
www.allitebooks.com

http://www.allitebooks.org

Oracle Warehouse Builder 11gR2:
Getting Started 2011

Extract, Transform, and Load data to build a dynamic,
operational data warehouse

Bob Griesemer

P U B L I S H I N G

professional expert ise dist i l led

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Oracle Warehouse Builder 11gR2: Getting Started 2011

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2011

Production Reference: 2100511

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849683-44-9

www.packtpub.com

Cover Image by Natasha (natashapnini@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Bob Griesemer

Reviewers
Ehsun Behravesh

David Allan

Acquisition Editor
Amey Kanse

Development Editor
Susmita Panda

Technical Editor
Neha Damle

Indexer
Monica Ajmera Mehta

Editorial Team Leader
Vinodhan Nair

Project Team Leader
Priya Mukherji

Project Coordinator
Srimoyee Ghoshal

Proofreader
Aaron Nash

Graphics
Geetanjali Sawant

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

www.allitebooks.com

http://www.allitebooks.org

About the Author

Bob Griesemer has over 27 years of software and database engineering/DBA
experience in both government and industry, solving database problems, designing
and loading data warehouses, developing code, leading teams of developers, and
satisfying customers. He has been working in various roles involving database
development and administration with the Oracle Database with every release since
Version 6 of the database from 1993 to the present. He has also been performing
various tasks, including data warehouse design and implementation, administration,
backup and recovery, development of Perl code for web-based database access,
writing Java code utilizing JDBC, migrating legacy databases to Oracle, and
developing Developer/2000 Oracle Forms applications. He is currently an Oracle
Database Administrator Certified Associate , and is employed by the Northrop
Grumman Corporation, where he is currently a Senior Database Analyst on a large
data warehouse project.

I'd like to thank David Allan of the Oracle Warehouse Builder
development team at Oracle for agreeing to review the book and
for putting up with my numerous questions and requests for
clarification. His input was extremely beneficial in explaining new
functionality of OWB. I'd like to acknowledge my co-worker Ed
Cody, whose work on his book, The Business Analyst's Guide to Oracle
Hyperion Interactive Reporting 11, with Packt Publishing, inspired
me to get started on the second edition of my book. Lastly and most
importantly, of course, to my family, wife Lynn and children Robby,
Melanie, Hilary, Christina, Millie and Mikey, thanks for being the
inspiration and motivation behind everything I do.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Ehsun Behravesh is a 27 year old software engineer with Khorasan Newspaper
(http://www.khorasannews.com) in Mashhad, Iran. He holds a Bachelors degree
from London Metropolitan University (http://www.londonmet.ac.uk/). He started
programming when he was in high school and has developed software systems
for almost 10 years. He is a fan of open source software and one of his open source
projects, MyPasswords (http://sourceforge.net/projects/mypasswords7/),
won a comparison competition in Linux Format, Jan 2011 magazine. He loves
computer programming, music, and animals.

I want to thank my wife who has always encouraged me to work
and study. I also want to thank my parents who helped me to
study abroad.

David Allan has 20 years of experience in software development and over 10 years
of experience in data warehouse tooling. In his current role, he is one of the architects
responsible for Oracle's data integration portfolio, and as such, he takes a leading
role in working with Oracle Warehouse Builder and Oracle Data Integrator. David is
well-known for his blog on Oracle Warehouse Builder where he provides users with
real-world examples and in-depth product knowledge.

http://www.khorasannews.com
http://www.londonmet.ac.uk/
http://sourceforge.net/projects/mypasswords7/

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read, and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

Table of Contents
Preface	 1
Chapter 1: An Introduction to Oracle Warehouse Builder	 7

Introduction to data warehousing 	 8
Introduction to our fictional organization	 8
What is a data warehouse?	 9
Where does OWB fit in?	 11

Installation of the database and OWB	 11
Downloading the Oracle software 	 11
A word about hardware and operating systems	 12
Installing Oracle database software	 14
Configuring the listener	 18
Creating the database	 20
Installing the OWB standalone software	 27
OWB components and architecture	 31
Configuring the repository and workspaces	 34

Summary	 41
Chapter 2: Defining and Importing Source Data Structures	 43

Preliminary analysis	 44
ACME Toys and Gizmos source data	 45
The POS transactional source database	 46
The website order management database	 49

An overview of Warehouse Builder Design Center	 51
Importing/defining source database object metadata	 55

Creating a project	 55
Creating a module	 56

Creating an Oracle Database module	 56
Creating a SQL Server database module	 62

Table of Contents

[ii]

Importing source database objects from a database	 78
Defining source metadata manually with the Table Editor	 86
Importing source metadata from files	 92

Summary	 104
Chapter 3: Designing the Target Structure	 105

Data warehouse design	 106
Dimensional design	 106

Cube and dimensions	 107
Implementation of a dimensional model in a database	 109

Relational implementation (star schema)	 109
Multidimensional implementation (OLAP)	 112

Designing the ACME data warehouse	 113
Identifying the dimensions	 113
Designing the cube	 114

Data warehouse design in OWB	 117
Creating a target user and module	 117

Creating a target user	 118
Create a target module	 122

OWB design objects	 124
Summary	 127

Chapter 4: Creating the Target Structure in OWB	 129
Creating dimensions in OWB	 130

The Time dimension	 130
Creating a Time dimension with the Time Dimension Wizard	 132

The Product dimension	 141
Product attributes (attribute type)	 141
Product levels	 142
Product hierarchy (highest to lowest)	 142
Creating the Product dimension with the new Dimension Wizard	 143

The Store dimension	 150
Store attributes (attribute type), data type and size, and (Identifier)	 151
Store levels	 151
Store hierarchy (highest to lowest)	 151
Creating the Store dimension with the New Dimension Wizard	 151

Creating a cube in OWB	 154
Creating a cube with the wizard	 154

Using the data object editors	 158
Summary	 166

Chapter 5: Extract, Transform, and Load Basics	 167
ETL	 168

Manual ETL processes	 168
Staging	 169

Table of Contents

[iii]

To stage or not to stage	 170
Configuration of a staging area	 171

Mappings and operators in OWB	 172
OWB Mappings	 173

The canvas layout	 178
OWB operators	 181

Source and target operators	 183
Transformations (data flow operators)	 186
Other operators	 189

Summary	 190
Chapter 6: ETL: Putting it Together	 191

Designing our staging area	 192
Designing the staging area contents	 192
Building the staging area table with the Table Editor	 194

Review of the Mapping Editor	 201
Creating a mapping	 202

Adding source tables	 203
Adding a target table	 208
Connecting source to target	 208

Joiner operator attribute groups	 209
Connecting operators to the Joiner	 212
Defining operator properties for the JOINER	 214
Adding an Aggregator operator	 219

Summary	 228
Chapter 7: ETL: Transformations and Other Operators	 229

STORE mapping	 231
Adding source and target operators	 231
Adding Transformation Operators	 234
Using a Lookup operator	 245

Creating an external table	 245
Creating and loading a lookup table	 247
Retrieving the key to use for a Lookup operator	 250
Adding a SUBSTR Transformation operator	 251
Adding a Constant operator	 253
Adding a TO_NUMBER transformation	 255
Adding a Lookup operator	 256

PRODUCT mapping	 263
SALES cube mapping	 265

Dimension attributes in the cube	 266
Measures and other attributes in the cube	 269
Mapping values to cube attributes	 269

Mapping measures' values to a cube	 269
Mapping PRODUCT and STORE dimension values to the cube	 270

Table of Contents

[iv]

Mapping DATE_DIM values to the cube	 271
Mapping an Expression operator	 272

Features and benefits of OWB	 276
Summary	 277

Chapter 8: Validating, Generating, Deploying, and
Executing Objects	 279

Validating	 281
Validating in the Design Center	 281
Validating using the toolbar icon in the Mapping Editor	 283

Generating	 285
Generating in the Design Center	 286
Generating using the icon from the mapping editor	 290
Default operating mode of the mapping	 292
Selecting the generation style	 295

Deploying	 296
The Control Center Service	 297
Deploying in the Design Center and Data Object Editor	 298
The Control Center Manager	 301

The Control Center Manager window overview	 302
Deploying in the Control Center Manager	 310

Executing	 312
Deploying and executing remaining objects	 314

Deployment order	 315
Execution order	 319

Summary	 320
Chapter 9: Extra Features	 321

Metadata change management	 322
Metadata Loader (MDL) exports and imports 	 322
Recycle bin	 325
Cut, copy, and paste	 328
Snapshots	 334

Synchronizing objects	 341
Changes to tables	 341

Updating object definitions	 341
Synchronizing	 343

Changes to dimensional objects and binding	 349
Warehouse Builder online resources	 352
Summary	 353

Chapter 10: Code Template Mappings	 355
Code templates	 356

Code template description	 356

Table of Contents

[v]

Types of code templates	 357
Pre-defined code templates	 358

Connecting to SQL server using a JDBC database connection	 360
Downloading the JDBC driver	 360
Creating a SQL server module	 361

Configuring SQL server TCP/IP port	 361
Creating SQL server module	 363
Importing metadata	 367

Building a code template mapping	 372
Starting the Control Center Agent	 373
Defining a template mapping module	 374
Creating a code template mapping	 377

Copying a mapping	 378
Editing a code template mapping	 379

Deploying and executing a code template mapping	 392
Summary	 395

Index	 397

Preface
Competing in today's world requires a greater emphasis on strategy, long-range
planning, and decision making, and this is why businesses are building data
warehouses. Data warehouses are becoming more and more common as businesses
have realized the need to mine the information that is stored in electronic form.
Data warehouses provide valuable insight into the operation of a business and how
best to improve it. Organizations need to monitor their processes, define policy, and
at a more strategic level, define the visions and goals that will move the company
forward in the future. If you are new to data warehousing in general, and to Extract,
Transform, and Load (ETL) in particular, and need a way to get started, the Oracle
Warehouse Builder is a great application to use to build your warehouse. The Oracle
Warehouse Builder (OWB) is a tool provided by Oracle that can be used at every
stage of the implementation of a data warehouse right from the initial design and
creation of the table structure to ETL and data-quality auditing.

We will build a basic data warehouse using the latest release of Oracle Warehouse
Builder, 11gR2. It has the ability to support all phases of the implementation of a data
warehouse from designing the source and target information, the mappings to map
data from source to target, the transformations needed on the data, and building the
code to implementing the mappings to load the data. You are free to use any or all of
the features in your own implementation.

What this book covers
This book is an introduction to the Oracle Warehouse Builder (OWB). This is
an introductory, hands-on book so we will be including in this book the features
available in Oracle Warehouse Builder 11gR2 that we will need to build our first
data warehouse.

Preface

[2]

The chapters are in chronological order to flow through the steps required to build a
data warehouse with a couple of chapters at the end on special topics, including one
devoted to a major new feature of OWB 11gR2, code templates. So if you are building
your first data warehouse, it is a good idea to read through each chapter sequentially
to gain maximum benefit from the book. Those who have already built a data
warehouse and just need a refresher on some basics can skip around to whatever
topic they need at that moment.

We'll use a fictional toy company, ACME Toys and Gizmos, to illustrate the concepts
that will be presented throughout the book. This will provide some context to the
information presented to help you apply the concepts to your own organization.
We'll actually be constructing a simple data warehouse for the ACME Toys and
Gizmos company. At the end of the book, we'll have all the code, scripts, and saved
metadata that was used. So we can build a data warehouse for practice, or use it as
a model for building another data warehouse.

Chapter 1, An Introduction to Oracle Warehouse Builder, starts off with a high-
level look at the architecture of OWB and the steps for installing it. It covers the
schemas created in the database that are required by OWB, and touches upon some
installation topics to provide some further clarification that is not necessarily found
in the Oracle documentation. Most installation tasks can be found in the Oracle
README files and installation documents, and so they won't be covered in depth
in this book.

Chapter 2, Defining and Importing Source Data Structures, covers the initial task of
building a data warehouse from scratch, that is, determining what the source of the
data will be. OWB needs to know the details about what the source data structures
look like and where they are located in order to properly pull data from them using
OWB. This chapter also covers how to define the source data structures using the
Data Object Editor and how to import source structure information. It talks about
three common sources of data—flat files, Oracle Databases, and Microsoft SQL
Server databases—while discussing how to configure Oracle and OWB to connect
to these sources.

Chapter 3, Designing the Target Structure, explains designing the data warehouse
target. It covers some options for defining a data warehouse target structure using
relational objects (star schemas and snowflake schemas) and dimensional objects
(cubes and dimensions). Some of the pros and cons of the usage of these objects are
also covered. It introduces the Warehouse Builder for design and starts with the
creation of a target user and module.

Chapter 4, Creating the Target Structure in OWB, implements the design of the target
using the Warehouse Builder. It has step-by-step explanations for creating cubes
and dimensions using the wizards provided by OWB.

Preface

[3]

Chapter 5, Extract, Transform, and Load Basics, introduces the ETL process by
explaining what it is and how to implement it in OWB. It discusses whether to use
a staging table or not, and describes mappings and some of the main operators in
OWB that can be used in mappings. It introduces the Warehouse Builder Mapping
Editor, which is the interface for designing mappings.

Chapter 6, ETL: Putting it Together, is about creating a new mapping using the
Mapping Editor. A staging table is created with the Data Object Editor, and a
mapping is created to map data directly from the source tables into the staging
table. This chapter explains how to add and edit operators, and how to connect
them together. It also discusses operator properties and how to modify them.

Chapter 7, ETL: Transformations and Other Operators, expands on the concept of
building a mapping by creating additional mappings to map data from the staging
table into cube and dimensions. Additional operators are introduced for doing
transformations of the data as it is loaded from source to target.

Chapter 8, Validating, Generating, Deploying, and Executing Objects, covers in great
detail the validation of mappings, the generation of the code for mappings and
objects, and deploying the code to the target database. This chapter introduces the
Control Center Service, which is the interface with the target database for controlling
this process, and explains how to start and stop it. The mappings are then executed
to actually load data from source to target. It also introduces the Control Center
Manager, which is the user interface for interacting with the Control Center Service
for deploying and executing objects.

Chapter 9, Extra Features, covers some extra features provided in the Warehouse
Builder that can be very useful for more advanced implementations as mappings
get more numerous and complex. The metadata change-management features of
OWB are discussed for controlling changes to mappings and objects. This includes
the recycle bin, cutting/copying and pasting objects to make copies or backups, the
snapshot feature, and the metadata loader facility for exporting metadata to a file.
Keeping objects synchronized as changes are made is discussed, and so is the auto-
binding of tables to dimensional objects. Lastly, some additional online references
are provided for further study and reference.

Chapter 10, Code Template Mappings, covers a major new feature of the 11gR2 release
of OWB—code templates, which are the knowledge module functionality brought
over into OWB from Oracle Data Integrator. It includes detailed descriptions of
implementing a JDBC connection to an external database and the implementation
of a code template mapping to access it. It includes discussion of the main code
templates provided by default with OWB 11gR2 and describes everything you need
to know to implement your first code template mapping.

Preface

[4]

What you need for this book
The following software is required for this book:

•	 Oracle Warehouse Builder 11gR2
•	 Microsoft SQL Server 2008 Express with Advanced Services

Who this book is for
If you are new to data warehousing and you have to build your first data warehouse
using OWB, or have implemented a data warehouse using another tool and are now
using OWB for the first time, this book is for you. You can also use it as a refresher
if you are a more advanced user. An ever-increasing number of businesses are
implementing data warehouses and if you are reading this book, then yours too
has most likely chosen to implement one.

This book is for anyone tasked with building a data warehouse and loading data into
it using Oracle Warehouse Builder. It is primarily aimed at database administrators
and engineers who are new to data warehousing and are building a data warehouse
for the first time using OWB. This book can also be used as a refresher on basic
OWB features. Think of it as a beginner's guide to OWB. It can be helpful for any IT
professional looking to broaden his or her knowledge about data warehousing in
general and Oracle Warehouse Builder in particular.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the
use of the include directive."

A block of code is set as follows:

#include <stdio.h>
#include "wstr.h"
void wstr(const char* const str) {
 printf("%s\n", str);
}

Preface

[5]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

#include <stdio.h>
#include "wstr.h"
void wstr(const char* const str) {
 printf("%s\n", str);
}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[6]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.PacktPub.com
http://www.PacktPub.com/support
mailto:copyright@packtpub.com

An Introduction to Oracle
Warehouse Builder

The Oracle Warehouse Builder (OWB) is what this book is all about, so let's start
discussing it by looking at it from a high level. We'll talk about some installation
topics and the various components that compose this application. Oracle provides
some detailed installation documentation and user guides that give you step-by-step
instructions on how to install the product and the prerequisites we need to have in
place. So we will focus more on some general topics that will help us understand the
installation better. We'll walk through a basic installation that can be followed along
and actually performed while reading. We'll be accepting most of the defaults during
the installation for simplicity. For more advanced installation requirements, dig
into the Oracle installation documentation to get familiar with the options that are
available. You can find this at http://www.oracle.com/pls/db112/homepage by
clicking on the Installing and Upgrading link in the left hand frame.

In this chapter we're going to cover the following specific topics:

•	 Introduction to data warehousing and where OWB fits in
•	 Installing Oracle database software and OWB

°° Installing the database software
°° Configuring the Listener
°° Creating the database

•	 OWB Components and Architecture
•	 Configuring the repository and workspaces

An Introduction to Oracle Warehouse Builder

[8]

Introduction to data warehousing
Although you may not be familiar with data warehousing, you have probably at least
heard the term. Data warehouses are becoming increasingly common as businesses
have realized the need to be able to mine the information they have stored in the
electronic form in order to provide a valuable insight into the operation of their
business and how best to improve it. Organizations need to monitor these processes,
define policies, and—at a more strategic level—define the visions and goals that will
move the company forward in the future. Operational transactional systems have
greatly benefited the daily functioning of the enterprise. But now, organizations are
shifting to a more decisional-based requirement from their computing platforms and
are looking to build data warehouses. This is where OWB enters the picture to help
organizations with the task of building that data warehouse.

Introduction to our fictional organization
The manuals that Oracle supplies with its database and applications contain a
great deal of information. However, it can be hard to relate that information to the
real-world ways of implementing the database and applications. Anyone who has
ever tried to read a technical user guide or reference provided with a database or
application will know what that means. It is a great benefit to be able to learn about
a new software tool by seeing how that tool is actually used within the context of an
actual organization conducting a business. This is precisely the focus of this book.
We'll be building an actual data warehouse using a fictional organization as
an example.

Before we talk about what a data warehouse is, let's get introduced to the fictional
organization we'll be using to demonstrate the use of the Warehouse Builder to
build a data warehouse. Throughout this book, we will be using examples of the
concepts involved by making reference to a fictional organization named ACME
Toys and Gizmos, which is sales oriented. It is an entirely made-up organization, and
any similarity to a real company is completely coincidental. This book will provide
explanations throughout on how to use the OWB tool to build a data warehouse
within the context of this invented company, which is involved in storefront and
online Internet sales. Thus, it will demonstrate practical ways of implementing a data
warehouse that can be directly applied in the real world.

ACME Toys and Gizmos will have stores all over the United States as well as a number
of other countries, and will also have an online storefront for Internet sales. The online
transactional processing systems (OLTP) play a huge role in the functioning of any
business today, especially in the operation of a sales-oriented business. So this makes
a good example to illustrate the subject matter of data warehousing and how to take
information from those OLTP systems to load our warehouse.

Chapter 1

[9]

Although we'll be using a sales organization for our examples, the concepts we'll
discuss can apply to any business and will be as generic as possible to assist in
doing that.

What is a data warehouse?
We've discussed the business case for implementing a data warehouse by showing
how companies these days need information to support strategic-level decision
making. We've also introduced the fictional organization that we'll use to provide
examples of the concepts we'll be presenting. But we've not yet explained what a
data warehouse is.

We will not be dealing in detail with the concept of a data warehouse as that topic
would encompass the entire contents of a book by itself. There are a number of good
books already written about that topic. Therefore, we will touch upon some high-
level concepts only as an introduction and to provide a context for using OWB to
build a data warehouse.

Fundamentally, a data warehouse is a decisional database system. It is designed to
support the decision makers in the organization in ways a transactional processing
system is ill-equipped to handle, such as the strategic-level goals and visions of an
organization. To think strategically, a large amount of data over long periods of time
is needed. Transactional systems are concerned with the day-to-day operations such
as: How many dolls did we sell today and will we need to restock the inventory?
How many orders were processed today? How many balls were shipped out today?
The strategic thinkers are more concerned with questions such as: How many dolls
did we sell today compared to the same time period in the last year? How has our
inventory level been for the last few months?

To support that level of information, we need more data than what is provided
by the day-to-day transactions. We'll need much more information compiled over
greater time periods and this is where the data warehouse comes in. As a data
warehouse is different from a transactional database, there are some unique terms
used to describe the data it contains. There are also other techniques that should be
employed for designing the database for a data warehouse, which would not be a
good idea for a transactional database.

An Introduction to Oracle Warehouse Builder

[10]

The data in a data warehouse is composed of facts (actual numerical measures) and
dimensions (descriptive data about those measures) that place the facts in a context
that is understandable to the end-user decision maker. For instance, a customer
makes a purchase of a toy with ACME Toys and Gizmos on a particular day over
the Internet, which results in a dollar amount of the transaction. The dollar amount
becomes the fact and the toy purchased, the customer, and the location of the
purchase (the Internet in this case) become the dimensions that provide a scope of
the fact measurement and give it a meaning.

The design of a data warehouse should be different from that of a transactional
database. The data warehouse must handle large amounts of data, and must be
simple to query and understand by the end users. While relational techniques and
normalization are excellent database design methods for transactional systems to
ensure data integrity, they can make understanding a data warehouse difficult for
the end users. They can also bog down a data warehouse with long-running queries
that have to make use of many joins (including more than one table that share a
common data element to look up additional data).

A much better means of representing the data is to de-normalize the data, so that
users will not have to be concerned with retrieving the data from multiple tables.
The use of foreign keys (a column that references a row in another table) should be
restricted in a data warehouse. The outcome is a fact table with foreign keys only
to each of the dimension tables. The diagram of the database structure has a fact
table in the middle surrounded by dimension tables, resulting in something that
looks like a star. Thus, the term star schema is used to refer to this representation
of a data warehouse. It is also possible that these dimensions may themselves have
other tables surrounding them, resulting in something akin to a snowflake. Thus, the
term snowflake schema is also used. This is the dimensional modeling technique of
representing a data warehouse.

This design lends itself extremely well to the task of querying large amounts of
data by the end users. Users do not have to be bothered with queries involving
complicated joins with multiple tables to get the descriptive information they
need. This is because the information is included directly in the dimension tables
in a de-normalized fashion. If a manager for ACME Toys and Gizmos needs to
know what products sold well in the last quarter, the query will only involve two
tables—the main fact table containing the data on number of items sold and the
product dimension table that contains all the information about the product. The
de-normalization means the manager will not have to be concerned with looking up
product information in any other tables, as all the details about the product will be
included in the one dimension table.

Chapter 1

[11]

All this is great background information on data warehouses, but you can read any
number of other books for much more detailed material on the topic. Our purpose in
this book is to introduce the Oracle Warehouse Builder and use it to design and build
our first data warehouse. So, let's see how it fits in to this discussion of
data warehousing.

Where does OWB fit in?
The Oracle Warehouse Builder is a tool provided by Oracle, which can be used at
every stage of the implementation of a data warehouse, from initial design and
creation of the table structure to the ETL process and data-quality management.
So, the answer to the question of where it fits in is—everywhere. It is provided
as a part of the Oracle Database Release 11g installation. For the previous Oracle
Database Releases, it can be downloaded and installed from Oracle's website as a
free download.

We can choose to use any or all of the features as needed for our project, so we do
not need to use every feature. Simple data warehouse implementations will use
a subset of the features and as the data warehouse grows in complexity, the tool
provides more features that can be implemented. It is flexible enough to provide
us a number of options for implementing our data warehouse as we'll see in the
remainder of the book.

Installation of the database and OWB
We'll be using the latest version of the database as of this writing—Oracle Database
11g Release 2—and the corresponding version of OWB that (as of this release) is
included with the database install. If you have that version of the database installed
already, you can skip this section and move right on to the next. If not, then keep
reading as we discuss the installation of the database software.

Downloading the Oracle software
We can download the Oracle database software from Oracle's website, provided
we adhere to their license agreement. This agreement basically says we agree
to use the database and the accompanying software either for development of a
prototype of our application or for our own learning purposes. If we proceed to use
this application internally or make it commercially available, then we will need to
purchase a license from Oracle. For the purpose of working through the contents of
this book to learn OWB, we need to install the database, which is covered under the
license agreement for the free download.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

An Introduction to Oracle Warehouse Builder

[12]

We can find the database on the Oracle Technology Network website (http://www.
oracle.com/technology). The main database download is usually the first download
listed under TOP DOWNLOADS on the main page. We need to register on the site,
in order to create an account, before it lets us download any files, but there is no
charge for that. The download files are classified by the platform on which they can be
executed, so we'll choose the one for the system we'll be hosting the database on. We'll
have to accept the license agreement first before the web page will let us download the
files. The download files are anywhere from 1.7 GB to 2.3 GB in size, depending on the
platform we'll be hosting it on. So we do not want to attempt this download unless we
have a Broadband Internet connection (that is, cable, DSL, and so on). We'll download
the install files and unzip them to a folder on a drive with enough available space. The
installation files are temporary and are not needed after the installation is done, so
we'll be able to delete them to free up space if needed.

A word about hardware and operating
systems
When installing software of this magnitude, we have to decide whether we'll have to
buy additional hardware and a different operating system to run the database
and OWB. OWB will run in Oracle Database 10gR2 or later Standard or
Enterprise Editions.

We'll be using the most recent version of OWB throughout this book. We can
download older versions of OWB that will run on older versions of the database,
but we will not have the benefit of the improvements as in the latest version of the
software. Much of what we'll be doing with the software throughout the course of
the book can also be done on previous versions of the software. However, due to
the changes made to things such as the interface, it would be easiest to follow along
using the most recent version.

For this book, the platform is Windows 7 with Oracle Database 11g Release 2
(11.2.0.1) Enterprise Edition (which is the most recent version as of this writing),
which is available from the download site. The Enterprise Edition of the database
was chosen because it allows us to make full use of the features of the Warehouse
Builder, especially in the area of dimensional modeling. There are some errors that
will be generated by the client software when running in the Standard Edition
installation due to code dependencies. These code dependencies are in libraries that
are installed with the Enterprise Edition, but not the Standard Edition. We could
use OWB with the Standard Edition, but then we would be limited in the type of
objects we could deploy. For instance, dimensions and cubes would be problematic,
and without using them we'd be missing out on a major functionality provided by
the tool. If we want to develop any reasonably-sized data warehouse, the Enterprise
Edition is the way to go.

Chapter 1

[13]

Everything that we'll work through in this book was done in an Oracle VM
VirtualBox virtual machine on a laptop personal computer with an Intel Core 2
processor running at 1.67 GHz and 4 GB of RAM. Oracle says 1 GB of RAM will
suffice so the virtual machine was configured with 1209MB of memory. Minimum
specifications usually result in underpowered systems for all but the very basic
processing but for the purpose of working through the tasks described in this book it
will be sufficient. In terms of hard disk space, Oracle specifies that 4.5 GB is required
for the basic database installation. We'll need about 2 GB just to save the installation
files, so to make sure we have plenty of space, we should plan for something
between 10 GB and 15 GB of available disk space just to be safe. We don't want to
install the database software and then find that we don't have any space on our hard
drive. The VirtualBox machine was configured with 30GB of disk space.

Oracle supports its database installed on Windows and Unix. For Windows, it
supports Windows XP Professional or Windows Vista or Windows 7 (Business
Edition, Enterprise Edition, or Ultimate Edition) as well as Windows Server 2003 and
2008. The system mentioned above that was used for writing this book and working
through all the examples, is running Windows Vista Home Premium Edition with
Service Pack 2 and the database installed runs on the VirtualBox VM in Windows
7 Home Premium. We certainly would not want to use this configuration for large
production databases, but it works fine for simple databases and learning purposes.
The installation program will first do a prerequisite check of the computer and will
flag any problems that it sees, such as not enough memory or an incorrect version
of the operating system. For working through this book on our own to learn about
the Warehouse Builder, we should be OK as long as we are running XP ,Vista,
or Windows 7. However, for business users who would be installing the Oracle
Database and OWB for use at work using Windows, it would be a good idea to stick
with the recommended configurations of Windows XP Professional, Windows Vista
or 7 (Business Edition, Enterprise Edition, and Ultimate Edition), or Windows Server.

An Introduction to Oracle Warehouse Builder

[14]

Server versus workstation
We don't have to use a computer that is configured as a server to host
the Oracle database. It will get installed on a regular workstation as
long as the minimum system requirements are met. However, we might
encounter a minor issue. A workstation is usually configured to use
Dynamic Host Configuration Protocol (DHCP) to obtain its IP address.
This means the address is not specified as a fixed address and can change
the next time the system boots up. The Oracle database requires a fixed
address to be assigned, and it can install on a system with DHCP. But it
will also require the Microsoft Loopback Adapter to be installed as the
primary network interface to provide that fixed address. If this situation is
encountered, the installer prerequisite checks will alert us to that and give
us instructions on how to proceed. It will not harm our existing network
configuration to install that option. That is the way the laptop mentioned
above was configured for this book project.

Installing Oracle database software
So far we've decided what system we're going to host the database on, downloaded
the appropriate install file for that system, and unzipped the install files into a folder
to begin the installation. We'll navigate to that folder and run the setup.exe file
located there. This will launch the Oracle Universal Installer program to begin the
installation. Those of us with experience installing the Oracle Database from prior
versions will immediately notice the installer for 11gR2 has a slightly different look.
It is more like a setup program for the database than the Universal Installer we're
used to from previous versions, including the first edition of this book.

We are installing the full database, which now automatically includes the Warehouse
Builder client and database components. If we had an older version of the database
(10g R2 for example) that did not include the Warehouse Builder software, or if we
wanted to run the client on a different workstation than where the database software
is installed, then there is the option to install the Warehouse Builder by itself.

A separately downloadable install for the standalone option is available
at http://www.oracle.com/technology/software/products/
warehouse/index.html. Skip ahead to the section titled Installing the
OWB standalone software if just the Warehouse Builder software is needed.

Chapter 1

[15]

1.	 The first thing the installer is going to ask us is our email address for use in
being notified of critical system updates that are available. This is something
new Oracle has started doing with their installs to get people thinking about
critical vulnerabilities and keeping their databases properly patched. It's
similar to Microsoft's Windows Update feature that keeps users notified of
available patches for the Windows operating system. That's a good feature
but we would need a support agreement with Oracle and a My Oracle
Support login to really make use of it so we're going to skip this and move on
to step 2. Be aware that it will pop up a warning dialog asking us if we really
want to remain uninformed about security related issues. We'll answer yes
and move along.

2.	 The second step asks us what installation option we'd like. We can choose
from one of three, create and configure a database, install the software
only, or upgrade an existing database. We'll choose the second option. The
Create and Install a Database option will make some assumptions about the
database that we don't want depending on what options are selected so its
easier if we just install the database separately after the software is installed.

3.	 For the third step, we'll choose Single Instance for the Installation Type. The
other option is for installing a database as part of a RAC installation (Real
Application Cluster) of clustered databases.

4.	 In step 4 we'll choose the database language, or languages, we want to install.
5.	 Step 5 is where we choose the edition of the database to install, Enterprise,

Standard, Standard Edition One, or Personal Edition. We'll choose the
Enterprise Edition so we have access to all of the advanced features we need
for the Warehouse Builder.

6.	 Step 6 will ask us for path names for ORACLE_BASE and for the Software
Location (or Oracle home location). They will have suggested paths filled
in for us. It is a good idea to leave the path names as they are and only
change the drive designation if we'd like to install to a different hard drive.
The install program will suggest a drive for the installation, but we might
have a different preference. Oracle recommends a convention for naming
folders and files that they call the Optimal Flexible Architecture (OFA).
This is described in Appendix B of the Oracle Database Installation Guide for
Microsoft Windows, which can be found at the following URL: http://
download.oracle.com/docs/cd/E11882_01/install.112/e10843/
ofa.htm#CBBEDHEB. It is a good idea to follow their recommendations for
standardization so that others who have to work with the database files
will know where to find them, and to save us from problems with possible
conflicts with other Oracle products we may have installed. If we keep
the default folder locations intact and only change the drive letter, we will
adhere to the standard.

An Introduction to Oracle Warehouse Builder

[16]

7.	 Step 7 of the install is where it will conduct the prerequisite checks to ensure
our system is capable of running the database. If everything succeeds we'll
move right to step 8, bypassing step 7 results. We could hit the back button
on Step to move back to see the results if we wanted. If anything failed, it
would have displayed the results for us.

8.	 Step 8 is the summary screen. It will display the Global Settings as in the
previous version but includes a new Inventory section which replaces the old
Product Languages, Space Requirements, and New Installations sections.

9.	 The actual installation happens in step 9. A progress bar proceeds to the right
as the installation happens and steps for Prepare, Copy Files, and Setup Files
are checked off as they are done.

10.	 Step 10 is the conclusion and finishes up with a success message:

Your database configuration files have been installed in C:\app\bob while
other components selected for installation have been installed in C:\app\
bob\product\11.2.0\dbhome_1. Be cautious not to accidentally delete these
configuration files.

Chapter 1

[17]

The "bob" in the above paths will be whatever username was used to install as. Also,
this message will probably be on one long line requiring the scroll bar to read it all.

1.	 We will click Close to end the installation.

Basic versus advance install
The installation method we're following here is the quickest and
easiest, but makes many decisions for us that more advanced
options will ask us about like creating a database and Desktop vs
Server installs. For the purpose of working through the examples in
this book, we will be OK with the basic installation. But if we were
installing for a production environment, we would want to read
through the Oracle Database Installation Guide (http://www.oracle.
com/technology/documentation/database.html; click on
View Library to view the documentation online or click on Download
to download the documentation) to familiarize ourselves with the
various situations that would require us to use the more advanced
installation options. This would ensure that we don't end up with a
database installation that will not support our needs.
Location of install results
A good idea is to pay particular attention to the inventory location
on the Step 8 summary screen, which tells us where we can find a
log of the installation. The logs that the installer keeps are stored in
the Oracle folder on the system drive in the following subfolder: C:\
Program Files\Oracle\Inventory\logs. The files are named
with the following convention: install ActionsYYYY-MM-DD_HH-
MI-SSPM where YYYY is the year, MM the month, DD the day, HH the
hour, MI the minutes, SS the seconds of the time the installation was
performed, and PM is either AM or PM. The files will have a .log
extension. This information may come in useful later to see just
what products were installed. The folder also will contain any errors
encountered during the installation in files with a file extension of
.err and any output generated by the installer in files with a file
extension of .out.

Now that the software is installed, it's time to proceed with creating a database. But
there is one step we have to do first—we need to configure the listener.

An Introduction to Oracle Warehouse Builder

[18]

Configuring the listener
The listener is the utility that runs constantly in the background on the database
server, listening for client connection requests to the database and handling them.
It can be installed either before or after the creation of a database, but there is one
option during the database creation that requires the listener to be configured—so
we'll configure it now, before we create the database.

Run Net Configuration Assistant to configure the listener. It is available under the
Oracle menu on the Windows Start menu as shown in the following image:

The welcome screen will offer us four tasks that we can perform with this assistant.
We'll select the first one to configure the listener, as shown here:

Chapter 1

[19]

The next screen will ask you what we want to do with the listener. The four options
are as follows:

•	 Add
•	 Reconfigure
•	 Delete
•	 Rename

Only the Add option will be available since we are installing Oracle for the first time.
The remainder of the options will be grayed out and will be unavailable for selection.
If they are not, then there is a listener already configured and we can proceed to the
next section—Creating the database.

For those of us installing for the first time on our machines, we need to proceed with
the configuration. The next screen will ask us what we want to name the listener. It
will have LISTENER entered by default and that's a fine name, which states exactly
what it is, so let's leave it at that and proceed.

The next screen is the protocol selection screen. It will have TCP already
selected for us, which is what most installations will require. This is the standard
communications protocol in use on the Internet and in most local networks. Leave
that selected and proceed to the next screen to select the port number to use. The
default port number is 1521, which is standard for communicating with Oracle
databases and is the one most familiar to anyone who has ever worked with an
Oracle database. So, change it only if you want to annoy the Oracle people in your
organization who have all memorized the default Oracle port of 1521.

To change or not change the default listener port
Putting aside the annoyance, the Oracle people might have to suffer
as there are valid security reasons why we might want to change that
port number. Since it is so common, the people accustomed to working
with the Oracle database aren't the only people who know that port
number. Hackers looking to break into an Oracle database are going to
go straight for that port number, so if we change it to something obscure,
the database will be harder to find on the network for the people with
malicious intent. If it does get changed, be sure to make a note of the
assigned number.
There also may be firewall issues that allow only certain port numbers to
be open through the firewall, which means communication on any of the
other port numbers would be blocked. 1521 might be allowed by default
since it is common for the Oracle database. It would be a good idea to
check with the network support personnel to get their recommendation.

An Introduction to Oracle Warehouse Builder

[20]

That is the last step. It will ask us if we want to configure another listener. Since we
only need one, we'll answer "no" and finish out the screens by clicking on the Finish
button back on the main screen.

Creating the database
So far we have the Oracle software installed and a listener configured, but we have
not created a database.

We will install a new database using Database Configuration Assistant, which
Oracle provides to walk us step-by-step through the process of creating a database. It
is launched from the Windows Start menu as shown in the following image:

Running this application may require patience as we have to wait for the application
to load after it's selected. Depending on the system it is running on, it can take
over a minute to display, during which time there is no indication that anything is
happening. It may be tempting to just select it again from the Start menu because it
appears it didn't work the first time, but don't as that will just end up running two
instances of the program. It will appear soon. The following are steps in the creation
process:

1.	 The first step is to specify what action to take. Since we do not have a
database created, we'll select the Create a Database option in step 1. If there
was a database already created, the options for configuring a database or
deleting a database would be selectable. Templates can be managed with the
Database Configuration Assistant application, which are files containing
preset options for various database configurations. Pre-supplied templates
are provided with the application, and the application has the ability to
custom-build templates.

Chapter 1

[21]

In previous versions of the database, Automatic Storage Management could
be configured as well however as of 11gR2, ASM has its own configuration
assistant now, ASMCA. It is Oracle's feature for databases for automatically
managing the layout and storage of database files on the system. These are
both topics for a more advance book on the Oracle Database. We will be cre-
ating a database using an existing template.

2.	 This step will offer the following three options for a database template
to select:

°° General Purpose or Transaction Processing
°° Custom Database
°° Data Warehouse

3.	 We are going to choose the Data Warehouse option for our purposes. If we
already had a database installed that we wanted to use for learning OWB, but
that's not configured as a data warehouse, it's not a problem. We can still run
OWB hosted on it and create the data warehouse schema (database user and
tables), which we'll be creating as we proceed through the book. This would
be fine for learning purposes, but for production-ready data warehouses a
database configured specifically as a data warehouse should be used.

4.	 This step of the database creation will ask for a database name. The name of
the database must be one to eight characters in length. Any more than that
will generate an error when trying to proceed to the next screen. This is an
Oracle database limitation. The database name can also include the network
domain name of the domain of the host it is running on, to further uniquely
identify it. Follow the name with a period and then the domain, which itself
can include additional periods.
If this database is being created for business use, a good naming scheme
would reflect the purpose of the database. Since we're creating this database
for the data warehouse of ACME Toys and Gizmos Company, we'll choose
a name that reflects this—ACME for the company name and DW for data
warehouse, resulting in a database name of ACMEDW. It is important to remem-
ber this name as it will be a part of any future connections to the database.
As the database name is typed in, the SID (or Oracle System Identifier) is
automatically filled in to match it. If the domain is added to the database
name, the SID will stop pre-populating after the first period is entered. The
end result is that the SID becomes the same as the first part of the database
name.

An Introduction to Oracle Warehouse Builder

[22]

5.	 This step of the database creation process asks whether we want to configure
Enterprise Manager. The box is checked by default and left as it is. This
is a web-based utility Oracle provides for controlling a database, and as it
is very useful to have, we will want to enable it. There are two options for
controlling a database: registering with Grid Control or local management.
Grid Control is Oracle's centralized feature for controlling a grid, a network
of loosely coupled modular hardware and software components that can be
joined and rejoined together on demand to meet business needs. That is what
the "g" in Oracle Database 11g stands for. If your network is not configured
in a grid architecture, or you are installing on a standalone machine, then
choose the local management option. It will automatically detect a Grid
Control agent that is running locally, and if it doesn't find one, the Grid
Control option will be grayed out anyway. In that case, you will only be able
to select local management.

6.	 New in the 11gR2 version of the DBCA is the additional tab on this screen
for the Automatic Maintenance option. This step used to be all by itself as
step 12 of the install process. We'll deselect that option and move on, since
we don't need that additional functionality. Automatic Maintenance Tasks
are tasks that run in predefined maintenance windows of time to perform
various preconfigured maintenance operations on the database. Since the
database for this book is only for learning purposes, it is not critical that these
maintenance tasks be done automatically.

7.	 Automatic maintenance is designed to run during preset maintenance
windows, which are usually in the middle of the night. So if the database
system is shut down every day, there wouldn't be a good window to run the
tasks on regularly anyway. If installing in a production environment with
servers that will be running 24 hours a day every day, then consider setting
up the automatic maintenance to occur. Oracle provides three pre-configured
maintenance tasks to choose from—collecting statistics for the query
optimizer (for improving performance of SQL queries), Automatic Segment
Advisor for analyzing storage space for areas that can possibly be reclaimed
for use, and the Automatic SQL Tuning Advisor for automatically analyzing
SQL statements for performance improvements.

If an error is encountered at some point during the database creation that
indicates a listener is not configured, it simply means we started the DBCA
before configuring a listener. To solve that, there is no need to exit out of
the database install window, just go back and perform the listener install
steps and come back here where the screen will allow us to proceed.

Chapter 1

[23]

8.	 On this screen (step 5) we can set the database passwords on the system
accounts using a different one for each account, or by choosing one password
for all four. We're going to set a single password on all four, but for added
security in a production environment, it is a good idea to make a different
password for each. Click on the option to Use the Same Administrative
Password for All Accounts and enter a password. This is very important to
remember as these are key system accounts used for database administrative
control. Oracle has decided as of this release to attempt to make us choose
better, more secure passwords by popping up a warning dialog if the
password we've chosen does not meet with their standards of complexity. It
is only a warning however and we can answer Yes and continue.

9.	 This step is a combination now of the old steps 6 and 7 of the installation. It
is about storage and specifying the locations where database files are to be
created. We'll leave it at the default of File System for storage management.
The other two options are for more advanced installations that have greater
storage needs. The locations where database files are to be created can be
left at the default for simplicity (which uses the locations specified in the
template and follows the OFA standard for naming folders described above).
A storage screen will come up where we'll be able to change the actual file
locations if we want, for all but the Oracle-Managed Files option.

Te Oracle-Managed Files option is provided by the database so that we
can let Oracle automatically name and locate our data files. A folder
location is specified on the step 6 screen, which will become the default
location for any files created using this option. This is why we won't be
able to change any file locations later on during the installation if this
option is chosen. However, files can still be created with explicit names
and locations after the database is running.

10.	 The next screen is for configuring recovery options. We're up to step 8 now.
If we were installing a production database, we would want to make sure to
use the Flash Recovery option and to Enable Archiving. Flash Recovery is
a feature Oracle has implemented in its database to provide a location that
is managed by the database. It stores backups and files needed to recover a
database in the event of disk failure. With Flash Recovery Area specified, we
can recover data that would otherwise be lost in a system failure.
Enabling archiving turns on the archive log mode of the database, which
causes it to archive the redo logs (files containing information that is used by
the database to recover transactions in the event of a failure.) Having redo
logs archived means you can recover your database up to the time of the
failure, and not just up to the time of the last backup.

An Introduction to Oracle Warehouse Builder

[24]

These recovery options will consume more disk space, but will provide a re-
covery option in the event of a failure. Each individual will have to make the
call for their particular situation whether that is needed or not.
We'll specify Flash Recovery and for simplicity, we will just leave the default
for size and location. We will not enable archiving at this point. These op-
tions can always be modified after the database is running, so this is not the
last chance to set them.

11.	 This step is where we can have the installation program create some sample
schemas in the database for our reference, and specify any custom scripts to
run. The text on the screen can be read to decide whether they are needed or
not. We don't need either of these for this book, so it doesn't matter which
option we choose.

12.	 The next screen is for Initialization Parameters. These are the settings that
are put in place to define various options for the database such as Memory
options. There are over 200 different parameters and to go through all of
them would take much more time and space than we have here. There is
no need for that at this point as there are about 28 parameters that Oracle
says are basic parameters that every database installation should set. We're
just going to leave the defaults set on this screen, which will set the basic
parameters for us based on the amount of memory and disk space detected
on our machine. We'll just move on from here. Once again, these can all be
adjusted later after the database is created and running if we need to make
changes.

13.	 The next step (step 10 of 11) is the Database Storage screen referred to
earlier. Here the locations of the pre-built data and control files can be
changed if needed. They should be left set to the default for simplicity
since this won't be a production database. For a production environment,
we would want to consider storing datafiles on separate partitions for
performance reasons, and to minimize the impact of disk failures on the
running database if something goes wrong. If all the datafiles are on one
drive and it goes bad, then the whole database is down.

14.	 The final step has the following three options, and any or all can be selected
for creating the database:

°° Create the database directly
°° Save the creation options as a template for later use
°° Save database creation scripts that can be used later to create the

database

We'll leave the first checkbox checked to go ahead and create the database.

Chapter 1

[25]

The Next button is grayed out since this is the last screen. So click on the Finish
button to begin creating the database using the selections we've just chosen. It will
display a summary screen showing what options it will be using to install with. We
can save this as an HTML file if we'd like to keep a record of it for future reference.

All that information will be available in the database by querying system tables later,
but it's nice to have it all summarized in one file. We can scroll down that window
and verify the various options that will be installed, including Oracle Warehouse
Builder, which will have a true in the Selected column as shown here:

We will be presented with the progress screen next that will show us the progress as
it creates the database.

An Introduction to Oracle Warehouse Builder

[26]

When the install progress screen gets to 100% and all the items
are checked off, we will be presented with a screen summarizing
the database configuration details. Take a screen capture of
this screen or write down the details because it's good to know
information on how the database is configured. Especially, we'll
need the database name in later installation steps. We may see
the progress screen at 100% doing nothing with apparently no
other display visible. Just look around the desktop underneath
other windows for the Database Configuration Screen. It's
important for the next step.

On the final Database Configuration Screen, there is a button in the lower right corner
labeled Password Management. We need to click on this button to unlock the schema
created for OWB use. Oracle configures its databases with most of the pre-installed
schemas locked, and so users cannot access them. It is necessary to unlock them
specifically, and assign our own passwords to them if we need to use them. Two of
them are the OWBSYS schema and the OWBSYS_AUDIT schema. These are the
schemas that the installation program automatically installs to support the Warehouse
Builder. They are required for running the Warehouse Builder. Click on the Password
Management button and on the resulting Password Management screen, we'll scroll
down until we see the OWBSYS and OWBSYS_AUDIT schemas. We'll click on the
check box to uncheck it on each one (indicating we want them unlocked) and then type
in a password and confirm it as shown in the following image:

Chapter 1

[27]

Click on the OK button to apply these changes and close the window. On the
Database Configuration Screen, click on the Exit button to exit out of the Database
Configuration Assistant.

That's it. We're done installing our first database and it's ready to use. Next, we'll
discuss installing the OWB client if we want to run the client on another computer,
or if we already have a 10gR2 database installed that we want to use with the
Warehouse Builder.

Installing the OWB standalone software
If we are going to run the OWB client on the same computer as we just installed the
Oracle database on, we don't need any more installations. That is the configuration
used in this book. The OWB client software is now installed by default with the main
database installation. We can verify that by checking the Start menu entry for Oracle.
We will see a submenu entry for Warehouse Builder as shown in the
following image:

If we want to run the OWB client on another computer on the network, or if we have
an older version of the database already installed (10g Rel 2) and want to be able to
use the Warehouse Builder software with it, we'll need to continue here with the
installation of the OWB client software. For all others, we can proceed to the next
section on OWB—OWB components and architecture.

For the task of installing the standalone client, we'll need to download the OWB
client install file. So we will go back to the Oracle site on the Internet. The download
page is at the following URL at the time of writing: http://www.oracle.com/
technology/software/products/warehouse/index.html. If that is not working,
go to the main Oracle site and search for the Business Intelligence | Data
Warehousing page where there is a link for the download of the OWB client.

An Introduction to Oracle Warehouse Builder

[28]

Once again we'll have to accept the license agreement before the download links will
become active. So we'll accept it and download the install file to the client computer
on which we'll be installing the software. The Windows ZIP file is about 930MB in
size so we need to make sure we have enough room on our hard drive to store the
file. We'll need at least double that amount of space because the install files will take
up that much space when unzipped.

When we have downloaded the ZIP file and unzipped it to our hard drive, run
setup.exe in the top-level folder to run the Oracle Universal Installer. It should look
familiar. Oracle is definitely correct in calling their installer "Universal". Every Oracle
database product uses that installer, so we will become very familiar with it if we
have to install any more Oracle products. It is universal also in the fact that it runs
on every platform that Oracle supports, and so the same interface is used no matter
where we install it. The installation steps are as follows:

1.	 The first step it goes through is asking us for the Oracle home details. It's
similar to what it asked at the beginning of the database installation as shown
in the following image:

Chapter 1

[29]

The installer will again suggest OraDb11g_home1 or something similar, but
we'll change it to OraOWB11g_home1 since it's just the OWB installation and
not the full database.

When installing the standalone OWB software, remember that it cannot
be installed into the same ORACLE home as the database. It must reside
in it own Oracle home folder. So if we have a database that's already
installed on the same machine, we'll have to make sure the ORACLE_
HOME we specify is different. The installer will warn us if we try to
specify the same one and won't let us continue until it is different.

We need to verify the installation location for the home location also. The
suggested name that it provides conforms to the OFA standard just as the da-
tabase installation did, so we'll want to just change the drive letter if needed.
However, the bottom-most folder name can be changed if needed without
violating the OFA standard. If it has a default of db_1, we can change it to
OWB_1 just to be clear that it's the OWB client.

2.	 The second step is that email prompt again for being notified about security
issues that we saw earlier in the database software install. We can just
continue and answer yes to the popup warning.

3.	 The next and final step is the summary screen. The OWB client installation
is not as complex as a full database installation, so it does not need all the
additional information it asked for during the database installation. The
summary screen should look similar to the following:

An Introduction to Oracle Warehouse Builder

[30]

This summary gives us an idea of the disk space it will need, as well as the
products that will be installed. If we scroll down the list, we'll see a number
of other Oracle utilities and applications that it will install. We will also see
items that are installed on the server as a part of the database install, but that
will now be available to us on our client workstation. SQL*Plus appears
there, which is the command line utility for accessing an Oracle database di-
rectly using SQL (Structured Query Language, the language used for access-
ing information stored in databases) among a host of other features.
Upon proceeding, the next screen will begin the installation and present us
with the progress screen with a sliding bar moving to the right to indicate
how far it has progressed. This is similar to what it did for the full database
installation. An example of that screen is included next for reference:

Install results
The log files with the results of the installation are stored in
the same location as they are for a full database install. The
universal installer will use that same folder for all its installs.

Chapter 1

[31]

When the installation is complete, we will be presented with the final success screen
and an Exit button. And as if to remind us about the universal nature of the installer,
it will pop up a confirmation box asking if we really want to exit, even though for
this installation there is nothing else that would be available to do on that final screen
if we said no.

OWB components and architecture
Now that we've installed the database and OWB client, let's talk about the various
components that have just been installed that are a part of the OWB and the
architecture of OWB in the database. Then we'll perform one final task that is
required before using OWB to create our data warehouse.

Oracle Warehouse Builder is composed on the client of the Design Center (including
the Control Center Manager) and the Repository Browser. The server components
are the Control Center Service, the Repository (including Workspaces), and the
Target Schema. New for release 11gR2 is the Control Center Agent which is used
by the new Code Template Mappings to communicate with a non-Oracle database.
We'll be covering that in more detail in Chapter 10. A diagram illustrating the
various components and their interactions follows:

An Introduction to Oracle Warehouse Builder

[32]

Client and server
The previous diagram depicts a client and server, but these
are really just logical notions to indicate the purpose of the
individual components and are not necessarily physically
separate machines. The client components are installed with
the database as we've seen previously and, therefore, can run
on the same machine as the database. This configuration is
assumed throughout the book.

The Design Center is the main client graphical interface for designing our data
warehouse. This is where we will spend a good deal of time to define our sources
and targets, and describe the extract, transform, and load (ETL) processes we use
to load the target from the sources. The ETL procedures are what we will define to
carry out the extraction of the data from our sources, any transformations needed
on it and subsequent loading into the data warehouse. What we will create in the
Design Center is a logical design only, not a physical implementation. This logical
design will be stored behind the scenes in a Workspace in the Repository on the
server. The user interacts with the Design Center, which stores all its work in a
Repository Workspace.

We will use the Control Center Manager for managing the creation of that physical
implementation by deploying the designs we've created into the Target Schema.
The process of deployment is OWB's method for creating physical objects from the
logical definitions created using the Design Center. We'll then use the Control Center
Manager to execute the design by running the code associated with the ETL that
we've designed. The Control Center Manager interacts behind the scenes with the
Control Center Service, which runs on the server as shown in the previous image.
The user directly interacts with the Control Center Manager and the Design
Center only.

The Target Schema is where OWB will deploy the objects to, and where the execution
of the ETL processes that load our data warehouse will take place. It is the actual
data warehouse schema that gets built. It contains the objects that were designed
in the Design Center, as well as the ETL code to load those objects. The Target
Schema is not an actual Warehouse Builder software component, but is a part of the
Oracle Database. However, it will contain Warehouse Builder components such as
synonyms that will allow the ETL mappings to access objects in the Repository.

The Repository is the schema that hosts the design metadata definitions we create for
our sources, targets, and ETL processes. Metadata is basically data about data. We
will be defining sources, targets, and ETL processes using the Design Center and the
information about what we have defined (the metadata) is stored in the Repository.

Chapter 1

[33]

The Repository is a Warehouse Builder software component for which a separate
schema is created when the database is installed—OWBSYS. This is the schema we
talked about unlocking during the installation discussion previously as one of the final
steps in the database creation process. This will be created automatically by the 11g
install, but is installed separately using scripts if we want to host the Repository on
an Oracle 10g database. The explanations in this book all assume that the Repository
is hosted on an Oracle 11g database. The Oracle Warehouse Builder Installation and
Administration Guide found at the following URL: http://download.oracle.
com/docs/cd/E11882_01/owb.112/e17130/toc.htm discusses the procedure for
installing the Repository schema on an Oracle 10g release 2 database if needed. It also
contains more detailed information about the various other configurations that can be
installed along with more detailed diagrams of the various options.

The Repository will contain one or more Workspaces as shown in the previous
diagram. A Workspace is where we will do our work to create the data warehouse.
There can be more than one workspace defined in the Repository. A common
example of how multiple workspaces can be employed is to use different
workspaces corresponding to sets of users working on related projects. We could
have one workspace for development, one for testing, and one for production. The
development team could be working in the development environment separately
from the test team that would be working in the test environment. For our purposes
at the ACME Toys and Gizmos Company, we will be working out of one workspace.

This concept of the workspace is new in the 11g releases of OWB. The Repository is
created in the OWBSYS schema during the database installation. So setting up the
Repository information and workspaces no longer requires SYSDBA privileges for
the user to install the Repository. SYSDBA is an advanced administrative privilege
that is assigned to a user in an Oracle database. This allows the user to perform tasks
affecting the database and other database users that ordinary user accounts cannot
do (or for that matter, other administrative accounts without SYSDBA). For security
reasons, we want to restrict user accounts with SYSDBA privilege to a minimum. So
it is good that we don't have to use that privilege when we install the Repository.

One final OWB component to consider is the Repository Browser on the client. It is
a web browser interface for retrieving information from the Repository. It will allow
us to view the metadata, create reports, and audit runtime operations. It is the only
other component besides the Design Center and the Control Center Manager that the
user interacts with directly.

We will have a chance to visit each one of these areas in much more detail as we
progress through the design and build of our data warehouse. However, first there is
one more installation step we have to take before we can begin using the Warehouse
Builder. The Repository must be configured for use and a workspace must
be defined.

An Introduction to Oracle Warehouse Builder

[34]

Configuring the repository and workspaces
We have talked about the OWBSYS schema that is created for us automatically
during the Oracle 11g installation, and we have also looked at unlocking it and
assigning a password to it. However, if we were to connect to the database right now
as that user, we would find that as yet only a couple of objects exist in that schema.
Filling out that schema is what will be done during this final installation step. We
are going to use the Repository Assistant application to configure the repository,
create a workspace, and create the objects in the repository that are needed for OWB
to run. The OWBSYS schema is where the Warehouse Builder will store those objects.
The Repository Assistant application is available from the Start Menu under the
Warehouse Builder | Administration submenu of the Oracle program group as
shown here:

These menu options will appear locally on a client if we've installed the standalone
Warehouse Builder client, as well as on the server. So where should we run the
Repository Assistant if we have both? The most common configuration is to run
this application on the same machine where the repository is located and the
Control Center Service is going to run, which is all on one machine. There are other
less common options for where to run the Control Center Service and where the
Repository is located in relation to the target schema. These options are documented
in Oracle Warehouse Builder Installation and Administration Guide, Chapter 1 –
Overview of Installation and Configuration Architecture. The URL for the chapter in
the guide is the following: http://download.oracle.com/docs/cd/E11882_01/
owb.112/e17130/overview.htm#CEGEBHBI.

We want the runtime implemented on the server, which is the most common and
simplest configuration. The Repository Assistant pops up an extra screen if it is
running remotely from the client, which we will see next. We would see it during the
installation if we were on a remote computer.

Chapter 1

[35]

The steps for configuration are as follows:

1.	 We'll launch the Repository Assistant application on the server (the only
machine we've installed it on) and the first step it is going to ask us for is the
database connection information—Host Name, Port Number, and Oracle
Service Name—or a Net Service Name for a SQL*Net connection. SQL*Net
is Oracle's networking capability for communicating with databases in a
distributed networked environment. A naming method is configured so
that when using a Net Service name, SQL*Net will know what connection
information to use for the connection. We have not configured a naming
method, since we don't really need it just to connect locally, so we'll use the
Host Name, Port Number, and Oracle Service name option as follows:

°° The Host Name is the name assigned to the computer on
which we've installed the database, and we can just leave it at
LOCALHOST since we're running it on the computer that has the
database installed.

°° The Port Number is the one we assigned to the listener back when
we installed it. It defaults to the standard 1521. This is an example of
why the issue of changing or not changing that default port number
was mentioned. If we changed it but can't remember what we
changed it to, then the following tip will help out.

Determining what port your listener is listening on
There are a couple of options we have for this. One is to perform the
following steps.
Open a command prompt window and type in the following command:
C:\>lsnrctl

This will launch the Listener Control program, which is the command
line utility Oracle provides for controlling the listener. Then enter the
following command at the listener control prompt:
LSNRCTL> status

Look for the line that says:
Listening Endpoints Summary...

The next line will have the port number listed along with the protocol
and host name such as the following:
(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=computer)
(PORT=1521)))

We can find information about the second option for determining the port
number in the listener configuration file, listener.ora, in the Oracle
home NETWORK\ADMIN directory. Open that file with Notepad and look
for the above line.

An Introduction to Oracle Warehouse Builder

[36]

°° For the Service Name, we will enter the name we assigned to our
database during step 3 of the database creation process. The name
we used is ACMEDW. At the end of the database configuration assistant
process, a detail screen was displayed. It was suggested that it would
be a good thing to take a screen capture of it because it contained
details about the database configuration, which would be useful
later. One of the items on that screen was the database name that was
assigned. If that is not available, then here's another tip to find the
database name.

Finding your database instance name
There are a number of places where the database name appears on the
database server without us having to log in to the database. One is in the
listener control program. Open a command prompt window and type in
the following command:
C:\>lsnrctl

This will launch the Listener Control program. Then enter the following
command at the listener control prompt:
LSNRCTL> service

Look for the instance name in the list of services that appears.
Another option is to check the name of the Windows service that is started
for the database. The database service name is a part of that name. Open
Control Panel | Administrative Tools | Services. The Windows service
names for the Oracle processes all start with Oracle. The service that
runs the actual database is named OracleService<dbname>, where
<dbname> is the name of the database instance that you are looking for.
The name says OracleServiceACMEDW for a database name of ACMEDW.
We can also check the Oracle base folder, which is the folder where the
Oracle software was installed. The Admin folder contains a folder named
for the database instance if we followed the default naming conventions
for folder names during the installation. That is one reason to stick with
the OFA standard when installing Oracle products.

2.	 Now that we've determined the connection information for our database,
we'll move along to step 2 of Repository Assistant. It asks us what option
we'd like to perform of the following:

°° Manage Warehouse Builder workspaces
°° Manage Warehouse Builder workspace users
°° Add display languages to repository
°° Upgrade Repository to current release of Warehouse Builder
°° Manage J2EE User account

Chapter 1

[37]

°° Manage Optional Features

We're going to select the first option to manage workspaces and move along
to the next step.

3.	 This step asks us what we'd like to do with workspaces: create a new
workspace or drop an existing one. We'll select the first option to create a
new workspace.

4.	 This brings us to step 4 of the process, which is to specify an owner for the
workspace. We are presented with two options: to create a new user or to
use an existing user as the owner. To perform the first option, we will need
to specify a database user who has DBA privileges that are required to be
able to create a new user in the database. The second option is to specify an
existing database user to become the owner of the workspace. This user must
have the OWB_USER role assigned to be able to successfully designate it as
a workspace owner. That is a database role required of any user who is to use
the Warehouse Builder. If the existing user who is selected does not have that
role, then it must be assigned to the user. An additional step will be required
to specify another user who has the ability to do that assignment (grant that
roll) or has DBA privileges. This second user must have the Admin Option
specified for the OWB_USER role to be able to grant it if he or she does not
have DBA privileges.
The user specified here, whether new or existing, will become a deployment
target for the Warehouse Builder. This means that the user will be able to ac-
cess the Design Center for building the ETL processes and the Control Center
Manager for deploying and auditing. We'll specify a new user for the ACME
Toys and Gizmo's warehouse, since we've just installed this database and no
other users are created yet.

5.	 This step will depend on which option we specified in step 4. If we are
creating a new user, it will ask us for an existing user with DBA privileges
in the database. The SYSTEM account is the default provided there, but if
we have a different account that is a DBA in the database, we can use that.
If we have specified an existing user in step 4, then step 5 will ask us for
the username and password for that user, as well as the name of the new
workspace to create.
Since we're specifying a new user, we will put in the password for the system
user and proceed to the next step. The password used here is the one we pre-
viously defined for the system accounts when we created our database.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

An Introduction to Oracle Warehouse Builder

[38]

6.	 Step 6 is new with release 11gR2 of the Warehouse Builder. It is for selecting
optional features of OWB. For the purposes of this book, only the first option
is required, the Data Integrator Enterprise Edition, since it includes the Code
Templates that we'll be discussing in Chapter 10. This feature was named
Warehouse Builder Enterprise ETL in previous releases. We'll uncheck the
rest. These are separately licensed options also, and we now have the ability
to enable or restrict them for users depending on whether we've licensed
them or not.

7.	 In this step, we specify the new username, password, and workspace name.
We'll use acmeowb for the username and acme_ws for the workspace name.

8.	 This step will ask for the password for the OWBSYS user. This schema was
installed for OWB to use for the repository. The password it's looking for is
the one we set up back on the final database configuration screen at the end
of running Database Configuration Assistant to configure the database. This
step will only be required upon first running Repository Assistant to create
a new workspace since it also has to perform the process of initializing the
repository in the OWBSYS schema first. That is a one-time process, which is
why subsequent runs of Repository Assistant to manage workspaces will
not require this step.
After putting in that password, if we were running the Repository Assistant
on a different machine than the database was installed on, then we would
encounter the following screen. We referred to it earlier when talking about
running the Repository Assistant remotely.

Chapter 1

[39]

It doesn't know the location of the Oracle Home on the server, and so must
prompt for it. It also provides the option for a Local Control Center Service
that is for the remote runtime option discussed in the installation guide. Since
we're running our database on the same machine as our client, we won't see
this screen.

9.	 This step asks for tablespace names for the OWBSYS schema. A tablespace
is a logical entity in an Oracle database for storing data. All objects created
are assigned to a tablespace, which stores the data physically in a datafile or
datafiles assigned to the tablespace. The administration of tablespaces in an
Oracle database is more than we have room for here, so we won't be creating
any new tablespaces to hold the OWBSYS data. We'll just leave the defaults
selected—the USER tablespace for data indexes and snapshots, and the
TEMP tablespace for temporary data. For advanced production databases,
it would be a good idea (at a minimum) to specify a separate tablespace for
OWBSYS, and actually think about using three new tablespaces for those
three that have the USER tablespace assigned.

10.	 This step is to select a base language for the repository, so we'll make the
appropriate selection. Once the repository is created, we cannot change
the base language and there can only be one base language assigned to the
repository. Physical names of repository objects are assumed to be in the
base language. The Repository Assistant will automatically assign the base
language depending on the locale that is assigned to the computer we're
installing on. We also have the option of selecting one or more display
languages that will allow users to assign a business name to physical objects
in their own language. Unlike the base language, we can assign display
languages after the repository is created. Select any of those that apply.

11.	 We're almost finished. The final step is the optional step 10 to specify any
workspace users from existing database users. We specified the workspace
owner as a new user earlier in the install process, and now it's asking for any
additional users who we might want to have access to the workspace. The
workspace owner is allowed to add and remove database users from
the workspace.

Removing a database user from the workspace does
not delete that user account from Oracle. It only
removes him or her as a valid user of the workspace.

An Introduction to Oracle Warehouse Builder

[40]

After selecting any user, the Repository Assistant will present us with a
summary screen of the actions it will take and the information we entered, as
shown in the following image:

Notice the name of the project toward the end. There was no option to
specify that project name, so it's just using a default name. It always sets up a
default project in a new workspace by that name, but we can change it later
when we actually start designing our data warehouse and working with the
workspace in the Design Center.
Click on the Finish button and it will begin the installation, presenting us
with a scroll bar moving to the right as it progresses through the installation.
The very first time it runs, it will take around 5 to 10 minutes to run before
reporting the success pop up, as it has to initialize the repository in the OWB-
SYS schema. Creating new workspaces after the first time will be very quick,
taking no more than a few seconds to complete.

Chapter 1

[41]

Summary
That's it. We've gone through the install process of the Oracle 11g database. It
automatically installs the Warehouse Builder components as well as the OWBSYS
database user. We've also gone through a standalone installation of the OWB client
on a separate workstation and have run Repository Assistant to configure our
first workspace. We've also discussed the architecture of the Warehouse Builder
components as they are now installed on our system. OWB is now installed and
ready to use, so we can begin our project of designing and installing a
data warehouse.

The general process we're going to follow throughout the rest of the book to actually
build our data warehouse is to start by defining our data sources—where we will
import the data from. We will import or define definitions of those sources, so that
the Warehouse Builder knows about them. Then we will define our target data
structures—where we will be loading data into during ETL and validate those
structures. They will have to be generated and deployed to the target schema, which
is the process of building the target. After that comes the process of designing and
implementing our ETL to load the target from the sources.

Now that we have the software and database loaded, it's time to begin defining our
sources of data.

