
www.allitebooks.com

http://www.allitebooks.org

Oracle Application Express
Forms Converter

A migration guide using the APEX
conversion utility

Convert your Oracle Forms applications to Oracle
APEX successfully

Douwe Pieter van den Bos

 BIRMINGHAM - MUMBAI

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

www.allitebooks.com

http://www.allitebooks.org

Oracle Application Express Forms Converter
A migration guide using the APEX conversion utility

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author(s), nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2009

Production Reference: 2230709

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847197-76-4

www.packtpub.com

Cover Image by Parag Kadam (paragvkadam@gmail.com)

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Douwe Pieter van den Bos

Reviewers
David Peake

Dimitri Gielis

Louis-Guillaume Carrier-Bédard

Acquisition Editor
James Lumsden

Development Editor
Siddharth Mangarole

Technical Editors
Aditi Srivastava

Chaitanya Apte

Copy Editor
Sneha Kulkarni

Editorial Team Leader
Abhijeet Deobhakta

Project Team Leader
Lata Basantani

Project Coordinator
Joel Goveya

Proofreader
Laura Booth

Indexer
Hemangini Bari

Production Coordinator
Adline Swetha Jesuthas

Cover Work
Adline Swetha Jesuthas

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

www.allitebooks.com

http://www.allitebooks.org

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

www.allitebooks.com

http://www.allitebooks.org

Foreword

Oracle Forms has been around for a long time. When I started writing computer
programs over 20 years ago, I was lucky enough to get to work on an Oracle project
where I got to learn all about Oracle Forms 2.3 and Oracle Database 5. Going
forward, I worked with most versions of Oracle Forms together with Oracle Designer
and some Oracle Reports, and various versions of the Oracle database. I primarily
worked on custom development, and so gathered a wealth of Oracle Forms and
PL/SQL knowledge.

In 2003, I first learned about a tool called Project Marvel—which is now known as
Oracle Application Express, or simply APEX—even before it became an official
Oracle product. I was working for Oracle Consulting, and at that time almost every
job in Oracle Consulting required Java skills. I was very relieved to find that the skill
set for developing APEX applications was primarily PL/SQL. Re-training in APEX
is relatively easy as APEX is a declarative framework with numerous wizards for
creating screens, which can then be extended using PL/SQL—much the same as
the Oracle Forms. There are some fundamental differences in the way the two tools
operate. For example, Oracle Forms maintains a continuous connection with the
Oracle Database and uses pessimistic locking, whereas APEX only connects to the
database when rendering or posting a page and uses optimistic locking.

I joined a project in 2003 for a large law enforcement agency that was actually
the primary beta site for APEX. I spent four years on that project, where we were
very successful in manually converting several legacy Oracle Forms applications
into a suite of APEX applications. That suite now runs the majority of the police
departments operations. During my tenure, I trained over 20 Oracle Forms
developers in APEX and on an average the developers were productively developing
APEX applications within two weeks.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Then in 2007, I transferred from Oracle Consulting to Server Technologies to become
the Product Manager for Oracle Application Express. I worked very closely with
the APEX Development Team on our Forms Conversion components. Our key
objective was to provide a valuable tool that "assists" you in converting Oracle
Forms applications. Our intention was never to provide a 100% conversion tool
whereby you enter some source files, press a few buttons, and immediately get a
production-ready application. Instead, our focus was on automatically converting
the components that we can and then providing tracking capabilities through the
annotations, which you will learn in detail in this book.

With respect to Oracle Forms, this tool has been utilized extensively to solve business
requirements for decades. It is a very robust, high-performance tool that is still being
developed and will continue to be supported for years to come. In fact, Oracle Forms
11g was recently released as a part of Oracle Fusion Middleware 11g.

Converting from Oracle Forms to any other technology, including APEX, will require
significant time and effort; and should be treated as a project. And that is where this
book will prove invaluable—to help you understand not only how the APEX Forms
Conversion tool works, but also how to plan and execute your conversion project.
This book walks you through the conversion of a sample application and explains
the various features. Moreover, it also provides an excellent insight into how you can
get the most from using this tool. Douwe Pieter has written a great book that is easy
to follow and will definitely help any Oracle Forms developers to better understand
what is involved with converting their applications to APEX.

David Peake
Oracle Application Express Product Manager
Server Technologies, Database Tools
Oracle USA Inc.
http://dpeake.blogspot.com

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

About the Author

Douwe Pieter van den Bos started working as an Oracle Developer using
Oracle Designer and Oracle Forms. Soon he discovered the wondrous world of
Oracle Application Express and was one of the first people in the Netherlands to be
using this tool in real live applications. His first encounters with the development
of APEX applications and, later on, his thoughts on web development and project
management were written down on his own personal website, http://ome-b.nl.
This web site became the only Dutch APEX related website and a knowledge base
on everything APEX.

Because of his fast experience on Oracle Database development and Oracle Forms,
and his 'love' for Oracle Application Express, Douwe Pieter experimented a lot with
Oracle Forms to APEX conversion over the last few years, resulting in knowledge
about the different challenges this brings. During the Beta tests of APEX 3.2
Douwe Pieter was involved, and he personally ensured that certain requirements
weren't overlooked.

Douwe Pieter is a frequent speaker at national and international conferences and
has written numerous articles on application development, including APEX-specific
application development.

I would like to thank David Peake for giving me more information
than I could handle, and Dimitri Gielis and Louis-Guillaume for the
brilliant comments and making me see things from a new angle.
I am also grateful to James Lumsden, Siddharth Mangarole, and Joel
Goveya for all the work they did for me. I would like to express my
gratitude to my mother and sister who thought this was the coolest
thing in the world, although they don't have a clue as to what it is
about, and also my friends who thought this was just cool enough
to celebrate with a few drinks.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

About the Reviewers

David Peake joined Oracle in Australia in 1993. He spent the first 13 years in
Oracle Consulting, working on various assignments across Australia, New Zealand,
and the USA. During this time David concentrated on custom development
projects of varying sizes, initially using Oracle Designer and Oracle Forms and
later Project Marvel, which when it became an official Oracle product was called
HTML DB, before being renamed to Oracle Application Express (APEX). In 2006,
he transferred to development within Server Technologies—Database Tools as the
Product Manager for Oracle Application Express. David liaises between the APEX
development team and the many APEX customers and has presented at numerous
conferences around the world. He also contributed on Beginning Oracle Application
Express by Rick Greenwald (WROX Publishing).

Dimitri Gielis was born in 1978. Together with his family he lives in
Leuven, Belgium.

Already at an early age, Dimitri started with computers (Apple II, IBM XT)
and he quickly knew he would like to work with computers and especially
with databases all his life.

In 2000 Dimitri began his career working as a consultant for Oracle Belgium where
he got in touch with almost every Oracle product. His main expertise was in the
database area, but at that time he was also exposed to HTML DB which was renamed
Oracle Application Express later on. From the very start he liked the Oracle database
and APEX so much he never stopped working with it. Dimitri then switched to
another company to create an Oracle team and do pre-sales, to later create and
manage an Oracle Business Unit.

In 2007 Dimitri co-founded APEX Evangelists (http://www.apex-evangelists.
com), together with John Scott. APEX Evangelists is a company which specializes
in providing training, development, and consulting specifically for the Oracle
Application Express product.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

On his blog (http://dgielis.blogspot.com) he shares his thoughts and experience
about Oracle and especially Oracle Application Express.

Dimitri is a frequent presenter at IOUG Collaborate, ODTUG Kaleidoscope, UKOUG
conference, and Oracle Open World. He likes to share his experience and meet other
people. He's also the Vice President of the IOUG APEX SIG.

In 2008 Dimitri became an Oracle ACE Director. Oracle ACE Directors are known
for their strong credentials as Oracle community enthusiasts and advocates.

You can contact Dimitri at dimitri.gielis@apex-evangelists.com.

Louis-Guillaume Carrier-Bédard has been working for the past three years
with Oracle Application Express. The APEX community benefits from his blog
and tutorials regarding jQuery integration. Developments for the private and public
sectors have contributed to build him a solid background. Many projects, from
the simple proof of concept to mission critical application, have contributed to
Louis-Guillaume's deep knowledge of APEX.

Louis-Guillaume recently joined SIE-Solutions to build systems for SMEs/SMBs.
They organize seminars and they launched www.apexquebec.com, a web site
dedicated to Quebec's Apex community. SIE-Solutions is offering a framework
for Oracle APEX.

I would like to say thank you to Clément Carrier, my grandfather.
This great man gave me the taste for knowledge and books.

Salut Papi!

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Table of Contents
Preface 1
Chapter 1: Understanding your Project 13

Reasons for conversion 13
Functional reasons 13
Technical reasons 15

Understanding the functionality 15
The application 16
Business process 17
User interaction 18
User roles 18

Understanding the technicality 18
Components 19
Architecture 19
Forms builder 20

Modules and iterations 22
Modules 22
Iterations 23

Summary 23
Chapter 2: Preparing your Forms Conversion 25

Get your stuff! 25
Creating XML files 26

The Forms2XML conversion tool 27
Forms Modules 28
Object Libraries 28
Forms Menus 29
Report Files 29
PL/SQL Libraries 31

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Table of Contents

[ii]

Understanding XML 33
The target database 37
Summary 43

Chapter 3: Create your Forms Conversion project 45
Getting started 45

Creating the project 46
Adding additional sources 48
The project page 50
Editing the project 51

Deleting the project 52
Editing project details 52
Applicability 53
Set application defaults 54

Summary 57
Chapter 4: Planning your Project 59

The project page 60
Inside our project 60

Component 61
Count 61
Equivalent component 61
Implementation Details 62
Included 62
File Name 62
Applicable 62

What we need to do 62
Blocks 63
Triggers 65
Lists of Values 67
Alerts 69
Program Units 70

Component annotations 72
Completion status 73
Assign developers 75
Project planning 75
Using annotations 76

Applicability and completeness 77
Assignees 78
Tags 79

Summary 81

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Table of Contents

[iii]

Chapter 5: Getting your Logic Right! 83
Pre-generation editing 83
Investigating 84
Data blocks 85
Block items 87
Original versus Enhanced Query 89
Triggers 90
Custom Query 93
Generation 95
Editing 97
Analyzing business logic 98

Alerts 99
Program units 99
Libraries 101
Triggers 103

Summary 104
Chapter 6: Generating your Application 105

Setting the project 105
Start the generation 107
Application design models 108
Check the pages 108
Adding pages 111
Selecting a theme 112
Create the application 112
Run the application 113
Summary 114

Chapter 7: Reviewing and Customizing your Application 115
The home page 115
Lists of Values 118
Validations 122
Back to the project page 125
Titles and names 126
Summary 127

Chapter 8: Delivering your Application 129
Steps in application delivery 129
Integrating modules and applications 130
Authentication integration 135

Integrating with Oracle Single Sign-On 135

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Table of Contents

[iv]

User acceptance 137
Training 138
Deploying 139

Exporting the application 139
Importing the application 143

Summary 147
Index 149

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Preface
Oracle Application Express has been around for quite a while now. It has a lot of
advantages, such as the possibility to really use the Internet and create fast-performing
applications. For the last decade, we developed our applications using another tool,
namely Oracle's Forms Developer. Using this development tool for such a long time
means we often have a lot of critical applications built in Oracle Forms. But for many
people, now is the time to make the transition from Forms to APEX. However, we
don't want to develop all our Forms screens again, so Oracle has kindly come up with
the Forms Converter for Oracle Application Express in Oracle APEX 3.2.

With the Oracle Forms Conversion tool, we can now generate Oracle Application
Express pages from our original Forms (FMB) files. Using this commodity, it is
possible to have controllable Forms to APEX Conversion project and in this book
we will learn just how to do such projects.

Oracle Forms
Coming from IAF via FastForms and later SQL*Forms, Oracle Forms Developer
has been the main GUI development tool on the Oracle Database since version 6.
There have been some changes in the product over the years where WebForms was
the biggest change, moving from client-server to a web-server environment. It gave
the users the possibility to implement a GUI environment over the Web, but the
basics stayed the same. The Oracle Forms applications run in a JavaApplet (J2EE)
called Jinitior, and have been built using the Oracle Forms Developer and the
PL/SQL language.

Moving away from Oracle Forms requires some guts. Most organizations using
Forms have large knowledge of the tool and the PL/SQL language, and don't move
to a completely different environment in a short period of time. Languages such as
Java are difficult to learn and hard to understand for developers not trained in the
object-oriented language sets.

And there was APEX.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Preface

[2]

Oracle Application Express
Oracle Application Express, in short APEX, was a new way of looking at PL/SQL
GUI development using only a web browser. Developers could still be using their
fast knowledge on PL/SQL and the Oracle Database, and since APEX version 3.2
(released on the February 27, 2009, a memorable day) we were able to convert
Oracle Forms applications to APEX easily. This is what this book is all about.

Forms conversion
Using the new possibilities in Oracle Application Express, we will find a new way
to create APEX pages from our original Forms and Reports applications. We no
longer have to build them from scratch if we want to generate the pages in APEX.
Forms Conversion has made it possible to create APEX applications from our Forms
and Reports applications in a fast and reliable way. But beware; we still have to do
some work to make it all possible. In this book we will point out the steps you will
have to take to create your applications using the Forms Conversion tool.

Every Forms and Reports application consists of a few elements, namely Forms
modules, Menus, PL/SQL libraries, Object libraries, and Report modules. All these
elements will be used in our Forms Conversion project. They will all be translated
to their own specific APEX components during the conversion.

In the following diagram provided to us from Oracle, you can clearly see which steps
need to be taken, and in which order, to create and execute a Forms Conversion
project. As we can see, the main part of the project will be done in the Oracle
Application Express Forms Converter.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Preface

[3]

With our Forms Conversion project, we will have to use different tools to create
our APEX application. Of course, we will have to use APEX as it contains the most
important piece of tooling we have got, the APEX Forms Conversion tool. But
besides that we will have to use Forms and Reports Builder, the File Conversion
Utilities, and the Forms2XML Conversion Tool.

In this book we will generally learn how to create suitable XML files, but most work
in our Forms Conversion project will be done in APEX.

Generate Application Express
applications
In order to generate an APEX application, we will have to do some steps. First, we
will have to create our XML files from the different Forms components. After that,
we shall create our Conversion project in Oracle Application Express.

The project page is the point where we will be really working on our Forms
Conversion. Because of the possibilities it gives us, we will learn how to analyze
and adjust our Forms components in order to generate an APEX application.

The following screenshot shows the project home page in the APEX Forms Converter.
This page is used to control our project and it shows our progress in the project.

Using the project home page in the Forms Conversion part of APEX, we can easily
scan our application components and see how we are progressing. This is the place
where we do our metadata analysis of the XML files we uploaded and the ones our
project consists of. We can see all the elements of our Forms Conversion project, so
we have a point where we can control everything we need to do in our project in the
project home page.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Preface

[4]

Even after generating our APEX application, we will have some other things to do.
Because of the large differences between APEX and Forms, we will need to adjust
some things such as the logic and the User Interface defaults. We will see how the
APEX application we generated responds to users, and how we need to make some
adjustments in order to create a user-friendly and stable application.

Possibilities and benefits
Web 2.0 has taken a leap in the last few years; interactive user interfaces and the
possibilities of tying applications together are the cornerstones of Oracle Application
Express. Modern Internet applications offer users the possibility to create and adjust
their own information just as a desktop application would, but with the advantages
of accessing the applications over the Internet. APEX offers a lot of these Web 2.0
components out of the box, such as interactive reporting and flash charts. With
interactive reporting, the users can define their own reporting, meaning they have
control over the filters, break points, and calculations done in these reports.

Both Forms and APEX are completely SQL and PL/SQL based, so the transition from
Forms to APEX should be easy to learn. Both tools are declarative, wizard-driven,
rapid development tools. With the use of the Forms Conversion tool, it will be
possible to speed up the transition to APEX within your organization. The tool
uses our knowledge of the Forms applications we convert to let us make the best
choices possible.

Oracle Application Express and, therefore, the Forms Conversion Tool is a no-cost
option on the Oracle Database. Because of this and the fact that we no longer need
an Application Server, APEX is the choice to make if you want to convert your Forms
and Report applications to a web environment.

The Forms Conversion in Oracle Application Express offers us numerous possibilities
when generating APEX pages from our original Forms, Reports, and Menus. These
possibilities are extensive and, when wisely used, offer reductions in developer effort.
In doing so, our transition from Oracle Forms and Reports to Oracle Application
Express should be quicker and easier all round.

Navigating and adjusting logic is possibly the largest possible advantage you can get
from the Forms Conversion tool in Application Express. We get information from
the metadata (which is in the Forms, Reports, Menus, and Libraries) and have the
advantage of knowing about the logic and different components before we begin
the conversion.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Preface

[5]

Comparison
Forms Conversion in Oracle Application Express is not migration but a conversion,
as the word literally means. We will generate a different kind of application, namely
an Internet application instead of a desktop or a Web Forms application.

Remind yourself that Forms Conversion in Oracle Application Express is not a way
to emulate or completely migrate your Forms applications. Your users will get a
different kind of application, and hence a different user experience. We will generate
an Internet application, which also means that a lot of the functionality we've got
in Forms will return in a different way. Forms conversion in Application Express
doesn't mean we will have a Forms emulator or a complete replacement for the
functionality within the Forms and Reports applications; we will create an interactive
web application.

The following screenshot is of the Oracle Forms we will be converting to APEX in
this book. In this typical Forms application, 'Customers', runs within a Java applet
and, therefore, is used as a true Forms screen. The application that is used here is
the Oracle Forms 10g demo application. We will be using it for all the examples in
this book. You can download all the necessary files at http://www.oracle.com/
technology/products/forms/files/summit10gr2.zip.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Preface

[6]

Oracle Forms has a lot of functionality that users appreciate, such as the keyboard
shortcuts for a lot of functions (for example, F11 to enter a query and Ctrl + F11
to execute it). For people who use these applications, this means they will have a
fast-performing and reliable application. All of these native Forms functionalities
will not be present in our generated APEX pages. Beware that these functionalities
will not be generated during the conversion project. Instead, we will get a fully
functional web application built in APEX.

