; THE EXPERT’S VOICE® IN OPEN SOURCE

PHP 5 Objects,
Patterns, and Practice

Build powerful code by mastering PHP 5's object-oriented
enhancements, design patterns, and essential development tools

Matt Zandstra

APress Media, LLC

.allitebooks.co


http://www.allitebooks.org

Praise for PHP 5 Objects, Patterns, and Practice:

“I would certainly recommend this book (as if there was any doubt)
to any PHP developer. This is especially true for anyone interested in
learning more about using objects and classes more appropriately
than ever before. .. Read it for yourself and I think you will agree: the
desk of nearly every PHP application developer will one day be hold-
ing a copy of this book.”

—Daniel Holmes, Slashdot contributor (http://slashdot.org)

“Highly recommended for PHP programmers making the move to
PHP 5 and PHP 5 programmers that need a handle on best practices.”

—Midwest Book Review (http://midwestbookreview.com)

‘A very approachable introduction to what the latest version of the
PHP platform has to offer to an OO developer from the Java scene.”

—ILasse Koskela, JavaRanch (http://radio.javaranch.com)

“If you are looking for a book that treats PHP in a mature and adult
fashion, then this is exactly the book you need.”

—Visual Systems Journal (www.vsj.co.uk)

vww allitebooks.cond



http://www.allitebooks.org

PHP 5 Objects,
Patterns, and Practice

MATT ZANDSTRA

APress Media, LL.C

vww allitebooks.cond



http://www.allitebooks.org

PHP 5 Objects, Patterns, and Practice

Copyright © 2004 by Matt Zandstra
Originally published by Apress in 2004

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN 978-1-59059-380-6 ISBN 978-1-4302-0403-9 (eBook)
DOI 10.1007/978-1-4302-0403-9

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jason Gilmore
Technical Reviewer: Tolan Blundell

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,
Chris Mills, Dominic Shakeshaft, Jim Sumser

Project Manager: Sofia Marchant

Copy Edit Manager: Nicole LeClerc

Copy Editor: Ami Knox

Production Manager: Kari Brooks-Copony
Production Editor: Janet Vail

Compositor: Susan Glinert Stevens
Proofreader: Sue Boshers

Indexer: Valerie Perry

Cover Designer: Kurt Krames

Manufacturing Manager: Tom Debolski

In the United States: phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders@springer-ny. com, or visit
http://www.springer-ny.com. Outside the United States: fax +49 6221 345229, e-mail orders@springer.de,
or visit http://www.springer.de.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

lvww . allitebooks.cond



http://www.allitebooks.org

For Louise, who is the whole point.

lvww . allitebooks.conj



http://www.allitebooks.org

About the Technical REVIBWET . . ...t i et e e e e e e e xiv
ACKNOWIBdgMENTS . ... XV
INrOUCHION .. et e e e e e XVii

PART ONE Introduction

CHAPTER 1 PHP: Design and Management ................................ 3
PART TWO Objects

CHAPTER 2 PHPand Objects ..................ccoi i, 1
CHAPTER 3 ObjectBasiCs ...........c.coviiiiii 15
CHAPTER 4 Advanced Features .......................coiiiiiiin, 43
CHAPTER 5 0bject TOOIS ... ..o 69
CHAPTER 6 Objectsand Design ..............coviiiiii i, 93
PART THREE Patterns

CHAPTER 7 What Are Design Patterns? Why Use Them? .................. 17
CHAPTER 8 Some Pattern Principles .................. ...l 125
CHAPTER 9 GeneratingObjects .................. i 137
CHAPTER 10 Designing for Object Relations .............................. 163
CHAPTER 11 Performing and Representing Tasks ......................... 185

CHAPTER 12 Enterprise Patterns ......................i i, 219



vi

CONTENTS AT A GLANCE

PART FOUR Practice

CHAPTER 13 Good (and Bad) Practice ...................cooiiiiiiiiint, 293
CHAPTER14  AnintroductiontoPEAR...............ccooiiiiiiiiiiiint. 307
CHAPTER 15 Generating Documentation with phpDocumentor ............. 323
CHAPTER16  Version ControlwithCVS ...................coiiiiiiaL. 339
CHAPTER 17 Automated Build withPhing ...............................L 359
PART FIVE Conclusion

CHAPTER 18 Objects, Patterns, Practice ...................ccoviiiiinn, 383
PART SIX Appendixes

APPENDIX A Bibliography ..ot e 395
APPENDIX B ASimpleParser .............coiii i e 399



About the Technical REVIBWET . ......cvti ittt e e e Xiv
ACKNOWIBAGMENTS ...ttt Xv
INrOdUCHION ... Xvii

PART ONE Introduction

CHAPTER 1 PHP: Design and Management ............................ 3
The Problem. ... ..o e 3
PHP and Other Languages ............cccveiiiiiiiininiieennnannn. 4
About ThiS BOOK. . . ... e 6
SUMMANY .. 8
PART TWO Objects
CHAPTER2 PHPandObjects ........................coiiiiiiiiniin, "
The Accidental Success of PHP Objects ................covevuet.t. 1
Advocacy and Agnosticism, the Object Debate ..................... 14
SUMMAIY .o i i i e et 14
CHAPTER3 ObjectBasics .................ccooiiiiiiiiiiiiiiiniaan., 15
Classesand ODjeCtS .......ccoviviii i e 15
Setting PropertiesinaClass..................ocoviiniiin.... 16
Working with Methods ...l 19
Arguments and TYPeS .. .. ..o cii e 22
Inheritance . .......oovei i 27
SUMMANY ..ot i e e i e e M

vii



viii

CONTENTS

CHAPTER 4

CHAPTER 5

CHAPTER 6

Advanced Features ..........................oie.LL. 43
Static Methods and Properties.............cccooiiiiiiiiiiiin, 43
Constant Properties . .......covvvieii i e e 47
Abstract Classes .......ccoiieiii it e e 47
11 72 (o1 49
Handling Errors. . .. ccvoe it e e e 51
Final Classes and Methods. ..., 58
Working with Interceptors. ... 59
Defining DestructorMethods ...l 63
Copying Objects with __clone().............coooiiiiiiiiiiat, 64
Defining String Values for Your Objects ...................vovet 66
RS 11111172 67
ObjectTools ... 69
PHPand Packages.............coiiiiiiiii ittt e 69
The Class and Object FUNCLIONS. .. ...cvivvv i 73
The Reflection APl ... ... i e 79
SUMMANY .. i i e e e e e 91
Objectsand Design ........................cooiiiiiiiiin 93
Defining Code Design ..........coovriiiiiii i 93
Object-Oriented and Procedural Programming ..................... 94
Choosing Your Classes ...........coviviiiiiiiiiiiiie e, 99
Polymorphism. .. ... 100
Encapsulation. ... 101
ForgetHowtoDolt.........ccooiiiii 102
FOUr SIgnPoStS . . .o 103
The UML .. e 104
SUMMANY ..t e e ettt a e 113

PART THREE Patterns

CHAPTER 7

What Are Design Patterns? Why Use Them? ............ 17
What Are Design Patterns?. ..., 117
A Design Pattern Overview . ............coviiiiiiiiiiiiiieinnn. 119
The “Gangof Four” Format .................ccoiiiiiiinininn... 120

Why Use Design Patterns? ...........cooiiiiiiiiniiiiiininnen. 121



CHAPTER 8

CHAPTER 9

CHAPTER 10

CHAPTER 11

CONTENTS

PHP and Design Patterns .............covviiiiiinnieinenens. 123
UMM ittt e e e e e e e 123
Some Pattern Principles ................................. 125
The Pattern Revelation ................ccoviiiiiiiiiiiinnn, 125
Composition and Inheritance ................coveveiiiiininn.n. 126
Decoupling . ... 132
Code to an Interface Not an Implementation ...................... 134
The Concept That Varies. . ......ooveveninie e ceeieannns 135
Patternitis . . ......ooi 135
The Patterns. ... e e 136
RS 1011 14T 136
Generating Objects ..........................ccociiill, 137
Problems and Solutions in Generating Objects .................... 137
The Singleton Pattern ............coiiii i 141
Factory Method Pattern.................coiiiiiiin . 145
Abstract Factory..........covviiiiiiii e ... 150
But That's Cheating! ..ot 160
SUMMANY ..t it e e e e, 161
Designing for Object Relations .......................... 163
Structuring Classes to Allow Flexible Objects. ..................... 163
The Composite Pattern ...t 163
The Decorator Pattern. ..., 174
The Facade Pattern ...t i 180
SUMMANY .t e e e e ettt 184
Performing and Representing Tasks .................... 185
The InterpreterPattern ... 185
Implementation ...........cooiiiiiii e 187
The Strategy Pattern ..........ooiiiiii 195
The ObserverPattern. ..., 200
TheVisitor Pattern...........oiiiiii i 207
The Command Pattern ............coviiiiiiiiiiiiiniiiinn.n, 213

ix



X

CONTENTS

CHAPTER 12

Enterprise Patterns ..........................lL 219
INtroduction. . .....cvvrt i e 219
CheatingBeforeWe Start..................co it 222
The PresentationLayer.................coovveentn P 231
The Business LogiC Layer. .......c.oieeiriieii i i iiennnns 259
The Data Layer. ... c.vvv e ittt et it cnn e e, 267
UMM ..ottt et et ettt 288

PART FOUR Practice

CHAPTER 13

CHAPTER 14

CHAPTER 15

Good (and Bad) Practice ................................. 293
Beyond Code ........ccvviiiiiii i e 293
BorrowingaWheel. .........oovriiiiiii i 294
Playing NiCe . .....oiee i e 295
Giving Your Code Wings . ......ovviiiiiiiienii it iiiiieenas 296
Documentation. ..ot 297
Testing ..oovri e 298
RS 1F 411117 306
An IntroductiontoPEAR ............................l 307
What ISPEAR? . ... e e 307
Installing a Package WithPEAR ................ciiiiiiiiin., 308
UsingaPEARPackage .............cooiiiiiiiiiiiiiiiiiinin., 309
Working with the PEAR Installer.........................ooueee. 312
SUMMANY .. i i et et e e 321
Generating Documentation with phpDocumentor ...... 323
Why Document?. ..ot e 323
Installation .........ccoiriiiiii i 324
Generating Documentation. ...............coiiiiiiii 325
DocBlock Comments. ...... ... 327
Documenting Classes . .........cvviii i 328
File-Level Documentation.................cciiiiiiiiiiint, 330
Documenting Properties . ..........ccoiiiiiiiii e 330
DocumentingMethods ..ot 332
Creating Links in Documentation..................cccovvviivnnnn. 334

RS040 4 336



CHAPTER 17

PART FIVE

CHAPTER 18

PART SIX

APPENDIX A

APPENDIX B

CONTENTS
Version Control withCVS ................................ 339
Why Use Version Control?. ...t 339
Getting CVS. ... e 340
Configuring a CVS Repository. . ........covvviivii i 3
BeginningaProject ...t 343
Updating and Committing............ccooviirii i 345
Adding and Removing Files and Directories....................... 349
Tagging and ExportingaRelease...............ccccovvivininnns. 353
Branchinga Project. . ... e 355
SUMIMANY .. e 358
Automated Build withPhing ............................. 359
What IS Phing? .. ..o e 359
Gettingand InstallingPhing ...............cooiiiiiiiiiin.s. 360
build.xml: The Build Document ............. ... oot 361
UMM .ttt i e e et e i e 378

Conclusion
Objects, Patterns, Practice .............................. 383
00T P 383
PateINS. ... e e e e s 386
PractiCe. . oottt e 389
SUMMANY Lot e e 391

Appendixes
Bibliography ... 395
BOOKS ..\ttt e 395

ATHCIES . vttt 396
SIS, .ttt e 396
ASimpleParser ... 399
THE SCaNNE . . .ttt vt et et i e 399
ThE ParSEr ittt 404

............................................................. 47

xi



MATT ZANDSTRA has worked as a Web programmer, consultant, and writer for a decade. He has
been an object evangelist for most of that time. He is the author of SAMS Teach Yourself PHP in
24 Hours (three editions) and a contributor to DHTML Unleashed. He has written articles for
Linux Magazine and Zend.com. He works primarily with PHP, Perl, and Java, building online
applications. He is an engineer at Yahoo! in London.

Matt lives in Brighton with his wife, Louise, and two children, Holly and Jake. Because it
has been so long since he has had any spare time, he only distantly recollects that he runs
regularly to offset the effects of his liking for pubs and cafes, and for sitting around reading and
writing fiction.

xiii



Xiv

TOLAN BLUNDELL is a partner in BGZ Consultants LLP. When not liaising with clients, designing
applications, or writing specifications, he occasionally finds time to develop primarily Web-based
applications in PHP and Java. He has designed and built systems for clients including the BBC
and Red Bull.

The rare times that he escapes work find him writing code, animating and making music
for pleasure, as well as more social activities such as making loud noises in fields.



When you first have an idea for a book (in my case while drinking good coffee in a Brighton
cafe), it is the subject matter alone that grips you. In the enthusiasm of the moment, it is easy to
forget the scale of the undertaking. I soon rediscovered the sheer hard work a book demands,
and I learned once again that it’s not something you can do alone. At every stage of this book’s
development, I have benefited from enormous support.

In fact, my thanks must predate the book’s conception. The themes of this book first saw the
light of day in a talk I gave for a Brighton initiative called Skillswap (http://www.skillswap.org) run
by Andy Budd. It was Andy’s invitation to speak that first planted the seeds of the idea in my
mind. For that I still owe Andy a pint, and much thanks.

By chance, attending that meeting was Jessey White-Cinis, another Apress author, who put me
in touch with Martin Streicher, who in turn commissioned the book for Apress straightaway. My
thanks go out to both Jessey and Martin for seeing potential in the slightest of beginnings.

The Apress team has provided enormous support under considerable provocation as the
commitments of a demanding job and a young family consistently ate away at deadline after
deadline. I would particularly like to thank Chris Mills and Jason Gilmore for their enthusiastic
lead, Sofia Marchant for her valiant struggle to prise chapters out of me, and Ami Knox for
grappling with my words.

It’s easy to lose sight of the plot when you're playing with code and writing about it. My
friend and technical reviewer Tolan Blundell has done an excellent job of keeping me on track,
and reminding me that details matter. Thanks Tolan.

Thanks to Steven John Metsker for his kind permission to reimplement in PHP a brutally
simplified version of the parser API he presented in his book Building Parsers in Java.

I would also like to thank all at The Farm, the Brighton new media freelancers group, who
still let me drink with them despite my permanent job. Aside from much needed light relief,
Farm members have offered a welcome space to discuss themes and problems thrown up by
the book.

Many people showed considerable patience in the face of my increasing preoccupation.
Thanks to James Cowan and Paul Silver for cutting me slack on our project. Special thanks to
Mark Lester, my boss at Yahoo!, who granted me leave at short notice so that I could concentrate
on a tricky chapter.

Writing to a deadline is not conducive to family life, and so I must send my thanks and love
to my wife, Louise, and to our children, Holly and Jake. I have missed you all.

The soundtrack to the writing of this book, in fact the soundtrack to much of my life in
recent years, was provided by John Peel. John was a broadcaster who waged a 40-year war on
the bland and mass-produced in music simply by championing everything original and eclectic
he could lay his hands on. John died suddenly in October 2004, leaving listeners around the world
bereft. He had an extraordinary impact on many lives, and I would like to add my thanks here.



I have been using PHP in object-oriented projects since 2000. For most of that time, of course,
PHP meant PHP 4, with its relatively limited support for objects. Even so, I found thatI could do
pretty much everything that I wanted with it, as long as I was careful and disciplined.

In early 2003, I began initial work on a book about PHP 4 and object-oriented programming.
A good portion of the book was to focus on the strategies, disciplines, and workarounds required
to get PHP to behave itself in an object-oriented context. Then I began to hear murmurs that
PHP 5 was on its way, which dated my project before I had even started on it. I put the idea to
one side and took up another book project.

It was for that project that I found myself investigating in detail the new features of PHP 5.
It was arevelation! Almost every annoyance I had encountered in the past was addressed by the
enhanced support of the Zend Engine 2 for object-oriented programming. I found myself once
again making notes for a book, but this time a book that exploited the resources of the language,
not a book that overcame its shortcomings.

This is that book. I have tried to write it for the programmer I was when I first started working
with objects on larger projects. I have taken a basic understanding of PHP for granted. The
typical reader of this book either knows PHP or can read up on a feature of syntax or particular
function without help from me. The nuts and bolts of object orientation are not so transparent,
though, and because many of them are new to the language, I cover them in full here.

What Ilacked most, though, was a sense of how to use objects effectively, and the reasons
for the choices I needed to make. At the same time I was adrift when it came to the best practices
to deploy around my code—what tools and principles to use to test my code, to document it,
and to install it.

These are the topics that this book attempts to address. I hope you find it as rewarding to
read as it has been challenging to write!

Matt Zandstra
Brighton, UK
November 2004

xvii






Of the changes wrought by PHP 5, among the most important is its enhanced support for
object-oriented programming,. This has stimulated much interest in objects and design within
the PHP community. In fact, this is an intensification of a process that began when PHP 4 first
made object-oriented programming a serious reality.

In this chapter, we look at the needs that design can address. We very briefly summarize
the evolution of patterns and related practices in the Java world. We look at the signs that a
similar process is occurring among PHP coders.

We also outline the topics covered by this book.

We will look at

* The evolution of disaster: A project goes bad.

* Design and PHP. How object-oriented design techniques are infecting the PHP
community.

* This book: Objects. Patterns. Practice.

The Problem

The problem is that PHP is just too easy. It tempts you to try out your ideas, and flatters you
with good results. You write much of your code straight into your Web pages, because PHP is
designed to support that. You add the heavier code to functions in library files, and before you
know it you have a working Web application.

You are well on the road to ruin. You don’t realize this, of course, because your site looks
fantastic. It performs well, your clients are happy, and your users are spending money.

Trouble strikes when you go back to the code to begin a new phase. Now you have a larger
team, some more users, a bigger budget. Yet without warning things begin to go wrong. It’s as
if your project has been poisoned.

Your new programmer is struggling to understand code that is second nature to you,
though perhaps a little byzantine in its twists and turns. She is taking longer than you expected
to reach full strength as a team member.

A simple change, estimated at a day, takes three days when you discover that you must
update 20 or more Web pages as a result.



CHAPTER 1 PHP: DESIGN AND MANAGEMENT

One of your coders saves his version of a file over major changes you made to the same
code some time earlier . The loss is not discovered for three days, by which time you have
amended your own local copy. It takes a day to sort out the mess, holding up a third developer
who was also working on the file.

Because of the popularity of the application, you need to shift the code to a new server.
The project needs to be installed by hand, and you discover that file paths, database names,
and passwords are hard coded into many source files. You halt work during the move because
you don’t want to overwrite the configuration changes the migration entails. The estimated
two hours becomes eight as it is revealed that someone did something clever involving the
Apache module ModRewrite, and the application now requires this to operate properly.

You finallylaunch phase 2, and all is well. All is well for a day and a half. The first bug report
comes in as you are about to leave the office. The client phones minutes later to complain. Her
report is similar to the first, but a little more scrutiny reveals that it is a different bug causing
similar behavior. You remember the simple change back at the start of the phase that necessi-
tated extensive modifications throughout the rest of the project.

You realize that not all the required modifications are in place. This is either because they
were omitted to start with, or because the files in question were overwritten in merge collisions.
You hurriedly make the modifications needed to fix the bugs. You're in too much of a hurry to
test the changes, but they are a simple matter of copy and paste, so what can go wrong?

The next morning you arrive at the office to find that a shopping basket module has been
down all night. The last-minute changes you made omitted a leading quotation mark, rendering
the code unusable. You fix the problem, mollify the client, and gather the team for another
day’s firefighting.

This everyday tale of coding folk may seem a little over the top, but I have seen all these
things happen over and over again. Many PHP projects start their life small and evolve into
monsters.

Because the presentation layer—the PHP pages containing HTML—also contains application
logic, duplication creeps in early as database queries, authentication checks, form processing,
and more are copied from page to page. Every time a change is required to one of these blocks
of code, it must be made everywhere the code is found, or bugs will surely follow.

Lack of documentation makes the code hard to read, and lack of testing allows obscure
bugs to go undiscovered until deployment. The changing nature of a client’s business often
means that code evolves away from its original purpose until it is performing tasks to which it
is fundamentally unsuited. Because such code has often evolved as a seething intermingled
lump, it is hard, if not impossible, to switch out and rewrite parts of it to suit the new purpose.

Now, none of this is bad news if you are a freelance PHP consultant. Assessing and fixing a
system like this can fund expensive espresso drinks and DVD box sets for six months or more.
More seriously, though, problems of this sort can mean the difference between a business’s
success or failure.

PHP and Other Languages

PHP’s phenomenal popularity meant that its boundaries were tested hard and early. As we will
see in the next chapter, PHP started life as a set of macros for managing personal home pages.
With the advent of PHP 3 and, to a greater extent, PHP 4, the language was becoming the

successful power behind large Enterprise Web sites. In many ways, though, the legacy of PHP’s



CHAPTER 1 PHP: DESIGN AND MANAGEMENT

beginnings carried through into script design and project management. In some quarters PHP
retained an unfair reputation as a hobbyist language, best suited for presentation tasks.

About this time (around the turn of the millennium), new ideas were gaining currency in
other coding communities. An interest in object-oriented design galvanized the Java community.
You may think that this is a truism, since Java is an object-oriented language. Java provides a
grain that is easier to work with than against, of course, but using classes and objects does not
in itself determine a particular design approach.

The concept of the design pattern as a way of describing a problem together with the
essence of its solution was first discussed in the '70s. Perhaps aptly, the idea was developed in
the field of architecture, and not computer science. By the early '90s object-oriented programmers
were using the same technique to name and describe problems of software design. Perhaps the
seminal book on design pattems, Design Patterns: Elements of Reusable Object-Oriented Software,
by the affectionately nick-named Gang of Four, was published in 1995, and is still indispensable
today. The patterns it contains are a required first step for anyone starting out in this field,
which is why most of the patterns in this book are drawn from it.

The Java language itself deployed many core patterns in its API, but it wasn't until the late
’90s that design patterns made the leap to the consciousness of the coding community at large.
Patterns quickly infected the computer sections of high street bookstores, and the first hype or
tripe flame wars began on mailing lists and forums.

Whether you think that patterns are a powerful way of communicating craft knowledge or
largely hot air (and you can probably guess where I stand on that issue), it is hard to deny that
the emphasis on software design they have encouraged is beneficial in itself.

Related topics also grew in prominence. Among them was eXtreme Programming (XP),
championed by Kent Beck. XP is an approach to projects that encourages flexible, design-oriented,
highly focused planning and execution.

Prominent among XP’s principles is an insistence that testing is crucial to a project’s
success. Tests should be automated, run often, and preferably designed before their target
code is written.

Projects should be broken down into small (very small) iterations. Both code and
requirements should be scrutinized at all times. Architecture and design should be a shared
and constant issue, leading to the frequent revision of code.

If XP is the militant wing of the design movement, then the moderate tendency was well
represented by one of the best books about programming I have ever read: The Pragmatic
Programmer by Andrew Hunt and David Thomas, which was published in 2000.

XP was deemed a tad cultish by some, but it grew out of two decades of object-oriented
practice at the highest level and its principles were widely cannibalized. In particular, code
revision, known as refactoring, was taken up as a powerful adjunct to patterns. Refactoring has
evolved since the "80s, but it was codified in Martin Fowler’s catalog of refactorings, Refactoring:
Improving the Design of Existing Code, which was published in 1999 and defined the field.

Testing too became an increasingly hot issue with the rise in prominence of XP and patterns.
The importance of automated tests was further underlined by the release of the powerful JUnit
test platform, which became a key weapon in the Java programmer’s armory. A landmark

article on the subject, “Test Infected: Programmers Love Writing Tests” by Kent Beck and Erich
Gamma (http://junit.sourceforge.net/doc/testinfected/testing.htm), provided an excellent
introduction to the topic and remains hugely influential.



CHAPTER 1 PHP: DESIGN AND MANAGEMENT

PHP 4 was released at about this time, bringing with it improvements in efficiency and,
crucially, enhancements in its support for objects. These enhancements made fully object-
oriented projects a possibility. Programmers embraced this feature, somewhat to the surprise
of Zend founders Zeev Suraski and Andi Gutmans, who had joined Rasmus Lerdorf to manage
PHP development. As we shall see in the next chapter, PHP’s object support was by no means
perfect, but with discipline and careful use of syntax one could really think in both objects and
PHP at the same time.

Nevertheless, design disasters like the one that opened this chapter remained common.
Design culture was some way off, and almost nonexistent in PHP publishing. Online, though,
the interest was clear. Leon Atkinson wrote a piece about PHP and patterns for Zend in 2001
(http://www.zend.com/zend/trick/tricks-app-patt-php.php), and Harry Fuecks launched his
excellent journal at http://www.phppatterns.comin 2002. Patterns-based framework projects
such as BinaryCloud began to emerge, as well as tools for automated testing and documentation.

The release of the first PHP 5 beta in 2003 ensured the future of PHP as a language for
object-oriented programming. The Zend 2 Engine provided greatly improved object support,
as we shall see. Equally important, it sent a signal that objects and object-oriented design are
now central to the PHP project.

About This Book

This book does not attempt to break new ground in the field of object-oriented design; in that
respect it perches precariously upon the shoulders of giants. Instead, we examine, in the context
of PHP, some well-established design principles, and some key patterns (particularly those
inscribed in Design Patterns, the classic Gang of Four book). Finally, we move beyond the strict
limits of code to look at tools and techniques that can help to ensure the success of a project.
Aside from this introduction, and a brief conclusion, the book is divided into three main parts:
objects, patterns, and practice.

Objects

We begin Part Two with a quick look at the history of PHP and objects, charting their shift from
afterthought in PHP 3 to core feature in PHP 5.

You can be an experienced and successful PHP programmer with little or no knowledge of
objects. We start from first principles to explain objects, classes, and inheritance. Even at this
early stage, we look at some of the object enhancements that PHP 5 introduced.

The basics established, we delve deeper into our topic, examining PHP’s more advanced
object-oriented features. We also devote a chapter to the tools that PHP provides to help you
work with objects and classes.

It is not enough, though, to know how to declare a class, and to use it to instantiate an
object. You must first choose the right participants for your system, and decide the best ways
for them to interact. These choices are harder to describe and to learn than the bald facts about
object tools and syntax. We finish Part Two with an introduction to object-oriented design
with PHP.



CHAPTER 1 PHP: DESIGN AND MANAGEMENT

Patterns

Part Two far from exhausts the subject of design. A pattern describes a problem in software
design, and provides the kernel of a solution. A solution here does not mean the kind of cut-
and-paste code you might find in a cookbook (excellent as cookbooks are as resources for the
programmer). Instead, a design pattern describes an approach that can be taken to solve a
problem. A sample implementation may be given, but it is less important than the concept it
serves to illustrate.

Part Three begins by defining design patterns and describing their structure. We also look
at some of the reasons for their popularity.

Patterns tend to promote and follow certain core design principles. An understanding of
these can help in analyzing a pattern’s motivation, and can be applied usefully to all programming.
We discuss some of these principles. We also examine the UML, a platform-independent way
of describing classes and their interactions.

Although this book is not a pattern catalog, we examine some of the most famous and
useful patterns over four chapters. I describe the problem that each pattern addresses, analyze
the solution, and present an implementation example in PHP.

Practice

Even a beautifully balanced architecture will fail if it is not managed correctly. In Part Four we
look at the tools available to help you create a framework that can ensure the success of your
project. If the rest of the book is about the practice of design and programming, Part Four is
about the practice of managing your code. The tools we examine can form a support structure
for a project, helping to track bugs as they occur, promoting collaboration amongst program-
mers, providing ease of installation and clarity of code.

We have already discussed the power of the automated test. We kick off Part Four with an
introductory chapter that also introduces PHPUnit2, a package based on the much ported JUnit
testing tool. As usual, we examine the problem that automated testing is designed to address.

Many programmers are guilty of giving in to the impulse to do everything themselves. The
PHP community maintains PEAR, a repository of quality-controlled packages that can be stitched
into projects with ease. We look at the trade-offs between implementing a feature yourself and
deploying a PEAR package.

While we are on the topic of PEAR, we look at the installation mechanism that makes the
deployment of a package as simple as a single command. Best suited for stand-alone packages,
this mechanism can be used to automate the installation of your own code. I show you how to
doit.

Documentation is a pain, and along with testing, it is probably the easiest part of a project
to jettison when deadlines loom. I argue that this is probably a mistake, and show you
PHPDocumentor, a tool that helps you turn comments in your code into a set of hyperlinked
HTML documents that describe every element of your API.

Every tool or technique discussed in this book directly concerns, or is deployed using,
PHP. The one exception to this rule is Concurrent Versions System (CVS). CVS is a version
control system that enables many programmers to work together on the same codebase
without overwriting one another’s work. CVS allows you to grab snapshots of your project at
any stage in development, to see who has made which changes, and to split the project into
mergeable branches. CVS will save your project one day.



CHAPTER 1 PHP: DESIGN AND MANAGEMENT

PEAR provides a build tool that is ideal for installing self-enclosed packages. For a complete
application, however, greater flexibility is required. Applications are messy. They may need
files installed in nonstandard locations, or to set up databases, or to patch server configuration.
In short, applications need stuff'to be done during installation. Phing is a faithful port of a Java
tool called Ant. Phing and Ant interpret a build file, and process your source files in any way
you tell them to. At heart, this usually means copying them from a source directory to various
target locations around your system, but as your needs get more complex, Phing scales effort-
lessly to meet them.

Summary

This is a book about object-oriented design and programming. It is also about tools for managing
a codebase from collaboration through to deployment.

These two approaches address the same problem from different but complementary
angles. The objective is to build systems that achieve their objectives and lend themselves well
to ongoing collaborative development.

A secondary objective lies in the aesthetics of software systems. As programmers, we build
machines that have shape and action. We invest many hours of our working day, and many
days of our lives, writing these shapes into being. We want both those polls: the instruction,
and the process it drives, the class and its objects, to form an elegant whole. The business of
version control, testing, documentation, and build does more than support this objective, it is
part of the shape we want to achieve. Just as we want clean and clever code, we want a code-
base that is designed well for developers and users alike. The mechanics of sharing, reading,
and deploying the project should be as important as the code itself.






Obj ects were not always a key part of the PHP project. In fact, objects have been described as
an afterthought by PHP’s designers.

As afterthoughts go, this one has proved remarkably resilient. In this chapter, I introduce
coverage of objects by summarizing the development of PHP’s object-oriented features.

We will look at

e PHP/FI 2.0: PHP, but not as we know it.
e PHP 3: Objects make their first appearance.
e PHP 4: Object-oriented programming grows up.

* PHP 5: Objects at the heart of the language.

The Accidental Success of PHP Objects

With so many object-oriented PHP libraries and applications in circulation, to say nothing of
PHP 5’s extensive object enhancements, the rise of the object in PHP may seem like the culmi-
nation of a natural and inevitable process. In fact, nothing could be further from the truth.

In the Beginning: PHP/FI

The genesis of the PHP as we know it today lies with two tools developed by Rasmus Lerdorf
using Perl. PHP stood for Personal Homepage Tools. FI stood for Form Interpreter. Together
they comprised macros for sending SQL statements to databases, processing forms, and
flow control.

These tools were rewritten in C and combined under the name PHP/FI 2.0. The language
at this stage looked different from the syntax we recognize today, but not that different. There
was support for variables, associative arrays, and functions. Objects, though, were not even on
the horizon.

Syntactic Sugar: PHP 3

In fact, even as PHP 3 was in the planning stage, objects were off the agenda. As now, the principle
architects of PHP 3 were Zeev Suraski and Andi Gutmans. PHP 3 was a complete rewrite of
PHP/FI 2.0, but objects were not deemed a necessary part of the new syntax.

1



12

CHAPTER 2 “ PHP AND OBJECTS

According to Zeev Suraski, support for classes was added almost as an afterthought
(on 27 August 1997, to be precise). Classes and objects were actually just another way to define
and access associative arrays.

Of course, the addition of methods and inheritance made classes much more than glorified
associative arrays, but there were still severe limitations as to what you could do with your
classes. In particular, you could not access a parent class’s overridden methods (don’t worry if
you don’t know what this means yet, I will cover it). Another disadvantage we will examine in
the next section was the less than optimal way that objects were passed around in PHP scripts.

That objects were a marginal issue at this time is underlined by their lack of prominence in
official documentation. The manual devoted one sentence and a code example to objects. The
example did not illustrate inheritance or properties.

PHP 4 and the Quiet Revolution

If PHP 4 was yet another ground-breaking step for the language, most of the core changes took
place beneath the surface. The Zend Engine (its name derived from Zeev and Andi) was written
from scratch to power the language.

From our object-ive perspective, the fact that it became possible to override parent methods
and access them from child classes was a major benefit.

The main drawback remained, however. Assigning an object to a variable, passing it to a
function, or returning it from a method, resulted in a copy being made. So an assignment like this:

$my_obj = new User('bob');
$other = $my obj;

resulted in the existence of two User objects, rather than two references to the same User
object. In most object-oriented languages you would expect assignment by reference, rather
than by value as here. This means that you pass and assign handles that point to objects rather
than copy the objects themselves. The default pass-by-value behavior resulted in many obscure
bugs as programmers unwittingly modified objects in one part of a script, expecting the changes
to be seen via references elsewhere. Throughout this book we will see many examples in which
we maintain multiple references to the same object.

Luckily, there was a way of enforcing pass-by-reference, but it meant remembering to use
a clumsy construction.

To assign by reference:

$other =& $my obj;
// $other and $my_obj point to same object

To pass by reference:

function setSchool( & $school ) {
// $school is now a reference to not a copy of passed object

}

To return by reference:

function & getSchool( ) {
// returning a reference not a copy
return $this->school;



CHAPTER 2 PHP AND OBJECTS

Although this worked fine, it was easy to forget to add the ampersand, and it was all too
easy for bugs to creep into object-oriented code. These were particularly hard to track down,
because they rarely caused any reported errors, just nonsensical behavior.

Coverage of syntax in general, and objects in particular, was extended in the PHP manual,
and object-oriented coding began to bubble up to the mainstream. Objects in PHP were not
uncontroversial (then, as now, no doubt), and threads like “Do I need objects?” were common
flame-bait in mailing lists. Indeed, the Zend site played host to articles that encouraged object-
oriented programming side by side with others that sounded a warning note.

Pass-by-reference issues and controversy notwithstanding, many coders just got on and
peppered their code with ampersand characters. Object-oriented PHP grew in popularity. As
Zeev Suraski wrote recently in an article for DevX.com:

One of the biggest twists in PHP’s history was that despite the very limited
functionality, and despite a host of problems and limitations, object oriented
programming in PHP thrived and became the most popular paradigm for the
growing numbers of off-the-shelf PHP applications. This trend, which was
mostly unexpected, caught PHP in a sub-optimal situation. It became
apparent that objects were not behaving like objects in other OO languages,
and were instead behaving like associating arrays.

[http://www.devx.com/webdev/Article/10007/0/page/1]

As noted in the previous chapter, interest in object-oriented design became obvious in
sites and articles online. PHP’s official software repository, PEAR, itself embraced object-oriented
programming. Some of the best examples of deployed object-oriented design patterns are to
be found in the packages that PEAR makes available to extend PHP’s functionality.

Change Embraced: PHP 5

PHP 5 represents an explicit endorsement of objects and object-oriented programming. That
is not to say that objects are now the only way to work with PHP (this book does not say that
either, by the way). Objects, are, however, now recognized as a powerful and important means
for developing enterprise systems, and PHP fully supports them in its core design.

Objects have moved from afterthought to language driver. Perhaps the most important
change is the default pass-by-reference behavior in place of the evils of object copying. This
is only the beginning though. Throughout the book, and particularly this part of it, we will
encounter many more changes that extend and enhance PHP’s object support, including argu-
ment hinting, private and protected methods and properties, the static keyword, and exceptions,
among many others.

PHP remains a language that supports object-oriented development, rather than an
object-oriented language. Its support for objects, however, is now well enough developed to
justify books like this one that concentrate upon design from an exclusively object-oriented
point of view.

13



14

CHAPTER 2 PHP AND OBJECTS

Advocacy and Agnosticism, the Object Debate

Objects and object-oriented design seem to stir passions on both sides of the enthusiasm
divide. Many excellent programmers have produced excellent code for years without using
objects, and PHP continues to be a superb platform for procedural Web programming.

This book naturally displays an object-oriented bias throughout, a bias that reflects the
author’s object-infected outlook. Because this book is a celebration of objects, and an intro-
duction to object-oriented design, it is inevitable that the emphasis is unashamedly object-
oriented. Nothing in this book is intended, however, to suggest that objects are the one true
path to coding success with PHP.

Asyouread, it is worth bearing in mind the famous Perl motto “There’s more than one way
to do it.” This is especially true of smaller scripts, where getting a quick working example up
and running is more important than building a structure that will scale well into a larger system
(test projects of this sort are known as “spikes” in the XP world).

Code is a flexible medium. The trick is to know when your quick proof of concept is becoming
the root of a larger development, and to call a halt before your design decisions are made for
you by sheer weight of code. Now that you have decided to take a design-oriented approach to
your growing project, there are plenty of books that will provide examples of procedural design
for many different kinds of projects. This book offers some thoughts about designing with
objects. I hope that it provides a valuable starting point.

Summary

This short chapter placed objects in their context in the PHP language. The future for PHP is
very much bound up with object-oriented design. In the next few chapters, I take a snapshot of
PHP’s current support for object features, and introduce some design issues.



Obj ects and classes lie at the heart of this book and, with the introduction of the Zend 2
Engine, they lie at the heart of PHP too. In this chapter, I lay down the groundwork and show
you objects from first principles.

Things have changed quite radically since PHP 4, so even if you are an experienced PHP
programmer, you will probably find something new here. If you are new to object-oriented
programming, you should read this chapter carefully.

This chapter will cover

* Classes and objects: Declaring classes, instantiating objects
¢ Constructor methods: Automating the setup of your objects
* Primitive and class types: Why type matters

e [Inheritance: Why we need inheritance, and how to use it

» Visibility: Streamlining your object interfaces and protecting your methods and proper-
ties from meddling

Classes and Objects

The first barrier to understanding object-oriented programming is the strange and wonderful
relationship between the class and the object. For many people it is this relationship that
represents the first moment of revelation, the first flash of object-oriented excitement. So let’s
not skimp on the basics.

A First Class

Classes are often defined in terms of objects. This is interesting because objects are often defined in
terms of classes. This circularity can make the first steps in object-oriented programming hard
going. Since classes define objects, we should begin by defining a class.

In short, a class is a code template used to generate objects. We declare a class with the
class keyword and an arbitrary class name. Class names can be any combination of numbers
and letters, although they must not begin with a number. The code associated with a class must
be enclosed within braces. Let’s combine these elements to build a class.

15



16

CHAPTER 3  OBJECT BASICS

class ShopProduct {
// class body

}

The ShopProduct class in the example is already a legal class, although it is not terribly
useful yet. We have done something quite significant, however. We have defined a type. That
is, we have created a category of data that we can use in our scripts. The power of this should
become clearer as you work through the chapter.

A First Object (or Two)

If a class is a template for generating objects, it follows that an object is data that has been
structured according to the template defined in a class. An object is said to be an instance of its
class. It is of the type defined by the class.

We use our ShopProduct class as a mold for generating ShopProduct objects. To do this, we
need the new operator. The new operator is used in conjunction with the name of a class, like this:

$productl = new ShopProduct();
$product2 = new ShopProduct();

The new operator is invoked with a class name as its only operand and generates an instance of
that class. That is, in our example, it generates a ShopProduct object.

We have used the ShopProduct class as a template to generate two ShopProduct objects.
Although they are functionally identical (that is, empty), $product1 and $product2 are different
objects of the same type generated from a single class.

If you are still confused, try this analogy. Think of a class as a cast in a plastic duck machine.
Our objects are the ducks that this machine generates. The type of thing they are is determined
by the mold from which they are pressed. Theylook identical in every way, but they are distinct
entities. In other words, they are different instances of the same thing. The ducks may even
have their own serial numbers to prove their identities. Every object that is created in a PHP
script s also given its own unique identity (unique to that process, that is, not globally unique).
We can prove this by printing out our $product1 and $product2 objects:

print "$producti\n”;
print "$product2\n”;
// output:

// Object id #1

// Object id #2

Objects are not meant to be printed directly, on the whole, but as you can see, printing an
object reveals its identity number.

In order to make our objects more interesting, we can amend the ShopProduct class to
support special data fields called properties.

Setting Properties in a Class

Classes can define special variables called properties. A property, also known as a member
variable, holds data that can vary from object to object. So in the case of ShopProduct objects we
may wish to manipulate title and price fields, for example.



CHAPTER 3 ™ OBJECT BASICS 17

A property in a class looks similar to a standard variable except that we must precede our
declaration and assignment with a visiblity keyword. This can be public, protected, or private,
and determines the scope from which the property can be accessed.

Note Scope refers to the function or class context in which a variable has meaning. So a variable defined
in a function exists in local scope, and a variable defined outside of the function exists in global scope. As a
rule of thumb, it is not possible to access data defined in a scope that is more local than the current. So if you
define a variable inside a function, you cannot then access it from outside that function. Objects are more
permeable than this, in that some object variables can sometimes be accessed from other contexts. Which
variables can be accessed and from what context is determined by the public, protected, and private
keywords, as we shall see.

We will return to these keywords and the issue of visibility later in this chapter. For now,
let’s declare some properties using the public keyword:
class ShopProduct {

public $title = "default product”;
public $producerMainName = "main name";
public $producerFirstName = "first name";
public $price = 0;

}

As you can see, we set up four properties, assigning a default value to each of them. Any
objects that we instantiate from the ShopProduct class will now be prepopulated with default
data. The public keyword in each property declaration ensures that we can access the property
from outside of the object context.

Note The visibility keywords public, private, and protected were introduced in PHP 5. If you are
running PHP 4, these examples will not work for you. In PHP 4 all properties should be declared with the var
keyword, which is identical in effect to using public:

class ShopProduct {

var $title = "default product";
var $producerMainName = "main name";

var $producerfFirstName = "first name";

var $price = 0;

}

As the examples in this book become more complex, it will become more difficult to adapt them to work with
PHP 4. If you have not yet done so, now might be the time to consider upgrading.