Defining and Importing
Source Data Structures

The Warehouse Builder software and Oracle database have been installed, and we're
ready to begin building our data warehouse. The first thing we have to do is define
what our sources of data will be. If we are going to build a useful data warehouse,
we have to know what kinds of information our users are going to need out of the
warehouse. To know that, we have to know the following:

•	 The format in which the data is currently stored and where it is stored.
•	 Whether there is a transactional database currently in use or not, which

supports day-to-day operations and from which we'll be pulling the data.
A transactional database is different from a data warehouse database in that
it is designed to support the day-to-day transactions that keep an organiza-
tion running.

•	 Whether the database is an Oracle database or another vendor's database
such as Microsoft SQL Server.

•	 Whether there are any flat files of information saved from database tables or
other files that users keep, which might be a source of information.
A flat file is a file in text format that stores data in some kind of delimited
format. The most common example of this kind of file is a CSV file, or a
comma-separated file, that can be saved from a spreadsheet or extracted from
a database table. It is called a flat file because it is in a text-only format and
doesn't need to be interpreted by another program or application to read it.

Defining and Importing Source Data Structures

[44]

The Warehouse Builder can help us with importing data from any (or all) of these
formats into our data warehouse, and we're going to see how to do that in this
chapter by covering the following major topics:

•	 Analysis of the source systems for the data warehouse we'll be building
•	 The Point of Sale transactional database
•	 A website orders database
•	 An overview of the Warehouse Builder Design Center
•	 Importing and defining source database object metadata
•	 Creating projects and modules in OWB, including Oracle and SQL Server

modules
•	 Creating a SQL Server database connection using an ODBC gateway
•	 Configuring Oracle Heterogeneous Services for the ODBC gateway
•	 Defining source metadata manually with table editor
•	 Importing source metadata from a file

Preliminary analysis
In any data warehouse project, we are going to need to do some up-front analysis to
determine what data will need to be captured into our warehouse. The analysis will
tell us where the data is located, and in what format, so that we can begin to define
our source data structures in the Warehouse Builder. In our case, we will presume
that we have interviewed the management at the ACME Toys and Gizmos company
and they have indicated the following:

•	 The high-priority information that they would like to see from this data
warehouse project is sales-related data for all their stores

•	 They don't have an idea about the comparative sales in the various stores,
so they need some way to view all that data together to do an analysis that
shows how well, or poorly, the stores are doing

•	 In the future, they would also like to be able to compare store sales with their
website sales, but that will not be required for this first data warehouse
we build

Chapter 2

[45]

We are doing a very simple analysis of our data warehouse project because the focus
of the book is primarily on OWB. This book is all about using the Warehouse Builder
and that begins after the initial analysis, and so we will cover just enough information
to lay the groundwork for what follows. For more coverage of the design and
analysis phase from a very practical standpoint, a very good book you should look
up is "The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling",
Ralph Kimball and Margy Ross, John Wiley and Sons, Inc. This book covers in detail the
analysis and design considerations you should take into account when designing a
data warehouse and uses practical examples from a number of industries.

ACME Toys and Gizmos source data
Talking to users, administrators, and database administrators in ACME has helped
us discover that there is a transactional system in use (called a Point-of-Sale or POS
system). This system supports the stores that ACME has located in various cities
throughout the country, and in other countries in Europe and Asia.

This system maintains data in a Microsoft SQL Server database named ACME_POS,
and tracks individual sales transactions that occur for all of ACME's toys and gizmos.
This database contains tables that store information about each sale along with all
associated sales information such as the item sold, its price, the store in which it is
sold, the register that processes the sale, and the employee who made the sale. Right
away, we recognize that this would be a good source of data to help satisfy the
management objective of analyzing their sales data better.

We have also found that the IT department that runs the website for ACME Toys and
Gizmos has its own database that supports the website order management process. It
is implemented in Oracle and handles the processing of all orders taken for products
through the website. It contains tables that store information about:

•	 The orders taken
•	 Information about the customer who placed the order
•	 Information about the individual products that were ordered

This is an example of the source data that might not be needed in the initial stages of
a data warehouse project, but that could be requested by users at a later stage. Then
we can expand the data warehouse implementation to include website sales data. We
will also take a look at importing source metadata for it later in this chapter.

Defining and Importing Source Data Structures

[46]

Scripts have been provided on the Packt website at http://www.
packtpub.com/files/code/3449_Code.zip. These scripts can
be used to build the Oracle website orders database referred to in this
chapter. We also have a CSV file in this code bundle that will be required
to import metadata. We have a script to install the SQL Server database.
Instructions to use these files can be found with the code bundle.

However, working on it beyond that is not in the scope of this book.

The POS transactional source database
The DBA (Database Administrator—the person responsible for the maintenance
and administration of the database) is in charge of the POS transactional database.
The DBA has provided an Entity-Relationship (ER) diagram of the database to help
us understand the database and the relationships between the various tables. The
diagram is in the UML (Universal Modeling Language) notation. The following
image depicts a simplified version of the diagram containing the main tables
of interest and the relationships between them, including the cardinalities. The
cardinality indicates how the records in one table relate to records in the other. The
cardinality can be expressed as many-to-many, one-to-many, many-to-one, or one-to-
one, and is indicated in the diagram with counts composed of the following:

•	 0..N—zero or more
•	 1..N—one or more
•	 1—one only

The details about the columns in each table will be covered when we define
the metadata for them. If you are familiar with ER diagrams, the process of
implementing a database based on the diagram, and the concept of normalization,
you can skip the following section and move on to the The website order management
database section.

Chapter 2

[47]

The main table in the ACME_POS database is the POS_Transactions table. It holds
information about each transaction that takes place in a store, including the cash
register that processed the transaction, the employee who worked the register, the
item sold, the quantity sold, and the date. However, not all of that information is
stored directly in the POS_Transactions table; only the date and quantity are stored
directly. If all the details about the item were included in every record in the POS_
Transactions table, there would be a large amount of duplicated information. After
all, the store is not going to sell an item only one time because if it did, it wouldn't be
in business for long. There will be potentially hundreds to thousands of sales of the
same item each day, depending on how busy a particular store is. With each of those
sales, a row gets placed in the POS_Transactions table.

We can see from the diagram that a separate table was created to hold item
information and a link made from the main POS_Transactions table to the Items
table. That link is created via a foreign key stored in the POS_Transactions table
for the Items table. Instead of storing all the information about the item in the
POS_Transactions table, a single column called the foreign key is placed there.
This foreign key has a value corresponding to a value in the primary key column of
the Items table. A primary key is a value that uniquely identifies a row in the table
and, therefore, is not duplicated. We can then look up in the Items table for the
information about the item for sale by using the value in the foreign key column
for the item.

Defining and Importing Source Data Structures

[48]

This concept of storing an item's information in a separate table results in a much
greater accuracy of data, as we don't have to duplicate the item information. It is
only entered once in the Item table. If it has to be updated, there is only one record
in the Item table to update, and not thousands of records in the POS_Transactions
table. This is known as database normalization. A transactional database is usually
normalized due to this need for data accuracy.

The attributes of the POS_Transactions table are the individual pieces of
information stored in it. Each of the attributes corresponds to one of the lines
originating from the POS_Transactions table in the diagram, all except the
quantity attribute. We can see that information about the employee who worked
the register for the sale is stored in a separate table, the Employees table. This is
similar to how the items sold are handled and stored in the Items table, as well as
how the information about the register on which the sale was processed is stored in
the Registers table.

In addition to these tables, we can also notice that a few other tables in the diagram
are linked in various ways to these tables. They provide us with even more
information about the attributes of a transaction and, therefore, about the transaction
itself. We can see a table hanging off the Items table called Vendors. This table stores
the information about each vendor who supplies toys and gizmos to the ACME
company. A table called Stores is linked to the Registers table. This table tells
us information about the store in which the register is located and, therefore, about
the store that made the sale. Linked to the Stores table is the Regions table, which
provides a location breakdown by region for the stores. ACME Toys and Gizmos is
a worldwide operation and likes to track sales by breaking the world up into regions
such as Europe and Asia, and for the US it's Northeast, Southwest, and so on.

At this point we can begin to understand why the management found it so difficult
to compare sales data from all their stores and website, and why they would like to
implement a data warehouse for their data explorations. Let's look at what kind of
SQL query would be required to determine the number of flying discs sold today
in Europe that were supplied by a particular vendor. Let's just consider the number
of tables involved. We need the POS_Transactions, Items, Vendors, Registers,
Stores, and Regions tables. The only table we don't need is the Employees table.
But, why do we need the Registers and Stores tables when they wanted to know
only the amount sold in the region? Well, the answer is that it's very tough for
management to get the data they need. You see there is no direct connection from the
POS_Transactions table to the Regions table.

Chapter 2

[49]

The only way to get the region for a given transaction is to look up the register that
processed the transaction, and then look up the store in which the register is located
and that store record will give you the region. All of this is done with one massive
join SQL query to join all these tables together. A join query is one that pulls data
from more than one table at a time. As the database has a normalized structure, we
have to include those two additional tables in our join, which we really don't want,
just to get to the information we want. If we're talking about millions of transactions,
which is not at all an unreasonable situation for any large sales operation, we
would end up with highly inefficient queries that take a long time to run and make
management very unhappy with the database.

So, we're going to solve this problem with our data warehouse, which will have a
much better organization of tables for querying as we'll see in the next chapter.

The website order management database
The DBA in charge of the Oracle database for the website order management
system has provided us with its ER diagram for our information. As with the POS
transaction database, an ER diagram is provided here in a shortened version to give
us an idea of the tables involved and their relationships with each other. Later in
this book, we will have examples dealing with the POS transactional database as it
contains the sales data for the stores. This database is presented here because of the
possible future requirements to include this data. We'll use it to provide an example
of importing from a database, and as an example of some minor issues that can be
encountered when trying to analyze multiple sources of data.

Defining and Importing Source Data Structures

[50]

This database holds the sales information for the website, and we have to understand
it before importing the database. We can see that it has some tables that are similar to
the tables in the previous ER diagram that we just saw. The Orders table is the main
table in this database instead of the POS_Transactions table. It holds information
about customers who placed an order and a list of ordered items. The customer
information includes the region in which the customer is located, and this is identical
to the information in the Regions table in the POS Transactions database. The
customer information is stored in a Customers table, which is linked to the Orders
table, and we can see that the Regions table is linked to the Orders table through the
Customers table. The list of ordered items is stored in the Line_Items table, which
also has product information that identifies which product was ordered. The product
information is stored in the Products table (which is similar to the Items table in the
POS database). We can see that it has a link to the Line_Items table in our diagram.

Now we may get confused because this database has a Line_Items table and the
other database has an Items table. But we're told that the Products table actually
corresponds to the Items table, and not the Line_Items table. While this company
is entirely fictional, this kind of issue of multiple departments, each with their own
database and convention for naming tables and columns, is all too common in the
real world for data warehouse projects. It's up to us to make sense out of it all and
pull all that data into a single data warehouse where it can be queried at once. And
this is what makes our job so interesting.

Let's look at one more issue with this order management database before we move
on. This issue is the relationship between the Orders table and the Line_Items table.
Each order is composed of a variable number of line items of ordered products.
One person may place an order on the website for a doll and a fire truck, whereas
another may order a game, a deck of cards, and a baseball bat. We've seen that this
relationship between tables is accomplished in the database by storing a foreign key
to the other table to indicate the relationship, but there could be any number of line
items in an order. This would mean you will need any number of line item foreign
keys stored in the Orders table, but that is not possible. The reason is that the foreign
key in this situation is going the other way. The Line_Items table stores a foreign
key to the order of which it is a part of, as a line item can be associated with only
one order.

This was a brief overview of the source data structures we're going to be working
with and also a very brief introduction to some database design issues. Without
further ado, let's turn our attention to the Warehouse Builder, which is the real
subject of this book.

Chapter 2

[51]

An overview of Warehouse Builder
Design Center
The Design Center is the main graphical interface that we will be using to design our
data warehouse, but we also use it to define our data sources. So let's take some time
at this point to go over the user interface and familiarize ourselves with it. Release
11gR2 of the Warehouse Builder has a completely updated interface, using the
Fusion Client Platform style and presents an Integrated Development Environment
(IDE) that is the same core IDE prevalent in other Oracle applications such as
Oracle JDeveloper and SQL Developer. Anyone who has used either of those Oracle
products, will immediately recognize the overall design. It is a much improved, more
intuitive interface than the previous one from release 10gR2 and 11gR1 and provides
such improvements as automatic layout, dockable panels, and zoom capabilities in
editors within the IDE. The screenshots throughout the book have all been updated
to reflect the new interface. We launch Design Center from the Start menu under the
Oracle menu entry, as shown in the following image:

The Design Center must connect to a workspace in our repository. To review briefly,
we discussed the architecture of the Warehouse Builder in Chapter 1. This included
the repository in which we created a workspace and a user, who would be the owner
of the workspace. We used the Repository Assistant application to configure our
repository and create that user. The repository is located in the OWBSYS schema
that was the pre-installed schema the database installation provided for us. The user
name chosen was acmeowb and the workspace name was acme_ws. Now it's time to
make use of this user and workspace.

The first screen we'll be presented with is the Logon screen, which will appear in
front of the main interface screen as the first task to perform when launching the
Design Center:

Defining and Importing Source Data Structures

[52]

The first time we use this application, the Logon dialog box comes up all blank. But
after we fill in our information for the first time, it will remember the User Name
and Connection details on subsequent executions of the Design Center. Also, it
will present us with a smaller version of the dialog box with just User Name and
Password, so that we can just enter the password and don't have to re-enter the
connection details. The button above the connection details that now displays Hide
Details << will display Show Details >>. If we need to change the connection details
in that case or to just see what they are set to, click on the Show Details >> button
and it will display the full dialog box as above.

As this is our first time, we have to enter all the details. The User Name and
Password are what we specified in the Repository Assistant for the workspace
owner, and the Connection details are the Host, Port, and Service Name we
specified when we used the Database Configuration Assistant to create our database.
We'll enter acmeowb as the username and acmedw as the service name.

Chapter 2

[53]

The Workspace Management button to invoke Repository Assistant
from the Design Center Logon dialog box is gone in this new version
of the logon screen. In its place is the Getting Started button which
launches a Help center window. Depending on your operating system
version the help screen may be blank when it first comes up. There
were a couple of bugs affecting the first released version of 11gR2 on
Windows that were resolved in a subsequent patch.

The main Design Center window will be displayed next upon a successful log on.
An example is shown in the following image, which depicts the default appearance
of the Design Center:

A project called MY_PROJECT appears, which is the default project
that the Warehouse Builder will create in every workspace.

We referred to MY_PROJECT back when we discussed the final results screen of
the Repository Assistant, which showed this project name even though we hadn't
specified one.

Defining and Importing Source Data Structures

[54]

Before discussing the project in more detail, let's talk about the three tabs in the left
window of the Design Center screen. They are as follows:

•	 Projects
•	 Locations
•	 Globals Navigator

The Projects tab is where we will work on the objects that we are going to design
for our data warehouse. It was the old Project Explorer window in the previous
Warehouse Builder release. It has nodes for each of the design objects we'll be able to
create. It is not necessary to make use of every one of them for every data warehouse
we design, but the number of options available shows the flexibility of the tool.
The objects we need will depend on what we have to work with in our particular
situation. In our analysis earlier, we determined that we have to retrieve data from a
database where it is stored.

So, we will need to design an object under the Databases node to model that source
database. If we expand the Databases node in the tree, we will notice that it includes
both Oracle and Non-Oracle databases. We are not restricted to interacting with
just Oracle in Warehouse Builder, which is one of its strengths. We will also talk
about pulling data from a flat file, in which case we would define an object under
the Files node. If our organization was running one of the applications listed under
the Applications node (which includes Oracle E-Business Suite, PeopleSoft,
Siebel, or SAP) and we wanted to pull data from it, we'd design an object under the
Applications node.

The Projects tab isn't just for defining our source data, it also holds information
about targets. Later on when we start defining our target data warehouse structure,
we will revisit this topic to design our database to hold our data warehouse. So the
Projects tab defines both the sources of our data and the targets, but we also need to
define how to connect to them. This is what the Locations tab is for.

The Locations tab is where the connections are defined to our various objects in the
Projects tab. The workspace has to know how to connect to the various databases,
files, and applications we may have defined in our Projects tab. As we begin
creating modules in the Projects tab, it will ask for connection information and this
information will be stored and be accessible from the Locations tab. Connection
information can also be created explicitly from within the Locations tab.

Multiple projects can be defined in the Projects tab, but connection
information is not displayed project-wise in the Locations tab.
Connections are applicable for the entire workspace, and not just the
project we are working on.

Chapter 2

[55]

There are some objects that are common to all projects in a workspace. The Globals
Navigator is used to manage these objects. It includes objects such as Public
Transformations or Public Data Rules. A transformation is a function, procedure,
or package defined in the database in Oracle's procedural SQL language called PL/
SQL. Data rules are rules that can be implemented to enforce certain formats in
our data.

Importing/defining source database
object metadata
Now that we've been introduced to the Design Center, it's time to make use of it to
import or define the metadata about our source database objects. Metadata is data
that describes our data. We are going to tell the Warehouse Builder what our source
database objects look like and where they are located, so that it can build the code
necessary to retrieve the data from them when we design and run mappings to
populate our data warehouse. The metadata is represented in the Warehouse Builder
as objects corresponding to the type of the source object. So if we're representing
tables in a database, we will have tables defined in the Warehouse Builder.

We have a couple of options for defining the source database objects. We can
manually input the definitions into Design Center Projects tab ourselves, or we can
choose to have the Warehouse Builder automatically import the descriptions of our
data for us. As we like having the computer do the work for us whenever possible,
we will choose the second option whenever we can.

We need to be clear about the difference between importing or defining
the metadata for our sources and loading the actual data as it can be
confusing. At this stage, we are just importing or defining the definitions
of our objects. (Metadata, or data about data, is information that tells us
what the data looks like, column names, data types, and so on.) Later
when we implement our targets and actually create a mapping between
the source and the target and deploy it, we will be loading the actual data.

Creating a project
The very first thing we have to do in Design Center is make sure we have a project
defined that will hold all of our work. In the last image, we saw a depiction of the
Design Center as it appears when we first log on. Launch the Design Center now if
you haven't already and we'll start working with it.

Defining and Importing Source Data Structures

[56]

We can choose to use the default My Project project that was created for us, or create
another new one. We are just going to use this default project as the Warehouse
Builder was nice enough to create it for us. But, oh, that name is so boring. Let's give
it a new name that is more appropriate for our company project. So right-click on the
project name in the Projects tab and select Rename from the resulting pop-up menu.
Alternatively, we can select the project name, then click on the Edit menu entry, and
then on Rename. In either case, the name will be highlighted and turned to italics
and we'll be able to use the keyboard to type a new name. We'll name the project
ACME_DW_PROJECT.

If we wanted to create a new project, we would select New... either from the pop-up
menu or from the Design drop-down menu. We can have any number of projects
defined, but can work on only one at a time. There's a high possibility that we might
be building more than one data warehouse at a time, and we could have a separate
project defined for each.

Creating a module
Creating a project is the first step. But before we can define or import a source
data definition, we must create a module to hold it. A module is an object in the
Design Center that acts as a storage location for the various definitions and helps
us logically group them. There are Files modules that contain file definitions and
Databases modules that contain the database definitions. These Databases modules
are organized as Oracle modules and Non-Oracle modules. Those are the main
modules we're going to be concerned with here. We have to create an Oracle module
for the ACME_WS_ORDERS database for the website orders, and a non-Oracle
module for the ACME_POS SQL Server database. We'll create the Oracle module
first because it is the simplest. After that, we'll create the module for the SQL Server
database, which will involve a few more steps because Oracle has to communicate
with the SQL Server database.

Creating an Oracle Database module
To create an Oracle Database module, right-click on the Databases | Oracle node in
the sProjects tab of Warehouse Builder and select New Oracle Module... from the
pop-up menu. The first screen that will appear is the Welcome screen, so just click on
the Next button to continue. Then we have the following two steps:

1.	 In this step we give our new module a name, a status, and a description that
is optional. We do the following in this step:

°° On the next window after the Welcome screen, type in a name for the
module

Chapter 2

[57]

The name should reflect the name of the source database for consistency
and ease of matching the module to the source database later. We're going
to name our module ACME_WS_ORDERS, which is the name of ACME's
Website Orders Oracle database as we discovered earlier when doing our
analysis of the existing systems.

°° The module status is a way of associating our module with a
particular phase of the process, and we'll leave it at Development

°° For the description, just enter any text that helps describe the source

With each new release of the Warehouse Builder, support for non-Oracle
sources and targets is improved. Release 11gR2 now incorporates Code
Templates which continues that trend. As a result, there is no option
to specify whether this module we're creating is a source or a target.
Previous releases had an additional option here for Oracle database
modules to specify the type of module as a Data Source or a Warehouse
Target and for non-Oracle databases only Data Source.

Our screen should now look similar to the following:

Defining and Importing Source Data Structures

[58]

Click on the Next button to proceed to defining the connection.
2.	 In this step, we define the connection information for Warehouse Builder

so that it knows how to connect to the source. We do that in the next screen
using the following steps:

°° The screen starts by suggesting a connection name based on the name
we gave the module. Click on the Edit button beside the Name field
to fill in the details. This will display the following screen:

°° The name it suggested for us is ACME_WS_ORDERS_
LOCATION1. That's a fine name, except that 1 is on the end, so let's
just remove it.

°° For the connection details, we're going to enter User Name, acme_ws_
orders, and the Password that was given to us by the DBA for the
website orders system. When we type in the username and move to
the next field, the schema field will be automatically populated with
the username.

Chapter 2

[59]

If you are using the scripts downloaded from our website, the default
password used is acme1234 for the acme_ws_orders user.

°° Enter the Host where the Oracle database resides and contains the
acme_ws_orders schema, which is localhost as we're running
everything on one system.

°° The Port that the listener is listening on is 1521 so leave it as the
default. Enter acmedw as the Service Name for the Oracle database.
The schema we'll be connecting to has been automatically filled in
for us

°° One final step is to make sure the version of the Oracle database is
set correctly. The Version we're working with is 11.2, the most recent
and the default.

We should now have a screen that looks similar to the following:

°° Press the Test Connection button and if everything is OK, we'll see
a popup with a Successful! message. We'll just click OK to close the
popup. If not successful, it will display the error(s) in that popup for
us so that we can debug the problem.

Defining and Importing Source Data Structures

[60]

If we do get any errors, it's a good idea to become intimately familiar
with the error manual in the Oracle documentation, which can be
found at http://download.oracle.com/docs/cd/ E11882_01/
server.112/e17766/toc.htm. The errors will usually start with the
three characters ORA, followed by a hyphen and then the error number.
We can use all this to look up an error in the error manual to get more
information. Google, Yahoo, or any Internet search engine can also be
our friend here as (unfortunately) some of the errors, even after we look
them up in the error manual, are not exact about the cause of the problem.
Usually, searching for the error message string on the Internet can turn up
others who have encountered the same issue and explanations of what to
do about it.

°° The navigation window on the left on this dialog is new as of this
release. The additional options are not needed for a basic Oracle
connection that we're making now but are applicable to new
connections like JDBC that were not available previously. We'll cover
JDBC connections when we discuss Code Templates in chapter 10.
For now however, we're done with this dialog so click on the OK
button to proceed, even if an error was reported when we clicked
on the Test Connection button. Now we will be back at the Step 2
window where all the connection results will be filled in and it will
be ready to create the module as shown here:

Chapter 2

[61]

°° The Import after finish checkbox can be used to proceed right to the
import step but we're not going to check that box because we're going
to move on and create a module for the SQL Server database before
we import any database object metadata. So, with the box unchecked
click on the Finish button

We are now back at the main Warehouse Builder interface and we can see that it has
added our new module under the Databases | Oracle node in the Projects tab as
shown below.

Defining and Importing Source Data Structures

[62]

If we expand the Locations | Databases | Oracle module in the Locations tab,
we'll see our location ACME_WS_ORDERS_LOCATION listed as shown in the
following image. We just defined this location as a part of the process of creating
the module.

Even if we had an error during the previous process of creating this
connection, we would still see these entries created. If we could fix
whatever caused the error, we'd then have a valid working connection
without having to go back through the wizard to create it again.

Creating a SQL Server database module
Now that we have our module created for the Oracle database, let's create one for the
SQL Server POS transactional database: ACME_POS. First, let's talk in brief about
the external database connections in Oracle. If we expand the Databases node in the
Projects tab, we'll see the list of supported databases. This is slightly different from
the previous 11gR1 release of the Warehouse Builder in that all the databases are
now at the same level in the tree. That is a reflection of the improved support in this
release for non-Oracle databases. In the following image, a number of databases are
listed, including one that says just ODBC:

Chapter 2

[63]

Creating other Database Platforms
In this latest release of the Warehouse Builder, we now have the ability to
create other database platforms that aren't listed above in the default set
of other databases supported, such as MySQL for example. We will not
need that capability for this book but if you want to read more about it,
Chapter 11 of the Oracle Warehouse Builder Sources and Targets Guide
has a complete write up of the new capability. You can access it online at
the following URL:
http://download.oracle.com/docs/cd/E11882_01/owb.112/
e10582/platform_extensions.htm#CHDHEGEX

The POS transactional database is a Microsoft SQL Server database and we'll notice
that it is one of the databases listed by name. We might think this is where we're
going to create our source module for this import, but no.

The Warehouse Builder makes use of a couple of options for making connections
to other databases. One of the options is Oracle Heterogeneous Services. This is a
feature that makes a non-Oracle database appear as a remote Oracle database server.
There are two components to make this work—the heterogeneous service that comes
by default with the Oracle database and a separate agent that runs independently of
the database. In addition to that option, there is now the option to use JDBC (Java
Database Connectivity) to connect to a remote non-Oracle database.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Defining and Importing Source Data Structures

[64]

For the Heterogeneous Services option the agent facilitates the communication with
the external non-Oracle database and can take one of these two forms:

•	 An Oracle Database Gateway agent that is tailored specifically to the
database being accessed

•	 A generic connectivity agent that is included with the Oracle Database
and which can be used for any external database

The Oracle Database Gateway agents must be purchased and installed separately
from the Oracle Database, and then configured to support the communication with
the external database. They are provided for heavy-duty applications that do a large
amount of external communication with other non-Oracle databases. The generic
connectivity agent comes free with the Oracle Database. It is a low-end solution
that makes use of ODBC or OLE-DB drivers for accessing the external database.
ODBC (Open Database Connectivity) is a standard interface for accessing database
systems and is platform and database independent. OLE-DB (Object Linking and
Embedding-Database) is a Microsoft-provided programming interface that extends
the capability provided by ODBC to add support for other types of non-relational
data stores that do not implement SQL such as spreadsheets.

There is a significant difference between the Oracle Database gateways and the
generic connectivity agent. The generic connectivity agent is restricted to the features
of ODBC or OLE-DB and is very generic as a result. The database gateways are
specifically tailored to the non-Oracle database and support a much wider range of
database access features for the database being connected to. As a result, one aspect
to consider is how extensive our access to the other database will be from our Oracle
database and what database features we'll need to use. The generic connectivity
agent is limited in some of the features it allows when accessing another non-Oracle
databases compared to the gateways, and this factor may depend on whether we
need these features or not. For working through the exercises in this book, the
Warehouse Builder will work just fine with either option, a specific gateway or
the generic connectivity option. We will use the generic option since our sample
warehouse we're building is not that complicated.

Refer to the documentation to make a decision about which
would be an appropriate choice of the agent in your case. The
Heterogeneous Connectivity Administrator's Guide can be
found at the following URL: http://download.oracle.com/
docs/cd/E11882_01/server.112/e11050/toc.htm. The
Gateway for ODBC User's Guide documentation can be found
here: http://download.oracle.com/docs/cd/B28359_01/
gateways.111/e10311/toc.htm.

Chapter 2

[65]

There is the second option, using JDBC that we will also cover later in Chapter 10
when we discuss the new Code Templates available now in the Warehouse Builder
as of release 11gR2. If JDBC is used, the only mappings that can access the sources or
targets using it are Code Template mappings, not the regular PL/Sql based original
mappings in the Warehouse Builder. That is why we'll cover them separately later.

The particular method we choose will determine which of the nodes under the
Databases node will be used to create our SQL Server database module.

The individually named database nodes are used if we're using
a transparent gateway agent tailored for that database or are
using JDBC. The ODBC node is the one we use for any database
connections using the generic connectivity agent.

Now that we've decided to use the generic connectivity solution, we need to create
an ODBC module in Warehouse Builder to hold our definitions of source data
for the POS transactional database. As this is a non-Oracle database we're using
for the source, the module will be created under the Databases | ODBC node in
the Warehouse Builder and not under the Databases | Oracle node as it is not an
Oracle database. Expanding the Databases as shown in the previous image, we see
that there is an ODBC node available. It is under this node that we will create our
module for the source definitions for the POS transactional database.

However, there is one problem—because this is a non-Oracle database we're
connecting to, we have to provide information to our Oracle database so that it
knows how to connect. Warehouse Builder uses the underlying Oracle database
Heterogeneous Services to make the connection. So this information must be
configured before we define our module and location in the Warehouse Builder.
In the following section, we will go through the steps to define our connection
to the SQL Server database named ACME_POS. We're going to depart briefly from
Warehouse Builder-specific topics here, but only because this is necessary for us to
continue in the Warehouse Builder.

If you are following along with each of these steps and want to create the
ACME_POS database, you can run the scripts that have been provided
in SQL Server to create the database and tables. They are available for
download from the Packt website at http://www.packtpub.com/
files/code/3449_Code.zip. Microsoft SQL Server 2008 Express
was used for this book to generate the scripts because it is available
free of charge. It is available from Microsoft's website at http://www.
microsoft.com/express. It is available without charge and provides
all the SQL Server functionality we'll need for this book.

Defining and Importing Source Data Structures

[66]

Creating a SQL Server database connection
The first step that is required in making use of Oracle Heterogeneous Services to
access a non-Oracle database using the generic connectivity agent is to create an
ODBC connection. We do that by setting up a system DSN (Data Source Name). A
DSN is the name you give to an ODBC connection. An ODBC connection defines
which driver to use and other physical connection details that are needed to make a
connection to a database. On Microsoft Windows, we configure DSNs in the ODBC
Data Source Administrator. The following are the steps for configuring a DSN:

1.	 You can access this application by navigating through the Start | Control
Panel | Administrative Tools menu. The application is called Data Sources
(ODBC).

2.	 In ODBC Data Source Administrator, click on the System DSN tab, and
then click on the Add button to add a new system DSN.

3.	 The first screen asks you to select which driver you want to use for your data
source. ODBC drivers are specific to a database, so you have to use the one
that is defined for accessing a SQL Server database. Scroll down the list until
you see the SQL Server entry and click on it. Now click on the Finish button.
This will take you to the screens that create an ODBC data source for con-
necting to SQL Server. Each ODBC driver requires a different configuration
depending on the database it is connecting to.

4.	 For SQL Server, the first screen will ask you for a Name, Description, and
the host on which the SQL Server database is located. For clarity, let's name
our DSN ACME_POS after the database, enter Data Source for connecting
to the ACME POS database for the description, and localhost\SqlExpress
for the hostname in the Server field as illustrated in the following image:

Chapter 2

[67]

If the SQL Server instance that's being connected to is not on the same ma-
chine as the Oracle Database, then just enter the hostname where it is actually
located instead of localhost. In actual business environments, the databases
we are going to be using for source databases will most likely be located on
other computers elsewhere on the network. We will enter the hostname for
the other machine on which the SQL Server database is located in that case.

5.	 Click on the Next button to proceed.

Notice \SqlExpress at the end of the hostname. This is required
because SQL Express is installed as what is called a named instance,
which basically requires that the name be included with the
hostname for it to be found successfully.

6.	 In the next screen we will specify the authentication method to use to
connect to the database. We have two options here. We can use Windows
NT Authentication using the network login ID. (SQL Server will use
the network or local machine login ID of the user connected at that time.)
Alternatively, we can use SQL Server authentication using a login ID
and password provided to us. The ACME DBA in charge of the ACME_POS
database has kindly set up a username for us to access the ACME_POS database
for importing definitions and data. He's given that user read permission on
the tables in the database. The username is acme_dw_user. So we will use the
second option.

The scripts that are provided with this book are available for download
and can be used to set up the SQL Server database to work through the
examples in the book. This database uses the names that are provided
here for the database and user.

7.	 There is a checkbox at the bottom of the screen to check off and have the
new data source wizard connect to the SQL Server to obtain additional
information. We are going to check that box if it is not checked by default,
and enter the username and password provided by the ACME_POS DBA.

An important item to note here is that this username and password are
used only by the DSN creation application to access the database for
some additional configuration items during the DSN setup process.
This username and password will not be used by any application that
subsequently uses our ODBC DSN to connect to the SQL Server. We will
provide those connection details in a moment when we get to define the
connection in the Warehouse Builder.

Defining and Importing Source Data Structures

[68]

8.	 This is how our screen looks and we will click on Next to continue:

9.	 In the next screen, the primary item we want to verify is whether the default
database is listed as ACME_POS so that when we use the ODBC connection
it is connected to the correct database. It's quite possible for the username
provided to have access to more than one database on the SQL Server
instance if more than one exists. If the correct database is not showing, then
check the box beside the database name and select the correct database as
shown in the following screenshot:

Chapter 2

[69]

10.	 Leave all the other options set as they are and click on the Next button to
continue.

11.	 The next screen is full of configuration options that we should just leave
set to the defaults and click on the Finish button to complete the process.
This will present us with the final summary screen of the ODBC connection
details as shown in the following screenshot. The screenshot may appear
with a different version number and slightly different entries depending on
which version of Windows and the ODBC driver is running. These slightly
different entries will not make a difference in following along in the steps in
this chapter and the functionality we'll be covering.

If we want, we can test the newly created data source right here. If we click on the
Test Data Source... button, it will make a connection to the database and return a
screen indicating success or failure. Click on the OK button on this screen and the
ODBC connection will be created. It will now appear on the System DSN tab of the
ODBC Data Source Administrator.

Defining and Importing Source Data Structures

[70]

Configuring Oracle to connect to SQL Server
Let's move on to the next step in the process of getting Oracle Heterogeneous
Services to connect to our SQL Server database. We will configure Oracle now that
we have our ODBC connection created. The following are the two steps
involved here:

1.	 Create a heterogeneous service configuration file.
2.	 Edit the listener.ora file.

Creating a heterogeneous service configuration file
We will be creating a heterogeneous service configuration file in the ORACLE_HOME\
hs\admin folder. Just substitute your applicable ORACLE_HOME location. The
following are the steps to create this file:

1.	 Open Windows Explorer and navigate to the ORACLE_HOME\hs\admin folder.
There is a sample init file called initdg4odbc.ora that Oracle has been kind
enough to supply us with. We can easily modify this file to suit our purpose.
It is a plain-text file, so we can use any text editor to edit it.
Let's open the file named initdg4odbc.ora in our favorite text editor, or
Windows Notepad if we don't have any other text editor.
This is the default init file for using ODBC connections. The contents will
basically look like the following:
This is a sample agent init file that contains the HS parameters
#that are needed for the Database Gateway for ODBC
#
HS init parameters
#
HS_FDS_CONNECT_INFO = <odbc data_source_name>
HS_FDS_TRACE_LEVEL = <trace_level>
#
Environment variables required for the non-Oracle system
#
#set <envvar>=<value>

The lines that begin with # are comment lines and will be ignored. The
two lines we're interested in are the ones that are in bold in the code we
just saw.

2.	 The HS_FDS_CONNECT_INFO line is where we specify the ODBC DSN that
we just created in the previous section. So replace the <odbc data_source_
name> string with the name of the Data Source, which is (unless you changed
it from what was suggested) ACME_POS.

Chapter 2

[71]

3.	 The HS_FDS_TRACE_LEVEL line is for setting a trace level for the connection.
The trace level determines how much detail gets logged by the service and it
is OK to set the default as 0 (zero).

To read more about what this entry's purpose is, refer to the Oracle
Database Heterogeneous Connectivity Administrator's Guide 11g Release 2
at the following URL: http://download.oracle.com/docs/cd/
E11882_01/server.112/e11050/toc.htm.

Having made those changes, our file should now look like the following:
This is a sample agent init file that contains the HS
parameters that are
needed for the Database Gateway for ODBC

#
HS init parameters
#
HS_FDS_CONNECT_INFO = ACME_POS
HS_FDS_TRACE_LEVEL = 0

#
Environment variables required for the non-Oracle system
#
#set <envvar>=<value>

4.	 Now we will save the file with a new name and will be careful not to
overwrite the default file. We'll give it a name that begins with init and ends
with .ora, and contains a name in the middle that is descriptive and does not
contain spaces or special characters. Let's save it as initacmepos.ora.

Leave out the underscore character as we're not allowed to use special characters.
We might think it's just a filename and it is certainly allowed to use an underscore in
the filename. However, this part of the filename must be used in the next step for a
purpose that does not allow special characters to be used.

Defining and Importing Source Data Structures

[72]

Editing the listener.ora file
Now we're going to add a SID to our listener.ora file. When we configured the
listener back in Chapter 1, it created a listener.ora file in ORACLE_HOME\network\
admin. The steps for this are:

1.	 Load the listener.ora file into a text editor (or Notepad). Add the
following lines to the file:
SID_LIST_LISTENER=
 (SID_LIST=
 (SID_DESC=
 (SID_NAME=acmepos)
 (ORACLE_HOME=C:\app\bob\product\11.2.0\dbhome_1)
 (PROGRAM=dg4odbc)
)
)

There is a sample listener.ora file called listener.ora.sample,
which is provided for us in the ORACLE_HOME\hs\admin folder. It
contains the above lines that can be cut and pasted into our actual
listener.ora. We just need to correct SID_NAME to acmepos.

For SID_NAME, we have to specify the name we used as part of the name
of our init file in the previous step. This is why no special characters were
allowed because this name will become the SID for our database connection
and SIDs cannot have special characters. However, don't include the init
or .ora from the name of this file.
In the PROGRAM entry, we will specify the agent that will handle the
connectivity for us and the name of the generic connectivity agent program
supplied with the Oracle Database 11g is dg4odbc. For ORACLE_HOME, you
will substitute your particular ORACLE_HOME location, which will be different
unless your username is also bob and you installed Oracle using the default
naming convention on the C drive.

An important tip about the PROGRAM name
Make sure you use the correct name for PROGRAM for your version of the
database. In versions prior to 11g, the generic connectivity agent name
was hsodbc. However, in Oracle Database 11g, it is known as dg4odbc.
If we use the wrong name for PROGRAM, or misspell it, we will get a
strange error message when we try to define our connection information
using this external link.

Chapter 2

[73]

There may already be a SID_LIST_LISTENER entry in the listener.ora file.
If so, just add the SID_DESC section above the existing SID_LIST_LISTENER
SID_DESC entry. By studying that entry, you can see the syntax for how the
SID_DESC sections are listed; so just follow the same convention.

2.	 After we save the listener.ora file, we must restart the listener for the
change to take effect. We can restart it by navigating to Start | Control Panel
| Administrative Tools and then clicking on Services. Now, scroll down
until you see the service for your database listener, which will be named
starting with Oracle and ending in TNSListener. It will contain ORACLE_
HOME—OracleOraDb11g_home1TNSListener. Now right-click on it and
select Restart.

Creating the Warehouse Builder ODBC module for
SQL Server
Now that we have defined our source SQL Server database connection information
in Oracle, we are done with our foray into non-Warehouse Builder-specific topics.
We will get back to the main topic of creating the module and location in the
Warehouse Builder. This process is very similar to creating a module for an Oracle
database as we just did. There are some slight differences in a couple of screens,
which we'll point out as we go along. The steps to create an ODBC module and
location in Warehouse Builder are as follows:

1.	 Right-click on the ODBC node in the Projects tab of Design Center, and
select New ODBC Module... from the pop-up menu. The first screen that will
appear is the Welcome screen, so just click on the Next button to continue.

2.	 The screen with the label Step 1 is where we provide a name as we did for
the Oracle module. We're going to name this ODBC module ACME_POS,
which is the name of ACME's POS transactional database in SQL Server as
we discovered earlier when analyzing the existing systems.

3.	 We'll leave module status set to Development.

Defining and Importing Source Data Structures

[74]

4.	 The next screen labeled Step 2 is for the connection just as earlier. We'll click
on the Edit button beside the name to fill in the details. This will display the
following screen:

We'll remove the 1 as we did for the Oracle connection.
5.	 For the connection details, we will enter the User Name as "acme_dw_user",

and Password, which was given to us by the DBA for the transactional
system.

We have to make sure that both username and password are enclosed
in double quotes. The Oracle database will automatically make them
uppercase if we don't, and the SQL Server database does not like that.
So, if we get a username and/or password incorrect error, we'll double-
check that we enclosed them in double quotes; yes, even the password.
The double quotes in the password will appear as asterisks like the rest
of the password, but make sure to put them in there.

6.	 Enter the Host where the Oracle database resides and where we configured
the heterogeneous services. It is localhost as we're running everything on the
same system.

Chapter 2

[75]

Here we might think that we have to enter the hostname of where
the SQL Server database resides, as we're entering connection
information to connect to it. Remember that although we're using
Oracle Heterogeneous Services to make that connection for us and
have already gone through the steps to configure it in the listener to
connect to the ODBC DSN, where the actual connection information
for the SQL Server database is specified. This means what we need
to specify here is the connection information for the SID that we
configured earlier as if we're connecting to an Oracle database. In
reality, it will actually be connecting to the SQL Server database

7.	 The Port the listener is listening on is 1521, so leave it as the default. Enter the
Service Name that we configured in the previous section in the listener for
the generic connectivity dg4odbc agent—acmepos.

8.	 Finally, enter the schema we'll be connecting to. For SQL Server, the owner
of most databases is referred to internally as DBO and so this is what we're
going to put here.

Just as with the username and password, we have to make sure we
enclose the schema name in double quotes also or we will run into
problems if we try to import data objects using this location. It is also
important to make sure the schema name that is in double quotes is
also all lower case letters. It will save us from having issues as we'll see
in a moment when we discuss importing data objects.

9.	 We should now have a screen that looks similar to the following:

Defining and Importing Source Data Structures

[76]

10.	 We can click on the Test Connection button to make sure everything is
working properly and the results will be displayed in the Test Results pop-
up window.

This is where we may encounter an error if the PROGRAM name is
incorrect in the listener.ora file. Here's such an example of an error
and you can see how unhelpful these error messages can be: ORA-
28545: error diagnosed by Net8 when connecting to an agent Unable to
retrieve text of NETWORK/NCR message 65535. Even if we search the
Internet and documentation for solutions, many suggestions will mention
hsodbc, and not dg4odbc. The solution to this particular error actually
refers to the PROGRAM name. In this case, the initdg4odbc.ora and the
listener.ora.sample example files in the ORACLE_HOME\hs\admin
folder clearly say dg4odbc and not hsodbc. Those who work a lot with
Oracle 10g may (out of habit) have used hsodbc, never once thinking
about double-checking whether that was correct or not. The error can also
occur if we use a different service name than was actually defined in the
listener.ora file. The moral of the story: Use the example files as a starting
point but make sure the SID_NAME is correct!

11.	 Click on the OK button to proceed even if there was an error reported when
we clicked on the Test Connection button. We will be back at the Step 2
window with all the connection results now filled in and we will be ready to
create the module as shown here:

Chapter 2

[77]

12.	 The Import after finish checkbox will not be checked by default. We'll leave
it that way since we're going to import separately in the next step starting
with the Oracle module. So, make sure it's unchecked and click on the
Finish button.

We are now back at the main Warehouse Builder interface and we can see that it has
added our new module (ACME_POS) under Databases in the Projects tab as
seen below:

In the Locations tab, if we expand the Locations | Databases| ODBC node or
module, we'll see ACME_POS_LOCATION listed, which is our location that we just
defined as part of the process of creating the module. This is shown in the
following screenshot:

Defining and Importing Source Data Structures

[78]

Even if we had an error during the previous process of creating this
connection, we would still see these entries created. If we could fix
whatever caused the error, we'd have a valid working connection
without having to go back through the wizard to create it again.

Importing source database objects from a
database
We are now at the point where we can finally import our source database objects.
source database objects. We'll walk through the process of importing from an
Oracle database, which is very similar to the process of importing from a non-
Oracle database; so it will be a good exercise to walk through pointing out specific
differences as we go. After that, we will walk through the process of defining the
metadata for our SQL Server database tables using a data object editor for tables,
which is integrated into the Warehouse Builder for working with tables. We could
just as easily import the database objects from SQL Server but we'll walk through
the process for one source table manually just so we can learn about the process of
editing data objects. We will then leave the rest as an exercise for the reader to be
done in a similar manner or to be imported automatically. Let's start by importing
from the Oracle database using the following steps:

1.	 We are going to begin by right-clicking on the ACME_WS_ORDERS
module name under the Databases | Oracle node in the sProjects tab and
selecting Import and then Database Objects… from the pop-up menu.

The Import submenu that appears when we right-click and choose Import
on a database node has more than one choice. We might be tempted here
to select the first choice, Warehouse Builder Metadata… for this import;
however that is for a different kind of import, Metadata exports and
imports that we'll look at in Chapter 9. In this new release, that option has
been added to the context menus on the various objects and to differentiate
that process from the task of importing data objects from source database
systems, the option we want has been named Database Objects….

We will then be presented with the Import Metadata Wizard. This is the
same wizard that will be used for importing from any of the available source
data options, databases, files, and so on. It will tailor its prompts for the par-
ticular type of source we selected.

Chapter 2

[79]

We may at this point see a pop-up warning about the connection not
being set and to click OK to set connection details. That's frequently
just because the password didn't get saved with the connection. It will
display the connection details where we can fill in the proper password
before continuing.

2.	 Click on the Next button on the Welcome screen and we'll be presented with
a screen labeled Step 1 of the process where we choose what to import. The
following image is what it looks like for an Oracle database:

Defining and Importing Source Data Structures

[80]

We can make selections on this screen to filter out just what we want to im-
port, or we can leave everything checked to be able to import anything. This
screen will appear slightly different depending on what type of source we're
importing from. We will have all these options for an Oracle database, but for
our ODBC connection to the SQL Server database, it will have checkboxes for
just Table and View as shown next:

There will also be a checkbox for whether to use synonyms to look up the
objects, and a text box where we can enter a search pattern to use if we
want to further refine what is available to us. We're just going to check the
Table checkbox since it is only tables we'll be importing from either source
database. Checking the Use a Synonyms box means that if there are any
synonyms defined (alternative names for database objects), then the import
wizard will use those names and present them to us; otherwise it uses the
underlying actual object names. As there are no synonyms being used in the
ACME_WS_ORDERS or ACME_POS source databases, it will not make a
difference whether it's checked or not.

Chapter 2

[81]

3.	 Click on Next to move on to Step 2:

This screen is where we will choose the specific objects that we wish to import.
There will be an entry in the left window for each of the boxes we left
checked in Step 1. Notice (at the bottom) the buttons for choosing the level
for importing dependents. The Import Wizard can automatically import
other objects that might depend on the object we're selecting based on
foreign key definitions that it detects in the source database. The number
of levels means how far it goes in tracing foreign key relationships. If we
say one level, which is the default, then it will import any tables that have
foreign key relationships to the table selected but will not check those tables
for relationships. If you say All Levels, then it will follow relationships until
it doesn't find any further relationships. We're going to select all the tables in
our ACME_WS_ORDERS schema or the ACME_POS Sql Server schema to import,
so this setting will not have an effect on what gets imported. Therefore, we'll
leave it set to the default.

Defining and Importing Source Data Structures

[82]

4.	 Click on the plus sign beside the Tables entry to see the complete list of
tables to choose from. We will see all of the website orders' database tables
that we discussed earlier and if importing the ACME_POS Sql Server database,
all of the source point of sale transaction database tables.

If we were importing from a SQL Server database and had not enclosed the
schema name in double quotes and made it lowercase, we would not see
any tables show up here. There would be no error message at all. It would
look like it was doing something and then the plus sign would change to
a minus sign as if it had expanded and displayed all the tables but nothing
would show up. In fact, no error is generated as far as the Warehouse
Builder is concerned. It submits a SQL statement to the source database
requesting a list of table names where the owner is the schema name we
included in the location but it makes that schema name uppercase unless
we use the double quotes. The schema name in MS SQL Server is lower
case and therefore the SQL statement returns no results and so nothing
displays. So, when setting up a SQL Server location, be sure to make the
schema name lowercase and use double quotes around it.

5.	 Clicking on the plus sign to expand an entry on this page is the first time the
wizard will actually make a connection to the source database. If we saved
the connection information before and didn't test it to make sure it worked,
this is where we'll find out.
The table names will display under the tables entry. If we've already im-
ported any of the tables previously, those will be displayed in bold. We can
re-import them to pick up any changes that might have been made to them.
We're going to click on all the tables, and then click on the single right arrow
(>) in the middle of the screen to move those tables over to the right side.
This will signify that we want to import them. As we want all the tables this
time, we could alternatively click on the Tables entry itself and then on the
single right arrow (>) to move that entry and everything in it over to the right
or just click the double right arrow (>>) to move everything. At this point, if
we had one of the options checked for importing dependents and had not al-
ready selected the dependents to import, it would display a dialog box. This
dialog box would inform us of any additional objects it detected as
dependents that it was going to automatically add for us.

6.	 We'll click on the Next button to proceed to the Summary and Import page
where it will summarize the selections we've made and tell us the action it
is going to take for each selection—whether to create or re-import the object.
There is also an Advanced Import Options... button that will be available on
that screen as we can see in the following image:

Chapter 2

[83]

Clicking on the Advanced Import Options... button presents us with a dialog
box similar to the following screenshot:

Defining and Importing Source Data Structures

[84]

This dialog box will be slightly different, depending on the type of object and
the type of source being imported. The screenshot we just saw is an example
for a table from an Oracle database. It specifies whether to import certain fea-
tures, such as indexes or physical properties, and also whether any possible
changes we've made to the objects in the Warehouse Builder workspace after
import should be preserved.

The option for preserving changes made in the workspace would
definitely be something we will need to consider if we subsequently
import objects from SQL Server after defining them manually. If we don't
uncheck the boxes for preserving workspace changes and we've already
created all the tables manually as we're about to do, it will leave all our
column definitions in place and add new columns for each of the columns
in the table. In that case, we would definitely want to uncheck the
preserve checkboxes so our manual edits are replaced with a clean copy.

The following is what we'll see for Advanced Options when importing from
a SQL Server database using the ODBC module:

We have verified on the Summary and Import screen that we have included
everything we want to import and we don't need to bother with unchecking
any of the advanced import options. So we will click on the Finish button,
which will begin the import process.

7.	 During the import, a status dialog box will be displayed showing the
progress of the import as each object is imported. When it completes, we'll
be presented with the final Import Results screen showing the status of the
import. We can click on the plus sign beside each entry to see the details as
shown in the following screenshot with the Customers table expanded to
show each of the columns:

Chapter 2

[85]

The other buttons you have on this screen are:
°° A Save button which will allow us to save a Metadata Import Result

Report log file so we can have a record of the results of our import if
desired.

°° An Undo button that we could click on at this point to cancel the
import. The Import Metadata Wizard has not actually saved any
information to the database yet, so clicking on the Undo button will
just throw away what we've done so far and not make any changes to
the database.

°° The OK button will save the changes to the module in Projects tab
from which we performed the import.

In this case, clicking on OK is going to save the imported tables in the
ACME_WS_ORDERS module that we created under the Databases | Ora-
cle node or the ACME_POS module under the Databases | ODBC node. We
can verify this by going back to the Projects tab window and expanding the
appropriate module if it's not already expanded by clicking on the plus sign,
and we should see the list of tables.

Congratulations! We've imported our first set of objects into the Warehouse Builder.

Defining and Importing Source Data Structures

[86]

Let's take a look at the Table Editor (a data object editor for editing tables) now as
another alternative available to us for entering the metadata for our source database
tables. If the import were to fail for some reason, we could always fall back to
manually entering the information for our source databases. A third option would be
to copy and paste table metadata across modules. We'll discuss copying and pasting
metadata in Chapters 9 and 10.

We should save our work at this point. So we'll select Design | Save All from the
toolbar menu of the Design Center application or press the Ctrl + S key combination
to save our work.

Defining source metadata manually with the
Table Editor
Before we can continue building our data warehouse, we must have all our source
table metadata created. If the automatic import via the Metadata Import Wizard
were to fail for whatever reason, we must create the source metadata manually
in that case. It is not a particularly difficult task. However, attention to detail is
important to make sure what we manually define in the Warehouse Builder actually
matches the source tables we're defining. Warehouse Builder provides contextual
data object editors for creating and editing source metadata. The Table Editor is
a tool we can use to create database tables in the Warehouse Builder. The steps to
manually define the source metadata using the Table Editor are:

1.	 To start building our source tables for the POS transactional SQL Server
database, let's launch the OWB Design Center if it's not already running.
Expand the ACME_DW_PROJECT node and take a look at where we're
going to create these new tables. We created our ACME_POS module for
the SQL Server source database under the Databases | ODBC node so that
is where we'll create the tables. Navigate to the Databases | ODBC node,
and then select the ACME_POS module under this node. We will create
our source tables under the Tables node, so let's right-click on this node
and select New Table from the pop-up menu. As no wizard is available for
creating a table, we are using the Data Object Editor to do this.

2.	 The first screen we'll be presented with is a small popup asking us to fill in
the name and a description for the new table we're creating. We're going to
create the metadata for the ITEMS table so let's change the name to ITEMS
and click OK to continue.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 2

[87]

3.	 Upon selecting OK, we are presented with the Table Editor
screen on the right hand side of the main Design Center interface. It's a clean
slate that we get to fill in, and will look similar to the following screenshot:

There are a number of facets to this interface but we will cover just what we
need now in order to create our source tables. Later on, we'll get a chance to
explore some of the other aspects of this interface for viewing and editing a
data object. The interface is completely customizable also. The Sub-windows
can be dragged to any position we want. For our purposes now we're going
to leave the interface as it is and be working in the main Table Editor win-
dow labeled ITEMS. The fields to be edited in this Table Editor are as follows:

°° The first tab it presents to us is the Name tab. We can see all the
various tabs arrayed along the bottom of the ITEMS editor window.
The Name is already filled in for us from the initial popup so we'll
move on to define the columns.

Defining and Importing Source Data Structures

[88]

°° Let's click on the Columns tab next and enter the information that
describes the columns of the Items table. To make the window easier
to work with we'll minimize the Properties Inspector to make more
room for the main ITEMS editor window. Just click the minimize
button in the upper right corner of the Properties Inspector and
we'll see it minimize along the right hand side of the interface. Our
window should now look similar to the following:

°° How do we know what to fill in here? Well, that is easy because the
names must all match the existing names as found in the source POS
transactional SQL Server database. For sizes and types, we just have
to match the SQL Server types that each field is defined as, making
allowances for slight differences between SQL Server data types and
the corresponding Oracle data types.

The following will be the columns, types, and sizes we'll use for the Items
table based on what we found in the Items source table in the POS transac-
tion database:
ITEMS_KEY number(22)
ITEM_NAME varchar2(50)
ITEM_CATEGORY varchar2(50)

Chapter 2

[89]

ITEM_VENDOR number(22)
ITEM_SKU varchar2(50)
ITEM_BRAND varchar2(50)
ITEM_LIST_PRICE number(6,2)
ITEM_DEPT varchar2(50)

We'll enter each of these column names on the Columns tab of the Data
Object Editor for the Items table; and as we enter each name, it will suggest
data types and sizes, which may or may not be adequate. It makes a best
guess based on what we enter for the name, and may or may not relate to the
source data type and size. For ITEMS_KEY, it suggests a number with preci-
sion 22. For ITEM_VENDOR, it actually suggested a varchar2 type. We simply
change it to match the ITEMS_KEY, as we see in the SQL Server database that
both these fields are defined as type INT and 22 for the precision is large
enough to hold an integer from SQL Server. An integer is a four-byte num-
ber, no larger than 2,147,483,647. The other character fields in the SQL Server
Items table are all of the varchar type, which is the SQL Server equivalent
to a varchar2 in Oracle. So we make sure they are varchar2 with sizes that
match. The ITEM_LIST_PRICE is defined with both a precision and scale
because that is a decimal number in the Items table in SQL Server with that
precision and scale.

Precision and scale of numbers
Properties of number data types can include a precision and scale. Oracle
allows a number data type to be specified without indicating a specific
precision and scale. Precision indicates the maximum number of digits
the number can contain, and scale indicates the number of decimal places
to the right of the decimal. If we don't specify them, Oracle Database will
accept a number of any precision and scale as long as the number doesn't
fall outside the range allowed, which is between 1.0 x 10-130 and 1.0 x
10126. We would specify a precision and scale to enforce greater data
integrity in the database. For example, if we enter a number that has more
digits than the specified precision, it will generate an error even though
the number might still fall in the acceptable range.

Defining and Importing Source Data Structures

[90]

When completed, our column list should look like the following screenshot:

We don't have to worry about specifying information for any of the other
tabs for this source table. The important details are the column names, and
their types and sizes. Later in the book, we'll have a chance to revisit this edi-
tor again and discuss the remainder of the tabs.

4.	 We can save our work at this point and close the Table Editor window now
before proceeding. So we'll select File | Save All from the main menu of
the Design Center, or press the Ctrl + S key combination to save our work.
We can close the Table Editor window for the ITEMS table by hovering the
mouse over the ITEMS tab at the top of the window and then clicking on the
X that appears or by selecting File | Close from the Design Center. Closing
the editor window is really a matter of preference. With this new release of
the Warehouse Builder, all the editors are integrated into the main interface
and as new ones are opened, new tabs will be added to the canvas on the
right. We can close the Start Page also just to clean up the work area and it
will be blank until we open another tool or editor.

Chapter 2

[91]

We now have the option to continue this process to define the metadata for the
remaining SQL Server tables that we'll need or to just do the import using the Import
Metadata Wizard. If continuing to enter tables manually, the process is identical;
just change the names of the tables and the types and sizes of the columns to match
their respective tables. We will not need all the tables defined in the ACME_POS
database—only a subset is used throughout the remainder of the book to build the
data warehouse. The tables needed are the POS_TRANSACTIONS, REGISTERS, STORES,
and REGIONS tables. The column information for each of them is provided here for
reference and help in creating the corresponding tables in the Warehouse Builder:

POS_TRANSACTIONS

POS_TRANS_KEY number(22)
SALES_QUANTITY number(22)
SALES_ASSOCIATE number(22)
REGISTER number(22)
ITEM_SOLD number(22)
DATE_SOLD date
AMOUNT number(10,2)

REGISTERS

REGISTERS_KEY number(22)
REGISTER_MANUFACTURER varchar2(60)
MODEL varchar2(50)
LOCATION number(22)
SERIAL_NO varchar2(50)

STORES

STORES_KEY number(22)
STORE_NAME varchar2(50)
STORE_ADDRESS1 varchar2(60)
STORE_ADDRESS2 varchar2(60)
STORE_CITY varchar2(50)
STORE_STATE varchar2(50)
STORE_ZIP varchar2(50)
REGION_LOCATED_IN number(22)
STORE_NUMBER varchar2(10)

REGIONS

REGIONS_KEY number(22)
REGION_NAME varchar2(50)
CONTINENT varchar2(50)
COUNTRY varchar2(50)

Defining and Importing Source Data Structures

[92]

Case sensitivity of column names in SQL Server
We used all uppercase for the column names above because the
Warehouse Builder defaults the case to upper for any column name that
we enter. However, this could cause a problem later while retrieving
data from the SQL Server tables using those column names if the case
does not match the way they are defined in SQL Server. SQL Server will
allow mixed case for column names, but the Oracle database assumes all
uppercase for column names. It is possible to query a mixed-case column
name in SQL Server from an Oracle database, but the name must be
enclosed in double quotes. The code generated by the Warehouse Builder
recognizes this and puts double quotes around any references to column
name. If the import had worked, it would have created the column names
with matching case and there would have been no problem. However,
when the Table Editor manually enters columns, it has no option to enter
a mixed-case name. We'll run into errors later if the corresponding SQL
Server column names are not in all uppercase. The database scripts that
can be downloaded from the Packt website (http://www.packtpub.
com/files/code/3449_Code) to build the database contain the
column names in all uppercase to avoid any problems.

To import the remainder of the tables automatically using the wizard, just follow
the steps described above for importing source table metadata but start the import
by right clicking on the ACME_POS database node under ODBC instead of the Oracle
node. The remainder of the import steps are as documented previously.

Be sure to save each table as it is created to make sure no work gets lost. When all the
tables are entered or imported, our defining and importing of source metadata
is completed.

Importing source metadata from files
One final object type we need to discuss before we wrap up the source metadata
importing and defining is the importing of data object metadata from a file. The
Warehouse Builder can take data from a flat file and make it available in the database
as if it were a table, or just load it into an existing table. The metadata that describes
this file must be defined or imported in the Warehouse Builder. The file format must
be delimited, usually with commas separating each column and a carriage return
at the end of a record (CSV file). The option to use a flat file greatly expands the
flexibility of the Warehouse Builder because now it allows us to draw upon data
from other sources, and not just databases. That can also be of great assistance even
in loading data from a database if the database is not directly network accessible to
our data warehouse. In that case, the data can be exported out of the source database
tables and saved to a CSV file for us to import.

Chapter 2

[93]

For our ACME Toys and Gizmos company data warehouse, we've been provided a
flat file. This file contains information for counties in the USA that the management
wanted to see in the data warehouse to allow analyzing by county. For stores in the
USA, the store number includes a code that identifies the county the store is located
in, and the flat file we've been provided with contains the cross reference of the code
to the county that we'll need.

The file name is counties.csv and it is available in the download
files from the Packt website at http://www.packtpub.com/files/
code/3449_Code.

The process of creating the module and importing the metadata for a flat file is
different from Oracle or non-Oracle databases because we're dealing with a file in the
file system now instead of a database. The steps involved in creating the module and
importing the metadata for a flat file are as follows:

1.	 The first task we need to perform, as we did earlier for the source databases,
is to create a new module to contain our file definition. If we look in the
Projects tab under our project, we'll see that there is a Files node right below
the Databases node. We will launch the Create Module Wizard the same
way as we did earlier, but we'll do it on the Files node and not the Databases
node. We'll right-click on the Files node and select New Flat File Module
from the pop-up menu to launch the wizard.

2.	 When we click on the Next button on the Welcome screen, we notice a slight
difference already. The Step 1 of the Create Module wizard only asks for a
name and description. The other options we had for databases above are not
applicable for file modules. We'll enter a name of ACME_FILES and click on
the Next button to move to Step 2.

Defining and Importing Source Data Structures

[94]

3.	 We need to edit the connection in Step 2 just as we did for the database
previously. So we'll click on the Edit button and immediately notice the
other major difference in the Create Module Wizard for a file compared to
a database. As we see in the following image, it only asks us for a name, a
description, and the path to the folder where the files are:

The Name field is prefilled with the suggested name based on the module name.
As it did for the database module location names, it adds that number 1 to the
end. So, we'll just edit it to remove the number and leave it set to ACME_FILES_
LOCATION.

1.	 Notice the Type drop-down menu. It has two entries: General and FTP. If we
select FTP (File Transfer Protocol—used for getting a file over the network),
it will ask us for slightly more information as shown in the following image:

Chapter 2

[95]

The FTP option can be used if the file we need is located on another com-
puter. We will need to know the name of the computer, and have a logon
username and password to access that computer. We'll also need to know the
path to the location of the file. This option is used in process flows which is a
more advanced option than we'll be able to cover in this book.

2.	 The simplest option is to store the file on the same computer on which we
are running the database. This way, all we have to do is enter the path to the
folder that contains the file. We should have a standard path we can use for
any files we might need to import in the future. So we create a folder called
GettingStartedWithOWB_files, which we'll put in the C: drive. Choose
any available drive with enough space and just substitute the appropriate
drive letter. We'll click on the Browse button on the Edit File System
Location dialog box, choose the C:\GettingStartedWithOWB_files path,
and click on the OK button.

3.	 We'll then check the box for Import after finish and click on the Finish
button. We could click the Next> button here and it would just take us to
a screen summarizing what it's going to do and then we'd hit the Finish
button.

That's it for the Create Module Wizard for files. It's really very straightforward.

Defining and Importing Source Data Structures

[96]

The File Import appears next. We'll work through this one in a little more detail as
it is different from importing from a database. If the File Import window has not
appeared, then just right-click on the module name under the Files node under our
project, and select Import and then Flat File…. The following are the steps to be
performed in the File Import screens:

1.	 The first screen for importing a file is shown in the following screenshot:

This is where we will specify the file we wish to import. We'll click Add
Sample File… and select the counties.csv file. After selecting the file from
the resulting popup, it will fill in the filename on the File Import screen. The
View Sample File… button is now no longer grayed out so we can click on
it. It will show us a view of the file we've just selected so we can verify it's the
correct data as shown next:

Chapter 2

[97]

2.	 If we've viewed the file we'll just click OK to close the dialog. We'll click the
Import button now on the File Import screen to begin the import process.
We are presented with an entirely new screen that we haven't seen before.
This is Flat File Sample Wizard, which has now been started. The Flat File
Sample Wizard now has two paths that we can follow through it, a standard
sequence for simple files and an advanced sequence for more complex files.
The previous release included all these steps into one so we had no choice
but now if we have a simple CSV file to import, we can save some time. The
two sets of steps are indicated on the Welcome screen as shown below:

Defining and Importing Source Data Structures

[98]

3.	 Clicking the Next button will take us to the first step which is shown below:

This screen displays the information the wizard pulled out of the file, dis-
played as columns of information. It knows what's in the columns because
the file has each column separated by a comma, but doesn't know at this
point what type of data or column name to use for each column—so it just
displays the data. It picks a name based on the file name, which is fine. So
we'll leave this and the remaining options set to the default. The following
are the options on this screen:

°° More information about what those fields mean can be found by
clicking on the Help button.

°° The Character set is language related. For English language, the
default character set will work fine.

°° The Number of characters to sample determines how much of the
file the wizard will read to get an idea of what's in it. If we were to
import a file with multiple record types, this field might have come
into play. But for our purposes, the default is enough.

Chapter 2

[99]

4.	 This step 1 screen is also where we can choose to take the advanced path
through the wizard which will consist of more steps, or we can just click the
Next button to move on through the simple path. The simple path is for basic
comma delimited files with single rows separated by a carriage return. We'll
follow the simple 3 step path through the wizard and then go back and take a
look at the extra steps the advanced option gives us. We're going to just click
the Next button to move on to the simple step 2.

5.	 Step 2 of the simple steps includes the record and field delimiters choices as
shown next:

Defining and Importing Source Data Structures

[100]

Our records are separated by a Comma, and that is the default, so we'll leave
it at that. The Enclosures: selection is OWB's way of specifying the characters
that surround the text values in the file. Frequently, in text-based files such
as CSV files, the text is differentiated from numerical values by surrounding
the text values in double quotes, single quotes, or something similar. This is
where we specify the characters, if any, that surround the text-field values
in this file. As our file does not use any character to surround text values
and does not contain any double quotes, this setting will have no effect and
we can safely ignore it. It is possible that double quotes, or any of the other
characters available from the drop-down menu, might appear in text strings
in the file but not as delimiters. We would need to set this to blank to indicate
that there's no text delimiter in that case so that it wouldn't get confused.
We'll click Next at this point to move on to the final step.