Next, we will see what the application looks like when we have converted it to
APEX. In the following screenshot, we see that one master-detail Form Customers
has been converted to two APEX pages. The following screenshot shows the master
data, which is the Maintain Customer page:

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Preface

[7]

The following screenshot shows the detailed data, which is the Customer Details page:

We see here that the pages we create during the Forms Conversion project really
are different from the original Forms screens. During a Forms Conversion project,
we will have to bear in mind that we will create a different kind of application.

If you're planning a conversion project from Oracle Forms and Reports to
Application Express, these differences must be communicated to your users.

The generated APEX pages will have their own advantages. For example, the menus
you created in Oracle Forms will be generated as a home page in the new APEX
application, complete with icons. In this way will have a new way of navigating
through our application. Because APEX uses components that can be described as
Web 2.0, the users will get an interactive application in return. And, of course, we
can adjust these generated pages according to our taste in the end of the project.

Because the project isn't 'frozen' after the generation of the new APEX pages, we are
able to redesign and tweak parts of the application that were not very good to begin
with. By taking the Forms Conversion project as a starting point, at the end of the
project we can adjust these generated pages according to our taste.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Preface

[8]

Differences between Forms and APEX
Oracle Forms and APEX have their differences. These differences are not only limited
architectural and functional, but are also present in the naming of the elements
on which the applications are built. The following table shows how Oracle Forms
elements and Oracle APEX elements are related to each other:

Oracle Forms Oracle APEX
Alerts Text messages in Shared Components and/or Validations on

Application or Page level.
Blocks Blocks will be generated to Regions in APEX.
Canvases Are ignored in APEX during conversion.
Editors HTML Editor.
Lists of Values The associated record group will be included in the conversion.

A List of Values can be developed after generation.
Program Units Program Units must be implemented after generation as

PL/SQL elements.
Triggers In APEX we don't know the element Trigger. However, there

are some things we can implement such as Post-Query Triggers
that can be implemented in the Query the page is built on.

As we can see, there are a lot of differences between the two development tools,
Forms and APEX. This is not unusual because they both result in different types
of applications.

More information
In this book we will provide a lot of information, but because this book is written
for developers and analysts who know both Forms and APEX, we will not go into
the depths of everything. The following web pages can help you find out more about
these topics:

•	 All the files we use in this book, for example the summit files, can be found
at http://www.oracle.com/technology/products/forms/files/
summit10gr2.zip.

•	 You can download and learn more about the Oracle Forms Developer at
http://www.oracle.com/technology/products/forms/index.html.

•	 We will use Oracle SQL Developer in this book, which is a fast, reliable,
and free tool for database development by Oracle. More information
and downloads can be found at http://www.oracle.com/technology/
products/database/sql_developer/index.html.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Preface

[9]

•	 The latest stable releases of Oracle APEX and more information about
this brilliant tool can be found at http://www.oracle.com/technology/
products/database/application_express/index.html or
http://apex.oracle.com.

•	 The most important reference for help with APEX-related (or Oracle
related in general) problems is the Oracle Forums. It can be found at
http://forums.oracle.com.

•	 My own web site for all questions related to Forms Conversion is
http://www.formsconversion.com. Here you can find more tips and
tricks, and where we can discuss matters about Forms Conversion firsthand.

Onwards
In this book we will cover the basics and provide an insight on how to perform a
Forms Conversion project using Oracle Application Express. We will go through
some critical steps that need to be done to make such a project a success.

Of course, we will need to understand our original Forms and Reports application
—how will our conversion project be generated and how does it work?

In Chapter 1 of this book, we learn how we can use our knowledge of Oracle Forms
and Reports to our benefit. We will also learn how we can use the powers that
are given to us in the Forms Conversion tool to determine various modules and
iterations in our project. The original Forms and Reports application is central in this
part of the book. This is because, like history, we will need to know our past in order
to understand our future.

Chapter 2 shows us what we need to get things ready for our Conversion project.
We need to gather all our original Forms, Reports, Menus, and Libraries so that
we can generate the APEX project. We will need to get the XML sources by using
the tools in the Oracle Developer Suite. Of course, we will learn to understand these
newly created sources and what they mean to us. Before we can create our APEX
applications using the Forms Conversion tool, it would be nice to design
and implement the target database.

In Chapters 3 and 4, we can create ourselves a Forms Conversion Project. Uploading
the XML files we just created will create a project for us. We will then learn to
add more sources to the project in order to to finalize it (along with the iterations
and modules which we defined earlier). The most important part in the Forms
Conversion tool in Application Express is the project page and we will learn how
to use it, adjust our project, and edit the settings in it.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Preface

[10]

The project plan is the main part of our Forms Conversion project. The generation is
just a small part of the actual project. In what way do we execute our project and can
we plan it in order to understand what we have to do? Chapter 4 of this book offers
us some ways to judge the components we are about to convert into APEX. We learn
some tricks on how to address and timeframe the development. It gives us an insight
into what needs to be done and how we will do it.

At this point we will be able to browse the project page in our Forms Conversion
project. Chapter 5 will show us how we use the project home page in order to get the
logic in our project right. We can make annotations and assign logic to members of
the project team who will be responsible for the conversion, and edit the applicability
of the different components of our Forms Conversion project. In order to be ready for
generation, we need information on our logic so that we can adjust it as needed.

Step-by-step, Chapter 6 will teach us how to generate the new APEX application out of
the Forms Conversion project. The settings we applied earlier in our project are used
to generate the Application Express application, and we will see how we integrate
the menu structure from our Forms application in the new APEX application. Adding
pages and choosing the user interface defaults are the additional steps we will take.

After we have generated our APEX application, we will need to review it. We will
see what components and pages need further customization and in Chapter 7, we
will learn how to do so. With a technical and functional review, we will see how
the application works and performs. If we need to adjust logic, user interfaces, or
processes in the new application, we will do so.

At the end of every project, we will need to deliver it to our users and production
environments. Chapter 8 shows some of the main elements we will have to account
for in order to deliver the application correctly. We will learn how to use our
project plan in order to test the application and how we need to communicate the
differences to our users. To make the new application a success in our production
environment, we might integrate it with different modules of our project or with the
existing applications. So we will learn what ways there are to do so. At this point
we will have succeeded in converting our Forms and Reports applications to Oracle
Application Express.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Preface

[11]

Code words in text are shown as follows: "We will upload another Forms module,
which is a _fmb.xml file."

Any command-line input or output is written as follows:

C:>cd C:\summit

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "To create
a new project, click on the Create Project button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an email to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Preface

[12]

Errata
Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you find a mistake in one of our books—maybe a mistake
in the text or the code—we would be grateful if you would report this to us. By
doing so, you can save other readers from frustration, and help us to improve
subsequent versions of this book. If you find any errata, please report them by
visiting http://www.packtpub.com/support, selecting your book, clicking on
the let us know link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata added to any list of
existing errata. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Understanding your Project
To understand what we will be doing in our Forms Conversion Project, we will
have to know what the application that we are going to convert is all about. What
does the application do, both technically and functionally? If we understand why
we want to convert the application and how the application works and is built, we
will be able to create a more successful conversion project. In this chapter, we will
discuss the following:

• What are the reasons for conversion?
• What does the application do?
• How is the application built?
• What are the possible modules and iterations?

Reasons for conversion
Every conversion project has its own reasons as to why it's needed, or wanted.
There are lots of different reasons why an IT department or the users want a
conversion project from the Forms applications to Application Exchange (APEX).
If we divide these reasons into functional and technical categories, we will be able
to pinpoint how the converted application must work. In other words, if we
understand the benefits the organization gets from moving from Forms and
Reports to APEX, the choices we have to make in our project will be a lot easier.

Functional reasons
There are a lot of questions we will ask our users and functional departments in order
to get the picture of the great 'Why'. To fully understand why we do this conversion
project, we will have to investigate the problems, difficulties, or unwanted restrictions
that users are having with the current application. If we want to create a good project
plan, we will have to know which of these questions must be answered.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Understanding your Project

[14]

These underlying reasons for conversion must be seen as new functional requirements
in the new application. In this way, we will be able to understand how the new
application must function after conversion, how it has to look, and what it's supposed
to do.

There are a lot of different questions that must be answered before we start our
project. The following are a few examples of questions that we want to ask. Bear in
mind that these questions are indeed examples and every situation will be different.

• Does the converted application need to be accessed from outside the
company's network?

• Do the users need the application to be integrated in other web applications
or extranet functionalities?

• Will the application be accessible to the users other than those who use
it now?

• Is the conversion needed for the functionality that Oracle Forms doesn't offer?
• Do users need to have more control over the information that is displayed

in the application?

Some examples of functional requirements might be that the company needs to have
some information in the application that is accessible on the Internet. Of course,
Oracle Forms can be pushed towards the Web using WebForms, but there's a need
for an Oracle Application Server to use this technology. This is a costly solution and
we are still working with Oracle Forms. When we use APEX, we no longer need the
Oracle Application Server, but rather just an HTTP server.

Another functional reason for conversion is layout, and this might be one of the
most important ones. This is because when we use APEX, we can use the graphical
layout the company uses for its web site, or intranet site and completely integrate
the application.

There are, of course, a lot of reasons why we need to convert the application from
Forms to APEX. These might even be requirements that will not be met during the
conversion project, but requests for additional functionality that is easily or better
build in APEX. In this case, we can use the conversion project as a technical solution
to start developing in APEX.

Remember that the examples I stated here are just examples. This means that every
organization and, therefore, application will have its own requirements to address.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 1

[15]

Technical reasons
Besides functional reasons for conversion, we will also see a lot of technical
advantages of a Forms conversion project. Conversion is, in a lot of cases, done with
technical reasons. These can be lowering the stress on the application server by using
APEX, or lowering the operational costs by getting the application server out of the
architecture. But it's also possible that we just want to kick out the jInitiator of the
user's PC, or we want an HTML-based application.

Like the functional reasons, there will be a lot of different technical reasons for
conversion to APEX. Asking the right question to the right people in your IT
department will make you understand why the conversion is done. The following
are some example questions that you will have to ask before you begin doing the
conversion project:

• Is the conversion done to cut operational costs?
• Do we need to convert the application in order to

modernize our environment?
• Is the conversion done because we need completely

browser-based applications?
• Do we need the conversion because we want remote

development possibilities?

Understanding the functionality
The most important task in the Forms conversion is that we create an application
that the user wants, and will be able to understand and use. In order to make the
project a success, we will want to know what the application does and why. Maybe,
we will be able to find a functional design that was written during the build of the
application, but even if we do, we will need to use the application ourselves to know
what it does.

Any application is built to serve a business process. In order to understand that
process, we must take a deeper look into the application and the process it was built
for. The sequence in which we examine the application and the process is completely
reliable on the point of view we take. An (technical) engineer would first prefer to
take a look inside the application and after that in the process, whereas an analyst will
directly dive inside the business process. But because we are converting an application
and not redesigning it, the original application will always lead our investigations.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Understanding your Project

[16]

The application
The application that we will be converting has a functionality that is needed by the
users of this application. In the original functional design, we will be able to see a lot
of these functions. We will have to wonder why the application is originally built as
it is. The application was built with a reason and probably has a lot of functionality
built in; however, we, as technicians, will not see it firsthand.

The easiest way to understand the application is to ask one of the main users to
walk through the application with you. This user can show you how the different
screens work and how the flow of the application is set up. The users control and
look up information and data in the application. The context of this data is important
for our project. If we do not understand what the information is used for, we may
make mistakes in creating our conversion project. Every user has his (or her) own
interpretation of an application. The best way to fully understand the functionality
and, therefore, the business process, is to go through the application with a few
different users. Everyone will give a part of the information you are looking for.

In the following screenshot, we see a Forms application that lets the user edit and
control the information about the customers of his organization. As we can see, the
user has a lot of functionality inside this single forms screen. The user can look up
the customers, their address, credit rating, and can also edit this information.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 1

[17]

We can look at all the screens in the application. If we do so, we will also have
to take a look at the error messages the user gets, the different rights the user has
in the screens and, possibly, which user is granted editing and adding rights in
the application.

Business process
If you understand the functionality in the screens, it's time to look at the business
process that the screens represent. The first thing we will have to look at is the way
the user works, what is the user's role in the organization, and why does the user
use the application in his or her work? For example, the user probably has some
steps to go through if he or she wants to add a customer to the application. Can the
user approve the credit rating himself, or is there a different role in the organization
for that?

The following Forms screen shows us the Credit Rating field in the Customers
screen. Only users who work for the finance department with the right privileges
will be able to edit this information. Because of this role, the business process is
covered by multiple departments in the organization and there are multiple roles
in the application.

The original application does a lot of things. Following the order of the steps that
have to be taken is very important for our conversion project. That's because if we
know how the application works, we will know to build certain parts of it such as
the screen flow and menu structures.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Understanding your Project

[18]

User interaction
User interaction in the original application is of the essence when we try to understand
the application we will have to build. There are some large differences between a
Forms application and the one built using Oracle APEX. This means that we need to
understand which screens in Forms are most likely to be different. With Oracle Forms,
users are used to interacting with their data quite fast. They're used to working with an
application that accepts quick entry and even validation is done on the fly. Screens that
interact with a user in this way will likely need some JavaScript and AJAX in order to
have the same user experience in APEX.

The application does a few different things. Ask the users you interview about the
steps he or she would take to do a certain task in the application. For example, if the
user wants to add an order for a new customer to the application, he or she first has
to create the customer, then the finance department has to approve the credit rating,
and then he or she can add the order for this new customer in the order Forms
screen. There are certain buttons in the application that take the user to the next step
in the business process, and there is a menu that the user uses to get to the next stage
of this process.

It's important to understand what the user wants in the application. When we know
the required navigation and user experience, we can implement them in APEX.

User roles
We mentioned in the example that the finance department has to approve the
credit rating of the customer before the order department can add a new order
to this customer. Is the credit rating approved in the same application as the order
department? Do the users have the same role in the database, or do we have to
take account of some security layers in the application?

The best thing to do in this phase of our project is to make a list of the different
business processes and what role the users have in these processes. If we have
this list, we can design now and later correctly test our converted application.

Understanding the technicality
Like the functionality of the original application, we are about to convert to APEX
and the technical aspects are just as important. As technicians, we will need to know
the application and its engine. If we know the sources of this application, we will
know what we have to do in our conversion project.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 1

[19]

Components
In most Forms applications, we will have more than one Forms screen, and probably
even more components of which we will have to take an account. These components
are the base of the application and, therefore, the base of our project.

There are a lot of different components in most of the Forms applications. Think about
Forms, Reports, Menus, and Libraries. Because we have a lot of different source files,
we will need to look at all of these and understand what they do in the application.
If we got the different components together, we will better understand how the
application is originally built. In this way, we will know the actual size and complexity
of the application.

It's always best to make a list of the different components that are in an application we
will convert. When we make this list, we will make notes on what components contain
which functionality and, approximately, how much work it will be to convert these
components. These are the first set of steps to the project plan we will need to have.

Architecture
It's necessary to be familiar with the original architecture of the application. We need to
know if the logic that is used in the Forms application is nested in the Oracle Database,
or if the logic is all contained in the Forms application itself. Of course, all kinds of
flavors are possible here, and so we need to take a look inside the Forms Builder.

If we have an application that contains a lot of code and logic within the PL/SQL
libraries on the application server, we will have a lot more trouble converting it
than if the Forms application simply calls stored procedures in the database.

In the following example, you see a Forms Builder look on the program units in a
Forms application. Here, the procedure calls a Forms trigger that raises a 'Forms
Trigger Failure' message. When we perform the Forms conversion, it will be better
if we know what the different parts of the application do.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Understanding your Project

[20]

These architectural questions are very important to know before you begin your
Forms Conversion project, mainly because a lot of time will be put in the recreation
of logic. If the logic is right to begin with, the project will be smaller.

Forms builder
If we look at our different kinds of components—Forms modules, Object Libraries,
Forms Menus, PL/SQL Libraries, and Reports Files—we will want to know more
about them. How do they work and in what way are they built?

We will have an extensive look at the components in the Forms Builder and the
Reports Builder if we have such components in our application. Take a look at the
different pieces of information this gives us. We will learn how the screen is built,
what triggers and program units there are, and with which properties the original
application was built.

In the following screenshot, we can see the canvas of the Orders screen in Oracle
Forms. As we can see, the application was built on one canvas with a few subcanvases.
We got our MAIN canvas, which contains four subcanvases: the TREE canvas for
navigating through the CUSTOMERS in the application, the CUST_SUMMARY
canvas, CUST_STACKED canvas, and the CUSTOMER TAB canvas.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 1

[21]

In the following example, we see that multiple are canvases possible in one Forms
screen. They react like multiple regions in an APEX application without the MAIN
canvas. If we know this before, we might be able to convert the application faster
and with more insight.

If we look further at our CUSTOMERS Forms application, we will see that we
are able to know the sources for the data which we use in our application. In the
following screenshot, we see the properties of the S_CUSTOMER data block in the
Forms application CUSTOMERS. As we can see, the data block is based on a SQL
Query as usual. Surprisingly, the data source comes from the S_CUSTOMER table
in the database.

The information we will gather in Forms Developer can also be found the moment
we create a Forms conversion project in APEX. In the project page we will see
the different data blocks, program units, and other important parts of the Forms
application. But at this point, it will be extremely handy to know what we are
dealing with.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Understanding your Project

[22]

Modules and iterations
When we create a Forms conversion project in APEX, we will be able to create
different applications from one original Forms application. The reason we might
want to do this is because we will be able to spread our resources and plan the
project a lot better if we cut it into little pieces.

Modular design of the new APEX application will be possible at this point. If
we are able to cut the project in different modules and iterations, we have the
opportunity to create a reliable project. Every Forms conversion project will know
its downsides. Some logic will be difficult to convert and we might need to rewrite
it for the conversion project. But it's also possible that our project contains partly
non-convertible Forms screens that we will have to build on our own. The parts
that are non-convertible will be tracked during the project, so don't let this scare
you away.

Remember that non-conversion mostly lies in the way a Forms screen is built.
Canvases, Windows, Visual Attributes, and other Forms components will not be
in the conversion to APEX because APEX can't use them. When we encounter
these elements, we have to adjust the look and feel of APEX itself.