18

CHAPTER 3 =@ OBJECT BASICS

We can access property variables on an object-by-object basis using the characters '->' in
conjunction with an object variable and property name, like this:

$productl = new ShopProduct();
print $producti->title;

// outputs:

// default product

Because the properties are defined as public, we can assign values to them just as we can
read them, replacing any default value set in the class:

$productl = new ShopProduct();
$product2 = new ShopProduct();
$producti->title="My Antonia";
$product2->title="Catch 22";

By declaring and setting the $title property in the ShopProduct class, we ensure that all
ShopProduct objects have this property. This means that client code can work with ShopProduct
objects on that assumption. Because we can reset it, though, the value of $title may vary from
object to object.

In fact, PHP does not force us to declare all our properties in the class. We could add properties
dynamically to an object, like this:

$producti->arbitraryAddition = "treehouse";

This method of assigning properties to objects is not considered good practice in object-
oriented programming, and is almost never used.

Note Is it bad practice to set properties dynamically? When you create a class you define a type. You
inform the world that your class (and any object instantiated from it) consists of a particular set of fields and
functions. If your ShopProduct class defines a $title property, then any code that works with ShopProduct
objects can proceed on the assumption that a $tit1e property will be available. There can be no guarantees
about properties that have been dynamically set, though.

Our objects are still cumbersome at this stage. When we need to work with an object’s
properties, we must currently do so from outside the object. We reach in to set and get property
information. Setting multiple properties on multiple objects will soon become a chore:

$productl = new ShopProduct();
$producti->title = "My Antonia";
$producti->producerMainName = "Cather";
$producti->producerFirstName = "Willa";
$producti->price = 5.99;

We work once again with the ShopProduct class, overriding all the default property values
one by one until we have set all product details. Now that we have set some data we can also
access it:



CHAPTER 3 OBJECT BASICS

print "author: {$producti->producerFirstName} "
. "{$producti->producerMainName}\n";

// output:

// author: Willa Cather

There are a number of problems with this approach to setting property values. Because
PHP lets you set properties dynamically, you will not get warned if you misspell or forget a
property name. For example, we might mistakenly write the line

$producti->producerMainName = "Cather";
as
$producti->producerSecondName = "Cather";

As far as the PHP engine is concerned, this code is perfectly legal, and we are not warned.
When we come to print the author name, though, we will get unexpected results.

Another problem is that our objects are altogether too relaxed. We are not forced to set a
title, or a price, or producer names. Client code can be sure that these properties exist, but is
likely to be confronted with default values as often as not. Ideally, we would like to encourage
anyone who instantiates a ShopProduct object to set meaningful property values.

Finally, we have to jump through hoops to do something that we will probably want to do
quite often. Printing the full author name is a tiresome process:

print "author: {$producti->producerFirstName} "
."{$producti->producerMainName}\n";

It would be nice to have the object handle such drudgery on our behalf.
All of these problems can be addressed by giving our ShopProduct object its own set of
functions that can be used to manipulate property data from within the object context.

Working with Methods

Just as properties allow your objects to store data, methods allow your objects to perform tasks.
Methods are special functions declared within a class. As you might expect, a method declara-
tion resembles a function declaration. The function keyword precedes a method name, followed
by an optional list of argument variables in parentheses. The method body is enclosed by braces:

public function myMethod( $argument, $another ) {
/...

}

Unlike functions, methods must be declared in the body of a class. They can also accept a
number of qualifiers, including a visibility keyword. Like properties, methods can be declared
public, protected, or private. By declaring a method public, we ensure that it can be invoked
from outside of the current object. If you omit the visibility keyword in your method declaration,
the method will be declared public implicitly. We will return to method modifiers later in
sthe chapter.

19



20

CHAPTER 3 OBJECT BASICS

Note PHP 4 does not recognize visibility keywords for methods or properties. Adding public, protected,
or private to a method declaration will cause a fatal error. All methods in PHP 4 are implicitly public.

In most circumstances you will invoke a method using an object variable in conjunction
with ->, and the method name. You must use parentheses in your method call as you would if
you were calling a function (even if you are not passing any arguments to the method).

$myObj = new MyClass();
$myObj->myMethod( "Harry", "Palmer" );

Let’s declare a method in our ShopProduct class:

class ShopProduct {

public $title = "default product";
public $producerMainName = "main name";
public $producerFirstName = "first name";
public $price = 0;

function getProducer() {
return "{$this->producerFirstName}".
" {$this->producerMainName}";

}

$productl = new ShopProduct();
$producti->title = "My Antonia";
$producti->producerMainName = "Cather";
$producti->producerFirstName = "Willa";
$producti->price = 5.99;

print "author: ".$producti->getProducer()."\n";
// outputs:
// author: Willa Cather

We add the getProducer () method to the ShopProduct class. Notice that we do not include
a visibility keyword. This means that getProducer() is a public method and can be called from
outside the class.

We use a new feature in this method. The $this pseudo-variable is the mechanism by which
a class can refer to an object instance. If you find this concept hard to swallow, try replacing
$this with “the current instance.” So the statement

$this->producerFirstName
translates to

the $producerFirstName property of the current instance.



CHAPTER 3 O0BJECT BASICS

So getProducer () combines and returns the $producerfirstName and $producerMainName
properties, saving us from the chore of performing this task every time we need to quote the
full producer name.

This has improved our class a little. We are still stuck with a great deal of unwanted flexi-
bility, though. We rely upon the client coder to change a ShopProduct object’s properties from
their default values. This is problematic in two ways. Firstly, it takes five lines to properly
initialize a ShopProduct object, and no coder will thank you for that. Secondly, we have no way
of ensuring that any of the properties are set when a ShopProduct object is initialized. What we
need is a method that is called automatically when an object is instantiated from a class.

Creating a Constructor Method

A constructor method is invoked when an object is created. You can use it to set things up,
ensuring that essential properties are set, and any necessary preliminary work is completed. In
PHP versions previous to 5, constructor methods took on the name of the class that enclosed
them. So the ShopProduct class would use a ShopProduct () method as its constructor. As of PHP 5
you should name your constructor method __construct(). Note that the method name begins
with two underscore characters. We will see this naming convention for many other special
methods in PHP classes. Let’s define a constructor for the ShopProduct class.

class ShopProduct {
public $title;
public $producerMainName;
public $producerFirstName;
public $price = 0;

function _ construct( $title,
$firstName, $mainName, $price ) {
$this->title = $title;
$this->producerFirstName = $firstName;
$this->producerMainName = $mainName;
$this->price = $price;

}

function getProducer() {
return "{$this->producerFirstName}".
" {$this->producerMainName}";

Once again we gather functionality into the class, saving effort and duplication in the code

thatuses it. The _construct() method is invoked when an object is created using the new operator.

$productl = new ShopProduct( "My Antonia”,
"Willa", "Cather", 5.99 );
.$producti->getProducer()."\n";

”

print "author:
// outputs:
// author: Willa Cather

21



CHAPTER 3 OBJECT BASICS

Any arguments supplied are passed to the constructor. So in our example, we pass the title,
the first name, the main name, and the product price to the constructor. The constructor
method uses the pseudo-variable $this to assign values to each of the object’s properties.

Note PHP 4 does not recognize the __construct() method as a constructor. If you are using PHP 4 you
can create a constructor by declaring a method with the same name as the class that contains it. So for a
class called ShopProduct, you would declare a constructor like this:

function ShopProduct( $title,
$firstName, $mainName, $price ) {
/...
}

Php still honors this naming scheme, but unless you are writing for backwards compatibility, it is better to use
__construct() when you name your constructor methods.

A ShopProduct object is now easier to instantiate and safer to use. Instantiation and setup
are completed in a single statement. Any code that uses a ShopProduct object can be reasonably
sure that all its properties are initialized.

This predictability is an important aspect of object-oriented programming. You should
design your classes so that users of objects can be sure of their features. By the same token,
when you use an object you should be sure of its type. In the next section, we examine a mech-
anism that we can use to enforce object types in method declarations.

Arguments and Types

Type determines the way that data can be managed in your scripts. You use the string type to
display character data, for example, and manipulate such data with string functions. Integers
are used in mathematical expressions, Booleans are used in test expressions, and so on. These
categories are known as “primitive types.” On a higher level, though, a class defines a type.
A ShopProduct object, therefore, belongs to the primitive type “object,” but it also belongs to
the “ShopProduct” class type. In this section we will look at types of both kinds in relation to
class methods.

Method and function definitions do not necessarily require that an argument should be of
a particular type. This is both a curse and a blessing. The fact that an argument can be of any
type offers you flexibility. You can build methods that respond intelligently to different data
types, tailoring functionality to changing circumstances. This flexibility can also cause ambi-
guity to creep into code when a method body expects an argument to hold one type but gets
another.

Primitive Types

PHP is a loosely typed language. This means that there is no necessity for a variable to be
declared to hold a particular data type. The variable $number could hold the value 2 and the



CHAPTER 3 OBJECT BASICS

string “two” within the same scope. In strongly typed languages such as C or Java, you must
declare the type of a variable before assigning a value to it, and, of course, the value must be of
the specified type.

This does not mean that PHP has no concept of type. Every value that can be assigned to a
variable has a type. You can determine the type of a variable’s value using one of PHP’s type-
checking functions. Table 3-1 lists the primitive types recognized in PHP and their corresponding
test functions. Each function accepts a variable or value and returns true if this argument is of
the relevant type.

Table 3-1. Primitive Types and Checking Functions in PHP

Type Checking Function Type Description

is_bool() Boolean One of the two special values true or false

is_integer() Integer A whole number

is_double() Double A floating point number (a number with a deci-
mal point)

is_string() String Character data

is_object() Object An object

is_array() Array An array

is_resource() Resource A handle for identifying and working with
external resources such as databases or files

is_null() NULL An unassigned value

Checking the type of a variable can be particularly important when you work with method
and function arguments.

Primitive Types Matter: An Example

You need to keep a close eye on type in your code. Let’s look at an example of one of the many
type-related problems that you could encounter.

Imagine that you are extracting configuration settings from an XML file. The <resolvedomains>
XML element tells your application whether it should attempt to resolve IP addresses to
domain names, a useful but relatively expensive process in terms of time. Here is some
sample XML:

<settings>
<resolvedomains>false</resolvedomains>
</settings>

The string “false” is extracted by your application and passed as a flag to a method called
outputAddresses(), which displays IP address data. Here is outputAddresses():

23



24

CHAPTER 3 = OBJECT BASICS

function outputAddresses( $resolve ) {
foreach ( $this->addresses as $address ) {
print $address;
if ( $resolve ) {
print " (".gethostbyaddr( $address ).")";
}

print "\n";

}

As you can see, the outputAddresses () method loops through an array of IP addresses,
printing each one. If the $resolve argument variable itself resolves to true, the method outputs
the domain name as well as the IP address.

Let’s examine some code that might invoke this method:

$settings = simplexml_load_file("settings.xml");
$manager = new AddressManager();
$manager->outputAddresses( $settings->resolvedomains );

The code fragment uses the SimpleXML API (which was introduced with PHP 5) to acquire
a value for the resolvedomains element. In our example, we know that this value is the string
“false”.

This code will not behave as you might expect. In passing the string “false” to the
outputAddresses() method, we misunderstand the implicit assumption the method makes
about the argument. The method is expecting a Boolean value (that is true or false). The
string “false” will, in fact, resolve to true in a test. This is because PHP will helpfully cast a
nonempty string value to the Boolean true for you in a test context. So

if ( "false" ) {
/...
}

is equivalent to

if ( true ) {
/...
}

There are a number of approaches you might take to fix this.
You could make the outputAddresses() method more forgiving so that it recognizes a
string and applies some basic rules to convert it to a Boolean equivalent.

function outputAddresses( $resolve ) {
if ( is_string( $resolve ) ) {
$resolve =
( preg_match("/false|no|off/i", $resolve ) )?
false:true;



CHAPTER 3 @ OBJECT BASICS

You could leave the outputAddresses () method as it is, but include a comment containing
clear instructions that the $resolve argument should contain a Boolean value. This approach
essentially tells the coder to read the small print or reap the consequences.

/X%

* Outputs the list of addresses.
* If $resolve is true then each address will be resolved
* @param $resolve Boolean Resolve the address?
*/
function outputAddresses( $resolve ) {
/...
}

Finally, you could make outputAddresses () strict about the type of data it is prepared to
find in the $resolve argument.

function outputAddresses( $resolve ) {
if (! is_bool( $resolve ) ) {
die( "outputAddress() requires a Boolean argument\n" );
}
/...
}

This approach forces client code to provide the correct data type in the $resolve argument.
Converting a string argument on the client’s behalf would be the more friendly approach, but
would probably present other problems. In providing a conversion mechanism, we second-
guess the context and intent of the client. By enforcing the Boolean data type, on the other
hand, we leave the client to decide whether to map strings to Boolean values, and which word
will map to which value. The outputAddresses () method, meanwhile, concentrates on the task
it is designed to perform. This emphasis upon performing a specific task in deliberate igno-
rance of the wider context is an important principle in object-oriented programming, and we
will return to it frequently throughout the book.

In fact, your strategies for dealing with argument types will depend upon the seriousness
of any potential bugs. PHP casts most primitive values for you depending upon context. Numbers
in strings are converted to their integer or floating point equivalents when used in a mathematical
expression, for example. So your code might be naturally forgiving of type errors. If you expect
one of your method arguments to be an array, however, you may need to be more careful.
Passing a nonarray value to one of PHP’s array functions will not produce a useful result, and
could cause a cascade of errors in your method.

It is likely, therefore, that you will strike a balance between testing for type, converting
from one type to another, and relying upon good, clear documentation (you should provide
the documentation whatever else you decide to do).

However you address problems of this kind, you can be sure of one thing: type matters.
The fact that PHP is loosely typed makes this all the more important. You cannot rely on a
compiler to prevent type-related bugs. It is up to you to consider the potential impact of unex-
pected types when they find their way into your arguments. You cannot afford to trust client
coders to read your thoughts, and you should always consider how your methods will deal with
incoming garbage.

25



CHAPTER 3 = OBJECT BASICS

Taking the Hint: Object Types

Just as an argument variable can contain any primitive type, by default it can contain an object
of any type. This flexibility has its uses, but can present problems in the context of a method
definition.

Imagine a method designed to work with a ShopProduct object:

class ShopProductWriter {
public function write( $shopProduct ) {
$str = "{$shopProduct->title}: “;
$str .= $shopProduct->getProducer();
$str .= " ({$shopProduct->price})\n";
print $str;

We can test this class like this:

$productl = new ShopProduct( "My Antonia",
"Willa", "Cather", 5.99 );
$writer = new ShopProductWriter();
$writer->write( $producti );
// output:
// My Antonia: Willa Cather (5.99)

The ShopProductWriter class contains a single method: write(). The write() method
accepts a ShopProduct object and uses its properties and methods to construct and print a
summary string. We use the name of the argument variable, $shopProduct, as a signal that the
method expects a ShopProduct object, but we do not enforce this.

To address this problem, PHP 5 introduced class type hints. To add a type hint to a method
argument, you simply place a class name in front of the method argument you need to constrain.
So we can amend our write() method thus:

public function write( ShopProduct $shopProduct ) {
/...
}

Now the write() method will only accept the $shopProduct argument if it contains an
object of type ShopProduct. Let’s try to call write() with a dodgy object:

class Wrong { }
$writer = new ShopProductWriter();
$writer->write( new Wrong() );

Because the write() method contains a class type hint, passing it a Wrong object causes a
fatal error.

Fatal error: Argument 1 must be an object of class ShopProduct ...

This saves us from having to test the type of the argument before we work with it. It also
makes the method signature much clearer for the client coder. She can see the requirements of



CHAPTER 3 1 OBJECT BASICS

the write() method at a glance. She does not have to worry about some obscure bug arising
from a type error, because the hint is rigidly enforced.

Even though this automating type checking is a great way of preventing bugs, it is impor-
tant to understand that hints are checked at runtime. This means that a class hint will only
report an error at the moment that an unwanted object is passed to the method. If a call to
write() is buried in a conditional clause that only runs on Christmas morning, then you may
find yourself working the holiday if you haven’t checked your code carefully.

So far we have discussed types and classes as if they were synonymous. There is a key
difference, however. When you define a class you also define a type, but a type can describe an
entire family of classes. The mechanism by which different classes can be grouped together
under a type is called inheritance. We discuss inheritance in the next section.

Inheritance

Inheritance is the mechanism by which one or more classes can be derived from a base class.
A class that inherits from another is said to subclass it. This relationship is often described
in terms of parents and children. A child class is derived from and inherits characteristics from
the parent. These characteristics consist of both properties and methods. The child class will
typically add new functionality in addition to that provided by its parent (also known as a super
class); for this reason a child class is said to “extend” its parent.
Before we dive into the syntax of inheritance, let’s examine the problems it can help us
to solve.

The Inheritance Problem

Look again at the ShopProduct class. At the moment it is nicely generic. It can handle all sorts
of products.

$productl = new ShopProduct( “My Antonia", "Willa", "Cather", 5.99 );
$product2 = new ShopProduct( "Exile on Coldharbour Lane",
"The", "Alabama 3", 10.99 );
print "author: ".$producti->getProducer()."\n";
print "artist: ".$product2->getProducer()."\n";
// output:
// author: Willa Cather
// artist: The Alabama 3

Separating the producer name into two parts works well with both books and CDs. We want to
be able to sort on “Alabama 3” and “Cather”, not on “The” and “Willa”. Laziness is an excellent
design strategy, so there is no need to worry about using ShopProduct for more than one kind of
product at this stage.

If we add some new requirements to our example, however, things rapidly become more
complicated. Imagine, for example, that you need to represent data specific to books and CDs.
For CDs you must store the total playing time, for books the total number of pages. There could
be any number of other differences, but these will serve to illustrate the issue.

How can we extend our example to accommodate these changes? Two options immediately
present themselves. Firstly, we could throw all the data into the ShopProduct class. Secondly,
we could split ShopProduct into two separate classes.

27



28 CHAPTER 3 OBJECT BASICS

Let’s examine the first approach. Here, we combine CD- and book-related datain a
single class:

class ShopProduct {
public $numPages;
public $playlength;
public $title;
public $producerMainName;
public $producerFirstName;
public $price;

function _ construct( $title, $firstName,
$mainName, $price,
$numPages=0, $playLength=0 ) {
$this->title = $title;
$this->producerFirstName = $firstName;
$this->producerMainName = $mainName;

$this->price = $price;
$this->numPages = $numPages;
$this->playlength = $playlength;

}

function getNumberOfPages() {
return $this->numPages;

}

function getPlaylLength() {
return $this->playlength;
}

function getProducer() {
return "{$this->producerFirstName}".
" {$this->producerMainName}";

An object instantiated from this class will include a redundant method, and possibly an
unnecessary constructor argument. A CD will store information and functionality relating to
book pages, and a book will support play-length data. This is probably something you could
live with right now. But what would happen if we added more product types, each with its own
methods, and then added more methods for each type? Our class would become increasingly
complex and hard to manage.

So forcing fields that don’t belong together into a single class leads to bloated objects with
redundant properties and methods.

The problem doesn’t end with data, either. We run into difficulties with functionality as
well. Consider a method that summarizes a product. The sales department has requested a
clear summary line for use in invoices. They want us to include the playing time for CDs and a
page count for books, so we will be forced to provide different implementations for each type.
We also need to use a flag to keep track of the object’s format. Here’s an example:



CHAPTER 3 OBJECT BASICS

function getSummarylLine() {
$base "{$this->title} ( {$this->producerMainName}, ";
$base .= "{$this->producerFirstName} )";
if ( $this->type == 'book' ) {

$base .= ": page count - {$this->numPages}";
} else if ( $this->type == 'cd' ) {
$base .= ": playing time - {$this->playlLength}";

}

return $base;

}

Once again our ShopProduct class has become more complex than necessary. As we add
more differences to our formats, or add new formats, these functional differences will become
harder to manage. Perhaps we should try the second approach to this problem.

Since ShopProduct is beginning to feel like two classes in one, we could accept this and
create two types rather than one. Here’s how we might do it:

class CdProduct {
public $playlength;
public $title;
public $producerMainName;
public $producerFirstName;
public $price;

function _ construct( $title, $firstName,
$mainName, $price,
$playLength ) {
$this->title = $title;
$this->producerFirstName = $firstName;
$this->producerMainName = $mainName;
$this->price $price;
$this->playlLength $playlength;

}

function getPlayLength() {
return $this->playlength;
}

function getSummaryLine() {
$base = "{$this->title} ( {$this->producerMainName}, ";
$base .= "{$this->producerFirstName} )";
$base .= ": playing time - {$this->playLength}";
return $base;



30 CHAPTER 3 OBJECT BASICS

function getProducer() {
return "{$this->producerFirstName}".
" {$this->producerMainName}";

}

class BookProduct {
public $numPages;
public $title;
public $producerMainName;
public $producerFirstName;
public $price;

function _ construct( $title, $firstName,
$mainName, $price,
$numPages ) {
$this->title = $title;
$this->producerFirstName = $firstName;
$this->producerMainName = $mainName;
$this->price = $price;
$this->numPages = $numPages;

'}

function getNumberOfPages() {
return $this->numPages;

}

function getSummaryLine() {
$base "{$this->title} ( {$this->producerMainName}, “;
$base .= "{$this->producerFirstName} )";
$base .= ": page count - {$this->numPages}";
return $base;

}

function getProducer() {
return "{$this->producerFirstName}".
" {$this->producerMainName}";

We have addressed the complexity issue, but at a cost. We can now create a getSummaryLine()
method for each format without having to test a flag. Neither class maintains fields or methods
that are not relevant to it.

The cost lies in duplication. The getProducerName() method is exactly the same in each
class. Each constructor sets a number of identical properties in the same way. This is another
unpleasant odor you should train yourself to sniff out.



CHAPTER 3 OBJECT BASICS

If we need the getProducerName() method to behave identically for each class, any changes
we make to one implementation will need to be made for the other. Our class will soon slip out
of synchronization.

Even if we are confident that we can maintain the duplication, our worries are not over. We
now have two types rather than one.

Remember the ShopProductWriter class? Its write() method is designed to work with a
single type: ShopProduct. How can we amend this to work as before? We could remove the class
type hint from the method declaration, but then we must trust to luck thatwrite() is passed an
object of the correct type. We could add our own type checking code to the body of the method:

class ShopProductWriter {
public function write( $shopProduct ) {
if (! ( $shopProduct instanceof CdWriter ) &&
! ( $shopProduct instanceof BookProduct ) ) {
die( "wrong type supplied" );

}
$str = "{$shopProduct->title}: ";
$str .= $shopProduct->getProducer();

$str .= " ({$shopProduct->price})\n";
print $str;

Notice the instanceof operator in the example. instanceof resolves to true if the object in
the left-hand operand is of the type represented by the right-hand operand.

Once again we have been forced to include a new layer of complexity. Not only do we have
to test the $shopProduct argument against two types in the write() method, but we have to
trust that each type will continue to support the same fields and methods as the other. It was
all much neater when we simply demanded a single type because we could use class type
hinting, and because we could be confident that the ShopProduct class supported a particular
interface.

The CD and book aspects of the ShopProduct class don’t work well together, but can’t live
apart, it seems. We want to work with books and CDs as a single type while providing a separate
implementation for each format. We want to provide common functionality in one place to
avoid duplication but allow each format to handle some method calls differently. We need to
use inheritance.

Working with Inheritance

The first step in building an inheritance tree is to find the elements of the base class that don’t
fit together, or that need to be handled differently.

We know that the getPlayLength() and getNumberOfPages () methods do not belong together.
We also know that we would like to create different implementations for the getSummaryLine()
method. Let’s use these differences as the basis for two derived classes:

31



32 CHAPTER 3 ™ OBJECT BASICS

class ShopProduct {
public $numPages;
public $playLength;
public $title;
public $producerMainName;
public $producerFirstName;
public $price;

function _ construct( $title, $firstName,
$mainName, $price,
$numPages=0, $playlLength=0 ) {
$this->title = $title;
$this->producerFirstName = $firstName;
$this->producerMainName = $mainName;

$this->price = $price;
$this->numPages = $numPages;
$this->playLength = $playLength;

}

function getProducer() {
return "{$this->producerFirstName}".
" {$this->producerMainName}";

}

function getSummaryLine() {
$base = "$this->title ( {$this->producerMainName}, ";
$base .= "{$this->producerFirstName} )";
return $base;

}

class CdProduct extends ShopProduct {
function getPlayLength() {
return $this->playlLength;
}

function getSummaryLine() {
$base = "{$this->title} ( {$this->producerMainName}, ";
$base .= "{$this->producerFirstName} )";
$base .= ": playing time - {$this->playLength}";
return $base;



CHAPTER 3 = OBJECT BASICS

class BookProduct extends ShopProduct {
function getNumberOfPages() {
return $this->numPages;

}

function getSummaryLine() {
$base "{$this->title} ( {$this->producerMainName}, ";
$base .= "{$this->producerFirstName} )";.
$base .= ": page count - {$this->numPages}";
return $base;

To create a child class, you must use the extends keyword in the class declaration. In the
example we created two new classes, BookProduct and CdProduct. Both extend the ShopProduct
class.

Because the derived classes do not define constructors, the parent class’s constructor is
automatically invoked when they are instantiated. The child classes inherit access to all the
parent’s public and protected methods. This means that we can call the getProducer() method
on an object instantiated from the CdProduct class, even though getProducer () is defined in the
ShopProduct class.

$product2 = new CdProduct( "Exile on Coldharbour Lane",
"The", "Alabama 3",
10.99, null, 60.33 );

print "artist: ".$product2->getProducer()."\n";

So both our child classes inherit the behavior of the common parent. We can treat a
BookProduct object as if it were a ShopProduct object. We can pass a BookProduct or CdProduct
object to the ShopProductWriter class’s write() method and all will work as expected.

Notice that both our CdProduct and BookProduct classes override the getSummaryLine()
method, providing their own implementation. Derived classes can extend but also alter the
functionality of their parents. At the same time, each class inherits its parent’s properties. Both
BookProduct and CdProduct access the $title property in their versions of getSummaryLine().

Inheritance can be a difficult concept to grasp at first. By defining a class that extends
another, we ensure that an object instantiated from it is defined by the characteristics of first
the child, and then the parent class. Another way of thinking about this is in terms of searching.
When we invoke $product2->getProducer(), there is no such method to be found in the
Cdproduct class, and the invocation falls through to the default implementation in ShopProduct.
When we invoke $product2->getSummarylLine(), on the other hand, the getSummaryLine()
method is found in CdProduct and invoked.

The same is true of property accesses. When we access $title in the BookProduct class’s
getSummaryLine() method, the property is not found in the BookProduct class. It is acquired
instead from the parent class, from ShopProduct. The $title property applies equally to both
subclasses, and therefore it belongs in the super class.

A quick look at the ShopProduct constructor, however, shows that we are still managing
data in the base class that should be handled by its children. The BookProduct class should
handle the $numPages argument and property, and the CdProduct class should handle the



CHAPTER 3 = OBJECT BASICS

$playLength argument and property. To make this work, we will define constructor methods in
each of the child classes.

Constructors and Inheritance

When you define a constructor in a child class, you become responsible for passing any argu-
ments on to the parent. If you fail to do this, you can end up with a partially constructed object.
To invoke a method in a parent class, you must first find a way of referring to the class

itself: a “handle.” PHP provides us with the parent keyword for this purpose.
To refer to a method in the context of a class rather than an object we use : : rather
than ->. So

parent:: _construct()

means “Invoke the __construct() method of the parent class.” Let’s amend our example so
that each class handles only the data that is appropriate to it.

class ShopProduct {
public $title;
public $producerMainName;
public $producerFirstName;
public $price;

function _ construct( $title, $firstName,
$mainName, $price ) {
$this->title = $title;
$this->producerFirstName = $firstName;
$this->producerMainName = $mainName;
$this->price = $price;

}

function getProducer() {
return "{$this->producerFirstName}".
" {$this->producerMainName}";

function getSummarylLine() {
$base = "{$this->title} ( {$this->producerMainName}, ";
$base .= "{$this->producerFirstName} )";
return $base;

}

class CdProduct extends ShopProduct {
public $playlength;



CHAPTER 3 OBJECT BASICS

function _ construct( $title, $firstName,
$mainName, $price, $playlLength ) {
parent:: _construct( $title, $firstName,
$mainName, $price );
$this->playlength = $playlLength;
}

function getPlaylLength() {
return $this->playlength;
}

function getSummarylLine() {
$base "{$this->title} ( {$this->producerMainName}, ";
$base .= "{$this->producerFirstName} )";
$base .= ": playing time - {$this->playlength}";
return $base;

n

}

class BookProduct extends ShopProduct {
public $numPages;

function _ construct( $title, $firstName,
$mainName, $price, $numPages ) {
parent:: _construct( $title, $firstName,
$mainName, $price );
$this->numPages = $numPages;

}

function getNumberOfPages() {
return $this->numPages;

}

function getSummaryLine() {
$base "$this->title ( $this->producerMainName, ";
$base .= "$this->producerFirstName )";
$base .= ": page count - $this->numPages"”;
return $base;

Each child class invokes the constructor of its parent before setting its own properties. The
base class now knows only about its own data. Child classes are generally specializations of
their parents. As a rule of thumb, you should avoid giving parent classes any special knowledge
about their children.



CHAPTER 3 ™ OBJECT BASICS

Note Prior to PHP 5, constructors took on the name of the enclosing class. The new unified constructors
use the name __construct (). Using the old syntax, a call to a parent constructor would tie you to that
particular class:

parent: : ShopProduct();

This could cause problems if the class hierarchy changed. Many bugs resulted from programmers changing
the immediate parent of a class but forgetting to update the constructor. Using the unified constructor, a call
to the parent constructor

parent::__construct()

invokes the immediate parent, no matter what changes are made in the hierarchy. Of course, you still need
to ensure that the correct arguments are passed to an inserted parent!

Invoking an Overridden Method

The parent keyword can be used with any method that overrides its counterpart in a parent
class. When we override a method, we may not wish to obliterate the functionality of the parent
but rather extend it. We can achieve this by calling the parent class’s method in the current
object’s context. If you look again at the getSummaryLine() method implementations, you will
see that they duplicate a lot of code. It would be better to use rather than reproduce the func-
tionality already developed in the ShopProduct class.

// ShopProduct class...
function getSummaryLine() {
$base = "{$this->title} ( {$this->producerMainName}, ";
$base .= "{$this->producerFirstName} )";
return $base;

}

// BookProduct class...
function getSummarylLine() {
$base = parent::getSummaryLine();
$base .= ": page count - {$this->numPages}";
return $base;

}

We set up the core functionality for the getSummaryLine() method in the ShopProduct base
class. Rather than reproduce this in the CdProduct and BookProduct subclasses, we simply call
the parent method before proceeding to add more data to the summary string.

Now that we have seen the basics of inheritance, we can at last look at property and
method visibility in light of the full picture.



CHAPTER 3 OBJECT BASICS

public, private, protected: Managing Access to Your Classes

So far we have declared all properties public whether implicitly or otherwise. Public access is
the default setting for methods, and for properties if you use the old var keyword in your property
declaration.

Elements in your classes can be declared public, private, or protected.

Public properties and methods can be accessed from any context.

A private method or property can only be accessed from within the enclosing class. Even
subclasses have no access.

A protected method or property can only be accessed from within either the enclosing
class or from a subclass. No external code is granted access.

So how is this useful to us? Visibility keywords allow us to expose only those aspects of a
class that are required by a client. This sets a clear interface for your object.

By preventing a client from accessing certain properties, access control can also help
prevent bugs in your code. Imagine, for example, that we want to allow ShopProduct objects to
support a discount. We could add a $discount property and a setDiscount() method.

// ShopProduct class
public $discount = 0;

/...

function setDiscount( $num ) {
$this->discount=$num;

}

Armed with a mechanism for setting a discount, we can create a getPrice() method that
takes account of the discount that has been applied.

// ShopProduct class
function getPrice() {
return ($this->price - $this->discount);

}

At this point we have a problem. We only want to expose the adjusted price to the world,
but a client can easily bypass the getPrice() method and access the $price property:

print "The price is {$producti->price}\n";

This will print the raw price, and not the discount-adjusted price we wish to present. We
can put a stop to this straight away by making the $price property private. This will prevent
direct access, forcing clients to use the getPrice() method. Any attempt from outside the
ShopProduct class to access the $price property will fail. As far as the wider world is concerned,
this property has ceased to exist.

Setting properties to private can be an overzealous strategy. A private property cannot be
accessed by a child class. Imagine that our business rules state that books alone should be ineligible
for discount. We could override the getPrice() method so that it returns the $price property,
applying no discount.

37



CHAPTER 3 = OBJECT BASICS

// BookProduct class
function getPrice() {
return $this->price;

}

Since the private $price property is declared in the ShopProduct class and not BookProduct,
the attempt to access it here will fail. The solution to this problem is to declare $price protected,
thereby granting access to child classes. Remember that a protected property or method cannot be
accessed from outside the class hierarchy in which it was declared. It can only be accessed
from within its originating class, or from within children of the originating class.

As a general rule, err on the side of privacy. Make properties private or protected at first
and relax your restriction only as needed. Many (if not most) methods in your classes will be
public, but once again, if in doubt, lock it down. A method that provides local functionality for
other methods in your class has no relevance to your class’s users. Make it private or protected.

Accessor Methods

Even when client programmers need to work with values held by your class, it is often a good
idea to deny direct access to properties, providing methods instead that relay the needed
values. Such methods are known as accessors or “getters and setters.”

You have already seen one benefit afforded by accessor methods. You can use an accessor
to filter a property value according to circumstances, as was illustrated with the getPrice()
method.

You can also use a setter method to enforce a property type. We have seen that class type
hints can be used to constrain method arguments, but we have no direct control over property
types. Remember the ShopProductWriter class that uses a ShopProduct object to output list
data? Let’s develop this further so that it writes any number of ShopProduct objects at one time:

class ShopProductWriter {
public $products = array();

public function addProduct( ShopProduct $shopProduct ) {
$this->products[] = $shopProduct;

}

public function write() {
$str = "";
foreach ( $this->products as $shopProduct ) {
$str .= "{$shopProduct->title}: ";
$str .= $shopProduct->getProducer();
$str " ({$shopProduct->getPrice()})\n";

}
print $str;

The ShopProductWriter class is now much more useful. It can hold many ShopProduct
objects, and write data for them all in one go. We must trust our client coders to respect the
intentions of our class, though. Despite the fact that we have provided an addProduct() method,



CHAPTER 3 OBJECT BASICS

we have not prevented programmers from manipulating the $products property directly. Not
only could someone add the wrong kind of object to the $products array property, but they
could even overwrite the entire array and replace it with a primitive value. We can prevent this
by making the $products property private:

class ShopProductWriter {
private $products = array();
/...

It's now impossible for external code to damage the $products property. All access must be
via the addProduct () method, and the class type hint we use in the method declaration ensures
that only ShopProduct objects can be added to the array property.

The ShopProduct Classes

Let’s close this chapter by amending the ShopProduct class and its children to lock down
access control:

class ShopProduct {
private $title;
private $producerMainName;
private $producerFirstName;
protected $price;
private $discount = 0;

public function _ construct( $title, $firstName,
$mainName, $price ) {
$this->title = $title;
$this->producerFirstName = $firstName;
$this->producerMainName = $mainName;
$this->price = $price;

}

public function getProducerfirstName() {
return $this->producerfFirstName;

}

public function getProducerMainName() {
return $this->producerMainName;

}

public function setDiscount( $num ) {
$this->discount=$num;

}

public function getDiscount() {
return $this->discount;

}

39



40 CHAPTER 3 1 OBJECT BASICS

public function getTitle() {
return $this->title;

}

public function getPrice() {
return ($this->price - $this->discount);

}

public function getProducer() {
return "{$this->producerFirstName}".
" {$this->producerMainName}";

}

function getSummaryLine() {
$base = "{$this->title} ( {$this->producerMainName}, ";
$base .= "{$this->producerFirstName} )";
return $base;

}

class CdProduct extends ShopProduct {
private $playlLength = O;

public function _ construct( $title, $firstName,
$mainName, $price, $playLength ) {
parent:: construct( $title, $firstName,
$mainName, $price );
$this->playlLength = $playlLength;
}

public function getPlaylLength() {
return $this->playlLength;
}

function getSummarylLine() {
$base = parent::getSummarylLine();
$base .= ": playing time - {$this->playlLength}”;
return $base;

}

class BookProduct extends ShopProduct {
private $numPages = 0;



CHAPTER 3 OBJECT BASICS

public function _ construct( $title, $firstName,
$mainName, $price, $numPages ) {
parent::__construct( $title, $firstName,
$mainName, $price );
$this->numPages = $numPages;

}

public function getNumberOfPages() {
return $this->numPages;

}

function getSummaryLine() {
$base = parent::getSummaryLine();
$base .= ": page count - {$this->numPages}";
return $base;

}

public function getPrice() {
return $this->price;

}

There is nothing substantially new in this version of the ShopProduct family. All methods
have been made explicitly public, and all properties are now either private or protected. We
have added a number of accessor methods to round things off.

Summary

This chapter covered a lot of ground, taking a class from an empty implementation through to
a fully featured inheritance hierarchy. You took in some design issues, particularly with regard
to type and inheritance. You saw PHP’s new support for visibility and explored some ofits uses.
In the next chapter, I will show you more features supported by the Zend 2 Engine that powers
PHP 5.

41



PHP 5 opened new vistas of possibility for object-oriented programmers. We have already
seen how class type hinting and access control afford greater control over a class’s interface.
In this chapter, we will delve deeper into PHP’s enhanced object-oriented support.

This chapter will cover

o Static methods and properties: Accessing data and functionality through classes rather
than objects

* Abstract classes and interfaces: Separating design from implementation
* Error handling: Introducing exceptions

* Final classes and methods: Limiting inheritance

* Interceptor methods: Automating delegation

* Destructor methods: Cleaning up after your objects

* Cloning objects: Making object copies

* Resolving objects to strings: Creating a summary method

Static Methods and Properties

All the examples in the previous chapter worked with objects. I characterized classes as
templates from which objects are produced, and objects as active components, the things
whose methods we invoke and whose properties we access. I implied that the action in
object-oriented programming is to be found through instances of classes. Classes, after all,
are merely templates for objects.

In fact, it is not that simple. We can access both methods and properties in the context of
a class rather than that of an object. Such methods and properties are “static” and must be
declared so using the static keyword.

class StaticExample {
static public $aNum = 0;
static public function sayHello() {
print "hello";
}



CHAPTER 4 = ADVANCED FEATURES

Note The static keyword was introduced with PHP 5. It cannot be used in PHP 4 scripts.

Because you access a static element via a class and not an instance, you do not need a
variable that references an object. Instead, you use the class name in conjunction with : :.

print StaticExample::$aNum;
print StaticExample::sayHello();

This syntax should be familiar to you from the previous chapter. We used : : in conjunction
with parent to access an overridden method. Now, as before, we are accessing class rather than
object data. Class code can use the parent keyword to access a super class without using its
class name. To access a static method or property from within the same class (rather than from
a child), we would use the self keyword. self is to classes what the $this pseudo-variable is to
objects. So from outside the StaticExample class we access the $aNum property using its class name:

StaticExample: :$aNum;
From within the StaticExample class we can use the self keyword:

class StaticExample {
static public $aNum = 0;
static public function sayHello() {
self::$aNum++;
print "hello (".self::$aNum.")\n";

Note Making a method call using parent is the only circumstance in which you can use a static reference
to a nonstatic method using PHP 5. PHP 4 allowed you to treat any method as static simply by referencing it
as such. This results in a fatal error in PHP 5.

Unless you are accessing an overridden method, you should only ever use : : to access a method or property
that has been explicitly declared static.

Note You will often see static syntax used in documentation to refer to a method or property. This does not
mean that the item in question is necessarily static, just that it belongs to a certain class. The write()
method of the ShopProductWriter class might be referred to as ShopProductWriter: :write(), for
example, even though the write() method is not static. You will see this syntax here when that level of
specificity is appropriate.




CHAPTER 4 " ADVANCED FEATURES

By definition, static methods are not invoked in the context of an object. A consequence of
this is you cannot use the $this pseudo-variable inside a static method without causing a
fatal error.

So, why would we use a static method or property? Static elements have a number of char-
acteristics that can be useful. Firstly, they are available from anywhere in your script (presuming
that you have access to the class). This means you can access functionality without needing to
pass an instance of the class around from object to object, or worse, storing an instance in a
global variable. Secondly, a static property is available to every instance of a class, so you can
set values that you wish to be available to all members of a type. Finally, the fact that you don’t
need an instance to access a static property or method can save you from instantiating an
object purely to get at a simple function.

Let’s build a static method for the ShopProduct class that automates the instantiation of
ShopProduct objects. Using SQLite or MySQL, we might define a products table like this:

CREATE TABLE products (
id INT PRIMARY KEY,
type varchar(255),
firstname varchar(255),
mainname varchar(255),
title varchar(255),
price float,
numpages int,
playlength int,
discount int );

Let’s build a getInstance() method that accepts a row ID and DB_common object, uses them
to acquire a database row, then returns a ShopProduct object. We can add these methods to
the ShopProduct class we created in the last chapter. The DB_common class is the parent for the
connection objects in the PEAR: : DB package.

// require_once("DB.php"};
/...
// ShopProduct class...
private $id = 0;
/...
public function setID( $id ) {
$this->id = $id;
}
/...
public static function getInstance( $id, DB_common $db ) {
$query = "select * from products where id="$id"";
$query result = $db->query( $query );

if ( DB::isError( $query result ) ) {
die($query_result->getMessage());
}



46

CHAPTER 4 = ADVANCED FEATURES

$row = $query_result->fetchRow( DB_FETCHMODE_ASSOC );
if ( empty( $row ) ) { return null; }

if ( $row['type'] == "book" ) {
$product = new BookProduct(
$row[ 'title'],
$row[ ' firstname'],
$row[ 'mainname’],
$row[ 'price’],
$row[ 'numpages'] );
} else if ( $row['type'] == "cd" ) {
$product = new CdProduct(
$row[ 'title'],
$row[ 'firstname'],
$row[ 'mainname’],
$row[ 'price'],
$row[ 'playlength'] );
} else {
$product = new ShopProduct(
$row[ 'title'],
$row[ 'firstname'],
$row[ 'mainname'],
$row[ 'price'] );

}
$product->setId( $row['id'] );
$product->setDiscount $row[ 'discount'] );

return $product;

As you can see, the getInstance() method returns a ShopProduct object and, based on a
type flag, is smart enough to work out the precise specialization it should instantiate. I have
omitted any error handling in order to keep the example compact.

