why we use the instance variables
fAudioInputInteruptPending and fAudioOutputInterruptPending rather than re-reading the interrupt
status register from Listing 9-9 is that many hardware devices will automatically clear the interrupt
register once the register is read, which also serves to acknowledge the interrupt.

The secondary interrupt handler may run in parallel to user space threads calling our driver, so it is
important to have proper synchronization in place to guard shared data. Note that the secondary
interrupt handler itself runs on the driver’s work loop, which is single-threaded, so two secondary
interrupt handlers are guaranteed not to run in parallel.

Direct Memory Access
Direct Memory Access (DMA) is a concept that allows a device to transfer data to or from system
memory without the involvement of the CPU, leaving it free to perform other tasks, which has a
significant impact on overall system performance, as I/O transfers are typically very slow relative to the
CPU. DMA also allows for so-called zero-copy, in that we can transfer memory from a user space buffer
directly to a device without any memory copies. PCI doesn’t have a central DMA controller, but uses the
concept of bus mastering, which allows the device to take control over the bus and initiate transfers. The
IOPCIDevice class offers the setBusMasterEnable() method, which gives the device permission to act as a
bus master. DMA transfers are directional. When the CPU wishes to transfer data from system memory
to a device, this is referred to as outbound DMA, whereas transfers from a device to the system memory
are referred to as inbound DMA.

There are no standard I/O Kit classes for controlling DMA to PCI devices as each device may
implement DMA differently (the DMA function of a device is often referred to as a DMA engine).
However, in most cases, the process is very similar. A device may support several concurrent DMA

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 9 PCI EXPRESS AND THUNDERBOLT

196

transfers and each transfer is said to have its own DMA channel. The concept of a DMA transfer is
simple. For an outbound DMA transfer, the following steps typically occur.

1. The driver needs to identify the memory buffer to be transferred and pin the
memory.

2. The driver will inform the device of the location (physical address) and size of
the memory, which is typically done by writing the values to a register.

3. The driver will toggle a bit in one of the device’s registers to indicate that it
should start the DMA.

4. The device will transfer the contents of the buffer directly from system
memory without the involvement of the CPU. It sets another register bit to
indicate the completion of the transfer and raise an interrupt.

5. The driver will handle the interrupt, check if the DMA completion bit is set,
and possibly prime another DMA transaction if there are more data to send.

The process of setting up and handling an inbound DMA transfer is the same. The only difference is
that the device writes to the buffer instead of reading from it. We still need to tell the device the memory
location where the data is and we still get an interrupt once the transfer is done. For a device like a
storage device, the driver always initiates I/O, and it will control when to read and when to write data.
However, devices such as network controllers are slightly different, in that data may arrive on the device
asynchronously in response to an external event. In this case, the device will raise an interrupt and set a
flag in its registers so the driver knows that the device has data in its input buffer. The driver will then
prime a new DMA buffer and start a transfer to empty the device’s input buffer. Once the device has
completed the transaction, it will raise another interrupt to inform the driver that the transfer has
completed.

While DMA is simple from a conceptual point of view, it is complicated by the following factors:

• Memory caching on the CPU can cause coherency issues because data written by
the CPU may be held in a cache on the CPU and not be committed to system
memory straight away. If a DMA transfer is started at this time, the device may
read the incorrect data, the previous contents of the RAM, or simply garbage. On
Intel systems, this issue is handled automatically by hardware and does not
require a driver to intervene. For PowerPC processors, I/O Kit provides the
IOFlushProcessorCache() function which flush the CPU caches to system memory
ensure that the device will see the correct memory contents. The function exists
but does nothing on Intel based systems.

• On 64-bit platforms (or when PAE is used), some older PCI-based hardware
devices may be unable to access memory addresses greater than 32-bit. Two
strategies exist for handling these situations. The poorest, in terms of
performance, uses a bounce buffer that is located at an address range the device
can access. Contents of an I/O buffer located at addresses over 32-bit would have
to be copied to the new buffer before the device can access the data. The second
approach involves using special hardware circuitry found on modern computers
that can dynamically remap any memory location into a “virtual” physical address
that the device can access.

CHAPTER 9 PCI EXPRESS AND THUNDERBOLT

197

• Although, from a user application’s point of view, memory appears to be
contiguous, user space memory is composed of physical pages that may be
scattered across RAM. Let’s say an application wants to output a buffer containing
a large HD video frame to a video device. Because the frame is severely
fragmented in physical memory, it is not enough to simply tell the device the
address and size of a single buffer. We need to tell it about all the fragments that
make up the video frame. So instead of a telling the device a location and size of a
buffer, we instead provide it with a buffer containing a list of locations for each
fragment. This buffer is known as a scatter/gather list. We will discuss this concept
in more detail shortly.

Most of the complexity from a driver’s point of view exists in setting up and preparing the memory
buffer for transfer. There are a number of steps to perform. The buffer needs to be pinned down, as a
page-out operation on the underlying memory could be disastrous, particularly if the transfer is directed
to a storage device. Since some devices can only access memory situated in a 32-bit physical address
range, we need to ensure that the physical memory backing our buffer is located in a range the device
can access, or we have to ensure it will be copied or remapped. We then need to work out the individual
segments of physical memory that our buffer is backed by and capture each segment’s physical address
and length to create a scatter/gather list. Things may be complicated further depending on the
capabilities of the device, if it has special requirements for alignment, or limits on the length of
individual segments. Figure 9-5 shows a simple scatter/gather list.

Figure 9-5. Simple scatter/gather list

An actual implementation might be more complex and have additional data associated with each
descriptor, but we have kept it simple to illustrate the concept. Figure 9-5 shows how a 32K virtual buffer
is composed of four physical segments of different lengths. The scatter/gather list is an array of DMA
descriptor elements, each containing a pointer to the next descriptor in the list. Each element has an
address and length of the physical segment it represents. When a DMA transfer is started, we can simply
tell the device the location of the first descriptor, and the device will read memory from the first
descriptor and then follow the next pointer to the next descriptor element until the end of the list, which
is terminated by a NULL pointer in this case. Some devices may have S/G lists that connect the last
descriptor to the first creating a circular buffer for continuous (streaming) DMA.

In Figure 9-5, we are using a data structure, which in computer science and engineering parlance is
known as a singly linked list. It would perhaps be simpler to just implement the list as a standard array.
However, the singly linked list approach is more flexible as the S/G list itself can effectively be scatter-
gathered, as each DMA descriptor element doesn’t necessarily need to be adjacent to each other in
memory either.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 9 PCI EXPRESS AND THUNDERBOLT

198

Translating Physical Addresses to Bus Addresses
Modern computer systems may take advantage of a special memory management unit (MMU) referred
to as the IOMMU, or I/O Memory Management Unit. The IOMMU is similar to the system MMU that
provides virtual to physical memory translation for the CPU, but the IOMMU differs in that it provides
translation to a hardware device instead. When an IOMMU is involved a hardware device will use
addresses provided by the IOMMU instead of using physical addresses directly. The term bus address is
typically used to avoid confusion with physical addresses. Figure 9-6 shows how the IOMMU interacts
with a system conceptually.

Figure 9-6. IOMMU address translation

When an IOMMU is not used, a hardware device will use the same physical addresses as the CPU.
The IOMMU offers many advantages that range from security to performance and solves some of the
issues discussed earlier, such as DMA transfers to older devices that are limited to 32-bit addressing. The
IOMMU can remap memory, even if the physical memory is located at high memory addresses, so that
the device can access the memory. This helps system performance, as the only other solution for this
problem is to have a “bounce buffer” that we can copy to and perform DMA from, should the original
buffer be located at an address inaccessible to the device. From a security/stability point of view, the
IOMMU works like protected/virtual memory does between tasks. PCI devices normally have full access
to hardware, so if a driver or device is malfunctioning, it is possible for it to corrupt random parts of
memory. The IOMMU can map up a limited aperture and prevent access to addresses outside that
window. The IOMMU is traditionally used for virtualization on PC servers as it allows hardware to be
shared without interference between virtual machine instances and prevents rogue drivers from
performing DMA transfers to parts of memory belonging to other VM instances, which poses a serious
security problem.

Mac OS X will take advantage of the IOMMU where present. An IOMMU would be represented by a
subclass of the IOMapper class, so you can search for that in IORegistryExplorer to determine if your
system has one. Fortunately, we never have to deal with the IOMMU directly. Classes like
IOMemoryDescriptor and IODMACommand (discussed later in this chapter) take care of setting this up
internally, and we can remain blissfully unaware if the address from functions, such as
getPhysicalAddress(), is a bus address mapped by the IOMMU or an actual physical address. Though
there should be few reasons to do so, you can implement your own subclass of IOMapper to handle
address translation yourself, and supply this to classes such as IODMACommand. IOMMUs were typically

CHAPTER 9 PCI EXPRESS AND THUNDERBOLT

199

only found in high-powered workstations and servers, but are now also found in consumer grade
platforms such as Intel’s Core i7.

Preparing Memory for DMA
Before a DMA transfer can occur, there are a few things that need to be done to prepare the memory for
transfer. The first is to ensure the memory is paged into resident memory, and that the memory pages
backing the buffer are locked (pinned) so they will not be paged-out during the DMA transfer. To achieve
this, you need to create an IOMemoryDescriptor for the buffer. The memory descriptor must be
constructed with the task the buffer belongs to, kernel_task if the kernel owns the buffer, otherwise the
task pointer of a user space process. If the direction of transfer is known at this time, you can pass that
while constructing the descriptor. The direction will be kIODirectionOut, if memory is to be transferred
to the device, and kIODirectionIn, if memory is to be transferred from the device. There is also
kIODirectionInOut, which can be used for buffers that need to be used for transfers in either direction. It
is important to specify the correct direction as it may have implications for cache-coherency as
discussed above.

If you need to DMA from a kernel buffer, the recommended way is to use
IOBufferMemoryDescriptor, which is a subclass of IOMemoryDescriptor that also allocates memory for
you.

The prepare() method of IOMemoryDescriptor takes care of paging in memory and pinning it down.
You can optionally pass the direction of the DMA transfer to prepare() if it wasn’t specified at the time
the descriptor was initialized.

■ Caution Calls to IOMemoryDescriptor::prepare() must be matched with a call to
IOMemoryDescriptor::complete(). It is a bug to call complete() on a descriptor that was not previously
prepared or prepared unsuccessfully.

Building a Scatter/Gather List
There are several ways of building an S/G list. The most basic way is to use
IOMemoryDescriptor::getPhysicalSegment() to enumerate the underlying physical segments as shown
in Listing 9-11.

Listing 9-11. Retrieving Physical Segments from a Buffer

IOBufferMemoryDescriptor* fDMABuffer =
IOBufferMemoryDescriptor::inTaskWithOptions(kernel_task, kIODirectionOut, 1024 * 1024, 4096);
IOByteCount offset = 0;
while (offset < fDMABuffer->getLength())
{
 IOByteCount segmentLength = 0;

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 9 PCI EXPRESS AND THUNDERBOLT

200

#ifdef __LP64__
 addr64_t address = fDMABuffer->getPhysicalSegment(offset, &segmentLength);
 // In a real driver, we would store the address and length in a S/G list.
 // We just log it here.
 IOLog("Physical segment: address 0x%llx segmentLength: %llu\n", address, segmentLength);
#else
 addr64_t address = fDMABuffer->getPhysicalSegment(offset, &segmentLength,
kIOMemoryMapperNone);
 IOLog("Physical segment: address 0x%llx segmentLength: %lu\n", address, segmentLength);
#endif
 offset += segmentLength;
}

The output of Listing 9-11 will produce something similar to what is shown here:

Jun 3 22:28:12 macpro kernel[0]: Physical segment: address 0x13837000 segmentLength: 4096
Jun 3 22:28:12 macpro kernel[0]: Physical segment: address 0x143b6000 segmentLength: 4096
Jun 3 22:28:12 macpro kernel[0]: Physical segment: address 0x1c035000 segmentLength: 4096
…
…
Jul 3 22:28:12 macbook kernel[0]: Physical segment: address 0x14172000 segmentLength: 4096

In the preceding output, there were no contiguous segments so every segment consists of a separate
page (4096 bytes). However, if we pass the kIOMemoryPhysicallyContiguous flag when we allocate the
buffer, we get the following:

Jun 3 22:21:08 macpro kernel[0]: Physical segment: address 0x5975000 segmentLength: 1048576

It’s not a good idea to allocate memory contiguously in a driver; for a full discussion why, see the
section on IOBufferMemoryDescriptor in Chapter 6. We do it here for demonstration purposes.

The approach in Listing 9-11 may work just fine depending on the capabilities of your device, but
there are some problems with this technique:

• Some hardware devices have constraints on the maximum or minimum length of
a physical segment it can handle in an S/G list.

• The device may require segments of a certain size, for example, page sized
segments, so it will match the hardware’s buffer. In this case we may need to break
larger segments into smaller chunks manually.

• Many hardware devices work with big-endian addressing. Therefore, we need to
manually byte swap the physical addresses to ensure that the device actually
accesses the correct location.

The IODMACommand Class
The IODMACommand solves a number of the previously discussed problems associated with DMA. It can
automatically divide segments to the correct size needed by the hardware, as well as ensure that devices

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 9 PCI EXPRESS AND THUNDERBOLT

201

only capable of 32-bit addressing are guaranteed to be in the correct range. This is achieved by using the
IOMMU to remap addresses if an IOMMU is present, or by employing a workaround if not. It is also
capable of providing 32-bit or 64-bit physical or bus addresses in little or big-endian format. The
IODMACommand class supersedes the IOMemoryCursor class, which performs many of the same functions,
but offers fewer options.

An instance of the IODMACommand can be constructed with the factory method withSpecification()
as following.

static IODMACommand * withSpecification(
 SegmentFunction outSegFunc,
 UInt8 numAddressBits,
 UInt64 maxSegmentSize,
 MappingOptions mappingOptions = kMapped,
 UInt64 maxTransferSize = 0,
 UInt32 alignment = 1,
 IOMapper *mapper = 0,
 void *refCon = 0);

Let’s look at the parameters in more detail. The first parameter is a function pointer to a function
that is used to output segment information. You can write your own if you are supporting an esoteric
hardware device, however, for most cases, you can use one of the supplied ones:

• kIODMACommandOutputHost32 outputs 32-bit addresses in host byte order

• kIODMACommandOutputBig32 outputs 32-bit addresses in big-endian format

• kIODMACommandOutputLittle32 outputs 32-bit addresses in little-endian format

• kIODMACommandOutputHost64 outputs 64-bit addresses in host byte order

• kIODMACommandOutputBig64 outputs 64-bit addresses in big-endian format

• kIODMACommandOutputLittle64 outputs 64-bit addresses in little-endian format

The next parameter, numAddressBits, allows you to specify the maximum number of address bits the
hardware can address, which is not always 32-bit or 64-bit. It can, for example, be 36-bit or even less
than 32-bit in some cases. If the value passed is greater than 32-bit, you must specify one of the 64-bit
output segment functions.

If physical pages are located at an address higher than what the device can address, some or all
pages may be copied to temporary pages that meet the address requirements, unless there is an IOMMU
present. Needless to say extra copying is expensive and can be avoided if you DMA from memory
allocated by an IOBufferMemoryDescriptor with the inTaskWithPhysicalMask() factory method, as it
allows you to allocate memory with physical addresses that are in the range specified by a bitmask. This
method can also be used to allocate memory directly into the address space of a user space task. This is
useful as DMA to/from user space allocated buffers can be problematic, as there is no way to control
how the memory is allocated.

The parameter maxSegmentSize should be set to the largest physical contiguous segment that a
device can handle as a segment in a scatter/gather list. Zero can be passed if there are no such
restrictions.

The mappingOptions parameter allows bypassing of the IOMMU if one is present in the system. The
default is to use the IOMMU. The mapper parameter allows you to specify an alternate IOMapper instance
to be used instead of the default.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 9 PCI EXPRESS AND THUNDERBOLT

202

The maxTransferSize is the total number of bytes that can be transferred per DMA transaction. For
example, a hard drive may have 1MB cache buffer, so we would not want to transfer more information
than what it can accept.

If the hardware has specific alignment requirements, this can be specified with the alignment
parameter. If the supplied memory is not aligned properly, it may again result in the copying or
remapping of memory.

Let’s modify the previous example in Listing 9-11 that used
IOMemoryDescriptor::getPhysicalSegment() to instead use IODMACommand as shown in Listing 9-12.

Listing 9-12. Generating a Scatter/Gather List Using IODMACommand

IOReturn com_osxkernel_MyFirstPCIDriver::prepareDMATransfer()
{
 IODMACommand* dmaCommand;
 IOReturn ret = kIOReturnSuccess;

 dmaCommand = IODMACommand::withSpecification(kIODMACommandOutputHost64, 36, 2048,
 IODMACommand::kMapped, 0, 1);
 if (!dmaCommand)
 {
 return kIOReturnNoMemory;
 }

 // Will also prepare the memory descriptor.
 ret = dmaCommand->setMemoryDescriptor(fDMABuffer);
 if (ret != kIOReturnSuccess)
 return ret;

 UInt64 offset = 0;
 while (offset < fDMABuffer->getLength())
 {
 IODMACommand::Segment64 segment;
 UInt32 numSeg = 1;

 ret = dmaCommand->gen64IOVMSegments(&offset, &segment, &numSeg);

 IOLog("%s::gen64IOVMSegments() addr 0x%qx, len %llu bytes\n",
 getName(), segment.fIOVMAddr, segment.fLength);

 if (ret != kIOReturnSuccess)
 break;
 }

 //
 // Setup DMA transfer here for real hardware devices.
 //

 if (dmaCommand->clearMemoryDescriptor() != kIOReturnSuccess)
 {
 IOLog("Failed to clear/complete memory descriptor\n");
 }

CHAPTER 9 PCI EXPRESS AND THUNDERBOLT

203

 dmaCommand->release();
 return ret;
}

In the previous example, we created an IODMACommand with constraints on the maximum physical
address bits we want to 36 bits, and the maximum physical segment size to a half page, or 2048 bytes.
The output of this code gives something as follows:

kernel[0]: com_osxkernel_MyFirstPCIDriver::gen64IOVMSegments() addr 0x13b9d5000, len 2048
kernel[0]: com_osxkernel_MyFirstPCIDriver::gen64IOVMSegments() addr 0x13b9d5800, len 2048
kernel[0]: com_osxkernel_MyFirstPCIDriver::gen64IOVMSegments() addr 0x1335d4000, len 2048
kernel[0]: com_osxkernel_MyFirstPCIDriver::gen64IOVMSegments() addr 0x1335d4800, len 2048
kernel[0]: com_osxkernel_MyFirstPCIDriver::gen64IOVMSegments() addr 0x3f913000, len 2048
kernel[0]: com_osxkernel_MyFirstPCIDriver::gen64IOVMSegments() addr 0x3f913800, len 2048
kernel[0]: com_osxkernel_MyFirstPCIDriver::gen64IOVMSegments() addr 0x3b1d2000, len 2048
kernel[0]: com_osxkernel_MyFirstPCIDriver::gen64IOVMSegments() addr 0x3b1d2800, len 2048
kernel[0]: com_osxkernel_MyFirstPCIDriver::gen64IOVMSegments() addr 0x18b11000, len 2048
kernel[0]: com_osxkernel_MyFirstPCIDriver::gen64IOVMSegments() addr 0x18b11800, len 2048
….

You will notice first that we have some addresses that are greater than 32-bit, but still below our 36-
bit specification, and that segments are now limited to 2048 bytes, even though the first segment is
physically contiguous with the second.

Summary
In this chapter, we have discussed:

• A technology overview of the PCI related standards PCI Express, Thunderbolt and
also the lesser-used ExpressCard standard.

• The PCI configuration space, which is used by the operating system to enumerate,
control, and operate PCI–based devices. Later in the chapter, we also discussed
how accessing these from a driver using I/O Kit provided functionality.

• PCI support in the I/O Kit with IOPCIFamily. The cornerstone of the kernel PCI
layer is the IOPCIDevice class, which is used as a provider for PCI-based drivers.

• Thunderbolt devices are compatible with PCI and also represented by the
IOPCIDevice class.

• How to create a matching dictionary for PCI-based devices so that a driver can be
loaded automatically when the device is plugged in or at boot.

• How to access and use memory mapped I/O memory and regions.

• How to handle removal of externally connected devices, notably for Thunderbolt
and ExpressCard.

• Interrupt handling in the I/O Kit for primary and secondary interrupts using
IOInterruptEventFilter and related classes.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 9 PCI EXPRESS AND THUNDERBOLT

204

• Direct Memory Access and how to create scatter/gather lists for transferring large
non-contiguous chunks of memory. We also discussed common problems related
to DMA.

• The IODMACommand is used to help translate memory addresses into bus addresses
and to help manage the complexity of building scatter/gather lists.

C H A P T E R 10

205

Power Management

Power management has become a fundamental feature across all computing devices. Every platform
that runs Mac OS X can be put into a lower power mode, and so power management is just as important
for a desktop computer that is always connected to a power supply as it is for a laptop or an iPhone that
is running from a battery.

Even a Mac Pro, for example, can be placed into “sleep” mode, which puts the computer and its
connected peripherals into a low power mode. During sleep mode, the CPU is put into a suspended
state, the computer’s display is powered off, and the hard drive is spun down. If the computer has PCI
expansion slots, these will be powered down during sleep, with only a small amount of auxiliary power
provided to allow a PCI card to initiate waking the computer from sleep.

Not all drivers will need to handle power management events. Whether a driver needs to implement
power management will depend on the capabilities of the device and where the device draws power
from. For example, if the driver for a PCI device doesn’t support power management, the system must
maintain full power to its PCI slots when it enters sleep mode because a PCI card is powered from the
computer’s motherboard. This leaves the computer in a state called “doze”, which is not a complete
sleep mode. Note that if the power to PCI slots is suspended during sleep, any PCI devices will lose their
configuration and must be reinitialized by their driver when the system wakes, which can only happen if
the driver receives power management events.

As the example of a PCI card’s driver demonstrates, the drivers for hardware devices play a role in
the system’s transition from one power state to another. Drivers can opt to receive a notification before
the system goes into the low power sleep mode, at which time the driver can prepare its device for the
new power state. Similarly, a driver can receive a notification when the system wakes from sleep, at
which time the driver can restore its device to full operating functionality.

The I/O Registry Power Plane
Part of the complexities of power management is that the power state for one device usually cannot be
looked at in isolation, since a device will typically be dependent on another device through which it
draws power and, in turn, may have devices that are dependent on it for their power. Consider, for
example, a PCI peripheral card that implements a USB host and provides USB ports. The card will be
powered by the PCI bus and will provide power over the USB bus to devices that are connected to its
ports. This has implications for the power management system; the PCI card can only enter a low power
state if there are no USB devices connected to it or only if all of the USB devices connected to it are in a
low power state themselves. Similarly, when the system is put to sleep, the PCI slot will lose power, and
any USB devices that are connected to the card must be informed of the change in power state as well.

To model this power dependency, the I/O Kit maintains a tree that represents the power
dependencies between hardware devices in the system. This tree is stored in its own section of the I/O
Registry in a plane known as the “power plane.” The power plane can be viewed using the
IORegistryExplorer utility, as shown in Figure 10-1.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 10 POWER MANAGEMENT

206

Figure 10-1. A view of the power plane in IORegistryExplorer

Each driver that supports power management is represented as a node in the power plane
connected to the parent nodes, which represents devices that provide it power, and with children nodes,
which represent devices that it provides power to. The parent of a device in the power plane is typically
the driver’s provider class (that is, the same object that the driver is connected to in the service plane of
the I/O Registry), although this does not need to be the case.

The tree representation makes it very easy to visualize the power dependencies between devices in
the system and to see which devices draw their power from a particular hardware device. The tree
structure also provides an important role for the system itself, since it allows the system to determine
which devices will be affected when the power state of one device changes.

Power Management in the I/O Kit
The system’s power management, including transitions from one power state to another, is handled by
the I/O Kit. Power management is performed by drivers that run in the kernel; user space drivers that
can be written for hardware, such as USB devices, cannot play a part in the power management of that
device. The I/O Kit provides support for power management in the IOService superclass from which all
Mac OS X drivers are ultimately derived. This makes power management accessible to all drivers,
providing that the driver has chosen to insert itself into the power plane.

The IOService also manages synchronization between a parent device and the children devices that
depend on it for power. For example, before transitioning into a lower power state, the system will
ensure that all children devices have transitioned to the lower power state before the parent device, on
which they rely on for power, is sent a request to lower its power state. Similarly, when waking from

CHAPTER 10 POWER MANAGEMENT

207

sleep, the system will ensure that a parent device has become fully powered before sending a request to
the dependent children devices to raise their power state.

Transitions from one power state to another are incredibly difficult because it can take some time
for hardware to change to the new state. This can lead to situations where a power state transition is
initiated while an existing power state transition is in progress. For example, a hard disk may spin down
due to inactivity, but then a read request may immediately be made, requiring the disk to spin up again.
The IOService class handles a lot of the details that would otherwise make power management difficult
to implement. Each power state transition is serialized by IOService, and a driver will never receive a
power request until it has finished handling its previous power request.

The support provided by the IOService class for power management means that a driver is free to
concentrate only on the power management of its own device; the I/O Kit framework will take care of the
details that would otherwise make power management difficult to implement.

Power state changes can be initiated by two sources. The system may request that a device be
placed into a new power state in response to the computer being put to sleep, or a device (or its driver)
may initiate a change of its power state. An example of a device initiating a transition to a lower power
state is the computer display switching itself off when the computer hasn’t been used for a period of
time or a hard disk spinning down if it hasn’t received a read or write request for some time

A driver can choose to implement support for either of these two types of power management; it can
choose to respond to changes to system power, such as a sleep event, or it can volunteer to lower its
power state itself, such as by spinning down its disk. Both of these cases are handled through the I/O Kit
and are discussed in this chapter.

In general, power management is necessary for a device that not only has hardware support for
being placed into a lower power state but also has the opportunity to be placed into a low power state
due to the way that it is used. Depending on the type of hardware device that your driver manages, there
may be little work to support transitions between various power states.

■ Note This chapter describes the work that a generic I/O Kit driver needs to take to handle power management
requests. Certain I/O Kit driver families, such as the audio family, will add their driver to the power plane and
respond to power management requests on behalf of the driver. Before adding power management support to your
driver, you should check that your driver’s superclass is not already handling power requests.

Responding to Power State Changes
The most basic level of power management support that a driver can implement is to opt-in to receive
notifications for changes to the overall system power state. These include notifications before the system
is put to sleep and a notification when the system wakes from sleep. This is particularly important for the
driver of a PCI device, since these notifications need to be handled to allow the PCI bus to be powered
down completely during system sleep.

The I/O Kit’s power model is unique in that the framework doesn’t dictate the set of power states
that a driver must implement; rather a driver defines its own list of power states that match the
capabilities of the device that it controls. At the very least, a driver must define two states: one in which
the device is off, and another in which the device is fully operational. During the off state, the device
consumes no power (and so draws no power from its parent in the power plane). In this state, the device
is unusable. During the on state, the device is drawing power and all of its functionality is available to the

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 10 POWER MANAGEMENT

208

user. When the system is put to sleep, the device is put into the off state, and when the system is awake,
the device is put into the on state.

In addition to the off and on states, a driver can define power states that correspond to states in
which, for example, the device is still powered but at a lower power state where it is still usable but with
reduced capabilities. For example, the driver for an LCD monitor could create a power state to describe a
mode in which the display is still running but the backlight has been dimmed.

Each power state that a device supports is described by a structure known as IOPMPowerState, which
is defined in the header file <IOKit/pwr_mgt/IOPMpowerState.h>. The IOPMPowerState structure is defined
as follows:

struct IOPMPowerState
{
 unsigned long version;
 IOPMPowerFlags capabilityFlags;
 IOPMPowerFlags outputPowerCharacter;
 IOPMPowerFlags inputPowerRequirement;
 unsigned long staticPower;
 unsigned long unbudgetedPower;
 unsigned long powerToAttain;
 unsigned long timeToAttain;
 unsigned long settleUpTime;
 unsigned long timeToLower;
 unsigned long settleDownTime;
 unsigned long powerDomainBudget;
};

The fields of this structure are described as follows:

• version: Holds the version of this IOPMPowerState structure, allowing the structure
to be extended in future versions of the I/O Kit while maintaining backwards
compatibility. As of Mac OS X 10.7, the structure is still at version 1; the header file
provides a definition kIOPMPowerStateVersion1 that can be used.

• capabilityFlags: A bitmask of flags that describes the capabilities of the device in
this power state. Possible flags are:

• kIOPMPowerOn indicates that the device requires power from its parent and
is able to provide power to its children.

• kIOPMDeviceUsable indicates that the device is usable in this state.

• kIOPMLowPower indicates that the device is running at a reduced power state
compared to the kIOPMPowerOn state. The device may still be usable in this
state, which can be indicated by setting both the kIOPMDeviceUsable and
kIOPMLowPower bits. The device may or may not be able to provide power to
its children while in the low power state.

• kIOPMPreventIdleSleep is set to disable the system from going to sleep
while this power state is active. Note that the user is still able to put the
system to sleep (such as by selecting “Sleep” from the Apple menu). It only
stops the system from automatically sleeping after a period of inactivity.

CHAPTER 10 POWER MANAGEMENT

209

• kIOPMInitialDeviceState indicates that the device starts up in this state,
and therefore the driver doesn’t need to be sent a power request after being
loaded. Note that the I/O Kit may decide to start the driver in a power state
that doesn’t have the kIOPMInitialDeviceState flag set, and in this case, the
driver will receive a power request when it loads.

• outputPowerCharacter: A flag that describes the power that the device is able to
provide to devices that depend on it for power while in this state. This can be
either kIOPMPowerOn, to indicate that the device is able to power its children, or 0,
to indicate that the device cannot provide power to its children.

• inputPowerRequirement: A flag that describes the power required by the device
from its parent while in this state. This can be either kIOPMPowerOn, to indicate that
the device requires its parent to provide it with power, or 0, to indicate that the
device does not draw any power from its parent in this state.

• staticPower: The average power consumption of the device while in this state (in
milliwatts). Note that if this value is unknown, a driver can provide a value of 0 for
this field (as is done by many of the Apple drivers in the Darwin repository).

• unbudgetedPower: The power that this device draws from a separate power supply
(and not from its parent) while in this state. This value is currently unused in Mac
OS X, and so a driver can provide a value of 0 for this field.

• powerToAttain: The power that this device requires to transition into this state
from the previous lower power state. This value is currently unused in Mac OS X,
and so a driver can provide a value of 0 for this field.

• timeToAttain: The time required to transition the hardware into this state from the
previous lower power state (in microseconds). If this value is unknown, a driver
can provide a value of 0 for this field.

• settleUpTime: The time required for the power to settle after entering this state
from the previous lower power state (in microseconds). If this value is unknown, a
driver can provide a value of 0 for this field.

• timeToLower: The time required to transition the hardware from this state into the
next lower power state (in microseconds). If this value is unknown, a driver can
provide a value of 0 for this field.

• settleDownTime: The time required for the power to settle after leaving this state
and entering the next lower power state (in microseconds). If this value is
unknown, a driver can provide a value of 0 for this field.

• powerDomainBudget: The amount of power that the device is able to provide to its
children while in this state. This value is currently unused in Mac OS X, and so a
driver can provide a value of 0 for this field.

Each power state that a device supports is described by an IOPMPowerState structure. The device’s
driver creates an array of IOPMPowerState structures, each one of which corresponds to a device power
state. Every driver that supports power management must contain a power state that corresponds to the
off state (in which the device uses no power) and a power state that corresponds to the device’s fully on
state (in which the device is fully operational). The off state must be the first element in the driver’s
power state array, and the on state must be the final element in the driver’s power state array. The driver

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 10 POWER MANAGEMENT

210

can define as many power states as it needs to describe the distinct power states provided by its
hardware device, with the only requirement being that the power state array must be sorted, starting
with the off state, through the (optional) intermediate power states that require more power and are
more functional, to the final state in which the device is running at its full power and is completely
operational.

Because the I/O Kit provides support for power management within the IOService class from which
every driver is ultimately derived, all drivers have the ability to take part in the power management of the
system. To demonstrate this, we will add power management notifications to the simple IOKitTest
sample that was developed in Chapter 4 (see Listing 4-2 and Listing 4-3).

To begin with, we need to define the power states that the device supports. This is typically done
with a global array of IOPMPowerState structures that is defined at the top of the driver’s implementation
file. The example in Listing 10-1 shows a very basic set of power states that provide an off state and an on
state.

Listing 10-1. Defining a Set of Power States for a Driver

enum {
 kOffPowerState,
 kOnPowerState,
 //
 kNumPowerStates
};

static IOPMPowerState gPowerStates[kNumPowerStates] = {
 // kOffPowerState
 {kIOPMPowerStateVersion1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
 // kOnPowerState
 {kIOPMPowerStateVersion1, (kIOPMPowerOn | kIOPMDeviceUsable),
 kIOPMPowerOn, kIOPMPowerOn, 0, 0, 0, 0, 0, 0, 0, 0}
};

When the I/O Kit makes a request to change to a new power state, the requested state will be
identified by the index of that state in the gPowerStates array. Rather than referring to a power state by
its index, we define an enumeration that allows us to give each power state a symbolic constant, which
makes the driver code easier to read and maintain.

Having defined a set of power states, the IOService class, which provides the power management
API, needs to be informed that our driver wishes to receive notifications when the system’s power state
changes. This is done in the driver’s start() method, as shown in Listing 10-2.

Listing 10-2. Registering a Driver for Power Management Support

bool com_osxkernel_driver_IOKitTest::start (IOService *provider)
{
 if (super::start(provider) == false)
 return false;

 // Register driver for power management
 PMinit();
 provider->joinPMtree(this);
 registerPowerDriver(this, gPowerStates, kNumPowerStates);

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 10 POWER MANAGEMENT

211

 return true;
}

The call to the PMinit() method initializes instance variables in the IOService superclass that are
needed only for a driver that implements power management. To receive power management
notifications, the driver needs to be part of the power plane. This is done by the joinPMtree() method,
which is called on the driver object from which our device obtains its power (in this case, our provider
class) and takes as its argument the child driver (our instance). Finally, we call the
registerPowerDriver() method to provide the I/O Kit with the array of power states that our driver
supports.

A driver that registers for power management must make sure that it removes itself from the power
plane before it is unloaded. If this is not done, the I/O Kit will attempt to send power notifications to
your driver, even though it is no longer active, which could potentially result in a kernel panic. A driver
removes itself from the power plane by calling PMStop(), which is shown in Listing 10-3.

Listing 10-3. Removing a Driver from the Power Management System

void com_osxkernel_driver_IOKitTest::stop (IOService *provider)
{
 PMstop();
 super::stop(provider);
}

Having inserted the driver into the power plane and registered it for power management events, the
driver will receive power requests from the I/O Kit in response to changes in the system. When the
system’s power state changes, for example when the computer is put into a sleep state or wakes from
sleep, the I/O Kit will choose one of the power states that the driver registered and request that the driver
transition into that new state. These power requests are made to the driver through its setPowerState()
method, which is a virtual method defined in the IOService base class. To receive these requests, a driver
simply needs to provide its own implementation of setPowerState() in which to handle the change. A
sample implementation is shown in Listing 10-4.

Listing 10-4. Responding to a Request to Change the Device’s Power State

IOReturn com_osxkernel_driver_IOKitTest::setPowerState (unsigned long powerStateOrdinal,
IOService* device)
{
 switch (powerStateOrdinal)
 {
 case kOffPowerState:
 // Save device configuration (if necessary) and prepare our hardware for
 // sleep
 // ...
 break;
 case kOnPowerState:
 // Bring our hardware out of sleep and initialize it with the saved
 // configuration
 // ...
 break;
 }

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 10 POWER MANAGEMENT

212

 return kIOPMAckImplied;
}

The parameter named powerStateOrdinal describes the power state that the driver should place its
device into. The parameter is expressed as an index into the array of power states that the driver passed
to the registerPowerDriver() method during its initialization. In the case of our sample driver, we
registered two power states that we handle in a switch statement.

The I/O Kit serializes calls to setPowerState(), so a driver can be sure that it will not receive a
request to change power states while it is in the middle of handling an earlier power state transition.
However, this does not guarantee that the driver won’t receive a request to change power states while it
is handling other operations that do not relate to power management. For example, a driver may be
performing an asynchronous read operation when a power request is made to transition a driver to the
sleep state. In this case, the driver must wait until the read operation has completed before powering
down the hardware. This can be achieved by using the standard synchronization primitives that are
provided by the I/O Kit. Most I/O Kit drivers will use the combination of a command gate and a work
loop to provide synchronization, and so a driver could obtain the command gate in its setPowerState()
method to ensure that power events are synchronized with the rest of the driver’s code.

As of Mac OS X 10.5, the setPowerState() method is called on its own thread, and so a driver is able
to perform actions in its implementation that may block or may otherwise take some time to complete.
When the driver has successfully placed the hardware into the new power state, it should return with the
result code kIOPMAckImplied.

If your driver will support versions of Mac OS X prior to Mac OS X 10.5, you should not perform
blocking operations inside the setPowerState() method, but rather your driver should perform the tasks
necessary to place the hardware into the new power state on a background thread. Instead of returning
kIOPMAckImplied from the setPowerState() method, your driver should return a non-zero value that
indicates the maximum time that your driver requires to place the hardware into the new power state
(measured in microseconds). When your background thread has completed switching the hardware to
the new device, it signals completion by calling acknowledgeSetPowerState(). Thankfully, none of this
code is necessary if you are targeting Mac OS X 10.5 and later.

Requesting Power State Changes
So far we have looked at how a driver responds to requests from the system to change its power state in
response to events such as the system being put into the sleep state. However, there are times when a
driver may wish to initiate a change in the power state of its device independent of the overall power
state of the system. For example, an LCD monitor may dim its backlight after a few minutes of inactivity,
or a disk may spin down if it hasn’t been accessed for some time.

A driver should use the I/O Kit’s power management API even for power state changes that affect
only the device that it is controlling. Doing so will not only ensure that any change of power state that is
initiated by the driver is synchronized with power state changes requested by the system but it also
allows your driver to take advantage of support provided by the I/O Kit for such tasks as installing a
timer to monitor the device’s activity and request a transition to a lower power state if the device is not
accessed for a period of time. Lastly, if there are devices that rely on your hardware for their power, you
will need to use the I/O Kit methods to transition your hardware’s power so that any children devices are
informed of possible changes to their input power.

There are three methods that can be called to change the current power state of a device:

• changePowerStateTo(powerStateOrdinal): Requests a change to the power state at
the specified index in the registered power state array.

CHAPTER 10 POWER MANAGEMENT

213

• changePowerStateToPriv(powerStateOrdinal): Performs a similar function to the
previous method, with the difference that this is a protected method in the
IOService class, and so cannot be called by objects other than the driver itself.

• makeUsable(): Requests a power change to the highest power state supported by
the driver. This method is typically called by another client of this driver (such as
the driver’s user client) to ensure that the device is fully functional before it makes
further use of the device.

These three methods are implemented by the IOService class, and there is typically no need for a
driver to override any of these methods. Internally, the implementation of the makeUsable() method
calls through to the same code path as changePowerStateToPriv(), which means that each driver has two
power states associated with it: the value requested through changePowerStateTo() and the value
requested through changePowerStateToPriv()/makeUsable().

The power state that the I/O Kit ultimately switches the device to is the maximum of the value
requested by changePowerStateTo(), the value requested by changePowerStateToPriv(), and the
maximum state that satisfies the requirements of any children that are dependent on the device for
power. If the device has any children in the power plane that require power, then the parent device
cannot be placed in a power state that has an outputPowerCharacter property that is not kIOPMPowerOn.

You may be wondering why the I/O Kit provides two nearly identical methods for setting a device’s
power state. The private method changePowerStateToPriv() allows a driver to set a minimum power
level that cannot be affected by any clients of the driver, which only have the ability to call the public
changePowerStateTo() method. A client may raise the power state above the level set by
changePowerStateToPriv(), but the driver will never be placed into a power state lower than the value set
by changePowerStateToPriv(). The one exception to this behavior is when the system is placed into the
sleep state, at which time the device will be put into the lowest power state, overriding the power state
that has been set through changePowerStateToPriv(). When the system wakes from sleep, it returns to
the power state that was previously active.

By convention, a driver should set its power state through the protected method
changePowerStateToPriv(). To remove any influence from the public power level, a driver should place a
call to the public method changePowerStateTo(0) in its start() method after registering the driver for
power management. Setting the public power state to 0 allows the power state that is requested by
changePowerStateToPriv() to be applied without alteration (providing that the power requirements of
any children devices can be satisfied).

Because the power state for the device is derived from three possible values, it is recalculated
whenever the power state of one of its power children changes or a call it made to either the
changePowerStateTo() or changePowerStateToPriv() method is called. If the calculated power state
differs from the current power state of the driver, the I/O Kit will send the driver a request to change its
power state. The driver will receive this request as described in the previous section of this chapter,
“Responding to Power State Changes”, and should respond to the request in the way previously
described.

The methods changePowerStateTo(), changePowerStateToPriv(), and makeUsable() are all
asynchronous, and may return to the caller before the device has transitioned to its new power state.
The implication of this is that a driver that wishes to change its own power state (using, for example, the
changePowerStateToPriv() method) should wait until its setPowerState() method is called before
reprogramming its hardware to the new power state. A client that wishes to change the power state of
another driver by calling a public method (such as changePowerStateTo() or makeUsable()) cannot
assume that the device is running in the new power state when the method returns. Instead, it should
register to receive notifications when the device’s state changes. This is discussed in the section
“Observing Device Power State Changes” later in this chapter.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 10 POWER MANAGEMENT

214

Handling Device Idle
A common reason for a driver to lower the power state of its device is to reduce its power consumption
when the device hasn’t been accessed for a certain period of time. This involves creating a timer for the
idle period of the device. If the timer expires and the device hasn’t been accessed during that period, the
driver places the device into a lower power state. After the device has been placed into a lower power
state, the next time that the driver needs to access the device, it will need to place the hardware back in a
usable state. Because these operations are common for all drivers that perform an idle power saving
mode, this functionality is built into the I/O Kit and provided to driver developers through the IOService
class.

There are two basic methods that a driver needs to call to let the I/O Kit track when its device has
been idle and lower its power state.

• setIdleTimerPeriod(period): Installs a timer that expires after the specified
number of seconds has elapsed.

• activityTickle(type, powerState): Is called by the driver before every access of
the device, which informs the I/O Kit of the time at which the hardware was last
accessed.

The method setIdleTimerPeriod() is typically called once, following the initialization of power
management in the driver’s start() method. Once called, the I/O Kit creates a timer that runs at the
specified timeout period (in seconds). If the device hasn’t been accessed during this period, the I/O Kit
will lower the power state of the driver to the state below the driver’s current power level. If the device
remains inactive for the next idle period, the driver’s power state is lowered again. In both cases, the
driver receives a request to lower its power state through the same method, setPowerState(), that is used
to deliver all power request changes, as described in the section “Responding to Power State Changes”
earlier in this chapter. This continues until the device has been placed into the off state (power state 0).

When the device’s power state is lowered as a result of inactivity, the I/O Kit sets the power state
using the method changePowerStateToPriv(). Just as if the driver had called changePowerStateToPriv()
itself, the new power state for the device cannot drop below the value set by the public method
changePowerStateTo() or the power state required by the device’s children. This means that the public
power level that is set through changePowerStateTo() determines the minimum power state that the
device can be placed in when idle. Typically, a driver that uses an idle timer will make a call to
changePowerStateTo(0) in its start() method, thereby allowing the idle timer to take the device all the
way down to the off state.

The idle timer requires the driver to inform the I/O Kit of every access to the hardware device,
otherwise the idle timer will fire and lower the power state of the device while it is in use. To do this, the
driver makes a call to the activityTickle() method when the device is used, typically at the start of each
operation. The signature of the activityTickle() method is provided as follows:

bool activityTickle(unsigned long type, unsigned long stateNumber);

The activityTickle() method takes two parameters, a type and a power state ordinal, that the
caller uses to specify the minimum power level that the device must be in to handle the upcoming
operation. The I/O Kit provides two pre-defined values for the type parameter in the header file
<IOKit/pwr_mgt/IOPM.h>:

• kIOPMSubclassPolicy

• kIOPMSuperclassPolicy1

CHAPTER 10 POWER MANAGEMENT

215

The type parameter defines which implementation should handle the activityTickle() request,
either the driver itself (in which case kIOPMSubclassPolicy is passed) or the IOService superclass (in
which case kIOPMSuperclassPolicy1 is passed). If the driver wishes to provide a custom implementation
of activityTickle(), as well as passing kIOPMSubclassPolicy as the type parameter for each call to
activityTickle(), it also needs to override the implementation of the activityTickle() method.

Most drivers, however, will be able to use the default implementation of activityTickle() provided
by the IOService superclass. It’s important that a driver that wishes to use the default implementation
passes a value of kIOPMSuperclassPolicy1 for the type parameter of each call to activityTickle(), since
the IOService implementation will ignore a request that has any other value passed as the type
parameter.

The default implementation of activityTickle() will raise the power level of the device to the
power state specified by the stateNumber parameter. Internally, the IOService class raises the device’s
power state by calling the changePowerStateToPriv() method, which the driver will receive through a call
to its setPowerState() method. The Boolean value returned from the method indicates whether the
device was already in the requested power state; a return value of true indicates that no power state
transition was necessary, whereas a return value of false indicates that the power state of the device
needed to be raised.

Since the activityTickle() method is asynchronous, it is important that the caller wait until the
driver has completed the transition to the power state, and should not assume that the device is in a
usable state when the activityTickle() method returns. The means by which a driver can observe
power changes in a driver, including power changes in other driver objects, is explained in the next
section.

Observing Device Power State Changes
The I/O Kit allows a driver to observe the power state of any device in the system and to receive
notifications when the device’s driver changes its power state. This can be used, for example, by a driver
that is not part of the power plane but needs to interface with drivers that are power managed.
Alternatively, these notifications allow a driver that initiates a change to its own power state through a
method such as changePowerStateToPriv() or activityTickle() to determine when the power change
has completed.

To receive notifications when another driver’s power state changes, your driver must register for
interest in that driver’s power state. The IOService superclass provides two methods for doing this:

• registerInterestedDriver(IOService* driver)

• deRegisterInterestedDriver(IOService* driver)

Both of these methods are called on the driver object whose power state you are interested in
observing. The parameter to the method is the driver that will receive the notifications, and so you will
typically pass the “this” pointer. A driver can call either of these methods at any time to start and stop
receiving notifications for changes to the power state of another driver. It is important that a driver
deregister any notifications that are installed before it unloads; failure to do so could lead to a kernel
panic.

When a driver has registered interest in another driver’s power state changes, it will receive a
notification before the device begins its transition to the new power state and another notification once
the device has completed the transition to the new power state. These two notifications are delivered
through the two methods described as follows:

• IOReturn powerStateWillChangeTo(IOPMPowerFlags capabilities,

 unsigned long stateNumber, IOService* whatDevice)

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 10 POWER MANAGEMENT

216

• IOReturn powerStateDidChangeTo(IOPMPowerFlags capabilities,

 unsigned long stateNumber, IOService* whatDevice)

These two notification methods are virtual methods that are implemented by the driver that wishes
to receive the notifications. The notification powerStateWillChangeTo() is delivered before the observed
driver’s setPowerState() method is called. The notification powerStateDidChangeTo() is delivered after
the observed driver’s setPowerState() method is called. Both methods are passed an identical set of
arguments. The capabilities argument is the value of the capabilityFlags bitmask from the
IOPMPowerState that the observed driver is transitioning to. The stateNumber argument is the index of the
power state that the observed driver is transitioning to. The whatDevice argument is the driver object
whose power state is being changed.

After handling either notification, the driver should return a value of IOPMAckImplied. If your driver
wishes to handle the notification asynchronously, it can return a non-zero value from the notification
method that indicates the maximum amount of time (in microseconds) that the driver requires to
complete the request. The driver can then continue processing the notification on a background thread;
once the driver has completed the notification, it should call the method acknowledgePowerChange() to
inform the I/O Kit that the notification has been handled. The method acknowledgePowerChange() can be
called to acknowledge both the willChange and didChange notifications.

A driver that handles power management will automatically register for interest in itself, and so the
two notification methods will be called for a driver that is responding to a change in its power state. Most
drivers, however, will have no need to implement these two notification methods unless the driver is
observing the state of another device, since a driver’s own power changes should be handled within the
setPowerState() method. Instead, for this purpose, the I/O Kit provides another notification method
that is sent to a driver when its own power state has been changed and all of its children drivers have
acknowledged the power change. To receive this notification method, a driver should implement the
following virtual method:

void powerChangeDone (unsigned long previousStateNumber);

The method is sent once the driver has handled the power state change (through the
setPowerState() method) and all drivers that have registered an interest for the device’s power state
have been notified of the power change. The powerChangeDone() method provides a convenient way for a
driver to determine when a power state change that it initiated has been completed and the device has
become usable. It is important to note the parameter that is passed to the powerChangeDone() method is
the power level that the device changed from and not the new power state of the device. To determine
the power state that the device is currently in, the I/O Kit provides an accessor method named
getPowerState(), as described as follows:

UInt32 getPowerState(void);

Putting It All Together
In this section, we combine what we have covered in this chapter into a single sample that demonstrates
one way of structuring a driver that not only responds to power state changes from the system, but also
lowers its own power state when the device has been idle for 5 minutes.

For demonstration purposes, the sample driver defines four power states consisting of the
mandatory off and on states, as well as two lower power modes. The off and on state will be set by the
power management system when the computer is put to sleep and woken from sleep. The two
intermediate states are reached when the device has been left idle for a period; the driver sets up an idle
timer in its start() method to lower the device’s power state after a period of inactivity.

CHAPTER 10 POWER MANAGEMENT

217

This sample also demonstrates one approach to synchronizing changes in the device’s power state
against hardware accesses that the driver makes while performing a requested operation. The driver
includes a sample operation called myReadDataFromDevice(), which calls activityTickle() to ensure that
the hardware is in a usable power state before attempting to perform the operation. However, since
power state changes are asynchronous, the driver needs to wait until the device has fully transitioned to
the new power state. The sample driver does this by sleeping on a condition variable that is signaled
from the powerChangeDone() method.

Another synchronization problem that this driver needs to handle is that the device cannot be
placed into a sleep state if the driver is handling outstanding operations. The sample driver uses an
instance variable named m_outstandingIO to keep count of the number of outstanding operations that
the driver is processing. If a request is made to lower the power state of the device, the setPowerState()
method will wait until all outstanding operations have been completed before it removes the power to
the hardware. While waiting for operations to complete, the driver needs to make sure that no further
operations are started; this is done by setting the instance variable m_devicePowerState to a lower power
state at the start of the setPowerState() method. This means that the m_devicePowerState instance
variable will be in the reduced power state while we are waiting for operations to complete but, more
importantly, it also means that a new operation, such as myReadDataFromDevice(), will sleep and wait for
the device’s power to transition to the on state.

The implementation of this sample driver is given in Listing 10-5 and Listing 10-6.

Listing 10-5. A Driver That Can Both Respond to Power State Changes and Can Control its Own Power

State (header file)

#include <IOKit/IOService.h>

class com_osxkernel_driver_IOKitTest : public IOService

{

 OSDeclareDefaultStructors(com_osxkernel_driver_IOKitTest)

private:

 IOLock* m_lock;

 unsigned long m_devicePowerState;

 SInt32 m_outstandingIO;

protected:

 virtual void powerChangeDone (unsigned long stateNumber);

public:

 virtual void free (void);

 virtual bool start (IOService* provider);

 virtual void stop (IOService* provider);

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 10 POWER MANAGEMENT

218

 virtual IOReturn setPowerState (unsigned long powerStateOrdinal, IOService* device);

 IOReturn myReadDataFromDevice ();

};

Listing 10-6. A Driver That Can Both Respond to Power State Changes and Can Control its Own Power

State (implementation file)

#include "IOKitTest.h"
#include <IOKit/IOLib.h>

// Define the superclass
#define super IOService

OSDefineMetaClassAndStructors(com_osxkernel_driver_IOKitTest, IOService)

// Define our power states
enum {
 kOffPowerState,
 kStandbyPowerState,
 kIdlePowerState,
 kOnPowerState,
 //
 kNumPowerStates
};

static IOPMPowerState gPowerStates[kNumPowerStates] = {
 // kOffPowerState
 {kIOPMPowerStateVersion1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
 // kStandbyPowerState
 {kIOPMPowerStateVersion1, kIOPMPowerOn, kIOPMPowerOn, kIOPMPowerOn, 0, 0, 0, 0, 0, 0, 0,
0},
 // kIdlePowerState
 {kIOPMPowerStateVersion1, kIOPMPowerOn, kIOPMPowerOn, kIOPMPowerOn, 0, 0, 0, 0, 0, 0, 0,
0},
 // kOnPowerState
 {kIOPMPowerStateVersion1, kIOPMPowerOn | kIOPMDeviceUsable,
 kIOPMPowerOn, kIOPMPowerOn, 0, 0, 0, 0, 0, 0, 0, 0}
};

bool com_osxkernel_driver_IOKitTest::start (IOService *provider)
{
 if (super::start(provider) == false)
 return false;

 // Create a lock for driver/power management synchronization
 m_lock = IOLockAlloc();
 if (m_lock == NULL)

3

CHAPTER 10 POWER MANAGEMENT

219

 return false;

 // Register driver for power management
 PMinit();
 provider->joinPMtree(this);
 makeUsable(); // Set the private power state to the highest level
 changePowerStateTo(kOffPowerState);// Set the public power state to the lowest level
 registerPowerDriver(this, gPowerStates, kNumPowerStates);

 // Lower the device power level after 5 minutes of activity (expressed in seconds)
 setIdleTimerPeriod(5*60);

 return true;
}

void com_osxkernel_driver_IOKitTest::stop (IOService *provider)
{
 PMstop();
 super::stop(provider);
}

void com_osxkernel_driver_IOKitTest::free (void)
{
 if (m_lock)
 IOLockFree(m_lock);
 super::free();
}

IOReturn com_osxkernel_driver_IOKitTest::setPowerState (unsigned long powerStateOrdinal,
 IOService* device)
{
 // If lowering the power state, update the saved power state before powering down the
 // hardware
 if (powerStateOrdinal < m_devicePowerState)
 m_devicePowerState = powerStateOrdinal;

 switch (powerStateOrdinal)
 {
 case kOffPowerState:
 case kStandbyPowerState:
 case kIdlePowerState:
 // Wait for outstanding IO to complete before putting device into a lower
 // power state
 IOLockLock(m_lock);
 while (m_outstandingIO != 0)
 {
 IOLockSleep(m_lock, &m_outstandingIO, THREAD_UNINT);
 }
 IOLockUnlock(m_lock);

 // Prepare our hardware for sleep

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 10 POWER MANAGEMENT

220

 // ...
 break;
 }

 // If raising the power state, update the saved power state after reinitializing the
 // hardware
 if (powerStateOrdinal > m_devicePowerState)
 m_devicePowerState = powerStateOrdinal;

 return kIOPMAckImplied;
}

void com_osxkernel_driver_IOKitTest::powerChangeDone (unsigned long stateNumber)
{
 // Wake any threads that are waiting for a power state change
 IOLockWakeup(m_lock, &m_devicePowerState, false);
}

// *** Sample Device Operation *** //
IOReturn com_osxkernel_driver_IOKitTest::myReadDataFromDevice ()
{
 // Ensure the device is in the on power state
 IOLockLock(m_lock);
 if (activityTickle(kIOPMSuperclassPolicy1, kOnPowerState) == false)
 {
 // Wait until the device transitions to the on state
 while (m_devicePowerState != kOnPowerState)
 {
 IOLockSleep(m_lock, &m_devicePowerState, THREAD_UNINT);
 }
 }

 // Increment the number of outstanding operations
 m_outstandingIO += 1;
 IOLockUnlock(m_lock);

 // Perform device read ...

 // When the operation is complete, decrement the number of outstanding operations
 IOLockLock(m_lock);
 m_outstandingIO -= 1;
 // Wake any threads that are waiting for a change in the number of outstanding
 // operations
 IOLockWakeup(m_lock, &m_outstandingIO, false);
 IOLockUnlock(m_lock);

 return kIOReturnSuccess;
}

In an actual driver, the method named myReadDataFromDevice() would be called in response to an
action taken by the user that requires the hardware device to be accessed. As such, the method can be

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 10 POWER MANAGEMENT

221

called irregularly and may be called at any time. Although we don’t call the method
myReadDataFromDevice() in the example in Listing 10-6, the code could be extended to add a user client
to the driver, allowing a user space process to call the method myReadDataFromDevice().

Summary
• Every computer that runs Mac OS X has the ability to be placed in a low power

mode known as “sleep”. While in sleep mode, most hardware components are
either powered down completely or are provided with only a reduced current.

• A device driver can register and respond to requests from the power management
system to prepare its hardware for a loss of power before sleep and to restore the
state of its hardware when the system is woken from sleep.

• The I/O Kit’s power management API is implemented by the IOService base class.
This makes it possible for every driver to provide support for power management.

• A driver may opt to lower the power state of its device independently of whether
the computer is in the sleep mode. This can be useful for reducing the power
consumption of the device when it has not been used for a period of time.

• A driver can observe the power state of any hardware device in the system. This
can be used by a driver to receive a notification before a device changes its power
state and a notification after the device has transitioned to its new power state.

www.allitebooks.com

http://www.allitebooks.org

C H A P T E R 11

223

Serial Port Drivers

A serial port provides a basic communications interface for the purpose of getting low bandwidth data
into and out of a computer. Although modern interfaces such as USB and FireWire have replaced many
applications in which the traditional serial port was once used, the serial port driver is still well
supported in modern day operating systems, including Mac OS X, despite the fact that Apple has not
released hardware with a built-in serial port for over a decade.

There are several reasons for the longevity of the serial port. First, a serial port is simple and
inexpensive to implement in hardware, making it a popular choice for hobbyists who are adding
computer communications to their electronic projects. Second, it is a very flexible interface. The serial
driver is concerned only with transferring data bytes between the serial port and the user space
application. The driver plays no role in interpreting the data stream; it simply deals with the
transmission of the data.

This leaves the user space application to implement the protocol of the connected device, which
means that much of the work that would usually be done by a driver is instead left to the user space
application. This means that a hardware vendor doesn’t have to provide a driver for their device; they
can simply publish the protocol describing the format of the data that they transmit over their serial
port, and leave the implementation of the protocol for others. Devices that use serial ports include GPS
receivers and barcode scanners. They are also commonly used to provide debugging output on
hardware.

Serial ports are no longer found on Macintosh computers; they have been replaced by USB and
FireWire ports. Serial devices, such as GPS receivers and barcode scanners, attach to a computer by USB,
but they appear to the system as a USB-based serial port that a user space application can connect to. If
you are interacting with a device that communicates over a serial port, in nearly all cases your
application will be able to use an existing serial port driver. There are very few cases where you will need
to implement your own serial port driver; even projects that use a USB-based serial port will use
standard drivers to provide the serial port interface.

This chapter describes how a serial port driver is implemented within the I/O Kit, and how to read
and write from a serial port in a user space application. The implementation of a serial port driver can be
seen as a practical example of driver techniques, including implementing blocking calls, circular buffers,
and synchronization and notification. Therefore, even if a serial port driver is not directly relevant to
you, the concepts that we will cover can be applied to other drivers.

Mac OS X Serial Port Architecture Overview
On Mac OS X, serial ports have an interesting architecture. In the kernel, a serial driver is implemented
using the object-oriented I/O Kit framework, but in user space it is accessed through the BSD layer, and
the serial port is presented as a traditional UNIX device file. For each serial driver that is loaded in the
kernel, the I/O Kit’s serial family creates a corresponding device object in the /dev directory of the file

CHAPTER 11 SERIAL PORT DRIVERS

224

system. To interact with a serial port, applications open the device file and read and write to it as if it
were an ordinary file. This is an alternative to communicating with a driver through a user client; in fact,
serial drivers don’t have a user client. The advantage of this architecture is that it allows traditional UNIX
applications that have been written using the POSIX APIs to access a serial port on Mac OS X without any
changes to their code.

Although serial port drivers are not accessed through the I/O Kit framework from user space, they
are still implemented in the kernel as a full I/O Kit driver. This means that a serial driver can take
advantage of all of the features that the I/O Kit brings, including object-oriented design and dynamic
driver loading and matching. The I/O Kit includes a family that is specific to serial devices, known as the
IOSerialFamily. The IOSerialFamily, which is available through the Darwin open source project, contains
the header files for the base classes that a serial port driver is derived from, as well as the
implementation of the serial port subsystem of Mac OS X.

Figure 11-1 shows the various entities that are involved in handling communications over a serial
port on Mac OS X. For this example, we have assumed that the serial port is implemented by a USB
device (such as a USB to RS-232 adapter), which is why the leftmost provider object in the diagram is an
IOUSBDevice.

Figure 11-1. The objects involved in communicating with a serial port from a user space application

Starting in user space, an application connects to a serial port driver by opening a character device
file from the /dev directory that corresponds to the serial port driver. Each serial driver has two entries in
the /dev directory, one whose name begins with the prefix “tty.” and another whose name begins with
the prefix “cu.”. The reason for this is largely historical and comes from a time when the serial port was
the means by which a modem or a fax was connected to a computer. In this situation, the “tty” device
was the dial-in device that was used to receive a call, and the “cu” was the callout device that was used to
make a call.

A process that wished to receive a call would open the dial-in device; the open function would block
until the carrier detect line was signaled, meaning that the modem had established a connection.
However, to make an outgoing call, a process needed to be able to open the serial port without waiting
for the carrier detect line, so it would open the callout device, which doesn’t block on the carrier detect
signal. When communicating with modern serial devices, given that most devices will not be connected
to a phone line, Apple recommends opening the callout device.

The two device files in /dev are created by an I/O Kit class known as IOSerialBSDClient. This is a
class that is provided by the IOSerialFamily and handles the kernel-side of operations that are made by a

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 11 SERIAL PORT DRIVERS

225

user space process on the device file. The IOSerialBSDClient handles any system call made by a user
space process to operate on a serial port, including any of the following the functions: open(), close(),
read(), write(), ioctl(), and select(). In this way, the IOSerialBSDClient can be thought of as playing
the role of the user client for a serial driver (although it isn’t derived from the IOUserClient class). Like a
user client, the IOSerialBSDClient class is simply a conduit between a user space process and the kernel
driver object. The class is responsible for handling the differences between blocking and non-blocking
calls, but its main role is to translate function calls received from user space into method calls to the
IOSerialStreamSync object.

The IOSerialStreamSync class is another class that is provided by the I/O Kit in the IOSerialFamily
package. Its role is nothing more than a conduit between the IOSerialBSDClient and the
implementation of the actual serial driver. In fact, for each method of the IOSerialStreamSync class, it
calls a method of the same name in the IOSerialDriverSync class.

The IOSerialDriverSync class is a pure abstract interface that provides the base class for any serial
driver on Mac OS X. It provides methods for reading and writing data, and for reporting changes in the
state of the serial port, such as whether a carrier signal has been detected, the arrival of data on the serial
port for reading, and whether the serial port can accept more bytes for transmission.

Finally, the last object that is involved in the serial driver stack is the provider class of the serial
driver. In this example, we are assuming that the serial port is implemented by a USB-to-serial adapter,
which is why the provider class has the type IOUSBDevice. Whenever the serial port driver needs to read
data from the serial port or write data over the serial port, it will access the underlying hardware device
through the IOUSBDevice instance.

The role of each class that plays a part in implementing a serial port driver is as follows:

• The serial port driver’s provider class, IOUSBDevice in our example, performs the
data transfer into and out of the computer to the serial port adapter.

• The main driver, which is a subclass of IOSerialDriverSync, manages the serial
port’s receive and transmit buffers, reading data from the hardware as it arrives,
and writing data to the hardware when it is provided by user space.

• The IOSerialBSDClient manages interaction with user space applications.

Serial Port Drivers
Serial port drivers on Mac OS X are implemented by creating a class that is derived from the
IOSerialDriverSync class. In this section, we describe the implementation of a serial port driver by
walking through the source code of a driver provided by Apple for USB serial communication devices.
Although it is unlikely that you will need to implement your own serial driver directly, this section can be
seen as providing a working application of I/O Kit techniques and driver design, and many of the
techniques used by the Apple USB serial driver can potentially be applied to other drivers that you will
develop.

To follow along with this section, you may wish to download the source code for the serial port
driver that we are discussing. The classes that play a part in the kernel serial driver stack are spread
between the following two projects in the Darwin source code repository:

• The base classes, on which all serial drivers are built, including the
implementation of the IOSerialBSDClient class, are contained within the
IOSerialFamily project. To implement your own serial port driver, you would need
only the classes contained within the IOSerialFamily project.

CHAPTER 11 SERIAL PORT DRIVERS

226

• The driver that loads against USB-based serial communication devices is
contained within the project named AppleUSBCDCDriver. (USBCDC is an acronym
for USB Communications Device Class.)

Given the number of supporting classes that are created to handle a serial port driver by the I/O Kit,
it’s instructive to understand how these classes are instantiated. When a USB device that implements the
Communications Device Class is connected to a Mac, the USB host controller will create a new
IOUSBDevice object to represent that device. When this IOUSBDevice object is published, it initiates the
I/O Kit’s driver matching process, which searches for an appropriate driver for the USB device. In this
case, the I/O Kit will select the AppleUSBCDC driver, since its matching dictionary specifies that it should
load against any USB device that supports the Communications Device Class. Note that the AppleUSBCDC
driver is not a serial driver. It is a subclass of the generic IOService class, and its role is simply to
configure the USB hardware for use as a serial device. It does this by iterating over the USB interfaces
that the device supports and setting the active interface to one that provides communications support.

Once the AppleUSBCDC driver has configured the active USB device interface, the I/O Kit’s USB family
creates an IOUSBInterface object to represent the active interface. This kicks off another round of the I/O
Kit’s driver matching process, which searches for an appropriate driver for the IOUSBInterface object.
For the purpose of this section, we will examine the implementation of the AppleUSBCDCDMM class, which
will match against any IOUSBInterface object that implements a specific type of USB Communications
Devices. This class is implemented in the file AppleUSBCDCDMM.cpp, and the class is declared in the file
AppleUSBCDCDMM.h.

The AppleUSBCDCDMM class is a direct subclass of the IOSerialDriverSync class, so it is responsible for
implementing the methods that are required for a serial port driver. To send and receive data over the
hardware device, the AppleUSBCDCDMM class sends USB transfer requests to its provider class, which is an
IOUSBInterface object.

Manually Instantiating a Driver Object
Until this point, the instantiation and loading of kernel objects has been fairly standard and has followed
the same I/O Kit driver matching process that all drivers go through. However, a serial port driver is
different from many drivers that you will write, in that it has a child driver. Thus, your serial port driver
will act as the provider for another I/O Kit driver.

The child of a serial port driver is an object that inherits from the IOSerialStreamSync class (or a
class that is derived from IOSerialStreamSync). For a serial port driver, its child driver isn’t created
through the I/O Kit’s driver matching procedure; rather, the child driver object is explicitly instantiated
and attached to the serial driver by the serial driver itself.

In the case of the AppleUSBCDCDMM driver, the child driver has the type IOModemSerialStreamSync, a
class that inherits directly from the IOSerialStreamSync class. The AppleUSBCDCDMM class instantiates its
child object in a method named createSerialStream(), which is called from the serial port driver’s
start() method. The method createSerialStream() is a custom method that is private to the
AppleUSBCDCDMM class. A sample implementation of createSerialStream() that is based on the
AppleUSBCDCDMM driver is shown in Listing 11-1.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 11 SERIAL PORT DRIVERS

227

Listing 11-1. The Implementation of a Method to Create the IOSerialStreamSync Object of a Serial Port

Driver

#include <IOKit/serial/IOModemSerialStreamSync.h>
#include <IOKit/serial/IOSerialKeys.h>

bool MySerialDriver::createSerialStream()
{
 IOSerialStreamSync* pChild;
 bool result;

 // Instantiate the child driver object
 pChild = new IOModemSerialStreamSync;
 if (pChild == NULL)
 return false;

 // Initialize the child driver
 result = pChild->init(0, 0);
 if (result == false)
 goto bail;

 // Attach pChild as a child device of ourself
 result = pChild->attach(this); // Pass "this" as the child driver's provider
 if (result == false)
 goto bail;

 // Setup the properties used when naming the device file in /dev
 pChild->setProperty(kIOTTYBaseNameKey, "my_serial");
 pChild->setProperty(kIOTTYSuffixKey, "");

 // Allow matching of drivers that use pChild as their provider class
 pChild->registerService();

 // Fall-through on success
bail:
 pChild->release();
 return result;
}

The code in Listing 11-1 provides an example of how a driver can instantiate its own child driver
explicitly, without having to create a property list file for the child driver and have the I/O Kit’s matching
mechanism invoked. The three basic steps to creating a new driver object are: (1) allocating an instance
of the driver class by calling the C++ new operator, (2) initializing the returned object by calling its init()
method, and (3) attaching the driver object to its parent through the attach() method. The parameter
passed to attach() is the provider class of the child device, which will typically be the object that
instantiated the child driver.

You will notice that because the embedded C++ language used by the I/O Kit does not support
exceptions, to check whether the call to the C++ new operator has failed, we check to see if the returned
value is NULL. Note that we unconditionally release a reference to the child object before returning from
the method; if the call to attach() succeeded, the child driver object will be retained by the I/O Kit, so

CHAPTER 11 SERIAL PORT DRIVERS

228

the call to release() at the end of the method won’t destroy the object but will release the reference to
the object that we hold (preventing a leak). On the other hand, if the child driver failed in its init()
method or couldn’t be attached, we need to release (and destroy) the child driver object.

The IOModemSerialStreamSync class that is instantiated by the createSerialStream() method
performs the role of a conduit between two classes, namely the IOSerialBSDClient class that handles
operations on the serial port that are performed by user space applications, and the implementation of
the serial port driver (MySerialDriver in the previous example). However, the serial port driver has no
direct access to the IOSerialBSDClient class. To specify the name of the character device file that is
created in the /dev directory, it needs to be able to pass certain parameters to the IOSerialBSDClient’s
initialization method. To do this, it sets two properties on the IOSerialStreamSync object before the
IOSerialBSDClient class is created, and the IOSerialBSDClient object is then able to read these
properties in its initialization.

The serial port driver calls the registerService() method on the IOSerialStreamSync object, which
informs the I/O Kit that it should begin the matching procedure for the child device. Any driver that
wishes to use the IOSerialStreamSync object as its parent (provider class) will be loaded. This is the
means by which the IOSerialBSDClient class is loaded and attached to the IOSerialStreamSync object
created by the serial port driver. The IOSerialFamily kernel module contains a matching dictionary for
the IOSerialBSDClient class which matches against any IOSerialStreamSync object (or a class derived
from IOSerialStreamSync).

■ Note In general, a driver that explicitly instantiates and attaches a child driver to itself should not need to call
registerSerivce() for the child driver, since this will usually be taken care of by the child driver itself. However,
in the case of the IOSerialStreamSync class, it does not register itself for driver matching, so after instantiating it
we explicitly call its registerDriver() method.

When the IOSerialStreamSync class is registered with the I/O Kit, an instance of the
IOSerialBSDClient class is created and attached, completing the set of driver objects that are required
for a serial port. When the IOSerialBSDClient class is initialized, it creates two device nodes for the serial
port in the /dev directory, one corresponding to the dial-in character device file and the other
corresponding to the callout character device file. To determine the name to give these files, the
IOSerialBSDClient class reads the value of the kIOTTYBaseNameKey and the kIOTTYSuffixKey properties
and then creates two files using the format:

“tty.” + kIOTTYBaseNameKey + kIOTTYSuffixKey

and

“cu.” + kIOTTYBaseNameKey + kIOTTYSuffixKey

For the example in Listing 11-1, this results in a character device file with the name tty.my_serial
for the dial-in device and a character device file with the name cu.my_serial for the callout device.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 11 SERIAL PORT DRIVERS

229

Implementing the IOSerialDriverSync Class
Serial drivers on Mac OS X must be derived from the IOSerialDriverSync class. The IOSerialDriverSync
class is a pure abstract class that provides an interface that must be implemented by the serial driver.
The methods that must be implemented by a serial driver are given in Listing 11-2.

Listing 11-2. The Interface of IOSerialDriverSync, Which Declares the Methods That Must Be Implemented

by a Serial Port Driver

class IOSerialDriverSync : public IOService
{
 OSDeclareAbstractStructors(IOSerialDriverSync);

public:
 virtual IOReturn acquirePort(bool sleep, void *refCon) = 0;

 virtual IOReturn releasePort(void *refCon) = 0;

 virtual IOReturn setState(UInt32 state, UInt32 mask, void *refCon) = 0;

 virtual UInt32 getState(void *refCon) = 0;

 virtual IOReturn watchState(UInt32 *state, UInt32 mask, void *refCon) = 0;

 virtual UInt32 nextEvent(void *refCon) = 0;

 virtual IOReturn executeEvent(UInt32 event, UInt32 data, void *refCon) = 0;

 virtual IOReturn requestEvent(UInt32 event, UInt32 *data, void *refCon) = 0;

 virtual IOReturn enqueueEvent(UInt32 event, UInt32 data,
 bool sleep, void *refCon) = 0;

 virtual IOReturn dequeueEvent(UInt32 *event, UInt32 *data,
 bool sleep, void *refCon) = 0;

 virtual IOReturn enqueueData(UInt8 *buffer, UInt32 size, UInt32 *count,
 bool sleep, void *refCon) = 0;

 virtual IOReturn dequeueData(UInt8 *buffer, UInt32 size, UInt32 *count,
 UInt32 min, void *refCon) = 0;
};

You will notice that each method is provided with a parameter named “refCon”. The refCon value
can be used by a serial port driver to identify which serial port the method is operating on. The refCon
value is actually specified by the serial port driver itself, and is passed to the IOSerialStramSync object at
instantiation. In return, the IOSerialStreamSync class passes this refCon value back to the driver
whenever it calls a method from the driver’s class. In most cases, the refCon value is not needed, since
any data that the serial port driver needs can be added as instance variables to the driver class. However,
in the case of a serial port driver that manages hardware with multiple serial ports, such as a USB
adapter with a COM1 and a COM2 port, the driver would need some way to identify which port is being

CHAPTER 11 SERIAL PORT DRIVERS

230

referred to in a method call. To do this, the serial driver would create two instances of the
IOSerialStreamSync class, one for each of its hardware ports, and provide a unique refCon value for each
port.