6.	 The final step is where we specify the details about what each field contains,
and give each field a name. Check the box that says Use the first record as
the field names and we'll see that all the column names have changed to
using the values from that first row. It's not uncommon to receive a file with
a large number of columns; and this can be a big time-saver. After clicking on
the box, our screen now looks like the following screenshot:

Chapter 2

[101]

Notice that the field type for the first column has changed. The ID is now
INTEGER instead of character, as it has now correctly detected that the
remaining rows after that first one all contain integer data. Length is speci-
fied there, which defaults to 0. If we scroll the window to the right, we'll also
notice an SQL data type that is set for each field name. The reason for these
extra attributes is that Warehouse Builder can directly use this file in a map-
ping or can use it indirectly referenced by an external table. An external table
is a table definition within the Oracle database that actually refers to informa-
tion stored in a flat file. The direct access is via the SQL*Loader utility. This
is used to load files of information into a table in the database and when we
specify the source in a mapping to be that file, it builds an SQL*Loader con-
figuration to load it using the information provided here. More details about
this can be found by clicking on the Help button on this screen. We do not
need to worry about specifying a length here as the columns are delimited by
commas. We can enter a value if we happen to know the maximum length a
field could be.

7.	 Click on Next to get a summary screen of what the wizard will do, or just
click on the Finish button to continue. After clicking Finish it will create
our file module under the Files node and we will be able to access it in the
Projects tab. We can see that the imported file is displayed as COUNTIES_CSV,
which was the name it had defaulted to and which we left it set to.

Defining and Importing Source Data Structures

[102]

What this File Sample Wizard just asked us for is a direct example of
what we mean when we talk about metadata. We just entered the data
that describes our data contained in an imported file.

8.	 We'll make sure to select Save All from the Design menu in Design Center
to save the metadata we just entered.

Let's take a quick look at what the extra Advanced option steps would be:

1.	 The first step we saw had the Advanced button on it to take us down the
advanced path through the wizard and if we click on that we are presented a
screen where we can specify even more information about the characteristics
of the file as shown in the following screenshot:

This is where we could specify detailed record information including wheth-
er the file contains logical records. It has the record delimiter we saw in the
simple option step 2 above but has a different option about logical records.
The commas only determine where one column ends and another begins.
But where does the next row start? We can see by the display that it already
seems to have figured that out because it assumes that a carriage return
<CR> character will indicate the end of a row. That is the default that it uses.

Chapter 2

[103]

This is an invisible character that gets entered into a text file when we press
the Enter key while editing a file to move to the next line. It's possible that we
might get a file with some other character indicating the end of a row, but
our files use the carriage return, which is the most common. So we'll leave it
set to that.

The other option here is to indicate whether or not the file contains logical records.
Our file contains a physical record for each logical record. In other words, each row
in the file is only one record. It's possible that one record's worth of information in a
table might be contained in more than one physical row in the file. If this is the case,
we could check that box and then specify the number of physical records that make
up one complete logical record.

1.	 Hitting Next brings us to step 3 of the advanced steps and for the advanced
options, this is where the field delimiter is specified that was on the simple
step 2 screen or we can define the file as fixed length columns. The simple
option assumed delimited fields where the advance option will allow a file
that has fixed column lengths that aren't delimited.

2.	 Hitting the Next button from here takes us to step 4 of the advance options
where we can specify if there are any rows to skip and what record type we
have in the file, single record or multi-record as shown next:

Defining and Importing Source Data Structures

[104]

Sometimes the provided files may contain a number of rows of preliminary
text information before the actual rows of data start. We can tell the wizard
to skip over those rows at the start as they aren't formatted like the rows of
data. All the rows in our file are formatted the same, so we will leave the
default set to 0 as we want it to read all the rows. We might be tempted to
skip over the first row of data by setting the number of rows to skip to 1 since
that's just header information and not actual data but header rows can be
used to indicate the column names as we saw above so we wouldn't want to
set this to 1 or wouldn't have that option available to us.

3.	 The next step in the advanced install then takes us to the Field Properties
screen the same as the final step in the simple install except this is Step 5 of
5 instead of Step 3 of 3. Finishing from here will accomplish the same task as
the simple install, creating the new file node under our new files module.

This concludes all the object types we want to cover here for importing. Let's
summarize what we've learned so far, and move on to the next step, which is
defining our target.

Summary
That was a lot of information presented in this chapter. We began with a brief
discussion about the source data for our scenario using the ACME Toys and Gizmos
company. We then went through the process of importing metadata about our
sources, and saw how to import metadata from an Oracle database as well as a
flat file. Because we are dealing with a non-Oracle database, we were also exposed
to configuring the Oracle database to communicate with a non-Oracle database
using Oracle Heterogeneous Services. We also saw how to configure it for generic
connectivity using the supplied ODBC agent. We worked through the process of
manually creating table definitions for source tables for a SQL Server database.

At this point, you should run through these procedures to import or define the
remaining tables that were identified in the source databases. For this, you can use
the procedures we walked through above for practice. We'll be using the SQL Server
database tables for the POS transactional database throughout the remainder of
book, so be sure to have those defined at a minimum. Now that we have our sources
all defined and imported, we need a target where we're going to load the data into
from these sources. That's what we're going to discuss in the next chapter where we
talk about designing and building our target data structures.

Designing the
Target Structure

We have our entire source structures defined in the Warehouse Builder. But before
we can do anything with them, we need to design what our target data warehouse
structure is going to look like. When we have that figured out, we can start mapping
data from the source to the target. So, let's design our target structure. First, we're
going to take a look at some design topics related to a data warehouse that are
different from what we would use if we were designing a regular relational database.
We'll then discuss what our design will look like, and after that we'll be ready to
move right into creating that design using the Warehouse Builder in the next chapter.

The specific topics we'll discuss in this chapter include the following:

•	 Data warehouse design
°° Dimensional design
°° Cube and dimensions
°° Dimensional Model Implementation
°° Relational (star schema)
°° Multidimensional (OLAP)
°° Designing the ACME data warehouse
°° Identifying dimensions
°° Designing the cube

•	 Data Warehouse Design in OWB
°° Creating a target user and module
°° OWB design objects

Designing the Target Structure

[106]

Data warehouse design
When it comes to the design of a data warehouse, there is basically one option
that makes the most sense for how we will structure our database and that is the
dimensional model. This is a way of looking at the data from a business perspective
that makes the data simple, understandable, and easy to query for the business end
user. It doesn't require a database administrator to be able to retrieve data from it.

When looking at the source databases in the last chapter, we saw a normalized
method of modeling a database. A normalized model removes redundancies in data
by storing information in discrete tables, and then referencing those tables when
needed. This has an advantage for a transactional system because information needs
to be entered at only one place in the database, without duplicating any information
already entered. For example, in the ACME Toys and Gizmos transactional database,
each time a transaction is recorded for the sale of an item at a register, a record
needs to be added only to the transactions table. In the table, all details regarding
the information to identify the register, the item information, and the employee
who processed the transaction do not need to be entered because that information
is already stored in separate tables. The main transaction record just needs to be
entered with references to all that other information.

This works extremely well for a transactional type of system concerned with daily
operational processing where the focus is on getting data into the system. However,
it does not work well for a data warehouse whose focus is on getting data out of the
system. Users do not want to navigate through the spider web of tables that compose
a normalized database model to extract the information they need. Therefore,
dimensional models were introduced to provide the end user with a flattened
structure of easily queried tables that he or she can understand from a
business perspective.

Dimensional design
A dimensional model takes the business rules of our organization and represents
them in the database in a more understandable way. A business manager looking at
sales data is naturally going to think more along the lines of "How many gizmos did
I sell last month in all stores in the south and how does that compare to how many
I sold in the same month last year?" Managers just want to know what the result
is, and don't want to worry about how many tables need to be joined in a complex
query to get that result. In the last chapter, we saw how many tables would have to
be joined together in such a query just to be able to answer a question like the one
above. A dimensional model removes the complexity and represents the data in a
way that end users can relate to it more easily from a business perspective.

Chapter 3

[107]

Users can intuitively think of the data for the above question as a cube, and the edges
(or dimensions) of the cube labeled as stores, products, and time frame. So let's take a
look at this concept of a cube with dimensions, and how we can use that to represent
our data.

Cube and dimensions
The dimensions become the business characteristics about the sales, for example:

•	 A time dimension—users can look back in time and perform time series
analysis, such as how a quarter compares to the same quarter last year

•	 A store dimension—information can be retrieved by store and location
•	 A product dimension—various products for sale can be broken out

Think of the dimensions as the edges of a cube, and the intersection of the
dimensions as the measure we are interested in for that particular combination of
time, store, and product. A picture is worth a thousand words, so let's look at what
we're talking about in the following image:

Designing the Target Structure

[108]

Notice what this cube looks like. How about a Rubik's Cube? We're doing a data
warehouse for a toy store company, so we ought to know what a Rubik's cube is! If
you have one, maybe you should go get it now because that will exactly model what
we're talking about. Think of the width of the cube, or a row going across, as the
product dimension. Every piece of information or measure in the same row refers to
the same product, so there are as many rows in the cube as there are products. Think
of the height of the cube, or a column going up and down, as the store dimension.
Every piece of information in a column represents one single store, so there are as
many columns as there are stores. Finally, think of the depth of the cube as the time
dimension, so any piece of information in the rows and columns at the same depth
represent the same point in time. The intersection of each of these three dimensions
locates a single individual cube in the big cube, and that represents the measure
amount we're interested in. In this case, it's dollar sales for a single product in a
single store at a single point in time.

But one might wonder if we are restricted to just three dimensions with this model.
After all, a cube has only three dimensions—length, width, and depth. Well, the
answer is no. We can have many more dimensions than just three. In our ACME
example, we might want to know the sales each employee has accomplished for the
day. This would mean we would need a fourth dimension for employees. But what
about our visualization above using a cube? How is this fourth dimension going to
be modeled? And no, the answer is not that we're entering the Twilight Zone here
with that "dimension not only of sight and sound but of mind..." We can think of
additional dimensions as being cubes within a cube. If we think of an individual
intersection of the three dimensions of the cube as being another cube, we can see
that we've just opened up another three dimensions to use—the three for that inner
cube. The Rubik's Cube example used above is good because it is literally a cube of
cubes and illustrates exactly what we're talking about.

We do not need to model additional cubes. The concept of cubes within cubes was
just to provide a way to visualize further dimensions. We just model our main cube,
add as many dimensions as we need to describe the measures, and leave it for the
implementation to handle.

This is a very intuitive way for users to look at the design of the data warehouse.
When it's implemented in a database, it becomes easy for users to query the
information from it.

Chapter 3

[109]

Implementation of a dimensional model in
a database
We have seen how a dimensional model is preferred over a normalized model
for designing a data warehouse. Now before we finalize our model for the ACME
Toys and Gizmos data warehouse, let's look at the implementation of the model
to see how it gets physically represented in the database. There are two options: a
relational implementation and a multidimensional implementation. The relational
implementation, which is the most common for a data warehouse structure, is
implemented in the database with tables and foreign keys. The multidimensional
implementation requires a special feature in a database that allows defining cubes
directly as objects in the database. Let's discuss a few more details of these two
implementations. But we will look at the relational implementation in greater detail
as that is the one we're going to use throughout the remainder of the book for our
data warehouse project.

Relational implementation (star schema)
Back in Chapter 2, we saw how ACME's POS Transactional database and Order
Entry databases were structured when we did our initial analysis. The diagrams
presented showed all the tables interconnected, and we discussed the use of foreign
keys in a table to refer to a row in another table. That is fundamentally a relational
database. The term relational is used because the tables in it relate to each other in
some way. We can't have a POS transaction without the corresponding register it
was processed on, so those two relate to each other when represented in the database
as tables.

For a relational data warehouse design, the relational characteristics are retained
between tables. But a design principle is followed to keep the number of levels of
foreign key relationships to a minimum. It's much faster and easier to understand if
we don't have to include multiple levels of referenced tables. For this reason, a data
warehouse dimensional design that is represented relationally in the database will
have one main table to hold the primary facts, or measures we want to store, such
as count of items sold or dollar amount of sales. It will also hold descriptive information
about those measures that places them in context, contained in tables that are
accessed by the main table using foreign keys. The important principle here is that
these tables that are referenced by the main table contain all the information they
need and do not need to go down any more levels to further reference any
other tables.

Designing the Target Structure

[110]

The ER diagram of such an implementation would be shaped somewhat like a star,
and thus the term star schema is used to refer to this kind of an implementation.
The main table in the middle is referred to as the fact table because it holds the
facts, or measures that we are interested in about our organization. This represents
the cube that we discussed earlier. The tables surrounding the fact table are known
as dimension tables. These are the dimensions of our cube. These tables contain
descriptive information, which places the facts in a context that makes them
understandable. We can't have a dollar amount of sales that means much to us unless
we know what item it was for, or what store made the sale, or any of a number of
other pieces of descriptive information that we might want to know about it.

It is the job of data warehouse design to determine what pieces of information need
to be included. We'll then design dimension tables to hold the information. Using the
dimensions we referred to above in our cube discussion as our dimension tables, we
have the following diagram that illustrates a star schema:

Of course our star only has three points, but with a much larger data warehouse of
many more dimensions, it would be even more star-like. Keep in mind the principle
that we want to follow here of not using any more than one level of foreign key
referencing. As a result, we are going to end up with a de-normalized database
structure. We discussed normalization back in Chapter 2, which involved the use
of foreign key references to information in other tables to lessen the duplication
and improve data accuracy. For a data warehouse, however, the query time and
simplicity is of paramount importance over the duplication of data. As for the data
accuracy, it's a read-only database so we can take care of that up front when we load
the data. For these reasons, we will want to include all the information we need right
in the dimension tables, rather than create further levels of foreign key references.
This is the opposite of normalization, and thus the term de-normalized is used.

Chapter 3

[111]

Let's look at an example of this for ACME Toys and Gizmos to get a better
idea of what we're talking about with this concept of de-normalization. Every
product in our stores is associated with a department. If we have a dimension for
product information, one of the pieces of information about the product would
be the department it is in. In a normalized database, we would consider creating
a department table to store department descriptions with one row for each
department, and would use a short key code to refer to the department record in the
product table.

However, in our data warehouse, we would include that department information,
description and all, right in the product dimension. This will result in the same
information being duplicated for each product in the department. What that buys
us is a simpler structure that is easier to query and more efficient for retrieving
information from, which is key to data warehouse usability. The extra space we
consume in repeating the information is more than paid for in the improvement in
speed and ease of querying the information. That will result in a greater acceptance
of the data warehouse by the user community who now find it more intuitive and
easier to retrieve their data.

In general, we will want to de-normalize our data warehouse implementation in
all cases, but there is the possibility that we might want to include another level—
basically a dimension table referenced by another dimension table. In most cases,
we will not need nor want to do this and instances should be kept to an absolute
minimum; but there are some cases where it might make sense.

This is a variation of the star schema referred to as a snowflake schema because
with this type of implementation, dimension tables are partially normalized to pull
common data out into secondary dimension tables. The resulting schema diagram
looks somewhat like a snowflake. The secondary dimension tables are the tips of the
snowflake hanging off the main dimension tables in a star schema.

In reality, we'd want at the most only one or two of the secondary dimension
tables; but it serves to illustrate the point. A snowflake dimension table is really not
recommended in most cases because of ease-of-use and performance considerations,
but can be used in very limited circumstances. The Kimball book on Dimensional
Modeling was referred to at the beginning of Chapter 2. This book discusses some
limited circumstances where it might be acceptable to implement a snowflake design,
but it is highly discouraged for most cases.

Let's now talk a little bit about the multidimensional implementation of a
dimensional model in the database, and then we'll design our cube and dimensions
specifically for the ACME Toys and Gizmos Company data warehouse.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Designing the Target Structure

[112]

Multidimensional implementation (OLAP)
A multidimensional implementation or OLAP (online analytic or analytical
processing) requires a database with special features that allow it to store cubes as
actual objects in the database, and not just tables that are used to represent a cube
and dimensions. It also provides advanced calculation and analytic content built
into the database to facilitate advanced analytic querying. Oracle's Essbase product
is one such database and was originally developed by Hyperion. Oracle recently
acquired Hyperion, and is now promoting Essbase as a tool for custom analytics
and enterprise performance management applications. The Oracle Database
Enterprise Edition has an additional feature that can be licensed called OLAP that
embeds a full-featured OLAP server directly in an Oracle database. This is an option
organizations can leverage to make use of their existing database.

These kinds of analytic databases are well suited to providing the end user with
increased capability to perform highly optimized analytical queries of information.
Therefore, they are quite frequently utilized to build a highly specialized data
mart, or a subset of the data warehouse, for a particular user community. The data
mart then draws its data to load from the main data warehouse, which would be a
relational dimensional star schema. A data warehouse implementation may contain
any number of these smaller subset data marts.

We'll be designing dimensionally and implementing relationally, so let's now
design our actual dimensions that we'll need for our ACME Toys and Gizmos data
warehouse, and talk about some issues with the fact data (or cube) that we'll need.
This will make the concepts we just discussed more concrete, and will form the basis
for the work we do in the rest of the book as we implement this design. We'll then
close out this chapter with a discussion on designing in the Warehouse Builder,
where we'll see how it can support either of these implementations.

We have seen the word dimension used in describing both a relational
implementation and a multidimensional implementation. It is even in
the name of the second implementation method we discussed, so why
does the relational method use it also? In the relational case, the word
is used more as an adjective to describe the type of table taken from the
name of the model being implemented; whereas in the multidimensional
model it's more a noun, referring to the dimension itself that actually
gets created in the database. In both cases, the type of information
conveyed is the same—descriptive information about the facts or
measures—so its use in both cases is really not contradictory. There is a
strong correlation between the fact table of the relational model and the
cube of the dimensional model, and between the dimension tables of the
relational model and the dimensions of the dimensional model.

Chapter 3

[113]

Designing the ACME data warehouse
We have chosen to use a dimensional model for our data warehouse, so we'll define
a cube with dimensions to represent our information. Let's lay out a basic structure
of information we want each to contain. We'll begin with the dimensions, since they
are going to provide the context for the measure(s) we will want to store in our cube.

Identifying the dimensions
To know what dimensions to design for, we need to know what business process
we're going to be supporting with our data warehouse. Is management concerned
with daily inventory? How about daily sales volume? This information will guide us
in selecting the correct parts of the business to model with our dimensions.

We are going to support the sales managers in managing the daily sales of the ACME
Toys and Gizmos Company, and they have already given us an example of the kind
of question they want answered from their data warehouse, as we saw earlier. We
used that to illustrate the cube concept and to show a star schema representation
of it, so the information shows us the dimensions we need. Since management is
concerned with daily sales, we need some kind of date/time dimension that will
provide us the context for the sales data indicating what day the sale transaction
took place.

We can pretty much be guaranteed that we will need a time/date type
dimension for any data warehouse we design, since one of the main
features of data warehouses is to provide time-series type analytical
query capabilities (as we talked about earlier).

Are we going to need both the time and the date in this dimension, or will just the
date be sufficient? We can get an answer to this question by also looking back at
our business process, which showed that management is concerned with daily sales
volume. Also, the implementation of the time dimension in OWB does not include
the time of day since it would have to include 24 hours of time values for each day
represented in the dimension due to the way it implements the dimension. In the
future if time is needed, there are options for creating a separate dimension just
for modeling time of day values. For our initial design, we'll call our time related
dimension a Date dimension just for added clarity.

Designing the Target Structure

[114]

Another dimension we have included is to model the product information. Each
sale transaction is for a particular product, and management has indicated they
are concerned about seeing how well each product is selling. So we will include a
dimension that we shall call Product. At a minimum we need the product name, a
description of the product, and the cost of the product as attributes of our product
dimension—so we'll include those in our logical model.

So far we have a Date dimension to represent our time series and a Product
dimension to represent the items that are sold. We could stop there. Management
would then be able to query for sales data for each day for each product sold by
ACME Toys and Gizmos, but they wouldn't be able to tell where the sale took place.
Another key piece of information the management would like to be able to retrieve
is how well the stores are doing compared to each other for daily sales. Unless we
include some kind of a location dimension, they will not be able to tell that. That
is why we have included a third dimension called Store. It is used to maintain the
information about the store that processed the sales transaction. For attributes of
the store dimension, we can include the store name and address at a minimum to
identify each store.

These dimensions should be enough to satisfy the management's need for querying
information for this particular business process—the daily sales. We could certainly
include a large number of other dimensions, but we'll stop here to keep this simple
for our first data warehouse. We can now consider designing the cube and what
information to include in it.

Designing the cube
In the case of the ACME Toys and Gizmos Company, we have seen that the main
measure the management is concerned about is daily sales. There are other numbers
we could consider such as inventory numbers: How much of each item is on hand?
However, the inventory is not directly related to daily sales and wouldn't make
sense here. We can model an inventory system in a data warehouse that would be
separate from the sales portion. But for our purposes, we're going to model the sales.
Therefore, our main measure is going to be the dollar amount of sales for each item.

A very important topic to consider at this point is what will be the grain of the
measure—the sales data—that we're going to store in our cube? The grain (or
granularity) is the level that the sales number refers to. Since we're using sales as
the measure, we'll store a sales number; and from our dimensions, we can see that
it will be for a given date in a given store and for a given product. Will that number
be the total of all the sales for that product for that day? Yes, so it satisfies our design
criteria of providing daily sales volume for each product. That is the smallest and
lowest level of sales data we want to store. This is what we mean by the grain or
granularity of the data.

Chapter 3

[115]

Levels/hierarchies
A dimensional model is naturally able to handle this concept of the
different levels of data by being able to model a hierarchy within a
dimension. The time/date dimension is an easy example of using of
various levels. Add up the daily totals to get the totals for the month, and
add up 12 monthly totals to get the yearly sales. The time/date dimension
just needs to store a value to indicate the day, month, and year to be able
to provide a view of the data at each of those levels. Combining various
levels together then defines a hierarchy. By storing data at the lowest
level, we make available the data for summing at higher levels. Likewise,
from a higher level, the data is then available to drill down to view at a
lower level. If we were to arbitrarily decide to store the data at a higher
level, we would lose that flexibility. We'll discuss this further in the next
chapter when we build our time dimension in the Warehouse Builder.

In this case, we have a source system—the POS Transactional system—that
maintains the dollar amount of sales for each line item in each sales transaction
that takes place. This can provide us the level of detail we will want to capture
and maintain in our cube, since we can definitely capture sales for each product at
each store for each day. We have found out that the POS Transactional system also
maintains the count of the number of a particular item sold in the transaction. This is
an additional measure we will consider storing in our cube also, since we can see that
it is at the same grain as the total sales. The count of items would still pertain to that
single transaction just like the sales amount, and can be captured for each product,
store, and even date.

The only other pieces of information our cube is going to contain are pointers to
the dimensions. In the relational model, the fact table would contain columns for
the dollar amount, the quantity, the unit cost, and then foreign keys for each of the
dimension tables.

Designing the Target Structure

[116]

There are times when it's valid in dimensional design to include more
descriptive information right in the cube, rather than create a dimension
for it. There may be some particularly descriptive piece of information
that stands all by itself, which is not associated with anything else or
whose additional descriptive information has already been included in
other dimensions. In that case, it wouldn't make sense to create a whole
dimension just for it; so it is included directly in the fact table or cube.
This is referred to as a degenerate dimension. It is explained in more
detail in the Kimball book on dimensional modeling we talked about
earlier. There are many other aspects to dimensional design that we don't
have the space to cover here, but are covered in the Kimball book in
more detail. It would be a good idea for you to read this book or a similar
one to get a better understanding of the detailed dimensional modeling
concepts such as this.

Our design is drawn out in a star schema configuration showing the cube, which is
surrounded by the dimensions with the individual items of information (attributes)
we'll want to store for each. It looks like the following:

OK, we now have a design for our data warehouse. It's time to see how OWB can
support us in entering that design and generating its physical implementation in
the database.

Chapter 3

[117]

Data warehouse design in OWB
The Warehouse Builder contains a number of objects, which we can use in designing
our data warehouse, that are either relational or dimensional. OWB currently
supports designing a target schema only in an Oracle database, and so we will find
the objects all under the Oracle node in the Projects tab. Let's launch Design Center
now and have a look at it. But before we can see any objects, we have to have an
Oracle module defined to contain the objects. If you've been following along and
working through the examples in this book, so far you should have one module
already defined for the ACME website orders database—ACME_WS_ORDERS. We
created this in the last chapter when we imported our metadata from that source. If
that is the case, our Projects tab window will look similar to the following:

Creating a target user and module
We need a different module to create our target objects in. So before going any
further, let's create a new module in the Projects tab for our target to hold our data
warehouse design objects. However, before we can do that, we should have a target
schema defined in the database that will hold our target objects when we
deploy them.

Designing the Target Structure

[118]

So far we have discussed many different components such as the
repository, workspaces, the design center, and so on. So, it can be
confusing to know exactly where our main data warehouse is going to
be located. The target schema is going to be the main location for the
data warehouse. When we talk about our "data warehouse" after we
have it all constructed and implemented, the target schema is what we
will be referring to. Amid all these different components we discussed
that compose the Warehouse Builder, the target is where the actual data
warehouse will be built. Our design will be implemented there, and
the code will be deployed to that schema by OWB to load the target
structure with data from the sources.

Every target module must be mapped to a target user schema. Back in Chapter 1,
when we ran the Repository Assistant to create the repository and workspace, we
created the acmeowb user as the repository owner and mentioned that this user can
be a deployment target for our data warehouse. However, it does not have to be the
target user. It's a good idea to create a separate user schema to become the target
so that user roles in our database can be kept separate. Using the OWB repository
owner schema would mean our target data warehouse would have to be on the same
database server as our repository. In large installations, that will most likely not be
the case. So for maximum flexibility, we're going to create a separate user schema. In
our case, that user will be created in the same database as the repository; but it can be
moved to another database easily if we expand and add more servers.

Creating a target user
There are a couple of ways we can go about creating our target user—create the
user directly in the database and then add to OWB, or use OWB to physically create
the user. If we have to create a new user, and if it's on the same database as our
repository and workspaces, it's a good idea to use OWB to create the user, especially
if we are not that familiar with the SQL command to create a user. However, if our
target schema were to be in another database on another server, we would have to
create the user there. It's a simple matter of adding that user to OWB as a target,
which we'll see in a moment. Let's begin in the Design Center under the Globals
tab. We talked about that Globals tab back in our introduction to the Design Center
in Chapter 2. There we said it was for various objects that pertained to the workspace
as a whole.

One of those object types is a Users object that exists under the Security node as
shown here:

Chapter 3

[119]

Right-click on the Users node and select New User... to launch the Create User
dialog box as shown here:

Designing the Target Structure

[120]

With this wizard, we are creating a workspace user. We create a workspace user by
selecting a database user that already exists or create a new one in the database. We'll
just click the Next button to move on to step 1 as shown next:

If we already had a target user created in the database, this is where we would select
it. We're going to click on the Create DB User... button to create a new database user.

We need to enter the system username and password as we need a user with DBA
privileges in the database to be able to create a database user. We then enter a
username and password for our new user. As we like to keep things basic, we'll call
our new user ACME_DWH, for the ACME data warehouse. We can also specify the
default and temporary tablespace for our new user, which we'll leave at the defaults.
The dialog will appear like the following when completely filled in:

Chapter 3

[121]

The new user will be created when you click on the OK button, and will appear in
the right hand window of the Create User dialog already selected for us. Click on
the Next button and we'll be presented with the second step of the user creation
process, whether to create a location using the user credentials or not as shown in the
following image:

Designing the Target Structure

[122]

We discussed locations in the last chapter and saw how they were required for the
Warehouse Builder to know where to connect to for the various tables and other
database objects defined in modules we've defined in our project. Since we're
going to use this new user we've just created as an eventual target for creating our
data warehouse in then we will need to leave this checkbox checked so it creates a
location based on this user. We could be just creating another authorized database
user for accessing the workspace but not intending to use it as a target for any object
creation in which case we wouldn't need a location defined for it. We'll leave the
check box checked and click the Next button to proceed.

The final screen is just the Summary screen indicating the user to be created and
whether a location will be created or not. We'll just click the Finish button and the user
will be registered with the workspace, and we'll see the new username if we expand
the Users node under Security in the Globals tab. Since we had indicated that we
wanted a location created also, a location for the user will be evident on the Locations
tab under the Locations…Databases…Oracle node. We can continue with creating
our target module now that we have a user defined in the database to map to.

Notice that we could indicate whether we wanted a location created or
not but had no way to specify the database location information. This
is because it creates the user on the local database we were connected
to when we logged into the Design Center, which is the location of our
repository and workspaces. Due to this, this method can only be used to
create the user if it is on the local database. In the next section where we
create our target module, we'll get to specify the location and that dialog
box will allow us to specify a remote database if needed.

Create a target module
We'll follow the same steps as we did in the last chapter where we created the ACME_
WS_ORDERS module. Right-click on the Oracle object under Databases and select
New Oracle Module... from the pop-up menu to launch the Create Module Wizard
and step through the process. We'll name this module ACME_DWH for ACME Data
Warehouse.

Chapter 3

[123]

The next step is for creating or selecting a location to use. Since we just created the
user to use as the target user and had the Warehouse Builder create the location
automatically for us there is a location available now on the local server we can
use. We'll just click the drop down and select the location labeled ACME_DWH_
LOCATION. If we're creating our own test system, the source location may very
well be the same as our target. But in real-world situations, it will likely be in a
different database on a different server. If we had created a target user schema on a
different database, this is the point at which we would be able to enter the connection
information for that user in order to associate our target module with that user and
make it a target. We would just create a new location by clicking the Edit button on
the default ACME_DWH_LOCATION1 to specify the connection details for that
other database.

We're not going to create a new location but will be selecting an existing one and for
reference, the Step 2 screen should look like the following for selecting the location of
the target module:

Designing the Target Structure

[124]

The User Name is the user we just created for this very purpose in the previous
section. There is no password set for that user in the location yet but it will prompt
us for that the first time we attempt to use it. The Host setting of Win7VM will be
whatever the name is of the computer its running on so will vary. The Warehouse
Builder uses the actual local computer name when creating the location for us rather
than localhost but either will do.

If we had specified a user on a remote database the location information
(Host, Port, and Service Name) would specify a user in another
database if needed. If our user were not in this database, we would have
just entered his or her appropriate host and port for the location and the
service name of that remote database.

Now that we have our target database schema and a target module defined, which
is associated with a location pointing to that target schema, we will now have
two Oracle modules under our Oracle object in the Projects tab. We can continue
our discussion of the design objects available to us in the Warehouse Builder for
designing our database. First, let's make sure we save our work so far by using the
Ctrl+S key combination or by selecting Design | Save All from the main menu.

OWB design objects
Looking at our Projects tab window with our target Oracle module expanded, we
can see a number of objects that are available to us as shown here:

Chapter 3

[125]

There are objects that are relational such as Tables, Views, Materialized Views,
and Sequences. Also, there are dimensional objects such as Cubes and Dimensions.
We just discussed relational objects versus dimensional objects. We have decided
to model our database dimensionally and this will dictate the objects we create.
From the standpoint of providing the best model of our business rules and
representing what users want to see, the dimensional method is the way to go as we
already discussed. Most data warehouse implementations we encounter will use a
dimensional design. It just makes more sense for matching the business rules the
users are familiar with and providing the types of information the user community
will want to extract from the database.

We are thinking dimensionally in our design, but what about the underlying
physical implementation? We discussed the difference between the relational and
multidimensional physical implementation of a database, and now it's time to see
how we will handle that here. The Warehouse Builder can help us tremendously
with that because it has the ability to design the objects logically using cubes and
dimensions in a dimensional design. It also has the ability to implement them
physically in the underlying database as either a relational structure or a dimensional
structure simply by checking a box.

In general, which option should be chosen? The relational
implementation is best suited to large amounts of data that tend to
change more frequently. For this reason, the relational implementation
is usually chosen for the main data warehouse schema by most
implementers of a data warehouse. It is much better suited to handling
the large volumes of data that are imported frequently into the data
warehouse. The multidimensional implementation is better suited to
applications where heavy analytic processing is required, and so is a
good candidate for the data marts that will be presented to users.

To be able to implement the design physically as a dimensional implementation with
cubes and dimensions, we need a database that is designed specifically to support
OLAP as we discussed previously. If that is not available, then the decision is made
for us. In our case, when we installed the Oracle database in Chapter 1, we installed
the Enterprise Edition with default options, and that includes the OLAP feature
in the database, so we have a choice to make. Since we're installing our main data
warehouse target schema, we'll choose the relational implementation.

Designing the Target Structure

[126]

For a relational implementation, the Warehouse Builder actually provides us two
options for implementing the database: a pure relational option and the relational
OLAP option. If we were to have the OLAP feature installed in our database, we
could choose to still have the cubes and dimensions implemented physically in
a relational format. We could have it store metadata in the database in the OLAP
catalog, and so multidimensional features such as aggregations would be available
to us. We could take advantage of the relational implementation of the database for
handling large volumes of data, and still implement a query or reporting tool such
as Oracle Discoverer or Oracle Business Intelligence Enterprise or Standard Edition
(OBIEE) to access the data that made use of the OLAP features. The pure relational
option just depends on whether we choose to deploy only the data objects and not
the OLAP metadata. In reality, most people choose either the pure relational or
the multidimensional. If they want both, they implement separate data marts. In
fact, the default when creating dimensional objects and selecting relational for the
implementation is to only deploy data objects. This case would allow us to use the
dimensional objects to load the data warehouse without needing to deploy OLAP
catalog objects representing them. Tools like OBIEE or Discoverer can still derive
Business Intelligence objects for dimensional oriented models in those tools using
just these relational dimensional objects in the database.

Just to be clear, does all this mean that if we haven't paid for the OLAP feature for
our database, we can only design our data warehouse using the relational objects;
and therefore must our decision to design dimensionally change? The answer to
that would be an emphatic no, since we just mentioned how OWB will let us design
dimensional objects, cubes and dimensions, and then implement them physically in
the database as relational objects. The benefit is that the same dimensional design
can be implemented at a later time in an OLAP database just by changing a single
setting. There are features of the Warehouse Builder for handling dimensional
features automatically for us, such as levels, surrogate keys, and slowly changing
dimensions (all of which we'll talk about later) that designing dimensionally
provides us. We would have to implement these manually if we designed our own
tables. Most people who use the Warehouse Builder will use it in that way, so we'll
definitely want to make use of that feature to maximize the usefulness of the tools to
us. This provides us with flexibility and it is the way we are going to proceed with
our design. We'll design dimensionally using a cube and dimensions, and then can
implement it either relationally or dimensionally when we're ready.

Chapter 3

[127]

Summary
We have now gone through the process of designing the target structure for our
data warehouse. We began with a very high-level overview of data warehouse
design topics, then talked about dimensional design and the relational versus
multidimensional implementation, and then we discussed the differences between
them. As was mentioned earlier, there are other books that are devoted solely to this
topic and it would be good to read one or more of them to learn more about design
than we've been able to cover here. Our design for ACME Toys and Gizmos is very
rudimentary, just to give us an introduction to designing in OWB. You'll want to
read in more detail about design when you tackle a real-world design because you
may run into other issues we didn't have time or space to cover here.

We're going to actually implement the design in OWB in the next chapter.

Creating the Target
Structure in OWB

Now it's time to actually start creating objects in the Warehouse Builder for our
target structure. In the previous chapter, we decided what our cube and dimensions
were going to be in our logical design and now we are at the point where we can
implement that design in OWB. We'll create the objects using the wizards that
the Warehouse Builder provides for us to simplify the task of building cubes and
dimensions. We'll look at the data object editors in a little more detail than we saw in
Chapter 2. Let's begin with creating the dimensions. We'll cover the following list of
topics in this chapter:

•	 Creating dimensions in OWB
°° The Time dimension and wizard
°° The Product dimension
°° The Store dimension

•	 Creating a cube in OWB
°° Creating a cube with the wizard

Creating the Target Structure in OWB

[130]

Creating dimensions in OWB
The Warehouse Builder provides a couple of ways to create a dimension. One way is
to use the wizards that it provides, which will automatically create a dimension for
us. The other way is to manually create it. We have identified three dimensions that
we are going to need a Date dimension, a Product dimension, and a Store dimension.
The Date dimension, as we've seen, is our time/date dimension for providing a time
series for our data. That kind of dimension is common to most data warehouses
and the information it contains is very similar from warehouse to warehouse. So,
recognizing this commonality, the Warehouse Builder provides us a special wizard
to use just for time dimensions. Let's begin with that one.

Let's talk a bit about "creating". Throughout this chapter, we'll
discuss creating objects, but what we're really creating is the
metadata that describes the objects. Nothing will be actually created
in the database yet. We won't actually do that until Chapter 8 when
we deploy our design to the target schema.

The Time dimension
Let's discuss briefly what a Time dimension is, and then we'll dive right into the
Warehouse Builder Design Center and create one. A Time dimension is a key part of
most data warehouses. It provides the time series information to describe our data.
A key feature of data warehouses is being able to analyze data from several time
periods and compare results between them. The Time dimension is what provides us
the means to retrieve data by time period.

Do not be confused by the use of the word Time to refer to this
dimension. In this case, it does not refer to the time of day but to
time in general which can span days, weeks, months, and so on. We
are using it because the Warehouse Builder uses the word Time for
this type of dimension to signify a time period. So when referring
to a Time dimension here, we will be talking about our time period
dimension that we will be using to store the date. We will give the
name Date to be clear about what information it contains.

Every dimension, whether time or not, has four characteristics that have to be
defined in OWB:

•	 Levels
•	 Dimension Attributes

Chapter 4

[131]

•	 Level Attributes
•	 Hierarchies

The Levels are for defining the levels where aggregations will occur, or to which
data can be summed. We must have at least two levels in our Time dimension.
While reporting on data from our data warehouse, users will want to see totals
summed up by certain time periods such as per day, per month, or per year. These
become the levels. A multidimensional implementation includes metadata to enable
aggregations automatically at those levels, if we use the OLAP feature. The relational
implementation can make use of those levels in queries to sum the data. The
Warehouse Builder has the following Levels available for the Time dimension when
using the Time Dimension Wizard, which we'll discuss in a moment:

•	 Day
•	 Fiscal week
•	 Calendar week
•	 Fiscal month
•	 Calendar month
•	 Fiscal quarter
•	 Calendar quarter
•	 Fiscal year
•	 Calendar year

The Dimension Attributes are individual pieces of information we're going to store
in the dimension that can be found at more than one level. Each level will have an
ID that identifies that level, a start and an end date for the time period represented
at that level, a time span that indicates the number of days in the period, and a
description of the level.

Each level has Level Attributes associated with it that provide descriptive
information about the value in that level. The dimension attributes found at that
level and additional attributes specific to the level are included. For example, if we're
talking about the Month level, we will find attributes that describe the value for
the month such as the month of the year it represents, or the month in the calendar
quarter. These would be numbers indicating which month of the year or which
month of the quarter it is.

Creating the Target Structure in OWB

[132]

The Oracle Warehouse Builder Users' Guide contains a more complete
list of all the attributes that are available. OWB tracks which of these
attributes are applicable to which level and allows the setting of a
separate description that identifies the attribute for that level. Toward
the end of the chapter, when we look at the data object editor for a
dimension and a cube, we'll see the feature provided by the Warehouse
Builder to view details about those objects.

We must also define at least one Hierarchy for our Time dimension. A hierarchy is
a structure in our dimension that is composed of certain levels in order; there can
be one or more hierarchies in a dimension. Calendar month, calendar quarter, and
calendar year can be a hierarchy. We could view our data at each of these levels, and
the next level up would simply be a summation of all the lower-level data within that
period. A calendar quarter sum would be the sum of all the values in the calendar
month level in that quarter, and the multidimensional implementation includes the
metadata to facilitate these kinds of calculations. This is one of the strengths of a
multidimensional implementation.

The good news is that the Warehouse Builder contains a wizard that will do all the
work for us—create our Time dimension and define the above four characteristics—
just by asking us a few questions.

We could use the regular dimension wizard to create a dimension to
use as a time dimension and could define our own levels but in our
case, it's much simpler to make use of the special Time Dimension
Wizard to create it for us.

Creating a Time dimension with the Time
Dimension Wizard
Let's start creating our Time dimension by launching Design Center if it's not
already running. In the Project Navigator window, we're going to expand the
Databases node under ACME_DW_PROJECT, and then our ACME data warehouse node
ACME_DWH. We will right-click on the Dimensions node, and select New to display a
dialog that will show the list of options for creating a new dimension. An example of
that screen is shown next since it is a new feature of this release:

Chapter 4

[133]

We'll select the Time Dimension and click OK to launch the Create Time
Dimension Wizard.

The New Gallery window that we just saw is actually available from the
pop-up menu on any of the nodes by selecting the New… menu entry.
Most of the nodes, such as tables and dimensions, also contain a New
menu entry (New Table, New Dimension, and so on.) that launches right
into the wizard as if the New Gallery were displayed and the first option
selected. Up until now we've been able to use that default New option
to create our objects. In the previous release of the Warehouse Builder, if
there were multiple options for the New menu option they appeared as
sub-menus. This release combines those options into a list in this New
Gallery window.

Creating the Target Structure in OWB

[134]

The Time Dimension Wizard will walk us through a six-step process to define the
characteristics of our Time dimension. The first screen will describe these steps for
us, which is shown here so we can see what it will be asking us:

1.	 The first step of the wizard will ask us for a name for our Time dimension.
We're going to call it DATE_DIM. If we try to use just DATE, it will give us an
error message because that is a reserved word in the Oracle Database; so it
won't let us use it.

2.	 The next step will ask us what type of storage to use for our new dimension,
shown as follows:

Chapter 4

[135]

Here we get to designate whether we want a relational physical implementa-
tion in the database or a multidimensional implementation. This is what was
referred to earlier as checking a box to switch between the two. Simply select
one or the other, and this is how our design will be implemented in the data-
base with no changes by us required at all.

New in release 11gR2 is the support for cube materialized views in the
database for the ROLAP option so there are actually two ROLAP options
to choose from but either one results in a relational implementation in
the database. Oracle OLAP 11.1 introduced the concept of materialized
views for cubes for query performance improvement and this new
release of the Warehouse Builder now supports the ability to use them.
See the Oracle OLAP Users Guide for more information on using cube
materialized views at the following URL: http://download.oracle.
com/docs/cd/E11882_01/olap.112/e17123/toc.htm.

Creating the Target Structure in OWB

[136]

As we discussed in the last chapter, we're going to implement our data
warehouse using the pure relational option and not implement any OLAP
features so we're going to select ROLAP: Relational Storage, as shown in the
image above and will not select the materialized view option. Both the pure
relational implementation and the relational OLAP option, which we dis-
cussed in the last chapter, are available by selecting the ROLAP option here.
We can set a deployment configuration option that defaults to deploying
data objects only. But this can be changed to deploy the OLAP metadata to
the OLAP catalog also. In both cases, this will result in the generation of re-
lational database objects in a star schema. However, if that option is selected,
it will only store the OLAP metadata in the OLAP catalog in the database.
We'll see where to set that option when we look at the data object editor and
configuring a dimension.

3.	 Now this brings us to step 3, which asks us to specify the data generation
information for our dimension. The Time Dimension Wizard will be
automatically creating a mapping for us to populate our Time dimension and
will use this information to load data into it. It asks us what year we want to
start with, and then how many total years to include starting with that year.
The numbers entered here will be determined by what range of dates we
expect to load the data for, which will depend on how much historical data
we will have available to us. We have checked with the DBAs for ACME
Toys and Gizmos Company to get an idea of how many years' worth of data
they have and have found out that there is data for 2007, 2008, and 2009
available to us. Based on this information, we're going to set the start year to
2007 with the number of years set to three to bring us up to 2009.
The other option available to us on the data generation step is the type of
Time dimension to create. It can be based on a calendar year or fiscal year.
This provides us with the flexibility to define our Time dimension based
on what our company actually uses for its financial year. ACME Toys and
Gizmos Company operates on a calendar-year basis, so we'll leave it set at
calendar.

4.	 This step is where we choose the hierarchy and levels for our Time
dimension. We have to select one of the two hierarchies. We can use the
Normal Hierarchy of day, month, quarter, and year; or we can choose
the Week Hierarchy, which consists of two levels only—the day and the
calendar week. Notice that if we choose the Week Hierarchy, we won't be
able to view data by month, quarter, or year as these levels are not available
to us. This is seen in the following image:

Chapter 4

[137]

The levels are not available to us because a week does not roll up or aggre-
gate to a month. Some months have four weeks while some have five, and
that's not even exact weeks. The only month that has a month evenly divided
by weeks is February, and that's only during non-leap years. So, we can see
that weeks do not sum up nicely into months, or any higher level of time.
How about a year? Surely, that must sum up nicely we might say, as aren't
there 52 weeks in a year? Multiply 52 by 7 and we get 364 days. So, even that
won't work. Thus, if we choose to model weeks as one of our levels, we get
day and week and that's it.

This points out an important aspect of aggregation when deciding
what our levels should be. It's very important to keep that idea of
aggregation or summing in mind when choosing levels, or we will end
up with data that doesn't make sense. The Time Dimension Wizard will
not allow us to choose levels that don't sum up correctly because it has
predefined a list of levels for us to choose from, with preset hierarchies.
However, when defining any other dimension type, we'll definitely
have to keep this in mind as we'll be specifying levels and hierarchies
ourselves rather than choosing from the predefined ones.

Creating the Target Structure in OWB

[138]

We're going to select the normal hierarchy, and now we can choose which
of the levels to include. It is always a good idea to include the lowest level
possible in our hierarchy to provide maximum flexibility in aggregating data
in this dimension. If we leave out day, then we will never be able to view our
data by day, but only by month at the lowest level.

5.	 Let's move on to step 5 where the wizard will provide us the details about
what it is going to create. An example is shown in the following image,
which is what you should see if you've made all the same selections as we've
moved along. In the following image we can see the dimension attributes,
levels, and hierarchies that will be created:

We can also see an extra item at the bottom that we haven't discussed yet, a
map name, if we scroll the window down to the bottom as shown next:

Chapter 4

[139]

The DATE_DIM_MAP map entry that we can see in the previous image is
a mapping for our DATE_DIM dimension, which can be run to populate the
dimension. It will be created automatically for us by the wizard.
The previous version of the Warehouse Builder used to create a sequence
also which was used to populate ID fields in the Time Dimension that were
used as a Surrogate Identifier. A surrogate identifier is a value that stands
in (acts as a surrogate) for the actual unique identifier. The actual identifier
is called a Business Identifier and contains one or more attributes that are
selected to uniquely identify a dimension record. We'll see these surrogate
identifiers in a moment when we create the Product and Store dimensions
but for Time Dimensions, it is no longer used in this new release. In its place
is an actual date field for the day so there is no need for a surrogate. That
date field also acts as the Business Identifier for a Time dimension, which
makes it much more intuitive to use.

6.	 Continuing to the last step, it will display a progress bar as it performs each
step and will display text in the main window indicating the step being
performed. When it completes, we click on the Next button and it takes us to
the final screen—the summary screen. This screen is a display of the objects
it created and is similar to the previous display in step 5 of 6 that shows the
pre-create settings. At this point, these objects have been created and we
press the Finish button. Now we have a fully functional Time dimension for
our data warehouse.

Creating the Target Structure in OWB

[140]

We could use a data object editor to create our Time dimension, but we would have
to manually specify each attribute, level, hierarchy, and sequence to use. Then we
would have to create the mapping to populate it. So we definitely saved quite a bit of
time by using the wizard.

The Time Dimension Wizard does quite a bit for us. Not only does it create the Time
dimension, but it also creates a couple of additional objects needed to support it.
Take a look at the following image, which is what our Project Navigator looks like
after running this wizard:

Besides the dimension that it created, we now have a mapping that appears under
the Mappings node. This is what we will deploy and run to actually build our Time
dimension. We can also see that a table was created under the Tables node. This is
the physical table that will be created in the database to store the dimension data. We
are designing dimensionally and implementing relationally in the database and this
is the relational table used for the implementation.

This completes our Time dimension, so let's look at the next dimension we're going
to create. It is the dimension to hold the product information.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 4

[141]

The Product dimension
In the Product dimension, we will create the attributes that describe the products
sold by ACME Toys and Gizmos. The principles of the Time dimension apply to
this dimension as well. The same four characteristics need to be defined—Levels,
Dimension Attributes, Level Attributes, and Hierarchies. The only difference will be
that they are product-oriented instead of time/date-oriented.

Let's begin by looking at the attributes of our products, and then we'll group by
levels and a hierarchy. The first thing we should consider is how each toy or gizmo
sold by ACME is represented. As with any retail operation, a Stock Keeping Unit
(SKU) is maintained that uniquely identifies each individual type of item sold. This
is an individual number assigned by the main office that uniquely identifies each
type of product sold by ACME, and there could be tens of thousands of different
items. There could be more than one product with the same name, but they won't
have the same SKU. So the SKU, together with the NAME, forms the business
identifier we can use for the products. A business identifier contains one or more
attributes that have been selected by us to uniquely represent a record to differentiate
it from another. These attributes are what we think of when we think about what
differentiates an individual product from another. An SKU number all by itself is not
very helpful. Therefore, in our Product dimension, we will want to make available
more descriptive information about each product such as the description.

Every SKU can be grouped together by brand name—the toy manufacturer who
makes the product—and then by the category of product, such as game, doll, action
figure, sporting goods, and so on. Each category could be grouped by department
in the store. Already, a list of attributes is starting to take shape and a product
hierarchy is forming in our minds. For each of those levels in the hierarchy, that is
the department, category, and brand, we need to have a business identifier. For that
the NAME will be sufficient as there are no departments, categories, or brands that
have the same name.

Let's put this down on paper to formalize it and add some more details.

Product attributes (attribute type)
•	 ID (Dimension/Level)
•	 SKU (Level)
•	 Name (Dimension/Level)
•	 Description (Dimension/Level)
•	 List Price (Level)

Creating the Target Structure in OWB

[142]

Product levels
•	 Department located in
•	 Category of item
•	 Brand
•	 Item

Product hierarchy (highest to lowest)
•	 Department
•	 Category
•	 Brand
•	 Item

Looking at the product attributes, we see that they have been listed above with the
type and that ID, Name, and Description are labeled as dimension attributes. This
means they can appear on more than one level. Each level has a name (Item, Brand,
Category, and Department) that identifies the level, but what about the names of the
individual brands, or the different categories or departments? There has to be a place
to store those names and descriptions, and that is the purpose of these dimension
attributes. By labeling them as dimension attributes, they appear once for each level
in the dimension. They are used to store the individual names and descriptions of the
brands, categories, and departments. Likewise, each level will have a unique ID that
will act as the surrogate key for that level, as well as one or more attributes defined
as the business identifier. In our previous discussion about the Time dimension, we
saw how a surrogate key was used as an identifier and how business identifiers were
used; that same principle applies here, including the use of a surrogate key which
wasn't used for a time dimension.

As we want the computer to do most of the work for us, let's use the OWB
Dimension Wizard to create our Product dimension now that we've determined
what will be in it.

Chapter 4

[143]

Creating the Product dimension with the new
Dimension Wizard
OWB provides a wizard that we can use to create a dimension. It is similar to the
Time Dimension Wizard we used earlier, but is more generic for applying to other
dimensions. As a result, there will be more steps involved in the wizard, just because
it has to ask us more because it will not be able to make as many assumptions as
it did with the Time dimension. This wizard can be used with any dimension, and
therefore things such as attributes, levels, and hierarchies are going to need to be
defined explicitly. Right-click on the Dimensions node under our ACME_DWH Oracle
module, which is under Databases in the Design Center Project Navigator. Choose
New Dimension to launch the Create Dimension Wizard. The very first screen we'll
see is the Welcome screen that will describe for us the steps that we will be going
through. We can see that it requires more steps than the Time Dimension Wizard:

Creating the Target Structure in OWB

[144]

We will have to provide a name for our dimension, and tell it what type of storage to
use—relational or multidimensional—just as we did for the Time Dimension Wizard.
It will then ask us to define our dimension attributes. We didn't have to do that for
the Time dimension. That wizard had a preset number of attributes it defined for
us automatically because it knew it was creating a Time dimension. We then had
to define the levels where we simply chose from a preset list of levels for the Time
dimension. Here we have to explicitly name the levels. This is where we'll have to
pay close attention to aggregations. We will then choose our level attributes from the
dimension attributes.

Then we see in the previous figure that we will have to choose the slowly changing
dimension type, which is how we want to handle changes to values in our
dimension attributes over time. This is a new concept we haven't dealt with yet
that pertains to dimensional modeling, and we'll soon briefly discuss just what that
involves when we see the choices we'll be able to make for it. We'll then get a last
chance to review the settings, and then it will create the dimension for us showing us
the progress, which is similar to the last two steps of the Time Dimension Wizard.

1.	 After reviewing the steps, the wizard will go to the next screen where we
enter a name for the dimension that we will call Product.

2.	 We'll then proceed to step 2, which is where we will select the ROLAP:
Relational storage option for relational, as we did for the Time dimension.

3.	 Proceeding to step 3, we will be able to list the attributes that we want
contained in our Product dimension. We see that the wizard was nice
enough to create three attributes for us already—an ID, a NAME, and a
DESCRIPTION as shown here:

Notice that the wizard has already labeled the ID as the Surrogate Identifier
and the Name as the Business Identifier, and selected data types for those
attributes for us. If we scroll that window to the right, we'll see that it has
chosen sizes for the character attributes also. We can change all of these
options at this point, so let's modify and add to this list to suit our
Product dimension.

Chapter 4

[145]

As we enter the attributes and decide on sizes and types for them, we
can look back at Chapter 2 where we defined our source data structure
for the ACME_POS transactional database in SQL Server to get an idea
of what types and sizes to use. We should make them at least as large
as the source data so as not to lose any data when it gets loaded into
the data warehouse.

We'll make the following changes:
°° Enter SKU in the name column on line 4 and leave the data type as

VARCHAR2, but change the length to 50. Scroll the window to the
right if any columns are not visible that need to be changed. We can
also expand the dialog box to show additional columns.

°° Enter LIST_PRICE in the name column on line 5, leave the data type
as NUMBER, and leave the precision and scale as eight and two as it
suggested.

°° Make SKU a Business Identifier field in addition to Name. (Click
on the drop-down box in the identifier column for SKU, and select
Business.)

°° Change the length of the NAME column from 25 to 50.
°° Change the length of the DESCRIPTION column from 40 to 200.

Notice how the precision and scale were entered automatically for us
by the Wizard when we entered names for our attributes. Moreover,
they tended to make sense for the type of attribute. The LIST_PRICE
had a default of eight for precision and two for the scale that we did not
have to modify. If we choose logical names for our measures, it is able
to make very good guesses as to what the precision and scale should be.
SKU is a character field created with a varchar2 type with a reasonable
length. Likewise, a LIST_PRICE amount implies money which requires
a number having two decimal places (scale 2).

Suppose we make a mistake and enter a value and then decide not to keep it.
Then we can delete the row by right-clicking on the row number to the left of
the row, and then selecting Delete from the pop-up menu.

Creating the Target Structure in OWB

[146]

The screen should now look like the following, expanded slightly to the right
to see the additional length, precision, and scale columns:

If we were to scroll that window all the way to the right, or expand it com-
pletely, we'd see even more columns such as the Seconds Precision and
Descriptor column. If we press the Help button, it will explain what each
column is. Briefly, the Seconds Precision is applicable to only TIMESTAMP
data types, and expresses the precision of the seconds' portion of the value.
The Descriptor is applicable to MOLAP (multidimensional) implementations
and provides six standard descriptions that can be assigned to columns. It
presets two columns, the Long description and the Short description.
We can safely ignore them for our application.

4.	 The next step is where we can specify the levels in our dimension. There
must be at least one level identified, but we are going to have four in our
Product dimension. They are to be entered on this screen in order from top
to bottom with the highest level listed first, then down to the lowest level.
For our dimension, we'll enter DEPARTMENT, CATEGORY, BRAND, and
ITEM in that order from top to bottom.

You might have noticed there is no step where we get to input
hierarchies. The wizard will automatically create a default hierarchy
called Standard that will contain the levels we enter here in this
order. To create additional hierarchies, we must use the data object
editor for dimensions after creating the dimension in the wizard.

The dialog box should now look like this:

Chapter 4

[147]

5.	 Moving on to the next screen, we get to specify the level attributes. At the
top are the levels, and at the bottom is the list of attributes with checkboxes
beside each. If we click on each level in the top portion of the dialog box, we
can see in the bottom portion that the wizard has preselected attributes for
us. It chooses the three default attributes it created for us to be level attributes
for each level, and the other two attributes—the SKU and LIST_PRICE—that
we entered as level attributes for the bottom-most level—the ITEM level. We
are not going to make any changes on this screen. The wizard has chosen
wisely in this case. We could edit the descriptions of each of the level
attributes if we wanted to.

6.	 This brings us to step 6 where we get to choose the Slowly Changing
Dimension (SCD) type. This refers to the fact that dimension values will
change over time. Although this doesn't happen often, they will change and
hence the "slowly" designation. For example, we might have an SKU assigned
to a Super Ball made by the ACME Toy Manufacturing Company, which
then gets bought out by the Big Toy Manufacturing Company. This causes
the Brand that is stored in the dimension for that SKU to change. In this screen
we specify how we want to handle the change. We will have the following
three choices, which are related to the issue of whether or how we want to
maintain a history of that change in the dimension:

°° Type 1: Do not keep a history. This means we basically do not care
what the old value was and just change it.

°° Type 2: Store the complete change history. This means we definitely
care about keeping that change along with any change that has ever
taken place in the dimension.

°° Type 3: Store only the previous value. This means we only care about
seeing what the previous value might have been, but don't care what
it was before that.

Creating the Target Structure in OWB

[148]

The Type 2 and Type 3 options require additional licensing for our database
if we want OWB to handle them automatically. We will need a license for the
Warehouse Builder Enterprise ETL Option for that. As we are considering
only basic functionality in this book, we'll leave this selection as Type 1
for now.

Handling SCDs can be done manually in a relational implementation.
The Type 2 option to maintain a complete history would result in
needing additional attributes where we want to maintain historical
information. We need attributes designated as Triggering attributes.
If changed, these attributes will generate a historical record. We also
need an Effective Date attribute and an Expiration Date attribute. The
Effective Date is when the record is entered. If a triggering attribute
changes, the Expiration Date is set and a new record created with the
updated information.
For the slowly changing Type 3 option, a new attribute in the dimension
will be required to store only the most recent value.
With the Enterprise ETL option, the addition of these extra attributes
and describing certain attributes as triggering attributes would be
handled automatically for us.
The Warehouse Builder User's Guide documentation contains a more
complete description of slowly changing dimensions. Also, there are
other books available that cover dimensional modeling in depth, which
give this topic much more coverage than we're able to provide here.

7.	 Moving on, we get our summary screen of the actions we performed. Here
we can review our actions, and go back and make any changes if needed. It
will look like the following, based on the selections we've made:

Chapter 4

[149]

8.	 Everything looks fine, so we move on to step 8. This step creates the
dimension, showing us a progress bar as it does its work. It will report a
successful completion when it's done, and clicking on the Next button at
this point will bring us to the summary screen where we see the above
information followed by additional information that the wizard has created
for us based on our responses. The extra items are as shown here:

Creating the Target Structure in OWB

[150]

To reiterate, nothing has been physically created for us in the database yet. What the
wizard has created for us are the definitions of our dimension, and the underlying
table and other objects in OWB. The previous screen shows a Sequence, Table
Name, and Unique Key that all correspond to objects that the wizard is creating for
us in OWB. Later in Chapter 8, we'll deploy these objects to create the actual physical
database objects in the target schema.

The sequence is an object that will be created to populate the ID values with unique
numbers. It is created automatically for us by the wizard. This ID value is used as
what is called the Surrogate Identifier for a level record which we discussed earlier
as a value standing in (acting as a surrogate) for the actual unique identifier for the
record. The actual identifier (a Business Identifier which as we discussed above)
contains one or more attributes to uniquely identify a record. When we link a
dimension to a cube, it will use that surrogate identifier as the key to link to, as this is
easier for the database to use than a potentially multi-attribute business identifier but
we'll use the business identifier to decide which actual dimension record to use since
that's easier for us to understand.

We can also see the additional attribute names that were added, which will become
column names in the table to support the levels we identified. When we checked
these boxes (or rather left checked the ones the wizard checked) beside the attributes
for each level to indicate they were level attributes for that level back in step 5, it
created additional names for each based on the level name.

Our Product dimension is now created and we can see it in the Project Navigator
window under the Dimensions node under our ACME_DWH Oracle module.

The Store dimension
We can create our Store dimension in a similar manner using the wizard. We will
not go through it in much detail as it is very similar to how we created the Product
dimension. The only difference is the type of information we're going to have in
our Store dimension. This dimension provides the location information for our data
warehouse, and so it will contain address information.

The creation of this dimension will be left as an exercise for the reader using the
following details about the dimension.

Chapter 4

[151]

Store attributes (attribute type), data type and size,
and (Identifier)

•	 ID (Dimension/Level): Leave default for type and size (Surrogate ID)
•	 Store_Number (Level, STORE only): VARCHAR2 length 10 (Business ID)
•	 Name (Dimension/Level): VARCHAR2 length 50 (Business ID)
•	 Description (Level, COUNTRY and REGION only): VARCHAR2 length 200
•	 Address1 (Level, STORE only): VARCHAR2 length 60
•	 Address2 (Level, STORE only): VARCHAR2 length 60
•	 City (Level, STORE only): VARCHAR2 length 50
•	 State (Level, STORE only): VARCHAR2 length 50
•	 ZipPostalCode (Level, STORE only): VARCHAR2 length 50
•	 County (Level, STORE only): VARCHAR2 length 255

Store levels
•	 Country
•	 Region
•	 Store

Store hierarchy (highest to lowest)
•	 Country
•	 Region
•	 Store

Creating the Store dimension with the New
Dimension Wizard
We will follow the same procedure as we had seen in the creation of the Product
dimension. There are a few steps that are a little different from the previous
procedure, and they are mentioned here.

In Step 3, where we put in the attributes listed previously, we need to make sure not
to forget to specify the surrogate and business identifiers. The surrogate identifier
can stay as the default on the ID, but we will have to change the business identifier
to be the STORE_NUMBER, which is a unique number that ACME Toys and Gizmos
Company assigns to each of its stores.

Creating the Target Structure in OWB

[152]

You may have the urge to include the region and/or country
as an attribute in step 3, but resist the urge. They are being
designated as levels. By specifying the level attributes to include
the Name dimension attribute, we'll have our region and country
included for us—as we'll see in a moment when we get to the
final summary screen.

In step 5 where we specify the level attributes, (the above-listed attributes that are
applicable to each level) we need to specify all the attributes except DESCRIPTION
for the Store level, and then just ID, NAME, and DESCRIPTION for the Region and
Country levels. This is how we will include the region and country information.

It may seem a bit redundant to include a description as well as a name
for the Country and Region levels as our source data at the moment
only includes one field to identify the country and region. However,
this is needed to prevent an error from occurring later when we map
data to this dimension. The same holds true for the Product dimension.
If all we had were the ID and the NAME, those would be two key fields
that cannot be changed for a record. There would be no descriptive
information that could be changed, and the Warehouse Builder
generates code for loading the dimension such that it requires at least
one updatable field to be mapped, without which the following error
would occur:
VLD-5005: No updatable inputs connected for dimension level
<dimension><level>
At least one updatable input must be connected for level
<dimension><level>, or the generated code will fail. Parent reference
key and level natural key inputs are not updatable attributes in the
target.
The New Dimension Wizard actually helps us to avoid this error
by automatically including three attributes: an ID as the surrogate
identifier, a NAME as the business identifier, and a DESCRIPTION as
the updatable field.

In step 7, the Pre Create settings page, as shown next, we can see what we should
have specified for the Store dimension. We can click on the Back button to go back to
make any changes.

Chapter 4

[153]

The final summary screen should look like the following when scrolled all the way to
the bottom:

Creating the Target Structure in OWB

[154]

Notice the region and country level attributes that are shown in the
above image. This is where we see that information included as levels,
instead of being specified as dimension attributes.

We'll make sure to save our work after creating this dimension, and then we'll move
on to creating the cube.

Creating a cube in OWB
Now that we have our dimensions defined, we have one last step to cover and our
design for our data warehouse will be complete. We need to define our cube, which
is where our measures will be stored—the facts that users will want to query. We
discussed the design of our cube and agreed that we would store two measures,
namely the sales amount and the number of items sold. We have already designed
our three dimensions, and their links and measures will go together to make up the
information stored in our cube.

There is a wizard available to us for creating a cube that we will make use of to ease
our task. So let's start designing the cube with the wizard.

Creating a cube with the wizard
We will start the wizard in a similar manner to how we started up the Dimension
wizard. Right-click on the Cubes node under the ACME_DWH module in the Project
Navigator, select New Cube to launch the cube-creation wizard. The first screen will
be the welcome screen, which will summarize the steps it will lead us through as
shown in the following image of the main part of the welcome dialog box:

Chapter 4

[155]

The following are the steps in the creation process:

1.	 We proceed right to the first step where we give our cube a name. As we will
be primarily storing sales data, let's call our cube SALES and proceed to the
next step.

2.	 In this step, we will select the storage type just as we did for the dimensions.
We will select ROLAP: Relational Storage to match our dimension storage
option, and then move to the next step.

3.	 In this step, we will choose the dimensions to include with our cube. We
have defined three, and want them all included. So, we can click on the
double arrow in the center to move all the dimensions and select them. If
we had more dimensions defined than we were going to include with this
cube, we would click on each, and click on the single right arrow (to move
each of them over); or we could select multiple dimensions at one time by
holding down the Ctrl key as we clicked on each dimension. Then click the
single right arrow to move those selected dimensions. This step looks like the
following after we've made our selections:

4.	 Moving on to the last step, we will enter the measures we would like the
cube to contain. When we enter QUANTITY for the first measure with
precision and scale set to zeros and SALES_AMOUNT with precision 10 and
scale 2 for the second one, we end up with a screen that should look similar
to this with the dialog box expanded to show all the columns:

Creating the Target Structure in OWB

[156]

Clicking on Next in step 4 will bring us to the final screen where a summary
of the actions it will take are listed. Selecting Finish on this screen will close
the dialog box and place the cube in the Project Navigator.

The final screen looks like the following when scrolled all the way to the bottom:

This dialog box works in a slightly different way than the dimension
wizard. This final screen is the second-to-last screen when creating a
dimension. The dimension wizard will present us with the progress
screen as the final step. For cubes, the process is not quite as involved.
That's because at this point, the cube is basically done with nothing left
to do afterwards. So we may think we missed a step, but not to worry.
Clicking on Next on this screen will exit the dialog box, and the cube
will be created and will be accessible in the Project Navigator window.

Chapter 4

[157]

Just as with the dimension wizard earlier, we get to see what the cube wizard is
going to create for us in the Warehouse Builder. We gave it a name, selected the
dimensions to include, and specified the measures. The rest of the information was
included by the wizard on its own. The wizard shows us that it will be creating a
table named SALES for us that will contain the referenced columns, which it figured
out from the dimension and measures information we provided. At this point,
nothing has actually been created in the database apart from the definitions of the
objects in the Warehouse Builder workspace. We can verify that if we look under
the Tables entry under our ACME_DWH database node. We'll see a table named
SALES along with tables named PRODUCT, STORE, and DATE_DIM. These are the tables
corresponding to our three dimensions and the cube.

You may have a slightly different table name. The wizard will not create
a table with the same name as one already created, so it will append
a unique number to the end to keep the table names from conflicting.
This could happen if you've previously created a dimension with the
same name, and then removed it and recreated it. It may not remove the
associated table when you delete a cube or dimension object. The tables
will appear in the Project Navigator under the Tables node. Expand
that and you'll see the list of tables. Right-click a table and select Delete.
The Warehouse Builder will ask if you really want to delete it, and will
provide a checkbox to put the object in the recycle bin. Leave it checked
just to be safe and click on OK, and the table will be removed.

The foreign keys we can see in the previous image are the pointers to the dimension
tables. They will make the connection between our cube and our dimensions when
they are deployed to the database.