This method is more useful in a class context than an object context. It lets us convert raw
materials into an object easily without requiring that we have a ShopProduct object to start
with. The method does not use any instance properties or methods, so there is no reason why
it should not be declared static. Given a valid DB Common object, we can invoke the method
from anywhere in an application:

require_once("DB.php");
$db = DB::connect("sqlite://./products.db");
$obj = ShopProduct::getInstance( 53, $db );

Methods like this act as “factories” in that they take raw materials and use them to produce
objects. The term “factory” is applied to code designed to generate object instances. We will
encounter factory examples again.



CHAPTER 4 = ADVANCED FEATURES

Constant Properties

Some properties should not be changed. Pi is pi, and you will want it to stay that way. Error and
status flags will often be hard coded into your classes. Although they should be publicly and
statically available, client code should not be able to change them.

PHP 5 allows us to define constant properties within a class. Like global constants, class
constants cannot be changed once they are set. A constant property is declared with the const
keyword. Constants are not prefixed with a dollar sign like regular properties. By convention,
they are often named using only uppercase characters, like this:

class ShopProduct {
const AVAILABLE
const OUT_OF_STOCK
/...

0;
1;

1

Constant properties can contain only primitive values. You cannot assign an object to a
constant. Like static properties, constant properties are accessed via the class and not an
instance. You refer to a constant without a dollar sign, like this:

print ShopProduct::AVAILABLE;

An attempt to set a value on a constant once it has been declared will cause a parse error.
You should use constants when your property needs to be available across all instances of
a class, and when the property value needs to be fixed and unchanging.

Abstract Classes

The introduction of abstract classes was one of the major changes ushered in with PHP 5 and
the Zend 2 Engine. Its inclusion in the list of new features was another sign of PHP’s extended
commitment to object-oriented design.

An abstract class cannot be instantiated. Instead it defines (and optionally partially
implements) the interface for any class that might extend it.

You define an abstract class with the abstract keyword. Let’s redefine the ShopProductWriter
class we created in the last chapter as an abstract class.

abstract class ShopProductiriter {
protected $products = array();

public function addProduct( ShopProduct $shopProduct ) {
$this->products{ ]=$shopProduct;

}

You can create methods and properties as normal, but any attempt to instantiate an
abstract object will cause an error like this:

$writer = new ShopProductWriter();

// output:

// Fatal error: Cannot instantiate abstract class
// shopproductwriter ...

a7



CHAPTER 4 ADVANCED FEATURES

In most cases an abstract class will contain at least one abstract method. These are declared
once again with the abstract keyword. An abstract method cannot have an implementation.
You declare it as normal, but end the declaration with a semicolon rather than a method body.
Here we add an abstract write() method to the ShopProductWriter class:

abstract class ShopProductWriter {
protected $products = array();

public function addProduct( ShopProduct $shopProduct ) {
$this->products[]=$shopProduct;

}

abstract public function write();

In creating an abstract method, you ensure that an implementation will be available in all
concrete child classes, but you leave the details of that implementation undefined.

If we were to create a class derived from ShopProductWriter that does not implement the
write() method, we would face the following error:

class ErroredWriter extends ShopProductWriter{}

// output:

// Fatal error: Class ErroredWriter contains 1 abstract methods
// and must therefore be declared abstract

// (ShopProductWriter::write) in...

So any class that extends an abstract class must implement all abstract methods or must
itself be declared abstract. An extending class is responsible for more than simply implementing an
abstract method. In doing so it must reproduce the method signature. This means that the
access control of the implementing method cannot be stricter than that of the abstract method.
The implementing method should also require the same number of arguments as the abstract
method, reproducing any class type hinting.

Let’s define two implementations of ShopProductWriter():

class XmlProductWriter extends ShopProductWriter{
public function write() {

$str = "<products>\n";

foreach ( $this->products as $shopProduct ) {
$str .= "\t<product title=\"{$shopProduct->getTitle()}\">\n";
$str .= "\t\t<summary>\n";
$str .= "\t\t{$shopProduct->getSummaryLine()}\n";
$str .= "\t\t</summary>\n";
$str .= "\t</product>\n";

}
$str .= "</products>\n";
print $str;



CHAPTER 4 " ADVANCED FEATURES

class TextProductWriter extends ShopProductWriter{
public function write() {
$str = "PRODUCTS:\n";
foreach ( $this->products as $shopProduct ) {
$str .= $shopProduct->getSummaryLine()."\n";
}
print $str;

We create two classes, each with its own implementation of the write() method. The first
outputs XML, and the second outputs text. A method that requires a ShopProductWriter object
will not know which of these two classes it is receiving but can be absolutely certain that a
write() method will be implemented.

Abstract classes were often approximated in PHP 4 by creating methods containing warnings
or even die() statements. This forces a derived class to implement the abstract methods or risk
having them invoked.

class AbstractClass {
function abstractFunction() {
die( "AbstractClass::abstractFunction() is abstract\n" );

}

The problem here is that the abstract nature of the base class is only tested when an abstract
method is invoked. In PHP 5, abstract classes are tested when they are parsed, which is much
safer.

Interfaces

While abstract classes let you provide some measure of implementation, interfaces are pure
templates. An interface can only define functionality; it can never implement it. An interface is
declared with the interface keyword. It can contain properties and method declarations, but
not method bodies.

Let’s define an interface:

interface Chargeable {
public function getPrice();

}

As you can see, an interface looks very much like a class. Any class that incorporates this
interface commits to implementing all the methods it defines, or it must be declared abstract.

A class can implement an interface using the implements keyword in its declaration. Once
you have done this, the process of implementing an interface is the same as extending an
abstract class that contains only abstract methods. Let’s make the ShopProduct class implement
Chargeable.

49



CHAPTER 4 *© ADVANCED FEATURES

class ShopProduct implements Chargeable {
/...
public function getPrice() {
return ( $this->price - $this->discount );
}
/..

ShopProduct already had a getPrice() method, so why might it be useful to implement the
Chargeable interface? The answer lies in type once again. An implementing class takes on the
type of the class it extends and the interface that it implements.

This means that the CdProduct class belongs to

CdProduct
ShopProduct
Chargeable

This can be exploited by client code. To know an object’s type is to know its capabilities.
So the method

public function cdInfo( CdProduct $prod ) {
/1 ...

}

knows that the $prod object has got a getPlaylLength() method in addition to all the methods
defined in the ShopProduct class.
Passed the same object, the method

public function addProduct( ShopProduct $prod ) {
/..

}

knows that $prod supports all the methods in ShopProduct, but without further testing it will
know nothing of the getPlayLength() method.
Once again, passed the same CdProduct object, the method

public function addChargeableItem( Chargeable $item ) {
/...

}

knows nothing at all of the ShopProduct or CdProduct types. This method is only concerned that
the $item argument contains a getPrice() method.

Because any class can implement an interface (in fact, a class can implement any number
of interfaces), interfaces effectively join types that are otherwise unrelated. We might define an
entirely new class that implements Chargeable:

class Shipping implements Chargeable {
public function getPrice() {
/...

}



CHAPTER 4 " ADVANCED FEATURES

We can pass a Shipping object to the addChargeableItem() method just as we can pass ita
ShopProduct object.

The important thing to a client working with a Chargeable object is that it can call a getPrice()
method. Any other methods available are associated with other types, whether through the
object’s own class, a super class, or another interface. These are irrelevant to the client.

A class can both extend a super class and implement any number of interfaces. The extends
clause should precede the implements clause:

class Consultancy extends TimedService implements Bookable, Chargeable {
/...
}

Notice that the Consultancy class implements more than one interface. Multiple interfaces
follow the implements keyword in a comma-separated list.

PHP only supports inheritance from a single parent, so the extends keyword can precede
a single class name only.

Handling Errors

Things go wrong. Files are misplaced, database servers are left uninitialized, URLs are changed,
XML files are mangled, permissions are misset, disk quotas are exceeded. The list goes on and
on. In the fight to anticipate every problem, a simple method can sometimes sink under the
weight of its own error handling code.

Here is a simple Person class that stores some basic data:

class Person {

private $name;

private $age;

private $id = 0;

function _ construct( $name, $age ) {
$this->name = $name;
$this->age = $age;

}

function setID( $id ) {
$this->id = $id;
}

function getName() {
return $this->name;

}

function getaAge() {
return $this->age;

}

The Person class does nothing but store $name, $age, and $id properties. $name and $age are
set in the constructor, and are accessible with “getter” methods. The $id property can be set

51



52

CHAPTER 4 1 ADVANCED FEATURES

using the setID() method. To illustrate some of the issues surrounding error handling, let’s
create a class that writes Person object data to a database. The schema we will work with looks
like this:

CREATE TABLE persons (
id INT PRIMARY KEY,
name varchar(255),
age int

)5

The real error magnet in this example is a class called PersonPersist. PersonPersist takes
a Person object and writes it to a database. At least, that’s what we are hoping it will do.

require_once("DB.php");

class PersonPersist {
private $dsn;
private $db_obj;
private $fields = array( "name", "age" );

function __construct( $dsn ) {
$this->dsn = $dsn;
}

public function connect( ) {
$this->db_obj = DB::connect($this->dsn);

}

public function insert( Person $person ) {

if ( empty( $this->db_obj) ) {
$this->connect();

}

$row = array();

foreach( $this->fields as $fieldname ) {
$method = "get{$fieldname}";
$row[$Ffieldname] = $person->$method();

}

$row['id'] = $this->db_obj->nextId('persons_sequence');

$insert_result =
$this->db_obj->autoExecute(
‘persons’, $row, DB_AUTOQUERY INSERT );

$person->setId( $row['id'] );

return $row['id'];



CHAPTER 4 1 ADVANCED FEATURES

The PersonPersist class uses the PEAR: :DB package to write a Person object to a database
table. With this package, we are able to write database-agnostic code. The $fields property
contains an array of strings that match both database fields and the names of Person “getter”
methods. We use this conjunction in the insert() method to construct an array of keys and
values that can be passed to a PEAR: :DB method called autoexecute(). This method uses an
associative array to construct the SQL statement required to insert our Person data.

Of course, before we can make a query, we have to connect to the database. The connect ()
method uses a user-supplied Data Source Name (DSN) in conjunction with the static
DB: : connect () method to generate aDB_Common object. We store the DB_Common object in a property
named $db_obj, and we can use it to work with our database. We use the PersonPersist class
like this:

$person = new Person{ 'bob', 44 );
$saver = new PersonPersist( "sqlite://./persons.db” );
$saver->insert( $person );

PersonPersist is highly simplified. In particular, it has no strategy for distinguishing
between inserts and updates. It is also optimistic in outlook. It does not handle any of the
errors that might arise when working with a database.

What will happen, for example, if the database connection fails, or if the expected table
does not exist? A failed connection will cause a fatal error as we attempt to invoke methods on
an invalid $db_obj method. Perhaps worse, a missing table will result in the database insert
failing silently.

Testing for these error conditions is relatively trivial, but we must still decide how we
should respond to them should they arise. We generally have two options:

Firstly, we could end execution. This is simple but drastic. Our humble method then presumes
to take responsibility for bringing an entire script crashing down around it. Although methods
like connect () and insert() are well placed to detect errors, they do not have the information
to decide how to handle them.

Rather than handle the error in our method, then, we could return an error flag of some
kind. This could be a Boolean or an integer value such as 0 or -1. Some classes will also set an
error string or flag so that the client code can request more information after a failure.

Many PEAR packages combine these two approaches by returning an error object (an instance
of PEAR_Error), which acts both as notification that an error has occurred and contains the
error message within it.

The problem here is that we pollute our return value. PHP does not enforce a unified return
value. There is no return class type hinting, so there is nothing to prevent us from returning an
error flag instead of the promised object or primitive. When we do this, we have to rely on the
client coder to test for the return type every time our error-prone method is called. This can be
risky. Trust no one!

When we return an error value to the calling code, there is no guarantee that the client will
be any more equipped than our method to decide how to handle the error. If this is the case,
then the problem begins all over again. The client method will have to determine how to
respond to the error condition, maybe even implementing a different error reporting strategy.

53



54

CHAPTER 4 == ADVANCED FEATURES

Exceptions

Zend Engine 2 introduces exceptions to PHP, aradically different way of handling error conditions.
Different for PHP, that is. You will find them hauntingly familiar if you have Java or C++ expe-
rience. Exceptions address all of the issues that we have raised so far in this section.

An exception is a special object instantiated from the built-in Exception class (or from a
derived class). Objects of type Exception are designed to hold and report error information.

The Exception class constructor accepts two optional arguments, a message string and an
error code. The class provides some useful methods for analyzing error conditions. These are
described in Table 4-1.

Table 4-1. The Exception Class’s Public Methods

Method Description

getMessage() Get the message string that was passed to the constructor.

getCode() Get the code integer that was passed to the constructor.

getFile() Get the file in which the exception was generated.

getTrace() Get a multidimensional array tracing the method calls that led to
the exception, including method, class, file, and argument data.

getTraéeAsString() Get a string version of the data returned by getTrace().

__toString() Called automatically when the Exception objectis used in string

context. Returns a string describing the exception details.

The Exception class is fantastically useful for providing error notification and debugging
information (the getTrace() and getTraceAsString() methods are particularly helpful in this
regard). In fact, it is almost identical to the PEAR_Error class that has already been discussed.
There is much more to an exception than the information it holds, though.

Throwing an Exception

The throw keyword is used in conjunction with an Exception object. It halts execution of the
current method and passes responsibility for handling the error back to the calling code. Let’s
amend the connect() method to use the throw statement:

public function connect( ) {
$this->db_obj = DB::connect($this->dsn);
if ( DB::isError( $this->db obj )) {
throw new Exception("A connection error occured");
}



CHAPTER 4 = ADVANCED FEATURES

The insert() method can use a similar construct:

public function insert( Person $person ) {
/...
$insert_result =
$this->db_obj->autoExecute(
'persons', $row, DB AUTOQUERY INSERT );

if ( DB::isError( $insert result )) {
throw new Exception( "Could not insert" );

}
/...

Our connect() and insert() methods can now check diligently for errors as they do their
work, but let code more fitted for the purpose decide how to respond to any errors detected.

So how does client code know how to handle an exception when thrown? When you invoke
a method that may throw an exception, you can wrap your call in a try clause. A try clause is
made up of the try keyword followed by braces. The try clause must be followed by at least one
catch clause in which you can handle any error, like this:

try {
$saver = new PersonPersist( "sqlite://./persons.db" );
$saver->insert( $person );

} catch ( Exception $e ) {
die( $e->_ toString() );

}

Asyou can see, the catch clause superficially resembles a method declaration. When an
exception is thrown, the catch clause in the invoking scope is called. The Exception object is
automatically passed to the argument variable.

Just as execution is halted within the throwing method when an exception is thrown, so it
is within the try clause—control passes directly to the catch clause.

Subclassing Exception

You can create classes that extend the Exception class as you would with any user-defined
class. There are two reasons why you might want to do this. Firstly, you can extend the class’s
functionality. Secondly, the fact that a derived class defines a new class type can aid error
handling in itself.

You can, in fact, define as many catch clauses as you need for a try statement. The particular
catch clause invoked will depend upon the type of the thrown exception and the class type hint
in the argument list. Let’s define some simple classes that extend Exception:

55



56 CHAPTER 4 *° ADVANCED FEATURES

class DbException extends Exception {
protected $pearError;
function _ construct( PEAR_Error $error ) {
parent::_ construct( $error->getMessage(), $error->getCode() );
$this->pearkError = $error;

}

function getPearError() {
return $this->pearError;
}
}

class DbConnectionException extends DbException{ }
class SqlException extends DbException{ }

The PEAR_Error class resembles the Exception class. It has getMessage() and getCode()
methods. We take advantage of this similarity and use the PEAR_Error object in the DbException
class. The SqlException and DbConnection classes do nothing more than subclass DbException.
We can now use these classes in our code and amend both connect() and insert():

// PersonPersist class...
public function connect( ) {
$this->db_obj = DB::connect($this->dsn);
if ( DB::isError( $db_obj )) {
throw new DbConnectionException( $db_obj );
}
}

public function insert( Person $person ) {

if ( empty( $this->db_obj) ) {
$this->connect();

}

$row = array();

foreach( $this->fields as $fieldname ) {
$method = "get{$fieldname}";
$row[$fieldname] = $person->$method();

}

$row['id'] = $this->db_obj->nextId('persons_sequence');

$insert result =
$this->db_obj->autoExecute(
'persons', $row, DB_AUTOQUERY INSERT );

if ( DB::isError( $insert result )) {
throw new SqlException( $insert result );
}
$person->setId( $row['id'] );
return $row['id'];



CHAPTER 4 " ADVANCED FEATURES 57

connect () throws aDbConnectionExceptionand insert() throws an SqlException. Because the
insert() method calls connect (), it might throw either exception. How does this work? PHP
does not force a method to catch an exception. If an exception is uncaught within a method,
then it is implicitly thrown to that method’s own calling code, and so on until the exception is
either caught or can be thrown no further. The insert () method explicitly throws an SqlException
and implicitly throws a DbConnectionException. This kind of hidden exception can make it hard
to trace what is happening in your code, so you may wish to manually rethrow any exceptions
you do not want to handle to make your method clearer:

public function insert( Person $person ) {
try {
if ( empty( $this->db obj ) ) {
$this->connect();

}

} catch ( DbConnectionException $e ) {
throw $e;

}

/...

This try/catch pair is ultimately redundant, but does have the virtue of clarity. Which
approach you take is a matter of preference. Personally, I tend to let a calling method throw an
exception implicitly, and include clear documentation to signal the fact.

So, we have established that connect () might throw one of two possible exceptions. How
can we take advantage of this? Here's the code that invokes the insert() method:

try {
$saver = new PersonPersist( "sqlite://./persons.db" );
$saver->insert( $person );

} catch ( DbConnectionException $e ) {
// perhaps try again with a new DSN?
print $e-> toString();

} catch ( SqlException $e ) {
// log and die?
print $e-> toString();

} catch ( Exception $e ) {
// should not currently get called
print $e-> toString();

We provide a catch clause for each class type. The clause invoked depends upon the
exception type thrown. The first to match will be executed, so remember to place the most
generic type at the end and the most specialized at the start. For example, if you were to place
the catch clause for Exception ahead of the clause for DbConnectionException and SqlException,
neither of these would ever be invoked. This is because both of these classes belong to the
Exception type, and would therefore match the first clause.



CHAPTER 4 11 ADVANCED FEATURES

The first catch clause (DbConnectionException) is invoked if there is an error in connection
(if the database file is unreadable, for example, or if the DSN is invalid). The second clause
(SqlException) is invoked if an error occurs during the insert (if the “products” table does not
exist or its schema does not match our fields, for example). The final clause (Exception) should
not be reached because our methods only generate two exceptions, which are both explicitly
handled. It is often a good idea to have a “backstop” clause like this, though, in case you add
new exceptions to the code during development.

So what happens if an exception is not caught? You have seen that you can allow a method
to rethrow an exception rather than handle it. You will have to deal with a thrown exception at
some point in your code, though, or suffer a fatal error. Here’s what would happen if we did not
catch one of the exceptions in our example:

Fatal error: Uncaught exception "DbConnectionException”
with message 'DB Error: not found' in...

So when you throw an exception you force the client to take responsibility for handling it.
This is not an abdication of responsibility. An exception should be thrown when a method has
detected an error but does not have the contextual information to be able to handle it intelli-
gently. The connect() method in our example knows when the attempt to connect has failed,
and it knows why, but it does not know what to do about it. This is as it should be. If we were to
make the PersonPersist class more knowing that it currently is, it would lose focus and become
less reusable.

Final Classes and Methods

Inheritance allows for enormous flexibility within a class hierarchy. You can override a class or
method so that a call in a client method will achieve radically different effects according to the
particular class instance it has been passed. Sometimes, though, a class or method should
remain fixed and unchanging. If you have achieved the definitive functionality for your class or
method, and you feel that overriding it can only damage the ultimate perfection of your work,
you may need the final keyword.

final puts a stop to inheritance. A final class cannot be subclassed. Less drastically, a final
method cannot be overridden.

Let’s declare a class final:

final class Checkout {
/! .

}

Any attempt to subclass the Checkout class will now cause a fatal error like this:

class IllegalCheckout extends Checkout {
/..
}
// Fatal error: Class illegalcheckout may not inherit from
// final class (checkout) in...

We could relax matters somewhat by declaring a method in Checkout final, rather than the
whole class. The final keyword should be placed in front of any other modifiers such as
protected or static, like this:



CHAPTER 4 ™ ADVANCED FEATURES

class Checkout {
final function totalize() {
// calculate bill
}

We can now subclass Checkout, but any attempt to override totalize() will cause a fatal error:

class IllegalCheckout extends Checkout {
final function totalize() {
// change bill calculation

}
}

// Fatal error: Cannot override final method
// checkout::totalize() in ...

Good object-oriented code tends to emphasize the well-defined interface. Behind the
interface, though, implementations will often vary. Different classes or combinations of classes
conform to common interfaces but behave differently in different circumstances. By declaring
a class or method final, you limit this flexibility. There will be times when this is desirable, and
we will see some of them later in the book, but you should think carefully before declaring
something final. Are there really no circumstances in which overriding would be useful? You
could always change your mind later on, of course, but this might not be so easy if you are
distributing a library for others to use. Use final with care.

Working with Interceptors

PHP provides built-in interceptor methods, which can intercept messages sent to undefined
methods and properties. This is also known as “overloading,” but since this term means some-
thing quite different in Java and C++, I think it is better to talk in terms of interception.

PHP 5 supports three built-in interceptor methods. Like _ construct(), these are invoked
for you when the right conditions are met. Table 4-2 describes the methods.

Table 4-2. The Interceptor Methods

Method Description

__get( $property ) Invoked when an undefined property is accessed

__set( $property, $value ) Invoked when a value is assigned to an undefined
property

__call( $method, $arg array ) Invoked when an undefined method is called

The _get() and __set() methods are designed for working with properties that have not
been declared in a class (or its parents).

__get() is invoked when client code attempts to read an undeclared property. It is called
automatically with a single string argument containing the name of the property that the client

59



CHAPTER 4 " ADVANCED FEATURES

is attempting to access. Whatever you return from the __call() method will be sentback to the
client as if the target property exists with that value. Here’s a quick example:

class Person {
function _get( $property ) {
$method = "get{$property}";
if ( method exists( $this, $method ) ) {
return $this->$method();
}
}

function getName() {
return "Bob";

}

function getAge() {
return 44;

}

When a client attempts to access an undefined property, the _ get() method is invoked.
We have implemented __get () to take the property name and construct a new string, prepending
the word “get”. We pass this string to a function called method_exists(), which accepts an
object and a method name and tests for method existence. If the method does exist, we invoke
it and pass its return value to the client. So if the client requests a $name property:

$p = new Person();
print $p->name;

// output:

// Bob

the getName() method is invoked behind the scenes. If the method does not exist, we do nothing.
The property that the user is attempting to access will resolve to NULL.

The _set() method is invoked when client code attempts to assign to an undefined property.
It is passed two arguments: the name of the property, and the value the client is attempting to
set. You can then decide how to work with these arguments. Let’s amend the Person class:

class Person {
private $_name;
private $_age;

function _ set( $property, $value ) {
$method = "set{$property}";
if ( method_exists( $this, $method ) ) {
return $this->$method( $value );

}



CHAPTER 4 » ADVANCED FEATURES

function setName( $name ) {
$this->_name = strtoupper($name);

}

function setAge( $age ) {
$this->_age = strtoupper($age);
}

In this example we work with “setter” methods rather than “getters.” If a user attempts to
assign to an undefined property, the __set() method is invoked with the property name and
the assigned value. We test for the existence of the appropriate method, and invoke it if it exists.
In this way we can filter the assigned value.

Note Remember that methods and properties in PHP documentation are frequently spoken of in static
terms in order to identify them with their classes. So we might talk about the Person: : $name property, even
though the property is not declared static and would in fact be accessed via an object, like this:

$person->name;

So if we create a Person object and then attempt to set a property called Person: : $name, the
__set() method is invoked, because this class does not define a $name property. The method is
passed the string “name” and the value we wish to set. It is up to us what we do with this infor-
mation. In this example, we construct a method name out of the property argument combined
with the string “set”. The setName() method is found and duly invoked. This transforms the
incoming value and stores it in a real property.

$p = new Person();
$p->name = "bob";
// the $_name property becomes 'BOB'

The __call() method is probably the most useful of all the interceptor methods. It is
invoked when an undefined method is called by client code. _ call() is invoked with the
method name and an array holding all arguments passed by the client. Any value that you
return from the __call() method is returned to the client as if it were returned by the method
invoked.

The _ call() method can be useful for delegation. Delegation is the mechanism by which
one object passes method invocations on to a second. It is similar to inheritance in that a child
class passes on a method call to its parent implementation. With inheritance the relationship
between child and parent is fixed, so the fact that you can switch the receiving object at
runtime means that delegation can be more flexible than inheritance. Let’s clarify things a little
with an example. Here is a simple class for formatting information from the Person class:

61



62

CHAPTER 4 = ADVANCED FEATURES

class PersonWriter {

function writeName( Person $p ) {
print $p->getName()."\n";
}

function writeAge( Person $p ) {
print $p->getAge()."\n";
}

We could, of course, subclass this to output Person data in various ways. Here is an imple-
mentation of the Person class that uses both a PersonWriter object and the __call() method:

class Person {
private $writer;

function  construct( PersonWriter $writer ) {
$this->writer = $writer;

}

function _ call( $methodname, $args ) {
if ( method exists( $this->writer, $methodname ) ) {
return $this->writer->$methodname( $this );
}
}

function getName() { return "Bob"; }
function getAge() { return 44; }

The Person class here demands a PersonWriter object as a constructor argument and
storesitin a property variable. Inthe __call() method, we use the provided $methodname argument,
testing for a method of the same name in the Personkriter object we have stored. If we encounter
such a method, we delegate the method call to the PersonWriter object, passing our current
instance to it (in the $this pseudo-variable). So if the client makes this call to Person:

$person = new Person( new PersonWriter() );
$person->writeName();

the __call() method is invoked. We find a method called writeName() in our PersonWriter
object, and invoke it. This saves us from manually invoking the delegated method like this:

function writeName() {
$this->writer->writeName( $this );

}

The Person class has magically gained two new methods. Although automated delegation can
save a lot of legwork if you have to delegate to too many methods, there is a cost in clarity. You
present the world with a dynamic interface that will resist reflection (the runtime examination of



CHAPTER 4 *© ADVANCED FEATURES

class facets) and will not be clear to the client coder at first glance. The interceptor methods have
their place, but they should be used with care, and classes that rely on them should document this
fact very clearly.

We will return to the topics of delegation and reflection later in the book.

Defining Destructor Methods

We have seen that the __construct() method is automatically invoked when an object is
instantiated. PHP 5 also introduced the __destruct() method. This is invoked just before an
object is garbage-collected, that is, before it is expunged from memory. You can use this
method to perform any final cleaning up that might be necessary.

Imagine, for example, a class that saves itself to a database when so ordered. We could use
the destruct() method to ensure that an instance saves its data when it is deleted.

class Person {
private $name;
private $age;
private $id;

function _ construct( $name, $age ) {
$this->name = $name;
$this->age = $age;

}

function setId( $id ) {
$this->id = $id;
}

function _ destruct() {
if (! empty( $this->id ) ) {
// save Person data
print "saving person\n";

The _destruct() method is invoked whenever a Person object is removed from memory.
This will happen either when you call the unset () function with the object in question or when
no further references to the object exist in the process. So if we create and destroy a Person
object, we can see the __destruct() method come into play.

$person = new Person( "bob", 44 );
$person->setId( 343 );

unset( $person );

// output:

// saving person



CHAPTER 4 ™ ADVANCED FEATURES

Copying Objects with __ clone()

In PHP 4, copying an object was a simple matter of assigning from one variable to another.

class CopyMe {}

$first = new CopyMe();

$second = $first;

// PHP 4: $second and $first are 2 distinct objects
// PHP 5: $second and $first refer to one object

This “simple matter” was a source of many bugs, as object copies were accidentally spawned
when variables were assigned, methods called, and objects returned. This was made worse by
the fact that there was no way of testing two variables to see whether they referred to the same
object. Equivalence tests would tell you whether all fields were the same (==) or whether both
variables were objects (===), but not whether they pointed to the same object.

In PHP 5, objects are always assigned and passed around by reference. This means that
when our previous example is run with PHP 5, $first and $second contain references to the
same object instead of two copies. While this is generally what we want when working with
objects, there will be occasions when we need to get a copy of an object rather than a reference
to an object.

PHP 5 provides the clone keyword for just this purpose. clone operates upon an object
instance, producing a by-value copy.

class CopyMe {}

$first = new CopyMe();

$second = clone $first;

// PHP 5: $second and $first are 2 distinct objects

The issues surrounding object copying only start here. Consider the Person class that we
implemented in the previous section. A default copy of a Person object would contain the iden-
tifier (the $id property) that in a full implementation we would use to locate the correct row in
a database. If we allow this property to be copied, we will have two distinct objects referencing
the same data source, which is probably not what we wanted when we made our copy. An
update in one object will affect the other, and vice versa.

Luckily we can control what is copied when clone is invoked on an object. We do this by
implementing a special method called __clone() (note the leading two underscores that are
characteristic of built-in methods). _ clone() is called automatically when the clone keyword
is invoked on an object.

When you implement __clone(), it is important to understand the context in which the
method runs. __clone() is run on the copied object and not the original. Let'sadd _clone() to
yet another version of the Person class:

class Person {
private $name;
private $age;
private $id;



CHAPTER 4 = ADVANCED FEATURES

function __construct( $name, $age ) {
$this->name = $name;
$this->age = $age;

}

function setId( $id ) {
$this->id = $id;
}

function _ clone() {

$this->id = o;

When clone is invoked on a Person object, a new shallow copy is made, and its __clone()
method is invoked. This means that anything we do in __clone() overwrites the default copy
already made. In this case, we ensure that the copied object’s $id property is set to zero.

$person = new Person( "bob", 44 );
$person->setId( 343 );

$person2 = clone $person;

// $person2 :

// name: bob

// age: 44

// id: o.

A shallow copy ensures that primitive properties are copied from the old object to the new.
Object properties though are copied by reference, which may not be what you want or expect
when cloning an object. Say that we give our Person object an Account object property. This
object holds a balance that we want copied to the cloned object. What we don’t want, though,
is for both Person objects to hold references to the same account.

class Account {
public $balance;
function _ construct( $balance ) {
$this->balance = $balance;

}
}

class Person {
private $name;
private $age;
private $id;
public $account;

65



66

CHAPTER 4 = ADVANCED FEATURES

function _ construct( $name, $age, Account $account ) {
$this->name = $name;
$this->age = $age;
$this->account = $account;

}

function setId( $id ) {
$this->id = $id;
}

function _ clone() {
$this->id = 0;
}
}

$person = new Person( "bob", 44, new Account( 200 ) );
$person->setId( 343 );
$person2 = clone $person;

// give $person some money
$person->account->balance += 10;
// $person2 sees the credit too
print $person2->account->balance;

// output:
// 210

$person holds a reference to an Account object that we have kept publicly accessible for the
sake of brevity (as you know, we would usually restrict access to a property, providing an accessor
method if necessary). When the clone is created, it holds a reference to the same Account object
that $person references. We demonstrate this by adding to the $person object’s Account, and
confirming the increased balance via $person2.

If we do not want an object property to be shared after a clone operation, then it is up to us
to clone it explicitly in the __clone() method:

function _ clone() {
$this->id = 0;
$this->account = clone $this->account;

Defining String Values for Your Objects

Another Java-inspired innovation in PHP 5 is the __toString() method. By default, when you
print an object, it will resolve to a string like this:



CHAPTER 4 1 ADVANCED FEATURES

class StringThing {}
$st = new StringThing();
print $st;

// output:

// Object id #1

Byimplementinga __toString() method, you can control the way that your objects represent
themselves when printed. __toString() should be written to return a string value. The method
is invoked automatically when your object is passed to print or echo, and its return value
substituted. Let'sadd a __toString() version to a minimal Person class:

class Person {
function getName() { return "Bob"; }
function getAge() { return 44; }
function _ toString() {
$desc = $this->getName();
$desc .= " (age ".$this->getAge().")";
return $desc;

Now when we print a Person object, the object will resolve to this:

$person = new Person();
print $person;

// output:

// Bob (age 44)

The __toString() method is particularly useful for logging and error reporting, and for
classes whose main task is to convey information. The Exception class, for example, summarizes
exception datainits __ toString() method.

Note At the time of writing, objects embedded within quotes are not converted into their string represen-
tation, although this is the ideal behavior. So

print "$person\n”;

Does not resolve to the value returned by toString( ). This feature has been disabled by PHP’s architects
for developmental reasons. It may have been restored by the time you read this. Try it out!

Summary

In this chapter, we got to grips with PHP’s advanced object-oriented features. Some of these
will become familiar as you work through the book. In particular, we will return frequently to
abstract classes, exceptions, and static methods.

In the next chapter, we take a step back from built-in object features and look at classes
and functions designed to help you work with objects.

67



As we have seen, PHP supports object-oriented programming through language constructs
such as classes and methods. The language also provides wider support through object-related
functions and classes.

In this chapter, we will look at some tools and techniques that you can use to organize,
test, and manipulate objects and classes.

This chapter will cover

* Packages: PHP does not support packages explicitly, but that’s no reason not to organize
your code into package-like structures.

* Include paths: Setting central accessible locations for your library code.
* Class and object functions: Functions for testing 6bjects, classes, properties, and methods.

* The Reflection APL A powerful suite of built-in classes that provide unprecedented
access to class information at runtime.

PHP and Packages

A package is a set of related classes, usually grouped together in some way. Packages can be
used to separate parts of a system from one another. Some programming languages formally
recognize packages and provide them with distinct namespaces. Although the Zend 2 Engine
has no concept of a package, we can still use the file system to organize our classes, and devise
a strategy to guard against name collisions.

One of the themes of this book so far has been the shift away from trust to enforcement
ushered in by some of the new features in PHP 5. Where once we trusted that an object’s property
would not be overwritten by client code, now we defend it with the private or protected
keywords. Where we hoped that a child class would implement its parent’s empty methods,
now we use an abstract class to make certain of it.

This shift does not extend to support for packages. There were plans to introduce
namespaces in PHP 5, but these were abandoned shortly before the first beta was released.

Nevertheless, we can organize classes using the file system, which affords us a kind of
package structure. We might create util and business directories and include class files with
the require_once() function, like this:

require once('business/Customer.php');
require_once('util/WebTools.php');



70

CHAPTER 5 OBJECT TOOLS

Figure 5-1 shows the util and business packages from the point of view of the Nautilus file
manager.

v @& packages
v E& business
Customer.php
Invoice.php
v B ow

@ WebTools.php

Figure 5-1. PHP packages organized using the file system

Note require_once() accepts a path to a file and includes it evaluated in the current script. The func-
tion will only incorporate its target if it has not already been incorporated elsewhere. This “one-shot”
approach is particularly useful when accessing library code because it prevents the accidental redefinition of
classes and functions. This can happen when the same file is included by different parts of your scriptin a
single process using a function like require() or include().

It is customary to use require() and require_once() in preference to the similar include() and
include_once() functions. This is because a fatal error encountered in a file accessed with the require()
functions takes down the entire script. The same error encountered in a file accessed using the include()
functions will cause the execution of the included file to cease, but will only generate a warning in the calling
script. The former, more drastic, behavior is safer.

Remember PHP has no concept of a package. We are simply placing library scripts in
different directories. Because of this, a class in one package can easily clash with a class in
another that happens to have the same name. We might define a User class in our business
package, for example, only to run into trouble later on when we include a third-party script that
also defines a User class in a package called forum: ‘

require_once('business/User.php'); // defines User class
require_once('forum/User.php'); // defines another User class
// Fatal error: Cannot redeclare class user in...

So how should we address the danger of name clashes? One answer is to use the naming
convention common to PEAR packages.

Note PEAR stands for the PHP Extension and Application Repository. It is an officially maintained archive
of packages and tools that add to PHP’s functionality. Core PEAR packages are included in the PHP distribution,
and others can be added using a simple command line tool. You can browse the PEAR packages at
http://pear.php.net. We will look at some other aspects of PEAR in Chapter 14.




CHAPTER 5 OBJECT TOOLS

PEAR uses the file system to define its packages as I have described. Every class is then
named according to its package path, with each directory name separated by an underscore
character.

For example, PEAR includes a package called XML, which has an RPC subpackage. The
RPC package contains a file called Server. php. The class defined inside Server.php is not called
Server as you might expect. Sooner or later that would clash with another Server class elsewhere
in the PEAR project or in a user’s code. Instead, the class is named XML_RPC_Server. This makes
for unattractive class names. It does, however, make your code easy to read in that a class name
always describes its own context.

In line with this convention, we might rename our User class business_User, in order to
distinguish it from the User object in the forum package.

Include Paths

I have glossed over the issue of include paths so far in this section. When we include a file, we
could refer to it using a relative path from the current working directory or an absolute path on
the file system.

The examples we have seen so far seem to suggest a relative path:

require_once('business/User.php');

But this would require that our current working directory contain the business directory,
which would soon become impractical. Using relative paths for our library inclusions, we would be
more likely to see torturous require_once() statements:

require_once('../../projectlib/business/User.php");
We could use an absolute path, of course:
require once('/home/john/projectlib/business/User.php');

Neither solution is ideal. By specifying paths in this much detail, we freeze the library file
in place.

In using an absolute path, we tie the library to a particular file system. Whenever we install
the project on a new server, all require statements will need changing to account for a new
file path.

By using a relative path, we fix the relationship between the script’s working directory and
the library, making hard-to-move libraries and impractical-to-share libraries between projects
without making copies. In either case, we lose the package idea in all the additional directories.
Is it the business package, or is it the projectlib/business package?

In order to make included libraries work well in our code, we need to decouple the invoking
code from the library so that

business/User.php

can be referenced from anywhere on a system. We can do this by putting the package in one of
the directories to which the include_path directive refers. include_path is usually set in PHP’s
central configuration file, php.ini. It defines a list of directories separated by colons on Unix-
like systems and semicolons on Windows systems.

include path = ".:/usr/local/lib/php-libraries™

n



72

CHAPTER 5 OBJECT TOOLS

When you use a file system function such as fopen() or require() with a nonabsolute path
that does not exist relative to the current working directory, the directories in the include path
are searched automatically, beginning with the first in the list (in the case of fopen() you must
include a flag in its argument list to enable this feature). When the target file is encountered,
the search ends and the file function completes its task.

So by placing a package directory in an include directory, we need only refer to packages
and files in our require() statements.

You may need to add a directory to the include_path so that you can maintain your own
library directory. To do this, you can, of course, edit the php.ini file (remember that for the
PHP server module you will need to restart your server for the changes to take effect).

If you do not have the privileges necessary to work with the php. ini file, you can set the
include path from within your scripts using the set_include_path() function.
set_include_path() accepts an include path (as it would appear in php.ini) and changes the
include_path setting for the current process only. The php. ini file probably already defines a useful
value for include_path, so rather than overwrite it, you‘can access it using the get_include_path()
function, and append your own directory. Here’s how you can add a directory to the current
include path:

set_include path( get_include_path().":/home/john/phplib/");

If you are working on a Windows platform, you should use semicolons rather than colons
to separate each directory path.

Autoload

Itis often a good idea to define each class in a project in a separate file. Each class file may bear
a fixed relationship to the name of the class it contains. So we might define a ShopProduct class
in a file named ShopProduct.php. Using the PEAR convention, on the other hand, we would
name the file ShopProduct . php, but the class would be named according to its package address:
business_ShopProduct, perhaps.

By splitting classes into individual files, and the files into separate packages, we promote
reuse and flexibility. We can use an individual class in separate projects simultaneously without
forcing the engine to parse irrelevant bundled classes.

The PEAR naming conventions make class name clashes unlikely. A project that consists of
tens of distinct class files, however, will soon begin to fill up with require_once() statements as
each file attempts to include its peers. This is not in itself a problem as long as the inclusions are
necessary. As you improve your code, you may find that you are including some files unnecessarily.

PHP 5 introduces the __autoload() interceptor function to help automate the inclusion of
class files. __autoload() should be implemented by the coder as a function requiring a single
argument. When the PHP engine encounters an attempt to instantiate an unknown class, it
invokes the __autoload() function (if defined), passing it the class name as a string. It is up to
the implementor to define a strategy for locating and including the missing class file.

Let’s define an __autoload() function:

function _ autoload( $classname ) {
include_once( "$classname.php" );

}

$product = new ShopProduct( 'The Darkening', 'Harry', 'Hunter', 12.99 );



CHAPTER 5 OBJECT TOOLS 73

Assuming that we have not already included a file that defines a class named ShopProduct,
the instantiation of ShopProduct seems bound to fail. The PHP engine sees that we have defined
an __autoload() function and passes it the string “ShopProduct”. Our implementation simply
attempts to include the file ShopProduct. php. This will only work, of course, if the file is in the
current working directory or in one of our include directories. We have no easy way here of
handling packages. This is another circumstance in which the PEAR naming scheme can pay off.

function _ autoload( $classname ) {
$path = str replace(' ', DIRECTORY_SEPARATOR, $classname );
require_once( "$path.php" );

}

$y = new business_ShopProduct();

Asyoucansee, the _autoload() function transforms underscores in the supplied $classname
to the DIRECTORY SEPARATOR character (/ on Unix systems). We attempt to include the class file
(business/shopProduct.php). If the class file exists, and the class it contains has been named
correctly, the object should be instantiated without error. Of course, this does require the
programmer to observe a naming convention that forbids the underscore character in a class
name except where it divides up packages.

According to the organization of your classes and files, the __autoload() function canbe a
useful way of managing your library inclusions.

The Class and Object Functions

PHP provides a powerful set of functions for testing classes and objects. Why is this useful?
After all, you probably wrote most of the classes you are using in your script.