An example of this is that APEX cannot contain more than one tabular form in a
page. This means that a basic master detail screen in Oracle Forms will be generated
to two APEX pages.

Modules
Modules can be created on functional or technical bases. We can base the functional
module on a business process, user role, or even on a logical separate part of the
application. If we define the logical or functional modules, we can work with a small
team on these modules and even put them in a separate iteration. If we want to cut
the project in technical modules, the easiest way is to look at the components on
which the application is built. Everything that is interconnected will be placed in one
module. In this way, we will have different parts of the application separately. These
different parts of the application can be connected to each other at a later stage.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 1

[23]

Iterations
When we know the modules, we will create our Forms conversion plan. This is the
time to think about the iterations our project will be in. If we have cut the application
in functional and/or technical bits, we can combine these into an iteration plan.
We will not go into the iterations planning here because we're talking about Forms
conversion. But later in this book, we will learn how to combine different modules
and iterations together in the technical sense.

Modules and iterations are necessary to keep the project conveniently arranged.
The development plan for the project management will be a lot easier with the
application divided into little bits. Technically, we will have more applications
in the end than what we begin with, but we will combine them together when we
deploy the application at the end of our project.

Summary
In this chapter we learned how our application was built. As we will need to make
choices in the rest of our project, it helps if we know what the different parts of the
application mean. We learned that we had to take the following steps to be ready
for conversion:

• We need to understand why we are performing a Forms conversion project.
It can be for functional reasons (such as users who need the application
outside the office walls) or for technical reasons (such as a need to get rid
of the expensive Oracle application server). Of course, it's possible to have
a combination.

• To understand the functionality in the original Forms application, we need
to take a look at the application itself, the business process it supports, the
user interaction, and the roles the users have in the application.

• On the technical side, it can be very helpful if we take a further look at the
different components that are in the application, the architecture and how
it's built, and the different components in Forms Builder.

• When we know how the application is built, both functionally and
technically, we will be able to define different modules in the new application
that helps us define iterations for development. During the deployment of
the application, we will combine these modules into one application.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Preparing your Forms
Conversion

Before we start our actual Forms Conversion project, we have to take some steps.
We have seen in the previous chapter that we need to understand some things
about the application. Now it's time to gather the sources of our application and
get our hands dirty.

When we are participating in a Forms Conversion project, it means we take the
source files of our application, turn them into XML files, and upload them into
the Forms Conversion part of APEX. This chapter describes what we do before
uploading the XML files and starting our actual Forms Conversion project.

Get your stuff!
When we talk about source files, it would come in very handy if we got all the
right versions of these files. In order to do the Conversion project, we need the same
components that are used in the production environment. For these components, we
have to get the source files of the components we want to convert. This means we have
no use of the runtime files (Oracle Forms runtime files have the FMX extension). In other
words, for Forms components we don't need the FMX files, but the FMB source files.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Preparing your Forms Conversion

[26]

These are a few ground rules we have to take into account:

•	 We need to make sure that there's no more development on the components
we are about to use in our Conversion project. This is because we are now
going to freeze our sources and new developments won't be taken into the
Conversion project at all. So there will be no changes in our project.

•	 Put all the source files in a safe place. In other words, copy the latest version
of your files into a new directory to which only you, and perhaps your
teammates, have access.

•	 If the development team of your organization is using Oracle Designer for
the development of its applications, it would be a good idea to generate all
the modules from scratch. You would like to use the source on which the
runtime files were created only if there are post-generation adjustments
to be made in the modules.

We need the following files for our Conversion project:

•	 Forms Modules: With the FMB extension
•	 Object Libraries: With the OLB extension
•	 Forms Menus: With the MMB extension
•	 PL/SQL Libraries: With the PLL extension
•	 Report Files: With the RDF, REX, or JSP extensions

When we take these source files, we will be able to create all the necessary
XML files that we need for the Forms Conversion project.

Creating XML files
To create XML files, we need three parts of the Oracle Developer Suite. All of these
parts come with a normal 10g or 9i installation of the Developer Suite. These three
parts are the Forms Builder, the Reports Builder, and the Forms2XML conversion
tool. The Forms2XML conversion tool is the most extensive to understand and is
used to create XML files from Form modules, Object Libraries, and Forms Menus.
So, we will first discuss the possibilities of this tool.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 2

[27]

The Forms2XML conversion tool
This tool can be used both from the command line as well as a Java applet. As the
command line gives us all the possibilities we need and is as easy as a Java applet,
we will only use the command-line possibilities. The frmf2xml command comes
with some options. The following syntax is used while converting the Forms
Modules, the Object Libraries, and the Forms Menus to an XML structure:

frmf2xml [option] file [file]

In other words, we follow these steps:

1. We first type frmf2xml.
2. Alternatively, we give one of the options with it.
3. We tell the command which file we want to convert, and we have

the option to address more than one file for the conversion to XML.

We probably want to give the OVERWRITE=YES option with our command. This
property ensures that the newly created XML file will overwrite the one with the
same name in the directory where we are working. If another file with the same name
already exists in this directory and we don't give the OVERWRITE option the value YES
(the default is NO), the file will not be generated, as we see in the following screenshot:

If there are any images used in modules (Forms or Object Libraries), the Forms2XML
tool will refer to the image in the XML file created, and that file will create a TIF file
of the image in the directory.

The XML files that are created will be stored in the same directory from which we
call the command. It will use the following syntax for the name of the XML file:

•	 formname.fmb will become formname_fmb.xml
•	 libraryname.olb will become libraryname_olb.xml
•	 menuname.mmb will become menuname_mmb.xml

To convert the .FMB, .OLB and, .MMB files to XML, we need to do the following steps
in the command prompt:

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Preparing your Forms Conversion

[28]

Forms Modules
The following steps are done in order to convert the .FMB file to XML:

1. We will change the working directory to the directory that has the FMB file.
In my example, I have stored all the files in a directory called summit directly
under the C drive, like this:
C:>cd C:\summit

2. Now, we can call the frmf2xml command to convert one of our
Forms Modules to an XML file. In this example, we convert the
orders.fmb module:
C:\summit>frmf2xml OVERWRITE=YES orders.fmb

As we see in the following screenshot, this command creates an XML file called
orders_fmb.xml in the working directory:

Object Libraries
To convert the .OLB file to XML, the following steps are needed:

1. We first change the working directory to the directory that the OLB file is in.
It's done like this:
C:>cd C:\summit

2. Now we can call the frmf2xml command to convert one of our Object Libraries
to an XML file. In this example, we convert the Form_Builder_II.olb library
as follows:
C:\summit>frmf2xml OVERWRITE=YES Form_Builder_II.olb

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 2

[29]

As we see in the following screenshot, the command creates an XML file called
Form_Builder_II_olb.xml and two images as .tif files in the working directory:

Forms Menus
To convert the .MMB file to XML, we follow these steps:

1. We change the working directory to the directory that the .MMB file is in,
like this:
C:>cd C:\summit

2. Now we can call the frmf2xml command to convert one of our Forms Menus
to an XML file. In this example we convert the customers.mmb menu:
C:\summit>frmf2xml OVERWRITE=YES customers.mmb

As we can see in the following screenshot, the command creates an XML file called
customers_mmb.xml in the working directory:

Report Files
In our example, we will convert the Customers Report from a RDF file to an XML file.
To do this, we follow the steps given here:

1. We need to open the Employees.rdf file with Reports Builder.
2. Open Reports Builder from your Start menu. If Reports Builder is opened,

we need to cancel the wizard that asks us if we want to create a new report.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Preparing your Forms Conversion

[30]

3. After this we use Ctrl+O to open the Report File (or in the menu,
File | Open) which we want to convert to XML as we see in the
following screenshot:

After this we use Shift+Ctrl+S (or in the File | Save As menu) to save the Report. We
choose that we want to save the report as a Reports XML (*.xml) file and we click on
the Save button as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 2

[31]

PL/SQL Libraries
To convert PL/SQL Libraries to an XML format, it's easiest to use the convert
command that comes with the Report Builder. With this command called
rwconverter, we define the source type, call the source, and define the destination
type and the destination. In this way, we have control over the way we need to convert
the original .pll file to a .pld flat file that we can upload into the APEX Forms
converter. It is possible to convert the PL/SQL Libraries with the convert option in
Forms Builder, but, personally, I think this option works better. The rwconverter
command has a few parameters we give with it to execute. They are given as follows:

•	 stype: This is the type of source file we need to convert. In our situation,
this will be a .pll file and so the value we need to set is pllfile.

•	 source: This is the name of the source file, including the extension.
In our case, it is wizard.pll.

•	 dtype: This is the file type we want to convert our source file to. In our
case, it is a .pld file and so the value becomes pldfile.

•	 dest: This is the name, including the extension, of the destination file.
In our case, it is wizard.pld.

In our example, we use the wizard.pll file that's in our summit files directory. This
PL/SQL Library that contains.pll files is normally used to create a PL/SQL Library
in the Oracle Database. But this time, we will use it to create a .pld flat file that we
will upload to APEX.

First, we change the directory to work directory which has the original .pll file.
In our case, we summit the directory directly under the C drive, shown as follows:

C:>cd C:\summit

After this, we call rwconverter in the command prompt as shown here:

C:\summit> rwconverter stype=pllfile source=wizard.pll dtype=pldfile
dest=wizard.pld

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Preparing your Forms Conversion

[32]

When you press the Enter key, a screen will open that is used to do the conversion.
We will see that the types and names of the files are the same as we entered them
in the command line. We need to click on the OK button to convert the file from
.pll to .pld.

The conversion may take a few seconds, but when the file has been converted we
will see a confirmation that the conversion was successful. After this, we can look
in the C:\summit directory and we will see that a file wizard.pld is created.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 2

[33]

Understanding XML
If we take a look inside the XML files we just created, we will notice a few things. I use
SQL Developer of Oracle to look inside the XML files we just created. It's a free tool
that we will need for several other tasks during our Conversion project and it does
the job. But, of course, you can use a different XML editor to examine the XML files.

When we open SQL Developer, we can open the files we created earlier. The forms,
menus, reports, and libraries are now all in XML or flat files. To open the files in SQL
Developer, just click on file and then click on Open (or use the keyboard shortcuts
Ctrl+O). Select the file you want to open from the dialog box that's shown in the
following screenshot:

First, we take a look at the Forms Modules in the _fmb.xml files. As you can see,
there's a lot of information there. But if we take a further look, we'll see that it's not
new information. I will not discuss all of the information that's in the XML files here.
For further information about the contents of these files, I recommend reading the
Migration Help section in Oracle Application Express.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Preparing your Forms Conversion

[34]

The following screenshot lets us see the contents of the orders_fmb.xml file that we
created earlier. It shows us the name of the Forms Module (ORDERS), the Alerts,
the Blocks, and much more. We can see that it's the same information we saw in the
previous chapter in the Forms Builder.

If we take a closer look at one of the blocks in the XML file, for example the Items
block, we can look for some of the information that APEX uses in the conversion. We
can see the names of the Items used in this block. We can also look at the queries that
are used in this data block and triggers.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 2

[35]

Now, let's take a look at one of our Menu Modules, customers_mmb.xml. Because we
can't convert a menu in a Forms to APEX conversion project, the information in here
isn't that interesting. During conversion, we will create some horizontally oriented
images that can be used as a menu. But the information held in the MenuItem Name
tags is interesting to us. You will encounter a few names here that point to a certain
form in our application. These names will be used in our conversion project.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Preparing your Forms Conversion

[36]

In the XML that we created from our Oracle Reports application, we see a lot
of information such as how the report is built, what font is used, some layout
information about the building blocks of the reports page, and so on. But none
of this information is useful for us. The only thing we need is the query. As we
can see in the following screenshot, Employees.xml is a fairly big file:

The SQL query we're interested in is set in the select tags in this XML file. When
we upload the file to the APEX conversion tool, we will use only this information:

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 2

[37]

The last things we will discuss in this section are the PL/SQL Libraries. In the
following screenshot, we opened the wizard.pld file that we created earlier.
As we can see, it's just a definition of the Wizard Package and Package body.
To understand this function, it will be useful to look into this code:

The target database
In order to convert your Forms applications to APEX, we also need the database
model on our target area. Using Oracle's SQL Developer, we will be able to do both
an export and an import on the database of the database objects we need in our
application. In Chapter 1, we talked about the objects we needed in the application
we are converting. The import is also possible in APEX using the SQL Workshop
that is a part of APEX.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Preparing your Forms Conversion

[38]

First, we will create the .sql file, which contains the database objects we need in
the application. In SQL Developer we select the objects, in our case the tables, from
S_CUSTOMER to S_WAREHOUSE. When we have selected all the objects, we
right-click and select Export DLL and then click on Save to File, as shown in the
following screenshot:

To save the file that contains the code to create the selected database objects, we
select the directory where we want to save it, give it an appropriate name, and
then click on the Select button. After this, the DLL script will be created and saved
in the directory we have chosen.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 2

[39]

When we get the DLL script of our database objects, we will implement it on our
target database. This can be done by using both Oracle SQL Developer and APEX.

First, we will do it in SQL Developer because we will be able to connect this IDE to
any database we are connected to, and this works pretty easy with the appropriate
user credentials.

We have to open the file we just created. Click on File | Open (or use the keyboard
shortcut Ctrl+O). This opens a dialog box in which we can select the file, as shown
in the following screenshot:

The file will open in a separate worksheet in SQL Developer. Now we can see the
statements that create the database objects for which we created the DLL file. At
this point, we want to run the script on the target database schema. In the following
screenshot, we see the script in SQL Developer.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Preparing your Forms Conversion

[40]

By pressing F5 on our keyboard, or by going to Run in the menu and clicking on
Run exportsource_dll.sql, we will run this script:

Before the actual run of the script, we need to select a connection on which the script
must run. In this example, we will run the script on the OMB database schema that
I have saved in my SQL Developer preferences. To learn more about the possibilities
SQL Developer offers, it would be smart to read the SQL Developer user guide. After
selecting the correct connection, we click on OK and the script will run on the selected
database schema using the username and password settings we saved. Look at the
next screenshot:

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 2

[41]

It's also possible to run the script in APEX. This might come in handy if we don't
have a connection saved in our SQL Developer settings, or we just don't have the
database connection on our computer.

In APEX, we first go to the place where we can control our database objects, which
is the SQL Workshop. In the SQL Workshop, we see a section called SQL Scripts.
In this section of APEX, we can upload, create, save, edit, and run our .sql scripts.

In the SQL Scripts section of SQL Workshop, we have the possibility to upload
our script. Click on the Upload button shown at the righthand side in the following
screenshot. When we have done this, we browse to the file we created in SQL
Developer and give it an appropriate name. In this example, we call it exportsource.
Now we can upload the file. Click on the Upload button to upload the file and we
are redirected to the SQL Scripts section of APEX.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Preparing your Forms Conversion

[42]

Now, we want to run the script. Click on the script we just created in the SQL Scripts
section. In this example, we click on the icon that is named exportsource. This will
take us to the page shown in the following screenshot:

On the righthand side of this screen, there is a button called Run. Click on this
and the script will run on the same database schema we are connected to as the
APEX user.

We can repeat all the steps we took to implement the tables on a target database
in order to implement other database objects such as views, procedures, packages,
and more.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 2

[43]

Summary
In this chapter, we learned everything we need to do to get ready for our Forms
to APEX conversion project. Here are the necessary steps we went through before
we started:

•	 We have seen what files we need. These are the.FMB (Forms Modules), .OLB
(Object Libraries), .MMB (Menu Modules), .PLL (PL/SQL Libraries), and
RDF, REX, or JSP (Reports) files.

•	 We have used the Forms2XML conversion tool—the rwconverter—and
the Reports Builder in Oracle Developer Suite to create the right files that
we need for the APEX conversion project. We have used Forms2XML in
the command line to convert Forms Modules, Object Libraries, and Menu
Modules to XML files. We have seen how to use the Reports Builder to save
a Reports File as an XML File. We have also seen how the rwconverter
command is used to create a flat file in the PL/SQL Library.

•	 Using SQL Developer, we have seen what data is contained in the XML files
that we created. The XML files contained the same information that we have
seen in the Forms and Reports Builder, but is now structured within XML tags.

•	 We have done an export of our database objects from the SQL Developer,
and have implemented these database objects in our target database using
the SQL Developer and the Application Express.

In the next chapter, we will use the XML files we created in this chapter to create
a Forms Conversion project in APEX. We will upload these files in the APEX
conversion tool and get acquainted with the Forms Conversion project in APEX.
The project page will be our home page and we will see how we use the information
in this project page to edit any project in the future.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Create your Forms
Conversion project

The XML files we created in the previous chapter will now help us on our way in
APEX. During this chapter, we will create our own conversion project in APEX and
upload the XML files to the Forms Conversion project. This will also be the first
time we see the Forms Conversion project page and will learn a few things such as
how to use this to our advantage. Creating the project by uploading the XML files
is a hands-on experience because we need to implement the information that is
contained in the XML files into the APEX repository.

The following steps will be taken to create our Forms Conversion project:

1. We will create the project in APEX by giving it the appropriate settings.
2. We will upload the XML files we created earlier to the project we just created.
3. We will add additional sources to the project, that is, more XML files such

as our menus and libraries.
4. We will see how the project page is used and what information we can find

in it.
5. We will learn how to edit the project defaults in the project page and how

to set up the project before we start working on it.

Getting started
Before we can upload the XML files and define our application, we will have to
navigate to the Application Migrations page in APEX. This is a separate section
in APEX for all our migrations and because we see Forms Conversion as migration,
we need to be here.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Create your Forms Conversion project

[46]

In the following screenshot, we see the Migrations section which is placed on the
righthand side of the APEX home page. To go to this part of our APEX installer,
we have to click on the Application Migrations link as follows:

When we get to the Application Migrations part of APEX, we see a report of all
our migration projects. These can be Access Migrations, Forms Conversions, and so
on. But we will go for Forms Conversions as we want to create our very own Forms
Conversion project.