There is one final item that we did not specify and that is the cube aggregation
method to be used. We saw earlier in the chapter how the multidimensional
implementation contains behind-the-scenes functionality that we don't have to
specify. Later we also saw how important it was to be aware of the aggregation of
our measures, and whether they can be summed together at different levels and
within the same level. The aggregation the cube will perform for us when we view
different levels is one of those behind-the-scenes capabilities we would get with the
OLAP feature.

Creating the Target Structure in OWB

[158]

When we view the region amounts, they will automatically be summed up from
the amounts of the various stores in the region without us having to do anything
extra. This is a nice feature the multidimensional implementation gives us, but
aggregations are not created for the pure relational storage option. As we can
generate either a relational or a multidimensional implementation, this had to be
specified anyway and so it defaulted to sum. If we install the OLAP option or use a
separate OLAP database in the future, we can change that aggregation method. But
for now, we do not need it. It is possible to use aggregations with a pure relational
implementation by creating separate summing tables, and there are OLAP data
mining applications that can make use of them for more advanced implementations.

We click on the Finish button on this final screen and our sales cube is created. We'll
save our work with the Ctrl+S key combination or from the design main menu. Our
cube and dimensions are now complete. Let's take a look next at data object editors
where we can view and edit our objects.

Using the data object editors
We've mentioned the Table Editor previously which is the data object editor for
editing tables. We used it in Chapter 2 to create our source metadata definitions for
the ACME_POS transactional database, so let's take this opportunity to look a little
closer at the editors for a dimension and a cube. We'll also discuss the overall Design
Center interface and some of the other windows available to us in that interface as
we're editing objects.

The object editors are the manual editor interfaces that the Warehouse Builder
provides for us to create and edit objects. We did not have to use one to create a
dimension, but more advanced implementations would definitely need to make use
of it; for instance, to edit the cube to change the aggregation method that we just
discussed. We'll take a brief look at editors here before moving on to get an idea of
some of the features it provides.

We can get to a data object editor from the Project Navigator by double-clicking
on an object, or by highlighting an object (by selecting it with a single click), and
then right clicking and selecting Open from the menu. Editors in this latest release
are now integrated into the main Design Center interface instead of popping open
in a separate window. When editing any object now, a window appears in the
Design Center containing the details to edit for the object. Let's open the DATE_DIM
dimension and examine the overall interface as shown here:

Chapter 4

[159]

Your screen may look differently depending on what windows are open. The
previous image depicts the Navigator window on the left which is displaying the
Project Navigator, the main Editor window in the middle displaying the DATE_
DIM dimension we just opened and the Property Inspector window on the right
displaying properties for the DATE_DIM dimension. Any of these windows can
be opened, closed, minimized, or relocated offering tremendous flexibility in laying
out our working area. If a window is taking up space and we don't need it at the
moment, just minimize it by clicking the minimize icon in the upper right corner of
the window if that option is available. We can also close any window we want by
hovering the mouse over the window title and clicking the X that appears or by right
clicking over the window title and selecting Close from the popup. The main Editor
window cannot be minimized but can be closed.

Creating the Target Structure in OWB

[160]

A complete discussion of all the windows available is in the
Warehouse Builder Concepts Guide available at http://
download.oracle.com/docs/cd/E11882_01/owb.112/
e10581/toc.htm

There is a complete chapter devoted to a tour of the user interface
that will provide more details than we can cover here. Use the
following URL to jump right to that: http://download.oracle.
com/docs/cd/E11882_01/owb.112/e10581/uitour.
htm#BABFDIHH

We'll briefly discuss the windows we can see in the image above as well as some of
the additional available windows.

•	 Navigator Windows: We discussed the windows available for navigation in
the last chapter, the Projects, Locations, and Global Explorer windows that
show on the left in the above image. Each of these windows can be displayed
or hidden as needed and if not visible, can be displayed by selecting View
from the main menu and then choosing the window to display.

For any of these windows we'll discuss, if they are not currently visible,
they can be displayed by selecting them from the View main menu so
when we discuss any windows below that are not visible, that is how we
can display them.

•	 Canvas: This is not really a separate window but is a feature of some editors
such as the Mapping Editor, that provides an area in which the contents are
displayed graphically. Each object is displayed in a box with the name of the
object as the title of the box and attributes of the object listed inside the box.
These boxes can be moved around and resized manually to suit our tastes.
We'll see an example next when we look at an editor window.

•	 Property Inspector: This window is visible in the above image and is
available for setting various properties of objects that have been selected
in the Navigator windows or in the editors. It is context sensitive and will
display or not display any properties depending on whether there are
properties pertaining to the selected object.

Chapter 4

[161]

•	 Configuration: The configuration window displays configuration
information about a selected item. Display the Configuration window by
right clicking an object in the Project Navigator and selecting Configure…
from the pop-up menu. It is here that we can change the deployment
option for the object to deploy OLAP metadata if we want a relational
implementation to store the OLAP metadata. With the DATE_DIM dimension
selected in the Project Navigator, right click on it and select Configure and
in the Configuration window click the plus sign beside the Identification
section to expand it. It contains a setting for the deployment option and we
can see that it is set to deploy data objects only. For dimensions, the options
are to deploy to catalog only (the OLAP catalog), deploy data objects only,
or deploy all to do both. For cubes, there is an additional option to deploy
aggregations.

•	 Component Palette: The Palette is primarily applicable to editing mappings
and provides a list of the items that can be dragged and dropped to build
a mapping. It contains each of the objects that can be used in the mapping.
We can use this to create objects on our canvas in the editor by clicking and
dragging to the canvas. This will create a new object where clicking and
dragging from the Projects Navigator will place an already created object
on the canvas. We'll discuss this more in detail when we start looking at
mappings in the next chapter.

•	 Bird's Eye View: This window displays a miniature version of the entire
canvas and allows us to scroll around the canvas without using the scroll
bars. It is applicable only for editors that display a graphical canvas of
objects. We can click and drag the blue-colored box around this window
to view various portions of the main canvas, which will scroll as we move
the blue box. We will find that in most editors, we will quickly outgrow the
available space to display everything at once and will have to scroll around
to see everything. This can come in very handy for rapidly scrolling
the window.

•	 Editor: This is the actual editor window that contains details about the
object we are currently editing. It is the center window in the above image.
Various tabs will appear, which display information for us depending on the
object being edited. The tabs from left to right are as follows when editing a
dimension some of which we can see in the above image:

°° Name: This tab displays the name of the dimension along with some
other information specific to the dimension type we are looking at.
In this case, it's a Time dimension created by the Time Dimension
Wizard and so it displays the range of data in our Time dimension.

Creating the Target Structure in OWB

[162]

°° Storage: Here we can see what storage option is set for our dimension
object in the database, whether Relational or Multidimensional. If we
wanted to switch between the two, this is where we could do it. For
a relational implementation, we're able to specify a star or snowflake
schema and whether we want to create composite unique keys. A
composite key is one made up of more than one column to define
uniqueness for a record. In most cases, it is a good idea to have this
checked as it enforces uniqueness in the database for our dimension
records. It will not make a difference in our particular case for the
test data we'll be using. For a dimension, it will use the business
identifiers we've specified as the key fields.

°° Attributes: The attributes tab is where we can see the attributes
that are designed for our dimension. It displays the attributes in a
tabular form allowing us to view and/or edit them, including adding
new attributes or deleting the existing ones. It is here that we can
also change the description of our attributes if we wanted, or add
descriptions the wizard did not add.

You may have noticed by now that the attributes in our Time dimension
are not editable. They all appear as one solid background. We can scroll
the window to display them and see what they are set to, but we can't
change them. This is a feature of the Time dimension that was created by
the wizard. It has created extra objects (as we saw earlier) to support the
Time dimension, such as a mapping that could break if the wrong changes
are made. So, it disallows changes. It is possible to modify the dimension
behind the scenes to edit things, but that is a much more advanced topic.
As mentioned earlier, we could have also defined our time dimension
using the regular dimension wizard and these would all be editable, but we
wouldn't have the mapping created automatically to populate it.

°° Levels: This is where we view and/or edit the levels for our
dimension. We are able to edit some of the information on this tab for
the Time dimension created by the wizard, but not all. We can check
and uncheck boxes to indicate which of the various level types we
want to use and which attributes are applicable to which level, but
that is it. We are not able to add or remove any levels or attributes.
If we were to view one of the other dimensions we created, it would
be fully editable. For those other dimensions we could also assign
different names and descriptions to the attributes for each level.

Chapter 4

[163]

°° Hierarchies: This tab will let us specify hierarchy information for our
dimension and will even let us create a new hierarchy. It's possible
that we may have selected more levels on the previous page and now
need to assign them to a hierarchy. There is also a Create Map button
here that will automatically generate the mapping for us if we modify
the hierarchies. This is one of the benefits of the Time dimension
created by the wizard. Ordinary dimensions such as our Store and
Product dimension will not have this Create Map button displayed
on their Hierarchies tab.

°° SCD: This tab is for specifying the Slowly Changing Dimension
policy to use. The Time Dimension will not show this tab because its
not applicable to that type of dimension since the contents are pre-
loaded and won't change.

°° Orphan: This tab will also not be available for the Time dimension
but will be for the Product and Store dimensions. This is a new
feature in the 11gR2 release of the Warehouse Builder that provides
an automated way to manage what to do about dimensional records
(dimensions and cubes) that can't be loaded because one or more
records do not have a parent record. This is also known as Early
Arriving Facts in industry and Orphan Management is OWB's
answer to addressing this issue. Since we're working with a known
set of canned test data, there aren't any orphans to worry about
but for actual implementations this is a feature that can greatly
improve productivity in loading data. For dimensions we have three
main categories of Orphan Management to specify, for loading the
dimension, removal of records from the dimension, and whether to
deploy an error table for orphans.

There are three main options available for handling orphans:

•	 No Maintenance: This is the default setting and indicates that orphans will
not be detected and nothing will be done about them.

•	 Default Parent: This setting indicates that a default parent record should be
used if one is null or invalid and if a default parent doesn't exist, it will create
one to use. There is a Settings button available to set the default level row to
use.

•	 Reject Orphan: This will cause the orphan record to be rejected.

Creating the Target Structure in OWB

[164]

For more information, on the new Orphan Management policies available
in the Warehouse Builder, see Chapter 3 in the Warehouse Builder Data
Modeling, ETL and Data Quality Guide at the following URL: http://
download.oracle.com/docs/cd/E11882_01/owb.112/e10935/
dim_objects.htm#BABEJGDC

There is a blog entry in the Oracle Warehouse Builder Blog that talks
specifically about Early Arriving Facts and Orphan Management which
can be accessed for more details at the following URL:
http://blogs.oracle.com/warehousebuilder/2010/06/
owb_11gr2_-_early_arriving_facts.html

°° Physical Bindings: This tab displays a canvas with the dimension
represented graphically along with the underlying physical table
showing how attributes of the dimension are mapped (or bound) to
the table columns.

•	 Data Viewer: The Data Viewer is a more advanced feature that allows us to
actually view the data in an object we are editing. This is only available for
an object if it has been deployed to the database and has data loaded into it.
It has a query capability to retrieve data and can specify a WHERE clause to get
just the data we might need to see. For relational implementations, it will not
display the data for a dimension or cube; but we can use it to view the data
in the underlying table. It is accessible from the View menu by selecting the
Data… menu entry when editing a data object.

•	 Cube Editor: If we edit the Sales Cube, the editor window has a slightly
different set of tabs available to it which we'll cover briefly here:

°° Name: It has a name tab like the dimensions to display its name.
°° Storage: It has a storage tab as per dimensions. However, we see a

different option here under the Relational (ROLAP) option where
we can create bitmap indexes. An index is a database feature
that allows faster access to data. It is somewhat analogous to the
index of a book that allows us to get to a page in the book with the
information we want much faster. A bitmap-type index refers to how
it is stored in the database and is generally a better option to use for
data warehouse implementations (so it is checked by default). There
is also a composite unique key checkbox for cubes as there was for
dimensions.

http://blogs.oracle.com/warehousebuilder/2010/06/owb_11gr2_-_early_arriving_facts.html
http://blogs.oracle.com/warehousebuilder/2010/06/owb_11gr2_-_early_arriving_facts.html

Chapter 4

[165]

For a cube, checking this box will create a unique key out of the foreign keys
for the dimensions referenced by the cube. We want to check this box to en-
sure we can't enter duplicate data into our cube, that is, more than one cube
record with the same set of dimension attributes assigned.

°° Dimensions: Instead of attributes, the cube has a tab for dimensions.
The dimensions referenced by a cube are basically its attributes.

°° Measures: The next tab is for the measures of the cube. It is for those
values that we are storing in our cube as the facts that we wish to
track.

°° Aggregations: Instead of hierarchies, a cube has aggregations. There
are various methods of aggregation that we can select, as seen in
the drop-down box, the most common of which is sum, which is
the default. This is where the default aggregation method referred
to earlier can be changed. There will be no aggregations in a pure
relational implementation, so we will leave this tab set to the defaults
and not bother changing it.

°° Orphan: This feature is available for cubes also and provides an
automated way to manage what to do about cube records that can't
be loaded because one or more dimension records cannot be found
for it. There are two options to account for here, what to do if a
dimension key is null and what to do if a dimension key is found
to be invalid. In each case there are three options to choose from for
how to handle the orphans:

1.	 No Maintenance: This is the default setting and indicates that
orphans will not be detected and nothing will be done about
them.

2.	 Default Dimension Record: This setting indicates that a
default dimension record should be used if one is null or
invalid and if a default dimension doesn't exist, it will create
one to use. Default dimension records can be created from the
Orphan tab of the dimension as discussed above.

3.	 Reject Orphan: This will cause the orphan record to be
rejected.

These are the main features of the Design Center interface and editors for dimensions
and cubes. We can use it to view the objects the wizards have created for us, edit
them, or create brand new objects from scratch. We can start with an empty canvas
and drag new objects from the palette, or existing objects from the explorer, and then
connect them. We will see other editors very similar to this from the next chapter
when we start to look at ETL and mappings.

Creating the Target Structure in OWB

[166]

Summary
In this chapter, we dove right into creating our three dimensions and a cube using
the Warehouse Builder Design Center. We used the wizards available to help us out,
as well as investigated the flexibility to manually create, view, and edit objects using
the data object editors for dimensions and cubes. In a relatively short amount of
time, we were able to design a data warehouse structure that could be used as is, or
expanded to support more detailed information.

Now that we have our sources defined and our targets designed, it's time to start
thinking about loading that target. Next, we'll look at some Extract, Transform, and
Load (ETL) basics to lay the groundwork for designing the ETL we'll use to actually
load data into our data warehouse.

Extract, Transform, and
Load Basics

We're moving along nicely into the process of designing and building a data
warehouse. If you've been reading all the way through to here, you'll recall how
we've introduced the Warehouse Builder software (how to install it along with
the Oracle Database), looked at its architecture, and covered a short overview of
the analysis and design phases for implementing a data warehouse project. We've
defined our data sources and imported the metadata for them. We've designed our
target structure into which we'll load the data. Congratulations for having read this
far—don't give up now because we're not done yet. We still have to get data from
our sources into our target. We will do that by:

•	 Designing mappings in OWB.
•	 Deploying the mappings to the database.
•	 Running the mappings.

This chapter will expose ETL (Extract, Transform, and Load) for the first time in this
book. ETL is the first step in building the mappings from source to target. We have
sources and targets defined and now we need to do the following:

•	 Work on extracting the data from our sources
•	 Perform any transformations on that data (to clean it up or modify it)
•	 Load it into our target data warehouse structure

We will accomplish this by designing mappings in OWB. Mappings are visual
representations of the flow of data from source to target and the operations that need
to be performed on the data. However, before we can do that, we need to be familiar
with what OWB offers us so that we can make best use of it.

Extract, Transform, and Load Basics

[168]

With this in mind, we'll spend this chapter looking at ETL in general and the
Warehouse Builder features that support designing our ETL operations in particular.
In the next chapter, we'll actually design our mappings in OWB.

ETL
The process of extracting, transforming, and loading data can appear rather
complicated. We do have a special term to describe it, ETL, which contains the three
steps mentioned. We're dealing with source data on different database systems from
our target and a database from a vendor other than Oracle, Microsoft SQL Server in
this case. Let's look from a high level at what is involved in getting that data from a
source system to our target, and then take a look at whether to stage the data or not.
We will then see how to automate that process in Warehouse Builder, which will
relieve us of much of the work.

Manual ETL processes
First of all, we need to be able to get data out of that source system and move it
over to the target system. We can't begin to do anything until that is accomplished,
but what means can we use to do so? We know that the Oracle Database provides
various methods to load data into it. There is an application that Oracle provides
called SQL*Loader, which is a utility to load data from flat files. This could be one
way to get data from our source system. Every database vendor provides some
means of extracting data from their tables and saving it to flat files. We could
copy the file over and then use the SQL*Loader utility to load the file. Reading the
documentation that describes how to use that utility, we see that we have to define a
control file to describe the loading process and definitions of the fields to be loaded.
This seems like a lot of work, so let's see what other options we might have.

The Oracle Database allows us to create database links as we saw back in Chapter 2.
When we define our sources, we can link them to other vendor's database systems
via the heterogeneous services, which is exactly what we set up in Chapter 2. This
looks like a better way to go. We could define a database link to point to our source
database, and then we could directly copy the data into our database.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 5

[169]

However, our target database structure doesn't look anything like the source
database structure. The POS Transactional database is a relational database that is
highly normalized, and our target consists of cubes and dimensions implemented
relationally in the database. How are we going to get the data copied into that
structure? Clearly, there will be some manipulation of the data to get it reformatted
and restructured from source to target. We cannot just take all the rows from one
table in the source structure and copy them into a table in the target structure
for each source table. The data will have to be manipulated when it is copied.
This means we need to develop code that can perform this rather complex task,
depending on the manipulations that need to be done.

In a nutshell, this is the process of extract, transform, and load. We have to:

1.	 Extract the data from the source system by some method.
2.	 Load flat files using SQL*Loader or via a direct database link. Then we have

to transform that data with SQL or PL/SQL code in the database to match and
fit it into the target structure.

3.	 Finally, we have to load it into the target structure.

The good news here is that the Warehouse Builder provides us the means to design
this process graphically, and then generate all the code we need automatically so that
we don't have to build all that code manually.

Staging
We need to consider a practical aspect to this process that is related to ETL, as well
as to the structure in our target database. This practical aspect is the question of
whether to stage the source data in a temporary location before performing the
transformations on it and loading it into the target structure. Staging is the process
of copying the source data temporarily into a table(s) in our target database. Here
we can perform any transformations that are required before loading the source
data into the final target tables. The source data could actually be copied to a table in
another database that we create just for this purpose, but it doesn't have to be. This
process involves saving data to storage at any step along the way to the final target
structure, and it can incorporate a number of intermediate staging steps. The source
and target designations will be affected during the intermediate steps of staging. So
we'll need to decide on a staging strategy, if any, before designing the ETL in OWB.
Now, we'll look at the staging process before we actually design any ETL logic.

Extract, Transform, and Load Basics

[170]

To stage or not to stage
There are a number of considerations we can take into account when deciding
whether to use a staging area or not for our source data:

•	 The points to consider to keep the process flowing as fast as possible are:
°° The amount of source data we will be dealing with
°° The amount of manipulations of the source data that will be required
°° If the source data is in another database other than an Oracle

Database, the reliability of the connection to the database and the
performance of the link while pulling data across

•	 If a failure occurs during an intermediate step of the ETL process, we will
have to restart the process. If such a failure occurs, we will have to consider
the severity of the impact, as in the following cases:

°° Going back again to the source system to pull data if the first attempt
failed.

°° The source data is changing while we are trying to load it into the
warehouse, meaning that whatever data we pull the second time
might be different from what we started with (and which caused the
failure). This condition will make it difficult to debug the error that
caused this failure.

These points will determine whether it makes sense to create a staging area.
Suppose that we have a large amount of data to load and many transformations to
perform on that data while loading. This process will take a lot longer if we directly
access the remote database to pull and transform data, particularly if that remote
database is not an Oracle Database. We'll also be doing all of the manipulations
and transformations in memory and if anything fails, we'll have to start all over
again. Any access to a remote database like this is going to have an impact on the
performance of the database. Having to do it again just compounds the
potential impact.

For example, in one of my previous positions, I was responsible for the process of
loading data into our customer's warehouse and each ETL run pulled approximately
150,000 records. After transforming, these turned into 1,350,000 records in the target
warehouse. There were several transformations done on the data. When directly
accessing the remote database, which is not an Oracle Database, the process literally
took hours during its first run. This is not an acceptable situation by any means.
Through making various changes to configurations, including first adding a step to
stage the data in the Oracle Database, the process was streamlined to take a total of
about 25 to 30 minutes. That is acceptable for a data load that at most happens two or
three times a week.

Chapter 5

[171]

The individual process to stage the data to a table in the Oracle database simply
involves copying the data one-for-one over to the Oracle Database, and this runs
in less than 30 seconds. This means the source database connection is only open
for 30 seconds, whereas it had to constantly work for hours (previously) without a
staging table. This is an example of how the source system is benefitted by using a
staging table. An added benefit with the staging is that if the ETL process needs to be
restarted, there is no need to go back to disturb the source system to retrieve
the data.

Maybe there is only a small window of opportunity to grab the data at night when
there is some downtime. Trying to perform all the transformations on the data at
once while directly pulling it might cause the process to extend past the allowed
time period. In this case, the above example of using a staging table in the Oracle
Database will definitely be applicable. This will make the ETL process run very fast
and the transformations can then be run on it without impacting the transactional
system, or being impacted by it.

Configuration of a staging area
A staging area is clearly an advantage when designing our ETL. So we'll want to
create one, but we will need to decide where we want to create it—in the database
or outside the database. Outside the database, we would create a staging area in
flat files on the file system that we could access to load data into the database. Back
in Chapter 2, we discussed the pulling of data from flat files assuming that we
weren't able to get access directly to the source database system and instead the
DBA of ACME Toys and Gizmos company supplied us with a CSV file to import.
For a staging area, we might want to consider storing the source data in a flat file
ourselves, even if we have access to the source database. Our staging area in this case
would be a folder on the file system and the data would be stored in a flat file.

When making a decision about whether to use a flat file, or create a table directly in
the database, there are a number of particulars we'll want to take into account. As
we are using OWB to design and implement our data warehouse, we've seen how
it can directly support data stored in a flat file as a source (as if it was a table in the
database) by using an external table. So this option of using OWB to directly support
data stored in a flat file is open to us.

Extract, Transform, and Load Basics

[172]

The external tables in the Oracle Database now render some of the reasons for
keeping source staging data in tables in the database moot. We can treat a flat file
as essentially another table in the database. This option is available to us in the
Warehouse Builder for defining a flat file as a source, but not a target. So we must
keep this in mind if we want to stage data at some other point during the process
after the initial load of data. Earlier, we needed to have all our data in database tables
if we were relying solely on SQL in the database. External tables allow us to access
flat files using all the benefits of SQL for querying the data, so now that reason is not
as big a factor as it once was.

If you would like to read more about staging areas and flat files versus database
tables, you can refer to the book titled "The Data Warehouse ETL Toolkit—Practical
Techniques for Extracting, Cleaning, Conforming, and Delivering Data", Ralph Kimball
and Joe Caserta, Wiley Publishing, Inc. This book discusses a number of cases where
it might be preferable to use flat files depending on the purpose at hand: things such
as the storage and safekeeping of source data, sorting data, filtering it, or replacing
text strings in data, and so on. Many of these purposes can be accomplished more
efficiently outside the database with external tools and packages for manipulating
text files. Unless you already have the packages or tools, it may make more sense to
stick with database tables that can make full use of those features built into
the database.

At the ACME Toys and Gizmos company, we are going to use a table in the database
for the initial staging table. This way we can get some experience with how that
would work in OWB using the Table Editor to create a table. One of our mapping
tasks in the next chapter will be to create this table using OWB and use it as a part of
our initial mapping from the source system. If needed, it is not difficult to switch to
using a flat file later.

Mappings and operators in OWB
We are now going to look at the Warehouse Builder and its features for designing
and building our ETL process. OWB handles this with what are called mappings. A
mapping is composed of a series of operators that describe the sources, targets, and a
series of operations that flow from source to target to load the data. It is all designed
in a graphical manner using the Mapping Editor, which is available in the Design
Center. Let's run the Design Center now and take a look at the Mapping Editor,
its features, and some of the operators that are available to us. Launch the Design
Center as we discussed in Chapter 2 in the Overview of Warehouse Builder Design
Center section.

Chapter 5

[173]

OWB Mappings
In the Design Center | Project Navigator window, expand the ACME_DW_
PROJECT project (if it is not already expanded) by clicking on the plus sign beside it.
To access the Mapping Editor, we need a mapping to work on. So to begin with, we
could create an empty mapping at this point.

There is no wizard for creating mappings as there is for importing
source metadata, or creating dimensions and cubes. There are too many
options to lay out the mapping for a wizard, so it's difficult to make
any kind of intelligent guesses as to how to design. However, there are
some cases where we get a mapping for "free" such as the DATE_DIM_
MAP, which was created for us automatically by the Time Dimension
wizard—but that is the exception rather than the rule.

Mappings are created in the Mappings node. We can find it under the module we
created to hold our data warehouse design under the Databases | Oracle node in
our project. Expand that module, which we called ACME_DWH, and then expand
the Mappings node underneath it. For reference, your Project Navigator should look
like this now:

Extract, Transform, and Load Basics

[174]

The DATE_DIM_MAP we see under Mappings is the mapping that was created for
us automatically by the Time Dimension wizard. Instead of creating a new mapping,
which will have nothing in it yet, let's open this mapping and take a look at it for our
initial exploration of the features in OWB for designing mappings. Let's double-click
on the DATE_DIM_MAP mapping. It will launch the Mapping Editor and load
the DATE_DIM_MAP into it. We are not going to modify it, but we will use the
displayed Mapping Editor window to familiarize ourselves with its features. This is a
very similar concept to the data object editors we looked at in the last chapter but for
mappings, not data objects. We're going to go into more detail in using the Mapping
Editor simply because we need to use it to build our mappings; there is no wizard
available to us. The Mapping Editor window looks like the following:

The Mapping Editor opens in the Design Center the same way as the data object
editors we saw in the last chapter. The primary difference is the mapping editor is
graphical where the data editors are primarily textual, with one tab, the Physical
Bindings, displaying objects graphically. A few other additional windows are
noticeable also, the Component Palette, the Structure View, and the Bird's Eye
View windows.

Chapter 5

[175]

The Component Palette should open automatically when a mapping is edited but the
Bird's Eye and Structure views do not, but they are good to have open for quickly
navigating around the canvas and viewing the objects in the mapping. Go ahead and
open them from the View menu by selecting Bird's Eye and Structure if they are
not already open. The window for the above image was re-sized to better fit here,
but we're going to maximize the window while we work with it for ease of use as
we can view more information on the screen. It is a good idea to make your screen
resolution as high as possible so more screen real estate is available for displaying.
Play around with the layout of the windows to come up with an orientation that
works best for you. If the Structure and Birds Eye view are not being used, just close
them to make more room. As you use the tool more you'll figure out what works
best for you.

Your view might look different or be perhaps all jumbled from
previous edits. It's very easy to move objects around on the canvas
(that big window in the middle). We can go on clicking on the
objects and dragging them into new locations to try to neaten it
up but that's too much work. The Mapping Editor, as with all the
graphical editors, provides a convenient Auto Layout option that will
do all that for us. Click on the Auto Layout button in the toolbar to
spread everything out. It is circled (at the top) for your reference in
the previous image. The command is also available from the Graph
menu entry under the Zoom and Layout sub-menu.

Let's briefly discuss some of the main features we can see in the Mapping Editor
screen. The Oracle Warehouse Builder Data Modeling, ETL and Data Quality Guide,
which is available at http://download.oracle.com/docs/cd/E11882_01/
owb.112/e10935/mappings.htm#BEIGDJAE, covers each of these windows in greater
detail in Chapter 5 on PL/SQL mappings along with other details about mappings.
So we'll just touch upon them briefly, especially as we've seen some of them in the
last chapter:

•	 Mapping
The Mapping window is the main working area in the center of the above
image where we will design the mapping. This window is also referred to as
the canvas. This is the graphical display that will show the operators being
used and the connections between the operators that indicate the data flow
from source to target.

Extract, Transform, and Load Basics

[176]

•	 Structure View
We haven't seen this window yet. It provides a hierarchical view of the ob-
jects in the editor, including operators and attributes of those operators for a
mapping. It will display the structure for a data object also if opened when
editing a data object. This window is similar to the old Explorer window
from the data and mapping editor windows in the previous release.

•	 Property Inspector
The Property Inspector window displays the various properties that can be
set for objects in our mapping. It is the same window we saw when look-
ing at the data object editors in the last chapter. When an object is selected
in the canvas, its properties will display in this window. We can resize any
of these windows by holding the mouse pointer over the edge of a window
until it turns into a double arrow, and then clicking and dragging to resize
the window so we can see the contents better. To investigate the properties
window a little closer, let's select the DATE_INPUTS operator. We can scroll
the Structure View window until we see the operator and then click on it, or
we can scroll the main canvas until we see it and then click on the top por-
tion of the frame to select it. It is the first object on the left and defines inputs
into DATE_DIM_MAP. It is visible in the previous image. After clicking on
it, all the properties applicable to it will be displayed in the property inspec-
tor window. The only properties displaying for the DATE_INPUTS operator
are the standard properties associated with any operator- name, description,
and some creation and update information. Let's click on one of the attributes
to see a better example of more specific attributes. Click on YEAR_START_
DATE within the DATE_INPUTS operator. It is the first attribute of the
DATE_INPUTS operator and can be selected in the Structure View or on the
canvas by clicking on it and is shown in the following image, which is a por-
tion of the Design Center showing the Mapping Editor window and proper-
ties we're referring to. The windows have been resized to better display the
information being referred to here:

Chapter 5

[177]

Now we can see some more interesting properties. YEAR_START_DATE is
an attribute of the DATE_INPUTS object and defines the starting date to use
for the data that will be loaded by this mapping. The properties that can be
set or displayed for it include the characteristics about this attribute such as
what kind of data type it is, its size, and its default value. Recalling our run-
ning of the Time Dimension Wizard in the last chapter, there was one option
to specify the year range for the dimension and we chose 2007 as the start
year and that is what formed the source for the default value we can see here.
Do not change anything but just click on a few more objects or attributes to
look around at the various properties.

•	 Component Palette
The Component Palette contains each of the objects that can be used in our
mapping. We can click on the object we want to place in the mapping and
drag it onto the canvas. This list will be customized based on the category
selection in the dropdown at the top of the window to view either all the
components or subsets of the components by category/purpose.

Extract, Transform, and Load Basics

[178]

•	 Bird's Eye View
This window displays a miniature version of the entire canvas and allows us
to scroll around the canvas without using the scroll bars. We can click and
drag the blue-colored box around this window to view various portions of
the main canvas. The main canvas will scroll as we move the blue box. Go
ahead and give that a try. We will find that in most mappings, we'll quickly
outgrow the available space to display everything at once and will have to
scroll around to see everything. This can come in very handy for rapidly
scrolling the window.

The canvas layout
Let's take a closer look at some of the general features of the operators we can see in
our canvas, and then at some of the features specific to different operators. Operators
on the canvas are represented by boxes with a title that indicates the name of the
operator and an icon that indicates the type. In the canvas, we'll take a look at the
operator that is on the far left of the canvas called DATE_INPUTS. This operator
happens to be a Mapping Input Parameter operator.

It is shown in the following screenshot with the key features highlighted
with callouts:

The box can be resized by clicking the left mouse button and holding it over an edge
of the operator, and then dragging it to a new size. To show the entire contents at
once, you can click on the maximize button to instantly expand the box, as shown in
the above screenshot.

Chapter 5

[179]

A handy feature available for viewing operators is to minimize them
to better see the layout and mapping line connections. You can use the
Ctrl-A key combination to select all operators on the canvas then select
Graph…Minimize from the main menu to minimize them all and then
Graph…Zoom and Layout… Auto Layout to automatically arrange
them in a logical orientation.

We can see some lines of information listed inside the box, which are the attributes of
this operator. There are two major types of attributes—an input group and an output
group. In this case, we can see one group named OUTGRP1 which tells us this
operator has only an output group. This operator represents the input of information
into the map at the beginning, so it is not meant to have any other operators mapped
as input to it. Thus, it has no input attributes, but only output attributes.

Take a look at the operator on the right of the DATE_INPUTS operator called DAY_
TABLE_FUNCTION. It has both input and output attributes as shown in the next
screenshot, because this operator represents a PL/SQL function. A PL/SQL function
takes the values supplied as input attributes in the Input group as parameters to the
function and returns the value or values indicated in the Output group as a return
value from the function.

Extract, Transform, and Load Basics

[180]

Renaming attribute group names
The names INGRP1 and OUTGRP1 are generic names that OWB uses
as default names for input and output groups when there is only one
of each. We can change those names if we want to and that is exactly
what the Warehouse Builder has done with the DAY_TABLE_FUNCTION
operator shown above. It has renamed the INGRP1 input group as ABC
and OUTGRP1 output group as RETURN.
There are some operators that contain more than one input or output
group. For instance, Joiner Operator is an operator to represent a join of
two or more tables. This operator will have an input group defined for
each table. In that case, each input group would have a different number
incrementing from 1 (for example, INGRP2, INGRP3, and so on). It makes
sense in this case to rename the input groups to match the tables being
joined, but that is not a requirement.

An attribute group name is edited in the Details window for the group name. This
window is accessible by right-clicking on the group name in the canvas and selecting
Open Details... from the pop-up menu or by double clicking on the group name. It
can also be edited by just clicking the group name and editing the name properties
in the Property Inspector window. Using the Details window has the added benefit
of displaying whether the group is an input group, an output group or both by
including a column labeled Direction which we don't see in the Property Inspector.
We'll be making use of that Details window in the next chapter when we actually
start building a mapping.

We can also note with DAY_TABLE_FUNCTION that the number of attributes is greater
than what's displayed in the operator window depending on how big we've made
the window. We can scroll down through the list of attributes, or resize the operator
in the canvas to see more of them.

That was a brief introduction to the user interface for the Mapping Editor and the
operators as displayed in the canvas. The Oracle Warehouse Builder Data Modeling,
ETL and Data Quality Guide includes additional details about the various windows
and their purpose, as well as the toolbars and menus that are available. We will now
look at the various operators that OWB provides us with in a little more detail.

Chapter 5

[181]

OWB operators
We'll discuss here the various operators using the same category breakdown that
the Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide (http://
download.oracle.com/docs/cd/E11882_01/owb.112/e10935/transformdata_
intro.htm#i1127634) uses in its section on the types of operators in Chapter
4—Source and Target Operators, Transformations (Data Flow Operators), and
Pre/Post Processing Operators. All of the operators are available to us from the
Component Palette window in the Design Center when editing a mapping, so we
can refer to it as we discuss each operator. The Component Palette has a dropdown
that contains the same categories of operators we mentioned above. There are a
couple of other categories that are for more advanced topics than we'll cover here
(Pluggable Mapping and Real-Time Data Warehousing). They are described in the
above referenced documentation. The following screenshots display the complete list
of operators in each of the three categories:

Extract, Transform, and Load Basics

[182]

Earlier in the ETL section of this chapter, we discussed the various means at
our disposal for performing ETL operations manually with applications such as
SQL*Loader. We have also mentioned that OWB allows us to define the process
graphically, and then generates the code for us as well. The bottom line is that OWB
makes use of the existing facilities within the database and the utilities supplied with
the database to accomplish the data load and transformations.

The operators we use will determine the kind of code that gets
generated by OWB. Keep this in mind as we study these operators
because it will help us understand some of the explanations that are
supplied for the operators in the documentation.

Chapter 5

[183]

Most of the operators will result in a PL/SQL mapping. So the explanations are in
terms of the SQL or PL/SQL code element that is created for an operator.

As we can see, we have quite an extensive list of operators available to us and we
won't have room here to talk about all of them. We won't need them all, and that is
usually the case when designing mappings in OWB. We will be focusing on the main
ones that we will need for our application and discuss some of the more common
ones along with the ones we can see in the DATE_DIM_MAP. The operators found in
the DATE_DIM_MAP will be pointed out, so you can see an example by looking at
that map. We'll talk about some of the operators in more detail as we actually begin
to use them in the next chapter. As much as possible, we will try to discuss the
operators from a functionality standpoint without getting too bogged down by the
actual code that is generated.

For the adventurous out there, you can take a look at the code that
the Warehouse Builder will create for the mapping in the database.
But unless you are an SQL coding wizard, you will become quickly
overwhelmed. There is OWB-generated code I've had to deal with in
a previous position that contains SQL insert statements that are over
650-lines long for a single statement. This is definitely not for the faint-
hearted. Have no fear, however; we don't have to dig into the code if
we don't want to. This is the beauty of what a graphical interface does
for us. For those who do love to delve into the code, there are ways to
view it but that is definitely a more advanced topic.

Source and target operators
The Warehouse Builder provides operators that we will use to represent the sources
of our data and the targets into which we will load data. We know we're going to be
pulling data from non-Oracle database tables, and loading it into dimensions and
cubes in our Oracle Database. We also saw in Chapter 2 how to import metadata
from a flat file source. So there is another source type that we'll need to handle, a flat
file. With that in mind, here are some of the operators we're going to
potentially need:

•	 Cube Operator: An operator that represents a cube that we have previously
defined. We defined our cube back in Chapter 4 and this operator will
be used to represent that cube in our mapping. It encapsulates logic like
surrogate key lookup and early arriving facts (orphan management).

Extract, Transform, and Load Basics

[184]

•	 Dimension Operator: An operator that represents previously defined
dimensions. As with our cube, our dimensions were defined in Chapter 4
and this operator will be used in our mapping to represent them. We can
see an example of Dimension Operator in DATE_DIM_MAP. This mapping is
designed to load our DATE_DIM dimension, and so an operator of the same
name was created in it at the end on the far right of the canvas. This operator
includes logic for surrogate key generation also as well as support for slowly
changing dimensions.

•	 External Table Operator: This operator represents external tables, which we
have seen in Chapter 2. They can be used to access data stored in flat files as
if they were tables. We will look at using an external table to access the flat
file that we imported back in Chapter 2.

•	 Table Operator: This operator represents a table in the database. We will
need to store data in tables in our Oracle Database at some point in the
loading of data.

Those are the main operators we're going to need. There are a number of other
operators that are defined for use as sources and targets in our mappings that can be
very useful. The following are some of the more common operators:

•	 Constant: Represents a constant value that is needed. It can be used to load a
default value for a field that doesn't have any input from another source, for
instance. The DATE_DIM_MAP mapping contains a couple of constant values to
represent hardcoded numbers. One is named ONE for the number 1, and one
is named ZERO for a 0.

•	 View Operator: Represents a database view. Source data is frequently
retrieved via a view in the source database that can pull data from multiple
sources into a single, easily accessible view.

In the latest release of OWB we can now have inline views using this
View Operator which allow us to define SQL right in the mapping and
not have a physical view in the database. We won't be covering that in
this book but you can go to the OWB blog for more detailed information:
http://blogs.oracle.com/warehousebuilder/2010/08/
owb_11gr2_mappings_and_inline_sql.html

•	 Sequence Operator: Can be used to represent a database sequence, which is
an automatic generator of sequential unique numbers and is most often used
for populating a primary key field.

Chapter 5

[185]

•	 Construct Object: This operator can be used to actually construct an Oracle
object type in our mapping. There are examples of this in DATE_DIM_MAP,
which builds the DATE_DIM dimension. An object in this context refers to a
PL/SQL object. We can see three Construct Object operators in DATE_DIM_
MAP—for a calendar month (CONSTRUCT_OBJECT_CAL_MONTH), a calendar
quarter (CONSTRUCT_OBJECT_CAL_QUARTER), and a calendar year object
(CONSTRUCT_OBJECT_CAL_YEAR). If we click on the attribute in the OUTGRP1
output group of one of those construct operators, we can see in the Property
Inspector window that it is of type SYS_REFCURSOR. An example is shown
in the next screenshot with the CONSTRUCT_OBJECT_REFCURSOR_OUT
attribute selected in the CONSTRUCT_OBJECT_CAL_MONTH object:

A SYS_REFCURSOR is a PL/SQL type that represents a cursor in PL/SQL.
A cursor is used to point to the row of the result of the query that is defined
for that cursor. This is a rather advanced topic to be covered in this book, but
is mentioned here as DATE_DIM_MAP contains some of this type.

These all represent sources and targets of data for our mappings. When we drag
and drop one of these operators onto our canvas, it represents an actual database
object. When created, every one of these will need to be bound to its underlying
database object as we are using the relational storage option. For tables, attributes
of the table operator will correspond to columns in the table, likewise for views and
external tables. The same principle holds true for the cube and dimension operators.
Attributes of the operator correspond to the attributes of the dimension or cube.
If the dimension or cube is implemented relationally, they will correspond to the
columns of the underlying table that is created.

Extract, Transform, and Load Basics

[186]

A constant is implemented in the database as PL/SQL code using the PL/SQL
syntax for representing a constant value. The value will be the value we would set
on a constant's attribute. For sequences, constants are implemented as a database
sequence object. The code is generated to invoke constants to retrieve the currval
or nextval value from the underlying sequence as needed, depending on how we
used it in our mapping. The currval variable will return the current value of the
sequence, and the nextval variable will return the next value.

Transformations (data flow operators)
Sources and targets are good and we could end right there by connecting our sources
directly to our targets. This would result in a complete mapping that would load
our target from our source, but this would mean there needs to be a one-to-one
correspondence between our source and target. If that were the case, why bother
creating a data warehouse target in the first place if it's only going to look exactly like
the source? Just query the source data.

The true power of a data warehouse lies in the restructuring of the source data
into a format that greatly facilitates the querying of large amounts of data over
different time periods. For this, we need to transform the source data into a new
structure. That is the purpose of the transformation (or data flow) operators. They
are dragged and dropped into our mapping between our sources and targets. Then
they are connected to those sources and targets to indicate the flow of data and the
transformations that will occur on that data as it is being pulled from the source and
loaded into the target structure. Some of the common data flow operators we'll see
are as follows:

•	 Aggregator: There are times when source data is at a finer level of detail than
we need. So we need to sum the data up to a higher level, or apply some
other aggregation type function such as an average function. This is the
purpose of the Aggregator operator. This is implemented behind the scenes
using an SQL group by clause with an aggregation SQL function applied to
the amount(s) we want to aggregate.

•	 Deduplicator: Sometimes our data records will contain duplicate
combinations that we want to weed out so we're loading only unique
combinations of data. The Deduplicator operator will do this for us. It's
implemented behind the scenes with the distinct SQL function, which
returns combinations of data elements that are unique.

•	 Expression: This represents an SQL expression that can be applied to the
output to produce the desired result. Any valid SQL code for an expression
can be used, and we can reference input attributes to include them as well as
functions.

Chapter 5

[187]

It's possible to write expressions in an Expression operator for
which separate operators are predefined such as functions. We
will generally get better performance out of our mappings if
we use the prebuilt operators whenever possible rather than
implement code in expressions. So, if there is an operator
available, we'll use it and use an expression only if we have to.

•	 Filter: This will limit the rows from an output set to criteria that we specify.
It is generally implemented in a where clause in SQL to restrict the rows
that are returned. We can connect a filter to a source object, specify the filter
criteria, and get only those records that we want in the output.

•	 Joiner: This operator will implement an SQL join on two or more input
sets of data. A join takes records from one source and combines them with
the records from another source using some combination of values that are
common between the two. We will specify these common records as an
attribute of the join. This is a convenient way to combine data from multiple
input sources into one.

•	 Lookup: A Lookup operator (previously known as a Key Lookup) looks
up data in a table based on some input criteria (the key) to return some
information required by our mapping. It is similar to a Table Operator
that was discussed previously for sources and targets. However, a Lookup
operator is geared toward returning a subset of rows from a table based on
the key criteria we specify, rather than representing all the rows of a table,
which the Table Operator does. It can look up data from a table, view, cube,
or dimension.

The Lookup operator has been greatly enhanced in this new release of the
Warehouse Builder. There is a blog posting that refers to the changes for
additional reading at the following URL:
http://blogs.oracle.com/warehousebuilder/2010/09/
owb_11gr2_lookup_operator.html

•	 Pivot: This operator can be useful if we have source records that contain
multiple columns of data that is spread across columns instead of rows. For
instance, we might have source records of sales data for the year that contain
a column for each month of the year. But we need to save that information
by month, and not by year. The Pivot operator will create separate rows of
output for each of those columns of input.

Extract, Transform, and Load Basics

[188]

•	 Set Operation: This operator will allow us to perform an SQL set operation
on our data such as a union (returning all rows from each of two sources,
either ignoring the duplicates or including the duplicates) or intersect
(which will return common rows from two sources).

•	 Splitter: This operator is the opposite of the Joiner operator. It will allow us
to split an input stream of data rows into two separate targets based on the
criteria we specify. It can be useful for shunting rows of data off to a side
error table to flag them while copying the good rows into the main target.

•	 Transformation Operator: All these operators are transformation operators
but there is one operator type specifically named "Transformation". This
operator can be used to invoke a PL/SQL function or procedure with some
of our source data as input to provide a transformation of data. For instance,
the SQL trim() function can be represented by Transformation Operator
to take a column value as input, and provide the value as output after
having any whitespace trimmed from the value. This is just one example of a
function that can be implemented with the Transformation Operator. There
are numerous others available to us.

A Transformation Operator is an example of an operator that
could be implemented in an Expression operator by simply
invoking the trim() SQL function directly on an input value.
But as we can implement a trim() directly using its own
operator, we should do so for efficiency and consistency.

•	 Table Function Operator: A Table Function Operator can be seen in the
DATE_DIM_MAP map. There are three Table Function operators defined:
CAL_MONTH_TABLE_FUNCTION, CAL_QUARTER_TABLE_FUNCTION, and CAL_
YEAR_TABLE_FUNCTION. This kind of operator represents a Table Function,
which is defined in PL/SQL and is a function that can be queried like a
table to return rows of information. The Table Function Operators are more
advanced than we will be covering in this book, but are mentioned here as
DATE_DIM_MAP includes them.

These are just some of the operators available to us for performing transformations
on our data as it flows from source to target. Others are described in the Oracle
Warehouse Builder Data Modeling, ETL, and Data Quality Guide as mentioned
previously (http://download.oracle.com/docs/cd/E11882_01/owb.112/
e10935/toc.htm).

Chapter 5

[189]

Other operators
There is a small group of operators that allow us to perform operations before the
mapping process begins, or after the mapping process ends. These are the pre- and
post-processing operators and mapping input and output operators. We can perform
functions or procedures before or after a mapping runs, and can also accept input or
provide output from a mapping process.

•	 Mapping Input Parameter: This operator allows us to pass a parameter(s)
into a mapping process. It is very useful to make a mapping more generic
by accepting a constant value as input that might change, rather than
hardcoding it into the mapping. DATE_DIM_MAP uses a Mapping Input
Parameter operator as its very first operator on the left, which we discussed
earlier when talking about Mapping Properties.

•	 Mapping Output Parameter: As the name suggests, this is similar to the
Mapping Input Parameter operator, but provides a value as output from our
mapping.

•	 Post-Mapping Process: Allows us to invoke a function or procedure after
the mapping completes its processing. There may be some cleanup we want
to do automatically such as deleting all the records from a table we're done
with—perhaps a staging table that was used during the mapping process.

•	 Pre-Mapping Process: It's not too hard to figure out what this operator does.
It allows us to invoke a function or procedure before the mapping process
begins. Maybe our mapping needs to do a key lookup of a data value that
is going to be stored in every row of output. But we don't want to invoke a
Lookup operator for every record of input. So we could use a Pre-Mapping
Process operator instead to invoke the function once at the beginning, which
will make the returned value available for every row that is processed
without having to re-invoke the procedure.

That concludes our discussion of some of the main operators we're going to
encounter. If you are looking at the Oracle Warehouse Builder Data Modeling, ETL, and
Data Quality Guide section that discusses these categories of operators, you no doubt
noticed the other two categories we mentioned previously. They are also visible
in the Component Palette drop down. Pluggable Mappings (of which there are
three operators) are a more advanced feature that allows us to create a grouping of
operators that can function as a single operator and be reused in other mappings and
Real-Time Data Warehousing mappings (of which there are only two operators) that
are for creating real-time and batch mappings.

Extract, Transform, and Load Basics

[190]

Summary
This chapter has given us an overview of the Extract, Transform, and Load (ETL)
process as well as the Warehouse Builder's support for designing our ETL process.
We discussed the process of mapping and a little of what that involves in OWB.
We took a look at the OWB Mapping Editor in the Design Center to get a feel for
the windows available to us, and also looked at a list of some of the operators OWB
provides for us to use in our mappings.

We're laying the groundwork here for the real fun that comes in the next chapter
where we get to put this knowledge to use in designing a mapping. In the next
chapter, we will also get to use some of these operators.

ETL: Putting it Together
We had our first introduction to the process of ETL in the last chapter where we
discussed what it is and saw the features the Warehouse Builder has for designing
our ETL processes. We looked at the Mapping Editor, which is the main interface
we'll use to build our ETL mappings. We also looked at the objects in OWB that we
can use. However, we didn't get to do anything other than just look. We have all this
new knowledge and are ready to use it. So let's work on designing a mapping, which
will make use of some of the features we looked at in the last chapter.

We've looked in detail at the source structures in Chapter 2 and talked about staging
data in Chapter 5. In the previous chapters, we've also talked about the concepts of
extraction, transformation, and loading of data that will be required to get the source
data from our source to our target structure. We will get to put all this together in
this chapter as we begin to design and build our mappings. You may have already
started thinking of some ideas to handle the mapping of information into our target,
or some issues that we'll need to address. So without further ado, let's get started.
We'll be covering the following main topics in this chapter:

•	 Designing a staging area
°° Designing staging area contents
°° Building a staging table with the Table Editor

•	 Reviewing the Mapping Editor
•	 Creating a mapping

°° Adding source table
°° Adding target table
°° Connecting source to target
°° Joiner operator attribute groups
°° Connecting operators to the Joiner
°° Defining operator properties for the Joiner
°° Adding an Aggregator operator

ETL: Putting it Together

[192]

Designing our staging area
We are going to design and build our very first ETL mapping in OWB, but where
do we get started? We know we have to pull data from the ACME_POS transactional
database as we saw back in Chapter 2. The source data structure in that database is a
normalized relational structure, and our target is a dimensional model of a cube and
dimensions. This looks like quite a bit of transforming we'll need to do to get the data
from our source into our target. We're going to break this down into much smaller
chunks, so the process will be easier.

Instead of doing it all at once, we're going to bite off manageable chunks to work
on a bit at a time. We will start with the initial extraction of data from the source
database into our target database without having to worry about transforming it.
Let's just get the complete set of data over to our target database, and then work
on populating it into the final structure. This is the role a staging area plays in the
process, and this is what we're going to focus on in this chapter to get our feet wet
with designing ETL in OWB. We're going to stage the data initially on the target
database server in one location, where it will be available for loading.

The first step is to design what our staging area is going to look like. The staging area
is the interim location for the data between the source system and the target database
structure. The staging area will hold the data extracted directly from the ACME_POS
source database, which will determine how we structure our staging table. So let's
begin designing it.

Designing the staging area contents
We designed our target structure in Chapter 3, so we know what data we need to
load. We just need to design a staging area that will contain data. Let's summarize
the data elements we're going to need to pull from our source database. We'll group
them by the dimensional objects in our target that we designed in Chapter 4, and list
the data elements we'll need for each. The dimensional objects in our target are as
follows:

•	 Sales
The data elements in the Sales dimensional object are:

°° Quantity
°° Sales amount

•	 Date
The data element in the Date dimensional object is:

°° Date of sale

Chapter 6

[193]

•	 Product
The data elements in the Product dimensional object are:

°° SKU
°° Name
°° List price
°° Department

°° Category
°° Brand

•	 Store
The data elements in the Store dimensional object are:

°° Name
°° Number
°° Address1
°° Address2
°° City
°° State
°° Zip postal code
°° Country
°° Region

We know the data elements we're going to need. Now let's put together a structure
in our database that we'll use to stage the data prior to actually loading it into the
target. Staging areas can be in the same database as the target, or in a different
database, depending on various factors such as size and space issues, and availability
of databases. For our purposes, we'll create a staging area as a single table in our
target database schema for simplicity and will use the Warehouse Builder's Table
Editor to manually create the table.

This is the same technique we used to create metadata for
the source structures in the ACME_POS SQL Server database
back in Chapter 2. We'll get to use it again as we build our
staging table.

ETL: Putting it Together

[194]

Building the staging area table with the
Table Editor
To get started with building our staging area table, let's launch the OWB Design
Center if it's not already running. Expand the ACME_DW_PROJECT node and let's take
a look at where we're going to create this new table. We've stated previously that all
the objects we design are created under modules in the Warehouse Builder so we
need to pick a module to contain the new staging table. As we've decided to create it
in the same database as our target structure, we already have a module created for
this purpose. We created this module back in Chapter 3 when we created our target
user, ACME_DWH, with a target module of the same name.

The steps to create the staging area table in our target database are:

1.	 Navigate to the Databases | Oracle | ACME_DWH module. We will create
our staging table under the Tables node, so let's right-click on that node
and select New Table from the pop-up menu. Notice that there is no wizard
available here for creating a table and so we are using the Table Editor to do
it.

2.	 Upon selecting New Table, we are presented with a popup asking us for the
name of the new table and an optional description. Let's call it POS_TRANS_
STAGE for Point-of-Sale transaction staging table. We'll just enter the name
into the Name field, replacing the default TABLE_1 that it suggested for us.
We'll click the OK button and the Table Editor screen will appear in our
Design Center looking similar to the following:

Chapter 6

[195]

This will look different depending on what windows are open. For example,
the Bird's Eye View is visible, since the Mapping Editor was the last editor
we were using and the Design Center will load windows from the last time it
ran. We can just close any windows we don't need and resize any that we do.

3.	 The first tab is the Name tab where it displays the name we just gave it in the
opening popup.

4.	 Let's click on the Columns tab next and enter the information that describes
the columns of our new table. Earlier in this chapter, we listed the key data
elements that we will need for creating the columns. We didn't specify any
properties of those data elements other than the name, so we'll need to figure
that out.
One key point to keep in mind here is that we want to make sure the sizes
and types of the fields will match the fields we want to pull the data from. If
this is taken care of, we won't end up with any possible overflow errors gen-
erated by the database which could be caused by two character fields with
different lengths for example.
Eventually, we know that we're going to have to use this new table that we're
building as a source when we load our final target structure. This means
we'll have to make sure our data sizes and types are compatible with our
final structure also, and not just our sources. When we designed our target
dimensions and cube, we made sure to specify correct sizes and types and
so we shouldn't face any problem here. We can't change the source columns
as they are fixed, which is another important consideration. The targets right
now are only defined in metadata in the Warehouse Builder, so we can easily
update them if needed.

The Warehouse Builder will actually tell us if we have a problem with
the data types and field lengths when we use this table in a mapping
either as a source or target table. It knows the size and type of the fields
in the sources and targets because we imported or created tables to
represent the sources, and it does a comparison internally. It will tell
us if we're trying to map something too big for a field, or to a field of
an incompatible data type. We don't want to have to wait until then to
specify the correct size and type, so we'll create them accordingly now.

The following will then be the column names, types, and sizes we'll use for
our staging table based on what we found in the source tables in the POS
transaction database:
SALE_QUANTITY NUMBER(0,0)
SALE_DOLLAR_AMOUNT NUMBER(10,2)

ETL: Putting it Together

[196]

SALE_DATE DATE
PRODUCT_NAME VARCHAR2(50)
PRODUCT_SKU VARCHAR2(50)
PRODUCT_CATEGORY VARCHAR2(50)
PRODUCT_BRAND VARCHAR2(50)
PRODUCT_PRICE NUMBER(6,2)
PRODUCT_DEPARTMENT VARCHAR2(50)
STORE_NAME VARCHAR2(50)
STORE_NUMBER VARCHAR2(10)
STORE_ADDRESS1 VARCHAR2(60)
STORE_ADDRESS2 VARCHAR2(60)
STORE_CITY VARCHAR2(50)
STORE_STATE VARCHAR2(50)
STORE_ZIPPOSTALCODE VARCHAR2(50)
STORE_REGION VARCHAR2(50)
STORE_COUNTRY VARCHAR2(50)

There are a couple of things to note about these data elements. There are
three groupings of data elements, which correspond to the three dimensional
objects we created—our Sales cube and two dimensions, Product
and Store.

We don't have to include the dimensional object names in the data
element names, but it helps to organize the data elements for eventual
load into the target objects. This way, we can readily see which
elements go where when the time comes to map them into the target.

The second thing to note is that these data elements aren't all going to come
from a single table in the source. For instance, the Store dimension has a
STORE_REGION and STORE_COUNTRY column, but this information is found in
the REGIONS table in the ACME_POS source database. This means we are going
to have to join this table with the STORES table if we want to be able to extract
these two columns.
We now have the information we need to populate the Columns tab in the
Data Object Editor window for our staging table. We'll enter the above
column names and types into the list of columns to complete the definition of
our staging table.

Chapter 6

[197]

Just as we saw back in Chapter 4 when entering column information
for the product dimension, the Warehouse Builder attempts to make
intelligent guesses of data types based on the name. That is actually
controlled by a file containing regular expressions for various naming
options and the data types, sizes and precisions to use. We can view
that file to see what assumptions it is making and could even add
our own entries or edit existing ones if we wanted. The file is in the
owb\bin\admin folder under our Oracle home folder and is named
Oracle_ItemDefaults.properties. Here is an example from the
file for matching any column name that has the word NAME in it:
Name Pattern

NameMatch = .*NAME.*

datatype = VARCHAR2

length = 30

When completed, our column list should look like the following screenshot:

ETL: Putting it Together

[198]

The Property Inspector has been minimized and the Bird's Eye View win-
dow closed to make more room for the main editor window in the above im-
age. Feel free to position windows in any manner that is most useful to you.

6.	 We'll save our work using the Ctrl+S keys, or from the File | Save All main
menu entry in the Design Center before continuing through the rest of the
tabs. We didn't get to do this back in Chapter 2 when we first used the Table
Editor.

The other tabs in Table Editor are:

•	 Keys
The next tab after Columns is Keys where we can enter any one of the four
different types of constraints on our new table. A constraint is a property
that we can set to tell the database to enforce some kind of rule on the table
that limits (or constrains) the values that can be stored in it. There are four
types of constraints:

°° Check constraint: A constraint on a particular column that indicates
the acceptable values that can be stored in the column.

°° Foreign key: A constraint on a column that indicates a record must
exist in the referenced table for the value stored in this column.
We talked about foreign keys back in Chapter 2 when we discussed
the ACME_POS transactional source database. A foreign key is also
considered a constraint because it limits the values that can be stored
in the column that is designated as a foreign key column.

°° Primary key: A constraint that indicates the column(s) that make up
the unique information that identifies one and only one record in the
table. It is similar to a unique key constraint in which values must
be unique. The primary key differs from the unique key as other
tables' foreign key columns use the primary key value (or values) to
reference this table. The value stored in the foreign key of a table is
the value of the primary key of the referenced table for the record
being referenced.

°° Unique key: A constraint that specifies the column(s) value
combination(s) cannot be duplicated by any other row in the table.

Now that we've discussed each of these constraints, we're not going to use
any for our staging table. In general, we want maximum flexibility in stor-
age of all types of data that we pull from the source system. Setting too many
constraints on the staging table can prevent data from being stored in the
table if data violates a particular constraint.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 6

[199]

In this case, our staging table is a standalone table, so we don't have to worry
about whether the data relates to any other tables via a foreign key. We want
all the data available to our mapping, which will handle any transforma-
tions needed to make the data fit into the target system. So, no constraints are
needed on this source staging table. In the next chapter, we'll have an oppor-
tunity to revisit this topic and create a primary key on a table.

•	 Indexes
The next tab provided in the Table Editor is the Indexes tab. We were in-
troduced to indexes at the end of Chapter 4 when we discussed the details
displayed for a cube in the Cube Editor on the Storage tab. An index can
greatly facilitate rapid access to a particular record. It is generally useful for
permanent tables that will be repeatedly accessed in a random manner by
certain known columns of data in the table. It is not desirable to go through
the effort of creating an index on a staging table, which will only be accessed
for a short amount of time during a data load. Also, it is not really useful to
create an index on a staging table that will be accessed sequentially to pull all
the data rows at one time. An index is best used in situations where data is
pulled randomly from large tables, but doesn't provide any benefit in speed
if you have to pull every record of the table.

Indexes are automatically created for us by the database in certain
situations to support constraints. A primary key will have an index
backing it up, consisting of the primary key column(s). A unique key
is implemented with a unique index on the columns specified for the
key. So if we were looking at creating indexes on a regular table, we
would already have some if we'd specified these constraints. This is just
something to keep in mind when deciding what to index in a table.

•	 Partitions
So now that we have nixed the idea of creating indexes on our staging table,
let's move on to the next tab in the Table Editor for our table, Partitions.
Partition is an advanced topic that we won't be covering here but for any
real-world data warehouse, we should definitely consider implementing par-
titions. A partition is a way of breaking down the data stored in a table into
subsets that are stored separately. This can greatly speed up data access for
retrieving random records, as the database will know the partition that con-
tains the record being searched for based on the partitioning scheme used. It
can directly home in on a particular partition to fetch the record by complete-
ly ignoring all the other partitions that it knows won't contain the record.

ETL: Putting it Together

[200]

There are various methods the Oracle Database offers us for partitioning the
data and they are covered in depth in the Oracle documentation. Oracle has
published a document devoted just to Very Large Databases (VLDB) and
partitioning, which can be found at http://download.oracle.com/docs/
cd/E11882_01/server.112/e16541/toc.htm.
Not surprisingly, we're not going to partition our staging table for the same
reasons we didn't index it. So let's move on with our discussion of the Editor
tabs for a table.

•	 Attribute Sets
The next tab is the Attribute Sets tab. An Attribute Set is a way to group at-
tributes of an object in an order that we can specify when we create an attrib-
ute set. It is useful for grouping subsets of an object's attributes (or columns)
for a later use. For instance, with data profiling (analyzing data quality for
possible correction), we can specify attribute sets as candidate lists of attrib-
utes to use for profiling. This is a more advanced feature and as we won't
need it for our implementation, we will not create any attribute sets.

•	 Data Rules
The next tab is Data Rules. A data rule can be specified in the Warehouse
Builder to enforce rules for data values or relationships between tables. It is
used for ensuring that only high-quality data is loaded into the warehouse.
There is a separate node—Data Rules—under our project in the Design
Center that is strictly for specifying data rules. A data rule is created and
stored under this node. This is a more advanced feature. We won't have time
to cover it in this introductory book, so we will not have any data rules to
specify here.

This completes our tour through the tabs in the Table Editor for our table. These are
the tabs that will be available when creating, viewing, or editing any table object.
At this point, we've gone through all the tabs and specified any characteristics or
attributes of our table that we needed to specify. This table object is now ready to
use for mapping. Our staging area is now complete so we can proceed to creating a
mapping to load it. We can now close the Table Editor window before proceeding
by selecting File | Close from the Design Center main menu or by clicking on the
X in the window title tab.

Now that we have our staging table defined, we are now ready to actually begin
designing our mapping. We'll cover creating a mapping, adding/editing operators,
and connecting operators together, but first lets do a quick review of the
Mapping Editor.

Chapter 6

[201]

Review of the Mapping Editor
We were introduced to the Mapping Editor in the last chapter and discussed its
features, so we'll just briefly review it here before using it to create a mapping.
We will create mappings that are in the Design Center under an Oracle Database
module. In our case, we have created an Oracle Database module called ACME_DWH
for our target database. So this is where we will create our mappings. In Design
Center, navigate to the ACME_DW_PROJECT | Databases | Oracle | ACME_
DWH | Mappings node if it is not already showing. Right-click on it and select
New Mapping from the resulting pop-up. We will be presented with a dialog box
to specify a name and, optionally, a description of our mapping. We'll name this
mapping STAGE_MAP to reflect what it is being used for, and click on the
OK button.

This will open the Mapping Editor window for us to begin designing our mapping.
An example of what we will see next is presented here:

Unlike our first look at the Mapping Editor in the last chapter where we looked at
the existing DATE_DIM_MAP, all new mappings start out with a blank slate upon
which we can begin to design our mapping.

ETL: Putting it Together

[202]

By way of comparison with the data object editors, the Mapping Editor has a blank
area named Mapping which is the canvas. The Table Editor did not have a graphical
canvas and the cube and dimension editors have a graphical depiction only on the
Physical Bindings tab but were otherwise primarily text based. The mapping canvas
performs the function of viewing and laying out objects. The other windows we
can see above are the same ones we saw when using data object editors in the last
chapter but now pertain to the Mapping Editor.

Although the data object editors are not graphical, there is a graphical
way to view the objects provided by what is called the Graphical
Navigator which can be opened from the View main menu. It provides
a blank canvas onto which we can drag and drop any data object to get a
graphical depiction of the object and any objects related to it. Dropping
a cube for instance, will display the cube with any dimensions that it
references. This is the functionality that was in the Data Object Editor in
the previous release of the Warehouse Builder on the dimensional and
relational tabs that used to be in the editor.

The Mapping Editor uses the Structure window similar to the data object editors.
This window performs the same function for viewing operators/objects that we've
already defined in our mapping. In the previous release this information was in the
old Explorer window on the Selected Objects tab.

The Properties Inspector window is for viewing and/or editing properties of
the selected element in the Mapping window. Right now we haven't yet defined
anything in our mapping, so it's displaying our overall mapping properties.

The Component Palette displays all the operators that can be dragged and dropped
onto the Mapping window to design our mapping. The objects in this case are
specific to mappings, so we'll see all the operators that are available to us.

Creating a mapping
What we just saw was a brief review of the Mapping Editor. Now let's begin to use
it to design our mapping of the staging table. In designing any mapping in OWB,
there will be a source(s) that we pull from, a target(s) that we will load data into, and
several operators in between depending on how much manipulation of data we need
to do between source and target. The layout will begin with sources on the left and
proceed to the final targets on the right of the canvas as we design it. Right now we
know that we have to pull data from the ACME_POS transactional database in SQL
Server as our source and load it into the POS_TRANS_STAGE table that we just defined
as our target. So let's begin by including these objects into our mapping.

Chapter 6

[203]

We need to look at the source data and determine what tables we will need to pull
the data from so that we know which of the objects to include in our mapping. We
first looked at the source data for the POS transactional database back in Chapter 2.
So if you need to refresh your memory about what that looked like, now would be a
good time to go back and review that quickly before moving on. In the next section,
we'll start by adding a source table.

Adding source tables
We know that the first piece of information we need for loading into our staging
table is the sales data—the quantity and dollar amount of each sale, and the date of
the sale. Looking at our ACME_POS source database, we know that data is stored in
the POS_Transactions table. Therefore, we'll start our mapping by including
this table.

There are a couple of ways we can add a table to our mapping. One way is to use the
Projects Navigator window and the other way is to use the Palette window. Which
one we choose is really just a matter of preference.

We'll use the Projects Navigator window to find the table that we want to include
in our mapping. To find an object in the Projects Navigator, we have to know what
module it is located under.

Collections
Our project is not that big so it's easy to find objects but it's easy for
projects to become very large. One feature we're not covering in this
introductory book that can assist with that is Collections. That feature
allows you to group objects from your project into arbitrary folders for
ease in accessing them and for organizing them. For more information,
consult the Oracle Warehouse Builder Concepts Guide,
Chapter 3, at the following URL:
http://download.oracle.com/docs/cd/E11882_01/owb.112/
e10581/uitour.htm#BABDCHCJ

In our case, we know the POS_TRANSACTIONS table is defined under the
ACME_POS module. So let's navigate to the Databases | Non-Oracle | ODBC |
ACME_POS node in the Projects Navigator tab to find the POS_TRANSACTIONS
table entry.