In fact, you don’t always know at runtime about the classes that you are using. You may
have designed a system to work transparently with third-party bolt-on classes, for example. In
this case, you will typically instantiate an object given only a class name. PHP allows you to use
strings to refer to classes dynamically like this:

// tasks/Task.php
class Task {
function doSpeak() {
print "hello";
}
}

// TaskRunner.php
$classname = "Task";

require_once( "tasks/$classname.php” );
$myObj = new $classname();
$myOb7j->doSpeak();

You might acquire the string that we assign to $classname from a configuration file or by
comparing a Web request with the contents of a directory. You can then use the string to load
a class file and instantiate an object. Typically, you would do something like this when you



74

CHAPTER 5 ™ OBJECT TOOLS

want your system to be able to run user-created plug-ins. Before you do anything as risky as
that in a real project, you would have to check that the class exists, that it has the methods you
are expecting, and so on.

Some class functions have been superseded by the more powerful Reflection API, which
we will examine later in the chapter. Their simplicity and ease of use make them a first port of
call in some instances, however. For this reason, and because they can be used in PHP 4 compat-
ible scripts, we will look at them here.

Looking for Classes

The class_exists() function accepts a string representing the class to check for and returns a
boolean true value if the class exists and false otherwise.
Using this function, we can make our previous fragment a little safer.

$classname = "Task";
$path = "tasks/$classname.php";
if (| file_exists( $path ) ) {
throw new Exception( "No such file as $path" );
}
require once( $path );
if (! class_exists( $classname ) ) {
throw new Exception( "No such class as $classname" );

}

Of course, we can’t be sure that the class in question does not require constructor arguments.
For that level of safety, you would have to turn to the Reflection API, covered later in the chapter.

" Nevertheless, we are able to ascertain that the class exists before we work with it.

You can also get an array of all classes defined in your script process using the
get_declared_classes() function.

print_r( get_declared classes() );

This will list user-defined and built-in classes. Remember that it only returns the classes
declared at the time of the function call. You may run require() or require_once() later on and
thereby add to the number of classes in your script.

Learning About an Object or Class

As you know, we can constrain the types of method arguments using class type hinting. Even
with this tool we can’t always be certain of an object’s type. PHP 5 does not allow us to
constrain class type returned from a method or function, for example.

There are a number of basic tools available to check the type of an object. First of all, we
can check the class of an object with the get_class () function. This accepts any object as an
argument and returns its class name as a string.

$product = getProduct();

if ( get_class( $product ) == 'CdProduct' ) {
print "\$product is a CdProduct object\n";

}



CHAPTER 5 ™ OBJECT TOOLS

In the fragment we acquire something from the getProduct() function. To be absolutely
certain that it is a CdProduct object, we use the get_class() method.

Note In the first draft of this chapter, | tested the return value of get_class () against a lowercase string,
“cdproduct”. Until recently, PHP labeled classes using lowercase characters, no matter how they were
declared. getClass() now preserves case in its return value.

Here’s the getProduct () function:

function getProduct() {
return new CdProduct( "Exile on Coldharbour Lane",
"The", "Alabama 3", 10.99, 60.33 );

getProduct() simply instantiates and returns a CdProduct object. We will make good use of
this function in this section.

Theget_class() functionis a very specific tool. We often want a more general confirmation of
a class’s type. We may want to know that an object belongs to the ShopProduct family, but we
don’t care whether its actual class is BookProduct or CdProduct. To this end, PHP 4 introduced
the is_a() function. is_a() requires an object and the name of a class or interface. The function
returns true if the object is an instance of the given type.

$product = getProduct();
if ( is_a( $product, 'ShopProduct' ) ) {

print "\$product is a ShopProduct object\n";
}

PHP 5 has built this functionality into the heart of the language itself. The Zend 2 Engine
supports the instanceof keyword. This operator works with two operands, the object to test on
the left of the keyword and the class or interface name on the right.

$product = getProduct();
if ( $product instanceof ShopProduct ) {
print "\$product is a ShopProduct object\n";

}

Unless you need your code to be compatible with PHP 4, you should use instanceof in
preference to is_a().

Learning About Methods

We can acquire a list of all the methods in a class using the get_class_methods () function. This
requires a class name and returns an array containing the names of all the methods in the class.

75



76

CHAPTER 5 OBJECT TOOLS

print_r( get_class_methods( 'CdProduct’ ) );

// Array

/7 (

// [0] => _ construct

// [1] => getPlayLength

// [2] => getSummarylLine

// [3] => getProducerFirstName
// [4] => getProducerMainName
// [5] => setDiscount

// [6] => getDiscount

// [7] => getTitle

// [8] => getPrice

// [9] => getProducer

/1)

In the example, we pass a class name to get_class_methods () and dump the returned
array with the print_r() function. We could alternatively have passed an object to
get_class_methods() with the same result.

There is no recognition of access control by the get_class_methods () function. All method
names are returned whether declared as public, private, or protected.

As you have seen, you are given a method name in a string variable, and you can invoke it
dynamically together with an object, like this:

$product = getProduct(); // acquire an object
$method = "getTitle"; // define a method name
print $product->$method(); // invoke the method

Of course, this can be dangerous. What happens if the method does not exist? As you might
expect, your script will fail with an error. We have already encountered one way of testing that
amethod exists:

if ( in_array( $method, get class_methods( $product ) ) ) {
print $product->$method(); // invoke the method

}

We check that the method name exists in the array returned by get_class_methods() before
invoking it. PHP provides us with more specialized tools for this purpose. We can check
method names to some extent with the two functions is_callable() and method_exists().
is_callable() is the more sophisticated of the two functions. It accepts a string variable repre-
senting a function name as its first argument and returns true if the function exists and can be
called. To apply the same test to a method, you should pass it an array in place of the function
name. The array must contain an object or class name as its first element and the method name
to check as its second element. The function will return true if the method exists in the class.

if ( is_callable( array( $product, $method) ) ) {
print $product->$method(); // invoke the method
}



CHAPTER 5 OBJECT TOOLS

is_callable() optionally accepts a second argument: a Boolean. If you set this to true, the
function will only check the syntax of the given method or function name and not its actual
existence.

Warning At the time of writing (PHP 5.0.1), the is_callable() function returns true when testing
methods declared private and protected. While this remains the case (and it may have changed by the
time you read this), the function should be used with caution in a PHP 5 context. If you are working with PHP 5,
you should use the Reflection API to check the status of a method before attempting to invoke it. | cover the
Reflection API later in the chapter.

The method_exists() function requires an object and a method name, and returns true if
the given method exists in the object’s class.

if ( method_exists( $product, $method ) ) {
print $product->$method(); // invoke the method

}

Note that method_exists() does not accept a class name as its first argument—you must
use an object. If you do not have an object at hand, you can work around this limitation by
using get_class_methods() or is_callable(), both of which accept class names.

if ( in_array( $method, get class_methods( 'CdProduct’ ) ) ) {
// do something with the class

}

Warning Remember that in PHP 5 the fact that a method exists does not mean that it will be callable.
method_exists() returns true for private and protected methods as well as for public ones.

Learning About Properties

Just as you can query the methods of a class, so can you query its fields. The get_class_vars()
function requires a class name and returns an associative array. The returned array contains
field names as its keys and field values as its values. Let’s apply this test to the CdProduct object.
For the purposes of illustration, we add a public property to the class: CdProduct: : $coverUr].

print_r( get class_vars( 'CdProduct’ ) );
Array
(

[playLength] => 0

[coverUrl] =>

[price] =>



78

CHAPTER 5 ™ OBJECT TOOLS

This function pays some attention to privacy. It reports only the properties that are visible
to the class. It does not, however, tell you which properties are accessible to you, reporting
protected, private, and public properties without distinction.

Note This is another function that has undergone marked evolution during the development of PHP 5.
Because its output may have changed again, it is worth running a test before working with it.

Learning About Inheritance

The class functions also allow us to chart inheritance relationships. We can find the parent of a
class, for example, with get_parent_class(). This function requires either an object or a class
name, and it returns the name of the super class, if any. If no such class exists, that s, if the class we
are testing does not have a parent, then the function returns false.

print get parent_class( 'CdProduct’ );
// ShopProduct

We can also test whether a class is a child of another using the is_subclass_of() function.
This requires a child object and the name of the parent class. The function returns true if the
second argument is a super class of the first argument.

$product = getProduct(); // acquire an object
if ( is_subclass_of( $product, 'ShopProduct' ) ) {
print "CdProduct is a subclass of ShopProduct\n";

}

Method Invocation

We have already encountered an example in which we used a string to invoke a method
dynamically:

$product = getProduct(); // acquire an object
$method = "getTitle"; // define a method name
print $product->$method(); // invoke the method

PHP also provides the call_user_func() method to achieve the same end. call_user func()
can invoke either methods or functions. To invoke a function, it requires a single string as its
first argument:

$returnval = call user_ func("myFunction");

To invoke a method, it requires an array. The first element of this should be an object and
the second should be the name of the method to invoke.

$returnval = call user_func( array( $myObj, "methodName") );

You can pass any arguments that the target method or function requires in additional
arguments to call_user_func(), like this:



CHAPTER 5 * OBJECT TOOLS

$product = getProduct(); // acquire an object
call_user_func( array( $product, 'setDiscount' ), 20 );

Our dynamic call is, of course, equivalent to
$product->setDiscount( 20 );
Because we can equally use a string directly in place of the method name, like this:

$method = "setDiscount"”;
$product->$method(20);

the call user_func() method doesn’t change our lives greatly. Much more impressive, though, is
the related call_user_func_array() function. This operates in the same way as call user func()
as far as selecting the target method or function is concerned. Crucially, though, it accepts any
arguments required by the target method as an array.

So why is this useful? Occasionally you are given arguments in array form. Unless you
know in advance the number of arguments you are dealing with, it can be difficult to pass them
on. In Chapter 4, we looked at the interceptor methods that can be used to create delegator
classes. Here’s a simple example of a__call() method:

function _ call( $method, $args ) {
if ( method_exists( $this->thirdpartyShop, $method ) ) {
return $this->thirdpartyShop->$method( );
}
}

As we have seen, the __call() method is invoked when an undefined method is called by
client code. In this example, we maintain an object in a property called $thirdpartyShop. If we
find a method in the stored object that matches the $method argument, we invoke it. We blithely
assume that the target method does not require any arguments, which is where our problems
begin. When we write the _call() method, we have no way of telling how large the $args array
may be from invocation to invocation. If we pass $args directly to the delegate method, we will
pass a single array argument, and not separate arguments it may be expecting.
call user func_array() solves the problem perfectly:

function _ call( $method, $args ) {
if ( method exists( $this->thirdpartyShop, $method ) ) {
return call _user func_array(
array( $this->thirdpartyShop,
$method ), $args );

The Reflection API

The first beta version of PHP 5 was released in the summer of 2003 to much excitement. Developers
descended upon PHP 5’s long list of object-oriented features, analyzing and experimenting
with the nascent capabilities. Oddly, PHP 5’s Reflection application programming interface
(API) was not part of that initial release, and was absent from the overview documentation.

9



CHAPTER 5 OBJECT TOOLS

In the following weeks, the Reflection API quietly found its way into the PHP 5 source tree
without fuss or fanfare. Yet its stealthy arrival belies its importance: PHP 5’s Reflection APl is to
PHP what the java.lang.reflect package is to Java.

The Reflection API consists of built-in classes for analyzing properties, methods, and
classes. It’s similar in some respects to existing object functions such as get_class_vars(), but
is more flexible and provides much greater detail. It’s also designed to work with PHP’s newest
object-oriented features, such as access control, interfaces, and abstract classes.

Getting Started

The Reflection API can be used to examine more than just classes. For example, the
ReflectionFunction class provides information about a given function, and ReflectionExtension
yields insight about an extension compiled into the language. Table 5-1 lists some of the classes
in the APL

Table 5-1. Some of the Classes in the Reflection API

Class Description

Reflection Provides a static export() method for summarizing class
information

ReflectionClass Class information and tools

ReflectionMethod Class method information and tools

ReflectionParameter Method argument information

ReflectionProperty Class property information

ReflectionFunction Function information and tools

ReflectionExtension PHP extension information

ReflectionException An error class

Between them, the classes in the Reflection API provide unprecedented runtime access to
information about the objects, functions, and extensions in your scripts.

Because of its power and reach, you should usually use the Reflection API in preference to
the class and object functions. You will soon find it indispensable as a tool for testing classes.
You might want to generate class diagrams or documentation, for example, or you might want
to save object information to a database, examining an object’s accessor (“getter” and “setter”)
methods to extract field names. Building a framework that invokes methods in module classes
according to a naming scheme is another use of Reflection.

Time to Roll Up Your Sleeves

We have already encountered some functions for examining the attributes of classes. Many of
them are not yet fully equipped to provide information about the newer features in PHP 5. Let’s
look at a tool that is up to the job. ReflectionClass provides methods that reveal information
about every aspect of a given class, whether it’s a user-defined or internal class. The constructor
of ReflectionClass accepts a class name as its sole argument:



CHAPTER 5 OBJECT TOOLS

$prod_class = new ReflectionClass( 'CdProduct' );
Reflection::export( $prod class );

Once you've created a ReflectionClass object, you can use the Reflection utility class to
dump information about CdProduct. Reflection has a static export() method that outputs data
on any of the Reflection classes (that is, any class that implements the Reflector interface, to
be pedantic). Here’s an extract from the output generated by a call to Reflection: :export():

Class [ <user> class CdProduct extends ShopProduct ] {
@@ /home/projects/sp/ShopProduct.php 59-80

Constants [0] {

Static properties [0] {
}

Static methods [0] {
}

- Properties [3] {
Property [ <default> private $playlLength ]
Property [ <default> public $coverUrl ]
Property [ <default> protected $price ]

}

- Methods [11] {
Method [ <user> <ctor> public method _ construct ] {
@@ /home/projects/sp/ShopProduct.php 63 - 68

- Parameters [5] {
Parameter #0 [ $title ]
Parameter #1 [ $firstName ]
Parameter #2 [ $mainName ]
Parameter #3 [ $price ]
Parameter #4 [ $playlLength ]

}

}

Method [ <user> public method getPlaylLength | {
@@ /home/projects/sp/ShopProduct.php 70 - 72

}

Method [ <user> public method getSummarylLine ] {
@@ /home/projects/sp/ShopProduct.php 74 - 78
}

81



82

CHAPTER 5 ™ OBJECT TOOLS

As you can see, Reflection: :export() provides remarkable access to information about a
class. Reflection: :export() provides summary information about almost every aspect of
CdProduct, including the access control status of properties and methods, the arguments required
by every method, and the location of every method within the script document. Compare that
with a more established debugging function. The var_dump() function is a general-purpose
tool for summarizing data. You must instantiate an object before you can extract a summary,
and even then it provides nothing like the detail made available by Reflection: :export().

var_dump( getProduct() );

// object(CdProduct)#1 (7) {

//  ["playLength:private"]=>

//  float(60.33)

// ["coverUrl"]=>

/] string(o) ""

// ["title:private"]=>

//  string(25) "Exile on Coldharbour Lane"
//  ["producerMainName:private"]=>
/7 string(9) "Alabama 3"

//  ["producerFirstName:private"]=>
//  string(3) "The"

/! ["price:protected"]=>

// float(10.99)

//  ["discount:private"]=>

/! int(0)

//}

var_dump() and its cousin print_r() are fantastically convenient tools for exposing the
data in your scripts. For classes and functions, the Reflection API takes things to a whole new
level, though.

Examining a Class

The Reflection : :export () method can provide a great deal of useful information for debugging,
but we can use the API in more specialized ways. Let’s work directly with the Reflection classes.
You've already seen how to instantiate a ReflectionClass object:

$prod_class = new ReflectionClass( 'CdProduct' );

Next, let’s use the ReflectionClass object to investigate CdProduct within a script. What
kind of class is it? Can an instance be created? Here’s a function to answer these questions:

$prod_class = new ReflectionClass( 'CdProduct’ );
print classData( $prod_class );



CHAPTER 5

function classData( ReflectionClass $class ) {
$details = "";
$name = $class->getName();
if ( $class->isUserDefined() ) {

$details .= "$name is user defined\n";
}
if ( $class->isInternal() ) {

$details .= "$name is built-in\n";
}

if ( $class->isInterface() ) {
$details .= "$name is interface\n";

}
if ( $class->isAbstract() ) {

$details .= "$name is an abstract class\n";

}
if ( $class->isFinal() ) {
$details .= "$name is a final class\n";

}
if ( $class->isInstantiable() ) {

$details .= "$name can be instantiated\n";
} else {

$details .= "$name can not be instantiated\n";
}
return $details;

OBJECT TOOLS

We create a ReflectionClass object, assigning it to a variable called $prod_class by passing
the CdProduct class name to ReflectionClass’s constructor. $prod _class is then passed to a
function called classData() that demonstrates some of the methods that can be used to query

a class.

The methods should be self-explanatory, but here’s a brief description of each one:

¢ ReflectionClass: :getName() returns the name of the class being examined.

¢ TheReflectionClass: :isUserDefined() method returns true if the class has been
declared in PHP code, and ReflectionClass: :isInternal() yields true if the class is

built-in.

¢ You can test whether a class is abstract with ReflectionClass: : isAbstract(), and

whether it’s an interface with ReflectionClass: :isInterface().

 Ifyou want to get an instance of the class, you can test the feasibility of that with

ReflectionClass::isInstantiable().



CHAPTER 5 = OBJECT TOOLS

You can even examine a user-defined class’s source code. The ReflectionClass object
provides access to its class’s file name, and to the start and finish lines of the class in the file.
Here’s a quick-and-dirty method ReflectionClass:

class ReflectionUtil {
static function getClassSource( ReflectionClass $class ) {
$path = $class->getFileName();
$lines = @file( $path );
$from = $class->getStartLine();
$to = $class->getEndLine();
$len = $to-$from+1;
return implode( array slice( $lines, $from-1, $len ));
}
}

print ReflectionUtil::getClassSource(
new ReflectionClass( 'CdProduct' ) );

ReflectionUtil is a simple class with a single static method,
ReflectionUtil::getClassSource(). That method takes a ReflectionClass object as its only
argument, and returns the referenced class’s source code. ReflectionClass: :getFileName()
provides the path to the class’s file as an absolute path, so the code should be able to
go right ahead and open it. file() obtains an array of all the lines in the file.
ReflectionClass: :getStartiLine() provides the class’s start line; ReflectionClass: :getEndLine()
finds the final line. From there, it’s simply a matter of using array_slice() to extract the lines
of interest.

To keep things brief, this code omits error handling. In a real-world application, you’'d
want to check arguments and result codes.

Examining Methods

Just as ReflectionClass is used to examine a class, a ReflectionMethod object examines a method.
You can acquire a ReflectionMethod in two ways: you can get an array of ReflectionMethod
objects from ReflectionClass: :getMethods(), or if you need to work with a specific method,
ReflectionClass: : getMethod() accepts amethod name and returns the relevant ReflectionMethod
object.
Here we use ReflectionClass: :getMethods() to put the ReflectionMethod class through
its paces.

$prod_class = new ReflectionClass( 'CdProduct' );
$methods = $prod_class->getMethods();

foreach ( $methods as $method ) {
print methodData( $method );
print "\n----\n";

}



CHAPTER 5 OBJECT TOOLS 85

function methodData( ReflectionMethod $method ) {
$details = "";
$name = $method->getName();
if ( $method->isUserDefined() ) {

$details .= "$name is user defined\n";
}
if ( $method->isInternal() ) {

$details .= "$name is built-in\n";
}

if ( $method->isAbstract() ) {
$details .= "$name is abstract\n";

}
if ( $method->isPublic() ) {
$details .= "$name is public\n";

}

if ( $method->isProtected() ) {
$details .= "$name is protected\n”;

}

if ( $method->isPrivate() ) {
$details .= "$name is private\n";
}
if ( $method->isStatic() ) {
$details .= "$name is static\n";
}
if ( $method->isFinal() ) {
$details .= "$name is final\n";
}
if ( $method->isConstructor() ) {
$details .= "$name is the constructor\n";
}
if ( $method->returnsReference() ) {
$details .= "$name returns a reference (as opposed to a value)\n";

}

return $details;

The code uses ReflectionClass: :getMethods () to get an array of ReflectionMethod objects,
and then loops through the array, passing each object to methodData().

The names of the methods used in methodData() reflect their intent: the code checks
whether the method is user-defined, built-in, abstract, public, protected, static, or final. You
can also check whether the method is the constructor for its class, and whether or not it returns
areference.

One caveat: ReflectionMethod: : returnsReference() doesn’t return true if the tested method
simply returns an object, even though objects are passed and assigned by reference in PHP 5.
Instead, ReflectionMethod: : returnsReference() only returns true if the method in question
has been explicitly declared to return a reference (by placing an ampersand character in front
of the method name).



CHAPTER 5 OBJECT TOOLS

As you might expect, you can access a method’s source code using a technique similar to
the one used previously with ReflectionClass:

class ReflectionUtil {
static function getMethodSource( ReflectionMethod $method ) {
$path = $method->getFileName();
$lines = @file( $path );
$from = $method->getStartLine();
$to = $method->getEndLine();
$len = $to-$from+1;
return implode( array slice( $lines, $from-1, $len ));
}
}

$class = new ReflectionClass( 'CdProduct' );
$method = $class->getMethod( 'getSummaryLine' );
print ReflectionUtil::getMethodSource( $method );

Because ReflectionMethod provides us with getFileName(), getStartLine(), and getEndLine()
methods, it’s a simple matter to extract the method’s source code.

Examining Method Arguments

Now that method signatures can constrain the types of object arguments, the ability to examine
the arguments declared in a method signature becomes immensely useful. The Reflection API
provides the ReflectionParameter class just for this purpose. To get a ReflectionParameter
object, youneed the help of a ReflectionMethod object. The ReflectionMethod: : getParameters ()
method returns an array of ReflectionParameter objects.

ReflectionParameter can tell you the name of an argument, whether the variable is passed
by reference (that is, with a preceding ampersand in the method declaration), and can also tell
you the class required by argument hinting and whether the method will accept a null value for
the argument.

Here are some of ReflectionParameter’s methods in action:

$prod_class = new ReflectionClass( CdProduct );
$method = $prod_class->getMethod( " construct" );
$params = $method->getParameters();

foreach ( $params as $param ) {
print argData( $param );
}



CHAPTER 5  OBJECT TOOLS

function argData( ReflectionParameter $arg ) {
$details = "";
$name = $arg->getName();
$class = $arg->getClass();

if (! empty( $class ) ) {
$classname = $class->getName();
$details .= "\$$name must be a $classname object\n";
}
if ( $arg->allowsNull() ) {
$details .= "\$$name can be null\n";
}
if ( $arg->isPassedByReference() ) {
$details .= "\$$name is passed by reference\n";

}

return $details;

Using the ReflectionClass: :getMethod() method, the code acquires a ReflectionMethod
object. It then uses ReflectionMethod: :getParameters() to get an array of ReflectionParameter
objects. The argData() function uses the ReflectionParameter object it was passed to acquire
information about the argument.

First, it gets the argument’s variable name with ReflectionParameter: :getName(). The
ReflectionParameter: :getClass() method returns a ReflectionClass object if a hint’s been
provided. Finally, the code checks whether the argument can be null with allowsNull(), and
whether it’s a reference with isPassedByReference(). This last method seems to confirm that
all parameters can be null. I suspect that at some point there may have been plans for a
not_null modifier for method parameters, but this does not seem to have come to pass.

An Example

With the basics of the Reflection API under your belt, you can now put the API to work.
Imagine that you're creating a class that calls Module objects dynamically. That is, it can
accept plug-ins written by third parties and slotted into the application without the need for
any hard coding. To achieve this, youmight define an execute () method in the Module interface
or abstract base class, forcing all child classes to define an implementation. You could allow the
users of your system to list Module classes in an external XML configuration file. Your system can
use this information to aggregate a number of Module objects before calling execute() on each one.
What happens, however, if each Module requires different information to do its job? In that
case, the XML file can provide property keys and values for each Module, and the creator of each
Module can provide setter methods for each property name. Given that foundation, it’s up to
your code to ensure that the correct setter method is called for the correct property name.

87



CHAPTER 5 “ OBJECT TOOLS

Here’s some groundwork for the Module interface and a couple of implementing classes:

class Person {
public $name;
function _ construct( $name ) {
$this->name = name;
}
}

interface Module {
function execute();

}

class FtpModule implements Module {
function setHost( $host ) {
print "FtpModule::setHost(): $host\n";

}

function setUser( $user ) {
print "FtpModule::setUser(): $user\n";

}

function execute() {
// do things
}
}

class PersonModule implements Module {
function setPerson( Person $person ) {
print "PersonModule::setPerson(): {$person->name}\n";

}

function execute() {
// do things

}
}

Here, PersonModule and FtpModule both provide empty implementations of the execute()
method. Each class also implements setter methods that do nothing but report that they were
invoked. Our system lays down the convention that all setter methods must expect a single
argument: either a string, or an object that can be instantiated with a single string argument.
The PersonModule: : setPerson() method expects a Person object so we include a Person class in
our example.

To work with PersonModule and FtpModule, the next step is to create a ModuleRunner class.
It will use a multidimensional array indexed by module name to represent configuration infor-
mation provided in the XML file. Here’s that code:



CHAPTER 5 © OBJECT TOOLS 89

class ModuleRunner {
private $configData

= array(
"PersonModule” => array( 'person'=>'bob' ),
"FtpModule" => array( 'host'
=>"'example.com',
‘user' =>'anon' )
)
private $modules = array();

/...
}

The ModuleRunner: : $configData property contains references to the two Module classes.
For each module element, the code maintains a subarray containing a set of properties.
ModuleRunner’s init() method is responsible for creating the correct Module objects, as
shown here:

class ModuleRunner {
/...

function init() {
$interface = new ReflectionClass('Module');
foreach ( $this->configData as $modulename => $params ) {
$module class = new ReflectionClass( $modulename );
if (! $module_class->isSubclassOf( $interface ) ) {
throw new Exception( "unknown module type: $modulename” );
}
$module = $module class->newInstance();
foreach ( $module_class->getMethods() as $method ) {
$this->handleMethod( $module, $method, $params );
// we cover handleMethod() in a future listing!

}

array push( $this->modules, $module );

/...
}

$test = new ModuleRunner();
$test->init();

The init() method loops through the ModuleRunner: : $configData array and for each
module element it attempts to create a ReflectionClass object. An exception is generated
when ReflectionClass’s constructor is invoked with the name of a nonexistent class, so
in a real-world context we would want to include more error handling here. We use the
ReflectionClass::is_subclass_of() method to ensure that the module class belongs to
the Module type.



CHAPTER 5 OBJECT TOOLS

Before you can invoke the execute() method of each Module, an instance has to be created.
That’s the purpose of method: :ReflectionClass: :newInstance(). That method accepts any
number of arguments, which it passes on to the relevant class’s constructor method. If all’s
well, it returns an instance of the class. (For production code, be sure to code defensively:
check that the constructor method for each Module object doesn’t require arguments before
creating an instance.)

ReflectionClass: :getMethods () returns an array of all ReflectionMethod objects available for
the class. For each element in the array, the code invokes the ModuleRunner: :handleMethod()
method, passing it a Module instance, the ReflectionMethod object, and an array of properties
to associate with the Module. handleMethod() verifies and invokes the Module object’s setter
methods.

class ModuleRunner {
/...
function handleMethod( Module $module, ReflectionMethod $method, $params ) {
$name = $method->getName();
$args = $method->getParameters();

if ( count( $args ) !=1 ||
substr( $name, 0, 3 ) =
return false;

}

"set" ) {

$property = strtolower( substr( $name, 3 ));
if (! isset( $params[$property] ) ) {
return false;

}

$arg_class = $args[0]->getClass();
if ( empty( $arg_class ) ) {
$method->invoke( $module, $params[$property] );
} else {
$method->invoke( $module,
$arg_class->newInstance( $params[$property] ) );

handleMethod() first checks that the method is a valid setter. In the code, a valid setter
method must be named setXXXX(), and must declare one and only one argument.

Assuming that the argument checks out, the code then extracts a property name from the
method name by removing set from the beginning of the method name and converting the
resulting substring to lowercase characters. That string is used to test the $params array argument.
This array contains the user-supplied properties that are to be associated with the Module
object. If the $params array doesn’t contain the property, the code gives up and returns false.

If the property name extracted from the module method matches an element in the
$params array, we can go ahead and invoke the correct setter method. To do that, the
code must check the type of the first (and only) required argument of the setter method.



CHAPTER 5 “ OBJECT TOOLS

TheReflectionParameter: :getClass () method provides this information. If the method returns an
empty value, the setter expects a primitive of some kind; otherwise, it expects an object.

To call the setter method, we need a new Reflection API method. ReflectionMethod: : invoke()
requires an object and any number of method arguments to pass on to the method it repre-
sents. ReflectionMethod: : invoke() throws an exception if the provided object does not match
its method. We call this method in one of two ways. If the setter method doesn’t require an
object argument, we call ReflectionMethod: : invoke() with the user-supplied property string.
If the method requires an object, we use the property string to instantiate an object of the
correct type, which is then passed to the setter.

The example assumes that the required object can be instantiated with a single
string argument to its constructor. It’s best, of course, to check this before calling
ReflectionClass: :newInstance().

By the time the ModuleRunner: :init() method has run its course, the object has a store
of Module objects, all primed with data. The class can now be given a method to loop through
the Module objects, calling execute() on each one.

Summary

In this chapter, we covered some of the techniques and tools that you can use to manage your
libraries and classes. Although PHP does not provide namespaces for packages, we saw that we
can combine include paths, the PEAR class naming convention, and the file system to provide
flexible organization for classes. We examined PHP’s object and class functions, before taking
things to the next level with the powerful Reflection API. Finally, we used the Reflection classes
to build a simple example that illustrates one of the potential uses that Reflection has to offer.

91



Now that we have seen the mechanics of PHP’s object support in some detail, we step back

from the details in this chapter and consider how best to use the tools that we have encoun-

tered. In this chapter, I introduce you to some of the issues surrounding objects and design. We

will also look at the UML, a powerful graphical language for describing object-oriented systems.
This chapter will cover

 Design basics: What do we mean by design? How does object-oriented design differ from
procedural code?

* (Class scope: How do you decide what to include in a class?
e Polymorphism: Hiding implementation behind interface.

e Encapsulation: Keeping your components independent of one another and the
wider system.

e The UML: Using diagrams to describe object-oriented architectures.

Defining Code Design

This is a fair question given the title of this chapter. One sense of “code design” concerns the
definition of a system: the determination of a system'’s requirements, scope, and objectives.
What does the system need to do? Who does it need to do it for? What are the outputs of the
system? Do they meet the stated need? On a lower level, design can be taken to mean the
process by which you define the participants of a system and organize their relationships. This
chapter is concerned with the second sense: the definition and disposition of classes and objects.

So what is a participant? An object-oriented system is made up of classes. It is important
to decide the nature of these players in your system. Classes are made up of methods, so in
defining your classes you must decide which methods belong together. As we will see, though,
classes are often combined in inheritance relationships to conform to common interfaces. It is
these interfaces, or types, that should be your first port of call in designing your system.

There are other relationships that you can define for your classes. You can create classes
that are composed of other types or that manage lists of other type instances. You can design
classes that simply use other objects. These relationships of composition or use are designed
into your classes (through class type hints, for example), but the actual object relationships
take place at runtime, which can add flexibility to your design. We will see how to model these
relationships in this chapter and explore them further throughout the book.



CHAPTER 6 ~ OBJECTS AND DESIGN

As part of the design process, you must decide when an operation should belong to a type
and when it should belong to another class used by the type. Everywhere you turn you are
presented with choices, decisions that might lead to clarity and elegance, or might mire you in
compromise.

In this chapter, we will examine some issues that might influence a few of these choices.

Object-Oriented and Procedural Programming

How does object-oriented design differ from the more traditional procedural code? It is tempting to
say that the primary distinction is that object-oriented code has objects in it. This is neither
true nor useful. In PHP, you will often find procedural code using objects. You may also come
across classes that contain tracts of procedural code. The presence of classes does not guarantee
object-oriented design, even in a language like Java, which forces you to do everything inside
a class.

One core difference between object-oriented and procedural code can be found in the way
that responsibility is distributed. Procedural code takes the form of a sequential series of
commands and method calls. The controlling code tends to take responsibility for handling
differing conditions. This top-down control can result in the development of duplications and
dependencies across a project. Object-oriented code tries to minimize these dependencies
by moving responsibility for handling tasks away from client code and toward the objects in
the system.

Let’s set ourselves a simple problem and analyze it in terms of both object-oriented and
procedural code to illustrate these points. Our project is to build a quick tool for reading from
and writing to configuration files. In order to maintain focus on the structures of the code, I will
omit implementation code in these examples.

We begin with a procedural approach to this problem. To start with, we will read and write
text in the format

key:value
We need only two functions for this purpose:

function readParams( $sourcefFile) {
$params = array();
// read text parameters from $sourcefFile
return $params;

}

function writeParams( $params, $sourcefFile) {
// write text parameters to $sourceFile

}

The readParams () function requires the name of a source file. It attempts to open it, and
reads each line, looking for key/value pairs. It builds up an array as it goes. Finally, it returns the
array to the controlling code. writeParams() accepts an associative array and the path to a
source file. It loops through the associative array, writing each key/value pair to the file. Here’s
some client code that works with the functions:



CHAPTER 6 “ OBJECTS AND DESIGN

$file = "./param.txt";

$array['key1'] = "val1";

$array[ 'key2'] = "val2";

$array[ 'key3'] = "val3";

writeParams( $array, $file ); // array written to file
$output = readParams( $file ); // array read from file
print_r( $output );

This code is relatively compact and should be easy to maintain.
Now, though, we are informed that the tool should support a simple XML format that
looks like this:

<params>
<param>
<key>my key</key>
<val>my val</val>
</param>
</params>

The parameter file should be read in XML mode if the parameter file ends in “.xml”".
Although this is not difficult to accommodate, it threatens to make our code much harder to
maintain. We really have two options at this stage. We can check the file extension in the controlling
code, or we can test inside our read and write functions. Let’s go for the latter approach:

function readParams( $source ) {
$params = array();

if ( substr( $source, -4 ) == ".xml" ) {
// read XML parameters from $source
} else {
// read text parameters from $source
}
return $params;
}
function writeParams( $params, $source ) {
if ( substr( $source, -4 ) == ".xml" ) {
// write XML parameters to $source
} else {

// write text parameters to $source

}

As you can see, we have had to use the test for the XML extension in each of the functions.
It is this repetition that might cause us problems down the line. If we are asked to include yet
another parameter format, we will need to remember to keep the readParams () and writeParams()
functions in line with one another.

Let’s address the same problem with some simple classes. First we create an abstract base
class that will define the interface for the type:



96 CHAPTER 6 “ OBJECTS AND DESIGN

abstract class ParamHandler {
protected $source;
protected $params = array();

function __ construct( $source ) {
$this->source = $source;

}

function addParam( $key, $val ) {
$this->params[$key] = $val;
}

function getAllParams() {
return $this->params;

}

static function getInstance( $filename ) {
if ( substr( ¢$filename, -4 ) == ".xml" ) {
return new XmlParam( $filename );

}

return new TextParam( $filename );

}

abstract function write();
abstract function read();

We define the addParam() method to allow the user to add parameters to the protected
$params property and getAllParams() to provide access to a copy of the array.

We also create a static getInstance() method that tests the file extension and returns a
particular subclass according to the results. Crucially we define two abstract methods, read()
and write(), ensuring that any subclasses will support this interface.

Now let’s define the subclasses, once again omitting the details of implementation to keep
the example clean:

class XmlParam extends ParamHandler {

function write() {
// write XML
// using $this->params

}

function read() {
// read XML
// and populate $this->params



CHAPTER 6 “/ OBJECTS AND DESIGN

class TextParam extends ParamHandler {

function write() {
// write text
// using $this->params

}

function read() {
// read text
// and populate $this->params

These classes simply provide implementations of the write() and read() methods. Each
class will write and read according to the appropriate format.

Client code will write to both text and XML formats entirely transparently according to the
file extension:

$test = ParamHandler::getInstance( "./params.xml" );
$test->addParam("key1", "vali" );
$test->addParam("key2", "val2" );
$test->addParam("key3", "val3" );

$test->write(); // writing in XML format

We can also read from either file format:

$test = ParamHandler::getInstance( "./params.txt" );
$test->read(); // reading in text format

So, what can we learn from these two approaches?

Responsibility

The controlling code in the procedural example takes responsibility for deciding about format,
not once but twice. The conditional code is tidied away into functions, certainly, but this
merely disguises the fact of a single flow making decisions as it goes. The call to readParams()
must always take place in a different context from a call to writeParams(), so we are forced to
repeat the file extension test in each function (or to perform variations on this test).

In the object-oriented version, this choice about file format is made in the static getInstance()
method, which tests the file extension only once, serving up the correct subclass. The client
code takes no responsibility for implementation. It uses the provided object with no knowledge
of, or interest in, the particular subclass it belongs to. It knows only that it is working with a
ParamHandler object, and that it will support write() and read(). While the procedural code
busies itself about details, the object-oriented code works only with an interface, unconcerned
about the details of implementation. Because responsibility for implementation lies with the
objects and not with the client code, it would be easy to switch in support for new formats
transparently.

97



CHAPTER 6 “ OBJECTS AND DESIGN

Cohesion

Cohesion is the extent to which proximate procedures are related to one another. Ideally,
you should create components that share a clear responsibility. If your code spreads related
routines widely, then you will find them harder to maintain as you have to hunt around to
make changes.

Our ParamHandler classes collect related procedures into a common context. The methods
for working with XML share a context in which they can share data, and where changes to one
method can easily be reflected in another if necessary (if we needed to change an XML element
name, for example). The ParamHandler classes can therefore be said to have “high cohesion.”

The procedural example, on the other hand, separates related procedures. The code for
working with XML is spread across functions.

Coupling
Tight coupling occurs when discrete parts of a system’s code are tightly bound up with one
another so that a change in one part necessitates changes in the others. Tight coupling is by no
means unique to procedural code, though its sequential nature makes it prone to the problem.

We can see this kind of coupling in the procedural example. The writeParams() and
readParams () functions run the same test on a file extension to determine how they should
work with data. Any change in logic we make to one will have to be implemented in the other.
If we were to add a new format, for example, we would have to bring the functions into line
with one another so that they both implement a new file extension test in the same way. This
problem can only get worse as we add new parameter-related functions.

The object-oriented example decouples the individual subclasses from one another and
from the client code. If we were required to add a new parameter format, we could simply
create a new subclass, amending a single test in the static getInstance() method.

Orthogonality

The killer combination in components of tightly defined responsibilities together with inde-
pendence from the wider system is sometimes referred to as orthogonality (The Pragmatic
Programmer).

Orthogonality, it is argued, promotes reuse in that components can be plugged into new
systems without needing any special configuration. Such components will have clear inputs
and outputs independent of any wider context. Orthogonal code makes change easier because
the impact of altering an implementation will be localized to the component being altered.
Finally, orthogonal code is safer. The effects of bugs should be limited in scope. An error in
highly interdependent code can easily cause knock-on effects in the wider system.

There is nothing automatic about loose coupling and high cohesion in a class context. We
could, after all, embed our entire procedural example into one misguided class. So how do we
achieve this balance in our code? I usually start by considering the classes that should live in
my system.



CHAPTER 6 * OBJECTS AND DESIGN

Choosing Your Classes

It can be surprisingly difficult to define the boundaries of your classes, especially as they will
evolve with any system that you build.

It can seem straightforward when you are modeling the real world. Object-oriented systems
often feature software representations of real things—Person, Invoice, and Shop classes abound.
This would seem to suggest that defining a class is a matter of finding the things in your system
and then giving them agency through methods. This is not abad starting point, butit does have
its dangers. If you see a class as a noun, a subject for any number of verbs, then you may find it
bloating as ongoing development and requirement changes call for it to do more and more things.

Let’s consider the ShopProduct example that we created in Chapter 3. Our system exists to
offer products to a customer, so defining a ShopProduct class is an obvious choice, but is that
the only decision we need to make? We provide methods such as getTitle() and getPrice()
for accessing product data. When we are asked to provide a mechanism for outputting summary
information for invoices and delivery notes, it seems to make sense to define awrite() method.
When the client asks us to provide the product summaries in different formats, we look again
at our class. We duly create writeXML() and writeXHTML() methods in addition to the write()
method. Or we add conditional code to write() to output different formats according to an
option flag.

Either way, the problem here is that the ShopProduct class is now trying to do too much.
It is struggling to manage strategies for display as well as for managing product data.

How should we think about defining classes? The best approach is to think of a class as
having a primary responsibility, and to make that responsibility as singular and focused as
possible. Put the responsibility into words. Peter Coad wrote that you should be able to describe a
class’s responsibility in 25 words or less, rarely using the words “and” or “or.” If your sentence
gets too long, or mired in clauses, it is probably time to consider defining new classes along the
lines of some of the responsibilities you have described.

So ShopProduct classes are responsible for managing product data. If we add methods for
writing to different formats, we begin to add a new area of responsibility: product display. As
you saw in Chapter 3, we actually defined two types based on these separate responsibilities.
The ShopProduct type remained responsible for product data, and the ShopProductWriter type
took on responsibility for displaying product information. Individual subclasses refined these
responsibilities.

& Note Very few design rules are entirely inflexible. You will sometimes see code for saving object data in an
otherwise unrelated class, for example. While this would seem to violate the rule that a class should have a
singular responsibility, it can be the most convenient place for the functionality to live because a method has
to have full access to an instance’s fields. Using local methods for persistence can also save us from creating
a parallel hierarchy of persistence classes mirroring our savable classes, and thereby introducing unavoidable
coupling. We deal with other stategies for object persistence in Chapter 12. Avoid religious adherence to
design rules; they are not a substitute for analyzing the problem before you. Try to remain alive to the
reasoning behind the rule, and emphasize that over the rule itself.




100

CHAPTER 6 “ OBJECTS AND DESIGN

Polymorphism

Polymorphism, or class switching, is a common feature of object-oriented systems. We have
encotintered it several times already in this book.

Polymorphism is the maintenance of multiple implementations behind a common inter-
face. This sounds complicated, but in fact it should be very familiar to you by now. The need for
polymorphism is often signaled by the presence of extensive conditional statements in your code.

When we first created the ShopProduct class in Chapter 3, we experimented with a single
class, which managed functionality for books and CDs in addition to generic products. In order
to provide summary information, we relied upon a conditional statement:

function getSummaryLine() {
$base = "$this->title ( $this->producerMainName, ";
$base .= "$this->producerFirstName )";
if ( $this->type == 'book' ) {
$base .= ": page count - $this->numPages"”;
} else if ( $this->type == 'cd' ) {
$base .= ": playing time - $this->playlength";
}
return $base;

}

These statements suggested the shape for the two subclasses: CdProduct and BookProduct.