To create a new project, click on the Create Project button above the report as we
see in the following screenshot:

Creating the project
At this point, we are creating our Forms Conversion project in Oracle APEX. First,
we need to define a few of the basic parameters such as the name of our project,
the type of migration we are doing, and so on.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 3

[47]

Let's fill in the basics. In this example, we define the following:

• Project Name: It is the name of our conversion project. I chose
FormsConversion, but you can choose a logical name for the project.

• Type: In our case, this will be Forms.
• Description: This describes the project we are doing. We tell in a few

words what we are doing in this project and why.
• Schema: This defines the database schema that we want our project to

be built on. This is the schema that we used to implement the database
objects in.

• Forms Module XML File: This is the first XML file that we are uploading
to the project. This has to be a Forms Module XML file, and is probably
saved as a _fmb.xml file.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Create your Forms Conversion project

[48]

When we have entered the basic information of our Forms Conversion project and
selected the first Forms Module XML File, we click on the Next button to go to the
next page. The following screenshot will appear before us:

At this point, we can choose to add more XML files to our Forms Conversion project.
I decided to do so in our example, but we will be able to add more sources at a later
stage. To add more sources at this stage, we click on the Upload Another File button.
To create the project, we click on the Finish button. In the following screenshot, we
can see the files we added at this stage:

Adding additional sources
When we finish creating our Forms Conversion project in APEX, we get directed to
the project page. At this point, we are able to see all the sources that we added so far
to our project and we can look into them. But first, we will put more sources in our
project. We will add another file to our Conversion project.

To add another source file to our project, let's click on the Upload File button above
the report as we can see in the following screenshot:

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 3

[49]

At this point, we just have to define some basics of the file that we are about to
upload to our project. We have to:

• Define the File Type: In our example, we will upload another Forms module,
which is a _fmb.xml file. Of course, we can choose the different supported
types of our Forms Conversion.

• Browse for the file: This has to be of the same type as we defined in the field
above. In our example, we browse for the C:\summit\customer_fmb.xml file.

• Click on the Upload button to finish uploading the file and add it to our
conversion project: Instead, we can click on the Upload and Upload Another
button if we want to add more than just one source to the project.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Create your Forms Conversion project

[50]

The project page
After we finish adding sources to our project, we can take a further look into the
project page. The project page is the home page of our Forms Conversion project and
gives us a lot of insight into the elements that we are about to convert to APEX. As
the page gives us so much information, we will also use it for managing our project
and estimating our progress.

On the project page, we find all the sources with their attributes. The Forms modules
that we uploaded as XML files have the most information in them. We get a report
with a few necessary information points that can be explained as follows:

• File Type means the type of source file we uploaded into our project.
The project page uses a three-letter abbreviation of the type of file. For
Forms Modules it's FMB, for Reports it's RPT, for Forms Menus it's MMB,
and for Libraries it's PLL.

• File Name means the name of the file we uploaded into our project.
This is the same name we gave it during the conversion to XML.

Forms Modules have a few additional elements in this report that are Forms Module
unique. For the other file types, we only see a zero as a value for the quantity of the
following elements:

• Blocks
• DB Blocks
• Items
• Triggers
• Record Groups
• Lists of Values
• Alerts
• Program Units

We have a count of the progress of all the files. These fields are useful to help us realize
the Conversion project. The following fields are used for the component count:

• The component count: The sum of all the components available in the
specific source file.

• The number of completed components: The sum of the components that
either have the complete status, or are just not applicable in the project.
This has been done during the conversion project and is discussed further
in this book.

• The percentage of completion of the file: The completion percentage of
a specific file.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 3

[51]

We also have a Completion Status of our complete project. This status bar is located
on the right of the project page and indicates how much progress we have made.
We can see how many components there are in total, how many components have
been completed, and what percentage of the project is completed. This is useful
information for us to look into once in a while because it will tell us the status of our
project. But, beware! There are some components in the Forms Modules we will not
be able to complete.

Editing the project
After creating our project, we are able to edit some of its defaults and details. This
will come in handy if we want the project page to be the starting point in our project.
The things we can edit are the project details, which we entered during the creation
of our project—the applicability of the components and the triggers. Besides these
details and applicability settings, we are also able to edit the application defaults.
These have a lot to do with how we want the application, which will be generated
in APEX to react, such as the user interface and the language of the application.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Create your Forms Conversion project

[52]

On the right of our project page we see the Tasks region. This region contains
all the possible settings for editing and setting our Conversion project.

Deleting the project
It's always possible to completely delete a project from the repository. This is done
by clicking on the Delete Project link in the Tasks menu. When we do so, we are
directed to the following screenshot:

When we click on the Delete Project button, the entire project will be deleted from
the APEX repository.

Editing project details
To edit the default project details and the applicability of the components and
triggers in our conversion project, we have to click on Edit Project Details and
Applicability. This takes us to the Edit page of our Conversion project. This page
is segmented into three main parts—one for editing the project details, one for
the applicability of the components found in the Forms Modules, and one for the
applicability of the triggers found in the Forms Modules that we uploaded into
the Conversion project.

Project details
First, we will see how we can edit the project details. The following screenshot shows
us the fields we can edit, and we see that these fields are the same as used in the first
page of creating our Conversion project. Here we can edit the Name of our conversion
project, the Database Schema it is set on, and the Description of our project.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 3

[53]

Applicability
Second, we can edit the Applicability of the components and triggers. These
applicability settings are the global settings for our project and we see that the values
are already set by the development team of Oracle. Applicability means that the
applicable components will be a part of the conversion project. If a component is not
applicable it will not be part of our project. If it's set to Yes, the component or trigger
is in the component count and we need to address this particular type in our project.
If the value is set to No, it is not a part of our project and we don't need to do anything
with it. Remember that these are global settings for the complete project, but we can set
the Applicability in the component or trigger it as well.

In the following screenshot we see the first components in the list and their
Applicability. We can change the Applicability by clicking on the drop-down list
and selecting a different value.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Create your Forms Conversion project

[54]

The trigger applicability is a bit tricky because in Forms Modules we have a few
different types of triggers such as the Forms-level triggers, block-level triggers, and
Item-level triggers. In the following screenshot, we see the different types of triggers
and their applicability on Form, Block, and Item level. We can change the values
again by clicking on the drop-down lists and selecting a different value.

We go back to the project page by clicking on Cancel if we made no changes or
if we don't want to save the changes we made, or by clicking on Apply Changes
if we made changes and want to keep them.

Set application defaults
To edit the application defaults, we click on the Set Application Defaults link in
the Tasks region. This takes us to a page in the application builder that lets us set
the tabs in the application, the authentication scheme, the application theme, and
the language of the application. The application defaults are the settings that are
used to know how the application will be generated. It's possible to do this during
generation; however, if we think we have to generate the application more often,
it's wise to set the defaults here.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 3

[55]

Tabs
Navigation through an APEX application is mostly done with the use of tabs. We
know two different levels of tabs. In this section of setting the application defaults,
we can choose between tabs or no tabs, if that's what we want in our application.
One Level of Tabs is selected as the default value.

Authentication
We are moving through Forms, so there's a big chance that we have database
users and roles in the application that we are converting to APEX. If this is the
case, we probably want database authentication. It's also possible to write our
own authentication scheme, but I will not go further into this. If we choose the
Application Express authentication scheme, there's a big chance that we need
to change some settings in our application. But for testing purposes, keeping
the settings to default will do.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Create your Forms Conversion project

[56]

Theme
In Oracle Application Express, we can choose a theme out of a list of default themes
in the APEX repository. These themes can be used for the application that we are
generating with our Forms conversion project. Select a theme by clicking on the
image, as shown in the following screenshot:

Globalization
The last section in setting the application defaults is used to set the Globalization
settings. We can select Default Language (the way the language is derived) and Date
Format. It is logical that we can select only those languages that are installed in our
APEX instance.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 3

[57]

Summary
So, we finally created our own Forms Conversion project in APEX! We saw that it
isn't that hard to create it and we got a lot of information from the files we uploaded
into the project. The project really comes together now in the project page and we
can see how we can do the things that are needed during our conversion project.
The following are some important points covered in this chapter:

• We create a Forms Conversion Project by uploading the XML files
we build in the Conversion project.

• We always start a Forms Conversion project by uploading a Forms
Modules XML file.

• It's possible to make your project larger by adding more sources to
the Conversion project. These are also the XML files we created earlier.

• The project page tells us a lot about the components in our Conversion
project and the status of our project.

• We saw how we could use the project page to edit the project defaults such
as the applicability of components and triggers, and also the user interface
and language.

In the next chapter we will learn about the internal aspects of our project. We will
see what the possibilities to tie the project together are, how much work we need
to do, and what we need to do in order to make this project a success.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Planning your Project
One of the largest advantages in using the Forms to APEX conversion in our project
is the information it offers us for project management. As a Forms Conversion
project is often large and complex, it would be nice if we know what we are talking
about and how much work we are looking at.

To determine how much work needs to be done, we will take a further look into
the different parts of our Forms Conversion project. In this chapter, we will cover
the following:

•	 In the project page, we will take a look at the count of the different
components and the completion of our project

•	 We will take a further look inside our project and look at the different
components inside the XML files that we uploaded

•	 The most important components in our project will be highlighted and
we will see the possibilities to change them

•	 The component annotations will be used to set the completion status
of our project and assign developers

•	 The annotations are used to give us an insight into the tasks at hand

Overall, we shall see different ways in which we can look into the various components
that, combined, is our project. We will also look at how we can edit and estimate the
components, and in what way we can have control over our conversion project.

One question that needs to be answered is: Who needs to do what, when, and
how much time will it take? In this part of the chapter we will see a few ways
to answer this.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Planning your Project

[60]

The project page
On the project page, we see all the files we uploaded into our project and the
components that are in the Forms Modules. This page has a big essence for us,
especially when we are planning our project:

In order to understand what's in our project and how much effort it will take for
our team to convert these elements to APEX, we need to take a quick look inside
the components.

Inside our project
The number of components that we have in the specific Forms Modules gives
us an indication of the amount of effort it will take to successfully convert these
modules into APEX. In our example, we have the Forms Module Orders specified
in our project as the orders_fmb.xml file. In the Orders module, we have 4 blocks,
3 database blocks, 34 items, 45 triggers, 1 record group, 1 list of values, 3 alerts,
and 5 program units. This count of components in our Forms Module gives us an
indication of the complexity, but it isn't a good perspective.

To know more about the components that our module is built from, we need to
take a look inside our project. So let's get more information about these components.

We click on the filename to see a more detailed list of the components the file contains.
In our example, we click on the name orders_fmb.xml:

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 4

[61]

This will take us to the Forms Objects page, as shown in the following screenshot.
This page tells us a lot about the components our Forms Modules are built on.

The Forms Objects page contains an interactive report with a few elements that we
can use in order to plan and understand our conversion project. These elements are
discussed next.

Component
A Component can be any type of component we know from Oracle Forms.
We see Alerts and Blocks, but also components such as Windows and Canvas.

Count
Count is the number of component types that are included in this file. In our
example, there are three Alerts in the Orders Form module. This is the count
on the filename level, not the entire project.

Equivalent component
Some of the Forms components we are looking at have an equivalent in APEX. We
are converting the pre-existing components to this type of component. For example,
blocks in Oracle Forms are considered to be the same as regions in APEX. Not all the
components that we get from our Forms Modules are considered to be translatable
into APEX elements. This is what makes our job of conversion the challenge it is.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Planning your Project

[62]

Implementation Details
In Implementation Details, we read some text that can help us in making the right
choices in the conversion project. This text can be read as a help text that indicates
how a certain component is translated to APEX.

Included
In this element, we will see the count of components of the same type that are included
in our conversion project. For example, there are four blocks in the orders_fmb.xml
file, and three of them are included in the conversion project. If we take a further look,
we shall see that the one that's not included has its applicability set to No. In this way,
we see how many of the components will be in our project.

File Name
File Name is the name of the file that the components are in. In our case, this
is the Orders Forms Module and so the filename is orders_fmb.xml.

Applicable
This element tells us if the components of this type are applicable for our conversion
project. In the previous chapter, we saw that we could alter the default project
settings per component. These settings are the same as shown here.

For all the types of components we have, some specific settings can be altered and
changed. As we will see next, all the components we counted in the project page
contain useful information for planning our project.

Now that we know how many components of one type there are, we can make
a rough estimate of the complexity of the file we looked at. In this case, it is the
orders_fmb.xml file. If we look at all the files we have in our project, we can
make an estimate of the entire project.

What we need to do
When we make an estimate of the amount of effort it will take us to do our
conversion project, we might need more information about the complexity of
the components we will be dealing with. We will take a look at the different
key components in our project and how the conversion project will treat them.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 4

[63]

The Forms Objects list that we discussed earlier tells us a lot about the number of
components we are dealing with. This page will be the starting point of the journey
towards more information about the complexity of our project.

We will only look further at the components that really count for our conversion
project. These are the same components that are stated in our project page, namely,
Blocks, Triggers, Lists of Values, Alerts, and Program Units.

Blocks
One of the most important types of components in our Forms Conversion project
are Blocks. They can be Database Blocks, but they don't have to be. The blocks we
are looking at can contain items and they will be shown here.

In Implementation Details, the following is stated about the Blocks components:

A single block can be mapped to a region in Oracle Application Express. Based
upon the block type and data source type (table/view) identified in the Forms
XML file, some default mappings are defined. For example, a report block which
is based upon an Oracle view, will be mapped to an Interactive report in Oracle
Application Express. A form block based upon a table, will be mapped to an
Interactive report and form in Oracle Application Express.

As we read the Implementation Details, we learn that a Block is defined as a region
in APEX. We also learn that the way a region will be defined in our conversion project
has a lot to do with the way the original Block was defined in Oracle Forms. For
example, if the Block was defined as a report Block, we will generate an Interactive
Reports region in APEX. The query the Block is based on is probably it's most
important aspect.

When we click on the Blocks link on the Forms Objects page, we will be taken to the
page that reports all the Blocks in this file to us, as shown in the following screenshot:

At this point, we can edit the defaults of our Blocks and thus learn some more about
the way our Blocks are built. Amongst the important information we can see in our
example is that our Orders block contains 22 Triggers and that the name of the data
source is S_ORD, which has 9 Items and is a Database Block.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Planning your Project

[64]

If we look further in the Block, we can see more details. To see more information
about this Block, we need to click on the name of the Block we want to look at. In
our example, we take a look at the Orders Block. Clicking on this name takes us
to the following screenshot:

In the previous screenshot, we can change the most important settings and values.
In the following screenshot, we can see the query, relation details, items on this
block, and the block-level triggers. By looking into the information about the Block,
we can estimate more accurately how much time it will take for us to completely
convert this element from Forms to APEX.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 4

[65]

The triggers in this Block can be edited directly by clicking on the pencil icon
in front of the Trigger name.

Triggers
Triggers are probably the most complex part of our conversion project. As we have
to take account of a lot of these triggers with their own logic and importance, we
need to spend some time investigating them.

Our application contains a large number of different triggers of all sorts and types.
Let's take a look at the triggers in Forms Module Orders that we uploaded into our
project as orders_fmb.xml.

In the Forms Objects page we see the triggers listed. As we can see, the Orders Forms
Module contains a total of 45 triggers. This is definitely the bulk of all components in
our project.

The Implementation Details contain some examples of the way triggers need to
be embedded in our project. They are as follows:

An Oracle Forms trigger is an event handler written in PL/SQL to augment the
default processing behavior. The trigger logic can be incorporated into an Oracle
Application Express application as a computation, validation, or PL/SQL process
at post-generation phase. Where feasible, POST-QUERY block trigger logic
can be automatically incorporated in the generated Oracle Application Express
application, as part of the Enhanced Query generation.

As we have all these different levels and types of triggers in our application, it's
difficult to state one way to work with a trigger in our project. Now let's take a look
at the different triggers. Click on the Triggers link on the Forms Objects page and
you will see the following:

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Planning your Project

[66]

We now see a large list having 45 entries of triggers in this Forms Module. There
are other types of triggers and we see the following information on our screen:

•	 The Form's Name
•	 The name of the Trigger in question
•	 The level the Trigger is in
•	 A snippet of the code inside the Trigger
•	 The length of the Trigger in characters
•	 An indication of whether the Trigger is applicable
•	 An indication of whether conversion of the Trigger is completed
•	 The name of the developer that got assigned to the Trigger
•	 The name of the Block the Trigger is on, if it's a Block level trigger
•	 The name of the Item that the Trigger is associated with, if it's an

Item level trigger
•	 If there are notes combined with this Trigger, a snippet of it is stated
•	 The name of the file the Trigger comes from

In this case, we work with different levels of triggers. In the interactive report,
we can select the different levels and work further from there. As we can see in
the following screenshot, we have Block, Form, and Item Trigger Level:

To examine a trigger in more detail, we need to click on the Edit link in front of the
trigger in the interactive report. To do this, we will click on the pencil icon in front
of the trigger that we want to examine. This will take us to the Block Trigger Details
screen as we see here:

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 4

[67]

In the above screenshot we can see the details of the ON-POPULATE-DETAILS
trigger on the Items Block. As we can see, this is a Block level trigger. We can
look into the text that the trigger contains and we have the possibility to alter
the annotations.

Lists of Values
Another type of component that we should take a better look at is the Lists of Values
(LOVs). These LOVs are different in Forms than what they are in APEX. As a lot of
applications use LOVs, we will need to know anything more can be done with them
than just the automatic conversion.

As we can see in the Forms Objects page, we have one LOV in the Orders Forms
Module and there's already one included in our project. As we can read in the
Implementation Details, the LOVs and their associated Record Groups will be
mapped to APEX LOVs. This means the conversion will be automatic for most parts.

A List of Values (in Apex) can be mapped to an equivalent List of Values in Oracle
Application Express. When LOVs are selected for inclusion in the migration to
Oracle Application Express their associated record group will also be included in
the migration.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Planning your Project

[68]

Let's take a closer look at the LOV that is in our project. Click on the Lists of
Values link on the Forms Objects page. This will take us to the following page:

Here we see that the List of Values PRODUCTS_LOV is associated with the record
group LOV12. When we click on the pencil icon in front of PRODUCTS_LOV, it
takes us to the Lists of Values Details page, as shown in the following screenshot:

In the above screenshot, we can see the details of List of Values. We see that the
Record Group, which is based on LOV12, contains a query. This query will be
used as the base for the conversion of this element.