ETL: Putting it Together

[204]

We can also find things very quickly with the Design Center search
function by clicking on the Search main menu entry and selecting
Find… or by selecting Ctrl-F from the keyboard. Just enter the name of
the object we're searching for and click the Find button and it will take
us right to it. That's very helpful if we can't remember which module we
created the object under.

Click and hold the left mouse button on POS_TRANSACTIONS, drag it over to
the Mapping window, and release the left mouse button to drop the table into our
mapping. Our Mapping Editor window should now look similar to the following:

There are a couple of items to note about how the Mapping Editor window looks.
The Properties Inspector window no longer shows the mapping information. It
has changed to show the properties of the POS_TRANSACTION table as it is now
highlighted in the Mapping canvas window.

Chapter 6

[205]

If your Properties window does not show the POS_TRANSACTIONS
properties, simply click on the POS_TRANSACTIONS operator
in the Mapping window. Make sure you click on the title bar of the
operator window because if you click inside the window, it will select
one of the attributes or groups and display the properties for that
instead of displaying the properties for the operator as a whole.

Another item to note is that now we have an object in our Mapping window instead
of a blank canvas. These objects that make up a mapping are called operators. In
this particular case, it is a Table operator that we have placed into the mapping to
represent the POS_Transactions table.

Having just one operator in our mapping is not enough, so let's try including the
remainder of the tables we'll need from our source database. We clearly need some
product information to fill in. From our analysis in Chapter 2 of the ACME_POS source
database structures, we know that product information comes from the Items
table. We'll include that table in our mapping now, but instead of using the Projects
Navigator window as we did for the POS_TRANSACTIONS table, let's see how the
Component Palette window works for including objects into our mapping.

The operators in the Component Palette are sorted alphabetically, so we'll scroll the
window until we see the Table Operator. Click and drag the Table Operator from the
Component Palette window onto the Mapping window. As soon as we drag it onto
the Mapping window, we are presented with a pop up like the following screenshot:

ETL: Putting it Together

[206]

This pop up asks us which table we want to include as this table operator. We have
a couple of options offered to us. We can create an unbound operator, which has no
attributes; in other words, it is a blank table that we can define as we like, or we can
specify an existing table from our project. An unbound operator is one which is not
associated with (that is, bound to) an existing database object. The act of binding in
OWB associates a generic operator with an actual defined object in the project. When
we dragged our POS_TRANSACTIONS table from the Projects window, it did not ask
us about this because we started with a specific named table. The operators in the
Component Palette window are all generic and are not associated with any specific
object of that type. With unbound operators, you can actually use the Mapping
Editor to create a data object. We'll actually get to do this in the next chapter when
we have to create a lookup table.

We're going to stick to the objects already defined for our operators. So we're going
to select the ITEMS table under the ACME_POS entry in the list of table names
that the pop-up window presents to us. We will click on the OK button to include
the ITEMS table operator in our mapping. Notice how the Add Table Operator
dialog box presents the information to us. It lists every possible table in our project
and organizes them by module. ACME_DWH is our main data warehouse module
that we created for our target in order to build our data warehouse. We can see the
tables that were created for our cube and dimensions along with the staging table
we created. ACME_WS_ORDERS is the web site order's database that we imported for
source data from the web site, and ACME_POS is what we're working with right now
to build a staging area.

Let's talk about organizing our tables in the Mapping window before we go any
further. In general, it's always a good idea to place source operators on the left and
the target operators on the right. So let's just make sure we keep the tables we're
dropping into our Mapping window towards the left side of the window, one above
the other. Click and hold on the header of the operator to drag it around.

We've seen how to include a table operator in our mapping using either of the two
methods. Using either one now, we'll include the remainder of the source tables
that we're going to need into our mapping—the REGISTERS, STORES, and REGIONS
tables. It should be clear why we need the STORES and the REGIONS tables. These
tables contain information about each store that we'll need, including the address,
region, and country. But why do we need the REGISTERS table? We're not going store
any information about the register used. From our analysis back in Chapter 2, we
saw that the register information pointed to the store where the register was located
in and the main POS_TRANSACTIONS table only had a foreign key column for the
register—not the store or region. This information was kept in separate tables with
a foreign key to the store, which is stored in the REGISTERS table. So, if we hope to
be able to retrieve the store and region information out of the source database, we're
going to need the REGISTERS table to get there.

Chapter 6

[207]

Now go ahead and include those three tables into the mapping using either of the
two methods we just discussed. When that is completed, make sure the tables are
organized vertically on the left side of the mapping window in the following order:
the ITEMS operator on top, then POS_TRANSACTIONS, then the REGISTERS operator
next, then the STORES operator, and then the REGIONS operator at the bottom. We'll
see soon why we are paying attention to the order in which we display the operators
in the Mapping canvas.

You'll notice that while dragging objects around the Mapping
window, it will grow in size automatically to hold the objects
we are placing there. So we needn't be too concerned if our
source tables are not all the way over to the left. When we place
our target table, we'll put it to the right-hand side of the sources.
Just make sure that the source tables are all together.

Your Mapping Editor window should now look similar to the following:

ETL: Putting it Together

[208]

The five source tables may not all be visible at once as we saw in
the previous screenshot. The Mapping view has been zoomed
out, so mostly all are visible here. However, there is a trade-off in
readability the more we zoom out. You can manipulate the zoom
yourself to find a size that's comfortable for your viewing. The zoom
buttons in the toolbar have been circled in the screenshot we just
saw. Click on the magnifying glass with the plus sign to zoom in and
the minus sign to zoom out. There are two magnifying glasses with
a plus sign. The one on the left is an interactive zoom and the one on
the right is the regular zoom in button.

Now that we have our source table all included and laid out in the Mapping
window, we'll move on to discuss getting our target included in the mapping.

Adding a target table
Let's now turn our attention to the target for this particular mapping. As this is a
staging-related mapping, we're going to be loading our staging table and so that
will become our target. Let's find the POS_TRANS_STAGE table in the Projects
window. We'll navigate to Databases | Oracle | ACME_DWH | Tables | POS_
TRANS_STAGE in Projects, and click and drag the POS_TRANS_STAGE table to
the righthand side of our source tables in the Mapping window. Let's leave some
space between the source table and the target tables. We'll shortly see the reason
behind this when we start connecting our source to the target.

Connecting source to target
The process of connecting the source to the target is the means of telling the
Warehouse Builder which data fields from the source go in which data fields in the
target. We might be tempted to just connect the data fields from the source tables
directly to the corresponding fields in the target. For instance, we know that the
ITEMS table has the ITEM_NAME field, which needs to be stored in the target in the
PRODUCT_NAME column; so why can't we just connect the two directly?

The reason we can't connect the two directly is because we have to keep in mind
what that means in terms of mapping. If we just connect a line from a source table
attribute to a target table attribute, we're telling the Warehouse Builder that there is a
one-to-one mapping from source to target. This means we can read a record from the
source table and store the column values directly in the target table with no need of
further manipulation. The problem in our case is that we're including information in
our target table from multiple source tables, and the Warehouse Builder is not going
to let us connect multiple source tables to a single target table directly as it won't
know how to combine the data.

Chapter 6

[209]

In addition to the joining of the tables, connecting directly from source to target
would also imply that the data was at the granularity we need. We discussed
granularity (or the level at which the data is stored) in Chapter 3 and decided that
our warehouse would store the data by product, store, and date. However, looking
at our source data, we can see that the data is actually stored by register. This is
actually a lower level of detail than we need, so we'll need to sum up the data for
each register in a store to get the total for the store.

This means we will have to provide some kind of intervening operators to get the
data combined from the five source tables into the one target table, summed by
product, store, and date. But what operators are we going to use? Remember our
discussion in Chapter 5 that introduced us to the various operators available in the
Warehouse Builder. We particularly mentioned in the Transformations section that
directly connecting source to target would only work for a one-to-one mapping
between a source table and a target table. Then went on to discuss some of the
operators that can be used for data flows, and one of them was a Joiner operator. If
you re-read the explanation, you'll see that a joiner is exactly what we need in this
case because we have to take multiple source tables and combine (or join) them into
one record in the target. We also discussed an Aggregator operator that can be used
to aggregate data. In this case, we need to sum data at a higher level before storing it.
So this should be exactly the operator we need for that purpose.

Now that we've settled on the two data flow operators we need, let's place them
into our mapping between the sources and the target. Now you can see why we left
some space between the sources and the target. Scroll down through the Component
Palette window until the Joiner operator is visible, drag this operator into the
Mapping window, and drop it between the sources and target.

Joiner operator attribute groups
We were introduced to the concept of attribute groups in the last chapter when
we were looking at DATE_DIM_MAP in the Mapping Editor. It's time to talk about
attribute groups again, because we can see that the Joiner operator has three groups
defined, but the attributes in our table operators are all in one group. The groups in
operators we saw are generally input groups, output groups, or both.

ETL: Putting it Together

[210]

In our table operators we can see that there is only one group as we mentioned,
called INOUTGRP1. The following screenshot is an example of that using the POS_
TRANSACTIONS table operator:

There are actually two clues to identify the attributes that can be
used for both input and output: one is the name of the group,
which has both IN and OUT in it if the default names have not been
changed, and the second is the little arrows that appear on each
attribute line—one arrow on the left pointing in for input and one
on the right pointing out for output.

If an attribute is in an input group, then we can connect an attribute from another
operator on the left to let the data flow from that attribute to this one. These
connections always enter an operator from the left. Now we can see why it's a good
idea to put our sources on the left and targets on the right. This is the direction the
data flows through the operators.

If the attribute can be used for output in either an output group or an in/out group,
then it means the data from the attribute can be used as input into another operator.
Output from an operator always flows out from the right side of the operator.

If we look at the Joiner operator we just dropped into our mapping, we can see that
there are no attributes defined in any of the three groups. Before we add attributes,
let's talk briefly about the groups in a Joiner operator. By default, the operator is
created with two input groups and one output group. Each input group corresponds
to a separate table or other data operator, and the output group represents the
combined (joined) output from the input tables.

We have five source tables to join together, but this Joiner operator has only two
input groups. Have no fear; a Joiner can have more than two input groups. We have
to edit this Joiner to add three more input groups. To edit it, right-click on the header
of the box and select Open Details... to open the Joiner Editor or just double click
on the header . This dialog box will allow us to edit the number of groups as well as
change the group names if we want something different from INGRP1 and INGRP2.

Chapter 6

[211]

The Joiner Editor can be used to edit not only the groups, but also the attributes that
compose each group. So if we right-click inside the Joiner box on a group and select
Open Details..., we will get the same dialog box with just the individual tab selected
that corresponds to the group we clicked on.

With the Joiner Editor open, let's click on the Groups entry on the left. We'll add
three new groups by typing their names in the empty box at the bottom of the
Group column on the right. We could use INGRP3, INGRP4, and INGRP5 as the group
names for our new groups but lets go ahead and use the actual table names. Enter
registers then stores and then regions and hit the enter key after each. Notice
how it automatically populated the group type as INPUT and doesn't allow us to
change it. This means it knew we wanted input groups and not output groups. Did it
read our minds? Well, not exactly. As it turns out, Joiners can have only one output
group and no combined input/output groups. So the only kind of group left to add
when we enter a group name is an input group.

While we're on the Groups tab, let's modify the names of our two default input
groups to the other two table names. By just clicking on the name of the input group,
we can type in a new name. So, let's rename each of those default input groups
as follows:

•	 INGRP1 to ITEMS
•	 INGRP2 to POS_TRANSACTIONS

After entering three new names and renaming the two default names this is how it
will look:

ETL: Putting it Together

[212]

Now we'll click on the OK button to close out the Joiner Editor dialog box.

You may be wondering if there is a reason why we picked
a particular sequence of input tables and paid attention to
the order in which we displayed the table operators on the
canvas. It's to match the sequence of tables that we set up
in the Mapping window from top to bottom as displayed
in the previous image. However, this is not a hard and fast
requirement; they could be in any order. To ensure a good
appearance, that is, keep lines from crisscrossing all over the
mapping when we're done with it, it's a good idea to plan
ahead and use the same order. We'll see this later.
Also, we don't have to worry about capitalization as the editor
will automatically put everything we type into uppercase.

Connecting operators to the Joiner
Now that we have our Joiner groups defined, it's time to start making some
connections between operators. The act of connecting operators is a matter of
clicking and dragging a line from an output attribute of one operator to an input
attribute of another operator, or from one output group in one operator to an input
group in another operator. If we connect two attribute groups together, we're telling
the Mapping Editor to go ahead and connect every attribute in the group. If we
have several attributes, this is a convenient way to connect them. So, click and drag
INOUTGRP1 of the ITEMS table operator onto the ITEMS group of the JOINER.
Immediately, it will add all the attributes from the ITEMS table to the ITEMS group
in the JOINER and connect each one with a line.

Alternatively, we could have clicked and dragged a line from each attribute in the
ITEMS table and dropped it on the ITEMS group in the JOINER. But it was quicker
and more efficient to drag the entire group even though we won't be using
every attribute.

Leaving attributes in the JOINER that we're not going to use will
not affect the final result of our mapping. We're just going to drag
the attributes we're going to need over to the target table in a
moment. OWB will ignore the attributes we don't use when it builds
its underlying code.

Notice that if we now scroll down our JOINER operator to where the OUTGRP1
is visible, we can see that it automatically added attributes to the output group
corresponding to each of the input group attributes.

Chapter 6

[213]

To better view the attributes in the JOINER operator, we can make the
box bigger by clicking and dragging the border of the box to a bigger
size, either vertically or horizontally. Also, if we don't want to see all the
attributes, we can click on the minus sign on a group to collapse it so
that the attributes are not visible. Clicking on the plus sign then restores
the attributes.

Now let's repeat the same procedure with the POS_TRANSACTIONS,
REGISTERS, STORES, and REGIONS tables. That is, let's drag the INOUTGRP1
group to the corresponding group in the JOINER for each table to connect them. Feel
free to click on the minus sign on each group to collapse it to get a better view of the
next group. If the ordering of the tables has been maintained between the JOINER
groups and the table operators, and all the input groups of the JOINER have been
collapsed (which is why the attributes are not visible), the mapping should look
similar to the following screenshot:

ETL: Putting it Together

[214]

The Component Palette and Property Inspector windows have been
moved over to the left side and the Structure window closed to make
more room for the main canvas area of the Mapping Editor. Your overall
window will probably look different but the important part is that your
main canvas should look similar to how the objects are laid out above.

Defining operator properties for the JOINER
The next step in the process is to specify how we want the tables joined. We need
to identify the attributes to use in the join condition. We will do that by modifying
a property of the JOINER. This will be our first experience of working with the
Properties Inspector window in the Mapping Editor. If the JOINER operator is not
already selected, click once on the header of the box to select it and the Properties
window will immediately change to display the properties of the selected object; in
this case it's JOINER. We can see a property mentioned there, Join Condition. If it is
not immediately visible, the properties can be scrolled down until it is.

If you click inside the JOINER operator on a group or attribute, the
Properties window will display the properties for that group or
attribute and not the JOINER operator as a whole. We want the JOINER
properties, so make sure the JOINER itself is highlighted by clicking on
the header of the JOINER window.

Click on the blank box to the right of the Join Condition label. The Properties
window will now look like the following screenshot, which is ready for our input
of the join condition:

Now we can type the join condition directly in the white box. This can get a bit
tedious, especially as we'd need to know the correct syntax for specifying attributes.
The Warehouse Builder refers to attributes by group as well as attribute name. So, to
help us out with this, OWB provides the Expression Builder. This is a dialog box we
can invoke to interactively build our Joiner condition.

Chapter 6

[215]

We can invoke Expression Builder by clicking on the button with the three dots (...)
to the right of the blank white box. It looks like the following screenshot
before anything is filled in:

Notice on the left the list of input groups in the JOINER. From this list we're going
to select the attributes we need and will include them in our expression in the correct
format. We just need to make sure we specify the correct attributes and the correct
join relation, which will be the equal to (=) symbol in our case.

We do need to know a little about SQL join syntax at this point. The
Expression Builder provides us with the list of attributes and the
relational operator buttons, which will insert the indicated relations.
However, we need to insert them in the right order. Fortunately,
the syntax is not very complicated. We just need to specify which
column from one table equals which column from the table being
joined to. Then include an equality for each table with each of the
equalities separated by AND.

ETL: Putting it Together

[216]

We've seen the ITEMS table from our analysis in Chapter 2 of the source data
structures in the ACME_POS database. So we know that the POS_TRANSACTIONS table
contains a foreign key field pointing to the record in the ITEMS table for the particular
item for that transaction. This gives us clues about which columns will be needed
in the first join equality—the ITEM_SOLD attribute from POS_TRANSACTIONS and the
ITEMS_KEY attribute from the ITEMS operator. So, we'll expand the ITEMS group on
the left and double-click the ITEMS_KEY attribute to add it to the expression. As
we want every record included where the ITEM_SOLD equals the ITEMS_KEY,
we will include an equal sign next by clicking on the button with the = sign on it.
We'll finish this first relation by expanding the POS_TRANSACTIONS group and
double-clicking on the ITEM_SOLD attribute to include it. Our expression now
looks like the following with the steps highlighted with callouts:

The attributes include the group name first. This is the syntax it
uses to identify the specific attribute. It's common for the same
attribute name to appear in more than one group, and this syntax
will make it explicit which attribute is being referred to.

Chapter 6

[217]

We're not done yet, because so far we've only accounted for two of the four tables in
our join condition. We also need to include REGISTERS, STORES, and REGIONS tables.
The REGISTER attribute of the POS_TRANSACTIONS group contains the foreign key to
the REGISTERS_KEY attribute of the REGISTERS table, so let's add that one. But before
we add it, we need an AND. So let's click on the And button (which is near the button
labeled with an equal to sign) to enter it into our mapping, and then press the Enter
key to advance to the next line. We move to a new line to prevent our expression
from extending past the viewable window. The expression could extend past it and
still work. But for ease of viewing, we'll enter it vertically instead of horizontally so
that we don't have to scroll.

Now we'll enter the following:

•	 The REGISTER attribute by double-clicking on it in the POS_
TRANSACTIONS group

•	 The equal to sign by clicking on the corresponding button
•	 The REGISTERS_KEY attribute by double-clicking on it under the

REGISTERS group
•	 This expression is followed by another AND by clicking on the And button
•	 Press the Enter key

The equal to sign and the And can be typed in manually if you prefer,
rather than having to click on the buttons each time. Some people find
that quicker to enter, and will just double-click the attributes needed
and manually type the other operators that are needed.

ETL: Putting it Together

[218]

Continue in the like manner with the LOCATION in the REGISTERS group equal to
STORES_KEY in the STORES group, and REGION_LOCATED_IN in the STORES group
equal to the REGIONS_KEY in the REGIONS group. Do not include And after this last
part of the expression as it is the end. When completed, the expression should look
like the one in the following screenshot:

We can click on the Validate button now to make sure the expression we just entered
is a valid expression, meaning that we used the correct SQL syntax. We should get
the Validation Successful message.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 6

[219]

Depending on what release number of the database you are running,
you may get the following error message instead of the success
message: An error occured during expression validation. Bad
expression return type. This is a known bug, ID 7417869, which is
reported to have occurred in Release 10.2.0.4 of the database and is
fixed in 10.2.0.5. It also reports that the mapping will deploy and
execute successfully even if this validation bug occurs. The bug
report also says the error occurred in Release 11.1.0.7 of the database.
However, it works in v11.2.0.1, which is the most recent publicly
available version for download that we are using for this book. The
screenshot we just saw was taken from 11.2.0.1 and we can see the
Validation Successful message. So if you are using this version, you
should not see the error.

Click on the OK button and we are done specifying the join condition for the
JOINER operator. We can now see that it filled in the join condition text into the Join
Condition entry in the Properties window. This completes the Joiner, but we still
have to aggregate the data so that it's at the level we need for loading into the data
warehouse. For aggregating data, we'll now include an Aggregator operator.

Adding an Aggregator operator
An Aggregator operator is used to apply an aggregate function to the data.
Aggregation functions are documented in the Oracle Database SQL Language
Reference at http://download.oracle.com/docs/cd/E11882_01/server.112/
e17118/functions003.htm#i89203. Chapter 5 of that online document has a
section devoted to aggregate functions. In our case, we will need to add up the sales
quantities and dollar amounts for every product, and the store and date combination
to have data at the right level to load into the data warehouse. For this aggregation of
data, we can use a SUM() function.

The Aggregator operator requires that we specify a few things for it to function
correctly. As with any operator, there are attribute groups to set and an Aggregator
operator has one input and one output group. For the input group, we will drag
the output attributes of the Joiner operator. We have to specify a group by clause
that the Aggregator operator is going to use to group the data, and it will create
an output attribute for every attribute we use in the group by clause. We have to
manually add output attributes for any of the values that are going to be summed
up, and then specify the SUM() function to use for them.

ETL: Putting it Together

[220]

We'll follow a similar process to add the Aggregator operator as we did for the
Joiner; drag an AGGREGATOR operator onto the canvas to the right of the JOINER
operator, connect output attributes from the JOINER operator to the input of the
AGGREGATOR operator, define properties for the AGGREGATOR operator,
and then connect the output of the AGGREGATOR operator to the POS_TRANS_
STAGE table operator. Here we'll outline the steps to follow without going into as
much detail as we did for the Joiner operator:

1.	 Drag an AGGREGATOR operator from the Component Palette window to the
canvas and drop it to the right of the JOINER operator between that operator
and the POS_TRANS_STAGE target operator. You may have to move the POS_
TRANS_STAGE target operator further to the right to make enough room.

2.	 Connect the output attributes from the JOINER operator as input to the
AGGREGATOR operator by dragging the OUTGRP1 output group and dropping it
on the INGRP1 input group of the AGGREGATOR operator. This will map every
output attribute at once, so we don't have to do each one individually.

We have one issue we need to address with the input attributes for
the Aggregator and that is related to the DATE_SOLD attribute from
the Joiner operator. An attribute of the DATE type includes both date
and time of day. We are going to sum up the data by date. But if we
include the time of day, we'll get multiple dates occurring on the same
day that are treated as distinct because the time is different. We want
the sales for every product in a store for a single date to sum together
regardless of the time of day the sale occurred. We need to strip out the
time from the DATE_SOLD attribute, so we just have the date as input
into the Aggregator operator. For that task, we need a Transformation
Operator to apply the TRUNC() function to the value first. We'll discuss
Transformation Operators in greater depth in the next chapter, but let's
use one now to take care of the date.

3.	 We need to remove the line that got dragged to the input of the Aggregator
operator for the DATE_SOLD attribute by clicking on the line and pressing
the Delete key, or right-clicking and selecting Delete from the pop-up menu.
Make sure the correct line is selected. Attribute groups can be expanded to
spread the lines apart better so that it's easier to click.

4.	 Drag a Transformation Operator from the Component Palette window
and drop it on the canvas between the Joiner operator and the Aggregator
operator near the DATE_SOLD attribute. In the resulting pop up that
appears, we'll scroll down the window until the Date() functions appear and
then select the TRUNC() function. It will look like the following:
TRUNC(IN DATE, IN VARCHAR2) return DATE

Chapter 6

[221]

Click on that line and then click on the OK button to select it. It will drop a
TRUNC Transformation Operator on the canvas.

5.	 Connect the DATE_SOLD attribute in the OUTGRP1 group of the Joiner
to the D attribute of the INGRP1 of the TRUNC transformation operator.
Then connect the VALUE attribute of the RETURN output group of the
TRUNC operator to the DATE_SOLD attribute of the INGRP1 group of the
Aggregator operator. We're not going to worry about mapping anything into
the FMT input attribute. That is for the optional format parameter for the
TRUNC() SQL function which if not provided defaults to truncate the date to
the nearest day which is what we need. The above referenced SQL Language
Reference explains all about that.
The canvas should now look similar to the following screenshot:

ETL: Putting it Together

[222]

6.	 We have our input set for the Aggregator operator and now we need to
address the output. Let's select the Aggregator operator by clicking on the
title bar of the window where it says AGGREGATOR. The Properties
window of the Mapping Editor will display the properties for the
aggregator. If it doesn't, then make sure the title bar of the window was
selected for the operator and not somewhere inside the operator.

7.	 The very first attribute listed is Group By Clause. We'll click on the ellipsis
(...) on its right to open the Expression Builder for the Group By Clause.
This is similar to how we launched it earlier to edit the join condition for the
Joiner operator.

8.	 Enter the following attributes separated by commas by double-clicking each
in the INGRP1 entry in the left window:
INGRP1.ITEM_NAME , INGRP1.ITEM_CATEGORY , INGRP1.ITEM_SKU ,
INGRP1.ITEM_BRAND , INGRP1.ITEM_LIST_PRICE , INGRP1.ITEM_DEPT
, INGRP1.STORE_NAME , INGRP1.STORE_NUMBER , INGRP1.STORE_
ADDRESS1 , INGRP1.STORE_ADDRESS2 , INGRP1.STORE_CITY , INGRP1.
STORE_STATE , INGRP1.STORE_ZIP, INGRP1.REGION_NAME , INGRP1.
COUNTRY , INGRP1.DATE_SOLD

When completed, it should look similar to the following screenshot:

Chapter 6

[223]

9.	 We'll click on the OK button to close the Expression Builder dialog box and
looking at the AGGREGATOR now, we can see that it added an output
attribute for each of these attributes in our group by clause. This list of
attributes has every attribute needed for the POS_TRANS_STAGE operator
except for the two number measures, SALE_QUANTITY and SALE_DOLLAR_
AMOUNT. So let's add them manually.

10.	 We'll right-click on the OUTGRP1 attribute group of the AGGREGATOR
operator and select Open Details... from the pop up. We used this editor
earlier for the Joiner to edit the groups, and now we're going to use it for the
Aggregator to edit the attributes in a group.

11.	 We'll click on the Output Attributes entry on the left, and then enter a new
attribute in the blank line at the end called SALES_QUANTITY and leave
the type NUMERIC with 0 for precision and scale. We'll enter AMOUNT
next and make it type NUMERIC with precision 10 and scale 2. Now
we need to apply the SUM() function to these two new attributes. The
Aggregator Editor has a column for the expression to be associated with each
attribute and we can see that expressions have already been filled in for the
other attributes we indicated as the "group by" attributes and now we need
to provide the expressions to sum up the two new attributes we just entered.
So we'll click on the expression for SALES_QUANTITY and then click on
the ellipsis beside the Expression to launch the Expression editor for this
attribute.

ETL: Putting it Together

[224]

12.	 We'll immediately notice something different. The Expression editor for
output attributes of an Aggregator is custom built to apply aggregation
functions. We'll select SUM from the Function drop-down menu, ALL from
the ALL/DISTINCT drop-down menu, and SALES_QUANTITY from
the Attribute drop-down menu. We'll then click on the Use Above Values
button and the expression will fill in showing the SUM function applied to
the SALES_QUANTITY attribute. This is shown in the next screenshot of the
Expression editor:

13.	 We'll click on the OK button to save the expression and close the dialog
box. Then we'll do the same thing for the AMOUNT output attribute of the
Aggregator, but will select AMOUNT for the Attribute drop-down menu.
After making these changes, this is how the Aggregator Editor will look:

Chapter 6

[225]

We'll click on the OK button to close the AGGREGATOR Editor dialog box.

We're almost done now. We've included the following:

•	 The source tables we need to pull the data from
•	 The target table we're going to store the data in
•	 A Joiner operator to join together the source tables
•	 An Aggregator to sum up the data

We have also connected the source tables as input to the Joiner operator and the
Joiner as input to the Aggregator operator. The only thing left is to connect the
output attributes of the Aggregator operator to the target input attributes. Before
doing that, let's make the target table operator box big enough to display all its
attributes at once without having to scroll. Just click and hold on the bottom edge
of the POS_TRANS_STAGE window and drag the window down until all the
attributes are visible. Do the same to the Aggregator operator window, but make
sure only the output group is expanded. The input group should be collapsed
because we're finished working with it for now.

ETL: Putting it Together

[226]

Make the following attribute connections between the Aggregator and the POS_
TRANS_STAGE table by clicking and dragging a line between attributes. We'll do
individual attributes this time, not the whole group.

•	 SALES_QUANTITY to SALE_QUANTITY
•	 AMOUNT to SALE_DOLLAR_AMOUNT
•	 DATE_SOLD to SALE_DATE
•	 ITEM_NAME to PRODUCT_NAME
•	 ITEM_SKU to PRODUCT_SKU
•	 ITEM_CATEGORY to PRODUCT_CATEGORY
•	 ITEM_BRAND to PRODUCT_BRAND
•	 ITEM_LIST_PRICE to PRODUCT_PRICE
•	 ITEM_DEPT to PRODUCT_DEPARTMENT
•	 STORE_NAME to STORE_NAME
•	 STORE_NUMBER to STORE_NUMBER
•	 STORE_ADDRESS1 to STORE_ADDRESS1
•	 STORE_ADDRESS2 to STORE_ADDRESS2
•	 STORE_CITY to STORE_CITY
•	 STORE_STATE to STORE_STATE
•	 STORE_ZIP to STORE_ZIPPOSTALCODE
•	 REGION_NAME to STORE_REGION
•	 COUNTRY to STORE_COUNTRY

If we focus on just the Aggregator and the POS_TRANS_STAGE operators our
mapping should now look like the following after making all those connections:

Chapter 6

[227]

Notice that it's not always possible to avoid overlapping lines altogether, but we just
want to avoid them as much as we can for readability. In this case, the overlapping
lines are a result of different ordering of the attributes in the AGGREGATOR
operator and the POS_TRANS_STAGE table. Changing this would involve
recreating the table to reorder columns, and that is just not worth the effort. It will
often be the case that sources and targets don't line up like that, but when we add
intervening operators over which we have a more direct control, that is where we
can focus our efforts on being neat and orderly. Also, your ordering of attributes in
the OUTGRP1 group of the AGGREGATOR operator may be different depending
on the order in which you mapped the attributes from the Joiner. The order is not
important as long as all the required attributes are present.

This completes the staging mapping. We've seen how to create a complete mapping
in the Warehouse Builder. We'll make sure to save at this point so that we don't lose
anything before we move on.

ETL: Putting it Together

[228]

Summary
We saw how to create a mapping in the Warehouse Builder, including how to design
a staging area table, build it with the Table Editor, design a mapping to populate it,
and then create the mapping using source and target operators, and the intervening
Joiner and Aggregator operators. We also got to use a Transformation Operator.

Now that we have completed our staging table mapping, we need to design
mappings to get our dimensions and cube populated from the data in the staging
table. We'll do that in the next chapter while taking a look at transformations, which
are a key feature of the Warehouse Builder for loading and cleaning up data.

ETL: Transformations and
Other Operators

Now we have completed our first mapping, but there is still more to do. The
mapping we completed in the previous chapter was simple, as we just took data
from our source database and loaded it into a staging table. We were not at all
concerned about what format the data was in, and just wanted to get the data into
our staging table in the target environment as quickly as possible. The only other
operators we needed besides the source and target tables were a Joiner to pull
together the source tables for storing in the staging table, an Aggregator to sum up
the data, and a Transformation operator to truncate the date to remove the time
portion. In the previous chapter, we made use of only a very small subset of the
Warehouse Builder operators to load and transform data from source into target. We
will continue building mappings in this chapter to make use of additional features.

We will be introduced to the concept of transformations and operators that are
available in OWB, which can be used for transforming and manipulating data
between source and target. We'll do this by building additional mappings for loading
data into our STORE and PRODUCT dimensions, and loading of our SALES cube. Along
the way, we'll get to build a quick mapping for creating and loading a table that will
be used as a lookup table. As we build the mappings, we'll discuss in more detail
some of the additional operators we'll need. Thus, we will begin to see the real power
and flexibility the Warehouse Builder provides us for loading a data warehouse.
When we complete the mappings in this chapter, we will have a complete collection
of objects and mappings. We can deploy and run these to build and load our data
warehouse.

ETL: Transformations and Other Operators

[230]

The building of the mappings in this chapter will be very similar to those in the
previous chapter, with the addition of a few more operators. The basic procedure is
the same—start with adding a source and a target, and then include any operators
in between needed for data flow and transformation. In the last chapter, we were
introduced to a couple of data flow operators—the Joiner and the Aggregator. Let's
start this chapter with the STORE dimension and we'll see some new operators that
are involved in transformations. A complete list of the topics we'll cover this chapter
is the following:

•	 STORE mapping
°° Adding source and target operators
°° Adding Transformation operators
°° Using a Lookup operator

°° Creating an external table
°° Creating and loading a lookup table
°° Retrieving the key to use for a Lookup operator
°° Adding a SUBSTR Transformation operator
°° Adding a Constant operator
°° Adding a TO_NUMBER transformation
°° Adding a Lookup operator

•	 PRODUCT mapping
•	 SALES cube mapping

°° Dimension attributes in the cube
°° Measures and other attributes in the cube
°° Mapping values to cube attributes

°° Mapping measures' values to the cube
°° Mapping PRODUCT and STORE dimension values to

the cube
°° Mapping DATE_DIM values to the cube
°° Mapping an Expression operator

•	 Features and benefits of OWB

Chapter 7

[231]

STORE mapping
Let's begin by creating a new mapping called STORE_MAP. We'll follow the procedure
in the previous chapter to create a new mapping. In the Design Center, we will
right-click on the Mappings node of the ACME_DW_PROJECT | Databases |
Oracle | ACME_DWH database and select New Mapping. Enter STORE_MAP for
the name of the mapping and we will be presented with a blank Mapping Editor
window. In this window, we will begin designing our mapping to load data into the
STORE dimension.

Adding source and target operators
In the last chapter, we loaded data into the POS_TRANS_STAGE staging table with the
intent to use that data to load our dimensions and cube. We'll now use this POS_
TRANS_STAGE table as our source table. Let's drag this table onto the mapping from
the Projects window. Review the Adding source tables section of the previous chapter
for a refresher if needed.

The target for this mapping is going to be the STORE dimension, so we'll drag this
dimension from Databases | Oracle | ACME_DWH | Dimensions onto the
mapping and drop it to the right of the POS_TRANS_STAGE table operator. Remember
that we build our mappings from the left to the right, with source on the left and
target on the right. We'll be sure to leave some space between the two because we'll
be filling that in with some more operators as we proceed.

Now that we have our source and target included, let's take a moment to consider
the data elements we're going to need for our target and where to get them from
the source. Our target for this mapping, the STORE dimension, has the following
attributes for the STORE level for which we'll need to have source data:

•	 NAME

•	 STORE_NUMBER

•	 ADDRESS1

•	 ADDRESS2

•	 CITY

•	 STATE

•	 ZIP_POSTALCODE

•	 COUNTY

•	 REGION_NAME

ETL: Transformations and Other Operators

[232]

For the REGION level, we'll need data for the following attributes:

•	 NAME

•	 DESCRIPTION

•	 COUNTRY_NAME

For the COUNTRY level, we'll need data for the following attributes:

•	 NAME

•	 DESCRIPTION

The complete and fully expanded STORE dimension in our mapping appears like the
following screenshot:

We might be tempted to include the ID fields in the above list of data elements for
populating, but these are the attributes that will be filled in automatically by the
Warehouse Builder. In fact, if we try to map a value to one of the IDs, the mapping
editor will not let us. It will change the cursor into a "no entry" symbol, (a circle
with a slash through it.) The Warehouse Builder fills them using the sequence that
was automatically created for us when we built the dimension. This is one of the
benefits of using the dimensional operators (cubes and dimensions). They handle
the generation of the surrogate keys for a dimension and the lookup for a cube
automatically for us. We don't have to be concerned with connecting any source data
to the ID fields. We discussed the concept of using a sequence for the surrogate key
back in Chapter 4 when we designed our dimensions.

Chapter 7

[233]

Now that we know what we need to populate in our STORE dimension, let's turn our
attention over to the POS_TRANS_STAGE dimension for the candidate data elements
that we can use. In this table, we see the following data elements for populating data
in our STORE dimension:

•	 STORE_NAME

•	 STORE_NUMBER

•	 STORE_ADDRESS1

•	 STORE_ADDRESS2

•	 STORE_CITY

•	 STORE_STATE

•	 STORE_ZIPPOSTALCODE

•	 STORE_REGION

•	 STORE_COUNTRY

It is easy to see which of these attributes will be used to map data to attributes in the
STORE level of the STORE dimension. They will map into the corresponding attributes
in the dimension in the STORE group. We'll need to connect the following
attributes together:

•	 STORE_NAME to NAME
•	 STORE_NUMBER to STORE_NUMBER
•	 STORE_ADDRESS1 to ADDRESS1
•	 STORE_ADDRESS2 to ADDRESS2
•	 STORE_CITY to CITY
•	 STORE_STATE to STATE
•	 STORE_ZIPPOSTALCODE to ZIP_POSTALCODE
•	 STORE_REGION to REGION_NAME

There is another attribute in our STORE dimension that we haven't accounted for
yet—the COUNTY attribute. We don't have an input attribute to provide direct
information about it. It is a special case that we will handle after we take care of these
more straightforward attributes and will involve the lookup table that we discussed
earlier in the introduction of this chapter.

ETL: Transformations and Other Operators

[234]

We're not going to directly connect the attributes mentioned in the list by just
dragging a line between each of them. There are some issues with the source data
that we are going to have to account for in our mapping. Connecting the attributes
directly like that would mean the data would be loaded into the dimension as is, but
we have investigated the source data and discovered that much of the source data
contains trailing blanks due to the way the transactional system stores it. Some of the
fields should be made all uppercase for consistency.

Given this additional information, we'll summarize the issues with each of the fields
that need to be corrected before loading into the target and then we'll see how to
implement the necessary transformations in the mapping to correct them:

•	 STORE_NAME, STORE_NUMBER: We need to trim spaces and change these
attributes to uppercase to facilitate queries as they are part of the business
identifier

•	 STORE_ADDRESS1, ADDRESS2, CITY, STATE, and ZIP_POSTALCODE: We need to
trim spaces and change the STATE attribute to uppercase

•	 STORE_REGION: We need to trim spaces and change this attribute to
uppercase

All of these needs can be satisfied and we can have the desired effect by applying
pre-existing SQL functions to the data via Transformation Operators.

Adding Transformation Operators
The Transformation Operator is a generic operator that is used to represent several
built-in or custom-built functions or procedures for operating on data in order to
make some kind of change or transformation to it. Let's take a look at the available
list of transformations. In the Design Center, we can look at a list of available
transformations either custom or pre-built in the database in the Globals Navigator
panel under Public Transformations. There are several categories of transformations
available to us as shown in the following screenshot:

Chapter 7

[235]

We are primarily interested in the Character category because that is where we'll find
functions that operate on character strings, and that can convert them to uppercase
and remove whitespace. We can expand any of these lists to take a look at the names
of the various transformations names available. We can also go to the online help for
explanations of all the functions in the Warehouse Builder Transformations Reference
heading under the Data Modeling, Data Quality and Performing ETL section of the
online help table of contents. You can access this by selecting Help | Table of Contents
from the main menu of the Design Center, or by pressing the F1 key. The particular
transformation names we need under the character heading are the upper() function
to convert to uppercase and the trim() function to remove whitespace.

We can now move back to the Mapping Editor where we're creating our STORE_
MAP mapping and begin to add the transformations, and through them connect
source to target. The first data element we'll map is the store name, so let's drag a
Transformation operator onto the mapping and drop it between the POS_TRANS_
STAGE table and the STORE dimension. We can find the Transformation Operator in
the Component Palette window as shown in the following screenshot:

ETL: Transformations and Other Operators

[236]

After dropping the Transformation Operator on the mapping, it will pop up a
dialog box where we select the transformation we want to use. We have two options
in this dialog box—create an unbound operator (basically, one that is not tied to an
existing repository object) or select from an existing object. We'll select an existing
one because we know that the function that will suit our purpose already exists.
We'll scroll the window down until we see the TRIM() function as shown in the
following screenshot:

Searching for a function
If we want to find the function quickly, rather than manually scrolling
the window down, there's a not-so-obvious feature of this dialog box
called the search capability. If we start typing the name of the function
we want, it will automatically scroll down the list with each letter typed,
until it settles on the one we want. For example, type a T and it highlights
the line for the TRANSLATE function. Type an R next and it jumps to
the TRUNC() function. But type an I next and it jumps right to the TRIM
function we need. This option is much better to quickly find what we're
looking for than manually scrolling the window. This option is a great
help as it's so easy to scroll right by what we're looking for without
realizing it.
If you click anywhere on the window before typing, the search string will
start the search at that point.

Chapter 7

[237]

We'll now click on the TRIM function in the window and then on the OK button.
This will display a TRIM Transformation operator window on our mapping. It is
like any other operator in that it has attributes, which are in groups depending on
whether they are input, output, or both. In this case, a TRIM operator has one input
attribute and one output attribute. The input attribute is the string we want to trim
the whitespace from and the output attribute represents the result of applying the
TRIM operator to the input string. It looks like the following screenshot:

With all of these Transformation operators that we can select from, the
attribute names will appear similar to the above character attributes
named CHAR_, a return value named VALUE. We can change these if we
want, but this will become tedious when large numbers of Transformation
Operators are required. Leaving the Transformation operator's attributes
as they are will not affect the operation of the mapping.

We can now connect our STORE_NAME attribute in the POS_TRANS_STAGE mapping
table operator to this new TRIM operator. We'll drag a line from STORE_NAME to
CHAR_ in the TRIM operator. This succeeds in mapping the input for our new
TRIM Transformation operator, but now we need to map the output somewhere.
We could just drag a line from the VALUE output attribute over to the STORE
dimension. But we've said before that we need to apply an UPPER transformation
on this value as well as a trim, so the value that ultimately gets loaded into our
dimension will be in all uppercase letters.

Upper and lowercase issues
When working between an MS SQL Server Database and an Oracle
Database, we will frequently find that the case of the strings we're
working with becomes an issue. The Oracle Database is very case
sensitive. If we store a string in the database as 'Some String',
then searching for 'some string' will not get a match. It will match
in SQL Server, even though the case is different. This is why it is
a good idea to store key fields that uniquely identify a record in
the database in all uppercase. By doing so, we won't encounter
a possible situation where two records get loaded into our data
warehouse that differ by only the case of the key identifier, or we
don't get a match at all because of a different case.

ETL: Transformations and Other Operators

[238]

Now we need an UPPER transformation added for our STORE_NAME, so let's drag
another Transformation operator onto the mapping and drop it to the right of
the TRIM operator. It is perfectly acceptable and very common, in fact, to have
to map the output from one Transformation operator into the input of another
Transformation operator. We will select the UPPER() function this time from the
resulting pop-up window. It is close to the TRIM function in the dialog box as
shown in the following screenshot:

The UPPER() function is similar to the TRIM() function in the number of arguments
it takes and the value it returns—which is one in both the cases. It is different in
that the UPPER() function does not specify the type of the arguments as the TRIM()
function does. We can see from the previous screenshot that the type is listed as
UNSPECIFIED. We know these are character functions because that is where we
found them in the list. As a TRIM function removes characters (blank characters)
from a string, this string must be a varchar2 string and not a string of a char type. A
varchar2 string is a variable length string up to the maximum length it was defined
with; so if you remove some characters from it, it just shrinks in size. However a
char string is a string with a fixed length.

The database will fill up a char string with blanks up to the maximum size of the
string if you store a string that is smaller than the defined size of the char string.
A TRIM() will have no effect on this kind of field. An UPPER() function, on the
other hand, will work on a string of any type. The Oracle Database SQL Language
Reference manual (which can be found at http://download.oracle.com/docs/
cd/E11882_01/server.112/e17118/functions.htm#i1482196) indicates that
the parameter can be any of the following: CHAR, VARCHAR2, NCHAR, NVARCHAR2,
CLOB, or NCLOB. When we look up the TRIM() function, we see that it can only be a
VARCHAR2 for input.

Thus, the UPPER transformation is not able to know beforehand the exact type of
the input and output parameters. It will know about that only when we drag an
actual value to it. There is also a difference in how the operator looks on the mapping
just after being dropped. We can see in the following screenshot that unlike other
operators in our mapping, the attribute type indicators in this operator (that appear
to the right of the attributes) show as blank boxes:

Chapter 7

[239]

These blank boxes will fill in automatically at some point after an attribute gets
mapped to it, so let's continue. We will need the output of the TRIM operator to be
the input of this one, so we'll drag a line from VALUE in the TRIM operator to CHAR_
in the UPPER operator. The type indicator in the window on the mapping will
eventually update automatically to reflect the type that was connected to it, which is
VARCHAR2 in this case.

We can now connect to the STORE dimension as we don't have any more
transformations that we need to do to the STORE_NAME, but we need to decide where
in the STORE dimension to connect. This is where it could be easy to make the wrong
connection because looking at the STORE dimension we see that it has three NAME
attributes, all of which can be used as input, as circled in the following screenshot:

Here the key in deciding which attribute to use is to recall our discussion of the
design of our dimension back in Chapter 4. There we talked about the levels and
hierarchy that can exist in a dimension, and how certain attributes can be designated
as dimension attributes, which can be found at every level of the dimension. In
this case, the NAME attribute is just such an attribute. The hierarchy in this case is
COUNTRY, REGION, STORE; and each level of the hierarchy has a NAME associated with
it. This is the name of the store, so let's make sure to drag the line to the NAME
attribute in the STORE group of the STORE dimension operator, which is the
bottommost operator in the above screenshot.

ETL: Transformations and Other Operators

[240]

At this point, our mapping should look roughly similar to the following. The
placement of the operators on the mapping will vary, but it should generally be
similar to the POS_TRANS_STAGE mapping table on the left as input, the TRIM
and UPPER operators in the middle connecting the STORE_NAME attribute from
input to the NAME attribute of the STORE group in the STORE dimension
as output:

To keep our mapping from becoming too cluttered, collapse the
transformation windows into their icon view after making all the
connections through them. The icons take up much less space on the
mapping and can always be opened again by double-clicking on them if
needed in the future. We can click on the down arrow in the upper-right
corner of the window to collapse them into the icon view.
Another option to un-clutter the mapping would be to use a single
expression operator to implement the functions for each attribute.
We mentioned back in Chapter 5 how we could implement a prebuilt
operator in an expression operator just by creating an expression that
used the function. An expression operator can actually include more
than one expression so we could do one for each attribute that needed
transforming. We'll take a quick look at that option in a moment when
we complete this mapping.

Chapter 7

[241]

Next, we'll take care of the STORE_NUMBER as it is the second part of the business
identifier for the store. The name and number of the store are what uniquely identify
a single store in the ACME Toys and Gizmos company, and are handled similarly
in our mapping. The same two transformations are needed for the STORE_NUMBER
field as for STORE_NAME from the POS_TRANS_STAGE input table, but we can't reuse
the existing two transformations we just dropped onto our mapping. We will need
to drag two more transformations to our mapping, making one a TRIM and another
an UPPER just as we did for the STORE_NAME. We'll connect them in a manner similar
to how we connected the previous two transformations. We'll start with the POS_
TRANS_STAGE mapping table operator. We will connect the STORE_NUMBER attribute
to the input of the TRIM, the output of the TRIM to the input of the new UPPER
we just dropped onto the mapping, and the output of the UPPER to the STORE_
NUMBER attribute of the STORE dimension. There is only one STORE_NUMBER attribute
in the dimension, unlike the name, because the STORE_NUMBER is not defined as a
dimension attribute; it exists only at the STORE level as a level attribute.

At this point we have our STORE_NAME and STORE_NUMBER attributes connected to
the dimension, and we'll continue with the two address fields, the city, the state, and
the zip/postal code field. We determined that these fields will need to have spaces
trimmed, but we do not want to make them uppercase except for the state field. They
are not a part of the unique business identifier for an individual store and, apart from
the state field, can be any combination of characters and/or numbers, which make
them less likely to be queried for. The state field contains states in the US, which are
commonly expressed as two uppercase characters, and so we'll apply the UPPER
transformation to it.

We will need six more Transformation operators dropped into our mapping, with
five being for TRIM operators for each of those five fields and one for an UPPER()
function to use for the state field. The following attributes of the POS_TRANS_STAGE
mapping table operator will provide the input for the five TRIM operators:

•	 STORE_ADDRESS1

•	 STORE_ADDRESS2

•	 STORE_CITY

•	 STORE_STATE

•	 STORE_ZIPPOSTALCODE

ETL: Transformations and Other Operators

[242]

The output of the TRIM operators for all but the STORE_STATE attribute will be
connected directly to STORE level attributes of the STORE dimension as follows:

•	 ADDRESS1

•	 ADDRESS2

•	 CITY

•	 ZIP_POSTALCODE

The TRIM output for the STORE_STATE attribute will be connected to the UPPER
Transformation operator, and the output from the UPPER operator will be connected
to the STATE attribute in the STORE dimension.

After making all these connections, our mapping should now look similar to the
following with all the Transformation operators collapsed into their icon views:

We're not done with this mapping yet as we still have to map the STORE_REGION
attribute to the STORE level, and map both the REGION and COUNTRY levels.
Before continuing, let's save our work so far with the Mapping | Save All menu
entry on the Design Center. We can also use the Ctrl+S key combination.

Information about both the region and country comes from two attributes in our
source staging table, the STORE_REGION and STORE_COUNTRY attributes. These are
character fields for the name of the region and country the store is located in. When
we designed our STORE dimension in Chapter 4, a NAME and DESCRIPTION field were
created for us by default. We decided to leave it that way as that is a common design
technique for dimensions and avoids the error we mentioned back then about not
having any updatable fields. As we don't have separate name and description fields
to draw from at this point, we'll just fill the same information into both fields in the
STORE dimension.

Chapter 7

[243]

The NAME field is identified as the business identifier, so we'll put the value we store
there into uppercase and leave the description in whatever case the source was in.

Let's start with the region attribute. We can see in our STORE dimension that there is a
REGION_NAME attribute in the STORE group (level). This attribute indicates in which
region on the REGION level this store is located. Looking at the REGION level we
can see that there is a COUNTRY_NAME located there, which indicates the country
from the COUNTRY level where the region is located. In terms of our mapping, this
determines where we map the STORE_REGION and STORE_COUNTRY attributes to.

The first mapping change we'll do for the region is to finish up the STORE level
attributes by mapping the STORE_REGION from the stage table to the REGION_NAME
attribute in the STORE dimension, STORE level. We indicated earlier that names
should be capitalized and spaces trimmed, so we'll drag two more Transformation
Operators into our mapping—TRIM and UPPER—and map the STORE_REGION to
the TRIM, the TRIM to the UPPER, and the UPPER to the REGION_NAME field.

This completes the STORE level except for the COUNTY attribute, and we still have
this attribute plus the REGION and COUNTRY levels to complete. At this point,
we've become more proficient in doing our mapping and including transformations.
So we'll just continue to the REGION level and add the following connections and
transformations without having to walk through each one in detail. Be sure to read
the tip below before completing these:

•	 STORE_REGION to NAME in the REGION level using TRIM and UPPER
transformations

•	 STORE_REGION to DESCRIPTION in the REGION level using a TRIM
transformation

•	 STORE_COUNTRY to COUNTRY_NAME in the REGION level using TRIM and
UPPER transformations

•	 STORE_COUNTRY to NAME in the COUNTRY level using TRIM and UPPER
transformations

•	 STORE_COUNTRY to DESCRIPTION in the COUNTRY level using a TRIM
transformation

But we'll want to implement the following tip to make our mapping easier and less
cluttered.

ETL: Transformations and Other Operators

[244]

We have had a couple of instances earlier where the same input attribute
needs to be mapped to more than one target attribute. We learned
previously that we couldn't reuse a Transformation operator on two
different input attributes. However, we can reuse a Transformation
Operator if the output goes to two different attributes. Multiple
connections can be created from an output attribute in an operator, but
only one input connection is allowed.
For example, we can use just one TRIM operator on the REGION_NAME
and have its output go to an UPPER operator and also directly to the
DESCRIPTION attribute in the REGION group of the STORE dimension.
The output of the UPPER operator can then be connected to both
the REGION_NAME of the STORE level and the NAME attribute of the
REGION level. The same technique can be applied to the mappings for
the COUNTRY_NAME.
The bottom line is to reuse the TRIM and UPPER operators just added
for the NAME in the REGION level, and add one TRIM and one UPPER
operator for the COUNTRY_NAME.

After adding the two additional transformations and making the connections already
mentioned, our mapping should now look similar to the following screenshot:

Our STORE dimension is now mapped for every attribute except for the COUNTY
attribute. We've saved this one for last because it is the most complex of our
attributes to map for this dimension. The reason is that we don't have an exact match
with an attribute from our input staging table to use. Let's save our work at this point
and then investigate further how we need to map this attribute.

Chapter 7

[245]

Using a Lookup operator
Lookup operators, as the name implies, are used for looking up information from
other sources based on some key attribute(s) in a mapping. This is exactly what we
will need to do to get the information for the COUNTY attribute of our STORE
dimension. However, only tables, views, dimensions, and cubes can be used as the
source for this operator. This means we need a table that can be used to look up the
required county information. Back in Chapter 2, we imported the source metadata
for a flat file called counties.csv, creating a file in our ACME_FILES module in
Design Center for this file that contains the names of counties. It looks like we ought
to be able to use the information in that file to build a lookup table, so that's exactly
what we're going to do right now. We will use a simple Warehouse Builder mapping
to do it in a couple of easy steps. First, we will need to create an external table to
represent the counties.csv file. We could use the counties.csv file directly, but
as we discussed back in Chapter 2 that would require using the SQL*Loader utility,
which would not be consistent with the PL/SQL access that can be used for all the
other sources. So we will create an external table using the simple steps outlined in
the next section, and then follow that by using that external table as the source in a
new mapping to load a lookup table.

Creating an external table
In Chapter 2, we imported metadata from the counties.csv file which was created
in a module separate from our main database module because a file is not a part
of the database. However, external tables are created in the database as they are
accessed just like regular database tables. However, unlike a regular table whose
data is stored in the database, an external table's data is stored in a flat file that is
external to the database.

External tables are created under the Oracle | ACME_DWH | External Tables node
in the Design Center, so we'll right-click on it and select New External Table from
the pop-up menu. This will launch the External Table wizard, which will guide us
through the process. It is a three-step process that involves providing a name to use
for the external table, specifying the file to use, and specifying the default location.
The steps are as follows:

1.	 By clicking on Next on the Welcome screen, we come to the screen labeled
Step 1. We'll name this external table COUNTIES and click on Next to
continue to the screen labeled Step 2.

2.	 In this step we'll select the file that contains the metadata for the external
table. It will display the name of any files that have been defined in our Files
module. We can see our COUNTIES_CSV file listed, so we'll select that and
click on Next to continue.

ETL: Transformations and Other Operators

[246]

3.	 This brings us to the screen labeled Step 3 where we will select the default
location to use for this table. The drop-down menu on this screen will display
the file locations that have been defined in the Design Center. We will select
the ACME_FILES_LOCATION entry, which is for the files that exist for
this project. Clicking on Next will bring us to the Summary screen where
we can verify the information we just specified. It should look similar to the
following screenshot:

If we see anything we'd like to change, we can click on the Back button to
move back through the screens to make any changes and click on Next until
we get back here.

4.	 When we click on the Finish button, it will create a new entry called
COUNTIES under the External Tables node in our project in the Design
Center.

The wizard has created an external table with the column attributes that were listed
in the Summary screen. These attributes correspond to the fields that are stored in
the counties.csv flat file. We can query this table just as we query a table in the
database.

Chapter 7

[247]

Creating and loading a lookup table
Now that we have our source table defined for our new lookup table, let's create
a new mapping called COUNTIES_LOOKUP_MAP using the same method we've used
previously. The steps to create a lookup table are:

1.	 Right-click on the Mappings node, select New Mapping, enter COUNTIES_
LOOKUP_MAP in the name field, and click on the OK button.

2.	 In the Mapping Editor that pops up, let's drag an External Table Operator
from the Component Palette window onto the mapping.

3.	 On the Add External Table Operator pop-up window that appears, our
COUNTIES external table is visible. We will select that and click on the
OK button to continue. This will drop an External Table Operator on our
mapping that is bound to our COUNTIES external table.

4.	 We need to get that data loaded into a regular table in the database, so next
we'll drag a Table Operator onto the mapping.

As this table doesn't yet exist, there are a few different ways we can go
about creating it to hold our county information. We could create the
table in the Design Center in the Tables node under our database module,
and then drag that table into our mapping. Alternatively, we could create
the table in the database and then import the metadata for that table as
we imported source metadata back in Chapter 2, or we can take the path
we're taking now to make full use of the Warehouse Builder's automation
and flexibility and create the table as we need it.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

ETL: Transformations and Other Operators

[248]

5.	 In the resulting Add Table Operator pop up that appears, we specify what
table we want to add. We've seen this add operator dialog box before, but
we've always been choosing an existing object to add. This time we're going
to check the first option to Create unbound operator with no attributes and
we'll give it the name COUNTIES_LOOKUP by typing that name into the
box. This is shown in the following screenshot:

6.	 We'll click on OK and it will drop a Table Operator onto our mapping with
no attributes defined in it.

We need to define the attributes and we know we need the data loaded from the
external table, so let's use these attributes in our example. We might think we have
to enter each of these attributes individually into the Table Operator and then drag a
line from the corresponding attribute in the external table over to the new table. But
the Warehouse Builder makes this very easy; with one drag we can map an attribute
group instead of individual attributes.

Let's drag a line from the output group (OUTGRP1) of our COUNTIES external table
over to the input/output group (INOUTGRP1) of our new COUNTIES_LOOKUP table.
With that one action, the new table operator immediately goes from being empty to
having three attributes defined in it. These attributes have names that are the same
as the external table attribute names and have the same data types which have been
copied over for us also. Connecting lines are drawn for all three attributes to map
them from the external table. This is very neat, and it just saved us a bunch of time.

Chapter 7

[249]

This mapping is done. However, there is one more step we need to take to actually
create the lookup table definition. Remember we created our table operator as an
unbound operator, which means it's not associated with any database object. If we
look in the ACME_DWH | Tables node, there is no table named COUNTIES_LOOKUP.
The steps to create a new table object and to bind this operator to it are as follows:

1.	 When we right-click on the unbounded operator, the pop-up menu has a
menu selection called Create and Bind.... With this option we will create a
new table object in the OWB Tables node and bind this operator to it.
Let's select that menu entry from the pop-up menu and it will present us
with the following dialog box:

2.	 The name is the same as what we gave to the operator. We could name the
underlying bound table something different, but it's best to leave it with the
same name for clarity.

3.	 The Create in: text field is to specify the module in which to create the new
table under our project in the Design Center. It has defaulted to the Tables
node under the current ACME_DWH module, and that is exactly where we want
it. The drop-down option provides a listing of every Tables node in all the
modules that are currently defined in our current project if we want to create
it in one of those other modules.

4.	 When we click on the OK button on this dialog box, a table is created in the
Tables node and is bound to the operator.

To verify that, we can navigate to the ACME_DWH | Tables node under our
database module and there is the new COUNTIES_LOOKUP table now. This
completes the mapping and table creation. Our new table is now ready to include in
a mapping as a Lookup operator.

ETL: Transformations and Other Operators

[250]

To ensure that we don't end up with duplicate records in our new lookup
table, we can take an extra step to define a primary key on this table.

When we use the option to create a table in this manner, it creates a basic, no-frills
table with no constraints defined on it. To add a primary key, we'll perform the
following steps:

1.	 In the Design Center, open the COUNTIES_LOOKUP table in the Table
Editor by double-clicking on it under the Tables node.

2.	 Click on the Keys tab.
3.	 Click on the Add Constraint button.
4.	 Type PK_COUNTIES_LOOKUP (or any other naming convention we might

choose) in the Name column.
5.	 In the Type column, click on the drop-down menu and select Primary Key.
6.	 Click on the Local Columns column, and then click on the Add Local

Column button.
7.	 Click on the drop-down menu that appears and select the ID column.
8.	 Close the Table Editor window.

The new table and mapping is now complete. It is very basic, but gives us an idea of
the power of the Warehouse Builder to make our data warehouse design job easier.
The mapping just handles inserts into the lookup table from the external table. We
could add more bells and whistles to our lookup to handle updates or changes to the
existing rows, but that is for more advanced topics.

We'll save our work up to this point with the Ctrl+S key combination, and then move
on to make use of this new lookup table to retrieve the county information.

Retrieving the key to use for a Lookup operator
We now have a table definition created and a mapping completed that can load
the table to use to look up the county name. But we need a key that will uniquely
identify a record in the table and with which we can look up a county. The key has
to be a data element that is unique in the file, and it would be the ID column we
defined as the primary key for the table. It is a number that does not repeat itself for
any of the rows in the file; so given a particular value of that number, we can find the
county and the state that the county is in.

Chapter 7

[251]

We recall from our analysis and importing of source metadata back in Chapter 2 that
the STORE_NUMBER data element contained in the STORES source table has a code that
indicates the county the store is located in for stores in the USA. This is actually a
fixed known format, and the positions three through six of the number are actually
the code for the location of the store in the county. This number is actually the ID
number found in the counties.csv flat file, and which is the ID in the lookup table.
So, we now have a key value that we can use to look up the county. However, there
are still some more issues we have to work out before we can use it.

The county ID is only a portion of the entire STORE_NUMBER field, so we can't just use
the STORE_NUMBER from input as the direct key to a Lookup operator. We will have
to extract the ID number out of it and then convert it to a number before we can use
it to look up the county. This implies that some more transformations will be needed,
so let's work on getting that county ID extracted from the STORE_NUMBER field.

Adding a SUBSTR Transformation operator
The Transformation operators available to us in OWB include a SUBSTR (or substring)
transformation that will do exactly what we need to extract the county ID value out
of the STORE_NUMBER field. The SUBSTR transformation takes three parameters—the
string we want to extract the substring from, a number indicating the start position of
the substring within the string, and a number indicating the length of the substring
to extract.

So, let's drag a Transformation operator onto the STORE_MAP mapping between the
POS_TRANS_STAGE table and the STORE dimension below all the other Transformation
operators. On the resulting Add Transformation Operator pop-up window, select
the SUBSTR() transformation and it will place the following operator into
our mapping:

ETL: Transformations and Other Operators

[252]

For the SUBSTR operator, we need to make sure we select the
correct version as there are five different variants of SUBSTR
we could choose from. They are SUBSTR, SUBSTR2, SUBSTR4,
SUBSTRB, and SUBSTRC. The main SUBSTR version is the one we
want because it works on regular character strings. The others only
vary in the type of input character string they operate on. A more
in-depth description of the SUBSTR() function and its variants
is in the Oracle Database SQL Language Reference Manual, which is
available online at the Oracle Database Documentation website
(http://www.oracle.com/technology/documentation/
database.html).

When first dropped on the mapping, this operator may not look exactly like the
above screenshot in which the operator is fully expanded. To see the whole operator
contents at once, we can click and drag an edge to manually make the window
bigger or click on the symbol in the upper-right corner with the arrow pointing
upwards as indicated in the following screenshot, which shows the operator before
being expanded fully:

We didn't have this issue with any of the Transformation operators we included
earlier, but it's helpful here for being able to see the entire contents of the operator.

All windows on the mapping, and not just the Transformation
operators, have this feature for expanding the window size. We'll find
that the table, dimension, and cube operators need to be expanded
frequently to see the entire contents, and this is a quick way to do it. If
we wanted to maximize or minimize all the operators at once, we could
use the Ctrl-A key combination and then select View…Maximize or
View…Minimize from the main menu.

Let's continue mapping attributes to the SUBSTR operator. The STRING attribute
is easy, which will be the STORE_NUMBER from the POS_TRANS_STAGE table. So let's
drag a line from STORE_NUMBER down to STRING. The position and length are not
so obvious. We don't have any values in the source table to use for those two so we
need to create something to use.

Chapter 7

[253]

The second and the third parameters—the position and length—these need to be
constant integer values that we supply. By looking at the list of operators available to
us in the Component Palette window, we see that there is a CONSTANT operator
as shown in the following image. We can use this operator by dragging it from the
Palette window in the Design Center:

Adding a Constant operator
We'll click and drag a Constant operator onto the mapping to the left of the SUBSTR
Transformation operator. We can see that it has an output group called OUTGRP1
by default. We'll right-click on it and select Open Details... from the pop-up menu.
This opens an editor on the CONSTANT operator, which should look like the
following screenshot:

ETL: Transformations and Other Operators

[254]

The sub-window that is highlighted when the dialog box opens depends on what
was right-clicked. As we can see, this editor has windows for editing the Name of the
operator, the Groups, and the Output Attributes of the output group. The Constant
operator only allows output, so there is no input group defined or allowed. If it was
an operator that allowed input, such as a function or procedure that took parameters
(for example, the SUBSTR operator), there would be an additional tab for Input
Attributes also.

Clicking on the Output Attributes entry on the left we see that there are no attributes
currently existing for this operator. This is where we will add our constants that we
need for the SUBSTR operator. We can actually enter more than one constant in the
same operator (which is a good thing to do if we are using those constants together
anyway), which we are doing in this case. We could just as easily drag another
Constant operator onto the mapping for the other constant we need; it's really just
a matter of preference. Functionally, the result will be the same when OWB deploys
and executes the mapping.

To add an attribute, we just type the names in the name column. This will create an
output attribute in the group with that name and data type that we can then edit to
suit our purposes. We'll name this first constant attribute to reflect the destination
for this value, that is the position attribute of the SUBSTR operator, so we'll name it
POSITION also. Click on the first empty space under the name column and we can
then type in what we want it to be. We'll name it position.

We don't have to worry about capitalization as the Warehouse Builder
will automatically convert everything to uppercase anyway. We'll see
this when we click elsewhere on the dialog box and the focus moves
out of that field, or if we close the dialog box and then look at the name
in the operator on the mapping.

Next we need to specify the expression for this constant. The expression in this case
since we're defining constants, is just going to be the number we want to use for the
constant value. We'll enter a 3 since we know the position of the county value in the
store number string starts at the third position.

Next, we need to make sure the data type is correct. The position value to which
we're going to map this constant in the SUBSTR operator is defined as a NUMBER
with no precision or scale specified (that is, both set to zero).

We are not going to bother specifying a precision or scale for the constants we're
creating because we don't need the extra data integrity checks in the database and
the SUBSTR POSITION attribute is defined that way. We'll leave the precision and
scale set to zeros, which is the default.

Chapter 7

[255]

We need another constant value defined to indicate the length of the substring, so
let's add another attribute on the Output Attributes window of the CONSTANT
Editor dialog box. We'll name this attribute LENGTH to reflect its purpose and
enter the name in the next available blank name field. We'll enter a value of 4 for the
expression and leave the data type set to NUMERIC, and the default precision and
scale set to zero as we did for the POSITION attribute. We'll click on the OK button on
the dialog box to close it.

The next step is to connect our constants to the corresponding attributes of our
SUBSTR operator. We'll drag a line from POSITION in the CONSTANT operator
to the POSITION attribute of the SUBSTR operator, and from the LENGTH
attribute to the SUBSTRING_LENGTH attribute.

Adding a TO_NUMBER transformation
The SUBSTR value is ready and we can use it to look up the county ID, but there's
one more transformation we need to apply before we can use it to look up the county
name. First, it needs to be converted into a number to match the data type of the
ID field in the COUNTIES_LOOKUP table. To do this, we will use the TO_NUMBER()
function. So let's drag a Transformation Operator onto our mapping to the right of
the SUBSTR operator and select TO_NUMBER from the resulting pop up.

This operator needs three parameters, only one of which is absolutely necessary—
the expression we wish to convert to a number. The other two parameters are
optional and include a format string that we can use if we have a particular format
of number we want (such as a decimal point in a certain place) and a parameter that
allows us to set a certain national language format to default to if it's different from
the language set in the database. We'll just map the input expression because our
number is a straight integer format number. So let's drag a line from the VALUE
attribute of SUBSTR to the EXPR input attribute of the TO_NUMBER operator.