By the same token, the conditional statements in our procedural parameter example
contained the seeds of the object-oriented structure we finally arrived at. We repeated the
same condition in two parts of the script.

function readParams( $source ) {
$params = array();

if ( substr( $source, -4 ) == ".xml" ) {
// read XML parameters from $source
} else {
// read text parameters from $source
}
return $params;
}
function writeParams( $params, $source ) {
if ( substr( $source, -4 ) == ".xml" ) {
// write XML parameters to $source
} else {

// write text parameters to $source

}

Each clause suggested one of the subclasses we finally produced: XmlParam and TextParam,
extending the abstract base class ParamHandler’'s write() and read() methods. /



CHAPTER 6 ©@ OBJECTS AND DESIGN 101

// could return XmlParam or TextParam
$test = ParamHandler::getInstance( $file );

$test->read(); // could be XmlParam::read() or TextParam::read()
$test->addParam("key1", "vali" );
$test->write(); // could be XmlParam::write() or TextParam::write()

It is important to note that polymorphism doesn’t banish conditionals. Methods like
ParamHandler: :getInstance() will often determine which objects to return based upon switch
or if statements. These tend to centralize the conditional code into one place, though.

As we have seen, PHP 5 enforces the interfaces defined by abstract classes. This is useful
because we can be sure that a child class will implement a method signature in exactly the
same way as defined by an abstract parent. This includes all class type hints and access control.
Client code can therefore treat all members of a type interchangeably. There is an important
exception to this rule: there is no way of constraining the return type of a method. This means
that it is possible for methods in different subclasses to return different class types or primitives,
which can undermine the interchangeability of types. You should try to be consistent with your
return values. Some methods may be defined to take advantage of PHP’s loose typing and
return different types according to circumstances. Other methods enter into a contract with
client code, effectively promising that they will return a particular type. If this contract is laid
down in an abstract super class, it should be honored by its concrete children so that clients
can be sure of consistent behavior. If you commit to return an object of a particular type, you
can, of course, return an instance of a subtype. Although the interpreter does not enforce
return types, you can make it a convention in your projects that certain methods will behave
consistently. Use comments in the source code to specify a method’s return type.

Encapsulation

Encapsulation simply means the hiding of data and functionality from a client. And once again
it is a key object-oriented concept.

On the simplestlevel we encapsulate data by declaring properties private or protected. By
hiding a property from client code, we enforce an interface and prevent the accidental corruption
of an object’s data.

Polymorphism illustrates another kind of encapsulation. By placing different implemen-
tations behind a common interface, we hide these underlying strategies from the client. This
means that any changes that are made behind this interface are transparent to the wider system.
We can add new classes or change the code in a class without causing errors. The interface is
what matters, and not the mechanisms working beneath it. The more independent these
mechanisms are kept, the less chance that changes or repairs will have a knock-on effect in
your projects.

Encapsulation is in some ways the key to object-oriented programming. Our objective should
be to make each part as independent as possible from its peers. Classes and methods should
receive as much information as is necessary to perform their allotted tasks, which should be
limited in scope and clearly identified.

The introduction of the private, protected, and public keywords have made encapsulation
easier. Encapsulation is also a state of mind, though. Working with PHP 4 privacy was signaled



102

CHAPTER 6 " OBJECTS AND DESIGN

using documentation and naming conventions alone. An underscore, for example, is a common
way of signaling a private property:

var $_touchezpas;

Code had to be checked closely, of course, because privacy was not strictly enforced.
Interestingly, though, errors were rare, because the structure and style of the code made it
pretty clear which properties wanted to be left alone.

By the same token even in PHP 5, we could break the rules and discover the exact subtype
of an object that we are using in a class-switching context, simply by passing it to the
get_class() method.

function workWithProducts( ShopProduct $prod ) {
if ( get_class( $prod ) == "cdproduct” ) {
// do cd thing
} else if ( get_class( $prod ) == "bookproduct” ) {
// do book thing
}
}

You may have a very good reason to do this, but in general it carries with it a slightly uncer-
tain odor. By querying the specific subtype in the example, we are setting up a dependency.
While the specifics of the subtype were hidden by polymorphism, it would have been possible
to have changed our ShopProduct inheritance hierarchy entirely with no ill effects. Our code
ends that. Now if we need to rationalize the CdProduct and BookProduct classes, we may cause
unexpected side effects in the workWithProducts() method.

There are two lessons to take away from this example. Firstly, encapsulation helps you to
create orthogonal code. Secondly, the extent to which encapsulation is enforceable is beside
the point. Encapsulation is a technique that should be observed equally by classes and their clients.

Forget How to Do It

If you are like me, the mention of a problem will set your mind racing, looking for mechanisms
that might provide a solution. You might select functions that will address an issue, revisit
clever regular expressions, track down PEAR packages. You probably have some paste-able
code in an old project that does something somewhat similar. At the design stage, you can
profit by setting all that aside for a while. Empty your head of procedures and mechanisms.

Think only about the key participants of your system: the types it will need, and their inter-
faces. Of course, your knowledge of process will inform your thinking. A class that opens a file
will need a path, database code will need to manage table names and passwords, and so on. Let
the structures and relationships in your code lead you, though. You will find that the imple-
mentation falls into place easily behind a well-defined interface. You then have the flexibility
to switch out, improve, or extend an implementation should you need to without affecting the
wider system.

In order to emphasize interface, think in terms of abstract base classes rather than concrete
children. In our parameter-fetching code, for example, the interface is the most important
aspect of the design. We want a type that reads and writes name/value pairs. It is this respon-
sibility that is important about the type, not the actual persistence medium or the means of



CHAPTER 6 OBJECTS AND DESIGN

storing and retrieving data. We design the system around the abstract ParamHandler class, and
only add in the concrete strategies for actually reading and writing parameters later on. In this
way we build both polymorphism and encapsulation into our system from the start. The structure
lends itself to class switching.

Having said that, of course, we knew from the start that there would be text and XML
implementations of ParamHandler, and there is no question that this influenced our interface.
There is always a certain amount of mental juggling to do when designing interfaces.

The Gang of Four (Design Patterns) summed up this principle with the phrase “Program to
an interface, not an implementation.” It is a good one to add to your little book of wisdom.

Four Signposts

Very few people get it absolutely right at the design stage. Most of us amend our code as
requirements change, or as we gain a deeper understanding of the nature of the problem we
are addressing.

As we amend our code, it can easily drift beyond our control. An added method here, and
anew class there, and gradually our system begins to decay. As we have seen already, your code
can point the way to its own improvement. These pointers in code are sometimes referred to as
“code smells”—that is, features in code that may suggest particular fixes, or at least call you to
look again at your design. In this section, I distill some of the points already made into four
signs that you should watch out for as you code.

Code Duplication

Duplication is one of the great evils in code. If you get a strange sense of déja vu as you write a
routine, the chances are you have a problem.

Take a look at the instances of repetition in your system. Perhaps they belong together.
Duplication generally means tight coupling. If you change something fundamental about one
routine, will the similar routines need amendment? If this is the case, they probably belong in
the same class.

The Class Who Knew Too Much

It can be a pain passing parameters around from method to method. Why not simply reduce
the pain by using a global variable? With a global, everyone can get at the data.

Global variables have their place, but they do need to be viewed with some level of suspi-
cion. That’s quite a high level of suspicion, by the way. By using a global variable, or by giving a
class any kind of knowledge about its wider domain, you anchor it into its context, making it
less reusable and dependent upon code beyond its control. Remember, you want to decouple
your classes and routines, and not create interdependence. Try to limit a class’s knowledge of
its context. We will look at some strategies for doing this later in the book.

The Jack of All Trades

Is your class trying to do too many things at once? If so, see if you can list the responsibilities of
the class. You may find that one of them will form the basis of a good class itself.

103



104

CHAPTER 6  OBJECTS AND DESIGN

Leaving an overzealous class unchanged can cause particular problems if you subclass.
Which responsibility are you extending by subclassing? What would you do if you needed to
subclass for more than one responsibility? You are likely to end up with too many subclasses,
or an overreliance on conditional code.

Conditional Statements

You will use if and switch statements with perfectly good reason throughout your projects.
Sometimes, though, such structures can be a cry for polymorphism.

If you find that you are testing for certain conditions frequently within a class, and espe-
cially if you find these tests mirrored across more than one method, this could be a sign that
your one class should be two or more. See whether the structure of the conditional code suggests
responsibilities that could be expressed in classes. The new classes should implement a shared
abstract base class. The chances are that you will then have to work out how to pass the right
class to client code. I will cover some patterns for creating objects in Chapter 9.

The UML

So far in this book, we have let the code speak for itself. We have used short examples to illustrate
concepts such as inheritance and polymorphism.

This is useful because PHP is a common currency here. It’s alanguage we have in common
if you have read this far. As our examples grow, though, it becomes something of an absurdity
to use code alone to illustrate the broad sweep of design. It is hard to see an overview in a few
lines of code.

UML stands for Unified Modeling Language. The initials are correctly used with the definite
article. This isn’t just a unified modeling language, it is the Unified Modeling Language.

Perhaps this magisterial tone derives from the circumstances of the language’s forging. -
According to Martin Fowler (UML Distilled, 1999), the UML emerged as a standard only after
long years of intellectual and bureaucratic sparring amongst the great and good of the object-
oriented design community.

The result of this struggle is a powerful graphical syntax for describing object-oriented
systems. We will only scratch the surface in this section, but you will soon find that a little UML
(sorry, a little of the UML) goes a long way.

Class diagrams in particular can describe structures and patterns so that their meaning
shines through. This luminous clarity is often harder to find in code fragments and bullet points.

Class Diagrams

Although class diagrams are only one aspect of the UML, they are perhaps the most ubiquitous.
Because they are particularly useful for describing object-oriented relationships, I'will focus on
them in this book.

Representing Classes

As you might expect, classes are the main constituents of class diagrams. A class is represented
by a named box, as in Figure 6-1.



CHAPTER 6 1 OBJECTS AND DESIGN 105

ShopProduct

Figure 6-1. A class

The class is divided into three sections, with the name displayed in the first. These dividing
lines are optional when we present no more information than the class name. In designing a
class diagram, we may find that the level of detail in Figure 6-1 is enough for some classes. We
are not obligated to represent every field and method, or even every class in a class diagram.

Abstract classes are represented either by italicizing the class name as in Figure 6-2 or by
adding {abstract} to the class name as in Figure 6-3. The first method is the more common of
the two, but the second is more useful when you are making notes.

Note The {abstract} syntax is an example of a constraint. Constraints are used in class diagrams to
describe the way in which specific elements should be used. There is no special structure for the text between
the braces; it should simply provide a short clarification of any conditions that may apply to the element.

ShopProductWriter

Figure 6-2. An abstract class

ShopProductWriter
{abstract}

Figure 6-3. An abstract class defined using a constraint

Interfaces are defined in the same way as classes, except that they must include a “stereotype”
(that is an extension to the UML), as in Figure 6-4.

<<interface>>

Chargeable

Figure 6-4. An interface



106

CHAPTER 6 *° OBJECTS AND DESIGN

Attributes

Broadly speaking, attributes describe a class’s properties.
Attributes are listed in the section directly beneath the class name as in Figure 6-5.

ShopProduct
#$price: int = 0

Figure 6-5. An attribute
Let’s take a close look at the attribute in the example. The initial symbol represents the

level of visibility, or access control, for the attribute. Table 6-1 shows the three symbols
available.

Table 6-1. Visibility Symbols

Symbol Visibility Explanation

+ Public Available to all code

- Private Available to the current class only

# Protected Available to the current class and its subclasses only

The visibility symbol is followed by the name of the attribute. In this case, we are describing
the ShopProduct: : $price property. A colon is used to separate the attribute name from its type
(and optionally its default value).

Once again, you need only include as much detail as is needed for clarity. It is quite
common to see an unqualified attribute name in a class diagram.

Operations

Operations describe methods. Or more properly, they describe the calls that can be made on
an instance of a class. Figure 6-6 shows two operations in the ShopProduct class.

ShopProduct
#$price: int = 0

+setDiscount (amount:int)
+getTitle(): String

Figure 6-6. Operations



CHAPTER 6 OBJECTS AND DESIGN

As you can see, operations use a similar syntax to that used by attributes. The visibility
symbol precedes the method name. A list of parameters is enclosed in parentheses. The
method’s return type, if any, is delineated by a colon. Parameters are separated by commas,
and follow the attribute syntax, with the attribute name separated from its type by a colon.

Asyoumight expect, this syntax is relatively flexible. You can omit the visibility flag and the
return type. Parameters are often represented by their type alone, as the argument name is not
usually significant.

Describing Inheritance and Implementation

The UML describes the inheritance relationship as “generalization.” This relationship is signified
by a line leading from the subclass to its parent. The line is tipped with an empty closed arrow.
Figure 6-7 shows the relationship between the ShopProduct class and its child classes.

ShopProduct

1 ]
CdProduct BookProduct

Figure 6-7. Describing inheritance

The UML describes the relationship between interfaces and the classes that implement
them as “realization.” So if the ShopProduct class were to implement the Chargeable interface,
we could add it to our class diagram as in Figure 6-8.

ShopProduct 4— —————— <<interface>>
Chargeable

I |
CdProduct BookProduct

Figure 6-8. Describing interface implementation

Associations

Inheritance is only one of a number of relationships in an object-oriented system. An association
occurs when a class property is declared to hold a reference to an instance (or instances) of
another class.

107



108

CHAPTER 6 “ OBJECTS AND DESIGN

In Figure 6-9, we model two classes and create an‘association between them.

Teacher Pupil

Figure 6-9. An association

At this stage, we are vague about the nature of this relationship. We have only specified that a
Teacher object will have a reference to one or more Pupil objects or vice versa. This relationship
may or may not be reciprocal.

We can use arrows to describe the direction of the association. If the Teacher class has an
instance of the Pupil class but not the other way round, then we should make our association an
arrow leading from the Teacher to the Pupil class. This association, which is called “unidirectional,”
is shown in Figure 6-10.

Teacher > Pupil

Figure 6-10. A unidirectional association

If each class has a reference to the other, we can use a double-headed arrow to describe a
“bidirectional” relationship as in Figure 6-11.

Teacher < > Pupil

Figure 6-11. A bidirectional association

We can also specify the number of instances of a class that are referenced by another in an
association. We do this by placing a number or range beside each class. We can also use * to
stand for any number. So in Figure 6-12 there can be one Teacher object and any number of
Pupil objects.

Teacher Pupil

1 *

Figure 6-12. Defining multiplicity for an association

In Figure 6-13, there can be one Teacher object and between 5 and 10 Pupil objects in
the association.



CHAPTER 6 OBJECTS AND DESIGN

Teacher

Pupil
P 10

Figure 6-13. Defining multiplicity for an association

Aggregation and Composition

Aggregation and composition are similar to association. All describe a situation in which a
class holds a permanent reference to one or more instances of another. With aggregation and
composition, though, the referenced instances form an intrinsic part of the referring object.

In the case of aggregation, the contained objects are a core part of the container, but they
can also be contained by other objects at the same time. The aggregation relationship is illustrated
by a line that begins with an unfilled diamond.

In Figure 6-14 we define two classes, SchoolClass and Pupil. The SchoolClass class
aggregates Pupil.

SchoolClass

Pupil

Figure 6-14. Aggregation

Pupils make up a class, but the same Pupil object can be referred to by different
SchoolClass instances at the same time. If we were to dissolve a school class, we would not
necessarily delete the pupil, who may attend other classes.

Composition represents an even stronger relationship than this. In composition, the
contained object can be referenced by its container only. It should be deleted when the container
is deleted. Composition relationships are depicted in the same way as aggregation relationships,
except that the diamond should be filled. We illustrate a composition relationship in Figure 6-15.

109



110

CHAPTER 6 " OBJECTS AND DESIGN

Person

SocialSecurityData

Figure 6-15. Composition

A Person class maintains a reference to a SocialSecurityData object. The contained
instance can belong only to the containing Person object.

Describing Use

The use relationship is described as a dependency in the UML. It is the most transient of
the relationships discussed in this section because it does not describe a permanent link

between classes.

A used class may be passed as an argument or acquired as a result of a method call.
The Report class in Figure 6-16 uses a ShopProductWriter object. It does not, however,
maintain this reference as a property in the same way that a ShopProductWriter ebject maintains

an array of ShopProduct objects.

-------- 1
]
I
Report \
1
Y
ShopProductWriter ShopProduct
+addProduct()
? 1
[ | | |
XmlWriter TextWriter CdProduct BookProduct

Figure 6-16. A dependency relationship

Using Notes

Class diagrams can capture the structure of a system, but they provide no sense of process.




CHAPTER 6 @ OBJECTS AND DESIGN

Figure 6-16 tells us about the classes in our system. We know that a Report object uses a
ShopProductWriter, but we don’t know the mechanics of this. In Figure 6-17 we use a note to
clarify things somewhat.

-------- 1
1
I_I $writer->addProducts( $products );
Report ! $writer->write();
1
ShopProductWriter ShopProduct
+addProduct ()
? 1
[ | 1 |
XmlWriter TextWriter CdProduct BookProduct

Figure 6-17. Using a note to clarify a dependency

As you can see, a note consists of a box with a folded corner. It will often contain scraps of
pseudo-code.

This clarifies our diagram; we can now see that the Report object uses a ShopProductWriter
to output product data. This is hardly a revelation, but then use relationships are not always so
obvious. In some cases, even a note might not provide enough information. Luckily, we can
model the interactions of objects in our system as well as the structure of our classes.

Sequence Diagrams

A sequence diagram is object based rather than class based. It is used to model a process in a
system step by step.

Let’s build up a simple diagram, modeling the means by which a Report object writes
product data. A sequence diagram presents the participants of a system from left to right as
in Figure 6-18.

Report ProductStore ShopProductWriter ShopProduct

Figure 6-18. Objects in a sequence diagram

We have labeled our objects with class names alone. If we had more than one instance of
the same class working independently in our diagram, we would include an object name using
the format label:class (producti:ShopProduct, for example).

We show the lifetime of the process we are modeling from top to bottom as in Figure 6-19.

111



112

CHAPTER 6 OBJECTS AND DESIGN

Report ProductStore ShopProductWriter ShopProduct

:

|

| |

| |

I I

| |
L I
I
I
I

[

-
|
|
|
|
|
|

Figure 6-19. Object lifelines in a sequence diagram

The vertical broken lines represent the lifetime of the objects in the system. The larger
boxes that follow the lifelines represent the focus of a process. If you read Figure 6-19 from top
to bottom, you can see how the process moves between objects in the system. This is hard to
read without showing the messages that are passed between the objects. We add these in
Figure 6-20.

The arrows represent the messages sent from one object to another. Return values are
often left implicit (though they can be represented by a broken line, passing from the invoked
object to the message originator). Each message is labeled using the relevant method call. You
can be quite flexible with your labeling, though there is some syntax. Square brackets represent
a condition. So

[okToPrint]
write()

means that the write() invocation should only be made if the correct condition is met. An
asterisk is used to indicate a repetition, optionally with further clarification in square brackets:

*[for each ShopProduct]
write()

So we can interpret Figure 6-20 from top to bottom. First a Report object acquires a list of
ShopProduct objects from a ProductStore object. It passes these to a ShopProductWriter object,
which stores references to them (though we can only infer this from the diagram). The
ShopProductWriter object calls ShopProduct: : getSummaryLine() for every ShopProduct object it
references, adding the result to its output.



CHAPTER 6 ©© OBJECTS AND DESIGN

Report ProductStore ShopProductWriter ShopProduct

T T
1 getProducts() |

I

addProducts()
-

I

|

|

I

|
L

write() > * [for each ShopProdyct] getSummaryLine()

0]

—

[l

I

|

]

|

I

|

| =

| |

I |

| I

| I

| I
| | I
Figure 6-20. The complete sequence diagram

As you can see, sequence diagrams can model processes, freezing slices of dynamic inter-
action and presenting them with surprising clarity.

Note Look at Figures 6-16 and 6-20. Notice how the class diagram illustrates polymorphism, showing the
classes derived from ShopProductWriter and ShopProduct. Now notice how this detail becomes trans-
parent when we model the communication between objects. Where possibie, we want objects to work with
the most general types available so that we can hide the details of implementation.

Summary

In this chapter, we went beyond the nuts and bolts of object-oriented programming to look at
some key design issues. We examined features such as encapsulation, loose coupling, and
cohesion that are essential aspects of a flexible and reusable object-oriented system. We went
on to look at the UML, laying groundwork that will be essential in working with patterns later
in the book.

113






Most problems we encounter as programmers have been handled time and again by others
in our community. Design patterns can provide us with the means to mine that wisdom. Once
a pattern becomes a common currency, it enriches our language, making it easy to share
design ideas and their consequences. Design patterns simply distill common problems, define
tested solutions, and describe likely outcomes. They take up where the nuts-and-bolts how-to
books end.

In this chapter, I introduce you to design patterns and look at some of the reasons for their
popularity.

This chapter will cover

* Pattern basics: What are design patterns?

* Pattern structure: The key elements of a design pattern.

* Pattern benefits: Why patterns are worth your time.

What Are Design Patterns?

In the world of software, a pattern is a tangible manifestation of an organiza-
tion’s tribal memory.

—Grady Booch, Core J2EE Patterns (introduction)
[A pattern is] a solution to a problem in a context.
—Design Patterns, p. 3

A design pattern is a problem analyzed, and good practice for its solution explained.
Problems tend to recur, and as Web programmers we must solve them time and time

again. How are we going to handle an incoming request? How can we translate this data into

instructions for our system? How should we acquire data? Present results? Over time, we

117



118

CHAPTER 7 @ WHAT ARE DESIGN PATTERNS? WHY USE THEM?

answer these questions with a greater or lesser degree of elegance, and evolve an informal set
of techniques that we use and reuse in our projects. These techniques are patterns of design.

Design patterns inscribe and formalize these problems and solutions, making hard-won
experience available to the wider programming community. Patterns are (or should be) essen-
tially bottom-up and not top-down. They are rooted in practice and not theory. That is not to
say that there isn’t a strong theoretical element to design patterns (as we will see in the next
chapter), but patterns are based upon real-world techniques used by real programmers.
Renowned pattern-hatcher Martin Fowler says that he discovers patterns, he does not invent
them. For this reason, many patterns will engender a sense of déja vu as you recognize tech-
niques you have used yourself.

A catalog of patterns is not a cookbook. Recipes can be followed slavishly, code can be
copied and slotted into a project with minor changes. You do not always need even to under-
stand all the code used in a recipe. Design patterns inscribe approaches to particular problems.
The details of implementation may vary enormously according to the wider context. This
context might include the programming language you are using, the nature of your applica-
tion, the size of your project, and the specifics of the problem.

The very act of naming a pattern is valuable; it provides the kind of common vocabulary
that has arisen naturally over the years in the older crafts and professions. Such shorthand
greatly aids collaborative design as alternative approaches, and their consequences are
weighed and tested.

Finally, it is illegal, according to international law, to write about patterns without quoting
Christopher Alexander, an architecture academic whose work heavily influenced the original
object-oriented pattern advocates:

Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in
such a way that you can use this solution a million times over, without ever
doing it the same way twice.

—A Pattern Language

It is significant that this definition (which applies to architectural problems and solutions)
begins with the problem and its wider setting and proceeds to a solution. There has been some
criticism in recent years that design patterns have been overused, especially by inexperienced
programmers. This is often a sign that solutions have been applied where the problem and
context are not present. Patterns are more than a particular organization of classes and objects,
cooperating in a particular way. Patterns are structured to define the conditions in which solu-
tions should be applied, and to discuss the effects of the solution.

In this book, we will focus upon a particularly influential strand in the patterns field: the
form described in Design Patterns: Elements of Reusable Object-Oriented Software by Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides. The authors of this book are often
referred to as the Gang of Four and the book itself as the Gang of Four book. It concentrates
upon patterns in object-oriented software development and inscribes some of the classic
patterns that are present in most modern object-oriented projects.



CHAPTER 7 WHAT ARE DESIGN PATTERNS? WHY USE THEM?

The Gang of Four book is important because it inscribes key patterns, but also because it
describes the design principles that inform and motivate these patterns. We will look at some
of these principles in the next chapter.

A Design Pattern Overview

At heart, a design pattern consists of four parts:

Name

Names matter. They enrich the language of programmers, a few short words standing in for
quite complex problems and solutions. They must balance brevity and description. The Gang
of Four claim:

Finding good names has been one of the hardest parts of developing
our catalog.

—Design Patterns, p. 3
Martin Fowler agrees:

Pattern names are crucial, because part of the purpose of patterns is to create a
vocabulary that allows developers to communicate more effectively.

—Patterns of Enterprise Application Architecture, p. 11

In Patterns of Enterprise Application Architecture, Martin Fowler refines a database access
patternI first encountered in Core J2EE Patterns. He defines two patterns that describe special-
izations of the older pattern. The logic of his approach is clearly correct (one of the new patterns
models domain objects, while the other models database tables, a distinction that was vague in
the earlier work). It was hard to train myself to think in terms of the new patterns. I had been
using the name of the original in design sessions and documents for so long that it had become
part of my language.

The Problem

No matter how elegant the solution (and some are very elegant indeed), the problem and its
context are the grounds of a pattern. Recognizing a problem is harder than applying any one of
the solutions in a pattern catalog. This is one reason that some pattern solutions can be misap-
plied or overused.

Patterns describe a problem space with great care. The problem is described in brief, and
then contextualized, often with a typical example and one or more diagrams. It is broken down
into its specifics, its various manifestations. Any warning signs that might help in identifying
the problem are described.

119



120

CHAPTER 7 = WHAT ARE DESIGN PATTERNS? WHY USE THEM?

The Solution

The solution is summarized initially in conjunction with the problem. It is also described in
detail often using UML class and interaction diagrams. The pattern usually includes a code
example.

Although code may be presented, the solution is never cut and paste. The pattern
describes an approach to a problem. There may be hundreds of nuances in implementation.
Think about instructions for sowing a food crop. If you simply follow a set of steps blindly, you
are likely to go hungry come harvest time. More useful would be a pattern-based approach that
covers the various conditions that may apply. The basic solution to the problem (making your
crop grow) will always be the same (plant seeds, irrigate, harvest crop), but the actual steps you
take will depend on all sorts of factors such as your soil type, your location, the orientation of
your land, local pests, and so on.

Martin Fowler refers to solutions in patterns as “half-baked.” That is, the coder must take
away the concept and finish it for himself (Patterns of Enterprise Application Architecture, p.
11).

Consequences

Every design decision you make will have wider consequences. This should include the satis-
factory resolution of the problem in question, of course. A solution, once deployed, may be
ideally suited to work with other patterns. There may also be dangers to watch for.

The “Gang of Four” Format

AsIwrite, I have five pattern catalogs on the desk in front of me. A quick look at the patterns in
each confirms that not one uses the same structure as the others. Some are more formal than
others, some are fine-grained, with many subsections, others are discursive.

There are a number of well-defined pattern structures, including the original form devel-
oped by Christopher Alexander (the “Alexandrian Form”), the narrative approach favored by
the Portland Pattern Repository (the “Portland Form”). Because the Gang of Four book is so
influential, and because we will cover many of the patterns they describe, let’s examine a few
of the sections they include in their patterns.

* Intent: A brief statement of the pattern’s purpose. You should be able to see the point of
the pattern at a glance.

* Motivation: The problem described, often in terms of a typical situation. The anecdotal
approach can help make the pattern easy to grasp.

* Applicability: An examination of the different situations in which you might apply the
pattern. While the motivation describes a typical problem, this section defines specific
situations, and weighs the merits of the solution in the context of each.

* Structure/Interaction: These sections may contain UML class and interaction diagrams
describing the relationships between classes and objects in the solution.

* Implementation: This section looks at the details of the solution. It examines any issues
that may come up when applying the technique and provides tips for deployment.



CHAPTER 7 ™ WHAT ARE DESIGN PATTERNS? WHY USE THEM?

e Sample Code: I always skip ahead to this section. I find that a simple code example often
provides a way into a pattern. The example is often chopped down to the basics in order
to lay the solution bare. It could be in any object-oriented language. Of course, in this
book it will always be PHP.

¢ Known Uses: Real systems in which the pattern (problem, context, and solution) occur.
Some people say that for a pattern to be genuine it must be found in at least three
publicly available contexts. This is sometimes called the “rule of three.”

* Related Patterns: Some patterns imply others. In applying one solution, you can create
the context in which another becomes useful. This section examines these synergies. It
may also discuss patterns that have similarities in problem or solution and any anteced-
ents: patterns defined elsewhere upon which the current pattern builds.

Why Use Design Patterns?

So what benefits can patterns bring? Given that a pattern is a problem defined and solution
described, the answer should be obvious. Patterns can help you to solve common problems.
There is more to patterns, of course:

A Design Pattern Defines a Problem

How many times have your reached a stage in a project and found that there is no going
forward? The chances are you must backtrack some way before starting out again.

By defining common problems, patterns can help you to improve your design. Sometimes
the first step to a solution is recognizing that you have a problem.

A Design Pattern Defines a Solution

Having defined and recognized the problem (and made certain that it is the right problem), a
pattern gives you access to a solution, together with an analysis of the consequences of its use.
Although a pattern does not absolve you of the responsibility to consider the implications of a
design decision, you can at least be certain that you are using a tried-and-tested technique.

Design Patterns Are Language Independent

When I first started using patterns, I read code examples in C++ and Smalltalk and deployed my
solutions in a Java context. Patterns define objects and solutions in object-oriented terms. This
means that many patterns apply equally in more than one language. Others transfer with
modifications to the pattern’s applicability or consequences but remain valid. Either way,
patterns can help you as you move between languages. Equally, an application that is built
upon good object-oriented design principles can be relatively easy to port between languages
(although there are always issues that must be addressed).

Patterns Define a Vocabulary

By providing developers with names for techniques, patterns make communication richer.
Imagine a design meeting. I'm describing my plans to Bob.

121



122

CHAPTER 7 = WHAT ARE DESIGN PATTERNS? WHY USE THEM?

ME: I'm thinking of using a Composite.
BOB: I don’t think you’ve thought that through.

OK, Bob didn’t agree with me. He never does. But he knew what I was talking about, and
therefore why my idea sucked. Let’s play that scene through again without a design vocabulary.

ME: I intend to use a tree of objects that share the same type. The type’s interface will
provide methods for adding child objects of its own type. In this way, we can build up
complex combinations of implementing objects at runtime.

BOB: Huh?

Patterns, or the techniques they describe, tend to interoperate. The Composite pattern
lends itself to collaboration with Visitor:

ME: And then we can use Visitors to summarize the data.
BOB: You're missing the point.

Ignore Bob. I won’t describe the tortuous nonpattern version of this. We will cover
Composite in Chapter 10 and Visitor in Chapter 11.

The point is that without a pattern language we would still use these techniques. They
precede their naming and organization. If patterns did not exist, they would evolve on their
own anyway. Any tool that is used sufficiently will eventually acquire a name.

Patterns Are Tried and Tested

So if patterns document good practice, is naming the only truly original thing about pattern
catalogs? In some senses, that would seem to be true. Patterns represent best practice in an
object-oriented context. To some highly experienced programmers, this may seem an exercise
in repackaging the obvious. To the rest of us, patterns provide access to problems and solu-
tions we would otherwise have to discover the hard way.

Patterns make design accessible. As pattern catalogs emerge for more and more special-
izations, even the highly experienced can find benefits as they move into new aspects of their
field. A GUI programmer can gain fast access to common problems and solutions in enterprise
programming, for example. A Web programmer can quickly chart strategies for avoiding the
pitfalls that lurk in PDA and cell phone projects.

Patterns Are Designed for Collaboration

By their nature, patterns should be “generative” and “composable.” This means that you
should be able to apply one pattern and thereby create conditions suitable for the application
of another. In other words, in using a pattern you may find other doors opened for you.

Pattern catalogs are usually designed with this kind of collaboration in mind, and the
potential for pattern composition is always documented in the pattern itself.



CHAPTER 7 @ WHAT ARE DESIGN PATTERNS? WHY USE THEM?

Design Patterns Promote Good Design

Design patterns demonstrate and apply principles of object-oriented design. So a study of
design patterns can yield more than a specific solution in a context. You can come away with a
new perspective on the ways that objects and classes can be combined to achieve an objective.

PHP and Design Patterns

There is little in this chapter that is specific to PHP, which is characteristic of our topic to some
extent. Many patterns apply to many object-capable languages with few or no implementation
issues.

This is not always the case, of course. Some enterprise patterns work well in languages in
which an application process continues to run between server requests. PHP does not work
that way. A new script execution is kicked off for every request. This means that some patterns
need to be treated with more care. Front Controller, for example, often requires some serious
initialization time. This is fine when the initialization takes place once at application startup,
but more of an issue when it must take place for every request. That is not to say that we can’t
use the pattern; I have deployed it with very good results in the past. We must simply ensure
that we take account of PHP-related issues when we discuss the pattern. PHP forms the context
for all the patterns that this book examines.

I referred to object-capable languages earlier in this section. You can code in PHP without
defining any classes at all (although with PEAR’s continuing development you will probably
manipulate objects to some extent). Although this book focuses almost entirely upon object-
oriented solutions to programming problems, it is not a broadside in an advocacy war.
Patterns and PHP can be a powerful mix, and they form the core of this book; they can,
however, coexist quite happily with more traditional approaches. PEAR is an excellent testa-
ment to this. PEAR packages use design patterns elegantly. They tend to be object-oriented in
nature. This makes them more, not less, useful in procedural projects. Because PEAR packages
are self-enclosed, and hide their complexity behind clean interfaces, they are easy to stitch into
any kind of project.

Summary

In this chapter, I introduced design patterns, showed you their structure (using the Gang of
Four form), and suggested some reasons why you might want to use design patterns in your
scripts.

It is important to remember that design patterns are not snap-on solutions that can be
combined like components to build a project. They are suggested approaches to common
problems. These solutions embody some key design principles. It is these that we will examine
in the next chapter.

123



Although design patterns simply describe solutions to problems, they tend to emphasize
solutions that promote reusability and flexibility. To achieve this, they manifest some key
object-oriented design principles. We will encounter some of them in this chapter and in more
detail throughout the rest of the book.

This chapter will cover

* Composition: How to use object aggregation to achieve greater flexibility than you could
with inheritance alone

¢ Decoupling: How to reduce dependency between elements in a system
* The power of the interface: Patterns and polymorphism

e Pattern categories: The types of pattern that this book will cover

The Pattern Revelation

I first started working in an object-oriented context using the Java language. As you might
expect, it took a while before some concepts clicked. When it did happen, though, it happened
very fast, almost with the force of revelation. The elegance of inheritance and encapsulation
bowled me over. I could sense that this was a different way of defining and building systems.
I “got” polymorphism, working with a type and switching implementations at runtime.

All the books on my desk at the time focused on language features and the very many APIs
available to the Java programmer. Beyond a brief definition of polymorphism, there was little
attempt to examine design strategies.

Language features alone do not engender object-oriented design. Although my projects
fulfilled their functional requirements, the kind of design that inheritance, encapsulation, and
polymorphism had seemed to offer continued to elude me.

My inheritance hierarchies grew wider and deeper as I attempted to build new classes for
every eventuality. The structure of my systems made it hard to convey messages from one tier
to another without giving intermediate classes too much awareness of their surroundings,
binding them into the application and making them unusable in new contexts.

It wasn’t until I discovered Design Patterns, otherwise known as the Gang of Four book,
that I realized I had missed an entire design dimension. By that time I had already discovered
some of the core patterns for myself, but others contributed to a new way of thinking.

125



126

CHAPTER 8 @ SOME PATTERN PRINCIPLES

I discovered that I had overprivileged inheritance in my designs, trying to build too much
functionality into my classes. But where else can functionality go in an object-oriented system?

I found the answer in composition. Software components can be defined at runtime by
combining objects in flexible relationships. The Gang of Four boiled this down into a principle:
“favor composition over inheritance.” The patterns described ways in which objects could be
combined at runtime to achieve a level of flexibility impossible in an inheritance tree alone.

Composition and Inheritance

Inheritance is a powerful way of designing for changing circumstances or contexts. It can limit
flexibility, however, especially when classes take on multiple responsibilities.

The Problem

As you know, child classes inherit the methods and properties of their parents (as long as they
are protected or public elements). We use this fact to design child classes that provide special-
ized functionality.

Figure 8-1 presents a simple example using the UML.

Lesson

+__construct($duration)

+cost()

+chargeType()
FixedPriceLesson TimedPriceLesson
+cost() +cost()
+chargeType() +chargeType()

Figure 8-1. A parent class and two child classes

The abstract Lesson class in Figure 8-1 models a lesson in a college. It defines abstract cost()
and chargeType() methods. The diagram shows two implementing classes, FixedPricelLesson
and TimedPricelesson, which provide distinct charging mechanisms for lessons.

Using this inheritance scheme, we can switch between lesson implementations. Client
code will know only that it is dealing with a Lesson object, so the details of costing will be
transparent.



What happens, though, if we introduce a new set of specializations? We need to handle
lectures and seminars. Because these organize enrollment and lesson notes in different ways,
they require separate classes. So now we have two forces that operate upon our design. We

CHAPTER 8

need to handle pricing strategies and separate lectures and seminars.
Figure 8-2 shows a brute-force solution.

Lesson

+cost()

+__construct($duration)

+chargeType()

Y

Lecture

I

Seminar

A
I

|

SOME PATTERN PRINCIPLES

FixedPriceLecture

TimedPriceLecture

FixedPriceSeminar

TimedPriceSeminar

+cost()
+chargeType ()

+cost()
+chargeType()

+cost()

+chargeType()

+cost()
+chargeType()

Figure 8-2. A poor inheritance structure

Figure 8-2 shows a hierarchy that is clearly faulty. We can no longer use the inheritance
tree to manage our pricing mechanisms without duplicating great swathes of functionality.
The pricing strategies are mirrored across the Lecture and Seminar class families.

At this stage, we might consider using conditional statements in the Lesson super class,
removing those unfortunate duplications. Essentially, we remove the pricing logic from the
inheritance tree altogether, moving it up into the super class. This is the reverse of the usual
refactoring where we replace a conditional with polymorphism. Here is an amended Lesson class:

abstract class Lesson {
protected $duration;
const FIXED = 1,
const TIMED = 2;

private

$costtype;

function _ construct( $duration, $costtype=1 ) {
$this->duration = $duration;
$this->costtype = $costtype;

127



128 CHAPTER 8 i SOME PATTERN PRINCIPLES

function cost() {
switch ( $this->costtype ) {

CASE self::TIMED :
return (5 * $this->duration);
break;

CASE self::FIXED :
return 30;
break;

default:
$this->costtype = self::FIXED;
return 30;

}

function chargeType() {
switch ( $this->costtype ) {

CASE self::TIMED :
return "hourly rate";
break;

CASE self::FIXED :
return "fixed rate";
break;

default:
$this->costtype = self::FIXED;
return "fixed rate";

}

// more lesson methods...

}

class Lecture extends Lesson {
// Lecture-specific implementations ..

}

class Seminar extends Lesson {
// Seminar-specific implementations ...

}

You can see the new class diagram in Figure 8-3.



CHAPTER 8 SOME PATTERN PRINCIPLES

Lesson

+__construct($duration, $costtype=1)
+cost()
+chargeType()

Lecture

Seminar

Figure 8-3. Inheritance hierarchy improved by removing cost calculations from subclasses

We have made the class structure much more manageable, but at a cost. Using conditionals in
this code is a retrograde step. Usually, we would try to replace a conditional statement with
polymorphism. Here we have done the opposite. As you can see, this has forced us to duplicate
the conditional statement across the chargeType() and cost() methods.

We seem doomed to duplicate code.

Using Composition

We can use the Strategy pattern to compose our way out of trouble. Strategy is used to move a
set of algorithms into a separate type. In moving cost calculations, we can simplify the Lesson
type. You can see this in Figure 8-4.

Lesson [

+cost()
+chargeType()
+getDuration()

=

CostStrategy

+cost($lesson
+chargeType()

:Lesson)

ZIX

Lecture

Seminar

FixedCostStrategy

TimeCostStrategy

+cost($lesson:Lesson)

+chargeType()

+cost($lesson:Lesson)
+chargeType()

$this->costStrategy->cost( $thisEi

Figure 8-4. Moving algorithms into a separate type

return ($1esson—>getDuration()*gﬂ

129



130

CHAPTER 8 @ SOME PATTERN PRINCIPLES

We create an abstract class, CostStrategy, which defines the abstract methods cost() and
chargeType(’). The cost() method requires an instance of Lesson, which it will use to generate
cost data. We provide two implementations for CostStrategy. Lesson objects work only with
the CostStrategy type, not a specific implementation, so we can add new cost algorithms at
any time by subclassing CostStrategy. This would require no changes at all to any Lesson classes.

Here’s a simplified version of the new Lesson class illustrated in Figure 8-4:

abstract class Lesson {
private  $duration;
private  $costStrategy;

function _ construct( $duration, CostStrategy $strategy ) {
$this->duration = $duration;
$this->costStrategy = $strategy;

}

function cost() {
return $this->costStrategy->cost( $this );

}

function chargeType() {
return $this->costStrategy->chargeType( );

}

function getDuration() {
return $this->duration;

}

// more lesson methods...

The Lesson class requires a CostStrategy object, which it stores as a property. The
Lesson: :cost() method simply invokes CostStrategy: :cost(). Equally, Lesson: : chargeType()
invokes CostStrategy::chargeType(). This explicit invocation of another object’s method in
order to fulfill a request is known as delegation. In our example, the CostStrategy object is the
delegate of Lesson. The Lesson class washes its hands of responsibility for cost calculations and
passes on the task to a CostStrategy implementation. Here it is caught in the act of delegation:

function cost() {
return $this->costStrategy->cost( $this );

}
Here is the CostStrategy class, together with its implementing children:

abstract class CostStrategy {
abstract function cost( Lesson $lesson );
abstract function chargeType();



CHAPTER 8 1 SOME PATTERN PRINCIPLES

class TimedCostStrategy extends CostStrategy {
function cost( Lesson $lesson ) {
return ( $lesson->getDuration() * 5 );
}
function chargeType() {
return "hourly rate";
}
}

class FixedCostStrategy extends CostStrategy {
function cost( Lesson $lesson ) {
return 30,

}

function chargeType() {
return "fixed rate";

}

We can change the way that any Lesson object calculates cost by passing it a different
CostStrategy object at runtime. This approach then makes for highly flexible code. Rather than
building functionality into our code structures statically, we can combine and recombine
objects dynamically.