The interface may appear to be daunting, but the methods can be broken into three categories:

• Methods that adjust the serial port’s status and watch for changes in the serial
port’s state

• Methods that get or set properties of the serial port

• Methods that read and write data over the serial port

The following are brief descriptions of the methods defined by the IOSerialDriverSync interface:

• Opening and closing the serial port:
acquirePort()
releasePort()

• Managing a bitmask that represents the state of the serial port, and blocking the
calling thread until a particular condition occurs. State bits describe such
conditions as whether the serial port has been opened, whether data has been
received over the serial port and is available for reading, and whether the serial
port can accept bytes for writing:
setState()
getState()
watchState()

• Setting properties of the serial port:
executeEvent()
enqueueEvent()

• Getting properties of the serial port:
nextEvent()
requestEvent()

• Writing data over the serial port:
enqueueData()

• Reading data that has been received from the serial port:
dequeueData()

One of the complexities in implementing the IOSerialDriverSync interface is that it requires careful
synchronization. The interface methods may be called from multiple threads at any time, meaning that
the implementation needs to make sure that each method is correctly synchronized to prevent such
situations as the dequeueData() method returning data once the serial port has been closed. To further
complicate matters, several methods may block the calling thread until a particular event occurs; this is
particularly true of the watchState() method, which doesn’t return until the serial port has entered a
requested state. Both of these synchronization problems can be solved by using a mutex lock and a
condition variable to signal changes in the serial port’s state.

In the case of the AppleUSBCDCDMM driver, there is an even greater synchronization problem; the
methods called through the IOSerialDriverSync interface need to be coordinated with callbacks that fire
upon the completion of an asynchronous transfer over USB. This is necessary to prevent the completion
callback for a USB write from placing data into a buffer at the same time that the dequeueData() method
attempts to read out of that same buffer.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 11 SERIAL PORT DRIVERS

231

Although this description paints the picture of a very difficult synchronization problem, the I/O Kit
design offers a surprisingly elegant solution. All USB completion callbacks are run on the USB work loop,
so to synchronize serial port methods with USB code, the AppleUSBCDCDMM driver ensures that all serial
port methods are handled on the USB work loop. This is performed as follows:

bool AppleUSBCDCDMM::start(IOService *provider)
{
 …
 // Get the USB work loop (superclass will use the provider class’ work loop)
 fWorkLoop = getWorkLoop();
 …
 // Create a command gate and install it on the USB work loop
 fCommandGate = IOCommandGate::commandGate(this);
 fWorkLoop->addEventSource(fCommandGate);
 …
}

For each serial port method, the AppleUSBCDCDMM driver calls each method through the command
gate, ensuring that it is synchronized to the USB work loop. This is shown below for the implementation
of releasePort():

IOReturn AppleUSBCDCDMM::releasePort(void *refCon)
{
 IOReturn ret = kIOReturnSuccess;

 // Call the static method releasePortAction() on the work loop, which requires no
 // parameters
 ret = fCommandGate->runAction(releasePortAction);

 return ret;
}

IOReturn AppleUSBCDCDMM::releasePortAction(OSObject *owner, void *, void *, void *, void *)
{
 // Call through to the method releasePortGated()
 return ((AppleUSBCDCDMM*)owner)->releasePortGated();
}

IOReturn AppleUSBCDCDMM::releasePortGated()
{
 …
 // Implementation of releasePort
 …
}

The IOCommandGate also provides an object that a thread can sleep on and can be used to signal
sleeping threads when an event occurs. As we will see, this provides a convenient means for
implementing the serial port watchState() method.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 11 SERIAL PORT DRIVERS

232

Serial Port State
A central part of implementing the IOSerialDriverSync interface is managing the serial port’s state. The
serial port state is a bitfield of 32-bits that is used to report events, such as the arrival of data on the serial
port, as well as to save the overall state of the port, such as whether it has been opened by a user space
process or not. Although there are methods that are directly involved in manipulating the state bitmask,
ultimately every method that the serial port implements from IOSerialDriverSync will need to access the
serial port’s state, even if for no other reason than to verify that the serial port has been opened before
attempting to perform an operation.

The state bits are defined in the header file IOSerialStreamSync.h. The meaning of each bit is
described as follows:

• PD_S_ACQUIRED indicates that the serial port has been opened and is in use by a
user space application. This state bit is never set or cleared through the setState()
method but rather is set in the acquirePort() method and cleared in the
releasePort() method.

• PD_S_ACTIVE is set immediately following the acquisition of the serial port and is
cleared immediately before the serial port is released. This state bit is never set or
cleared through the setState() method; instead, the bit is set or cleared through
the executeEvent() method, which uses an event type of PD_E_ACTIVE to
manipulate this state bit.

• PD_S_TX_ENABLE and PD_S_RX_ENABLE are set to indicate that the serial port’s
transmit and receive interfaces are enabled. Most implementations, including the
AppleUSBCDCDMM driver, set these bits when the serial port is opened and clear them
when the serial port is closed, but otherwise make no other use of these state bits.

• PD_S_TX_BUSY and PD_S_RX_BUSY are set to indicate that the serial port driver is in
the middle of sending data from its transmit buffer to the serial port hardware, or
it is in the middle of reading data that has been sent over the serial port hardware
into a driver buffer.

• PD_S_TX_EVENT and PD_S_RX_EVENT are two states that are used internally by the
IOSerialBSDClient class to signal the beginning of a write or read operation.
Although these state bits are unused by the serial driver, it needs to set the
corresponding bit in setState() and allow a client to observe the bit through
watchState() to ensure that the IOSerialBSDClient operates correctly.

A number of bits describe the status of the serial driver’s transmit and receive buffers. The transmit
buffer is used by the serial driver to hold bytes that it has been provided with through the enqueueData()
method but that it has yet to send over the serial port hardware. The receive buffer holds bytes that the
serial driver has read from the serial port hardware but has yet to pass on through the dequeueData()
method. Following are descriptions of the serial driver buffer state bits:

• PD_S_TXQ_EMPTY and PD_S_RXQ_EMPTY indicate that the transmit buffer or receive
buffer is empty and contains no bytes.

• PD_S_TXQ_LOW_WATER and PD_S_RXQ_LOW_WATER indicate that the number of bytes in
the transmit buffer or receive buffer is below a “low water level.” The
AppleUSBCDCDMM driver sets the low water level to be one-third of the size of the
overall transmit buffer or receive buffer.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 11 SERIAL PORT DRIVERS

233

• PD_S_TXQ_HIGH_WATER and PD_S_RXQ_HIGH_WATER indicate that the number of bytes
in the transmit buffer or receive buffer is above a “high water level.” The
AppleUSBCDCDMM driver sets the high water level to be two-thirds of the size of the
overall transmit buffer or receive buffer.

• PD_S_TXQ_FULL and PD_S_RXQ_FULL indicate that the transmit buffer or receive
buffer is completely full and cannot accept any further data.

The header file IORS232SerialStreamSync.h defines status bits for the standard RS-232 signals. For
example, definitions are provided for signals such as Clear To Send (PD_RS232_S_CTS) and Data Terminal
Ready (PD_RS232_S_DTR). The state of software flow control, which uses the transmission of special XON
and XOFF characters, is indicated through state bits PD_RS232_S_TXO and PD_RS232_S_RXO.

A serial port driver maintains a 32-bit integer that holds a bitmask of the state bits that describe the
current state of the serial port. A serial driver must implement the following three methods to allow the
serial port state to be manipulated: getState(), setState(), and watchState(). As well as being called by
the IOSerialBSDClient class when it requires access to the state of the serial port, these three methods
are called in the implementation of many other methods in the serial port class.

For example, the serial port method acquirePort(), which is called to open a serial port for exclusive
access, and releasePort(), which is called to close the serial port, do so by setting the state bit
PD_S_ACQUIRED. A possible implementation of the acquirePort() method is shown in Listing 11-3. This
sample uses setState() to set the PD_S_ACQUIRED bit. If the serial port has already been acquired and the
caller has requested that the method should block until the serial port becomes free, the implementation
calls watchState() to wait until the PD_S_ACQUIRED state bit has been cleared.

Listing 11-3. A Sample Implementation of the acquirePort() Method. The Method Is Assumed to Have

Been Called Through an IOCommandGate.

IOReturn MySerialDriver::acquirePortGated (bool sleep, void* refCon)
{
 UInt32 state;
 IOReturn rtn;

 // If the serial port is already acquired, wait until it is released
 while (m_currentState & PD_S_ACQUIRED)
 {
 // Abort if the caller has requested non-blocking operation
 if (sleep == false)
 return kIOReturnExclusiveAccess;

 // Sleep until the acquired bit becomes clear
 state = 0;
 rtn = watchState(&state, PD_S_ACQUIRED, refCon);
 if (rtn != kIOReturnSuccess)
 return rtn;
 }

 // Set the acquired bit and clear all other state bits
 setState(PD_S_ACQUIRED, 0xFFFFFFFF, refCon);

 // Serial port has been acquired, perform further initialization
 ...

CHAPTER 11 SERIAL PORT DRIVERS

234

 return kIOReturnSuccess;
}

A possible implementation of the releasePort() method, which uses setState() to clear the
PD_S_ACQUIRED state is given in Listing 11-4.

Listing 11-4. A Sample Implementation of the releasePort() Method. The Method Is Assumed to Have

Been Called Through an IOCommandGate.

IOReturn MySerialDriver::releasePortGated (void* refCon)
{
 // Return an error if trying to release a port that hasn’t been acquired
 if ((m_currentState & PD_S_ACQUIRED) == 0)
 return kIOReturnNotOpen;

 // Clear the entire state word, which also deactivates the port
 setState(0, 0xFFFFFFFF, refCon);

 return kIOReturnSuccess;
}

Often, the IOSerialBSDClient class, or even the serial port driver itself, needs to block the current
thread until a particular state has become active or inactive. The serial driver provides this functionality
through a method named watchState(). The events that the caller wishes to observe are described by
two parameters. The “mask” parameter contains a bitmask of the state bits that the caller wishes to
observe. The “state” parameter describes the corresponding value of each state bit that the caller wishes
to observe. For example, if a bit is set in “mask”, but not set in “state”, the caller is interested in that state
becoming inactive. If a bit is set in “mask” and also set in “state”, the caller is interested in that state
becoming active.

The watchState() method will return as soon as any of the observed state bits match the current
state of the serial port. Upon return, the current state of the serial port is returned to the caller through
the “state” parameter. If the serial port is closed while a thread is blocked in watchState(), the sleep will
be aborted and the method will fail and return an error code to the caller, such as kIOReturnNotOpen. The
following code gives an example of how watchState() can be used; this code will block until either the
driver’s transmit buffer becomes empty (PD_S_TXQ_EMPTY is set) or the hardware finishes a write to the
serial port hardware (PD_S_TX_BUSY is clear):

UInt32 state;
IOReturn rtn;

state = PD_S_TXQ_EMPTY;
rtn = watchState(&state, PD_S_TXQ_EMPTY | PD_S_TX_BUSY, refCon);
if (rtn != kIOReturnSuccess)
 handle error;

The implementation of the watchState() method is closely related to the implementation of the
setState() method. As well as setting bits in the serial port state word, the setState() method is also
responsible for waking any threads that are waiting for a particular state to be set. In Chapter 7, we
introduced condition variables and saw how one thread could sleep on a condition variable and remain
blocked until another thread signaled the condition variable to indicate that an event had occurred. This

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 11 SERIAL PORT DRIVERS

235

provides a mechanism that a serial port driver can use to suspend a thread in the watchState() method
and to signal it from the setState() method when the observed state has changed.

When the setState() method is called, the serial driver updates a variable that maintains the
current serial port state, and then signals all threads that are blocked in the watchState() method,
allowing them to test whether the state on which they are waiting has become active. As an optimization,
rather than waking up threads blocked in watchState() for every change to the serial port state, the
AppleUSBCDCDMM driver maintains a union of all state bits that are being waited on across all current calls
to watchState(), and will only unblock the threads if the value of a state bit that is being watched has
changed.

A sample implementation of the setState() and watchState() methods is provided in Listing 11-5.

Listing 11-5. A Sample Implementation of the setState() and watchState() Methods. The Methods Are

Assumed to Have Been Called Through an IOCommandGate.

IOReturn MySerialDriver::setStateGated(UInt32 state, UInt32 mask, void* refCon)
{
 UInt32 newState;
 UInt32 deltaState;

 // Verify that the serial port has been acquired or is being acquired by this call
 if ((m_currentState & PD_S_ACQUIRED) || (state & PD_S_ACQUIRED))
 {
 // Compute the new state
 newState = (m_currentState & ~mask) | (state & mask);
 // Determine the mask of changed state bits
 deltaState = newState ^ m_currentState;
 // Set the new state
 m_currentState = newState;

 // If any state that is being observed by a thread in watchState() has changed,
 // wake up all threads asleep on watchState()
 if (deltaState & m_watchStateMask)
 {
 // Reset watchStateMask; it will be regenerated as each watchStateGated()
 // sleeps
 m_watchStateMask = 0;
 fCommandGate->commandWakeup((void*)&m_currentState);
 }

 return kIOReturnSuccess;

 }

 return kIOReturnNotOpen;
}

IOReturn MySerialDriver::watchStateGated(UInt32* state, UInt32 mask, void* refCon)
{
 UInt32 watchState;
 bool autoActiveBit = false;
 IOReturn ret;

CHAPTER 11 SERIAL PORT DRIVERS

236

 // Abort if the serial port has not been acquired
 if ((m_currentState & PD_S_ACQUIRED) == 0)
 return kIOReturnNotOpen;

 watchState = *state;
 // If the caller is not waiting on the acquired or active state, register
 // interest in the active state so that we can abort if the serial port closes.
 if ((mask & (PD_S_ACQUIRED | PD_S_ACTIVE)) == 0)
 {
 watchState &= ~PD_S_ACTIVE;
 mask |= PD_S_ACTIVE;
 autoActiveBit = true;
 }

 while (true)
 {
 // Check port state for any bits that match the watchState value
 // NB. the '^ ~' is a XNOR and tests for equality of bits.
 UInt32 matchedStates = (watchState ^ ~m_currentState) & mask;
 if (matchedStates)
 {
 *state = m_currentState;
 // Abort if the serial port was closed and the caller didn't watch
 // PD_S_ACTIVE
 if (autoActiveBit && (matchedStates & PD_S_ACTIVE))
 return kIOReturnIOError;
 else
 return kIOReturnSuccess;
 }

 // Add the bits we are sleeping on to watchStateMask
 m_watchStateMask |= mask;
 // Sleep until the serial port state changes
 ret = fCommandGate->commandSleep((void*)&m_currentState);
 if (ret == THREAD_INTERRUPTED)
 return kIOReturnAborted;
 }

 return kIOReturnSuccess;
}

Note that the implementation of watchState() in Listing 11-5 will make sure that either the
PD_S_ACQUIRED or PD_S_ACTIVE bits are being watched, and if not, will add an extra state to the mask to
watch for the PD_S_ACTIVE bit becoming clear. This ensures that when the serial port is closed, all threads
that are blocked in a call to watchState() will wake up and return to the caller. If the mask for serial port
deactivation were not explicitly added, the blocked thread would never wake up, causing the serial port
driver to deadlock.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 11 SERIAL PORT DRIVERS

237

Serial Port Events
The hardware serial port will need to be configured to match the settings used by the device on the other
end of the serial connection. Configurable settings include parameters such as the baud rate at which
data is sent, the number of bits in a data character, whether parity bits are transmitted, and the number
of stop bits that are sent at the end of each character.

These serial port settings are determined by the user space process that has opened the serial port
and are configured through functions such as tcsetattr() and tcgetattr(). These functions enter the
kernel through the I/O Kit’s IOSerialBSDClient class, which passes the individual configuration options
to the serial port driver through its executeEvent() method.

The executeEvent() method is paired with the method requestEvent(), which is used by the
IOSerialBSDClient class to query the current configuration of the serial port. The prototypes for the
executeEvent() and requestEvent() methods are as follows:

IOReturn executeEvent(UInt32 event, UInt32 data, void* refCon);
IOReturn requestEvent(UInt32 event, UInt32* data, void* refCon);

The parameter “event” is an enumeration from IOSerialStreamSync.h and identifies the property
that is being configured or queried. The parameter “data” is used to pass the new value for the property
that is being set through executeEvent(), or the current value of the property that is being queried
through requestEvent(). Most drivers implement the executeEvent() and requestEvent() methods with
a large switch statement on the value of the event parameter. A description of the possible event types is
given below in Table 11-1.

Table 11-1. Event Types Handled by executeEvent() or requestEvent()

Event Description

PD_E_ACTIVE This event is used to start or stop the serial port hardware. The data
parameter is a Boolean value, with a non-zero value indicating that the
serial port hardware should be started, and a value of zero indicating
that the serial port hardware should be stopped. The driver should
respond by changing the state of the hardware, and then setting or
clearing the state bit PD_S_ACTIVE to reflect the state of the hardware.

This property can be queried by requestEvent(), at which point the
driver should return the current state of the hardware to the caller
through the data parameter.

PD_E_TXQ_SIZE

PD_E_RXQ_SIZE

The data parameter specifies the allocation size of the serial driver’s
internal transmit buffer or receive buffer. The buffer size is specified as
the number of characters that the buffer can hold.

This property can be both queried and set, although an implementation
is free to ignore a caller’s request to set this value.

PD_E_TXQ_LOW_WATER

PD_E_RXQ_LOW_WATER

PD_E_TXQ_HIGH_WATER

The data parameter specifies the number of characters in the serial
driver’s internal transmit buffer or receive buffer that is considered to
be the low water level or high water level. This parameter governs the
point at which the status bits PD_S_TXQ_LOW_WATER, PD_S_RXQ_LOW_WATER,
PD_S_TXQ_HIGH_WATER, and PD_S_RXQ_HIGH_WATER are set.

CHAPTER 11 SERIAL PORT DRIVERS

238

Event Description
PD_E_RXQ_HIGH_WATER This property can be both queried and set, although an implementation

is free to ignore a caller’s request to set this value.

PD_E_TXQ_AVAILABLE

PD_E_RXQ_AVAILABLE

The data parameter returns the number of additional characters that
can be written to the driver’s transmit buffer until it becomes full, or the
number of characters that are currently held in the driver’s receive
buffer.

This property can be queried, but not set.

PD_E_TXQ_FLUSH

PD_E_RXQ_FLUSH

This event, specified through executeEvent(), indicates that the serial
driver should discard all characters from its internal transmit buffer or
receive buffer.

PD_E_DATA_RATE This event is used to get or set the baud rate of the serial port. The value
in the data parameter uses half-bits to express the speed, meaning that
the baud rate, which is measured in bits, is found by dividing the value
in of the data parameter by 2.

There is also a PD_E_RX_DATA_RATE event that allows the baud rate used
for data input to be specified independently, although most
implementations will ignore this event.

PD_E_DATA_SIZE This event is used to get or set the number of bits in each character sent
over the serial port. The value in the data parameter specifies the data
size in bits.

There is also a PD_E_RX_DATA_SIZE event that allows the size of the data
input to be specified independently, although most implementations
will ignore this event.

PD_E_DATA_INTEGRITY This event is used to get or set the parity of data sent over the serial port.
The value in the data parameter will be one of the following values:
PD_RS232_PARITY_NONE, PD_RS232_PARITY_ODD, or PD_RS232_PARITY_EVEN.

There is also a PD_E_RX_DATA_INTEGRITY event that allows the parity of
data input to be specified independently, although most
implementations will ignore this event.

PD_RS232_E_STOP_BITS This event is used to get or set the number of stop bits sent after each
character has been sent over the serial port. This value in the data
parameter is expressed in half-bits, meaning that a data value of 2
configures the serial port for 1 stop bit.

There is also a PD_RS232_E_RX_STOP_BITS event that allows the stop bits
of data input to be specified independently, although most
implementations will ignore this event.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 11 SERIAL PORT DRIVERS

239

Event Description

PD_E_FLOW_CONTROL This event is used to pass on the flow control state that has been
requested by the user space process. The value in the data parameter is
a bitfield in which each bit corresponds to a bit from the user space
termios structure. The following list gives the bits that are defined for
the data value, along with the flag that each bit corresponds to from the
user space termios structure:

PD_RS232_A_TXO (equivalent to IXON)

PD_RS232_A_XANY (equivalent to IXANY)

PD_RS232_A_RXO (equivalent to IXOFF)

PD_RS232_A_RFR (equivalent to CRTS_IFLOW)

PD_RS232_A_CTS (equivalent to CCTS_OFLOW)

PD_RS232_A_DTR (equivalent to CDTR_IFLOW)

PD_RS232_E_XON_BYTE

PD_RS232_E_XOFF_BYTE

These events are used to get or set the start and stop characters that are
used if software flow control is enabled.

PD_RS232_E_LINE_BREAK This event takes a Boolean data value that specifies whether an RS-232
break condition is signaled on the transmit line.

In addition to the method executeEvent(), you will notice that the IOSerialDriverSync interface

also defines a method named enqueueEvent() that is used for setting the properties of a serial port. There
is a subtle difference between the two methods; a call to the executeEvent() method causes a change in
the serial port’s configuration to take effect as soon as the method is called, whereas a call to
enqueueEvent() won’t take effect until all of the characters that are currently in the serial driver’s
transmit buffer have been written to hardware.

Implementing the correct behavior of enqueueEvent() requires the serial driver to define a transmit
buffer that consists of a queue of events and the data associated with each event. Then, each call to
enqueueEvent() appends the pair of values {event, data} to the transmit queue. Similarly, character data
for transmission also needs to be treated as an event and appended to the end of the transmit buffer.
Whenever the transmit buffer is not empty, the serial driver pulls the next event off the queue, which is
either an event that changes the configuration of the serial port or a character to be sent over the serial
port.

A serial driver isn’t required to adhere this closely to the correct implementation of enqueueEvent().
If you examine the source code for the AppleUSBCDCDMM driver, you will see that it implements
enqueueEvent() by calling through to executeEvent(), which applies the requested change to the serial
port’s configuration immediately.

Similarly, the serial driver’s receive buffer allows events to be inserted between data bytes read from
the serial port. For the receive queue, events represent errors that have occurred while reading data from
the serial port. Some of the errors that can be reported are described here:

• PD_RS232_E_RX_LINE_BREAK indicates that a break condition was detected by the
receiver.

CHAPTER 11 SERIAL PORT DRIVERS

240

• PD_E_FRAMING_ERROR indicates that the character data was incorrectly framed. (The
stop bit was not in the expected position.)

• PD_E_INTEGRITY_ERROR indicates a parity error was detected.

• PD_E_HW_OVERRUN_ERROR and PD_E_SW_OVERRUN_ERROR indicate that character data
was not pulled from the hardware or the software buffers fast enough to prevent
the buffer from filling and data being lost.

Before reading any data from the serial port, the IOSerialBSDClient class will make a call to the
serial driver’s nextEvent() method. If the next element in the serial driver’s receive queue is an error
event, nextEvent() will return the event type to the caller, and the caller will respond by calling the
driver’s dequeueEvent() method. Otherwise, if the next element in the serial driver’s receive queue is a
data byte that has been read from the serial port, it should return PD_E_EOQ.

As with the transmit side of the serial driver, it is not strictly necessary for a driver to fully implement
the queuing of events in its receive queue. In fact, the implementation provided by the AppleUSBCDCDMM
driver reports no events on its receive queue at all; its implementation of nextEvent() and
dequeueEvent() will check that the serial port has been activated and, if so, will always return a value of
kIOReturnSuccess. Note that kIOReturnSuccess has a value of 0, and therefore, corresponds to the event
PD_E_EOQ, which also has a value of 0.

Serial Data Transfer
The remaining methods to be implemented from the IOSerialDriverSync interface are the data transfer
methods. The serial driver will be provided with data to be transmitted over the serial port through the
method enqueueData(), and the data that the driver has received from the serial port is provided to
clients through the dequeueData() method.

When a user space process writes data to a serial port, it is first handled in the kernel by the
IOSerialBSDClient class, which is responsible for passing the data on to the serial port driver. The
IOSerialBSDClient will provide the data to the serial driver by calling its enqueueData() method, which
has the following signature:

IOReturn enqueueData(UInt8 *buffer, UInt32 size, UInt32 *count, bool sleep, void *refCon);

The data bytes to be sent are held in the buffer parameter, and the number of bytes to be sent is
described by the size parameter. The typical design of a serial driver is to copy the data that has been
provided into an internal buffer that it has allocated (known as the transmit buffer) and then return to
the caller immediately. The driver will then continue handling the write request by transferring data
from its transmit buffer to the hardware serial port asynchronously. Before returning from the
enqueueData() method, the driver will return, through the count parameter, the number of bytes that it
accepted; note that this is simply the number of bytes that the driver was able to copy to its transmit
buffer, not the number of bytes that have been written over the hardware serial port. The sleep
parameter allows the caller to request that, if the driver cannot accept all of the bytes that it has been
provided, the driver should block and not return to the caller until all bytes have been copied to the
driver’s internal transmit buffer.

The current implementation of the IOSerialBSDClient will never request that the serial driver sleep
if it cannot accept all of the data bytes that have been provided. Rather, it will make sure that it doesn’t
provide the serial driver with more data than it can accept, which is done by calling the driver’s
requestEvent() method with the event PD_E_TXQ_AVAILABLE. The IOSerialBSDClient will watch various
states of the driver’s transmit buffer to determine when the driver is able to accept more data, including
the states PD_S_TXQ_LOW_WATER, PD_S_TXQ_EMPTY, and PD_S_TX_BUSY.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 11 SERIAL PORT DRIVERS

241

A sample implementation of the enqueueData() method is provided in Listing 11-6. Note that this
implementation copies the data bytes to a transmit buffer that has been allocated by the serial driver,
and then checks whether the hardware is currently writing data out on the serial port. If not, a
hypothetical function named StartHardwareTransmit() is called which, although implementation
specific, has the purpose of telling the hardware to begin sending data bytes from the driver’s transmit
buffer out over the serial port.

Listing 11-6. A Sample Implementation of the enqueueData() Method. The Method Is Assumed to Have

Been Called Through an IOCommandGate.

IOReturn MySerialDriver::enqueueDataGated(UInt8* buffer, UInt32 size, UInt32* count,
 bool sleep, void* refCon)
{
 // Abort if the serial port has not been acquired
 *count = 0;
 if ((m_currentState & PD_S_ACTIVE) == 0)
 return kIOReturnNotOpen;

 // Copy the provided data to the driver's transmit buffer
 *count = AddToTransmitQueue(buffer, size);
 // Regenerate the status bits for the transmit buffer
 CheckQueues(refCon);

 // If no hardware transmission is in progress, begin outputting bytes from the driver’s
 // buffer
 if ((m_currentState & PD_S_TX_BUSY) == 0)
 StartHardwareTransmit();

 // Block if the caller has requested we send all bytes before returning
 while ((*count < size) && sleep)
 {
 UInt32 state;
 IOReturn ret;

 // Wait until the driver's transmit buffer falls below the low waterlevel,
 // and try again
 state = PD_S_TXQ_LOW_WATER;
 ret = watchState(&state, PD_S_TXQ_LOW_WATER, refCon);
 if (ret != kIOReturnSuccess)
 return ret;

 // Copy further bytes to the driver's transmit buffer
 *count += AddToTransmitQueue(buffer + *count, size - *count);
 CheckQueues(refCon);
 if ((m_currentState & PD_S_TX_BUSY) == 0)
 StartHardwareTransmit();
 }

 return kIOReturnSuccess;
}

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 11 SERIAL PORT DRIVERS

242

The other part of data transfer is reading bytes that have been received from the hardware serial
port. A serial driver will obtain data that has been received from its hardware device and copy it into its
internal receive buffer. The exact means by which the hardware will notify the serial driver that data has
been received will be implementation-specific, but may be signaled by a PCI interrupt or the completion
of a USB transaction. The driver now needs to pass the received data on to the IOSerialBSDClient, which
in turn will provide the data to a user space process.

The I/O Kit uses a pull model to return data from the serial driver to the IOSerialBSDClient class.
The IOSerialBSDClient will call the driver’s dequeueData() method to obtain data that has been received
on the hardware serial port; the signature for this method is as follows:

IOReturn dequeueData(UInt8* buffer, UInt32 size, UInt32* count, UInt32 min, void* refCon);

Upon receiving this method, the serial driver should copy data from its internal receive buffer to the
provided parameter buffer. The parameter size describes the maximum number of bytes that the
provided buffer can hold. The parameter count is used to return the actual number of bytes that were
written to the provided buffer. The caller can request that the dequeueData() method block and not
return to the caller until a minimum number of bytes are available; this is done by specifying a non-zero
value in the min parameter, which provides the minimum number of bytes that the caller should return.

Rather than continually polling the dequeueData() method until data is available, the
IOSerialBSDClient class will specify a minimum read size of 1 byte. The effect of this is to block in the
call to dequeueData() but have the method return immediately as soon as the serial port has received
data. The AppleUSBCDCDMM serial port driver implements this method by calling through to the
watchState() method, and waiting until the PD_S_RXQ_EMPTY state is clear, indicating that data is available
in the driver’s receive buffer. An advantage of this design is that it ensures that the driver will unblock a
wait in the dequeueData() method when the serial port is closed, since the watchState() method will
abort if the PD_S_ACTIVE flag is ever cleared (which happens when the user process closes the serial port).

A sample implementation of the dequeueData() method is given in Listing 11-7. This
implementation copies data out of the driver’s internal receive buffer and into a buffer that has been
provided by the caller of the method.

Listing 11-7. A Sample Implementation of the dequeueData() Method. The Method Is Assumed to Have

Been Called Through an IOCommandGate.

IOReturn MySerialDriver::dequeueDataGated(UInt8* buffer, UInt32 size, UInt32* count,
 UInt32 min, void* refCon)
{
 // Abort if the serial port has not been acquired
 *count = 0;
 if ((m_currentState & PD_S_ACTIVE) == 0)
 return kIOReturnNotOpen;

 // Copy data from the driver's receive buffer
 *count = RemovefromReceiveQueue(buffer, size);
 // Regenerate the status bits for the receive buffer
 CheckQueues(refCon);

 // Block if the caller has requested a minimum number of bytes
 while ((min > 0) && (*count < min))
 {
 UInt32 state;
 IOReturn ret;

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 11 SERIAL PORT DRIVERS

243

 // Wait until the driver's receive buffer is not empty, and try again
 state = 0;
 ret = watchState(&state, PD_S_RXQ_EMPTY, refCon);
 if (ret != kIOReturnSuccess)
 return ret;

 // Copy further bytes from the driver's receive buffer
 *count += RemovefromReceiveQueue(buffer + *count, size - *count);
 CheckQueues(refCon);
 }

 return kIOReturnSuccess;
}

The sample implementations of enqueueData() in Listing 11-6 and dequeueData() in Listing 11-7
both call a hypothetical function named CheckQueues() after reading or writing to the internal transmit
buffer or receive buffer. Although CheckQueues() is a hypothetical function, its role is one that is needed
by any serial port driver. Its purpose is to examine the number of bytes held in the driver’s internal
transmit buffer or receive buffer, and to update the state flags that describe the driver’s queues. These
flags describe whether the transmit or receive queue is empty, full, contains fewer bytes than the low
water level, or contains more bytes than the high water level. Since there may be threads that are waiting
for the transmit buffer or receive buffer to reach a certain level, it is important that the serial port driver
updates these status flags whenever it reads or writes to its internal buffers.

As well as being called from the methods enqueueData() and dequeueData(), as shown in Listing 11-
6 and Listing 11-7, a serial port driver would also call the CheckQueues() function when data from the
transmit buffer is removed and written over the hardware serial port, and when the hardware adds data
that is has read from the serial port to the receive buffer. A sample implementation of the CheckQueues()
method is provided in Listing 11-8.

Listing 11-8. A Sample Method to Update the Status Flags for the Driver’s Internal Transmit Buffer. The

Method Is Assumed to Have Been Called Through an IOCommandGate.

void MySerialDriver::CheckQueues(void* refCon)
{
 UInt32 usedSpace;
 UInt32 freeSpace;
 UInt32 newState;
 UInt32 deltaState;

 // Initialize newState with the state at function entry.
 newState = m_currentState;

 // Check the number of bytes used and free in the transmit buffer
 usedSpace = GetUsedSpaceInTransmitQueue();
 freeSpace = GetFreeSpaceInTransmitQueue();

 // Set the full/empty state for the transmit buffer
 if (freeSpace == 0)
 {
 newState |= PD_S_TXQ_FULL;

CHAPTER 11 SERIAL PORT DRIVERS

244

 newState &= ~PD_S_TXQ_EMPTY;
 }
 else if (usedSpace == 0)
 {
 newState &= ~PD_S_TXQ_FULL;
 newState |= PD_S_TXQ_EMPTY;
 }
 else
 {
 newState &= ~PD_S_TXQ_FULL;
 newState &= ~PD_S_TXQ_EMPTY;
 }

 // Set the low/high waterlevel state for the transmit buffer
 if (usedSpace < m_txLowWaterlevel)
 newState |= PD_S_TXQ_LOW_WATER;
 else
 newState &= ~PD_S_TXQ_LOW_WATER;

 if (usedSpace > m_txHighWaterlevel)
 newState |= PD_S_TXQ_HIGH_WATER;
 else
 newState &= ~PD_S_TXQ_HIGH_WATER;

 // Perform the same checks on the receive buffer
 …

 // Update any changed state bits
 deltaState = newState ^ m_currentState;
 setState(newState, deltaState, refCon);
}

Accessing a Serial Port from User Space
To a user space application, a serial port driver is accessed as a standard character device in the /dev
directory. This should be familiar territory for anyone who has accessed a serial port on any other UNIX
system. Where the I/O Kit approach differs, however, is in how a user space application enumerates the
serial ports that are present in a system. For many traditional UNIX applications, the user must specify
the full path of the serial port’s character file. The approach taken by Mac OS X is to shield users from the
/dev directory, and to present available serial ports through a descriptive name. This is where the I/O Kit
comes in.

Since a serial port is implemented by an I/O Kit driver, its driver object can be found by user space
applications in the I/O Registry, as described in Chapter 5. Like all entries in the I/O Registry, the entry
for a serial port driver contains a property table that can be used to obtain a descriptive name for the
serial port, and a full path to the serial port’s character device file. Having obtained the path to the serial
port’s device file, the user space application can then proceed to open and access the device, as would
be done by a traditional UNIX program.

As with any application that wishes to locate a driver through the I/O Registry, the first step in
finding a serial port driver is to create a matching dictionary. The role of a matching dictionary is to
locate entries in the I/O Registry that meet certain criteria, and filter out all other entries. A user space
process accesses a serial port not through the serial port driver itself, but rather through the driver’s

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 11 SERIAL PORT DRIVERS

245

associated IOSerialBSDClient class. Therefore, to find serial ports in the system, a user space process
just needs to create a matching dictionary to find all IOSerialBSDClient objects in the registry. This can
be done as follows:

#include <IOKit/serial/IOSerialKeys.h>

CFMutableDictionaryRef matchingDict;
matchingDict = IOServiceMatching(kIOSerialBSDServiceValue);

To further refine the matches, the user process can add the key kIOSerialBSDTypeKey to the
matching dictionary, and limit the results to modem devices (serial drivers that created an
IOModemSerialStreamSync object) or generic serial port devices (serial drivers that created an
IORS232SerialStreamSync object). For example, to limit the matches to modem devices, a user space
application would create the following matching dictionary:

matchingDict = IOServiceMatching(kIOSerialBSDServiceValue);
CFDictionarySetValue(matchingDict, CFSTR(kIOSerialBSDTypeKey), CFSTR(kIOSerialBSDModemType));

Having created a matching dictionary to locate the serial devices that it is interested in, the process
is then able to iterate the registry for drivers that meet the criteria specified by that dictionary. All
instances of IOSerialBSDClient contain registry properties that are specific to a serial port driver,
namely:

• kIOTTYDeviceKey: a CFStringRef containing a descriptive name for the serial port

• kIOCalloutDeviceKey: a CFStringRef containing the full path to the callout
character device file for the serial port

• kIODialinDeviceKey: a CFStringRef containing the full path to the dial-in character
device file for the serial port

To show how these properties can be used, the code in Listing 11-9 demonstrates how to enumerate
all serial devices in the system and how to open each device.

Listing 11-9. A Sample Application That Uses the I/O Kit to Enumerate all Serial Devices Present in the

System and Find the Path of the Character Device for each Serial Port

#include <CoreFoundation/CoreFoundation.h>
#include <IOKit/IOKitLib.h>
#include <IOKit/serial/IOSerialKeys.h>
#include <sys/param.h>
#include <fcntl.h>
#include <unistd.h>

int main (int argc, const char * argv[])
{
 CFMutableDictionaryRef matchingDict;
 io_iterator_t iter = 0;
 io_service_t service = 0;
 kern_return_t kr;

 // Create a matching dictionary that will find any serial device
 matchingDict = IOServiceMatching(kIOSerialBSDServiceValue);
 kr = IOServiceGetMatchingServices(kIOMasterPortDefault, matchingDict, &iter);

CHAPTER 11 SERIAL PORT DRIVERS

246

 if (kr != KERN_SUCCESS)
 return -1;

 // Iterate over all matching objects
 while ((service = IOIteratorNext(iter)) != 0)
 {
 CFStringRef cfDeviceName;
 CFStringRef cfCalloutPath;
 Char deviceName[256];
 Char calloutPath[MAXPATHLEN];
 Int fd;

 // Get the device name
 cfDeviceName = IORegistryEntryCreateCFProperty(service, CFSTR(kIOTTYDeviceKey),
 kCFAllocatorDefault, 0);
 CFStringGetCString(cfDeviceName, deviceName, sizeof(deviceName),
 kCFStringEncodingUTF8);
 CFRelease(cfDeviceName);

 // Get the character device path
 cfCalloutPath = IORegistryEntryCreateCFProperty(service,
 CFSTR(kIOCalloutDeviceKey), kCFAllocatorDefault, 0);
 CFStringGetCString(cfCalloutPath, calloutPath, sizeof(calloutPath),
 kCFStringEncodingUTF8);
 CFRelease(cfCalloutPath);

 // The I/O Registry object is no longer needed
 IOObjectRelease(service);

 // Proceed to open and use the device at "calloutPath" as usual
 printf("Found device %s at path %s\n", deviceName, calloutPath);

 fd = open(calloutPath, O_RDWR | O_NOCTTY | O_NONBLOCK);
 // Clear the O_NONBLOCK flag so subsequent I/O will block
 fcntl(fd, F_SETFL, 0);

 // Configure serial device with tcsetattr()
 // Read and write with read() / write()

 close(fd);
 }

 // Release the I/O Registry iterator
 IOObjectRelease(iter);

 return 0;
}

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 11 SERIAL PORT DRIVERS

247

Summary
• A serial port provides a simple means of low-bandwidth data transfer between

devices. Although you can no longer find an RS-232 or RS-422 serial port on
modern Macs, many USB devices present themselves as a serial port, so support
for serial port drivers is still part of the Mac OS X operating system.

• A user space application accesses a serial port through a device file in the /dev
directory, as is standard for the UNIX environment.

• A serial port driver is implemented in the I/O Kit by implementing a subclass of
the IOSerialDriverSync interface. This interface contains methods for opening
and closing the serial port, configuring the port, and reading and writing data.

• The I/O Kit provides a class known as IOSerialBSDClient that publishes the serial
port driver to user space applications. This class receives requests from user space
applications to read and write to the serial port, and passes the requests on to the
kernel serial port driver.

• The I/O Kit design allows a serial port driver to be implemented using the modern,
object-oriented design of the I/O Kit, without having to deal with the legacy user
space interface of a serial port device.

C H A P T E R 12

249

Audio Drivers

Audio devices are among the most common peripherals attached to a computer apart from storage
devices. They are used for everything from voice recorders to MP3 players, headsets with microphones,
security systems, and DJ and professional recording systems. Many video devices also have audio
capabilities and come with their own audio drivers that allow you to use the audio features of the device
independently or together with the video features, for example, a web camera with a built-in
microphone. The microphone will have its own audio driver, representing the microphone in the system
as an audio device that can be used independently of the camera.

Programming drivers for audio devices present a few unique challenges. Audio devices have strict
latency requirements and must be fed a constant stream of data to avoid holes or glitches during
playback or recording. The human ear is extremely sensitive and can detect even small glitches in only a
few samples worth of data. Furthermore, audio data cannot be excessively buffered, as this will cause an
unacceptable delay. For example, suppose you were playing loud music and received a phone call. You
would not be happy if it took five seconds from when you pressed the pause button until the music
actually stopped. Similarly, if you were playing a game firing a gun, you would expect to hear the sound
of the gun firing almost immediately, not several seconds after you pulled the trigger. Therefore, an
audio device must minimize buffering in order to alleviate these effects.

While the preceding examples specifically mentioned playback, buffering must also be minimized
when capturing audio with an input device. For example, if you had a telephone connected via the input
device, you wouldn’t want to hear the other person’s voice several seconds late. Because an audio buffer
must be kept small in order to keep the latency or lag down, it will also need to respond to the hardware
with as little latency as possible to avoid situations where the audio producer overtakes the audio
consumer, or vice versa, which would lead to audible distortions. Because of these constraints and the
fact that an audio driver needs to respond to multiple clients, it is a prime candidate for a kernel-level
driver.

Core Audio is the term used to describe the entirety of audio support under Mac OS X. This includes
a myriad of user space APIs as well as the kernel KPI, implemented by the IOAudioFamily interface that
will be the subject of this chapter.

An Introduction to Digital Audio and Audio Devices
Sound waves are analog by nature, and as we know, analog signals aren't easily stored or manipulated by
a computer system that stores and processes information digitally. Other devices, such as CD, DVD, and
Blu-Ray players, also operate with digital audio.

Digital audio information is mainly derived from an analog audio wave by a process known as Pulse
Code Modulation (PCM). PCM works by sampling or taking a measurement of the analog audio wave at
fixed intervals. The number of measurements taken per second is known as the sample rate. Audio on a
CD is sampled at 44.1 kHz. Other sources, such as HD video, may use 48 kHz, which means there are

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 12 AUDIO DRIVERS

250

48000 measurements of the audio wave performed per second. Each measurement is known as a
sample.

The sample is a measurement of the analog signal's amplitude at the time of the measurement,
which is then quantized to a digital scale. The range of this scale is known as the bit depth or sample
depth. For CD audio and many other applications, the bit depth is 16 bits, which gives each sample a
possible value between −32768 and 32767. When a sample is taken, the value is converted into this scale
by rounding it to the nearest integer value. The higher the sample rate and sample width, the more
accurate the representation of the original audio wave.

As computer programmers, we rarely need to care about the conversion of a signal from analog to
digital or vice versa, as that is handled by circuitry on the audio hardware (ADC/DAC). However, a
programmer needs to be aware of what digital PCM samples represent and understand the significance
of the sample rate and depth. PCM samples are typically stored with channels interleaved in memory, as
shown in Figure 12-1.

Figure 12-1. Buffer of interleaved 16-bit signed PCM samples

As you can see in Figure 12-1, the data corresponding to each channel are not stored sequentially
but are interleaved in the buffer. The buffer above uses 16 bits per sample, which means that each
sample occupies two bytes. A pair of left/right samples is referred to as a sample frame (or sample
group). If there were more than two channels, for example, eight (as used by HDMI), a sample group
would instead consist of channels 1–8. Most digital audio systems expect audio data in this format and
usually this is how audio is stored in a file on a computer, assuming the audio is uncompressed. File
formats such as MP3 compress the audio data; however, they have to decompress the audio back to
interleaved PCM samples before it can be played back by the audio hardware. Audio at 44.1 kHz will give
us 44100 sample frames per second. If the sample depth is 16 bits and there are two channels, we need
176.4 KB (44100 Hz * (16/8 bits) * 2 channels = 176400 bytes) of data to store a single second of audio.
PCM samples aren’t necessarily always 16 bits wide, however. The sample depth can also be 8, 20, 24, or
32 bits. Furthermore, samples can be stored as unsigned or signed, or even in floating point, which is the
preferred audio format of Core Audio. Table 12-1 shows some commonly used PCM formats.

Table 12-1. Examples of PCM Sample Formats

Sample Depth Sample Width Storage Type

8 8 signed integer

16 16 signed integer

24 32 signed integer

32 32 signed integer

32 32 signed floating point

CHAPTER 12 AUDIO DRIVERS

251

An audio device and driver usually revolve around the concept of a sample buffer. The sample
buffer usually contains interleaved PCM samples (assuming there is more than one channel). The
sample buffer is a circular buffer allocated by the driver. For audio playback, the hardware device usually
continuously reads the buffer. The device will access the memory of the buffer directly via direct
memory access (DMA) without involving the CPU and issue an interrupt at some fixed interval to let the
driver know the current location the device is reading from. This is necessary so that whatever is
producing the audio data can write to the correct location without interfering with the device. After a
period has elapsed, we know that a certain number of samples have been played by the device. In this
case, it is common for the driver to erase the played samples. This ensures that silence will be outputted
rather than repeating previous data should the buffer wrap around to the start without any new audio
being inserted into the buffer. In the case of audio input, the process is simply reversed. Instead of
reading from the buffer, the device will be writing audio samples into the sample buffer. It will also issue
an interrupt, letting you know when/where audio samples can be read.

Some audio devices may have multiple independent inputs and outputs. In this case, each input
and output may have its own sample buffer. Mac OS X comes with a USB audio device driver so no third
party driver is generally needed for devices that conform to the USB audio interface.

Core Audio
Core Audio is an umbrella term used to describe the collective audio support under Mac OS X and iOS.
This support consists of a number of frameworks, including the CoreAudio.Framework itself. The audio
architecture is shown in Figure 12-2.

Figure 12-2. Mac OS X and iOS audio architecture

The core of the architecture is implemented in the Audio HAL (hardware abstraction layer), which
acts as an intermediary between the frameworks, applications, and the audio hardware and driver. The
current architecture exists to address a number of limitations with the previous audio architecture found
in Mac OS 9. In OS 9, an application using an audio device wrote directly into the driver’s double-
buffered sample buffer. As a consequence, OS 9 could only handle audio output from a single
application at a time. Furthermore, because of the direct access, the application had to write audio in a
format supported by the audio device, which limited it to only support mono or stereo 16-bit PCM
samples.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 12 AUDIO DRIVERS

252

Under OS X and iOS, this limitation is removed. Instead of having an application talk directly to the
driver, it instead interfaces with the Audio HAL. Core Audio takes care of combining audio from multiple
applications and threads into a single buffer. Each application is free to choose any audio format
supported by the HAL. The HAL will convert the audio buffer into 32-bit floating-point samples before
handing the buffer to the driver. The driver is then responsible for converting the buffer from floating-
point format to the native format supported by the audio hardware. The same is also the case for audio
input. The driver is expected to convert incoming audio into 32-bit floating samples before the audio can
be transferred back to the HAL. 32-bit floating-point format is used as it has a very high dynamic range,
which ensures that precision will not be lost during conversion to or from another format.

While the Core Audio framework itself provides low-level access to audio drivers, Core Audio as the
collective audio architecture provides numerous other frameworks built on top of it, such as follows:

• Audio Toolbox framework provides a diverse set of APIs for tasks such as audio
clock synchronization, reading and writing of audio files, APIs for music playback,
Audio conversion API, Audio graph API, and much more.

• Audio Units framework provides support for writing filters, such as equalizers and
band-pass filters.

• Core Audio Kit framework allows the creation of Cocoa GUIs for Audio Units.

• Core MIDI / MIDI Server framework contains APIs for working MIDI.

• OpenAL is the Mac OS X implementation of the Open Audio Library.

I/O Kit Audio Support
The IOAudioFamily handles audio in the kernel and facilitates the creation of drivers for audio hardware.
The responsibility of an audio driver is conceptually very simple; it merely transfers data to and from the
hardware on behalf of clients (much like any hardware driver). It is also responsible for performing
actions like muting, controlling the volume, or other configurable attributes. Core Audio uses 32-bit
floating-point format as its native audio format and because not all devices will support this, a driver
must handle conversion to and from a format the hardware is able to handle. Figure 12-3 shows the
hierarchy of classes that make up the IOAudioFamily.

Figure 12-3. IOAudioFamily classes

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 12 AUDIO DRIVERS

253

Let’s have a look at the role of each class in the family.

• The IOAudioDevice class serves as a central coordination point for an audio driver.
It is responsible for attaching to a hardware provider and configuring and
initializing the hardware. The class itself is not usually directly involved in the I/O
of audio, which instead is the role of IOAudioEngine. The IOAudioDevice class also
centralizes timing and synchronization services.

• The IOAudioEngine represents the DMA or I/O engine of an audio driver. Because
an audio device can have many inputs and outputs that operate independently, it
makes sense to encapsulate their behavior into their own class. If you look at the
I/O Registry entries for the Apple built-in audio device on a Mac Pro, you will see
the Apple audio driver has five instances of IOAudioEngine representing Line
input, S/PDIF optical input, Headphone output, Line output, and S/PDIF optical
output. An IOAudioEngine must allocate at least one IOAudioStream. The
IOAudioEngine is an abstract class.

• The IOAudioStream represents a sample buffer. A sample buffer has a direction
associated with it, which can be either input or output. It also has metadata that
describes the formats it is capable of supporting, such as the numeric format of
the contained samples, the sample rate, and the number of channels supported.
The class is not abstract and can be instantiated directly. The class does not
allocate memory for the sample buffer itself. It has to be told the location of the
buffer. It is responsible for exposing the sample buffer to user space consumers.
The audio stream also maintains an internal mix buffer where audio from multiple
sources is mixed together into a single stream.

• The IOAudioControl class represents a tunable parameter of the device, such as
the input volume, output volume, and mute. The IOAudioControl class is directly
usable, but you can also subclass it yourself to create custom controls. Three
subclasses of IOAudioControl exist, IOAudioLevelControl, IOAudioSelectorControl,
and IOAudioToggleControl. A control may belong to the device itself, the engine,
or an IOAudioPort.

• IOAudioPort can be used to represent a logical or physical port, such as Line out
or Headphone out. The use of this class is not required for an audio driver.

• The Core Audio framework communicates with an IOAudioEngine through the
IOAudioEngineUserClient, which allows it to interact with the engine’s sample
buffers for the purpose of playing back or capturing audio.

• The IOAudioControlUserClient serves as a user client for IOAudioControl instances
and allows manipulation. This is how an application, such as System Preferences,
can control volume or mute.

Implementing an Audio Driver
Now let’s look at how a kernel audio driver can be implemented using the example project
MyAudioDevice. We only show excerpts from this as it pertains to the topic in question; however, you can
inspect the full source code of MyAudioDevice by downloading it from the Apress web site. For the sake of
simplicity, we will make the driver as basic as possible. As there is no standardized widely available
audio hardware we can build a driver for, we will build a virtual audio driver. The driver will have one

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 12 AUDIO DRIVERS

254

output and one input so we can perform both functions. The driver will operate as a loopback device,
which means that audio we play will be transferred from the output buffer to the input buffer. We leave
it as an exercise for you, the reader, to do something more interesting, perhaps attach it to an actual
audio device and forward audio data to or from it, or route audio to or from a network.

If everything works, we should be able to play a song using an application like iTunes and then
capture the results using the audio recording feature of the QuickTime player. We will not be able to hear
the audio as it plays, as it is not routed to a speaker. Additionally, the OS X sound preferences only allow
output on a single device at a time, which prevents us from hearing the audio played on a different audio
output. However, we will be able to hear the recording once we play it back again (after having selected
an output other than our device). Once the driver is loaded, it should be visible under System Preferences
➤ Sound, as shown in Figure 12-4.

Figure 12-4. The Audio pane of System Preferences showing MyAudioDevice selected as the active output

The driver will be based on the example driver provided by the IOAudioFamily source code
distribution called SampleAudioDevice. If you wish to learn more about audio drivers, you can look at its
implementation as well as the second example, SamplePCIAudioDevice. Note that neither example is
actually functional; rather, they serve as skeletons or starting points for a new driver, unlike
MyAudioDevice, which is a working implementation of an audio driver.

In order to interface with the Core Audio system, our driver needs to implement an instance of
IOAudioDevice. Note that it is entirely possible to implement a driver for an audio device without using
the IOAudioFamily at all. The downside is that you would need to provide your own API for applications
to access the device. Furthermore, existing applications would need modifications to be able to use your
device because most applications depend on Core Audio or a framework that uses Core Audio instead.

Our driver will use IOAudioFamily. The architecture of MyAudioDevice and how it interacts with the
classes of the IOAudioFamily can be seen in Figure 12-5.

CHAPTER 12 AUDIO DRIVERS

255

Figure 12-5. MyAudioDevice architecture

The virtual device will consist of a subclass of IOAudioDevice called MyAudioDevice. This will in turn
allocate a single instance of the MyAudioEngine class, which is derived from IOAudioEngine. The main
class will also allocate a number of IOAudioControl instances, which will be used to represent controls
for adjusting the output and input volume levels for the left and right channels, as well as controls to
mute the output and input. Because we do not have an actual hardware device, these controls will not
do anything, but we implement them anyway for demonstration purposes. The MyAudioEngine class will
represent the I/O engine in lieu of actual hardware. The class will allocate two IOAudioStream instances,
one for the output sample buffer and one for the input sample buffer. When data enters the output
buffer, we will simply copy the data over to the input buffer.

Driver and Hardware Initialization
IOAudioEngine primarily performs hardware initialization and its implementation is often quite
minimalistic, as much of the complexity of an audio driver will be implemented as a subclass of
IOAudioEngine. Nevertheless, the class performs some important tasks internally, such as providing a
central IOWorkLoop and IOCommandGate, which are shared by subordinate classes such as IOAudioEngine
and are used to serialize access to the driver and hardware. The IOAudioEngine class also provides a
shared timer service that can be used by other objects in the driver. An object can register to receive
timer events with the addTimerEvent() function, as follows:

virtual IOReturn addTimerEvent(OSObject *target, TimerEvent event, AbsoluteTime interval);

The target argument should be a pointer to the object that will be notified of the timer event. The
interval specifies the frequency of the timer event in units of AbsoluteTime (nanoseconds). The event
argument specifies the callback function. An audio driver may typically need several timer events, for
example, to poll the status of an output connector to sense if a jack was connected.

The following steps are typically performed by an audio driver’s IOAudioDevice subclass.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 12 AUDIO DRIVERS

256

• Configure the hardware device’s provider and enumerate any needed resources.
For PCI or Thunderbolt, this means mapping device memory or I/O regions. For
USB devices, enumerate interfaces and/or pipes.

• Configure the device for operation. For example, take it out of reset/sleep mode by
accessing the device’s registers or sending control requests.

• If your driver supports multiple audio chips or a chip with a varying number of
DMA channels, inputs, or outputs, the driver will need to interrogate the device to
work out its exact capabilities.

• Set the name and description of the audio device, which will identify it to Core
Audio and user space applications.

• Based on information extracted from the device, create the appropriate number of
IOAudioEngine instances, which in turn will allocate one or more IOAudioStream
instances, along with associated sample buffers.

The header file for the MyAudioDevice class is shown in Listing 12-1.

Listing 12-1. Header File for the MyAudioDevice Class

#ifndef _MYAUDIODEVICE_H__
#define _MYAUDIODEVICE_H__

#include <IOKit/audio/IOAudioDevice.h>

#define MyAudioDevice com_osxkernel_MyAudioDevice

class MyAudioDevice : public IOAudioDevice
{
 OSDeclareDefaultStructors(MyAudioDevice);

 virtual bool initHardware(IOService *provider);
 bool createAudioEngine();

 // Control callbacks
 static IOReturn volumeChangeHandler(OSObject* target, IOAudioControl *volumeControl,
 SInt32 oldValue, SInt32 newValue);
 virtual IOReturn volumeChanged(IOAudioControl *volumeControl, SInt32 oldValue, SInt32
 newValue);

 static IOReturn outputMuteChangeHandler(OSObject* target, IOAudioControl *muteControl,
 SInt32 oldValue, SInt32 newValue);
 virtual IOReturn outputMuteChanged(IOAudioControl* muteControl, SInt32 oldValue, SInt32
 newValue);

 static IOReturn gainChangeHandler(OSObject* target, IOAudioControl* gainControl, SInt32
 oldValue, SInt32 newValue);
 virtual IOReturn gainChanged(IOAudioControl* gainControl, SInt32 oldValue, SInt32
 newValue);

CHAPTER 12 AUDIO DRIVERS

257

 static IOReturn inputMuteChangeHandler(OSObject* target, IOAudioControl *muteControl,
 SInt32 oldValue, SInt32 newValue);
 virtual IOReturn inputMuteChanged(IOAudioControl* muteControl, SInt32 oldValue, SInt32
 newValue);
};

#endif

As you may have noticed, a number of the usual I/O Kit lifecycle methods, such as start() and
stop(), are missing. This is because the super-class IOAudioDevice implements them for us. The start()
method will take care of registering for power management and will then call the initHardware()
method, which a driver should implement. Our class also implements a number of callbacks for audio
controls, which we will discuss in more detail later in this chapter. The initHardware() is the preferred
method for performing hardware-related initialization. Before the method returns, it should create at
least one instance of an IOAudioEngine and activate it, which is done by calling the
activateAudioEngine() method. The initHardware() method of MyAudioDevice is implemented as
follows:

bool MyAudioDevice::initHardware(IOService *provider)
{
 bool result = false;

 IOLog("MyAudioDevice[%p]::initHardware(%p)\n", this, provider);

 if (!super::initHardware(provider))
 goto done;

 setDeviceName("My Audio Device");
 setDeviceShortName("MyAudioDevice");
 setManufacturerName("osxkernel.com");

 if (!createAudioEngine())
 goto done;

 result = true;

done:
 return result;
}

Since MyAudioDevice is not backed by a real hardware device, there is not much to do. We set the
device name, a short name, and the manufacturer name, which will be used by Core Audio for various
purposes. The device name will be visible in the OS X System Preferences. Strings set by an audio driver
should be localized if possible because OS X is multi-lingual. If you have a descriptive string such as
“Headphone Output” or “Microphone Input,” these may not be meaningful to someone who doesn’t
speak English.

The final step of the function is to call an internal method called createAudioEngine(), which will
initialize and create an instance of the IOAudioEngine subclass, MyAudioEngine. The method simply
allocates an instance and then calls activateAudioEngine() on the created instance before returning.
The method also creates the audio controls, as you shall see next.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 12 AUDIO DRIVERS

258

■ Note Once activateAudioEngine() returns, you can call release() on the instance if you no longer need it,
because it will be retained and released internally by the IOAudioEngine super class anyway.

Registering Audio Controls
An audio device will usually have one or more controllable attributes, such as the ability to adjust the
volume level, mute, or perform some other adjustment. In order to make these controls visible to user
space clients, an IOAudioControl is needed to describe each attribute. As previously mentioned, there are
three subclasses of IOAudioControl provided by IOAudioFamily. The first is IOAudioLevelControl, which is
used to control volume level. The control can also be used for creating any type of control that allows
you to select a value out of a range. Following is an example of how to create and register a volume
control for the left channel from Apple’s SampleAudioDevice driver.

 control = IOAudioLevelControl::createVolumeControl
 (65535, // Initial value 0, // min value
 65535, // max value
 (-22 << 16) + (32768), // -22.5 in IOFixed (16.16)
 0, // max 0.0 in IOFixed
 kIOAudioControlChannelIDDefaultLeft,
 kIOAudioControlChannelNameLeft,
 0, // control ID - driver-defined
 kIOAudioControlUsageOutput);
 if (!control) {
 goto Done;
 }

 control->setValueChangeHandler(volumeChangeHandler, this);
 audioEngine->addDefaultAudioControl(control);
 control->release();

The volume control is created using the special factory method createVolumeControl(). The three
first parameters of the method represent the initial volume value, the minimum value, and the
maximum value. You may specify different values to match your hardware’s register specification or you
can translate the values in the callback to match the range expected by the hardware’s volume control
register. The two next parameters set the dB values the minimum and maximum values correspond to.
The volume scale usually goes from 0.0 dB, which represents full volume, to some negative dB value. The
volume is at its default level at 0.0 dB and is attenuated in order to lower the volume of the signal. The dB
value is stored as a fixed-point value. The next parameter is the channel ID. We specify
kIOAudioControlChannelIDDefaultLeft to indicate that this control is for the left stereo channel. The
IOAudioFamily specifies constant names for other channels as well, such as
kIOAudioControlChannelIDDefaultCenter, kIOAudioControlChannelIDDefaultSub, and
kIOAudioControlChannelIDDefaultLeftRear. The channel definitions are declared in
IOKit/audio/AudioDefines.h.

The next parameter is a string with a descriptive name for the channel. As with the channel ID, we
use a predefined constant. The next parameter is an identifier that can be used by the driver to pass a
value, which will not be interpreted by either IOAudioFamily or Core Audio. The last argument specifies
what the control will be used for. In our case, we set it to kIOAudioControlUsageOutput, which indicates

CHAPTER 12 AUDIO DRIVERS

259

to Core Audio this is an output volume control. Other possible values are kIOAudioControlUsageInput,
kIOAudioControlUsagePassThru, or kIOAudioControlUsageCoreAudioProperty.

Once a control is constructed successfully, you need to set the callback function, which will be
invoked when the control is manipulated from user space. This callback must be a static member
function, which can be implemented as follows:

IOReturn SampleAudioDevice::volumeChangeHandler(IOService *target, IOAudioControl
*volumeControl, SInt32 oldValue, SInt32 newValue)
{
 IOReturn result = kIOReturnBadArgument;
 SampleAudioDevice *audioDevice;

 audioDevice = (SampleAudioDevice *)target;
 if (audioDevice) {
 result = audioDevice->volumeChanged(volumeControl, oldValue, newValue);
 }
 return result;
}

IOReturn SampleAudioDevice::volumeChanged(IOAudioControl *volumeControl, SInt32 oldValue,
SInt32 newValue)
{
 IOLog("SampleAudioDevice[%p]::volumeChanged(%p, %ld, %ld)\n",
 this, volumeControl, oldValue, newValue);
 if (volumeControl) {
 IOLog("\t-> Channel %ld\n", volumeControl->getChannelID());
 }

 // Add hardware volume code change

 return kIOReturnSuccess;
}

The callback will provide a pointer to the control whose value was changed, which lets the same
callback function service multiple controls. The callback will be passed the old value as well as the new
value. For most hardware drivers, the method would then write the new value to a hardware register,
which will have the effect of increasing or reducing the volume or performing some other action.

Either an IOAudioEngine instance or an IOAudioStream can have controls attached. In either case,
you attach to the parent by calling the addDefaultAudioControl() method, as shown above. Mute
controls are implemented similarly to volume controls, but using the createMuteControl() factory
method instead, as follows:

 // Create an input mute control
 control = IOAudioToggleControl::createMuteControl(false, // initial state - unmuted
 AudioControlChannelIDAll, // Affects all channels
 kIOAudioControlChannelNameAll,
 0, // control ID - driver-defined
 kIOAudioControlUsageInput);

Unlike the volume control, which operates on a single channel, the mute control in this case is
specified to apply to all channels in this case.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 12 AUDIO DRIVERS

260

Implementing an Audio Engine
The audio engine performs the actual I/O in an audio driver. An audio engine is implemented as a
subclass of the abstract IOAudioEngine class. It controls the I/O behavior and handles the transfer of one
or more related sample buffers. Many audio devices can drive multiple independent inputs and outputs
at the same time; in this case, it is recommended to create more than one instance of IOAudioEngine, one
for each I/O channel. The following steps are needed to implement an IOAudioEngine subclass:

• Override the initHardware() method to perform any additional hardware
initialization needed.

• Allocate sample buffers and associated IOAudioStream instances.

• Implement the performAudioEngineStart() and performAudioEngineStop()
methods to start and stop the I/O.

• Implement the free() method to clean up any used resources.

• Implement the getCurrentSampleFrame() method.

• Implement the performFormatChange() method to respond to change of format
requests from Core Audio.

• Implement a mechanism to inform the super class of the timestamp of when the
sample buffer wraps back to the beginning.

• Implement the clipOutputSamples() method for output streams and/or the
convertInputSamples() method for input streams.

We will discuss the preceding steps in more detail in the following sections by examining the
implementation of the MyAudioDevice example driver.

An IOAudioEngine subclass is started and stopped directly by Core Audio through the
IOAudioEngineUserClient. Once started, the engine will continuously run through the sample buffer. The
IOAudioEngine subclass is responsible for telling the super class when the buffer wraps around to the
start of the buffer by taking a timestamp. The Core Audio framework uses the timestamp to accurately
predict the position of the sample buffer. The audio engine will also ensure that played samples in the
sample buffer are erased.

The header file for MyAudioDevice’s IOAudioEngine subclass is shown in Listing 12-2.

Listing 12-2. Header File for the MyAudioEngine Class

#ifndef _MYAUDIOENGINE_H_
#define _MYAUDIOENGINE_H_

#include <IOKit/audio/IOAudioEngine.h>

#include "MyAudioDevice.h"

#define MyAudioEngine com_osxkernel_MyAudioEngine

class MyAudioEngine : public IOAudioEngine
{
 OSDeclareDefaultStructors(MyAudioEngine)

CHAPTER 12 AUDIO DRIVERS

261

public:
 virtual void free();

 virtual bool initHardware(IOService* provider);
 virtual void stop(IOService *provider);

 virtual IOAudioStream *createNewAudioStream(IOAudioStreamDirection direction,
 void* sampleBuffer, UInt32 sampleBufferSize);

 virtual IOReturn performAudioEngineStart();
 virtual IOReturn performAudioEngineStop();

 virtual UInt32 getCurrentSampleFrame();

 virtual IOReturn performFormatChange(IOAudioStream* audioStream, const IOAudioStreamFormat*
 newFormat, const IOAudioSampleRate* newSampleRate);

 virtual IOReturn clipOutputSamples(const void* mixBuf, void* sampleBuf, UInt32
 firstSampleFrame, UInt32 numSampleFrames,
 const IOAudioStreamFormat* streamFormat,
 IOAudioStream* audioStream);
 virtual IOReturn convertInputSamples(const void* sampleBuf, void* destBuf, UInt32
 firstSampleFrame, UInt32 numSampleFrames,
 const IOAudioStreamFormat* streamFormat,
 IOAudioStream* audioStream);

private:
 IOTimerEventSource* fAudioInterruptSource;
 SInt16* fOutputBuffer;
 SInt16* fInputBuffer;
 UInt32 fInterruptCount;
 SInt64 fNextTimeout;

 static void interruptOccured(OSObject* owner, IOTimerEventSource* sender);
 void handleAudioInterrupt();
};

#endif

I/O Engine Initialization
An IOAudioEngine has its own initHardware() method, which should be overridden to perform any I/O
engine-specific hardware initialization, as well as allocation and initialization of other needed resources.
Once the method returns, the engine should be ready to start I/O. performAudioEngineStart() can then
be called to start the actual I/O. The initHardware() method gets called by the
IOAudioDevice::activateAudioEngine() method in our case. Although IOAudioEngine derives from
IOService, we do not override or call the start() method in this case. This is because the class is
allocated and initialized by MyAudioDevice rather than by I/O Kit. The IOAudioEngine provides a default
implementation of the start() method, which is hardwired to use an IOAudioDevice as its provider.
Unlike start(), however, we do declare the stop() method. The stop() method can be implemented to

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 12 AUDIO DRIVERS

262

reverse any action performed in initHardware(). The initHardware() method of our MyAudioDevice
driver is shown in Listing 12-3.

Listing 12-3. The Implementation of initHardware() in MyAudioDevice

#define kAudioSampleRate 48000
#define kAudioNumChannels 2
#define kAudioSampleDepth 16
#define kAudioSampleWidth 16
#define kAudioBufferSampleFrames kAudioSampleRate/2
// Buffer holds half second's worth of audio.
#define kAudioSampleBufferSize (kAudioBufferSampleFrames * kAudioNumChannels *
 (kAudioSampleDepth / 8))

#define kAudioInterruptInterval 10000000 // nanoseconds (1000 ms / 100 hz = 10ms).
#define kAudioInterruptHZ 100

bool MyAudioEngine::initHardware(IOService *provider)
{
 bool result = false;
 IOAudioSampleRate initialSampleRate;
 IOAudioStream* audioStream;
 IOWorkLoop* workLoop = NULL;

 IOLog("MyAudioEngine[%p]::initHardware(%p)\n", this, provider);

 if (!super::initHardware(provider))
 goto done;

 fAudioInterruptSource = IOTimerEventSource::timerEventSource(this, interruptOccured);
 if (!fAudioInterruptSource)
 return false;

 workLoop = getWorkLoop();
 if (!workLoop)
 return false;

 if (workLoop->addEventSource(fAudioInterruptSource) != kIOReturnSuccess)
 return false;

 // Setup the initial sample rate for the audio engine
 initialSampleRate.whole = kAudioSampleRate;
 initialSampleRate.fraction = 0;

 setDescription("My Audio Device");
 setSampleRate(&initialSampleRate);

 // Set the number of sample frames in each buffer
 setNumSampleFramesPerBuffer(kAudioBufferSampleFrames);
 setInputSampleLatency(kAudioSampleRate / kAudioInterruptHZ);
 setOutputSampleOffset(kAudioSampleRate / kAudioInterruptHZ);

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 12 AUDIO DRIVERS

263

 fOutputBuffer = (SInt16 *)IOMalloc(kAudioSampleBufferSize);
 if (!fOutputBuffer)
 goto done;

 fInputBuffer = (SInt16 *)IOMalloc(kAudioSampleBufferSize);
 if (!fInputBuffer)
 goto done;

 // Create an IOAudioStream for each buffer and add it to this audio engine
 audioStream = createNewAudioStream(kIOAudioStreamDirectionOutput,
 fOutputBuffer, kAudioSampleBufferSize);
 if (!audioStream)
 goto done;

 addAudioStream(audioStream);
 audioStream->release();

 audioStream = createNewAudioStream(kIOAudioStreamDirectionInput,
 fInputBuffer, kAudioSampleBufferSize);
 if (!audioStream)
 goto done;

 addAudioStream(audioStream);
 audioStream->release();

 result = true;
done:
 return result;
}

The first task the method performs is to allocate an IOTimerEventSource, used to simulate interrupts
in lieu of hardware. We also set the description using the setDescription() method. This string will be
visible to the user in several places, including in the sound pane of System Preferences, as show in Figure
12-4.

The next step is to set the sample rate of our engine. The sample rate is a property of the
IOAudioEngine. Therefore, if the engine manages multiple streams, they must all have the same sample
rate. In the case of MyAudioDevice, we set the current sample rate to kAudioSampleRate, which is defined
as 48000 for a 48 kHz sample rate. We also need to define the number of samples our sample buffers will
contain. If there are multiple streams in the same engine, the buffers must be of the same size. In
MyAudioEngine, we use two streams, one for input and one for output. The number of samples contained
in the buffer is set using the setNumSampleFramesPerBuffer() method. We currently set it to
kAudioBufferSampleFrames, which is defined as the sample rate divided by two, corresponding to 24000
samples or half a second worth of audio. To calculate how many bytes 24000 samples correspond to, use
the following formula:

24000 samples * 2 channels * (16 bits / 8 bits = 2 bytes) = 96000 bytes

This sample buffer size was chosen arbitrarily in our case; for a real world device, it will depend on
the hardware’s capabilities and often the size may be configurable. The buffer and other parameters

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 12 AUDIO DRIVERS

264

must be defined such that Core Audio doesn’t write samples to a location before the hardware has had
the chance to play them.

The setInputSampleLatency() and setOutputSampleLatency() methods can be used to indicate to
Core Audio the time it takes from when samples were scheduled to be played until they actually start
playing in hardware. Some hardware devices may have additional buffering or delay before the audio
goes out on the DAC. You can also specify input and output latency together using setSampleLatency().
We set the latency to a single interrupt period (10 miliseconds) as we do not have any hardware delay,
but we want to give Core Audio some headroom before reading and writing samples. We have 100 virtual
interrupts per second and a sample rate of 48000, the delay corresponds to 480 samples. Again, we have
simply chosen the value 100 Hz for simplicity; the rate of interrupts for an actual device is determined by
the audio hardware.

We also have to allocate memory for the sample buffers. In MyAudioDevice, we are not performing
DMA to a hardware device, so we simply allocate the input and output buffer using IOMalloc(). For a
hardware-based driver, you need to either allocate IOBufferMemoryDescriptor or create a separate
IOMemoryDescriptor for the buffer. The former is preferred. The buffers will then need to be prepared for
DMA or I/O transfer. For DMA, you will need to translate the buffers’ addresses into physical addresses
so they can be read by the hardware or set up a scatter/gather table, all of which can be achieved using
the IODMACommand class. Each buffer needs to be associated with an IOAudioStream, which coordinates
client access to the buffer. The IOAudioStream instances are allocated using the method
createNewAudioStream(), which is not a member of IOAudioEngine but is defined to avoid duplicating
code. An IOAudioStream is added to the engine using the addAudioStream() method. Once the streams
have been added, the reference can be released; the super class will take care of the final release.