We can also edit the columns that we use in the LOVs. In order to do so, we go back
to the overview of the LOVs and click on the name instead of the edit link, or the
pencil icon. In our example, we click on the PRODUCTS_LOV link which takes us
to the screen displayed in the following screenshot:

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 4

[69]

In this page, we can edit the Column names and Titles. These can be used in order
to edit the elements before we convert our application to APEX. In this way we can
control our LOVs and the way they are displayed.

Alerts
Alerts in applications give us a special form of functionality. They interact with
the user and tell them what went wrong and what went right.

As we can see in the Alerts section of the Forms Objects page of our Orders
Forms Module, we have three Alerts in our example. The Implementation
Details state the following:

An Alert Message can be stored as a Text Message in the Shared Components of
an Oracle Application Express application. Text Messages can be used to build
translatable text strings with substitution variables that can be called from PL/SQL
packages, procedures, and functions.

This means we need to translate the alerts to a text message in APEX. Of course, we
need to find out when the alert is given to the user in order to see where we need to
implement it in our converted application as a page validation in APEX. On most
occasions times, we need to implement the Alerts after the conversion.

Click on Alerts to see the list of the Alerts in this Forms Module:

In the screenshot above, we see all three of the alerts that are in the Orders' FMB
files. We can see the Name of the Alert, the Style of the Alert (two of them are of
the Caution style), the labels of the buttons that come with the Alerts, and some
additional information.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Planning your Project

[70]

To edit this information, we have to click on the Edit link which is in front of
the name. The pencil icon will take us to the Alert Details page as shown in
the following screenshot. In our example, we click on the Edit link in front of
the PAYMENT_TYPE_ALERT alert.

Here we can see Alert Details and the Annotations. The most important part
of information we get from this page is Alert Message. In our example, it states:
This customer must pay cash! So there's probably something wrong with this
customer's credit rating.

Program Units
Besides triggers, even Program Units contain code. Mostly, this is the embedded
PL/SQL code in the Forms Modules and is used to carry out some functionality.

As we can see in the Implementation Details, Program Units have to be
implemented after the generation of our converted application. We can see that
there are different ways of implementing this kind of logic in our project, so we
need to judge every Program Unit separately on how we need to implement it
later in our conversion project.

In the post-generation phase of a Forms Conversion process, Program Units can
be incorporated into your Oracle Application Express application as a PL/SQL
package, page process, computation or validation.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 4

[71]

Click on the Program Units link to take a look at the five program units we have
in this Forms Module:

As we see in the previous screenshot, we get some basic information about the
Program Units in the Orders Forms Module from this page. We see the name of the
program unit, the type of Program Unit, a code snippet inside the program unit, and
some other basics such as the applicability and the completion of this program unit.

We see that all program units are set to applicable, so we basically need to convert
all of them. Let's take a better look at it to be able to judge what we need to do with
it. Click on the pencil icon in front of the CHECK_WINDOW_SIZE procedure in
order to see the Program Unit Details. This will take us to the following screenshot:

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Planning your Project

[72]

Now we can see the program unit in more detail. The most important part of this
screen is the Program Unit Text. The example we took in CHECK_WINDOW_SIZE
is a very Forms-specific procedure and we can safely say that we don't need it in our
APEX application after conversion. But we also see that the applicability is set to Yes.
Can we change this, or do we need to implement the procedure in our project?

Let's talk about the applicability of the components in our project.

Component annotations
In all the Details screenshots we have seen earlier in this chapter, we have seen
the Annotations field. At this point of progress in our project, the Annotations
field is probably our most important piece of control. We can edit the settings of
each component in the Annotations field in the details page. As we can see, we
can edit a few settings in this part.

The things we can edit here are:

•	 The Applicability of the component. This is the place were we say if the
component needs to be in our conversion project or not.

•	 The Priority of this component. We state how important it is to include
this component in our project.

•	 The Completion of the component. After completion, we set this value
to Yes. This value lets us track the progress of our project.

•	 The developer that got assigned to and is responsible for this component.
•	 Some room to make notes about this component.
•	 What tags there are for the component.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 4

[73]

As we can imagine, these fields are very useful to manage our project. Two functions
are of essence to us, the status of completion and assigning components. With this
information we can control our project and estimate what needs to be done, and how
much effort it will take.

Completion status
Besides the applicability on the component level throughout our project, we can
set the applicability of each component. As shown above, we can do this in the
Annotations field in the component-specific sections.

When we take a look at the applicability of some of the components in our project,
we can say that we don't need everything in it. In the completion status of our
project, we can edit this by providing details of what exactly is in the project.

We saw the completion status in the project page. This is an indication of the status
of our project and is built up by dividing the component count through the count of
completed components. Because we don't take non-applicable components with the
count, we can edit the completion of the project by setting the applicability of the
components. In the following screenshot, we see that the completion of our project
is now set at 62.11%. This is not bad for a project that we just started, but let's take
a look at the way in which we can edit this using the applicability of components.

When we change the applicability of one of the components, we change
the completion status of our project. Let's change the applicability of the
CHECK_WINDOW_SIZE procedure in the Orders Forms Module. We saw earlier
that this is a very Forms-specific procedure and we will not need it in our APEX
project. In other words, it is not applicable in our Forms to APEX conversion project.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Planning your Project

[74]

In the Program Unit Details page of the CHECK_WINDOW_SIZE procedure, we
go to the Annotations section. In this section, we find a field called Applicable
which is set to the default value of Yes in our example. We can see this in the
following screenshot:

When we want to change the applicability of this procedure, we need to change the
Applicable field to the No value and click on the Apply Changes button on the top
right of the Details page.

When we go back to our project page, we will see that the Completion Status
section on the right of the project page has been changed. As one more component
got the Completed status (because we set the applicability to No, which the system
recognizes as completed), the completion is set to a whopping 62.63%.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 4

[75]

Assign developers
In order to manage our conversion project, we might want to give out work to our
team of developers. A really nice feature is that we can assign developers to a certain
part or component in our project. In the Annotations field in the components or files
sections, we not only set the applicability, but we can also assign a developer to a
specific part of our conversion project.

If we work with a large team of developers, it will be nice if we could assign different
parts and components to our developers. In the Annotations field, we can add the
developer we want to assign to this part of the project, as seen in the following
screenshot. All the developers in the APEX instance that we are working on are
shown in the drop-down list. In this way, we can edit our project and assign work
to those who might be best for a specific task.

When we have selected the developer who will do this part of our project, we
click on Apply Changes on the top right of our screen. That's it; we have added
the developer.

This feature enables us to manage the workforce in our team. We also get more
information on who does what and we might be able to plan the project better.

Project planning
When we do a conversion project, we need to know a few aspects of the project
and our team. The most basic question at hand is:

Who needs to do what, when, and how far have we progressed?

This basic question is probably is one of the hardest parts
of our project. So let's look at it in more detail.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Planning your Project

[76]

Who needs to do what: As we can assign developers to certain tasks in our
conversion project, we will be able to answer this question. But we will not be
able to fully understand the effort it will take to perform this task. The developer
that has the task might be able to tell us, but we don't register this effort in APEX.

When the developer does a certain part of the conversion project, it is another
thing we need to record somewhere. But again, it is not possible to do this in the
project itself. But because we know what parts are in the project (the parts that are
applicable) and who is going to convert them (we assigned a developer), we know
the basics to this question.

How far have we progressed is a question that is stated in the Completion Status
field in the project page. But we will only be able to tell the technical progress that
has already been completed. As we all know, 80% of the work is done in roughly
20% of the time. So don't use the completion status as an indication of the work
that needs to be done, but use it to measure how much work we already did.

As we are now able to look inside the different components, planning will be easier.
The developers who got assigned to a certain component will be able to estimate
the amount of effort they need to put in to complete the task and we will be able to
plan correctly.

The plus side is that we now know who does what in our conversion project. This
means that we have a lot of information that we can use to start the communication
lines in the project team. Now that the team knows who has to do what, one of the
biggest challenges in the project has been overcome.

Using annotations
The annotations we learned to set earlier can be used towards the project. If we want
to know what a developer needs to do, what the progress of a certain developer in
our team is, or as a developer what we need to do ourselves, then we can take a look
inside the annotations. This can be an extremely helpful part of the project and can
be personalized to a great extent.

Here, I will point out a few ways in which we can edit a Triggers page in a Forms
Conversion project. This can be done with every overview of components and is
just an example of the many existing possibilities.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 4

[77]

Applicability and completeness
If we take a look inside the Triggers page in the Forms Objects, we see that there are
a lot of them. In my example, we got a total of 68 triggers. And, of course, this is just
an example. In a real live project, this can easily be hundreds.

This means we don't have a good overview of everything, which we ourselves
need to have in a large-scale project. So, we need to extend our criteria a bit. For the
SQL'ers in our midst, we need to expand our where clause. As the Triggers page is
based on an interactive report in APEX, we can do this ourselves. The possibilities
are endless, but let's start by selecting the Triggers that need to be completed.

To select the triggers that need to be completed we need to set filters on two fields in
our interactive report. Both the Applicable and Complete fields are of interest to us in
this part of the selection. We used the Annotations field earlier to set the applicability
of the component. The completeness is also in this field and we can edit it.

To set filters on the Applicable and Complete fields of the interactive report,
we click on the header, in this case on the word Applicable on top of the report.
This will show the selection we are able to make in this field as shown in the
following screenshot:

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Planning your Project

[78]

This shows us that we can select between triggers that are applicable and triggers
that are not. Because we want the triggers that we still need to complete for our
project, we want the triggers that are applicable. In this case, we select the value
Yes. This is not the only filter we want to set. We only want the triggers that are
not already completed.

This works in the same way. We click on the Complete header in our interactive
report and now we select the value No. At this point, we have all the triggers in
our project that still need to be dealt with. In other words, we got the triggers in
our project that are applicable and not yet completed. As shown in the following
screenshot, we have set the filters in the interactive report:

Assignees
So, now we have a selection of triggers in our project that still need some work done
on them. If we are in a very large conversion project, this can mean around hundreds
of them. In our example, we want the triggers that are assigned to me and the
triggers that I need to work on. My team leader has set the assignment of some of
the triggers to my name, so I will be able to select them in this interactive report.

I can select the components that are assigned to me by setting another filter on the
interactive report. This is done in the same way that we have set the applicability
and completeness filters. We will click on the Assignee header in our interactive
report and see all the developers that have got a trigger assigned to them:

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 4

[79]

I selected the value DOUWE and I will see only the Triggers that got assigned
to me and that still need some work done!

Tags
To further limit the selection of triggers in our example, we can use a very helpful
element in the Annotations field—Tags. Tags can be determined as keywords
that you, or your team leader, have put in the Annotations field and define the
component. This can be anything. I choose to use some keywords that are common
in the triggers that I saw in the list. There were quite a few that set properties in my
Forms application, so I have set a tag called Properties earlier.

Tags are not included in the interactive report by default. When we edit the
interactive report by clicking on the radar image on top of the interactive report,
we have an option to select the columns we want in the report. This is shown in
the following screenshot:

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Planning your Project

[80]

When we click on the Select Columns link in the drop-down list, we get a so-called
shuttle list where we can select the columns we want in the interactive report. We
can select the Tags column as shown in the following screenshot:

To select the Tags column, we click on it and then we click on the single arrow to the
right (>). This will put the Tags field in our interactive report and we will be able to
set a filter on it to make our selection even more accurate. This is done in exactly the
same way as is done with the other filters.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 4

[81]

Summary
In this chapter, we saw how we can use the information given to us in the conversion
project to our advantage. We have seen how we can look into components that are in
the conversion project and what information is given to us.

To entirely plan a Conversion Project, we are handed a few functions that help us
understand and control the project. They are given as follows:

•	 The project page helps us by telling about the amount of components and
the completion of the different parts.

•	 The Forms details screen tells us what to do with certain components by
giving us hints in the Implementation Details.

•	 The Forms details screen tells us how many parts of the components there
are and what their status is.

•	 The details of the components and their parameters are given to us in the
overviews of every component we have in a Forms Module.

•	 In the details screen of the specific components, we can take a look at the
source and make changes in the annotation of this component.

•	 The annotations give us some tools to control the page. We can make
or unmake the applicability of a component and assign a component
to someone in our team.

In the next chapter, we will take a look at some ways to understand and edit the code
inside the components in our project page. This means we shall take a step further
towards converting our Forms application to Oracle APEX!

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Getting your Logic Right!
In the previous chapters we have seen various steps needed to create and manage
a conversion project. Now let's get ready for conversion and generation itself. This,
unfortunately, doesn't mean we're almost there. There's still a lot of work that needs
to be done. But don't get disappointed; we are now getting to the part that will earn
us money. In this part of our conversion project, we will investigate, analyze, and
adjust some of the most important parts of our application. This means that we will
set everything up for the generation of the application. We will discuss the following
parts of the conversion project in this chapter:

• Investigating the components that will be generated
• Getting to know the database blocks in our Forms files
• Looking deeper into the block items inside our blocks and editing them
• Enhancing the queries on which our blocks are based
• Analyzing the triggers we have in the Forms XML files
• Massively changing the completeness and applicability of triggers or items
• Customizing the query that the blocks are based on in order to complete

our generation
• Understanding the way our pages will be generated in APEX
• Editing the titles of our blocks and items
• Analyzing our business logic (probably the most important part)

Pre-generation editing
After reading this chapter, we will understand our project a lot better. Also, to a
certain level, we will be able control the way our application will be generated.
Generation is often performed more than once as you refine the definitions and
settings between iterations.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Getting your Logic Right!

[84]

In this chapter we will learn a lot of ways to edit the project in order to generate
optimally. But we must understand that we will not cover all the exceptions in the
generation process. If we want to do a real Forms to APEX conversion project, it
will be very wise to carefully read the help texts in the Migration Documentation
provided by Oracle in every APEX instance—especially the appendix called Oracle
Forms Generation Capabilities and Workarounds, which will help you to understand
the choices that can be made in the generation process. The information in these
migration help texts tells us how the different components in Oracle Forms will be
converted in APEX and how to implement business logic in the APEX application.
For example, when we take a look at the Block to Page Region Mappings, we learn
how APEX converts certain blocks to APEX regions during conversion.

Investigating
When we take a look at our conversion project, we must understand what will be
generated. In case of generation, the most important parts are the blocks on our
Forms modules. These are, quite literally, the building blocks our pages in APEX will
be based upon. Of course, we have our program units, triggers, and much more; but
the pages that are defined in the APEX application (which we put in production after
the project is finished) will be based on Blocks, Reports, and Menus. This is why we
need to adjust them before we generate anything. This might seem like a small part
of the project as we look at the count of all the components in our project page, but
that doesn't make it less important.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 5

[85]

We can't adjust reports as they are defined by the query that they are built upon,
but we can alter the blocks. That's why we focus on those components first.

Data blocks
The building blocks of our APEX pages are the blocks and, of course, the reports.
The blocks we can generate in our project are the ones that are based on database
block. Non-database blocks such as those that hold menus and buttons are not
generated by default, as they will be generated as blank pages. In the block overview
page, we get the basic information about the blocks in our project. The way the
blocks will be generated is determined by APEX based on the contents, the number
of items on the block, and, most importantly, the number of records displayed.
For further details on the generation rules, refer to the Migration Guide—Appendix A:
Forms Generation Capabilities and Workarounds.

In the Blocks overview page in our conversion project, we notice that not all the
blocks are included. In other words, they aren't checked to be included in the project.
This is because they are not oriented from a database block. To include or exclude
a block during generation, we need to check or uncheck the specific block. Don't
confuse this with the applicability of a block.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Getting your Logic Right!

[86]

We also might notice that some of the blocks are already set to complete. In our
example we see that the S_CUSTOMER1 and S_CUSTOMER blocks are set to
complete. If we take a look inside these components and check the annotations, they
are indeed set to complete. There's also a note set for us. As we see in the following
screenshot, it states Incorporating Enhanced Query:

The Enhanced Query is something that we will use later in this chapter. But beware
of the statement that a component is Complete as we will see that we might want to
alter the query on which the customer's block is based.

If we look at a block that is not yet set to complete in the overview page (such as
the Orders block) and we look at the Application Express Page Query region in
the details screen, we see that only Original Query is present. This is the query
that is in the original Forms XML file we uploaded earlier.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 5

[87]

Although we have the Original Query present in our page, we can also alter
it and customize the query on which this block is based. But this will be done
later in the chapter. In this way, we have a better control over the way we will
generate our application. We can't alter this query as it is to be implemented as
a Master-Detail Form.

Block items
Each block contains a number of items. These items define the fields in our
application and are derived from our Forms XML files. In the block details pages,
we can find the details of the items on the particular block as well. Here we can see
the most basic information about the items, namely their Type, Prompt, Column
Name, and the Triggers on that particular item. We can also see the Name of the
item if it is a Database Item and if the item is complete or not, and whether or not
it is Applicable. When a block is set to complete, it is assumed that we have all the
information required about the items, as we see in the example shown here:

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Getting your Logic Right!

[88]

But there are also cases where we don't get all the information about the items we
want. In our case, we might want to customize the query the block is based on or
define the items further. We will cover this later in the chapter.

In the above screenshot we notice that for all the items the Column Name is not
known. This is an indication that the items will not be generated properly and
we need to take a further look into the query and, maybe, some of the triggers.

When we want to alter the completeness and applicability of the items in our block,
there's a great functionality available on the upper-right of the Blocks Details
page. In the Block Tasks section, we find a link that states: Set All Block Items
Completeness and Applicability. This function is used to make bulk changes in the
items in the block we are in. It can be useful to change the completeness of all items
when we are not sure what more needs to be done.

To set the completeness or the applicability with a bulk change on all the items, we
click on the link in the Block Tasks region and this takes us to the following screen:

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 5

[89]

In the Set Block Item & Trigger Status page we can select the Attribute (Items,
Block Triggers, or Item Triggers), the Set Tracking Attribute (Complete or
Applicable), and the Set Value (Yes or No). To make changes, set the correct
attribute, tracking attribute, and value, and then click on Apply Changes.