$lessons|[]
$lessons|]

new Seminar( 4, new TimedCostStrategy() );
new Lecture( 4, new FixedCostStrategy() );

foreach ( $lessons as $lesson ) {
print "lesson charge {$lesson->cost()}. ";
print "Charge type: {$lesson->chargeType()}\n";

}

// output:
// lesson charge 20. Charge type: hourly rate
// lesson charge 30. Charge type: fixed rate

As you can see, one effect of this structure is that we have focused the responsibilities of
our classes. CostStrategy objects are responsible solely for calculating cost, and Lesson objects
manage lesson data.

So, composition can make your code more flexible because objects can be combined to
handle tasks dynamically in many more ways than you can anticipate in an inheritance hier-
archy alone. There can be a penalty with regard to readability, though. Because composition
tends to result in more types, with relationships that aren’t fixed with the same predictability
as they are in inheritance relationships, it can be slightly harder to digest the relationships in
a system.

131



132

CHAPTER 8 = SOME PATTERN PRINCIPLES

Decoupling

We saw in Chapter 6 that it makes sense to build independent components. A system with
highly interdependent classes can be hard to maintain. A change in one location can require
a cascade of related changes across the system.

The Problem

Reusability is one of the key objectives of object-oriented design, and tight-coupling is its
enemy. We diagnose tight coupling when we see that a change to one component of a system
necessitates many changes elsewhere. We aspire to create independent components so that
we can make changes in safety.

We saw an example of tight coupling in Figure 8-2. Because the costing logic was mirrored
across the Lecture and Seminar types, a change to TimedPricelecture would necessitate a
parallel change to the same logic in TimedPriceSeminar. By updating one class and not the
other, we would break our system, but without any warning from the PHP engine. Our first
solution, using a conditional statement, produced a similar dependency between the cost()
and chargeType() methods.

By applying the Strategy pattern, we distilled our costing algorithms into the CostStrategy
type, locating them behind a common interface, and implementing each only once.

Coupling of another sort can occur when many classes in a system are embedded explicitly
into a platform or environment. Let’s say that you are building a system that works with
a MySQL database, for example. You might use functions such asmysql_connect() and
mysql_query() to speak to the database server.

Should you be required to deploy the system on a server that does not support MySQL,
you could convert your entire project to use SQLite. You would be forced to make changes
throughout your code, though, and face the prospect of maintaining two parallel versions of
your application.

The problem here is not the dependency of the system upon an external platform. Such a
dependency is inevitable. We need to work with code that speaks to a database. The problem
comes when such code is scattered throughout a project. Talking to databases is not the
primary responsibility of most classes in a system, so the best strategy is to extract such code,
and group it together behind a common interface. In this way you promote the independence
of your classes. At the same time, by concentrating your “gateway” code in one place, you make
it much easier to switch to a new platform without disturbing your wider system.

Loosening Your Coupling

To handle database code flexibly, we should decouple the application logic from the specifics
of the database platform it uses. Fortunately, this is as easy as using a PEAR package: PEAR: : DB.
Here is some code that uses PEAR: : DB to work first with MySQL, and then with SQLite:

require_once("DB.php");
$dsn_array[] = "mysql://bob:bobs_pass@localhost/bobs_db";
$dsn_array[] = "sqlite://./bobs_db.db";



CHAPTER 8 @ SOME PATTERN PRINCIPLES

foreach ( $dsn_array as $dsn ) {

print "$dsn\n\n";

$db = DB::connect($dsn);

$query_result = $db->query( "SELECT * FROM bobs_table" );

while ( $row = $query_result->fetchRow( DB_FETCHMODE ARRAY ) ) {
printf( "| %-4s| %-4s| %-25s|", $row[0], $row[2], $row[1] );
print "\n";

}

print "\n";

$query result->free();

$db->disconnect();

Note that we have stripped this example of error handling for the sake of brevity. I covered
PEAR errors and the DB package in Chapter 4.

The DB class provides a static method called connect () that accepts a Data Source Name
(DSN) string. According to the makeup of this string, it returns a particular implementation of
aclass called DB_Common. So for the string “mysql://”, the connect () method returns aDB_mysql
object, and for a string that starts with “sqlite://”, it returns aDB_sqlite object. You can see the
class structure in Figure 8-5.

f<creates>> =

DB DB_common

+connect($dsn)

A
| |

DB_mysql DB_sqglite

Figure 8-5. PEAR::DB decouples client code from database objects

The PEAR: :DB package, then, enables you to decouple your application code from the
specifics of your database platform. As long as you use uncontroversial SQL, you should be able
to run a single system with MySQL, SQLite, MSSQL, and many others without changing a line
of code (apart from the DSN, of course, which is the single point at which the database context
must be configured).

This design bears some resemblance to the Abstract Factory pattern described in the Gang
of Four book, and later in this book. Although it is simpler in nature, it has the same motivation,
to generate an object that implements an abstract interface without requiring the client to
instantiate the object directly.

Of course, by decoupling your system from the specifics of a database platform, the DB
package still leaves you with your own work to do. If your (now database-agnostic) SQL code is
sprinkled throughout your project, you may find that a single change in one aspect of your project
causes a cascade of changes elsewhere. An alteration in the database schema would be the most
common example here, where an additional field in a table might necessitate changes to many
duplicated database queries. You should consider extracting this code and placing it in a single
package, thereby decoupling your application logic from the details of a relational database.

133



134

CHAPTER 8 @ SOME PATTERN PRINCIPLES

Code to an Interface Not an Implementation

This principle is one of the all-pervading themes of this book. We saw in Chapter 6 (and in the
last section) that we can hide different implementations behind the common interface defined
in a super class. Client code can then require an object of the super class’s type rather than that
of an implementing class, unconcerned by the specific implementation it is actually getting.

Parallel conditional statements, like the ones we built into Lesson: :cost() and
lesson: :chargeType(), are a common signal that polymorphism is needed. They make code
hard to maintain because a change in one conditional expression necessitates a change in its
twins. Conditional statements are occasionally said to implement a “simulated inheritance.”

By placing the cost algorithms in separate classes that implement CostStrategy, we remove
duplication. We also make it much easier should we need to add new cost strategies in the future.

From the perspective of client code, it is often a good idea to require abstract or general
types in your methods’ parameter lists. By requiring more specific types, you could limit the
flexibility of your code at runtime.

Having said that, of course, the level of generality you choose in your argument hints is a
matter of judgment. Make your choice too general, and your method may become less safe.
If you require the specific functionality of a subtype, then accepting a differently equipped
sibling into a method could be risky.

Still, make your choice of argument hint too restricted, and you lose the benefits of poly-
morphism. Take a look at this altered extract from the Lesson class:

function _construct( $duration,
FixedPriceStrategy $strategy ) {
$this->duration = $duration;
$this->costStrategy = $strategy;

}

There are two issues arising from the design decision in this example. Firstly, the Lesson
object is now tied to a specific cost strategy, which closes down our ability to compose dynamic
components. Secondly, the explicit reference to the FixedPriceStrategy class forces us to
maintain that particular implementation.

By requiring a common interface, you can combine a Lesson object with any CostStrategy
implementation.

function _ construct( $duration, CostStrategy $strategy ) {
$this->duration = $duration;
$this->costStrategy = $strategy;

}

You have, in other words, decoupled your Lesson class from the specifics of cost calcula-
tion. All that matters is the interface and the guarantee that the provided object will honor it.

Of course, coding to an interface can often simply defer the question of how to instantiate
your objects. When we say that a Lesson object can be combined with any CostStrategy inter-
face at runtime, we beg the question, “But where does the CostStrategy object come from?”

When you create an abstract super class, there is always the issue as to how its children
should be instantiated. Which one do you choose in which condition? This subject forms a
category of its own in the GoF pattern catalog, and we will examine some of these in the next
chapter.



CHAPTER 8 © SOME PATTERN PRINCIPLES

The Concept That Varies

It’s easy to interpret a design decision once it has been made, but how do you decide where
to start?

The Gang of Four recommend that you “encapsulate the concept that varies.” In terms of
our lesson example, the “varying concept” is the cost algorithm. Not only is the cost calculation
one of two possible strategies in the example, but it is obviously a candidate for expansion:
special offers, overseas student rates, introductory discounts, all sorts of possibilities present
themselves.

We quickly established that subclassing for this variation was inappropriate and we resorted to
a conditional statement. By bringing our variation into the same class, we underlined its suit-
ability for encapsulation.

The Gang of Four recommend that you actively seek varying elements in your classes and
assess their suitability for encapsulation in a new type. Each alternative in a suspect conditional
may be extracted to form a class extending a common abstract parent. This new type can then
be used by the class or classes from which it was extracted. This has the effect of

¢ Focusing responsibility

¢ Promoting flexibility through composition

e Making inheritance hierarchies more compact and focused
¢ Reducing duplication

So how do we spot variation? One sign is the misuse of inheritance. This might include
inheritance deployed according to multiple forces at one time (lecture/seminar, fixed/timed
cost). It might also include subclassing on an algorithm where the algorithm is incidental to the
core responsibility of the type. The other sign of variation suitable for encapsulation is, of
course, a conditional expression.

Patternitis

One problem for which there is no pattern is the unnecessary or inappropriate use of patterns.
This has earned patterns a bad name in some quarters. Because pattern solutions are neat, it is
tempting to apply them wherever you see a fit, whether they truly fulfill a need or not.

The eXtreme Programming methodology offers a couple of principles that might apply
here. The first is “You aren’t going to need it” (often abbreviated to YAGNI). This is generally
applied to application features, but it also makes sense for patterns.

When I build large environments in PHP, I tend to split my application into layers, sepa-
rating application logic from presentation and persistence layers. I use all sorts of core and
enterprise patterns in conjunction with one another.

When I am asked to build a feedback form for a small business Web site, however, I may
simply use procedural code in a single page script. I do not need enormous amounts of flexi-
bility, I won’t be building upon the initial release. I don’t need to use patterns that address
problems in larger systems. Instead I apply the second XP principle: “Do the simplest thing
that works.”

135



136

CHAPTER 8 @ SOME PATTERN PRINCIPLES

When you work with a pattern catalog, the structure and process of the solution are what
stick in the mind, consolidated by the code example. Before applying a pattern, though, pay
close attention to the “problem” or “when to use it” section, and read up on the pattern’s
consequences. In some contexts, the cure may be worse than the disease.

The Patterns

This book is not a pattern catalog. Nevertheless, in the coming chapters, I will introduce a few
of the key patterns in use at the moment, providing PHP implementations and discussing them
in the broad context of PHP programming.

The patterns described will be drawn from key catalogs including Design Patterns, Patterns
of Enterprise Application Architecture, and Core J2EE Patterns. I follow the Gang of Four’s
categorization, dividing patterns as follows:

Patterns for Generating Objects

These patterns are concerned with the instantiation of objects. This is an important category
given the principle “Code to an interface.” If we are working with abstract parent classes in our
design, then we must develop strategies for instantiating objects from concrete subclasses. It is
these objects that will be passed around our system.

Patterns for Organizing Objects and Classes

These patterns help us to organize the compositional relationships of our objects. More simply,
these patterns show how we combine objects and classes.

Task-oriented Patterns

These patterns describe the mechanisms by which classes and objects cooperate to achieve
objectives.

Enterprise Patterns

We look at some patterns that describe typical Internet programming problems and solutions.
Drawn largely from Patterns of Enterprise Application Architecture and Core J2EE Patterns, the
patterns deal with database persistence, presentation, and application logic.

Summary

In this chapter, we looked at some of the principles that underpin many design patterns. We
looked at the use of composition to enable object combination and recombination at runtime,
resulting in more flexible structures than would be available using inheritance alone. We intro-
duced decoupling, the practice of extracting software components from their context to make
them more generally applicable. We reviewed the importance of interface as a means of decou-
pling clients from the details of implementation.

In the coming chapters, we will examine some design patterns in detail.



Creating objects is a messy business. So many object-oriented designs deal with nice, clean
abstract classes, taking advantage of the impressive flexibility afforded by polymorphism (the
switching of concrete implementations at runtime). To achieve this flexibility though, we must
devise strategies for object generation. This is the topic we will look at here.

This chapter will cover

* The Singleton pattern: A special class that generates one and only one object instance
¢ The Factory Method pattern: Building an inheritance hierarchy of creator classes
» The Abstract Factory pattern: Grouping the creation of functionally related products

* The Prototype pattern: Using clone to generate objects

Problems and Solutions in Generating Objects

Object creation can be a weak point in object-oriented design. In the previous chapter, we saw
the principle “Code to an interface, not to an implementation.” To this end, we are encouraged
to work with abstract supertypes in our classes. This makes code more flexible, allowing you to
use objects instantiated from different concrete subclasses at runtime. This has the side effect
that object instantiation is deferred.

Here’s a class that accepts a name string and instantiates a particular object:

abstract class Employee {
protected $name;
function _ construct( $name ) {
$this->name = $name;
}

abstract function fire();

}

class Minion extends Employee {
function fire() {
print "{$this->name}: I'11 clear my desk\n";
}

137



138

CHAPTER 9 GENERATING OBJECTS

class CluedUp extends Employee {
function fire() {
print "{$this->name}: I'1ll call my lawyer\n";
}
}

class NastyBoss {
private $employees = array();

function addEmployee( $employeeName ) {
$this->employees[] = new Minion( $employeeName );

}

function projectfFails() {
if ( count( $this->employees ) ) {
$emp = array pop( $this->employees );
$emp->fire();

}

$boss = new NastyBoss();
$boss->addEmployee( "harry" );
$boss->addEmployee( "bob" );
$boss->addEmployee( "mary" );
$boss->projectFails();

// output:
// mary: I'll clear my desk

As you can see, we define an abstract base class: Employee, with a downtrodden implemen-
tation: Minion. Given a name string, the NastyBoss: :addEmployee() method instantiates a new
Minion object. Whenever a NastyBoss object runs into trouble (via the NastyBoss: :projectFails()

method), it looks for a Minion to fire.

By instantiating a Minion object directly in the NastyBoss class, we limit flexibility. If a
NastyBoss object could work with any instance of the Employee type, we could make our code
amenable to variation at runtime as we add more Employee specializations. You should find the

polymorphism in Figure 9-1 familiar.



NastyBoss o—r—- Employee
+addEmployee($employee:Employee) +fire()
+projectFails()

CHAPTER 9 © GENERATING OBJECTS

Minion

WellConnected

CluedUp

I'1l clear my deskl +fire()

+fire()

+fire()

I'11 call my dad

I'11l call my lawyerl

Figure 8-1. Working with an abstract type enables polymorphism

If the NastyBoss class does not instantiate a Minion object, where does it come from?
Authors often duck out of this problem by constraining an argument type in a method declaration
and then conveniently omitting to show the instantiation in anything other than a test context.

class

NastyBoss {

private $employees = array();

function addEmployee( Employee $employee ) {
$this->employees[] = $employee;

}

function projectFails() {
if ( count( $this->employees ) ) {
$emp = array_pop( $this->employees );

}

}
$boss

$emp->fire();

= new NastyBoss();

$boss->addEmployee( new Minion( "harry" ) );
$boss->addeEmployee( new CluedUp( "bob" ) );
$boss->addEmployee( new Minion( "mary" ) );
$boss->projectFails();
$boss->projectFails();

// output:

// mary: I'll clear my desk
// bob: I'1l call my lawyer
// harry: I'l1l clear my desk

139



140

CHAPTER 9 i GENERATING OBJECTS

Although this version of the NastyBoss class works with the Employee type, and therefore
benefits from polymorphism, we still haven’t defined a strategy for object creation. Instanti-
ating objects is a dirty business, but it has to be done. This chapter is about classes and objects
that work with concrete classes so that the rest of your classes do not have to.

If there is a principle to be found, here it is “Delegate object instantiation.” We did this
implicitly in the previous example by demanding that an Employee object is passed to the
NastyBoss : :addEmployee() method. We could, however, equally delegate to a separate class or
method that takes responsibility for generating Employee objects. Let’s add a static method to
the Employee class that implements a strategy for object creation:

abstract class Employee {
protected $name;
private static $types = array( 'minion', 'cluedup', 'wellconnected' );

static function recruit( $name ) {
$num = rand( 1, count( self::$types ) )-1;
$class = self::$types[$num];
return new $class( $name );

}

function _ construct( $name ) {
$this->name = $name;

}

abstract function fire();

As you can see, this takes a name string and uses it to instantiate a particular Employee
subtype at random. We can now delegate the details of instantiation to the Employee class’s
recruit() method.

$boss = new NastyBoss();

$boss->addEmployee( Employee::recruit( "harry" ) );
$boss->addEmployee( Employee::recruit( "bob" ) );
$boss->addEmployee( Employee::recruit( "mary" ) );

We saw a simple example of such a class in Chapter 4. We placed a static method in the
ShopProduct class called getInstance(). getInstance() is responsible for generating the correct
ShopProduct subclass based upon a database query. The ShopProduct class, therefore, has a dual
role. It defines the ShopProduct type, but it also acts as a factory for concrete ShopProduct objects.

// class ShopProduct

public static function getInstance( $id, DB common $db ) {
$query = "select * from products where id="$id'";
$query_result = $db->query( $query );

if ( DB::isError( $query result ) ) {
die($query result->getMessage());

}



CHAPTER 9 GENERATING OBJECTS

$row = $query result->fetchRow( DB_FETCHMODE ASSOC );
if ( empty( $row ) ) { return null; }

if ( $row['type'] == "book" ) {

// instantiate a BookProduct object
} else if ( $row['type'] == "cd" ) {

// instantiate a CdProduct object
} else {

// instantiate a ShopProduct object

}
$product->setId( $row['id'] );
$product->setDiscount( $row[ 'discount'] );

return $product;

Note We use the term “factory” frequently in this chapter. A factory is a class or method with responsibility
for generating objects.

The getInstance() method uses a large switch statement to determine which subclass to
instantiate. Conditionals like this are quite common in factory code. Although we often attempt to
excise large conditional statements from our projects, this often has the effect of pushing the
conditional back to the moment at which an object is generated. This is not generally a serious
problem, because we remove parallel conditionals from our code in pushing the decision
making back to this point.

In this chapter, then, we will examine some of the key Gang of Four patterns for generating
objects.

Note “Gang of Four” is the affectionate nickname of Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides, who are the authors of Design Patterns: Elements of Reusable Object-Oriented Software. This
book is one of the most important design pattern catalogs, which is often known as the “Gang of Four book.”

The Singleton Pattern

The global variable is one of the great bugbears of the object-oriented programmer. The reasons
should be familiar to you by now. Global variables tie classes into context, undermining encap-
sulation. A class that relies on global variables becomes impossible to pull out of an application
and use in another, without first ensuring that the new application itself defines the same
global variables.

14



142

CHAPTER 9 © GENERATING OBJECTS

Although this is undesirable, the unprotected nature of global variables can be a greater
problem. Once you start relying upon global variables, it is perhaps just a matter of time before
one of your libraries declares a global that clashes with another declared elsewhere. We have
seen already that PHP is vulnerable to class name clashes, but this is much worse. PHP will not
warn you when globals collide. The first you will know about it is when your script begins to
behave oddly.

Globals remain a temptation, however. This is because there are times when the sin inherent
in global access seems a price worth paying in order to give all your classes access to an object.

The Problem

Well-designed systems generally pass object instances around via method calls. Each class
retains its independence from the wider context, collaborating with other parts of the system
via clear lines of communication. Sometimes, though, you find that this forces you to use some
classes as conduits for objects that do not concern them, introducing dependencies in the
name of good design.

Imagine a Preferences class that holds application-level information. We might use a
Preferences object to store data such as DSN strings (Data Source Names hold table and user
information about a database), URL roots, file paths, and so on. This is the sort of information
that will vary from installation to installation. The object may also be used as a “notice board,”
a central location for messages that could be set or retrieved by otherwise unrelated objects in
a system.

Passing a Preferences object around from object to object may not always be a good idea.
Many classes that do not otherwise use the object could be forced to accept it simply so that
they could pass it on to the objects that they work with. This is just another kind of coupling.

We also need to be sure that all objects in our system are working with the same Preferences
object. We do not want objects setting values on one object, while others read from an entirely
different one.

Let’s distill the forces in this problem:

» APreferences object should be available to any object in our system.
* APreferences object should not be stored in a global variable, which can be overwritten.

* There should be no more than one Preferences object in play in the system. This means
that object Y can set a property in the Preferences object, and object Z can retrieve the
same property, without either one talking to the other directly.

Implementation

To address this problem, we can start by asserting control over object instantiation. Here we
create a class that cannot be instantiated from outside of itself. That may sound difficult, but
it’s simply a matter of defining a private constructor:



CHAPTER 9 “ GENERATING OBJECTS

class Preferences {
private $props = array();

private function _ construct() { }

public function setProperty( $key, $val ) {
$this->props[$key] = $val;
}

public function getProperty( $key ) {
return $this->props($key];
}

Of course, at this point the Preferences class is entirely unusable. We have taken access
restriction to an absurd level. Because the constructor is declared private, no client code can
instantiate an object from it. The setProperty() and getProperty() methods are therefore
redundant.

We can use a static method and a static property to mediate object instantiation.

class Preferences {
private $props = array();
private static $instance;

private function _ construct() { }

public static function getInstance() {
if ( empty( self::$instance ) ) {
self::$instance = new Preferences();

}

return self::$instance;

}

public function setProperty( $key, $val ) {
$this->props[$key] = $val;
}

public function getProperty( $key ) {
return $this->props{$key];
}

143



144

CHAPTER 9 © GENERATING OBJECTS

The $instance property is private and static, so it cannot be accessed from outside the
class. The getInstance() method has access though. Because getInstance() is public and
static, it can be called via the class from anywhere in a script.

$pref = Preferences::getInstance();
$pref->setProperty( "name", "matt" );
unset( $pref );

$pref2 = Preferences::getInstance();
print $pref2->getProperty( "name" );

A static method cannot access object properties because it is, by definition, invoked in a
class and not an object context. It can, however, access a static property. When getInstance()
is called, we check the Preferences: : $instance property. If it is empty, then we create an
instance of the Preferences class and store it in the property. Then we return the instance to
the calling code. Because the static getInstance() method is part of the Preferences class, we
have no problem instantiating a Preferences object even though the constructor is private.

Figure 9-2 shows this structure in the UML.

1

1

1

1

j<<creates>> V

! Preferences
1

| —$instance

1 -__construct()

——J +getInstance()
+setProperty($key:String, $value:String

+getProperty($key:String)

if ( empty( self::$instance ) ) {
self::$instance = new Preferences();

}

return self::$instance;

Figure 8-2. An example of the Singleton pattern

Consequences

So, how does the Singleton approach compare to using a global variable? First the bad news.
Both Singletons and global variables can be misused. Because Singletons can be accessed from
anywhere in a system, they can serve to create dependencies that can be hard to debug. Change
aSingleton, and classes that use it may be affected. Dependencies are not a problem in themselves.
After all, we create a dependency every time we declare that a method requires an argument



CHAPTER 9 ™ GENERATING OBJECTS

of a particular type. The problem is that the global nature of the Singleton lets a programmer
bypass the lines of communication defined by class interfaces. When a Singleton is used, the
dependency is hidden away inside a method and not declared in its signature. This can make it
harder to trace the relationships within a system. Singleton classes should therefore be deployed
sparingly and with care.

Nevertheless, I think that moderate use of the Singleton pattern can improve the design of
a system, saving you from horrible contortions as you pass objects unnecessarily around your
system.

Singletons represent an improvement over global variables in an object-oriented context.
You cannot overwrite a Singleton with the wrong kind of data. This kind of protection is espe-
cially important in PHP, which does not support namespaces. Any name clash will be caught at
compile time, ending script execution.

Factory Method Pattern

Object-oriented design emphasizes the abstract class over the implementation. That is, we
work with generalizations rather than specializations. The Factory Method pattern addresses
the problem of how to create object instances when your code focuses on abstract types. The
answer? Let specialist classes handle instantiation.

The Problem

Imagine a personal organizer project. Among others, we manage Appointment objects. Our
business group has forged a relationship with another company, and we must communicate
appointment data to them using a format called BloggsCal. The business group warns us that
we may face yet more formats as time wears on, though.

Staying at the level of interface alone, we can identify two participants right away. We need
a data encoder that converts our Appointment objects into a proprietary format. Let’s call that
class ApptEncoder. We need a manager class that will retrieve an encoder, and maybe work with
it to communicate with a third party. We can call that CommsManager. Using the terminology of
the pattern, the CommsManager is the creator, and the ApptEncoder is the product. You can see
this structure in Figure 9-3.

<<creates>>
________ > -

CommsManager ApptEncoder

+getApptEncoder(): ApptEncoder +encode(): String

Figure 9-3. Abstract creator and product classes

How do we get our hands on a real concrete ApptEncoder, though?

We could demand that an ApptEncoder is passed to the CommsManager, but that simply defers
our problem, and we want the buck to stop about here. Let’s instantiate a BloggsApptEncoder
object directly within the CommsManager class:

145



146

CHAPTER 9 ' GENERATING OBJECTS

abstract class ApptEncoder {
abstract function encode();

}

class BloggsApptEncoder extends ApptEncoder {
function encode() {
return "Appointment data encoded in BloggsCal format\n";

}
}

class MegaApptEncoder extends ApptEncoder {
function encode() {
return "Appointment data encoded in MegaCal format\n";

}
}

class CommsManager {
function getApptEncoder() {
return new BloggsApptEncoder();

}

The CommsManager class is responsible for generating BloggsApptEncoder objects. When
the sands of corporate allegiance inevitably shift and we are asked to convert our system
to work with a new format called MegaCal, we can simply add a conditional into the
CommsManager : : getApptEncoder () method. This is the strategy we have used in the past,
after all. Let’s build a new implementation of CommsManager that handles both BloggsCal

and MegaCal formats:

class CommsManager {
const BLOGGS = 1;
const MEGA = 2;
private $mode = 1;

function _ construct( $mode ) {
$this->mode = $mode;

}

function getApptEncoder() {
switch ( $this-s>mode ) {
case ( self::MEGA ):
return new MegaApptEncoder();
default: :
return new BloggsApptEncoder();



CHAPTER 9 GENERATING OBJECTS

$comms = new CommsManager( CommsManager::MEGA );
$apptEncoder = $comms->getApptEncoder();
print $apptEncoder->encode();

We use constant flags to define two modes in which the script might be run: MEGA and
BLOGGS. We use a switch statement in the getApptEncoder() method to test the $mode property
and instantiate the appropriate implementation of ApptEncoder.

There is little wrong with this approach. Conditionals are sometimes considered examples
of bad “code smells,” but object creation often requires a conditional at some point. We should
be less sanguine if we see duplicate conditionals creeping into our code. The CommsManager
class provides functionality for communicating calendar data. Imagine that the protocols we
work with require us to provide header and footer data. Let’s extend our previous example to
support a getHeaderText () method:

class CommsManager {
const BLOGGS = 1;
const MECA = 2;
private $mode = 1;

function _ construct( $mode ) {
$this->mode = $mode;

}

function getHeaderText() {
switch ( $this->mode ) {
case ( self::MEGA ):
return "MegaCal header\n";
default:
return "BloggsCal header\n";
}

}
function getApptEncoder() {

switch ( $this->mode ) {
case ( self::MEGA ):
return new MegaApptEncoder();
default:
return new BloggsEncoder();

As you can see, the need to support header output has forced us to duplicate the protocol
conditional test. This will become unwieldy as we add new protocols, especially if we also add
a getFooterText() method.

147



148

CHAPTER 9 ~ GENERATING OBJECTS

So, to summarize our problem:

¢ We do not know until runtime the kind of object we need to produce (BloggsApptEncoder
or MegaApptEncoder).

¢ We need to be able to add new product types with relative ease. (SyncML support is just
a new business deal away!)

» Each product type is associated with a context that requires other customized operations
(getHeaderText(), getFooterText()).

Additionally, we might note that we are using conditional statements, and we have seen
already that these are naturally replaceable by polymorphism. The Factory Method pattern
enables us to use inheritance and polymorphism to encapsulate the creation of concrete products.
In other words, we create a CommsManager subclass for each protocol, each one implementing
the getApptEncoder() method.

Implementation

The Factory Method pattern splits creator classes from the products they are designed to
generate. The creator is a factory class that defines a method for generating a product object.
If no default implementation is provided, it is left to creator child classes to perform the instan-
tiation. Typically, each creator subclass instantiates a parallel product child class.

Let’s redesignate CommsManager as an abstract class. That way we keep a flexible super class
and put all our protocol-specific code in the concrete subclasses. You can see this alteration in
Figure 9-4.

CommsManager ApptEncoder

+getHeaderText(): String +encode(): String
+getApptEncoder(): ApptEncoder
+getFooterText(): String

T

BloggsCommsManager

<<creates>> >

BloggsApptEncoder

+getHeaderText(): String +encode(): String
+getApptEncoder(): ApptEncoder
+getFooterText(): String

return new BloggsApptEncoder()%l

Figure 9-4. Concrete creator and product classes



CHAPTER 9 ©© GENERATING OBJECTS

Here’s some simplified code:

abstract class ApptEncoder {
abstract function encode();

}

class BloggsApptEncoder extends ApptEncoder {
function encode() {
return "Appointment data encode in BloggsCal format\n";
}
}

abstract class CommsManager {
abstract function getHeaderText();
abstract function getApptEncoder();
abstract function getFooterText();

}

class BloggsCommsManager extends CommsManager {
function getHeaderText() {
return "BloggsCal header\n";

}

function getApptEncoder() {
return new BloggsApptEncoder();

}

function getFooterText() {
return "BloggsCal footer\n";

}

The BloggsCommsManager : :getTtdEncoder () method returns a BloggsApptEncoder object.
Client code calling getApptEncoder() can expect an object of type ApptEncoder, and will not
necessarily know about the concrete product it has been given. In some languages, method
return types are enforced, so client code calling a method like getApptEncoder () can be absolutely
certain that it will receive an ApptEncoder object. In PHP 5, this is a matter of convention. It is
important to document return types or otherwise signal them through naming conventions.

So when we are required to implement MegaCal, supporting it is simply a matter of writing
a new implementation for our abstract classes. Figure 9-5 shows the MegaCal classes.

149



150

CHAPTER 9 GENERATING OBJECTS

CommsManager

+getHeaderText(): String
+getApptEncoder(): ApptEncoder]
+getFooterText(): String

A

|

+encode(): String

A
| |

——————— >>|MegaApptEncoder| [BloggsApptEncoderj<€ = = = = = = - 4

R —— MegaCommsManager BloggsCommsManager -——
| |
1 +getHeaderText(): String +getHeaderText(): String 1
1 +getApptEncoder(): ApptEncoder] [+getApptEncoder(): Apl?tEncoder |
1 +getFooterText(): String +getFooterText(): String 1
| 1
| 1
| return new MegaApptEncoder(); return new BloggsApptEncoder(); 1
|
:<<creates>> [<<creates>>
| 1
1 ApptEncoder |
1 1
1 1
1 |
| |
1 1
| 1

+encode(): String +encode(): String

Figure 9-5. Extending the design to support a new protocol

Consequences

Notice that our creator classes mirror the product hierarchy. This is a common consequence of
the Factory Method pattern and disliked by some as a special kind of code duplication. Another
issue is the possibility that the pattern could encourage unnecessary subclassing. If your only
reason for subclassing a creator is to deploy the Factory Method pattern, you may need to think
again (that’s why we introduced the header and footer constraints to our example here).

We have focused only on appointments in our example. If we extend it somewhat to include
“to do” items and contacts, we face a new problem. We need a structure that will handle sets of
related implementations at one time. The Factory Method pattern is often used with the Abstract
Factory pattern, as we will see in the next section.

Abstract Factory

In large applications, you may need factories that produce related sets of classes. The Abstract
Factory pattern addresses this problem.



CHAPTER 9 “/ GENERATING OBJECTS

The Problem

Let’slook again at our organizer example. We manage encoding in two formats, BloggsCal and
MegaCal. We can grow this structure “horizontally” by adding more encoding formats, but
how can we grow “vertically,” adding encoders for different types of PIM object? In fact, we
have been working toward this pattern already.

In Figure 9-6, you can see the parallel families with which we will want to work.

ApptEncoder

+encode(): String

A
I |

MegaApptEncoder| |BloggsApptEncoder

+encode(): String +encode(): String

TtdEncoder

+encode(): String

A
I |

MegaTtdEncoder BloggsTtdEncoder

+encode(): String +encode(): String

ContactEncoder

+encode(): String
I Y

MegaContactEncoder BloggsContactEncoder

+encode(): String +encode(): String

Figure 9-6. Three product families

The BloggsCal classes are unrelated to one another by inheritance (although they could
implement a common interface), but they are functionally parallel. If our system is currently
working with BloggsTtdEncoder, it should also be working with BloggsContactEncoder.

To see how we enforce this, we can begin with the interface as we did with the Factory
Method pattern (see Figure 9-7).

151



152 CHAPTER 9 © GENERATING OBJECTS

CommsManager - - -«c—rei'fei»— - = ApptEncoder

+getHeaderText(): String +encode(): String

1
1
+getApptEncoder(): ApptEncoder |
+getTtdEncoder(): TtdEncoder
+getContactEncoder(): ContactEncoder L
+getFooterText(): String |
1
|
1
L

- — —=>| TtdEncoder

+encode(): String

— — —>» ContactEncoder

+encode(): String

Figure 9-7. An abstract creator and its abstract products

Implementation

The abstract CommsManager class defines the interface for generating each of the three products
(ApptEncoder, TtdEncoder, and ContactEncoder). We need to implement a concrete creator in
order to actually generate the concrete products for a particular family. We do that for the
BloggsCal format in Figure 9-8.

CommsManager ApptEncoder

+getHeaderText(): String +encode(): String
+getApptEncoder(): ApptEncoder
+getTtdEncoder(): TtdEncoder
+getContactEncoder(): ContactEncoder
+getFooterText(): String r——- BlogsApptEncoder
|
|
|
1

+encode(): String

BloggsCommsManager — = = " TtdEncoder

+getHeaderText(): String
+getApptEncoder(): ApptEncoder
+getTtdEncoder(): TtdEncoder
+getContactEncoder(): ContactEncoder
+getFooterText(): String

+encode(): String

T

= — —=>{ BloggsTtdEncoder

ContactEncoder

+encode(): String

T

~ — > BloggsContactEncoder

|

1

|
L
1

| +encode(): String
|

1

|

|

|

[

|

|

+encode(): String

Figure 9-8. Adding a concrete creator and some concrete products



CHAPTER 9 ™ GENERATING OBJECTS 153

Here is a code version of CommsManager and BloggsCommsManager:

abstract class CommsManager {
abstract function getHeaderText();
abstract function getApptEncoder();
abstract function getTtdEncoder();
abstract function getContactEncoder();
abstract function getFooterText();

}

class BloggsCommsManager extends CommsManager {
function getHeaderText() {
return "BloggsCal header\n";

}

function getApptEncoder() {
return new BloggsApptEncoder();
}

function getTtdencoder() {
return new BloggsTtdEncoder();

}

function getContactEncoder() {
return new BloggsContactEncoder();

}

function getFooterText() {
return "BloggsCal footer\n";

}

Notice that we use the Factory Method pattern in this example. getContact() is abstract in
CommsManager and implemented in BloggsCommsManager. Design patterns tend to work together
in this way, one pattern creating the context that lends itself to another. In Figure 9-9, we add
support for the MegaCal format.



GENERATING OBJECTS

CHAPTER 9

154

8utals :()apooua+ Butais :()epooua+
- 3»|19poduzidRIU0)Sbbolg 19poduzdeIUoIehI fa-
8uraas :()spooua+
1apodu3zideIuo)
Butaag :()opoous+ 8utaig :()apooua+
1apoougprlsbbolg 19poouzprjebo |- ~
Sutrais :()opoous+
49pooujpri
Sutaag :()spoousa+ 8utals :()apodoua+
- = —=>{19poouzqnddysbbojg| |1apoduqiddyebo j<= - -

v

Burays :()opoous+

Ispocuziddy

T .

8utals :()1xXaLI91003198+
[lopoougioeiuo) :()Iapodugioeiuo)1as+
Iapodugpl], :{)Ispodugpillas+
Iapoougaddy : ()aspoougiddyi=s+
Sutaas :()IxXoLIapeaH1as+

BuTa1s :()IXS1I931007198+
fopodougioeiuo) :()Iapooumgldoeliuo)lad+
Iapodugpill :{)IapoduigpiIIad+
Japodugiddy :()aapoougirddyiasd+
8utals :()ixalaspesHias+

19beuepswworyebapy

Jabeuepswwonsbbolg

|

Burais :()1x9[x93004193+
fapoouqioeiuo) : ()I9poougroeiuo)ias+
Jopodugpi] :()Iepoougpl[1d>+
Jopoouqgiddy :()Ispoougiddyias+
Buraiys :()axolIopeay31ad+

Jobeuewsuwuiod

Figure 9-9. Adding concrete creators and some concrete products



Consequences

So what does this pattern buy us?

CHAPTER 9 GENERATING OBJECTS

¢ Firstly, we decouple our system from the details of implementation. We can add or remove
any number of encoding formats to our example without causing a knock on effect.

* We enforce the grouping of functionally related elements of our system. So by using
BloggsCommsManager, we are guaranteed that we will work only with BloggsCal-related

classes.

* Adding new products can be a pain. Not only do we have to create concrete implemen-
tations of the new product, but also we have to amend the abstract creator and every one

of its concrete implementers in order to support it.

Many implementations of the Abstract Factory pattern use the Factory Method pattern.
This may be because most examples are written in Java or C++. PHP, however, does not enforce
a return type for a method, which affords us some flexibility that we might leverage.

Rather than create separate methods for each Factory Method, we can create a single
make() method that uses a flag argument to determine which object to return.

abstract class CommsManager {

}

const APPT =1,

const TTD =2,

const CONTACT = 3;

abstract function getHeaderText();
abstract function make( $flag_int );
abstract function getFooterText();

class BloggsCommsManager extends CommsManager {

function getHeaderText() {
return "BloggsCal header\n";
}
function make( $flag int ) {
switch ( $flag_int ) {
case self::APPT:
return new BloggsApptEncoder();
case self::CONTACT:
return new BloggsContactEncoder();
case self::TTD:
return new BloggsTtdEncoder();

}

function getFooterText() {
return "BloggsCal footer\n";

}

155



156

CHAPTER 9 © GENERATING OBJECTS

As you can see, we have made the class interface more compact. We've done this at a
considerable cost, though. In using Factory Methods, we define a clear interface and force all
concrete factory objects to honor it. In using a single make () method, we must remember to
support all product objects in all the concrete creators. We also introduce parallel conditionals,
as each concrete creator must implement the same flag tests. A client class cannot be certain
that concrete creators generate all the products because the internals of make() are a matter of
choice in each case.

On the other hand, we can build more flexible creators. The base creator class can provide
amake() method that guarantees a default implementation of each product family. Concrete
children could then modify this behavior selectively. It would be up to implementing creator
classes to call the default make() method after providing their own implementation.

We will see another variation on the Abstract Factory pattern in the next section.

Prototype

The emergence of parallel inheritance hierarchies can be a problem with the Factory Method
pattern. This is a kind of coupling that makes some programmers uncomfortable. Every time
you add a product family, you are forced to create an associated concrete creator (the BloggsCal
encoders are matched by BloggsCommsManager, for example). In a system that grows fast to
encompass many products, maintaining this kind of relationship can quickly become tiresome.

One way of avoiding this dependency is to use PHP’s clone keyword to duplicate existing
concrete products. The concrete product classes themselves then become the basis of their
own generation. This is the Prototype pattern. It enables us to replace inheritance with
composition. This in turn promotes runtime flexibility and reduces the number of classes
we must create.

The Problem

Imagine a Civilization-style Web game in which units operate on a grid of tiles. Each tile can
represent sea, plains, or forests. The terrain type constrains the movement and combat abilities of
units occupying the tile. We might have a TerrainFactory object that serves up Sea, Forest, and
Plains objects. We decide that we will allow the user to choose between radically different
environments, so the Sea object is an abstract super class implemented by MarsSea and
EarthSea. Forest and Plains objects are similarly implemented. The forces here lend them-
selves to the Abstract Factory pattern. We have distinct product hierarchies (Sea, P1lains, Forests),
with strong family relationships cutting across inheritance (Earth, Mars). Figure 9-10 presents a
class diagram that shows how we might deploy the Abstract Factory and Factory Method
patterns to work with these products.

As you can see, we rely on inheritance to group the terrain family for the products that a
factory will generate. This is a workable solution, but it requires a large inheritance hierarchy,
and it is relatively inflexible. When you do not want parallel inheritance hierarchies, and when
you need to maximize runtime flexibility, the Prototype pattern can be used in a powerful vari-
ation on the Abstract Factory pattern.



TerrainFactory

+getSea(): Sea
+getPlains(): Plains
+getForest(): Forest

I

EarthTerrainFactory

MarsTerrainFactory

+getSea(): Sea
+getPlains(): Plains
+getForest(): Forest

+getSea(): Sea
+getPlains(): Plains
+getForest(): Forest

- >

CHAPTER 9

Sea

e

GENERATING OBJECTS

MarsSea

EarthSea

Plains

=

MarsPlains

EarthPlains

Forest

—

-2

MarsForest

EarthForest |< -

Figure 9-10. Handling terrains with the Abstract Factory method

Implementation

When we work with the Abstract Factory/Factory Method patterns, we must decide at some
point which concrete creator we wish to work with, probably by checking some kind of prefer-
ence flag. Since we must do this anyway, why not simply create a factory class that stores
concrete products, and populate this during initialization? We can cut down on a couple of
classes this way, and, as we shall see, take advantage of other benefits. Here’s some simple code

that uses the Prototype pattern in a factory:

class Sea {}
class
class
class Plains {}
class
class
class Forest {}
class
class

EarthSea extends Sea {}
MarsSea extends Sea {}

EarthPlains extends Plains {}
MarsPlains extends Plains {}

EarthForest extends Forest {}
MarsForest extends Forest {}

157



158 CHAPTER 9 GENERATING OBJECTS

class TerrainFactory {
private $sea;
private $forest;
private $plains;

function _ construct( Sea $sea, Plains $plains, Forest $forest ) {
$this->sea = $sea;
$this->plains = $plains;
$this->forest = $forest;

}

function getSea( ) {
return clone $this->sea;

}

function getPlains( ) {
return clone $this->plains;

}

function getForest( ) {
return clone $this->forest;
}
}

$factory = new TerrainFactory( new EarthSea(),
new EarthPlains(),
new EarthForest() );

print_r( $factory->getSea() );

print_r( $factory->getPlains() );

print_r( $factory->getForest() );

As you can see, we load up a concrete TerrainFactory with instances of our product
objects. When a client calls getSea(), we return a clone of the Sea object that we cached during
initialization. Not only have we saved a couple of classes, but also we have bought additional
flexibility. Want to play a game on a new planet with Earth-like seas and forests, but Mars-like
plains? No need to write a new creator class—we can simply change the mix of classes we add
to TerrainFactory.