Creating and Initializing Audio Streams
An IOAudioEngine needs at least one IOAudioStream in order to do anything useful. A stream is associated
with exactly one sample buffer and describes the formats and sample rate supported by the buffer. A
stream is either an output or an input stream. Under the hood, IOAudioStream handles the mechanics of
getting data in and out from the sample buffer. Internally, it maintains a mix buffer, in which audio data
from multiple clients is mixed together in a single stream before ending up in the final sample buffer
destined for the hardware. Maintaining the mix and sample buffers are the most complicated tasks an
audio driver performs, and it’s all handled for us by the IOAudioStream class. For most cases, the default
behavior of IOAudioStream should be sufficient; however, if your driver needs more advanced
capabilities, you can override most methods in IOAudioStream to provide custom behavior. Shown below
is the createNewAudioStream() method of MyAudioEngine responsible for creating the input and output
stream.

IOAudioStream *MyAudioEngine::createNewAudioStream(IOAudioStreamDirection direction,
 void* sampleBuffer, UInt32 sampleBufferSize)
{
 IOAudioStream* audioStream;

 audioStream = new IOAudioStream;
 if (audioStream) {
 if (!audioStream->initWithAudioEngine(this, direction, 1)) {
 audioStream->release();
 } else {
 IOAudioSampleRate rate;
 IOAudioStreamFormat format = {
 2, // num channels

CHAPTER 12 AUDIO DRIVERS

265

 kIOAudioStreamSampleFormatLinearPCM, // sample format
 kIOAudioStreamNumericRepresentationSignedInt, // numeric format
 kAudioSampleDepth, // 16-bit
 kAudioSampleWidth, // 16-bit
 kIOAudioStreamAlignmentHighByte, // high byte aligned - unused
 // because bit depth == bit
 // width
 kIOAudioStreamByteOrderBigEndian,
 true, // format is mixable
 0 // driver-defined tag - unused
 // by this driver
 };
 audioStream->setSampleBuffer(sampleBuffer, sampleBufferSize);
 rate.fraction = 0;
 rate.whole = kAudioSampleRate;
 audioStream->addAvailableFormat(&format, &rate, &rate);
 audioStream->setFormat(&format);
 }
 }
 return audioStream;
}

The format of the sample buffer is described by the IOAudioStreamFormat structure. In the
preceding case, we only added a single format and a single sample rate. You can define multiple
supported formats and rates and add them by calling addAvailableFormat() for each defined format.
The specification for our stream is Linear PCM signed integer samples at 16-bit depth/width in big-
endian byte order. In most cases, bit depth and bit width are the same, such as for 16-bit samples. The
depth specifies the number of bits used by the audio sample, whereas the width specifies the width in
bits of the data word it’s stored in. For example, this is used if you have 24-bit samples. A 24-bit sample
occupies three bytes, which is awkward to work with and to align properly, so we instead use a 32-bit
word to store each sample, which is more efficient in terms of performance (though it will waste eight
bits per sample). If the width and depth do not match, the next field in the IOAudioStreamFormat
structure must be set to either kIOAudioStreamAlignmentHighByte or kIOAudioStreamAlignmentLowByte to
specify the alignment of the sample within the data word.

Handling Format Changes
Your IOAudioEngine will need to respond to requests from Core Audio to change the format of the
engine’s audio streams. Requests to change format are handled with the performFormatChange()
method, which should be overridden as the default is a stub that simply returns an error. The Apple
IOAudioFamily sample implements the format change method, as follows:

IOReturn SampleAudioEngine::performFormatChange(IOAudioStream *audioStream,
 const IOAudioStreamFormat *newFormat,
 const IOAudioSampleRate *newSampleRate)
{
 IOLog("SampleAudioEngine[%p]::peformFormatChange(%p, %p, %p)\n", this, audioStream,
newFormat, newSampleRate);

 // Since we only allow one format, we only need to be concerned with sample rate changes
 // In this case, we only allow two sample rates, 44100 and 48000,

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 12 AUDIO DRIVERS

266

 // so those are the only ones we check for.
 if (newSampleRate) {
 switch (newSampleRate->whole) {
 case 44100:
 IOLog("/t-> 44.1kHz selected\n");
 // Add code to switch hardware to 44.1khz
 break;
 case 48000:
 IOLog("/t-> 48kHz selected\n");
 // Add code to switch hardware to 48kHz
 break;
 default:
 // This should not be possible since we only specified 44100 and 48000
 // as valid sample rates
 IOLog("/t Internal Error - unknown sample rate selected.\n");
 break;
 }
 }
 return kIOReturnSuccess;
}

■ Note The performFormatChange() method will be called only for formats specified when IOAudioStreams
were created.

Clipping and Converting Samples
Because Core Audio (Audio HAL) works with high-precision 32-bit floating-point samples, we must
convert (unless supported natively by hardware) audio samples from floating-point format into a format
the hardware can understand when outputting audio. Most audio hardware may only handle integer
samples, as is the case with our virtual MyAudioDevice driver.

The IOAudioEngine subclass should override the IOAudioEngine::clipOutputSamples() method if the
engine has an output IOAudioStream. Similarly, it will need to override the
IOAudioEngine::convertInputSamples() method if it has an input IOAudioStream. The methods are
responsible for converting audio data to or from the native format as well as to clip samples. Clipping
refers to the process of checking each sample to ensure it is within the valid range. For example, a
floating-point sample has to be in the range of –1.0 to 1.0, and values lower or higher must be clipped to
the nearest valid value. The clipOutputSamples() method for MyAudioDevice is implemented as follows:

IOReturn MyAudioEngine::clipOutputSamples(const void *mixBuf, void *sampleBuf,
 UInt32 firstSampleFrame,
 UInt32 numSampleFrames,
 const IOAudioStreamFormat* streamFormat,
 IOAudioStream* audioStream)
{
 UInt32 sampleIndex, maxSampleIndex;
 float *floatMixBuf;
 SInt16 *outputBuf;

CHAPTER 12 AUDIO DRIVERS

267

 floatMixBuf = (float *)mixBuf;
 outputBuf = (SInt16 *)sampleBuf;

 maxSampleIndex = (firstSampleFrame + numSampleFrames) * streamFormat->fNumChannels;

 for (sampleIndex = (firstSampleFrame * streamFormat->fNumChannels); sampleIndex <
maxSampleIndex; sampleIndex++)
{
 float inSample;

 inSample = floatMixBuf[sampleIndex];

 if (inSample > 1.0) {
 inSample = 1.0;
 } else if (inSample < -1.0) {
 inSample = -1.0;
 }

 // Scale the -1.0 to 1.0 range to the appropriate scale for signed 16-bit samples
 // and then convert to SInt16 and store in the hardware sample buffer
 if (inSample >= 0) {
 outputBuf[sampleIndex] = (SInt16) (inSample * 32767.0);
 } else {
 outputBuf[sampleIndex] = (SInt16) (inSample * 32768.0);
 }
 }
 return kIOReturnSuccess;
}

The method takes samples from the mix buffer containing the combined audio stream for all clients
using our device, converts the samples, and transfers them into the final I/O buffer (fOutputBuffer). The
method takes six arguments, as follows:

1. A pointer to the mix buffer, from which you should get samples.

2. The sampleBuf parameter is the sample buffer of the IOAudioStream given by
the audioStream parameter.

3. firstSampleFrame is the offset into the buffers you should start from.

4. The numSampleFrames parameter is the number of samples you should convert
and clip.

5. The streamFormat parameter is an IOAudioStreamFormat structure, which
describes the current format of the audio stream.

6. A pointer to the IOAudioStream that owns the sample buffer.

The implementation of convertInputSamples() is very similar, only the reverse is done; convert to
floating-point samples instead of from floating-point samples. Check the source code for MyAudioDevice
to see its implementation. If your driver supports multiple audio formats, your clip functions will be
more complicated than the preceding, which handle only conversion to 16-bit signed integer samples.

The MyAudioDevice implementation is taken from Apple’s example driver and is intended to be as
simple as possible for demonstration purposes. Because the method has to manipulate every channel of

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 12 AUDIO DRIVERS

268

every sample frame, it is crucial that the method is as efficient as possible. To speed the code up, it
would be possible to use a vector-based instruction set such as SSE to process multiple samples at a
time. See Chapter 17 for information about how SSE instructions can be used in the kernel.

The clip and convert methods are the best location to manipulate the audio data should your driver
need to perform any sort of adjustment, such as filtering certain frequencies. If you are implementing a
virtual audio device, you can perform virtual volume level adjustments simultaneously by attenuating
the samples to the desired level or muting them by zeroing each sample. Can you modify MyAudioDevice
to do this?

The convertInputSamples() method is very similar to the output version, but one difference is that it
should always write to the beginning of the destination, unlike clipOutputSamples(), which may start at
an offset into the buffer.

■ Tip Consult the source of MyAudioDevice to see how the convertInputSamples() method is implemented.

Starting and Stopping the Audio Engine
The audio engine is started and stopped as needed by the Core Audio HAL. However, the start and stop
actions don’t relate to the IOService lifecycle methods start() and stop(), which are called once when
the driver loads for the first time and once before the driver is about to unload. Instead, the
IOAudioEngine class provides the performAudioEngineStart() and performAudioEngineStop() methods,
which, unlike the aforementioned, start and stop audio I/O only. In MyAudioDevice, the
performAudioEngineStart() method is implemented as follows:

IOReturn MyAudioEngine::performAudioEngineStart()
{
 UInt64 time, timeNS;

 IOLog("MyAudioEngine[%p]::performAudioEngineStart()\n", this);
 fInterruptCount = 0;
 takeTimeStamp(false);
 fAudioInterruptSource->setTimeoutUS(kAudioInterruptInterval / 1000);

 clock_get_uptime(&time);
 absolutetime_to_nanoseconds(time, &timeNS);

 fNextTimeout = timeNS + kAudioInterruptInterval;
 return kIOReturnSuccess;
}

The performAudioEngineStart() method should do two things, ensure the device starts playing or
capturing in hardware and ensure the initial timestamp of the sample buffer(s) is set by calling the
takeTimeStamp() function. We will discuss the purpose and meaning of the takeTimeStamp() method in
the next section. In MyAudioEngine, we simply take the first timestamp and schedule the interrupt timer
to timeout in 10 ms.

The performAudioEngineStop() will reverse the actions taken when the engine was started and
disable interrupts so the device no longer performs I/O from the sample buffer and reset it into a state
where it will be ready to run again. The MyAudioDevice driver implements the method as follows:

CHAPTER 12 AUDIO DRIVERS

269

IOReturn MyAudioEngine::performAudioEngineStop()
{
 IOLog("MyAudioEngine[%p]::performAudioEngineStop()\n", this);
 fAudioInterruptSource->cancelTimeout();
 return kIOReturnSuccess;
}

The method simply cancels any further interrupts; however, the engine is left in a state where it is
ready for I/O to be started again. When the driver is about to unload, its stop() method will be called and
can be used to tear down anything performed in initHardware(). Audio streams and any controls
attached to the class are cleaned up automatically by the super class. In our case, this leaves the stop()
method looking much like performAudioEngineStop(), with the only additional step being to remove the
interrupt source, as follows:

void MyAudioEngine::stop(IOService *provider)
{
 IOLog("MyAudioEngine[%p]::stop(%p)\n", this, provider);

 if (fAudioInterruptSource)
 {
 fAudioInterruptSource->cancelTimeout();
 getWorkLoop()->removeEventSource(fAudioInterruptSource);
 }
 super::stop(provider);
}

Engine Operation: Handling Interrupts and Timestamps
In an audio engine for a DMA-based device, there is actually not that much to do. The device will
continuously read from the buffer for an audio output stream and write to the buffer for an audio input
stream. The DMA engine will run more or less without any intervention once started. However, there is
one very important task to perform, which is to inform the IOAudioEngine of the time when a sample
buffer wraps around to the start and to keep track of how many times it has wrapped. It is critical that
the timestamp is as accurate as possible. The information is used by the Audio HAL to keep track of the
sample buffer position at any given time. This is important because Core Audio, unlike other audio
architecture, does not receive direct notifications from the driver once an I/O cycle completes (i.e., the
buffer wraps). Instead, it relies on the timestamps taken by the driver to predict the future position of the
sample buffer. Taking a timestamp is achieved by calling the takeTimeStamp() method, which will store
the current time in nanoseconds to an internal instance variable in the IOAudioEngine class
(fLastLoopTime) and the loop count (fCurrentLoopCount).

In the performAudioEngineStart() method, it takes the initial timestamp once the I/O begins. You
will notice it passed false as an argument, which ensures the loop count is not incremented since we
have not yet completed any loops.

Therefore, at the basic level, assuming the hardware device issues an interrupt once it wraps around
to the beginning of the buffer, an interrupt routine simply consisting of a call to takeTimeStamp() can be
implemented. Some hardware devices allow the driver to program the rate of interrupts. In this case, you
may want to count the interrupts and only call takeTimeStamp() once N interrupts have occurred. This is
the case of MyAudioDevice, which is driven by a timer that “interrupts” every 10 ms. Our device operates
at a rate of 48 kHz (48000 samples) and our buffer fits half a second of audio, which means it takes 500
ms before our buffer wraps back to the beginning; therefore, we want to count 50 interrupts (50 * 10 ms)
before calling takeTimeStamp().The code for MyAudioDevice’s interrupt handler is as follows:

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 12 AUDIO DRIVERS

270

void MyAudioEngine::interruptOccured(OSObject* owner, IOTimerEventSource* sender)
{
 UInt64 thisTimeNS;
 uint64_t time;
 SInt64 diff;

 MyAudioEngine* audioEngine = (MyAudioEngine*)owner;

 if (audioEngine)
 audioEngine->handleAudioInterrupt();
 if (!sender)
 return;

 clock_get_uptime(&time);
 absolutetime_to_nanoseconds(time, &thisTimeNS);
 diff = ((SInt64)audioEngine->fNextTimeout - (SInt64)thisTimeNS);

 sender->setTimeoutUS((UInt32)(((SInt64)kAudioInterruptInterval + diff) / 1000));
 audioEngine->fNextTimeout += kAudioInterruptInterval;
}

void MyAudioEngine::handleAudioInterrupt()
{
 UInt32 bufferPosition = fInterruptCount % (kAudioInterruptHZ / 2);
 UInt32 samplesBytesPerInterrupt =
 (kAudioSampleRate / kAudioInterruptHZ) * (kAudioSampleWidth/8) * kAudioNumChannels;
 UInt32 byteOffsetInBuffer = bufferPosition * samplesBytesPerInterrupt;

 UInt8* inputBuf = (UInt8*)inputBuffer + byteOffsetInBuffer;
 UInt8* outputBuf = (UInt8*)outputBuffer + byteOffsetInBuffer;

 // Copy samples from the output buffer to the input buffer.
 bcopy(outputBuf, inputBuf, samplesBytesPerInterrupt);
 // Tell the buffer to wrap
 if (bufferPosition == 0)
 {
 takeTimeStamp();
 }

 fInterruptCount++;
}

In addition to taking timestamps whenever the buffer wraps, you are also required to implement the
getCurrentSampleFrame() method, which should return the current position of the sample buffer. The
sample position is used by IOAudioEngine to erase (set to zero/silence) samples that have already been
played. The method is not required to return a 100% accurate position, but the position returned should
be behind the hardware read head. Otherwise, you risk overwriting samples that have not yet been
played, which again will result in pops, clicks, or other audio distortions. The buffer will be erased up to
but not including the sample frame returned by the function. There are several ways of getting the
position, such as reading it from a hardware register, using timestamps to calculate the position based
on the sample rate, or using an interrupt count. MyAudioDevice uses the latter, as shown in the following
example:

CHAPTER 12 AUDIO DRIVERS

271

UInt32 MyAudioEngine::getCurrentSampleFrame()
{
 UInt32 periodCount = (UInt32) fInterruptCount % (kAudioInterruptHZ/2);
 UInt32 sampleFrame = periodCount * (kAudioSampleRate / kAudioInterruptHZ);
 return sampleFrame;
}

Additional Audio Engine Functionality
Previous sections have discussed the basic operation of the IOAudioEngine class. It does, however, have a
number of other useful methods and capabilities. Some useful methods of IOAudioEngine we haven’t
discussed so far are outlined in Table 12-2.

Table 12-2. Summary of Additional IOAudioEngine Methods

Method Description

virtual void clearAllSampleBuffers() Zeros (silences) out all mix and sample buffers
attached to the IOAudioEngine.

virtual void
clientClosed(IOAudioEngineUserClient
*client);

Called when a user space client closes the
connection to the IOAudioEngine.

virtual IOReturn convertInputSamplesVBR(
const void* sampleBuf,
void* destBuf,
UInt32 firstSampleFrame,
UInt32 &numSampleFrames,
const IOAudioStreamFormat* streamFormat,
IOAudioStream* audioStream)

If overridden, provides an alternative to
convertInputSamples() for returning a
different number of samples from what was
requested.

virtual IOReturn eraseOutputSamples(
const void* mxBuf,
void* sampleBuf,
UInt32 firstSampleFrame,
UInt32 numSampleFrames,
const IOAudioStreamFormat* streamFormat,
IOAudioStream* audioStream)

This is the method used internally by
IOAudioEngine to erase the sample buffers. It
is declared virtual so it is possible to override
it if you need to alter how erasure is
performed. You do not need to override this if
you simply want to prevent erase from
happening, as this can be achieved by calling
setRunEraseHead(false).

virtual bool getRunEraseHead() Returns true if the audio engine’s erase
process is active. See setRunEraseHead().

virtual const IOAudioSampleRate*
getSampleRate()

Gets the current sample rate of the audio
engine in samples per second.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 12 AUDIO DRIVERS

272

Method Description

virtual const IOAudioEngineStatus*
getState()

Gets the state of the audio engine, which can
be either kIOAudioEngineRunning or
kIOAudioEngineStopped.

virtual const IOAudioEngineStatus*
getStatus()

Returns a pointer to the internal status buffer
of the audio engine. This is a structure that
contains the current loop count and
timestamps, as well as the location of the
erase head.

virtual void setClockDomain(UInt32
clockDomain = kIOAudioNewClockDomain)

The method sets a property Core Audio can
use to determine how an audio device clock is
synchronized.

virtual void setClockIsStable(bool
clockIsStable)

Used by Core Audio to determine how it
should track the sample rate of the audio
device. A device with an unstable clock source
experiencing audio distortions may benefit
from setting this to false.

virtual void setInputSampleOffset(UInt32
numSamples)

Sets the position in the sample buffer where
Core Audio will read.

virtual void setMixClipOverhead(UInt32
nexMixClipOverhead)

This method can be called to hint to the
IOAudioFamily the time taken by the mix and
clip routine. The value should be a number
between 1 and 99 and represents percentage
of the sample buffer time.

virtual void setOutputSampleOffset(UInt32
numSamples)

Sets the position where Core Audio will write
to in the sample buffer.

virtual void setRunEraseHead(bool
runEraseHead)

Disable the erase process. For an engine that
only does input, this is disabled by default.

Summary
In this chapter, we have covered the following areas:

• Digital audio and Pulse Code Modulation (PCM), which is a technique for
converting an analog audio signal into a digital representation. We have also
looked at how PCM samples are encoded and interleaved channel by channel.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 12 AUDIO DRIVERS

273

• The Core Audio architecture, which collectively provides sound/audio support to
Mac OS X and iOS. The cornerstone of Core Audio is the HAL, which coordinates
the use of audio hardware on behalf of clients and allows multiple clients to access
audio hardware simultaneously.

• The Core Audio HAL, which always uses 32-bit floating-point format to represent
audio samples. A driver is therefore responsible for converting the native format of
the hardware to or from this format.

• IOAudioFamily, which provides the kernel-level side of the audio architecture. The
key classes of the family are IOAudioDevice, IOAudioEngine, and IOAudioStream.

• The IOAudioDevice class, which represents a hardware audio device in the kernel.

• The IOAudioEngine class, which represents a single I/O engine for which an
IOAudioDevice may have more than one. The class is abstract. The audio engine
class may have one or more IOAudioStreams associated with it.

• An IOAudioStream is used to represent a single sample buffer.

• The operation of an audio engine is conceptually simple, the engine simply needs
to tell the super class (which again communicates with Core Audio/Audio HAL)
when the device has wrapped to the beginning of the sample buffer and how
many times this event has occurred.

www.allitebooks.com

http://www.allitebooks.org

C H A P T E R 13

275

Networking

Network support in the kernel is implemented primarily in the BSD layer. The BSD flavors of UNIX are
renowned for their robust and secure networking support. Consequently, code from the BSD networking
stack has made its way into a wide variety of operating systems, including Mac OS X and iOS. While the
networking support is primarily in the BSD layer, it has hooks into I/O Kit, which provides the interface
for building hardware-based network drivers. A conceptual view of the kernel network architecture is
shown in Figure 13-1.

Figure 13-1. Conceptual view of the kernel network architecture

From a user space application’s perspective, networking services are accessed through the
BSD/POSIX socket API, with functions such as connect(), listen(), and bind(). However, the socket API
is not only about networking. It also handles various forms of inter-process communication (IPC), such
as UNIX domain sockets. Unlike most BSD versions, the XNU kernel also implements an in-kernel

CHAPTER 13 NETWORKING

276

socket API (KPI). This KPI allows the kernel and KEXTs to use sockets much the same way as in user
space applications. The key difference is that functions in the socket KPI are named with a “sock_”
prefix. For example, the connect() function is named sock_connect() in the kernel KPI.

Higher-level APIs, like Core Foundation or Cocoa, build their network support on top of the socket
API interface. The socket API communicates with the kernel through the standard system call interface.
The socket layer shares many commonalities with the file system APIs; indeed, a socket is just a special
type of file descriptor. In fact, the read() and write() system call functions can be used on socket
descriptors as well.

The kernel part of the socket API is responsible for queuing and routing data to and from the
appropriate protocol handler in the protocol stack, which handles the tasks of constructing network
packets and dividing the data into appropriately sized packets, adding checksums, etc. It’s in the
protocol stack that TCP, UDP, and IP are handled. The protocol stack is also responsible for handling the
details of routing, the firewall, and auxiliary protocols, such as ARP. Packets destined for external hosts
end up in the interface layer of the BSD network stack. The interface layer again plugs into the network
interface classes in the I/O Kit, which again communicates with a physical network device through its
driver.

Four key data structures are used in the BSD network stack:

• The socket structure represents open sockets in user space or kernel space and is
accessed using file descriptors from user space.

• The domain structure is used to describe protocol families, such as IP version 4
(PF_INET), IP version 6 (PF_INET6), or the local domain (PF_LOCAL/PF_UNIX).

• The protosw describes individual protocol handlers for each supported protocol,
such as IPv4, IPv6, TCP, UDP, ICMP, IGMP, or RAW. Protocols accessible through
the sockets interface, such as TCP and UDP, are referred to by the identifiers
SOCK_STREAM and SOCK_DGRAM, respectively, when an AF_INET socket is used.

• The ifnet structure describes a network interface. Each interface listed by the
command ifconfig, such as en0, en1, and lo0, is backed by an ifnet structure. An
ifnet structure is also defined for each I/O Kit network driver. An I/O Kit driver
doesn’t need to interface with the structure directly, as the IONetworkInterface
class provides an abstraction for it.

Another feature of the XNU kernel is the network kernel extensions (NKE) mechanism. NKE allows
filters to be inserted at various levels of the network stack, such as in the sockets layer or IP layer. The
NKE architecture allows you to write custom routing algorithms, and implement new protocols and
virtual network interfaces. It can also be used for packet filtering and logging. Furthermore, the kernel
supports the Berkeley Packet Filter (BPF), which allows raw network traffic to be routed to user space for
analysis with tools such as tcpdump. We will look at the NKE system in more detail later in this chapter, as
well as how to implement drivers for network devices in the I/O Kit.

To get the most out of this chapter, it is necessary that you have some understanding of networking,
of concepts such as TCP/IP and Ethernet, and that you are familiar with the layers of the OSI model.

Network Memory Buffers
Network Memory Buffers, or mbufs, is a fundamental data structure in BSD UNIX systems, including Mac
OS X and iOS. While it is mostly a concept of the BSD network layer, you will also encounter the mbuf
data structure when writing I/O network drivers. The structure is used to represent network packets and
their metadata. The structure is not exposed to user space. The mbuf structure is shown in Listing 13-1.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 13 NETWORKING

277

Listing 13-1. The mbuf Data Structure

struct mbuf {
 struct m_hdr m_hdr;
 union {
 struct {
 struct pkthdr MH_pkthdr; /* M_PKTHDR set */
 union {
 struct m_ext MH_ext; /* M_EXT set */
 char MH_databuf[_MHLEN];
 } MH_dat;
 } MH;
 char M_databuf[_MLEN]; /* !M_PKTHDR, !M_EXT */
 } M_dat;
 };

The complete mbuf structure is fixed size and is currently 256 bytes long. This size includes both the
header and the data held by the structure. To get the number of bytes available for data storage: (256 –
sizeof(struct m_hdr)). To describe larger packets, multiple mbufs are linked together in a linked list as
shown in Figure 13-2.

Figure 13-2. A chain of mbuf structures

A list of mbufs is called a chain. In Figure 13-2, a chain of three mbufs, each describing a packet, is
shown. Each mbuf may contain chains of other mbufs making up the complete network packet.

To reduce overhead with large packets, mbufs can have their structure point to an external buffer
instead of using the internal storage of the mbuf. An mbuf structure with an external buffer is referred to as
a cluster. The MH_ext field is used to describe the external buffer. The mbuf header (m_hdr) is located at the
start of the structure and contains the length of the mbuf’s data, which is stored in the mh_len field. The
header also contains the pointers for the next buffer in the chain, and the next entry in a list/or queue,

CHAPTER 13 NETWORKING

278

which usually represent a new packet; however, mbufs can also be used for storage of other control
information. The mh_type and mh_flags are used to determine the type and options of an mbuf—for
example, whether it has an associated external buffer. If an mbuf represents the start of a packet, the
MH_PKTHDR will be set, and if the mbuf has external data, the MH_EXT flag will be set, which means that it is
safe to access the mbuf’s MH_pkthdr or MH_ext structures.

Working with Memory Buffers
While the mbuf structure is found in many UNIX variants, the programming interface for working with
them differs between platforms. The XNU kernel offers the mbuf KPI for working with mbufs. The idea of
the KPI is to treat the mbuf as an opaque structure, which is only manipulated by KPI functions instead of
accessing structure fields directly. This allows the mbuf implementation to change under the hood but
still remain binary and source compatible with code that uses KPI. For this reason, when manipulating
mbufs, we do not use the mbuf structure directly but rather use the handle mbuf_t as a reference.

 Tip The mbuf KPI header file is bsd/sys/mbuf.h. The full documentation for the KPI can be found at
http://developer.apple.com/library/mac/#documentation/Darwin/Reference/KernelIOKitFramework/kp

i_mbuf_h/.

Getting data in and out of mbufs can be achieved with the following functions:

errno_t mbuf_copydata(const mbuf_t mbuf, size_t offset, size_t length, void *out_data);
errno_t mbuf_copyback(mbuf_t mbuf, size_t offset, size_t length, const void *data, mbuf_how_t
how);

It is not always possible to use bcopy() or similar functions directly, because data in mbufs may be
scattered over several structures or external buffers. The preceding functions simplify this task
significantly. However, if the buffer is known to be contiguous, the mbuf_data() function can retrieve the
pointer to the data area of the mbuf. The mbuf_copydata() function copies data from an mbuf (chain) to
the memory location pointed to by the out_data parameter, which should be large enough to hold
length bytes.

The mbuf_copyback() does the reverse and allows you to copy data back to an mbuf. If the mbuf is not
large enough, the function will grow the buffer by appending more mbufs to form a chain. The last
parameter how should be either MBUF_WAITOK or MBUF_DONTWAIT, which indicates to the function whether it
is allowed to block while allocating memory. In an interrupt routine or performance critical path,
MBUF_DONTWAIT must be used and, generally, where possible, MBUF_DONTWAIT is preferred.

The mbuf KPI offers several ways to construct new mbufs as shown here:

errno_t mbuf_allocpacket(mbuf_how_t how, size_t packetlen, unsigned int *maxchunks, mbuf_t
*mbuf);
errno_t mbuf_allocpacket_list(unsigned int numpkts, mbuf_how_t how,
 size_t packetlen, unsigned int *maxchunks, mbuf_t *mbuf);
errno_t mbuf_tag_allocate(mbuf_t mbuf, mbuf_tag_id_t module_id,
 mbuf_tag_type_t type, size_t length, mbuf_how_t how, void **data_p);

Following is a brief description of the preceding functions:

www.allitebooks.com

http://developer.apple.com/library/mac/#documentation/Darwin/Reference/KernelIOKitFramework/kp
http://www.allitebooks.org

CHAPTER 13 NETWORKING

279

• mbuf_allocpacket() allocates a chain of mbufs with a leading packet header of the
specified length. maxchunks is an input/output parameter that specifies the
maximum length of the chain. If NULL is specified, there is no limit.

• mbuf_allocpacket_list() is identical to mbuf_allocpacket() but generates a list of
mbuf chains instead.

• mbuf_tag_allocate() allocates an mbuf but also allows one to specify additional
data (tag) that will be passed along with the mbuf as it travels through the stack.
The tag can be retrieved again by using the mbuf_tag_find() function.

Besides allocating and copying data in and out of an mbuf, a common operation is to iterate through
an mbuf chain using the mbuf_next() macro:

void walk_mbuf(mbuf_t mbuf_head)
{
 mbuf_t mb;
 unsigned char* data;
 size_t len;

 for (mb = mbuf_head; mb; mb = mbuf_next(mb))
 {
 data = (unsigned char*)mbuf_data(mb); // get pointer to data
 len = mbuf_len(mb); // get length of this segment
 }
}

Network Kernel Extensions
The kernel supports extending the network stack at multiple levels through the Network Kernel
Extensions (NKE) mechanism. An NKE is no different from a regular KEXT; it is merely a term used to
describe a KEXT that interfaces with or extends the network stack.

As such, NKEs are also dynamically loadable and unloadable at runtime. NKEs are not part of the
I/O Kit, but located in the BSD layer. The NKE mechanism is unique to Mac OS X and not found in BSD
UNIX flavors, such as FreeBSD.

An NKE can be used for many purposes. Some examples of use include, but are not limited to, the
following:

• Custom firewall or security mechanisms, such as encryption

• Adding support for new protocols

• Adding support for new network interfaces

• Creating virtual network interfaces

• Creating custom routing schemes

• Delaying, modifying, inspecting, or blocking network packets

• Debugging network stack and drivers

An NKE typically utilizes one of the following KPI/filtering mechanisms:

CHAPTER 13 NETWORKING

280

• Socket filter: Allows filters to be inserted at various points in the socket layer, and
can filter inbound and outbound traffic as well as out-of-band communication. It
can filter most protocols supported by the socket API. It is possible to modify,
delay, or reject traffic.

• IP filter: Allows filtering of IP version 4 and 6 traffic.

• Interface filter: Allows traffic to be monitored and modified on a specific network
interface. Since this happens at the end of the stack, all protocols and traffic
destined for that interface will be visible.

• Interface KPI: A programming interface for creating new network interfaces.

• Protocol plumber: Provides the glue that connects a network protocol to a network
interface.

Kernel Control KPI
The kernel control interface <sys/kern_control.h> is a KPI that allows a KEXT to communicate bi-
directionally with user space processes. This mechanism is often used in conjunction with NKEs to allow
user space programs to control and configure a KEXT. A full discussion of the Kernel Control KPI is
provided in Chapter 17.

Socket Filters
A socket filter is a powerful mechanism that allows intercepting of network and IPC traffic in the kernel’s
socket layer. The socket layer (and hence the socket filter) is situated between user space and the
network protocol stack in the kernel. Because of this, socket filters cannot peek at the IP or TCP header
of an outgoing network packet because that happens later in the processing chain. However, it is still
possible to filter IP-based traffic using a socket filter, as metadata, such as the IP address the packet is
destined for, is known. The same is true for incoming traffic. The protocol stack will strip header
information before it enters the socket layer. In effect, we are seeing the reassembled data that will
eventually be read by a user space application. Because of this, a socket filter is not suitable for use when
information from protocol headers is required, and one should use the lower level IP or interface filters
instead.

Another thing to note is that a socket filter cannot filter traffic from protocols that are not initiated
through the socket API, because some auxiliary protocols are handled directly in the protocol stack. An
example would be ARP and RARP requests, which are handled by the kernel and aren’t usually initiated
by a user application but rather happen as a side effect of some other type of traffic. The socket API is
most commonly used by user space applications or libraries, however, as previously mentioned, a socket
KPI also exists, allowing the kernel to use socket communication in much the same way as user space.
Kernel-initiated sockets can also be filtered.

The socket interface isn’t restricted to just filtering data packets. It can also intercept out-of-band
communication, such as calls to socket-related system calls like bind() and listen().

A socket filter is registered by filling out desired callbacks in the sflt_filter structure, as shown in
Listing 13-2.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 13 NETWORKING

281

Listing 13-2. The sflt_filter Structure Used to Register a Socket Filter (kpi_socketfilter.h)

struct sflt_filter {
 sflt_handle sf_handle;
 int sf_flags;
 char *sf_name;
 sf_unregistered_func sf_unregistered;
 sf_attach_func sf_attach;
 sf_detach_func sf_detach;
 sf_notify_func sf_notify;
 sf_getpeername_func sf_getpeername;
 sf_getsockname_func sf_getsockname;
 sf_data_in_func sf_data_in;
 sf_data_out_func sf_data_out;
 sf_connect_in_func sf_connect_in;
 sf_connect_out_func sf_connect_out;
 sf_bind_func sf_bind;
 sf_setoption_func sf_setoption;
 sf_getoption_func sf_getoption;
 sf_listen_func sf_listen;
 sf_ioctl_func sf_ioctl;
 struct sflt_filter_ext {
 unsigned int sf_ext_len;
 sf_accept_func sf_ext_accept;
 void *sf_ext_rsvd[5]; /* Reserved */
 } sf_ext;
#define sf_len sf_ext.sf_ext_len
#define sf_accept sf_ext.sf_ext_accept
};

As you can see, there are quite a few callbacks, but only a few, such as sf_attach and sf_detach, are
mandatory. Non-mandatory callbacks not needed by a filter can be set to NULL. A socket filter can
operate in two modes; which mode is used depends on the flags set in the sf_flags field. There are two
possible values:

• SFLT_GLOBAL If set, the filter attaches itself to every socket that matches the
protocol domain and protocol specified when the filter was registered. Once
registered, the filter will be invoked for every new socket created matching the
criteria.

• SFLT_PROG The filter will be activated, only if an owner of the socket specifically
requests it, by using the SO_NKE socket option to the setsockopt() system call.

The first field of the structure sf_handle is used to identify the filter to clients when the filter is
operating in programmatic mode (SFLT_PROG is set). It is also used to deregister the socket filter after use.
The handle consists of a four-character sequence, which should be unique. Apple provides a registration
process to apply for a unique character sequence called a creator code. The sft_name field is used for
debug purposes and is commonly set to the bundle ID of the containing KEXT, but it can be anything.

A socket filter is registered with the system using the sflt_register() function.

CHAPTER 13 NETWORKING

282

Building an Application-Level Firewall Using Socket Filters
To better understand how the socket filter mechanism works, let’s look at an example of what it can be
used for. While Mac OS X ships with an application-level firewall already (ALF.kext), we will do a very
simplistic version to demonstrate the power of socket filters. The AppWall architecture consists of an
NKE KEXT, which contains the socket filter. AppWall will solve the problem of preventing unauthorized
programs from accessing the network. The socket filter can also log information about data transferred
in either direction for a specified program, without interfering with its operation. Because AppWall will
be proof-of-concept, we will limit it to support IP version 4 using the TCP protocol.

Let’s get started by defining the socket filter:

#define APPWALL_FLT_TCP_HANDLE 'apw0' // codes should registered with Apple

static struct sflt_filter socket_tcp_filter = {
 APPWALL_FLT_TCP_HANDLE,
 SFLT_GLOBAL,
 “com_osxkernel_AppWall”,
 appwall_unregistered,
 appwall_attach,
 appwall_detach,

NULL,
...
 appwall_data_in,
 appwall_data_out,
 appwall_connect_in,
 appwall_connect_out,
 NULL,
...
};

 Tip The unabridged source for AppWall will be made available on the publisher’s website: www.apress.com.

Because of our requirements, we have left out a number of function pointers as NULL, as they are not
relevant to our filter’s design. If you wish, you can easily modify AppWall to implement these as well.

Let’s have a look at how we register the filter:

kern_return_t AppWall_start (kmod_info_t * ki, void * d)
{
...
 ret = sflt_register(&socket_tcp_filter, PF_INET, SOCK_STREAM, IPPROTO_TCP);
 if (ret != KERN_SUCCESS)
 goto bail;

 add_entry("ssh", 1); // block the ssh application.
 add_entry("nc", 0); // log data from the nc application.

 g_filter_registered = TRUE;
...
}

www.allitebooks.com

http://www.apress.com
http://www.allitebooks.org

CHAPTER 13 NETWORKING

283

For brevity, we have left out general housekeeping code, such as allocating locks or error handling.
Once the sflt_register() function returns, the filter may be active and we may start seeing our
callbacks invoked. Therefore, it is vital that any needed resources, such as locks, are initialized prior to
registering the filter.

The sflt_register() function takes four arguments:

• The pointer to the socket filter structure, as mentioned earlier.

• The protocol domain, which we specify as PF_INET, which is the IP version 4
family.

• The type. We specify SOCK_STREAM, which refers to a full duplex stream-based
socket.

• And finally the protocol, which we specify as IPPROTO_TCP.

 Tip The domain, type and protocol values are the same as those used in the user space socket API. Check the
man 2 socket manual page for more details about available domains, types, and protocols.

If you wish to handle other protocols, such as UDP, a second call to sflt_register() is needed.
Each registered filter needs its own unique handle, so you will need to declare a second structure for the
UDP filter. If desired, the second structure may share some or all callbacks with the first.

The last step is to add some entries to our list of blocked/monitored applications using the AppWall
add_entry() function. In a real NKE, you would most likely have a kernel control that allowed a user
space utility to configure this instead of hard coding. The add_entry() function creates an appwall_entry
structure, as shown in Listing 13-3.

AppWall Operation and Data Structures
Before we start implementing the filter callbacks, we need to declare data structures to store information
collected from the filter. We declare the data structures in a shared header file, which can be used by a
user space utility in the future, but for now, is only used by the AppWall KEXT. The data structure is
shown in Listing 13-3.

Listing 13-3. AppWall Header File

#define BUNDLE_ID "com.osxkernel.AppWall"

struct app_descriptor
{
 char name[PATH_MAX];
 unsigned long bytes_in;
 unsigned long bytes_out;
 unsigned long packets_in;
 unsigned long packets_out;
 int do_block;
 int outbound_blocked;

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 13 NETWORKING

284

 int inbound_blocked;

};

#if defined (KERNEL)
struct appwall_entry
{
 TAILQ_ENTRY(appwall_entry) link;
 struct app_descriptor desc;
 int users;
};
#endif

#endif

The first structure app_descriptor is used to hold the name of an application to be blocked or
monitored. Entries with the do_block field set to non-zero are blocked, whereas a zero value means we
will simply collect and report statistics for it.

We use the name of the application and not a process indentifier (PID) to track every instance of
that program. While this is not secure, because you can bypass by renaming the executable, it is fine for
the sake of example.

The field do_block will be non-zero, if we wish to block this particular application; if it is zero, we
will instead collect statistics only. If we see a socket from an application for which no appwall_entry
exists, our filter will ignore it.

Attaching and Detaching the Filter
The attach (sf_attach) and detach (sf_detach) functions are called whenever our filter attaches itself to a
socket. This happens either because the client that owns the socket specifically request that we attach or
for a global filter, when the socket is created. It is not possible to attach to a socket that is already
established.

Because a filter may intercept a high volume of sockets, the callbacks should avoid doing any heavy
processing, as it may impact the system’s network performance. AppWall was designed for
demonstration and to be as simple as possible, not as a high-performance socket filter.

Let’s look at the implementation of the attach callback in AppWall:

static errno_t appwall_attach(void** cookie, socket_t so)
{
 errno_t result = 0;
 struct appwall_entry* entry;
 char name[PATH_MAX];

 *cookie = NULL;

 proc_selfname(name, PATH_MAX);

 lck_mtx_lock(g_mutex);

 entry = find_entry_by_name(name);
 if (entry)
 {

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 13 NETWORKING

285

 entry->users++;
 cookie = (void)entry;
 printf("AppWall: attaching to process: %s\n", name);
 }
 else
 result = ENOPOLICY; // don't attach to this socket.

 lck_mtx_unlock(g_mutex);

 return result;
}

We are passed two arguments: The first is a cookie parameter that we can use to assign per-socket
data. The cookie pointer will be passed back to us in every callback. The second argument is an opaque
reference to the socket itself. Since the socket is opaque, it must be accessed with the socket KPI.

RETRIEVING THE IP ADDRESS OF A SOCKET

The following example shows how to use the socket KPI to get the IP address the socket is bound
to:

unsigned char addstr[256];
struct sockaddr_in addr;
sock_getsockname(so, (struct sockaddr*)&addr, sizeof(addr));
inet_ntop(AF_INET, &addr.sin_addr, (char*)addstr, sizeof(addstr));
printf("%s:%d\n", addstr, ntohs(addr.sin_port));

When the appwall_attach() function gets called, we are executing in the context of the task that

created the socket, and we can, therefore, call proc_selfname(), which returns the process name of the
current task. Once we have a name, we search the global linked list of appwall_entry structures to see if
we can find a match. If a match is found, we increment its users count, and assign to the cookie return
argument.

All manipulation of the linked list is performed under a global mutex to protect against concurrent
access. If a match is not found, we return ENOPOLICY. Any non-zero return code from the function will
have the effect of preventing the filter from being attached to this socket (without affecting the sockets
lifecycle) and, hence, no further callbacks will be seen for that socket.

If you have a socket_t handle, you can manually attach to the socket by calling the sf_attach()
function.

The sf_detach() callback will be invoked when the filter should be detached from the socket, which
occurs when a socket closes or as a result of the filter being unregistered with sflt_unregister(). The
detach callback in AppWall is implemented as follows:

static void
appwall_detach(void* cookie, socket_t so)
{
 struct appwall_entry* entry;

 if (cookie)

CHAPTER 13 NETWORKING

286

 {
 entry = (struct appwall_entry*)cookie;

 lck_mtx_lock(g_mutex);

 entry->users--;
 if (entry->users == 0)
 {
 printf("report for: %s\n", entry->desc.name);
 printf("===================================\n");

 if (entry->desc.do_block)
 {
 printf("inbound_blocked: %d\n", entry->desc.inbound_blocked);
 printf("outbound_blocked: %d\n", entry->desc.outbound_blocked);
 }
 else
 {
 printf("bytes_in: %lu\n", entry->desc.bytes_in);
 printf("bytes_out: %lu\n", entry->desc.bytes_out);
 printf("entry->desc.packets_in: %lu\n", entry->desc.packets_in);
 printf("entry->desc.packets_out: %lu\n",entry->desc.packets_out);
 }
 cookie = NULL;
 }
 lck_mtx_unlock(g_mutex);
 }
 return;
}

The function simply prints a report of how many times connections were blocked, or if the
application was monitored, dumps statistics for how many bytes and packets were transmitted.

Handling Connections
A socket filter can intercept calls to the connect() system call for outgoing connections. The system call
handler calls our filter by using the sf_connect_out filter function. The filter function is passed the
following three arguments.

• The cookie

• A handle to the socket itself

• A sockaddr structure describing the intended destination of the socket

Returning non-zero from the callback will have the effect of propagating the error directly back to
the caller of the connect() function (from kernel or user space) and will prevent the socket from being
established without any packets going out on the network, which is how AppWall is able to block
outgoing connections.

There is a catch here for UDP. UDP is connectionless and is not required to call connect() at all; it
will do so only to set the default address for send() and recv(), which does not result in outgoing

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 13 NETWORKING

287

network traffic. Blocking UDP traffic can instead be done in the data out or in callbacks on a per packet
basis.

The sf_connect_in function, on the other hand, is not called in response to a system call like
sf_connect_out but called by a protocol handler just before a new connection is established. The
sf_connect_in callback is currently only invoked for TCP and does not apply to UDP. (It’s
connectionless.)

As with the output filter, it is possible to reject the connection by returning non-zero, preventing it
from being established and sending any further data to the socket. The sf_connect_in callback takes the
same arguments as the output callback, but the sockaddr structure will describe the remote address
instead. AppWall implements the sf_connect_in filter function as follows:

static errno_t
appwall_connect_in(void* cookie, socket_t so, const struct sockaddr* from)
{
 struct appwall_entry* entry;
 errno_t result = 0;

 entry = (struct appwall_entry*)cookie;
 if (!entry)
 goto bail;

 lck_mtx_lock(g_mutex);

 if (entry->desc.do_block)
 {
 printf("blocked incoming connection to: %s", entry->desc.name);
 if (from)
 {
 printf(" from: ");
 log_ip_and_port_addr((struct sockaddr_in*)from);
 }
 entry->desc.inbound_blocked++;
 result = EPERM;
 }
 lck_mtx_unlock(g_mutex);
bail:

 return result;
}

The function looks for a non-NULL cookie, and if one is present, checks if the application owning the
current socket should be blocked.

Socket Data Input and Output
The real power of socket filters are in the sf_data_in and sf_data_out filter functions. They allow
interception of incoming and outgoing packets. Packets seen by a socket filter’s data functions are
stripped of (or have not yet had attached) protocol header information, such as IP, TCP, or UDP headers.
In the case of TCP and UDP, the information will represent the actual payload data, which will be
delivered to or from a socket. If you need data from the protocol headers, you may wish to write an IP or
interface filter instead. For incoming data packets, you can determine the network interface a packet

CHAPTER 13 NETWORKING

288

received by calling mbuf_pkthdr_rcvif() on the mbuf. For outgoing packets, this information isn’t
available because the filter function executes before the packet is routed to a network interface. The
sf_data_out function in AppWall is implemented as follows:

static errno_t
appwall_data_out(void* cookie, socket_t so, const struct sockaddr* to, mbuf_t* data,
 mbuf_t* control, sflt_data_flag_t flags)
{
 struct appwall_entry* entry;
 errno_t result = 0;

 entry = (struct appwall_entry*)cookie;
 if (!entry)
 goto bail;

 lck_mtx_lock(g_mutex);
 entry->desc.bytes_out += mbuf_pkthdr_len(*data);
 entry->desc.packets_out++;

 if (entry->desc.do_block)
 result = EPERM;
 lck_mtx_unlock(g_mutex);
bail:
 return result;
}

The function accepts the following six parameters:

• The cookie containing the pointer to the appwall_entry structure.

• A socket_t reference to socket transmitting data.

• A sockaddr structure containing the address of the host to which the packet is
destined. The argument is NULL for TCP packets, but set for UDP. The destination
of a TCP socket can be determined at the time the connection is created
(sf_connect_out).

• A pointer to an mbuf_t handle. Note that you cannot use the mbuf_t directly, as it is
merely a handle, you have to use the mbuf KPI to extract data and information
from it. Also note that the mbuf argument is a pointer, so it also functions as an
output argument. It is possible to assign a different mbuf_t, which will be
transmitted in lieu of the original.

• A pointer to an mbuf_t handle containing additional control data.

• The sixth parameter is used to indicate the type of data, such as normal, out-of-
band or records data. There are two valid flags: sock_data_filt_flag_oob and
sock_data_filt_flag_record. A value of zero indicates normal data.

In the AppWall case, the data in function is implemented in a similar way to the connect function by
checking if the calling socket has a cookie attached, which in turn means that the packet should either be
logged or blocked. We return EPERM to signal the caller that it should free the packet and halt further
processing if the packet should be blocked (filtered). If you wish to keep the packet, but prevent it from

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 13 NETWORKING

289

progressing further, you can return EJUSTRETURN instead, which will prevent the caller from freeing the
packet.

AppWall implements the data input function nearly identically. It will block an incoming packet by
returning EPERM.

 Tip If you wish to learn more about socket filters, Apple provides a more comprehensive socket filter example,
called: tcplognke, which can be found on their developer website. It shows how to log connections as well as how
to swallow (delay) and re-inject packets at a later time. It also demonstrates some of the other filter functions we
have not covered here and the user of the kernel control mechanism.

Internet Protocol Filters
Internet Protocol (IP) filters allow filtering and injection of incoming and outgoing IP packets. The IP
filter mechanism works both for IPv4 and for IPv6. Because the IP operates at the network layer, there is
no concept of connections or sessions, as that is handled by higher layer protocols and mechanisms. At
the IP level, there are only packets going in and out. As a result, IP filters are significantly less complex
than socket filters. The programming interface is similar to that of socket filters. An IP filter is defined by
the structure ipf_filter:

struct ipf_filter {
 void* cookie;
 const char* name;
 ipf_input_func ipf_input;
 ipf_output_func ipf_output;
 ipf_detach_func ipf_detach;
};

The structure consists of the following fields and callbacks:

• The cookie field is used to assign a pointer containing some data that should be
passed along to all the filter functions.

• The name is used for debugging purposes and should be set to something
identifying your filter/KEXT.

• The ipf_input and ipf_output fields define the actual filter functions, which will
be called for incoming and outgoing IP packets, respectively.

• The ipf_detach function will be called when the filter is detached. Unlike a socket
filter, which detaches when a socket close is terminated, IP filters need to be
detached/removed explicitly by calling ipf_remove(). Note that the ipf_remove()
function may defer removal of the filter if one of the filter functions are executing
when the function is called. Therefore, you need to wait for the ipf_detach filter
function to complete before a KEXT can be unloaded to avoid a kernel panic when
the IP stack tries to call ipf_detach after it has been unloaded from memory.

A complete example of a minimal IP filter is shown in Listing 13-4.

CHAPTER 13 NETWORKING

290

Listing 13-4. MyIPFilter: Implementation of a Simple IP Filter

#include <mach/mach_types.h>
#include <sys/kernel_types.h>
#include <sys/systm.h>
#include <sys/kpi_mbuf.h>
#include <netinet/ip.h>
#include <netinet/kpi_ipfilter.h>

enum {
 kMyFiltDirIn,
 kMyFiltDirOut,
 kMyFiltNumDirs
};

struct myfilter_stats {
 unsigned long udp_packets[kMyFiltNumDirs];
 unsigned long tcp_packets[kMyFiltNumDirs];
 unsigned long icmp_packets[kMyFiltNumDirs];
 unsigned long other_packets[kMyFiltNumDirs];
};

static struct myfilter_stats g_filter_stats;
static ipfilter_t g_filter_ref;
static boolean_t g_filter_registered = FALSE;
static boolean_t g_filter_detached = FALSE;

static void log_ip_packet(mbuf_t* data, int dir) {
 char src[32], dst[32];
 struct ip *ip = (struct ip*)mbuf_data(*data);

 if (ip->ip_v != 4)
 return;

 bzero(src, sizeof(src));
 bzero(dst, sizeof(dst));
 inet_ntop(AF_INET, &ip->ip_src, src, sizeof(src));
 inet_ntop(AF_INET, &ip->ip_dst, dst, sizeof(dst));

 switch (ip->ip_p) {
 case IPPROTO_TCP:
 printf("TCP: ");
 g_filter_stats.tcp_packets[dir]++;
 break;
 case IPPROTO_UDP:
 printf("UDP: ");
 g_filter_stats.udp_packets[dir]++;
 break;
 case IPPROTO_ICMP:
 printf("ICMP: ");
 g_filter_stats.icmp_packets[dir]++;

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 13 NETWORKING

291

 default:
 printf("OTHER: ");
 g_filter_stats.other_packets[dir]++;
 break;
 }
 printf("%s -> %s\n", src, dst);
}

static errno_t myipfilter_output(void* cookie, mbuf_t* data, ipf_pktopts_t options) {
 if (data)
 log_ip_packet(data, kMyFiltDirOut);
 return 0;
}

static errno_t myipfilter_input(void* cookie, mbuf_t* data, int offset, u_int8_t protocol) {
 if (data)
 log_ip_packet(data, kMyFiltDirIn);
 return 0;
}

static void myipfilter_detach(void* cookie) {
 /* cookie isn't dynamically allocated, no need to free in this case */
 struct myfilter_stats* stats = (struct myfilter_stats*)cookie;
 printf("UDP_IN %lu UDP OUT: %lu TCP_IN: %lu TCP_OUT: %lu ICMP_IN: %lu ICMP OUT: %lu
OTHER_IN: %lu OTHER_OUT: %lu\n",
 stats->udp_packets[kMyFiltDirIn],
 stats->udp_packets[kMyFiltDirOut],
 stats->tcp_packets[kMyFiltDirIn],
 stats->tcp_packets[kMyFiltDirOut],
 stats->icmp_packets[kMyFiltDirIn],
 stats->icmp_packets[kMyFiltDirOut],
 stats->other_packets[kMyFiltDirIn],
 stats->other_packets[kMyFiltDirOut]);

 g_filter_detached = TRUE;
}

static struct ipf_filter g_my_ip_filter = {
 &g_filter_stats,
 "com.osxkernel.MyIPFilter",
 myipfilter_input,
 myipfilter_output,
 myipfilter_detach
};

kern_return_t MyIPFilter_start (kmod_info_t * ki, void * d) {
 int result;

 bzero(&g_filter_stats, sizeof(struct myfilter_stats));
 result = ipf_addv4(&g_my_ip_filter, &g_filter_ref);

 if (result == KERN_SUCCESS)

CHAPTER 13 NETWORKING

292

 g_filter_registered = TRUE;

 return result;
}

kern_return_t MyIPFilter_stop (kmod_info_t * ki, void * d) {

 if (g_filter_registered)
 {
 ipf_remove(g_filter_ref);
 g_filter_registered = FALSE;
 }
 /* We need to ensure filter is detached before we return */
 if (!g_filter_detached)
 return KERN_NO_ACCESS; // Try unloading again.

 return KERN_SUCCESS;
}

The filter will attach itself once the KEXT is loaded, and detach itself once it unloads. The filter will
print the source and destination of each received IP packet to the console, as well as keep track of
statistics for TCP, UDP, and ICMP packets, for which a summary is printed once the filter is detached.

The ipf_filter structure is registered using the ipf_addv4() function, which registers an IPv4 filter.
IPv6 filters can be registered with ipf_addv6().

The ipf_input and ipf_output callbacks are invoked from the IP stack on arrival or departure of an
IP packet. For incoming IP packets, the filter function will be called just before the packet gets processed
by a higher-level protocol handler, such as TCP or UDP. If the IP packet was fragmented, it is
reassembled before being passed to the filter function. For outgoing packets, the filter function will be
called before the packet is fragmented. Normally, a packet would only be seen by a filter function once.
However, there is one exception, which is if the packet uses an encryption scheme like IPSec, where an
IP packet may contain another encrypted IP packet. In this case, the filter function will be called once for
the encrypted packet and once for the decrypted payload.

IP filters work across interfaces, so you will see packets from and to all active interfaces in the
system. If you need to know which interface the packet arrived from, this information can be obtained
from the mbuf packet header. For outgoing packets, this information is not yet available, because
routing of the packet to a network interface happens after the output filter function is called. This is by
design, because it is possible for the filter function to alter the destination of a packet, as we will see
shortly.

IP filters are not limited to examining packets; it is also possible to modify packets, reject them, and
inject your own packets. To illustrate the power of IP filters, we can modify the ipf_output filter function
from Listing 13-4 with a new version:

static errno_t myipfilter_output_redirect(void* cookie, mbuf_t* data, ipf_pktopts_t options)
{
 struct in_addr addr_old;
 struct in_addr addr_new;
 int ret;

 struct ip* ip = (struct ip*)mbuf_data(*data);
 if (ip->ip_v != 4)
 return 0;

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 13 NETWORKING

293

 addr_old.s_addr = htonl(134744072); // 8.8.8.8
 addr_new.s_addr = htonl(167837964); // 10.1.1.12

 // redirect packets to 8.8.8.8 to the IP address 10.1.1.12.
 if (ip->ip_dst.s_addr == addr_old.s_addr)
 {
 ip->ip_dst = addr_new;
 myipfilter_update_cksum(*data);
 ret = ipf_inject_output(*data, g_filter_ref, options);
 return ret == 0 ? EJUSTRETURN : ret;
 }
 return 0;
}

The preceding example will redirect all IP traffic to the public IP address (8.8.8.8) to an internal IP
address on our network (10.1.1.12). We do this by examining the destination of the IP address and, if it
matches our address, we modify the packet’s destination to the new address. Because we have modified
the packet, we need to re-inject it. This will have the effect of treating the modified packet as a new one
and, hence, it will again pass through our filter. We can prevent the packet from being processed again
by our filter by passing in the reference to our filter when we inject the packet, as shown in the preceding
example.

Since we have re-injected the packet, we need to stop the original packet from progressing further,
which we do by returning EJUSTRETURN. This will tell the caller to stop processing the packet without
freeing it. To discard a packet completely, we can return a value other than zero or EJUSTRETURN, which
will cause the caller to stop processing and also free the packet. These rules apply for both incoming and
outgoing packets. When modifying an IP packet’s header, we need to update its checksum (CRC) to
prevent the packet from being discarded as corrupt. The IP checksum covers its own header, but not the
payload. TCP and UDP checksums are calculated using some of the fields of the IP header, including the
source and destination address. Consequently, UDP and TCP checksums also need to be recalculated if
an IP header’s address fields are modified. IP, TCP, and UDP checksums can be calculated for an mbuf_t
using the function mbuf_inet_cksum(). See the myipfilter_update_cksum() function in the book sample
project MyIPFilter for an example of how to update the checksums.

We can now test that our modified IP filter function works correctly using the ping command line
utility:

$ ping 8.8.8.8
PING 8.8.8.8 (8.8.8.8): 56 data bytes
64 bytes from 10.1.1.12: icmp_seq=0 ttl=64 time=307.636 ms
64 bytes from 10.1.1.12: icmp_seq=1 ttl=64 time=2.513 ms

As you can see, we will now get replies from 10.1.1.12 instead of the original IP address. This
happens to work with the ping utility, which uses a RAW socket. However, for a regular socket-based
application like ssh, we also need to modify the source address of incoming packets to enable full two-
way communication, otherwise, the IP stack will be confused when it gets unsolicited packets from the
10.1.1.12 host. You can modify the ipf_input filter function to modify incoming packets so that the
source address is translated from 10.1.1.12 back to 8.8.8.8, thereby ensuring that the packet is directed
to the right application (which still thinks we are talking to 8.8.8.8). This is conceptually similar to how
Network Address Translation (NAT) technology is implemented. NAT is the technique used by Mac OS

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 13 NETWORKING

294

X’s Internet sharing feature or how the iPhone can share its 3G connection to other wireless devices.
Refer to the full source code of the MyIPFilter example to see how we can modify a packet on input.

Although, in the previous example, we have only modified the destination address, it is possible to
modify any part of the packet, including application layer data. It is also possible to completely replace a
packet with a new one. The structure of a typical IP packet is shown in Figure 13-3.

Figure 13-3. An Ethernet frame with an IP, TCP header, and data payload

In the case of both incoming and outgoing packets, a filter function will see the complete packet,
but the packet data passed to the filter function will not include any data-link layer headers, such as an
Ethernet header, because that will be processed before the packet enters the IP stack where our filter
function gets called. Similarly for outgoing packets, the Ethernet, or other data-link layer header, will be
attached after the packet goes through the filter function. Again, if you update any part of the packet, you
must ensure that relevant checksums are updated as well.

Interface Filters
Interface filters are as close to the metal as we can get using a filtering mechanism. Interface filters
operate just before and after a packet is sent or received by a network interface. If a packet is destined for
a physical interface, as opposed to a loopback or virtual interface, it will likely be sent to an I/O Kit driver
for physical transmission. An interface filter is bound to only one interface, unlike an IP or socket filter,
which sees the aggregate packet flow of all interfaces in the system. If you need to filter packets on
multiple interfaces, you must register multiple filters, one for each interface. The interface filter
mechanism is very similar to that of socket and IP filters. As with socket filters, interface filters can also
intercept out-of-band events, such as ioctl() messages sent to the interface—for example, requests to
set or get the IP address, network mask, or MTU (maximum transfer unit). An interface filter can also
trap events to the interface sent via the kernel event API. As with socket and IP filters, interface filters
allow insertion, modification, rejection, and delay of packets. An interface filter is defined by the
iff_filter structure:

struct iff_filter {
 void* iff_cookie;
 const char* iff_name;
 protocol_family_t iff_protocol;
 iff_input_func iff_input;
 iff_output_func iff_output;
 iff_event_func iff_event;
 iff_ioctl_func iff_ioctl;
 iff_detached_func iff_detached;
};

All the filter functions are optional, and functions you do not care about can be left as NULL. Unlike
an IP or socket filter, an interface filter will see all packets regardless of protocol, which will include
protocols handled in the kernel, such as ARP. If your filter is interested only in IP packets, you can use
the iff_protocol field to specify AF_INET for IPv4 or AF_INET6 for IPv6, which will ensure that the filter
function will not be called for other protocols. It is only possible to specify protocol families, not
individual protocols, like TCP or UDP. Furthermore, if your filter needs to examine IP packets, be aware

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 13 NETWORKING

295

that the IP packets may now be fragmented, and you will not have the opportunity to examine encrypted
IP headers when IPSec is used. Listing 13-5 shows the implementation of a simple interface filter.

Listing 13-5. MyInterfaceFilter: A Simple Network Interface Filter

#include <libkern/libkern.h>
#include <sys/errno.h>
#include <sys/kpi_mbuf.h>
#include <mach/mach_types.h>
#include <net/kpi_interfacefilter.h>

#include <netinet/in.h>
#include <netinet/ip.h>
#include <net/ethernet.h>

static boolean_t g_filter_registered = TRUE;
static boolean_t g_filter_detached = FALSE;
static interface_filter_t g_filter_ref;

static errno_t myif_filter_input(void* cookie, ifnet_t interface, protocol_family_t protocol,
 mbuf_t* data, char** frame_ptr)
{
 printf("incoming packet: %lu bytes\n", mbuf_pkthdr_len(*data));
 return 0;
}

static errno_t myif_filter_output(void* cookie, ifnet_t interface, protocol_family_t protocol,
 mbuf_t* data)
{
 printf("outgoing packet: %lu bytes\n", mbuf_pkthdr_len(*data));
 return 0;
}
static void myif_filter_detached(void* cookie, ifnet_t interface)
{
 g_filter_detached = TRUE;
}

static struct iff_filter g_my_iff_filter =
{
 NULL,
 "com.osxkernel.MyInterfaceFilter",
 0,
 myif_filter_input,
 myif_filter_output,
 NULL,
 NULL,
 myif_filter_detached,
};

kern_return_t MyInterfaceFilter_start (kmod_info_t* ki, void* d)
{
 ifnet_t interface;

CHAPTER 13 NETWORKING

296

 if (ifnet_find_by_name("en1", &interface) != KERN_SUCCESS) // change to your own interface
 return KERN_FAILURE;

 if (iflt_attach(interface, &g_my_iff_filter, &g_filter_ref) == KERN_SUCCESS)
 {
 g_filter_registered = TRUE;
 }

 ifnet_release(interface);

 return KERN_SUCCESS;
}

kern_return_t MyInterfaceFilter_stop (kmod_info_t* ki, void* d)
{
 if (g_filter_registered)
 {
 iflt_detach(g_filter_ref);
 g_filter_registered = FALSE;
 }
 if (!g_filter_detached)
 return KERN_NO_ACCESS; // Don't allow unload until filter is detached.

 return KERN_SUCCESS;
}

Interface filters can be attached to a network interface using the iflt_attach() function. You can
register a single iff_filter against multiple interfaces. A network interface is represented by the opaque
type ifnet_t, which can be manipulated using the interface KPI (kpi_interface.h). In the preceding
example, we use the interface KPI function ifnet_find_by_name() to obtain a reference to the network
interface with the BSD name “en1,” which, on a MacBook, corresponds to the Wi-Fi interface.

The iff_input filter function is called when an incoming packet is received by the interface. The
callback takes five arguments:

• The cookie argument contains the pointer assigned to the iff_cookie field when
the filter was registered.

• The ifnet_t argument is a reference to the network interface that received the
packet. This is especially useful in case the same filter function handles filters
attached to more than one network interface.

• The next parameter is the protocol family the incoming packet belongs to. Unless
zero is specified for the iff_protocol field, this will always be the family you
specified.

• The mbuf_t represents the buffer containing the packet data.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 13 NETWORKING

297

• The last argument, frame_ptr, is a pointer to the data-link frame header of the
interface. The size and structure of the frame header varies depending on the
network interface. For an Ethernet interface, the frame header consists of a source
and destination MAC address as well as a 16-bit “ethertype” field, which
determines the encapsulated protocol. The field will be 0x0800 for an Ethernet
frame containing an IP packet. You can determine the length of the frame header
for an interface by calling the ifnet_hdrlen(ifnet_t) function.

The output filter function iff_output is similar to the input function, but does not provide the frame
header as a separate argument; rather the mbuf_t contains the entire frame including the data-link
header, instead of pointing to the data after the data-link header. If we wish to examine the IP header of
an incoming packet in an interface filter’s output function, we need to first parse the data-link header to
find the offset of the IP header. An example of this is shown here:

static errno_t myif_filter_output(void* cookie, ifnet_t interface, protocol_family_t protocol,
 mbuf_t* data)
{
 char src[64], dst[64];
 unsigned char* pktbuf = mbuf_data(*data);
 struct ether_header* eth = (struct ether_header *)pktbuf;

 if (ifnet_hdrlen(interface) != ETHER_HDR_LEN)
 return 0;

 if (ntohs(eth->ether_type) == ETHERTYPE_IP)
 {
 struct ip* iphdr = (struct ip*)(pktbuf + ETHER_HDR_LEN);
 inet_ntop(AF_INET, &iphdr->ip_src, src, sizeof(src));
 inet_ntop(AF_INET, &iphdr->ip_dst, dst, sizeof(dst));
 printf("outgoing packet: %lu bytes ip_src: %s ip_dst: %s\n",
 mbuf_pkthdr_len(*data), src, dst);
 }
 else
 printf("outgoing packet: %lu bytes\n", mbuf_pkthdr_len(*data));
 return 0;
}

The interface filter KPI does not provide functions for injecting incoming and outgoing packets. This
is provided by the interface KPI instead. Outgoing packets can be injected using the function
ifnet_output_raw() or using the function ifnet_input() to inject an inbound packet. For an example of
how inet_output_raw() can be used, refer to the source code of the sample driver MyEthernetDriver
discussed later in this chapter.

Debugging and Testing Network Extensions
Apart from the general techniques discussed in Chapter 16, “Debugging and Profiling,” Mac OS X comes
with some tools that allow debugging of network issues, the most notable of which are perhaps the
command line tools tcpdump and netcat. The former utilizes the libpcap library, which again is built on
top of the Berkeley Packet Filter (BPF) infrastructure, which is built into the kernel network stack. BPF
can plug into each network interface and install hooks, which allow incoming and outgoing packets to
be diverted to a character device file (/dev/bpfX) and can thereby be analyzed by tools such as tcpdump.
The tcpdump utility allows you to view the packet flow live, or to capture it to a file for later analysis. A

CHAPTER 13 NETWORKING

298

wide range of third party tools can work with the packet traces captured from tcpdump. If possible, the
tcpdump utility will put the monitored interface into promiscuous mode. Promiscuous mode is a
firmware feature of most network devices that tells it to forward packets, even if they are not addressed
to its own hardware address. Newer versions of Mac OS X require root privileges in order to run tcpdump,
even if promiscuous mode is disabled. Capturing packets from a busy network can be difficult due to
the sheer amount of data. To address this, tcpdump takes advantage of the filtering capabilities of the
BPF, which allows you to filter out packets based on a wide range of criteria ranging from the hardware
address to the individual flags of the TCP header. The following is an example of tcpdump output:

$ sudo tcpdump -i en0
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on en0, link-type EN10MB (Ethernet), capture size 65535 bytes
20:43:40.911558 IP 192.168.1.2.ipp > 192.168.255.255.ipp: UDP, length 237
20:43:51.113519 ARP, Request who-has 192.168.1.2 tell 192.168.1.3, length 28
20:43:51.113785 ARP, Reply 192.168.1.2 is-at 00:17:f2:0a:86:60 (oui Unknown), length 46
20:43:51.113831 IP 192.168.1.3 > 192.168.1.2: ICMP echo request, id 64769, seq 0, length 64
20:43:51.114004 IP 192.168.1.2 > 192.168.1.3: ICMP echo reply, id 64769, seq 0, length 64
20:44:11.911836 IP 192.168.1.2.ipp > 192.168.255.255.ipp: UDP, length 237
20:46:01.413453 IP 192.168.1.2.netbios-ns > 192.168.255.255.netbios-ns: NBT UDP PACKET(137):
QUERY; REQUEST; BROADCAST
20:46:01.451950 IP 192.168.1.2.netbios-dgm > 192.168.255.255.netbios-dgm: NBT UDP
PACKET(138)

The netcat utility has many uses. For network debugging, it is useful in its ability to create TCP- and
UDP-based clients or servers, as it can be used to generate traffic in either direction for the purpose of
testing. This is especially useful in the development of IP or socket filters as well as network interface
drivers. The netcat utility can be invoked from the terminal with the nc command. The following
example shows how to create a socket to listen for UDP traffic on port 4040:

$ nc –u -l 4040

You can connect to the server using nc on a different system:

$ nc –u 192.168.1.2 4040
Stuff typed here will be echoed back to the server

Networking in the I/O Kit
The IONetworkingFamily of classes represents the bottom part of the kernel network stack. As previously
discussed, the I/O Kit is the preferred layer for implementing drivers for hardware-based network
devices. The class hierarchy of the IONetworkingFamily is shown in Figure 13-4.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 13 NETWORKING

299

Figure 13-4. The IONetworkingFamily class hierachy

The family may look quite expansive, but many of the classes are auxiliary helper classes, and some,
we do not need to worry about at all because they are only used internally in the family. The key classes
in the family are the IONetworkController and IONetworkInterface. The former is used to represent a
driver for network hardware, whereas the latter is used to interface with the data-link interface layer
(DLIL) in the BSD layer. It serves as an adapter that allows I/O Kit network interfaces to be seen as BSD
layer network interfaces, so you can use traditional UNIX tools, such as ifconfig, to configure the
device. Let’s have a look at the responsibilities of the individual classes:

• IOEthernetController is the base class for all Ethernet-based devices, including
802.11-based wireless devices. You would normally subclass this when writing a
driver for an Ethernet or Wi-Fi-based device driver.

• IOEthernetInterface acts as a client of an IOEthernetController and provides the
glue between the controller and the BSD networking layer. If you are
implementing an Ethernet driver, you do not normally need to subclass
IOEthernetInterface unless you have special requirements.

• IOKernelDebugger is a replacement driver, which will be used against an
IONetworkController in lieu of an IONetworkInterface when the kernel debugger is
active. You do not need to support this if you are writing a third party network
driver.

• IOMbufMemoryCursor provides an object-oriented cursor around the mbuf structure,
which allows translation of mbuf clusters to physical addresses for the purpose of
DMA. Several specialized subclasses are available: IOMBufBigMemoryCursor,
IOMbufDBMAMemoryCursor, IOMbufLittleMemoryCursor, IOMbufNaturalMemoryCursor.

• IONetworkController is the base class of IOEthernetController. You must subclass
IONetworkController if you are writing a driver for a non-Ethernet compatible
device.

CHAPTER 13 NETWORKING

300

• IONetworkData represents a fixed size data buffer used by IONetworkInterface to
export interface data to user space, notably, usage statistics such as information
about dropped packets and collisions.

• IONetworkInterface provides the glue to bind an IONetworkController to the BSD
data-link layer (BDIL) and the rest of the network stack. The IONetworkInterface is
an abstract class and must be re-implemented if your driver is based on
IONetworkInterface.

• IONetworkUserClient is a subclass of IOUserClient, providing a user-client for
IONetworkInterface.

• IOOutputQueue is a packet queue, which handles multiple producers and a single
consumer (a device). Two specialized subclasses are available:
IOBasicOutputQueue and IOGatedOutputQueue.

• IOPacketQueue implements a FIFO queue of mbufs synchronized by a spinlock.

You may have noticed the absence of any mention of 802.11x networking support. Apple does not
publish a framework for development of wireless networking drivers. Apple’s own AirPort drivers are
located in the IO802Family.kext, but no source or header files are published for this. This does not
preclude writing of wireless network drivers, but it does mean that you can’t take advantage of pre-
written classes, and you may have to provide your own IOUserClient and possible user space tools for
configuration of the device. Apple’s AirPort devices are subclasses of the private IO80211Controller,
which, again, is a subclass of IOEthernetController. That being said all modern Macs have built-in
wireless networking, so demand for third-party devices in this area is low.

Building a Simple Ethernet Controller Driver
Let’s get our hands dirty with I/O Kit networking, by building a simple Ethernet driver. Since
implementing a full working driver is highly complex and hardware-dependent, it is difficult to
demonstrate in its entirety, and probably not that useful to someone having to implement a driver for a
completely different device. We will instead focus on the fundamentals and on familiarizing ourselves
with the tools an I/O Kit provides to aid in developing network drivers. We will do this by implementing
a virtual Ethernet driver called MyEthernetDriver. The driver will demonstrate how core elements of an
I/O Kit network driver are implemented and will show how packets flow through it to interact with the
rest of the system. Figure 13-5 shows how MyEthernetDriver interacts with other I/O Kit classes.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 13 NETWORKING

301

Figure 13-5. MyEthernetDriver: Interaction with I/O Kit and the network stack

In this case, MyEthernetDriver uses the IOResources nub as a provider, but for a real network device
backed by a physical device, it would more probably use IOPCIDevice, IOUSBDevice, IOUSBInterface, or
another nub representing a hardware device.