Original versus Enhanced Query
As mentioned earlier, we can encounter both Original and Enhanced Queries in
the blocks of our Forms. The Original Query is taken from the XML file directly as
it is stated in the source of the block we are looking at. So where does the Enhanced
Query originate from? This is one of the automatically generated parts of the Forms
Conversion tool in APEX. If a block contains a POST QUERY trigger, the Forms
Conversion tool generates an Enhanced Query for us.

In the following screenshot, we see both the Enhanced Query and the Original
Query in the S_CUSTOMER block. We can clearly notice the additional lines at
the bottom of the Enhanced Query.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Getting your Logic Right!

[90]

The query in the Enhanced Query section still looks a lot like the one in the Original
Query section, but is slightly altered. The code is generated automatically by taking
the code from both the Original Query and POST QUERY triggers on this block.
Please note that the query is automatically generated by APEX by adding a WHERE
clause to the SQL query. This means that we will still need to check it and, probably,
optimize it to work properly.

The following screenshot shows us the POST QUERY trigger. Notice that it's set
to both applicable and complete. This is because the code is now embedded in the
enhanced query and so the trigger is taken care of for our project.

Triggers
Besides items, even blocks contain triggers. These define the actions in our blocks
and are, therefore, equally important. Most of the triggers are very Forms-specific,
but it's nice to be the judge of that ourselves.

In the Orders Block, we have the Block Triggers region that contains the triggers
in our orders block. The region tells us the name, applicability, and completeness.
It gives us a snippet of the code inside the trigger and tells us the level it is set to
(ITEM or BLOCK).

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 5

[91]

A lot of the triggers in our project need to be implemented post-generation, which will
be discussed later in this chapter. But as mentioned above, there is one trigger that we
need in the pre-generation stage of our project. This is the POST-QUERY trigger.

In this example, the applicability in the orders block is set to No. This is also the
reason why we have no Enhanced Query to choose from in this block. The reasons
behind setting the trigger to not applicable can be many, and you can learn more
about the reasons if you read the migration help texts carefully.

We probably want to change the applicability of the trigger ourselves because the
POST QUERY trigger contains some necessary information on how we need to
define our block. If we click on the edit link (the pencil icon) for the POST QUERY
trigger, we can alter the applicability.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Getting your Logic Right!

[92]

Set the value for Applicable to Yes and click on Apply Changes. This will take
us back to the Block Details screen. In the Triggers region, we can see that the
applicability of the POST QUERY trigger is now set to Yes.

Now if we scroll up to the Application Express Page Query region, we can also see
that the Enhanced Query is now in place. As shown in the following screenshot, we
can see that we automatically generated an extended version of the Original Query,
embedding the logic in the Post Query trigger. For the developers among us, we can
see that the query produced by the conversion tool in APEX doesn't make the query
very optimal. We can rewrite the query in the Custom Query section, which we will
describe later in this chapter.

We are able to set the values for our triggers in the same way we used to set the
applicability and completeness of the items in our blocks.

In the upper-right corner of our Block Details screen, we find the Block Tasks
region. Here we find the link to the tasks for items as well as triggers.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 5

[93]

Click on the Set All Block Triggers Completeness and Applicability to navigate to
the screen where we can set the values. In the Attribute section, we can choose from
both the block level triggers as well as the item level triggers. We can't adjust them
all at once, so we may need to adjust them twice.

Custom Query
We already learned how we can incorporate an Enhanced Query as the base for
the blocks in our project, but sometimes we would want to edit or adjust the query
ourselves. This is why we have the possibility to create a custom query in our blocks.
If the enhanced or original query isn't sufficient, we can enter our own custom query.

It would be strange to build this custom query from scratch, as we can use either the
original or, sometimes, the enhanced query as a basis. We are able to copy the code
in the Original or Enhanced query sections to the custom query section. This is done
with the copy icon underneath the Original and Enhanced Query boxes. In the
following screenshot, we see this button in the S_CUSTOMER block.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Getting your Logic Right!

[94]

In this example, let's click on the copy icon underneath the Enhanced Query to copy
this code into the Custom Query section. As we can see in the next screenshot, the
query is copied into the Custom Query field, which we can edit ourselves:

We are not quite there yet as we have only the enhanced query in our custom query
section. We want our own query in the S_CUSTOMER block because we don't have
all the data selected from the database yet. When we take a look at the block items
in S_CUSTOMER, we see that the Sales Rep Name is in the items, but we don't get
it entirely from our query. Both the original and the enhanced query don't select the
sales rep's first name from any source in the database.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 5

[95]

So we need to make some changes to the code we copied to the Custom Query
section. In this case, the sales rep's first name comes from the S_EMP table, which is
related to the S_CUSTOMER table by the ID of the Sales Rep. In this way we can
edit the query, so we select the sales rep's first name from the S_EMP table and put
it together with the Rep's last name in order to get his or her complete name. This
query is shown in the following screenshot:

When we're done editing the query the way we want, we need to tell the Forms
Conversion tool to use the Custom Query when generating the APEX application.
This is done in the Use Query field. Here we can select the query we want to use
during generation. Once you have selected the Custom Query, click on Apply
Changes to save.

Generation
In the migration help texts, we find a lot of information about how and, specifically,
why blocks are generated in APEX. In this part of the chapter we will discuss just a
few of them. All blocks that are included in the project will be generated and we will
see that it's not always the case that one block is one page in APEX.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Getting your Logic Right!

[96]

For example, let's take a look at the Orders block. In the upper-right corner of our
details page, we find a field that's called Block Status. It gives us information about
the block in question and its contents. Here we see that the Orders Block contains 1
Block, 9 Items, 22 Triggers, that is, a total of 32 Components of which 21 have been
Completed. This teaches us that we have a completion of over 65%.

Also very interesting for us at this point is the Convert As information in the Block
Status field. The Orders block will be generated in APEX as a Report and a Form
page. This means that there will be two pages for one block. The main page shall be
the report. When we click on the edit link in the report, when it's in APEX, we will
be taken to the Form to edit the specific row.

Now let's take a look at a different type of block. This time we are going to
investigate the Inventories block. When we look at the Block Status field, we
see that the block has not been completed at all and that it is generated in APEX
as a Tabular Form:

How is this possible and why does the Convert As information say it will be
generated as a Tabular Form?

When we take a look at the Block Details section of this block, we see that we are
able to update, insert, and delete records using this block. This means that we have
a Form on our hands. We also see in the Records Display Count that we have four
records shown in the block. This is the reason why the Forms Converter decides that
we need a Tabular Form. Makes sense, right?

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 5

[97]

Editing
Before we go and generate our application in APEX, we want to set everything up
properly. In our conversion project, we have a lot of nice editing possibilities in place.
It's a lot easier to edit the titles and prompts in this phase of our project than doing it
afterwards. As we can see in the block overview page in our conversion project, a lot
of our blocks have nice, clean titles—but not all of them. The S_CUSTOMER1 and
S_CUSTOMER titles from the customers_fmb.xml state are not nice titles to have
on our page in the APEX application that we are about to generate.

In the blocks overview page, we can immediately edit the Title of the blocks.
Simply clicking on Title for the block in question does this.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Getting your Logic Right!

[98]

In our example, we're going to change the title for the S_CUSTOMER block
to Customers:

Click on Apply Changes to confirm the changes we made in the Title. In this
way, you can alter the titles of all the blocks according to your application.

We can also change the titles of all the items on our blocks. In the Blocks Overview
page, click on the Item Count link. This takes us to the items in this block. In our
example, we take a further look at the items in the S_CUSTOMER1 block:

This shows us that the titles of a lot of items are not filled in correctly or are not
present at all. You can change them all here by clicking on Apply Changes to
confirm the changes we have made.

Analyzing business logic
The most important task we need to do at this stage (pre-generation) of our
conversion project is analyzing what we want to do with all the business logic that's
in our application. We already discussed this in the previous chapter where we
found the logic and looked into the quantity of triggers, alerts, program units, and
more. Now it's time to go into the quality of the business logic in our application.

Implementing the business logic is done post-generation, except for some
Post-Query triggers. At this stage, it's very important to know in what way
we need to implement it before we start generating.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 5

[99]

Alerts
One of the features of Oracle Forms is that we have clean alerts that we can set
to an action. In this way, the users are given information about the actions they
are about to do. It would be nice for the users to know the functionality before
they start generating. For example, click on the number of alerts link for the
customers_fmb.xml file. This takes us to the overview page of all the alerts in
the Customers Forms application.

We can implement these alerts in APEX by using some simple JavaScript that creates
a pop-up screen in the APEX application containing this alert when a button in APEX
is pressed. There is another simple, APEX way to show a red cross with the alert
next to an item. In the Oracle Application Express Users Guide, there's a section called
Incorporation JavaScript into an Application that tells us how we need to do this. This is
a post-generation step, so for now we're OK. We should update the annotations for
each of these alerts with notes, tags, and possibly even assignee.

Program units
Program units can be very Forms-specific. This is certainly the case in our example.
One of the most common ways is to implement the program units as application or
page processes, but, by and large, this is not the best place to do this. It's commonly
preferred to implement program units as a PL/SQL package in the database instead
of an APEX application or page process. There's information in the Migration Help
texts on how we can implement the program units in our application after generation.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Getting your Logic Right!

[100]

It's certainly not always the case that we want to implement program units as a page
or application process. Let's take a further look in one example. The REFRESH_TREE_
SALESREP program unit in the customers_fmb.xml file is quite interesting. If we take
a look at the code that's in the Program Unit Details page, we can understand why this
one might be different.

This procedure creates a tree on the customer's screen based on a few conditions. In
APEX, the most logical thing to do is solve this with a database-stored procedure, an
application or page process, and some AJAX (Asynchronous JavaScript and XML)
components. This, of course, is a real advanced technique and has nothing to do
with the Forms Converter. In this way, we can replicate the same functionality in our
APEX application. Of course, this is done post generation. You can learn how this is
done in the APEX user and developer guides.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 5

[101]

Libraries
PL/SQL libraries are basically stored procedures implemented in an Oracle Forms
Application. To implement this functionality in the APEX application, we are about
to generate a few options. Based on the functionality that's in the PL/SQL Library,
we need to analyze what we need to do post generation. Roughly, the possibilities
are to create a stored procedure or function in the database and maybe some page
or application processes to call them. But certainly, there are more ways to
implement this.

For example, let's take a look at the example in our Forms Conversion project.
We have already uploaded the wizard.pld file to the project. Click on the PL/SQL
Library link in the project page to go to the PL/SQL Library Details page.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Getting your Logic Right!

[102]

This package has some components that are very Forms-specific. But if we take
a further look at the actual code in the package, specifically the Wizard_Show
procedure, we will notice that there's some functionality in it that we want in
our APEX application.

The code for the Wizard Show procedure looks a lot like the "conditional" settings
we have on the buttons in APEX. We might want to implement this as conditional
buttons in APEX post generation. To be even more specific, we might want to
consider doing this on page zero in our application, or the template the application
is built on, because this functionality can be used on more than one page. Therefore,
it is a general function.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 5

[103]

Triggers
The bulk of the business logic in any Forms application comes from triggers. Most
of them are Forms-specific and we might not use them in any APEX application
because of the basic differences in the way the application is used. Our example
isn't any different from this. When we take a look into the Triggers section of our
conversion project, we see that we have a total number of 68 triggers. This means
that we have a lot of functionality that we need to look over to be sure we embed
the necessary functionality in our APEX application. If we look at the names of the
triggers, we learn that they are very self-explanatory.

In this example we take a further look at a WHEN_BUTTON_PRESSED trigger on
the Orders Forms application. Select the appropriate Trigger Name in the Triggers
overview page and take a look at the item-level WHEN-BUTTON-PRESSED trigger
on the Orders Forms application.

Here we see that the trigger points to another block, the Inventories block, on
the Orders Forms application. Do we need to implement a page branch after
generation? We would probably define a button on the Orders page called Stock
Button, which branches to the Inventories page. Therefore, we should update
the annotations accordingly.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Getting your Logic Right!

[104]

These are just examples. Every trigger needs to be evaluated unless the applicable
is set to No. Look into the help texts about Forms conversion in APEX for more
information. The appendix of the Oracle Forms Generation Capabilities and Workarounds
can especially be extremely helpful in order to understand what we need to do with
triggers and other business logic in the application we are going to generate that we
will discuss post generation.

Summary
In this chapter we learned quite a lot about the steps we need to take before we start
the generation of our APEX application. The steps described in this chapter may look
quite basic, and in a way they are, but they are very important in order to create a
working and functional application after generation.

This doesn't mean we can relax because we saw that most steps have to be done post
generation. The business logic has to be implemented in the APEX application to
replicate the necessary functionality in the new APEX application.

We did the following steps to prepare ourselves for generation:

• We created the correct query a Block is based on by using the information
in the original or enhanced query. With this we created a custom query that
collects the necessary data from the database and fills all the items in our
block with the correct information.

• We learned how to use bulk changes in the triggers and items to track
the progress after generation.

• Editing the blocks and items, especially the titles they work with, was
another step we took to make sure the generation will be a success.

• We've taken a look into the business logic in our Forms application and
saw some examples on how to implement them after the generation.

• We have learned that a lot of information is in the Application Migration help
texts in APEX that we can use to determine why and how some elements will
be generated.

In the next chapter we will do the actual generation and will finally see some results
of the hard work we have done. Are you ready for it?

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Generating your Application
In the previous chapters, we worked towards this moment. Finally, we are
generating our own application from the Forms definitions we uploaded, altered,
and looked quite extensively into. We have seen the Create Application on the top
right of our project page, and at this stage we can click on it. Our patience will be
rewarded with a working application at the end of this chapter.

Unfortunately, this doesn't mean that we are there yet; we need to do many more
things after generation. It's quite possible that we need to go through the generation
process described in this chapter a few more times to get it right. In this chapter, we
will learn how we use the settings in our project to create a working application and
how we need to change the settings in order to create a working application.

Setting the project
In Chapter 3, we saw different ways to edit the settings in the project. The
settings in the Set Application Defaults section of our Project are very practical
to set pre-generation.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Generating your Application

[106]

When we take a look at the Application Defaults we see that we can change
the Tabs, the Authentication scheme, the Theme, and the Globalization of
the application we will be generating:

As we can alter these settings in layout and authentication of the application that
we are about to generate, we will have better control over the generation process.
During the generation steps we need more than just this information, but it will
help generate a consistent application.

In this chapter, we will not use the default settings because these can also be
determined and set during generation. Besides, we can keep the settings of a
generated application once we have done one generation of an application. In
this way, we can have our own application design model. We will discuss this
in detail later in this chapter.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 6

[107]

Start the generation
To start the generation of an application that is based on our Conversion project, we
need to click on the Create Application button on the top right of our project page.
This button takes us to the generation wizard. In this wizard, we tell APEX how we
want the application to be generated.

In the following screenshot, we see the first screen of the generation wizard. In this
screenshot we can set the basics before we start generating. We can set the name of
the application that we want to generate. By default, the application has the same
name as the Conversion project however, we can edit the name if needed. This is
because we are able to generate more than one application using the conversion
project. For this name, it is best to get a name that's logical for the stage we're in.
Number the name as you please. As we can see, the Application ID is not settable.
This ID is assigned to us by the generation process.

In the Create Application section, we have two ways to create the application.
We have the option to set it Based on Migration Project or Based on existing
application design model. When we base the creation on the migration project,
we use the application defaults we have set in the project ourselves. The existing
application design model can be used if we have already created an application
in this conversion project and want to refine the output by performing another
generation. For our first generation, we need to select Based on Migration Project.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Generating your Application

[108]

Application design models
If we have created an application earlier for our Conversion project, we can use the
settings in that application as a design model for applications that we will generate
in the future. This means that the layout and authorization is kept for us to use. It's
plausible that we need to generate more than once. If we use the application design
model from a previously generated application, it means the model will allow us
to keep all the formatting and settings we previously set while generating the
APEX application.

When we have selected the Based on existing application design model option
in the first screen of the generation wizard, we will get a screen as shown in the
above screenshot. This gives us a list of design models from previously generated
applications. In this list, we can select a Design Model by clicking on the radio
button in front of the name. We need to give the design model a name and that's
it. We can also select a Developer that has developed this design model.

Check the pages
In the following screenshot of the generation wizard, we get an overview of all the
pages in our application. Here we can check the settings of these pages and edit them
wherever we want. We also have the ability to add additional pages to the project.
In this way, we can add pages that we need in the project, but they will not be
generated from the loaded source file definitions.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 6

[109]

In the overview of pages, we see the page number, name, type of page that will be
generated, source type, and source. Only blocks and reports that are included will
be listed. Here we are also able to exclude pages from being generated with this
application by clicking on the X underneath the Delete Page heading. When we click
on the name of the page, the wizard will take us to a screen where we can edit the
details of the page in question.

Here we can edit some of the most important parts of the application. We can edit
the name of the page, which is generated by getting the title of the Block that it's
based on. We can alter the order of the pages here. We can also select a different
parent page at this point.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Generating your Application

[110]

The order of the pages is taken from the Menu file that we uploaded in the Conversion
project. The menu is used for the order of pages and the home page in the application
are about to generate. In this page, there will be a horizontal list of icons with the
name of the corresponding page underneath it. The icon that reveres to the page can
be selected in the Page Icon section of the page definition. You can change this icon
by selecting a different one from the drop-down list, or by clicking on the flashlight
icon just on the righthand side of the drop-down list. This takes us to a pop-up screen
where we can select a different icon.

In this pop-up screen, we can select the icon that best matches the page we are going
to generate. In this example, we have the Customers page and so it will be nice if we
have an icon that matches the functionality of the page. In the pop-up screen, we get
a selection of the icons in the images directory of APEX. By default, the images have
a 128 x 128 pixels size.