We are now ready to look up the number to find the county name. The final step we
need to perform now is to actually add the Lookup operator that we'll use to do that,
so let's continue with that task.

ETL: Transformations and Other Operators

[256]

Adding a Lookup operator
After that little side trip to quickly create our lookup table and add a SUBSTR
operator with a TO_NUMBER transformation to convert the result to a number, we
can now add a Lookup operator to our mapping for looking up the county name.
Let's drag a Lookup operator onto the mapping and drop it to the right of the TO_
NUMBER operator. We can find the Lookup operator in the Palette window just
as we did for the other operators we've added. After we drop it in the mapping, the
Add Lookup popup appears similar to the one that appeared when we dragged a
table operator and dropped it on the mapping. We get to select an unbound operator
or select an existing object to bind to this operator. Since we've created our table to
use for the lookup we'll use the option for binding to an existing repository object
and select the COUNTIES_LOOKUP table as shown next:

After clicking the OK button the Lookup Wizard will be launched.

1.	 After the welcome screen, the first step asks us for a name for this Lookup.
Since we just chose the COUNTIES_LOOKUP table to bind to, it shows that name
here. We could change it if we wanted but it's a good idea to leave it the same
as the bound table. We'll click on the Next button to proceed to the screen
labeled Step 2.

Chapter 7

[257]

2.	 This screen is for defining input and output groups for the Lookup operator.
There is one input and one output group by default, and here we have an
opportunity to rename the groups if we desire or add new groups. Lookups
can take input from more than one source and lookup data from more than
one table. We'll leave just the two default groups and leave them with their
default names INGRP1 and OUTGRP1, and click on Next to continue.

3.	 This is where we can specify the lookup table to use for each output
group. Since we only have one output group and already chose a table in
the opening popup, it will be preselected for us. We can just click Next to
continue.

4.	 In this step we will specify the input attribute(s) we want to use. We have
just one value we need to use, the county identification number that was
stored in the store_number field so we'll define one input attribute called
COUNTY_ID and make it a type NUMERIC with no precision or scale. This
will be the output of the TO_NUMBER operator that we've already mapped.
We'll click Next to continue.

5.	 This step is where we specify the output attributes for our lookup. We can
see that it has already filled in output attributes for us based on the columns
of the COUNTIES_LOOKUP table that we specified as the lookup table. We
will use these without modification and click Next to continue to the next
step.

6.	 This step is where we will specify the lookup conditions. Since we could
have specified more than one input and output group, we have to specify
which input group to use with which output group. It defaults to our two
default groups so we don't have to do anything with the dropdowns. We
do however need to configure the lookup table column to use and the input
attribute to match against it. There are two options for doing that, Simple
Editing or Freestyle Editing which can be chosen using the appropriate
radio buttons. We'll leave it set to the default of Simple Editing which
provides drop down menus to select from below.

7.	 We'll click in the first row under Lookup Table Column. In the resulting
drop-down menu that appears (which may take a moment or two to
appear, so we'll be patient), we'll select the primary key we defined on the
COUNTIES_LOOKUP table. We could also have selected an individual
column if we did not have a primary key on the table.

8.	 Having selected the primary key, we now have to specify an input attribute.
We'll click in that box and see that it has added a row beneath with the
COUNTY_ID. It might not be readily apparent so just click row two under
the Input Attribute column and we'll see it as the column to use for the
Lookup Table Key.

ETL: Transformations and Other Operators

[258]

It may seem redundant to make this selection here, but there could be
more than one input attribute used in a lookup. Therefore, we have
to go through this step to indicate which input attribute matches with
which lookup table key. In this case, we happen to have only a single
attribute to use for the lookup.

Now our dialog box should look similar to the following:

1.	 Now we're going to specify what to do if multiple rows are returned by our
lookup. Since we're looking up a single value using the primary key of the
lookup table there will only be one row returned but it's possible to specify
general lookup conditions using other than the primary key which will cause
more than one row to return. We have several options for how to handle
this situation. We'll choose the option that makes the mapping error out if
multiple rows are returned since we do not want that situation to occur. Step
7 should look like the following for us:

Chapter 7

[259]

The other options we could specify are to return all the rows or to select a
single row from the multiple that are returned. If we select single row, then
we have a number of additional options we can specify to tell it what row to
return. The following illustrates the options we can specify for the row posi-
tion drop down if we've chosen single row:

ETL: Transformations and Other Operators

[260]

The options are to pick any row meaning the system will just return a row
that is not guaranteed to be any particular row. If something more specific is
desired, first, last, or Nth rows can be specified and the other criteria that is
grayed out above will be selectable to specify the conditions to use for deter-
mining which is the first, last, or Nth row. We don't have to worry about any
of that for our implementation so we'll just click Next to continue. It would
not have mattered if we left Single Row selected with Any row as the option
either because it would have had no effect due to only returning one row
anyway.

2.	 We will click on the Next button to proceed to the final step where we will
specify what to return if no record is found in the lookup table. Here we are
only concerned with the COUNTY_NAME column as that is the value we
need to map to the SALES cube. We'll specify a default value of UNKNOWN
rather than just leave it NULL. So we'll click on NULL that currently appears
as the default for the COUNTY_NAME value and type in 'UNKNOWN' in
the box.

We have to make sure we include the single quotes around this string
because it is a character string and the Oracle Database requires single
quotes around character literals.

It also has an editor available to give us more power over the expression we
might want to use to determine the value. Select the ellipsis beside the col-
umn value to invoke the editor. But in our case, we only want a single string
to be used, so we can just type it in.

3.	 We will click on the Next button to proceed to the Summary screen. It should
look similar to the following screenshot:

Chapter 7

[261]

4.	 We will click on the Finish button and the wizard ends and drops a Lookup
operator on our mapping. We now need to draw a connection line from the
output attribute of the TO_NUMBER operator to the COUNTY_ID input
attribute of the lookup operator we just created.

5.	 Finally we'll connect the COUNTY_NAME field from this Lookup operator
to the COUNTY attribute in the STORE level of the STORE dimension and
we are done with this mapping.

ETL: Transformations and Other Operators

[262]

Now we have a completed mapping that will populate our STORE dimension. Our
final mapping should look similar to the following screenshot:

Of course, there are an almost infinite number of ways we could have organized
our mapping. The mapping we just saw was somewhat compressed to better fit the
available size for the image, so we won't focus on making the mapping look exactly
like that. The important thing is that all the connections are made as they are shown
in the mapping and not where each individual operator appears on the mapping.

Another option to clear up clutter would be to use an Expression operator. We
referred to that option back in chapter 5 when we first discussed that operator
and how it can be used to implement the same functions the stand-alone function
Transformation operators implement. We'll take a look at an Expression operator
soon when we do the cube mapping.

Having completed our STORE mapping, we'll save our work with the Ctrl+S key
combination. Now we need to move on to address the mapping for our
PRODUCT dimension.

Chapter 7

[263]

PRODUCT mapping
The mapping for the PRODUCT dimension will be similar to the STORE mapping,
so we won't cover it in as much detail here. We'll open the Design Center if it's
not already open and create a new mapping just as we did for the STORE mapping
earlier and the STAGE_MAP mapping from the last chapter. We'll name this mapping
PRODUCT_MAP.

The source for the data will again be our staging table, POS_TRANS_STAGE, just as
it was for the STORE mapping. Only the target will change as we're loading the
PRODUCT dimension this time. We'll drag the POS_TRANS_STAGE table from the
Projects window and drop it on the left of the mapping, and drag the PRODUCT
dimension from ACME_DWH | Dimensions and drop it to the right of the
mapping. Not surprisingly, the data elements we'll now need from the staging table
are the attributes that begin with PRODUCT. We created our PRODUCT dimension
with four levels—DEPARTMENT, CATEGORY, BRAND, and ITEM—which we will need
to populate. Let's start with the ITEM level and jump right to listing the attributes
from the source to the target along with the issues we'll have to address with the data
elements for this level:

•	 PRODUCT_NAME to NAME (in the ITEM level)—needs trimmed spaces and
conversion to uppercase

•	 PRODUCT_NAME to DESCRIPTION (in the ITEM level)—needs trimmed spaces

We don't have a separate description field to map from the source. So for
now we'll just map the name to it, but without converting to uppercase as
we did for the STORE mapping. We'll do that for each of the other levels
where description also appears.

•	 PRODUCT_SKU to SKU—needs trimmed spaces and conversion to uppercase
•	 PRODUCT_PRICE to LIST_PRICE—no transformation needed
•	 PRODUCT_BRAND to BRAND_NAME—needs trimmed spaces and conversion to

uppercase

We'll add the needed transformations to accomplish the changes as indicated in the
list we just saw, and then move on to the BRAND level. For the BRAND level, we need to
map the NAME, DESCRIPTION, and CATEGORY_NAME as follows:

•	 PRODUCT_BRAND to NAME (in the BRAND level)—needs trimmed spaces and
conversion to uppercase

ETL: Transformations and Other Operators

[264]

•	 PRODUCT_BRAND to DESCRIPTION (in the BRAND level)—needs trimmed spaces
•	 PRODUCT_CATEGORY to CATEGORY_NAME—needs trimmed spaces and

conversion to uppercase

When we have added these transformations and made these connections to the
BRAND level, we'll move on to the CATEGORY level. It will be mapped in a similar
manner to BRAND, but using the PRODUCT_CATEGORY attribute as input:

•	 PRODUCT_CATEGORY to NAME (in the CATEGORY level)—needs trimmed spaces
and conversion to uppercase

•	 PRODUCT_CATEGORY to DESCRIPTION (in the CATEGORY group)—needs
trimmed spaces

•	 PRODUCT_DEPARTMENT to DEPARTMENT_NAME—needs trimmed spaces and
conversion to uppercase

Finally, we'll map the DEPARTMENT level, which has just two attributes we need to be
concerned about—the NAME and the DESCRIPTION:

•	 PRODUCT_DEPARTMENT to NAME (in the DEPARTMENT level)—needs trimmed
spaces and conversion to uppercase

•	 PRODUCT_DEPARTMENT to DESCRIPTION (in the DEPARTMENT level)—needs
trimmed spaces

When we have completed these additional connections and transformations, we will
have completed the mapping for the PRODUCT dimension. It should look similar to
the following screenshot, which shows all the transformations and connections in
place that were described earlier:

Chapter 7

[265]

We have conserved on the usage of Transformation operators by
making multiple connections from some of them as we did for the
STORE_MAP previously. For instance, the topmost TRIM has a
connection to the UPPER transformation to convert its output to
uppercase before connecting to the NAME attribute of the ITEM
group. But it also connects directly to the DESCRIPTION attribute
of the ITEM group. It was not necessary to have the description in
all uppercase, so the output of the TRIM was used. We could have
just as easily dragged another TRIM as well as another line from
the PRODUCT_NAME in POS_TRANS_STAGE to the mapping,
but we would have ended up with more clutter than necessary. The
functioning of the mapping would have been the same in either case.

We have completed the mapping for our PRODUCT dimension, and that completes all
the mappings for our dimensions we will need to do. There is a third dimension we'll
be using, the DATE_DIM mapping, but that mapping was created automatically for us.
Let's save our work with the Ctrl+S key combination, or with File | Save All from
the Design Center main menu. Moving on, we'll now create a mapping to populate
our cube and that will be all the mappings we'll need for our data warehouse.

SALES cube mapping
Turning our attention to the cube, we have one more mapping to create. It will be
created in the same way as we created the previous maps, but let's call this one
SALES_MAP. In this mapping, we will need to draw data from the POS_TRANS_STAGE
table as input as we did for the other two dimension maps, and we will have the
SALES cube as the output target to load our data. Let's drag each of these onto our
mapping using Table Operator for the POS_TRANS_STAGE table and Cube Operator
for the SALES cube.

ETL: Transformations and Other Operators

[266]

The POS_TRANS_STAGE table is very familiar to us as we have used it for the
two dimensions, but the SALES cube is new. It looks slightly different than the
dimensions we worked with earlier in this chapter, so let's take a moment to go over
it in a little more detail. When dropped onto our mapping and expanded completely,
it should look similar to the following:

The top group with visible attributes is the main group for the cube and contains the
data elements to which we'll need to map. The other groups represent the dimensions
that are linked to our cube. We mapped data to these dimensions (except for the DATE_
DIM dimension) earlier. So there is no need to map any data to these groups in the cube
now and, indeed, it doesn't even provide a way to do that here. The data we map for
the dimensions will be to attributes in the main cube group, which will indicate to the
cube which record is applicable from each of the dimensions.

Dimension attributes in the cube
Each dimension is represented in the cube attributes by a surrogate identifier, which
is the primary key for the dimension, and the business identifier(s) defined for the
dimension. This is where we will see the real usefulness of the business identifiers
that we specified when we designed our dimensions in Chapter 4. They identify the
dimension record for this cube record and the surrogate identifier will be used as the
foreign key to actually link to the appropriate dimension record in the database. Let's
take a look at these attributes for the dimensions.

Chapter 7

[267]

For the PRODUCT dimension, we have seen three attributes earlier that are product
related—PRODUCT_NAME, PRODUCT_SKU, and PRODUCT. If we were to open our
PRODUCT dimension in the Table Editor to view its attributes, we wouldn't see any
attributes with exactly these names. The Warehouse Builder has provided us with
attributes that represent the corresponding attributes from the dimension, but with
a slightly different naming scheme. The PRODUCT_NAME and PRODUCT_SKU attributes
correspond to the NAME and SKU attributes from the dimension that are the business
identifiers we defined. The PRODUCT attribute corresponds to the ID attribute that
was created automatically for us as the surrogate identifier for the dimension. It
prefixes the name of the dimension onto the name of the attribute for the business
identifiers and uses the name of the dimension as the surrogate identifier. The same
name can be used for attributes in more than one dimension included in a cube so it
does this renaming scheme to make the names unique and to tell which dimension
they correspond to.

Another reason dimension attributes are renamed in the cube is that the
underlying implementation for the cube in the database uses relational
tables when ROLAP is selected for the storage option, and the database will
not allow the same name to be used for more than one column in a table.
Renaming dimension attributes
The names for dimension attributes in cubes that OWB comes up with can
be changed if we desire. We would just have to click on the name in the
cube operator in the mapping and view the Property Inspector window.
We could type in a new name for the Business name and/or the Physical
name. Of course, we would have to make sure we didn't choose something
already taken. But if we do, the Warehouse builder will definitely let us
know immediately by popping up an error dialog box, and will change the
name right back to what it was and give us another chance.

For the STORE dimension, we identified NAME and STORE_NUMBER as the business
identifiers. Looking at the list of attributes for the STORE dimension that OWB
created for us, we see STORE_NAME and STORE_STORE_NUMBER. Remember about the
prefixing of the dimension name. In most cases that will work out OK, but in some
cases where we might have included the dimension name as a part of our attribute
name in the dimension (as we did for the STORE_NUMBER), we will end up with the
dimension name repeated twice. It doesn't hurt anything to leave it as is; but if we
want to change it, we can simply use our tip above about editing the name. Let's
go ahead and make that change, changing both the Business Identifier (what the
attribute is known by in the design) and the Physical Identifier (what the attribute
will be known by physically in the database when deployed). So now we have
STORE_NUMBER instead of STORE_STORE_NUMBER. We also have a third attribute,
which we recall is for the surrogate identifier. It is named for the dimension, which is
STORE in this case.

ETL: Transformations and Other Operators

[268]

Another clue that can help us figure out what attribute is what
is to look at the type that was defined for the attribute. The
type icons just to the right of the name in the Cube Operator
show us that the STORE and PRODUCT attributes are numeric.
From our dimension design we know that the ID surrogate
identifier was also defined as numeric.

The third dimension we have defined for our cube is the DATE_DIM dimension. In
this chapter, we have been focusing mainly on the PRODUCT and STORE dimensions
because we had to define them ourselves, but we still have to work with the DATE_
DIM dimension because it's also a part of the cube. We can see only one attribute
defined for it, a date field. There is no surrogate identifier created for a Time
Dimension so the only attribute for the DATE_DIM dimension will be the business
identifier, DATE_DIM_DAY_START_DATE. We discussed this lack of a surrogate
identifier back when we were looking at the date dimension back in Chapter 4.

Let's verify the business identifier for the DATE_DIM dimension by opening it in the
data object editor for a dimension. To open it in the editor, navigate in the Design
Center to ACME_DWH | Dimensions | DATE_DIM and double-click to open it.
Looking at the Attributes tab, we see that there is a business identifier called DAY_
START_DATE as shown in the following screenshot:

Scrolling that window down a little further would reveal actually three other
business identifiers that can be used also, one each for the calendar month start date,
the calendar quarter start date, and the calendar year start date. The day start date
is the one it uses to link to the cube because when we defined the cube, the DAY level
was the level specified for referencing the DATE_DIM dimension. If we had specified
the CALENDAR_MONTH, CALENDAR_QUARTER or CALENDAR_YEAR levels
to map to the cube, it would have used the business identifier from one of
those levels.

Chapter 7

[269]

Measures and other attributes in the cube
Two of the remaining attributes we can see in the SALES cube are the measures we
defined for our cube—the quantity of the items sold and the dollar amount of the
sale. We specified these names explicitly in the Cube Wizard when we defined our
cube in Chapter 4, so they appear here as we named them.

We can see one final attribute that we haven't accounted for yet, and that is called
ACTIVE_DATE. It's created automatically for us and is designed to support Type 2
Slowly Changing Dimensions (SCD). It is used as the time to determine the active
record in a Type 2 SCD. This is a more advanced topic and there is a more thorough
explanation of this field in the Oracle Warehouse Builder Users Guide. However, you'll
have to look back to the documentation for the 11.1 version of OWB since the 11.2
version appears to have a documentation bug, in that it has left out the explanation
of this field. The 11.1 users guide is at the following URL: http://download.
oracle.com/docs/cd/B28359_01/owb.111/b31278/toc.htm. If you would like
more information about this field, read Chapter 17 in that guide on Source and
Target operators where the Cube operator is discussed. For our purposes, we don't
need to do anything with it as we have no Type 2 SCDs. If we don't map anything to
this field, the Warehouse Builder will simply populate it using the SYSDATE Oracle
function, which sets it to the current system date/time.

Mapping values to cube attributes
Now that we've taken a look at the attributes in our cube, we need to turn our
attention to getting values mapped to them. We'll begin by mapping values for the
measures because they are the simplest, and then proceed to map values for the two
dimensions we created mappings for earlier, the PRODUCT and STORE, then we'll do
the DATE_DIM dimension last.

Mapping measures' values to a cube
The measures that get mapped to a cube are most often numbers, so we don't have to
be concerned with the TRIM and UPPER operators for them. Sometimes we may need
to do calculations on values from input before storing them in output, but in our case
now we just want to map the values from the input as they are. The SALE_QUANTITY
from our POS_TRANS_STAGE table is going to provide the value for the QUANTITY in
the SALES cube, and the SALE_DOLLAR_AMOUNT is going to supply the value for the
SALES_AMOUNT attribute.

We'll drag a line directly from SALE_QUANTITY to QUANTITY, and another line directly
from SALE_DOLLAR_AMOUNT to SALES_AMOUNT. This completes the measures. We saw
earlier that the ACTIVE_DATE attribute didn't need anything mapped to it, so we'll
move right to the dimensions.

ETL: Transformations and Other Operators

[270]

Mapping PRODUCT and STORE dimension values
to the cube
When mapping values for a dimension in a cube, we only need to concern ourselves
with mapping the business identifiers. The Warehouse Builder will take care of the
lookup to determine the identifier to fill in for the key value (surrogate identifier),
so we don't have to worry about it. We get this for free by using OWB's Cube and
Dimension operators where we'd have to do a manual lookup if we were to use
regular Table operators.

So for the PRODUCT dimension-related attribute values, we have the PRODUCT_NAME
and PRODUCT_SKU to which we need to map values to. We can leave the PRODUCT
attribute alone as it will be populated automatically behind the scenes based on a
lookup using the values we provide for name and SKU.

The PRODUCT_NAME and PRODUCT_SKU attributes were chosen as
business identifiers because they uniquely identify a single product. No
two products in the ACME Toys and Gizmos company inventory are
assigned the same name and SKU. This is why they can be used here to
look up the dimension record key for us.

Looking back at our source table now, which is the POS_TRANS_STAGE mapping
table, we need to find the name and SKU attributes to map to the corresponding
attributes in the cube.

Here it's very important to make sure whether there were any
transformations applied to the values when mapping them to the
dimension in the dimension mapping. If there were transformations,
the same transformations need to be applied here to ensure a match
will be made.
If we had a name in mixed case and stored it in the dimension using
the UPPER transformation, but used the value without applying the
UPPER to it for a lookup, we would not get a match.

Chapter 7

[271]

Earlier in this chapter where we mapped these fields in the dimension mappings,
we decided we would apply a TRIM and UPPER to them before storing. So this is
what we'll need here also. Our Mapping Editor must be already open from when
we dragged in the source and target operators. So let's now drag a Transformation
Operator to our mapping and make it a TRIM, and drag a second Transformation
Operator to our mapping and make it an UPPER. We'll connect the PRODUCT_
NAME from our source to the input of the TRIM, the output of the TRIM to the
input of the UPPER, and the output of the UPPER to the PRODUCT_NAME
attribute in the cube. The PRODUCT_SKU attribute needs to be mapped in the same
way to the PRODUCT_SKU attribute of the SALES cube.

We'll do the same steps for the STORE_NUMBER and STORE_NAME fields from input to
the same named attributes in the cube. This will take care of these two dimensions.
The PRODUCT and STORE attributes in the cube will be automatically populated with
the key value for the corresponding dimension record. Finally, we'll look at the
DATE_DIM dimension values for mapping.

Mapping DATE_DIM values to the cube
We saw earlier that the DATE_DIM_DAY_START_DATE was the business identifier
value for the DATE_DIM dimension, so we need to map a value to it. Looking at our
POS_TRANS_STAGE mapping table for input, the only date-related value we have is
the SALE_DATE field so that is what we will use to map to the DATE_DIM_DAY_START_
DATE field. Since this is a date field, trims and upper functions have no effect on it
so we could just drag it directly to the cube and be done; however there would be
a slight problem. An Oracle DATE value has both a time of day and a date value
associated with it and if the time values don't exactly match between two DATE
values, there will not be a match even if the date value matches.

To read more about the Oracle DATE data type, consult the Oracle SQL
Language Reference at the following URL:
http://download.oracle.com/docs/cd/E11882_01/
server.112/e17118/sql_elements001.htm#sthref154

As it is clear that we will not be able to connect the SALE_DATE directly to the cube,
we must do something to it first to fix that time issue but how will we know what
time is being used so we can make sure they match? The answer lies in the fact that
we can actually remove the time value from a DATE using the trunc() function (for
truncating a number or date). That function when applied to a DATE value doesn't
physically remove the time portion from the value but just sets it to a default of
00:00. That is how the dates are all stored in the DATE_DIM dimension. The simple
solution then is to just apply the trunc() function to the SALE_DATE value before
mapping it to the cube.

ETL: Transformations and Other Operators

[272]

The trunc() function is a function just like trim() or upper() so we could use the
Transformation operator and specify trunc() as the function but we're going to
do it a little differently this time to gain some exposure to another commonly used
Transformation operator we haven't used yet and that is the Expression operator.
We discussed expressions back in Chapter 5 when being introduced to the main
operators that are available. We said then that these functions like trunc() could be
done in expressions and that is what we're going to do now.

Mapping an Expression operator
Let's now turn our attention back to the Mapping Editor and map the SALE_DATE
to the cube using this expression. To include an expression in our mapping, the
Mapping Editor provides an Expression operator in the Palette window as shown in
the following screenshot:

The steps to perform for the required expression are:

1.	 Drag the Expression operator onto our mapping, and drop it between
our source and target operators. Initially, it doesn't display any defined
attributes, but it does have two groups defined—an input group, INGRP1—
and an output group, OUTGRP1. Expression operators are for defining
any type of valid Oracle PL/SQL expression and, therefore, provide us
tremendous flexibility in defining our own transformations, which we will
do now.

2.	 Let's drag the SALE_DATE from the POS_TRANS_STAGE mapping table
to the INGRP1 of the EXPRESSION operator we just dropped into our
mapping. This will now make the SALE_DATE available to us to use in the
expression.

Chapter 7

[273]

3.	 First, we need to create an output attribute that will hold the results of our
expression. It will be used to map to the cube. Right-click on OUTGRP2 and
select Open Details... from the pop-up menu or double click on it.

4.	 This will display an Editor window for the expression, so we'll click on the
Output Attributes entry on the left because we need to add an attribute as
output. It is initially blank as no attributes are defined, so we will enter an
attribute name into the first row under the Attribute column. Let's call it
DAY_DATE to reflect what it is for.

5.	 We haven't entered an expression yet to tell it what we actually want this
operator to do. We'll click in the box under the Expression column and
it changes to allow us to enter text into that block. We could just enter it
directly. For simple expressions this works well, but for most expressions
we'll want to make use of the powerful Expression Builder tool that the
Warehouse Builder provides to construct expressions. We can launch the
Expression Builder by clicking on the button with three dots to the right
of the Expression input field that appeared when we clicked on it. The
Expression Builder dialog box appears and we can create our expression.
We've seen this before in the previous chapter when we were specifying the
join condition to use for the Joiner operator in our STAGE_MAP. It is basically
the same dialog box, as join conditions are also simply expressions. We'll
type the following into the expression window labeled Expression for DAY_
DATE to begin our expression:
TRUNC(

6.	 The next item to enter is the name of the input to use and for that we want
to specify the SALE_DATE input attribute. This is the real benefit of using
the Expression Builder. We can now just double-click on the SALE_DATE
attribute under the INGRP1 heading in the left pane to enter it into our
expression at the point where the cursor is currently located, which should
be right after the last open parenthesis we entered. We don't have to worry
about using the correct syntax to specify it, as it gets entered for us.

We can notice a feature of the Expression Builder that when the
cursor is just to the right of that last parenthesis, it turns red. This
is the bracket matching feature of the Expression Builder. It helps
us make sure we have corresponding closing parentheses for any
open parentheses. When it finds a matching closing parenthesis, it
will highlight them both in yellow.

ETL: Transformations and Other Operators

[274]

7.	 We'll now finish entering our expression by typing in the following text
which is just a closing parenthesis to close out the expression. Alternatively,
we could just click the right bracket button in the list of buttons to enter it.

8.	 We'll click on the Validate button to make sure our expression is correctly
entered and our Expression Builder window will now look like the
following screenshot:

9.	 We'll click on the OK button to close the Expression Builder and the
expression editor now shows an expression filled in for the DAY_DATE
attribute.

10.	 We'll click the OK button to close the Expression Editor and our Expression
operator will now be complete.

11.	 The final step is to connect our expression with the cube by dragging a line
from the DAY_DATE output attribute of the expression to the DATE_DIM_
DAY_START_DATE attribute.

With that we have completed mapping all the attributes that are needed for our cube.
Our mapping should now look similar to the following with all our transformation
operators collapsed into their icon view and the EXPRESSION operator left open:

Chapter 7

[275]

Now that we have used an Expression operator let's discuss briefly
the use of it to replace individual Transformation operators like TRIM
and UPPER. We mentioned that in Chapter 5 when first discussing
Expression operators and then briefly alluded to it earlier in this chapter
for helping de-clutter our mapping. We only created one input and one
output attribute in the above expression operator but it can hold as many
attributes as we need. We could create one input and output attribute
for every source attribute that we needed to apply a trim and/or upper
function to and then define the expression to use as the TRIM() and/
or UPPER() SQL function. The procedure would be similar to what
we walked through above but just repeat steps 2 through 9 for each
source attribute we need to apply the trim and upper functions to. The
expression we'd enter in the Expression Builder would be similar to the
following using an attribute in the STORE mapping as an example:
trim(upper(INGRP1.STORE_NAME)

It would look like the following if just using the TRIM() function:
trim(INGRP1.STORE_ADDRESS1)

Our dimension mappings were completed earlier in the chapter, so we now have all
the mappings completed that we'll need to populate our data warehouse. This means
we are now ready to deploy them to the database and try them out. This will be the
main topic of the next chapter. Let's make sure we save our work before continuing.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

ETL: Transformations and Other Operators

[276]

Features and benefits of OWB
Before we move on to the next chapter, let's take a moment to recapitulate some
of the features that the Oracle Warehouse Builder provides to us to make our job
easier. This is why we made the choices we did for our design and implementation.
By providing us with the option to implement our cubes and dimensions either
relationally with ROLAP or fully multi-dimensionally with MOLAP, OWB allows us
to design one way in OWB and implement either way in the database with a simple
change of a storage option.

•	 By providing us the ROLAP option, the Oracle Warehouse Builder opens
to us the design features of cubes and dimensions even though we'll be
implementing them relationally with tables in our database. Choosing that
option rather than just implementing tables directly saves us from having
to worry about dimension keys, sequences to populate them, and providing
lookups of dimension record keys to fill in for our cube. When loading a
dimension, all we have to do is map data to it and it handles constructing the
levels and assigning keys automatically. When mapping to the cube, all we
have to do is specify business identifier attributes in our dimensions and map
values to them in the cube. The rest is all handled for us.
The underlying tables and sequences are all built automatically for us, so we
need not be concerned with building any tables or sequences.

•	 The Expression Builder provides us a powerful tool to use for interactively
building expressions.

•	 Support for Slowly Changing Dimensions and Orphan Management (late
arriving facts) is built in with the Enterprise ETL option. Although we didn't
make use of that feature in this introductory book, the support is there if we
need it and have paid for it when we build more advanced data warehouses
and want to implement SCDs.

These are just some of the benefits the Warehouse Builder provides to us and were
the basis for many of our decisions throughout the book regarding how we chose to
implement our data warehouse using OWB.

Chapter 7

[277]

Summary
Now we are real close to actually having a data warehouse built in our database.
We've completed all the mappings that we will need for the Warehouse Builder to
create the code that will run to actually pull data from our source system, load our
staging table, and then load our target data warehouse structure from our
staging table.

We've seen how to use Transformation operators to apply functions to our data
to change it before loading. We've also seen the Expression operator for entering
custom expressions. We've taken a look at how to connect them together with source
and target operators to complete a mapping and successfully validate them.

Now we're ready to deploy these mappings to the database and execute them to
actually load our data, which we will do in the next chapter.

Validating, Generating,
Deploying, and

Executing Objects
We have reached the last step in the process of building our data warehouse. We've
done a large amount of work so far, which includes designing target schemas,
creating objects in the Warehouse Builder, and creating mappings to load data into
our target. However, we have yet to actually create a single real database object.
What we have is the complete design stored in the Warehouse Builder. Let's think
of ourselves as architects of new houses; only instead of designing a house, we're
designing a data warehouse. Before any house can be physically built, someone
has to design it and create a model of the house that the builders will then use for
construction. That's what we've been doing up until this point, that is, creating the
model of our data warehouse.

Now we are at the point where the model is complete and we're ready to actually
build the data warehouse in an actual database, and load data into it. So, we get to
be the builders also and not just the architects and that is what this chapter is all
about. The process of building the data warehouse from our model in the Warehouse
Builder involves the following four steps:

•	 Validating: Checking objects and mappings for errors
•	 Generating: Creating the code that will be executed to create the objects and

run the mappings
•	 Deploying: Creating the physical objects in the database from the logical

objects we designed in the Warehouse Builder
•	 Executing: Executing the logic that is found in the deployed mappings for

mappings and transformations

Validating, Generating, Deploying, and Executing Objects

[280]

The first three steps—validating, generating, and deploying—generally go together
as all objects and mappings are deployed. A deployment will automatically do a
validation and generation first before deploying. The fourth step—execution—is
an independent process that is performed on those objects that contain ETL logic
and mappings after they've been deployed. It doesn't happen for everything that
we design in the Design Center. The Design Center has menu entries that will
allow us to validate, generate, and deploy objects, but not execute them. We will be
introduced to a new interface called the Control Center Manager, which is the tool
for controlling the deployment of objects and execution of mappings.

Throughout the remaining chapter, the word "objects" will
generally be used to refer to any type of object or mapping that can
be built in the Warehouse Builder.

We will discuss each of the four processes separately in more detail in this chapter
although we'll frequently find ourselves doing just deployments and executions, as the
deployment process includes a validation and generation. We need to understand each
of these processes, so let's get started by talking more about the validation of objects
and mappings. The specific main topics we'll cover are listed next:

•	 Validating
°° Validating in the design center
°° Using the toolbar icon in the Mapping Editor

•	 Generating
°° Generating in the Design Center
°° Generating using the icon from the mapping editor
°° Default operating mode of the mapping
°° Selecting the generation style

•	 Deploying
°° The Control Center Service
°° Deploying in the Design Center and Data Object Editor
°° The Control Center Manager

°° The Control Center Manager window overview
°° The Object Details window
°° The Control Center Jobs window
°° Deploying in the Control Center Manager

Chapter 8

[281]

•	 Deploying and executing remaining objects
°° Deployment order
°° Execution order

Validating
Error checking is what validation is for. The process of validation is all about making
sure the objects and mappings we've defined in the Warehouse Builder have no
obvious errors in design.

Let's discuss how we go about performing a validation on an object we've created in
the Warehouse Builder. There are a number of places we can perform a validation.
One of them is the main Design Center.

Validating in the Design Center
There is a context menu associated with everything we create. You can access it on
any object in the Design Center by right-clicking on the object of your choice. Let's
take a look at this by launching our Design Center, connecting as our ACMEOWB
user, and then expanding our ACME_DW_PROJECT. Let's find our staging table, POS_
TRANS_STAGE, and use it to illustrate the validation of an object from the Design
Center. As we can recall, this table is under the ACME_DWH module in the Oracle node
and right-clicking on it will present us with the following pop-up menu:

Validating, Generating, Deploying, and Executing Objects

[282]

The Validate... entry has been highlighted. If we click on it, it will perform the
validation of the metadata entered for the object and will present us with the results
in the Log window on the Results tab. It will look similar to the following:

This window is resizable and the entries have all been expanded so that we can focus
on the important parts. If the Log window is not visible, it can be displayed from the
View main menu entry by selecting Log or by using the Ctrl-Shift-L key combination.
Our POS_TRANS_STAGE table has validated successfully. But if we had any warnings
or errors, they would appear in this window.

One more option for invoking the validation command on an object is to click the
validate icon in the toolbar when the object is selected or opened for editing. The icon
is highlighted in the following image for reference:

The validation will result in one of the following three possibilities:

•	 The validation completes successfully with no warnings and/or errors as this
one did

•	 The validation completes successfully, but with some non-fatal warnings
•	 The validation fails due to one or more errors having been found

Chapter 8

[283]

The icons on the toolbar in the upper left of the results window have options for
viewing all objects, just warnings, or just errors. The yellow exclamation point is
selected to view warnings and the red x is selected to view errors. They are both
selected by default which means it will display all objects that have been validated,
whether or not there were warnings or errors. We have the option to validate more
than one object at a time by holding down the Ctrl key and clicking on several objects
in the Design Center, and then with the Ctrl key still held down, right-clicking on
one of them and then selecting Validate. All the selected objects will be validated
and the results for all of them will appear in the Results tab of the Log window. If
we select Warnings (yellow exclamation point), only the objects that have warnings
will be displayed, and if we select Errors (red X), only the objects with errors will
be displayed.

If we have warnings or errors that we need to fix, we can double-click on the object
name in the Results tab of the Log window to launch the appropriate editor on the
object—the data object editor or the Mapping Editor. With one of these editors, we
can make any modifications and revalidate the object.

We can close the Log window now before moving on to discuss validating from the
editors or we can minimize it. To close it we can click on X in the window header, or
use the Shift+ESC key combination. To minimize it, just click the minimize button in
the upper right corner of the window. The Log window will reappear automatically
the next time we perform a task like validation that requires it to display a message to
us. At any time we can also open it from the View menu as we've mentioned before.

We mentioned the icon on the main Design Center toolbar that can be clicked on to
validate a data object or mapping if one is selected in the project navigator. For a data
object that icon will behave just as if we'd selected Validate from the pop-up menu
whether the item is open in an editor or not. However, if we're editing a mapping
and have it open in an editor window when we press the icon, the validation will
display its results differently.

Validating using the toolbar icon in the
Mapping Editor
Let's double-click on the STORE_MAP mapping name in the Design Center to launch
the Mapping Editor so that we can discuss validation in the editor. We can press the
validate icon on the Main toolbar, which is circled in the above image of the
toolbar icons.

Validating, Generating, Deploying, and Executing Objects

[284]

When we validate a mapping using that icon while the object is open in the editor,
we do not get the Results tab in the Log window as we did when validating from
the Design Center without the object open in an editor. Here we get another window
created, the Generation Results window, which appears in the Log window. The
window that is produced will look similar to the following:

In many cases, the error message will be long and the window will display the
message truncated in the window. We can double-click on the message and it makes
the box containing the message expand until the entire message is visible.

A curious thing we'll find about validating is that the log window may appear and
then disappear when it's all done. That's a feature of the new interface. It just means
the log window has been minimized and it will display it temporarily to alert us that
a message was logged. We can hover the mouse pointer over the minimized Log
window and it will appear again. We can make it stay visible by clicking the Restore
button on the left side of the window.

Another curious thing is the title says Generation instead of Validation in the results
window. It's where both the validation and generation results will appear. As we'll
soon see when we discuss the process of generation, it is closely tied to validation.
Indeed, when we generate an object one of the steps it performs is validating the
object. The Generation Results window is fulfilling two purposes here, displaying the
validation results and displaying the results of the generation when that option
is selected.

That is validation of mappings. We can go through our remaining objects and
mappings now and validate them. The order we validate objects in is not critical.
Unless we've made a typographical error, missed a selection we should have made,
missed a column we should have added, or something like that, all the objects and
mappings should validate successfully or have warnings that can be safely ignored.

Chapter 8

[285]

This process of validation only checks the logical design within the metadata in the
Warehouse Builder. It can't check for any errors that might occur when the object is
deployed and/or executed in the database. We haven't got to that point yet. We don't
want to get the attitude that our objects and mappings are perfect just because they
have passed validation. This is only the first step.

The validations can even be misleading between objects. The STORE dimension
would validate successfully if we removed the DESCRIPTION attribute that we talked
about in Chapter 4. However, the STORE_MAP that used the dimension would give the
error we talked about without the DESCRIPTION there to map to. So, validation is just
one step along the way to getting a working data warehouse, but doesn't guarantee
that there won't be further errors at a later point in the process.

When we are satisfied that everything is ready, we can move on to the generation step.

A final tip about the Log window—As each object is validated,
it will add a new Results tab to the log window. Just close them
by clicking the X on the tab if they start getting too cluttered,
especially if they are all success messages.

Generating
This step can happen in conjunction with the validation step as we've discussed
previously, but the Warehouse Builder does provide a separate menu entry to select
for generating. We will discuss it here to see what it's all about. Let's talk about
generation; and no, we're not talking about baby boomers, Gen X-ers, Gen Y-ers,
Millenials, or whatever they come up with for future generations. Here we're talking
about the other meaning of the word, which is the act or process of generating.
Dictionary.com says to generate means to bring into existence; cause to be; produce. With
the generation step in the Warehouse Builder, we are going to bring into existence
the code that we need to use to build and load our data warehouse. The objects—
dimensions, cube, tables, and so on—will have SQL Data Definition Language
(or DDL) statements produced, which when executed will build the objects in the
database. The mappings will have the PL/SQL code produced that when its run, will
load the objects. The Warehouse Builder can also create configuration files for the
SQL*Loader utility to load data or ABAP scripts, which are for interfacing to a SAP
system. We're not going to make use of the SQL*Loader utility and we're not going
to interface with a SAP system, so we won't need those options. We are going to use
DDL and PL/SQL code for our project.

Validating, Generating, Deploying, and Executing Objects

[286]

Generating in the Design Center
When we generate an object or mapping in the Design Center using the popup
menu on the object name in the Projects Navigator, we'll get the same Results tab
appearing in the Log window as we got when we validated, but in this case we'll
have some extra information displayed. Let's go to the Design Center now and
generate the code for the POS_TRANS_STAGE table. We'll right-click on it and select
Generate... from the pop-up menu. Just as for validation above, we can also click on
the table name and click the generate icon in the main toolbar. It is just to the right
of the validate icon that we discussed above. It will present us with the following
Results tab, which looks very similar to the one we got when we validated it:

There is the list of the objects that we've generated; in this case only one appears.
Notice that the validation messages appear here when doing a generation. The
messages that would appear when doing a generation are really validation messages
from the validation that is automatically done whenever we choose to generate.

When we expand all the entries in the main Results tab as in the above image we
can see something extra this time that we didn't see when we just validated. There
is an extra entry called Scripts that was not there before. This is where we can view
the script that was generated, and which will create this object for us in the database.
For a database object, a DDL script is generated for us. We see that it has generated a
DDL script called POS_TRANS_STAGE.ddl as shown above.

Let's click on the script name and then click the View Script button, the circled one
on the left in the above image, or right click the name and select Go to Source from
the pop-up menu or just double click on it to view the script. The circled icon on the
right will allow us to save the script to a file if desired. We'll be presented with an
editor window displaying the code as shown next after clicking the
View Script button:

Chapter 8

[287]

We can see that it has generated an SQL CREATE TABLE statement for us. It contains
the name of our POS_TRANS_STAGE table along with column names and types as they
are defined in the Warehouse Builder. Since this is an editor window, certain tasks
are available to us:

•	 Saving this code to a file (select File…Save as File from the main menu)
•	 Copying portions of the code and pasting them into another window using

the Edit main menu
•	 Searching through the code for text strings using the Search main menu

However, we can see if we try to make changes to anything in the window that
the script is displayed in a read-only mode. In other words, we are not allowed to
make any changes to it. It is code that is automatically generated by the Warehouse
Builder, so there is no way for us to edit it directly.

Validating, Generating, Deploying, and Executing Objects

[288]

To deploy our objects and mappings to create and populate our data warehouse,
we really need not be concerned with what the code looks like. This is because the
Warehouse Builder takes care of generating it all for us. However, we're checking
this out for the first time to get an appreciation of what it is doing for us behind the
scenes. The data object code is not complicated in this case, but let's take a look at the
code for the mapping to populate this data object. We can close out the code editor
window for the POS_TRANS_STAGE table.

We'll right-click on the STAGE_MAP mapping in the Design Center and select
Generate from the pop-up menu or we can click the generate icon in the main
toolbar. There may be something different that is noticeable on the Scripts entry
in the Results tab of the log window, depending on whether we've generated and
actually deployed this mapping before:

There may be an extra script that gets generated for us here to do a drop of the object
first. If we've deployed the mapping previously and have now made some edits to
it to regenerate and redeploy, it defaults to a replace option for the deploy action
and creates the script to drop the mapping along with any temporary tables that got
generated to support the execution of the mapping.

Whether we've deployed the mapping or not, we still get the code generated that
will create the mapping code for us in the database. This is the STAGE_MAP.pls
package that appears in the window. We'll discuss the deployment actions a little
later in the chapter. If we view this code, we'll see that it is more complicated than
the DDL script that was generated for our previous table. Let's double click on the
STAGE_MAP.pls line to view the code. The same editor window is used to view
this mapping code as we saw before when we viewed the DDL script for the table.
However, the code is quite different as it is PL/SQL code as shown in the
following image:

Chapter 8

[289]

For a mapping, the code that is generated is a PL/SQL Package. A package is a
code construct that contains variables and procedures to perform some work in the
database. It is a way to group variables and procedures together that all contribute to
the performance of a particular task. In this case, the task is the loading of the POS_
TRANS_STAGE table. All the code necessary to accomplish that task is contained in this
package's script. We have the same features available to us for copying, searching,
and saving as a file and the script is also read-only, as it was for the table object we
displayed previously. Unlike the DDL script we viewed for a table object previously,
this one has three tabs available to us labeled Source, Spec, and Body which are
visible at the bottom of the code viewing window. This is PL/SQL package code
and a package is composed of a specification portion (the description of what is in
the package) and the body of the package (the actual code that does the work). With
these tabs we are able to jump right to the specification portion or right to the body
portion or just view the entire package source script as a whole.

Validating, Generating, Deploying, and Executing Objects

[290]

If we scroll this window all the way to the bottom, we see that the Warehouse
Builder has generated about 4,500 lines of code.

Line numbers can be displayed in the editor window by right
clicking the mouse along the left hand edge of the window
between the thin vertical line and the edge of the window and
selecting Toggle Line Numbers.

This is much more than it generated for the table object previously, and makes us
real glad we didn't have to write all that code ourselves.

This completes our look at the process we would follow to generate our objects
and mappings from the Design Center without having the objects open in an editor
window. If we were to encounter any errors that needed to be fixed, we could jump
to the appropriate editor by double-clicking on the object or mapping name in the
Results tab of the Log window.

As with validation, there is an icon available on the main Design Center toolbar that
will invoke the generation process on objects and mappings. As long as the object is
not being edited it will behave just as if the validate or generate menu selection had
been made from the popup menu; however, if we're editing a mapping at the time
we click the generate icon, it will behave differently from the pop-up menu. So let's
take a look at that now after closing out the script window and the Results
log window.

Generating using the icon from the
mapping editor
When we generate a data object using the toolbar icon, it will display the results
in the Generation Results window within the log window just as it did for the
validation. The same Generation Results window in which the validation results
appeared will be used for the actual generation results.

Let's open the Mapping Editor on the STAGE_MAP mapping now. From the Design
Center, we can just double-click on the STAGE_MAP mapping to launch the Mapping
Editor and load the STAGE_MAP mapping. The process for generating the mapping
using the icon in the toolbar is the same as for validation, but we just select the
Generate icon instead of Validate from the main toolbar as shown next:

Chapter 8

[291]

Looking at the Generation Results window now, we can see that we have additional
information displayed. Instead of the validation messages appearing in the window,
we now see the script that was generated. We also have a couple of extra drop-down
menus, which we didn't have when we were just validating. An example of what
we'll see is shown next:

We have two tabs available in the window, a Script tab that displays the script and
a Message tab that displays the validation messages. 1Looking at the Script tab we
can see that it is just a view only window. There is no saving of the code or searching
through the code like we could do when viewing the generated code in a full viewer
window. The reason can be found in this comment we see in the script window as
a note:

/***

-- Note: This generated code is for demonstration purposes only and
may
-- not be deployable.
**
****************/

The code generated for a mapping is far more complex than the DDL code generated
for data objects as we saw when we looked at it from the Design Center. One of the
main reasons the code for mappings is so complex is because we have five options to
choose from for the default operating mode of the mapping when we execute it, and
it has to be able to support all five. There are three operating modes the mapping can
run in, and two that indicate failover options for switching between them. One of the
drop-down menus at the top of the Script tab window is labeled Operating mode,
and allows us to view the code for each of the operating modes separately.

Validating, Generating, Deploying, and Executing Objects

[292]

For this reason, some different functionality is available to us in the Script tab and it
displays code that is not quite the complete script we saw in the Design Center code
view window. If we scroll down the Script tab, we'll see that it is not displaying as
many lines as were displayed when viewing the code in the code view window. That
is what the note we mentioned previously is referring to. Viewing the script from the
Design Center in a code view window shows us the complete script, which includes
support for the code of all operating modes. As we mentioned before, if we want to
see that, we can click on the script name in the Results tab and then click the View
Script icon in the Results toolbar, or right click and select Go to Source from the
popup menu.

Default operating mode of the mapping
The Warehouse Builder provides three possible modes that the mapping code can
run in when executing in the database. In addition, it also provides two options
for failover execution should one mode have errors. These modes are based on
the performance we expect from the mapping, the amount of auditing data we
require, and how we designed the mapping. The Warehouse Builder Data Modeling,
ETL and Data Quality Guide has a much more detailed discussion of this topic in
Chapter 10—Understanding Performance and Advanced ETL Concepts. (http://
download.oracle.com/docs/cd/E11882_01/owb.112/e10935/etl_performance.
htm#BBAHFHBC) For more advanced mappings, we'll definitely want to be familiar
with concepts from that chapter. But for our purpose here, we'll only cover a very
high-level view with just enough information to explain the different options we
have in the Script tab of the Generation Results window for viewing the code.

The three modes are as follows:

•	 Set-based
•	 Row-based
•	 Row-based (target only)

In set-based mode, the Warehouse Builder will generate a single SQL statement that
performs all the operations of our mapping in one statement. It processes the data as
a single set of data. This is good for performance, but the drawback is that runtime
auditing information is limited. If any errors are generated, it is not able to tell us
which row generated the error. We can view the code that is set-based by selecting
SET_BASED in the Script tab from the Operating Mode drop-down menu.

Chapter 8

[293]

In row-based mode, the Warehouse Builder generates code to process the data row
by row. It uses a combination of SQL Cursors and PL/SQL code. It does not provide
as big a performance benefit as the set-based mode, but we gain much greater
auditing capability of the execution results. There are also additional parameters that
can be set to improve the performance of this mode, which are documented in the
User's Guide and online help if we choose to use this mode. We can select ROW_
BASED from the drop-down menu to view the row-based code.

The final of the three options is row-based (target only) mode. This option creates a
SQL select cursor and tries to include as many operations as it can into that cursor
to process the source data and operations on it as a set, but then writes the rows
to the target one row at a time. This will limit the auditing available for input and
operations, but provides greater auditing of the output to the target. We can select
ROW_BASED_TARGET_ONLY from the drop-down menu to view the code for
the option.

The following two additional options for operating modes are available, which are
based on the previous three:

•	 Set-based fail over to row-based
•	 Set-based fail over to row-based (target only)

These options are used to run the mapping in set-based mode, but if an error occurs,
try the mapping in row-based mode—either regular or target only. We can view the
code for either of these options by selecting SET_BASED_FAIL_OVER_TO_ROW_
BASED or SET_BASED_FAIL_OVER_TO_ROW_BASED_TARGET_ONLY from
the drop-down menu.

Validating, Generating, Deploying, and Executing Objects

[294]

Changing that drop-down menu does not change the actual mode that will be
used to run the mapping. For that we have to view the configuration options for
the mapping from the Design Center. The options are available via right-clicking a
mapping in the Projects Navigator and selecting Configure.... This will display the
following window where we can see that the default operating mode set for our
mapping is Set based fail over to row based. To see that, click the plus sign beside
the Runtime parameters entry. This is the default that is set for all mappings, as
shown next:

We will not have to modify any of these options for our mappings and so will not
spend any more time with this window. More information about these options can
be found in the Warehouse Builder Data Modeling, ETL, and Data Quality Guide in
Chapter 10. We'll move on to discuss the other drop-down menu that appears in the
Script tab of the Mapping Editor Generation Results window, the Generation style
drop-down menu.

Chapter 8

[295]

Selecting the generation style
The generation style has two options we can choose from, Full or Intermediate. The
Full option will display the code for all operators in the complete mapping for the
operating mode selected. The Intermediate option allows us to investigate code for
subsets of the full mapping option. It displays code at the attribute group level of an
individual operator. If no attribute group is selected when we select the intermediate
option in the drop-down menu, we'll immediately get a message in the Script tab
saying the following:

Please select an attribute group.

When we click on an attribute group in any operator on the mapping, the Script
window immediately displays the code for setting the values of that attribute group.
The following is an example of what we would see by clicking on the INOUTGRP1
group of the REGIONS table operator:

It is a standard SQL SELECT statement that has the four attributes of the REGIONS
table selected. The FROM clause indicates that the source of the data for these
attributes is the REGIONS table in the ACME_POS database at our location defined as
ACME_POS_LOCATION. In Chapter 2, we discussed the non-Oracle Database module
we created for the ACME POS transactional database. We called it ACME_POS with a
location defined as ACME_POS_LOCATION. The Warehouse Builder implements this
location as a database link in the Oracle Database and calls it ACMEPOS@ACME_POS_
LOCATION. The ACMEPOS text string is from the service name we used to refer to the
location and ACME_POS_LOCATION is the name we gave to the location. To reference a
table in that database, the table name is prefixed to the database link name, which is
separated by another @ symbol. To further specify the exact table, the schema name
is prefixed to the table name separated by a period. Looking back at Chapter 2 where
we defined the ACME_POS_LOCATION, we specified DBO as the schema name in the
Edit non-Oracle Location dialog box along with ACMEPOS as the service name and
ACME_POS_LOCATION as the location name. This is where all that information used in
the previous script came from.

Validating, Generating, Deploying, and Executing Objects

[296]

When we selected the Intermediate generation style, the drop-down menu and
buttons on the right hand side of the window became active. We have a number
of options for further investigation of the code that is generated, but these are
beyond the scope of what we'll be covering in this book. One final point we'll make
about these options is in reference to the drop-down menu labeled Aspect. When
an attribute group is selected, it may be used as input, output, or both. This drop-
down menu lets us see the code that is defined for either one of these options for an
attribute group that has more than one of these options. If we select Incoming, we
get to see what code selects the values that are used as input for the group. If we
select Outgoing, we get to see the code that will select the values for output. There
is another option that can appear in the menu, and that is Loading. If we click on
the INOUTGRP1 attribute group of the POS_TRANS_STAGE mapping table operator,
we'll have that option in addition to Incoming and Outgoing. This is the final target
operator in the mapping, and so must actually load data into the target table. The
loading aspect will show us the SQL INSERT statement that loads the data into the
target table.

This concludes our discussion about generating code for mappings and objects. So
let's close the Mapping Editor and proceed to the next step, which is to deploy our
objects and mappings to the database.

Deploying
The process of deploying is where database objects are actually created and PL/
SQL code is actually loaded and compiled in the target database. Up until this point,
no objects exist in our target schema, ACME_DWH, in our Oracle database. Everything
we've talked about so far about importing metadata for tables, defining objects,
mappings, and so on has referred totally to the Warehouse Builder repository,
where it keeps a record of everything we've defined so far in metadata. Not a single
actual database object has been created yet. Everything we've done until now has
been done entirely in the OWB Design Center client. But to perform the process of
deployment, now we're going to have to communicate to the target database. For
that we need to be introduced to the Control Center Service, which must be running
for the deployments to function.

Chapter 8

[297]

The Control Center Service
If we briefly look all the way back at Chapter 1, we talked about the architecture of
the Warehouse Builder and looked at a diagram that laid out the main components
of the Warehouse Builder software and where they were located—either on the client
or on the server. The Control Center Service is a process that runs on the server and
provides the interface to our target database for controlling the deployment process.
It is also possible to run the Control Center Service on another remote computer
to implement a remote runtime. If it's running in this configuration, it doesn't start
automatically by default. So we would need to manually start it. It is available from
the Windows Start menu as shown next:

We will not need to run it because we're running locally on the same machine as the
database is running, and will be interfacing with the Control Center Service that is
running locally in the database. If we were to implement a remote runtime and had
to run this Start Control Center Service menu entry, it would start up a command
window with the window title Start Control Center Service and would pop-up a
dialog box asking us for connection information for the OWBSYS schema in our
database. We would enter the password, host name, and service name for connecting
to that schema.

The local Control Center Manager on the database server is controlled using scripts,
which are run in the database while connected as the OWBSYS user. The scripts
are located in the ORACLE_HOME\owb\rtp\sql\ folder. They can be run using the
SQL*Plus command-line utility for executing SQL commands and scripts. Open a
command-prompt window and enter the following command to run it and connect
to the OWBSYS schema:

sqlplus OWBSYS

Validating, Generating, Deploying, and Executing Objects

[298]

Enter the password for OWBSYS when prompted, and then enter the following
command at the SQL*Plus command prompt to display the status of the service:

@ORACLE_HOME\owb\rtp\sql\show_service.sql

Substitute your actual ORACLE_HOME location in the previous command.

A few of the other scripts available in the previous folder are as follows:

•	 start_service.sql: Starts the Control Center Service
•	 stop_service.sql: Stops the Control Center Service
•	 service_doctor.sql: Analyzes the state of the service and reports the status

The Control Center Service normally starts when the database starts up. So if we are
running the database server locally, we don't need to bother with running any of the
scripts. However, it is good to be informed should there be any problem in the future
involving connections to the service. Let's give the Control Center Service some work
to do now by doing an actual deployment from the Design Center.

Deploying in the Design Center and Data
Object Editor
As with validation and generation, we can deploy objects and mappings from the
Design Center. Let's deploy our POS_TRANS_STAGE table from the Design Center.
We'll right-click on it and select Deploy from the pop-up menu. If the Control Center
Service is not running for some reason, we'll be presented with an error dialog box as
shown next:

If we get this pop-up window when we click on the OK button, we'll get another
pop-up window prompting for connection information for the Control Center
Service where we can provide connection information. That dialog box looks like
the following:

Chapter 8

[299]

The only items we can modify here are the User Name and Password to use. These
items default to the repository workspace owner that we've been using all along to
connect in the Design Center, and we should not change them. Mostly, this dialog
box appears because the Control Center Service is not running, and not because of
incorrect connection information. Let's take a quick look at where that connection
information is specified. We'll press the Cancel button in the dialog box to close it if
it appears.

The Control Center Service connection information is set in the Design
Center, which is in the Locations Navigator window under the Control
Centers entry. If we expand it, we can see that a default Control Center
Service was created for us called DEFAULT_CONTROL_CENTER. We
did not have to create it separately. If we double-click on this, we get a
dialog box that shows the connection information. However, we're not
able to edit anything in it. When this entry was created it was specified,
and it can't be changed. Therefore, it is unlikely that incorrect connection
information caused the Control Center Service error dialog box to
appear. We could have more than one control center defined. But the
default will work fine for us, so we will not modify it.

If our Control Center Service is running, which will usually be the case, we won't
get the previous dialog boxes. However, we may get a dialog box telling us that our
location is not registered.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Validating, Generating, Deploying, and Executing Objects

[300]

The act of registering a location is to associate all the previous information with a
location defined in the Warehouse Builder so that the Control Center Service knows
how to find the location. The connection details in the dialog box are what it uses
to connect to the location. Simply provide the password for the target schema and
ensure that the rest of the information is correct, and then click on OK. The location
will be registered and the object will deploy. We can register and un-register
locations at any time by using the Control Center Manager. We'll be looking at the
Control Center Manager very soon.

So, we have deployed our POS_TRANS_STAGE table in the Design Center. Assuming
the Control Center Service is running and we don't get any of the previous dialog
boxes, we will actually not get any dialog box when we deploy an object, unless
we have set a certain option to tell the Warehouse Builder to display a dialog box
upon completion of the deployment. If this option is not set (which is the default),
it will not tell us whether the deployment succeeded or failed. If we want to see a
completion message, we have to set this option in the preferences for the Design
Center and tell it to show this message to us when the deployment is completed. We
can set this option under the Tools menu entry by selecting the Preferences... menu
entry. The resulting dialog box will look similar to the following, which has been
scrolled down so that the needed entry is visible and the column has been expanded
so that the whole description is visible. We need to check the box beside the option
for displaying the completion status as follows:

It will show us the completion message after this option has been checked, which
will look similar to the following:

Chapter 8

[301]

This shows us that the deployment processed successfully with no errors or
warnings. But what if the count of errors or warnings was not zero? There would be
nothing but a count that would display with this dialog box, so we need a feature to
see what these warnings and error messages are. If we look at the Log window, we'll
see that it has created a tab with some results of our deployment. The tab name will
be named for the object we're deploying and it will look very similar to the results
we viewed previously for validating and generating but with the addition of a new
entry for deployment results. It will look similar to the following:

The number you will see beside the object name in your log window will most likely
be different since that's a randomly assigned ID number the warehouse builder gives
to deployment jobs. We'll see that in a moment. There must be some way to give
us more control over the deployment process as the Design Center only shows us
design information and these messages. This feature of the Warehouse Builder is the
Control Center Manager.

The Control Center Manager
The Control Center Manager is the interface the Warehouse Builder provides
for interacting with the target schema. This is where the deployment of objects
and subsequent execution of generated code takes place. The Design Center is
for manipulating metadata only on the repository. Deployment and execution
take place in the target schema through the Control Center Service. The Control
Center Manager is our interface into the process where we can deploy objects and
mappings, check on the status of previous deployments, and execute the generated
code in the target schema.

Validating, Generating, Deploying, and Executing Objects

[302]

We launch the Control Center Manager from the Tools menu of the Design Center
main menu. We click on the very first menu entry, which says Control Center
Manager. This will open up a new window to run the Control Center Manager,
which will look similar to the following:

The Control Center Manager window overview
The Control Center Manager interface is organized in a similar manner to the
Design Center with multiple windows appearing in the main window. But only two
windows are available: the Object Details window and the Control Center Jobs
window. The subwindow on the left that displays the tree hierarchy for our project
and the locations defined within it is a permanent part of the interface, and so it does
not have a separate window title like the other two.

Beginning with the left subwindow, we see our project name displayed there with a
list of the locations that have been defined within our project. The primary location
of concern for deployment and execution will be ACME_DWH_LOCATION. This is the
location we have defined for our target database and selected as default.

Chapter 8

[303]

This is where we can control the registering and un-registering of
a location. If we right-click on a location, we see a Register... menu
entry. When it is selected, it pops up the same dialog box as we have
seen previously. If the location has not been previously registered it's
connection details will all be editable. But if the location was previously
registered successfully, only the password can be set. The Unregister...
menu entry will remove the connection details for the location.

All the objects defined for this location can be found by clicking on the plus sign to
the left of the location name to expand the tree, and then clicking on the plus sign
next to the ACME_DWH module to display for us a hierarchy of the object types
that can be deployed. An example is shown next:

Clicking on the plus sign beside any of the subcategories, such as Mappings or
Tables, will show us the list of the objects of that type defined within our project.
If we click on an entry in the hierarchy, the Object Details window will update to
display the associated objects. In the previous image of the entire Control Center
Manager window, we can see that the Object Details window contains the entire set
of objects defined in our project for the main location because that is what is selected
in the tree view on the left. Now as we click on the subcategories, the Object Details
window updates to display just the objects within that subcategory. If we further
expand the tree view on the left to view the objects in a subcategory, we can click on
an individual item and the Object Details window will display the details for just
that item.

Validating, Generating, Deploying, and Executing Objects

[304]

If this looks familiar, it is because the module view for the ACME_DWH
module in the tree is very similar to the view we get in the Design Center
when viewing that module. All the objects represented here can be
deployed and correspond exactly to the same item in the Design Center.

The Object Details window
Let's click on the ACME_DWH_LOCATION again in the left window and look at the
complete list of objects for our project. The statuses will vary depending on whether
we've done any deployments or not, when we did them, and whether there are any
warnings or failures due to errors that occurred. If you're following along exactly
with the book, the only deployment we've done so far is the POS_TRANS_STAGE table
and the previous image of the complete Control Center manager interface shows it
as the only one that has been deployed successfully. The remainder all have a deploy
status of Not Deployed.

The columns displayed in the Object Details window are as follows:

•	 Object: The name of the object
•	 Design Status: The status of the design of the object in relation to whether it

has been deployed yet or not
°° New: The object has been created in the Design Center, but has not

been deployed yet
°° Unchanged: The Object has been created in the Design Center

and deployed previously, and has not been changed since its last
deployment

°° Changed: The Object has been created and deployed, and has
subsequently undergone changes in the Design Center since its last
deployment

•	 Deploy Action: What action will be taken upon the next deployment of this
object in the Control Center Manager

°° Create: Create the object; if an object with the same name already
exists, this can generate an error upon deployment

°° Upgrade: Upgrade the object in place, preserving data (only on
objects able to be upgraded)

°° Drop: Delete the object
°° Replace: Delete and recreate the object; this option does not preserve

data

Chapter 8

[305]

•	 Deployed: Date and time of the last deployment
•	 Deploy Status: Results of the last deployment

°° Not Deployed: The object has not been deployed yet
°° Success: The last deployment was successful, without any errors or

warnings
°° Warning: The last deployment had warnings
°° Failed: The last deployment failed due to errors

•	 Location: The location defined for the object, which is where it will
be deployed

•	 Module: The module where the object is defined

Some of the previous columns will allow us to perform an action associated
with the column by double-clicking or single-clicking in the column. The
following is a list of the columns that have actions available, and how to
access them:

•	 Object: Double-click on the object name to launch the appropriate editor on
the object.

•	 Deploy Action: Click on the deploy action to change the deploy action
for the next deployment of the object via a drop-down menu. The list of
available actions that can be taken will be displayed. Not all the previously
listed actions are available for every object. For instance, upgrade is not
available for some objects and will not be an option for a mapping. The
deploy action is what determines the scripts that get generated for an object.
The Create option will generate only a script to create the object. The Replace
option, in addition to generating the create script, will cause a drop script to
be generated. The Drop option will cause only a drop script to be generated.
The Upgrade option, if available, will generate neither a drop nor a create
option but will generate a script with the appropriate upgrade SQL code.

Validating, Generating, Deploying, and Executing Objects

[306]

An important note about the upgrade option is that the target user must
have certain extra privileges granted to him or her in the database to be
able to perform an upgrade. If these privileges haven't been granted, an
error will occur when trying to do a deployment with an Upgrade option:
RPE-02257: The following Oracle Roles have not been Granted to the
Target User: 'SELECT_CATALOG_ROLE'
RPE-02258: The following Oracle Privileges have not been Granted to
the Target User: 'EXECUTE ANY PROCEDURE' 'EXECUTE ANY TYPE'
'SELECT ANY TABLE' 'SELECT ANY DICTIONARY'
RPE-02259: Please run script <OWB-HOME>/owb/rtp/sql/grant_
upgrade_privileges.sql
Simply run the script mentioned in the message as the system user to
grant the privileges.

There are two buttons available in the Object Details window, Default Actions and
Reset Actions. Every object created in the Design Center has a default deployment
action associated with it, which is determined by the current design and deployment
status. For example, a mapping that has not been deployed yet has a default status
of Create. A table that was previously deployed but just changed will have a default
action of Upgrade. The Default Actions button will change the displayed Deploy
Action to show the default action for that object based on a comparison of its design
status with its deploy status.

Now let's click on the Default Actions button and we'll notice that all the actions
are updated to their default action. In our case, with just the POS_TRANS_STAGE table
deployed and all others not deployed, all the objects except for POS_TRANS_STAGE
have the Deploy Action changed to Create from None.

The other window in the Control Center Manager is the Control Center Jobs
window. This is where we can monitor the status of any deployments and executions
we've performed.

The Control Center Jobs window
Every time we do a deployment or execute a mapping, a job is created by the
Control Center to perform the action. The job is run in the background while we
can continue working on other things, and the status of the job is displayed in the
Control Center Jobs window. Looking back at the previous image of the Control
Center Manager, we can see the status of the POS_TRANS_STAGE table deployment
that we performed. The green check mark indicates it was successful.

Chapter 8

[307]

We can also see an ID column. This is the identification number that the warehouse
builder has assigned to this job and it is the same number that appeared beside the
table name in the Design Center log window results when we deployed the POS_
TRANS_STAGE table previously. If we want to see more details, especially if there
were warnings or errors, we can double-click on the line in the Control Center Jobs
window and it will pop up a dialog box displaying the details. An example of the
dialog box is shown next:

Clicking on the object in the tree view in the left window will update the right
window to display the information in the tabs where we can see various items of
information such as the result, the validation results, and the script generated. The
Impact Report tab is applicable to upgrades and will display information about
changes resulting from doing an upgrade. The window at the bottom contains a
summary of the job execution including the messages that provide the details about
the process. It is a scrollable window, and the previous image only shows the last
part of the messages.

Validating, Generating, Deploying, and Executing Objects

[308]

Scrolling back through that window we can see that the validation messages are also
included because when the Warehouse Builder deploys an object, it automatically
does actual validation and generation first. It is not necessary to perform a manual
validation and then a generation before doing a deployment if we need to redeploy
an object, as it will do that for us automatically.