 Tip If you are curious to see a network driver for a real device, the IOUSBFamily source distribution used to
include the source code for AppleUSBCDCEthernet, which is the driver for devices that follow the USB Ethernet
specification. The driver is not part of newer versions, but can still be found in older versions of IOUSBFamily at
Apple’s open-source website (opensource.apple.com). There is also source code available for a driver for the
popular PCI based Realtek 8139 chipset called AppleRTL8139Ethernet. For an example of a network driver
derived directly from IONetworkController, have a look at IOFireWireIP, which implements TCP/IP networking
over FireWire.

The main driver class MyEthernetDriver will inherit from IOEthernetController, which again
inherits from IONetworkController. The driver will also allocate an IOEthernetInterface instance, which
will be used to interface with the network stack. The IOEthernetInterface class is not abstract and can
be allocated and used directly.

The Design of MyEthernetDriver
To put the design of MyEthernetDriver into context, let’s say we are employed to develop a driver for a
new Ethernet device. The device will be a dongle that can be connected to a Mac’s Thunderbolt port. As

CHAPTER 13 NETWORKING

302

this is an emerging technology at this point, there is some delay in getting the needed parts, so we do not
yet have access to a proper device. As much as we would all like to get paid to surf the net all day, we
need to earn our bread and butter. So we get started on the driver without a working device. Our aim is
to implement what can be done without having a hardware device. However, we quickly realize that a
major component of the Ethernet device is going to be handling actual network I/O. While you can build
a virtual device driver quite quickly, assign it an IP, and start talking to it, there is one major problem.
Network packets destined to another interface or itself on the same host will not actually be forwarded to
the device at all, but instead loop through the protocol stack without involving the I/O Kit driver. The I/O
Kit was designed specifically to interface with actual hardware devices, so if you need a virtual network
interface, the BSD layer is the best place for it.

Our solution to this problem will be to piggyback our virtual Ethernet device onto a real Ethernet
interface and use it to send and receive packets on our behalf. The setup will look similar to the diagram
in Figure 13-6.

Figure 13-6. MyEthernetDriver test setup

When MyEthernetDriver receives a packet from the network stack, it will queue the packet and then
transmit the packet out on the network using the interface en0, which is attached to a physical network
switch. If you do not have a network switch, you can test this by using a straight through cat5 cable to
connect directly to a remote machine. Each interface in the test setup is configured with its own IP
address all on the same subnet. The network stack is responsible for framing the packet, so by the time
MyEthernetDriver receives it, it will already have an Ethernet frame header attached, where the
destination address will be 00:17:f2:0a:86:60 and the arbitrarily picked source address
be:ef:fe:ed:12:11 of MyEthernetDriver. Most Ethernet based network devices allow sending a packet
with a (fake) source address that differs from its own. Therefore, if everything is correctly configured, we
should be able to receive the packet on the remote host received from MyEthernetDriver’s MAC and IP
address.

Getting the reply from the remote host back to our driver is somewhat more problematic, as the en0
interface will most likely ignore a frame not addressed to itself. To work around this, we will simply
enable promiscuous mode on en0, which will enable it to receive packets not destined to itself. We will
then install an interface filter on the input queue for en0 and check whether a packet is addressed to it,
in which case, we leave it alone, or if it is addressed to MyEthernetDriver, steal it and divert it to its input
queue instead. The end result is a virtual Ethernet bridge/switch. This is conceptually close to how
virtual machine software, such as Parallels or VMWare fusion, enables a virtual machine guest’s

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 13 NETWORKING

303

operating system to participate on the network in bridged mode. Because we have done this at the
Ethernet level, the changes are completely transparent to higher-level protocols like IP, and we can even
use an external DHCP server to obtain an IP address for our virtual interface.

This should leave us with a more or less working device driver, which, for all intents and purposes, is
able to send and receive actual network traffic and provide a good approximation of a real device for us
to play with. As much as possible, we will hide the fact that this bridging occurs from the driver by
putting the code in a separate class called MyEthernetHwAbstraction. The class will handle
communication with the “hardware” while the main driver will interface with I/O Kit. This design would
allow us to quickly swap out the hardware abstraction class with one that talks to actual hardware
instead. The design would also make it possible to subclass the abstraction class so that new variants of
the hardware can be supported gracefully.

 Note MyEthernetDriver needs a wired Ethernet device to piggyback onto. This is because a wireless device
generally does not allow packets to be transmitted with a source address different from its own. This is a limitation
of the device’s firmware.

The header file for MyEthernetDriver is shown in Listing 13-6.

Listing 13-6. MyEthernetDriver Header File

#ifndef MyEthernetDriver_h
#define MyEthernetDriver_h

#include <IOKit/assert.h>
#include <IOKit/IOTimerEventSource.h>
#include <IOKit/IOBufferMemoryDescriptor.h>
#include <IOKit/network/IOEthernetController.h>
#include <IOKit/network/IOEthernetInterface.h>
#include <IOKit/network/IOGatedOutputQueue.h>
#include <IOKit/network/IOMbufMemoryCursor.h>
#include <IOKit/network/IONetworkMedium.h>
#include <IOKit/IOUserClient.h>

#include "MyEthernetHwAbstraction.h"

class com_osxkernel_MyEthernetDriver : public IOEthernetController
{
 friend class com_osxkernel_MyEthernetHwAbstraction;

 OSDeclareDefaultStructors(com_osxkernel_MyEthernetDriver);
public:
 virtual bool init(OSDictionary* properties);
 virtual bool start(IOService* provider);
 virtual void stop(IOService* provider);
 virtual void free();

 virtual bool configureInterface(IONetworkInterface* netif);

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 13 NETWORKING

304

 virtual IOReturn enable(IONetworkInterface* netif);
 virtual IOReturn disable(IONetworkInterface* netif);

 virtual IOReturn getHardwareAddress(IOEthernetAddress* addrP);

 // Allow our driver's Mac address to be set
 virtual IOReturn setHardwareAddress(const IOEthernetAddress* addrP);

 virtual UInt32 outputPacket(mbuf_t m, void* param);

 virtual IOReturn setPromiscuousMode(bool active) { return kIOReturnSuccess; }
 virtual IOReturn setMulticastMode(bool active) { return kIOReturnSuccess; }

 bool createMediumDict();

private:

 static void interruptOccured(OSObject* owner, IOTimerEventSource* sender);

 IOTimerEventSource* fInterruptSource; // Simulate HW rx interrupt
 IOEthernetInterface* fNetworkInterface;
 OSDictionary* fMediumDict;
 IOWorkLoop* fWorkLoop;

 IONetworkStats* fNetworkStats;
 IOEthernetStats* fEthernetStats;

 com_osxkernel_MyEthernetHwAbstraction* fHWAbstraction; // Low-level hardware access.
};

#endif

Driver Initialization and Startup
Network drivers follow the usual IOService lifecycle. Initialization of a driver and the device happens in
the driver’s start() method. For a typical device, the following steps may be performed:

1. Configure the device’s provider and enumerate any needed resources. For PCI
or Thunderbolt, this means mapping device memory or I/O regions. For USB
devices, enumerate interfaces and pipes.

2. Configure the device for operation—for example, take it out of sleep state by
accessing the device’s registers or sending control requests.

3. Extract information from the device, such as the MAC address, and
information about the device’s capabilities, like supported media and speeds.
Many Ethernet devices support the Media Independent Interface (MII) bus,
which is a standard for accessing device status, information, and configuration
in a consistent manner, decoupled from the part of the device that is
concerned with physical transmission (usually referred to as the PHY). The MII
registers contain information about the link status, supported network speeds,
error reporting, and more. Gigabit or 10 Gigabit Ethernet devices are

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 13 NETWORKING

305

supported by the GMII and XGMII specifications, respectively. MII, GMII, and
XGMII are all IEEE standards. These standards do not, however, dictate how
the DMA engine is implemented or how I/O to the device should occur.

4. Allocate and configure IOInterruptEventSource or IOTimerEventSources as
needed, depending on requirements and underlying hardware. Many network
devices use a software timer as a watchdog timer to continuously monitor the
device for fault and attempt to reset the device should a fault occur.

5. Instantiate and register an instance of IOEthernetInterface, which will make
our network controller visible to the BSD networking stack and the rest of the
system.

The start() method for MyEthernetDriver is shown in Listing 13-7.

Listing 13-7. MyEthernetDriver’s start() Method

bool com_osxkernel_MyEthernetDriver::start(IOService* provider)
{
 if (!super::start(provider))
 return false;

 fHWAbstraction = new com_osxkernel_MyEthernetHwAbstraction();
 if (!fHWAbstraction)
 return false;
 if (!fHWAbstraction->init(this))
 return false;

 if (!createMediumDict())
 return false;

 fWorkLoop = getWorkLoop();
 if (!fWorkLoop)
 return false;
 fWorkLoop->retain();

 if (attachInterface((IONetworkInterface**)&fNetworkInterface) == false)
 return false;

 fNetworkInterface->registerService();

 fInterruptSource = IOTimerEventSource::timerEventSource(this, interruptOccured);
 if (!fInterruptSource)
 return false;

 if (fWorkLoop->addEventSource(fInterruptSource) != kIOReturnSuccess)
 return false;

 IOLog("%s::start() -> success\n", getName());
 return true;
}

CHAPTER 13 NETWORKING

306

What needs to be done in the start() method is entirely dependent on the device’s capabilities. In
this case, we do not have a provider representing a hardware device, so we can bypass opening the
provider. The next step performed is to allocate an instance of the class
com_osxkernel_MyEthernetHwAbstraction and initialize it. The class contains code to interface with the
hardware device, such as methods to read its registers and setup I/O transfers. In our case it instead
contains code that allows us to piggyback on another device. This step is not technically required—you
could easily all code in the main driver. However, we made the design decision so that in the future,
when the “MyEthernetDevice 2000 Pro” becomes available, we can simply handle the hardware
differences by inheriting from our existing hardware abstraction class. This allows the main driver to be
kept clean and makes it easy to support several hardware variants with the same driver. We will look at
the hardware abstraction class shortly.

After the “hardware” is initialized, we call the createMedium() function to publish details about
which transmission standards and speeds our device support. We will discuss this process further in the
next section.

The next method called is attachInterface(), which will return an instance of an
IONetworkInterface class, which provides the glue that exposes our driver to the kernel network layer. In
our case, the returned instance will be an IOEthernetInterface instance. If you need to subclass
IOEthernetInterace for any reason, you can override IONetworkController::createInterface(), which is
called by attachInterface() internally to allocate the overrided class instead. Before attachInterface()
returns, it will also call IONetworkController::configureInterface(), which you can also override to
perform additional configuration for the interface class. MyEthernetDriver implements the
configureInterface() method as follows:

bool com_osxkernel_MyEthernetDriver::configureInterface(IONetworkInterface *netif)
{
 IONetworkData* nd;

 if (super::configureInterface(netif) == false)
 return false;

 nd = netif->getNetworkData(kIONetworkStatsKey);
 if (!nd || !(fNetworkStats = (IONetworkStats *)nd->getBuffer()))
 return false;

 nd = netif->getParameter(kIOEthernetStatsKey);
 if (!nd || !(fEthernetStats = (IOEthernetStats*)nd->getBuffer()))
 return false;

 return true;
}

The method obtains pointers to the interface’s network statistics buffers, which will be used to
record information about received/transmitted packets, collisions, and other events. The information is
used by user space in several places, such as the network tab in the Activity Monitor.

To register an IOEthernetInterface instance with the system, we call its registerService() method.
Our final action before start() returns is to create an interrupt source. We simulate interrupts using

an IOTimerEventSource, however, a hardware device would likely use IOFilterInterruptEventSource or
IOInterruptEventSource to respond to actual hardware interrupts.

Most network drivers will also want to use a timer to provide watchdog functionality that
periodically monitors the device for erroneous conditions, and check for things like the current link
status, so that the network system and user space can be notified of events such as a cable being
unplugged. Many drivers trigger their watchdog timer once every second.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 13 NETWORKING

307

Medium and Status Selection
The createMedium() method creates a dictionary that will publish details about the device’s media
capabilities to the BSD stack and user space. Most modern Ethernet devices can also support older
Ethernet standards and transmission speeds. For example, the Ethernet device in a Macbook Pro can
support the 1000BaseT, 100BaseTX and 10BaseT/UTP in full or half duplex modes with or without flow
control. If the device and the driver support it, the media can be controlled via the UNIX command line
tool ifconfig or via the Network pane in System Preferences. Most devices are able to auto-detect current
media. Media capabilities are represented by the IONetworkMedium class. The implementation of the
createMedium() class is shown in Listing 13-8.

Listing 13-8. Method for Publishing Details about Supported Ethernet Media

static struct MediumTable
{
 UInt32 type;
 UInt32 speed;
}

mediumTable[] =
{
 {kIOMediumEthernetNone, 0},
 {kIOMediumEthernetAuto, 0},
 {kIOMediumEthernet10BaseT | kIOMediumOptionFullDuplex, 10},
 {kIOMediumEthernet100BaseTX | kIOMediumOptionFullDuplex, 100},
 {kIOMediumEthernet1000BaseT | kIOMediumOptionFullDuplex, 1000},
};

bool com_osxkernel_MyEthernetDriver::createMediumDict()
{
 IONetworkMedium* medium;
 UInt32 i;

 fMediumDict = OSDictionary::withCapacity(sizeof(mediumTable) /
 sizeof(struct MediumTable));
 if (fMediumDict == 0)
 return false;

 for (i = 0; i < sizeof(mediumTable) / sizeof(struct MediumTable); i++)
 {
 medium = IONetworkMedium::medium(mediumTable[i].type, mediumTable[i].speed);
 if (medium)
 {
 IONetworkMedium::addMedium(fMediumDict, medium);
 medium->release();
 }
 }

 if (publishMediumDictionary(fMediumDict) != true)
 return false;

CHAPTER 13 NETWORKING

308

 medium = IONetworkMedium::getMediumWithType(fMediumDict, kIOMediumEthernetAuto);
 setSelectedMedium(medium);
 return true;
}

The method builds an OSDictionary containing the supported medium. The medium dictionary
must be published with the method publishMediumDictionary() to advertise the driver’s capabilities to
the OS. If you want your driver to support manual selection of media, you need to override the
IONetworkController::selectMedium() method. The default method will simply return
kIOReturnUnsupported. Your driver can call setSelectedMedium() to inform the system of its medium
selection. The setLinkStatus() method can be used to set the medium and the link status together. The
link status flags are: kIONetworkLinkValid or kIONetworkLinkActive, which, for an Ethernet device, can be
used to indicate whether a cable is connected, as well as if the device is active.

Configuring the Device Hardware Address
Ethernet networks use the Media Access Control (MAC) address, which should be a 48-bit globally
unique address identifying the network controller. A MAC address conflict on the network may cause
confusion to switches, hosts, and other networking gear. The MAC address is usually programmed into
the device’s EEPROM when it is being manufactured in a range assigned to each manufacturer by IEEE.
Our driver needs to publish the MAC address to the networking stack and user space. The address serves
no other purpose in user space other than to help uniquely identify the device for informational and
configuration purposes. However, the networking stack does need to know the address to properly
format outgoing packets and for address resolution for other protocols such as IP (ARP/RARP). The
network stack will call the getHardwareAddress() function of our driver to get the MAC address.
MyEthernetDriver implements it as follows:

IOReturn com_osxkernel_MyEthernetDriver::getHardwareAddress(IOEthernetAddress *addrP)
{
 addrP->bytes[0] = fHWAbstraction->readRegister8(kMyMacAddressRegisterOffset + 0);
 addrP->bytes[1] = fHWAbstraction->readRegister8(kMyMacAddressRegisterOffset + 1);
 addrP->bytes[2] = fHWAbstraction->readRegister8(kMyMacAddressRegisterOffset + 2);
 addrP->bytes[3] = fHWAbstraction->readRegister8(kMyMacAddressRegisterOffset + 3);
 addrP->bytes[4] = fHWAbstraction->readRegister8(kMyMacAddressRegisterOffset + 4);
 addrP->bytes[5] = fHWAbstraction->readRegister8(kMyMacAddressRegisterOffset + 5);

 return kIOReturnSuccess;
}

The getHardwareAddress() method is the only mandatory method (pure virtual) in the
IOEthernetController and, hence, must be implemented. As we don’t have a valid MAC address for
MyEthernetDriver, we arbitrarily chose the address: be:ef:6c:8e:12:11. The implementation shows how
you would likely fetch the MAC address from a device’s registers.

If your device supports changing the MAC address to a user-defined value, you can override the
setHardwareAddress() method. The method should write the new MAC address to the device’s registers
and return kIOReturnSuccess, if it was changed successfully. The default implementation will return
kIOReturnUnsupported.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 13 NETWORKING

309

Enabling and Disabling the Device
Although the start method could fully prepare and make the device operational, the preferred way is to
make the device active (that is, in a state where it can receive and transmit) when the driver’s enable()
method is called. Similarly, the device should become as dormant as it can, even sleep, if possible, when
the driver’s disable() method is called. A driver should do this because a user may elect to turn the
device off at times, in which case, it should refrain from using resources, which again is important to
ensure it doesn’t drain a device’s battery or waste energy. MyEthernetDriver’s enable() method is
shown here:

IOReturn com_osxkernel_MyEthernetDriver::enable(IONetworkInterface* netif)
{
 IOMediumType mediumType = kIOMediumEthernet1000BaseT | kIOMediumOptionFullDuplex;
 IONetworkMedium* medium;

 medium = IONetworkMedium::getMediumWithType(fMediumDict, mediumType);

 if (!fHWAbstraction->enableHardware())
 return kIOReturnError;

 setLinkStatus(kIONetworkLinkActive | kIONetworkLinkValid, medium, 1000 * 1000000);
 return kIOReturnSuccess;
}

The exact implementation is highly hardware-dependent, of course. In our case, the
implementation will call into the hardware abstraction class, which will attach to the “slave” network
interface we will use to enable transmission and reception of packets. For a real device, the method
would likely bring the device out of sleep, and then enable interrupts. The implementation of the
hardware abstraction enableHardware() method is shown here:

bool com_osxkernel_MyEthernetHwAbstraction::enableHardware()
{
 bool success = true;

 fRxPacketQueue = IOPacketQueue::withCapacity();
 if (!fRxPacketQueue)
 return false;

 if (ifnet_find_by_name("en0", &interface) != KERN_SUCCESS) // change to your own interface
 return false;

 ifnet_set_promiscuous(interface, 1);

 if (iflt_attach(interface, &interfaceFilter, &gFilterReference) != KERN_SUCCESS)
 success = false;

 filterRegistered = true;
 return success;
}

The method will look for the device network interface en0, which should be an Ethernet device. It
then puts the device into promiscuous mode, which is needed to ensure it will accept packets destined
for MyEthernetDriver’s MAC address. Finally, an interface filter is installed on the slave interface to

CHAPTER 13 NETWORKING

310

intercept incoming packets. We will examine each incoming packet and divert packets addressed to us
to our own input queue: fRxPacketQueue, while ignoring all other packets, and allow them to be
processed by the original interface.

The disable() method should reverse the actions we performed when we enabled the device, and
bring the device back into its original state. For our purposes, this means removing the interface filter so
that we will no longer get incoming packets:

void com_osxkernel_MyEthernetHwAbstraction::disableHardware()
{
 if (filterRegistered == true)
 {
 iflt_detach(gFilterReference);
 while (filterRegistered);

 ifnet_set_promiscuous(interface, 0);
 ifnet_release(interface);

 fRxPacketQueue->flush();
 fRxPacketQueue->release();
 fRxPacketQueue = NULL;
 }
}

Transmitting Network Packets
Now that we have successfully configured and prepared the device, we are ready to start doing some
actual I/O. Networking I/O is conceptually very simple for a network driver. The network stack handles
the heavy lifting of formatting the packet as well as determining that a packet is actually destined for our
interface. Our driver need only be concerned with transmitting the raw bytes to the device. Packets are
delivered to a driver via IONetworkController::outputPacket(), which your driver should override to
receive packets from the network stack. The outputPacket() method of MyEthernetDriver is shown here:

UInt32 com_osxkernel_MyEthernetDriver::outputPacket(mbuf_t packet, void* param)
{
 IOReturn result = kIOReturnOutputSuccess;
 if (fHWAbstraction->transmitPacketToHardware(packet) != kIOReturnSuccess)
 {
 result = kIOReturnOutputStall;
 }
 return result;
}

 Note A driver should free the mbuf_t if a packet was accepted by the outputPacket() method.
MyEthernetDriver does not need to do this because it passes the packet to another driver that will be responsible
for freeing it.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 13 NETWORKING

311

An implementation should return kIOReturnOutputSuccess if the packet was handled successfully. If
the hardware is busy and cannot accept another packet at this time, you can return
kIOReturnOutputStall, which will retry the same packet again at a later stage. To drop packets, simply
return kIOReturnOutputDropped. The outputPacket() method should not block or sleep.

By default, the outputPacket() method is called by the IONetworkInterface instance for the
controller, unless an output queue was created manually by overriding the createOutputQueue()
method, which should return a subclass of IOOutputQueue. It is highly recommended to implement an
output queue (or provide your own queuing mechanism). If a queue is not present, you lose the ability to
temporarily stall the queue, and you must handle the packet in your driver’s outputPacket() method,
otherwise it will be dropped. If the hardware is already busy transmitting packets at the time
outputPacket() is called, the only way to handle this situation is to queue the packet until the hardware
is ready again.

If you do implement a queue and it is stalled, the queue must be restarted when your hardware is
ready to transmit packets again by calling IOOutputQueue::start(), or you will not receive further
packets.

 Note Creating an output queue is highly recommended; however, MyEthernetDriver skips this step, as it
transmits packets directly to another network interface, which implements its own queuing.

Creating a queue can be done by overriding the createOutputQueue() method. When a device is
disabled, you should call flush() on the queue to remove any queued packets.

A typical network device will issue an (TX) interrupt whenever the hardware has put a packet (or
packets) out on the wire, which also indicates there is now more room in its transmit buffer, or that a
new DMA transaction can now be performed. You can notify the queue that the device is now ready for
more data by calling the output queue’s service() method. A side-effect of this will be another call to the
driver’s outputPacket() method, which will deliver a new packet, if one is available.

The transmitPacketToHardware() method from the preceding section is implemented as follows:

IOReturn com_osxkernel_MyEthernetHwAbstraction::transmitPacketToHardware(mbuf_t packet)
{
 if (ifnet_output_raw(interface, 0, packet) != KERN_SUCCESS)
 return kIOReturnOutputDropped;

 // Raise an interrupt to the driver to inform it the packet was sent.
 fRegisterMap.interruptStatusRegister |= kTXInterruptPending;
 fDriver->fInterruptSource->setTimeoutUS(1);

 return kIOReturnSuccess;
}

The method will inject the received packet to the slave device’s output queue. We simulate a
hardware interrupt by setting the TX interrupt flag in our dummy interrupt register and then invoking
our timer function to simulate an interrupt received from a hardware device a microsecond later.

The transmission of the packet to the hardware is again hardware-dependent. A PCI or
Thunderbolt-based device is likely to use DMA. In this case, there are two options:

CHAPTER 13 NETWORKING

312

• The first is to have a pre-allocated physically allocated buffer; for example, one
allocated with IOBufferMemoryDescriptor, using the
kIOMemoryPhysicallyContiguous option, which an mbuf will be copied into and
then DMA’ed to the hardware. Because an mbuf may consist of several chained
buffers, it is important to ensure that you walk the chain with mbuf_next() so that
all the segments can be copied into the DMA buffer.

• The second option, if the device supports it, is to create a scatter/gather list
directly from the mbuf, using a variant of IOMbufMemoryCursor, which will avoid
performing an extra copy. The cursor class takes care of generating the list of
physical segments from the mbuf. Several IOMbufMemoryCursors subclasses exist;
which one to use depends on the device and its limitations. For example, if you
use a device that reads addresses in big-endian format, you can use the
IOMbufBigMemoryCursor, which can be created with the withSpecification()
factory method:

static IOMbufBigMemoryCursor* withSpecification(UInt32 maxSegmentSize,
UInt32 maxNumSegments);

The maxSegmentSize can be used to limit the size of individual scatter/gather list
elements. Similarly, the maxNumSegments controls the length of the list.

Receiving Packets
Incoming packets arrive asynchronously from the network and a network driver’s responsibility is to
offload them from the hardware device when an RX interrupt occurs and deliver them to the network
stack via its IONetworkInterface or IOEthernetInterface, in the case of an Ethernet driver.
MyEthernetDriver’s interrupt handler is shown in Listing 13-9.

Listing 13-9. Implementation of MyEthernetDriver’s Interrupt Handler

void com_osxkernel_MyEthernetDriver::interruptOccured(OSObject* owner, IOTimerEventSource*
sender)
{
 mbuf_t packet;

 com_osxkernel_MyEthernetDriver* me = (com_osxkernel_MyEthernetDriver*)owner;
 com_osxkernel_MyEthernetHwAbstraction* hwAbstraction = me->fHWAbstraction;
 if (!me)
 return;

 UInt32 interruptStatus = hwAbstraction->readRegister32(kMyInterruptStatusRegisterOffset);

 // Recieve interrupt pending, grab packet from hardware.
 if (interruptStatus & kRXInterruptPending)
 {
 while ((packet = hwAbstraction->receivePacketFromHardware()))
 {
 me->fNetworkInterface->inputPacket(packet);
 me->fNetworkStats->inputPackets++;
 }

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 13 NETWORKING

313

 me->fNetworkInterface->flushInputQueue();
 }

 if (interruptStatus & kTXInterruptPending)
 {
 // Packet transmitted succesfully.
 me->fNetworkStats->outputPackets++;
 }
}

The interrupt handler is shared for RX and TX interrupts. To find out which interrupt occurred, we
read the device’s interrupt status register. Usually an interrupt status register is cleared on read, which
will acknowledge and de-assert the interrupt. A quick note about the TX interrupt: we don’t do anything
other than record the packet as transmitted in our statistics structure, as we do not have a queue and
also don’t need to worry about setting up a new transaction.

When a packet is received, it needs to be transferred from an input buffer and passed to the
IONetworkInterface class that was attached to the network controller driver. A packet is delivered to the
network stack through the IONetworkInterface::inputPacket() method. The method accepts an mbuf_t.
To get the data into an mbuf_t you can pre-allocate buffers using
IONetworkController::allocatePacket(), which can then be used as a destination for the DMA of an
incoming packet. An IOMbufMemoryCursor subclass can be used to handle translation of the mbuf data into
physical addresses.

In the preceding example, we loop continuously until we have emptied the queue of incoming
packets. A real hardware device may also receive multiple packets for a single interrupt. This process is
often referred to as interrupt coalescing. Interrupt coalescing is necessary for modern network devices
operating at speeds of 1 Gigabit or more, as network frames are often quite small and it would be
inefficient to issue a hardware interrupt for every single packet received. Instead, the device may queue a
number of packets in its onboard memory then issue an interrupt. Excessive queuing in hardware or by
the driver should be avoided as it impacts latency, which may adversely affect some applications, such
as real-time multiplayer games or audio/video conferencing. When inputPacket() is called, the packet is
put in a queue internally by IONetworkInterface. We can drain this queue when we are ready by calling
flushInputQueue(), which will forward packets to the BSD data-link layer for processing by protocol
handlers.

Listing 13-10 shows the method that issues our pretend RX interrupt, once a packet has been
retrieved from the slave device.

Listing 13-10. Method for Handling Incoming Packets from the Slave Device and Raising Virtual

Interrupts

bool com_osxkernel_MyEthernetHwAbstraction::handleIncomingPacket(mbuf_t packet,
 char** frameHdr)
{
 bool passPacketToCaller = true;
 bool copyPacket = false;

 struct ether_header *hdr = (struct ether_header*)*framePtr;
 if (!hdr)
 return false;

 // We only accept packets routed to us if it is addressed to our Mac address,
 // the broadcast or a multicast address.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 13 NETWORKING

314

 if (memcmp(&fMacBcastAddress.bytes, &hdr->ether_dhost, ETHER_ADDR_LEN) == 0)
 {
 copyPacket = true;
 }
 else if (memcmp(&fRegisterMap.address, &hdr->ether_dhost, ETHER_ADDR_LEN) == 0)
 {
 passPacketToCaller = false; // Belongs to our interface.
 copyPacket = true;
 }
 else if (hdr->ether_dhost[0] & 0x01) // multicast
 {
 copyPacket = true;
 }

 if (copyPacket)
 {
 mbuf_t newPacket;
 newPacket = fDriver->allocatePacket((UInt32)mbuf_pkthdr_len(packet) + ETHER_HDR_LEN);

 if (newPacket)
 {
 unsigned char* data = (unsigned char*)mbuf_data(newPacket);
 bcopy(*framePtr, data, ETHER_HDR_LEN);
 data += ETHER_HDR_LEN;
 mbuf_copydata(packet, 0, mbuf_pkthdr_len(packet),data);

 IOLog("input packet is %lu bytes long\n", mbuf_pkthdr_len(packet));

 fRxPacketQueue->lockEnqueue(newPacket);
 fRegisterMap.interruptStatusRegister |= kRXInterruptPending;
 // Raise an interrupt to the driver to inform it of the new packet
 fDriver->fInterruptSource->setTimeoutUS(1);
 }
 }
 return passPacketToCaller;
}

In Listing 13-10, the packet is copied from the original packet in response to the input filter on the
slave device being called, then queued using an IOPacketQueue that simulates the hardware receive
buffer. We then raise an interrupt to the driver by first setting the RX interrupt pending flag in the status
register, then setting the timeout of the interrupt timer function. When the interrupt handler runs, it will
call receivePacketFromHardware(), which simply grabs a new packet from the queue under lock:

mbuf_t com_osxkernel_MyEthernetHwAbstraction::receivePacketFromHardware()
{
 if (!fRxPacketQueue)
 return NULL;
 return fRxPacketQueue->lockDequeue();
}

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 13 NETWORKING

315

Taking MyEthernetDriver for a Test-Drive
If you wish to test MyEthernetDriver, it is best to do so on an isolated network segment or with the
blessing of your network administrator because, unlike other samples, it will actively interact with your
network. Before you test it, you should modify MyEthernetHwAbstraction.cpp so that it points to the
Ethernet device you wish to use to transmit and receive on behalf of MyEthernetDriver.

You can load MyEthernetDriver by using kextload. Unlike an NKE, which has to be manually
loaded, MyEthernetDriver uses IOResources as a provider so that it will be loaded automatically during
boot, if installed to the proper location. For the purpose of testing the driver, it is recommended that you
do not keep it in your systems extensions directory in case there is a problem. When the driver is loaded,
you can verify its presence using IORegisterExplorer, as shown in Figure 13-7.

Figure 13-7. IORegisteryExplorer showing MyEthernetDriver attached to the IOResources nub

We should also be able to see the new network interface in System Preferences under the Network
pane, as shown in Figure 13-8.

CHAPTER 13 NETWORKING

316

Figure 13-8. Network pane in System Preferences showing the configuration options for MyEthernetDriver

If you have a DHCP server on your network, you may see that MyEthernetDriver was automatically
assigned an IP address. If not, you can manually configure an IP address using System Preferences or
using the ifconfig command line tool:

$ sudo ifconfig en5 inet 192.168.1.50 netmask 255.255.255.0
$ ifconfig en5
en5: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 ether be:ef:fe:ed:12:11
 inet6 fe80::bcef:feff:feed:1211%en5 prefixlen 64 scopeid 0x7
 inet 192.168.1.50 netmask 0xffffff00 broadcast 192.168.1.255
 media: autoselect (1000baseT <full-duplex>)
 status: active

Note that you may be assigned a different BSD network interface name, depending on how many
interfaces you have installed on your system. In this case, en5 is used. Provided that you have configured
an IP address that is reachable by another host on the network, you should now be able to reach that
host even if the slave interface is using a different IP/subnet. We can verify that it works correctly by
using the ping utility on another host:

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 13 NETWORKING

317

othermac$ ping 192.168.1.50
PING 192.168.1.50 (192.168.1.50): 56 data bytes
64 bytes from 192.168.1.50: icmp_seq=0 ttl=64 time=0.855 ms
64 bytes from 192.168.1.50: icmp_seq=1 ttl=64 time=0.588 ms
--- 192.168.1.50 ping statistics ---
2 packets transmitted, 2 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.588/0.722/0.855/0.133 ms

othermac$ arp –a
? (192.168.1.50) at be:ef:fe:ed:12:11 on en0 ifscope [ethernet]
? (192.168.255.255) at ff:ff:ff:ff:ff:ff on en0 ifscope [ethernet]

You will see that the other system has picked up the hardware address (MAC) of MyEthernetDriver
and is not using the MAC of the slave interface to reach us.

Going back to the system with MyEthernetDriver installed, we can check the statistics for our
interface to see the amount of packets and data it has transferred:

$ netstat -i -I en5
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
en5 1500 <Link#7> be:ef:fe:ed:12:11 61 0 67 0 0
en5 1500 192.168.1 192.168.1.50 61 - 67 - -

Summary
In this chapter, we have looked at the kernel network filtering KPIs as well as how to implement a driver
for an Ethernet controller. Some key points are as follows:

• The kernel network support is split into two parts: the BSD layer that implements
support for all protocols and network services such as firewalls, and the I/O Kit,
which provides facilities for writing drivers for network hardware.

• The kernel filtering KPI allows one to filter and manipulate network packets at
various levels, including the socket, IP, and interface levels.

• The most important data-structure of the kernel network subsystem is the mbuf
structure used to store network packets or other related data. In kernel extensions,
mbufs can be manipulated using the opaque reference mbuf_t and the functions
provided by the mbuf KPI. The concept of mbufs is used both in the BSD section of
the kernel and in the I/O Kit.

• A socket filter allows interception of socket-based communication and out-of-
band events. It can intercept incoming and outgoing data. Socket filters can be
attached globally for every socket in the system, or programmatically per socket.
With a socket filter, you can, among other things, modify, reject, or inject new
packets.

CHAPTER 13 NETWORKING

318

• An IP filter is similar to a socket filter, but works at the IP layer. The IP filter will see
all IP traffic in the system regardless of interface. It will also see IP packets that
were not directly initiated through a socket.

• An interface filter allows a filter to be attached to a specific network interface. An
interface filter can see all traffic to or from that interface regardless of protocol. It
is possible to restrict seen packets to a specific protocol family, such as IPv4 or
IPv6.

• The IONetworkingFamily provides the programming interfaces necessary to
implement device drivers for network hardware. It includes classes for queuing
and classes for abstracting the interface between the I/O Kit and the BSD layer.

• The IONetworkController class represents a network driver. A specialized class for
handling an Ethernet compatible device is provided by IOEthernetController. The
IONetworkInterface provides the glue that connects network devices to other
parts of the kernel network system.

www.allitebooks.com

http://www.allitebooks.org

C H A P T E R 14

319

Storage Systems

Storage devices encompass many types of devices, including hard disk drives, CDs and DVDs, USB flash
drives, FireWire-based hard disks, and a file-based disk image that has been mounted as a virtual drive.
For the user, a storage device appears as a volume on their desktop that they can read files from and
write files to, but what the user doesn’t see is the multiple drivers that work together in the kernel to
make this possible.

The reason why storage devices require multiple drivers is a result of the myriad of different forms
that a storage device may take. If you consider the difference between an external USB flash drive and an
internal hard disk, both of which appear to the user as storage devices, you can appreciate the
differences that need to be handled. For example:

• The interface through which a storage device is connected to the computer may
be a USB or FireWire port (used for external storage devices), or through a SATA
port (commonly used by the internal hard disk).

• The computer may control the storage device by sending SCSI commands, as is
done for USB mass storage devices or FireWire SPB-2 drives, or by sending
ATA/ATAPI commands to the AHCI interface, as is done for the internally
connected SATA disks.

• The storage device may contain a single volume, or may be partitioned into
multiple volumes.

• Each volume will be formatted with a file system chosen by the user, and may be
HFS+ (the default file system used by Mac OS X), NTFS (the default file system
used by Windows), or one of the many file systems that Mac OS X supports.

To handle all of these possible variations, the I/O Kit implements storage devices by building a
layered stack of multiple drivers, where each layer is responsible for handling one aspect, such as the
physical connection (USB, FireWire or SATA), the command protocol (SCSI or ATA/ATAPI), and the
logical volume. Support for various file systems is provided by the Virtual File System layer (VFS layer),
which, although a part of the kernel, resides in the BSD portion of the kernel and is located outside of the
I/O Kit.

This modularity in the design of the I/O Kit’s storage stack means that each layer of the driver stack
is decoupled from the surrounding layers, and each driver needs to deal only with the functionality
provided by its layer. This means that a new file system can be written without any knowledge of the
types of storage devices on which the file system may reside, since the file system will never need to
directly communicate with the disk device’s hardware. Similarly, in writing a driver for a new type of
storage device, the developer doesn’t need to implement any details of the file system; instead, the disk
can be formatted with any of the existing file systems supported by Mac OS X. The driver stack for a
storage device is shown in Figure 14-1.

CHAPTER 14 STORAGE SYSTEMS

320

Figure 14-1. An abstract view of the drivers involved in supporting a storage device

It is not necessary to implement a driver in each layer. For example, to implement support for a new
hard disk, you would need only to write a driver in the transport layer; the rest of the driver stack would
match against your custom driver, and your new disk device would be presented to the user as a
standard disk.

Transport Layer Drivers
The driver for a storage device is implemented in the I/O Kit as a transport driver that resides within the
Transport Layer of Figure 14-1. Like any other I/O Kit driver, a transport driver will match against the
provider class that represents its hardware device; the provider class is also the means by which the
driver accesses the underlying hardware. For example, a storage device that is USB-based will have a
provider class that is an instance of IOUSBDevice or IOUSBInterface.

The I/O Kit provides no restrictions on the superclass that a transport driver can be derived from,
other than ultimately deriving from the IOService class, as is required by all I/O Kit drivers. This allows a
transport driver a large degree of freedom, since it can use a set of methods that is natural for the
communication protocol used by the disk device, rather than being forced to implement an interface
that is imposed by the I/O Kit’s storage family.

The lack of a common interface for transport drivers does provide a problem, since the upper layers
of the driver stack, in particular, the generic block storage driver that sits immediately above the
transport driver, has no common interface allowing it to call methods in the transport driver. To solve
this, the I/O Kit defines a driver class known as IOBlockStorageDevice, which is a small lightweight
“nub” driver that sits between the transport layer and generic block storage driver.

The role of the IOBlockStorageDevice class is to provide an abstract representation of the disk to the
generic block storage driver, and to pass on all requests to the transport driver, which in turn
implements the behavior that is specific to the disk device. The transport driver is responsible for
defining a concrete subclass of the IOBlockStorageDevice class and instantiating it. An illustration of the
relationship between the transport driver and the layers above and below it in the storage driver stack is
shown in Figure 14-2, which uses the Apple AHCI driver as an example.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 14 STORAGE SYSTEMS

321

Figure 14-2. The relationship between drivers in the Apple AHCI storage driver stack

 Note Since the I/O Kit puts no restrictions on how a transport driver should be implemented, the transport
driver may be built from a stack of several drivers. Apple takes advantage of this in the drivers for devices that use
the SCSI command set, including USB Mass Storage devices and FireWire devices. The drivers for these devices
all make use of a common driver that implements the SCSI protocol.

The IOBlockStorageDevice Interface
The upper layers of the storage driver stack communicate with the transport driver through a class that is
derived from the IOBlockStorageDevice interface. The IOBlockStorageDevice presents a view of the
storage device as a linear array of logical blocks that can be either read from or written to by the caller. A
logical block is the minimum number of bytes that the disk is capable of reading or writing, and a disk
operation must operate on a multiple of blocks. Depending on the disk, the block size will be anywhere
from 512 bytes to 4096 bytes. All operations performed by the IOBlockStorageDevice class work on a
contiguous range of disk blocks.

The methods that must be implemented by a subclass of the IOBlockStorageDevice interface are
described in Listing 14-1. The IOBlockStorageDevice class is not designed to provide a full
implementation of the behavior of these methods; instead, it passes them on to its provider class, which
is the transport driver within the storage driver stack.

CHAPTER 14 STORAGE SYSTEMS

322

Listing 14-1. The Methods to Be Implemented by a Subclass of the IOBlockStorageDevice Interface

class IOBlockStorageDevice : public IOService
{
 virtual bool init(OSDictionary * properties);
 virtual IOReturn doEjectMedia(void) = 0;
 virtual IOReturn doFormatMedia(UInt64 byteCapacity) = 0;
 virtual UInt32 doGetFormatCapacities(UInt64 * capacities,
 UInt32 capacitiesMaxCount) const = 0;
 virtual IOReturn doLockUnlockMedia(bool doLock) = 0;
 virtual IOReturn doSynchronizeCache(void) = 0;
 virtual char* getVendorString(void) = 0;
 virtual char* getProductString(void) = 0;
 virtual char* getRevisionString(void) = 0;
 virtual char* getAdditionalDeviceInfoString(void) = 0;
 virtual IOReturn reportBlockSize(UInt64 *blockSize) = 0;
 virtual IOReturn reportEjectability(bool *isEjectable) = 0;
 virtual IOReturn reportLockability(bool *isLockable) = 0;
 virtual IOReturn reportMaxValidBlock(UInt64 *maxBlock) = 0;
 virtual IOReturn reportMediaState(bool *mediaPresent,bool *changedState) = 0;
 virtual IOReturn reportPollRequirements(bool *pollRequired,
 bool *pollIsExpensive) = 0;
 virtual IOReturn reportRemovability(bool *isRemovable) = 0;
 virtual IOReturn reportWriteProtection(bool *isWriteProtected) = 0;
 virtual IOReturn getWriteCacheState(bool *enabled) = 0;
 virtual IOReturn setWriteCacheState(bool enabled) = 0;
 virtual IOReturn doAsyncReadWrite(IOMemoryDescriptor *buffer, UInt64 block,
 UInt64 nblks, IOStorageAttributes *attributes,
 IOStorageCompletion *completion) = 0;
 virtual IOReturn requestIdle(void);
 virtual IOReturn doDiscard(UInt64 block, UInt64 nblks);
 virtual IOReturn doUnmap(IOBlockStorageDeviceExtent* extents,
 UInt32 extentsCount, UInt32 options);
};

The following sections describe the methods that a subclass of IOBlockStorageDevice needs to
implement, and they are ordered by functionality. The first methods described each return a human
readable description of the device to the user. These strings are used to help the user to identify the
storage device that corresponds to a mounted volume. If the storage medium has not been formatted,
no volume will be associated with the device, and these identification strings will be the only means the
user has of ensuring that the device they are about to format is the device they think it is. Therefore,
these strings should return a descriptive name that, for example, identifies the manufacturer of a USB
flash drive or provides a description of the connection interface (such as “USB to SATA adapter”),
allowing the user to easily identify the device. These strings appear in utilities such as “Disk Utility” and
the system profiles produced by “System Information.”

• getVendorString returns the name of the manufacturer of the storage device.

• getProductString returns a descriptive name of the product model.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 14 STORAGE SYSTEMS

323

• getRevisionString returns a string whose interpretation can be decided by the
driver developer. This could be used to identify the firmware version running on
the storage device, or it could provide an identification of the product design. Both
values could also be included because the value is a string.

• getAdditionalDeviceInfoString is currently unused by the I/O Kit
implementation, but could be queried from the driver by proprietary disk utility
software.

The following methods are called to query the capabilities of the storage device:

• reportRemovability and reportEjectability both return similar information. A
device is considered removable if the media may come and go while the driver is
present. This means that the I/O Kit may periodically poll the transport driver to
determine whether a disk is currently present. Furthermore, a device that is
removable is considered ejectable if it can be removed through software control
(such as a CD drive). If a device is not ejectable, the user can still “eject” through
the Finder or Disk Utility, although Mac OS X will perform an unmount of the file
system, but won’t eject the media.

• reportLockability is called to determine whether the media in a removable drive
can be “locked down” and prevented from being removed by the user. An example
of locking a device is a CD drive that has an eject button on its front case that can
be disabled (locked) when a CD is mounted.

• reportPollRequirements is called to determine whether the driver needs to be
periodically called to check whether media has been inserted or removed, as
opposed to the driver itself being able to generate a notification when media has
arrived. If the device requires polling, the driver can return an additional flag
through the reportPollRequirements method to indicate whether polling is
expensive, for example, if media can be detected only by spinning up the device.
The I/O Kit will poll a device only if it is not expensive.

• reportMediaState is called to determine whether there is media present in the
device. This method is called once when the storage driver stack is created, to read
the initial state of the hardware, and thereafter, only if the driver has indicated
that it requires polling to determine the presence of media.

The following methods are called to query the capabilities of the media that is present. These
methods are called whenever new media is detected.

• reportBlockSize should return the size in bytes of a disk sector (or block) for the
device. A user space process can access this value through the ioctl
DKIOCGETBLOCKSIZE.

• reportMaxValidBlock returns the capacity of the device, expressed in terms of the
address of the final block of the device. Because disk blocks are indexed from 0,
the maximum valid block is one less than the total block count of the device.

• reportWriteProtection is called to determine whether the media can be written to
or is write-protected, in which case it will be mounted as a read-only volume. A
user space process can access this value through the ioctl DKIOCISWRITABLE.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 14 STORAGE SYSTEMS

324

The following methods perform low-level formatting of the media. Not all devices can support low-
level formatting. Even though these methods must be present in the implementation of the
IOBlockStorageDevice interface, it is acceptable to return an error if the functionality is not provided.

• doGetFormatCapacities is called to obtain a list containing each size (in bytes) that
the media can be formatted to. The storage to hold the result of this method is
provided by the caller, and the method returns the actual number of items that
were written to the list. The caller can provide a NULL pointer for the list storage if
it wishes to determine the number of formats that the implementation supports,
without receiving the actual list. A user space process can request this list through
the ioctl DKIOCGETFORMATCAPACITIES.

• doFormatMedia is called to perform a low-level format of the device. If this
functionality is not implemented, the method is free to return an error, such as
kIOReturnUnsupported. A user space process can perform this action by sending
the ioctl DKIOCFORMAT.

• The doDiscard method is called not to format the entire disk but rather to wipe
blocks that no longer store data that is required by the file system. For a solid state
disk, this method provides an opportunity to issue a TRIM command for the
discarded blocks. A user space process can perform this action by sending the ioctl
DKIOCDISCARD. This method was deprecated in later versions of Mac OS X 10.6 and
has been replaced with the doUnmap method.

• The doUnmap method was introduced as a replacement for the doDiscard method.
It performs a similar function, which is to release disk blocks that are not used by
the file system. Unlike the doDiscard method, which is capable of releasing only a
single physically contiguous run of disk blocks, the doUnmap method is provided
with an array containing one or more ranges of disk blocks that are no longer in
use. A user space process can perform this action by sending the ioctl DKIOCUNMAP.

The following methods allow software control over ejecting the media:

• doLockUnlockMedia is called to prevent the user from ejecting the media, such as
disabling the eject button on the front of a CD drive. The method is passed a
Boolean parameter that determines whether the driver should lock the media in
the device (prevent user ejection) or unlock the media (allow user ejection).

• doEjectMedia is called to eject the media from the device. A user space process can
perform this action by sending the ioctl DKIOCEJECT.

• requestIdle is called to place the disk in an idle state, such as spinning down a CD
drive. While there is no corresponding method to take the device out of the idle
state, the next read or write operation will implicitly do so. A user space process
can perform this action by sending the ioctl DKIOCREQUESTIDLE.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 14 STORAGE SYSTEMS

325

Finally, and perhaps most importantly, are the following methods for reading and writing data to
the device:

• doAsyncReadWrite is the generic data read and write method of the
IOBlockStorageDevice interface. It takes as its parameters an IOMemoryDescriptor
object that describes the source buffer (for a disk read) or the destination buffer
(for a disk write), a contiguous range of disk blocks to read from or write to, and
associated attribute flags. The IOMemoryDescriptor also serves to determine
whether the requested operation is a read or a write; the driver calls the method
getDirection() on the IOMemoryDescriptor object, and if the returned value is
kIODirectionIn, a read operation has been requested. If the returned value is
kIODirectionOut, a write operation has been requested. The disk operation is
performed asynchronously, and when it completes, the caller is notified through a
callback function that is provided.

• setWriteCacheState is called to enable or disable any hardware caching that the
device has. The corresponding method getWriteCacheState returns the current
state of the device cache.

• doSynchronizeCache is called to flush the contents of the hardware cache to the
media. This is a synchronous method that should not return until the contents of
the cache have been written to a disk. This method is also called in response to the
ioctl DKIOCSYNCHRONIZECACHE from a user space process.

Building a RAM Disk Device
Having examined the methods that must be implemented to support the IOBlockStorageDevice
interface, we can now take a look at how a simple RAM disk device can be implemented in Mac OS X. As
with the driver for any disk device in the I/O Kit, we will split our driver into two classes: the transport
driver class, which implements the functionality and communicates with the hardware device, and a
class that implements the IOBlockStorageDevice interface, which acts as an interface between the
transport driver and the device services layer of the storage driver stack.

As we have seen, the I/O Kit does not require the transport driver for a storage device to be written
in any particular way or to subclass from any particular superclass. This allows the transport driver to be
written in a way that is most natural for the type of hardware that provides access to the disk storage. For
our RAM disk, the “hardware” controlled by the transport driver is nothing more than a memory
allocation that provides the storage for the RAM disk. As we learned in Chapter 4, an I/O Kit driver that
has no hardware device to match against will use the global IOResources class as its provider class. This
will be the provider class of our RAM disk’s transport driver. Since our transport driver is implemented
as a generic driver, we will implement it as a subclass of the generic IOService class.

For simplicity, our RAM disk’s transport driver will allocate the storage for the disk when it loads,
and will not release it until the driver unloads. The storage is a fixed-size memory allocation. Our
transport driver will also be responsible for instantiating the IOBlockStorageDevice object, which will
provide the interface, through which the upper layer of the driver stack will communicate, with our
transport driver. The header file for a RAM disk’s transport driver is given in Listing 14-2.

Listing 14-2. The Header File of the Transport Driver for a RAM Disk Device

#include <IOKit/IOService.h>
#include <IOKit/IOBufferMemoryDescriptor.h>

CHAPTER 14 STORAGE SYSTEMS

326

class com_osxkernel_driver_RAMDisk : public IOService
{
 OSDeclareDefaultStructors(com_osxkernel_driver_RAMDisk)

private:
 IOBufferMemoryDescriptor* m_memoryDesc;
 void* m_buffer;

protected:
 bool createBlockStorageDevice ();

public:
 virtual bool start (IOService* provider);
 virtual void free (void);

 virtual IOByteCount performRead (IOMemoryDescriptor* dstDesc, UInt64 byteOffset,
 UInt64 byteCount);
 virtual IOByteCount performWrite (IOMemoryDescriptor* srcDesc, UInt64 byteOffset,
 UInt64 byteCount);
};

The implementation of a RAM disk’s transport driver is given in Listing 14-3.

Listing 14-3. The Implementation of the Transport Driver for a RAM Disk Device

// Define the superclass
#define super IOService

OSDefineMetaClassAndStructors(com_osxkernel_driver_RAMDisk, IOService)

#define kDiskByteSize (16*1024*1024) // Fix RAM disk size at 16MiB

bool com_osxkernel_driver_RAMDisk::start (IOService *provider)
{
 if (super::start(provider) == false)
 return false;

 // Allocate storage for the disk.
 m_memoryDesc = IOBufferMemoryDescriptor::withCapacity(kDiskByteSize,
 kIODirectionOutIn);
 if (m_memoryDesc == NULL)
 return false;
 m_buffer = m_memoryDesc->getBytesNoCopy();

 // Allocate an IOBlockStorageDevice nub.
 if (createBlockStorageDevice() == false)
 return false;

 return true;
}

void com_osxkernel_driver_RAMDisk::free (void)

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 14 STORAGE SYSTEMS

327

{
 if (m_memoryDesc != NULL)
 m_memoryDesc->release();

 super::free();
}

IOByteCount com_osxkernel_driver_RAMDisk::performRead (IOMemoryDescriptor* dstDesc,
 UInt64 byteOffset, UInt64 byteCount)
{
 return dstDesc->writeBytes(0, (void*)((uintptr_t)m_buffer + byteOffset), byteCount);
}

IOByteCount com_osxkernel_driver_RAMDisk::performWrite (IOMemoryDescriptor* srcDesc,
 UInt64 byteOffset, UInt64 byteCount)
{
 return srcDesc->readBytes(0, (void*)((uintptr_t)m_buffer + byteOffset), byteCount);
}

The implementation of the RAMDisk class should be fairly straightforward. In its start() method, the
transport driver allocates a memory buffer that provides the storage for the disk device. This buffer isn’t
released until the RAM disk driver is unloaded and its free() method is called. The RAMDisk driver class
also defines two methods that provide access to the storage buffer, namely performRead() and
performWrite().

As a general rule, the transport driver should be implemented in a way that matches the
functionality and protocol of the device that it is controlling. The interface for the RAM disk in Listing 14-
2 certainly meets this requirement, with its very simple set of methods. A consequence of this freedom is
that the transport driver needs a nub driver, which implements the IOBlockStorageDevice interface, to
accept method calls from the upper layers of the storage driver stack and to pass them on to the
transport driver. In our sample RAM disk driver, this functionality is provided by a class named
com_osxkernel_driver_RAMDiskStorageDevice, which is derived from the IOBlockStorageDevice interface.

A class that implements the IOBlockStorageDevice interface sits between the transport driver and
the upper-layer drivers; it implements methods that are called by the upper-layer drivers, and in turn
needs to call methods that are implemented in the transport driver. As such, it needs a reference to an
instance of the transport driver class. This is usually done by making the transport driver the provider
class of the IOBlockStorageDevice nub.

In our RAM disk driver, the transport driver directly instantiates the RAMDiskStorageDevice nub and
attaches it to itself. Attaching the RAMDiskStorageDevice to the transport driver sets up the transport
driver as the provider class of the RAMDiskStorageDevice. This process is implemented in a private
method named createBlockStorageDevice(), which the transport driver calls from its start() method.
The implementation of this is given in Listing 14-4.

Listing 14-4. Instantiating the IOBlockStorageDevice Nub from the RAM Disk Transport Driver

bool com_osxkernel_driver_RAMDisk::createBlockStorageDevice ()
{
 com_osxkernel_driver_RAMDiskStorageDevice* nub = NULL;
 bool result = false;

 // Allocate a new IOBlockStorageDevice nub.

CHAPTER 14 STORAGE SYSTEMS

328

 nub = new com_osxkernel_driver_RAMDiskStorageDevice;
 if (nub == NULL)
 goto bail;

 // Call the custom init method (passing the overall disk size).
 if (nub->init(kDiskByteSize) == false)
 goto bail;

 // Attach the IOBlockStorageDevice to the this driver.
 // This call increments the reference count of the nub object,
 // so we can release our reference at function exit.
 if (nub->attach(this) == false)
 goto bail;

 // Allow the upper level drivers to match against the IOBlockStorageDevice.
 nub->registerService();

 result = true;

bail:
 // Unconditionally release the nub object.
 if (nub != NULL)
 nub->release();

 return result;
}

After instantiating the nub driver and attaching it as a client of the transport driver, it is important to
call the method registerService() on the nub. This can either be performed by the implementation of
the nub itself (such as in its start() method) or, as in this example, by the transport driver. The purpose
of calling registerService() is to publish the IOBlockStorageDevice nub, allowing drivers to match
against it, which begins the construction of the rest of the storage driver stack. The header file for the
com_osxkernel_driver_RAMDiskStorageDevice nub driver is provided in Listing 14-5.

Listing 14-5. The Header File for the RAMDiskStorageDevice Nub Class

#include <IOKit/storage/IOBlockStorageDevice.h>

class com_osxkernel_driver_RAMDisk;

class com_osxkernel_driver_RAMDiskStorageDevice : public IOBlockStorageDevice
{
 OSDeclareDefaultStructors(com_osxkernel_driver_RAMDiskStorageDevice)

private:
 UInt64 m_blockCount;
 com_osxkernel_driver_RAMDisk* m_provider;

public:
 virtual bool init(UInt64 diskSize, OSDictionary* properties = 0);

 virtual bool attach(IOService* provider);

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 14 STORAGE SYSTEMS

329

 virtual void detach(IOService* provider);

 virtual IOReturn doEjectMedia(void);
 virtual IOReturn doFormatMedia(UInt64 byteCapacity);
 virtual UInt32 doGetFormatCapacities(UInt64 * capacities, UInt32
 capacitiesMaxCount) const;
 virtual IOReturn doLockUnlockMedia(bool doLock);
 virtual IOReturn doSynchronizeCache(void);
 virtual char* getVendorString(void);
 virtual char* getProductString(void);
 virtual char* getRevisionString(void);
 virtual char* getAdditionalDeviceInfoString(void);
 virtual IOReturn reportBlockSize(UInt64 *blockSize);
 virtual IOReturn reportEjectability(bool *isEjectable);
 virtual IOReturn reportLockability(bool *isLockable);
 virtual IOReturn reportMaxValidBlock(UInt64 *maxBlock);
 virtual IOReturn reportMediaState(bool *mediaPresent,bool *changedState);
 virtual IOReturn reportPollRequirements(bool *pollRequired,
 bool *pollIsExpensive);
 virtual IOReturn reportRemovability(bool *isRemovable);
 virtual IOReturn reportWriteProtection(bool *isWriteProtected);
 virtual IOReturn getWriteCacheState(bool *enabled);
 virtual IOReturn setWriteCacheState(bool enabled);
 virtual IOReturn doAsyncReadWrite(IOMemoryDescriptor *buffer, UInt64 block,
 UInt64 nblks, IOStorageAttributes *attributes,
 IOStorageCompletion *completion);
};

The implementation of the com_osxkernel_driver_RAMDiskStorageDevice class is provided in Listing
14-6. For brevity, methods with an empty implementation have been omitted.

Listing 14-6. The Implementation of an IOBlockStorageDevice Nub Class

#include <IOKit/storage/IOBlockStorageDevice.h>

// Define the superclass
#define super IOBlockStorageDevice

OSDefineMetaClassAndStructors(com_osxkernel_driver_RAMDiskStorageDevice, IOBlockStorageDevice)

#define kDiskBlockSize 512

bool com_osxkernel_driver_RAMDiskStorageDevice::init(UInt64 diskSize, OSDictionary*

properties)
{
 if (super::init(properties) == false)
 return false;
 m_blockCount = diskSize / kDiskBlockSize;
 return true;
}

bool com_osxkernel_driver_RAMDiskStorageDevice::attach (IOService* provider)

CHAPTER 14 STORAGE SYSTEMS

330

{
 if (super::attach(provider) == false)
 return false;
 m_provider = OSDynamicCast(com_osxkernel_driver_RAMDisk, provider);
 if (m_provider == NULL)
 return false;
 return true;
}

void com_osxkernel_driver_RAMDiskStorageDevice::detach(IOService* provider)
{
 if (m_provider == provider)
 m_provider = NULL;
 super::detach(provider);
}

UInt32 com_osxkernel_driver_RAMDiskStorageDevice::doGetFormatCapacities(UInt64* capacities,
 UInt32 capacitiesMaxCount) const
{
 // Ensure that the array is sufficient to hold all our formats (we require 1 element).
 if ((capacities != NULL) && (capacitiesMaxCount < 1))
 return 0; // Error, return an array size of 0.

 // The caller may provide a NULL array if it wishes to query
 // the number of formats that we support.
 if (capacities != NULL)
 capacities[0] = m_blockCount * kDiskBlockSize;
 return 1;
}

char* com_osxkernel_driver_RAMDiskStorageDevice::getProductString(void)
{
 return (char*)"RAM Disk";
}

IOReturn com_osxkernel_driver_RAMDiskStorageDevice::reportBlockSize(UInt64 *blockSize)
{
 *blockSize = kDiskBlockSize;
 return kIOReturnSuccess;
}

IOReturn com_osxkernel_driver_RAMDiskStorageDevice::reportMaxValidBlock(UInt64 *maxBlock)
{
 *maxBlock = m_blockCount-1;
 return kIOReturnSuccess;
}

IOReturn com_osxkernel_driver_RAMDiskStorageDevice::reportMediaState(bool *mediaPresent, bool

*changedState)
{
 *mediaPresent = true;

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 14 STORAGE SYSTEMS

331

 *changedState = false;
 return kIOReturnSuccess;
}

IOReturn com_osxkernel_driver_RAMDiskStorageDevice::reportPollRequirements(bool *pollRequired,

bool *pollIsExpensive)
{
 *pollRequired = false;
 *pollIsExpensive = false;
 return kIOReturnSuccess;
}

IOReturn com_osxkernel_driver_RAMDiskStorageDevice::reportRemovability(bool *isRemovable)
{
 *isRemovable = true;
 return kIOReturnSuccess;
}

IOReturn com_osxkernel_driver_RAMDiskStorageDevice::doAsyncReadWrite(IOMemoryDescriptor

*buffer, UInt64 block, UInt64 nblks, IOStorageAttributes *attributes, IOStorageCompletion
*completion)

{
 IODirection direction;
 IOByteCount actualByteCount;

 // Return errors for incoming I/O if we have been terminated.
 if (isInactive() == true)
 return kIOReturnNotAttached;
 // Ensure the block range being targeted is within the disk’s capacity.
 if ((block + nblks) > m_blockCount)
 return kIOReturnBadArgument;

 // Get the buffer’s direction, which indicates whether the operation is a read or a write.
 direction = buffer->getDirection();
 if ((direction != kIODirectionIn) && (direction != kIODirectionOut))
 return kIOReturnBadArgument;

 // Perform the read or write operation through the transport driver.
 if (direction == kIODirectionIn)
 actualByteCount = m_provider->performRead(buffer, (block*kDiskBlockSize),
 (nblks*kDiskBlockSize));
 else
 actualByteCount = m_provider->performWrite(buffer, (block*kDiskBlockSize),
 (nblks*kDiskBlockSize));

 // Call the completion function.
 (completion->action)(completion->target, completion->parameter, kIOReturnSuccess,
 actualByteCount);

 return kIOReturnSuccess;
}

CHAPTER 14 STORAGE SYSTEMS

332

Notice that although the transport driver for the RAM disk has no concept of a block size (since its
minimum addressable unit was a byte), the IOBlockStorageDevice interface expresses the disk capacity
in blocks, and operates on blocks when performing a read or write operation. For this reason, the nub
driver’s implementation defines an arbitrary block size of 512 bytes.

Finally, as with every I/O Kit driver, our RAM disk driver requires a property list that describes the
requirements of the driver, including its matching dictionary. The IOBlockStorageDevice interface that
the RAM disk driver implements is part of the I/O Kit’s IOStorageFamily framework, so we need to
explicitly include this dependency in the RAM disk driver’s property list. This is done by adding an entry
to the OSBundleLibraries section of the Info.plist file that references the kernel module
com.apple.iokit.IOStorageFamily. In this sample, we import version 1.6 of the IOStorageFamily, which
corresponds to the version that was included with Mac OS X 10.6.

 Note Any kernel extension that implements a driver that is a part of the storage driver stack will need to include
the IOStorageFamily as a dependency in its property list.

The property list for our sample RAM disk driver, including its matching dictionary and its library
dependencies, is shown in Figure 14-3.

Figure 14-3. The property list for the sample RAM disk driver

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 14 STORAGE SYSTEMS

333

After building the RAM disk driver and loading the resulting kernel extension, you will be presented
with a dialog similar to that displayed in Figure 14-4. This does not indicate a problem with the device,
but it does indicate that Mac OS X was unable to find a readable file system on the disk. Given that the
disk has yet to be written to, this is an expected error.

Figure 14-4. The standard Mac OS X dialog that is displayed when a disk is inserted that does not contain

a readable file system

Clicking the “Initialize…” button in the dialog displayed in Figure 14-4 will launch the “Disk Utility”
application, allowing the storage device to be partitioned and initialized with a file system. Before doing
this, it is interesting to examine the state of the driver stack with the IORegisterExplorer utility. In
addition to the RAMDisk transport driver and the RAMDiskStorageDevice nub, you will notice that the I/O
Kit has constructed three drivers on top of the nub driver. The state of the driver stack is shown in Figure
14-5.

Figure 14-5. The driver stack that is created when a non-formatted storage device is loaded

The Disk Utility application allows a disk to be formatted and initialized for a file system. This
process involves writing a partition table to the disk, which is required even if the disk contains only a
single partition, and then writing a file system to that partition. To format a disk using Disk Utility, select
the device from the list of disks on the left, and click the Erase tab. The name of the device that is
displayed in Disk Utility is derived from the descriptive strings returned by the IOBlockStorageDevice
nub, so in the case of the sample RAM disk, this results in a device with the name “RAM Disk Media.”

By default, Disk Utility will write a GUID partition table to the disk and will use the Mac OS
Extended file system, also known as the HFS+ file system. Disk Utility won’t perform a low-level format

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 14 STORAGE SYSTEMS

334

of the volume, so the IOBlockStorageDevice method doFormatMedia does not need to be implemented.
The process of initializing a volume is shown in Figure 14-6.

Figure 14-6. Initializing a new volume in Disk Utility

After a partition map and a file system has been written to the disk, the storage driver stack for the
RAM disk will now contain three more drivers, as shown in Figure 14-7. On top of the IOMedia object that
represents the entire disk is an I/O Kit class that represents the partition table that is present on the disk;
in this case, it is the GUID partition table. Each partition has an IOMedia object that represents the logical
volume of the partition.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 14 STORAGE SYSTEMS

335

Figure 14-7. The driver stack for a device that is partitioned with a GUID partition table containing a

single partition

When we implemented the driver for our RAM disk, all of the methods that we implemented were
specific to accessing data from the device; it didn’t need to provide any methods to handle partition
schemes or file systems, or to make the device accessible to a user space process. All of this functionality
is handled by classes provided by the I/O Kit’s IOStorageFamily, in particular the IOBlockStorageDriver,
IOMedia, and IOMediaBSDClient classes. The benefit of this design is that the functionality is largely
common across all storage devices and can be implemented in shared classes, which removes the need
for each storage device to rewrite the same functionality.

The IOBlockStorageDevice and IOBlockStorageDriver classes represent the disk drive hardware, and
the IOMedia class represents the disk that is currently present in that drive. In the case of our sample
RAM disk driver, or a USB flash drive, there will always be media present when there is a storage device;
the two are inseparable. However, this does not always have to be true; a CD drive for example, will
create an IOBlockStorageDevice (for which the I/O Kit will create a corresponding
IOBlockStorageDriver), but unless there is a CD in the drive, there will be no IOMedia object in the driver
stack.

The IOMedia class provides a logical representation of the disk. If the disk has been partitioned, a
storage device will have multiple IOMedia objects, one for each partition, and another that represents the
overall disk. In the case of a RAID, where a single volume has been created across multiple disks, there
will be a single IOMedia object that represents the entire logical RAID volume.

Each IOMedia object in the kernel has an accompanying object known as the IOMediaBSDClient,
which is responsible for making the logical disk available to user space processes. In most cases, a
process won’t need to interact with the disk driver directly. Rather, it will simply use the file system on
the mounted volume to read and write files that are contained on that volume. In some cases, a user
space process may need to read or write to the disk device directly or to send ioctl calls to the disk driver
directly.

CHAPTER 14 STORAGE SYSTEMS

336

Following the convention of BSD, both a block device interface and a character device interface are
created for every disk and every disk partition. The block device performs buffered I/O, with each read
and write going through a buffer cache. When a process performs a read operation, the disk blocks that
contain the accessed data are read from disk, placed into a buffer cache, and then copied into the
destination buffer supplied by the user process. If a process reads a disk block that has recently been
accessed, the data is likely to be present in the buffer cache, and the read request can be completed
without having to access the disk.

The character device provides raw access to the disk storage, and doesn’t go through the buffer
cache. This means that every read or write to the device will result in a method call of the device’s
IOBlockStorageDevice interface, which will read or write directly into the process’s buffer. As a
consequence of this, all read and write operations performed to the character device must start on a disk
block boundary, and the number of bytes transferred must be a multiple of the disk block size.

The block device and character device interfaces are created by the IOMediaBSDClient class. The
block device interface can be accessed through the path /dev/diskN, and the character device interface
can be accessed through the path /dev/rdiskN, where N is an integer to give the device a unique name.

After building and loading the RAM disk driver, a list of the disk devices that are present in the
system can be examined by running the terminal command diskutil list. An example of the output
from this command for the RAM disk device is shown in Listing 14-7. The interface disk1 corresponds to
the entire storage device, and the interface disk1s1 corresponds to the HFS+ partition.

Listing 14-7. The Output from the Command diskutil list for the RAM Disk Device

/dev/disk1
 #: TYPE NAME SIZE IDENTIFIER
 0: GUID_partition_scheme *16.8 MB disk1
 1: Apple_HFS VolumeName 16.7 MB disk1s1

Partition Schemes
A disk may be split into several smaller logical units, each of which appear as a separate disk to the user.
Even if a hard disk only has a single partition it will contain a partition map, which lists the one or more
partitions that have been created from the disk. Mac OS X provides support for many common partition
schemes, including the GUID partition scheme that is the default on Mac OS X, the Master Boot Record
that is still common on Windows, and the Apple Partition Map, which was the default partition scheme
for Mac OS before the transition to Intel-based Macs.

Support for new partition schemes can be added to Mac OS X by writing an I/O Kit driver that is
derived from the IOPartitionScheme class. A partition scheme driver loads whenever a disk is inserted,
and scans the disk for a partition table that it recognizes. If a partition table that is supported by the
driver is found, it creates an IOMedia object for each entry in the partition table, and attaches these
IOMedia objects above it on the driver storage stack. The IOMedia objects created by the partition driver
will describe only the section of the disk that is covered by the partition, and not the entire disk contents.

An IOMedia object can describe either the entire disk or a single partition consisting of a physically
contiguous subset of blocks on the disk. When an IOMedia object is instantiated, its constructor takes a
property that identifies whether the IOMedia object describes the entire disk or not. Although a partition
driver will load against an IOMedia object, it will only load against one that describes the entire disk
contents, because typically a partition table is not located within a partition.

After the partition scheme driver has successfully scanned a disk, the end result is the construction
of a storage driver stack similar to that shown in Figure 14-7, with an IOMedia object that describes the
entire disk’s contents (the object above the IOBlockStorageDriver in the driver stack) and an IOMedia
object for each partition (the object above the IOGUIDPartitionTableScheme in the driver stack).

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 14 STORAGE SYSTEMS

337

It is worth noting that a partition scheme driver is responsible only for reading a partition table that
already exists on the disk; the IOPartitionScheme class contains no methods for writing a partition table.
A partition table could be created by providing a user space utility process that writes to the disk device
directly.

Implementing a Sample Partition Scheme
In this section we will examine how the driver for a hypothetical partition map would be implemented in
the I/O Kit. To begin with, let’s examine the property list of the driver, in particular its matching
dictionary, as shown in Listing 14-8.

Listing 14-8. A Sample Matching Dictionary from the Property List of a Partition Scheme Driver

<key>IOKitPersonalities</key>
<dict>
 <key>SamplePartitionScheme</key>
 <dict>
 <key>CFBundleIdentifier</key>
 <string>com.osxkernel.SamplePartitionScheme</string>
 <key>IOClass</key>
 <string>com_osxkernel_driver_SamplePartitionScheme</string>
 <key>IOMatchCategory</key>
 <string>IOStorage</string>
 <key>IOProviderClass</key>
 <string>IOMedia</string>
 <key>IOPropertyMatch</key>
 <dict>
 <key>Whole</key>
 <true/>
 </dict>
 </dict>
</dict>

There are three important aspects of the matching dictionary:

• It specifies a provider class of IOMedia, so whenever a new disk is inserted (and an
IOMedia object is created to represent that disk), the partition driver will be given
the chance to examine the contents of that disk for a supported partition table.

• The partition driver is interested only in an IOMedia object that represents the
entire disk, since partition tables cannot be located within a disk partition. To
narrow the match to IOMedia objects that represent an entire disk only, the
matching dictionary uses the IOPropertyMatch key to specify that the I/O Kit
should load the driver only against an IOMedia object that contains a property
named “Whole” with the Boolean value of true. This is a standard property of
IOMedia objects that specifies whether the object covers the entire disk, or a
partition of that disk.

CHAPTER 14 STORAGE SYSTEMS

338

• The property list specifies an IOMatchCategory of IOStorage. This property appears
in the property table of the partition driver, and is important for the correct
construction of the storage driver stack. In particular, certain drivers will use the
IOMatchCategory property to determine whether they are at the top of the driver
stack, or whether the driver on top is also a part of the IOStorage stack.

Although a partition scheme driver is part of the storage driver stack, and is unloaded only after the
disk is removed, the driver itself plays a role only when the disk is first inserted, when it is responsible for
reading the partition table from the disk and instantiating an IOMedia object for each partition that it
finds. As a driver that is derived from the standard I/O Kit class IOService, the partition scheme driver
does this through the init(), probe(), and start() methods and on unloading through the stop() and
free() methods.

The probe() method is of particular significance for an IOPartitionScheme driver. A partition
scheme driver will be instantiated whenever a disk is added to the system, and it is up to the driver to
determine whether the disk contains a supported partition table and, if not, to allow an
IOPartitionScheme driver that is better suited to load instead. This is done through the standard
IOService method probe(). In general, the purpose of the probe() method is to examine the hardware to
determine whether the driver is able to support the device, and if so, to return an integer value that
represents how well suited the driver is to the hardware. The driver with the highest probe score is the
one that will be loaded by the I/O Kit.

In the case of an IOPartitionScheme driver, the role of the probe() method is to read enough of the
disk to determine whether the partition table on the disk is supported by the driver and, if so, to go on to
read the partition table entries. It isn’t strictly necessary to read the entire partition table in the probe()
method, but doing so prevents the need to rescan the partition table when the driver’s start() method
is called. The partition scheme drivers provided by Apple as a part of Mac OS X go one step further and
actually instantiate an IOMedia object for each partition that is found in the probe() method.

If a disk contains a partition table that the partition scheme driver recognizes and the partition
driver is selected by the I/O Kit as the most suitable driver, its start() method will be called. At this
point, the partition scheme driver should create an IOMedia object for each partition entry and attach it
to the storage driver stack.