These images will be used to create a home page in the generated application. The
images and the title of the page are shown on this home page as a menu to navigate
through the application. In Chapter 8, we will talk some more on editing the home
page of our generated application.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 6

[111]

When we get back to the Page Definition page, we can also edit the Headings/Label
and Format Mask of the items in the page that will be generated. These are the titles of
the Block Items that we have in the Block that this page is based on. During generation,
the heading we edit here will be taken instead of the title of the Block Item.

Adding pages
All of the pages in our Conversion project, except for the home page, will be based
on the Blocks within the Forms modules or Reports modules. But sometimes, we
need to create a new page in the project to add more functionality. Of course, it's
possible to add functionality and even pages after the generation of our application;
however, to define a good design model for later generation, it might be useful to
add the necessary pages to our project at this stage.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Generating your Application

[112]

In the Add Page section of the Page Overview screen, we have the ability to add
different types of pages, hierarchy, and page source information.

We can add as many pages as we want to the project at this point. Just select the
type, branch it, select the appropriate source, and click on Add Page. The page will
be added to the list of pages to be generated at the top of this page and can be edited
the same as any other pages specified.

Selecting a theme
The next step in the generation wizard is the selection of the theme we want the
application to be based on. We get the same choices that we have during creation of
a normal APEX application, and by default the theme that we have selected in the
Application Defaults settings is selected in the list.

Create the application
The last step in the generation wizard is to actually create ourselves an application.
As shown in the following screenshot, here we have an overview of the choices and
settings we made in the previous pages in the wizard. If we want to make changes,
this is the last stop. Just click on the Previous button to let the wizard take you back
into the earlier application designing options.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 6

[113]

When we click on the Create button in this page, APEX will generate an application
with the settings we set in this wizard. Nothing is saved before we click on the
button, so beware of premature cancelling.

Run the application
To determine if the application is generated as desired, we should now run the
application from the confirmation page of the generation wizard. The application will
run when we click on the traffic light icon on the confirmation page, as shown here:

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Generating your Application

[114]

Now, we are taken to the application that we just created. In the following Home
screen, we immediately see the interpretation of the APEX Forms Converter of a
Oracle Forms Menu. The icons are clickable and take us to the corresponding pages
in the application.

As we can see by the names of the pages, there's still some work to be done. We
probably don't want the pages in the application that have names such as S_ORD,
do we? But this is a different topic.

Summary
In this chapter, we learned how to use the wizard in APEX to create a working APEX
application from the files that we uploaded and edited in the Forms Conversion
project. The application generation wizard takes us through a few necessary steps in
application generation, and we learned how to use these steps:

• We saw how we can use the Application Default settings to our
benefit pre-generation

• We learned how to start the generation of an application based on our
conversion project and how the settings worked

• We examined the basics of the application design model we can use if
we generate an application from this Conversion project for a second time

• We checked the pages in our project and this taught us that we can also
make some changes to the order, titles, and headings in the pages we are
going to generate

• We saw how we can edit an icon in the home page that functions as a
menu in our new application

• We saw that adding pages during generation was one of the possibilities
during checking the pages

• We saw how we could define the theme the application was built on
• We generated a first-cut design of providing our first view of the

application running in APEX

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Reviewing and Customizing
your Application

Now that we have generated our application, we come to the most important part
of our Conversion project—reviewing and, eventually, customizing it in the way we
want. As a lot of functionality in the Forms application that we just generated will
not be in the new APEX application, we can see that there's still some handiwork
to be done.

When we run an APEX application that's generated using the conversion tool,
we will encounter a few things that are easily adjusted as well as some parts of
the application that need a bit more work. In this chapter, we will learn some
ways to adjust and customize the defaults in a generated application.

The home page
The home page in our newly-generated APEX application is based on the blocks
which were generated into pages, and not the original menu file (_mmb.xml). When
we take a look at the screen, we see a lot of things we need to change. This is done
in the page properties within the Application Builder in APEX. In the following
screenshot, we see what the home page looks like just after generation:

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Reviewing and Customizing your Application

[116]

As we see in the home page, we have some names that just aren't that pretty, except
for the Block titles that we updated in the project. We need to change some of these
names in the Application Builder. To do so, we go to the region definition of the
Navigation region on the first page of our application. Here we see a list with the
names and links in the Source region, as shown in the following screenshot:

In this Source region in the region definition, there is a link to the list that's used to
create this menu on our home page. When we click on the list name Navigation_1 in
our example, we go to the following screen where we can edit the names and images
used in the home page:

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 7

[117]

Here, we see the Sequence, Name, and Target page in the application for all the
elements on the home page. In our example, we will need to change the names
of S_ORD, S_ITEM, and S_INVENTORY in order to create a good-looking and
functional menu on the home page. First, let's change the name of the S_ORD menu
item. Click on the name and it will take us to the Entry field where we can change
the name, which is shown here:

Here we can alter the name of the S_ORD menu item to a name we like and which
makes more sense to the users. In my case, I changed it to Orders. We can also change
the Image that will be used in the menu, but let's just stick to the name right now.
We can also change the names for S_ITEM and S_INVENTORY in the same way.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Reviewing and Customizing your Application

[118]

Now when we take a look at the home page, we see that it already looks a lot better
than it did before:

Lists of Values
Now that we have changed the home page and it all looks a bit better for our users,
we would like to take another look inside the application to edit the application and
make it more functional and useful for the users. First, we will take a look at the
functionality in our new APEX application.

In the home page, we click on the link to Maintain Customer, which will take us
to a report page in which the customers are listed.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 7

[119]

When we click on an Edit link in front of one customer, or on the Create button,
the application takes us to the Maintain Customer form as shown in the
following screenshot:

In this form, we need to enter a Sales Rep Id to assign a customer to a sales
representative. This is, as we can imagine, not entirely functional for users
who don't know all the IDs in the system by heart. So let's change this for them.

In the shared components of our application, we go to the Lists of Values section.
This is shown in the following screenshot:

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Reviewing and Customizing your Application

[120]

As we already saw in the Maintain Customer form inside the application, a List of
Values exists for the credit rating. Now we are going to create a new LOV for the sales
representative. To do this, we click on the Create button on the top right of the page.

In the create LOV wizard, we will choose to create a dynamic list of values
and give it a functional name. In this example, we named the LOV SALES_
REPRESENTATIVES. When we get to the page where we can edit a SQL query,
we can insert one to obtain the data we need. As we see in the following screenshot,
we insert the query to only return these employees in the Sales department:

Let's now edit the page containing the Maintain Customer form, in our example
Page: 5, to use a LOV instead of the numeric ID in the form. To edit this functionality,
we need to click on the name of the item we want to change in the form. In this case,
it is item P5_SALES_REP_ID.

In the Name section, we change the Display As value from the Text field to the
Select List field. Now we scroll down to the Lists of Values section and select
Named LOV SALES_REPRESETATIVES as the value.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 7

[121]

When we run the page, it will look like the page shown in the next screenshot.
We see that we created a drop-down list where the user can select the sales
representative who's responsible for the customer in question.

We may also want to change the label in front of the drop-down list because we are
still asking for an ID, but the user selects a name. We can change this in the item
P5_SALES_REP_ID. The user will only see the name of the sales representative, but
we will save the sales representative's ID in the database. This creates a more usable
application for us.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Reviewing and Customizing your Application

[122]

Of course, we can follow the same steps with other ID fields such as the region ID
in this particular form in the newly-generated application. Once we have created
an LOV in our application, we can also use it in different forms in the application.
In the S_ORD form, we also encounter the sales representative's ID Item. Just
change the value of the displayed section as a Select List, change the display
name, and set the value of the named LOV. We will get the form that looks like
the following screenshot:

Validations
To help a user understand the business rules that are in the application, we want to
have some clear validation messages. In Oracle Forms we have the When Validate
triggers that can be very helpful to do this, and in APEX we have something called
validations. We have one of these triggers in our S_ORD block. It's used to tell the
user that the date an order is shipped can never be before the date it's ordered. We
will put this validation into our APEX application.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 7

[123]

When we take a look inside page 7 in our generated APEX application, we see that
there already are some validations in place.

All these standard Validations that are in place are defined by APEX itself in order
to validate the data that's entered in the specific item. These validations are defined
by examining the data types that are in the tables or views that the page is built on.

Now, we will define our own validation on the P7_DATE_SHIPPED item. We
learned from the WHEN_VALIDATE_RECORD trigger in the Forms Converter's
S_ORD Block that when the shipping date is before the order date, we need to raise
an error message telling us that it's wrong. To create a new validation, we click on
the plus icon in the Validations section in the Application Builder. This takes us to
the next page.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Reviewing and Customizing your Application

[124]

In this first page in the Create Validation wizard, we need to define on what
level we need the validation. In our case, we want the validation only on the Date
Shipped item, so we select the value of Item level validation instead of Page level.
Click on Next to go further and define the validation.

In this page, we can enter the values that define the validation. In the Validation field
we enter the validation itself, which is the query or summation that defines what we
want to check. When the event occurs, APEX gives the user Error Message. In our
example, we want the user to know that it's not allowed to enter a ship date that occurs
before the order date. So we enter the text we want in the Error Message field.

Now, we can check if the validation works the way we want it to. Click on the Run
button on page 7 and fill in the values in an order. Make sure you enter a ship date
that occurs before the date ordered and click on Apply Changes. We see the error
message we entered in two places—on top of the screen in the error box and on the
left of the field that contains the Date Shipped.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 7

[125]

Back to the project page
We already discussed that the project page in our Conversion project is always
leading. Now that we have done some work on the APEX application, we want to
track the changes we made in the project page. To edit the progress in here, we need
to go to the elements in the conversion project and complete them.

For example, take a look at Annotations in the WHEN_VALIDATE_RECORD trigger
 for which we just created an APEX validation in the Date Shipped item on page 7.
We navigate to the triggers in the Orders Forms application on the project page and
select the trigger in question. Let's take a look at the Annotations section.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Reviewing and Customizing your Application

[126]

We have implemented the trigger in the APEX application, and now we can alter
the value of the Complete field. Set it to Yes and we will see that the completion
of our project has proceeded. In the same way, we can go through all the applicable
elements in our project that have not yet been completed.

Titles and names
One of the easiest ways to edit the look and feel of an application is to edit the
names and titles in the application. This gives the user a better understanding
of the functionality in an application, and we can better tell how the system works.

When we look at the title on top of our application, we notice that it still has the
same name we gave it when we created it. And let's face it, nobody would like
to work with an application that's called FormsConversion1, would they?

To change the title of an application, we need to navigate to the shared components
page in the Application Builder. In the shared components, we go to the
Application Definition.

In the Application Definition screen, we go to the Logo section. Here we can alter
the logo or name of the application. We have the possibility to enter a link to an
image that can function as a logo for our application. But in this example, we just
give the application a functional name; in my case Order Management Module.
Click on Apply Changes to confirm the new title for our application.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 7

[127]

Now, when we run the application, we can see the changes that we made to it. Now
we have a correct and functional title for our newly generated APEX application.

We can do the same to titles of pages, regions, and even labels of items. In this way,
we can create a fully functional and logical application.

Summary
In this chapter, we saw a few ways in which we can alter and customize the
application we generated using the Forms Converter in APEX. There are some
crucial parts that we need to get into our application ourselves. There are also the
following user interface tweaks that we can perform in order to create a useful and
functional application:

• We can alter the menu on the home page in the generated application by
editing the names and images on the List Entries that define the menu

• We can create functional Lists of Values in the shared components of the
application we generated

• The Lists of Values can be used throughout the application
• Functional validations that come from the WHEN_VALIDATE type triggers

in the Forms Application can be used in the generated application by using
the Validations in APEX

• We can track the progress of our conversion project in the project page by
editing what we changed so far

• The simplest way to improve the functionality of an application is to change
the names and titles of pages, items, regions, and the application itself

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Delivering your Application
We have successfully converted our Oracle Forms, Reports, Menus, and Libraries
into a working APEX application and now we need to deliver these to the users. This
means that we have to take a few necessary steps, including the communication with
user groups. Because of the simple build options of APEX, we are able to deploy the
application we created in a simple and constructed way. Also, there is the possibility
to combine applications and integrate them with each other and with the existing
authorization schemes.

In this chapter we will learn some things we need to do in order to successfully
deliver the application to people who will actually work with it.

Steps in application delivery
In the entire process of Forms to APEX conversion, we differentiate three different
phases. We are now in the final stage of delivering the application.

Preparation

Application
Analysis

Create Project
Plan

Generate XML

Iterations

Application
Conversion

Review and
Customize

Review and
Customize

User
Acceptance

User
Acceptance

Application
Conversion

Delivery

Integration User
Acceptance

Implementing

Training

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Delivering your Application

[130]

In the Delivery stage, there are four parts to be distinguished. They include
Integration of all the modules and iterations, the ever-so-important User Acceptance
test, Implementing the application on the production environments, and Training
the users in the new functionality of their beloved application.

Delivery

Integration User
Acceptance

Implementing

Training

All four steps are important for the success of the application. When we deploy a
working APEX application that has just been converted from Oracle Forms, we have
the responsibility of delivering it correctly. When we complete all the four steps in
delivering the application, we make sure that the users get a functional and working
application in their hands.

Integrating modules and applications
For simplicity reasons, we will call every application we created in APEX using
the Forms Converter, a new module in this chapter. In the tutorials of this book,
we created only one module, so you might want to read through it. But if you are
developing and converting a bit more than just one Oracle Forms application, this
part is very important. Now it's time to combine all these modules together and
integrate them with each other.

The modules we created might be combined with each other using a Forms Menu.
In that case, we are able to do a conversion of this particular Forms Menu in order
to create a new menu application that points to the appropriate applications in
APEX. Unfortunately, we don't have this option in our example. So we will create
a whole new application that will function as a menu that points towards the
applications we created.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 8

[131]

First, we will create a new application in APEX from scratch. The reason behind
creating a new menu as a complete and separate application is simple; we want the
application to be as lean as possible in order to add more modules and applications
to it at a later stage.

During creation of the new menu application in APEX, we give the application a
logical name and set the application ID in such a way that we will not encounter
illogical IDs in the future.

Because we need to create at least one page in every application in APEX during
creation, we choose to add a blank page to our application. We immediately name
the Menu, so there can't be any confusion about its functionality.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Delivering your Application

[132]

After completely creating the menu application, we will enter all the necessary
information. We probably want a menu application that works and looks the same
way as the menu in the application we converted, so we develop it in exactly the
same way as Forms Converter would. In the new APEX application, we navigate
to the Shared Components area.

In the Navigation section of the Shared Components, we find an entry called Lists.
Go there and create a new list in the now empty Lists repository. We are going to
create a new list based on a horizontal list with images. To do so, select this option
in the List template field. Give the new list an appropriate name.

When we have created the list, we can put new entries in it. The list is currently
empty, so we can start from scratch. Click on the Create button and start with
our first application.

In the Entry section, we select an image that's appropriate with the corresponding
application, and in the Label field, we set the name for the application. In our
example, we choose an icon that represents a country, some charts, and a few users.
The name we give the application is Orders.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 8

[133]

In the Target section we create a link to the application we created. In the Target
type area, we select URL as we want the target to be a URL. We can't choose the
option to point towards a page in our application because we're not in the same
application as the one we converted. The URL we enter is f?p=102:1, which means
that we want the icon to take us to the application with application ID 102 and to
page 1 of that application.

It would be more elegant to enter the target URL in the application as a variable.
This means we would need to create an Application Alias and a Page Alias in
our APEX application. In that way, we won't have the target URL hardcoded in
the application; but as a simply editable variable. Because when we deploy the
application to a different environment (for example, the test or the production
database), the application IDs might change. But in our example, we are not likely
to encounter this problem, so we just keep it the way it is just now. We will be
making sure that the IDs are kept the same over all our environments. But when
we're working with the advanced features of Application and Page Aliases, we
will make sure that this goes well.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Delivering your Application

[134]

Now it's time to implement the list we created on Page 1 in the Menu application. To
do so, we need to create a new region on Page 1. In the wizard that takes us through
the region creation, we first select the option that we want to create a List region.

We created the list in the Shared Components. This means that we can select the
list in the wizard's next page. We called the list Conversion Menu and select it as
shown here:

When we created the application, we added a blank page that became Page 1. This
page still contains the blank HTML region in it that was built during creation. Because
we don't need that region anymore, we can delete it in the Page Definition page.

When we run the application, we see something like the following screenshot.
I added a few more links and icons to the list just to show how it would look
when we add more converted, or built, APEX applications in the Menu application.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 8

[135]

This is the page that the users will see when they log in to the system. The images
will take them to the appropriate applications in APEX.

Authentication integration
To have a fully working and functional application, one of the key elements is
integration with the existing authentication schemes. In this way, the users can
work directly with their new application without having to go through a complete
authorization process.

When we want the new APEX applications integrated with the existing
authentication schemes, we might want to consider using this. Most Oracle Forms
applications use the DATABASE authentication and, therefore, we can select this
authentication scheme in the APEX application we created.

APEX already has this type of authentication integrated in its systems. In the
Authentication Schemes part of the Shared Components, select the DATABASE
ACCOUNT authentication scheme so we can use it in our application.

Integrating with Oracle Single Sign-On
One of the advanced features in the Oracle Application Server (Oracle iAS) is the
Single Sign-On (SSO) ability. SSO is used to make sure that the users only have
to sign in once for all the applications they are allowed to work in. If the company
for which we converted the application uses it, it's a nice addition to the APEX
application that we will deliver.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Delivering your Application

[136]

To integrate the converted applications with the Oracle SSO server, we need to
create a new authentication scheme in the shared components of our converted
APEX application.

In the Security section of the Shared Components, click on the link to Authentication
Schemes. In the overview, we get options to create a new scheme. In the wizard that
will be presented to us, select the Based on a pre-configured scheme from the gallery
option. This means that we can select from the options that APEX already has for us.

When we click on Next in the Create Authentication Scheme wizard, we get the
overview of the Gallery of Authentication Schemes which APEX is able to use out of
the box. Select the Oracle Application Server Single Sign-On (Application Express
Engine as Partner App) option.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 8

[137]

Once we have done this, we can use the SSO capabilities of the Oracle Application
Server so the users don't have to authenticate themselves every time they enter an
application, now including ours.