$factory = new TerrainFactory( new EarthSea(),
new MarsPlains(),
new EarthForest() );

So the Prototype pattern allows us to take advantage of the flexibility afforded by compo-
sition. We get more than that, though. Because we are storing and cloning objects at runtime,
we reproduce object state when we generate new products. Imagine that Sea objects have a
$navigability property. The property influences the amount of movement energy a sea tile
saps from a vessel, and can be set to adjust the difficulty level of a game.



CHAPTER 9 ' GENERATING OBJECTS

class Sea {
private $navigability = 0;
function _ construct( $navigability ) {
$this->navigability = $navigability;
}

Now when we initialize the TerrainFactory object, we can add a Sea object with a naviga-
bility modifier. This will then hold true for all Sea objects served by TerrainFactory.

$factory = new TerrainFactory( new EarthSea( -1 ),
new EarthPlains(),
new EarthForest() );

This flexibility is also apparent when the object you wish to generate is composed of other
objects. Perhaps all Sea objects can contain Resource objects (FishResource, 0ilResource, etc.).
According to a preference flag, we might give all Sea objects a FishResource by default. Remember
that if your products reference other objects, you should implement a __clone() method in
order to ensure that you make a deep copy.

Note We covered object cloning in Chapter 4. The c1one keyword generates a shallow copy of any object
to which it is applied. This means that the product object will have the same properties as the source. If any
of the source’s properties are objects, then these will not be copied into the product. Instead, the product will
reference the same object properties. It is up to us to change this default, and to customize object copying in
any other way, by implementinga __clone() method. This is called automatically when the c1one keyword
is used.

class Contained { }

class Container {
public $contained;
function _ construct() {
$this->contained = new Contained();

}

function _ clone() {
// Ensure that cloned object holds a
// clone of self::$contained and not
// a reference to it
$this->contained = clone $this->contained;

159



160

CHAPTER 9 ~ GENERATING OBJECTS

But That’s Cheating!

I promised that this chapter would deal with the logic of object creation, doing away with the
sneaky buck-passing of many object-oriented examples. Yet some patterns here have slyly
dodged the decision-making part of object creation, if not the creation itself.

The Singleton pattern is not guilty. The logic for object creation is built in and unambig-
uous. The Abstract Factory pattern groups the creation of product families into distinct
concrete creators. How do we decide which concrete creator to use though? The Prototype
pattern presents us with a similar problem. Both these patterns handle the creation of objects,
but they defer the decision as to which object, or group of objects, should be created.

The particular concrete creator that a system chooses is often decided according to the
value of a configuration switch of some kind. This could be located in a database, a configuration
file, a server file (such as Apache’s local server configuration file, usually called . htaccess) or it
could even be hard coded as a PHP variable or property. Because PHP applications must be
reconfigured for every request, we need script initialization to be as painless as possible. For
this reason, I often opt to hard code configuration flags in PHP code. This can be done by hand,
or by writing a script that auto-generates a class file. Here’s a crude class that includes a flag for
calendar protocol types:

class Settings {
static $COMMSTYPE = 'Mega’;

}

Now that we have a flag (however inelegant), we can create a class that uses it to decide
which CommsManager to serve on request. It is quite common to see a Singleton used in conjunction
with the Abstract Factory pattern, so let’s do that:

require_once( 'Settings.php' );

class AppConfig {
private static $instance;
private $commsManager;

private function _ construct() {
// will run once only
$this->init();

}

private function init() {
switch ( Settings::$COMMSTYPE ) {
case 'Mega':
$this->commsManager = new MegaCommsManager();
break;
default:
$this->commsManager

new BloggsCommsManager();



CHAPTER 9 GENERATING OBJECTS 161

public static function getInstance() {
if ( empty( self::$instance ) ) {
self::$instance = new self();

}

return self::$instance;

}

public function getCommsManager() {
return $this->commsManager;

}

The AppConfig class is a standard Singleton. For that reason, we can get an AppConfig
instance anywhere in our system, and we will always get the same one. The init() method
is invoked by the class’s constructor, and is therefore only run once in a process. It tests the
Settings::$COMMSTYPE property, instantiating a concrete CommsManager object according to its
value. Now our script can get a CommsManager object and work with it without ever knowing
about its concrete implementations or the concrete classes they generate.

$commsMgr = AppConfig::getInstance()->getCommsManager();
$commsMgr - >getApptEncoder()->encode();

Summary

This chapter covered some of the tricks you can use to generate objects. We examined the
Singleton pattern, which provides global access to a single instance. We looked at the Factory
Method pattern, which applies the principle of polymorphism to object generation. We combined
Factory Method with the Abstract Factory pattern to generate creator classes that instantiate
sets of related objects. Finally, we looked at the Prototype pattern and saw how object cloning
can allow composition to be used in object generation.



With strategies for generating objects covered, we’re free now to look at some strategies for
structuring classes and objects. We will focus in particular on the principle that composition
provides greater flexibility than inheritance. The patterns we examine in this chapter are once
again drawn from the Gang of Four catalog.

This chapter will cover

* The Composite pattern: Composing structures in which groups of objects can be used as
if they were individual objects

* The Decorator pattern: A flexible mechanism for combining objects at runtime to extend
functionality

* The Facade pattern: Creating a simple interface to complex or variable systems

Structuring Classes to Allow Flexible Objects

Way back in Chapter 4, I said that beginners often confuse objects and classes. This was only
half true. In fact, most of the rest of us occasionally scratch our heads over UML class diagrams,
attempting to reconcile the static inheritance structures they show with the dynamic object
relationships their objects will enter into off the page.

Remember the pattern principle “Favor composition over inheritance”? This principle
distills this tension between the organization of classes and of objects. In order to build flexi-
bility into our projects, we structure our classes so that their objects can be built into useful
structures at runtime.

This is a common theme running through the first two patterns of this chapter. Inheritance is
an important feature in both, but it is important in part for providing the mechanism by which
composition can be used to represent structures and extend functionality.

The Composite Pattern

The Composite pattern is perhaps the most extreme example of inheritance deployed in the
service of composition. It is a simple and yet breathtakingly elegant design. It is also fantasti-
cally useful. Be warned, though, it is so neat, you might be tempted to overuse this strategy.

163



164

CHAPTER 10 DESIGNING FOR OBJECT RELATIONS

The Composite pattern is a simple way of aggregating and then managing groups of
similar objects such that an individual object is indistinguishable to a client from a collection
of objects. The pattern is, in fact, very simple, but it is also often confusing. One reason for this
is the similarity in structure of the classes in the pattern to the organization of its objects. Inher-
itance hierarchies are trees, beginning with the super class at the root, and branching out into
specialized subclasses. The inheritance tree of classes laid down by the Composite pattern is
designed to allow the easy generation and traversal of a tree of objects.

If you are not already familiar with this pattern, you have every right to feel confused at this
point. Let’s try an analogy to illustrate the way that single entities can be treated in the same
way as collections of things. Given broadly irreducible ingredients such as cereals and meat (or
soya if you prefer), we can make a food product—a sausage, for example. We then act on the
result as a single entity. Just as we eat, cook, buy, or sell meat, we can eat, cook, buy, or sell the
sausage that the meat in part composes. We might take the sausage and combine it with the
other composite ingredients to make a pie, thereby rolling a composite into alarger composite.
We behave in the same way to the collection as we do to the parts. The Composite pattern helps
us to model this relationship between collections and components in our code.

The Problem

Managing groups of objects can be quite a complex task, especially if the objects in question
might also contain objects of their own. This kind of problem is very common in coding. Think
of invoices, with line items that summarize additional products or services, or things-to-do
lists with items that themselves contain multiple subtasks. In content management, we can’t
move for trees of sections, pages, articles, media components. Managing these structures from
the outside can quickly become daunting.

Let’s return to a previous scenario. We are designing a system based on a game called
Civilization. A player can move units around hundreds of tiles that make up a map. Individual
counters can be grouped together to move, fight, and defend themselves as a unit. Let’s define
a couple of unit types:

abstract class Unit {
abstract function bombardStrength();

}

class Archer extends Unit {
function bombardStrength() {
return 4;
}
}

class LaserCanonUnit extends Unit {
function bombardStrength() {
return 44;

}

The Unit class defines an abstract bombardStrength() method, which sets the attack
strength of a unit bombarding an adjacent tile. We implement this in both the Archer and



CHAPTER 10 DESIGNING FOR OBJECT RELATIONS

LaserCanonUnit classes. These classes would also contain information about movement and
defensive capabilities, but let’s keep things simple. We could define a separate class to group
units together like this:

class Army {
private $units = array();

function addUnit( Unit $unit ) {
array_push( $this->units, $unit );

}

function bombardStrength() {
$ret = 0;
foreach( $this->units as $unit ) {
$ret += $unit->bombardStrength();
}

return $ret;

The Army class has an addUnit () method that accepts an addunit() object. Unit objects are
stored in an array property called $units. We calculate the combined strength of our army in
the bombardStrength() method. This simply iterates through the aggregated Unit objects,
calling the bombardStrength() method of each one.

This model is perfectly acceptable as long as the problem remains as simple as this. What
happens, though, when we add some new requirements? Let’s say that an army should be able
to combine other armies. Each army should retain its own identity, so we can’t just decant the
units from each army into a new force.

We could amend the Army class to accept Army objects as well as Unit objects:

function addArmy( Army $army ) {
array push( $this->armies, $army );

}

We need to amend the bombardStrength() method to iterate through all armies as well
as units:

function bombardStrength() {
$ret = 0;
foreach( $this->units as $unit ) {
$ret += $unit->bombardStrength();

}

foreach( $this->armies as $army ) {
$ret += $army->bombardStrength();

}

return $ret;

165



166

CHAPTER 10 DESIGNING FOR OBJECT RELATIONS

This additional complexity is not too problematic at the moment. Remember, though, we
need to do something similar in methods like defensiveStrength(), movementRange(), and so
on. Our game is going to be richly featured. Already the client is calling for troop carriers that
can hold up to 10 units to improve their movement range on certain terrains. Clearly a troop
carrier is similar to an army in that it groups units. It also has its own characteristics. We could
further amend the Army class to handle TroopCarrier objects, but we know that there will be a
need for still more unit groupings. It is clear that we need a more flexible model.

Let’s look again at the model we have been building. All the classes we created shared the
need for a bombardStrength() method. In effect, a client does not need to distinguish between
an army, a unit, or a troop carrier. They are functionally identical. They need to move, attack,
and defend. Those objects that contain others need to provide methods for adding and removing.
These similarities lead us to an inevitable conclusion. Because container objects share an
interface with the objects that they contain, they are naturally suited to share a type family.

Implementation

The Composite pattern defines a single inheritance hierarchy that lays down two distinct sets
of responsibilities. We have already seen both of these in our example. Classes in the pattern
must support a common set of operations as their primary responsibility. For us, that means
the bombardStrength() method. Classes must also support methods for adding and removing
child objects.

Figure 10-1 shows a class diagram that illustrates the Composite pattern as applied to
our problem.

Unit <>

+addUnit($unit:Unit)
+removeUnit($unit:Unit)
+bombardStrength(): int

Archer Army

+bombardStrength(): int +addUnit($unit:Unit)
+removeUnit($unit:Unit)
+bombardStrength(): int

LaserCanon

+bombardStrength(): int TroopCarrier

+addUnit($unit:Unit)
+removeUnit($unit:Unit)
+bombardStrength(): int

Figure 10-1. The Composite pattern

As you can see, all the units in our model extend the Unit class. A client can be sure, then,
that any Unit object will support the bombardStrength() method. So an Army can be treated in
exactly the same way as an Archer.

The Army and TroopCarrier classes are composites: designed to hold Unit objects. The
Archer and LaserCanon classes are leaves, designed to support unit operations but not to hold



CHAPTER 10 DESIGNING FOR OBJECT RELATIONS

other Unit objects. There is actually an issue as to whether leaves should honor the same inter-
face as composites, but we will return to this shortly. Here is the abstract Unit class:

class UnitException extends Exception {}

abstract class Unit {
abstract function addUnit( Unit $unit );
abstract function removeUnit( Unit $unit );
abstract function bombardStrength();

As you can see, we lay down the basic functionality for all Unit objects here. Now let’s see
how a composite object might implement these abstract methods:

class Army extends Unit {
private $units = array();

function addUnit( Unit $unit ) {
foreach ( $this->units as $thisunit ) {
if ( $unit === $thisunit ) {
return;
}
}
$this->units[] = $unit;
}

function removeUnit( Unit $unit ) {

$units = array();

foreach ( $this->units as $thisunit ) {
if ( $unit !== $thisunit ) {

$units[] = $thisunit;

}

}

$this->units = $units;

}

function bombardStrength() {
$ret = 0;
foreach( $this->units as $unit ) {
$ret += $unit->bombardStrength();
}

return $ret;

The addUnit() method checks that we have not yet added the same Unit object before
storing it in the private $units array property. removeUnit() uses a similar loop to remove a
given Unit object from the property.

167



168

CHAPTER 10 DESIGNING FOR OBJECT RELATIONS

Note At the time of writing, functions such as in_array() do not check properly for object instances.
in_array() returns true for two different objects instantiated from the same class if their property values
are equivalent. This forces us to loop through the $units property and test for the $unit object manually
using the === operator. The correct operation of === is a great step forward in PHP 5, however. In order to
test object identity in PHP 4, it was necessary to assign a unique value to every object used in the Composite
pattern.

Army objects, then, can store Units of any kind, including other Army objects, or leaves such
as Archer or LaserCanonUnit. Because all units are guaranteed to support bombardStrength(),
our Army: : bombardStrength() method simply iterates through all the child Unit objects stored
in the $units property, calling the same method on each.

One problematic aspect of the Composite pattern is the implementation of add and
remove functionality. The classic pattern places add() and remove() methods in the abstract
super class. This ensures that all classes in the pattern share a common interface. As you can
see here, though, it also means that leaf classes must provide an implementation:

class Archer extends Unit {
function addUnit( Unit $unit ) {
throw new UnitException( get_class($this).” is a leaf" );

}

function removeUnit( Unit $unit ) {
throw new UnitException( get_class($this)." is a leaf" );

}

function bombardStrength() {
return 4;

}

We do not want to make it possible to add a Unit object to an Archer object, so we throw
exceptions if addUnit() or removeUnit () are called. We will need to do this for all leaf objects, so
we could perhaps improve our design by replacing the abstract addUnit()/removeUnit () methods
in Unit with default implementations like the one in the preceding example.

class UnitException extends Exception {}

abstract class Unit {
abstract function bombardStrength();

function addUnit( Unit $unit ) {
throw new UnitException( get_class($this).

is a leaf" );

}



CHAPTER 10 DESIGNING FOR OBJECT RELATIONS

function removeUnit( Unit $unit ) {
throw new UnitException( get class($this)." is a leaf" );
}
}

class Archer extends Unit {
function bombardStrength() {
return 4;

}

This removes duplication in leaf classes but has the drawback that a Composite is not
forced at compile time to provide an implementation of addunit () and removeUnit(), which
could cause problems down the line.

We will look in more detail at some of the problems presented by the Composite pattern in
the next section. Let’s end this section by reminding ourselves of some of the benefits.

* Flexibility: Because everything in the Composite pattern shares a common super type, it
is very easy to add new composite or leaf objects to the design without changing a program’s
wider context.

e Simplicity: A client using a Composite structure has a straightforward interface. There is
no need for a client to distinguish between an object that is composed of others, and a
leaf object. A call to Army: :bombardStrength() may cause a cascade of delegated calls
behind the scenes, but to the client the process and result are exactly equivalent to those
associated with calling Archer: :bombardStrength().

e Implicit reach: Objects in the Composite pattern are organized in a tree. Each composite
holds references to its children. An operation on a particular part of the tree therefore
can have a wide effect. We might remove a single Army object from its Army parent, and
add it to another. This simple act is wrought on one object, but it has the effect of changing
the status of the Army object’s referenced Unit objects and of their own children.

* Explicit reach: Tree structures are easy to traverse. They can be iterated in order to gain
information or to perform transformations. We will look at a particularly powerful tech-
nique for this in the next chapter when we deal with the Visitor pattern.

Often you really see the benefit of a pattern from a client’s perspective, so let’s create a
couple of armies:

// create an army
$main_army = new Army();

// add some units
$main_army->addunit( new Archer() );
$main_army->addUnit( new LaserCanonUnit() );

// create a new army
$sub_army = new Army();

169



170

CHAPTER 10 = DESIGNING FOR OBJECT RELATIONS

// add some units

$sub_army->addUnit( new Archer() );
$sub_army->addunit( new Archer() );
$sub_army->addUnit( new Archer() );

// add the second army to the first
$main_army->addUnit( $sub_army );

// all the calculations handled behind the scenes
print "attacking with strength: {$main_army->bombardStrength()}\n";

We create a new Army object and add some primitive Unit objects. We repeat the process
for a second Army object that we then add to the first. When we call Unit: :bombardStrength()
on the first Army object, all the complexity of the structure that we have built up is entirely hidden.

Consequences

If you're anything like me, you would have heard alarm bells ringing when you saw the code
extract for the Archer class. Why do we put up with these redundant addUnit () and removeUnit()
methods in leaf classes that do not need to support them? An answer of sorts lies in the trans-
parency of the Unit type.

If a client is passed a Unit object, it knows that the addUnit() method will be present. The
Composite pattern principle that primitive (leaf) classes have the same interface as composites
is upheld. This does not actually help us much because we still do not know how safe we might
be calling addUnit () on any Unit object we might come across.

If we move these add/remove methods down so that they are available only to composite
classes, then passing aUnit object to a method leaves us with the problem that we do not know
by default whether or not it supports addunit(). Nevertheless, leaving booby-trapped methods
lying around in leaf classes makes me uncomfortable.

We can split composite classes off into their own subtype quite easily. First of all, we excise
add/remove behavior from Unit.

abstract class Unit {
function getComposite() {
return null;

}

abstract function bombardStrength();



CHAPTER 10 = DESIGNING FOR OBJECT RELATIONS

Notice the new getComposite() method. We will return to this in a little while. Now we
need a new abstract class to hold addUnit() and removeUnit(). We can even provide default
implementations.

abstract class CompositeUnit extends Unit {
private $units = array();

function getComposite() {
return $this;

}

protected function units() {
return $this->units;

}

function removeUnit( Unit $unit ) {

$units = array();

foreach ( $this->units as $thisunit ) {
if ( $unit !== $thisunit ) {

$units[] = $thisunit;

}

}

$this->units = $units;

}

function addUnit( Unit $unit ) {
foreach ( $this->units as $thisunit ) {
if ( $unit === $thisunit ) {
return;
}

}
$this->unitsf] = $unit;

The CompositeUnit class is declared abstract, even though it does not itself declare an
abstract method. It does, however, extend Unit, and does not implement the abstract
bombardStrength() method. Army (and any other composite classes) can now extend
CompositeUnit. The classes in our example are now organized as in Figure 10-2.

m



172 CHAPTER 10 DESIGNING FOR OBJECT RELATIONS

Unit

+bombardStrength(): int
+getComposite(): CompositelUnit]

7
| |

Archer LaserCanon CompositeUnit

+bombardStrength(): int| |+bombardStrength(): int +addUnit($unit:Unit)
+removeUnit($unit:Unit)
+getComposite(): CompositeUnit]

2

[ 1

TroopCarrier Army

+bombardStrength(): int +bombardStrength(): int

Figure 10-2. Moving add/remove methods out of the base class

We have lost the annoying, useless implementations of add/remove methods in the leaf
classes, but the client must still check to see whether it has a CompositeUnit before it can use
addunit().

This is where the getComposite() method comes into its own. By default this method
returns a null value. Only in a CompositeUnit class does it return CompositeUnit. So if a call to
this method returns an object, we should be able to call addUnit() on it. Here’s a client that
uses this technique:

class UnitScript {
static function joinExisting( Unit $newUnit,
Unit $occupyingUnit ) {

$comp;

if ( $comp = $occupyingUnit->getComposite() ) {
$comp->addUnit( $newUnit );

} else {
$comp = new Army();
$comp->addUnit( $occupyinglnit );
$comp->addUnit( $newlnit );

}

return $comp;

The joinExisting() method accepts two Unit objects. The first is a newcomer to a tile, and
the second is a prior occupier. If the second Unit is a CompositeUnit, then the first will attempt
to join it. If not, then a new Army will be created to cover both units. We have no way of knowing
at first whether the $occupyingUnit argument contains a CompositeUnit. A call to getComposite()
settles the matter, though. If getComposite() returns an object, we can add the new Unit object
to it directly. If not, then we create the new Army object, and add both.




CHAPTER 10 DESIGNING FOR OBJECT RELATIONS 173

These contortions are symptomatic of a drawback to the Composite pattern. Simplicity is
achieved by ensuring that all classes are derived from a common base. The benefit of simplicity
is sometimes bought at a cost to type safety. The more complex your model becomes, the more
manual type checking you are likely to have to do. Let’s say that we have a Cavalry object. If the
rules of our game state that you cannot put a horse on a troop carrier, we have no automatic
way of enforcing this with the Composite pattern.

class TroopCarrier {

function addUnit( Unit $unit ) {
if ( $unit instanceof Cavalry ) {
throw new UnitException("Can't get a horse on the vehicle");
}
super::addUnit( $unit );
}

function bombardStrength() {
return O;

}

We are forced to use the instanceof operator to test the type of the object passed to addUnit ().
Too many special cases of this kind, and the drawbacks of the pattern begin to outweigh its
benefits. Composite works best when most of the components are interchangeable.

Another issue to bear in mind is the cost of some Composite operations. The
Army: :bombardStrength() method is typical in that it sets off a cascade of calls to the same
method down the tree. For a large tree with lots of sub-armies, a single call can cause an
avalanche behind the scenes. bombardStrength() is not itself very expensive, but what would
happen if some leaves performed a complex calculation in order to arrive at their return value?
One way around this problem is to cache the result of a method call of this sort in the parent
object, so that subsequent invocations are less expensive. You need to be careful, though, to
ensure that the cached value does not grow stale. You should devise strategies to wipe any
caches whenever any operations take place on the tree. This may require that you give child
objects references to their parents.

Finally, a note about persistence. The Composite pattern is elegant, but it doesn’t lend
itself neatly to storage in a relational database. This is because, by default, you access the entire
structure only through a cascade of references. So to construct a Composite structure from a
database in the natural way you would have to make multiple expensive queries. We can get
round this problem by assigning an ID to the whole tree, so that all components can be drawn
from the database in one go. Having acquired all the objects, however, we would still have the
task of recreating the parent/child references which themselves would have to be stored in the
database. This is not difficult, but it is somewhat messy.

While Composites sit uneasily with relational databases, they lend themselves very well
indeed to XML. This is because XML elements are often themselves composed of trees of
subelements.



174

CHAPTER 10  DESIGNING FOR OBJECT RELATIONS

Composite in Summary

So the Composite pattern is useful when you need to treat a collection of things in the same
way as you would an individual, either because the collection is intrinsically like a component
(armies and archers), or because the context gives the collection the same characteristics as the
component (line items in an invoice). Composites are arranged in trees, so an operation on the
whole can affect the parts, and data from the parts is transparently available via the whole. The
Composite pattern makes such operations and queries transparent to the client. Trees are easy
to traverse (as we shall see in the next chapter). It is easy to add new component types to
Composite structures. On the downside, Composites rely on the similarity of their parts. As
soon as we introduce complex rules as to which composite object can hold which set of compo-
nents, our code can become hard to manage. Composites do not lend themselves well to storage
in relational databases, but are well suited to XML persistence.

The Decorator Pattern

While the Composite pattern helps us to create a flexible representation of aggregated compo-
nents, the Decorator pattern uses a similar structure to help us to modify the functionality of
concrete components. Once again, the key to this pattern lies in the importance of composi-
tion at runtime. Inheritance is a neat way of building on characteristics laid down by a parent
class. This neatness can lead you to hard code variation into your inheritance hierarchies, often
causing inflexibility.

The Problem

Building all your functionality into an inheritance structure can result in an explosion of
classes in a system. Even worse, as you try to apply similar modifications to different branches
of your inheritance tree, you are likely to see duplication emerge.

Let’s return to our game. Here we define a Tile class, and a derived type:

abstract class Tile {
abstract function getWealthFactor();

}

class Plains extends Tile {
private $wealthfactor = 2;
function getWealthFactor() {
return $this->wealthfactor;

}

We define a Tile class. This represents a square upon which our units might be found.
Each tile has certain characteristics. In this example, we have defined a getWealthFactor()
method that affects the revenue a particular square might generate if owned by a player. As you
can see, Plains objects have a wealth factor of 2. Obviously, tiles manage other data. They might
also hold a reference to image information so that the board could be drawn. Once again, we
keep things simple here.



CHAPTER 10 = DESIGNING FOR OBJECT RELATIONS

We need to modify the behavior of the Plains object to handle the effects of natural
resources and human abuse. We wish to model the occurrence of diamonds on the landscape,
and the damage caused by pollution. One approach might be to inherit from the Plains object:

class DiamondPlains extends Plains {
function getWealthFactor() {
return parent::getWealthFactor() + 2;

}
}

class PollutedPlains extends Plains {
function getWealthFactor() {
return parent::getWealthFactor() - 4;

}

We can now acquire a polluted tile very easily:

$tile = new PollutedPlains();
print $tile->getWealthFactor();

You can see the class diagram for this example in Figure 10-3.

Tile

+getWealthFactor(): int|

T

Plains

+getWealthFactor(): int

ZF

DiamondPlains PollutedPlains

+getWealthFactor(): int +getWealthFactor(): int

Figure 10-3. Building varation into an inheritance tree

This structure is obviously inflexible. We can get plains with diamonds. We can get polluted
plains. But can we get them both? Clearly not, unless we are willing to perpetrate the horror
that is PollutedDiamondPlains. This situation can only get worse when we introduce the Forest
class, which can also have diamonds and pollution.

This is an extreme example, of course, but the point is made. Relying entirely upon inher-
itance to define your functionality can lead to a multiplicity of classes, and a tendency toward
duplication.

175



176

CHAPTER 10 DESIGNING FOR OBJECT RELATIONS

Let’s take a more realistic example at this point. Serious web applications often have to
perform a range of actions upon a request before a task is initiated to form a response. We might
need to authenticate the user, for example, and to log the request. Perhaps we should process
the request to build a data structure from raw input. Finally, we must perform our core processing.
We are presented with the same problem.

We can extend the functionality of a base ProcessRequest class with additional processing
in a derived LogRequest class, in a StructureRequest class, and in an AuthenticateRequest class.

You can see this class hierarchy in Figure 10-4.

AuthenticatelogRequest? ProcessRequest

AuthenticateStructureRequest?

+process($req:RequestHelper)

Structurel.ogRequest?
etc etc

LogRequest AuthenticateRequest StructureRequest
+process($req:RequestHelper. +process($req:RequestHelper) +process($req:RequestHelper)

function process( RequestHelper $req )
// authenticate, then
parent: :process( $req );

}

Figure 10-4, More hard-coded variations

What happens, though, when we need to perform logging and authentication but not data
preparation? Do we create a LogAndAuthenticateProcessor class? Clearly it is time to find a

more flexible solution.

Implementation

Rather than use only inheritance to solve the problem of varying functionality, the Decorator
pattern uses composition and delegation. In essence, Decorator classes hold an instance of
another class of their own type. A Decorator will implement an operation so that it calls the
same operation on the object to which it has a reference before (or after) performing its own
actions. In this way it is possible to build a pipeline of decorator objects at runtime.

Let’s rewrite our game example to illustrate this.



CHAPTER 10 DESIGNING FOR OBJECT RELATIONS

abstract class Tile {
abstract function getWealthFactor();
}

class Plains extends Tile {
private $wealthfactor = 2;
function getWealthFactor() {
return $this->wealthfactor;
}
}

abstract class TileDecorator extends Tile {
protected $tile;
function _ construct( Tile $tile ) {
$this->tile = $tile;
}

Here we have declared Tile and Plains classes as before, but introduced a new class:
TileDecorator. This does not implement getWealthFactor(), so it must be declared abstract.
We define a constructor that requires a Tile object, which it stores in a property called $tile. We
make this property protected so that child classes can gain access to it. Let’s redefine our
Pollution and Diamond classes:

class DiamondDecorator extends TileDecorator {
function getWealthFactor() {
return $this->{tile}->getWealthFactor()+2;
}
}

class PollutionDecorator extends TileDecorator {
function getWealthFactor() {
return $this->{tile}->getWealthFactor()-4;

}

Each of these classes extends TileDecorator. This means that they have a reference to
a Tile object. When getWealthFactor() is invoked, each of these classes invokes the same
method on its Tile reference before making its own adjustment.

By using composition and delegation like this, we make it easy to combine objects at
runtime. Because all the objects in the pattern extend Tile, the client does not need to know
which combination it is working with. It can be sure that a getWealthFactor() method is available
for any Tile object, whether it is decorating another behind the scenes or not.

177



178

CHAPTER 10 ™ DESIGNING FOR OBJECT RELATIONS

$tile = new Plains();
print $tile->getWealthFactor(); // 2
// Plains is a component. It simply returns 2

$tile = new DiamondDecorator( new Plains );

print $tile->getWealthFactor(); // 4

// DiamondDecorator has a reference to a Plains object. It invokes
// getWealthFactor() before adding its own weighting of 2

$tile = new PollutionDecorator(
new DiamondDecorator( new Plains() ));
print $tile->getWealthFactor(); // 0
// PollutionDecorator has a reference to a DiamondDecorator
// object which as its own Tile reference.

You can see the class diagram for this example in Figure 10-5.

Tile

+getWealthFactor(): int

| ' |
Plains TileDecorator >
#$tile
+__construct($tile:Tile)

L

+getWealthFactor(): int

DiamondDecorator

PollutedDecorator

+getWealthFactor(): int

+getWealthFactor(): int

Figure 10-5. The Decorator pattern

This model is very extensible. We can add new decorators and components very easily. With
lots of decorators we can build very flexible structures at runtime. The component class, Plains in
this case, can be significantly modified in very many ways without the need to build the totality of
the modifications into the class hierarchy. In plain English, this means we can have a polluted
Plains object that has diamonds without having to create a PollutedDiamondPlains object.

The Decorator pattern builds up pipelines that are very useful for creating filters. The Java
IO package makes great use of decorator classes. The client coder can combine decorator objects
with core components to add filtering, buffering, compression, and so on to core methods like
read(). Our Web request example can also be developed into a configurable pipeline. Here’s a
simple implementation that uses the Decorator pattern:



CHAPTER 10 DESIGNING FOR OBJECT RELATIONS

class RequestHelper{}

abstract class ProcessRequest {
abstract function process( RequestHelper $req );

}

class MainProcess extends ProcessRequest {
function process( RequestHelper $req ) {
print _ CLASS_ .": doing something useful with request\n";
}
}

abstract class DecorateProcess extends ProcessRequest {
protected $processrequest;
function _ construct( ProcessRequest $pr ) {
$this->processrequest = $pr;

}

As before, we define an abstract super class (ProcessRequest), a concrete component
(MainProcess), and an abstract decorator (DecorateProcess). MainProcess: :process() does
nothing but report that it has been called. DecorateProcess stores a ProcessRequest object on
behalf of its children. Here are some simple concrete decorator classes:

class LogRequest extends DecorateProcess {
function process( RequestHelper $req ) {
print _ CLASS .": logging request\n";
$this->processrequest->process( $req );

}

class AuthenticateRequest extends DecorateProcess {
function process( RequestHelper $req ) {
print _ CLASS__.": authenticating request\n";
$this->processrequest->process( $req );

}

class StructureRequest extends DecorateProcess {
function process( RequestHelper $req ) {
print _ CLASS _.": structuring request data\n";
$this->processrequest->process( $req );

179



180

CHAPTER 10 DESIGNING FOR OBJECT RELATIONS

Each process() method outputs a message before calling the referenced ProcessRequest
object’s own process() method. We can now combine objects instantiated from these classes
at runtime to build filters that perform different actions on a request and in different orders.
Here’s some code to combine objects from all these concrete classes into a single filter:

$process = new AuthenticateRequest( new StructureRequest(
new LogRequest (
new MainProcess()

I

$process->process( new RequestHelper() );
This code will give the following output:

AuthenticateRequest: authenticating request
StructureRequest: structuring request data
LogRequest: logging request

MainProcess: doing something useful with request

Aote This example is, in fact, also an instance of an enterprise pattern called Intercepting Filter. Inter-
cepting Filter is described in Core J2EE Patterns.

Consequences

Like the Composite pattern, Decorator can be confusing. It is important to remember that both
composition and inheritance are coming into play at the same time. So LogRequest inherits its
interface from ProcessRequest, but it is acting as a wrapper around another ProcessRequest
object.

Because a decorator object forms a wrapper around a child object, it is important to keep
the interface as sparse as possible. If we build a heavily featured base class, then decorators are
forced to delegate to all public methods in their contained object. This can be done in the abstract
decorator class, but still introduces the kind of coupling that can lead to bugs.

Some programmers create decorators that do not share a common type with the objects
they modify. As long as they fulfill the same interface as these objects, this strategy can work
well. You get the benefit of being able to use the built-in interceptor methods to automate dele-
gation (implementing __call() to catch calls to nonexistent methods and invoking the same
method on the child object automatically). However, by doing this you also lose the safety
afforded by class type checking. In our examples so far, client code can demand a Tile or a
ProcessRequest object in its argument list and be certain of its interface, whether or not the
object in question is heavily decorated.

The Facade Pattern

You may have had occasion to stitch third-party systems into your own projects in the past.
Whether or not the code is object-oriented, it will often be daunting, large, and complex. Your
own code, too, may become a challenge to the client programmer who needs only to access a



CHAPTER 10 DESIGNING FOR OBJECT RELATIONS

few features. The Facade pattern is a way of providing a simple, clear interface to complex
systems.

The Problem

Systems tend to evolve large amounts of code that is really only useful within the system itself.
Just as classes define clear public interfaces and hide their guts away from the rest of the world,
so should discreet systems. However, it is not always clear which parts of a system are for
public consumption and which are best hidden.

As you work with subsystems (like Web forums or gallery applications) you may find your-
self making calls deep into the logic of the code. If the subsystem code is subject to change over
time, and your code interacts with it at many different points, you may find yourself with a
serious maintenance problem as the subsystem evolves.

Similarly, when you build your own systems, it is a good idea to organize distinct parts into
separate tiers. Typically, you may have a tier responsible for application logic, another for data-
base interaction, another for presentation, and so on. You should aspire to keep these tiers as
independent of one another as you can, so that a change in one area of your project will have
minimal repercussions elsewhere. If code from one tier is tightly integrated into code from
another, then this objective is hard to meet.

Here is some deliberately confusing procedural code that makes a song-and-dance routine
of the simple process of getting log information from a file and turning it into object data:

function getProductFilelines( $file ) {
return file( $file );

}

function getProductObjectFromId( $id, $productname ) {
// some kind of database lookup
return new Product( $id, $productname );

}

function getNameFromLine( $line ) {
if ( preg_match( "/.*-(.*)\s\d+/", $line, $array ) ) {

return str replace( '_‘',' ', $array[1] );

} " -

return ',

}

function getIDFromLine( $line ) {
if ( preg_match( "/~(\d{1,3})-/", $line, $array ) ) {
return $array[1];

}

return -1;

181



182

CHAPTER 10 DESIGNING FOR OBJECT RELATIONS

class Product {
public $id;
public $name;
function _ construct( $id, $name ) {
$this->id = $id;
$this->name = $name;

Let’s imagine that the internals of this code are more complicated than they actually are,
and that we are therefore stuck with using it rather than rewriting it from scratch. In order to
turn a file that contains lines like

234-ladies_jumper 55
532-gents_hat 44

into an array of objects, we must call all of these functions (note that for the sake of brevity we
don’t extract the final number, which represents a price):

$lines = getProductFilelLines( 'test.txt' );
$objects = array();
foreach ( $lines as $line ) {
$id = getIDFromLine( $line );
$name = getNameFromLine( $line );
$objects[$id] = getProductObjectFromID( $id, $name );

If we call these functions directly like this throughout our project, our code will become
tightly wound into the subsystem it is using. This could cause problems if the subsystem changes,
or if we decide to switch it out entirely. We really need to introduce a gateway between the
system and the rest of our code.

Implementation

Here is a simple class that provides an interface to the procedural code we encountered in the
previous section:

class ProductFacade {
private $products = array();

function _ construct( $file ) {
$this->file = $file;
$this->compile();



CHAPTER 10 DESIGNING FOR OBJECT RELATIONS

private function compile() {
$lines = getProductFileLines( $this->file );
foreach ( $lines as $line ) {
$id = getIDFromLine( $line );
$name = getNameFromLine( $line );
$this->products[$id] = getProductObjectFromID( $id, $name );

}

function getProducts() {
return $this->products;

}

function getProduct( $id ) {
return $this->products[$id];
}

From the point of view of client code, now access to Product objects from a log file is much
simplified:

$facade = new ProductFacade( 'test.txt' );
$facade->getProduct( 234 );

Consequences

A TFacade is really a very simple concept. It is just a matter of creating a single point of entry for
a tier or subsystem. This has a number of benefits. It helps to decouple distinct areas in a
project from one another. It is useful and convenient for client coders to have access to simple
methods that achieve clear ends. It reduces errors by focusing use of a subsystem in one place
so changes to the subsystem should cause failure in a predictable location. Errors are also
minimized by Facade classes in complex subsystems where client code might otherwise use
internal functions incorrectly.

Despite the simplicity of the Facade pattern, it is all too easy to forget to use it, especially if
you are familiar with the subsystem you are working with. There is a balance to be struck, of
course. On the one hand the benefit of creating simple interfaces to complex systems should be
clear. On the other hand, one could abstract systems with reckless abandon, and then abstract
the abstractions. If you are making significant simplifications for the clear benefit of client
code, and/or shielding it from systems that might change, then you are probably right to
implement the Facade pattern.

183



184 CHAPTER 10 © DESIGNING FOR OBJECT RELATIONS

Summary

In this chapter, we looked at a few of the ways that classes and objects can be organized in a
system. In particular, we focused on the principle that composition can be used to engender
flexibility where inheritance fails. In both the Composite and Decorator patterns, inheritance
is used to promote composition, and to define a common interface that provides guarantees
for client code. We also saw delegation used effectively in these patterns. Finally, we looked at
the simple but powerful Facade pattern. Facade is one of those patterns that many people have
been using for years without having a name to give it. Facade lets us provide a clean point of
entry to a tier or subsystem. In PHP, the Facade pattern is also used to create object wrappers
that encapsulate blocks of procedural code.



I n this chapter, we get active. We look at patterns that help us to get things done, whether
interpreting a mini-language or encapsulating an algorithm.
This chapter will cover

* The Interpreter pattern: Building a mini-language interpreter that can be used to create
scriptable applications

* The Strategy pattern: Identifying algorithms in a system and encapsulating them into
their own types

* The Observer pattern: Creating hooks for alerting disparate objects about system events
e The Visitor pattern: Applying an operation to all the nodes in a tree of objects

* The Command pattern: Command objects that can be saved and passed around

The Interpreter Pattern

Languages are written in other languages (at least at first). PHP itself, for example, is written in
C. By the same token, odd as it may sound, we can define and run our own languages using
PHP. Of course, any language we might create will be slow and somewhat limited. Nonetheless,
mini-languages can be very useful, as we will see in this chapter.

When we create Web (or command line) interfaces in PHP, we give the user access to function-
ality. The trade-off in interface design is between power and ease of use. As a rule, the more power
you give your user, the more cluttered and confusing your interface becomes. Good interface
design can help a lot here, of course, but if 90 percent of users are using the same 30 percent of
your features, the costs of piling on the functionality may outweigh the benefits. You may wish
to consider simplifying your system for most users. But what of the power users, that 10 percent
who use your system’s advanced features? Perhaps you can accommodate them in a different
way. By offering such users a domain language, you might actually extend the power of your
application.

185



186

CHAPTER 11 PERFORMING AND REPRESENTING TASKS

Of course, we have a programming language to hand right away. It’s called PHP. Here's
how we could allow our users to script our system:

$form input = "print file get contents('/etc/passwd');";
eval( $form_input );

This approach to making an application scriptable is clearly insane. Just in case the reasons
are not blatantly obvious, they boil down to two issues: security and complexity. The security
issue is well addressed in our example. By allowing users to execute PHP via our script, we are
effectively giving them access to the server the script runs on. The complexity issue is just as big
a drawback. No matter how clear your code is, the average user is unlikely to extend it easily,
and certainly not from the browser window.

A mini-language, though, can address both these problems. You can design flexibility into
the language, reduce the possibility that the user can do damage, and keep things focused.

Imagine an application for authoring quizzes. Producers design questions and establish
rules for marking the answers submitted by contestants. It is a requirement that quizzes must
be marked without human intervention, even though some answers can be typed into a text
field by users.

Here’s a question:

How many members in the Design Patterns gang?

We can accept “four” or “4” as correct answers. We might create a Web interface that allows
a producer to use regular expression for marking responses:

~4|four$

Most producers are not hired for their knowledge of regular expressions, however. To
make everyone’s life easier, we might implement a more user-friendly mechanism for marking
responses:

$input equals "4" or $input equals "four"

We propose a language that supports variables, an operator called equals and Boolean
logic (or and and). Programmers love naming things, so let’s call it MarkLogic. It should be easy
to extend, as we envisage lots of requests for richer features. Let’s leave aside the issue of
parsing input for now and concentrate on a mechanism for plugging these elements together
at runtime to produce an answer. This, as you might expect, is where the Interpreter pattern
comes in.