A sample implementation of the probe() and start() methods is demonstrated in Listing 14-9. This
driver is based on the partition scheme drivers that are included as part of the Darwin source code in the
IOStorage family.

As with the partition drivers included in Darwin, the implementation in Listing 14-9 has a custom
method named scan() to examine the disk, and if a supported partition table is found, to instantiate an
IOMedia object for each partition and return the partition set to the caller through an OSSet object. If no
IOMedia objects were found during the scan, the probe() method returns unsuccessfully, as indicated by
a NULL result value, and the I/O Kit will continue searching for another partition scheme driver for the
disk. If a supported partition table was found instead, the probe method saves the set of IOMedia objects
representing each partition to an instance variable named m_partitions.

Listing 14-9. An Implementation of the probe() and start() Methods for a Partition Scheme Driver

#include <IOKit/storage/IOPartitionScheme.h>

// Define the superclass
#define super IOPartitionScheme

OSDefineMetaClassAndStructors(com_osxkernel_driver_PartitionScheme, IOPartitionScheme)

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 14 STORAGE SYSTEMS

339

IOService* com_osxkernel_driver_PartitionScheme::probe(IOService* provider, SInt32* score)
{
 if (super::probe(provider, score) == NULL)
 return NULL;

 // Scan the IOMedia for a supported partition table.
 m_partitions = scan(score);

 // If no partition table was found, return NULL.
 return m_partitions ? this : NULL;
}

bool com_osxkernel_driver_PartitionScheme::start (IOService *provider)
{
 IOMedia* partition;
 OSIterator* partitionIterator;

 if (super::start(provider) == false)
 return false;

 // Create an iterator for the IOMedia objects that were
 // found and instantiated during probe.
 partitionIterator = OSCollectionIterator::withCollection(m_partitions);
 if (partitionIterator == NULL)
 return false;

 // Attach and register each IOMedia object (representing found partitions).
 while ((partition = (IOMedia*)partitionIterator->getNextObject()))
 {
 if (partition->attach(this))
 {
 attachMediaObjectToDeviceTree(partition);
 partition->registerService();
 }
 }
 partitionIterator->release();

 return true;
}

If the probe() method returns successfully and the I/O Kit doesn’t find a better driver, our partition
driver will be added to the storage stack and its start() method will be called. The role of a partition
driver’s start() method is to attach each of its IOMedia objects to the storage driver stack, where each
IOMedia object represents a single partition entry on the disk. This is done through the IOService method
named attach(), which inserts the IOMedia object into the service plane of the I/O Registry as a child of
the partition driver (which is the provider class).

As well as inserting the IOMedia object into the service plane of the I/O Registry, it may also be
necessary to insert the IOMedia object into the device plane of the I/O Registry. This is only needed if the
partition could potentially be used as the boot volume on a PowerPC-based Macintosh. This is because
the boot volume on a PowerPC-based Macintosh is identified through its location in the I/O Registry
device plane, so the IOMedia object that represents the boot partition needs to have an entry in the
device plane. The IOPartitionScheme superclass provides a method named

CHAPTER 14 STORAGE SYSTEMS

340

attachMediaObjectToDeviceTree(), which will insert an IOMedia object into the I/O Registry’s device
plane.

The scan() method is a custom method that determines whether the disk contains a partition
scheme that is supported by the driver and, if so, reads the partition table entries from the disk and
creates a set of IOMedia objects that represent each partition. This requires the partition driver to be able
to read the disk, which is performed through the driver’s provider object. As specified in the driver’s
matching dictionary (see Listing 14-8), the partition driver’s provider class is an IOMedia object that
represents the entire disk. An example implementation of the scan() method is provided in Listing
14-10.

Listing 14-10. A Method to Detect the Presence of a Sample Partition Table on a Disk and to Instantiate

IOMedia Objects for that Partition Table

OSSet* com_osxkernel_driver_PartitionScheme::scan(SInt32* score)
{
 IOBufferMemoryDescriptor* buffer = NULL;
 SamplePartitionTable* sampleTable;
1 IOMedia* media = getProvider();
 UInt64 mediaBlockSize = media->getPreferredBlockSize();
 bool mediaIsOpen = false;
 OSSet* partitions = NULL;
 IOReturn status;

 // Determine whether this media is formatted.
2 if (media->isFormatted() == false)
 goto bail;
 // Allocate a sector-sized buffer to hold data read from disk.
3 buffer = IOBufferMemoryDescriptor::withCapacity(mediaBlockSize, kIODirectionIn);
 if (buffer == NULL)
 goto bail;

 // Allocate a set to hold the media objects representing disk partitions.
4 partitions = OSSet::withCapacity(8);
 if (partitions == NULL)
 goto bail;

 // Open the storage driver stack that (of which this partition driver is part)
 // for read access.
5 mediaIsOpen = open(this, 0, kIOStorageAccessReader);
 if (mediaIsOpen == false)
 goto bail;

 // Read the first sector of the disk.
6 status = media->read(this, 0, buffer);
 if (status != kIOReturnSuccess)
 goto bail;
 sampleTable = (SamplePartitionTable*)buffer->getBytesNoCopy();

 // Determine whether the first sector contains our recognized partition signature.
7 if (strcmp(sampleTable->partitionIdentifier, kSamplePartitionIdentifier) != 0)
 goto bail;

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 14 STORAGE SYSTEMS

341

 // Scan for valid partition entries in the partition map.
8 for (int index = 0; index < sampleTable->partitionCount; index++)
 {
9 if (isPartitionInvalid(&sampleTable->partitionEntries[index]))
 continue;

 IOMedia* newMedia;
10 newMedia = instantiateMediaObject(&sampleTable->partitionEntries[index],
 1+index);
 if (newMedia)
 {
 partitions->setObject(newMedia);
 newMedia->release();
 }
 }

 // Release temporary resources.
11 close(this);
 buffer->release();

 return partitions;

bail:
 // Non-successful return; release all allocated objects.
12 if (mediaIsOpen) close(this);
 if (partitions) partitions->release();
 if (buffer) buffer->release();

 return NULL;
}

Corresponding to the numbered lines in Listing 14-10, the following is an overview of the steps
performed in the listing:

1. We obtain a pointer to our provider class, which is an IOMedia object that
represents the entire disk. All disk reads are performed through this object,
which includes reading the partition table off the disk.

2. We check any properties of the disk’s media before checking for a partition
table. If the disk’s media is not formatted, we abort the scan. This is also a
suitable place to verify requirements, such as a minimum disk block size that
may be required by the partition scheme.

3. All data that is read from the disk is written into an IOMemoryDescriptor as the
destination. We therefore allocate an IOBufferMemoryDescriptor to hold the
contents of the data that this method will read from the disk. Since this
memory descriptor will be used in an operation that reads data from the disk,
its direction must be set to kIODirectionIn.

4. We allocate an OSSet container to hold the collection of IOMedia objects that
represent each partition that is found on the disk. Although the initial capacity

CHAPTER 14 STORAGE SYSTEMS

342

of the OSSet collection is 8 objects, the OSSet will automatically expand if more
than 8 IOMedia objects are inserted.

5. The storage driver stack (of which the partition driver is a part of) is opened for
read access. Since the partition driver will read the partition table from the
disk, but not modify the disk contents, it only requires read access.

6. The first disk sector is read from the disk. This is typically the location of the
partition table’s header. The hypothetical partition scheme used in this sample
stores its header in the first disk sector. The buffer parameter to the read()
method specifies both the destination for the data that is read, and the number
of bytes to read.

7. Based on the data read from the disk, the partition driver determines whether
the disk contains a partition scheme that it supports. This code will be specific
to the partition scheme; the hypothetical partition scheme used by our sample
driver is identified through a string constant that is written to the first block on
the disk. As such, the driver uses the strcmp() function to determine whether
this string exists, and if it cannot be found, it assumes that another partition
scheme exists on the disk and returns unsuccessfully.

8. The code iterates over each entry in the partition table that was read from the
disk. This code will be specific to the partition scheme; the hypothetical
partition scheme used in this sample stores the entire partition table in the
initial disk sector.

9. The partition entry is verified. This may involve such checks as making sure
that the starting block and length of the partition entry do not exceed the
capacity of the disk.

10. A new IOMedia object is instantiated to represent the partition entry.

11. If the partition table was successfully scanned, the storage driver stack is
closed (to balance the call to open() that was made earlier), and the set of
IOMedia objects is returned to the caller.

12. If an error occurred, the code releases any resources that were partially
allocated.

The implementation of the instantiateMediaObject() method that is called as a part of Step 10 is
provided in Listing 14-11. This is a custom method that is defined by our partition scheme driver.

Listing 14-11. A Method to Instantiate IOMedia Objects That Represent an Individual Disk Partition

IOMedia* com_osxkernel_driver_PartitionScheme::instantiateMediaObject
 (SamplePartitionEntry* sampleEntry, int index)
{
 IOMedia* media = getProvider();
 UInt64 mediaBlockSize = media->getPreferredBlockSize();
 IOMedia* newMedia;

1 newMedia = new IOMedia;
 if (newMedia)
 {

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 14 STORAGE SYSTEMS

343

 UInt64 partitionBase, partitionSize;

2 partitionBase = OSSwapLittleToHostInt64(sampleEntry->blockStart) *
 mediaBlockSize;
 partitionSize = OSSwapLittleToHostInt64(sampleEntry->blockCount) *
 mediaBlockSize;

3 if (newMedia->init(partitionBase, partitionSize, mediaBlockSize,
 media->getAttributes(), false, media->isWritable()))
 {
4 // Set a name for this partition.
 newMedia->setName(sampleEntry->name);

 // Set a location value (the partition number) for this partition.
 char location[12];
 snprintf(location, sizeof(location), "%d", index);
 newMedia->setLocation(location);

 // Set the "Partition ID" key for this partition.
 newMedia->setProperty(kIOMediaPartitionIDKey, index, 32);
 }
 else
 {
5 newMedia->release();
 newMedia = NULL;
 }
 }

6 return newMedia;
}

Corresponding to the numbered lines in Listing 14-11, the following is an overview of the steps
performed in the listing:

1. An IOMedia object is allocated using the C++ “new” operator.

2. The initial disk block number of the partition and the size of the partition are
read from the partition table entry. A partition scheme will have a standard
endianness that may differ from the native byte order of the host on which the
driver is running, so it’s important to use byte order macros such as
OSSwapLittleToHostInt64() to make sure that the data is read correctly.

3. The allocated IOMedia object is initialized. The parameters of the
IOMedia::init() method are provided here:

 virtual bool init(UInt64 base,
 UInt64 size,
 UInt64 preferredBlockSize,
 IOMediaAttributeMask attributes,
 bool isWhole,
 bool isWritable,
 const char* contentHint = 0,
 OSDictionary* properties = 0);

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 14 STORAGE SYSTEMS

344

The parameters base and size define the location of the partition on the disk,
specified in bytes. Another important parameter is the Boolean parameter
isWhole, which is set false to indicate that this IOMedia object represents a
partition, and not the entire disk. The parameter contentHint describes the
content of the partition, such as the file system that the volume uses. A
description of the contentHint property is described in the following section.

4. Various properties of the partition are set on the partition’s IOMedia object.
These include the partition name, and the location and partition IDs, both of
which are derived from the index of this partition in the partition table.

5. If the IOMedia object could not be successfully initialized, it is released.

6. The initialized IOMedia object is returned to the caller or NULL if the object
could not be successfully initialized.

Finally, when the driver for the partition scheme is unloaded, it must remove its IOMedia objects
from the driver stack and release them. A partition driver may be unloaded because the disk has been
ejected, or because the disk has been reformatted, in which case a new partition table may have been
written to the disk, and potentially even a different partition scheme.

An example of the implementation of the stop() and free() methods for a partition scheme driver
is shown in Listing 14-12. The stop() method removes each IOMedia object from the device plane of the
I/O Registry, undoing the call to attachMediaObjectToDeviceTree() that the partition driver performed in
its start() method. Before the partition driver is unloaded, its free() method is called, which releases
the OSSet that holds the collection of IOMedia objects for each partition entry.

Listing 14-12. An Implementation of the stop() and free() Methods for a Partition Scheme Driver

void com_osxkernel_driver_PartitionScheme::stop(IOService* provider)
{
 IOMedia* partition;
 OSIterator* partitionIterator;

 // Detach the media objects we previously attached to the device tree.
 partitionIterator = OSCollectionIterator::withCollection(m_partitions);
 if (partitionIterator)
 {
 while ((partition = (IOMedia*)partitionIterator->getNextObject()))
 {
 detachMediaObjectFromDeviceTree(partition);
 }

 partitionIterator->release();
 }

 super::stop(provider);
}

void com_osxkernel_driver_PartitionScheme::free (void)
{
 if (m_partitions != NULL)
 m_partitions->release();

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 14 STORAGE SYSTEMS

345

 super::free();
}

The Media Content Hint Property
As we saw in Listing 14-11, the initialization method of the IOMedia class takes a parameter named
contentHint. Although this parameter is not interpreted by the IOMedia object, it plays a very important
role in the construction of the driver storage stack. The contentHint parameter is a string value that
describes the content that is contained by the IOMedia object on the disk. For an IOMedia object that
represents an entire disk, the content hint may identify the partition scheme that the disk contains. For
an IOMedia object that represents a single partition, the content hint may identify the type of file system
that the volume uses. The content hint can also be used for a custom purpose; for example, a driver that
provides disk encryption could use the content hint to describe the encryption scheme that has been
used on the disk.

The content hint is not used to describe the content to the user, but rather to provide information
that can be used by other drivers on the system. The contentHint parameter that is passed to the
initialization method of the IOMedia class is set as an I/O Registry property on the IOMedia object. This
makes the value of content hint accessible to other drivers in the storage stack, but more importantly, it
provides a property that can be specified and matched against another driver’s matching dictionary.

When we created our partition scheme driver, we specified an IOPropertyMatch item (see Listing 14-
8), which limited the driver to matching against specific IOMedia objects. In the case of the partition
scheme driver, we matched against only IOMedia objects that represented the entire disk. This was done
by informing the I/O Kit that the partition driver should only match against an IOMedia object that
contained a property named “Whole” with the value true. Similarly, a driver can add an IOPropertyMatch
item to its matching dictionary that contains the key “Content Hint”, and specify a value that contains
the particular content type that the driver is interested in. This could be used, for example, to prevent a
disk encryption driver from loading against IOMedia volumes that are not encrypted.

Another important use of the content hint property is to identify the correct file system driver to
load for an IOMedia volume. Mac OS X will load a file system driver only if the content hint value of the
IOMedia object identifies a supported file system.

Since the content hint value needs to be specified when an IOMedia object is initialized, any driver
that instantiates an IOMedia object needs to know the content of the disk or partition that is represented
by that object. For a partition scheme driver, the content hint will come from the partition table that is
stored on the disk. For example, the Apple Partition Map contains a string value for each partition entry
that is used as the content hint value directly. The GUID partition table contains a 128-bit GUID for each
partition that identifies the file system and content of that partition. This GUID is converted to a string
representation, which is then used as the content hint. This means that there may be multiple content
hint values that identify a particular file system, so a file system driver must match against each possible
value of the IOMedia’s content hint that could identify its file system.

Media Filter Drivers
The top of the driver storage stack may contain one or more media filter drivers. A media filter driver,
also known as a filter scheme driver, matches against an existing IOMedia object in the storage stack, and
creates a new IOMedia object that represents the filtered media object. All read and write requests to the
disk pass through the filter scheme driver, allowing the filter driver to manipulate the blocks that are
read, or even to manipulate the data as it travels between the original IOMedia object and the filtered
IOMedia object above it in the storage stack.

CHAPTER 14 STORAGE SYSTEMS

346

A filter scheme driver can be used to implement various types of functionality. For example, a filter
driver could be used to implement block-level disk encryption by matching against an IOMedia object
that represents an encrypted partition on the disk, and publishing an IOMedia object that represents the
unencrypted partition that is used by the file system. Another use of a filter scheme driver could be to
implement a RAID driver, which matches against multiple IOMedia objects, each of which represents an
individual disk in the RAID set, and creates a single IOMedia object that represents the logical volume.
The relationship between a filter scheme driver and the IOMedia objects that it controls, and the IOMedia
object that it publishes, is shown in Figure 14-8.

Figure 14-8. The relationship between a filter scheme driver and its provider classes and the IOMedia

objects that it creates for an encryption scheme (left) and a RAID driver (right)

The partition scheme driver that was developed in the previous section can be thought of as a
specialized form of a filter driver. Like a filter driver, the partition scheme driver loads against an existing
IOMedia object and creates one or more IOMedia objects that represent the partitions on the disk.
However, unlike the partition scheme, the general filter driver can have multiple provider classes, as in
the case of the RAID driver shown in Figure 14-8. Another difference is that unlike a filter driver, a
partition scheme driver typically isn’t involved in handling each read or write request that is made
through the IOMedia objects that it creates.

The I/O Kit provides a class known as IOFilterScheme that forms the superclass of any driver that
implements a media filter scheme. A filter scheme driver will typically use the “Content Hint” property
value of the IOMedia object that it matches against to restrict the filter scheme to loading only against an
IOMedia object that the filter scheme can support. For example, the Apple software RAID driver formats
each disk in the RAID set with the GUID partition table and, as such, each disk’s IOMedia object contains
a GUID as its “Content Hint” property. Apple has defined a GUID to indicate that the disk partition
forms part of a RAID set, which the Apple RAID driver will match against. When the Apple RAID driver
creates its child IOMedia object to represent the logical volume, it gives this IOMedia object a content hint
that represents the file system that was written to the overall RAID set.

 Note File system drivers will load against only the top-level (leaf) IOMedia object in the driver storage stack.
This means that, even though a filter scheme driver may match against an IOMedia object that contains a
readable file system, and creates another IOMedia object with a readable file system, only the object above the
filter scheme driver in the stack will be mounted on the user’s desktop.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 14 STORAGE SYSTEMS

347

A Sample Filter Scheme for Encryption
Let’s examine the implementation of a sample filter scheme driver by implementing a simple block-level
encryption driver. The sample driver doesn’t do anything sophisticated in terms of security–it simply
implements a basic XOR encryption scheme–but it does demonstrate the structure of a filter scheme
driver.

The filter scheme that we will develop will encrypt the contents of an entire partition, and our
sample will require the disk to be formatted with the standard GUID partition table. To identify an
encrypted partition, we will define a new GUID to describe the content of the partition, which we can
generate using the command line tool uuidgen. Throughout this sample, we will use the GUID 8D7FD0BB-
39A8-43C0-9432-F4E1A269F070, which our sample driver has defined to describe an encrypted disk
partition that contains the HFS file system. Hereafter, we will use the term Encrypted_HFS_GUID in the
chapter text instead of writing the GUID in full.

For this sample, we will use the standard GUID partition table, which means that the driver for the
partition scheme in the storage driver stack will be the standard Apple GUID partition scheme driver.
The Apple driver sets the “Content Hint” property of each partition’s IOMedia object to the partition type
GUID from the partition header on the disk. This means that the IOMedia object that our encryption filter
driver wishes to load against will have a content hint of Encrypted_HFS_GUID. The encryption filter driver
can ignore all other IOMedia objects, since it knows that they do not represent an encrypted partition.
This requirement can be expressed in the filter driver’s matching dictionary by adding an
IOPropertyMatch key, as shown in Listing 14-13.

Listing 14-13. The Matching Dictionary from the Property List of a Sample Filter Scheme Driver That

Implements Encryption

<key>IOKitPersonalities</key>
<dict>
 <key>SampleEncryptionFilter</key>
 <dict>
 <key>Content Mask</key>
 <string>Sample_Encrypted_Data</string>
 <key>CFBundleIdentifier</key>
 <string>com.osxkernel.SampleEncryptionFilter</string>
 <key>IOClass</key>
 <string>com_osxkernel_driver_SampleEncryptionFilter</string>
 <key>IOMatchCategory</key>
 <string>IOStorage</string>
 <key>IOProviderClass</key>
 <string>IOMedia</string>
 <key>IOPropertyMatch</key>
 <dict>
 <key>Content Hint</key>
 <string>8D7FD0BB-39A8-43C0-9432-F4E1A269F070</string>
 </dict>
 </dict>
</dict>

When a filter scheme driver loads, it may need to probe its IOMedia provider class to determine
whether it contains content supported by the filter driver. If it does, it creates one or more IOMedia
children objects that represent the filtered volume. These steps are similar to the implementation of the
probe() and start() methods of the partition scheme driver shown in Listing 14-9. However, unlike the

CHAPTER 14 STORAGE SYSTEMS

348

partition scheme driver, our sample encryption filter scheme driver can ignore the probe() method,
since the driver’s property list has been set up to ensure that the driver will load only against an IOMedia
object whose “Content Hint” property contains our Encrypted_HFS_GUID type. Therefore, if the driver
loads, we can assume that it is loading against an encrypted partition.

In our sample filter scheme driver’s start() method, we need to create a new IOMedia object that
represents the filtered disk contents; this is the IOMedia object through which we expose the
unencrypted data to the rest of the system (such as the file system). As with a partition scheme driver, it’s
important that the filter driver correctly sets the contentHint parameter of any child IOMedia object that
it creates, since this is the means by which the system is able to identify which file system (or even
another filter scheme driver) to load against the IOMedia volume. In the case of our sample encryption
filter, we have made the arbitrary design choice that it will encrypt an HFS file system, so the IOMedia
child object that is published by the filter scheme will be created with a contentHint value of
“Apple_HFS.”

The implementation of the start() method for our sample encryption filter scheme is shown in
Listing 14-14. Our sample filter scheme does not provide an implementation of the init() or probe()
methods, because the implementation provided by the superclass is sufficient.

Listing 14-14. An Implementation of the start() Method for a Sample Filter Scheme that Provides

Encryption

#include <IOKit/storage/IOFilterScheme.h>

// Define the superclass.
#define super IOFilterScheme

OSDefineMetaClassAndStructors(com_osxkernel_driver_SampleEncryptionFilter, IOFilterScheme)

bool com_osxkernel_driver_SampleEncryptionFilter::start (IOService *provider)
{
 if (super::start(provider) == false)
 return false;

 // Save a reference to our provider class, and verify that it is an IOMedia object.
 m_encryptedMedia = OSDynamicCast(IOMedia, provider);
 if (m_encryptedMedia == NULL)
 return false;

 // Create a child IOMedia object to represent the unencrypted data.
 m_childMedia = instantiateMediaObject();
 if (m_childMedia == NULL)
 return false;

 // Attach the unencrypted IOMedia object to the storage driver stack.
 if (m_childMedia->attach(this) == false)
 return false;
 m_childMedia->registerService();

 return true;
}

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 14 STORAGE SYSTEMS

349

IOMedia* com_osxkernel_driver_SampleEncryptionFilter::instantiateMediaObject ()
{
 IOMedia* newMedia;

 // Allocate a new IOMedia object.
 newMedia = new IOMedia;
 if (newMedia)
 {
 // Initialize the child IOMedia object.
 // Nearly all of its parameters can be obtained from the provider class.
 if (newMedia->init(0, // base
 m_encryptedMedia->getSize(),
 m_encryptedMedia->getPreferredBlockSize(),
 m_encryptedMedia->getAttributes(),
 false, // isWhole
 m_encryptedMedia->isWritable(),
 "Apple_HFS")) // contentHint
 {
 // Set a location value (the partition number) for this media object.
 newMedia->setLocation("1");
 }
 else
 {
 newMedia->release();
 newMedia = NULL;
 }
 }

 return newMedia;
}

The method named instantiateMediaObject() is a custom method defined by the
SampleEncryptionFilter class and is responsible for creating a child IOMedia object to represent the
unencrypted disk contents. Many of the properties of the child IOMedia object can come straight from
the filter driver’s encrypted IOMedia provider class. For a driver that implements block-level encryption,
there is no need to modify properties such as the size of the volume and the size of a disk block for the
child IOMedia object. In general, there is nothing to prevent a filter scheme driver from creating an
IOMedia device of a different size or block size to that of its provider class, as may be required by the filter
scheme of a RAID driver.

For our sample encryption driver, we need to intercept all read and write operations that are
performed on the unencrypted child IOMedia object. Because our filter scheme sits between the
unencrypted IOMedia object (the child object that we created) and the encrypted IOMedia object (our
provider class), all read and write operations made on the child IOMedia object pass through our filter
driver, so intercepting these operations involves nothing more than overriding the superclass
implementation of the read() and write() methods.

In the case of a read operation, our encryption filter driver needs to pass the read request on to the
encrypted IOMedia object and decrypt the data that is returned. This is complicated by the fact that the
read is performed asynchronously, so the filter driver needs to provide completion callback to be
notified when the read has completed. At this point, the data that was read back from the encrypted
volume is decrypted, and the original read completion callback, as provided by the client that initiated
the read, is called. The implementation of this is given in Listing 14-15.

CHAPTER 14 STORAGE SYSTEMS

350

Listing 14-15. An Implementation of the read() Method for a Sample Filter Scheme That Provides

Encryption

void com_osxkernel_driver_SampleEncryptionFilter::read (IOService* client,
 UInt64 byteStart,
 IOMemoryDescriptor* buffer, IOStorageAttributes* attributes,
 IOStorageCompletion* completion)
{
 ReadCompletionParams* context;
 IOStorageCompletion newCompletion;

 // Allocate a structure to hold state while the read
 // is being performed asynchronously.
1 context = (ReadCompletionParams*)IOMalloc(sizeof(ReadCompletionParams));
 if (context == NULL)
 {
 complete(completion, kIOReturnNoMemory);
 return;
 }

2 context->completion = *completion;
 context->buffer = buffer;
 context->buffer->retain();

 // Setup a callback function so that we will be notified
 // when the encrypted data has been read from disk.
3 newCompletion.target = this;
 newCompletion.action = readCompleted;
 newCompletion.parameter = context;

 // Perform a read of the encrypted data from disk.
4 m_encryptedMedia->read(client, byteStart, buffer, attributes, &newCompletion);
}

void com_osxkernel_driver_SampleEncryptionFilter::readCompleted (void* target,
 void* parameter,
 IOReturn status, UInt64 actualByteCount)
{
 ReadCompletionParams* context = (ReadCompletionParams*)parameter;

 // Decrypt the data read from disk.
5 if (status == kIOReturnSuccess)
 status = decryptBuffer(context->buffer, actualByteCount);

 // If either the read from disk or the decryption operation failed,
 // set the actualByteCount value to 0.
 if (status != kIOReturnSuccess)
 actualByteCount = 0;

 // Call the original caller’s completion function.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 14 STORAGE SYSTEMS

351

6 complete(&context->completion, status, actualByteCount);

7 context->buffer->release();
 IOFree(context, sizeof(ReadCompletionParams));
}

Corresponding to the numbered lines in Listing 14-15, the following is an overview of the steps
performed in the listing:

1. Since the read is performed asynchronously, any variables or state that is
needed in the completion callback for the read need to be saved to a
temporary structure. We use the IOMalloc() function to allocate a structure in
memory to save anything that we need to pass to the completion callback.

2. The allocated context structure is initialized. One parameter that needs to be
saved is the IOStorageCompletion structure provided by the caller; this
contains the callback function that the caller wishes to be notified on when the
read completes. We also save a reference to the IOMemoryDescriptor that the
data from the disk is read into. Since we will be referencing this object in the
callback, we retain it to prevent it from being released before the callback fires.

3. We set up an IOStorageCompletion structure to pass our own callback function
to be notified when the asynchronous read completes.

4. We perform a read from the encrypted IOMedia object.

5. When the read completes, our specified callback function (readCompleted) will
be called. If the read completed successfully, we decrypt the data that was read
back from the encrypted IOMedia object.

6. We call the IOStorageCompletion callback that was provided by the caller,
which notifies the caller that its buffer contains the decrypted data that it
requested.

7. We release our reference to the IOMemoryDescriptor that we took, and release
the structure that was allocated in Step 1.

The implementation of the encryption filter scheme’s write operation is quite straightforward
because it can perform the encryption before writing the resulting data to the encrypted IOMedia object.
As such, even though the write is performed asynchronously, it doesn’t need to replace the completion
callback that was provided by the caller (unlike the read operation).

Rather than encrypt the data in-place, we allocate a new IOMemoryDescriptor to hold the encrypted
data. This allows us to leave the caller’s buffer unmodified, which is important because the write
operation should not change the contents of the source buffer. Even though the write is performed
asynchronously, the driver in the storage stack that performs the operation will retain the
IOMemoryDescriptor buffer for the duration of the write. This allows us to release our own reference to
the object immediately after issuing the write to the encrypted IOMedia object.

The implementation of the encryption filter scheme’s write() method is provided in Listing 14-16.

CHAPTER 14 STORAGE SYSTEMS

352

Listing 14-16. An Implementation of the write() Method for a Sample Filter Scheme That Provides

Encryption

Void com_osxkernel_driver_SampleEncryptionFilter::write (IOService* client,
 UInt64 byteStart,
 IOMemoryDescriptor* buffer, IOStorageAttributes* attributes,
 IOStorageCompletion* completion)
{
 IOMemoryDescriptor* newDesc;

 // Allocate a buffer to hold the encrypted data and perform the encryption
 newDesc = encryptBuffer(buffer);
 if (newDesc == NULL)
 {
 // Return an error if a destination buffer could not be allocated.
 complete(completion, kIOReturnNoMemory);
 return;
 }

 // Perform a write of the encrypted data to the encrypted IOMedia object.
 m_encryptedMedia->write(client, byteStart, newDesc, attributes, completion);

 // Release our reference to the encrypted IOMemoryDescriptor
 newDesc->release();
}

Creating a Custom GUID Partition Table
The encryption filter scheme that we developed in the previous section will load only against an IOMedia
object whose “Content Hint” property is a custom value that we have defined for the purposes of the
sample filter scheme. To test out the driver, we need to create a GUID partition table that contains a
partition entry with our custom GUID type.

This can be performed through various command line tools that are included with Mac OS X. For
this tutorial we will create a volume containing a GUID partition table that we can use to test the
encryption filter driver. The storage device for the encrypted volume will be provided by a disk image,
which is a regular file that behaves as a virtual disk, and contains a file system (and possibly a partition
scheme) that can be mounted as a volume on the Mac OS X desktop. Disk images provide a convenient
way to test filter scheme and partition scheme drivers, since they can be easily created without having to
format physical media.

This section provides a tutorial of some of the command line tools that can be used while
developing drivers in the storage stack. In this section, we will create a disk image, write a GUID
partition table that contains a single partition of our specified partition type, and write an HFS file
system to our encrypted volume. All of these tasks will be performed through command line tools.

To begin, open the Terminal application. The first step is to create a blank disk image that will
provide the storage for our media, and will play the role of a disk. The hdiutil command line utility is a
tool for creating and manipulating disk image files. We can create a 25MiB blank disk image with the
following command:

hdiutil create -megabytes 25 -layout NONE EncryptedImage.dmg

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 14 STORAGE SYSTEMS

353

This will create a file named “EncryptedImage.dmg” in the current working directory, consisting of a
25MiB disk image. The option “-layout NONE” specifies that we do not want a partition table created on
the disk image. Since the resulting disk image contains no partition map and no file system, it cannot be
mounted. However, we can interact with the disk image by using the following command:

hdiutil attach -nomount EncryptedImage.dmg

With our understanding of how storage devices are implemented in the Mac OS X kernel, we are in a
good position to examine what this command is doing behind the scenes. The “hdiutil attach”
command will load the kernel driver supplied by Apple that manages disk images; this will be derived
from the same IOBlockStorageDevice superclass that we used to implement the RAM disk. A storage
driver stack will be constructed, consisting of a single IOMedia object that represents the entire disk
image’s contents. The IOMedia object will have a corresponding IOMediaBSDClient object, which will
publish the device interfaces for the disk image in the /dev directory. This results in the creation of a
block device, such as /dev/disk1 and a character device, such as /dev/rdisk1, through which the disk
image can be accessed. The path to the block device that was created as a result of attaching the disk
image is printed to the terminal output.

We can now read and write to the disk image through its block device interface, so the next step is to
create a GUID partition table on the disk. The gpt command is a command line tool supplied by Apple
with Mac OS X for creating and manipulating a disk’s GUID partition table. We can create a GUID
partition table on a blank disk with the following command. Make sure to replace the path /dev/diskN
with the path to the device interface that corresponds to the attached disk image on your system.

gpt create /dev/diskN

This writes a GUID partition table that contains no partitions to the disk. We wish to create a single
partition on the disk, so the next command will insert an entry into the disk’s GUID partition table:

gpt add -t 8D7FD0BB-39A8-43C0-9432-F4E1A269F070 /dev/diskN

Although the “gpt add” command allows the partition size and initial block offset to be specified, if
no partition range is specified, the utility will default to creating a partition that begins on the first
unused range of disk blocks that it finds on the disk. This is perfect for our purposes, since it creates a
single partition that fills the entire disk. The “-t” option can be used to specify the GUID type of the
partition entry that is created. This allows us to create a partition entry that has our custom GUID type
that we defined to identify an encrypted HFS volume. As a result of adding a partition to the disk, a new
device interface is created that represents the partition. The path to the partition’s block device interface
is printed to the terminal output, and will take the form /dev/diskNs1.

 Note BSD uses the term “slice” to refer to disk partitions. Therefore, disk2s1 refers to the first partition (slice)
of the block device “disk2.” The slice number comes from IOMedia object’s location value. In our partition
scheme driver and encryption filter scheme, we called the method setLocation() for each IOMedia object that
we created. The string that we provided is used to generate the name of the device interfaces.

At the kernel level, creating a partition table on the disk resulted in the Apple-supplied
IOGUIDPartitionScheme driver loading. This driver, in response to us having added a partition entry, will
instantiate an IOMedia object to represent the partition. The partition’s IOMedia object will have a
“Content Hint” property that is equal to the custom GUID type that we gave the partition. At this point,

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 14 STORAGE SYSTEMS

354

we are ready to load our encryption filter driver. As you will recall, our filter scheme driver will load
against any IOMedia object that has our custom content hint GUID. If we had not created a partition
entry with the specified content type, our encryption scheme driver would not find a suitable IOMedia
object to match against, and we would be unable to test our driver.

Our encryption filter scheme driver will create a new IOMedia object when it loads. This results in
another block device being created, which will have an interface name similar to “diskNs1s1.” This
interface represents the unencrypted content of the disk partition. In the case of our sample encryption
filter driver, the IOMedia object that it created was given a “Content Hint” property of Apple_HFS, which
informs Mac OS X that the media contains the default HFS file system, and causes the HFS file system to
be loaded for the unencrypted volume. However, at this stage, the disk partition is empty and doesn’t
contain any file system. We can create an HFS file system on the volume with the following command:

newfs_hfs -v MyVolumeName /dev/diskNs1s1

The option “–v” allows a volume name to be specified. In the preceding example, we are naming the
HFS volume “MyVolumeName”. Having written an HFS file system to the (unencrypted) volume, we can
now mount the file system on the Mac OS X desktop. This can be done with the following command:

hdiutil mountvol /dev/diskNs1s1

This will result in a new volume appearing on the desktop. Because of the presence of our
encryption filter scheme in the storage stack, any files written to the disk will be modified by our XOR
encryption before the data is written to the disk image file. The disk image file itself is just a regular file,
so the contents of each disk block can be examined by opening the .dmg file in any hex editor. This
makes disk images a very useful means for debugging or verifying that a partition scheme driver, or a
filter scheme driver, is operating correctly.

Having written a partition table and file system to the disk, the disk image can be mounted in the
future by simply opening the disk image file. The I/O Kit will be able to automatically create the entire
driver storage stack without any user involvement – from the transport driver for the disk image, the
GUID partition scheme driver, the encryption filter scheme, and finally the HFS file system at the top of
the stack.

Summary
• The functionality provided by a storage volume containing a file system is

implemented through a stack of multiple drivers, each of which may be supplied
by a different vendor. The driver at each level of the storage driver stack is
responsible for performing a specific role.

• At the bottom of the stack is the transport driver, which interfaces directly with the
hardware device that provides the data storage.

• The block storage driver provides an abstract representation of the storage device
as a sequence of bytes that is organized into fixed-sized blocks and provides
random-access to its data. The block storage driver sits above the transport driver
in the driver stack.

• A partition driver is responsible for reading the partition table from a disk and
creating a driver object to represent each logical volume that exists in the partition
table. The partition driver sits above the block storage driver in the driver stack.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 14 STORAGE SYSTEMS

355

• The I/O Kit represents a logical volume through a driver object called IOMedia.
Each IOMedia object can be accessed by a user space process through an interface
in the /dev directory.

• The I/O Kit allows vendors to insert a filter scheme driver into the storage driver
stack to intercept all read and write requests that are made to a disk. This can be
used to implement a RAID driver, or to encrypt the data that is written to a disk.

• The file system driver sits at the very top of the storage driver stack. Although file
system drivers read and write through the I/O Kit storage driver stack indirectly,
they are actually part of the BSD layer of Mac OS X and are not part of the I/O Kit.

C H A P T E R 15

357

User-Space USB Drivers

From a user’s perspective, an application that requires a kernel driver detracts from the user experience.
To begin with, driver installation involves writing to the “Extensions” directory, which requires
administrative privileges. Therefore, the user needs to run an installer and enter the password of an
administrative account, and then possibly restart before they can begin using the application. If, on the
other hand, the application doesn’t require a kernel driver, the installation procedure can be as simple
as downloading an application from the Mac App Store.

In some cases, an application that would typically require a kernel driver can instead be written
without the developer having to write any code that runs inside the kernel. Instead, the actions that
would usually be performed by the driver can be done by the application. The advantage of this
approach is that there is no kernel driver that needs to be installed, so the user doesn’t need
administrative privileges to install the application. Another advantage of moving the driver code out of
the kernel and into the application is that any bugs that are present in the code can, at worst, crash the
application, but they cannot cause a kernel panic that can bring down the entire system.

Not all hardware devices can be controlled through a user-space driver; for example, devices that
contain a memory-mapped address range require a kernel driver. Similarly, devices that generate
interrupts need a kernel driver, since only kernel code can execute at primary interrupt level. This means
that all PCI and Thunderbolt devices need to be supported by a kernel driver. However, USB- and
FireWire-based hardware devices are perfect candidates for a user-space driver. In this chapter, we
discuss writing a driver that exists solely in user space for a USB device, without the need to write a
kernel driver.

Not all USB and FireWire devices are suitable for a user-space driver. In particular, a driver that
needs to create a device interface file in the /dev directory, such as a serial port driver or a storage device,
needs a kernel driver. Also, a device that can be used by multiple applications simultaneously, or needs
to be used by the system, such as an audio driver, should be written as a kernel driver. Thankfully, these
cases are the exceptions, and most USB devices that require a custom driver can be controlled by a user-
space driver.

Behind the Scenes
Having spent the initial chapters of this book describing the architecture of Mac OS X, and in particular
stating that a modern operating system only allows hardware to be directly accessed from the kernel,
you are probably wondering how this is consistent with a chapter describing user-space drivers.

Internally, user-space drivers do indeed require a kernel driver, but this is provided by the same
IOUSBDevice and IOUSBInterface objects that would be used to interact with the USB device had the
developer chosen to write a kernel driver for the hardware. To make these objects available to user-space
applications, the IOUSBFamily publishes a user client for each instance of IOUSBDevice and
IOUSBInterface that is created in the kernel.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 15 USER-SPACE USB DRIVERS

358

The user client that is created for these classes is extremely generic and exists solely to expose the
methods of the IOUSBDevice and IOUSBInterface class to user space. For example, the user client for the
IOUSBDevice class contains methods for getting and setting the active device configuration, performing a
device request, and iterating the device’s interfaces. The user client for the IOUSBInterface class contains
methods for reading and writing data to a specified endpoint.

An application doesn’t need to call the methods from the user client class directly; instead, the I/O
Kit framework provides a high level API to control the hardware. This API is known as IOUSBLib. The
layering involved in a user-space USB driver is shown in Figure 15-1. The custom code a developer needs
to write exists only in the application layer; the layers below are common libraries provided by Apple as
part of Mac OS X.

Although it isn’t necessary to have an understanding of how the IOUSBLib is implemented, a little
knowledge will help you understand each of the steps that an application performs to find and interact
with a USB device from user space.

Figure 15-1. The layers through which a user-space driver accesses its USB hardware

The IOUSBLib Framework
The library used to write a user-space driver for a USB device is known as IOUSBLib, which is part of the
I/O Kit framework (that is, the same framework a user-space application includes if it is communicating
with a user client it defined itself).

The first task a user-space driver needs to perform is to watch for the arrival of the particular USB
devices it is interested in. Since USB devices can be connected and disconnected from the computer at
any time, there is no guarantee the device an application is interested in will be present when the
application is launched. Therefore, it’s a good idea for an application to install a notification callback
that watches for the arrival of the USB devices it controls.

In Chapter 5, we saw how an application can create a matching dictionary to find each instance of a
specified kernel driver. This same approach is used by an application that implements a user-space USB
driver to locate the devices it will control. As in Chapter 5, we begin by creating a dictionary that specifies
the class name of the driver objects our application is interested in matching against. For a USB device,
this can be done as follows:

matchingDictionary = IOServiceMatching(kIOUSBDeviceClassName); // “IOUSBDevice”

This matching dictionary is far too general for most applications since it will match against all USB
devices connected to the computer, including the keyboard and mouse. An application is typically
interested in only one particular USB device, so a matching dictionary such as this will be inappropriate.

CHAPTER 15 USER-SPACE USB DRIVERS

359

We can narrow down the list of devices the matching dictionary satisfies by including the specific
Product ID and Vendor ID of the USB device our application can support.

A sample function that will create a matching dictionary for a USB device of a specified Vendor ID
and Product ID is shown in Listing 15-1.

Listing 15-1. Creating a USB Matching Dictionary

#include <IOKit/IOKitLib.h>
#include <IOKit/usb/IOUSBLib.h>
#include <CoreFoundation/CoreFoundation.h>

CFDictionaryRef MyCreateUSBMatchingDictionary (SInt32 idVendor, SInt32 idProduct)
{
 CFMutableDictionaryRef matchingDictionary = NULL;
 CFNumberRef numberRef;

 // Create a matching dictionary for IOUSBDevice
 matchingDictionary = IOServiceMatching(kIOUSBDeviceClassName);
 if (matchingDictionary == NULL)
 goto bail;

 // Add the USB Vendor ID to the matching dictionary
 numberRef = CFNumberCreate(kCFAllocatorDefault, kCFNumberSInt32Type, &idVendor);
 if (numberRef == NULL)
 goto bail;
 CFDictionaryAddValue(matchingDictionary, CFSTR(kUSBVendorID), numberRef);
 CFRelease(numberRef);

 // Add the USB Product ID to the matching dictionary
 numberRef = CFNumberCreate(kCFAllocatorDefault, kCFNumberSInt32Type, &idProduct);
 if (numberRef == NULL)
 goto bail;
 CFDictionaryAddValue(matchingDictionary, CFSTR(kUSBProductID), numberRef);
 CFRelease(numberRef);

 // Success - return the dictionary to the caller
 return matchingDictionary;

bail:
 // Failure - release resources and return NULL
 if (matchingDictionary != NULL)
 CFRelease(matchingDictionary);

 return NULL;
}

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 15 USER-SPACE USB DRIVERS

360

■ Note An application can narrow the matching dictionary by adding any of the keys that could be placed in the
property list of a kernel-based USB driver (see Chapter 8). For example, an application may include any of the keys
idVendor, idProduct, bcdDevice, bDeviceSubClass, or bDeviceProtocol.

For a composite USB device, a driver may prefer to match against a particular interface rather than
the entire USB device. A user-space driver is able to do this by creating a matching dictionary for a
specific instance of an IOUSBInterface object. This is because the I/O Kit defines a user client for every
instance of both the IOUSBDevice class and the IOUSBInterface class that is created in the kernel, which
makes both of these classes available to user processes.

Having created a matching dictionary, an application is able to use the dictionary to iterate over all
kernel objects that match its specifications or to install a callback to receive notifications when such a
kernel object appears. This was described in Chapter 5. An example of a function to iterate over all kernel
devices described by a given matching dictionary is given in Listing 15-2.

Listing 15-2. Finding and Iterating Over Devices That Satisfy a Matching Dictionary

void MyFindMatchingDevices (CFDictionaryRef matchingDictionary)
{
 io_iterator_t iterator = 0;
 io_service_t usbDeviceRef;
 kern_return_t err;

 // Find all kernel objects that match the dictionary.
 err = IOServiceGetMatchingServices(kIOMasterPortDefault, matchingDictionary,
 &iterator);
 if (err == 0)
 {
 // Iterate over all matching kernel objects.
 while ((usbDeviceRef = IOIteratorNext(iterator)) != 0)
 {
 IOUSBDeviceInterface300** usbDevice;

 // Create a driver for this device instance
 usbDevice = MyStartDriver(usbDeviceRef);
 IOObjectRelease(usbDeviceRef);
 }

 IOObjectRelease(iterator);
 }
}

The iterator for a matching dictionary, such as that shown in Listing 15-2, will return a number of
io_service_t objects, each of which represents a kernel object. The io_service_t object is a user- space
representation of an IOUSBDevice or IOUSBInterface object that resides in the kernel. Like any I/O Kit
class, both IOUSBDevice and IOUSBInterface are each implemented by a C++ class. These classes contain
a public interface that defines the methods through which a kernel driver interacts with a USB hardware
device.

CHAPTER 15 USER-SPACE USB DRIVERS

361

The IOUSBLib interface is implemented through a C++ class that wraps an io_service_t object
representing either an IOUSBDevice or an IOUSBInterface. The user-space equivalent of the IOUSBDevice
class is implemented by a class named IOUSBDeviceInterface and the user-space equivalent of the
IOUSBInterface class is implemented by a class named IOUSBInterfaceInterface. The declaration of
these classes can be found in the header file <IOKit/usb/IOUSBLib.h>. The code sample in Listing 15-3
demonstrates how a user-space application can instantiate an IOUSBDeviceInterface class from an
io_service_t.

Listing 15-3. Instantiating an IOUSBDeviceInterface object from an io_service_t

IOUSBDeviceInterface300** MyStartDriver (io_service_t usbDeviceRef)
{
 SInt32 score;
 IOCFPlugInInterface** plugin;
 IOUSBDeviceInterface300** usbDevice = NULL;
 kern_return_t err;

 err = IOCreatePlugInInterfaceForService(usbDeviceRef, kIOUSBDeviceUserClientTypeID,
 kIOCFPlugInInterfaceID, &plugin, &score);
 if (err == 0)
 {
 err = (*plugin)->QueryInterface(plugin,
 CFUUIDGetUUIDBytes(kIOUSBDeviceInterfaceID300),
 (LPVOID)&usbDevice);
 IODestroyPlugInInterface(plugin);
 }

 return usbDevice;
}

If the application had created a matching dictionary that specified an IOUSBInterface, each of the
io_service_t values it receives would represent a kernel IOUSBInterface object and not an IOUSBDevice
object. In this case, the user-space class the application would instantiate to represent the kernel object
would be an IOUSBInterfaceInterface. This only requires one change to the parameters that are passed
to two of the functions called in Listing 15-3. The call to IOCreatePlugInInterfaceForService would be
called as follows.

err = IOCreatePlugInInterfaceForService(usbDeviceRef, kIOUSBInterfaceUserClientTypeID,
 kIOCFPlugInInterfaceID, &plugin, &score);

Similarly, the call to QueryInterface on the returned plugin object would take the following
parameters:

IOUSBInterfaceInterface300** usbInterface = NULL;
err = (*plugin)->QueryInterface(plugin,
 CFUUIDGetUUIDBytes(kIOUSBInterfaceInterfaceID300),
 (LPVOID)&usbInterface);

Whether the application is instantiating an IOUSBDeviceInterface or an IOUSBInterfaceInterface,
the structure of the code is the same. In both cases, the first step is to call the function
IOCreatePlugInInterfaceForService(), which returns an object that has the type IOCFPlugInInterface.
This object serves as a factory for instantiating the user-space I/O Kit classes and serves no purpose once

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 15 USER-SPACE USB DRIVERS

362

this has been done. In fact, as Listing 15-3 shows, the object is released with a call to
IODestroyPlugInInterface() as soon as the IOUSBDeviceInterface object has been created.

The IOCFPlugInInterface class contains a method named QueryInterface() that an application uses
to receive a pointer to the IOUSBDeviceInterface or the IOUSBInterfaceInterface object. The IOUSBLib
provides a way of versioning classes. This allows a future release of Mac OS X to extend a class, such as
IOUSBDeviceInterface, to include additional functionality while maintaining backwards compatibility
with applications that were written for an older version of the class.

When an application requests an interface, such as IOUSBDeviceInterface, it must also specify the
version of that class it expects to receive. The version of the class is part of the class name; for example,
IOUSBDeviceInterface300 identifies the version of the IOUSBDeviceInterface class included with the
IOUSBFamily version 3.0.0. This was shipped with Mac OS X 10.5. A full set of the class names and their
version, and the minimum version of the operating system required to support that class is provided in
the IOUSBLib.h header file.

■ Tip As a general rule, the version of the IOUSBDeviceInterface and IOUSBInterfaceInterface classes you
should use will be tied to the minimum version of Mac OS X your application needs to support. For example, an
application that requires Mac OS X 10.5 or later should use IOUSBDeviceInterface300 and
IOUSBInterfaceInterface300.

One aspect of the user client classes that can take some time to get used to is that IOUSBLib returns
a pointer to the object pointer. This means that before calling a method from the object, the variable
holding the interface requires an additional dereference. Another idiosyncrasy of the IOUSBLib classes is
that each method requires a reference to the object to be passed as the first parameter. For example,
consider the method QueryInterface() implemented by the IOCFPlugInInterface class, although you
would expect to call the method with the following line of code:

plugin->QueryInterface(parameters); // INCORRECT

Instead, because the “plugin” variable will have the type IOCFPlugInInterface** and is therefore a
pointer to a pointer, the method must actually be called using the following structure:

(*plugin)->QueryInterface(plugin, parameters);

■ Note If you are familiar with Microsoft’s Component Object Model (COM), you will instantly recognize the
method name QueryInterface(). All IOUSBLib classes are based on the COM programming model and are
derived from the base class IUnknown. The biggest impact of this design on an application using IOUSBLib is that
all IOUSBLib objects are reference counted; they can be retained by calling the method AddRef() and can be
released by calling the method Release().

CHAPTER 15 USER-SPACE USB DRIVERS

363

Handling Asynchronous Operations
As we will see in our later discussion of IOUSBLib classes, many methods perform operations that
complete asynchronously. All such asynchronous methods take two parameters, a pointer to a callback
function and a parameter named “refcon” that allows the application to pass an arbitrary context value
to its callback. The callback function has the following signature:

void MyCallbackFunction (void* refcon, IOReturn result, void* arg0);

The first parameter, refcon, is the application’s arbitrary context parameter. The second parameter
reports the overall result of the operation; a value of kIOReturnSuccess indicates the operation
completed successfully. The final argument, arg0, is provided by the IOUSBLib and is dependent on the
type of operation performed. In this chapter, when we describe an asynchronous method, we will also
describe the value passed by IOUSBLib to the callback function through the arg0 parameter.

Just as a kernel driver uses a work loop to synchronize its completion routines against other driver
code, a user-space application can synchronize completion callbacks from IOUSBLib against the rest of
its code using a run loop.

To begin, an application must create a run loop source for the IOUSBLib class that will be
performing asynchronous operations. The IOUSBLib classes contain methods for creating either a run
loop source or a mach port to receive asynchronous notifications; however, most applications will need
to work only with the run loop source.

It’s important to note the IOUSBLib classes provide a method with the prefix “Create” and with the
prefix “Get”(such as CreateDeviceAsyncEventSource and GetDeviceAsyncEventSource). However, the
“Get” method will only return an object that has previously been initialized through the “Create”
method. An example function to create and install a run loop source that will be used to receive
asynchronous notifications from the IOUSBDeviceInterface class is shown in the following snippet.

IOReturn InstallRunLoopSourceForUSBDevice (IOUSBDeviceInterface300** usbDevice)
{
 CFRunLoopSourceRef runLoopSource;
 IOReturn error;

 error = (*usbDevice)->CreateDeviceAsyncEventSource(usbDevice, &runLoopSource);
 if (error == kIOReturnSuccess)
 CFRunLoopAddSource(CFRunLoopGetCurrent(), runLoopSource, kCFRunLoopDefaultMode);

 return error;
}

An application is free to install the run loop source on the run loop of any particular thread it
wishes, including the run loop for the application’s main thread. The object ownership rules follow the
same convention as all Core Foundation functions: If an application obtains an object from a “Create”
method, it owns that object and is responsible for releasing it. If an application obtains an object from a
“Get” method, it does not own a reference to that object, so if the application wishes to hold on to that
object, it must explicitly retain the object first.

The IOUSBDeviceInterface Class
The IOUSBDeviceInterface class is a user-space class that provides equivalent functionality to the
IOUSBDevice class used by kernel drivers. It’s worth noting that although the user client class provides
similar functionality to its kernel counterpart, it implements it through a different set of methods.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 15 USER-SPACE USB DRIVERS

364

Therefore, a kernel USB driver written to work with the IOUSBDevice class cannot simply be brought into
a user-space USB driver.

After obtaining a reference to the user-space IOUSBDeviceInterface, the first thing an application
will need to do is to configure the USB hardware. The steps an application will take to do this will closely
match those explained in Chapter 8 for a kernel driver. First, the application needs to obtain exclusive
access to the USB hardware and prevent the hardware’s configuration from being changed by another
driver, which could either be another user-space driver or a kernel driver. This is achieved by calling the
IOUSBDeviceInterface method USBDeviceOpen(), as follows:

error = (*usbDevice)->USBDeviceOpen(usbDevice);

If the error code returned from the method is kIOReturnSuccess, the application has been granted
exclusive access to configure the hardware. If another application or driver has already obtained
exclusive access to the hardware, the call to USBDeviceOpen() will fail with the error code
kIOReturnExclusiveAccess and the application should abort all further access to the device, possibly
reporting an error to the user.

When an application has finished using the device, it should relinquish its exclusive access to the
hardware by calling the IOUSBDeviceInterface method USBDeviceClose(), as follows:

error = (*usbDevice)->USBDeviceClose(usbDevice);

What follows is a summary of the methods provided by the IOUSBDeviceInterface class that provide
access to the information contained in the USB device descriptor. In this chapter, we describe the
IOUSBDeviceInterface300 class, so some of the following methods will not be present in earlier versions
of the IOUSBDeviceInterface class.

• GetDeviceClass, GetDeviceSubClass, and GetDeviceProtocol: Returns the device
class (bDeviceClass), subclass (bDeviceSubClass), and protocol (bDeviceProtocol)
from the USB device descriptor. Together, these three values define the function
of the device based on values defined in the USB specification.

• GetDeviceVendor: Returns the USB Vendor ID of the device (idVendor).

• GetDeviceProduct: Returns the USB Product ID of the device (idProduct).

• GetDeviceReleaseNumber: Returns the device release number (bcdDevice).

• USBGetManufacturerStringIndex: Returns the index of the string for the device’s
manufacturer name (iManufacturer). To read the actual string from the device, an
application must follow up by sending the standard device request “get
descriptor” to read an entry from the device’s string table.

• USBGetProductStringIndex: Returns the index of the string for the device’s product
name (iProduct).

• USBGetSerialNumberStringIndex: Returns the index of the string for the device’s
serial number (iSerialNumber).

• GetNumberOfConfigurations: Returns the number of configurations the device
supports at its current speed (bNumConfigurations).

The following methods allow an application to read dynamic properties that relate to the current
state of the USB device:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 15 USER-SPACE USB DRIVERS

365

• GetDeviceAddress: Returns the address of the USB device, which is unique for the
bus it is connected to.

• GetDeviceSpeed: Returns the speed of the device. Possible values include
kUSBDeviceSpeedLow, kUSBDeviceSpeedFull, or kUSBDeviceSpeedHigh.

• GetLocationID: Returns a 32-bit value that uniquely identifies a USB device on the
system, based on the USB hub and port the device is connected to. The Location
ID won’t change following a restart of the computer, but will change if the device
is connected to another hub or port. Therefore, if the USB device provides a serial
number string, it is a preferable way to track a device across reboots and
disconnections.

• GetBusFrameNumber: Returns the current frame number of the USB bus to which
the device is connected. The function also returns the system host time that
corresponds to the time at which the kernel driver handled the request. The
system time may fall anywhere within the returned USB frame.

• GetBusFrameNumberWithTime returns the current frame number of the USB bus to
which the device is connected, but also returns the system host time that
corresponds to the start of that frame. This method was introduced in later
versions of the IOUSBDeviceInterface class and supersedes the method
GetBusFrameNumber().

• GetBusMicroFrameNumber: Returns the current microframe number of the USB bus
to which the device is connected. The function also returns the system host time
that corresponds to the time at which the kernel driver handled the request (and
so this method behaves like GetBusFrameNumber()).

The following methods provide a way for an application to reset the USB device:

• ResetDevice: Resets the USB device, returning it to the non-configured state.

• USBDeviceReEnumerate: Instructs the hub to which this device is connected to reset
the port that this device is connected to. This is equivalent to disconnecting the
device from the USB port and reconnecting it.

• USBDeviceSuspend: Despite the name of this method, it can either suspend or
resume the port to which the USB device is connected, depending on the value of
a Boolean parameter. If the method suspends the device, any outstanding
transactions to the device will be aborted.

• USBDeviceAbortPipeZero: Aborts any outstanding transaction on the control
endpoint.

The IOUSBDeviceInterface class provides the following methods to allow an application to send
control requests to the device on endpoint zero:

• DeviceRequest: Is a synchronous method and will not return until the device
request has completed. The device request is described by the same
IOUSBDevRequest structure used by kernel USB drivers.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 15 USER-SPACE USB DRIVERS

366

• DeviceRequestTO: Is a synchronous method that takes two timeout values,
expressed in milliseconds. The method will return once the device request has
completed or a specified timeout period has elapsed (whichever comes first). The
caller provides two timeout values. The device may stop sending or receiving data
while handling the request, so one timeout value specifies the maximum amount
of time to wait since the last data transfer before aborting the control request. The
other timeout value specifies the maximum amount of time to allow for the
control request to complete from start to finish. A control request is aborted if
either of the specified timeout conditions occurs.

• DeviceRequestAsync: Is an asynchronous equivalent of the method DeviceRequest.
The method takes a callback function the I/O Kit uses to notify the caller once the
request has completed. It’s important to note that a return value of
kIOReturnSuccess from this method doesn’t indicate the request completed
successfully; rather, it indicates the operation was successfully started. The actual
result of the operation will be returned through the callback function. The value of
the arg0 parameter passed to the completion callback holds the number of bytes
that were either read from the device or written to the device.

Listing 15-4 lists a sample function that uses the DeviceRequest method to read the manufacturer
string from the USB string table. The function starts by calling USBGetManufacturerStringIndex to obtain
the index of the manufacturer string. Next, the device request structure is prepared. The bmRequestType
field specifies that the request is a data read (kUSBIn), is a standard request (as opposed to a request
defined by the device class or is vendor-specific), and that the recipient of the request is the device (as
opposed to an interface or an endpoint). Since the string table is treated as just another descriptor table
by the USB Specification, the control request that is sent to the device to read a string is the
kUSBRqGetDescriptor request. The wValue field indicates we are reading a string descriptor and also
contains the index of the string to be read.

Finally, if the string data is successfully read from the device, the function creates a CFStringRef
from the returned data, which is returned from the device with an encoding of UTF-16 little-endian.

Listing 15-4. A Function That Demonstrates a Device Request Through the IOUSBDeviceInterface Class

#include <IOKit/usb/IOUSBLib.h>
#include <IOKit/usb/USBSpec.h>
#include <CoreFoundation/CoreFoundation.h>

IOReturn PrintDeviceManufacturer (IOUSBDeviceInterface300** usbDevice)
{
 UInt8 stringIndex;
 IOUSBDevRequest devRequest;
 UInt8 buffer[256];
 CFStringRef manufString;
 IOReturn error;

 // Get the index in the string table for the manufacturer.
 error = (*usbDevice)->USBGetManufacturerStringIndex(usbDevice, &stringIndex);
 if (error != kIOReturnSuccess)
 return error;

 // Perform a device request to read the string descriptor.

CHAPTER 15 USER-SPACE USB DRIVERS

367

 devRequest.bmRequestType = USBmakebmRequestType(kUSBIn, kUSBStandard, kUSBDevice);
 devRequest.bRequest = kUSBRqGetDescriptor;
 devRequest.wValue = (kUSBStringDesc << 8) | stringIndex;
 devRequest.wIndex = 0x409; // Language setting - specify US English
 devRequest.wLength = sizeof(buffer);
 devRequest.pData = &buffer[0];
 bzero(&buffer[0], sizeof(buffer));
 //
 error = (*usbDevice)->DeviceRequest(usbDevice, &devRequest);
 if (error != kIOReturnSuccess)
 return error;

 // Create a CFString representation of the returned data.
 int strLength;
 strLength = buffer[0] - 2; // First byte is length (in bytes)
 manufString = CFStringCreateWithBytes(kCFAllocatorDefault, &buffer[2], strLength,
 kCFStringEncodingUTF16LE, false);
 // Print the manufacturer string.
 CFShow(manufString);
 CFRelease(manufString);

 return error;
}

The following methods are used by an application to examine and set the device configuration, and
to iterate the device’s interfaces. These methods are usually called by an application to initialize the USB
device when it is first detected:

• GetConfigurationDescriptionPtr: Returns a pointer to the descriptor for the
specified configuration; note that although the caller receives a pointer to an
IOUSBConfigurationDescriptorPtr structure, the buffer is owned by the
IOUSBDeviceInterface object and should not be released by the caller.

• GetConfiguration: Returns the active configuration number of the device. Note
that this is not the index of the configuration, but rather the value of
bConfigurationValue from the active configuration description.

• SetConfiguration: Sets the active configuration of the device. The configuration is
specified by passing the bConfigurationValue from the desired configuration
description.

• CreateInterfaceIterator: Creates an iterator over the device’s interfaces. Like its
kernel equivalent, the caller provides an IOUSBFindInterfaceRequest structure that
specifies the properties that returned interfaces must match.

Having examined the functionality provided by the IOUSBDeviceInterface class, we are now in a
position to consider the steps an application will typically take to initialize a new USB device that has
been attached to the system. A sample initialization function is given in Listing 15-5.

Listing 15-5. A Sample Function for Configuring a USB Device During Initialization

IOReturn MyConfigureDevice (IOUSBDeviceInterface300** usbDevice)
{

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 15 USER-SPACE USB DRIVERS

368

 UInt8 numConfigurations;
 IOUSBConfigurationDescriptorPtr configDesc;
 IOUSBFindInterfaceRequest interfaceRequest;
 io_iterator_t interfaceIterator;
 io_service_t usbInterfaceRef;
 IOReturn error;

 // Get the count of the device's configurations.
 error = (*usbDevice)->GetNumberOfConfigurations(usbDevice, &numConfigurations);
 if (error != kIOReturnSuccess)
 return error;
 // Ensure the device has at least one configuration
 if (numConfigurations == 0)
 return kIOReturnError;

 // Read the descriptor for the first configuration.
 error = (*usbDevice)->GetConfigurationDescriptorPtr(usbDevice, 0, &configDesc);
 if (error != kIOReturnSuccess)
 return error;

 // Make the first configuration the active configuration.
 error = (*usbDevice)->SetConfiguration(usbDevice, configDesc->bConfigurationValue);
 if (error != kIOReturnSuccess)
 return error;

 // Create an iterator over all interfaces in the active configuration.
 interfaceRequest.bInterfaceClass = kIOUSBFindInterfaceDontCare;
 interfaceRequest.bInterfaceSubClass = kIOUSBFindInterfaceDontCare;
 interfaceRequest.bInterfaceProtocol = kIOUSBFindInterfaceDontCare;
 interfaceRequest.bAlternateSetting = kIOUSBFindInterfaceDontCare;

 error = (*usbDevice)->CreateInterfaceIterator(usbDevice, &interfaceRequest,
 &interfaceIterator);
 if (error != kIOReturnSuccess)
 return error;

 // Iterate over all interfaces.
 while ((usbInterfaceRef = IOIteratorNext(interfaceIterator)) != 0)
 {
 MySetupInterface(usbInterfaceRef);
 IOObjectRelease(usbInterfaceRef);
 }
 IOObjectRelease(interfaceIterator);

 return kIOReturnSuccess;
}

The code in Listing 15-5 begins by setting the active configuration of the device to a known
configuration, in this case the device’s first configuration. This step is necessary because the device may
have been used by another application before our application was launched, so the device may be in an
unknown state.

CHAPTER 15 USER-SPACE USB DRIVERS

369

Next, the application iterates over all interfaces in the active configuration. If we were interested in a
particular interface, we could narrow down the list of interfaces returned by the iterator by specifying
the desired class, subclass, protocol, or alternate setting for the interface. Obtaining a USB interface
object is particularly important, since the only way an application can access the device’s endpoints,
other than the control endpoint, is through the IOUSBInterfaceInterface class.

The IOUSBInterfaceInterface Class
The IOUSBInterfaceInterface class is a user-space class that provides equivalent functionality to the
IOUSBInterface class used by kernel drivers. An application can obtain a reference to an
IOUSBInterfaceInterface class by iterating over the device’s interfaces, as shown in Listing 15-5, or an
application can obtain an IOUSBInterfaceInterface object directly by creating a matching dictionary
that specifies the service name kIOUSBInterfaceClassName.

A USB interface contains one or more endpoints, which allow data to either be written to the device
or data to be read from the device. A user-space USB driver is not limited in any way regarding the type
of endpoints it is able to use; all endpoint types, including bulk, isochronous, and interrupt endpoints
are available to a user-space driver. A user-space driver is able to achieve similar data bandwidth to that
of a kernel driver, meaning that even applications that require large data transfers can be written in user
space.

Whether an application uses the IOUSBDeviceInterface to iterate over USB interfaces or obtains a
USB interface directly using a matching dictionary to create an iterator, the application will receive an
io_service_t that provides a user-space representation of the underlying IOUSBInterface object in the
kernel. Listing 15-6 demonstrates how to create an IOUSBInterfaceInterface object from the
io_service_t object.

Listing 15-6. Instantiating an IOUSBInterfaceInterface object from an io_service_t

IOUSBInterfaceInterface300** MyCreateInterfaceClass (io_service_t usbInterfaceRef)
{
 SInt32 score;
 IOCFPlugInInterface** plugin;
 IOUSBInterfaceInterface300** usbInterface = NULL;
 kern_return_t err;

 err = IOCreatePlugInInterfaceForService(usbInterfaceRef,
 kIOUSBInterfaceUserClientTypeID,
 kIOCFPlugInInterfaceID, &plugin, &score);
 if (err == 0)
 {
 err = (*plugin)->QueryInterface(plugin,
 CFUUIDGetUUIDBytes(kIOUSBInterfaceInterfaceID300),
 (LPVOID)&usbInterface);
 IODestroyPlugInInterface(plugin);
 }

 return usbInterface;
}

As with the USB device class, an application must obtain exclusive access to the USB interface
object before it is able to transfer any data to or from an endpoint on the USB interface. This is achieved
by calling the IOUSBInterfaceInterface method USBInterfaceOpen(), as follows:

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 15 USER-SPACE USB DRIVERS

370

error = (*usbInterface)->USBInterfaceOpen(usbInterface);

When an application has finished using the interface, it should relinquish its exclusive access by
calling the IOUSBInterfaceInterface method USBInterfaceClose(), as follows:

error = (*usbInterface)->USBInterfaceClose(usbInterface);

The methods provided by the IOUSBInterfaceInterface class fall into two categories, those that
either get or set the properties of the USB device or interface and those that relate to transferring data to
or from one of the endpoints on the interface. What follows is a summary of the methods provided by
the IOUSBInterfaceInterface class. In this chapter, we describe the IOUSBInterfaceInterface300 class,
so some of the methods that follow will not be present in earlier versions of the IOUSBInterfaceInterface
class.

Property Methods
The IOUSBInterfaceInterface class contains methods to both get and set properties relating to the
interface and the USB device. Although some of these methods may seem to duplicate functionality
provided by the IOUSBDeviceInterface class that was previously described, this is intentional, as it allows
an application that has matched against the USB interface class and not the USB device class to still have
access to common device functionality.

The following methods, although in the IOUSBInterfaceInterface class, relate to the USB device:

• GetDeviceVendor: Returns the USB Vendor ID of the USB device.

• GetDeviceProduct: Returns the USB Product ID of the USB device.

• GetDeviceReleaseNumber: Returns the device release number of the USB device.

• GetLocationID: Returns a 32-bit value that uniquely identifies a USB device on the
system, based on the USB hub and port the device is connected to.

• GetDevice: Returns an io_service_t that corresponds to the kernel IOUSBDevice
object. From this object, an application can instantiate an IOUSBDeviceInterface
that represents the USB device.

• GetBusFrameNumber: Returns the current frame number of the USB bus on which
the device is connected.

• GetBusFrameNumberWithTime: Returns the current frame number of the USB bus to
which the device is connected and also returns the system host time that
corresponds to the start of that frame.

• GetBusMicroFrameNumber: Returns the current microframe number of the USB bus
to which the device is connected.

• GetFrameListTime: Performs a similar role to the IOUSBDeviceInterface method
GetDeviceSpeed, although the device’s speed is returned as the number of
microseconds per USB frame at its current speed. A full speed device will return
kUSBFullSpeedMicrosecondsInFrame (1000 microseconds), whereas a high speed
device will return kUSBHighSpeedMicrosecondsInFrame (125 microseconds).

CHAPTER 15 USER-SPACE USB DRIVERS

371

The following methods relate to getting and setting properties of the interface:

• GetInterfaceClass, GetInterfaceSubClass, and GetInterfaceProtocol: Return the
interface class (bInterfaceClass), subclass (bInterfaceSubClass), and protocol
(bInterfaceProtocol) from the USB interface descriptor. Together, these three
values define the function of the interface based on values defined in the USB
specification.

• GetConfigurationValue: Identifies the device configuration that contains this
interface. The returned value is the bConfigurationValue from the active
configuration’s description.

• GetInterfaceNumber: Returns the zero-based index of this interface within the
active configuration (bInterfaceNumber).

• GetAlternateSetting: Returns the active alternate setting of this interface
(bAlternateSetting).

• SetAlternateInterface: Sets the active alternate setting for this interface. The
alternate setting is specified by passing the bAlternateSetting value of the desired
interface description.

• USBInterfaceGetStringIndex: Returns the index of the string for the interface
description, which comes from the iInterface field from the interface descriptor.

Endpoint Data Transfer Methods
A USB interface can contain one or more endpoints from which data can be read from or written to.
Unlike a kernel USB driver, the IOUSBLib contains no user-space object to represent the pipe to an
endpoint; instead, all data transfers are made through the IOUSBInterfaceInterface class. An
application can determine the endpoints present on an interface using the following methods:

• GetNumEndpoints: Returns the number of endpoints provided by the interface.

• GetEndpointProperties: Returns the type (bDescriptorType), maximum packet size
(wMaxPacketSize), and polling interval (bInterval) of a specified endpoint. The
endpoint is specified by three values—the alternate interface setting it is on, its
endpoint number, and the transfer direction of the endpoint.

• GetPipeProperties: This method allows an application to specify the index of an
endpoint from 0 up to and including the value returned by GetNumEndpoints,
unlike GetEndpointProperties, which requires the caller to know the endpoint
number and direction of an endpoint it is interested in. The endpoint at index 0
corresponds to the default control endpoint. The information returned by this
method consists of almost all the data for an endpoint descriptor, including the
endpoint’s number, direction, type, maximum packet size, and polling interval (if
an interrupt or isochronous endpoint).

• GetPipeStatus: Can be used to determine whether a specified pipe is stalled. This
method will return kIOUSBPipeStalled if the pipe is stalled and kIOReturnSuccess
otherwise. It will return kIOUSBUnknownPipeErr if the caller has specified an invalid
pipe index.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 15 USER-SPACE USB DRIVERS

372

• AbortPipe: Aborts an outstanding transaction from a specified pipe index. Any
operations that are aborted will complete, with the result kIOReturnAborted.

• ResetPipe and ClearPipeStall: Although these two methods are identical, the use
of ClearPipeStall is preferred. Either method is called by an application to reset
an endpoint that has stalled. The endpoint’s halt bit is cleared and its data toggle
bit is reset.

• ClearPipeStallBothEnds: Is equivalent to ClearPipeStall, with the distinction that
in addition to clearing the halt bit and resetting the data toggle on the host side,
the halt bit is cleared on the device and the device’s data toggle is reset. This
ensures that, since both the host and device have been reset, there is no loss of
data when data is next transferred to or from the endpoint.

To transfer data to or from an endpoint, an application must determine the pipe index that
corresponds to the endpoint it wants to access. Although an endpoint address is constant, since it comes
from a descriptor supplied by the device, the pipe index is assigned by the I/O Kit. Therefore, the only
way to determine a pipe index for a given endpoint is to enumerate over each pipe contained within a
USB interface. An example of this is given in Listing 15-7.

Listing 15-7. A Function to Find a Pipe Reference for a Bulk Output Endpoint

IOReturn MyFindBulkOutEndpoint (IOUSBInterfaceInterface300** usbInterface,
 UInt8* pipeRef)
{
 UInt8 numEndpoints;
 UInt8 i;
 IOReturn error;

 // Determine the number of endpoints in this interface.
 error = (*usbInterface)->GetNumEndpoints(usbInterface, &numEndpoints);
 if (error != kIOReturnSuccess)
 return error;

 // Iterate over all endpoints in the interface (skipping endpoint 0, the control
 // endpoint).
 for (i = 1; i <= numEndpoints; i++)
 {
 UInt8 direction, number, transferType;
 UInt16 maxPacketSize;
 UInt8 interval;

 error = (*usbInterface)->GetPipeProperties(usbInterface, i, &direction,
 &number,
 &transferType, &maxPacketSize, &interval);
 if (error != kIOReturnSuccess)
 continue;

 // If we find a bulk output endpoint, return its pipe index the caller.
 if ((transferType == kUSBBulk) && (direction == kUSBOut))
 {
 *pipeRef = i;

s

CHAPTER 15 USER-SPACE USB DRIVERS

373

 return kIOReturnSuccess;
 }
 }

 return kIOReturnNotFound;
}

Having determined the pipe index (referred to as the pipe reference by methods in IOUSBLib), an
application can read or write data over the pipe. Which methods an application uses to manage a pipe
will depend on the type of endpoint the pipe represents. The IOUSBInterfaceInterface class provides
different methods depending on whether the pipe is connected to a control, bulk, interrupt, or
isochronous endpoint.