If there were any errors in deployment, these errors would appear in the previous
window also. For deployments, as we're dealing with actual scripts executing in the
target database to create objects or mapping code, the deployment errors will be of
the form of errors generated by the database. These will have an error code of the
ORA-XXXXX format with ORA being a generic indicator that it is an Oracle database
error, and XXXXX being the five-digit error number zero-padded on the left. More
details about these errors can be found in the Oracle Database Error Messages 11g
Release 2(11.2) guide, which is available online at http://download.oracle.com/
docs/cd/E11882_01/server.112/e17766/toc.htm. We can look up the Oracle
errors easily in this manual by referring to the error number in the table of contents,
which is organized by ranges of error numbers in a sequential order.

The following example will illustrate errors and warnings that could be encountered
when deploying a mapping, which in this case is the STORE_MAP mapping:

Chapter 8

[309]

This dialog box indicates warnings occurred while trying to deploy the STORE_MAP
mapping. To see the full error, we can view the contents of the scrolled window at
the bottom that displays the full error message and scrolling up we see the following:

This screenshot is telling us that a table or view does not exist and also that a
sequence does not exist. We can see the Oracle errors above that we referred
to previously. Because we're deploying code into the database now, a PL/SQL
package that references a database table or sequence will generate this error if the
physical table or sequence does not exist yet in the database. As this mapping was
deployed before deploying the tables and sequence that it references, these errors
are generated. The Warehouse Builder for some reason thinks this is just worth a
Warning status and not a full blown Error but whether you call it a warning or error,
the mapping is not going to execute until those objects are deployed. In this case the
Warehouse Builder is just saying the actual deployment was successful because the
object was created in the database but it is warning us that there are errors in the
code which will prevent a successful execution. The metadata in the Design Center
was correct—the table definitions and sequence included in the STORE_MAP mapping
were created in the Warehouse Builder—which is why the validation was successful,
but they had not been deployed physically to the database yet.

Validating, Generating, Deploying, and Executing Objects

[310]

Looking up the Oracle errors
Sometimes error numbers don't appear in the most recent edition
of the Oracle Error Messages manual. The previous ORA-00942
error is an example of such an error. Looking in the table of contents
in the Oracle Database 11g Rel.2 error messages guide referenced
previously, the error numbers go up to ORA-00912 in Chapter 3
and then jump up to ORA-00953. In fact, we have to go all the way
back to the Oracle 9i Database Error Messages Release. 2(9.2) guide
at http://download.oracle.com/docs/cd/B10501_01/
server.920/a96525/e900.htm#ERRMG102 to find that error
listed.
Some of these errors have been around for quite some time and many
new error messages are created with each new database release, so
some get left out. In that case, searching older versions of the Error
Messages manuals or doing a simple Internet search on your favorite
search engine for the ORA and 00942 strings (or whatever the error
number is) will turn up some additional information.

With this illustration of the Control Center Manager and its windows, we need to
discuss how to deploy objects from within the Control Center Manager.

Deploying in the Control Center Manager
The previous overview of the Control Center Manager windows showed us how
it displays the results of our deployments, in particular the ones we initiated from
the Design Center, but we can also deploy objects from within the Control Center
Manager. This is one of its major functions, along with executing code and checking
on the status of jobs.

All of the functions we can perform from the Control Center Manager are initiated
from the tree view on the left. There are pop-up menus available on each object and
also main menu entries that will perform the action on the currently selected object.
The Control Center Manager also has a toolbar with a couple of icons that we can
use to deploy and execute objects that have been selected. They are circled in the
following image and will be grayed out if there are no objects selected that can be
deployed or executed:

Chapter 8

[311]

Let's deploy the STAGE_MAP stage mapping from the Control Center Manager by
finding it in the tree view. We have to expand the ACME_DW_PROJECT project and
the location for our ACME_DW_LOCATION target, and then the module for the ACME_
DWH target database. As we want to deploy a mapping, we need to look under the
Mappings node. So we expand that entry in the tree view, right-click on it, and select
Deploy from the pop-up menu. We can also click on it and then select File | Deploy
| To Control Center from the main menu.

The pop-up menu on an object, the main menu in the Control Center
Manager and the icons in the toolbar will update depending on the
deploy action currently set for the objects. If the current deploy action
is None, the Deploy pop-up menu entry, the File menu Deploy
submenus and the deploy icon will be grayed out, and will not be
selectable. If we wish to deploy in that case, we can change the deploy
action using the pop-up menu or change it in the Object Details
window and the Deploy menu entry will become active. We can also
just use the Default Actions button in the Object Details window to
set a default deployment action. In this case, it defaults to Create as we
saw previously and the Deploy menu option is now available.

A new entry will be created in the Control Center Jobs window and the status will
update as the job progresses. It's possible we might be presented with another dialog
box saying a location hasn't been registered yet and it will prompt for the connection
information similar to what we mentioned earlier when deploying in the Design
Center. The STAGE_MAP references the ACME_POS source SQL Server database using
the ACME_POS_LOCATION location, which also needs to be registered. As before,
we can just fill in the password for the ACME_DW_USER login, double-check
the remaining information, and click the OK button. Now it will proceed with the
deployment. Remember to enclose the password in double quotes as this is a SQL
Server database location. When it is completed, we'll be presented with a pop-up
window indicating success or failure if we've configured that option in Preferences
as previously discussed.

We can close that pop-up window and the status will update to reflect the final
result. If we haven't selected the option in preferences to display the completion
pop-up window, we can check the status of the job in the Job window which updates
to reflect the success or failure of the job. In either case, we can view details by
double-clicking on the job if we need to. One final place we can check is back in the
Log window of the Design Center which we'll see has been quietly logging all this
deployment activity we've been accomplishing in the Control Center Manager in
separate tabs like it did for our very first deployment of the POS_TRANS_STAGE
table. We can close any of those deployment status tabs in the log window if we'd
like to clean it up but it's not required.

Validating, Generating, Deploying, and Executing Objects

[312]

Executing
Now we have our staging table deployed to the target database, the POS_TRANS_
STAGE table, and have successfully deployed the STAGE_MAP mapping to load that
table from our source database. This means we now have enough of our target
database deployed to be able to execute the STAGE_MAP mapping to load the staging
table. Let's do that now so that we will have progressed through the entire process
once. Loading the staging table is the first step we have to take to load our database
before we can proceed to load the actual target dimensions and cube. After we
execute this mapping, we can go back and deploy the remaining objects, and execute
them to load the dimensions and cube.

The process of executing a mapping can be performed from the Design Center as
well as from the Control Center Manager. The process of executing is very similar
to deploying. Results are displayed in the Control Center Jobs window, which is the
same as that of the deployment results, but on a different tab, that is the Execution
tab. We also get results displayed in the Log window in the Design Center.

To execute a mapping we might think to look for a menu entry that says Execute, but
we will not find it. We need to select the menu entry that says Start to start the code
running. This menu entry is available from the pop-up menu by right-clicking on
an item in the tree view, and from the File menu when an item is selected in the tree
view. These menu entries are available in both the Design Center and the Control
Center Manager. We can also click the Start icon in the toolbar, the one on the right
in the above image in the Control Center. If executing from the Design Center, the
start icon will appear as a large green arrow.

Let's just go ahead and do that now. We'll find the STAGE_MAP entry under
Mappings, which is in the ACME_DWH_LOCATION in the tree view. Right-click on it and
select Start.

When executing code, it's always a good idea to make sure the most
recent version of the code has been deployed successfully. Before
selecting Start, it is good to just glance at the Object Details window
in the Control Center Manager for the object, which appears when
the object is right-clicked, and make sure that the deployment status
shows Success and the design status shows Unchanged.
If we had a problem with the deployment and the status is other
than Success, we will have issues running it. If the design status
shows Changed, we don't have the most recent version of the object
deployed. We can then fix any issues first, re-deploy, and then
execute it.

Chapter 8

[313]

Having determined that we have successfully deployed the most recent version,
we continue and select Start. So the Control Center Manager begins executing the
mapping code. As it executes, the first thing we'll notice is that the Control Center
Jobs window will update to display the Execution tab with our newly submitted
job as the first entry and the Design Center Log window has updated to add another
tab to display the results from this execution. The tab name will be the mapping
name followed by the job id in parentheses like it did for all the deployments.
Upon completion, if we have checked the preference option to display deployment
completion status (which applies to execution status also), we'll get the results pop-
up window.

The important thing to notice about this dialog box is the success or failure message.
The counts (at least for the processed count) are not accurate. This is a minor bug,
as it did indeed process this mapping. This is verifiable by double-clicking on the
status for our job in the Control Center Jobs window to display the details about this
execution. When we do that, we get the following dialog box in which we can clearly
see the mapping executed and can see the counts of rows that were processed:

The contents of this dialog are also shown in the tab in the Design Center Log
window. It displays more or less for the inserted count depending on how much
sample data we actually have in the source database. As of this execution, there
were 10026 records in the source POS_TRANSACTIONS table but we performed an
aggregation on that data to sum it by day which resulted in 156 records actually
being loaded.

The parameters entry in the above screenshot is for displaying the mapping input
parameters if there are any defined in the mapping. We talked about mapping input
parameters in Chapter 5 when discussing the various operators available to us when
creating a mapping. They are for passing values into a mapping.

Validating, Generating, Deploying, and Executing Objects

[314]

The input parameters are included with configuration options for running the
mapping that involve the operating mode among others. We discussed the operating
mode previously when talking about generating code and viewing the code for the
various operating modes. We discussed accessing those parameters by selecting
Configure... from the pop-up menu by right-clicking on a mapping in either the
Design Center or the Control Center Manager and saw an example of the screen with
the parameters.

Instead of having to take that extra step to set the runtime parameters,
there is an option that can be checked off to automatically display a
dialog of those parameters, including mapping input parameters, when
a mapping is started. That would allow us to set those parameters each
time a mapping is run. To set that option access the Preferences menu
entry from the Tools main menu in the Design Center. In the resulting
dialog, expand the OWB entry on the left and click on the Deployment
entry. There will be an option with a check box labeled Prompt for
Execution Parameters on the right that can be checked to automatically
display the parameters dialog when a mapping is run.

The runtime parameters are set along with the operating mode. We have covered
the default operating mode previously, but the others are all more advanced than
we'll have time or the need to cover here. There are good explanations of all the
runtime parameters in the online help accessible by pressing the Help button. Select
the Configuring Mappings Reference link and then the Runtime Parameters link
from the resulting help dialog box to access detailed explanations of all the runtime
parameters. For our purpose, the defaults will all be fine.

Deploying and executing remaining
objects
This completes the process of loading our staging table. It's now ready to be used for
loading our dimensions and our cube. We've now gone through every process we
needed for creating our data warehouse. All that remains is for us to complete the
deployment and execution of the remaining objects. The process is the same for all
the objects.

Chapter 8

[315]

At this point, the only issue we need to be concerned with is the order in which we
deploy and execute the objects. We don't want to deploy and execute a mapping to
load a dimension, for example, until we've deployed the dimension itself; otherwise
we'll get errors. We can't deploy the dimension successfully until the underlying
table has been deployed. We got a small taste of a possible error that can occur due
to incorrectly timing our table and mapping deployments earlier in the chapter when
we saw the errors that could occur when deploying a mapping before the underlying
table was deployed.

Deployment order
With that in mind, let's talk about the order in which we should proceed to deploy
and execute our objects. The group of objects we have to deploy consists of the
following:

•	 Sequences
•	 Tables
•	 Dimensions
•	 A cube
•	 Mappings

We want to start with objects that do not rely upon any other objects, and then
proceed from there. The only class of objects from the preceding list that doesn't rely
upon any others would be sequences, so we'll do them first. Tables are likely the next
candidate for deployment, but there could be foreign key dependencies between
tables that will cause errors if the tables are deployed in the wrong order; so we
need to watch out for that. In fact, the underlying table created for our SALES cube
has foreign key dependencies upon the three dimension tables and so those must be
done before the SALES table. The cube will rely upon the dimensions as well as its
underlying table, and the dimensions need to have the underlying tables deployed
first. So, it looks like the dimensions would be good to do next and then the cube.
Finally, the mappings can be done since they depend on the cube, dimensions, and
tables. Now that we have figured this out, here's the final list in order of the objects
remaining to deploy:

•	 Sequences
°° DATE_DIM_SEQ

°° PRODUCT_SEQ

°° STORE_SEQ

Validating, Generating, Deploying, and Executing Objects

[316]

•	 Tables
°° COUNTIES_LOOKUP

°° DATE_DIM

°° PRODUCT

°° STORE

°° SALES

•	 Dimensions
°° DATE_DIM

°° PRODUCT

°° STORE

•	 Cube
°° SALES

•	 External tables
°° COUNTIES

•	 Mappings
°° COUNTIES_LOOKUP_MAP

°° DATE_DIM_MAP

°° PRODUCT_MAP

°° STORE_MAP

°° SALES_MAP

We'll go through each of the objects in the order given in the Control Center Manager
or the Design Center, and deploy them.

Chapter 8

[317]

Rather than deploying each of the previous objects one at a time, we
can make use of the Warehouse Builder's capacity to deploy more than
one object at a time. We need to do the previous groupings in order,
but within each group the order of the individual deployments is not
critical. So, we can click on the node in the Control Center Manager
corresponding to the previous groups, and then click on the Default
Actions button in the Object Details window to set the default action.
Then we can right-click on the node (Sequences, Tables, and so on), and
select Deploy from the pop-up menu to deploy all objects under the node
that have a current deployment action set or just click the deploy icon in
the toolbar. This will start up a job in the Control Center Jobs window
named for the project (ACME_DW_PROJECT), which will deploy all the
objects under the node. When it completes, we can double-click on the job
to display the details for each of the objects if needed.

When complete, we can check the status of everything in the Control Center
Manager by clicking on the ACME_DWH database module to display all the
objects. We can quickly scan down the list to verify that everything got deployed
successfully.

You may encounter an error when deploying the COUNTIES external table. The error
would look like the following as shown in the Job Details window upon completion
of the deployment attempt on the COUNTIES external table:

Validating, Generating, Deploying, and Executing Objects

[318]

The problem that caused the above error is that the user being deployed to, the
target data warehouse user, ACME_DWH, did not have the proper privilege assigned to
create a directory object in the database. The Warehouse Builder utilizes a directory
object in the database to access the directory indicated by the location associated
with the external table and there is a special privilege required to be able to create
that directory object. This is a new feature in this latest release of the Warehouse
Builder that improves the security of the database by not automatically allowing
a warehouse use to create any directory in the system. There are two options that
can be taken to resolve this and we're just going to take the simplest option which
assigns the CREATE ANY DIRECTORY system privilege to our target user. Since we're
deploying, our target user is ACME_DWH and so that is the user we will assign the
CREATE ANY DIRECTORY system privilege to.

To perform this action open a command prompt window and issue the following
command to run the SQL*Plus command line utility and connect as the system
database user:

sqlplus system

After entering the system password issue the following SQL command at the
SQL*Plus command prompt:

SQL> grant create any directory to ACME_DWH;

Retry the deployment of the COUNTIES external table and it will complete
successfully now.

This is the quick way to solve the problem but results in a potentially less secure
system since the warehouse user now has the ability to create any directory in the
system. The other option involves manually creating the SQL directory object in the
database and assigning read/write permission to the target warehouse user. Then a
connector must be manually created in the Warehouse Builder to be able to access it
from there. This is discussed further in the OWB Sources and Targets Guide on DB
Connectors and directories at the following URL:

http://download.oracle.com/docs/cd/E11882_01/owb.112/e10582/
importing_metadata.htm#WBDOD10524

When all the objects are deployed, we'll move on to the next section where we'll
execute them.

Chapter 8

[319]

Execution order
Now that we have all the remaining objects deployed, it's time to execute them
to complete our data warehouse project. The execution only pertains to the code
that is generated for the mappings. The execution of the code behind all the other
objects was done previously when we deployed them to create the objects. For the
mappings, the dependency will be determined by the foreign keys that exist in the
tables that the mappings are loading. We can't run a mapping without errors to load
a table that has foreign key dependencies on other tables before those other tables
have been loaded. We know that our SALES table has foreign keys to the dimension
tables, so we need to run them to load them before doing the SALES table. But we
also know our STORE mapping needs to do a look up of county information from our
COUNTIES_LOOKUP table, and so that mapping will need to be run before the STORE
mapping. These are the known dependencies, and armed with this knowledge, we
specify our order as follows for executing mappings:

1.	 COUNTIES_LOOKUP_MAP

2.	 DATE_DIM_MAP

3.	 PRODUCT_MAP

4.	 STORE_MAP

5.	 SALES_MAP

We'll execute these one by one as the individual order is important. After executing
these mappings in the given order, our data warehouse is now complete and ready
to be queried.

Validating, Generating, Deploying, and Executing Objects

[320]

Summary
That's it! The data warehouse is now complete. We've now completed the work to
develop our ACME Toys and Gizmos Company data warehouse. We covered quite
a bit of information in this chapter about validating our objects, generating the code
for them, deploying to the target environment, and finally executing the code. We
were introduced for the first time to the Control Center Manager where we got to
interact with the Control Center to deploy and execute objects in our target database
environment.

We covered these topics together in this chapter as they are all related. But in actual
projects, we will frequently find ourselves performing these steps in an iterative
process as we work on the project. We don't have to necessarily wait until the end
to perform all these tasks. We can perform some validation and generation as we
design each object or mapping.

However, we still have a couple chapters remaining so don't quit yet because we are
going to cover some more small details about what we've done so far and add a few
minor topics that will help us maximize our use of the tool and then discuss a new
feature of the 11gR2 release of the Warehouse Builder.

Extra Features
Congratulations on having made it this far and completing the data warehouse
implementation! We've now covered all the Warehouse Builder basics that we need
to begin building our data warehouses for our organizations. This chapter will deal
with some extra topics that can help us get the most out of what we've learned so far
and improve our use of the Warehouse Builder. The focus will be on those features
that we will find useful as we create more complex data warehouses, and are faced
with making changes and updates.

Metadata change management is an important practice we'll want to employ as we
make more and more edits and changes to our data warehouse over time, and the
Warehouse Builder includes a number of features that can help us with this. We'll
look at the following features related to metadata change management:

•	 The metadata loader facility for making export files that can be saved to a file
in a configuration management tool for backup or to transfer metadata

•	 The recycle bin for saving deleted objects
•	 Copying and pasting objects to make copies for backup or as the basis for

new objects
•	 Taking snapshots of objects to save the state at a point in time

We'll also take a look at these additional features:

•	 How to keep objects synchronized between the object and its use in a
mapping

•	 The binding of tables to dimensional objects
•	 A quick look at some online references for more information that will help us

Extra Features

[322]

We stepped through the process of building our data warehouse from start to finish
in this book, but did not address having to go back and make changes to objects or
mappings we've already completed. This presents some unique challenges so let's
talk about the features the Warehouse Builder has that will help us with keeping a
track of the various versions of our objects as we make changes.

Metadata change management
Metadata change management includes keeping a track of different versions of an
object or mapping as we make changes to it, and comparing objects to see what has
changed. It is always a good idea to save a working copy of objects and mappings
when they are complete and function correctly. That way, if we need to make
modifications later and something goes wrong, or we just want to reproduce a
system from an earlier point in time, we have a ready-made copy available for use.
We won't have to try to manually back out of any changes we might have made. We
would also be able to make comparisons between that saved version of the object
and the current version to see what has been changed.

Metadata Loader (MDL) exports and imports
One major change management-related tool that we'll look at in the Warehouse
Builder is the ability to export workspace objects and save them to a file using the
Metadata Loader (MDL) facility. With this feature we can export anything from an
entire project down to a single data object or mapping. It will save it to a file that can
be saved for backup or used to transport metadata definitions to another repository
for loading, even if that repository is on a platform with a different operating system.
Some other possible uses for the export and import of metadata are to quickly
make copies of workspace objects in multiple workspaces for multiple developers,
or to migrate to a newer product version. We would need to export from the old
product version, upgrade the Warehouse Builder, and then import back to the new
workspace version.

When exporting we can choose any project, node, module, or object in Design Center
in either the Projects Navigator, Locations Navigator, or Globals Navigator windows.
If we choose an entire project or a collection such as a node or module, it will export
all objects contained within it. If we choose any subset, it will export the context
of the objects so that it will remember where to put them on import. That means if
we choose a table, for instance, it will include in the metadata the definition for the
module in which it resides as well as the project the module is in. We can also choose
to export any dependencies on the object being exported if they exist. So an export of
tables with foreign key references to other tables, for example, will export these other
tables as well to resolve the references.

Chapter 9

[323]

Let's save an export file of our entire main ACME_DW_PROJECT to see how an export
is done from the Design Center. We'll select the project by clicking on it and then
select File | Export | Warehouse Builder Metadata from the main menu. If we have
made any changes, we'll get a dialog box asking us to save the changes or revert the
changes as we have seen previously. We'll click on Save in that case. The Metadata
Export dialog box will be displayed, which will look similar to the following
depending on the particular objects that are defined within the project:

Every module, node, and object in our project is depicted in the list for reference,
so we can see what will be exported. We also have the opportunity to annotate
our export file with some notes. We can use the Annotations box to enter any
information that we would like to save about the export. It is most often used to save
a description of the contents of the export file for quick reference later. Below that we
specify the file name of the export file and name for the log file it will create of the
export. The dialog box will specify a default file name and location for each, but we
are free to change that to any location that suits us.

In working with the Warehouse Builder there could be development, test,
and production repositories on three different servers. So this feature
would be very useful to copy metadata definitions from development to
test, and then from test to production. A networked drive and folder that
can be accessed from all three servers can be used to store the file, so the
MDL file doesn't have to be copied from server to server after saving it.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Extra Features

[324]

There is also a checkbox on the dialog box for including any object dependencies.
As previously mentioned, we can automatically export any objects our selected
objects depend on. We might think that all the dependencies are included because
we've chosen to export the entire project. But there are dependencies that can exist
to objects outside our project such as the locations that are defined in the Locations
Navigator or objects defined in the Globals Navigator. If we want to automatically
include all of them, we can check this box.

The Warehouse Builder automatically includes an internal project
called PUBLIC_PROJECT that will contain any of the objects that
are external to our individually named projects. These are the
objects in the Locations and Globals Navigators that are accessible
to any project defined in the workspace.

We'll not export any dependencies so will leave that checkbox unchecked. We'll
accept the default file names and locations, and click on the Export button. This will
start the export and display a progress dialog box with a slider, which will indicate
the percent complete. When done, it will show 100% and a message indicating
success. It will have a Show Details button, which will expand the dialog box to
display the details of the export in a scrolling window, which shows step by step
what it was doing, as well as a button labeled Show Statistics. If we click on Show
Statistics, we get a dialog box loaded with counts of each individual object and
attributes of the objects that were exported. This information is probably more than
we'll ever need. But if we focus on the high-level objects such as mappings, tables,
dimensions, cubes, and so on, this information can give us a quick validation that we
exported what we thought we did—particularly if we've selected a subset of objects
and want to make sure we have the correct count. It's just another way of verifying
that our export was successful and includes everything we intended.

The Metadata Loader log file that was created also contains those
counts. If we want, we can save them for future reference along
with other details about the export.

If we had checked the box for object dependencies on the Export dialog box earlier,
we would have seen some additional objects that were exported.

Chapter 9

[325]

That is where the PUBLIC_PROJECT we referred to previously would appear. It
would show connectors, a control center, and locations that were included. Whether
we want these included or not will depend on what we're going to do with the
export file. For example, in the previous description about how export files can be
used to transfer metadata from the development environment to test and then to
production, location details are different for each server. In that case, we wouldn't
want to include the location and connector information. As long as we use the same
names for our locations and connectors on each server, the project metadata will
import with no problems and will function in the same way on all three.

The MDL file that is created is actually in a ZIP format and any
application that can open a ZIP file can view the two files contained
within it—a file with .mdx extension, which is the file containing the
actual objects from the workspace that were exported, and a .xml file
that contains the definitions of the exported objects.

Continuing our discussion of metadata change management-related features, the
Warehouse Builder has a feature called the recycle bin for storing deleted objects
and mappings for a later retrieval. After that we'll talk about a feature that allows
us to make copies of objects by including a clipboard for copying and pasting to and
from, which is similar to an operating-system clipboard, and then we'll talk about
a feature called Snapshots, which allows us to make a copy (or snapshot) of our
objects at any point during the cycle of developing our data warehouse that can later
be used for comparisons.

Recycle bin
The recycle bin in OWB is the same concept as that which operating systems use to
store deleted files. To try out the recycle bin, we need to have an object we can delete.
So let's create a temporary mapping object named TEMP_MAP_FOR_DELETE. We'll
launch the Design Center if it's not already running, and in our ACME_DWH module
in ACME_DW_PROJECT we'll just right-click on the Mappings node and select New
Mapping. We'll just close the resulting Mapping Editor that launches for this new
mapping because we're just going to delete it next anyway, so it doesn't need to have
anything created in it.

Extra Features

[326]

If we need to remove an object or mapping from our project, there are a number
of ways to do that. In the Design Center, we can right-click on an object and select
Delete from the pop-up menu, or we can click on an object and press the Delete
key, or we can click on an object and select Delete from the Edit main menu.
Let's perform one of these actions on this new mapping we just created and we'll
immediately be presented with the following pop-up screen:

Notice the checkbox for the recycle bin. We have the option to delete the object and
move it to the recycle bin where it would still be accessible later if needed, or just
delete the object entirely so that it is never to be seen nor heard from again. In this
case, we created a mapping just to delete, so it really wouldn't matter if it was not
put in the recycle bin. But we'll leave the box checked and click on OK. This will
cause some processing to be performed to actually save the object in the recycle bin.

Revert to Saved can be used from the main File menu to restore the
project back to the last saved state, which will cause objects deleted
since the last save to be restored. That is another option besides the
recycle bin and does not involve as much processing as it just reverses
changes since the last save. If more than one change was done since
the last save, they will all get reversed, even the ones that might have
been valid, so use that feature wisely.

We could also click on the Cancel button and the dialog box would go away; nothing
would happen further. So, leaving the Put in Recycle Bin box checked, we'll click
on the OK button. Now we'll get a quick pop-up window titled Snapshot Action
that actually mentions taking a snapshot. This is the method it uses to implement the
recycle bin. That is why we're including both these discussions together here under
metadata change management.

Chapter 9

[327]

It is important to note that deleting objects in the Design Center,
whether placing them in the recycle bin or not, does not affect the target
database system to which we might have already deployed the object.
The delete function in the Design Center affects only the metadata
definition stored in the repository workspace of the object, and not the
object itself in the target database. To remove that, normal database
techniques for removing database objects must be employed.

Let's take a look at how to launch the recycle bin to recover a deleted object. The
recycle bin is accessible from the main menu of the Design Center under the Tools
menu entry as shown next:

When we click on that menu entry, the recycle bin window will pop up as shown in
the following screenshot:

Extra Features

[328]

Let's do that now and take a closer look at it. There may be more objects listed and
with different names depending on what has been deleted, but this is what the
interface looks like. We can select the object with the left mouse button and click
on the Restore button to cause that object to be placed back into our project in the
same place it was deleted from, as shown by the Object Parent column. Of course,
the Time Deleted is when we deleted the object. It is possible to have more than one
entry in the recycle bin with the same name. For example, this can happen if we've
deleted an object, created a new object using the same name, and then deleted it
again. The time it was deleted can clue us into the correct one to restore if needed.
The Empty Recycle Bin button will do just what it says—clear everything out of the
recycle bin. However, this is an all or nothing procedure. We need to make sure we
won't ever need anything in the recycle bin before clicking on that button because as
soon as we click it, we end up with an empty recycle bin.

It would be nice if we could selectively remove objects from the
recycle bin. However, the only way to selectively remove an object
is by restoring it and then deleting it again, except this time un-
checking the recycle bin checkbox so that it gets deleted permanently.

The recycle bin allows us to keep versions of deleted objects. However, if we don't
want to delete the object, and instead want to save it before making changes to it,
we can make use of the copy and paste feature of the Design Center. Let's close the
Recycle Bin by clicking on the OK button and move on to discuss cut, copy, and paste.

Cut, copy, and paste
We mentioned the recycle bin as a concept borrowed from operating systems.
Another concept the Warehouse Builder has borrowed from operating systems is
the clipboard, and cutting or copying to and pasting from the clipboard. Anyone
who has used a computer for any length of time has had recourse to the clipboard
where objects and text can be copied between applications. The same concept applies
here, but with objects in the Design Center. Even the key combinations that can be
used to cut, copy, and paste are the same as for the operating system—Ctrl+X to cut,
Ctrl+C to copy, and Ctrl+V to paste in addition to menu entries for copy and paste
operations that are on the main Edit menu and on the object menus when
right-clicking on an object.

We can use the cut, copy, and paste features to make a copy of an object in the
current project, or to copy an object to another project we might have defined in the
Design Center. Within mappings we can also now copy and paste operators, groups,
and attributes within a mapping or between mappings.

Chapter 9

[329]

The only difference between cutting and copying is whether the
original object is left in place or not. When cutting, the original object
is removed and placed on the clipboard; and when copying, a copy of
the object is placed on the clipboard leaving the original intact.

Let's walk through a quick example to see this in action. We'll use the option to
copy an object between projects by creating a new project just for copying an object
there. It's quick and we can remove that project when we are done. To create a new
project, we'll click on our ACME_DW_PROJECT in the Design Center and then select File
| New from the main menu, or click the Ctrl+N key combination, or right-click on
the project name and select New. It will present us with a dialog box labeled New
Gallery. This is a new dialog in this latest release of the Warehouse Builder and is
a general dialog for creating any of a large number of different types of objects. We
have to scroll down the window on the right until we find the object type we want
to create, which in this case is a Project. We'll click on that as shown in the following
image and click the OK button.

We may be presented with a dialog box at this point asking us to either save our
work or revert back to the state the project was in when we last saved it. If there have
been no changes detected since the last save, we won't see this dialog box. We'll click
on the Save button to save our project and it will immediately present us the dialog
box to enter a name for the new project. We'll name our project ACME_PROJ_FOR_
COPYING and click on the OK button to create the new empty project.

Extra Features

[330]

We're going to copy a table—our staging table—to this new project, so we need to
have a database module defined into which we can copy it. So let's create one now.
We'll expand the new project by clicking on the plus sign next to it, and expand
Databases by clicking on the plus sign next to it.

Notice that our original project, ACME_DW_PROJECT, is closed
and this new project is opened. We are not able to have more
than one project open at a time in the Design Center.

We'll create an Oracle module by right-clicking on Oracle and selecting the New
Oracle Module menu entry to launch the Create Module Wizard. We're not going
to worry about any specific settings on the following screens and just accept the
defaults. This is because we're just using this project to demonstrate some features
for this chapter and want to get one created as quickly as possible.

However, on the step 1 screen, we do need to give this module a name. It doesn't
matter what we call it, so we'll name it COPY_MODULE. We'll leave the other options
set to their default and click on the Next button. The next screen is where we will
specify the connection information. Because this is only a temporary module and
we're not going to actually have to connect anywhere for real, we can leave the
defaults on this screen as they are. The wizard will just create an empty location for
us named after the module we just specified with _LOCATION1 on the end. We'll just
click on the Next button and then on Finish to create the empty database module.

This is a technique for creating a new project that we actually could
employ for a real project if we did not have the connection details finalized
yet. For example, the actual target database might not be available yet, or
maybe we have multiple database servers available and we're not yet sure
exactly which one would be used as the target. In that case, we can create
a new project quickly just as we did here and leave the connection details
unspecified. When the details are finalized, we can edit the connection to
fill them in later. We would definitely need to have the connection details
specified if we wanted to deploy any objects, but until that point we could
create, validate, and generate objects as much as we wanted.

Let's click on the plus sign next to our newly created database module and we'll see
that it has no objects defined in it yet. At this point our Design Center window will
look similar to the following:

Chapter 9

[331]

Now that we have a database module, we can copy our table. So let's go back to our
real project, ACME_DW_PROJECT, that has some objects in it, by clicking on the plus
sign next to it. If we have any unsaved changes that we've made to our project, we
will see a dialog box pop up, about saving or reverting changes and which also refers
to closing any open windows.

It is similar to the dialog box we just saw when creating a new project and had to
save or revert changes. We cannot have more than one project open in the Design
Center at the same time, so this is just warning us that it will have to close any open
windows we might have for this project, such as an editor window to edit a mapping
or other object, and that we will have to decide whether to save our changes or not.
We have the choice to save the changes, revert back to the previously saved version
of the project, or just cancel the project switch.

As we have an empty project, we won't have any windows open for it, but we
have not saved what we've created so far. We'll need to be sure to click on the Save
button. That will save the project we just created, close it, and open our
original project.

Extra Features

[332]

So let's copy the POS_TRANS_STAGE table from this project over to our new project
that we just created. We'll find it in the Tables node in our ACME_DWH database
module under Databases | Oracle. We'll right-click on it and select Copy from the
pop-up menu, or use one of the other options for copying to copy this table object to
the clipboard. We don't want to use the cut option because we don't want to remove
the object from our original project. A very quick pop-up window will appear and go
away as it's copying. If the window stayed around long enough to read, it would tell
us it was copying. Our POS_TRANS_STAGE table is now on the clipboard. If we want
to verify that, we can select Clipboard from the Tools main menu to pop up the
clipboard window to display the contents of the clipboard as shown next:

Note that the clipboard can contain only one object at a time. If we
cut or copy another object to the clipboard, it will replace this one. So
when we're copying multiple objects, we need to be sure to paste from
the clipboard before copying another object to it.

Now that we have the POS_TRANS_STAGE table on the clipboard, we can paste it
into the other project we just created. So let's click on the plus sign beside the new
project we created to close our main project and open the new project. The objects
that are placed on the clipboard using a cut or copy feature will only be pasted back
to the node in the currently open project corresponding to the type of node they
were originally cut or copied from. In our case this is a table, so it will be pasted back
to the Tables node of the new project. Therefore, the Paste menu option will only
appear on the menu for the Tables node. So let's navigate there in the project tree by
right-clicking on Tables and selecting Paste. We can also click on the Tables node
and type the Ctrl+V key combination, or select the Paste menu entry on the Edit
main menu of the Design Center. The Warehouse Builder will now paste the contents
of the clipboard into the project, creating a POS_TRANS_STAGE table in our new
project. It will display the following pop-up window as it is pasting the object:

Chapter 9

[333]

We could also have pasted the table back into the Tables node of our original ACME_
DW_PROJECT and it would have created a copy of the table with COPY_OF_ prefixed to
the table name.

This cut-and-paste technique is very useful for trying out different
things with a mapping to see how they will work. If we don't want
to risk making edits to our mapping, we can make a copy of it using
the copy and paste technique and then edit the copy. It's also possible
that we might need two mappings that are almost identical, except for
one or two operators. We can develop the mapping, copy and paste
it, and then make the edits to the copy to change those one or two
operators. We have the whole second mapping created without going
back through the entire create process. This can be done with tables and
other objects as well and is a very handy time saver.

The contents of the clipboard will not last forever. When we exit the Design Center,
the clipboard contents are emptied out. The next time we start Design Center, we start
with an empty clipboard. So, we must be very careful not to leave anything on the
clipboard that we might need to save. If we want to save an object to have it available
for future use without keeping it in our project, we can use the Snapshots feature.
Snapshots will also give us the ability to back up our objects and compare them to see
what has changed. Let's keep our new project open with the POS_TRANS_STAGE table
because we're going to make use of it for the next discussion about Snapshots.

Extra Features

[334]

Snapshots
A snapshot captures all the metadata information about an object at the time the
snapshot is taken and stores it for later retrieval. It is a way to save a version of an
object should we need to go back to a previous version or compare a current version
with a previous one. We take a snapshot of an object from the Design Center by
right-clicking on the object and selecting the Snapshot menu entry. This will give us
three options to choose from as shown next:

That same menu entry is available on the main menu of the Design Center under the
File entry. We can create a new snapshot, add this object to an existing snapshot, or
compare this object with an already saved snapshot. The last option is particularly
useful for seeing what has changed since the snapshot was taken.

Let's first take a snapshot of our POS_TRANS_STAGE table in the new project we
created in the last section. We'll right-click on the table name and select Snapshot |
New... to create a new snapshot of it. This will launch the Snapshot Wizard to guide
us through the three-step process as shown next:

Chapter 9

[335]

1.	 We'll click on the Next button to move to step 1 of the wizard where we'll
give our snapshot a name. This name will be stored in the database as an
object name, and so must conform to the Oracle Database requirement that
identifiers be no more than 30 characters in length and also must be unique.
The wizard will validate the name for us and pop up an error message if
we've violated any of the naming conventions, including exceeding the
30-character limit or using invalid characters such as spaces. We'll call our
snapshot POS_TRANS_STAGE_SNAP. If we like, we can enter a description also
to further identify what is in the snapshot.
There are two types of snapshots we can take: a full snapshot that captures
all metadata and can be restored completely (suitable for making backups of
objects) and a signature snapshot that only captures the signature or charac-
teristics of an object just enough to be able to detect changes in an object. The
reason for taking the snapshot will generally dictate which snapshot is more
appropriate. We can click on the Help button on this screen to get a detailed
description of the two options. In our case, we'll take a full snapshot this
time. Full snapshots can be converted to signature snapshots later if needed,
and can also be exported like regular workspace objects. Having selected
Full, we click on the Next button to move to the next step.

Extra Features

[336]

2.	 This step displays a list of the objects we're capturing in this snapshot. We
have the option on this screen to select Cascade, which applies to folder-
type objects. We can take a snapshot of any workspace object, including
nodes and even the entire project itself. We can then select Cascade to have it
include every object contained within that folder object. This is an easy way
to capture a large number of objects at once. In our case, we're only capturing
the POS_TRANS_STAGE table, so Cascade would have no effect. We'll click on
Next and move to step 3, the final step.

3.	 In the final step we are asked to select a depth to which we'd like to traverse
to capture any dependent objects for this object. The screenshot of this step is
shown next:

Since our POS_TRANS_STAGE table is a standalone table with no foreign key
dependencies on any other tables, the default of zero is fine. Even if there
were foreign key dependencies, we may not want to capture the additional
tables and so would leave it at zero. If we set it to something higher, it will
include any object this object depends on. If it is set to something higher than
1, it will proceed to objects that are dependent on those objects, and so on,
until it reaches the depth we've specified.
So, leaving it at 0, we'll click on Next and get the summary display showing
us what options we chose. Then we'll click on the Finish button, which will
actually take the snapshot. It will display a progress dialog box showing that
it's working, as seen next:

Chapter 9

[337]

When it is done, it will present us with a completion message. If we want to see what
snapshots we've created, there is an interface we can use, which is available on the
Tools menu of the Design Center. It is called Change Manager and will launch the
Metadata Change Management interface where we can manage our snapshots. It is
shown next with our snapshot displayed:

If there were more than one snapshot, each would appear in the list on the left. If we
click on an entry on the left, the right Components window updates to display the
objects that are contained within the snapshot. The following can be performed on
the snapshots by clicking on them and then selecting the corresponding menu entry
under the Snapshots main menu:

•	 Restore: We can restore a snapshot from here, which will copy the snapshot
objects back to their place in the project, overwriting any changes that might
have been made. It is a way to get back to a previously known good version
of an object if, for example, some future change should break it for
whatever reason.

•	 Delete: If we do not need a snapshot anymore, we can delete it. However, be
careful as there is no recycle bin for deleted snapshots. Once it's deleted, it's
gone forever. It will ask us if we are sure before actually deleting it.

Extra Features

[338]

•	 Convert to Signature: This option will convert a full snapshot to a signature
snapshot.

•	 Export: We can export full snapshots like we can export regular workspace
objects. This will save the metadata in a file on disk for backup or for
importing later.

•	 Compare: This option will let us compare two snapshots to each other to see
what the differences are.

Let's try the compare feature. We'll do a comparison between a workspace object
in our Design Center project and a snapshot, rather than comparing two snapshots.
This will make use of the third Snapshot menu entry we saw previously when right-
clicking an object in the Design Center and selecting the Snapshot menu entry. We'll
compare our POS_TRANS_STAGE table in our second project with the snapshot we
just took. However, let's change something in the table first so that there will be a
difference to be found. We could do the comparison now and it would just tell us
that the objects are the same. We want to see what it tells us if any differences are
found. So let's edit the table in the data object editor by double-clicking on it in the
Design Center.

We don't want to disturb our main project. So we'll make sure the POS_
TRANS_STAGE table we double-click on is in the new project we just
created, and not the main data warehouse project we just built.

Let's click on the Columns tab and scroll down to the end to change the size of the
STORE_COUNTRY column to 100 from 50, and then close the editor.

If we leave the editor open, we would have to click on another
column or move the focus out of the length field we just changed for
the change to actually be detected by the compare function.

At this point you may get an error popup saying the object cannot be edited in
read-only mode. If you save the project, close it, and reopen it that error should clear
up and you'll be able to edit the table. When we have made the change and closed
the editor, or otherwise moved the focus from the STORE_COUNTRY column length
field in the editor, we can go back to Design Center. There we can right-click on the
POS_TRANS_STAGE table and select Snapshot | Compare... to compare this object
with a snapshot. It will pop up a dialog box listing all the snapshots it found that
contain the object we clicked on.

In our case it will display just the one snapshot we created as shown next:

Chapter 9

[339]

If it did not find any snapshots containing the object we selected, it would tell this
to us in a message dialog box. As it found one, we'll click on it to select it and then
click on the OK button and it will do the comparison, giving us a progress dialog
box similar to the previous one we saw when we were creating a snapshot. When
the process is complete, it will pop up the results in a snapshot comparison window
displaying a tree view on the left of the object with any changed elements in the
object shown. On the right, it will display a window with tabs that we can select to
view the information about the changes. It shows the STORE_COUNTRY column on the
left. We'll click on that and the right window will update the tabs with information.
The General tab will display an overview of the changed element as shown next:

Extra Features

[340]

It clearly shows that a property (or properties) has (or have) changed. To see the
actual change, we can click on the Properties tab and it reports that the length of the
column has changed from 50 to 100 as shown next after we scroll the window
down some:

The image has been compressed slightly to better fit the page, but it can be expanded
on the screen to display the full column headings. They will clearly show POS_
TRANS_STAGE for the left column with 100 as the length and POS_TRANS_STAGE_SNAP
for the right column containing the length of 50 characters in the snapshot. There
are also a couple of other modifications that it indicates but those are the date of last
change and an internal signature assigned to the object, which we don't control.

This is a very powerful tool that we can use to manage our metadata changes and
stay on top of the changes we've been making. So we'll definitely want to make full
use of this feature as we build bigger and more involved data warehouses.

If we want to read information about snapshots, we can read the Oracle
Warehouse Builder Concepts Guide, Chapter 7, Dependency and
Change Management, which discusses snapshots along with other
metadata management topics. It can be found at the following URL:
http://download.oracle.com/docs/cd/E11882_01/owb.112/
e10581/metadatamgt.htm#WBCON4623

Chapter 9

[341]

Before continuing, we'll make sure to edit the STORE_COUNTRY column length to
change it back to 50 from 100. We'll then close the Snapshot Comparison dialog box
by clicking on the Close button, and also close the Metadata Change Management
window if it's still open.

That concludes our discussion about managing metadata changes. Now let's discuss
an issue that can arise while we're actually making modifications to data objects and
mappings, which is the issue of keeping things synchronized among all the objects
we've defined.

Synchronizing objects
We created tables, dimensions, and a cube; and new tables were automatically
created for each dimension and cube. We then created mappings to map data from
tables to tables, dimensions, and a cube. What happens if, let's say for example, a
table definition is updated after we've defined it and created a mapping or mappings
that include it? What if a dimensional object is changed? In that case, what happens
to the underlying table? This is what we are going to discuss in this section.

One set of changes that we'll frequently find ourselves making is changes to the data
we've defined for our data warehouse. We may get some new requirements that lead
us to capture a new data element that we have not captured yet. We'll need to update
our staging table to store it and our staging mapping to load it. Our dimension
mapping(s) will need to be updated to store the new data element along with the
underlying table. We could make manual edits to all the affected objects in our
project, but the Warehouse Builder provides us some features to make that easier.

Changes to tables
Let's start the discussion by looking at table updates. If we have a new data element
that needs to be captured, it will mean finding out where that data resides in our
source system and updating the associated table definition in our module for that
source system.

Updating object definitions
There are a couple of ways to update table definitions. Our choice will depend on
how the table was defined in the Warehouse Builder in the first place. The two
options are:

•	 It could be a table in a source database system, in which case the table was
physically created in the source database and we just imported the table
definition into the Warehouse Builder.

Extra Features

[342]

•	 It could be a table we defined in our project in the Warehouse Builder and
then deployed to the target database to create it. Our staging table would be
an example of this second option.

In the first case, we can re-import the source table using the procedures we used in
Chapter 2 for importing source metadata. When re-importing tables, the Warehouse
Builder will do a reconciliation process to update the already imported table with
any changes it detects in the source table. For the second case, we can manually edit
the table definition in our project to reflect the new data element.

For a hands-on example here, let's turn to our new project that we created earlier
while discussing snapshots. We copied our POS_TRANS_STAGE table over to this
project, so let's use that table as an example of a changing table, as we defined the
table structure manually in the Warehouse Builder Design Center and then deployed
it to the target database to actually create it. For this example, we won't actually
re-deploy it because we'll be using that second project we created. It doesn't have a
valid location defined, but we can still edit the table definition and investigate how
to reconcile that edit in the next section.

So, let's edit the POS_TRANS_STAGE table in the ACME_PROJ_FOR_COPYING project in
the Design Center by double-clicking on it to launch it in the table editor. We'll just
add a column called STORE_AREA_SIZE to the table for storing the size of the store in
square feet or square meters. We'll click on the Columns tab, scroll it all the way to
the end, enter the name of the column, then select NUMBER for the data type, and
set the precision and scale to 0 for this example.

We can validate and generate the object without having a valid location defined, so
we'll do that. The validation and generation should complete successfully; and if we
look at the script, we'll see the new column included.

We now need a mapping that uses that table, which we have back in our original
project. Let's use the copy and paste technique we used earlier to copy the STAGE_
MAP mapping over to this new project. We'll open the ACME_DW_PROJECT project,
answering Save to the prompt to save or revert. Then on the STAGE_MAP mapping
entry under Databases | Oracle | ACME_DWH | Mappings, we'll select Copy
from the pop-up menu. We'll open the ACME_PROJ_FOR_COPYING project and
then on the Mappings node, select Paste on the pop-up menu.

We ordinarily won't copy an object and paste it into a whole
new project just for making changes. We're only doing it
here so that we can make changes without worrying about
interfering with a working project.

Chapter 9

[343]

Synchronizing
Many operators we use in a mapping represent a corresponding workspace object. If
the workspace object (for instance, a table) changes, then the operator also needs to
change to be kept in sync. The process of synchronization is what accomplishes that,
and it has to be invoked by us when changes are made.

Now that we have the updated table definition for the POS_TRANS_STAGE table, we
have to turn our attention to any mappings that have included a table operator for
the changed table because they will have to be synchronized to pick up the change.
We saw in Chapter 6 how to create a mapping with a table operator that represents
a table in the database. These operators are bound to an actual table using a table
definition like we just edited. When the underlying table definition gets updated, we
have to synchronize those changes with any mappings that include that table. We now
have our STAGE_MAP mapping copied over to our new project. So let's open that in the
mapping editor by double-clicking on it and investigate the process of synchronizing.

We'll double-check to make sure we've opened the mapping
in the correct project as we now have the same mapping name
defined in two separate projects. This is perfectly acceptable and
any changes we make to one won't affect the other, but we need
to make doubly sure that we're in the correct project. In this case
we want to be in the ACME_PROJ_FOR_COPYING project, not in
the original ACME_DW_PROJECT project. Another reason is that
the operators in the mapping still point back to the original object,
which we're going to fix by synchronizing; and we don't want to
update the wrong mapping.

When we open the mapping, if we look at the POS_TRANS_STAGE mapping operator,
we can scroll down the INOUTGRP1 attribute group or maximize the operator to
view all the attributes to see that the new STORE_AREA_SIZE column that we added
to the table is not included.

To update the operator in the mapping to include the new column name, we must
perform the task of synchronization, which reconciles the two and makes any
changes to the operator to reflect the underlying table definition. We could just
manually edit the properties for the operator to add the new column name, but that
still wouldn't actually synchronize it with the actual table. Doing the synchronization
will accomplish both—add the new column name and synchronize with the table. In
this particular case there is another reason to synchronize, which is that we copied
this mapping into the new project from another mapping where it was already
synchronized with tables in that project. This synchronization information is not
automatically updated when the mapping is copied.

Extra Features

[344]

To synchronize, we right-click on the header of the table operator in the mapping
and select Synchronize... from the pop-up menu, or click on the table operator
header and select Synchronize... from the main menu Edit entry. This will pop up
the Synchronize dialog box as shown next:

Now we can see why it's so important to make sure we're in the correct project. From
the entry indicating the repository object from which it will synchronize, we can
see that it's still set to point to the original POS_TRANS_STAGE table in the ACME_DW_
PROJECT project and not the new one we just edited in this project. If we were to rely
upon this, we would think we are in the wrong project. We need to click on the drop-
down menu and select the POS_TRANS_STAGE table in our new COPY_MODULE. In fact,
this new copy module is the only one we have available. This is good because we
wouldn't want to select an object in another module. It's only set that way in this case
because it was just copied from that other project. However, we can tell something is
a little strange there because the path listed for the POS_TRANS_STAGE table stops at
ACME_DW_PROJECT and no icon is displayed for the type of object. When we select the
POS_TRANS_STAGE table in our new project, we get the correct display as shown next:

Chapter 9

[345]

This looks much better. Notice how the path includes the workspace name now to
fully place it in context. It knows what kind of object it is, a table, so it can display the
correct icon. Now we can proceed with deciding whether this will be inbound
or outbound.

Inbound or outbound
Now that we have the correct repository object specified to synchronize with, we
have to select whether this is an inbound or outbound synchronization. Inbound is
the one we want and is the default. It says to use the specified repository object to
update the operator in our mapping for matching. If we were to select outbound, it
would update the workspace object with the changes we've made to the operator in
the mapping.

Matching and synchronizing strategy
Having decided on inbound, we now have to decide upon a matching strategy to
use. The online help goes into good detail about what each of those strategies is,
but in our case, we'll want to select Match By Object Position or Match By Object
Name. The Match by Object ID option uses the underlying unique ID that is created
for each attribute to do the matching with, and that unique ID is not guaranteed
to match between projects. It is a uniquely created ID internal to the Warehouse
Builder metadata, which uniquely identifies each attribute. The unique ID it stores
in the operator for each attribute is the unique ID from the original table it was
synchronized with. If we use that option, it will treat all the objects as new because it
is not going to get a match on any of them due to using different unique IDs for the
copied table.

Extra Features

[346]

If we select the Replace synchronize strategy, its side effect in the mapping is that all
the connections we've made to the existing attributes in the table from the aggregator
will be deleted. This is because it has removed all the existing attributes and replaced
them with new attributes from the new table with all the new IDs. If we had selected
the Merge synchronize strategy, it would have left all the existing attributes alone.
However, it would have added in (or merged in) all the attributes from the new
table, in effect duplicating them all in our operator, which is clearly not what we
want.

Thankfully, there is a solution that will work fine and that is either of the other two
Matching Strategy selections. By selecting Match by Object Position, we'd be telling
it to match the operator with the repository object position-by-position, regardless
of the unique IDs. So it will not wipe out any connections we've already made as
long as there is an attribute in the same corresponding position in the workspace
table object. The same holds true for Match By Object Name, but this option
matches objects by the name of the object and not the position or ID. We know the
operator will match all the names and positions of the existing columns, and that the
new column has been added to the end. Therefore, we can use either of those two
strategies to match and our mapping will remain intact with the existing connections.

With these two options, the Synchronize Strategy of merge or replace does not
make any difference because all the attributes of the operator in the mapping will be
matched in either case. They only indicate what to do with differences. And because
the only difference is a new column in the table, regardless of whether we merge
in the difference or replace the difference, the net effect is the addition of the new
column in the operator.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 9

[347]

Viewing the synchronization plan
Based on our selection of the matching and synchronization strategy, the dialog box
gives us the option to view what it is going to do before we do it just to be sure we
have made the proper selections. We can click on the View Synchronization Plan
button to launch a dialog box, which will show us what it is going to do. It is nice
because we can view the plan without having it actually do anything. So let's select
Match By Object ID for the matching strategy and Replace for synchronization
strategy, and click on the View Synchronization Plan button. This will launch the
Synchronization Plan dialog box as shown next:

The source is the POS_TRANS_STAGE table definition in the workspace and the target
is the table operator in the mapping for that table. When matching by object ID,
nothing is going to match because the object IDs for the new table are all different
from the original table. The Replace option says to replace all differences with the
source definitions, so we'll see the INOUTGRP1 from the source will be created and the
existing INOUTGRP1 in the target will be deleted. If we were to expand the INOUTGRP1
for the source, we'd see all the attributes listed. That is why all the connections would
disappear from our mapping if we used this option.

Extra Features

[348]

Let's try the Merge synchronize strategy option with the object ID match by
changing that drop-down in the dialog box to Merge and clicking on the Refresh
Plan button. Remember that no actual changes are being made here; it is only telling
us what it would do if we made those selections in the main dialog box and clicked
on OK there. This option will display the following:

Here we can see that it is creating new entries in the target for the entire
INOUTGRP1 attribute group from the source as it didn't find any matches. It is
leaving all the existing target attributes alone, thus merging in the differences. The
delete of the INOUTGRP1 in the target is gone. This is clearly not what we want
because as indicated previously, it will add in duplicates of every attribute.

If we select either Match By Object Position or Match By Object Name and refresh
the plan, we'll see that it lists one action of Create for the new column. There may
be updates for existing columns that match, but there should be no other creates
or deletes showing. This is what we want, so we'll click on the OK button to close
the Synchronization Plan dialog box. Back in the main Synchronization dialog box,
we'll select Match By Object Name as the matching strategy and Replace as the
synchronization strategy.

Chapter 9

[349]

If this had been an actual update that we had source data for, we would make sure
the source data table definition in the workspace was updated to reflect the new
data element. As this is related to the store, in our case it would probably have been
the STORE source table in the ACME_POS module under Databases | Non-Oracle
| ODBC. We would then perform the same synchronization operation we just
performed on the STORES table operator. We would then have to map that new value
through the joiner and to the new column in the POS_TRANS_STAGE table.

We will move along now and discuss one final change and the feature the
Warehouse Builder provides for handling it. It is the changing of dimensions and
their underlying tables, and keeping them properly bound.

Changes to dimensional objects and binding
When we created our dimensional objects (dimensional in this context being used to
refer to both dimensions and cubes) back in Chapter 4, we saw how it automatically
created a matching relational table for us. This would be used to hold the data for the
object because we had selected ROLAP for the storage implementation. This table
was then bound to the dimension with dimension attributes, and levels bound to
columns in the table, which we can see on the physical bindings tab of the
dimension editor.

If we carried our previous example one step further, we'd need to add an attribute
to our STORE dimension to hold the new value for the size of the store. This would
mean we would have to make sure the STORE dimension and the STORE table stayed
properly synchronized. This is not quite the same concept as we just discussed. We
are now talking about two data objects, and not a data object and an operator in
a mapping. That is why the Warehouse Builder generally refers to this as binding
instead of synchronizing.

Let's begin by setting up our ACME_PROJ_FOR_COPYING project with copies of the
STORE dimension and STORE table for trying this out. We're going to copy the STORE
dimension over to the new project and leave the STORE table behind because, as we'll
see in a moment, it is going to get automatically generated.

Now that we have the dimension copied over, there is a bit of housekeeping we need
to do first. As with the mapping having a reference back to the table in the original
project, our STORE dimension will still be bound back to the STORE table in the
ACME_DW_PROJECT, and we need to fix that first before continuing with our example.
This will be good for us to get more practice working with objects in the data object
editor. So let's open the STORE dimension in the editor by double-clicking on it.

Extra Features

[350]

If we click on the physical bindings tab it displays both the dimension and its
underlying table; however, we never copied over the table. The dimension is still
bound to the original table in our main project we just copied from. Clearly, that is
not good and is most likely a bug in the software since you should not be referencing
tables in other projects. It can be easily resolved. We need to sever the connection
with that table and rebind it to a table in the current project. So let's right-click on
the STORE entry in the Projects Navigator and select UnBind from the pop-up menu.
This will remove all the connections to the STORE_TAB table in the physical bindings
tab. Now we need a table to be bound to this dimension. This is where the Bind
function comes in. With Bind, the Warehouse Builder automatically creates the table
for us with all the dimension attributes properly bound.

There is no officially documented process or function for manually
binding a dimension and an existing table together. However, it's possible
to do it via a feature called Experts, which is one of the more advanced
topics we can't cover in this introductory book. There is an Expert that
has been specifically developed already to do just that. It can be found
on the Oracle Technology website via a link to the sample code website:
https://codesamples.samplecode.oracle.com/servlets/
tracking/id/S604.
Scroll down until you see the Create_Dimension_From.zip file that
has an Expert to manually bind a table and dimension. The version says
10gR2, but it will still work in 11gR2, which we're using for this book.
This is a site Oracle maintains for Warehouse Builder tips, features,
code, utilities, and so on that are not found in the official release and are
not officially supported. However, much of the content (including the
previously referenced Expert) is developed by the Oracle developers
themselves who actually work on the Warehouse Builder. We can find a
lot of good stuff on that site, so need not fear the fact that Oracle says it's
"unsupported".

Let's right-click on the STORE dimension in the Projects Navigator and select Bind
from the pop-up menu. This will create a new STORE_TAB table for us, automatically
bind the existing dimension attributes and levels to columns in the table, and update
the physical bindings tab to show the new table connection. Now if we look in
Projects Navigator under the Tables node, we can see the new table it created. We
can now proceed with our previous example about adding a column. In this case,
we'll want to add a column to the STORE dimension to save the size value, So let's go
back to the dimension editor to do that.

https://codesamples.samplecode.oracle.com/servlets/tracking/id/S604
https://codesamples.samplecode.oracle.com/servlets/tracking/id/S604

Chapter 9

[351]

We could have saved ourselves a Bind step here by just editing the
dimension before we did the first Bind. But the intent was to re-create
the situation as it would be for real if we had to edit a dimension that
was already bound to a table, which is a real-world situation we'll run
into quite frequently. The first Bind was just to set up that scenario.

On the Attributes tab, scroll down to the end and enter a new attribute called AREA_
SIZE. Change the data type to NUMBER with the precision and scale set to zero.
We'll make it an attribute of the STORE level. So click on the STORE level on the Levels
tab and scroll down the attributes, and check the box beside the AREA_SIZE name.

Let's save our work and go back to the physical bindings tab to check the STORE_TAB
table, and we'll see that there is no AREA_SIZE column. We need to perform the Bind
again on the dimension, and that will update the table to include the new column.
We do not need to do the UnBind this time because the correct table is bound; we
just want it updated in place.

After the Bind, the table has been updated now to include the new column. We can
verify this on the physical bindings tab by inspecting the table.

If this were a working project we had previously deployed, we would need to deploy
this updated table and the dimension to actually update the database. We would also
need to perform the synchronization (which we discussed in the previous section) in
any mappings that included a dimension operator for the STORE dimension, so any
mapping operators that referenced the dimension would be up to date.

When making a change for real like this, make sure the deployment action
for the table is set to Upgrade and not Replace if there is data in the table
already, else the deployment will fail. It should default to Upgrade.
However, watch out for the error that may occur when trying to do a
deployment with an Upgrade status that we discussed in the last chapter.

Extra Features

[352]

This completes our discussion of some additional editing features that we can use
as we develop and maintain increasingly complicated data warehouses. We are
touching upon just the basics about the Warehouse Builder in this book that we need
to know to be able to use it to construct a data warehouse. There is a wealth of more
advanced features and capabilities we did not have time to cover in this book, so we
just mentioned a few along the way. But this lays the groundwork and has equipped
us with the ability to build a complete working data warehouse. There are a lot of
resources on the Internet to help us further our education about the tool and to provide
assistance if we have questions, much of which Oracle provides directly from its
websites. We'll finish up the chapter with a brief discussion of some of these resources.

Warehouse Builder online resources
Oracle provides a number of resources to assist us with using the Warehouse Builder
and with Data Warehousing in general. We saw one such resource earlier in this
chapter when we talked about binding a table to a dimension. That download is just
one of many that are available from that OWB Sample Code tips and tricks web site,
which is available directly at the link provided previously or as a link off the much
larger web page Oracle has that is devoted entirely to Oracle Warehouse Builder at
http://www.oracle.com/technology/products/warehouse/index.html.

The link to it is under technical information at the bottom of the page.

The OWB developers maintain a blog that they frequently update with various
news and notes about OWB—its future or features of interest. The blog is available
via a link from the above OWB page or directly at http://blogs.oracle.com/
warehousebuilder/.

This is an excellent source to get the latest information about OWB directly from
the Oracle managers and senior developers who work on the Warehouse Builder.
Recently, there is much talk around Oracle and the user community about Oracle's
plans relating to their Data Integrator software and the Warehouse Builder software,
and how they are moving toward combining the two. The blog has posts about how
neither tool is going away and how investment in either tool right now is a good
investment for years to come.

If we have questions, there is an Oracle Forum devoted specifically to the Warehouse
Builder at http://forums.oracle.com/forums/forum.jspa?forumID=57.

Oracle developers as well as many from the user community who have been using
OWB for a long time frequent the forum and are willing to answer questions.

Chapter 9

[353]

The Warehouse Builder is just one tool in a large suite of applications that supports
the area of business intelligence and data warehousing as a whole. Oracle's web
page devoted to that topic, which includes OWB, is at http://www.oracle.com/
technology/tech/bi/index.html.

If we want more information about the larger topic of business intelligence and data
warehousing in general, this is a good place to start.

Summary
In this chapter we've finished discussing some additional features of the tool. These
are not necessarily essential to the initial development of a data warehouse, but
are nevertheless valuable features to have available for further development and
maintenance. These include features such as metadata change management, which
become critical as more and more changes are required to a data warehouse. The
Recycle Bin, the Cut, Copy, and Paste features, Snapshots, and the Metadata Loader
all assist greatly in our efforts to control the changes we have to make and to keep a
track of prior revisions.

Another valuable feature is the ability to keep the objects synchronized with the
operators in the mappings that refer to those objects. Also, we can automatically
update objects that are bound together, such as dimensions and the tables used to
implement them. These features will assist greatly in the task of making changes to
our data warehouse, which will inevitably need to be done in any data warehouse
project we undertake as nothing stays static for very long and constant improvement
should always be happening.

We have one more extra topic to discuss and that has been saved for a whole
chapter at the end. In the final chapter next we'll discuss the new code template
technology that's been added to OWB from Oracle Data Integrator (ODI) and making
connections natively to heterogeneous databases using Java Database Connectivity
(JDBC). These are brand new in this latest 11gR2 release of OWB and provide some
great new functionality and are evidence of Oracle's strategy for combining features
from both tools without leaving either tool behind.

Code Template Mappings
Up until now we've covered features in the Warehouse Builder that have been in
the product for quite some time now. The 11gR2 release now takes the product a
step further, adding new features that are starting to bring functionality in line with
Oracle's other data integration product, Oracle Data Integrator (ODI). Oracle's
long-term data integration strategy is to combine both OWB and ODI eventually into
a single product that serves all the data integration needs of their customers in a way
that does not leave behind any work that may have been done by customers in each
individual product. By adding features to OWB that are currently in ODI, Oracle is
beginning to implement that strategy. To read more about Oracle's intent in this area
the following URL contains a white paper that outlines their strategy—(http://
www.oracle.com/technetwork/middleware/data-integrator/overview/sod-
1-134268.pdf). It is available as a link from Oracle's main Oracle Data Integrator
Enterprise Edition web page also (http://www.oracle.com/us/products/
middleware/data-integration/059305.html). Look for the link that says "Learn
more about this strategy".

The main new feature in the 11gR2 release of OWB that has been included from
ODI is the Code Template feature otherwise known as Knowledge Modules in
ODI along with support for Java Database Connectivity (JDBC) for extensive
built-in support for natively connecting to heterogeneous database systems. This
is in addition to the ODBC connectivity we made use of earlier in the book and the
gateways that we mentioned as part of Oracle Heterogeneous Services With code
templates and JDBC connectivity, OWB now has the capability of in database ETL
(Extract, Transform, and Load) capability in non-Oracle databases that was lacking
in earlier releases of the Warehouse Builder. In this chapter we're going to build a
code template mapping and deploy and execute it. We'll use the existing STAGE_MAP
regular mapping we built back in Chapter 6 and implement it as a code template
mapping using JDBC.

Code Template Mappings

[356]

To do that we'll perform the following tasks:

•	 Define a JDBC connection to an SQL Server database
•	 Import table objects from the SQL Server database using the JDBC connection
•	 Start the Control Center Agent
•	 Define a template mapping module
•	 Create a code template mapping by copying another regular mapping
•	 Deploy and execute a code template mapping

Let's begin with a closer look at the code template concept and discuss a little more
exactly what the benefits and features are.

Code templates
The Oracle Warehouse Builder has always provided a rich set of SQL and PL/SQL
code that is included for extracting data, transforming it and loading it: but that rich
feature set was always centered around an Oracle database. There was, and still is,
support for connecting to non-Oracle databases via an ODBC connection or via a
gateway module specifically designed for connecting to a non-Oracle database as we
discussed earlier in the book, but that feature does not provide any way to perform
transformations of data or loading data directly in those other databases. There is
also no support for alternative data sources other than flat files via SQL Loader and
SAP Enterprise Resource Planning system.

Code template description
With the addition of code templates, which leverage the knowledge module feature
of ODI, we now have the capability to perform complex transformations and data
integration natively in non-Oracle databases and to access any number of alternative
data sources, thus greatly expanding the ability of the Warehouse Builder to handle
greater data integration needs. Code templates are a framework for coding support
for various data sources. They contain connection information for various platforms
as well as the platform-specific code and knowledge needed to perform tasks against
those external platforms. A code template contains code written in languages that
are specific to these other databases and data sources and greatly leverage the
capabilities of those data sources for our use. Mappings can now be created in
the Warehouse Builder that make use of the familiar flow-based OWB mapping
paradigm using many of the same transformation operators that will now be able
to take advantage of these code templates to execute directly in remote non-Oracle
databases. These mappings are now known as Code Template Mappings and have a
new module that is available in the Design Center Projects Navigator to hold them.

Chapter 10

[357]

Types of code templates
There are various types of code templates that provide functionality for performing
different tasks. More details about these types can be found in the Oracle Warehouse
Builder Sources and Targets Guide in Chapter 12, Using Code Templates to Load and
Transfer Data at the following URL—http://download.oracle.com/docs/cd/
E11882_01/owb.112/e10582/code_templates.htm#WBDOD90618. The following
is a list of the various types of code templates in OWB with the corresponding ODI
knowledge module name and abbreviation in parentheses for reference along with a
brief explanation of each.

•	 Load Code Template (Loading Knowledge Module (LKM)): This type
contains code that is responsible for loading data into a staging area. It might
better be thought of as an extract template because it extracts data from
source databases.

•	 Integration Code Template (Integration Knowledge Module (IKM)): This
type of template is responsible for the extraction of the data from the staging
area, transforming it, and loading it into the target.

•	 Control Code Template (Check Knowledge Module (CKM)): A control code
template handles error checking of data for data quality purposes.

•	 Change Data Capture Code Template (Journalizing Knowledge Module
(JKM)): Change data capture is the process of determining what source data
has changed so that new changes can be extracted.

•	 Oracle Target Code Template (No ODI equivalent): This code template is a
wrapper for all existing OWB code generation capabilities in order to create a
fusion of load code templates and OWB code generation for SQL or
PL/SQL such that we can use arbitrary load code templates and the likes of
match merge, dimension operators or OWB's code generation such as DML
error logging. There is no corresponding ODI knowledge module for this
one because it is for OWB specifically to allow all the features of OWB code
generation to be used within the code template framework. .

•	 Function Code Template (No ODI equivalent): This type is for deploying
user-defined functions, procedures, and packages of code.