User acceptance
Because there are studies dedicated, and entire libraries and dozens of articles
written about the subject of user acceptance of software, I will not go too deep into
this matter here. But because we have to, I will point out a few things here that will
be of importance in a Forms Conversion project during user acceptance tests.

Users must be aware that we create an application that is different from the one
they are used to. Because APEX is a completely different tool than Oracle Forms,
we will not have the functionality that either we or the users are used to. Test all
the iterations and modules in your project separately. The users can get a hang of
the new application and issues that always come out just when a user acceptance
test is finished. If we start testing after creating all the modules, adjusting them will
be harder than when we do it directly after the realization.

When we complete all the iterations, we combine the software we produced to a
single, whole application. Now it's time for the users to really use the application
as a whole. Some of the aspects that need testing at this point are as follows:

• Does the navigation of the application work? Is it built in such a way that
the users understand it?

• Is the look and feel desirable (enough)?
• Are all the validations in place? And are they formulated clearly?
• Do the buttons, links, tabs, breadcrumbs, and so on have the right labels

and targets?

Besides these functional requirements, we also have to test some of the more basic
requirements. In the requirements engineering world, these are often referred to as
non-functional requirements.

• Is the performance of the application as desired?
• Is the integration with the existing authorization working?
• Can the users access the system without hassles?

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Delivering your Application

[138]

These and more such trivial questions need to be answered during the final user
acceptance test.

Training
To make sure all our efforts for conversion are appreciated by the user group and
all the users know how to use the application, we decided that it would be wise
to create a small course for the users to attend. This can be done in writing, but
preferably in a classroom environment. In this way, we can make sure that the users
know how the application works and understand all the things that are different
from the original Forms application.

We need to bear in mind that there are some things that the users will encounter.
They can be as follows:

• The APEX application works differently from the original Forms application.
• This is a web application, so pressing keyboard shortcuts such as F5 in the

application will not be needed as they will no longer work. There are ways to
implement these actions using JavaScript such as the jQuery Hotkeys plugin,
which is available on Google Code.

• Navigating through the application will be significantly different. So be sure
that the users understand how they need to work with the new navigation
and the menus we created. Because the application is running within a web
browser, users will automatically try to use functionality within the browser,
such as navigating back and forward. Users must be trained not to use these
features, or we can deploy the application to our users with the brilliant
application from Mozilla called Prism (http://prism.mozilla.com/).

Probably the most efficient way for the users to learn how the new application works
is to let them do normal, everyday tasks with the new application. This will help users
understand the new functionality quickly and more efficiently. Of course, when the
user group is not that big, we might consider doing this during the user acceptance
test. In that way, we can add new functionality during the course and understand
what we need to change so that the users make full use of the application.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 8

[139]

Deploying
When we are done with the user acceptance, it's time to deploy the application in the
production environment. We now have a fully working and functional application,
so we just have to do this last step in order to make sure that the users can now do
their work on a highly performing APEX application. Deploying consists of two
major steps—exporting the application and importing it in the new environment
(common and necessary for every developed APEX application).

Exporting the application
The first thing we need to do is move the data model to the new database on the
production environment. Of course, this has to be done only when we are deploying
our new application on a different database (or database schema) than the original
Forms application. This will certainly not be the case all the time.

The migration of the data model and the data itself can be done in two different
ways—using Oracle SQL Developer (or a different database administration tool),
or in APEX itself. In our case, we will be doing it the APEX way.

The Utilities part of every APEX workspace has some great possibilities to create
a functional DDL script, which we can use to implement the database objects in
a different environment. In the following Generate DDL section, we will click on
the option with the same name as its section:

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Delivering your Application

[140]

This takes us to the wizard that we use to set all the parameters in order to create
the DDL we want. As shown on the following screenshot, on the first page we select
the types of database objects we want to create in the DDL. To make it easier for us,
APEX has the option to check all the object types. For this, choose the Check All
option as shown in the following screenshot:

In the next page in the DDL create wizard, we can select the database objects that
need to be in our DDL file. In the overview, we are presented with a list of objects
where we can select the exact objects and leave everything we don't need. Again,
select the Check All box and scroll down the list to deselect the stuff we don't need.
In our example, this will be the basic database objects in use by the standard DEMO
application in every APEX workspace.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 8

[141]

As we have chosen the correct database objects we want in our script, we will go
back to the top of the page. Here we have the option to save the DDL script as a
script file. We need this option because we want to use it in a different environment.

In the next screen, we get to enter the name we want the script to have and a logical
description of the file's purpose.

When the file is generated, we will be taken to the Script repository as shown here:

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Delivering your Application

[142]

Click on the script icon and review the script. If everything is in place, we
click on the Download button. This downloads the script for us with the
CONVERSION.sql name.

Now we have a full DDL file containing all the database objects we need in our
production environment. It's time to make an export of the APEX application we
created using the Forms Converter. This is done within APEX itself, as is most of
our work.

In the Application Builder, go to the application we created. In my case, this is the
application with Application ID 102.

As we see in the following screenshot, we have the possibility to export the entire
application. To do so, we click on the drop-down box beside the Export / Import
section, select Export, and then click on the Application link. This will take us to
the Export Application page.

At this point, we need to set parameters for exporting the application to a useful file
that we can use to import in the production environment. The information the page
asks for creates a file called f102.sql. This means we have a SQL file with the number
of the application, which is 102 in this example.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 8

[143]

Importing the application
In the workspace on the production environment where we want the application
to be implemented, we first need to implement the data model. This is because
the application we created needs these database objects in order to be built, and
especially to be able to run. Fortunately, we just created a DDL file that does the
trick for us.

In Oracle APEX we first go to the SQL Workshop, where we have some options. But
to use the DDL script which we created, we go to the SQL Scripts part of the SQL
Workshop. To do so, we click on the icon representing SQL Scripts as shown in the
following screenshot:

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Delivering your Application

[144]

To upload the DDL file we created, we need to click on the Upload button on the
SQL Scripts page in APEX. This action takes us to the Upload Script wizard, which
is shown in the following screenshot:

In this page we need to define the script we want to upload to the APEX instance.
Browse to the appropriate file and we can optionally give it a different name than
what we initially chose. Make sure that File Character Set is set correctly. Here we
use the Unicode UTF-8 setting.

When we're done uploading the script, click on the script icon corresponding with
the script we just uploaded and see the DDL code.

Click on Run and this will take us to the following confirmation page:

When the script runs, we can look into the results. As we can see, all the database
objects in the DDL file have been implemented in the new instance. Because APEX
sets the appropriate sequence of implementing the database objects when we create
the DDL file, this entire thing works like a charm.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 8

[145]

After we have created the workspace in the production database and implemented
the data model by running the DDL script we created, we can import the application
itself. To do so, we go to the application builder and click on the Import button on
the top right of the page.

The wizard that will show up takes us to two parts of the import process. First, we
need to define and upload the export script we created earlier. This is done by using
the following screen:

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Delivering your Application

[146]

In the Import File section, we browse for the f102.sql file we created during export.
We set File Type to its default value Application, Page or Component Export and
leave the File Character Set untouched. By clicking on Next, APEX uploads the
export script and takes us to the confirmation page that is shown next:

In the next step we need to specify what we want to do with the creation script—on
which schema we need to pars it on, do we want to build it or just run it, and what
do we want to do with the application ID. In this example we choose to reassign a
new application ID

When we click on the Install button, APEX will install the application for us. This
may take a while and we will see a progress bar in our screen until the application
has been installed.

When we come to this page, which confirms that we successfully installed the APEX
application in its new workspace, we're done!

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Chapter 8

[147]

Summary
Delivering the APEX application still contains a few crucial steps. But when we have
done these steps, we will be done with our Forms Conversion project. Integrating
with each other and migrating the converted applications to a new environment
marks the take into production for our project.

• When we have converted more than one module to a Forms application, we
can integrate the applications with each other using a menu-like application.
This application has the same look and feel as the rest of the applications and
gives us a single point of entry to the completely converted system.

• We can integrate the new APEX applications into the same authentication
scheme used by the Forms application. This gives us the flexibility to reuse
the existing users and roles. The integration can be done in various ways,
such as database account authentication and also advanced Oracle Single
Sing-On integration.

• When we have combined the modules we converted, we can perform
an overall user acceptance test. This is done to verify the functional and
non-functional requirements of the system.

• Training of users is very important for the success of the implementation of
the converted application. Users will not get the same application that they're
used to. The best way to perform this training is to do some live actions with
the application, letting the users actually work with the new APEX system.

• Deploying the applications to a new environment is done in two major
steps—exporting the database objects and the application itself, and
importing them into the new APEX environment later.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Index
A
alerts 69
annotations, employing

applicable field, setting filters on 77
assignee field, setting filter on 78
complete field, setting filter on 78
tag field, setting filters on 80
tags 79
triggers page, editing 77

APEX
application migrations page, navigating

to 45, 46
Forms Conversion project, creating 46

APEX application
custom validation, defining 123
delivery stage 129
deploying 139
exporting 139-142
functionality 118
home page 115
importing 143-146
LOV, creating 118-120
LOV, using 120, 121
names, editing 126, 127
Oracle SSO, integrating with 136
project page, editing 125
titles, editing 126, 127
validation, creating 124
validations 123

APEX conversion tool 36
applicability

about 53
trigger applicability 54

applicable element 62

application defaults setting, Forms
Conversion Project

authentication 55
globalization 56
tabs 55
theme 56

application design models 108
application generation

about 105
application, creating 112
application, running 113
design models 108
pages, adding 111, 112
pages, checking 108-110
project, setting 105
starting 107
theme, selecting 112

B
block items, Form Conversion project

about 87
applicability, altering 88
completeness, altering 88
detail information 87

blocks 63, 64
blocks overview page, Form Conversion

project 85
block triggers region 90
business logic

alerts 99
implementing 98
libraries 101, 102
program units 99, 100
triggers 103, 104

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

[150]

C
completion status 73
component annotations

about 72
settings, editing 72

components, Form Convesion project
about 62
alerts 69
blocks 63, 64
lists of values 67
progam units 70
triggers 65

count 61
custom query

about 93
code, copying from enhanced query 94

D
data blocks, Form Conversion project

generating 85
delivery stage, APEX application

about 130
application, deploying 139
authentication integration 135
modules, integrating 130
Oracle Single Sign-On, integrating 135
training 138
user acceptance 137

deployment, APEX application
about 139
application, exporting 139
application, importing 143

Domain Specific Languages. See DSLs

E
elements, Form Convesion project

about 60
applicable 62
component 61
count 61
equivalent component 61
file name 62
implementation details 62
included 62

enhanced query
about 89
versus, original query 90

equivalent component 61

F
file name element 62
Form Modules

converting, to XML 28
Forms2XML conversion tool

about 27
.FMB file, converting to XML 28
.MMB file, converting to XML 29
.OLB file, converting to XML 28
PL/SQL Libraries, converting to
XML 31, 32
RDF file, converting to XML 29, 30

Forms Builder
about 20, 21
example 21

Forms Conversion project
additional sources, adding 48
annotations, using 76
applicability, editing 53, 54
application defaults, editing 54
application defaults, setting 54
basic parameters, defining 46, 47
block items 87
business logic, analyzing 98
completion status 73
component annotations 72
components 62
creating 46, 48
custom query 93
data blocks 85
deleting 52
developers, assigning 75
editing 51, 52, 97, 98
elements 60
enhanced query 89
files, required 26
functionality 15
functional reasons 13, 14
generation 95, 96
ground rules 26
original query 89

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

[151]

planning 75
pre-generation editing 83
project details, editing 52
project page 50, 60
reasons, for conversion 13
requisites 26
source file, adding 48
source file basics, defining 49
target database 37
technicality 18
technical reasons 15
triggers 90
XML files, creating 26
XML, understanding 33

Forms Menus
converting, to XML 29

frmf2xml command 27
functionality, Forms Conversion project

about 15
application 16
business process 17
user interaction 18
user roles 18

G
generation, Form Conversion project

investigating 84

H
home page, APEX application

about 115
menu, altering 115-117

I
implementation details 62
included element 62
interations 23

L
LOV, APEX application

creating, in shared components 119, 120
using 120

LOVs 67, 68

M
module integration, APEX application

about 130
list, creating 132
menu application, creating 131
shared components area 132

modules 22

O
Object Libraries

converting, to XML 28
Oracle Forms trigger 65
original query 89
Over-the-Air Provisioning function.

See OTA

P
parameters, rwconverter command

dest 31
dtype 31
source 31
stype 31

PL/SQL Libraries
converting, to XML 31

post query trigger
about 90
applicability, setting 92

pre-generation editing
about 83, 84

program units 70-72
project, application generation

settings, editing 105, 106
project page, APEX application

editing 125
project page, Forms Conversion project

about 50
block-level triggers 54
completion status 51
Forms-level triggers 54
Forms Modules 50
item-level triggers 54

project planning 75, 76

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

[152]

R
Report Files

converting, to XML 29
ruleflow. See Drools Flow
rwconverter command

about 31
parameters 31

S
Single Sign-On. See SSO
Sprint Wireless Toolkit 3.3.2. See SWTK
SSO

about 135
APEX application, integrating with 135

T
tags 79
target database

about 37
database objects, exporting 37
database objects, importing 37
DLL script, implementing 39
DLL script, running on APEX 41, 42
DLL script, running on OMB database

schema 40
DLL script, running on SQL Developer 39
.sql file, creating 38
.sql file, saving 38

technicality, Forms Conversion project
about 18
architecture 19
components 19
Forms Builder 20

training, APEX application 138
triggers

about 65, 90
block level trigger 66
examining 66
form level trigger 66
item level trigger 66
post query trigger 91
set all block triggers completeness and

applicability option 93
types 66

U
user acceptance, APEX application 137

V
validations, APEX application

about 122
checking 124
creating 124
defining 123

W
When Validate triggers 122

X
XML files

blocks 34
creating 26
Forms Module 34
Menu Modules 35
Oracle Reports application 36
orders_fmb.xml file 34
PL/SQL Libraries 37
queries 34

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Thank you for buying
Oracle Application Express
Forms Converter

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Oracle Warehouse Builder 11g:
Getting Started
ISBN: 978-1-847195-74-6 Paperback: 330 pages

Extract, Transform, and Load data to build a
dynamic, operational data warehouse

1. Build a working data warehouse from scratch
with Oracle Warehouse Builder.

2. Cover techniques in Extracting, Transforming,
and Loading data into your data warehouse.

3. Learn about the design of a data warehouse
by using a multi-dimensional design with an
underlying relational star schema.

Oracle VM Manager 2.1.2
ISBN: 978-1-847197-12-2 Paperback: 244 pages

Manage a Flexible and Elastic Data Center with
Oracle VM Manager

1. Learn quickly to install Oracle VM Manager
and Oracle VM Servers

2. Learn to manage your Virtual Data Center
using Oracle VM Manager

3. Import VMs from the Web, template,
repositories, and other VM formats such as
VMware

4. Learn powerful Xen Hypervisor utilities such
as xm, xentop, and virsh

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

Oracle Essbase 9 Implementation
Guide
ISBN:978-1-847196-86-6 Paperback: 444 pages

Develop high-performance multidimensional analytic
OLAP solutions with Oracle Essbase

1. Build multidimensional Essbase database cubes
and develop analytical Essbase applications

2. Step-by-step instructions with expert tips from
installation to implementation

3. Can be used to learn any version of Essbase
starting from 4.x to 11.x

4. For beginners as well as experienced
professionals; no Essbase experience required

Oracle SOA Suite Developer's
Guide
ISBN: 978-1-847193-55-1 Paperback: 652 pages

Design and build Service-Oriented Architecture
Solutions with the Oracle SOA Suite 10gR3

1. A hands-on guide to using and applying the
Oracle SOA Suite in the delivery of real-world
SOA applications.

2. Detailed coverage of the Oracle Service Bus,
BPEL Process Manager, Web Service Manager,
Rules, Human Workflow, and Business Activity
Monitoring.

3. Master the best way to combine / use
each of these different components in the
implementation of a SOA solution.

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by Anna Indahl on 12th August 2009

PSC 94 Box 361, , APO, , 09824

	Table of Contents
	Preface
	Chapter 1: Understanding your Project
	Reasons for conversion
	Functional reasons
	Technical reasons

	Understanding the functionality
	The application
	Business process
	User interaction
	User roles

	Understanding the technicality
	Components
	Architecture
	Forms builder

	Modules and iterations
	Modules
	Iterations

	Summary

	Chapter 2: Preparing your Forms Conversion
	Get your stuff!
	Creating XML files
	The Forms2XML conversion tool
	Forms Modules
	Object Libraries
	Forms Menus
	Report Files
	PL/SQL Libraries

	Understanding XML
	The target database
	Summary

	Chapter 3: Create your Forms Conversion project
	Getting started
	Creating the project
	Adding additional sources
	The project page
	Editing the project
	Deleting the project
	Editing project details
	Applicability
	Set application defaults

	Summary

	Chapter 4: Planning your Project
	The project page
	Inside our project
	Component
	Count
	Equivalent component
	Implementation Details
	Included
	File Name
	Applicable

	What we need to do
	Blocks
	Triggers
	Lists of Values
	Alerts
	Program Units

	Component annotations
	Completion status
	Assign developers
	Project planning
	Using annotations
	Applicability and completeness
	Assignees
	Tags

	Summary

	Chapter 5: Getting your Logic Right!
	Pre-generation editing
	Investigating
	Data blocks
	Block items
	Original versus Enhanced Query
	Triggers
	Custom Query
	Generation
	Editing
	Analyzing business logic
	Alerts
	Program units
	Libraries
	Triggers

	Summary

	Chapter 6: Generating your Application
	Setting the project
	Start the generation
	Application design models
	Check the pages
	Adding pages
	Selecting a theme
	Create the application
	Run the application
	Summary

	Chapter 7: Reviewing and Customizing your Application
	The home page
	Lists of Values
	Validations
	Back to the project page
	Titles and names
	Summary

	Chapter 8: Delivering your Application
	Steps in application delivery
	Integrating modules and applications
	Authentication integration
	Integrating with Oracle Single Sign-On

	User acceptance
	Training
	Deploying
	Exporting the application
	Importing the application

	Summary

	Index