The IOUSBInterfaceInterface class provides several methods for transferring data to or from an
endpoint. Depending on the method called, the operation may complete synchronously or
asynchronously. Other methods allow the caller to provide a timeout value that specifies the maximum
amount of time to allow the operation to complete before aborting the request. Finally, there are
methods that complete asynchronously and allow the caller to specify a timeout value.

The convention adopted by IOUSBLib is that a method completes synchronously unless the method
contains “Async” in its name. An asynchronous method takes two extra parameters in addition to those
passed to its synchronous counterpart—a callback function that runs when the operation completes and
an arbitrary pointer that can be used to pass context information to the callback function.

A method that allows the caller to specify a timeout contains the letters “TO” in its name. The
timeout value is described by two additional parameters that are passed to the method. The device may
stop sending or receiving data while handling the request, so one timeout value specifies the maximum
amount of time to wait from the last data transfer before aborting the operation. The second timeout
value specifies the maximum amount of time to allow the operation to complete from start to finish. The
request is aborted if either of the specified timeout conditions occurs.

The following methods are provided by the IOUSBInterfaceInterface class to perform a control
transfer. These methods are similar to those provided by the IOUSBDeviceInterface class, with the
exception that they each take an additional parameter, the pipe reference. If a value of 0 is passed for the
pipe reference, the control request is sent to the default control endpoint, endpoint 0.

• ControlRequest: Performs a control request synchronously. This method takes an
IOUSBDevRequest structure describing a control request, and sends it to the
specified control endpoint.

• ControlRequestAsync: Performs a control request asynchronously. This method
takes an IOUSBDevRequest structure and sends it to the specified control endpoint.
When the request has completed, a callback function that was provided to the
function is executed. The value of the arg0 parameter that is passed to the
completion callback specifies the number of bytes that were either read from the
device or written to the device.

• ControlRequestTO: Performs a control request synchronously and allows the caller
to specify timeout parameters.

• ControlRequestAsyncTO: Performs a control request asynchronously, with a
maximum time limit placed on how long the request is allowed to take.

A device is likely to use a bulk endpoint for its data transfer. As we saw in Chapter 8, bulk endpoints
allow large amounts of data to be read or written to the device with high throughput and guaranteed
data delivery, but with variable latency (depending on whether other devices are attempting to transfer
data over the USB bus at the same time). The IOUSBInterfaceInterface class provides the following

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 15 USER-SPACE USB DRIVERS

374

methods to allow an application to read and write buffers over a pipe to a bulk endpoint. The following
methods are also applicable to transferring data over an interrupt endpoint:

• ReadPipe: Performs a data transfer synchronously from a bulk or interrupt
endpoint on the USB device to an application-supplied buffer. The application’s
buffer is described by its address and the size of the buffer in bytes. The buffer size
is also an output parameter; if the method completes successfully, the number of
bytes that were read into the buffer is reported to the caller through the same size
parameter.

• WritePipe: Performs a data transfer synchronously from an application-supplied
buffer to a bulk or interrupt endpoint on the USB device. The application’s buffer
is described by its address and the size of the buffer in bytes.

• ReadPipeAsync: Performs a data transfer asynchronously from a bulk or interrupt
endpoint on the USB device to an application-supplied buffer. When the transfer
has completed, the provided callback function is passed the result of the operation
and the number of bytes that were read from the device (which is passed through
the arg0 argument).

• WritePipeAsync: Performs a data transfer asynchronously from an application-
supplied buffer to a bulk or interrupt endpoint on the USB device. When the
transfer has completed, the provided callback function is passed the result of the
operation and the number of bytes that were written to the device (which is
passed through the arg0 argument).

• ReadPipeTO: Performs a data transfer synchronously from a bulk or interrupt
endpoint to an application buffer with a timeout value specified for the operation.

• WritePipeTO: Performs a data transfer synchronously from an application buffer to
a bulk or interrupt endpoint with a timeout value specified for the operation.

• ReadPipeAsyncTO: Is an asynchronous equivalent of the ReadPipeTO method. When
the transfer has completed or has timed out, a callback function that has been
provided by the application is called.

• WritePipeAsyncTO: Is an asynchronous equivalent of the WritePipeTO method.
When the transfer has completed or has timed out, a callback function that has
been provided by the application is called.

An example of a function that reads data from a bulk endpoint using the asynchronous method
ReadPipeAsyncTO is provided in Listing 15-8.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 15 USER-SPACE USB DRIVERS

375

Listing 15-8. A Function That Demonstrates the Use of the ReadPipeAsyncTO Method

IOReturn MyAsyncBulkRead (IOUSBInterfaceInterface300** usbInterface, UInt8 pipeRef)
{
 void* dataBlock;
 const UInt32 noDataTimeout = 50; // 50 ms
 const UInt32 completionTimeout = 500; // 500 ms
 void* refcon;
 IOReturn error;

 // Allocate a buffer to hold the read data.
 dataBlock = malloc(kMyTransferSize);

 // Perform an asynchronous read, with specified timeout values.
 // We pass dataBlock to the callback function through the refcon parameter
 refcon = dataBlock;
 error = (*usbInterface)->ReadPipeAsyncTO(usbInterface, pipeRef, dataBlock,
 kMyTransferSize,
 noDataTimeout, completionTimeout,
 ReadCompletedCallback, refcon);

 // If the method returns an error, the callback will not be called.
 if (error != kIOReturnSuccess)
 free(dataBlock);

 return error;
}

void ReadCompletedCallback (void* refcon, IOReturn result, void* arg0)
{
 void* dataBlock = refcon;
 UInt32 byteCount = (UInt32)arg0;

 // If the read completed successfully, process any data that was read from the device.
 if (result == kIOReturnSuccess)
 {
 ProcessReadData(dataBlock, byteCount);
 }

 // Release the buffer that was allocated in MyAsyncBulkRead.
 free(dataBlock);
}

The remaining USB endpoint type is the isochronous endpoint. As we saw in Chapter 8,
isochronous endpoints are designed for use by devices that transfer a stream of data that must be
delivered in a timely manner with minimal latency, such as an audio or video data stream. The
IOUSBLib provides full support for isochronous data transfers to a user-space application.

An isochronous pipe has guaranteed bandwidth on the USB bus. The device reports its bandwidth
requirements and if the USB host is able to meet those requirements, the device is granted access to the
USB bus. A full-speed device is able to transfer data over an isochronous pipe on every frame (once a

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 15 USER-SPACE USB DRIVERS

376

millisecond), whereas a high speed or a super speed device is able to transfer data on each microframe
(once every 125 microseconds).

As with the kernel implementation, an isochronous data transfer from an application is set up by
filling out an array of IOUSBIsocFrame structures, which describe the number of bytes the application
wishes to read or write over the isochronous pipe on each microframe (or frame, for a full speed device).
The IOUSBIsocFrame structure is defined as shown below.

typedef struct IOUSBIsocFrame {
 IOReturn frStatus; // On return, the result for the transfer for this frame
 UInt16 frReqCount; // The requested number of bytes to read or write on this frame
 UInt16 frActCount; // On return, the actual number of bytes read or written on this
 // frame
} IOUSBIsocFrame;

A read or write over an isochronous pipe will typically describe the transfer over several tens of
milliseconds, with the application issuing a new isochronous transfer request whenever an outstanding
request completes. The following methods are provided by the IOUSBInterfaceInterface class for
performing transfers over an isochronous pipe:

• ReadIsochPipeAsync: Performs an asynchronous data transfer from an
isochronous pipe. The data transfer is described by passing a buffer address to
hold the data read from the device and an array of IOUSBIsocFrame elements that
describes the maximum amount of data that can be accepted on each frame. The
method takes a parameter named “frameStart” that determines the USB frame
number on which the data transfer will begin, usually a USB frame shortly after
the current frame. The current USB frame can be determined by calling the
GetBusFrameNumber method. Once the transfer has completed, the callback
function supplied by the application is called; the value of arg0 that is passed to
the callback function is the address of the IOUSBIsocFrame array. The application
can examine this array to determine the number of bytes that were actually read
on each frame.

• WriteIsochPipeAsync: Performs an asynchronous data transfer to an isochronous
pipe. The caller provides the address of a buffer containing the data to be written
to the device and an array of IOUSBIsocFrame elements that describes the number
of bytes to be transferred from the buffer on each USB frame. The method takes a
parameter named “frameStart” that determines the USB frame number on which
the data transfer will begin, usually a USB frame shortly after the current frame.
The current USB frame can be determined by calling the GetBusFrameNumber
method. Once the transfer has completed, a callback function supplied by the
application is called; the value of arg0 that is passed to the callback function is the
address of the IOUSBIsocFrame array.

• GetBandwidthAvailable: Returns the bandwidth that is available on the USB bus;
this is the maximum bandwidth a device can allocate. The bandwidth is reported
as the maximum number of bytes that can be allocated to an isochronous pipe for
each frame (for a full speed device) or microframe (for a high speed device).

CHAPTER 15 USER-SPACE USB DRIVERS

377

• SetPipePolicy : Allows an application to modify the bandwidth reservation of an
isochronous or interrupt pipe. For an isochronous pipe, the maximum allowable
packet size that can be transferred on a frame (for a full speed device) or a
microframe (for a high speed device) can be changed. The packet size, however,
cannot be set to a value larger than the maximum packet size in the device’s
endpoint descriptor. For an interrupt pipe, this method allows the maximum
allowable packet size and the polling interval to be set. The packet size and polling
interval, however, cannot exceed the values requested in the endpoint descriptor.
If the initial bandwidth requested in a device’s endpoint descriptor cannot be
satisfied, the USB host will not allow data to be transferred over the isochronous
pipe; this method can be used to assign a reduced bandwidth allocation to the
pipe, allowing it to be used.

An example of a function that performs an isochronous read operation is given in Listing 15-9. Note
that before issuing the request, the function initializes an array of IOUSBIsocFrame elements to describe
the maximum number of bytes it can accept on each frame (or microframe, for a high speed device).
Once the request has completed, the device is able to process the data that was received on each frame,
which may be less than the maximum number of bytes requested.

The frame number on which the request begins is specified by the parameter “startFrame” which, in
the example function, is determined by adding a fixed delay to the current frame. More generally, an
application would typically set the initial frame number of an isochronous request to the final frame
number of the previous isochronous request. In this way, the driver can read continually from the device
without any gaps.

Listing 15-9. A Function That Demonstrates an Isochronous Data Transfer from a User-space Driver

const int framesPerRequest = 512;
const int bytesPerFrame = 1024;

IOReturn MyScheduleIsocRead (IOUSBInterfaceInterface300** usbInterface, UInt8 pipeRef,
 void* destinationBuffer)
{
 UInt64 startFrame;
 AbsoluteTime timeNow;
 IOUSBIsocFrame* frameList;
 void* refcon;
 IOReturn error;

 // Read the current frame number.
 // (Alternatively, we could issue this isoc request to follow
 // on from the previous request.)
 error = (*usbInterface)->GetBusFrameNumber(usbInterface, &startFrame, &timeNow);
 if (error != kIOReturnSuccess)
 return error;
 // Add an offset to the frame on which the request will start,
 // so it starts just ahead of the current frame.
 startFrame += 8;

 // Allocate an array of IOUSBIsocFrame elements.
 frameList = (IOUSBIsocFrame*)malloc(framesPerRequest * sizeof(IOUSBIsocFrame));
 // Set up the number of bytes to read on each frame of the isochronous request.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 15 USER-SPACE USB DRIVERS

378

 for (int i = 0; i < framesPerRequest; i++)
 frameList[i].frReqCount = bytesPerFrame;

 // Perform the isochronous request.
 // We pass destinationBuffer to the callback function through the refcon parameter.
 refcon = destinationBuffer;
 error = (*usbInterface)->ReadIsochPipeAsync(usbInterface, pipeRef, destinationBuffer,
 startFrame,
 framesPerRequest, frameList, IsocReadCompletedCallback,
 refcon);
 // If the method returns an error, the callback will not be called.
 if (error != kIOReturnSuccess)
 free(frameList);

 return error;
}

void IsocReadCompletedCallback (void* refcon, IOReturn result, void* arg0)
{
 uint8_t* destinationBuffer = (uint8_t*)refcon;
 IOUSBIsocFrame* frameList = (IOUSBIsocFrame*)arg0;

 // If the read completed successfully, process any data that was read from the device.
 if (result == kIOReturnSuccess)
 {
 for (int i = 0; i < framesPerRequest; i++)
 {
 if (frameList[i].frStatus == kIOReturnSuccess)
 {
 UInt16 bytesRead;

 // Process the data that was read on this frame
 bytesRead = frameList[i].frActCount;
 ProcessReadData(destinationBuffer, bytesRead);
 }

 // Calculate the starting address for the next frame's data
 destinationBuffer += frameList[i].frReqCount;
 }
 }

 // Release the frame list that was allocated in MyScheduleIsocRead.
 free(frameList);
}

Low-Latency Isochronous Transfers
Isochronous endpoints are typically used to transfer multimedia data, such as audio or video that is
continually streamed to or from the USB device. An application that processes this data typically wishes
to do so with minimal latency; for example, an application may wish to begin processing audio data that
has been read from a microphone as soon as it is received by the USB device. One of the problems with

CHAPTER 15 USER-SPACE USB DRIVERS

379

the isochronous methods described previously is that the application must wait until the completion
callback function is notified before it can begin processing the data that was read. If an application
issues an isochronous request that spans 10 milliseconds worth of USB frames, this means there is a
latency of at least 10 milliseconds from the start of the request until the application can begin to process
the data that was read from the device.

As a solution to this, the IOUSBInterfaceInterface class contains low-latency isochronous transfer
methods that give an application access to data as soon as it has been received by the device, even if the
overall isochronous request hasn’t completed. To do this, the I/O Kit updates the values of the frame list
while the isochronous transaction is in flight; the values of frStatus and frActCount are written and
available to the application during the transfer. Rather than waiting for the completion callback to fire,
an application can periodically examine the values of its frame list and determine when new data is
available to be processed. This can be done from a real-time thread in a user-space application, for
example.

An application specifies how often the I/O Kit should update the frame list while the operation is in
flight by specifying the number of milliseconds between updates (a value between 0–8). For example, an
update frequency of 1 means the application’s frame list will be updated by the I/O Kit every millisecond
during the transfer. A value of 0 means the I/O Kit will not update the frame list until the end of the
transfer, although the updated frame list will be available to the application as soon as the transaction
has completed but before the application receives the completion callback.

To use low-latency isochronous transfers, the buffers used for the frame list array and to hold the
source or destination data from the transfer must be allocated using methods provided by the
IOUSBInterfaceInterface class. This allows the I/O Kit to ensure the buffers are available to both the
kernel, which updates the buffers during the transfer, and the application, which reads the result during
the transfer.

Note that instead of using the IOUSBIsocFrame structure to describe the transfer for a USB frame, the
low-latency methods use the IOUSBLowLatencyIsocFrame structure. This structure includes an additional
field, frTimeStamp, which holds the time at which the I/O Kit updated the structure’s values.

The following methods are provided for low-latency isochronous transfers:

• LowLatencyCreateBuffer: Allocates a buffer used to hold either the source data for
a low-latency isochronous write, the destination data for a low-latency
isochronous read, or the array of IOUSBLowLatencyIsocFrame elements that
describes an isochronous transfer. The application’s intent for the buffer must be
specified by providing one of the enumeration values—
kUSBLowLatencyWriteBuffer, kUSBLowLatencyReadBuffer, or
kUSBLowLatencyFrameListBuffer.

• LowLatencyDestroyBuffer: Releases a buffer that has previously been allocated by
the method LowLatencyCreateBuffer.

• LowLatencyReadIsochPipeAsync: Performs a read from an isochronous endpoint on
the USB device. The parameters to this method extend those of the method
ReadIsochPipeAsync to include a parameter named updateFrequency that specifies
how often the I/O Kit should update the frame list during the transfer (specified in
milliseconds). The IOUSBLowLatencyIsocFrame array and the destination buffer
must both have been allocated by the method LowLatencyCreateBuffer.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 15 USER-SPACE USB DRIVERS

380

• LowLatencyWriteIsochPipeAsync: Performs a write to an isochronous endpoint on
the USB device. The parameters to this method extend those of the method
WriteIsochPipeAsync to include a parameter named updateFrequency that
specifies how often the I/O Kit should update the frame list during the transfer
(specified in milliseconds). The IOUSBLowLatencyIsocFrame array and the source
buffer must both have been allocated by the method LowLatencyCreateBuffer.

Summary
• For certain types of devices, including USB devices, the I/O Kit makes it possible

to forgo a kernel driver and implement the driver completely in user space. For the
end user, this provides a much better experience.

• Not all USB devices are suitable for a user-space driver. A device that needs to be
used by the system itself, such as a system-wide audio device or a USB storage
device, must be implemented in the kernel.

• The I/O Kit provides a user-space library known as IOUSBLib that an application
uses to interact with a USB device. The IOUSBLib provides a user- space
equivalent to the IOUSBDevice and IOUSBInterface kernel classes, known as
IOUSBDeviceInterface and IOUSBInterfaceInterface, respectively.

• An application can watch for the arrival and removal of the USB devices it
supports by creating a matching dictionary and installing a notification callback,
as described in Chapter 5. Once an application has been notified that a USB
device or a USB interface it is interested in has been attached to the computer, it
can instantiate an IOUSBDeviceInterface or IOUSBInterfaceInterface object to
provide access to the USB hardware.

• The IOUSBLib provides full support for the functionality of a USB device to a user-
space driver. All endpoint types are supported in user space, including control,
bulk, interrupt, and isochronous transfers.

• An application can perform either synchronous or asynchronous operations with
IOUSBLib. A callback is used to notify the application of the completion of an
asynchronous request.

C H A P T E R 16

381

Debugging

Debugging is part of the development process and the ongoing maintenance of a kernel level driver or
extension. Therefore, having the skills and knowledge to debug the kernel effectively is an important part
of a kernel engineer’s job description. Although great care is taken during the development and quality
assurance process, bugs are often unavoidable. This is partly because, once released, your driver is likely
to run against hardware/software combinations that haven’t been as well tested, if at all. For example,
your driver may run on a faster or slower CPU than was tested initially, thus uncovering timing issues.

Many regard kernel debugging as a black art, and with good reason. When an application crashes, it
can be dumped into the debugger and it then is often possible to pinpoint the exact code line that
caused the problem. In the kernel, things are not that easy; although debugging with the GNU Debugger
(GDB) is possible, it requires some setup and often two computers. Furthermore, crashes in the kernel
can often manifest themselves in completely unrelated parts of your extension, making it hard to prove if
your driver was involved. You may be lucky enough to extract information or attach a debugger after a
crash; however, the memory may be corrupted and the values of data structures or the call stack may not
be trustworthy.

If you are writing drivers for hardware devices, things may be even more complicated as
malfunctioning devices (more common if using a prototype device) may also corrupt memory or cause
the computer to lock up or crash. This sometimes makes it difficult to determine if it’s a hardware or
software problem.

In this chapter, we will look at various techniques and strategies to help debug common problems.

Common Types of Problems
There are many reasons why the kernel may crash or why other problems may happen. However, they
are usually variations on common errors and once you know what class of problem you are dealing with,
it makes it a lot easier to start examining your code for problems. Let’s have a broad look at some of the
problems you may encounter during kernel development.

• Race Conditions: A general class of bugs used to describe a problem where
multiple threads of execution conflict with each other and the outcome depends
on which thread gets there first. Race conditions are quite common and are often
due to poor design or poor locking in multi-threaded environments. They can
sometimes be tricky to reproduce and may be hiding a long time before discovery.
Things go wrong when a particular sequence of events happen in a specific order,
for example, because it is dependent on user input.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 16 DEBUGGING

382

• Deadlocks: Happen when locking is poorly implemented and when one thread is
waiting on an event or lock that will never happen, possibly because a second
thread failed to release the lock after use. Once this happens, the condition can
spread to new threads in the system also needing the lock. From a user’s point of
view, it can look like their application hangs and they may be unable to force
quitting it because it is stuck waiting for an event in the kernel.

• Lock Contention: A performance problem, which happens when many threads
need the same lock and spend excessive time waiting for the lock rather than
doing anything useful. Lock contention is usually the result of poor design and can
be prevented by implementing a proper locking scheme. The general rule is to
lock access to data and not to code. Having large blocks of code protected may
seem easier than fine-grained locking of shared data only; however, it will
decrease performance and make it more likely for deadlocks to occur.

• Access to Invalid Memory: The most common cause for kernel panics. Unlike user
space programs, which are aborted, the kernel simply panics if the CPU causes an
invalid memory exception. If a debugger is enabled, the kernel will dump into the
debugger instead of showing the grey screen of death on Mac OS X or rebooting,
which is the behavior under iOS. Buffer overruns will sometimes cause an invalid
memory exception, unless the buffer happens to be followed by valid memory, in
which case silent memory corruption may occur.

• Memory and Resource Leaks: Can happen, for example, if a driver unloads and
resources such as objects and buffers were not properly disposed of. It can also be
that an extension allocates some memory each time it receives a request, but fails
to free the memory after it is finished. The kernel has no garbage collection
capabilities, so leaks can accumulate over time and cause a kernel panic.

• Illegal Instruction/Operand: These exceptions are issued by the CPU if it detects
an invalid instruction or an invalid argument to an instruction. This can happen
as the result of memory corruption or a poorly written driver that attempts to use
features not present on the CPU, for example, using the SSE3 instruction set on
machines that do not support it. You could also see this exception as a result of
memory corruption.

• Blocking in Primary Interrupt Context: Results in a panic, as you cannot block
during primary interrupt context. Blocking requires a scheduled thread, as
blocking is implemented by putting the thread to sleep voluntarily. In this case the
thread’s state is saved and later restored when the scheduler determines it is time
to run that thread again. A primary interrupt handler cannot be resumed; it must
run to completion without being interrupted. Many kernel APIs may block under
certain circumstances. For example, memory allocation may block if the system is
low on memory, which will result in some memory being paged out to disk to free
up memory for the request. Because of this, functions such as IOMalloc() or even
IOLog() cannot be used during primary interrupt context.

• Volunteered Panics: Happen when the kernel voluntarily decides to crash because
it has determined that something is about to go horribly wrong or an exceptional
condition has occurred that it can’t recover from. An example of this is if a
memory allocation that cannot block fails. Your driver can panic the kernel by
calling IOPanic(), which is a wrapper for the panic() function.

CHAPTER 16 DEBUGGING

383

There are of course many other problems that can occur, but most are variants of the preceding
typical ones.

Kernel Panics
A panic is the kernel’s main defense mechanism for dealing with exceptional conditions, such as the
preceding list of problems. Instead of attempting to keep going on a fault, the safest course of action is to
terminate execution of the system immediately to avoid damage to the file system. When a Mac OS X
system panics, the user is likely met by the multilingual panic screen, unless the kernel has been
configured with debugging options instructing the user to restart the computer, as shown in Figure 16-1.

Figure 16-1. Mac OS X Panic Screen, the Mac OS X equivalent of Window’s blue screen of death

Behind the scenes, the system will preserve a panic log, which contains a stack trace of the
processor (core) the panic happened on. The panic log will be written to the system’s non-volatile
random-access memory (NVRAM) temporarily, as it is generally unsafe to access the file system after a
system has panicked. After all, the purpose of the panic is not to annoy the user but to shut down the
party before it gets out of hand and protect the file systems from damage.

Once the system boots again, the panic log is copied to the /Library/Logs/DiagnosticReports/
directory. The system will also show the crash reporter dialog window, which allows users to report the
problem to Apple.

Debugging Mechanisms
There are many debugging techniques; which one to use typically depends on the nature of the problem
at hand. Here, we will look at some of the techniques that can help aid in debugging kernel problems.
Table 16-1 provides a brief overview of some of the mechanisms we will discuss in this chapter.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 16 DEBUGGING

384

Table 16-1. Overview of Kernel Debugging Mechanisms

Name Description

IOLog(), kprintf(), printf() These carry out basic tracing to the system log (kernel.log). It is
also possible to direct kprintf() over a FireWire connection or
serial port (if available) to a remote system.

Remote debugging over Ethernet
or FireWire using GDB

This allows you to attach the GDB to a remote system that is
either crashed or halted. The protocol for remote debugging is
called KDP (Kernel Debug Protocol) and is built in to the kernel,
but must be enabled manually. The FireWireKDP
implementation can also capture core dumps (mirror image of
the system’s memory).

Live debugging of a running
kernel using GDB

This allows GDB to be attached to the kernel it is running on
while the system is live.

KDB This is an in-kernel debugger not built in to the kernel by default.
It only works over a traditional serial port and is only found on
Xserve servers (and Virtual Machine instances of OS X).

Remote core dumps over Ethernet The kdumpd server can be configured to automatically
download core dumps from crashed Macs on the network.

Most of the preceding debugging technologies are included by default, but are not always enabled

in the kernel by default because they may cause interference with the running kernel or hardware
devices, or may pose a security risk, as it may be possible to obtain sensitive contents of the target’s
memory.

Enabling debugging mechanisms or controlling the kernel’s debug behavior can be done by setting
kernel boot arguments. Boot arguments can be set in two ways, either by using the nvram command or
by adding it to the boot arguments key in
/Library/Preferences/SystemConfiguration/com.apple.Boot.plist. There are a heap of available boot
arguments, but we are most interested in the debug argument, which controls debugger and system
debug behavior. The argument is an integer value and can consist of the flags shown in Table 16-2.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 16 DEBUGGING

385

Table 16-2. Flags for the Debug Boot Paramter

Name Value Description

DB_HALT 0x01 The kernel will halt at boot and wait for the debugger to
be attached.

DB_PRT 0x02 This sends the output of printf() to the console.

DB_NMI 0x04 Makes the system drop into GDB on panic or when the
power button or Command-Option-Control-Shift-
Escape is pressed.

DB_KPRT 0x08 This sends the kprintf() output to the serial port (if
available) or a FireWire remote log.

DB_KDB 0x10 This makes KDB the default debugger (requires building
a custom kernel).

DB_SLOG 0x20 This outputs additional diagnostic info to the system log.

DB_ARP 0x40 This allows the debugger to issue ARP requests, allowing
debugging across a router without configuring
permanent ARP entries.

DB_KDP_BP_DIS 0x80 This allows older versions of GDB to attach to newer
systems.

DB_LOG_PI_SCRN 0x100 This disables the graphical panic dialog shown in Figure
16-1.

DB_KDP_GETC_ENA 0x200 This is a prompt for c = continue, r = reboot, and k =
enter KDB after a panic.

DB_KERN_DUMP_ON_PANIC 0x400 This triggers a core dump upon kernel panic.

DB_KERN_DUMP_ON_NMI 0x800 This enables a core dump upon an NMI event.

DB_DBG_POST_CORE 0x1000 This waits in the debugger after an NMI core dump.

DBG_PANICLOG_DUMP 0x2000 If set, a panic log is transmitted instead of a core dump.

DBPG_REBOOT_POST_CORE 0x4000 This initiates a reboot after a core/panic log dump.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 16 DEBUGGING

386

The values form a bitmask and you can combine multiple values together by ORing them. For
example, to enable NMI, disable the graphical panic screen and enter the debugger upon panic. We can
combine the values so that:

0x04 | 0x100 = 0x104

The value can be set in the com.apple.Boot.plist or using the nvram command:

$ sudo nvram boot-args=”original_contents debug=0x104”

To disable or remove debugging options, simply do the following:

$ sudo nvram boot-args=”original_contents”

If you have existing boot arguments set, this command will overwrite them, so be sure to query the
boot-args argument first to prevent overwriting them.

Recovering from Crashes During Boot
Your extension may be installed in the /System/Library/Extensions directory and get loaded
automatically during system boot. If there is a problem that causes the extension to crash repeatedly
during system boot, the system can be recovered in the following different ways.

• Boot in safe mode by holding the shift key down after you hear the startup tone
and release the key when the Apple logo appears. This should ensure only
essential kernel extensions (KEXTs) are loaded and you will be able to remove
your KEXT so the system can boot manually.

• Attach the system to another computer and boot it in target disk mode using a
FireWire or Thunderbolt cable by holding down the T key during boot. You should
then be able to remove the offending extension form the system’s disk.

• Boot into a different partition if one is available.

• If the offending KEXT is a driver for a piece of hardware, removing it from the
system will likely prevent the driver from loading.

• Perform an NVRAM reset if you need to reset boot arguments.

If you are unsure what causes the crash, you can boot the system in verbose mode by pressing
Command-V.

■ Tip Details of startup key combinations supported by Intel-based Macs are available at
http://support.apple.com/kb/ht1533.

Tracing with IOLog()
We have already seen tracing in action throughout this book. Tracing involves strategically placing
IOLog(...) statements in your code to print variables and to test if conditional blocks are triggered.
IOLog() output eventually ends up in the kernel.log file. The kernel has quite a limited buffer for storing
messages from IOLog(), so if you write a large amount of long messages too quickly, the buffer will wrap

http://support.apple.com/kb/ht1533

CHAPTER 16 DEBUGGING

387

and you may overwrite data before the syslog daemon has the chance to store it to the log. This may
cause confusion and lead to incorrect assumptions when expected output is not seen.

Many functions of your driver may end up being called hundreds or even thousands of times per
second, so printing a message on each invocation may be counterproductive. Although the logging
daemon has features to coalesce identical messages, this falls apart if there are slight variations between
them. It also does nothing to prevent the buffer wrapping around and potentially overwriting some
messages.

You can change the size of the system log buffer that IOLog() writes into by re-compiling the kernel
or using the much simpler way of adding the kernel flag msgbuf=n, where n is the size of the buffer in
bytes, to the kernel’s boot configuration property list com.apple.Boot.plist. This file is found in the
/Library/Preferences/SystemConfiguration/ directory.

Even though a larger buffer may decrease the likelihood of data going missing, it doesn’t prevent the
log from being flooded with messages when printing from functions in the “hot path” of the driver. To
avoid this, you can use variations of the technique shown in Listing 16-1.

Listing 16-1. Limiting IOLog Output

static uint32_t conditionCount = 0;
com_osxkernel_MyDriver::driverMethod()
{
 ...
 if (someCondition)
 {
 conditionCount++;
 if (conditionCount % 1000 == 0)
 IOLog(“condition has occurred: %u times\n”, conditionCount);
 }
}

This will log the amount of times a condition occurs, but prints a message to the log only every
thousandth time. If you wish to debug a primary interrupt filter, you can use a variant of this approach.
However, the IOLog() call needs to be moved out of the primary interrupt filter routine to a place it can
be safely called, for example, the secondary interrupt handler or a custom IOUserClient method.

If your driver has multiple instances, you may wish to print additional information so you can tell
which instance is doing what. If you are in the context of an IOService, you can print the “this” pointer
address to help uniquely identify each instance.

Should you always leave IOLog() statements in your driver code? Yes and no. Opinions differ on this,
but it is definitely frowned upon for a driver to spam the system logs with unnecessary output that may
hide other potentially important messages from other parts of the system. However, it may be
acceptable to print a few messages about exceptional conditions. If you prefer to leave IOLog()
statements in your code, you can prevent them from being outputted, using a conditional variable,
which can be toggled on or off by a user space client. The problem with this is a slight increase in the
executable size, as well as extra work to be done by the CPU in executing the conditional debug
statements. The other approach is to use pre-processor directives, such as #ifdef DEBUG … #endif, so
the statements will be compiled away from the resulting executable. Of course, there is also an option to
leave most debug statements out entirely, which may make the code more readable. If a user reports a
problem, the downside to the two last approaches is that there is no way to enable debugging once the
driver is in the field, short of asking the user to install a debug version of the driver. A combination of all
three is certainly also possible, but the general advice here is not to litter your code with debug logging,
but to place them at strategic places where they are likely to be of use to you even for problems you
didn’t anticipate.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 16 DEBUGGING

388

While tracing using IOLog() seems like a primitive approach, it is often very effective in finding bugs.
Of course, this approach works best when the system doesn’t actually crash so you can observe the
behavior through the system log. However, if the system crashes, the syslog daemon will not be able to
write the latest contents of the log buffer to the log file. Consequently, the output may be lost at the next
reboot. There are ways to get around this, including remote tracing over FireWire, which is discussed
later in this chapter.

Printing Stack Traces
The IOLog() function is good enough for many purposes; but in some cases, it is not enough to know a
function is called. You also need to know the call stack that led to a call to your function as it may be
called from multiple code paths. Printing the call stack can be achieved using the
OSReportWithBackTrace() function, as demonstrated in Listing 16-2.

Listing 16-2. Using OSReportWithBackTrace() to Dump the Call Stack

void testFunc3() {
 IOLog("address of testFunc3: %p\n", &testFunc3);
 OSReportWithBacktrace("OSReportWithBacktrace() called from testFunc3()");
}
void testFunc2() {
 IOLog("address of testFunc2: %p\n", &testFunc2);
 testFunc3();
}
void testFunc1() {
 IOLog("address of testFunc1: %p\n", &testFunc1);
 testFunc2();
}
bool com_osxkernel_MyDebugDriver::start(IOService * provider) {
 testFunc1();
 ….
}

The code in Listing 16-2 should give the following results:

address of testFunc1: 0x9ac280
address of testFunc2: 0x9ac250
address of testFunc3: 0x9ac220
OSReportWithBacktrace() called from testFunc3()
Backtrace 0x9ac26f 0x9ac29f 0x9ac2ee 0x543f60 0x542137 0x5426e9 0x5443d5
 Kernel Extensions in backtrace (with dependencies):
 com.osxkernel.MyDebugDriver(1)@0x9ab000->0x9acfff

You may notice the printed addresses of the test functions are similar, but not the same as the ones
printed in the back trace. The addresses printed by IOLog() are relative to the start of each function;
however, in the back trace, you instead see the address of where each test function is calling the next test
function. The OSReportWithBacktrace() function also prints the start and end addresses of any KEXTs
involved in the back trace. We see our KEXT is loaded at the memory address 0x9ab000 and you may
notice that testFunc1(), testFunc2(), and testFunc3() are all within the address range of the
MyDebugDriver. Using this information, we can also work out the offset where a function is located within

CHAPTER 16 DEBUGGING

389

its executable image by subtracting the address of a function from the base address, for example, for
testFunc1(): 0x9ac280 - 0x9ab000 = 4736 bytes. You can then use the GDB debugger with the
disassemble <offset> command.

Remote Tracing over FireWire
It is possible to redirect output from the krprintf() function over a FireWire connection to another
system. This method is more robust than using IOLog(), as log output will be preserved on the remote
system in the event of a crash. Another advantage of this approach is that it is available in the very early
boot process, which is useful for debugging a driver that’s involved with the system boot process, such as
storage and display drivers. It also allows debugging of shutdown and sleep events. Your driver does not
need any special support or modifications to support outputting log information over FireWire.

Everything needed to configure remote logging over FireWire is already included in Mac OS X from
versions 10.5 and above and there is no need to install additional KEXTs. You need two Macs to set this
up. It is not necessary for both systems to run the same version of Mac OS X.

On the target machine, the machine you wish to send log output from, do the following.

$ sudo nvram boot-args="debug=0x8"

This boot option enables redirection of the kprintf() function so output will be mirrored to the
FireWire interface as well as the system log. The system should be rebooted for this option to take effect.
The next step is to connect a FireWire cable between the two systems. Unlike IOLog(), the kprintf()
function is synchronous, which means by the time it returns, it will have transmitted the message over
FireWire. The kprintf() disables interrupts until it completes, which can affect timing-related issues
when used excessively. Because interrupts are disabled, the function may cause a crash if memory
referenced by the functions arguments happens to be paged out.

■ Caution It is recommended that both the target and debug machines have all other FireWire devices
disconnected during debugging.

On the machine that will receive the debug output, run the fwkpfv command, which is the FireWire
log viewer utility. If the target machine was connected correctly and the cable properly attached, you will
receive debug output after a few seconds. The following example shows an extract from a session
captured while the target machine boots:

Welcome to FireWireKPrintf. (viewer v2.6)
AppleFWOHCI_KPF: version 4.7.1 – init
u>626665 AppleFWOHCI_KPF: Time format-> Microseconds = 'u>clock_uptime_micro'
u>1141021 AppleUSBHub::setPowerState(0x4fbe200, 0 -> 4) took 301 ms
u>2065689 [Bluetooth::CSRHIDTransition] DeviceRequest error: e00002ed
u>2109928 AppleUSBHub::powerStateWillChangeTo(0x4f13200, AppleUSBHub, 4 -> 3) took 100 ms
u>2117294 AppleUSBHub::powerStateWillChangeTo(0x4f70e00, AppleUSBHub, 4 -> 3) took 100 ms
u>2130057 AppleUSBHub::powerStateWillChangeTo(0x4f70a00, AppleUSBHub, 4 -> 3) took 100 ms
…
…
…

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 16 DEBUGGING

390

u>20236388 Adding domain PPP (family 34)
u>24073549 kPEDisableScreen -1
u>24158956 kPEDisableScreen 1
u>25568081 initialize_screen: b=4645B000, w=00000690, h=0000041A, r=00002000, d=00000001
u>25568131 kPEEnableScreen 1
u>304129579 IOSCSIPeripheralDeviceType00::setPowerState(0x4fe3500, 3 -> 4) async took 351 ms
u>1070371211 IOSCSIPeripheralDeviceType00::setPowerState(0x4fe3500, 3 -> 2) async took 1153
ms

If you wish to log over FireWire from your own KEXT, you will have to use the kprintf() function to
log with rather than IOLog(), which doesn’t use kprintf internally but rather calls printf(), which only
goes to the kernel log. A strategy to deal with this is to create your own wrapper function for IOLog() and
kprintf() that calls the former for a release build and the latter for a debug build.

Listing 16-3 shows an example of how to log using kprintf().

Listing 16-3. Logging Messages to a Remote Machine over FireWire Using kprintf()

#include <kern/debug.h> // Declares kprintf()
bool com_osxkernel_MyDebugDriver::start(IOService * provider)
{

kprintf("%s::start - Hello FireWire Listeners\n", getName());
return true;

}

Running this yields the following on the remote system:

u>1071578492 com_osxkernel_MyDebugDriver::start - Hello FireWire Listeners

If the kernel crashes, you can also get the panic log through the FireWire log viewer. It is also
possible to use FireWire to attach the GNU debugger remotely to the kernel, as we will see later in this
chapter.

Remote Kernel Core Dumps
Mac OS X provides a mechanism for transmitting core dumps from a crashed (or hung) system to a
remote machine over the network. A core dump is a binary image of the wired contents of the system’s
memory. By capturing a core dump, we can retain evidence of the exact state the system was in at the
time of the crash and we can use this image with the GDB to get stack traces for all threads in the system
and examine memory contents as well as kernel data structures.

Conveniently, everything you need to enable core dumps is already present in Mac OS X. Only
minor configuration is required. On the dump server, the machine that receives the core dumps from
crashed machines, you need to activate the kdumpd daemon, as follows.:

sudo vi /System/Library/LaunchDaemons/com.apple.kdumpd.plist

Change the Disabled key from true to false. If you wish, you can also configure the directory where
dumps will be located. The default is /PanicDumps. The kdumpd daemon is started as follows:

sudo launchctl load /System/Library/LaunchDaemons/com.apple.kdumpd.plist
sudo launchctl start com.apple.kdumpd

CHAPTER 16 DEBUGGING

391

The server uses UDP on port 1069, so you should ensure there is no firewall between the target
machines and the server. The target and server do not need to be running the same version of Mac OS X.

■ Note To use kdumpd, the target machine (the crashing system) needs to be connected to the network using
Ethernet. It is not possible to use an AirPort device, as the driver for KDB (Kernel Debugging Protocol), which
handles transmission of the dump, only works with Ethernet devices. When loaded, you can check where the
kernel debugging driver is attached using IORegisteryExplorer and search for the driver named IOKernelDebugger.

The kdumpd daemon is able to receive core dumps from multiple machines and will archive each
dump with the machine’s IP address. If you work for a company that develops software that runs in the
kernel, you can configure all your Macs to automatically send dumps to a central server when a crash
occurs. This saves a lot of time when quality assurance testers encounter problems during testing, as
engineering can simply start debugging the dumped image immediately.

■ Caution Care should be taken to only to use kdumpd in trusted networks, as memory contents of the crashed
system are transmitted unencrypted over the network and may contain sensitive information, such as passwords
and private keys.

Configuring the target machine is equally simple and is done by setting kernel boot arguments
either in /Library/Preferences/SystemConfiguration/com.apple.Boot.plist or using the nvram
command, as follows:

sudo nvram boot-args=”debug=0xd44 _panicd_ip=192.168.1.1”

The preceding instructs the kernel to dump core when it panics or if an NMI (non-maskable
interrupt) event was triggered. The latter is highly useful in the cases where the system hangs completely
and appears unresponsive but does not actually panic. In this case, you can use the power button on the
computer to trigger the NMI event, which will start the core dump. During this time, the machine will be
frozen and no processes will run. If the machine is responsive and you do this, the machine will simply
resume as if nothing had happened after the core dump is transferred.

The _panicd_ip parameter specifies the IP address of the machine running kdumpd. If you plan on
having a permanently running panic server, it is recommended this IP be static. It is not possible to use a
hostname or DNS name for the server, as name resolution is not possible.

The following output will appear on the screen of the target machine if you press the power button:

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 16 DEBUGGING

392

Entering system dump routine
Attempting connection to panic server configured at IP 192.168.1.1, port 1069
Resolved 192.168.1.1’s (or proxy’s) link level address
Transmitting packets to link level address: 00:16:cb:a6:73:8b
Kernel map size is 4546437120
Sending write request for core-xnu-1699.22.73-192.168.1.2-2fe8a6d9
Protocol features: 0x1
Kernel map has 1389 entries
Generated Mach-O header size was 100224

The target machine will write dots (.) to the screen until the dump is complete. If it was an NMI
event that triggered the dump, the system will resume; if it was a panic, the system will wait for a remote
debugger to be attached.

KDB
The kernel supports an in-kernel debugger called KDB. KDB only supports debugging over the serial
port. It is not included in the kernel build by default; therefore, you need to compile and install a custom
kernel in order to use it. KDB has some applications for very low-level debugging where neither FireWire
nor Ethernet is available. KDB requires a native serial port on the machine being debugged, which is
only found on the now discontinued Xserve (although a serial port is available if Mac OS X is used under
a virtual machine). For all intents and purposes, the GNU Debugger (GDB) is recommended; we only
mention KDB here to avoid confusion with GDB.

Remote Debugging with GDB over Ethernet or FireWire
The kernel has support for using the GDB over Ethernet (IP/UDP) or FireWire connections. Again, this
requires two computers running Mac OS X. While GDB is supported through Xcode, you cannot debug
the kernel using Xcode; you will have to use the command-line interface. GDB is, however, part of
Xcode. It is not necessary to install Xcode on the machine being debugged; it is only needed on the
remote system (the client).

■ Note Strictly speaking, it would be possible to use another operating system running GDB as the host to debug
a Mac OS X target system. Although there is no documentation for doing this, some documentation suggests it is
possible, however non-trivial, to configure.

The debugging support is built in to the kernel by default, unlike KDB. However, the debugging
capabilities are disabled by default, but can easily be enabled by adding the appropriate boot arguments
on the target machine, for example:

$ sudo nvram boot-args="debug=0x144 -v".

The “-v” (verbose) flag isn’t strictly necessary. It has the effect of disabling the grey screen with the
Apple logo during boot and instead showing a text console, commonly found on UNIX and Linux

CHAPTER 16 DEBUGGING

393

systems, which shows log messages as the system boots. Once the boot arguments have been set, the
system needs to be rebooted for the changes to take effect.

Configuring the Host Machine
Setting up the target is straightforward. However, the host machine requires a little more preparation.
Before you can start debugging, you need to download the correct Kernel Debug Kit for the kernel
version used by the target system. Apple doesn’t appear to publish a version for every build in a timely
manner, so the target system would have to be downgraded or upgraded to match a published version of
the Kernel Debug Kit. If you use the wrong version, GDB may fail to resolve the correct symbols and data
structures and the results may be wrong and cause great confusion, for example, functions getting called
that should not have.

■ Tip Kernel Debug Kits are not part of Xcode and can be downloaded from
http://developer.apple.com/hardwaredrivers/download/kerneldebugkits.html. This page contains legacy
versions, while newer versions are published in the Downloads ➤ Developer Tools section on the Apple developer
site. This page is restricted to members of the Mac developer program (there’s an annual fee to become a
member).

The Kernel Debug Kit contains the following:

• Debug version of the kernel (mach_kernel)

• Debug version of I/O Kit families and selected KEXTs

• Symbol files

• Various scripts

• Macros for GDB

■ Caution Do not replace files on your system with files from the Kernel Debug Kit; they do not need to be
installed on the target or host system. In fact, you do not need to install any files from the kit; you can access them
directly through the mounted image.

You can replace the default kernel (mach_kernel) of a Mac OS X system with the debug version
found in the Kernel Debug Kit. This will help you get more accurate results and stack traces, as
optimization has been disabled.

If you have the sources for the XNU kernel installed on the host system, it is possible to link this with
the debugger, which allows you to see source code instead of assembly code in the debugger, though this

www.allitebooks.com

http://developer.apple.com/hardwaredrivers/download/kerneldebugkits.html
http://www.allitebooks.org

CHAPTER 16 DEBUGGING

394

is often not needed if you are only debugging your own extension (in which case you can link the source
for your own extension only).

Attaching to the Remote Target
If you have set the appropriate boot arguments with the nvram command on the target system and have
the Kernel Debug Kit ready on the host machine, you can now trigger an NMI event on the target system
by pressing the system’s power button. This should cause the following text to appear on the top left
corner of the screen:

Debugger called: <Button SCI>
ethernet MAC address: 00:16:cb:a6:74:8b
ip address: 192.168.1.1

Waiting for remote debugger connection.

Starting GDB and attaching to the remote target can be done using the following steps:

$ gdb -arch i386 /Volumes/KernelDebugKit/mach_kernel

The arch argument can specified if the debug host is running on a different architecture from the
target system. For example, in this case, we are debugging a target running a 32-bit kernel on a system
with a 64-bit kernel. You can also do the reverse by specifying x86_64.

(gdb) source /Volumes/KernelDebugKit/kgmacros

The preceding line will load specialized GDB macros, which will help you examine the state of the
target system’s kernel. You can, for example, dump a list of running tasks or threads. Type help kgm to
get a full list of available macros.

To attach to the target, use the following:

(gdb) target remote-kdp
(gdb) attach 192.168.1.1
Connected.
(gdb)

The preceding will attach to the remote target so we can begin our debugging session. We can then
start issuing commands, for example, bt to get a stack trace, which will look something like the
following:

#0 Debugger (message=0xba97e4 "Button SCI") at /SourceCache/xnu/xnu-
1504.15.3/osfmk/i386/AT386/model_dep.c:867
#1 0x00ba8de3 in ?? ()
#2 0x00556636 in IOFilterInterruptEventSource::normalInterruptOccurred (this=0x4eab980) at
/SourceCache/xnu/xnu-1504.15.3/iokit/Kernel/IOFilterInterruptEventSource.cpp:140
#3 0x00b73a50 in ?? ()
#4 0x00b72ccd in ?? ()
#5 0x00b85fc5 in ?? ()
#6 0x00b89621 in ?? ()
#7 0x0056ac20 in IOSharedInterruptController::handleInterrupt (this=0x4e9cd80,

w

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 16 DEBUGGING

395

nub=0x4e9cd80) at /SourceCache/xnu/xnu-1504.15.3/iokit/Kernel/IOInterruptController.cpp:727
#8 0x00bcf5bb in ?? ()
#9 0x00b66213 in ?? ()
#10 0x00b71911 in ?? ()
#11 0x00580d96 in PE_incoming_interrupt (interrupt=73) at /SourceCache/xnu/xnu-
1504.15.3/pexpert/i386/pe_interrupt.c:65
#12 0x002ab432 in interrupt (state=0x4e9dd20) at /SourceCache/xnu/xnu-
1504.15.3/osfmk/i386/trap.c:511
#13 0x002a1c2e in lo_allintrs () at cpu_data.h:397
#14 0x00225bba in processor_idle (thread=0x10bff0, processor=0x4cf0dac) at
/SourceCache/xnu/xnu-1504.15.3/osfmk/kern/sched_prim.c:2982
#15 0x0022698c in thread_select (thread=0x5e407a8, processor=<value temporarily unavailable,
due to optimizations>) at /SourceCache/xnu/xnu-1504.15.3/osfmk/kern/sched_prim.c:1327
#16 0x002275b0 in thread_block_reason (continuation=0, parameter=0x0, reason=<value
temporarily unavailable, due to optimizations>) at /SourceCache/xnu/xnu-
1504.15.3/osfmk/kern/sched_prim.c:1856
#17 0x00227654 in thread_block (continuation=0) at /SourceCache/xnu/xnu-
1504.15.3/osfmk/kern/sched_prim.c:1875
#18 0x464debbc in ?? ()

The command will show the kernel stack, which is the sequence of function calls the CPU was
executing at the time of the NMI event. We can see in this case that the last thing the system did before
we halted it was to respond to the NMI interrupt. If you are curious what the other CPUs (cores) were
doing at the time, you can issue the command showcurrentstacks, which will print a stack trace for each
CPU (core) in the system.

You can now set breakpoints or examine the state of the kernel. Issuing the continue command will
resume the kernel. We will look at how GDB can be used in more detail later in this chapter.

Debugging Using FireWire
In addition to Ethernet, the Kernel Debugging Protocol can also be used over FireWire, using the
FireWireKDP mechanism. The fwkdp tool can be used to help set the appropriate debug parameters, but
you can also set them manually. FireWireKDP is also compatible with logging over FireWire and can be
used to transmit core dumps to a remote system.

To configure FireWireKDP on the target system, you can do as follows:

$ sudo fwkdp --setargs
FireWire KDP Tool (v1.3)
Boot-args helper mode:
*** Would you like to enable kernel core dumps? y|[n] > y
Setting boot-args with 'sudo nvram boot-args="debug=0xd46 kdp_match_name=firewire
_panicd_ip=1.2.3.4"'
Setting boot-args... done.
Restart for the nvram changes to take effect.

■ Tip The manual (man) page for fwkdp has more info.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 16 DEBUGGING

396

On the host system, where you will run the debugger, you will need to run fwkdp as well. Be sure to
start it in proxy mode. Once that is done, you can use GDB to debug in the same way as with Ethernet.
The process of attaching to the remote target is nearly identical; the only major difference is that you
attach to localhost, not the target’s IP address. Once the target system is rebooted, you can enter the
debugger by pressing the power button to generate an NMI event as before, which should give the
following results on the target’s screen:

Debugger Called: <Button SCI>
Entering system dump routine
Attempting connection to panic server configured at 1.2.3.4 port 1069
AppleFWOHCI_KDP: Darwin Kernel Version 10.8.0: Tue Jun 7 16:33:36 PDT 2011; root:xnu-
1504.15.3~1/RELEASE_i386
AppleFWOHCI_KDP: v4.7.3 configured as KDP sender/receiver.
Recevied a debugger packet, transferring control to the debugger
Transmitting packets to link level address: 00:1c:df:f7:e0:72
Kernel map size is 1187131392
Sending write request for core-xnu-1504.15.3-0.0.0.0-ff28cfb5
Kernel map has 850 entries
Generated Mach-O header size was 79932
Transmitting kernel state, please wait: ……
Total number of packets transmitted: 502848
Waiting for remote debugger connection.
Connected to remote debugger.

If all goes well, the fwkdp proxy running on the host will download the core file to its working
directory. The core dump in the preceding example was named core-xnu-1504.15.3-0.0.0.0-ff28cfb5.
After the core is downloaded, the remote system will wait for a debugger to be attached.

Live Debugging of a Running Kernel
A less known but powerful feature available in Mac OS X (since version 10.5) is the ability to attach the
debugger to a running system. Live debugging requires you to enable support for the /dev/kmem
character device file, which allows a user space process to read and write to the kernel’s memory address
space. You can enable support for /dev/kmem with the following command:

$ sudo nvram boot-args=”kmem=1”

■ Note The preceding command will clear existing boot arguments, so you would need to add this in addition to
any other arguments you want, for example, to enable remote debugging or FireWire logging.

You can test if it worked by checking that the /dev/kmem file is present after a reboot. The process of
attaching to the live kernel is similar to that of attaching to a remote target. The steps are as follows:

$ sudo gdb /Volumes/KernelDebugKit/mach_kernel

(gdb) target darwin-kernel

CHAPTER 16 DEBUGGING

397

(gdb) source /Volumes/KernelDebugKit/kgmacros

Loading Kernel GDB Macros package. Type "help kgm" for more info.

(gdb) attach
Connected.

At this point, you can examine the state of the kernel, for example, using the showcurrentthreads
command.

Live debugging is useful in a number of cases, for example, if an application using your driver hangs
in the kernel while executing a user client method. You can attach to the kernel and find out where the
issue is. You can also examine the memory of your driver and its data structures. Live debugging can
only be used when the system is operational and cannot be used to debug a crashed or deadlocked
system.

Debugging Using a Virtual Machine
If you do not have a second machine available, it is possible to perform kernel debugging using a virtual
machine. Software such as VMWare Fusion or Parallels desktop allows another copy of Mac OS X to run
virtualized. Enabling the kernel debug features on the virtual machine can be done by putting the
desired boot arguments in the/Library/Preferences/SystemConfiguration/com.apple.Boot.plist.
Debugging hardware drivers may not be possible under a virtual machine, as you cannot use PCI or
Thunderbolt devices directly under a virtual machine. However, it is possible to assign USB devices to a
virtual machine instance. Mac OS X Lion is able to run as a virtualized instance, however, prior to that,
only the server version of Mac OS X could be virtualized.

Debugging in the Kernel Using GDB
There are several ways GDB can be used to debug the kernel or KEXTs loaded into it, such as:

• Remotely over Ethernet

• Remotely over FireWire

• On a captured core dump file

• On a Live live system

• Using a virtual machine

Additionally, a kernel can drop into the debugger in the following ways:

• Because of a kernel panic

• Manually triggered NMI event

• Because the DB_HALT option was set to halt the system at boot and enter the
debugger

• Programmatically in code by calling the PE_enter_debugger() function

Programmatically entering the debugger is only possible with a remote debugging setup; live
debugging cannot occur during boot, when the system is crashed, or halted with an NMI event, nor
programmatically, as this stops the system until a remote debugger is attached and thereby the gdb
instance running the debugging session as well.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 16 DEBUGGING

398

Kernel GDB Macros
The Kernel Debug Kit comes with a wealth of helpful GDB macro functions, which greatly simplify the
task of examining the kernel. The macros can help interpret common kernel data structures, such as task
and thread descriptors, and memory-related data structures, such as VM maps. Furthermore, it provides
functions for accessing PCI configuration space, I/O space, and un-translated access to physical
memory. A small subset of available macros is shown in Table 16-3.

Table 16-3. Useful Kernel GDB Macros

Name Description

showalltasks Displays a list of all system tasks

showallthreads Displays a list of all system threads

showallstacks Prints stack trace for every single thread (be prepared for a
massive amount of data)

showallkmods Displays list of all loaded KEXTs and the addresses where they are
loaded in memory

showallclasses Shows all known classes, their size, and instance count

showregistry Dumps the I/O Registry information to screen (similar to ioreg)

paniclog Shows the panic log

systemlog Shows the kernel log

showcurrentstacks Shows the task/thread executing on each processor and stack
trace

hexdump Dumps HEX/ASCII from a memory address

pci_cfg_(read|write)(8|16|32) Allows you to examine the state of a PCI device

Creating Symbol Information for KEXTs
Before you can debug your own KEXTs in GDB, you need to generate symbol information for the KEXT.
Because a KEXT is dynamically loadable, we have no way of knowing where in memory it will be located.
Although our KEXT includes symbol information, the addresses of functions and data are relative to the
KEXT binary. The absolute address of a function in a KEXT will be the kernel_load_address +
relative_address once the KEXT is loaded.

Fortunately, the Kernel Debug Kit gives us a helping hand by providing a small script that helps
generate the final symbol table containing the absolute addresses within the kernel address space. The
script is called createsymbolfiles and can be used as follows:

CHAPTER 16 DEBUGGING

399

$ /Volumes/KernelDebugKit/createsymbolfiles -a i386 -s ./ MyDebugDriver.kext
MyDebugDriver.kext appears to be loadable (not including linkage for on-disk libraries).

Enter the hexadecimal load addresses for these extensions
(press Return to skip symbol generation for an extension):

com.osxkernel.MyDebugDriver: 0x9b9000

The load address can be found in several places, for example, with kextstat, as follows:

$ kextstat
Index Refs Address Size Wired Name (Version) <Linked Against>
 126 0 0x9b9000 0x3000 0x2000 com.osxkernel.MyDebugDriver (1) <5 4 3>

In the preceding case, the KEXT had no additional dependencies; however, in a real world situation,
a KEXT may have dependencies on one or more other KEXTs, such as an I/O Kit family, in which case
you will be prompted to enter their addresses as well. If you are debugging a crash dump from a remote
system or directly debugging a crashed system, the load address of your extension and any
dependencies will be found in the panic log if your extension was involved in the crash. Note that your
KEXT may be given a different address each time it loads, so you will need to regenerate the symbol
information each time.

The above is enough to get us basic symbol information, but it is restricted to symbolic names of
functions only and is not able to give us source code line information. You can get this by configuring
your extension’s debug information format, as shown in Figure 16-2.

Figure 16-2. Setting the debug information format with Xcode

DWARF with dSYM creates a separate file for you containing a full set of symbols and information
needed to map a code location back to a source code line. This information is normally embedded into
an executable when doing a debug build; however, you can generate that information in an external file
for release builds of the driver. It is good practice to archive this debug information for later use. This will
make debugging easier if crashes should be reported by a user. The dSYM file (actually bundle) will be

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 16 DEBUGGING

400

named MyDebugDriver.kext.dSYM in our case. The dSYM bundle should be placed together with the
KEXT before the createsymbolfiles script is run.

Debugging KEXTs with GDB
In the following sections, we will analyze a crash caused by a hypothetical driver named
MyDebugDriver. The header file specification for MyDebugDriver is shown in Listing 16-4.

Listing 16-4. MyDebugDriver Header File

class com_osxkernel_MyDebugDriver : public IOService
{
 OSDeclareDefaultStructors(com_osxkernel_MyDebugDriver);
public:
 virtual bool init(OSDictionary* dict);
 virtual bool start(IOService* provider);
 virtual void stop(IOService* provider);

 void testFunc1(UInt32 arg1, UInt32 arg2, UInt32 arg3, UInt32 arg4);
 void testFunc2(UInt32 arg1, UInt32 arg2, UInt32 arg3, UInt32 arg4);
 void testFunc3(UInt32 arg1, UInt32 arg2, UInt32 arg3, UInt32 arg4);

 static void timerFired(OSObject* owner, IOTimerEventSource* sender);
private:

 IOTimerEventSource* fTimer;
 int fVariable1;
 int fVariable2;
};

The driver starts a timer, from which testFunc1() is called, which in turn calls testFunc2(), which
calls testFunc3(), which causes a kernel panic due to a null pointer dereference. Each function accepts
four integers that have no significance (picked randomly) and are passed unchanged from the first
function to the last. The values passed as arguments are 65261, 48879, 0, and 5380.

We have successfully generated a core dump from a crash system using the FireWire core dump
mechanism and previously, we built symbol information for our driver using the correct load address.
We are now ready to load it up in the GDB and get our hands dirty. The steps we need to perform to find
the bug in our driver are as follows:

• Create a symbol file with the correct load address (see the last section)

• Start GDB and load the core dump

• Add symbol information from the kernel

• Load Kernel Debug Kit GDB macros

• Load our KEXT binary of MyDebugDriver into GDB

• Load symbol information for MyDebugDriver (if GDB cannot find them in the
same location as the KEXT)

• Tell GDB the location of the source code for MyDebugDriver (optional)

CHAPTER 16 DEBUGGING

401

Following is a complete debug session for MyDebugDriver:

$ gdb -c core-xnu-1504.15.3-0.0.0.0-fb3a74d3
GNU gdb 6.3.50-20050815 (Apple version gdb-1704) (Thu Jun 23 10:48:29 UTC 2011)
…
This GDB was configured as "x86_64-apple-darwin".
#0 0x002b1e3e in ?? ()
(gdb) add-symbol-file /Volumes/KernelDebugKit/mach_kernel
add symbol table from file "/Volumes/KernelDebugKit/mach_kernel"? (y or n) y
Reading symbols from /Volumes/KernelDebugKit/mach_kernel...Reading symbols from
/Volumes/KernelDebugKit/mach_kernel.dSYM/Contents/Resources/DWARF/mach_kernel...done.
done.
(gdb) source /Volumes/KernelDebugKit/kgmacros
Loading Kernel GDB Macros package. Type "help kgm" for more info.

The preceding sequence of commands loads the core dump file, adds symbol information for the
kernel from the Kernel Debug Kit, and finally loads the GDB macros, which must be loaded after the
kernel symbol information to initialize properly.

We can now issue the backtrace command to see where the system crashed, as follows:

(gdb) backtrace
#0 0x002b1e3e in Debugger (message=0x5dd7fc "panic")
#1 0x0021b837 in panic (str=0x59e3d0 "Kernel trap at 0x%08x, type %d=%s, registers:\nCR0:
0x%08x, CR2: 0x%08x, CR3: 0x%08x, CR4: 0x%08x\nEAX: 0x%08x, EBX: 0x%08x, ECX: 0x%08x, EDX:
0x%08x\nCR2: 0x%08x, EBP: 0x%08x, ESI: 0x%08x, EDI: 0x%08x\nE"...) at /SourceCache/xnu/xnu-
1504.15.3/osfmk/kern/debug.c:303
#2 0x002abf6a in panic_trap [inlined] () at :1052
#3 0x002abf6a in kernel_trap (state=0x46ee3e10) at /SourceCache/xnu/xnu-
1504.15.3/osfmk/i386/trap.c:1001
#4 0x002a1a78 in trap_from_kernel () at cpu_data.h:397
#5 0x009ba0b7 in last_kernel_symbol ()
#6 0x009ba356 in last_kernel_symbol ()
#7 0x009ba3b8 in last_kernel_symbol ()
#8 0x009ba45b in last_kernel_symbol ()
#9 0x005571d5 in IOTimerEventSource::timeoutAndRelease (self=0x2a17b0, c=0x5022071) at
/SourceCache/xnu/xnu-1504.15.3/iokit/Kernel/IOTimerEventSource.cpp:122
#10 0x00230235 in thread_call_thread (group=0x863ea0) at /SourceCache/xnu/xnu-
1504.15.3/osfmk/kern/thread_call.c:848

Because we have not yet loaded our KEXT, symbols #5–#8 are showing up as bogus, as the debugger
is unable to resolve the addresses of the functions to their symbolic names. To fix this, we will load the
MyDebugDriver KEXT into GDB along with its symbol information, as follows:

(gdb) add-kext MyDebugDriver.kext
Reading symbols from com.osxkernel.MyDebugDriver.sym...Reading symbols from
MyDebugDriver.kext.dSYM/Contents/Resources/DWARF/MyDebugDriver...done.
(gdb) directory MyDebugDriver/
Source directories searched: MyDebugDriver:$cdir:$cwd

We have now loaded the driver along with its symbol information and informed GDB of the location
where it should look for the source code of MyDebugDriver. The location of the kernel’s own source
code is hard wired into the debug kernel image. If you wish to show the source code in GDB, you need to
create a symlink for the location where you downloaded the XNU source to the directory: /SourceCache/.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 16 DEBUGGING

402

Let’s try the backtrace command again with the KEXT and symbols loaded, as follows:

(gdb) backtrace
…
#5 0x009ba0b7 in com_osxkernel_MyDebugDriver::testFunc3 (this=0x4e80f80, arg1=65261,
arg2=48879, arg3=0, arg4=5380) at MyDebugDriver.cpp:14
#6 0x009ba356 in com_osxkernel_MyDebugDriver::testFunc2 (this=0x4e80f80, arg1=65261,
arg2=48879, arg3=0, arg4=5380) at MyDebugDriver.cpp:21
#7 0x009ba3b8 in com_osxkernel_MyDebugDriver::testFunc1 (this=0x4e80f80, arg1=65261,
arg2=48879, arg3=0, arg4=5380) at MyDebugDriver.cpp:27
#8 0x009ba45b in com_osxkernel_MyDebugDriver::timerFired (owner=0x4e80f80, sender=0xb63adc0)
at MyDebugDriver.cpp:64
…

That’s much more readable. We have now identified the exact call stack and we can see which
methods in our in our driver that was involved, down to the file and line number. We can also see the
arguments that were passed to the methods and that they correspond to the values we picked earlier.
Let’s examine the crash further by jumping to the fifth stack frame, the location where the crash
occurred, as follows:

(gdb) frame 5
#5 0x009ba0b7 in com_osxkernel_MyDebugDriver::testFunc3 (this=0x4e80f80, arg1=65261,
arg2=48879, arg3=0, arg4=5380) at MyDebugDriver.cpp:14
14 thisWillNotWork->fVariable1 = arg3;
Current language: auto; currently c++
(gdb) print thisWillNotWork
$1 = (com_osxkernel_MyDebugDriver *) 0x0

I think we found the problem! We are trying to assign a value to the member variable fVariable1 but
the object is not initialized. We can also list the source code of testFunc3(), as follows:

(gdb) list com_osxkernel_MyDebugDriver::testFunc3,15
9 void com_osxkernel_MyDebugDriver::testFunc3(UInt32 arg1, UInt32 arg2, UInt32 arg3,
UInt32 arg4)
10 {
11 if (arg3 == 0)
12 {
13 com_osxkernel_MyDebugDriver *thisWillNotWork = NULL;
14 thisWillNotWork->fVariable1 = arg3;
15 }

Well, that would never work! We have found our bug, which appears to be triggered only when the
third argument passed is set to zero.

If you only have symbol information and lack the debug information required to map addresses to a
specific source code location, you can use the disassemble command in GDB to show a dump
disassembly of the method from its address. Let’s look at the disassembly of testFunc3(), as follows:

(gdb) disassemble 0x009ba0b7
…
0x009ba09f <testFunc3Emmmm+35>: mov %eax,-0x1c(%ebp)
0x009ba0a2 <testFunc3Emmmm+38>: mov -0x18(%ebp),%eax
0x009ba0a5 <testFunc3Emmmm+41>: cmp $0x0,%eax
0x009ba0a8 <testFunc3Emmmm+44>: jne 0x9ba0ba <testFunc3Emmmm+62>
0x009ba0aa <testFunc3Emmmm+46>: movl $0x0,-0x20(%ebp)

CHAPTER 16 DEBUGGING

403

0x009ba0b1 <testFunc3Emmmm+53>: mov -0x18(%ebp),%eax
0x009ba0b4 <testFunc3Emmmm+56>: mov -0x20(%ebp),%ecx
0x009ba0b7 <testFunc3Emmmm+59>: mov %eax,0x54(%ecx)
0x009ba0ba <testFunc3Emmmm+62>: add $0x18,%esp
...

While this looks very uninviting if you are not familiar with assembly, you will be able to infer a
number of things by comparing the disassembly to the original source code. For example, the cmp
instruction compares the value of the eax register against the constant value $0x0, which we can
correctly guess corresponds to the if statement on line 11.

Although we have already found the source of the problem, let’s pretend for a moment we are
curious as to why a zero value was passed for the third argument. Perhaps our driver used an internal
state to calculate the value passed to testFunc3(). In this case, we could continue our examination by
looking at the state of the driver was in at the time of the crash. Because testFunc3() is a member
method of the com_osxkernel_MyDebugDriver, we know that a pointer to the class instance is always
passed automatically to the member function as the this pointer. We can dereference the this pointer
address from the previous stack trace as follows:

(gdb) print *(com_osxkernel_MyDebugDriver*)0x4e80f80
$9 = {
 <IOService> = {
 <IORegistryEntry> = {
 <OSObject> = {
 <OSMetaClassBase> = {
 _vptr$OSMetaClassBase = 0x9baa00
 },
 members of OSObject:
 retainCount = 65537
 },
 members of IORegistryEntry:
 reserved = 0x4e71a40,
 fRegistryTable = 0xb693800,
 fPropertyTable = 0x503a400
 },
 members of IOService:
 reserved = 0x0,
 __provider = 0x4d17f00,
…….
 },
 members of com_osxkernel_MyDebugDriver:
 fTimer = 0xb63adc0,
 fVariable1 = 2,
 fVariable2 = 4,
 static gMetaClass = {
 <OSMetaClass> = {
 <OSMetaClassBase> = {
 _vptr$OSMetaClassBase = 0x9ba980
 },
 members of OSMetaClass:
 reserved = 0xb63ba00,
 superClassLink = 0x85fac8,
 className = 0x4e5b5a0,

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 16 DEBUGGING

404

 classSize = 92,
 instanceCount = 1
 }, <No data fields>},
 static metaClass = 0x9ba000,
 static superClass = 0x9ba020

We can now examine the internal state of our driver instance and we can see the values of its
member variables fVariable1 and fVariable2. We can also see how many instances of our class exist
from the meta class information and determine the retain count of the driver.

Understanding Kernel Panic Logs
A panic log can be found in the /Library/Logs/DiagnosticReports/ directory after a crash or can be
obtained by extracting it from a core dump or a remote GDB session to a crashed target. As a kernel
programmer, you might be expected to analyze kernel panic logs sent from customers’ computers,
which you will rarely have, physical access to. Furthermore, the customer may be reluctant or unable to
assist you in getting a core dump. It is therefore vital to be able to understand and extract as much
information as possible from the logs. Let’s start to look at the panic log and what information we can
extract from it. A panic log for the MyDebugDriver crash discussed in the previous sections is shown in
Listing 16-5.

Listing 16-5. Panic Log from MyDebugDriver Crash

panic(cpu 1 caller 0xffffff80002c268d): Kernel trap at 0xffffff7f81345570, type 14=page fault,
registers:
CR0: 0x000000008001003b, CR2: 0x0000000000000090, CR3: 0x0000000000100000, CR4:
0x0000000000000660
RAX: 0x0000000000000000, RBX: 0x0000000000000000, RCX: 0x0000000000000000, RDX:
0x000000000000beef
RSP: 0xffffff808e973e80, RBP: 0xffffff808e973ea0, RSI: 0x000000000000feed, RDI:
0xffffff801ab61100
R8: 0x0000000000001504, R9: 0x000000000000beef, R10: 0x0000000000000000, R11:
0x0000000000001504
R12: 0xffffff7f8134591a, R13: 0xffffff800c81d200, R14: 0xffffff800c81d200, R15:
0xffffff800b735880
RFL: 0x0000000000010246, RIP: 0xffffff7f81345570, CS: 0x0000000000000008, SS:
0x0000000000000010
CR2: 0x0000000000000090, Error code: 0x0000000000000002, Faulting CPU: 0x1

Backtrace (CPU 1), Frame : Return Address
0xffffff808e973b40 : 0xffffff8000220702
0xffffff808e973bc0 : 0xffffff80002c268d
0xffffff808e973d60 : 0xffffff80002d7a3d
0xffffff808e973d80 : 0xffffff7f81345570
0xffffff808e973ea0 : 0xffffff7f813458b6
0xffffff808e973ed0 : 0xffffff7f81345914
0xffffff808e973f00 : 0xffffff7f813459f4
0xffffff808e973f40 : 0xffffff800063bc61
0xffffff808e973f70 : 0xffffff800023dafc
0xffffff808e973fb0 : 0xffffff8000820057
 Kernel Extensions in backtrace:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 16 DEBUGGING

405

 com.osxkernel.MyDebugDriver(1.0)[FF6F45C8-68F8-3150-9C43-
99A2F19B3FB1]@0xffffff7f81345000->0xffffff7f81348fff

BSD process name corresponding to current thread: kernel_task
Boot args: debug=0xd44 _panicd_ip=192.168.1.1 panicd_ip=192.168.1.1

Mac OS version:
11A511

Kernel version:
Darwin Kernel Version 11.0.0: Sat Jun 18 12:56:35 PDT 2011; root:xnu-
1699.22.73~1/RELEASE_X86_64
Kernel UUID: 24CC17EB-30B0-3F6C-907F-1A9B2057AF78
System model name: MacBook5,1 (Mac-F42D89C8)

System uptime in nanoseconds: 200305435891999
last loaded kext at 200285007562702: com.osxkernel.MyDebugDriver 1 (addr 0xffffff7f81345000,
size 16384)
last unloaded kext at 187374587106276: com.apple.driver.AppleUSBCDC 4.1.15 (addr
0xffffff7f8133d000, size 12288)
loaded kexts:
com.osxkernel.MyDebugDriver 1
com.apple.driver.AppleUSBDisplays 302.1.2
com.apple.driver.AppleIntelProfile 83
com.apple.filesystems.afpfs 9.8

The panic log in Listing 16-5 was generated on a different system than before. This system is
running a newer version of Mac OS X Lion, which only runs the 64-bit version of the kernel. The panic
log consists of the following elements:

• The type of panic/problem that occurred and the CPU (core) number it occurred
on

• A dump of the CPU state (register values)

• Back trace of what the CPU was doing at the time of the crash

• Kernel extensions involved in the crash and their dependencies (none above)

• The name of the process (task) that caused the crash

• Kernel build and version numbers

• System model

• Information about recently loaded/unloaded KEXTs

• A complete list of KEXTs loaded

The first thing you may notice is that the panic was caused by a page fault, which gives us a clue
about what to look for later in our code. It is often useful to look at the task that caused the problem as
well. In this case, our driver was executing in kernel context (kernel_task) when the crash occurred and
not on the behalf of a user space thread.