There is a set of code templates in all these categories that has been supplied pre-
defined for our use in OWB. In addition to that, we can also import any code
templates (knowledge modules) that have been built in ODI to even further enhance
the capabilities provided to us. We're going to construct a code template mapping
in this chapter and will need the Design Center and some of those pre-defined code
templates so let's go ahead and launch it now and take a look at where they are
defined in the Design Center to see just what has been provided for us out of the box.

Code Template Mappings

[358]

Pre-defined code templates
Pre-defined code templates are available to us in the Globals Navigator. We'll
be making use of a load code template and an Oracle target code template in this
chapter and we can see those in the following image of the Globals Navigator, along
with the other categories of code templates.

The names all start with an abbreviation that is based on the type of code template
except for the Oracle Target one; so you have LCT for load code templates, ICT for
integration code templates, so on. Following the initial abbreviation there is the name
of the particular code template, which gives us some indication of the purpose. For
load code templates, the name will indicate what database it extracts data from and
then what database type it will load the staging table to. The first name we can see in
the previous figure, LCT_FILE_TO_ORACLE_EXTER_TABLE, extracts data from
a flat file and uses an external table in Oracle to load it. LCT_FILE_TO_ORACLE_
SQLLDR extracts data from a flat file and loads it using the SQLLDR Oracle utility.

Chapter 10

[359]

We're going to build a code template mapping that extracts data from an SQL
Server database and loads it into an Oracle database so let's see which load code
template we can use for that. If we scan the list we don't see any that say SQL Server
specifically but we do see Oracle mentioned. We do see load code templates that
mention just SQL all by itself—LCT_FILE_TO_SQL, LCT_SQL_TO_ORACLE,
LCT_SQL_TO_SQL, so on. The SQL in this case refers to any heterogeneous
database source that conforms to the SQL92 standard. That is any database that
implements the standard SQL database language, which SQL Server does. So, one of
those will be the one we need for our load code template. The name can give us clue
about the source and target but to really verify the source and target platform we can
click on the name and view the properties in the Property Inspector window. Since
we're loading an Oracle database, the LCT_SQL_TO_ORACLE code template is the
one we'll use, and if we click on it, we can see in the Property Inspector under the
Platforms entry, that the platform is Oracle and source platform is Generic.

Now, what about a target code template to use? We said before that the integration
code templates would be used to extract the data from the staging area, transform
it, and load it to the target so wouldn't we want to use one of them? It was indicated
above that we'd be using the Oracle Target code template—DEFAULT_ORACLE_
TARGET_CT instead. Let's discuss briefly the difference and why we'll use the
default Oracle target code template.

The integration code templates were all templates that were brought over to OWB
from ODI and, as a result, are more generic in the code that they use for database
access. They make use of the template-based code generator instead of the OWB
regular mapping code generation and while the code that is generated is generally
efficient set-based SQL code, it doesn't make use of the full range of set-based and
row-based SQL code that OWB does, nor does it make use of PL/SQL like OWB
does. For this reason, there are some operators in OWB that are not supported for
use in integration code templates. If we're dealing with Oracle databases, and want
to continue to make use of OWB's code generation for Oracle and all the available
operators without restriction, the Oracle developers have provided us a separate
code template called DEFAULT_ORACLE_TARGET_CT. It is really a wrapper around
standard OWB mapping code and provides the capability to run regular OWB
mappings with new code template mappings. We'll talk about this in more detail
when we actually create a code template mapping later on in the chapter.

A discussion of all the pre-defined code templates can be found in the
Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide,
Chapter 7 at the following URL: http://download.oracle.com/
docs/cd/E11882_01/owb.112/e10935/sap_km_mappings.
htm#WBETL07001.

Code Template Mappings

[360]

Before we can build a mapping to make use of these code templates we have to
perform some preliminary steps to set up the environment so code templates
can be created and connections can be made to the database using Java Database
Connectivity (JDBC). Let's begin by defining a connection to our source SQL Server
database using JDBC.

Connecting to SQL server using a JDBC
database connection
A feature that the code templates bring to OWB is the ability now to make
connections natively to other data sources. One of those connection options is
the ability to make native connections to remote databases using Java Database
Connectivity, or just JDBC for short.

Code templates are a framework for using arbitrary APIs to connect
to any number of alternative data sources. There is a knowledge
module in ODI for making a connection to an Essbase database,
which can be ported over to use in OWB, and some OWB users have
even integrated PDF files into OWB using code templates.

By native connectivity, we mean being able to connect directly to the remote
database without having to go through an external gateway and being able to
run code directly in the remote database to perform extraction, transforming, and
loading. Remember back to Chapter 2 where we went through all those steps
to configure a remote connection to an SQL Server database using ODBC? That
connection required that all code run in the Oracle database and just use a database
link to connect to SQL Server remotely when data was needed from a table. Well
JDBC is much simpler and is done completely from within the Warehouse Builder
now and will allow us to now run code directly in the remote database as well.

Downloading the JDBC driver
A requirement to make a JDBC connection is that a JDBC driver is present first. A
JDBC driver is specific to the database to be connected to and is supplied by the
database vendor or by a third party for that particular database. The driver for SQL
Server can be found on Microsoft's downloads site at http://www.microsoft.com/
downloads/ and searching for "jdbc driver for sql server". On the resulting
search results page, scroll down until you see Microsoft SQL Server JDBC Driver
3.0 and click that to go to the download page.

Chapter 10

[361]

If you don't mind typing, the complete URL to take you directly to the
driver download page without searching is: http://www.microsoft.
com/downloads/en/details.aspx?FamilyID=a737000d-68d0-
4531-b65d-da0f2a735707.

Click the button beside the file 1033\sqljdbc_3.0.1301.101_enu.exe to download it.
Save the file to disk; the location doesn't really matter as long as we can remember
where we saved it. Then we can run it to unpack the file contents. It doesn't matter
much where we unpack the file contents to since we just need to get one file out of it,
the sqljdbc.jar file in the root folder, which is the actual driver file we need. The
remainder of the files in that downloaded file from Microsoft are not required for
our purposes.

After unpacking the files, locate the sqljdbc.jar, file which should be in the root
directory of the unpacked files, and copy it into the Warehouse Builder home folder
in the following location:

OWB_HOME/owb/lib/ext

Substitute for OWB_HOME the actual drive and path to the home location where the
OWB client software is installed, which will be under the main database home
location. We can now proceed to creating a module to hold the tables imported from
our SQL Server data source using this JDBC driver.

Creating a SQL server module
Back in Chapter 2, we used ODBC via the generic gateway to make a connection
to the SQL Server database and created our module under the ODBC node under
Databases in the Design Center. For JDBC, we will need to create our module
directly under the SQL Server databases node. These steps are all provided in the
OWB documentation, in the OWB Sources and Targets Guide, Chapter 6—Connecting
to Data Sources Through JDBC, which can be accessed at the following URL: http://
download.oracle.com/docs/cd/E11882_01/owb.112/e10582/jdbc_connection.
htm#CHDHEGEK.

Configuring SQL server TCP/IP port
The first thing we have to do, however, which is not mentioned in the
documentation, is to get our SQL Server installation to listen on a TCP/IP port. SQL
Server Express is not set up to listen on TCP/IP by default but it is easy to configure
it to do that. These steps here are summarized from the SQL Server Books Online
help documentation in the section about how to configure a Server to listen on a
specific TCP Port.

Code Template Mappings

[362]

•	 In SQL Server Configuration Manager (start menu under Configuration Tools
in the Microsoft SQL Server 2008 group), in the console pane on the left,
expand SQL Server Network Configuration, expand Protocols for <instance
name>, and then double-click TCP/IP on the right.

•	 In the resulting TCP/IP Properties popup, on the Protocol tab, make sure
Enabled is set to Yes.

•	 Click the IP Addresses tab and there will be entries for a number of IP
addresses on the computer. At a minimum just make sure the localhost IP
address, 127.0.0.1, is enabled and the local loopback address is enabled. The
IP address for the local loopback adapter will be something like 10.10.10.10
or some other non-routable IP address. Check what address that is from a
command-prompt window with the command ipconfig /all and just look
for the one with the description Microsoft Loopback Adapter.

•	 There will be an entry at the end of the IP addresses called IPAll, which
applies to all the IP addresses and it will list a TCP/IP port number labelled
TCP Dynamic Ports. Remember this port number because that is the one
we'll need to use in a moment when configuring connection details back in
OWB.

•	 Restart the SQL Server instance. It can be done from within the SQL Server
Configuration Manager by clicking the SQL Server Services entry on the left
and then right-clicking the SQL Server service on the right and
selecting Restart.

To verify that our configuration settings actually took effect and SQL
Server is now listening on a TCP/IP port we can check the SQL Server
log file. The SQL Server database log file is accessible from the SQL
Server Management Studio. Connect to your SQL Server database
as your administrative user and access the database logs under the
Management...SQL Server Logs entry. Double-click the current log and
search for text similar to what is shown circled in the following image
and be sure to note the port number since we'll need it in a moment:

Chapter 10

[363]

Now that we have SQL Server listening on a TCP/IP port and know what that port
is, we can continue with creating a module to hold our SQL Server tables.

Creating SQL server module
We'll summarize the steps here to get our module set up complete with some screen
shots that you won't get from the documentation to help visualize the steps. These
steps are very similar to what we did back in Chapter 2 to set up the ODBC module
but the connection information will be different since we're connecting via JDBC now
and not ODBC.

1.	 In the Design Center Projects Navigator we'll right-click on the Databases...
SQL Server node and select New SQL Server Module from the pop-up
menu and then click the Next button to bypass the introductory screen if it
displays.

Code Template Mappings

[364]

2.	 The first step as shown below is to give the module a name, an optional
description, and to choose the access method to use. We'll call our new
module SQL_Server_JDBC to distinguish it from our ODBC module. The
name can be anything we want as long as it is different from any other
module names we've already used. This name is OK to indicate the source
database and the connection type but if there is more than one database on
the source system, we could use a variation of the database name instead. For
the access method, we'll choose the Native Database Connection since we're
using JDBC. After entering the name, we'll click Next to continue.

3.	 The next screen is where we choose our connection information. We've seen
this kind of screen before for specifying connection information but the
options are slightly different. We'll click the Edit button beside the name to
open the SQL Server Location dialog box. It is shown next after being
filled in.

Chapter 10

[365]

°° The name it suggests is fine except we'll remove the number one from
the end.

°° For user name and password we'll be using the same user name and
password we used for the ODBC connection. Notice, however, that
unlike the ODBC connection, we do not have to enclose the name and
password of our ACME_POS SQL Server database user in double
quotes. That was required by the ODBC connection because the
information was passed through the Oracle database first, where as
this connection will be straight to SQL Server using JDBC.

°° The host name in this case is the host where the SQL Server database
is actually located and the Port will be the port it is listening on that
we configured and verified from the SQL Server log above.

°° The database name and schema are the same as we used for the
ODBC connection but no double quotes are required here either.

°° The version in this case is different since it refers to the version of
SQL Server and not the Oracle version. The highest version available
to select is version 9.0 but SQL Server Express 2008 is actually version
10 of SQL Server. That turns out not to be a problem. It will still work
as version 9.0 so we'll leave it set as that.

Code Template Mappings

[366]

4.	 We can press the Test Connection button now to make sure we've specified
everything correctly and we should get a success message pop up. If we have
specified something incorrectly like the TCP/IP port, we'll see something like
the following:

5.	 We'll click the OK button to close the SQL Server Database Location dialog
box after the connection details have all been set.

6.	 Back on the Connection Information page there is a checkbox at the bottom
to check if we want to import into our new module after we finish. We'll go
ahead and click on that box to check it.

7.	 We'll click Next on the Connection Information page after checking the box
to import after finishing and it will show us a summary of the configuration,
which we can verify and go back and correct if needed. When we are happy
with the configuration, we can click the Finish button on the Summary page
to create the module.

Chapter 10

[367]

Importing metadata
Since we checked the box to import after finishing we will be launched right into
the Import Metadata Wizard. This a very similar process to that for the ODBC
import, but there are a couple of additional database object types we can choose to
import in addition to Tables and Views—Transformations and Sequences. We'll see
that in a moment. At this point we should be seeing the Import Metadata Wizard
introductory screen as shown next:

If we don't have the Import Metadata Wizard running if import after finish wasn't
checked we can easily start it up manually by right-clicking on the newly created
SQL_Server_JDBC module under Databases...SQL Server and clicking the Import...
Data Objects menu entry. We will perform the following steps to import our source
tables from SQL Server using our new module and JDBC connection.

Code Template Mappings

[368]

1.	 The first step, Step 1 of 3, is to choose the type of objects we'd like to import.
We can see on this screen, as shown next, that we can import tables, views,
sequences or transformations. Transformations are functions and procedures.
We only want tables so we'll check that box as shown below and click Next
to continue.

2.	 The next step is to select the actual objects that we want to import. We'll be
presented with a screen that shows a tree view on the left of the object types
we checked off from the previous screen and if we click the plus sign beside
an object type, Tables in our case, we'll see a list of the tables that are defined
in the SQL Server ACME_POS database, as shown next:

Chapter 10

[369]

3.	 We can click on individual tables now and click the right arrow in the middle
of the screen to move them over to the Selected side or we can just click
the double right arrow to move them all over. If we change our minds after
moving one or more over, we can always deselect them by clicking on a table
on the right and then clicking the left arrow to move it back.

Code Template Mappings

[370]

4.	 When we have made our selections our screen should now look like the
following and we click the Next button to continue:

5.	 After clicking Next above, we'll be presented with the summary screen, which
will show us what it is going to do based upon our selections as shown next:

Chapter 10

[371]

6.	 We'll click on the Finish button now to begin the import process. It will
display a progress dialog box as it's importing so we can see how far along it
is. When it completes it will pop up the Import Results Dialog box as shown
next:

7.	 From here we can click the OK button to complete the import or if something
does not look right we can click the Undo button to reverse all the changes
we just made so they will not be saved.

Having clicked the OK button to close out the table import into our new SQL Server
module we're now ready to build a mapping. We're going to build a mapping
identical to the STAGE_MAP we built before except that this one will be a Code
Template mapping. It will make use of the new code templates to execute its logic
and load the staging table instead of the PL/SQL code and ODBC connection the
regular mapping used.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Code Template Mappings

[372]

Building a code template mapping
Code template mappings are not created under the Mappings node where we've
created all our previous regular mappings because they are implemented differently
than the regular mappings. To recall, regular mappings were created in the
Mappings node, which fell under the Oracle Database node for our project. That is
because mappings up until now were mostly only executed in an Oracle database.
There are exceptions to that such as flat file loads using the SQL Loader utility or
SAP mappings, but for the most part, existing mapping execute in Oracle databases.
With the introduction of code template mappings, a single mapping can now be
executed across two or more databases and so the node to hold code template
mappings was added at the same level as the Databases node in the Projects
Navigator hierarchy. It is just to hold all code template mappings, and so is called
Template Mappings and it is highlighted in the image below for reference:

All objects created in the Warehouse Builder are contained within a module so, since
the code template mappings are all stored here, separate from a database module,
we need to create a template module first that will hold our code template mappings
and that will define our connection information for the mappings.

The connection information for a template mapping module is different than for a
database module. We're not going to specify a particular database connection like
we did before because template mappings can execute in any database. They don't
connect directly to a database but connect to a Control Center Agent (CCA), which
must be running on the database server containing the database or databases we
want to connect to. The CCA will handle the JDBC connections to the database for
executing the mappings. A CCA is required for any data source, not just databases.
It can be hosted on any machine acting as a data source and there can be any number
of them. For our purposes we're using just one.

Chapter 10

[373]

When we create the module we need to specify the connection details, which means
we need to have a CCA running somewhere to specify, so the first step we'll take in
creating a mapping is to start up the CCA on our database server. Strictly speaking,
we don't actually have to have the CCA running to be able to specify the module that
points to it, but there is an optional test-connection step that we'll see in a moment
that would be nice to have working, so we'll start up the CCA at this point.

Starting the Control Center Agent
Just as the Warehouse Builder has provided us a default control center location on
our current server for use with our regular mappings, it provides a default control
center agent also. We just need to make sure it is started up since it does not run
automatically.

To start the CCA we need to open a command-prompt window and navigate to our
Oracle home folder location and the folder owb/bin/win32 under that. Execute the
following command from the Windows command prompt in that folder:

ccastart.bat

If this is the very first time this has run, it will prompt us for a password to use to
assign to the oc4jadmin user, which is the user it will use while running. Provide
a suitable password and make sure to remember it since it will prompt for that
password in the future if we try to stop the control center agent using the ccastop.
bat script.

If you're running this on Windows 7 there may be some file permission
issues that will cause the following error message to appear in the
command-prompt window:
java.io.FileNotFoundException: C:\app\bob\
product\11.2.0\dbhome_1\owb\jrt\applications\tmp_
ascontrol.ear (Access is denied)

Your folder path will be different depending on your Oracle home
location and the file name may be different but the gist of the error is
that file permissions are not set so that the script can access the folder. To
solve the problem, it is best to just set the permissions on the owb folder
as a whole to prevent any further problems. In Windows Explorer, find
the Oracle home folder, expand it, and right-click on the owb folder and
select Properties from the pop-up menu that appears.

Code Template Mappings

[374]

In the resulting dialog, click the Security tab and click the Edit button
to edit the permissions for that folder. On the Permissions dialog that
pops up make sure Authenticated Users is highlighted, which is for all
Windows users who have been properly authenticated to Windows. Edit
the permissions in the box below for Authenticated Users to check the box
for Modify and the box for Write and leave the other boxes checked as is.
The ccastart.bat processing needs to be able to write to folders and
modify folders under the owb folder in Oracle home so these permissions
are required for it to function properly.
After checking the required boxes, click the OK button to close the
Permissions dialog and the OK button again to close the OWB properties
dialog and run ccastart.bat again and it should run with no problem.

When the control center agent is fully running it will display a line in the output
window indicating that it is initialized as shown next:

As soon as the initialized message appears, we're ready to begin the definition of our
new template mapping module.

Defining a template mapping module
With the control center agent now running, we're ready to create a new module to
hold our template mappings. We will create it under the Template Mappings node
that we saw above, by right-clicking on it and selecting New Mapping Module.
We'll run through the following steps, which will be familiar now from having
created other modules previously:

Chapter 10

[375]

1.	 The first screen is just the welcome screen that we'll click Next on to move
to Step 1 where we'll give our new module a name and optional description.
We're going to be lazy this time and just accept the default name it suggests,
MAPPING_MODULE_1. Feel free to change if you would prefer something
else. Clicking the Next button moves us on to Step 2 to provide connection
information.

2.	 Step 2 is where we define the connection details. This is real easy because
it has predefined a default agent location for us and all we have to do is
provide the password we assigned above when we first started it up. So,
we'll click the Edit button and it will display the Edit Agent Location dialog
as shown below. All we have to do is type in the password. It has filled in the
user name already and the remainder of the dialog is grayed out so we don't
have to worry about setting anything else.

Code Template Mappings

[376]

3.	 After entering the password, we can click the Test Connection button to
make sure we can connect and since we started up the CCA prior to creating
the module it should pop up a success message dialog. After closing that
success dialog with the OK button, we'll close out of this one by pressing
OK and we'll be back at the Step 2 screen, which is shown below with our
password filled in and all the other connection details entered for us:

4.	 We'll click the Next button and we will get the summary screen shown next
and we can just click Finish to complete the module creation.

Chapter 10

[377]

5.	 Upon completion, the new module will be available in the Projects Navigator
window under the Template Mappings node.

Now that we have a module created we're ready to create a code template mapping
in it so let's proceed directly to that step.

Creating a code template mapping
Code template mappings are created just like regular mappings; we can right-click
on the Template Mappings node and select New Code Template Mapping and then
begin defining our template on the canvas by dragging and dropping objects from
the component palette. That is if we want to start out from the very beginning—but
we've already built a map to load the staging table as a regular map—let's see about
copying that and turning it into a code template mapping. That would save us a lot
of work and it demonstrates some of the power of the Warehouse Builder to make
use of existing features while adding new ones.

Code Template Mappings

[378]

Copying a mapping
So, what we'll be doing is copying the STAGE_MAP regular mapping we've already
built and pasting it into the code template module so we can make a few edits to it
so it will work using code templates. Perform the following steps to copy and paste
the mapping. We went over copying and pasting in the last chapter and this is very
similar to that; however, we won't be pasting into a completely new project. We'll
use the same project but just a different module.

1.	 The first step is to find our existing STAGE_MAP mapping in the
Databases | Oracle | ACME_DWH | Mappings node. Right-click on it
and select Copy from the pop-up menu or left-click on it to select it and then
press the Ctrl+C key combination. We now have the STAGE_MAP in our
clipboard.

2.	 Next we'll access the MAPPING_MODULE_1 module in the Template
Mappings node by expanding it in the Projects Navigator if it's not already
expanded.

3.	 We'll right-click on the MAPPING_MODULE_1 module and select Paste
from the pop-up menu or just click on it with the left mouse button and
press the Ctrl+V key combination to paste our copied map into the Template
Mappings module. We will get the same Paste Action popup as we saw in
Chapter 9 while it pastes the mapping.

We'll get a warning popup with the following message:

The physical configuration it is talking about refers to the Oracle database-specific
configuration properties that were created for the mapping. As a code template
mapping, the physical configuration now is a JDBC connection location and code
template code instead of Oracle specific. All we have to do is make a few edits and it
will be ready to go as a code template mapping, so this is not a problem.

Chapter 10

[379]

Editing a code template mapping
We'll just click the OK button on the warning dialog to close it and we now have
our STAGE_MAP mapping copied over to the code template module and it appears
now under MAPPING_MODULE_1. Let's double-click on it to open it in the
Template Mapping Editor window. When opened, it will look very similar to the
mapping editor for a regular mapping. It will look similar to the following:

What is different is that we can see that there are two tabs available for this editor at
the bottom of the screen, one for the Logical View, which it is showing in the above
image, and one for the Execution View, which we'll get to in a moment and which is
where we'll specify the code templates to use.

Working in the logical view
For now, however, we'll continue working in the logical view because we have a
few minor modifications to make. Keep in mind while working in the logical view
that it is exactly like working in the regular mapping editor. Operators can be
moved around and joined together and they can be dragged and dropped from the
Component Palette and Projects Navigator just like before.

Code Template Mappings

[380]

When using code templates, not all the operators will work with
all code templates. We have to be aware of that as we're building
our logical view. We talked earlier in the chapter about how some
operators are not available for use with Integration Code Templates
for example. For a complete list of the operators that cannot be used
with integration or load-code templates see the Oracle Warehouse
Builder Data Modeling, ETL, and Data Quality Guide, Chapter 7 section
on Mapping Operators Only Supported in Oracle Target CT Execution
Units:
http://download.oracle.com/docs/cd/E11882_01/
owb.112/e10935/sap_km_mappings.htm#WBETL07012

The main modification we're going to have to make here is to change the source table
operators. Recalling back to when we built the STAGE_MAP mapping in Chapter 6
in the Adding source tables section under Creating a Mapping we dragged and dropped
all the source tables from our ACME_POS module under the ODBC node. They are
still bound to that module as we can see next when holding the mouse pointer over
the title bar of the table operator:

To fix this we can just delete all those existing source table operators and then drag
and drop them from the SQL Server JDBC module under the SQL Server node
instead of the ODBC node. Another option would be to select each existing table in
turn and perform the Synchronize inbound procedure on it to select a different table
object but we're going to see a new feature in a moment, connecting two attribute
operator groups together, that we wouldn't see if we used the option to synchronize.
We talked about the synchronize process in Chapter 9 in the Synchronizing Objects
section so, rather than repeat that, we'll delete the tables and add them again to gain
some exposure to additional features of OWB. So let's do that now.

Chapter 10

[381]

We'll just click on each source table and press the Delete key and answer yes to the
popup that appears asking for confirmation to make sure deleting them is really
what we want to do. We can also right-click on the title bar of the table operator and
select Delete from the pop-up menu. To recap, we're going to delete the following
five table operators from our STAGE_MAP template mapping logical view:

•	 ITEMS
•	 POS_TRANSACTIONS
•	 REGISTERS
•	 STORES
•	 REGIONS

After they are all deleted, we'll open the SQL_SERVER_JDBC module under the
SQL Server node in the Projects Navigator so we can drag the tables back into our
mapping from there. We'll click on the above five tables one at a time under the
Tables node of the SQL_SERVER_JDBC module and drag them onto the mapping,
placing them where the table operators were that we deleted. We'll use the above
ordering of table names so our connector lines will not cross over when we connect
them up to the JOINER operator.

When we have our table operators all placed we can now connect them up to the
JOINER. We'll make use of the feature of the mapping editor that allows us to drag
an output group from one operator and drop it on an input group of another to
connect all the attributes in that group. The difference now is that there are already
attributes defined in the JOINER input groups for each table and so the Warehouse
Builder is going to pop up a new screen we haven't seen yet that asks us how we
want to handle the matching.

Code Template Mappings

[382]

Let's do that now with the ITEMS table and drag a connector from the INOUTGRP1
input/output group of the ITEMS table operator and drop it on the ITEMS input
group of the JOINER. When we do that a dialog will pop up in which we can specify
how to connect up the attributes as shown next:

We can choose from four different options on the left. Each of them will be
described next:

•	 Copy source attributes to target group and map: This option will just copy
each source attribute to the target and create a new attribute in the target
for it without matching anything. If an attribute with the same name exists
in the target it will just rename it when it copies it so it doesn't conflict with
an existing attribute. The Preview button is to have it display for us what
it's going to do so we can verify that's the behavior we really want. If we
choose that option right now and click Preview we'll see the following in the
Messages box, which tells us we really don't want this option because we
want to match the names:

Chapter 10

[383]

•	 Match by position of source and target attributes: This option will match
up a source attribute to whatever target attribute is in the same position as it
regardless of the name. This option looks like it could work for us. Let's click
that option and then click the Preview button. It will fill in source attributes
on the Source Connections tab on the right each lined up with the target
attribute that it will connect to and we can see that they all line up perfectly.
Let's discuss the other two options first before completing this dialog.

The Source Connections tab is for specifying the source
attributes that will be connected to the listed target attributes
and the Target Connectors tab is for specifying the target
attributes and will be connected to the listed source attributes.
They both really provide the same information in the end but
just offer a different perspective, either from source to target, or
from target to source for specifying the connections. Those tabs
are what get updated when we press the Preview button to tell
us what it's going to do.

•	 Match by name of source and target attributes: This option will do just what
it says, match up any matching names between source and target. If there are
no matching names, it will create a target attribute to match. Let's select that
option and press the preview button and see what our Source Connections
and Target Connections tabs look like now. They look exactly like they did
with the previous option that matched by position because, in this case, it
just so happens that there are matching source and target names and that the
matching names are also in the same position. When this option is selected
there are a number of other options that become selectable to dictate some
rules it will follow to do the match. We can check and uncheck any of them
and click Preview to see the effect. We'll just leave the first one checked by
default to not be case sensitive.

Code Template Mappings

[384]

•	 The final option is Custom: This option will allow us to just type in an
attribute name in either the Source or Target Connections tab depending on
which one we'd like to specify. If we select that option and press Preview, it
will clear out any previously filled in source attributes on the source tab and
leave them all blank because we have to explicitly tell it what to match. If we
select Custom and then click in the first source field on the Source tab and
start typing one of the source attribute names, a pop-up menu of names will
appear of all the source attributes as displayed below and we can just select
the one we want and it will populate that field. If we type something that
doesn't match the start of any source attributes it will just display (no match
found). We can then do the same on each subsequent field until they are all
matched. This option would be good if names don't match and the positions
are not the same either.

So, after all that discussion, we can see that either the match by position option or
the match by name option will work so we'll choose one of those and click the OK
button and it will draw all the connecting lines for us from ITEMS to the JOINER
ITEMS input group. If the OK button is grayed out and not selectable, we need to
just click the Preview button first and then we can click OK. That is a real time saver
when doing mappings like this and saves us from having to draw individual lines
from each attribute to remap them.

Let's continue now in like manner through the remainder of the table operators
dragging each INOUTGRP1 group to the appropriate input group of the JOINER,
selecting the match by name option, clicking Preview and then OK. After we have
done that. we'll save our work so far before continuing.

Chapter 10

[385]

There is one final step we need to take while in the Logical View and that is to set the
Loading Type property of the target POS_TRANS_STAGE table. Back in Chapter 6
when we originally built the mapping, we left it set to the default of INSERT, which
means every running of the mapping will simply insert records into the table and
leave any existing records there. We're now going to change that to TRUNCATE/
INSERT so this code template mapping will first truncate the table (remove all
existing records) and then insert the new records.

Let's click on the POS_TRANS_STAGE table operator in the logical view and in the
Property Inspector, scroll down until we see the General Section and under that the
Loading Type property. Click the dropdown and change it to TRUNCATE/INSERT.
That way, since we've already populated that table using the regular mapping we
won't get duplicate records in our staging table after running this mapping. We
could also go back and change the original regular mapping to do that if we wanted
to be able to run it more than once on the same set of data. The Property Inspector
should look like the following after making that setting change:

Our logical view is now complete and back the way it was looking before, so we're
ready to move on to define the Execution view. We don't need to do anything with
any of the other operators since they will work as is, even the target table operator
because our target hasn't changed. We're still writing to the Oracle database ACME_
DWH target.

Code Template Mappings

[386]

Working in the execution view
It is now time to configure our execution view for the mapping. A code template
mapping gets broken up into execution units, which group various operators on
the mapping for execution. There can be any number of execution units defined for
the mapping depending on how complex it is and the processing that is needed. The
execution units then get assigned code templates to use to execute them. That is how
we will associate code templates with our mapping.

Knowing the different kinds of code templates that are available and the operators
we have used in the logical view will help us decide how to break down our
mapping into execution units. For instance, we've stated earlier in the chapter how
we'll make use of a load code template for extracting data out of the source system.
We can then look at our logical view of our mapping and decide what operators are
involved in the extraction of data from the source system.

Let's get started with that now. We'll click the Execution View tab and we'll be
presented with a completely new canvas type interface we've not seen yet. It is new
in this latest release of the Warehouse Builder just to give us a view of our mapping
for defining execution units and assigning code templates. When we first look at the
Execution View, it will look like the following:

Chapter 10

[387]

Well, that doesn't look very helpful, does it? When we copied the regular mapping
into the templates module, it created a default execution unit for us named for the
entire mapping and just put everything inside it on top of one another. Fortunately,
we have a way to make it look a little better and that is the auto-layout button in the
toolbar, which we've seen before. It's circled in the previous image. Just click that and
the operators will all expand so we can see better what is going on. We now have
something that looks like this:

We can now see that not quite all the operators are inside that default execution unit
called STAGE_MAP. The table operators we deleted and recreated are outside the
execution unit. If we had looked at this view at the very start before making any
edits, we would have seen them inside the execution unit also, but when we deleted
them and recreated them, the assignment to an execution unit was deleted too
because the table operators we dropped into the mapping to replace the original ones
are from the JDBC module, which this default Oracle target mapping is not designed
to handle. Remember we said earlier that the default target mapping is really just a
wrapper around regular PL/SQL mapping code so any table operators would have
to make use of regular modules, like ODBC or a gateway.

Code Template Mappings

[388]

Let's take a look at that execution unit called STAGE_MAP that it created to see if we
can use it or if we have to just delete it and create a new one. We'll click on it either on
the top label bar or somewhere inside it but not on any of the operators defined in it.
When we do that, we'll see that one of the tabs in the message window has updated. In
fact it's a new tab that is added to the message window and viewable when working
in the Execution View. It is the Code Template tab and currently displays the name of
the execution unit we've selected as we can see in the following image:

This tab is for assigning the code template that the execution unit will have and we
can see that it has automatically assigned the DEFAULT_ORACLE_TARGET_CT
code template. That is the one the Warehouse Builder will always automatically
assign when a regular mapping is copied since it will allow all the regular operators
to be used. In fact, we could run this mapping with every operator inside this one
execution unit as it was first copied in before we replaced the source table operators
and it would work. It would not have made use of our new JDBC native connection
to SQL Server, so for that we have to use a separate code template.

We said earlier that we'd be using a load code template and the default Oracle target
code template so we will be able to use this default one that has been assigned for
us but we will make some changes to the operators that are in it and will add a new
execution unit. We'll do that now.

Creating an execution unit
Let's start by creating a new execution unit around the five source table operators.
To create an execution unit we have to first select the operators that we want in the
execution unit so let's select the five source table operators by drawing a box around
them to select them all at once. We'll just click on the canvas to the upper left of the
operators and hold down the left mouse button while we drag the box down until it
encompasses all five operators. We can now select Create Execution Unit from the
Execution main menu or we can just click the Create Execution Unit icon that has
now become active at the top left of the mapping canvas window as shown next:

Chapter 10

[389]

A new execution unit will now be created and we can see that it has assigned a
default name, EX_UNIT_1 (or some other number depending on how many other
execution units were created this session). The first thing we'll do is rename the
execution unit, so we'll right-click on it and select Open Details from the pop-up
menu. We will change the name to SQL_SERVER_LOAD and click the OK button.

Let's now click on it and look at the Code Template tab of the messages window and
we can see that no code template has been assigned to it. This execution unit will
be for loading data from our SQL Server database and so we want to specify one of
the load code templates to use. From our discussion earlier in the chapter we said
we'd be using the LCT_SQL_TO_ORACLE code template to load from a generic
SQL based database into Oracle so let's click on the dropdown on the Integration/
Load Code Template tab and select the PUBLIC_PROJECT\BUILT_IN_CT\LCT_
SQL_TO_ORACLE entry and our Code Template window should now look like the
following when the proper selection is made:

There are also several options we can specify in that window but we're going to
leave them all set to the default as that will suffice for our purpose. A description of
what all those options are can be found in the Oracle documentation in the Warehouse
Builder Data Modeling, ETL, and Data Quality Guide at the following URL: http://
download.oracle.com/docs/cd/E11882_01/owb.112/e10935/sap_km_mappings.
htm#BABJHFHI. This will take you right to the section entitled Setting Options for Code
Templates in Code Template Mappings. We have one more step to take and that is to
move an operator out of the STAGE_MAP execution unit into the SQL_SERVER_
LOAD unit.

Code Template Mappings

[390]

Moving an operator between execution units
The use of code templates gives us some flexibility now in just what tasks we want to
accomplish in what database. We're now able to do more using our source database
than we could before with just regular mappings that all executed entirely in the
Oracle database. We can add more operators to this new SQL_SERVER_LOAD
execution unit other than just the source table operators. It would still work as it is
now, but notice that the JOINER is defined over in the Oracle execution unit, which
means the actual joining of the source tables would happen in the Oracle database
once the tables have been copied over there by the load code template. That means
the load code template would have to copy over five tables into the Oracle database
and create five temporary work tables over there to hold them and then the Oracle
code template would have to do the join. If we were to move that JOINER over
into the SQL Server load code template, we could have the SQL Server database do
the work of joining the tables and it would then have to copy over just one table to
Oracle consisting of the results of applying the join to the five tables. That sounds
like a good idea so let's move the JOINER over to the SQL_SERVER_LOAD
execution unit.

To move an operator between units we have to first remove it from the unit it's in
and then add it to the execution unit we want to move it to. So click on the JOINER
in the STAGE_MAP execution unit and from the Execution main menu select
Remove Operator From Execution Unit. That will cause the JOINER to be relocated
outside the box for the STAGE_MAP execution unit. It is now no longer associated
with any execution unit.

We now want to make it a part of the SQL_SERVER_LOAD execution unit, so make
sure the JOINER is selected by clicking on it and also click on the SQL_SERVER_
LOAD execution unit by using the Ctrl key to select multiple objects, and then from
the Execution main menu select Add Operator to Execution Unit. The JOINER will
now appear inside the SQL_SERVER_LOAD execution unit box. We can rearrange
the display in case objects are not displaying very well by clicking and dragging
entire execution units or clicking and dragging individual operators inside execution
units, which will resize the execution unit box accordingly. When neatened up, our
Execution View should now look similar to the following:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 10

[391]

We can't move any more operators into the SQL_SERVER_LOAD execution unit
because the next operator that we could move would be the TRUNC operator,
representing the Oracle TRUNC() function on the date; however, SQL Server
Transact-SQL (Microsoft's implementation of SQL) does not have a TRUNC()
function. OWB 11gR2 has a heterogeneous transformation set defined in the Globals
Navigator under Public Transformations | Heterogeneous | Pre-Defined, which
has implementations per platform, which could be used here with no problem but
we're going to stick with the Oracle specific function in this case.

That completes the configuration of our Execution View. Our code template
mapping is now ready to deploy and execute. Let's save our work at this point and
then continue to deploy and execute.

Code Template Mappings

[392]

Deploying and executing a code template
mapping
Now that we've completed building our code template mapping we're ready to
deploy and execute it. The first step is to make sure our Control Center Agent
process is running as we described earlier in the chapter. The process of deploying
and executing a code template mapping is identical to the process for deploying and
executing a regular mapping; however, the code template mapping will deploy to
the Control Center Agent, not the Control Center Service.

To deploy, we'll right-click on the STAGE_MAP mapping under the MAPPING_
MODULE_1 module in Template Mappings and select Deploy. If this is not the first
time we've deployed this mapping, we may see a popup like the following:

This will happen if some but not all objects have been deployed successfully
previously and the Warehouse Builder will offer to skip them. We'll choose Use
Replace action to force them to be deployed again and click the OK button
if that dialog appears.

We'll then get the Log window popup showing us the progress of our deployment,
which as with regular mappings will do a validate and generate first automatically
and then deploy it. Our Log window should look like the following after a successful
deployment:

Chapter 10

[393]

If we expand the STAGE_MAP entry we'll see some validation warnings, which can
be safely ignored. If there is a red X appearing and a CCA-1103 error ("Failed to check
if CODETEMPLATE-xxxxx has been deployed") then the control center agent is most
likely not running. Just go back and start it up and deploy again.

Now that we have the mapping deployed, it's time to execute it. We'll perform a
similar process to deploying by right-clicking on the STAGE_MAP mapping under
MAPPING_MODULE_1 in Template Mappings and selecting Start from the pop-
up menu this time.

The Log window will display the job steps as it executes each execution unit of the
code template mapping. The steps it displays will depend upon the execution units
and assigned code templates that were specified for the mapping. The final results
should look similar to the following upon successful execution:

Code Template Mappings

[394]

There are other columns of information in that log window to the right that will tell
us how many errors and warnings there were in each step along with a start time
and the elapsed time for each step.

We can see green check marks beside most of the steps, which is good. That is the
signal that the step completed with no errors or warnings. However, there is one
step, DROP_WORK_TABLE in the SQL_SERVER_LOAD execution unit, that has
a yellow exclamation point appearing, meaning a warning was generated. If we
expand that entry we can see there was an error generated under the JDBC step that
the table or view does not exist. That is not a problem because this is just a temporary
work table that the execution unit creates to perform its tasks, which it's going to
recreate anyway, so it's not a problem if it doesn't exist to start with. In fact, we can
see a step at the end that it added to drop the work table, which shows a green check
mark. It's possible that the mapping may have had a fatal error during a previous
execution that caused it not to drop the work table so this step is there just to make
sure it starts with a clean slate.

We saw the record counts in the log window that showed it loaded the data
successfully but if we want to see the data ourselves just to verify it we can use the
Data Viewer by right-clicking on the POS_TRANS_STAGE table in the
Databases | Oracle | ACME_DWH | Tables node and selecting Data from the
popup. An error dialog may pop up warning that the connection failed and that the
location is invalid and asking whether we want to edit the location details. Simply
click Yes and the password can be set for the ACME_DWH_LOCATION location,
which is usually the cause of that error. After entering the correct password on the
Edit Oracle Database Location popup and clicking OK, we'll see the data that it has
loaded as shown next in the Data Viewer window in the Design Center:

Chapter 10

[395]

We have now completed implementing our first code template mapping. For
connections to other databases, the native JDBC connection is much simpler to set
up and can be done completely within OWB so code templates are definitely an
excellent addition to the Warehouse Builder. With the default Oracle target code
template and the ability to wrap existing OWB regular mappings, the power and
utility of the Warehouse Builder has improved tremendously with this new release.

Summary
We have explored the 11gR2 code template technology that has been added to the
Warehouse Builder in this chapter and have covered much of what we covered in
earlier chapters for making connections to source databases, defining connections,
importing data objects, defining mappings, and deploying and executing them
all within the context of the new native JDBC connection capability and the code
template feature added to OWB from ODI.

That is it. We have come to the end of our introductory journey through the Oracle
Warehouse Builder. Hopefully, you have enjoyed it and will take what you've
learned and put it to good use in the world of data warehousing with the Oracle
Warehouse Builder.

Index
Symbols
 JDBC (Java Database Connectivity) 63

A
ACME data warehouse

cube, designing 114-116
designing 113
dimensions, identifying 113, 114

ACME_POS database 47
ACME_POS database node 92
ACME_POS source database 203
ACME_POS SQL Server database 56
ACME_WS_ORDERS database 56
Add option 19
Advanced Import Options... button 82
aggregator 186
Aggregator operator

adding 219-227
Aggregator operator window 225
Annotations box 323
Attribute drop-down menu 224
attributes 48
attribute sets tab, table editor 200

B
Bind function 350
bird's eye view window 161, 178
Business Identifier 139, 150

C
canvas window 160
cardinality 46
change data capture code template 357

check constraint 198
Check Knowledge Module (CKM) 357
code template

about 356
change data capture code template 357
control code template 357
description 356
function code template 357
integration code template 357
load code template 357
Oracle target code template 357
pre-defined code templates 358-360
types 357

code template mapping
about 372-377
control center agent, starting 373
deploying 392-394
editing 379
executing 392-394
execution unit, creating 388, 389
execution view, working in 386-388
logical view, working in 379-385
mapping, copying 378
operator, moving between execution units

390, 391
template mapping module, defining 374-

377
Code Template tab 389
compare option, snapshots 338
component palette 177
component palette window 161
Components window 337
composite unique keys 162
configuration window 161
Connection details 52
constant operator 184

[398]

constant operator, lookup operator
adding 253, 254

construct object operator 185
Control Center Agent (CCA)

about 372
starting 373

control center jobs window 306-310
Control Center Manager

about 32, 301, 302
deploying 310, 311
window, overview 302, 303

control center service 297, 298
control code template 357
Convert to Signature option, snapshots 338
copy 328-333
COUNTRY level 232
COUNTY attribute 233
CSV file 92
cube

creating, in OWB 154
creating, with wizard 154-158
designing 114-116

cube editor
name tab 164
storage tab 164

cube operator 183
cut 328-333

D
database

source database objects, importing from
78-86

database and OWB, installation
database, creating 20-27
database software, installng 17
default listener port, changing 19
hardware systems 12, 13
listener, cobfiguring 19, 20
listener, configuring 18
operating systems 12, 13
Optimal Flexible Architecture (OFA) 15
Oracle database software, installing 14, 15
Oracle software, downloading 11
OWB components 31
OWB standalone software, installing 27-31
repository, configuring 34-40

Warehouse Builder Enterprise ETL 38
workspaces, configuring 34-40

Database Configuration Assistant 20
database normalization 48
Databases modules 56
data object center

deploying in 298-301
data object editor

bird's eye view 161
canvas 160
component palette 161
configuration 161
cube editor 164, 165
data viewer 164
editor window 161, 162
navigator windows 160
no maintenance setting 163, 164
property inspector 160

data object editors
using 158-163

Data Object Editor window 196
data rules 55
data rules tab, table editor 200
data type and size, store dimension 151
data viewer 164
data warehouse design

about 106
dimensional design 106
dimensional model, implementing in data-

base 109
multidimensional implementation (OLAP)

112
relational implementation (star schema)

109-111
data warehouse design, in OWB

about 117
module, creating 117, 118
OWB design objects 124-126
target module, creating 122, 124
target user, creating 117-122

data warehousing 8-10
DATE_DIM dimension 266, 268
DATE_DIM_MAP map entry 139
DATE_DIM mapping 265
DATE_DIM values

mapping 271
DBA (Database Administrator) 46

[399]

deduplication 186
default operating mode

row-based 292
row-based (target only) 292
set-based 292

delete option, snapshots 337
de-normalized database structure 110
deployment order 315-318
design center

deploying in 298-301
object, generation 286, 287
object, validating 281-283

Design Center Projects tab 55
Design Center screen

about 54
globals navigator 54, 55
locations tab 54
projects tab 54

Design Center search function 204
design center, Warehouse Builder

about 51
Connection details 52
Databases node 54
Design Center window 53
locations tab 54
Logon dialog box 52
Logon screen 51
Password 52
projects tab 54
Show Details >> button 52
User Name 52

Design drop-down menu 56
dimensional design

about 106
cube and dimensions 107, 108

dimensional model
implementing, in database 109
multidimensional implementation (OLAP)

112
relational implementation (star schema)

109-111
dimension operator 184
dimensions

attributes 131
characteristics 130
creating 130
identifying 113, 114

product dimension 141
store dimension 150
time dimension 130-132

dimensions, characteristics
dimesnion attributes 130
hierarchies 131
level attributes 131
levels 130

downloading
Oracle software 11

DSN (Data Source Name) 66
Dynamic Host Configuration Protocol

(DHCP) 14

E
Edit menu entry 56
editor window

about 161
attributes tab 162
hierarchies tab 163
levels tab 162
name tab 161
orphan tab 163
SCD tab 163
storage tab 162

effective date attribute 148
Entity-Relationship (ER) diagram 46
ETL (Extract, Transform, and Load)

about 32, 167, 168
manual processes 168

execution order 319
Exit button 27, 31
expiration date attribute 148
export option, snapshots 338
expression 186
Expression Builder 214
Expression operator

mapping 272-274
external table 101
external table, lookup operator

creating 245, 246
external table operator 184

F
fact table 110
Field Properties screen 104

[400]

File Import window 96
Files modules 56
filter operator 187
Find button 204
Finish button 25
foreign key constraint 198
FTP (File Transfer Protocol) 94, 95
full snapshot 335
function code template 357

G
generation style

selecting 295, 296
Getting Started button 53
grain 114
graphical navigator 202
Grid Control 22

H
hardware systems 12, 13
heterogeneous service configuration file

creating 70, 71
Hide Details << 52
Host setting 124

I
ID fields 232
indexes tab, table editor 199
Integrated Development Environment (IDE)

51
integration code template 357
Integration Knowledge Module (IKM) 357
ITEM_LIST_PRICE 89
ITEMS table operator 206

J
Java Database Connectivity. See JDBC
JDBC 360
JDBC database connection

JDBC driver, downloading 360, 361
SQL server module, creating 361
used, for connecting to SQL server 360

JDBC driver
downloading 360

Joiner Editor 211
JOINER operator 212
joiner operator attribute groups 209-212
join SQL query 49
Journalizing Knowledge Module (JKM) 357

K
keys tab, table editor

about 198
check constraint 198
foreign key constraint 198
primary key constraint 198
unique key constraint 198

L
listener

configuring 18-20
listener.ora file

editing 72
load code template 357
Loading Knowledge Module (LKM) 357
Loading Type property 385
locations tab 54
Logon dialog box 52
Logon screen 51
lookup operator 187

adding 256-262
key, retrieving for 250, 251
using 245

lookup table
creating 247, 248
loading 248, 249

M
mapping

aggregator operator, adding 219-227
creating 202, 203
joiner operator attribute groups 209-212
operator properties, defining for joiner 214-

219
operators, connecting to joiner 212-214
source, connecting to target 208, 209
source tables, adding 203-208
target table, adding 208

mapping editor

[401]

canvas 202
component palette 202
icon, used for object generation 290-292
properties inspector window 202
review 201, 202
structure window 202
toolbar icon used, for object validation 283-

285
Mapping Editor window 231
Mapping Input Parameter operator 178
mappings, OWB

about 173-175
canvas layout 178-180
component palette 177, 178
Mapping Input Parameter operator 178
mapping window 175
property inspector 176, 177
structure view 176

mappings window 175
metadata

importing 367-371
Metadata change management

about 322
copy 328-333
cut 328-333
Metadata Loader (MDL) exports 322-325
Metadata Loader (MDL) imports 322-325
paste 328-333
recycle bin 325-328
snapshots 334-338

Metadata Import Result Report log file 85
metadata loader facility 321
Metadata Loader log file 324
Metadata Loader (MDL) 322, 323
module

creating 56
SQL Server database module, creating 62,

64, 65
multidimensional implementation (OLAP)

109, 112

N
Name dimension attribute 152
navigator windows 160
New... 56
New Gallery window 133

New menu option 133
New option 133
Next button 25, 103, 122, 330
Non-Oracle modules 56
normalization 46
number data type 89

O
object, deploying

about 279, 296
control center jobs window 306-309
control center manager window, overview

301-303
control center service 297, 298
data object editor 298-301
deployment order 315-318
in control center manager 310, 311
in design center 298-301
object details window 304-306

object details window
about 304-306

object, execution
about 279, 312-314
execution order 319

object, generation
about 279, 285
generation style, selecting 295, 296
icon from mapping editor used 290-292
in design center 286-290
mapping, default operating mode of 292-

294
objects

copying 328-333
cutting 328-333
pasting 328-333

objects.source database objects 78
objects, synchronizing

about 341
dimensional objects, changes 349-351
inbound 345
object definitions, updating 341, 342
outbound 345
plan, viewing 347-349
strategy, matching 345, 346
tables, changes 342
table updates 341-345

[402]

object, validation
about 279, 281
Design Center toolbar 283
in design center 281
POS_TRANS_STAGE table 282
Results tab 283
toolbar icon in mapping editor, used

283285
Validate... entry 282

ODBC (Open Database Connectivity) 64, 66
OK button 27, 237, 329, 389
OLAP (online analytic or analytical process-

ing) 112
OLE-DB (Object Linking and Embedding-

Database) 64
operating systems 12, 13
operator properties

defining, for joiner 214-219
operators, OWB

about 181-189
connecting, to joiner 212-214
constant operator 184
construct object operator 185
cube operator 183
dimension operator 184
external table operator 184
sequence operator 184
source operators 183
table operator 184
target operators 183
transformations (data flow operators) 186
view operator 184

Optimal Flexible Architecture (OFA) 15
Oracle Business Intelligence Enterprise or

Standard Edition (OBIEE) 126
Oracle, configuring

heterogeneous service configuration file,
creating 70, 71

listener.ora file, editing 72, 73
Oracle Database Enterprise Edition 112
Oracle Database Installation Guide

URL 17
Oracle Database module

creating 56-62
Oracle database software

installing 14

Oracle DATE data type 271
Oracle Heterogeneous Services 63
Oracle-Managed Files option 23
Oracle software

downloading 11
Oracle System Identifier 21
Oracle target code template 357
Oracle Technology Network website

URL 12
Oracle Universal Installer 14
Oracle Warehouse Builder. See OWB
Orphan Management policies

URL 164
OWB

about 7
benefits 276
cube, creating 154
data warehouse design 117
dimensions, creating 130
features 276
installation 11
mappings 173-175
module, creating 56
operators 181, 182, 183
Oracle Database module, creating 56-62
project, creating 55
recycle bin 325
snapshots 325
source operators 183
SQL Server database module, creating 62-

65
target operators 183

OWB components
Control Center Manager 31
Control Center Service, server components

31
Design Center 31
Repository Browser 31
Target Schema, server components 31

OWB design objects 124-126
OWB standalone software

installing 27, 29-31
OWBSYS_AUDIT schema 26
OWBSYS schema 26
OWB_USER role 37

[403]

P
partitions tab, table editor 199, 200
Password 52
paste 328, 330-333
pivot operator 187
Point-of-Sale (POS system) 45
POS transactional source database 46, 47
POS_TRANSACTIONS 204
POS_Transactions table 47, 48
POS_TRANS_STAGE mapping table 271
POS_TRANS_STAGE staging table 231
POS_TRANS_STAGE table 202-332
POS_TRANS_STAGE table operator 220,

231
pre-defined code templates 358, 359
preliminary analysis

about 44
ACME Toys 45
Gizmos source data 45
issues 44
POS transactional source database 46, 47,

48, 49
website order management database 49, 50

primarty key constraint 198
PRODUCT attribute 268, 270
product attributes (attribute type), product

dimension 141
PRODUCT_BRAND to DESCRIPTION (in

the BRAND level) 264
PRODUCT_BRAND to NAME (in the

BRAND level) 263
PRODUCT_CATEGORY to CATEGORY_

NAME 264
PRODUCT_CATEGORY to DESCRIPTION

(in the CATEGORY group) 264
PRODUCT_CATEGORY to NAME (in the

CATEGORY level) 264
PRODUCT_DEPARTMENT to DEPART-

MENT_NAME 264
PRODUCT_DEPARTMENT to DESCRIP-

TION (in the DEPARTMENT level)
264

PRODUCT_DEPARTMENT to NAME (in
the DEPARTMENT level) 264

product dimension 107

about 141
creating, with new dimension wizard 143-

150
product attributes (attribute type) 141
product hierarchy (highest to lowest) 142
product levels 142

PRODUCT dimension 265
product hierarchy (highest to lowest), prod-

uct dimension 142
product levels, product dimension 142
PRODUCT mapping

about 263-265
PRODUCT_BRAND to BRAND_NAME

263
PRODUCT_BRAND to DESCRIPTION (in

the BRAND level) 264
PRODUCT_BRAND to NAME (in the

BRAND level) 263
PRODUCT_CATEGORY to CATEGORY_

NAME 264
PRODUCT_CATEGORY to DESCRIPTION

(in the CATEGORY group) 264
PRODUCT_CATEGORY to NAME (in the

CATEGORY level) 264
PRODUCT_DEPARTMENT to DEPART-

MENT_NAME 264
PRODUCT_DEPARTMENT to DESCRIP-

TION (in the DEPARTMENT level)
264

PRODUCT_DEPARTMENT to NAME (in
the DEPARTMENT level) 264

PRODUCT_NAME to DESCRIPTION 263
PRODUCT_NAME to NAME 263
PRODUCT_PRICE to LIST_PRICE 263
PRODUCT_SKU to SK 263

PRODUCT_NAME attribute 267
PRODUCT_NAME to DESCRIPTION 263
PRODUCT_NAME to NAME 263
PRODUCT_SKU attribute 267, 271
PRODUCT_SKU to SK 263
PROGRAM name 72
project

creating 55
projects tab 54
Projects window 231
Property Inspector window 160, 204, 214

[404]

Q
quantity attribute 48

R
recycle bin

about 325, 326
Empty Recycle Bin button 328
launching 327, 328
OK button 328

REGION level 232
REGISTER attribute 217
REGISTERS_KEY attribute 217
relational implementation (star schema)

109-111
restore option, snapshots 337
ROLAP option 276
row-based, default operating mode 292
row-based (target-only), default operating

mode 292

S
SALE_QUANTITY 269
SALES_AMOUNT attribute 269
SALES cube 266
SALES cube mapping

about 265, 266
attributes, in cube 269
cube attributes, values mapping to 269
DATE_DIM dimension 268
dimension attributes, in cubes 266, 267
dimension attributes, renaming 267
measures, in cube 269
measures values, mapping to cube 269

SALES_QUANTITY attribute 224
Save button 329
sequence operator 184
server

versus workstation 14
set-based, default operating mode 292
set operation 188
Show Details >> 52
SID. See Oracle System Identifier
SID_DESC entry 73
SID_LIST_LISTENER entry 73
signature snapshot 335

Slowly Changing Dimension (SCD) type
147

snapshots
about 325, 334
compare 338
Components window 337
Convert to Signature 338
delete 337
export 338
full snapshot 335
restore 337
signature snapshot 335

snowflake schema 111
source and target operators, OWB operator

sequence operator 184
Source Connections tab 383
source database object metadata

defining 55
defining manually, with table editor 86-91
Design Center Projects tab 55
importing 55
importing, from database 78-81
importing, from files 92-104

source database objects
importing, from database 78-86

source metadata
Advanced option steps 102
defining manually, with table editor 86-91
File Import screens 96
Flat File Sample Wizard 97
importing, from files 92-95
Next button 99

source operator
adding 231-234

source tables, mapping
adding 203
adding, palette window used 203
adding, projects navigator window used

203
Design Center search function 204
Find button 204
ITEMS table operator 206
mapping editor window 207
operators 205
POS_TRANSACTIONS 204
Properties Inspector window 204

source to target connection, mapping

[405]

about 208, 209
aggregator operator, adding 219-227
joiner operator attribute groups 209-212
operator properties, defining for joiner 214-

219
operators, connecting to joiner 212-214

sProjects tab window 85
SQL Data Definition Language (DDL) 285
SQL*Loader 168
SQL*Loader utility 101
SQL server connection, JDBC database con-

nection used
about 360
JDBC driver, downloading 360, 361
metadata, importing 367-371
SQL server module, creating 361-366
SQL server TCP/IP port, configuring 361-

363
SQL Server database connection

creating 66
DSN configuring, steps 66-69

SQL Server database module
creating 62-65
heterogeneous service configuration file,

creating 70, 71
listener.ora file, editing 72, 73
Oracle configuring, for SQL Server connec-

tion 70
other database platforms, creating 63
SQL Server database connection, creating

66-69
Warehouse Builder ODBC module, creating

for SQL server 73-78
SQL_SERVER_JDBC module 381
SQL server module

creating 361-366
metadata, importing 367-71
SQL server TCP/IP port, configuring 361,

363
SQL server TCP/IP port

configuring 361, 363
SQL (Structured Query Language) 30
STAGE_MAP mapping 392
staging

about 169, 170
area, configuration 171, 172

staging area

contents, designing 192, 193
designing 192
table building, table editor used 194-198

star schema 110
Stock Keeping Unit (SKU) 141
STORE_ADDRESS1, ADDRESS2, CITY,

STATE, and ZIP_POSTALCODE 234
STORE attribute 271
store attributes (attribute type), store dimen-

sion 151
STORE_COUNTRY column 196
store dimension

about 107, 231, 239
creating, with new dimension wizard 151-

154
data type and size 151
store attributes (attribute type) 151
store hierarchy (highest to lowest) 151
store levels 151

STORE group 233
store hierarchy (highest to lowest), store

dimension 151
store levels, store dimension 151
STORE_MAP 231, 265
STORE mapping 263

about 231
constant operator, adding 253, 254
COUNTY attribute 243
external table, creating 245, 246
lookup operator, adding 256-262
lookup operator, key retrieving for 250, 251
lookup operator, using 245
lookup table, creating 247
lookup table, loading 247-249
lowercase, issues 237
NAME attributes 239
REGION_NAME attribute 243
source operators, adding 231-234
STORE_COUNTRY attributes 242
STORE_REGION attributes 242
SUBSTR transformation operator, adding

251-253
target operators, adding 231-234
TO_NUMBER transformation, adding 255
transformation operators, adding 234-237
TRIM operators 242
TRIM output 242

[406]

uppercase, issues 237
UPPER() function 238
UPPER transformation 238

STORE_NAME field 271
STORE_NAME, STORE_NUMBER 234
STORE_REGION 234
structure view 176
structure window 202
SUBSTR transformation operator, lookup

operator
adding 251-253

Surrogate Identifier 150
SYSDATE Oracle function 269
SYSDBA 33

T
table editor

about 86
attribute sets tab 200
data rules tab 200
indexes tab 199
keys tab 198, 199
partitions tab 199, 200
source metadata, defining manually 86-91
used, for building staging area table 194-

197
table operator 184
tablespace 39
target module

creating 122, 124
target operator

adding 231-234
Target Schema 32
target table, mapping

adding 208
target user

creating 118-122
template mapping module

defining 374, 376, 377
template mappings

about 372
Test Connection button 59, 60
time dimension

about 107, 130, 131
creating, time dimension wizard used 132-

140

time dimension wizard
used, for creating time dimension 132-140

TO_NUMBER transformation, lookup
operator

adding 255
toolbar icon

in mapping editor, used for validating 283,
284, 285

transactional database 43, 48
transformation 55
transformation operators

about 234
adding 235, 236
NAME attribute 239
POS_TRANS_STAGE mapping table 240
POS_TRANS_STAGE mapping table opera-

tor 241
STORE dimension 237
STORE dimension operator 239
STORE_NUMBER attribute 241
TRIM() function 236
TRIM operator 239
TRIM output 242
UPPER() function 238, 241
UPPER transformation 238
VALUE output attribute 237

transformations (data flow operators)
about 186
aggregator 186
deduplication 186
expression 186
filter 187
joiner 187
lookup 187
pivot 187
set operation 188
splitter operator 188
transformation operator 188

triggering attributes 148
TRUNC() function 236

U
UML (Universal Modeling Language) nota-

tion 46
unique key constraint 198
UPPER operators 269

[407]

UPPER transformation 237
Use Above Values button 224
User Name 52

V
values, mapping to code attributes 269
varchar type 89
Vendors 48
Very Large Databases (VLDB) 200
view operator 184

W
Warehouse builder

online resources 352
Warehouse Builder Enterprise ETL 38
Warehouse Builder ODBC module

creating, for SQL server 73-78
website order management database 49, 50
Welcome screen 56
Workspace Management button 53
workstation

versus server 14

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

[408]

Thank you for buying
Oracle Warehouse Builder 11gR2: Getting Started 2011

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Oracle Database 11g –
Underground Advice for Database
Administrators
ISBN: 978-1-849680-00-4 Paperback: 348 pages

A real-world DBA survival guide for Oracle 11g
database implementations

1.	 A comprehensive handbook aimed at reducing
the day-to-day struggle of Oracle 11g Database
newcomers

2.	 Real-world reflections from an experienced
DBA—what novice DBAs should really know

3.	 Implement Oracle's Maximum Availability
Architecture with expert guidance

Oracle SQL Developer 2.1
ISBN: 978-1-847196-26-2 Paperback: 496 pages

Database design and development using this feature-
rich, powerful user-extensible interface

1.	 Install, configure, customize, and manage your
SQL Developer environment

2.	 Includes the latest features to enhance
productivity and simplify database
development

3.	 Covers reporting, testing, and debugging
concepts

4.	 Meet the new powerful Data Modeling tool –
Oracle SQL Developer Data Modeler

Please check www.PacktPub.com for information on our titles

Mastering Oracle Scheduler in
Oracle 11g Databases
ISBN: 978-1-847195-98-2 Paperback: 240 pages

Schedule, manage, and execute jobs that automate
your business processes

1.	 Automate jobs from within the Oracle database
with the built-in Scheduler

2.	 Boost database performance by managing,
monitoring, and controlling jobs more effectively

3.	 Contains easy-to-understand explanations,
simple examples, debugging tips, and real-life
scenarios

Oracle 10g/11g Data and
Database Management Utilities
ISBN: 978-1-847196-28-6 Paperback: 432 pages

Master twelve must-use utilities to optimize the
efficieny, management, and performance of your
daily database tasks

1.	 Optimize time-consuming tasks efficiently
using the Oracle database utilities

2.	 Perform data loads on the fly and replace the
functionality of the old export and import
utilities using Data Pump or SQL*Loader

3.	 Boost database defenses with Oracle Wallet
Manager and Security

4.	 A handbook with lots of practical content with
real-life scenarios

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: An Introduction to Oracle Warehouse Builder
	Introduction to data warehousing
	Introduction to our fictional organization
	What is a data warehouse?
	Where does OWB fit in?

	Installation of the database and OWB
	Downloading the Oracle software
	A word about hardware and operating systems
	Installing Oracle database software
	Configuring the listener
	Creating the database
	Installing the OWB standalone software
	OWB components and architecture
	Configuring the repository and workspaces

	Summary

	Chapter 2: Defining and Importing Source Data Structures
	Preliminary analysis
	ACME Toys and Gizmos source data
	The POS transactional source database
	The website order management database

	An overview of Warehouse Builder Design Center
	Importing/defining source database object metadata
	Creating a project
	Creating a module
	Creating an Oracle Database module
	Creating a SQL Server database module

	Importing source database objects from a database
	Defining source metadata manually with the Table Editor
	Importing source metadata from files

	Summary

	Chapter 3: Designing the
Target Structure
	Data warehouse design
	Dimensional design
	Cube and dimensions

	Implementation of a dimensional model in
a database
	Relational implementation (star schema)
	Multidimensional implementation (OLAP)

	Designing the ACME data warehouse
	Identifying the dimensions
	Designing the cube

	Data warehouse design in OWB
	Creating a target user and module
	Creating a target user
	Create a target module

	OWB design objects

	Summary

	Chapter 4: Creating the Target
Structure in OWB
	Creating dimensions in OWB
	The Time dimension
	Creating a Time dimension with the Time
Dimension Wizard

	The Product dimension
	Product attributes (attribute type)
	Product levels
	Product hierarchy (highest to lowest)
	Creating the Product dimension with the new Dimension Wizard

	The Store dimension
	Store attributes (attribute type), data type and size, and (Identifier)
	Store levels
	Store hierarchy (highest to lowest)
	Creating the Store dimension with the New Dimension Wizard

	Creating a cube in OWB
	Creating a cube with the wizard

	Using the data object editors
	Summary

	Chapter 5: Extract, Transform, and
Load Basics
	ETL
	Manual ETL processes

	Staging
	To stage or not to stage
	Configuration of a staging area

	Mappings and operators in OWB
	OWB Mappings
	The canvas layout

	OWB operators
	Source and target operators
	Transformations (data flow operators)
	Other operators

	Summary

	Chapter 6: ETL: Putting it Together
	Designing our staging area
	Designing the staging area contents
	Building the staging area table with the
Table Editor

	Review of the Mapping Editor
	Creating a mapping
	Adding source tables
	Adding a target table
	Connecting source to target
	Joiner operator attribute groups
	Connecting operators to the Joiner
	Defining operator properties for the JOINER
	Adding an Aggregator operator

	Summary

	Chapter 7: ETL: Transformations and Other Operators
	STORE mapping
	Adding source and target operators
	Adding Transformation Operators
	Using a Lookup operator
	Creating an external table
	Creating and loading a lookup table
	Retrieving the key to use for a Lookup operator
	Adding a SUBSTR Transformation operator
	Adding a Constant operator
	Adding a TO_NUMBER transformation
	Adding a Lookup operator

	PRODUCT mapping
	SALES cube mapping
	Dimension attributes in the cube
	Measures and other attributes in the cube
	Mapping values to cube attributes
	Mapping measures' values to a cube
	Mapping PRODUCT and STORE dimension values to the cube
	Mapping DATE_DIM values to the cube
	Mapping an Expression operator

	Features and benefits of OWB
	Summary

	Chapter 8: Validating, Generating, Deploying, and
Executing Objects
	Validating
	Validating in the Design Center
	Validating using the toolbar icon in the Mapping Editor

	Generating
	Generating in the Design Center
	Generating using the icon from the
mapping editor
	Default operating mode of the mapping
	Selecting the generation style

	Deploying
	The Control Center Service
	Deploying in the Design Center and Data Object Editor
	The Control Center Manager
	The Control Center Manager window overview
	Deploying in the Control Center Manager

	Executing
	Deploying and executing remaining objects
	Deployment order
	Execution order

	Summary

	Chapter 9: Extra Features
	Metadata change management
	Metadata Loader (MDL) exports and imports
	Recycle bin
	Cut, copy, and paste
	Snapshots

	Synchronizing objects
	Changes to tables
	Updating object definitions
	Synchronizing

	Changes to dimensional objects and binding

	Warehouse Builder online resources
	Summary

	Chapter 10: Code Template Mappings
	Code templates
	Code template description
	Types of code templates
	Pre-defined code templates

	Connecting to SQL server using a JDBC database connection
	Downloading JDBC driver
	Creating an SQL server module
	Configuring SQL server TCP/IP port
	Creating SQL server module
	Importing metadata

	Building a code template mapping
	Starting the Control Center Agent
	Defining a template mapping module
	Creating a code template mapping
	Copying a mapping
	Editing a code template mapping

	Deploying and executing a code template mapping

	Summary

	Index