First let’s look at the back race and try to prove that our driver was indeed involved. There is a very
good chance that it was, as our driver is listed as being part of the back trace. You will also notice two

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 16 DEBUGGING

406

addresses after our driver: 0xffffff7f81345000->0xffffff7f81348fff. This is the load address where the
instructions and data for our KEXT were loaded into the kernel’s address space. To determine which
functions on the stack belong to our driver, we can simply look for addresses on the stack that are within
that range. Four addresses can be identified—0xffffff7f81345570, 0xffffff7f813458b6, 0xffffff7f81345914,
and 0xffffff7f813459f4.

We already know from earlier that they will most likely correspond to testFunc3(), testFunc2(),
testFunc1(), and timerFired().

■ Tip In the previous back trace, the first address in the column is the address of the stack frame entry, while the
second address is the return address, which is the point where execution returns to when the previous function
call completes. It’s the return address that is interesting to us in this case. You may notice that the stack frame
addresses contain increasing addresses and are all within a single page in this case. If the values look random and
all over the place, it is likely the stack frame has been corrupted and the back trace may then be useless as the
information cannot be trusted.

Assuming we had no clue what functions the addresses corresponded to within our driver, we can
employ a simple trick. By simply subtracting the address of one of the functions from the load address,
we can determine the offset of the function in the executable image of the driver, as follows:

0xffffff7f81345570 - 0xffffff7f81345000 = 1392 bytes

We now know that the function is 1392 bytes from the start of the KEXT and assuming we have the
executable image (the exact version and build that was involved in the crash) of the driver available, we
can do the following:

$ gdb MyDebugDriver.kext/Contents/MacOS/MyDebugDriver
GNU gdb 6.3.50-20050815 (Apple version gdb-1704) (Thu Jun 23 10:48:29 UTC 2011)
This GDB was configured as "x86_64-apple-darwin"...
(gdb) disassemble 1392
Dump of assembler code for function _ZN27com_osxkernel_MyDebugDriver9testFunc3Ejjjj:
0x0000000000000540 <testFunc3Ejjjj+0>: push %rbp
0x0000000000000541 <testFunc3Ejjjj+1>: mov %rsp,%rbp
0x0000000000000544 <testFunc3Ejjjj+4>: sub $0x20,%rsp
0x0000000000000548 <testFunc3Ejjjj+8>: mov %rdi,-0x8(%rbp)
0x000000000000054c <testFunc3Ejjjj+12>: mov %esi,-0xc(%rbp)
0x000000000000054f <testFunc3Ejjjj+15>: mov %edx,-0x10(%rbp)
0x0000000000000552 <testFunc3Ejjjj+18>: mov %ecx,-0x14(%rbp)
0x0000000000000555 <testFunc3Ejjjj+21>: mov %r8d,-0x18(%rbp)
0x0000000000000559 <testFunc3Ejjjj+25>: mov -0x14(%rbp),%eax
0x000000000000055c <testFunc3Ejjjj+28>: cmp $0x0,%eax
0x000000000000055f <testFunc3Ejjjj+31>: jne 0x576
<_ZN27com_osxkernel_MyDebugDriver9testFunc3Ejjjj+54>
…
End of assembler dump.
(gdb) info line *1392

CHAPTER 16 DEBUGGING

407

Line 14 of "MyDebugDriver.cpp" starts at address 0x569
<_ZN27com_osxkernel_MyDebugDriver9testFunc3Ejjjj+41> and ends at 0x576
<_ZN27com_osxkernel_MyDebugDriver9testFunc3Ejjjj+54>.

And we have found the location of the crash! A full description of CPU registers is outside the scope
of this book, but suffice it to say they contain a wealth of useful information. We will discuss how we can
use register information to retrieve function arguments in the next section. The processor in the panic
log was running in 64-bit mode. The x86_64 has a larger amount of registers available than i386 systems,
and local variables are usually passed in general purpose registers instead of the stack.

■ Tip Technical Note 2063 discusses how to debug and understand kernel panics in much more detail and
includes debugging panic logs from PowerPC systems:
http://developer.apple.com/library/mac/#technotes/tn2063/_index.html.

x86-64 Calling Conventions
A calling convention is a scheme for how functions are passed their arguments. The calling convention
depends on the programming language, operating system, architecture, and compiler. Understanding
the calling convention used can help us decode the register state when a crash occurs. For example, on
Mac OS X running a 64-bit executable or kernel, the System V AMD64 ABI convention is used (note that
Windows uses a different calling convention, so the register usage will be different). On Mac OS X for a
64-bit task, the register assignments for function call arguments are shown in Table 16-4.

Table 16-4. Register Usage for Function Paramters on x86_64

Argument Register

First argument RDI

Second argument RSI

Third argument RDX

Fourth argument RCX

Fifth argument R8

Sixth argument R9

Vector/Floating Point arguments 0–7 XMM0–XMM7

If a function takes more than six arguments, the remaining arguments will be passed on the stack.

One thing to consider when examining C++ code is that a non-static C++ member method always passes
the this pointer as the first argument, so the actual first argument to the method is passed in RDI
whereas the this pointer will be put in the register RSI.

www.allitebooks.com

http://developer.apple.com/library/mac/#technotes/tn2063/_index.html
http://www.allitebooks.org

CHAPTER 16 DEBUGGING

408

Let’s look at the registers in the panic log shown in Listing 16-5 and see if we can work out which
arguments were passed to our function by examining the register state, as follows:

• RDI: 0xffffff801ab61100 (this pointer)

• RSI: 0x000000000000feed (decimal = 65261)

• RDX: 0x000000000000beef (decimal = 48879)

• RCX: 0x0000000000000000 (decimal = 0)

• R8: 0x0000000000001504 (decimal = 5380)

As you can see, the register contents from Listing 16-5 match exactly the four arguments passed to
testFunc3(): 65261, 48879, 0, and 5380. We can also see that the first argument looks like a pointer and is
likely to be the this pointer representing the current instance of MyDebugDriver.

Assuming testFunc3() was a longer and more complicated method and that the crash happened
further down in the function, it is possible that the registers may have been reused and overwritten at
the point of the crash. In that case, you may not be able to recover the original values of the arguments.

Diagnosing Hung Processes with Activity Monitor
The Mac OS X activity monitor shown in Figure 16-3 can be helpful in diagnosing kernel problems.

Figure 16-3. Sample process output from Acitivty Monitor

Any task shown in the Activity Monitor can be sampled (except the kernel_task), which will generate
call graphs for all the threads of that task during the sample period. This is useful from a kernel
debugging point of view in that you are able to see if a process has threads that are calling in to your

CHAPTER 16 DEBUGGING

409

driver through system calls like IOConnectCallMethod(). If a process is hung, force quitting it will start the
Crash Reporter, which will give you a more detailed log, including the kernel stack of a thread if it is
currently running in the kernel. The sample process function can also help you determine performance
issues and find where an application is spending the most time.

Finding Memory and Resource Leaks
Preventing memory and resource leaks is particularly important for extensions that can be dynamically
loaded and unloaded during runtime. A handy tool to detect leaks is the ioclasscount utility, which
shows the instance count of each known class (loaded into the kernel). Typical output will look like the
following:

CHUDUtils = 1
com_apple_AppleFSCompression_AppleFSCompressionTypeZlib = 1
com_apple_BootCache = 1
com_apple_driver_AudioIPCDevice = 1
com_apple_driver_AudioIPCEngine = 1
com_belkin_f2cd0007_adapter = 0
com_osxkernel_MyDebugDriver = 5
com_vmware_kext_KeyboardState = 1
com_vmware_kext_UsbDevice = 2
com_vmware_kext_UsbPortArbiter = 1
.....

It shows that our driver has been retained (retain()) five times. The driver’s free() function will
not be called until the retain count reaches zero, even if the hardware device it controls is removed. This
will prevent the kernel extension from being completely unloaded. The retain count typically increases
for each user space application that opens the driver, or it can increase because another driver or
ancillary support class used by the driver calls retain() on it. Failure to balance a call to retain() with a
call release() will result in a leak. The ioclasscount utility can be used without changes to kernel boot
parameters; it is not installed on a system by default, but is installed as part of the Xcode distribution. It
can be copied onto a system without Xcode for debugging purposes. A driver that has been unloaded
and has all references to it released (retain count = 0) will be unloaded by the kextd daemon. Although
the reference count has dropped to zero, it may take up to a minute for the KEXT to be fully unloaded.

If you are able to live debug the kernel using GDB, you can use macros such as showallclasses or
showregistry, as follows:

(gdb) showallclasses
…
1 x 84 bytes com_vmware_kext_VmmonService
2 x 80 bytes com_vmware_kext_UsbDevice
1 x 104 bytes com_vmware_kext_UsbPortArbiter
1 x 136 bytes com_vmware_kext_UsbPortArbiterUserClient
1 x 132 bytes com_vmware_kext_KeyboardState
1 x 92 bytes com_osxkernel_MyDebugDriver
....
(gdb) showregistry
...

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 16 DEBUGGING

410

 +-o com_osxkernel_MyDebugDriver <object 0x0703e680, id 0x1000007a9, vtable 0xcbc980,
!registered, !matched, active, busy 0, retain count 5>
...

■ Tip The zprint and showioalloc macros can further assist in tracking memory usage.

To further help debug reference counting bugs, it is possible to override
OSObject::taggedRetain(const void *tag) and OSObject::taggedRelease(const void *). For example,
print a message or print a back trace of the caller’s stack to help identify where the leak comes from.

Summary
• Some common problems are likely to occur in the kernel, such as deadlocks and

invalid memory accesses, which in turn can cause a kernel panic.

• A kernel panic is a defense mechanism against exceptional or erroneous
conditions the kernel cannot recover from. It basically disables the system in order
to prevent corruption of the file system or other file storage.

• Mac OS X provides a wide range of useful debugging mechanisms out of the box,
ranging from a simple tracing and logging mechanism to the built-in support for
remote kernel debugging.

• Mac OS X can be configured using the kdumpd to accept a core dump from a
remote system when it crashes (or if triggered manually). The core dump consists
of active/wired memory and can be loaded into GDB.

• The kernel can be debugged from a remote system over FireWire and Ethernet.
This mechanism is built in, but not activated by default. Remote debugging can be
enabled by setting the appropriate NVRAM parameters and flags.

• Apple usually provides a Kernel Debug Kit for each released build of Mac OS X.
The kit contains scripts, a debug version of the kernel, and I/O Kit family KEXTs.
The debug kit also contains macros for simplifying kernel debugging in GDB. The
macros allow you to get information about call stacks and examine the kernel’s
key data structures. The kernel can also be live debugged with GDB while running
from the same machine.

• To debug your own KEXT, you have to generate debugging symbols for it. Because
a KEXT is dynamically loaded in the kernel, we need to generate the correct
symbol addresses for a KEXT. The Kernel Debug Kit provides the
createsymbolfiles script to help with this.

• A kernel panic log contains a lot of useful information we can use to backtrack and
find the location that caused the crash.

• The ioclasscount tool tracks instance counts of classes in I/O Kit and can be used
to detect memory leaks or other problems.

C H A P T E R 17

411

Advanced Kernel Programming

This chapter covers miscellaneous topics that are of interest to more advanced kernel programmers.
We’ll discuss how Streaming SIMD Extensions (SSE) and floating point can be used in the kernel. (SIMD
is short for Single Input Multiple Data.) We will also examine strategies for dealing with drivers for multi-
function devices, and discuss the implementation of I/O Kit families. We’ll cover the kernel control KPI
that can be used for user space communication with KEXTs such as Network Kernel Extensions (NKE)
that does not use the I/O Kit. We also show how to work with and manipulate processes from the kernel,
such as getting the process identifier (PID) of a process and sending signals to the process. Some drivers
may need additional resources loaded from the file system, such as firmware images. This chapter
provides a discussion of how these resources can be loaded using the OSKextRequestResource() function.
The chapter concludes with a discussion of how a driver can send messages to a user space daemon
using notifications.

SSE and Floating Point in the Kernel
Streaming SIMD Extensions (SSE) is the successor to MMX and is a special instruction set found on most
modern Intel and AMD processors that allow common instructions such as add, multiply, and shift to be
performed on arrays (vectors) of values instead of single values (scalar). This can greatly speed up many
computation tasks, especially in areas such as digital signal processing, audio, graphics, and video.
Normally the kernel is not a great place to perform heavy computation, but there are some areas where it
is unavoidable—for example, in the case of audio drivers, which need to convert audio samples from
multiple user space applications and mix them into a single buffer for output. Software implementations
of the RAID-5 and RAID-6 algorithms are also examples of computations that may need to occur in the
kernel and which can be optimized using SSE.

Traditionally, SSE and floating point have been non-trivial for use in kernel environments. Some
operating systems, such as Linux, require you to explicitly save the floating point/SSE state and restore it
after use; otherwise, a thread’s floating point state may be overwritten. In Mac OS X, however, the kernel
is free to use both floating point and SSE without needing to manually save and restore the registers’
states. Normally, when a thread finishes its time-slice or is preempted in favor of another thread, the
state of the CPU registers at the time when the thread stopped executing is saved to memory and
subsequently restored when the thread continues execution. To optimize performance, the kernel only
stores the general-purpose registers and not the floating point and SSE registers, as they are less
frequently used. In fact, many programs will not use floating point or SSE at all. When a different thread
attempts to use the registers, the CPU issues an exception/trap, which will save the previous contents
and clear the registers for the new thread. When the orginal thread is about to resume execution, floating
point and/or SSE registers will be restored to the previous state.

There are two ways of using SSE:

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 17 ADVANCED KERNEL PROGRAMMING

412

• By directly using the CPU instructions through the use of assembly or inline
assembly.

• By using the intrinsic functions provided by GCC, which provides user-friendlier C
function wrappers around most instructions. For SSE2, these are provided in the
header file emmintrin.h, which is not part of the kernel framework. However, you
can copy the file and include it in your project. This is possible as the functions are
all inline and do not depend on any external libraries.

There are many revisions of the SSE instruction set. The latest major version is currently SSE4. Some
older systems may not support SSE4, which became available in 2007. Attempting to execute SSE4
instructions on a CPU that doesn’t support it will result in a kernel panic. To prevent this, you need to
provide run-time detection of the CPU’s capabilities prior to executing the SSE instructions, or target an
older version such as SSE2, which predates all Intel-based Macs.

Multi-Function Drivers
USB and PCI devices may be composite devices that include multiple independent devices in which
each device’s separate driver can handle each function. Other devices may consist of one logical device
handled by multiple drivers. Let’s consider a modern graphics card with an HDMI output port as an
example. HDMI is able to carry both audio and video, so it would be nice to provide an audio driver that
allowed the device to be used with Core Audio. The device is a graphics card, so the hardware doesn’t
have the typical DMA engine of most audio hardware. Instead, audio data is sent along with video
frames at regular vertical blanking intervals. This design means that the audio and video parts are
intimately linked and need a shared state between them in order to operate. Since there is no clear
separation, the driver can be structured as shown in Figure 17-1.

Figure 17-1. Multi-function driver

The design in Figure 17-1 uses a central driver, which coordinates the hardware and manages the
provider. The central driver is used for matching against the hardware provider. The central driver then
creates an audio driver based on the IOAudioFamily and a video/graphics driver based on the
IOGraphicsFamily. There are two ways of managing the relationship of the subordinate drivers to the
central driver:

• The central, audio, and video drivers can be in separate KEXTs. The central driver
matches against the hardware resource, whereas the audio and video drivers will
match against the central driver and use it as the provider.

• All drivers can be located in the same KEXT. The central driver would then need to
manage the lifecycle of the subordinated drivers manually.

CHAPTER 17 ADVANCED KERNEL PROGRAMMING

413

Writing I/O Kit Families
Until now we have looked at how to implement various forms of drivers, most of which interact with one
or more family. In some circumstances, you may want to implement a family instead of a driver—for
example, if you need to support a new bus technology or have a family of hardware devices that all
depend on the same infrastructure or general services. A family can be characterized and differentiated
from a driver by the following traits:

• A family usually consists of more than one IOService classes bundled together in a
KEXT providing related services.

• A family can be thought of as the kernel analog of a user space shared library.

• A driver has a dependency on a family, not the other way around.

• A family is not loaded directly; it is loaded because a driver has expressed a
dependency.

• A family does not have a matching dictionary and does not partake in either
passive or active matching.

• Just like any other KEXT, a family is installed under /System/Library/Extensions.

There is no special API or approach to writing a family. It is simply done in the same way as any
other driver. Apple recommends focusing on a good fundamental object-oriented design and allowing it
to evolve naturally, rather than specifically setting out to create a family. A driver can express a
dependency on a family (or any other KEXT) using the OSBundleLibraries key in its property list file. A
driver cannot be loaded and linked into the kernel until all dependencies have been resolved and loaded
first. The kextd daemon is responsible for performing this task. When a driver needs to be loaded, the
kextd daemon will examine the driver’s Info.plist file for its dependencies. If the Info.plist has
incorrectly specified or has failed to list some dependencies, this will result in a link failure and the driver
will not be loaded. In order to depend on a family, a driver has to list the family’s bundle ID—for
example, com.apple.iokit.IOAudioFamily—and version number—for example, 1.7.9fc8.

I/O Kit guarantees that a dependent family is loaded before the driver that depends on it, which is
necessary, otherwise symbols in the driver would be left unresolved.

Since many of Apple’s I/O Kit families are open-source code, it is possible to modify the families and
replace the original versions with modified version. This is not recommended, however, as the family
KEXT might be overwritten by a subsequent software update from Apple, which means that functionality
of the modified KEXT might be lost. In some situations, modifying a family by inserting additional
tracing might help you with debugging.

Extending a family is a better option than modifying it directly. Extending is easy, since most classes
in I/O Kit families declare their methods as virtual, even if the class itself is non-abstract. There are many
reasons why you might wish to do so. For example, if you were required to support a new type of USB
controller not supported by the IOUSBFamily, you could create your own IOUSBController subclass to
represent the new controller. The extended class can be compiled into the same KEXT as the driver that
needs it, or in your own library/family KEXT. The IONetworkingFamily and other families were designed
specifically to allow this form of extension.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 17 ADVANCED KERNEL PROGRAMMING

414

Kernel Control KPI
The kernel control interface <sys/kern_control.h> is a KPI, which allows a KEXT to communicate bi-
directionally with user space processes. The kernel control system lives in the BSD portion of the kernel
and is therefore written in C and not C++ (I/O Kit uses C++).

The KPI is intended to allow a user space program to control and configure a KEXT. For example,
let’s say you had implemented a custom firewall NKE (Network Kernel Extension). You could then use
the kernel control API to tell your firewall which addresses or ports it should block traffic from, as well as
retrieving logs and statistics.

The KPI is relatively simple to use in both kernel space and user space. In fact, there is no special API
required to use the kernel control mechanism for user space, because it is accessed via a regular socket.
The getsockopt() or setsockopt() system call functions can be used to issue control requests from user
space. The kernel control system may be compared to the ioctl() system call, but unlike the ioctl()
system call the kernel control system is better suited for transferring large amounts of data across the
kernel/user space boundary. Sending and receiving data are supported using the send() and recv()
system call functions from user space. In the kernel, data transfers are handled using the mbuf data
structure discussed earlier.

To use the kernel control interface, you must first register a new interface, which ensures that user
space clients can find it and connect to it. This is accomplished by declaring and filling out a C structure
containing callbacks for various events, as well as an identifying name. The C language is not object-
oriented, and therefore “objects” are often represented by structures containing data and function
pointers. The registration structure is shown in Listing 17-1.

Listing 17-1. The kern_ctl_reg Structure from <sys/kern_control.h>

struct kern_ctl_reg
{
 /* control information */
 char ctl_name[MAX_KCTL_NAME];
 u_int32_t ctl_id;
 u_int32_t ctl_unit;
 /* control settings */
 u_int32_t ctl_flags;
 u_int32_t ctl_sendsize;
 u_int32_t ctl_recvsize;
 /* Dispatch functions */
 ctl_connect_func ctl_connect;
 ctl_disconnect_func ctl_disconnect;
 ctl_send_func ctl_send;
 ctl_setopt_func ctl_setopt;
 ctl_getopt_func ctl_getopt;
};

Let’s look at the fields of the structure in more detail:

• The ctl_name should be set to the bundle ID for the KEXT.

• The ctl_id field is used for additional addressing because a KEXT may have
several kernel controls registered at once. The ctl_id field can be dynamically
registered or assigned by Apple’s developer technical support (DTS).

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 17 ADVANCED KERNEL PROGRAMMING

415

• The ctl_unit field is used only with a DTS-assigned ID. There are only two flags
for the ctl_flags. The first is CTL_FLAG_PRIVILEGED, which if set means that a user
space program must have root privileges in order to connect to the kernel control.
The second flag is CTL_FLAG_REG_ID_UNIT, which should be set if using a DTS
assigned ID.

• The ctl_sendsize and ctl_recvsize fields can be used to tune the size of the send
and receive buffers for sending data using send() and recv().

The remaining fields are function pointers, which will be called when their corresponding events
occur:

• The ctl_connect and ctl_disconnect callbacks will be called when a user space
client connects or disconnects.

• The ctl_setopt and ctl_getopt callbacks are invoked when a client uses the
setsockopt() or getsockopt() functions. These are often used to get or set
configuration parameters. The next callback is ctl_send, which may be a bit
confusing, as it’s used not to send data but to receive data from a sending client.
To actually send data, use the ctl_enqueuedata() function.

Kernel Control Registration
Let’s look at an example (HelloKernControl) of how a kernel control interface is used. In this example,
you will implement a very minimal kernel control with one get and one set operation. The get operation
returns a string stored in the kernel. The set operation overwrites this string so that subsequent get
operations return the new string instead. The following is an example of a filled out kernel control
registration structure:

static struct kern_ctl_reg g_kern_ctl_reg = {
 "com.osxkernel.HelloKernControl",
 0,
 0,
 CTL_FLAG_PRIVILEGED,
 0,
 0,
 hello_ctl_connect,
 hello_ctl_disconnect,
 NULL,
 hello_ctl_set,
 hello_ctl_get
};

We use a dynamically assigned ID and specify that our kernel control will be accessible only by
privileged clients (root). We defined four callbacks, but we leave the ctl_send callback as NULL because
we don’t support it in this example. The following is the code used to register and deregister the kernel
control:

static boolean_t g_filter_registered = FALSE;
static kern_ctl_ref g_ctl_ref;

kern_return_t HelloKernControl_start (kmod_info_t* ki, void* d)

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 17 ADVANCED KERNEL PROGRAMMING

416

{
 strncpy(g_string_buf, DEFAULT_STRING, strlen(DEFAULT_STRING));

 /* Register the control */
 int ret = ctl_register(&g_kern_ctl_reg, &g_ctl_ref);

 if (ret == KERN_SUCCESS)
 {
 g_filter_registered = TRUE;
 return KERN_SUCCESS;
 }
 return KERN_FAILURE;
}

kern_return_t HelloKernControl_stop (kmod_info_t* ki, void* d)
{
 if (g_clients_connected != 0)
 return KERN_FAILURE;

 if (g_filter_registered)
 ctl_deregister(g_ctl_ref);

 return KERN_SUCCESS;
}

You register the interface in the KEXT’s start() function and deregister it in the stop() function,
which will be called before the KEXT is unloaded. Because a kernel control often shares some data with
user space, it is necessary to define a shared header file to store common declarations used by both the
kernel and user space. The shared header file for HelloKernControl is shown in the following example:

#ifndef HelloKernControl_HelloKernControl_h
#define HelloKernControl_HelloKernControl_h

#define BUNDLE_ID "com.osxkernel.HelloKernControl"

#define HELLO_CONTROL_GET_STRING 1
#define HELLO_CONTROL_SET_STRING 2

#define DEFAULT_STRING "Hello World"
#define MAX_STRING_LEN 256

#endif

Client Connections
The following are the implementation of the connect and disconnect callbacks:

static int hello_ctl_connect(kern_ctl_ref ctl_ref, struct sockaddr_ctl *sac, void** unitinfo)
{
 printf("process with pid=%d connected\n", proc_selfpid());
 return 0;
}

CHAPTER 17 ADVANCED KERNEL PROGRAMMING

417

static errno_t hello_ctl_disconnect(kern_ctl_ref ctl_ref, u_int32_t unit, void* unitinfo)
{
 printf("process with pid=%d disconnected\n", proc_selfpid());
 return 0;
}

In the preceding example the hello_ctl_connect() function, logs the PID of the client that opened
the kernel control. It is often necessary to maintain some per-client data structure. The data structure
should be assigned to the unitinfo parameter—for example: *uinitinfo = myStructure;. The structure
can now be retrieved in other callbacks. If you allocate memory when the client connects, you should
free the memory in the disconnect callback. If you wish to refuse a client—for example, because only
one client is allowed at a time, or the maximum number of clients is already connected—you can simply
return an error code, such as EBUSY or EPERM.

Getting and Setting Options
Once a client is successfully connected, it can start issuing get/set option requests to the
kernel control. The implementation of the control get function is as follows:

static int hello_ctl_get(kern_ctl_ref ctl_ref, u_int32_t unit, void *unitinfo, int opt,
 void *data, size_t *len)
{
 int ret = 0;
 switch (opt) {
 case HELLO_CONTROL_GET_STRING:
 *len = min(MAX_STRING_LEN, *len);
 strncpy(data, g_string_buf, *len);
 break;
 default:
 ret = ENOTSUP;
 break;
 }
 return ret;
}

The opt argument comes from the client and specifies which option the client is interested in. A
common approach is to create a shared header file, which contains option definitions that are shared
between the KEXT and the user space program.

■ Caution Be careful about sharing data structures, because the KEXT and the user space program may pad the
structure differently. This can cause bugs, corruptions, or worse.

The preceding case only handles one option. This option is defined by HELLO_CONTROL_GET_STRING,
which returns the string in the global g_string_buf variable shared between all clients. If you had
allocated private data during the connect callback, you could retrieve it by casting the type of the data
from the unitinfo argument.

To return the string to the client, you will copy it to the memory address given in the data argument.
The len argument is an input/output argument and contains the length of the data buffer. Obviously,

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 17 ADVANCED KERNEL PROGRAMMING

418

you must ensure that you do not write out of bounds. If you write to the buffer, you should modify len to
reflect how many bytes were actually written.

The implementation of the set option function is very similar:

static int hello_ctl_set(kern_ctl_ref ctl_ref, u_int32_t unit, void* unitinfo, int opt,
 void* data, size_t len)
{
 int ret = 0;
 switch (opt) {
 case HELLO_CONTROL_SET_STRING:
 strncpy(g_string_buf, (char*)data, min(MAX_STRING_LEN, len));
 printf("HELLP_CONTROL_SET_STRING: new string set to: \"%s\"\n", g_string_buf);
 break;
 default:
 ret = ENOTSUP;
 break;
 }
 return ret;
}

As with the control get option function, we are passed a buffer with data coming from user space
and the length of the buffer in the data and len arguments. The data is not valid once the function
returns, so you must copy any data you want to preserve.

Accessing Kernel Controls from User Space
The example in Listing 17-2 demonstrates how we can connect the kernel control interface described in
the previous sections.

Listing 17-2. User Space Tool for Connecting to a Kernel Control Interface

#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <unistd.h>

#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/kern_control.h>
#include <sys/sys_domain.h>

#include "HelloKernControl.h"

int main(int argc, char* const*argv)
{
 struct ctl_info ctl_info;
 struct sockaddr_ctl sc;
 char str[MAX_STRING_LEN];

 int sock = socket(PF_SYSTEM, SOCK_DGRAM, SYSPROTO_CONTROL);
 if (sock < 0)
 return -1;

CHAPTER 17 ADVANCED KERNEL PROGRAMMING

419

 bzero(&ctl_info, sizeof(struct ctl_info));
 strcpy(ctl_info.ctl_name, "com.osxkernel.HelloKernControl");

 if (ioctl(sock, CTLIOCGINFO, &ctl_info) == -1)
 return -1;

 bzero(&sc, sizeof(struct sockaddr_ctl));
 sc.sc_len = sizeof(struct sockaddr_ctl);
 sc.sc_family = AF_SYSTEM;
 sc.ss_sysaddr = SYSPROTO_CONTROL;
 sc.sc_id = ctl_info.ctl_id;
 sc.sc_unit = 0;

 if (connect(sock, (struct sockaddr *)&sc, sizeof(struct sockaddr_ctl)))
 return -1;

 /* Get an existing string from the kernel */
 unsigned int size = MAX_STRING_LEN;
 if (getsockopt(sock, SYSPROTO_CONTROL, HELLO_CONTROL_GET_STRING, &str, &size) == -1)
 return -1;

 printf("kernel string is: %s\n", str);

 /* Set a new string */
 strcpy(str, "Hello Kernel, here's your new string, enjoy!");
 if (setsockopt(sock, SYSPROTO_CONTROL, HELLO_CONTROL_SET_STRING,
 str, (socklen_t)strlen(str)) == -1)
 return -1;

 close(sock);

 return 0;
}

When the program in Listing 17-2 is executed, you should see the following results:

$ sudo kextload HelloKernControl.kext

$ sudo ./hello_tool
kernel string is: Hello World
$ sudo ./hello_tool
kernel string is: Hello Kernel, here's your new string, enjoy!

Working with Processes in the Kernel
The BSD portion of the kernel provides a KPI for getting information about active processes in the
system. Note that the term process is used in BSD as opposed to task, which is used in the Mach portion
of the kernel, though they really refer to the same thing.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 17 ADVANCED KERNEL PROGRAMMING

420

KERNEL PRIVATE KPIS

If you are digging around in the kernel headers, you may come across the preprocessor directive
KERNEL_PRIVATE. Functions or other symbols defined within these sections are not available for use by
third-party kernel extensions, and attempting to use one even if the correct header is included will result in
a failure to load that KEXT due to unresolved symbols. Apple’s own KEXTs are able to access these
symbols by adding a dependency to com.apple.kpi.private. If you add a dependency for this KPI in your
own KEXT it will fail to load, as only Apple-signed KEXTs can use it.

You have already seen examples of how to get information about a process in the AppWall example

in Chapter 13, where we used the proc_selfname() function to get the process name of the currently
running process. If the function is called in a thread owned by the kernel, the kernel process name
“kernel_task” will be returned.

If you need to know the PID of the currently running process instead of its name, you can call
proc_selfpid(). You can also find the name of a process if you know its PID by using the proc_name(int
pid, char * buf, int size); function. An overview of functions in the process KPI is outlined in Table
17-1.

Table 17-1. Functions for Process Manipulation (See sys/proc.h for Full List)

Function Description

int proc_selfpid(void) Returns the PID of the current process

int proc_selfppid(void) Returns the PID of the current
process’s parent

void proc_signal(int pid, int signum) Sends a signal (e.g. SIGTERM, SIGKILL)
to the process with the specified PID

int proc_issignal(int pid, sigset_t mask) Checks if any of the signals given by
mask is pending for the process with
the specified PID

int proc_isinferior(int pid1, int pid2) Returns 1 if pid1 is subordinated to
pid2

void proc_name(int pid, char * buf, int size) Copies the process name into buf. If
the name is shorter than size, it will
be truncated.

void proc_selfname(char * buf, int size) Same as preceding but for the current
process

CHAPTER 17 ADVANCED KERNEL PROGRAMMING

421

Function Description

proc_t proc_find(int pid) Gets the process handle of the process
with the specified PID. This causes a
reference to be added to the process,
which must be released with
proc_rele().

proc_t proc_self(void) Returns the process handle for the
current process

int proc_rele(proc_t p) Releases the process handle p

int proc_pid(proc_t p) Returns the PID of process p

int proc_ppid(proc_t p) Returns the PID of the parent process
of p

int proc_is64bit(proc_t p) Returns 1 if the process is running
with a 64-bit address space

int proc_exiting(proc_t p) Returns 1 if the process is exiting

int proc_suser(proc_t p) Returns 1 if the process is running
with superuser privileges

Loading Resources
The I/O Kit does not provide any classes or functions that provide a driver with access to the file system.
This is a deliberate design decision, not an oversight in the I/O Kit design. In theory, a driver should not
need to access files on disk. The driver’s role is to respond to requests from the operating system to
manage its own hardware device, and not to initiate requests of its own. In practice, however, there are
many reasons why a driver may need to access data from the file system. One of the most common
reasons is to read resource data, such as the firmware data for the driver’s hardware.

Although the I/O Kit doesn’t allow general file system access, it does provide a means for a driver to
access files from the “Resources” directory inside the driver bundle. The I/O Kit’s resource-loading API is
defined in the header file <libkern/OSKextLib.h>. The API is asynchronous; a driver makes a request for
the resource that it wishes to load and provides a callback function that the I/O Kit uses to notify the
driver when the data is available.

We mentioned that the I/O Kit doesn’t provide general file system access, but in addition to this, the
I/O Kit itself doesn’t have access to the file system. In order to load the resource file for a driver, the I/O
Kit relies on a user space helper process, which reads the requested file on behalf of the I/O Kit and
passes the file’s contents back to the I/O Kit. The I/O Kit then notifies the driver that made the request.

Since the I/O Kit relies on a user space helper process to load resources, it is not possible to load
resources in the boot process until the helper process has been launched. However, in most cases this
does not cause a problem for the driver, since the I/O Kit will queue the request until the helper process
is available to receive requests from the kernel.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 17 ADVANCED KERNEL PROGRAMMING

422

A driver can request that the I/O Kit load a file from the driver’s resources directory by calling the
function OSKextRequestResource(). This function’s definition is as follows:

OSReturn OSKextRequestResource(const char* kextIdentifier,
 const char* resourceName,
 OSKextRequestResourceCallback callback,
 void* context,
 OSKextRequestTag* requestTagOut);

The first parameter, kextIdentifier, specifies the bundle identifier of the driver that contains the

resource to load; this will almost always be the value specified by the CFBundleIdentifier key of the
driver’s Info.plist file. The second parameter, resourceName, is the name of the resource file to be
loaded from the driver’s bundle. The next two parameters are the callback function and an associated
context argument that is passed to the callback function when the resource has been loaded. The final
parameter, requestTagOut, is returned immediately to the caller and can be used to track the operation
to load the resource.

If the call to OSKextRequestResource succeeds, the driver will be notified through its specified
callback function when the request has completed. The completion callback has the following signature:

typedef void (*OSKextRequestResourceCallback)(OSKextRequestTag requestTag,
 OSReturn result,
 const void* resourceData,
 uint32_t resourceDataLength,
 void* context);

The first parameter provided to the callback, requestTag, identifies the resource that this

completion callback refers to. The second parameter, result, informs the caller whether the operation
was completed successfully. If the value of result is kIOReturnSuccess, the resource data has been
successfully read from the disk and the next two parameters, resourceData and resourceDataLength,
contain the contents of the requested resource file. The resourceData buffer is valid only within the
callback, so if the driver wishes to refer to the resource data outside the callback, it must make a copy of
the data. The final parameter, context, contains the value of the context parameter that was passed to
the OSKextRequestResource function.

The remaining step is to add the resource file to the driver’s bundle. Any resource loaded through
the OSKextRequestResource function must be present in the “Resources” subdirectory of the driver’s
bundle. In most cases, this can be achieved by adding the file to the Xcode project for the driver. For file
types other than source code, Xcode will default to copying the file to the bundle’s resource directory
when the project is built.

Beyond KEXT Resources
The resource loading functions discussed in the previous section are designed for a specific purpose.
The I/O Kit functions provide a driver with read-only access to the contents of a file within its Resources
directory. However, there are many situations where it is useful for a driver to access a file outside of its
bundle and to write to a file on disk. For example, a driver that provides persistent settings will need
some way to read those settings from a file on disk. It will also need a way to write those settings to disk.

Although the I/O Kit contains no functions that provide such functionality to a driver, its
implementation of the resource loading functions provides us with a hint of how we might add such

CHAPTER 17 ADVANCED KERNEL PROGRAMMING

423

functionality to our own drivers. Just as the I/O Kit relies upon a user space daemon process to load
resource files on behalf of the kernel, a driver can implement the reading and writing of its persistent
settings from a file on disk by providing its own user space daemon process to handle requests on its
behalf. This design, covered in the following section, opens up a more general solution that can be
extended beyond driver preferences.

Notifications from Kernel Drivers
A general solution to the problem of accessing arbitrary file system items from a kernel driver is to
implement a user space daemon process that acts as a helper process on behalf of the kernel driver. This
process will handle requests from the driver, perform the specified operation, and then pass the result of
the operation back to the driver. This approach can be extended beyond requests such as reading and
writing files, and can be used to perform operations that are not possible within the kernel, such as
displaying a dialog to the user. A good example of user interaction that originates from the kernel is the
standard USB family, which presents a warning dialog if a device is connected that requires more power
than the USB bus can deliver.

■ Note The IOUSBFamily currently uses a deprecated interface known as the Kernel-User Notification Center to
display alert messages, such as the lower power warning. The I/O Kit used to provide an API that allowed a driver
to display a dialog box through a standard system daemon process. However, this API is now deprecated and a
driver must now provide its own daemon process.

Any operation that a driver wishes to perform that is not possible within the kernel, such as writing
to a file, displaying an error message, or even launching an application, can be performed through a user
space daemon process. In effect, the driver code is split into two parts: the kernel driver and the user
space daemon. This design uses the same techniques that were discussed in Chapter 5. However,
instead of the user launching the user space process, the process will be a background daemon that is
launched automatically by the system.

The user space daemon process and the driver work together to perform certain operations. Most of
the time, the user space daemon is idle. It only acts when it receives a request from the kernel driver.
There are three notifications that the user space daemon will need to respond to:

• The arrival of a new kernel driver

• The unloading of a kernel driver

• A request to perform an operation from a driver

Since the daemon process will be launched at system startup, it may be launched before its
corresponding kernel driver has started. For this reason, the process should install a callback to receive
notifications when its kernel driver is started or is stopped. In most cases, the daemon will have a one-
to-many relationship with driver instances, and a single daemon will handle requests from all instances
of its driver that are currently loaded.

A daemon can watch for instances of its kernel driver arriving and unloading by installing a
matching dictionary for its driver, as described in Chapter 5. A process performs the same steps to do
this whether it is a background daemon or an application with a user interface. The daemon process is

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 17 ADVANCED KERNEL PROGRAMMING

424

able to communicate with its kernel driver by sending requests through the driver’s IOUserClient class,
using the functions from the I/O Kit framework that were described in Chapter 5.

In Chapter 5, you saw how a user space process can issue requests and send data to a kernel driver.
This is important, since this is the approach that the daemon will use to send the results of an operation
back to the kernel driver. Now, we’ll cover how a process receives notifications from the kernel, such as a
request to perform an operation on behalf of the driver—for example, display an error message to the
user.

Communication from the kernel driver to the user space daemon occurs over a mach port. The
following steps are involved in setting up a communication channel that a kernel driver can use to send
a notification to a user space process:

1. The user space daemon locates an instance of its driver and opens a
connection to the driver’s user client by calling IOServiceOpen(), as described
in Chapter 5.

2. The daemon creates a mach port that is able to receive notifications from the
kernel driver. This is done using the function CFMachPortCreate(). The
function accepts a number of arguments including a callback function, which
is used to deliver notifications.

3. The daemon creates a run loop source for the mach port and installs the
source into one of its thread’s run loops. Later, when a notification is received
on the mach port, the daemon’s callback is run on the run loop thread.

4. The daemon passes the mach port to the kernel driver, using the function
IOConnectSetNotificationPort(). In response, the driver’s user client receives
a call to its method registerNotificationPort().

5. In the kernel, the user client implements the virtual method
registerNotificationPort(). The client receives the mach port that was
created by the user space daemon and saves the value in an instance variable.

6. When the driver wishes to notify the user space daemon of an event, it calls the
function mach_msg_send_from_kernel() and provides any data that it wishes to
pass to the user space daemon.

7. In response, the daemon’s callback function is invoked. The callback function
receives any data that was passed from the kernel driver, and it handles the
kernel’s request. If the result of the operation needs to be passed back to the
kernel, the user space daemon can do so by calling any of the methods defined
by the driver’s user client, as described in Chapter 5.

In the rest of this section, we’ll go through an example of sending a notification from a kernel driver
to a user space process. To begin with, you need to define a structure that will describe the data to be
sent from the kernel driver to the user space daemon. This structure must begin with the
mach_msg_header_t structure, since this describes the destination mach port within the user space
daemon that will receive the data. Following the mach_msg_header_t field, the structure may contain a
number of fields that allow arbitrary data to be sent along with the notification to the user space
daemon. The definition of this structure must be accessible to both the user space daemon and the
kernel driver, so it should be placed in a header file that can be included by both projects. The following
is a sample definition for a structure that allows two integer parameters to be passed from the kernel to
the user daemon:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 17 ADVANCED KERNEL PROGRAMMING

425

typedef struct {
 mach_msg_header_t messageHeader;
 uint32_t customParameter1;
 uint32_t customParameter2;
} MyNotificationMessage;

An example of the user space callback function that receives the notification sent from the kernel is
given in the following listing. The parameter named msg contains the entire MyNotificationMessage
structure, including the two arbitrary integers that were added. These extra fields that follow the
message header can be used both to describe the operation that the driver wishes the user space
daemon to perform and to pass additional parameters that are needed for the operation.

void MyDriverRequestCallback (CFMachPortRef port, void *msg, CFIndex size, void *info)
{
 MyNotificationMessage* notify = (MyNotificationMessage*)msg;

 printf("Param 1 is %x, param 2 is %x\n", notify->customParameter1,
 notify->customParameter2);
}

The code snippet shown in Listing 17-3 demonstrates the steps that the user space daemon must
take to install a mach port where it will receive notifications from the kernel driver. The first step is to
allocate a mach port and a corresponding run loop source, and to install the mach port into its run loop.
Next, the mach port is provided to the kernel driver. Whenever the driver wishes to send a notification to
the user space process, that request is delivered over the provided mach port.

Listing 17-3. User Space Code to Install a Callback to Receive Notifications from a Kernel Driver

CFMachPortContext portContext;
CFMachPortRef notificationPort = NULL;
CFRunLoopSourceRef runLoopSource = NULL;
kern_return_t kr;

// Set up the CFMachPortContext structure that is needed when creating the mach port.
portContext.version = 0;
portContext.info = (void*)context; // Aribtrary pointer provided to the callback
portContext.retain = NULL;
portContext.release = NULL;
portContext.copyDescription = NULL;

// Create a mach port.
notificationPort = CFMachPortCreate(kCFAllocatorDefault, MyDriverRequestCallback,
&portContext, NULL);
if (notificationPort)
{
 // Create a run loop source for the mach port.
 runLoopSource = CFMachPortCreateRunLoopSource(kCFAllocatorDefault, notificationPort, 0);
 // Install the run loop source on the run loop that corresponds to the current thread.
 CFRunLoopAddSource(CFRunLoopGetCurrent(), runLoopSource, kCFRunLoopDefaultMode);
}

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 17 ADVANCED KERNEL PROGRAMMING

426

// Pass the notification port to the driver.
kr = IOConnectSetNotificationPort(driverConnection, 0,
 CFMachPortGetPort(notificationPort), 0);

The user space function IOConnectSetNotificationPort() results in a call to the driver’s user client
of the method registerNotificationPort(). This is a virtual method that is defined in the IOUserClient
base class, but which needs to be implemented by each subclass. In the following sample
implementation, the registerNotificationPort() method takes a copy of the mach port that
corresponds to the user space process’s notification port so that it can be used in the future whenever
the driver wishes to signal the user space process.

IOReturn com_osxkernel_driver_IOKitTestUserClient::
 registerNotificationPort (mach_port_t port, UInt32 type, io_user_reference_t refCon)
{
 m_notificationPort = port;
 return kIOReturnSuccess;
}

Having set up the process’s notification port, the kernel driver is now able to signal the user space
daemon when needed. This is typically performed through the IOUserClient subclass, since the
notification port is specific to a particular user client. An example of a custom user client method that
can be called to pass two arbitrary integers to the user space process is shown in Listing 17-4.

Listing 17-4. A Custom Method to Send a Notification from a Driver to a User Space Process

IOReturn com_osxkernel_driver_IOKitTestUserClient::
 mySendNotification (uint32_t parameter1, uint32_t parameter2)
{
 MyNotificationMessage notification;
 IOReturn result;

 if (m_notificationPort == MACH_PORT_NULL)
 return kIOReturnError;

 // Set up the standard mach_msg_header_t fields.
 notification.messageHeader.msgh_bits = MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND, 0);
 notification.messageHeader.msgh_size = sizeof(MyNotificationMessage);
 notification.messageHeader.msgh_remote_port = m_notificationPort;
 notification.messageHeader.msgh_local_port = MACH_PORT_NULL;
 notification.messageHeader.msgh_reserved = 0;
 notification.messageHeader.msgh_id = 0;

 notification.customParameter1 = parameter1;
 notification.customParameter2 = parameter2;

 // Send the request to user space
 result = mach_msg_send_from_kernel(
 ¬ification.messageHeader, sizeof(MyNotificationMessage));

 return result;
}

CHAPTER 17 ADVANCED KERNEL PROGRAMMING

427

Summary
This chapter covered:

• How to use floating point and SSE in the kernel. You learned that OS X, unlike
other operating systems, does not require any special actions to support these
activities.

• Strategies for writing multi-function drivers.

• The kernel control KPI is a BSD KPI that can be used for communicating between
a kernel extension and user space. It is commonly used in conjunction with
Network Kernel Extensions (NKE) but rarely used in I/O Kit.

• We covered the KPI for working with processes from the kernel. The KPI has
functions for sending signals and getting the name and process identifier (PID) of
a process.

• How a kernel extension can load external resources from its bundle and how to
handle driver preferences.

• How a kernel extension can message and notify a user space process.

www.allitebooks.com

http://www.allitebooks.org

C H A P T E R 18

429

Deployment

Thus far, we have provided background information and looked at the practical implementation of
several types of drivers and kernel extensions. This chapter focuses on how we prepare our work for
end–user delivery. Apple is known for providing user–friendly software (and hardware) solutions; both
Apple and its customers have come to expect the same level of customer experience from third-party
vendors. Frustrating customers or users with complex installation procedures is a good way to lose
business to competitors on any platform. Deploying a piece of software like a kernel extension may seem
easy at first, but there are a multitude of issues to consider, such as how to accommodate a wide range of
different hardware and operating system versions. Many customers may be reluctant to upgrade. This is
especially true for larger business or government installations— so, you may be required to support
bleeding edge, as well as legacy operating system versions— all of which may have different features that
require special handling. Besides the external factors, your software’s distribution may be complicated.
Rarely will you distribute only the KEXT itself; it often requires additional bundled software. For
example, a computer graphics card may be delivered with a system preferences pane, a framework used
to access the device’s special features, applications for upgrading firmware, and perhaps bundled
applications that show off the card’s capabilities like games. You will also need to handle the possibility
that a customer will upgrade or downgrade your software distribution.

While all this may seem daunting—and it is—there is hope. Apple, as usual, provides tools that
simplify this process. For deployment, the tool of choice for more advanced software installation is
PackageMaker. PackageMaker allows installation wizards to be created from an easy–to–use graphical
user–interface. PackageMaker also has a command line utility feature, which can be used to integrate
package building into a larger build system.

Installing and Loading Kernel Extensions
KEXT bundles will normally be installed in the system directory/System/Library/Extensions. You can
keep KEXTs outside of this directory; however, you will then need to take care of loading the KEXT
yourself by using the method outlined in the next section. The KEXT will still need to have the correct
permissions set. A KEXT needs to be owned by the root user, belong to the wheel group, and have the
permissions mask 0755 in order to be loadable by the KEXT daemon (kextd).

For I/O Kit-based drivers, the KEXT is usually loaded automatically by the KEXT daemon when its
provider is registered in the I/O Registry (assuming the KEXT has a proper personality defined in its
Info.plist file). A KEXT not associated with a hardware provider can load itself automatically at system
startup by using the IOResources nub as a provider. For non-I/O Kit based KEXTs, such as NKEs or
virtual network drivers, this will not be possible, as IOResources is not available for KEXTs outside the
I/O Kit.

For non I/O Kit KEXTs, a Launch Daemon can be created. Launch Daemons and Agents are Apple’s
replacements for a number of traditional UNIX services including init.d, cron, and inetd. Agents are

CHAPTER 18 DEPLOYMENT

430

run as a user logs into the system based on that user’s security permissions. Daemons, on the other
hand, are system–wide and are generally run with root permissions. We can use a Launch Daemon to
execute a shell script when the computer starts, which will in turn load our KEXT. To create a launch
agent, simply define a plist file as shown in Listing 18-1.

Listing 18-1. Launch Daemon Property List File

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>com.osxkernel.launchd.HelloWorld</string>
 <key>ProgramArguments</key>
 <array>
 <string>/Library/Application\ Support/HelloWorld/loadkext.sh</string>
 <string>load</string>
 </array>
 <key>RunAtLoad</key>
 <true/>
</dict>
</plist>

This file should be installed to /System/Library/LaunchDaemon or ~/Library/LaunchDaemon, as
com.osxkernel.launchd.HelloWorld.plist. The Launch Daemon will now trigger the loadkext.sh script
during startup. The script itself can be implemented as shown in Listing 18-2.

Listing 18-2. UNIX Shell Script for Loading a KEXT

#!/bin/sh
COMMAND=$1

THEKEXT=/System/Library/Extensions/HelloWorld.kext

if [-f "$THEKEXT"]
then
 echo "KEXT does not exist"
 exit 1
fi
if ["$COMMAND" = "load"]
then
 kextload $THEKEXT
elif ["$COMMAND" = "unload"]
then
 kextunload $THEKEXT
fi

In some cases, it may be desirable to load the KEXT on demand, rather than at system boot. For
example, in the case of a VPN (Virtual Private Network) application, it may come with a KEXT to handle a
custom network level encryption scheme or install a virtual VPN interface. This KEXT is only needed for
as long as the application remains active. Having it active wastes memory resources, and loading it at

www.allitebooks.com

http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.allitebooks.org

CHAPTER 18 DEPLOYMENT

431

boot may potentially impact startup time. Furthermore, since the KEXT interacts with the network stack,
it may actually get in the way and impact the system’s network performance. In this case, the application
may wish to load and unload the KEXT dynamically. This can be achieved by using a script like the
preceding one. The application would need to run with root privileges in order to load and unload the
KEXT. It is not a good idea, however, to make an entire application setuid root, as this can lead to a
serious security problem. An alternative solution involves executing a minimal helper program using the
AuthorizationExecuteWithPrivileges() API to temporarily escalate the privileges of the executed
program. This will prompt the user for the computer’s system password. It is possible to allow a KEXT to
be loaded by a non–root user by modifying its plist file to include the following:

 <key>OSBundleAllowUserLoad</key>
 <true/>

While this will allow a non–privileged process or user to load the KEXT, root privileges are still
required to unload the KEXT afterward. As such, the former technique is preferred and is also more
secure, as users will have to approve the action explicitly.

KERNEL EXTENSIONS ON THE APP STORE

Apple does not currently permit applications to install KEXTs on either the Mac App Store or the iOS App
Store (which doesn’t have any means of building KEXTs without violating license agreements). If your
application depends on a kernel extension, you would need to distribute it outside of the App Store. Mac
App Store applications are not allowed to request root privileges either, which would be needed to install
and load a KEXT. It is possible, however, to submit applications even though they may depend on a specific
hardware device, but in this case you would need to talk to it through an approved user–space API (see
Chapter 15 for details on how this can be done).

Loading Preferences and Settings
Many drivers may need some user–configurable per–device preferences or settings. For example, an
audio device may have settings to control output volume level, which need to persist across system
reboots. A driver cannot trivially access the file system (which is considered bad design anyway), so it
cannot read the preferences from a file; however, An I/O Kit driver will have access to information stored
in its plist file. The plist file is read-only and shared for all driver instances instantiated by a KEXT.
Since a driver may create many instances, all which require different settings the plist file is unsuitable
for this purpose.

Although you could implement your own scheme to put per–device settings in a plist file, it is not
considered “good” design. Furthermore, it is difficult for an application to modify a plist file, as root
privileges are usually required. Mac OS X does not offer a standardized mechanism or API for handling
driver or KEXT preferences or settings. Therefore, if you need this capability, you must implement a
user–space application to handle this for you. This can be done by installing a notification to wait for the
device’s arrival and then call the driver’s user client using IOConnectCall*() functions to restore settings
from a file. For information on how to install driver or device notifications, please refer to Chapter 5:
“Interacting with Drivers from Applications.”

If you are implementing a driver for a non–removable device, you can have your user space settings
helper run at boot or start time using a Launch Daemon or a Startup Item. You will have to register for a
notification for your driver to ensure that the helper doesn’t run before your device has appeared. The
process can exit once the device has appeared. If you have a removable–type device, such as a USB,

CHAPTER 18 DEPLOYMENT

432

FireWire, or Thunderbolt, you may instead wish to implement a persistent daemon (Launch Daemon)
that listens for device arrival and restore settings once a device is plugged in. If the settings are specific to
an application that uses the driver or device exclusively, you can manage the settings from the
application itself and optionally restore the settings to a previous state once the application exits. The
helper program or daemon may be able to run with the privileges of a normal user if the user client or
kernel control it interacts with permits it.

If your driver handles multiple instances of the same device, it may be a challenge to figure out
which settings belong to which device—either the ordering may not be consistent across reboots—or
USB devices may be plugged in in a different order, or into different ports. To combat this, you can use a
unique serial number or another identifier the device may have. A network interface should have a
unique MAC address; a USB device usually has a serial number or something similar. Thunderbolt
devices are guaranteed (in theory) to have a globally unique identifier (UID).

Versioning Kernel Extensions
If your kernel extension is directly accessible to a user–space application, you may wish to provide a
versioning system to prevent an older user–space application from accessing a newer kernel extension
or vice versa. This is not necessary, for say, audio drivers or other drivers that use a system–supplied
IOUserClient; however, in the case that it does not, your KEXT will essentially present an API to the
application, which needs to be remain compatible. If the KEXT has been updated, an older application
may break or even cause a crash. There is no standardized way to deal with this issue, and the solution is
largely dependent on the nature of the KEXT and the applications that access it. One strategy is to
include a version number in a shared header file:

//
// SharedHeaderFile.h
//
#ifndef Shared_Header_H_
#define Shared_Header_H_

const int KernelUserClientAPIVersion = 1001;

#endif

Since both the KEXT and the user application compile the KernelUserClientAPIVersion version
number into their binary images, the user application can determine if the KEXT’s version number
matches that of its own. Every time the interface is changed; for example, if an IOUserClient method is
added, removed, or changed, the version number must be updated to reflect this. If your KEXT presents
an API available to third party developers, the best approach is to provide an API that takes care of this
versioning internally rather than allowing developers access to the IOUserClient directly. This allows the
interface between the kernel and user space to change without breaking existing applications; it even
allows you to present the same API to a completely different driver or KEXT.

Testing and Quality Assurance
Testing a kernel extension can be a challenge. Modern computer systems and devices are usually very
complex, and even if your component is fairly isolated from the rest of the system, unwanted side effects
happen as result of it being another cog in the machinery. Proper testing, preferably conducted by those
not directly involved in the engineering process, is essential—those directly involved may have
preconceived notions of how the product works and fail to discover issues an end-user would. Testing

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 18 DEPLOYMENT

433

kernel extensions is very dependent on the nature and type of the extension; so, providing an exhaustive
list of things to test for is impossible. The following are some general suggestions:

• Test that the driver handles going to sleep and waking up. You can stress test this
easily by using the SleepX tool included as part of Xcode. The application allows
you to execute a script or external program every time the computer wakes up.
You can also tune sleep intervals and the number of cycles you wish to test. It is
extremely important that your driver handles sleep properly, especially for mobile
devices and laptops, as having the driver still active means the CPU will need to be
active—this will drain the system’s battery and could even cause a laptop to
overheat if it is operating with the lid closed.

• Test that the driver handles repeated loading and unloading with kextload and
kextunload. You can test for reference leaks or memory allocation leaks using the
ioclasscount and ioalloccount tools.

• Test applications that use the driver by performing common user tasks. For
example, for an audio device, playback and capture audio with as many
permutations of settings and formats as possible.

• Test on all supported platforms and operating systems, such as Macbook Pro, Mac
Mini, iMac, Mac Pro or iPod, iPhone, and iPad. For Macs, be sure to test both 32-
bit and 64-bit versions and all supported OS versions; e.g., Snow Leopard, Lion,
etc.

• For hot–pluggable devices:

• Test that drivers and devices continue to work correctly after repeated
plugging and unplugging. You may wish to do a minimum of 100+
repetitions to be confident no issue will happen in the field.

• Test that the driver handles the system going to sleep. The driver should
also be prepared to handle the device being removed while the system was
sleeping.

• Test 32-bit and 64-bit versions of a KEXT. If you support pre-Lion operating
systems, you will want to provide universal binaries with support for both 32-bit
and 64-bit systems.

• Test the installer package; make sure that all files are installed correctly—with the
correct permissions, and in the correct location.

If a problem is discovered either during testing or reported by a customer, it is a good idea to have
pre-archived symbol information and/or debug versions for every released KEXT, so you can quickly
attempt to reproduce a problem and debug it. This may seem obvious to most people, but it does
happen more often than you might think: someone passes on a release of a software component, such as
a KEXT, without incrementing its version number. Every time a change is made and released/given to
some external entity (or even the internal QA group), the version number should be unique, or you will
quickly lose track and confuse everyone involved.

CHAPTER 18 DEPLOYMENT

434

Packaging KEXTs and Software
PackageMaker is the preferred tool for packaging and distributing software consisting of multiple
components. Unlike simple applications where every needed component is self–contained and
embedded within the application’s bundle, more advanced software distributions, such as those
containing KEXTs, may need to install components to multiple locations on the file system. For example,
a driver will need to place itself within the /System/Library/Extensions directory, and it may further
contain helper programs to load preferences or upgrade firmware, which require Launch Agents or
Daemons to be installed. PackageMaker is able to do this and more. The PackageMaker user interface is
shown in Figure 18-1.

Figure 18-1. PackageMaker user interface

PackageMaker’s output is a binary compressed package file with the extension “.pkg” that can be
installed using the Installer.app program or the installer UNIX command, by executing something
like the following:

sudo installer -pkg HelloWorld.pkg -target /

Installing using Installer.app brings up a GUI–based wizard that guides the user through the
installation procedure. If the package has multiple optional sub-components, the user will have the
opportunity to select or deselect them. The user can also change the target volume, where the package
will be installed, provided that the package explicitly allows this, by setting the “Volume selected by
user” option.

PackageMaker isn’t just limited to placing software components in the file system. It can also check
for system requirements and pre-requisites, including whether the operating system version is

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 18 DEPLOYMENT

435

supported, or check if some other software component it depends on is present. It can also trigger
custom UNIX scripts before and after the software is installed for each component. For hardware drivers,
PackageMaker also allows you to verify that your device is present before the user is allowed to continue.
This works for FireWire, PCI, and USB.

■ Tip When packaging KEXTs for distribution, ensure that Xcode builds for the architectures you intend to
support. By using the file command on the KEXT’s binary, you can check which architectures it supports. You
may also wish to ensure you are not distributing the debug version of your KEXT.

Building a Package for the Hello World Kernel Extension
Now, you can build a quick package for installing the sample Hello World KEXT. You will also need to
install a Launch Daemon property lists file (Listing 18-1) and a shell script (Listing 18-2) that will be
executed by the Launch Daemon, which will again load the KEXT. Before designing your own package,
you will need to determine its components. For example, if you are distributing drivers for an audio
device, you may wish to bundle the driver with some software that allows playback or capture of audio,
and perhaps an SDK that other developers can use to write their own applications using the card. A
developer may only want the driver, whereas an end–user may only want the bundled application and
not the SDK, etc. In this scenario, you can create three sub-components: the driver, the application, and
the SDK, and allow the user to select which components should be installed. For the HelloWorld
package, you only need to add a single component.

To get started, open PackageMaker and chose “new” from the menu. You will then be prompted by
a dialog, as shown in Figure 18-2.

Figure 18-2. Install Properties dialog

The “Organization” field should be the reverse–DNS name of your organization. The value is used to
identify the package and uniquely name it. The minimum target drop–down allows you to select the
oldest OS version you wish to target. The package will refuse to install on versions older than the install
target. Once you have entered your selection, you can give your package a title.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 18 DEPLOYMENT

436

Adding Contents to the Package
You can now start adding files to your package. This can be done by either choosing “Project ➤ Add
Contents . . .” from the main menu, or simply by dragging files into the left pane of PackageMaker.
Figure 18-3 shows the content pane populated with the files required for the HelloWorld distribution.

Figure 18-3. The HelloWorld distribution

Our HelloWorld package consists of only three files (shown on the left in Figure 18-3): The KEXT
itself and two helper files to allow the KEXT to load at boot–time. When you drag or add some files to the
package, PackageMaker will automatically create a choice, which, in this case, we have named “Driver.”
The choice represents a sub-component that can be individually selected by the user. However, if the
“User Sees” field in the main pane is set to “Easy Install Only,” a user will not be prompted to select
individual components, even though there may be more than one. The “Installation Destination”
selection allows you to set the location where the package will be installed. At this point, we do not check
any of the options, as all of our files go into absolute paths. If the “Volume selected by user” is selected,
the instillation wizard will ask which volume (hard drive) the user wishes to install to. It is recommended
to allow this choice to give the user more flexibility—particularly for large software packages, which a
user may wish to store on a second, larger data drive.

Configuring the Package
Choosing the “Edit Interface” option from the configuration pane in Figure 18-3 will bring up a view of
how the package will be presented when opened with Installer.app. PackageMaker allows you to

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 18 DEPLOYMENT

437

interactively edit text and set a background image. You can also add localizations for enabling
instructions in other languages.

The main pane has three tabs, as shown in Figure 18-3. The “Requirements” tab allows for the
configuration of requirements that are global to the whole package. You can also set requirements for
choices individually, which would allow a user to install some components even if the system didn’t
meet the requirements for others. Requirements can be specified in the requirements editor, which has
many pre-defined checks that can be configured. The following is a subset of available tests:

• Megabytes Available on Target

• Minimum CPU Frequency (HZ)

• Memory Available (Bytes)

• System OS Version /Target OS Version

• File Exists on System

• FireWire, USB, PCI Device Exists

• Result of Script

The last option, “Result of Script,” is particularly useful when none of the pre-defined tests are
suitable. You can write a shell script to perform your own tests and have the installer take action based
on the return code of the script. You can also specify custom error messages that will appear if a
requirements test fails. The “Actions” tab allows you to configure actions that can be performed
automatically, either pre- or post-installation. For example, in the case of the HelloWorld package, we
may wish to ensure that any previously installed HelloWorld.kext is unloaded before we install the new
one. We can define this action as shown in Figure 18-4.

Figure 18-4. The action editor

CHAPTER 18 DEPLOYMENT

438

In some cases, suppose you have a driver for a USB device: you may want to ensure that all
applications using the device are killed before installing a new driver. An open application may prevent
the driver from unloading properly. You may notice that there is no option for running a program or
script; this can, however, be done on a per–file basis by selecting a file and choosing the “Scripts” tab.

Figure 18-5. Configuration pane for individual packages

For now, we have used the term Package to refer to the entire project as a whole, but in
PackageMaker terminology, we are actually referring to a distribution that consists of several smaller
packages. The smaller packages are made up of the individual files or objects added to the distributions,
such as KEXTs, application bundles, or PDF files. Each object has meta-data and version information
associated with it.

Figure 18-5 shows the main configuration pane for a package added to the distribution. The
“Install” field specifies the source location, whereas the “Destination” field specifies the location in the
file system where the object will be installed. Selecting the “Allow custom location” option allows the
user to specify an alternative location. Both the source and destination location can be a relative or
absolute path. In most cases, the former is recommended. In the preceding example (Figure 18-5), we
have used a relative location for the source file and an absolute path in the file system for the
destination, as the file must go into that directory and cannot be relocated based on the user’s
preferences. The same will apply to the KEXT, which we require to be located in
/System/Library/Extensions. A relative path is relative to the location of the PackageMaker project.

The “Patch” field allows you to specify an older version of the object you are installing, so that the
installer can patch an existing file, rather than install a completely new file.

In the configuration pane, you can also specify a version number and identifier individually for each
package. The “Restart Action” allows you to prompt users to restart their computers after the installation
is complete. You may want to do this if you have Launch Agents or Daemons that must be started, or you
have replaced a driver that is difficult reload (e.g., a storage or graphics driver) while the system is
running. You can also require the user to logout or shutdown the system. The “Require admin
authentication” checkbox will prompt the user for the administrator password before allowing the

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 18 DEPLOYMENT

439

package to be installed. If you install files outside of the user’s home directory, usually, you must specify
this, as the installer does not have admin rights by default. Most KEXTs, particularly drivers, must be
installed under/System, which is not normally writable by a regular user.

Finally, the “Package Location” field allows one to specify an alternate location where the package
object file will be installed from; for example, you can specify an HTTP URL.

The “Contents” tab of a package is shown in Figure 18-6.

Figure 18-6. Contents tab of the package configuration pane

The “Contents” tab allows you to examine individual files of a package. Usually, packages consist of
either a bundle or an individual file. A bundle can contain other bundles or arbitrary files within it. If you
need to exclude some files, you can specify regular expression patterns to do so. For instance, the meta-
data directories from a source code versioning system, such as Subversion, can be excluded with the
pattern “/\.svn$”. You can also configure the file permissions the individual files should have once they
are installed in the file system. The “Apply Recommendations” button will guess the correct permissions
based on the file types and the intended destinations.

■ Caution Kernel Extensions are picky about their permissions and must be owned by the root user and the
wheel group. Additionally, the owner must have read, write and execute rights, whereas the group should have
only read and execute rights. This corresponds to the UNIX permissions mask 0755. Meta data files (such as the
Info.plist file) do not need to have the executable bit set.

CHAPTER 18 DEPLOYMENT

440

The “Scripts” tab allows for the defining of pre- and post-installation scripts for a package. These
can be used to perform custom installation steps that cannot be defined by the “Actions” editor. You
may wish to use a pre-install script to shut down daemons or applications before they are replaced with
new versions. You can also clean up files that are no longer needed by the newer versions. The scripts are
typically written in Bash or another scripting language. If you remove older files from your scripts, be
careful about using the “rm” command, as your package may run with administrative privileges, and an
incorrectly specified filename may lead to the wrong files or directories being deleted. As an example,
consider the following: rm –rf /System/Library/$MYKEXT. If the $MYKEXT variable ends up being empty,
the command will instead delete the /System/Library directory. A very unhappy customer will follow.

Building the Package
Once you have finished adding and configuring all the parts you want included in the distribution, you
can build it by pressing the “Build” or “Build and Run” on the toolbar. The latter will open the package in
Installer.app once the building finishes. During the build phase, the package will be validated and
checked; if there are errors or warnings, you can correct them and rebuild the package. The end result
will look something like Figure 18-7.

Figure 18-7. Package as presented when launched with Installer.app

The resulting package will be written to the filename <Title>.pkg. The package is compressed and
not a bundle, so the contents cannot readily be inspected in Finder. When you save a PackageMaker
project, it will be saved as a bundle named <Title>.pmdoc. The project bundle contains XML files that
define the project. You can edit these with a text editor or automatically replace or update contents with
a script during your product’s build process. If you wish to build the package from the command line,
you can do the following:

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 18 DEPLOYMENT

441

$ /Developer/Applications/Utilities/PackageMaker.app/Contents/MacOS/PackageMaker --doc
HelloWorld.pmdoc --version 2.0 --title 'HelloWorld'

The preceding command builds <Title>.pkg with a version number of 2.0.

Uninstalling Packages
Unfortunately, no mechanism exists for automatically uninstalling packages created with
PackageMaker. To uninstall a package manually, you would need to identify the files installed by the
package and delete them. You would also have to stop and remove any Launch Agents or Daemons
installed by the package. A better option would be to provide your users with a script or program that
performs the uninstall for them. PackageMaker are able to handle upgrades, however.

Summary
In this chapter, we have looked at the following:

• How the system loads I/O Kit kernel extensions automatically and how to
manually load other types of KEXTs (such as Network Kernel Extensions) that are
not loaded automatically. The latter is usually achieved using a Launch Daemon.

• Versioning the interface between a KEXT and user space is important in order to
avoid breaking older/newer applications that run against it. One strategy to deal
with this is to include a version number in a shared header file.

• Quality assurance and testing is an important part of the development cycle and is
the last point of defense before software is distributed to a customer. It is
important to properly test all aspects and usage patterns of the software on all
supported platforms.

• The PackageMaker software is the preferred way of distributing more complex
software packages on Mac OS X; i.e., things that include multiple components,
such as KEXTs, helper daemons, and end–user applications.

• PackageMaker is a tool distributed with Xcode. PackageMaker can be used via a
graphical user interface or the command line. Packages created with
PackageMaker are installed using the Installer.app application.

• PackageMaker does not provide a mechanism for uninstalling packages.

443

Index

 Numbers and Symbols
_MALLOC() function, 107
_MALLOC_ZONE() function, 107
<libkern/OSKextLib.h> header file, 424

 A
AbortPipe, 375
acknowledgePowerChange() method, 219
Active List, 104
activityTickle() method, 217
activityTickle(type, powerState) method, 216
addAudioStream() method, 267
addAvailableFormat(), 268
addEventSource(), 195
addressOfMappedBuffer argument, 119
Advanced Graphics Port (AGP), 177
Advanced kernel programming, 411

drivers notifications
arbitrary file system, 425
communication, 426–27
custom user client method, 430–31
daemon process, 426
IOConnectSetNotificationPort()

function, 430
IOUSBFamily, 425
IOUserClient class, 426
IOUserClient subclass, 430
Kernel-User Notification Center, 425
mach_msg_header_t structure, 427
MyNotificationMessage structure, 428
registerNotificationPort() method, 430
structure definition, 427–28
user space code, 428–30
user space daemon process, 426

I/O Kit families, 413–14
kernel control KPI

access, user space, 419–21
C language, 414
client connections, 417–18

getsockopt() system call function, 414
getting and setting options, 418–19
HelloKernControl header file, 417
kern_ctl_reg structure, 414–15
KEXT, 414
registration, 415–17
send() and recv() system call functions,

414
setsockopt() system call function, 414
vs. ioctl() system call, 414

KEXT resources, 425
loading resources, 423–25
multi-function drivers, 412–13
process, 421–23
SSE and floating point, 411–12

app_descriptor structure, 286
Apple AHCI storage driver stack, 321
Apple USB serial driver, 226
AppleACPIPCI, 177
AppleRTL8139Ethernet, 305
AppleUSBCDC driver, 226
AppleUSBCDCEthernet, 305
arg0 parameter, 364, 377
atAddress argument, 116
attachMediaObjectToDeviceTree(), 350
Audio drivers, 249

additional audio engine functionality, 275–
76

audio engine implementation
header file, MyAudioEngine class, 263–

64
IOAudioEngine subclass, 262

buffering, 249
Core Audio, 249, 251–53
digital audio and audio devices

analog audio wave, 250
PCM samples, 250–51
sample buffer, 251
sample rate, 250
sound waves, analog, 249

www.allitebooks.com

http://www.allitebooks.org

 INDEX

444

Audio drivers (cont.)
hardware initialization

activateAudioEngine() method, 259, 260
addTimerEvent() function, 257
createAudioEngine() method, 259
event argument, 257
header file, MyAudioDevice class, 257–

59
I/O Kit lifecycle methods, 259
initHardware() method, 259
IOAudioDevice subclass, 257
IOAudioEngine, 256
IOWorkLoop and IOCommandGate, 256
target argument, 257

I/O engine initialization
audio streams creation and

initialization, 267–68
handling format changes, 268–69
handling interrupts and timestamps,

273–75
initHardware() method, 264–66
IOAudioStream, 267
IODMACommand class, 267
IOMalloc(), 267
IOTimerEventSource, 266
sample buffer, 266, 267
sample rate, 266
samples clipping and conversion, 269–

71
setDescription() method, 266
setInputSampleLatency function(), 266
setOutputSampleLatency() function, 266
starting and stopping audio engine,

272–73
I/O kit audio support, 253–54
IOAudioControl, 256
IOAudioDevice, 255
IOAudioEngine, 256
IOAudioFamily, 255
IOAudioStream, 256
MyAudioDevice architecture, 256
MyAudioDevice source code, 254
MyAudioEngine class, 256
programming drivers, 249
registering audio controls

addDefaultAudioControl(), 262
attributes, 260
callback function, 261
channel ID, 261
createMuteControl() factory method,

262

createVolumeControl() method, 260
dB value, 261
IOAudioLevelControl, 260
IOAudioStream, 262

System Preferences, 255
System Prefernces, 255

Audio HAL, 269
Audio Toolbox, 252
Audio Units, 252
audioStream parameter, 271

 B
bAlternateSetting, 374
Base Address 0-5, 176
Base Address Register (BAR), 176
bConfigurationValue, 369, 374
bDescriptorType, 374
bDeviceClass, 365
bDeviceProtocol, 365
bDeviceSubClass, 365
Berkeley Packet Filter (BPF), 276, 301
bInterfaceClass, 374
bInterfaceNumber, 374
bInterfaceProtocol, 374
bInterfaceSubClass, 374
bInterval, 374
Bit depth, 250
BSD data-link layer (BDIL), 304
BSD sockets, 105
bzero functions, 107

 C
capabilities argument, 218
capabilityFlags, 209
capabilityFlags bitmask, 218
CFMachPortCreate() function, 426
changePowerStateTo() method, 215, 216, 217
changePowerStateTo(powerStateOrdinal)

method, 215
changePowerStateToPriv() method, 215, 216,

217
changePowerStateToPriv(powerStateOrdinal)

method, 215
Class Code, 176
ClearPipeStall, 375
ClearPipeStallBothEnds, 375
clientMemoryForType method, 118
clipOutputSamples() method, 270

 INDEX

445

Cocoa framework, 6
Cocoa Touch API, 20
com.apple.iokit.IOAudioFamily, 413
com.apple.iokit.IOStorageFamily kernel module,

335
com.apple.kpi.private, 422
com_osxkernel_MyEthernetHwAbstraction class,

311
commandSleep() method, 141
Condition variables

definition, 133
functions, 134–35
interruptType values, 135–36
IOLockSleep(), 133, 134
m_readEvent parameter, 134
read() method, 133
sample code, 133
SIGHUP or SIGKILL signals, 135
user space application, 133

Configuration space registers
capability registers, 185–86
device ID and vendor ID, 183
extended configuration space, 185
IOPCIDevice.h file, 184
offset parameter, 183
offsets constants, 184
PCI controller firmware, 184
PowerPC-based systems, 185
setConfigBits() method, 184
setMemoryEnable() method, 185

Connect and disconnect callbacks, 417–18
connect() system, 289
constants callback function, 101
constants IOAsyncCallback0 function, 101
constants IOConnectCallAsyncScalarMethod()

function, 101
contentHint parameter, 349, 351
Control get function, 418
ControlRequest, 377
ControlRequestAsync, 377
ControlRequestAsyncTO, 377
ControlRequestTO, 377
convertInputSamples() method, 271
cookie argument, 300
Copy-on-write (COW) optimization, 112
Core Audio, 249, 251–53
Core Audio Kit, 252
Core MIDI / MIDI Server, 253
CreateDeviceAsyncEventSource method, 364
CreateInterfaceIterator, 369
createMappingInTask() method, 115, 116

createMedium() method, 312–13
createNewAudioStream() method, 267

 D
Darwin distribution, 17
Darwin source code repository, 226
Data-link interface layer (DLIL), 303
Debugging

boot parameter, 386, 387
boot-args argument, 387
crashes, 387
deadlocks, 382
FireWire, remote tracing, 390, 392
GNU debugger

backtrace command, 404
cmp instruction, 407
disassemble command, 406
FireWire core dump mechanism, 403
FireWireKDP mechanism, 397, 398
fVariable1 and fVariable2, 408
host machine, 395, 396
kernel macros, 400, 401
kernel panic logs, 408, 410, 411
Mac OS X, 394
MyDebugDriver Header File, 403, 404
pointer, 407, 408
remote debugging setup, 400
remote target, 396, 397
running kernel, 399
symbol information, 401, 403
symlink, 405
UNIX and Linux systems, 395
verbose flag, 395
x86-64 calling conventions, 411, 412
Xcode, 394

Hung processes, 412, 413
illegal instruction/operand, 382
invalid memory access, 382
IOLog() tracing, 388, 389
KDB, 394
kernel panics, 383
kernel problems, 384
lock contention, 382
memory and resource leaks, 382, 413, 414
nvram command, 385, 387
primary interrupt context, 383
race conditions, 382
remote kernel core dumps, 392, 393, 394
stack traces, 389

www.allitebooks.com

http://www.allitebooks.org

 INDEX

446

Debugging (cont,)
virtual machine, 399
volunteered panics, 383

deRegisterInterestedDriver(IOService* driver)
method, 218

detach() method, 191
Device Address Resolution Table (DART), 100
Device ID, 175
DeviceRequest, 367
DeviceRequest method, 367
DeviceRequestAsync, 367
DeviceRequestTO, 367
didChange notification, 219
didTerminate() method, 191
Direct memory access (DMA), 251
Direct Memory Access (DMA)

64-bit platforms, 201
buffer, 200, 201
data structure, 202
definition, 199
inbound DMA, 199
IODMACommand class

32-bit addressing, 206
alignment parameter, 208
code output, 209
esoteric hardware device, 206
generation, 208–9
inTaskWithPhysicalMask() factory

method, 207
IOBufferMemoryDescriptor, 207
IOMemoryCursor class, 206
IOMMU, 206
mappingOptions parameter, 207
maxSegmentSize parameter, 207
maxTransferSize, 208

memory caching, 200
memory preparation, 203–4
NULL pointer, 202
outbound DMA, 199
outbound DMA transfer, 199–200
page-out operation, 201
physical–bus address translation, 202–3
scatter/gather list, 201, 204–6
setBusMasterEnable(), 199
user space memory, 201
zero-copy, 199

DKIOCEJECT, 326
DKIOCGETFORMATCAPACITIES, 325
DKIOCISWRITABLE, 325
DKIOCREQUESTIDLE, 326
DKIOCSYNCHRONIZECACHE, 327

DKIOCUNMAP, 326
do_block field, 286
doDiscard method, 326
doFormatMedia, 337
domain structure, 276
Driver class, Info.plist file

“IOKitTest.cpp” tutorial, 59–60
“IOKitTest.h” tutorial, 58
com.osxkernel, 58
IOKitPersonalities dictionary, 60
IOKitTest dictionary, 60
IOKitTest.cpp, 58
IOMatchCategory key, 61
IOResourceMatch, 61
IOResources nub, 61
IOResources provider class, 61
IOService class, 58
kernel.log file, 62
methods calling order, 62–63
object initialization, 63
OSBundleLibraries dictionary, 60–61
OSDeclareDefaultStructors macro, 58
project’s property list, 61
super macro, 60

Drivers, 69
chain of control requests, 13
device removal

callback function, 77
callback function installation, 78–79
DeviceAdded() function, 77
driver object, 77
IONotificationPortCreate() function, 77
IOServiceAddInterestNotification()

function, 77
driver properties

connection-based approach, 79
Core Foundation, 82
Core Foundation dictionary, 80
custom string value, 83
CustomMessage, 81
debugging information, 81
IOUSBDevice class, 80
key/value pairs, 79
manufacturer string, 81
setProperties() Method, 82
StopMessage, 81, 83
table, 79

i/o control, 14
I/O Kit framework, 70–71
IO registry, 71
kernel/user space boundary, 69

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

 INDEX

447

lower-level USB driver, 13
matching dictionary

callback function, 73
CFRunLoopRun() function, 75
code structure, 71
Command Line Tool, 71
Core Foundation, 71
DeviceAdded, 75
DriverIterator, 71
event loop, 74
IOIteratorNext() function, 75
IOMasterPort() function, 73
IONotificationPortCreate() function, 75
IOServiceAddMatchingNotification()

function, 75
IOServiceGetMatchingServices()

function, 75
IOServiceMatching() function, 76
kernel driver’s property list, 71
kIOMasterPortDefault macro, 73
NSApplicationMain() function, 75
run loop, 74
USB devices, 71
USB devices arrival, 74–75, 76
USB hardware devices, 72–73

notifications
asynchronous operations, 99
asyncReference buffer, 102
blocking operations, 99
DelayForMs() method, 99
DelayForTime() function, 99
InstallTimer() function, 99, 100–101,

102–3
IOConnectCallAsyncXXX() function, 100
IOConnectCallXXX() functions, 100
IOExternalMethodArguments structure,

101–2
IONotificationPortCreate() function, 99
kIOAsyncCalloutFuncIndex and

kIOAsyncCalloutRefconIndex
constants, 101

port allocation, 99–100
sendAsyncResult64(), 103
timerCallback and context arguments,

101
operating system kernel, 12
printer, 14
serial port driver, 69, 70
state-based interaction

asynchronous operations, 83
background operation, 83, 84

connection-based approach, 83
driverConnection parameter, 84
IOServiceClose() function, 85
IOServiceOpen() function, 84, 85
user client. See User client methods

user space application, 69, 70

 E
Embedded C++, 39–40
emmintrin.h header file, 412
Enhanced host controller interface (ECHI), 145
EPERM, 291
ExpressCard, 175
Extensible host controller interface (xHCI), 145

 F
fAudioInputInteruptPending, 199
fAudioOutputInterruptPending, 199
fCurrentLoopCount, 273
File descriptors, 105
Filter scheme driver. See Media filter drivers
filterInterruptEventSource() method, 195
Firmware, 12
firstSampleFrame, 271
flush(), 317
flushInputQueue(), 319
frActCount value, 383
frame_ptr argument, 300
frameStart parameter, 380, 381
Free List, 104
free() method, 142–43, 191
frStatus value, 383
frTimeStamp field, 384

 G
g_string_buf variable, 419
GCC compiler, 41
GetAlternateSetting, 374
getBufferMemoryDescriptor() method, 119
GetBusFrameNumber, 366, 372
GetBusFrameNumber method, 380, 381
GetBusFrameNumber() method, 366
GetBusFrameNumberWithTime, 366, 372
GetBusMicroFrameNumber, 366, 372
GetConfiguration, 369
GetConfigurationDescriptionPtr, 369

www.allitebooks.com

http://www.allitebooks.org

 INDEX

448

GetConfigurationValue, 374
getCurrentSampleFrame() method, 274
GetDevice, 372
GetDeviceAddress, 366
GetDeviceAsyncEventSource method, 364
GetDeviceClass, 365
getDeviceMemoryWithIndex() method, 188, 189
GetDeviceProduct, 365, 372
GetDeviceProtocol, 365
GetDeviceReleaseNumber, 365, 372
GetDeviceSpeed, 366, 373
GetDeviceSubClass, 365
GetDeviceVendor, 365, 372
getDirection() method, 327
GetEndpointProperties, 374, 375
GetFrameListTime, 373
getHardwareAddress() function, 314
getHardwareAddress() method, 314
GetInterfaceClass, 374
GetInterfaceNumber, 374
GetInterfaceProtocol, 374
GetInterfaceSubClass, 374
GetLocationID, 366, 372
GetNumberOfConfigurations, 366
GetNumEndpoints, 374, 375
getPhysicalAddress() function, 203
getPhysicalAddress() method, 120
getPhysicalSegment() method, 120
GetPipeProperties, 375
GetPipeStatus, 375
getVirtualAddress() method, 188, 189

 H
Hardware abstraction layer (HAL), 252
HELLO_CONTROL_GET_STRING, 419
hello_ctl_connect() function, 418
HelloWorld distribution, 437
Hot–pluggable devices, 434

 I, J
I/O Kit framework, 51

“nub”, 52
boilerplate code, 52
C++ language, 51
driver’s provider, 52
Info.plist file

active matching, 55

com_mycompany_driver_MyExternalDi
skDriver class, 57

com_mycompany_driver_MyExternalDi
skDriverUSB class, 57

driver class. See Driver class, Info.plist
file

driver personalities, 57
IOPCIDevice, 55
IOProviderClass, 54
IORegistryExplorer, 63–65
IOUSBDevice, 55–56
kernel extension, 54
match category, 55
matching dictionary, 54, 55, 57
MyUSBDevice, 56
property list, 54
USB device connection, 54
user client, 56

IOAudioDevice class, 52
IOSerialStreamSync class, 52
IOService class, 53
IOUSBDevice class, 52
Kernel framework, 51
libkern. See libkern
object relationship, 53–54
object-oriented programming abstraction,

51
role of driver, 52
user space application, 51

I/O memory management unit (IOMMU), 100,
202–3

I/O memory regions
control and status registers, 186
enumeration

frame buffer, 188
graphics card, 188
kernel.log, 188
setMemoryEnable(), 187–88

frame buffer, 186
I/O ports, 186
I/O space access, 189
IDE controllers, 186
mapping and accessing, 188
size, 186
standardized interfaces, 186

ifconfig tool, 312
iff_input filter function, 300
iff_protocol field, 300
ifnet structure, 276
ifnet_hdrlen(ifnet_t) function, 300
ifnet_t argument, 300

 INDEX

449

iInterface field, 374
Inactive List, 104
Info.plist file, 413
inputPacket(), 319
inputPowerRequirement, 209
inputStructSize argument, 90
Installation Destination, 437
inTask argument, 111
inTaskWithOptions() method, 111
inTaskWithPhysicalMask(), 112
inTaskWithPhysicalMask() method, 111
intCount parameter, 199
Intel 64 Architecture, 103
Interface filters

AF_INET, 298
callback arguments, 300
iff_filter structure, 298
ifnet_find_by_name() KPI function, 300
ifnet_output_raw() function, 301
ioctl() messages, 297
MyInterfaceFilter, 298–300
output filter function, 300–301
physical interface, 297

Internet Protocol (IP) filters
EJUSTRETURN, 296
encrypted IP packet, 295
Ethernet, 297
ipf_addv4() function, 295
ipf_input and ipf_output callbacks, 295
ipf_output filter function, 296
IPv4 and IPv6, 292
MyIPFilter implementation, 292–95
NAT, 297
ping command line utility, 296
structure, 292
TCP and UDP checksums, 296
UDP and TCP checksums, 296

Interrupt event source filtering, 195–96
Interrupt handler code, 273–74
Interrupt Service Routine (ISR), 192
interruptFilter() function, 197
interruptOccurred() method, 195
intoTask argument, 116
ioalloccount tool, 433
IOAudioControl, 254
IOAudioControlUserClient, 254
IOAudioDevice, 253
IOAudioDevice superclass, 53
IOAudioEngine, 253, 254
IOAudioEngineUserClient, 254
IOAudioFamily, 249, 253, 412

IOAudioLevelControl, 254
IOAudioPort, 254
IOAudioSelectorControl, 254
IOAudioStream, 254
IOAudioStreamFormat structure, 268
IOAudioToggleControl, 254
IOBasicOutptuQueue class, 304
IOBlockStorageDevice class, 320, 321, 339
IOBlockStorageDriver class, 339
IOBufferMemoryDescriptor, 109, 203, 205, 267,

318
IOCFPlugInInterface class, 362
ioclasscount tool, 192, 433
IOConnectCall*() functions, 432
IOConnectSetNotificationPort() function, 427
IODeviceMemory, 188
IODeviceTree, 64
IODMACommand class, 120, 203
IOEthernetController class, 303, 304
IOEthernetInterface, 310, 312
IOEthernetInterface class, 303, 311
IOEventSource base class, 139
IOExternalMethodArguments structure, 92–93,

97, 101–2
IOExternalMethodDispatch structure, 94
IOFilterInterruptEventSource, 194, 196, 198, 312
IOFilterInterruptEventSource instance, 197
IOFireWireIP, 305
IOGatedOutputQueue class, 304
IOGraphicsFamily, 413
IOInterruptEventSource, 194, 196, 198, 310, 312
IOInterruptEventSource class, 139
IOInterruptEventSource::interruptEventSource(),

196
IOIteratorNext() function, 72
IOKernelDebugger class, 303
IOKitPersonalities dictionary, 60
IOLock, 127, 131
IOLockSleep() function, 141
IOLockSleepDeadline() function, 141
IOLockWakeup() function, 141
IOLog(), 198
IOMalloc() family, 112
IOMalloc() function, 108
IOMallocAligned(), 112
IOMallocAligned() function, 108, 109
IOMallocContiguous() function, 109
IOMallocPageable() function, 109
IOMatchCategory, 342
IOMBufBigMemoryCursor subclass, 304
IOMbufDBMAMemoryCursor subclass, 304

www.allitebooks.com

http://www.allitebooks.org

 INDEX

450

IOMbufLittleMemoryCursor subclass, 304
IOMbufMemoryCursor, 318
IOMbufMemoryCursor class, 304
IOMbufMemoryCursor subclass, 319
IOMbufNaturalMemoryCursor subclass, 304
IOMedia class, 339
IOMediaBSDClient class, 339, 340
IOMemoryDescriptor, 115, 188, 203, 359
IOMemoryDescriptor class, 113, 203
IOMemoryDescriptor object, 327
IOMemoryDescriptor::getPhysicalSegment(), 204,

208
IOMemoryDescriptor::map() method, 115
IOMemoryDescriptor::prepare(), 100
IOMemoryMap class, 113
IOMemoryMap member function, 117
IOMemoryMap::getVirtualAddress() method, 116
IOMemoryMap::unmap() function, 117
IONetworkController class, 304
IONetworkController::selectMedium() method,

313
IONetworkData class, 304
IONetworkInterface class, 304, 311, 319
IONetworkMedium class, 312
IONetworkUserClient class, 304
IOObjectCopyClass() function, 72
IOObjectRelease() function, 72
IOOutputQueue class, 304
IOPacketQueue, 321
IOPacketQueue class, 304
IOPCI2PCIBridge class, 177
IOPCIDevice method, 188
IOPCIDevice provider class, 53, 54
IOPhysicalAddress, 100
IOPMAckImplied value, 218
IOPower, 64
IOPropertyMatch, 342
IOPropertyMatch item, 351
IOProviderClass key, 71
IORecursiveLock, 141
IORegistryEntry class, 82
IORegistryEntryCreateCFProperties() function,

79
IORegistryEntryCreateCFProperty() function, 80
IORegistryExplorer, 203, 206
IORWLock, 127, 136
IOSerialDriverSync class, 69
IOSerialStreamSync class, 53
IOService class, 207, 320
IOService lifecycle methods, 272
IOService::registerInterrupt(), 194

IOServiceGetMatchingServices() function, 72,
73

IOServiceMatching() function, 71
IOServiceOpen() function, 426
IOSimpleLock. See Spin locks:
IOStorage stack, 342
IOStorageCompletion, 359
IOTimerEventSource, 312
IOTimerEventSource class, 139, 141–42
IOTimerEventSources, 310
IOUSB, 65
IOUSBConfigurationDescriptorPtr structure, 369
IOUSBController subclass, 414
IOUSBDevice, 72
IOUSBDevice class, 320
IOUSBDevice provider class, 53, 54
IOUSBDeviceInterface class

bmRequestType field, 367
CFStringRef, 368
control requests, 367
device configuration, 369–70
device request function, 368–69
IOUSBDevice class, 361, 364
IOUSBDeviceInterface300 class, 365–66
kIOReturnExclusiveAccess error code, 365
kIOReturnSuccess error code, 365
kUSBIn, 367
kUSBRqGetDescriptor request, 367
loop source, 364
QueryInterface method, 362
read dynamic properties, 366
reset USB device, 366–67
USBDeviceClose(), 365
USBDeviceOpen(), 365
USBGetManufacturerStringIndex, 367
wValue field, 367

IOUSBFindInterfaceRequest structure, 369
IOUSBHubDevice, 72
IOUSBInterface class, 320
IOUSBInterfaceInterface class, 372–73

endpoint data transfer methods
Async, 376
bulk endpoint, 377
callback function, 376
control request, 377
endpoints determination, 374–75
interrupt endpoint, 377–78
isochronous data transfers. See

Isochronous data transfers
pipe index, 375, 376

 INDEX

451

pipe reference, 375–76
ReadPipeAsyncTO, 378–79

endpoint types, 371
getting and setting properties, 373–74
io_service_t, 361–62
io_service_t object, 371
IOUSBInterface class, 361, 371
IOUSBInterfaceInterface300 class, 372
kIOUSBInterfaceClassName, 371
matching dictionary, 371
QueryInterface method, 362
USBInterfaceClose(), 372
USBInterfaceOpen(), 371

IOUSBIsocFrame array, 380, 381
IOUSBIsocFrame structure, 384
IOUSBLowLatencyIsocFrame array, 384
IOUSBLowLatencyIsocFrame structure, 384
IOUserClient class, 53, 85, 118
IOUserClient method, 432, 433
IOVirtualAddress, 101, 116
IOWorkLoop, 195
ipf_detach function, 292
ipf_remove() function, 292
iPhone OS, 16
Isochronous data transfers

bandwidth, USB bus, 380
GetBandwidthAvailable, 381
IOUSBIsocFrame structure, 380
low-latency isochronous transfers, 383–84
read operation function, 381–83
ReadIsochPipeAsync, 380
SetPipePolicy, 381
WriteIsochPipeAsync, 381

isWhole, 349

 K
kAudioBufferSampleFrames, 266
kAudioSampleRate, 266
Kernel address space management, 29
Kernel Control KPI, 281
Kernel development

C++ language, 39–40
Console untility, 50–51
kernel extension. See Kernel extension
Xcode, 40–41

Kernel extension
“Hello World” application

“System Plug-in” category, 41
<libkern/libkern.h> header file, 42, 43

com.apple.kpi.libkern, 44
HelloWorld.c, 42–43, 44
HelloWorld-Info.plist file, 43
I/O Kit driver, 42
Info.plist file, 46
Kernel.framework, 44
KEXT bundle, 46
Mac OS X kernel, 44
printf() function, 43
project settings, 44, 46
property list, 43–44, 43–44
reverse DNS convention, 42
reverse DNS prefix, 44

loading and unloading
compiled binary, 47
HelloWorld.kext, 47
HelloWorld_stop() function, 50
KEXT bundle, 48
kextload command, 48
kextstat command, 48–50
kextunload command, 48
kextutil command, 48
path location, 47
security, 47

Kernel extension:, 43
Kernel extensions (KEXT), 429

loading and installation
AuthorizationExecuteWithPrivileges(),

431
I/O Registry, 429
Info.plist files, 429
IOResources, 429
iOS App Store, 431
kextd, 429
LaunchDaemon, 430
Mac App Store, 431
plist file, 431
preferences and settings, 431–32
root user, 429
UNIX shell script, 430–31
VPN application, 431

packaging:. See PackageMaker, KEXT
software distribution, 429
testing and quality assurance, 433–34
versioning system, 432–33

Kernel library. See libkern
Kernel private, 422
KernelUserClientAPIVersion, 433
kextd daemon, 413
kextload, 433

www.allitebooks.com

http://www.allitebooks.org

 INDEX

452

kextunload, 433
kfree() function, 106, 108
kIOAudioStreamAlignmentHighByte, 268
kIOAudioStreamAlignmentLowByte, 268
kIODirectionIn, 203
kIODirectionIn value, 327
kIODirectionInOut, 203
kIODirectionOut, 203
kIODirectionOut value, 327
kIOMapAnywhere, 116, 119
kIOMapCopybackCache, 116
kIOMapDefaultCache, 116
kIOMapInhibitCache, 116
kIOMapReadOnly, 116
kIOMapReference, 116
kIOMapUnique, 116
kIOMapWriteThruCache, 116
kIOMemoryKernelUserShared, 112
kIOMemoryMapperNone, 120
kIOMemoryPageable, 111
kIOMemoryPhysicallyContiguous, 111, 318
kIOMemoryPhysicallyContiguous flag, 205
kIOMemoryPurgeable, 112
kIONetworkLinkActive flag, 313
kIONetworkLinkValid flag, 313
kIOPCIConfigDeviceID, 184
kIOPCIConfigVendorID, 184
kIOPCIExpressCapability, 186
kIOPMDeviceUsable, 209
kIOPMInitialDeviceState, 209
kIOPMLowPower, 209
kIOPMPowerOn, 209
kIOPMPowerStateVersion1, 208
kIOPMPreventIdleSleep, 209
kIOPMSubclassPolicy parameter, 217
kIOPMSuperclassPolicy1 parameter, 217
kIOPropertyExternalKey, 189
kIOPropertyPhysicalInterconnectLocationKey,

189
kIOReturnSuccess, 144, 314, 367, 375
kIOReturnSuccess value, 364
kIOReturnUnsupported, 313, 314, 325
kIOServicesIsTerminated message, 191
kIOUSBPipeStalled, 375
kIOUSBUnknownPipeErr, 375
kmem_alloc() function, 107
kmem_alloc*() family, 105
kmem_alloc_pageable() function, 105
kUSBFullSpeedMicrosecondsInFrame, 373
kUSBHighSpeedMicrosecondsInFrame, 373

 L
Launch Daemon, 430, 432
Legacy mode, 103
len argument, 419
libkern, 51

OSObject class
adoption procedure, 65–67
command ioclasscount, 68
container classes, 68–70
free() method, 67
functionality, 65
init() method, 67
ioclasscount command, 68
kernel extension, 68
NSObject class, 65
OSDeclareDefaultStructors macros, 67
retain() method, 67
start() method, 68
static helper method, 67

libkern kernel library, 105
libkern library, 109
libpcap library, 301
LLVM compiler, 41
Long mode, 103
LowLatencyCreateBuffer, 384
LowLatencyCreateBuffer method, 384
LowLatencyDestroyBuffer, 384
LowLatencyReadIsochPipeAsync, 384
LowLatencyWriteIsochPipeAsync, 384

 M
m_devicePowerState, 220
m_outstandingIO variable, 220
Mac OS 9, 5
Mac OS X, 224, 225, 226
Mac OS X and iOS

64-bit operating system, 20
architecture, 16, 17
Darwin distribution, 17
desktop, 17, 18
iLife suite, 16
Intel x86-platform, 20
NeXTSTEP OS, 16
objective-C, 18, 19
POSIX, 17
powerPC platform, 17, 20
programming API, 18, 19
release date, 15, 20

 INDEX

453

Unix 03 Certification, 17
XNU kernel. See XNU kernel

Mac OS X and iOS audio architecture, 252
mach_msg_send_from_kernel() function, 427
mach_vm_address_t, 101
makeUsable() method, 215, 216
malloc() function, 105
map() method, 188
mapDeviceMemoryWithRegister() method, 188,

189
Matching and loading drivers

32-bit hexadecimal string, 179
Info.plist, 179
Info.plist file, 180
IONameMatch, 180
IOPCIClassMatch, 179
IOPCISecondaryMatch, 179
IOProvider* service method, 178
IOProviderClass, 179
keys, 178
matching dictionary, 178–79
name property, 180
Thunderbolt devices, 180–81

maxNumSegments, 318
maxSegmentSize, 318
mbuf_pkthdr_rcvif() function, 290
mbuf_t buffer, 300
Media Access Control (MAC) address, 313–14
Media filter drivers

block-level disk encryption, 352
Content Hint property, 353
encryption

Encrypted_HFS_GUID, 353
HFS file system, 353
instantiateMediaObject() method, 356
IOPropertyMatch, 353
matching dictionary, property list, 353–

54
probe() method, 354
read() method, 357–59
SampleEncryptionFilter class, 356
start() method implementation, 354–56
uuidgen command line tool, 353
write() method, 360–61
write() methods, 356
XOR encryption scheme, 353

GUID partition table
.dmg file, 363
“gpt add” command, 362
“hdiutil attach” command, 362
Apple_HFS, 363

Content Hint property, 361, 363
disk image, 361, 362
disk2, 363
disk2s1, 363
EncryptedImage.dmg file, 362
gpt command, 362
hdiutil command line utility, 362
HFS file system, 361, 363, 364
IOBlockStorageDevice superclass, 362
IOGUIDPartitionScheme driver, 363
IOMediaBSDClient object, 362
MyVolumeName, 363
setLocation() method, 363

IOFilterScheme class, 352
RAID driver, 352, 353

Media independent interface (MII) bus, 310
memcpy() function, 113
Memory management, 99

IOMemoryDescriptor
complete() method, 111
IOBufferMemoryDescriptor, 111–12
IODeviceMemory, 112
IOMultiMemoryDescriptor, 112
prepare() method, 110–11
release() method, 111
virtual and physical memory, 110
withAddressRange() method, 110
withPhysicalAddress() method, 111

kernel memory allocation
BSD, 107
C++ new operator, 109
I/O Kit, 107–9
kalloc family, 105–7
low-level allocation mechanisms, 104–5
Mach zone allocator, 105
malloc()/free() interface, 104
VM page cache and file system cache,

104
vm_page structure, 104
xnu kernel, 104

mapping memory
COW optimization, 112
definition, 112
IOBufferMemoryDescriptor, 119
IOMalloc() and IOMallocAligned()

functions, 119
IOMemoryDescriptor::createMappingIn

Task(), 119, 120
IOMemoryMap class, 116–18

www.allitebooks.com

http://www.allitebooks.org

 INDEX

454

Memory management, mapping memory (cont.)
IOMemoryMap::getVirtualAddress(), 120
kernel to user space task, 118–19
kIOMemoryKernelUserShared, 119
physical address mapping, 120
user space task into kernel space, 101–2

types
32-bit vs. 64-bit memory addressing,

103–4
big vs. little endian, 102
bus physical addresses, 100
CPU physical sddress, 100
user and kernel virtual addresses, 101–2

memory management unit (MMU), 202
Memory Management Unit (MMU), 100, 101
Memory mapped I/O (MMIO), 190
Memory Mapped I/O (MMIO), 186
Message signaled interrupts (MSI), 196–97
Message Signaled Interrupts (MSI), 195
message() method, 191
Message-signaled interrupts (MSI). See
Mutexes

advantages, 131
deadlock, 131
functions, 131–32
IOLock, 127, 131
ListEnqueue() function, 131
POSIX mutex lock functions, 131
recursive mutex, 131

MyEthernetDriver, 301
BSD layer, 306
configureInterface() method, 311–12
DHCP server, 323
en5, 323
enable() method, 314–15
header file, 307–9
ifconfig command line tool, 323
interaction, 305
interrupt handler, 318–19
IOEthernetController, 306
IOEthernetInterface, 306
IONetworkController, 305, 306
IORegisterExplorer, 321
IORegisteryExplorer, 322
IOResources, 321
IOResources nub, 305
IOUSBFamily source distribution, 305
kextload, 321
MAC address, 314
Mac’s Thunderbolt port, 306

MyEthernetHwAbstraction class, 307
MyEthernetHwAbstraction.cpp, 321
network stack, 306
outputPacket() function, 316
packets and data transfer, 324
physical network switch, 306
ping utility, 324
start() method, 310–11
System Preferences, network pane, 322, 323
test setup, 306
virtual Ethernet bridge/switch, 307

MyFirstPCIDriver class
declaration, 181–82
implementation, 182
Info.plist, 182
IOProviderClass key, 182
IORegistryExplorer, 183
kextload utility, 183
modifications, 181
probe() method, 182
registerService() function, 182
start() method, 182

myReadDataFromDevice() method, 224
myReadDataFromDevice() operation, 219

 N
netcat, 302
Network Address Translation (NAT), 297
Network Kernel Extension (NKE), 414
Network kernel extensions (NKE)

architecture, 276
interface filter. See Interface filter
interface KPI, 281
IP filter. See Internet Protocol filter
kernel control interface, 281
protocol plumber, 281
socket filter. See Socket filter

Network memory buffers (mbufs)
cluster, 278
data structure, 277–78
KPI, 279
linked list, 278
mbuf_allocpacket() function, 280
mbuf_allocpacket_list function, 280
mbuf_copyback() function, 279
mbuf_copydata() function, 279
MBUF_DONTWAIT, 280
mbuf_tag_allocate() function, 280
MBUF_WAITOK, 280

 INDEX

455

MH_ext field, 279
the mbuf_next() macro, 280

Networking, 275
BSD layer, 275
BSD network stack, 276
data structures, 276
debugging and testing, 301
I/O Kit

AirPort drivers, 304
disable() method, 315–16
driver initialization and startup

attachInterface() method, 311
configureInterface() method, 311–12
createMedium() function, 311
registerService() method, 312
start() method, 309–11

enable() method, 314–15
enableHardware() method, 315
Ethernet controller driver. See

MyEthernetDriver
fRxPacketQueue, 315
IO80211Controller, 304
IO802Family.kext, 304
IONetworkController class, 303
IONetworkingFamily class hierachy,

302, 303
IONetworkInterface class, 303
IOUserClient, 304
MAC address configuration, 313–14
medium and status selection, 312–13
packets transmission, 316–18
receiving packets, 318–21

kernel network architecture, 275
KPI, 276
mbufs. See Network memory buffers
NKE. See Network kernel extensions
socket API, 276

numSampleFrames, 271

 O
Objective-C, 18
Open host controller interface (OHCI), 145
OpenAL, 253
Operating system fundamentals, 1

boot sequence, 4
driver, 2
hardware and drivers, 12–14
hardware configuration, 2
kernel extension, 1, 2

kernel space code, 3
network interfaces, 1, 2
process address spaces, 5–6
process management, 4–5
scheduling, 11–12
services, 6–7
sound card, 3
user space code, 3
virtual memory

buffer, 11
page fault, 10
page frames, 8–9
page table, 9
paging, 8, 10, 11
physical address translation, 9, 10
RAM, 7–8

opt argument, 418
options argument, 116
OSArray, 69, 70
OSBoolean class, 69
OSBundleLibraries, 44, 180, 413
OSBundleLibraries dictionary, 43, 60–61
OSDeclareDefaultDestructors() macro, 66
OSDefineMetaClassAndStructors() macro, 66
OSDictionary, 69, 313
OSDictionary object, 63
OSKextRequestResource function, 424–25
OSNumber class, 69
OSOBject, 192
OSOrderedSet, 69
OSSet, 69
OSString class, 69
OSSwapLittleToHostInt64(), 349
OSSymbol class, 69
outputPacket() method, 316–17
outputPowerCharacter, 209
outputStructSize argument, 90
outputStructSize arguments, 91

 P, Q
PackageMaker, 429
PackageMaker, KEXT

.user interface, 434
“Volume selected by user” option, 435
binary compressed package file, 435
contents addition, 436–37
file command, 435
FireWire, PCI, and USB, 435
GUI–based wizard, 435

v
www.allitebooks.com

http://www.allitebooks.org

 INDEX

456

PackageMaker, KEXT (cont.)
Hello World Kernel Extension, 436
Installer.app program, 435
Launch Agents/Daemons, 434
package building, 441–42
package configuration

“Actions” editor, 441
“Actions” tab, 438
“Allow custom location” option, 439
“Apply Recommendations” button, 440
“Contents” tab, 440
“Destination” field, 439
“Edit Interface” option, 437
“Install” field, 439
“Package Location” field, 440
“Patch” field, 439
“Require admin authentication”, 440
“Requirements” tab, 438
“Restart Action”, 439
“rm” command, 441
“Scripts” tab, 439, 441
action editor, 438
bundle/individual file, 440
HelloWorld.kext, 438
Installer.app, 437
Launch Agents/Daemons, 440
meta data files, 441
meta-data and version information, 439
root user, 441
test subset, 438
wheel group, 441

software distributions, 434
uninstallation, 442
UNIX scripts, 435
user interface, 435
Xcode, 435

PCI Express (PCIe), 174
performAudioEngineStart() method, 272, 273
performAudioEngineStop() method, 272–73
performRead() and performWrite() methods,

329
Peripheral component interconnect (PCI), 173

configuration space registers, 175–76
DMA. See Direct Memory Access
ExpressCard, 175
I/O Kit

Configuration space registers. See
Configuration space registers

display controller, 181
handling device removal, 189–92
IOAGPDevice, 177

IOMatchCategory, 181
IOPCIBridge, 177
IOPCIDevice object, 177
IOPCIFamily class hierarchy, 176, 177
matching and loading drivers, 178–80
memory regions. See I/O memory

regions
MyFirstPCIDriver class. See

MyFirstPCIDriver class
interrupts

direct interrupt, 193
handling primary interrupts, 197–98
handling secondary interrupts, 198–

99
I/O Kit mechanisms, 193–94
indirect interrupts, 193
ISR, 192–93
MSI, 192, 196–97
OS X and iOS, 193
primary interrupt context, 192
registration, 195–96
secondary interrupt context, 192

PCI Express, 174
PCI-X and PCI-X 2.0 standards, 173
Thunderbolt, 174

Physical Address Extensions (PAE), 100
Power management, 205

doze state, PCI card, 205
I/O Kit, 206–7
I/O registry power plane, 205–6
power state changes

acknowledgeSetPowerState(), 214
driver registration, 211–12
driver removal, 212
for driver, 211
gPowerStates array, 211
handling device idle, 216–17
header file, 220–21
implementation file, 221–24
IOPMPowerState structure, 208
IOPMPowerState structures, 210
IOService class, 210
joinPMtree() method, 212
kIOPMAckImplied code, 214
myReadDataFromDevice() method, 224
notifications, 208
observation, 218–19
off and on states, 208, 219
PMinit() method, 212
powerStateOrdinal parameter, 214
registerPowerDriver() method, 212, 214

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

 INDEX

457

request response, 212–14
requesting, 214–16
setPowerState() method, 212, 214
structure fields, 208–10

sleep mode, 205
powerChangeDone() method, 219
powerDomainBudget, 210
PowerPC architecture, 102
powerStateDidChangeTo() notification, 218
powerStateWillChangeTo() notification, 218
powerToAttain, 210
pre-Lion operating systems, 434
prepare() method, 203
Primary interrupt filter method, 197
proc_selfname() function, 422
proc_selfpid() function, 422
protosw, 276
publishMediumDictionary() method, 313
Pulse Code Modulation (PCM), 250

 R
RAM, 7–8
RAMDiskStorageDevice nub class header file,

331–32
ReadIsochPipeAsync method, 384
ReadPipe, 377
ReadPipeAsync, 378
ReadPipeAsyncTO, 378
ReadPipeTO, 378
receivePacketFromHardware(), 321
registerInterestedDriver(IOService* driver)

method, 218
registerNotificationPort() method, 427
ResetDevice, 366
ResetPipe, 375
Rosetta, 20, 102
runAction(), 140

 S
Sample depth, 250
Sample frame, 250
Sample rate, 250
sampleBuf parameter, 271
scheduleSecondaryInterrupt variable, 198
sDelayForTime(), 98
Secondary interrupt handler function, 199
Serial port drivers

Apple USB serial driver, 226

AppleUSBCDC driver, 226
AppleUSBCDCDMM class, 227
attach() method, 228
C++ new operator, 228
Communications Device Class, 226
createSerialStream() method, 227, 229
Darwin source code repository, 226
data transmission, 223
executeEvent() and requestEvent() method,

239, 241, 242
I/O Kit, 226
init() method, 228
IOModemSerialStreamSync class, 229
IOSerialDriverSync Class, 226

AppleUSBCDCDMM driver, 232, 233
dequeueData() method, 232
IOSerialDriverSync interface, 230, 231,

232
refCon value, 231
watchState() method, 232

IOSerialFamily kernel module, 229
IOSerialStreamSync class, 227
IOSerialStreamSync Object, 228
IOUSBDevice object, 226
kernel serial driver stack, 226
kIOTTYBaseNameKey and

kIOTTYSuffixKey properties, 230
Mac OS X, 224, 225, 226
PD_E_FRAMING_ERROR, 242
PD_E_HW_OVERRUN_ERROR and

PD_E_SW_OVERRUN_ERROR, 242
PD_E_INTEGRITY_ERROR, 242
PD_RS232_E_RX_LINE_BREAK, 242
registerService() method, 229
serial data transfer

CheckQueues() function, 246
dequeueData() method, 243, 245, 246
driver internal transmit buffer, 246, 247
enqueueData() method, 243, 244
IOSerialBSDClient, 243
requestEvent() method, 243
StartHardwareTransmit() function, 244
transmit buffer, 243

serial port settings, 239
tcsetattr() and tcgetattr() functions, 239
user space application, 223

/dev directory, 248
character device, 249, 250
I/O Registry, 248
IOSerialBSDClient objects, 248
kIOCalloutDeviceKey, 249

www.allitebooks.com

http://www.allitebooks.org

 INDEX

458

Serial port drivers, user space application (cont.)
kIODialinDeviceKey, 249
kIOTTYDeviceKey, 248
matching dictionary, 248

Set option function, 419
SetAlternateInterface, 374
SetConfiguration, 369
setHardwareAddress() method, 314
setIdleTimerPeriod(period) method, 216
setIOEnable() method, 189
setLinkStatus() method, 313
setNumSampleFramesPerBuffer() method, 266
setPowerState() method, 216, 217, 218, 220
setProperties() method, 82
setProperty, 189
setSelectedMedium(), 313
settleDownTime, 210
settleUpTime, 210
sf_connect_in filter function, 289–90
sf_connect_in function, 289
sf_connect_out filter function, 289
sf_data_out function, 290–91
sf_handle structure, 283
sflt_register() function, 284, 285
sflt_register() function add_entry() function, 285
sft_name, 284
sGetElapsedTimerTime(), 98
SleepX tool, 433
sock_data_filt_flag_oob flag, 291
sock_data_filt_flag_record flag, 291
sockaddr structure, 289, 291
Socket filters

AppWall
ALF.kext, 284
IP version 4, 284
operation and data structures, 286
registration, 284–85
unabridged source, 284

attachment and detachment
attach callback, 287
cookie parameter, 287
detach callback, 288–89
ENOPOLICY, 288
IP address retrieval, 287
proc_selfname(), 288
sf_attach function, 286
sf_attach() function, 288
sf_detach function, 286
sflt_unregister(), 288

auxiliary protocols, 282
bind() and listen(), 282

connections handling, 289–90
data input and output, 290–92
definition, 284
filter IP-based traffic, 281
sf_attach and sf_detach, 283
sf_flags field, 283
sflt_filter structure, 282–83
SFLT_GLOBAL, 283
SFLT_PROG, 283

socket structure, 276
Spin locks

Boolean flag, 128
CPU cycles spinning, 128
deadlock, 128
interrupt handler, 129
IOSimpleLock functions, 129–30
multiprocessor system, 128
unsigned 32-bit integer, 128

startFrame parameter, 381
stateNumber argument, 218
staticPower, 209
stop() method, 191
Storage systems, 319

driver stack, 320
external USB flash drive vs. internal hard

disk, 319
I/O Kit, 319
IOBlockStorageDevice interface

Disk Utility, 324
doAsyncReadWrite, 327
doDiscard method, 325
doEjectMedia, 326
doFormatMedia, 325
doGetFormatCapacities, 325
doLockUnlockMedia, 326
doSynchronizeCache, 327
doUnmap method, 326
getAdditionalDeviceInfoString, 324
getProductString, 324
getRevisionString, 324
getVendorString, 324
getWriteCacheState, 327
logical blocks, 321
reportBlockSize, 325
reportLockability, 324
reportMaxValidBlock, 325
reportMediaState, 324
reportPollRequirements, 324
reportRemovability and

reportEjectability, 324
reportWriteProtection, 325

 INDEX

459

requestIdle, 326
setWriteCacheState, 327
subclass implementation methods,

322–23
System Information, 324

layered stack, 319
media filter drivers. See Media filter drivers
multiple drivers, 319
partition schemes

attachMediaObjectToDeviceTree()
method, 345

hypothetical partition scheme, 347
instantiateMediaObject() method

implementation, 348–50
IOBufferMemoryDescriptor, 347
IOGUIDPartitionTableScheme, 341
IOMemoryDescriptor, 347
IOPartitionScheme class, 340, 341
IOService method, 344
kIODirectionIn, 347
Mac OS X, 340
matching dictionary, property list, 341–

42
media content hint property, 351
OSSet, 347
partition entry verification, 348
probe() method, 342–44
read() method, 347
scan() method, 345–46
start() method, 342–44
stop() and free() methods, 350–51
strcmp() function, 347

RAM disk device
block and character device interface,

340
block and character device interfaces,

340
buffer cache, 340
com_osxkernel_driver_RAMDiskStorage

Device class, 330
com_osxkernel_driver_RAMDiskStorage

Device class implementation, 332–35
createBlockStorageDevice() method,

330
Disk Utility application, 336–38
diskutil list command, 340
driver stack, 337
GUID partition table, 338, 339
I/O Kit, 327
IOBlockStorageDevice class, 339
IOBlockStorageDevice nub, 330–31

IOBlockStorageDriver class, 339
IOMedia class, 339
IOMediaBSDClient class, 339
IOMediaBSDClient object, 339
IORegisterExplorer utility, 336
IOResources class, 327
IOService class, 327
IOStorageFamily, 339
IOStorageFamily framework, 335
kernel extension, 335, 336
Mac OS X implementation, 327
matching dictionary, 335
memory allocation, 327
OSBundleLibraries, 335
property list, 335, 336
RAMDisk class, 329
RAMDiskStorageDevice, 330
registerService() method, 331
standard Mac OS X dialog, 336
transport driver header file, 328
transport driver implementation, 328–

29
transport layer drivers, 320–21
VFS layer, 319

streamFormat parameter, 271
Streaming SIMD Extensions (SSE), 411–12
Struct task, 105
Subsytem vendor/device ID, 176
Synchronization and threading, 119

arbitration, 119
asynchronous events. See Work loops
atomic operations

ARM instruction set, 123
bitwise AND and OR, 125–26
definition, 123
functions, 123–24
LOCK prefix, 123
object reference counting

implementation, 124–25
OSBitAndAtomic() function, 125
OSBitOrAtomic() function, 125
OSCompareAndSwap() function, 125,

126
OSDecrementAtomic(), 125
race condition, 123
release() method, 125
retain() and release() implementation,

124
retainCount value, 125

interrupt service routine, 119

www.allitebooks.com

http://www.allitebooks.org

 INDEX

460

Synchronization and threading (cont.)
kernel threads

<IOKit/IOLib.h> header file, 143
<kern/thread.h> header file, 143
continuation argument, 144
delay operation, 143
interrupt handler, 143
kernel_thread_start() function, 144
new_thread argument, 144
parameter function, 144
pthread_create() function, 144
sleep operation, 143
thread_terminate() function, 144
time-consuming operation, 143
user space process, 143
waitResult function, 144

locks
condition variables. See Condition

variables
I/O Kit, 127
mutexes. See Mutexes
race conditions, 127
read/write mutexes, 136–37
shared resource, 127
spin. See Spin locks

multiple CPU cores, 119
primitives

EAX register, 122
mov instruction, 121
OSObject class, 120
OSObject implementation, 120
race condition, 122
release() function, 120
retain() function, 120–21
retainCount, 122

 T
takeTimeStamp(), 273
takeTimeStamp() function, 272
takeTimeStamp() method, 273
tcpdump, 301–2
tcplognke, 292
terminate() method, 191
Thread, 11–12
Thunderbolt, 174
timeToAttain, 210
timeToLower, 210
transaction argument, 140
transmitPacketToHardware() method, 317–18

 U
unbudgetedPower, 210
Unified buffer cache (UBC), 37, 38
unique identifier (UID), 432
unitinfo parameter, 418
Universal Buffer Cache (UBC), 104
Universal host controller interface (UHCI), 145
Universal serial bus (USB)

bulk endpoints, 149
configuration descriptor, 150
control endpoints, 149
control requests, 171
device and driver handling, 153, 154
device classes, 151
device descriptor, 150
device removals, 164, 165
device requests, 168, 170, 171
driver loading, 154, 156
driver startup, 163, 164
endpoint descriptor, 150
endpoint enumeration, 166, 167, 168
host controller, 142, 144, 145
I/O bulk and interrupt

asynchronous requests, 175, 176
completion parameter, 172
completionTimeout, 172
endpoints, 173
errors and pipe stalls, 174
IOMemoryDescriptor, 172
IOUSBPipe class, 171
isochronous I/O, 174, 175
Read() and Write() method, 171, 172
reqCount, 172

I/O kit, 152
implementers forum, 141
interface descriptor, 150
interface enumeration, 165, 166
interrupt endpoints, 149
interrupt transfer, 143
iSight camera, 143
isochronous endpoints, 149
key characteristics, 143
MacBook, 142
mass storage device driver

attach() method, 162
bInterfaceClass, 161
IOMatchCategory key, 161
IOUSBInterface, 163
IOUSBMassStorageClass, 161

 INDEX

461

kernel.log, 162
kextlibs tools, 162
matching dictionary, 161
MyFirstUSBDriver.cpp, 158, 159, 160
MyFirstUSBDriver.h, 158
OSBundleLibraries dictionary, 162
start() method, 161
thumb/flash drive, 158
virtual driver, 157

master-slave system, 141
message pipe, 149
On-The-Go (OTG), 145
prober, 156, 157
protocol, 146

communication protocol, 146
cyclic redundancy check field, 148
data packet, 146
data packets, 148
end of packet (EOP) field, 148
endpoint field, 148
frame packet, 146
handshake packet, 146
isochronous transfer modes, 149
little-endian format (LSB), 146
packet identifier values, 147, 148
packet type layout, 147
token packet, 146
transaction, 148

stream pipe, 149
topology, 142
transfer speeds, 144
version 3.0, 141

unmap() method, 189
updateFrequency parameter, 384
USBDeviceAbortPipeZero, 367
USBDeviceReEnumerate, 366
USBGetManufacturerStringIndex, 365
USBGetProductStringIndex, 365
USBGetSerialNumberStringIndex, 365
USBInterfaceGetStringIndex, 374
User client methods

callback function, 94
clientClose() method, 86, 88
clientDied() method, 86
DelayForTime(), 97
DelayForTime() function, 92
dispatch table, 95–97
driver object and user client objects, 84
externalMethod(), 93, 95, 98
externalMethod() implementation, 92, 97
getElapsedTimerTime(), 98

GetElapsedTimerTime() and
DelayForTime() methods, 98

GetElapsedTimerTime() implementation,
91

GetElapsedTimerTimer(), 97
header file, 85–86
implementation, 86–87
initWithTask() method, 87
inputStruct argument, 90
IOConnectCallMethod() function, 91
IOConnectCallScalarMethod() function, 89,

91
IOConnectCallStructMethod() function, 90,

91
IOExternalMethodArguments structure,

92–93, 97
IOExternalMethodDispatch, 95
IOExternalMethodDispatch structure, 93
IOMemoryDescriptor class, 93
IOService, 84
IOService class, 85
IOServiceClose() function, 86
IOUserClient class, 84
library functions, 88
MyUserClient class, 85
newUserClient() method, 85
outputCount argument, 90
outputStruct buffer, 90
outputValues array, 90
pseudocode, 94–95
scalarOutput array, 98
start() method, 88
StartTimer() and StopTimer() functions,

91
structureInput buffer, 98
structureInputDescriptor and

structureOutputDescriptor, 93
TestDriverInterface.h, 89
TimerRequestCode enumeration, 90, 97
user space interface, 88

User-space USB drivers, 357
asynchronous operations, 363–64
extensions directory, 357
IOUSBDevice class, 358
IOUSBDeviceInterface class. See

IOUSBDeviceInterface class
IOUSBInterface class, 358
IOUSBInterfaceInterface class. See

IOUSBInterfaceInterface class
IOUSBLib, 358

www.allitebooks.com

http://www.allitebooks.org

 INDEX

462

User-space USB drivers (cont.)
IOUSBLib framework

AddRef() method, 363
IOCFPlugInInterface class, 363
IOCreatePlugInInterfaceForService,

362
IOCreatePlugInInterfaceForService()

function, 362
IODestroyPlugInInterface(), 362
IOUSBLib.h header file, 362
IUnknown class, 363
matching dictionary, 359–62
notification callback, 358
plugin variable, 363
QueryInterface, 362
QueryInterface() method, 362, 363
Release() method, 363

layers, 358
PCI and Thunderbolt devices, 357
primary interrupt level, 357

 V
Vendor ID, 175
Virtual File System layer (VFS layer), 319
Virtual memory addresses, 120
Virtual memory structure, 105
Virtual Private Network (VPN), 431
vm_page_alloc() function, 105
vm_page_grab function, 104

 W
whatDevice argument, 218
willChange notification, 219
willTerminate() method, 191
Windows Registry, 63
withSpecification() factory method, 318
wMaxPacketSize, 374
Work loops

advantages, 138
callback function, 139
getWorkLoop() method, 138, 139
hardware interrupts/timers, 137
interrupt handler, 139
IOCommandGate, 139–41

IOEventSource function, 139
IOWorkLoop object, 137, 138–39
OSObject class, 139
release, 142–43
timers, 141–42

WriteIsochPipeAsync method, 384
WritePipe, 377
WritePipeAsync, 378
WritePipeAsyncTO, 378
WritePipeTO, 378

 X, Y
Xcode, 433
Xcode 4 user interface, 40, 41
XNU kernel

architecture, 22
BSD layer, 22

file systems, 36
FreeBSD 5 operating system, 34
networking, 36
services overview, 34
system calls, 35
UBC, 37, 38
virtual file system, 37

I/O kit, 38, 40
I/O Kit, 22
KEXT, 22
Mach layer, 21

exceptions, 26, 27
hardware abstraction, 23
interprocess communication, 25, 26
memory allocation, 34
memory management, 28
pagers, 33, 34
physical map, 30
scheduling, 24, 25
task address space, 28, 31, 32, 33
tasks and threads, 23
time management, 27, 28
virtual memory map, 29, 30
virtual memory objects, 30, 31

 Z
zinit() function, 105

OS X and iOS Kernel
Programming

Ole Henry Halvorsen
Douglas Clarke

www.allitebooks.com

http://www.allitebooks.org

OS X and iOS Kernel Programming

Copyright © 2011 by Ole Henry Halvorsen and Douglas Clarke

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or
material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use
by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained
from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-3536-1

ISBN-13 (electronic): 978-1-4302-3537-8

Trademarked n ames, logos, an d images may app ear in this book. Rather than us e a trademark s ymbol with every
occurrence of a trademarked name, logo, or ima ge we use the names, logos, and images only in a n editorial f ashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, tr ademarks, service ma rks, a nd s imilar terms, ev en if th ey a re not
identified as such, is not to be ta ken as an expres sion of opinion as to whethe r or not they are subject to proprietary
rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: James Markham
Technical Reviewers: Phil Jordan and Graham Lee
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Morgan Ertel, Jonathan Gennick,

Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson,
Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade,
Tom Welsh

Coordinating Editor: Debra Kelly
Copy Editors: Scribendi Inc. and Kim Wimpsett
Compositor: Bytheway Publishing Services
Indexer: SPI Global
Artist: SPI Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Scie nce+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10 013. Pho ne 1 -800-SPRINGER, fax (2 01) 34 8-4505, e-mail orders-ny@springer-sbm.com, or vi sit
www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com. Apress and friends of ED
books may be p urchased in bulk f or academic, corporate, or promotional use. eBook versions and licenses are also
available f or most titles. For more inf ormation, ref erence our Special Bulk Sales–eB ook Licensi ng w eb page a t
www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/

To my wife and best friend, Jennifer,

and my children, Desmund and Isabel.

— Ole Henry Halvorsen

To my parents,who encouraged my

interest in computing from an early age.

— Douglas Clarke

www.allitebooks.com

http://www.allitebooks.org

v

Contents

 About the Authors. .. xiv

 About the Technical Reviewers . .. xv

 Acknowledgments xvi

 Introduction . .. xvii

 Chapter 1: Operating System Fundamentals ..1

The Role of the Operating System. .. 4
Process Management. ... 4
Process Address Spaces .. 5
Operating System Services . .. 6
Virtual Memory 7
Scheduling. .. 10
Hardware and Drivers. ... 11

Summary . .. 13

 Chapter 2: Mac OS X and iOS15

Programming APIs.. 18
Supported Platforms. ... 19
64-bit Operating System. ... 20
iOS . .. 20

The XNU Kernel. ...21
Kernel Extensions (KEXTs). .. 22
Mach. ... 23
The BSD Layer . .. 32

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

 CONTENTS

vi

The I/O Kit ... 36
Summary ...37

 Chapter 3: Xcode and the Kernel Development Environment39

Summary .. 49

 Chapter 4: The I/O Kit Framework ..51

The I/O Kit Model ...51

Object Relationship..53
The Info.plist File ...53

The Driver Class.. 57
IORegistryExplorer .. 61

The Kernel Library: libkern ..63
OSObject... 63
Container Classes... 66

Summary ...68

 Chapter 5: Interacting with Drivers from Applications..69

The I/O Kit Framework...70

Finding a Driver ...71
Observing Device Removal ..76

Modifying Driver Properties ...78
State-Based Interaction...81
Notifications from the Driver ...93

Summary ...97

 Chapter 6: Memory Management ...99

Types of Memory ...99
CPU Physical Address... 100
Bus Physical Addresses.. 100

www.allitebooks.com

http://www.allitebooks.org

 CONTENTS

vii

User and Kernel Virtual Addresses ... 100
Memory Ordering: Big vs. Little Endian .. 101
32-bit vs. 64-bit Memory Addressing... 102

Memory Allocation...103
Low-Level Allocation Mechanisms... 104
The Mach Zone Allocator .. 104
The kalloc Family.. 105
Memory Allocation in BSD .. 105
I/O Kit Memory Allocation ... 106
Allocating Memory with the C++ New Operator .. 107

Memory Descriptors ..108
The IOBufferMemoryDescriptor .. 109
Other Memory Descriptors ... 110

Mapping Memory...110
Mapping Memory from a User Space Task into Kernel Space ... 111
The IOMemoryMap Class.. 113
Mapping Memory from the Kernel to a User Space Task ... 114
Mapping Memory to a Specific User Space Task ... 116
Physical Address Mapping ... 116

Summary ...117

 Chapter 7: Synchronization and Threading ..119

Synchronization Primitives ..119
Atomic Operations ...122
Locking ..125

Spin locks ... 125
Mutexes.. 127
Condition Variables... 129
Read/Write Mutexes ... 132

 CONTENTS

viii

Synchronizing Asynchronous Events: Work Loops ..133
IOCommandGate... 134
Timers... 136
Releasing Work Loops .. 137

Kernel Threads...137
Summary ...139

 Chapter 8: Universal Serial Bus ..141

USB Architecture ...142
USB Transfer Speeds.. 144
Host Controllers .. 144
The USB Protocol .. 145
Endpoints.. 148
USB Descriptors.. 148
USB Device Classes.. 150

I/O Kit USB Support..150
USB Device and Driver Handling... 151
Loading USB Drivers... 153
USB Prober ... 154
Driver Example: USB Mass Storage Device Driver ... 155
Driver Startup ... 161
Handling Device Removals ... 162
Enumerating Interfaces .. 162
Enumerating Endpoints .. 163
Performing Device Requests .. 165
Performing I/O to Bulk and Interrupt Endpoints.. 168

Summary ...172

 Chapter 9: PCI Express and Thunderbolt ..173

Configuration Space Registers ... 175

www.allitebooks.com

http://www.allitebooks.org

 CONTENTS

ix

PCI in I/O Kit ...176
Matching and Loading Drivers.. 177
Driver Example: A Simple PCI Driver .. 180
Accessing Configuration Space Registers.. 182
PCI I/O Memory Regions ... 184
Handling Device Removal... 187

Interrupts ...189
Direct Memory Access...195

Summary ...203

 Chapter 10: Power Management ..205

The I/O Registry Power Plane ... 205
Power Management in the I/O Kit... 206

Responding to Power State Changes...207

Requesting Power State Changes ...212
Handling Device Idle ..214
Observing Device Power State Changes..215

Putting It All Together ..216
Summary ...221

 Chapter 11: Serial Port Drivers...223

Mac OS X Serial Port Architecture Overview ...223
Serial Port Drivers..225
Implementing the IOSerialDriverSync Class ..229

Serial Port State...232
Serial Port Events ..237

Serial Data Transfer...240
Accessing a Serial Port from User Space ..244

 CONTENTS

x

Summary ...247

 Chapter 12: Audio Drivers...249

An Introduction to Digital Audio and Audio Devices...249

Core Audio ...251
I/O Kit Audio Support ...252

Implementing an Audio Driver ...253
Driver and Hardware Initialization .. 255
Registering Audio Controls ... 258
Implementing an Audio Engine... 260
I/O Engine Initialization... 261
Additional Audio Engine Functionality .. 271

Summary ...272

 Chapter 13: Networking..275

Network Memory Buffers ... 276
Working with Memory Buffers.. 278

Network Kernel Extensions..279
Kernel Control KPI... 280
Socket Filters.. 280
Internet Protocol Filters .. 289
Interface Filters .. 294

Debugging and Testing Network Extensions ...297

Networking in the I/O Kit..298
Building a Simple Ethernet Controller Driver.. 300
The Design of MyEthernetDriver... 301
Driver Initialization and Startup.. 304
Medium and Status Selection... 307
Configuring the Device Hardware Address... 308

www.allitebooks.com

http://www.allitebooks.org

 CONTENTS

xi

Enabling and Disabling the Device ... 309
Transmitting Network Packets ... 310
Receiving Packets .. 312
Taking MyEthernetDriver for a Test-Drive .. 315

Summary ...317

 Chapter 14: Storage Systems ...319

Transport Layer Drivers ...320

The IOBlockStorageDevice Interface ...321
Building a RAM Disk Device...325

Partition Schemes..336
Implementing a Sample Partition Scheme ... 337
The Media Content Hint Property.. 345

Media Filter Drivers ...345
A Sample Filter Scheme for Encryption.. 347
Creating a Custom GUID Partition Table ... 352

Summary ...354

 Chapter 15: User-Space USB Drivers ..357

Behind the Scenes...357
The IOUSBLib Framework..358

Handling Asynchronous Operations...363
The IOUSBDeviceInterface Class ...363
The IOUSBInterfaceInterface Class ..369

Property Methods ... 370
Endpoint Data Transfer Methods .. 371
Low-Latency Isochronous Transfers .. 378

Summary ...380

 CONTENTS

xii

 Chapter 16: Debugging ...381

Common Types of Problems..381
Kernel Panics...383

Debugging Mechanisms ..383
Recovering from Crashes During Boot ... 386
Tracing with IOLog() ... 386
Printing Stack Traces ... 388
Remote Tracing over FireWire .. 389
Remote Kernel Core Dumps ... 390
KDB... 392
Remote Debugging with GDB over Ethernet or FireWire .. 392
Live Debugging of a Running Kernel .. 396
Debugging Using a Virtual Machine.. 397
Debugging in the Kernel Using GDB ... 397
Diagnosing Hung Processes with Activity Monitor ... 408
Finding Memory and Resource Leaks .. 409

Summary ...410

 Chapter 17: Advanced Kernel Programming ..411

SSE and Floating Point in the Kernel ...411
Multi-Function Drivers ...412
Writing I/O Kit Families ..413

Kernel Control KPI..414
Kernel Control Registration... 415
Client Connections.. 416
Getting and Setting Options.. 417
Accessing Kernel Controls from User Space .. 418

Working with Processes in the Kernel ...419

www.allitebooks.com

http://www.allitebooks.org

 CONTENTS

xiii

Loading Resources ..421
Beyond KEXT Resources..422

Notifications from Kernel Drivers...423
Summary ...427

 Chapter 18: Deployment ...429

Installing and Loading Kernel Extensions ..429
Loading Preferences and Settings...431
Versioning Kernel Extensions ..432

Testing and Quality Assurance ..432
Packaging KEXTs and Software...434

Building a Package for the Hello World Kernel Extension .. 435
Adding Contents to the Package .. 436
Configuring the Package .. 436
Building the Package.. 440
Uninstalling Packages .. 441

Summary ...441

 Index ...443

xiv

About the Authors

 Ole Henry Halvorsen is currently a senior software engineer at a leading manufacturer of professional
video equipment, where he works on drivers and software for high-end HD video hardware for Mac,
Linux, and PC. He was part of the team that created some of the earliest video hardware devices for both
USB 3.0 and Thunderbolt. He holds a bachelor’s degree in network computing and a master’s degree in
information technology from Monash University, Australia. He formerly worked as an R&D engineer at
Silicon Graphics (SGI) where he worked on NAS and SAN storage technologies and solutions for
supercomputing and high-performance computing.

When not spending time with his family, he enjoys programming for the kernel, iOS, Linux, and the
Web, as well as reading, watching movies, playing games, and keeping fit.

 Douglas Clarke has been developing for the Macintosh professionally for 15 years. He has spent most
of his career working with hardware and developing device drivers, and he has written drivers for Mac
OS 9, Mac OS X, and Windows. His first exposure to the I/O Kit came a year before the initial release of
Mac OS X, and he has been working with it continually since. He currently develops drivers to support
real-time video applications. He graduated with a degree in computer science from Monash University
in Australia.

www.allitebooks.com

http://www.allitebooks.org

xv

About the Technical Reviewers

 Phil Jordan graduated from the University of York, UK, with an MPhys in physics with computer
simulation. He then worked on the core technology team at Kuju London, extending and improving the
in-house engine and tools used for the game Battalion Wars 2 on the Nintendo Wii. After moving to
Vienna, he started his own software development contracting business, doing game and engine
programming and building mobile, web, and custom business apps.

Using his experience of working closely with game console hardware, he has written open source
kernel drivers for Mac OS X and Linux. He is now working on a kernel driver for getting the most out of
solid-state disks.

 Graham Lee is a self-appointed “security boffin” who specializes in security on the Mac and
smartphone and tablet platforms. He has written antivirus and disk encryption software for the Mac and
consulted or contracted on numerous Cocoa and Cocoa Touch applications. Graham also speaks and
writes on Apple-related security issues. He maintains a blog at http://blog.securemacprogramming.com.
He lives in Oxford, UK, and in his spare time wonders where his spare time went.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://blog.securemacprogramming.com

xvi

Acknowledgments

The writing phase of this book started shortly after my beautiful Isabel and Desmund were born; in
hindsight, it wasn’t the greatest time to start a project of this scale. I was about to reconsider; however,
my wife Jennifer, always being supportive, insisted I follow through. I cannot thank her enough for the
superhuman effort she put in to allow me to work on this book. Caring for a baby is not easy under any
circumstance, let alone twins! I am extremely proud of her, and I consider my part of this book our joint
achievement.

Early on I was also fortunate to have my mother-in-law stay and help out, which made my life a lot
easier and allowed me to focus on completing the first draft. Also thanks to my father-in-law, who had to
endure without a decent home-cooked meal for quite some time. Similarly thanks to my brother-in-law
for providing invaluable help to my wife and me in times of need. I’m also grateful to other members of
my family, my friends, and my colleagues who provided help, encouragement, or ideas. I also owe
thanks to my own parents for encouraging me to follow my own path and pursue my interests.

I would also like to thank the editorial team at Apress for the guidance, support, and help
throughout this project. Likewise, I would like to thank the technical reviewers, Phil Jordan and Graham
Lee, for their excellent guidance and their amazing ability to spot even the subtlest of errors. I would also
like to mention Barry Naujok, Ian Costello, and Tim Serong for helping me answer questions in relation
to networking and memory management. Last but not least, thanks to Doug for all his hard work and for
making this book possible at all.

Thanks again to everyone involved!

Ole Henry Halvorsen

www.allitebooks.com

http://www.allitebooks.org

	Cover
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Introduction

	Operating System Fundamentals
	The Role of the Operating System
	Process Management
	Process Address Spaces
	Operating System Services
	Virtual Memory
	Scheduling
	Hardware and Drivers
	Summary

	Mac OS X and iOS
	Programming APIs
	Supported Platforms
	64-bit Operating System
	iOS
	The XNU Kernel
	Kernel Extensions (KEXTs)
	Mach
	Tasks and Threads
	Scheduling
	Mach IPC: Ports and Messages
	Mach Exceptions
	Time Management
	Memory Management
	Task Address Space
	VM Maps and Entries
	The Physical Map
	VM Objects
	Examining a Task’s Address Space
	Pagers
	Memory Allocation in Mach

	The BSD Layer
	System Calls
	Networking
	File Systems
	The Virtual File System
	Unified Buffer Cache

	The I/O Kit
	The Libkern Library
	The Platform Expert

	Xcode and the Kernel Development Environment
	Language of Choice: C++
	Xcode
	“Hello World” Kernel Extension
	Loading and Unloading Kernel Extensions
	Using Console to View Output
	Summary

	The I/O Kit Framework
	The I/O Kit Model
	Object Relationship
	The Info.plist File
	The Driver Class
	IORegistryExplorer
	The Kernel Library: libkern

	OSObject
	Container Classes
	Summary

	Interacting with Drivers from Applications
	The I/O Kit Framework
	Finding a Driver
	Observing Device Removal
	Modifying Driver Properties
	State-Based Interaction
	Summary

	Memory Management
	Types of Memory
	CPU Physical Address
	Bus Physical Addresses
	User and Kernel Virtual Addresses
	Memory Ordering: Big vs. Little Endian
	32-bit vs. 64-bit Memory Addressing

	Memory Allocation
	Low-Level Allocation Mechanisms
	The Mach Zone Allocator
	The kalloc Family
	Memory Allocation in BSD
	I/O Kit Memory Allocation
	Allocating Memory with the C++ New Operator

	Memory Descriptors
	The IOBufferMemoryDescriptor
	Other Memory Descriptors

	Mapping Memory
	Mapping Memory from a User Space Task into Kernel Space
	The IOMemoryMap Class
	Mapping Memory from the Kernel to a User Space Task
	Mapping Memory to a Specific User Space Task
	Physical Address Mapping

	Summary

	Synchronization and Threading
	Synchronization Primitives
	Atomic Operations
	Locking
	Spin locks
	Mutexes
	Condition Variables
	Read/Write Mutexes

	Synchronizing Asynchronous Events: Work Loops
	IOCommandGate
	Timers
	Releasing Work Loops

	Kernel Threads
	Summary

	Universal Serial Bus
	USB Architecture
	USB Transfer Speeds
	Host Controllers
	The USB Protocol
	Endpoints
	USB Descriptors
	USB Device Classes

	I/O Kit USB Support
	USB Device and Driver Handling
	Loading USB Drivers
	USB Prober
	Driver Example: USB Mass Storage Device Driver
	Driver Startup
	Handling Device Removals
	Enumerating Interfaces
	Enumerating Endpoints

	Performing Device Requests
	Control Requests

	Performing I/O to Bulk and Interrupt Endpoints
	Dealing with Errors and Pipe Stalls
	Isochronous I/O
	Asynchronous Requests

	Summary

	PCI Express and Thunderbolt
	PCI Express
	Thunderbolt
	ExpressCard
	Configuration Space Registers
	PCI in I/O Kit

	Matching and Loading Drivers
	Driver Example: A Simple PCI Driver
	Accessing Configuration Space Registers
	Accessing the Extended Configuration Space
	Searching for Capabilities Registers

	PCI I/O Memory Regions
	Enumerating I/O Regions
	Mapping and Accessing Device Memory Regions
	Accessing I/O Space

	Handling Device Removal
	Interrupts
	I/O Kit Interrupt Mechanisms
	Registering to Receive Interrupts
	Enabling Message Signaled Interrupts
	Handling Primary Interrupts
	Handling Secondary Interrupts

	Direct Memory Access
	Translating Physical Addresses to Bus Addresses
	Preparing Memory for DMA
	Building a Scatter/Gather List
	The IODMACommand Class

	Summary

	Power Management
	The I/O Registry Power Plane
	Power Management in the I/O Kit
	Responding to Power State Changes
	Responding to Power State Changes
	Requesting Power State Changes
	Handling Device Idle
	Observing Device Power State Changes
	Putting It All Together

	Summary

	Serial Port Drivers
	Mac OS X Serial Port Architecture Overview
	Serial Port Drivers
	Manually Instantiating a Driver Object
	Implementing the IOSerialDriverSync Class
	Serial Port State
	Serial Port Events
	Serial Data Transfer
	Accessing a Serial Port from User Space

	Summary

	Audio Drivers
	An Introduction to Digital Audio and Audio Devices
	Core Audio
	I/O Kit Audio Support
	Implementing an Audio Driver
	Driver and Hardware Initialization
	Registering Audio Controls
	Implementing an Audio Engine

	I/O Engine Initialization
	Creating and Initializing Audio Streams
	Handling Format Changes
	Clipping and Converting Samples
	Starting and Stopping the Audio Engine
	Engine Operation: Handling Interrupts and Timestamps

	Additional Audio Engine Functionality
	Summary

	Networking
	Network Memory Buffers
	Working with Memory Buffers
	Network Kernel Extensions

	Kernel Control KPI
	Socket Filters
	Building an Application-Level Firewall Using Socket Filters
	AppWall Operation and Data Structures
	Attaching and Detaching the Filter
	Handling Connections
	Socket Data Input and Output

	Internet Protocol Filters
	Interface Filters
	Debugging and Testing Network Extensions
	Networking in the I/O Kit

	Building a Simple Ethernet Controller Driver
	The Design of MyEthernetDriver
	Driver Initialization and Startup
	Medium and Status Selection
	Configuring the Device Hardware Address
	Enabling and Disabling the Device
	Transmitting Network Packets
	Receiving Packets
	Taking MyEthernetDriver for a Test-Drive

	Summary

	Storage Systems
	Transport Layer Drivers
	The IOBlockStorageDevice Interface
	Building a RAM Disk Device
	Partition Schemes
	Implementing a Sample Partition Scheme
	The Media Content Hint Property
	Media Filter Drivers

	A Sample Filter Scheme for Encryption
	Creating a Custom GUID Partition Table
	Summary

	User-Space USB Drivers
	Behind the Scenes
	The IOUSBLib Framework
	Handling Asynchronous Operations
	The IOUSBDeviceInterface Class
	The IOUSBInterfaceInterface Class

	Property Methods
	Endpoint Data Transfer Methods
	Low-Latency Isochronous Transfers
	Summary

	Debugging
	Common Types of Problems
	Kernel Panics
	Debugging Mechanisms
	Recovering from Crashes During Boot
	Tracing with IOLog()
	Printing Stack Traces
	Remote Tracing over FireWire
	Remote Kernel Core Dumps
	KDB
	Remote Debugging with GDB over Ethernet or FireWire
	Configuring the Host Machine
	Attaching to the Remote Target
	Debugging Using FireWire

	Live Debugging of a Running Kernel
	Debugging Using a Virtual Machine
	Debugging in the Kernel Using GDB
	Kernel GDB Macros
	Creating Symbol Information for KEXTs
	Debugging KEXTs with GDB
	Understanding Kernel Panic Logs
	x86-64 Calling Conventions

	Diagnosing Hung Processes with Activity Monitor
	Finding Memory and Resource Leaks

	Advanced Kernel Programming
	SSE and Floating Point in the Kernel
	Multi-Function Drivers
	Writing I/O Kit Families
	Kernel Control KPI
	Kernel Control Registration
	Client Connections
	Getting and Setting Options
	Accessing Kernel Controls from User Space
	Working with Processes in the Kernel
	Loading Resources
	Beyond KEXT Resources
	Notifications from Kernel Drivers
	427Summary

	Deployment
	Installing and Loading Kernel Extensions
	Loading Preferences and Settings
	Versioning Kernel Extensions
	Testing and Quality Assurance
	Packaging KEXTs and Software

	Building a Package for the Hello World Kernel Extension
	Adding Contents to the Package
	Configuring the Package
	Building the Package
	Uninstalling Packages
	Summary

	Index
	Numbers and Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I, J
	K
	L
	M
	N
	O
	P, Q
	R
	S
	T
	U
	V
	W
	X, Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