CHAPTER 11 “. PERFORMING AND REPRESENTING TASKS

Implementation

Our language is made up of expressions (that is, things that resolve to a value). As you can see
in Table 11-1, even a tiny language like MarkLogic needs to keep track of a lot of elements.

Table 11-1. Elements of the MarkLogic Grammar

187

Description EBNF Name Class Name Example

Variable variable VariableExpression $input

String literal <stringliteral> LiteralExpression "four"

Boolean and andExpr BooleanAndExpression $input equals '4' and

$other equals '6’

Boolean or orExpr BooleanOrExpression $input equals '4' or

$other equals '6’
Equality test equalsExpr EqualsExpression $input equals '4'

Table 11-1 lists EBNF names. So what is EBNF all about? It’s a notation that we can use to
describe a language grammar. EBNF stands for Extended Backus-Naur Form. It consists of a
series of lines (called productions), each one consisting of a name, and a description that takes
the form of references to other productions and to terminals (that is, elements that are not
themselves made up of references to other productions). Here is one way of describing our
grammar using EBNF:

expr ::= operand (orExpr | andExpr )*

operand ::= ( '(' expr ')' | <stringLiteral> | variable ) ( eqExpr )*
orExpr ::= 'or' operand

andExpr ::= 'and' operand

eqExpr  ::= ‘equals' operand

variable ::= '$' <word>

Some symbols have special meanings (that should be familiar from regular expression
notation): * means zero or more, for example, and | means “or.” We can group elements using
brackets. So in the example, an expression (expr) consists of an operand followed by zero or
more of either orExpr, andExpr, or eqExpr. An operand can be a bracketed expression, a quoted
string (I have omitted the production for this), or a variable. Once you get the hang of referring
from one production to another, EBNF becomes quite easy to read.

In Figure 11-1, we represent the elements of our grammar as classes.



188

CHAPTER 11 PERFORMING AND REPRESENTING TASKS

Expression
LiteralExpression OperatorExpression
VariableExpression ?— BooleanOrExpression

—— BooleanAndExpression

— EqualsExpression

Figure 11-1. The Interpreter classes that make up the MarkLogic language

As you can see, BooleanAndExpression and its siblings inherit from OperatorExpression.
This is because these classes all perform their operations upon other Expression objects.
VariableExpression and LiteralExpression work directly with values.

All Expression objects implement an interpret() method that is defined in the abstract
base class, Expression. The interpret() method expects a Context object that is used as a
shared data store. Each Expression object can store data in the Context object. The Context will
then be passed along to other Expression objects. So that data can be retrieved easily from the
Context, the Expression base class implements a getKey() method that returns a unique handle.
Let’s see how this works in practice with an implementation of Expression:

abstract class Expression {
abstract function interpret( Context $context );

function getKey() {
return (string)$this;
}
}

class LiteralExpression extends Expression {
private $value;

function _ construct( $value ) {
$this->value = $value;

}

function interpret( Context $context ) {
$context->replace( $this, $this->value );

}



CHAPTER 11 PERFORMING AND REPRESENTING TASKS

class Context {
private $expressionstore = array();
function replace( Expression $exp, $value ) {
$this->expressionstore[$exp->getkey()] = $value;

}

function lookup( Expression $exp ) {
return $this->expressionstore[$exp->getKey()];
}
}

$context = new Context();

$literal = new LiteralExpression( 'four');
$literal->interpret( $context );

print $context->lookup( $literal );

Let’s start with the Context class. As you can see, it is really only a front end for an
associative array, $expressionstore, which we use to hold data. The replace() method accepts
an Expression object as key and a value of any type, and adds the pair to $expressionstore. It
also provides a lookup() method for retrieving data.

The Expression class defines the abstract interpret() method and a concrete getKey()
method that uses the current object (as stored in $this) to generate a label. We do this by
casting $this to a string. The default behavior for an object in string context is for it to be
replaced with a string containing the object’s identifier.

class PrintMe{}
$test = new PrintMe();
print "$test”;

/1 output: Object id #1

The getKey() method makes good use of this behavior to generate a key. This method is
used by Context : : 1lookup() and Context: :replace() to convert their Expression arguments to
their string equivalents.

Note Casting objects to strings for use as associative array keys is useful, but may not always be safe.
At the time of writing, PHP 5 will always generate an object ID string when an object is cast to a string. It
seems likely that at some time in the future the engine will respect the __toString() method in this context.
This would mean that you would no longer be guaranteed a unique string from an object to string cast if you
also implement __toString(). The return value from __toString() would be substituted instead. One
way around this problem might be to implementa __toString() method that enforces the default behavior
and declare it final to prevent child classes from providing their own implementation:

final function _ toString() {
return (string)$this;

}

189



190

CHAPTER 11 = PERFORMING AND REPRESENTING TASKS

The LiteralExpression class defines a constructor that accepts a value argument. The
interpret() method requires a Context object. We simply call replace(), using getKey() to
define the key for retrieval and the $value property. This will become a familiar pattern as we
examine the other expression classes. The interpret () method always inscribes its results
upon the Context object.

We include some client code as well, instantiating both a Context object and a
LiteralExpression object (with a value of “four”). We pass the Context object to
LiteralExpression: :interpret(). The interpret() method stores the key/value pair in
Context, from where we retrieve the value by calling lookup().

Let’s define the remaining terminal class. VariableExpression is a little more complicated.

class VariableExpression extends Expression {
private $name;
private $val;

function _ construct( $name, $val=null ) {
$this->name = $name;
$this->val = $val;

}

function interpret( Context $context ) {
if (! is_null( $this-s>val ) ) {
$context->replace( $this, $this->val );
$this->val = null;

}

function setValue( $value ) {
$this->val = $value;

}

function getKey() {
return $this->name;

}
}

$context = new Context();

$myvar = new VariableExpression( 'input', 'four');
$myvar->interpret( $context );

print $context->lookup( $myvar );

// output: four

$newvar = new VariableExpression( 'input' );
$newvar->interpret( $context );

print $context->lookup( $newvar );

// output: four



CHAPTER 11 PERFORMING AND REPRESENTING TASKS

$myvar->setValue("five");
$myvar->interpret( $context );
print $context->lookup( $myvar );
// output: five

print $context->lookup( $newvar );
// output: five

The VariableExpression class accepts both name and value arguments for storage in
property variables. We provide the setValue() method so that client code can change the value
at any time.

The interpret() method checks whether or not the $val property has a nonnull value. If
the $val property has a value, it sets it on the Context. We then set the $val property to null in
case interpret() is called again later after another instance of VariableExpression with the
same name has changed the value in the context. This is quite a limited variable, accepting
only string values as it does. If we were going to extend our language, we should consider
having it work with other Expression objects, so that it could contain the results of tests and
operations. For now, though, VariableExpression will do the work we need of it. Notice that we
have overridden the getKey() method so that variable values are linked to the variable name
and not to the object ID.

Operator expressions in our language all work with two other Expression objects in order
to get their job done. It makes sense therefore to have them extend a common super class. Here
is the OperatorExpression class:

abstract class OperatorExpression extends Expression {
protected $1 op;
protected $r op;

function _ construct( Expression $1_op, Expression $r_op ) {
$this->1_op = $1_op;
$this->r op = $r_op;

}

function interpret( Context $context ) {
$this->1 _op->interpret( $context );
$this->r_op->interpret( $context );
$result 1 = $context->lookup( $this->1_op );
$result 1 = $context->lookup( $this->r op );
$this->doOperation( $context, $result 1, $result r );

}

protected abstract function doOperation( Context $context,
$result 1,
$result r );

OperatorExpression is an abstract class. It implements interpret(), butit also defines the
abstract doInterpret() method.

The constructor demands two Expression objects, $1_op and $r_op, which it stores in
properties.

191



192

CHAPTER 11 PERFORMING AND REPRESENTING TASKS

The interpret() method begins by invoking interpret() on both its operand properties.
(If you have read the previous chapter, you might notice that we are creating an instance of the
Composite pattern here.) Once the operands have been run, interpret() still needs to acquire
the values that this yields. It does this by calling Context : : lookup() for each property. It then
calls doInterpret(), leaving it up to child classes to decide what to do with the results of these
operations.

Here’s the EqualsExpression class, which tests two Expression objects for equality:

class EqualsExpression extends OperatorExpression {
protected function doOperation( Context $context,
$result 1, $result r ) {
$context->replace( $this, $result_1 == $result r );

EqualsExpression only implements the doInterpret() method, which tests the equality of
the operand results it has been passed by the interpret() method, placing the result in the

Context object.
To wrap up the Expression classes, here are BooleanOrExpression and BooleanAndExpression:

class BooleanOrExpression extends OperatorExpression {
protected function doOperation( Context $context,
$result 1, $result r ) {
$context->replace( $this, $result 1 || $result r );

}

class BooleanAndExpression extends OperatorExpression {
protected function doOperation( Context $context,
$result_1, $result r ) {
$context->replace( $this, $result_1 && $result r );

Instead of testing for equality, the BooleanOrExpression class applies a logical or operation
and stores the result of that via the Context: :replace() method. BooleanAndExpression, of
course, applies a logical and operation.

We now have enough code to execute the mini-language fragment we quoted earlier. Here
it is again:

$input equals "4" or $input equals "four"”
Here’s how we can build this statement up with our Expression classes:

$context = new Context();

$input = new VariableExpression( 'input' );

$statement = new BooleanOrExpression(
new EqualsExpression( $input, new LiteralExpression( 'four' ) ),
new EqualsExpression( $input, new LiteralExpression( '4' ) )

);



CHAPTER 11 PERFORMING AND REPRESENTING TASKS

We instantiate a variable called 'input', but hold off from providing a value for it. We then
create a BooleanOrExpression object that will compare the results from two EqualsExpression
objects. The first of these objects compares the VariableExpression object stored in $input
with a LiteralExpression containing the string “four”, the second compares $input with a
LiteralExpression object containing the string “4”.

Now with our statement prepared, we are ready to provide a value for the input variable,
and run the code:

foreach ( array( "four", "4", "52" ) as $val ) {

$input->setvalue( $val );

print "$val:\n";

$statement->interpret( $context );

if ( $context->lookup( $statement ) ) {
print "top marks\n\n";

} else {
print "dunce hat on\n\n";

}

In fact, we run the code three times, with three different values. First time through we
set the temporary variable $val to “four”, assigning it to the input VariableExpression object
using its setValue() method. We then call interpret() on our topmost Expression object (the
BooleanOrExpression object that contains references to all other expressions in the statement).
Let’s step through the internals of this invocation:

e $statement calls interpret() onits $1_op property (the first EqualsExpression object).

¢ The first EqualsExpression object calls interpret() on its $1_op property (a reference to
the input VariableExpression object which is currently set to “four”).

¢ The input VariableExpression object writes its current value to the provided Context
object by calling Context: :replace().

* The first EqualsExpression object calls interpret() onits $r_op property
(a LiteralExpression object charged with the value “four”).

¢ The LiteralExpression object registers its key and its value with Context.

¢ The first EqualsExpression object retrieves the values for $1_op (“four”) and $r_op
(“four”) from the Context object.

* The first EqualsExpression object compares these two values for equality and registers
the result (true) together with its key with the Context object.

 Backat the top of the tree the $statement object (BooleanOrExpression) calls interpret()
onits $r_op property. This resolves to a value (false, in this case) in the same way as the
$1 op property did.

e The $statement object retrieves values for each of its operands from the Context object
and compares them using | |. [t is comparing true and false, so the result is true. This
final result is stored in the Context object.

193



194

CHAPTER 11 PERFORMING AND REPRESENTING TASKS

And all that is only for the first iteration through our loop. Here is our final output:

four:
top marks

4:
top marks

52:
dunce hat on

You may need to read through this section a few times before the process clicks. The old
issue of object versus class trees might confuse you here. Expression classes are arranged in an
inheritance hierarchy just as Expression objects are composed into a tree at runtime. As you
read back through the code, keep this distinction in mind.

Figure 11-2 shows the complete class diagram for our example.

Context

+lookup($expr:Expression): mixed
+replace($expr:Expression, $val:mixed

Expression

______ | +interpret($context:Context)
+getKey(): string

LiteralExpression OperatorExpression

+interpret($context:Context) ;

VariableExpression

— BooleanOrExpression

+interpret($context:Context) Tint s tent C
+getKey(): string interpret($context:Context)

— BooleanAndExpression

+interpret($context:Context)

— EqualsExpression

+interpret($context:Context)

Figure 11-2. The Interpreter pattern deployed

Interpreter Issues

Once you have set up the core classes for an Interpreter pattern implementation, it becomes
easy to extend. The price you pay is in the sheer number of classes you could end up creating.
For this reason, Interpreter is best applied to relatively small languages. If you have a need for
a full programming language, you would do better to look for a third-party tool to use.



CHAPTER 11 PERFORMING AND REPRESENTING TASKS

Because Interpreter classes often perform very similar tasks, it is worth keeping an eye on
the classes you create with a view to factoring out duplication.

Many people approaching the Interpreter pattern for the first time are disappointed after
some initial excitement to discover that it does not address parsing. This means that we are not
yet in a position to offer our users a nice friendly language. Appendix B contains some rough
code to illustrate one strategy for parsing a mini-language.

The Strategy Pattern

Classes often try to do too much. It's understandable: you create a class that performs a few
related actions. As you code, some of these actions need to be varied according to circumstances.
At the same time, your class needs to be split into subclasses. Before you know it, your design
is being pulled apart by competing forces.

The Problem

Since we have recently built a marking language, let’s stick with the quiz example. Quizzes
need questions, so we build a Question class, giving it a mark () method. All is well until we need
to support different marking mechanisms.

Let’s say that we are asked to support the simple MarkLogic language, marking by straight
match and marking by regular expression. Your first thought might be to subclass for these
differences, as in Figure 11-3.

Question

+mark()

A

MarkLogicQuestion MatchQuestion RegexpQuestion

+mark() +mark() +mark()

Figure 11-3. Defining subclasses according to marking strategies

This would serve us well as long as marking remains the only aspect of the class that varies.
Imagine, though, that we are called upon to support different kinds of question: those that are
text based and those that support rich media. This presents us with a problem when it comes
to incorporating these forces in one inheritance tree as you can see in Figure 11-4.

195



196 CHAPTER 11 PERFORMING AND REPRESENTING TASKS

Question
+mark()
[ 1
TextQuestion AVQuestion
+doTextyThings() +doCleverAVThings()
TextMarkLogicQuestion AVMarkLogicQuestion
+mark() +mark()
TextMatchQuestion AVMatchQuestion
+mark() +mark()
TextRegexpQuestion AVRegexpQuestion
+mark() +mark()

Figure 11-4. Defining subclasses according to two forces

Not only have the number of classes in the hierarchy ballooned, but we also necessarily
introduce repetition. Our marking logic is reproduced across each branch of the inheritance
hierarchy.

Whenever you find yourself repeating an algorithm across siblings in an inheritance tree
(whether through subclassing or repeated conditional statements), consider abstracting these
behaviors into their own type.

Implementation

As with all the best patterns, Strategy is simple and powerful. When classes must support
multiple implementations of an interface (multiple marking mechanisms, for example), the
best approach is often to extract these implementations and place them in their own type,
rather than to extend the original class to handle them.

So, in our example, our approach to marking might be placed in a Marker type. Figure 11-5
shows the new structure.

Remember the Gang of Four principle “Favor composition over inheritance”? This is
an excellent example. By defining and encapsulating the marking algorithms, we reduce
subclassing and increase flexibility. We can add new marking strategies at any time without the
need to change the Question classes at all. All Question classes know is that they have an
instance of a Marker at their disposal, and that it is guaranteed by its interface to support a
mark() method. The details of implementation are entirely somebody else’s problem.



CHAPTER 11 PERFORMING AND REPRESENTING TASKS

Question <>—|____
Marker

+mark()
A +mark()
| . JAN
TextQuestion AVQuestion — MarkLogicMarker
+doTextyThings() +doCleverAVThings() +mark()

— MatchMarker

+mark ()

—1 RegexpMarker

+mark()

Figure 11-5. Extracting algorithms into their own type

Here are the Question classes rendered as code:

abstract class Question {
protected $prompt;
protected $marker;

function _ construct( $prompt, Marker $marker ) {
$this->marker=$marker;
$this->prompt = $prompt;

}

function mark( $response ) {
return $this->marker->mark( $response );
}
} I

class TextQuestion extends Question {
// do text question specific things

}

class AVQuestion extends Question {
// do audiovisual question specific things

}

197



198

CHAPTER 11 PERFORMING AND REPRESENTING TASKS

As you can see, we have left the exact nature of the difference between TextQuestion and
AVQuestion to the imagination. The Question base class provides all the real functionality,
storing a prompt property and a Marker object. When Question: :mark() is called with a response
from the end user, the method simply delegates the problem solving to its Marker object.

Let’s define some simple Marker objects:

abstract class Marker {
protected $test;

function __construct( $test ) {
$this->test = $test;
}

abstract function mark( $response );

}

class MarkLogicMarker extends Marker {
private $engine;
function _ construct( $test ) {
parent:: _construct( $test );
//$this->engine = new MarkParse( $test );

}

function mark( $response ) {
//return $this->engine->evaluate( $response );
// dummy return value
return true;

}
}

class MatchMarker extends Marker {
function mark( $response ) {
return ( $this->test == $response );
}
}
B
class RegexpMarker extends Marker {
function mark( $response ) {
return ( preg_match( $this->test, $response ) );

}

There should be little if anything that is particularly surprising about the Marker classes
themselves. Note that the MarkParse object is designed to work with the simple parser devel-
oped in Appendix B. This isn’t necessary for the sake of this example though, so we simply
return a dummy value of true from MarkLogicMarker: :mark().The key here is in the structure
that we have defined, rather than in the detail of the strategies themselves. We can swap
RegexpMarker for MatchMarker, with no impact on the Question class.



CHAPTER 11 PERFORMING AND REPRESENTING TASKS

Of course, you must still decide what method to use to choose between concrete Marker
objects. I have seen two real-world approaches to this problem. In the first, producers used
radio buttons to select the marking strategy they preferred. In the second, the structure of the
marking condition was itself used: a match statement was left plain:

five
A MarkLogic statement was preceded by a colon:
:$input equals 'five'
And a regular expression used forward slashes:
/f.ve/
Here is some code to run our classes through their paces:

$markers = array( new RegexpMarker( "/f.ve/" ),
new MatchMarker( "five" ),
new MarkLogicMarker( '$input equals "five"' )

)s

foreach ( $markers as $marker ) {
print get class( $marker )."\n";
$question = new TextQuestion( "how many beans make five", $marker );
foreach ( array( "five", "four" ) as $response ) {
print "\tresponse: $response: ";
if ( $question->mark( $response ) ) {
print "well done\n";
} else {
print "never mind\n";

}

We construct three strategy objects, using each in turn to help construct a TextQuestion
object. The TextQuestion object is then tried against two sample responses.

The MarkLogicMarker class shown here is a placeholder at present, and its mark() method
always returns true. The commented out code does work, however, with the parser example
shown in Appendix B, or could be made to work with a third-party parser.

Here is the output:

RegexpMarker
response: five: well done
response: four: never mind
MatchMarker
response: five: well done
response: four: never mind
MarkLogicMarker
response: five: well done
response: four: well done

199



CHAPTER 11 PERFORMING AND REPRESENTING TASKS

Remember that the MarkLogicMarker class is adummy at present. It always returns true, so
always marks the user correct.

In our example, we passed specific data (the $response variable) from the client to the
strategy object via the mark () method. Sometimes you may encounter circumstances in which
you don’t always know in advance how much information the strategy object will require when
its operation is invoked. You can delegate the decision as to what data to acquire by passing the
strategy an instance of the client itself. The strategy can then query the client in order to build
the data it needs.

The Observer Pattern

Orthogonality is a virtue we have discussed before. One of our objectives as programmers
should be to build components that can be altered or moved with minimal impact upon other
components. If every change you make to one component necessitates a ripple of changes
elsewhere in the codebase, the task of development can quickly become a spiral of bug creation
and elimination.

Of course, orthogonality is often just a dream. Elements in a system must have embedded
references to other elements. You can, however, deploy various strategies to minimize this. We
have seen various examples of polymorphism in which the client understands a component’s
interface but where the actual component may vary at runtime.

In some circumstances, you may wish to drive an even greater wedge between components
than this. Consider a class responsible for handling a user’s access to a system.

class Login {
const LOGIN _USER_UNKNOWN =
const LOGIN WRONG_PASS = 2;
const LOGIN_ACCESS = 3;
private $status = array();

1;

function handlelogin( $user, $pass, $ip ) {
switch ( rand(1,3) ) {

case 1:
$this->setStatus( self::LOGIN_ACCESS, $user, $ip );
$ret = true; break;

case 2:
$this->setStatus( self::LOGIN_WRONG_PASS, $user, $ip );
$ret = false; break;

case 3: _
$this->setStatus( self::LOGIN USER_UNKNOWN, $user, $ip );
$ret = false; break;

}

return $ret;



CHAPTER 11 PERFORMING AND REPRESENTING TASKS

private function setStatus( $status, $user, $ip ) {
$this->status = array( $status, $user, $ip );

}

function getStatus() {
return $this->status;

}

This class fakes the login process using the rand() function. There are three potential
outcomes of a call to handleLogin(). The status flag may be set to LOGIN_ACCESS, LOGIN_WRONG_PASS,
or LOGIN_USER_UNKNOWN.

Because the Login class is a gateway guarding the treasures of your business team, it may
excite much interest during development and in the months beyond. Marketing might call you
up and ask that you keep a log of domain names. You can add a call to your system’s Logger class:

function handleLogin( $user, $pass, $ip ) {
switch ( rand(1,3) ) {
case 1:
$this->setStatus( self::LOGIN_ACCESS, $user, $ip );
$ret = true; break;
case 2:
$this->setStatus( self::LOGIN_WRONG_PASS, $user, $ip );
$ret = false; break;
case 3:
$this->setStatus( self::LOGIN_USER_UNKNOWN, $user, $ip );
$ret = false; break;
}
Logger: :1ogIP( $user, $ip, $this->getStatus() );
return $ret;

}

Worried about security, the system administrators might ask for notification of failed
logins. Once again, you can return to the login method and add a new call.

if (! $ret ) {
Notifier::mailWarning( $user, $ip,
$this->getStatus() );
}

The business development team might announce a tie-in with a particular ISP and ask that
a cookie be set when particular users log in. And so on. And on.

These are all easy enough requests to fulfill, but at a cost to our design. The Login class
soon becomes very tightly embedded into this particular system. We cannot pull it out and
drop it into another product without going through the code line by line and removing every-
thing that is specific to the old system. This isn’t too hard, of course, but then we are off down
the road of cut'n’paste coding. Now that we have two similar but distinct Login classes in our
systems, we find that an improvement to one will necessitate the same changes in the other,
until inevitably and gracelessly they fall out of alignment with one another.

So what can we do to save the Login class? The Observer pattern is a powerful fit here.

201



202

CHAPTER 11 PERFORMING AND REPRESENTING TASKS

Implementation

At the core of the Observer pattern is the unhooking of client elements (the observers) from a
central class (the subject). Observers need to be informed when events occur that the subject
knows about. At the same time, we do not want the subject to have a hard-coded relationship
with its observer classes.

To achieve this, we can allow observers to register themselves with the subject. We give the
Login class three new methods, attach(), detach(), and notify(), enforcing this using an
interface called Observable.

interface Observable {
function attach( Observer $observer );
function detach( Observer $observer );
function notify();

// ... Login class
private $observers;
/...
function attach( Observer $observer ) {
$this->observers[] = $observer;

}

function detach( Observer $observer ) {
. $this->observers =
array diff( $this->observers, array($observer) );

}

function notify() {
foreach ( $this->observers as $obs ) {
$obs->update( $this );

}
/..

So the Login class manages a list of observer objects. These can be added by a third party
using the attach() method, and removed via detach(). The notify() method is called to tell
the observers that something of interest has happened. The method simply loops through the
list of observers, calling update() on each one.

The Login class itself calls notify() from its handleLogin() method.

function handlelogin( $user, $pass, $ip ) {
switch ( rand(1,3) ) {

case 1:
$this->setStatus( self::LOGIN ACCESS, $user, $ip );
$ret = true; break;

case 2:
$this->setStatus( self::LOGIN _WRONG_PASS, $user, $ip );
$ret = false; break;



CHAPTER 11 PERFORMING AND REPRESENTING TASKS

case 3:
$this->setStatus( self::LOGIN_USER_UNKNOWN, $user, $ip );
$ret = false; break;
}
$this->notify();
return $ret;

}

Let’s define the interface for the Observer class:

interface Observer {
function update( Observable $observable );

}

Any object that uses this interface can be added to the Login class via the attach{) method.
Let’s create a few concrete instances:

class SecurityMonitor extends Observer {
function update( Observable $observable ) {
$status = $observable->getStatus();
if ( $status[0] == Login::LOGIN WRONG PASS ) {
// send mail to sysadmin
print _ CLASS .":\tsending mail to sysadmin\n";

}

class Generallogger extends Observer {
function update( Observable $observable ) {
$status = $observable->getStatus();
// add login data to log
print _ CLASS_ .":\tadd login data to log\n";

}

class PartnershipTool extends Observer {
function update( Observable $observable ) {
$status = $observable->getStatus();
// check $ip address
// set cookie if it matches a list
print _ CLASS .":\tset cookie if it matches a list\n";

Notice how the observer objects use the instance of Observable to get more information
about the event. It is up to the subject class to provide methods that observers can query to
Iearn about state. In this case, we have defined a method called getStatus() that observers can
call to get a snapshot of the current state of play.

Instances of any classes that implement Observable can be registered with Login.

203



204

CHAPTER 11 |

$login = new Login();

PERFORMING AND REPRESENTING TASKS

$login->attach( new SecurityMonitor() );
$login->attach( new Generallogger() );
$login->attach( new PartnershipTool() );

So now we have created a flexible association between the subject classes and the
observers. You can see the class diagram for our example in Figure 11-6.

<<interface>>
Observable

N

+attach($observable:Observable)
+detach($observable:Observable)

<<interface>>
Observer

+update($observable:0bservable)

+notify()

SecurityMonitor - -

-

Login

+update($observable:Observable)

+attach($observable:Observable)
+detach($observable:Observable)
+notify()

+getStatus()

GenerallLogger -

+update($observable:Observable)

Figure 11-6. The Observer pattern

PartnershipTool - -

+update($observable:Observable)

We have seen most of the parts of our Observer pattern example. For the sake of clarity,
here is the whole lot in one listing:

interface Observable {

function attach( Observer $observer );
function detach( Observer $observer );

function notify();
}

class Login implements Observable {

private $observers =
const LOGIN_USER_UNKNOWN
const LOGIN_WRONG_PASS
const LOGIN_ACCESS

private $status = array()

array();

1;
2;
= 3;

)



CHAPTER 11 PERFORMING AND REPRESENTING TASKS

function attach( Observer $observer ) {
$this->observers{] = $observer;

}

function detach( Observer $observer ) {
$this->observers = array_diff( $this->observers, array($observer) );

}

function notify() {
foreach ( $this->observers as $obs ) {
$obs->update( $this );
}
}

function handlelLogin( $user, $pass, $ip ) {
switch ( rand(1,3) ) {
case 1:
$this->setStatus( self::LOGIN_ACCESS, $user, $ip );
$ret = true; break;
case 2:
$this->setStatus( self::LOGIN_WRONG PASS, $user, $ip );
$ret = false; break;
case 3:
$this->setStatus( self::LOGIN_USER_UNKNOWN, $user, $ip );
$ret = false; break;
}
$this->notify();
return $ret;

}

private function setStatus( $status, $user, $ip ) {
$this->status = array( $status, $user, $ip );

}

function getStatus() {
return $this->status;

}
}

interface Observer {
function update( Observable $observer );

}

205



206

CHAPTER 11 PERFORMING AND REPRESENTING TASKS

class SecurityMonitor extends Observer {
function update( Observable $observable ) {
$status = $observable->getStatus();
if ( $status[0] == Login::LOGIN_WRONG_PASS ) {
// send mail to sysadmin
print _ CLASS__.":\tsending mail to sysadmin\n";

}

class GenerallLogger extends Observer {
function update( Observable $observable ) {
$status = $observable->getStatus();
// add login data to log
print _ CLASS_ .":\tadd login data to log\n";

}

class PartnershipTool extends Observer {
function update( Observable $observable ) {
$status = $observable->getStatus();
// check $ip address
// set cookie if it matches a list
print _ CLASS__.":\tset cookie if it matches a list\n";

There are, of course, some variations and issues relating to this pattern. Firstly, the state
method (getStatus()) is notinscribed in the Observable interface. This means that Observable
is extremely flexible, but it also loses us a measure of type safety. What would happen if one of
the observer objects that uses getStatus () found itself attached to an Observable class that did
implement such a method? Well, we know what would happen.

As always, there is a trade-off. Omitting the specifics of state data retrieval from the
Observable interface makes it flexible, but allows some risk that the wrong Observer may attach
to the wrong Observable. Adding getStatus() to the Observable interface, on the other hand, is
safe but might be limiting. Some Observable classes may need to provide several status
methods, for example.

Another approach to this problem could be to pass specific state information via the
update() method, rather than an instance of the subject class. For a quick-and-dirty solution,
this is often the approach I would take initially. So in our example, update() would expect a
status flag, the username, and IP address (probably in an array for portability), rather than an
instance of Login. This saves us from having to write a state method in the Login class. On the
other hand, where the subject class stores a lot of state, passing an instance of it to update()
allows observers much more flexibility.

You could also lock down type completely, by making the Login class refuse to work with
anything other than a specific type of observer class (LoginObserver perhaps). If you want to do
that, then you may consider some kind of runtime check on objects passed to the attach()
method; otherwise, you may need to reconsider the Observable interface altogether.



CHAPTER 11 PERFORMING AND REPRESENTING TASKS

Once again we have used composition at runtime to build a flexible and extensible model.
The Login class can be extracted from the context and dropped into an entirely different project
without qualification. There, it might work with a different set of observers.

The Visitor Pattern

As we have seen, many patterns aim to build structures at runtime, following the principle that
composition is more flexible than inheritance. The ubiquitous Composite pattern is an excel-
lent example of this. When you work with collections of objects, you may need to apply various
operations to the structure that involve working with each individual component. Such opera-
tions can be built into the components themselves. After all, components are often best placed
to invoke one another.

This approach is not without issues. You do not always know about all the operations you
may need to perform on a structure. If you add support for new operations to your classes on a
case-by-case basis, you can bloat your interface with responsibilities that don’t really fit. As you
might guess, the Visitor pattern addresses these issues.

The Problem

Think back to the Composite example from the previous chapter. For a game, we created an
army of components such that the whole and its parts can be treated interchangeably. We saw
that operations can be built into components. Typically, leaf objects perform an operation and
composite objects call upon their children to perform the operation.

class Army extends CompositeUnit {

function bombardStrength() {
$ret = 0;
foreach( $this->units() as $unit ) {

$ret += $unit->bombardStrength();

}
return $ret;

}

}

class LaserCanonUnit extends Unit {
function bombardStrength() {
return 44;

}

Where the operation is integral to the responsibility of the composite class, there is no
problem. There are more peripheral tasks, however, that may not sit so happily on the interface.

Here’s an operation that dumps textual information about leaf nodes. It could be added to
the abstract Unit class.



208 CHAPTER 11 PERFORMING AND REPRESENTING TASKS

// Unit
function textDump( $num=0 ) {
$ret = Illl;

$pad = 4*$num;

$ret .= sprintf( "%{$pad}s”, "" );
$ret .= get_class($this).": ";
$ret .= "bombard: ".$this->bombardStrength()."\n";

return $ret;

}

This method can then be overridden in the CompositeUnit class:

// CompositeUnit
function textDump( $num=0 ) {

$Iet = llll;
$pad = 4*$num;
$ret .= sprintf( "%{$pad}s”, "" );

$ret .= get_class($this).": ";
$ret .= "bombard: ".$this->bombardStrength()."\n";
foreach ( $this->units as $unit ) {
$ret .= $unit->textDump( $num + 1 );
}

return S$ret;

}

We could go on to create methods for counting the number of units in the tree, for saving
components to a database, and for calculating the food units consumed by an army.

Why would we want to include these methods in the composite’s interface? There is only
one really compelling answer. We include these disparate operations here because this is where
an operation can gain easy access to related nodes in the composite structure.

Although it is true that ease of traversal is part of the Composite pattern, it does not follow
that every operation that needs to traverse the tree should therefore claim a place in the
Composite’s interface.

So these are the forces at work. We want to take full advantage of the easy traversal
afforded by our object structure, but we want to do this without bloating the interface.

Implementation

Let’s start with our interfaces. In the abstract Unit class we define an accept() method.

function accept( ArmyVisitor $visitor ) {
$method = "visit".get class( $this );
$visitor->$method( $this );

}

Asyou can see, the accept () method expects an ArmyVisitor object to be passed to it. PHP
allows us dynamically to define the method on the ArmyVisitor we wish to call. This saves us
from implementing accept () on everyleaf node in our class hierarchy. The only other accept()
method we need to define is in the abstract composite class.



CHAPTER 11 PERFORMING AND REPRESENTING TASKS

function accept( ArmyVisitor $visitor ) {
$method = "visit".get class( $this );
$visitor->$method( $this );
foreach ( $this->units as $thisunit ) {
$thisunit->accept( $visitor );
}
}

This method does the same as Unit: :accept(), with one addition. It constructs a method
name based on the name of the current class, and invokes that method on the provided
ArmyVisitor object. So if the current class is Army, then it invokes ArmyVisitor: :visitArmy(),
and if the current class is TroopCarrier, it invokes ArmyVisitor: :visitTroopCarrier(), and so
on. Having done this, it then loops through any child objects calling accept(). In fact, because
accept() overrides its parent operation, we could factor out the repetition here:

function accept( ArmyVisitor $visitor ) {
parent::accept( $visitor );
foreach ( $this->units as $thisunit ) {
$thisunit->accept( $visitor );
}
}

Eliminating repetition in this way can be very satisfying, though in this case we have saved
only one line, arguably at some cost to clarity. In either case, the accept () method allows us to
do two things:

¢ Invoke the correct visitor method for the current component.

* Pass the visitor object to all the current element children via the accept() method
(assuming the current component is composite).

We have yet to define the interface for ArmyVisitor. The accept() methods should give you
some clue. The visitor class should define accept () methods for each of the concrete classes in
the class hierarchy. This allows us to provide different functionality for different objects. In my
version of this class, I also define a default visit() method that is automatically called if imple-
menting classes choose not to provide specific handling for particular Unit classes.

abstract class ArmyVisitor {
abstract function visit( Unit $node );

function visitArcher( Archer $node ) {
$this->visit( $node );

}

function visitCavalry( Cavalry $node ) {
$this->visit( $node );

}

function visitlLaserCanonUnit( LaserCanonUnit $node ) {
$this->visit( $node );
}

209



210

CHAPTER 11 PERFORMING AND REPRESENTING TASKS

function visitTroopCarrierUnit( TroopCarrierUnit $node ) {
$this->visit( $node );
}

function visitArmy( Army $node ) {
$this->visit( $node );
}

So now it’s just a matter of providing implementations of ArmyVisitor, and we are ready to
go. Here is our simple text dump code reimplemented as an ArmyVisitor object:

class TextDumpArmyVisitor extends ArmyVisitor {

private $text="";

function visit( Unit $node ) {

$ret = "";

$pad = 4*$node->getDepth();

$ret .= sprintf( "%#{$pad}s", "" );

$ret .= get_class($node).": ";

$ret .= "bombard: ".$node->bombardStrength()."\n";

$this->text .= $ret;
}
function getText() {
return $this->text;

}

Let’s look at some client code, and then walk through the whole process:

$main_army = new Army();
$main_army->addunit( new Archer() );
$main_army->addUnit( new LaserCanonUnit() );
$main_army->addunit( new Cavalry() );

$textdump = new TextDumpArmyVisitor();
$main_army->accept( $textdump );
print $textdump->getText();

This code yields the following output:

Army: bombard: 50
Archer: bombard: 4
LaserCanonUnit: bombard: 44
Cavalry: bombard: 2

We create an Army object. Because Army is composite, it has an addUnit() method that
we use to add some more Unit objects. We then create the TextDumpArmyVisitor object. We
pass this to the Army: :accept(). The accept() method constructs a method call and invokes
TextDumpArmyVisitor::visitArmy(). In this case, we have provided no special handling for



CHAPTER 11 PERFORMING AND REPRESENTING TASKS

Army objects, so the call is passed on to the generic visit() method. visit() has been passed a
reference to our Army object. It invokes its methods (including a new one, getDepth(), which
tells anyone who needs to know how far down the object hierarchy it is) in order to generate
summary data. The call to visitArmy() complete, the Army: :accept () operation now calls
accept() on its children in turn, passing the visitor along. In this way, the ArmyVisitor class
visits every object in the tree.

With the addition of just a couple of methods, we have created a mechanism by which new
functionality can be plugged into our composite classes without compromising their interface,
and without lots of duplicated traversal code.

On certain squares in our game, our armies are subject to tax. The tax collector visits the
army and levies a fee for each unit it finds. Different units are taxable at different rates. Here’s
where we can take advantage of the specialized methods in the visitor class:

class TaxCollectionVisitor extends ArmyVisitor {
private $due=0;

private $report="";

function visit( Unit $node ) {
$this->levy( $node, 1 );
}

function visitArcher( Archer $node ) {
$this->levy( $node, 2 );
}

function visitCavalry( Cavalry $node ) {
$this->levy( $node, 3 );
}

function visitTroopCarrierUnit( TroopCarrierUnit $node ) {
$this->levy( $node, 5 );
}

private function levy( Unit $unit, $amount ) {
$this->report .= "Tax levied for ".get_class( $unit );
$this->report .= ": $amount\n”;
$this->due += $amount;

}

function getReport() {
return $this->report;

}

function getTax() {
return $this->due;

}

211



212 CHAPTER 11 PERFORMING AND REPRESENTING TASKS

In this simple example, we make no direct use of the Unit objects passed to the various
visit methods. We do, however, use the specialized nature of these methods, levying different
fees according to the specific type of the invoking Unit object.

Here’s some client code:

$main_army = new Army();
$main_army->addUnit( new Archer() );
$main_army->addUnit( new LaserCanonUnit() );
$main_army->addUnit( new Cavalry() );

$taxcollector = new TaxCollectionVisitor();
$main_army->accept( $taxcollector );

print "TOTAL: ";

print $taxcollector->getTax()."\n";

The TaxCollectionVisitor objectis passed to the Army object’s accept () method as before.
Once again Army passes a reference to itself to the visitArmy () method, before calling accept()
on its children. The components are blissfully unaware of the operations performed by their
visitor. They simply collaborate with its public interface, each one passing itself dutifully to the
correct method for its type.

In addition to the methods defined in the ArmyVisitor class, TaxCollectionVisitor provides
two summary methods, getReport () and getTax(). Invoking these provides the data you might
expect:

Tax levied for Army: 1

Tax levied for Archer: 2

Tax levied for LaserCanonUnit: 1
Tax levied for Cavalry: 3

TOTAL: 7

Figure 11-7 shows the participants in this example.

ArmyVisitor < = - = - Unit
+visit($node:Unit) +accept($visitor:ArmyVisitor)
+visitLaserCanon($node:LaserCanon A
+visitArmy($node:Army)

A

TextDumpArmyVisitor| |LaserCanonUnit CompositeUnit -

+visit($node:Unit) +accept($visitor:ArmyVisitor)

— TaxCollectionVisitor

Army

+visit($node:Unit)

Figure 11-7. The Visitor pattern



CHAPTER 11 PERFORMING AND REPRESENTING TASKS

Visitor Issues

The Visitor pattern, then, is another that combines simplicity and power. There are a few
things to bear in mind when deploying this pattern, however.

Firstly, although it is perfectly suited to the Composite pattern, Visitor can, in fact, be used
with any collection of objects. So you might use it with a list of objects where each object stores
areference to its siblings, for example.

By externalizing operations, you may risk compromising encapsulation. That is, you may
need to expose the guts of your visited objects in order to let visitors do anything useful with
them. We saw, for example, that for our first Visitor example, we were forced to provide an
additional method in the Unit interface in order to provide information for TextDumpArmyVisitor
objects.

Because iteration is separated from the operations that visitor objects perform, you must
relinquish a degree of control. For example, you cannot easily create a visit() method that
does something both before and after child nodes are iterated. One way around this would be
to move responsibility for iteration into the visitor objects. The trouble with this is that you may
end up duplicating the traversal code from visitor to visitor.

By default, I prefer to keep traversal internal to the visited classes, but externalizing it
provides you with one distinct advantage. You can vary the way that you work through the
visited classes on a visitor-by-visitor basis.

The Command Pattern

In recent years, I have rarely completed a Web project without deploying this pattern. Originally
conceived in the context of graphical user interface design, command objects make for good
enterprise application design, encouraging a separation between the controller (request and
dispatch handling) and domain model (application logic) tiers. Put more simply, the
Command pattern makes for systems that are well organized and easy to extend.

The Problem

All systems must make decisions about what to do in response to a user’s request. In PHP, that
decision-making process is often handled by a spread of point-of-contact pages. In selecting a
page (feedback.php), the user clearly signals the functionality and interface she requires. Increas-
ingly, PHP developers are opting for a single point-of-contact approach (as I will discuss in the
next chapter). In either case, however, the receiver of a request must delegate to a tier more
concerned with application logic. This delegation is particularly important where the user can
make requests to different pages. Without it, duplication inevitably creeps into the project.

So, imagine we have a project with a range of tasks that need performing. In particular,
our system must allow some users to log in and others to submit feedback. We could create
login.php and feedback.php pages that handle these tasks, instantiating specialist classes to
get the job done. Unfortunately, views in a system rarely map neatly to the tasks that the
system is designed to complete. We may require login and feedback capabilities on every page,
for example. If pages must handle many different tasks, then perhaps we should think of tasks
as things that can be encapsulated. In doing this, we make it easy to add new tasks to our
system, and we build a boundary between our system’s tiers. This, of course, brings us to the
Command pattern.

213



214

CHAPTER 11 PERFORMING AND REPRESENTING TASKS

Implementation

The interface for a command object could not get much simpler. It requires a single method:
execute().

In Figure 11-8, I have represented Command as an abstract class. At this level of simplicity, it
could be defined instead as an interface. I tend to use abstracts for this purpose because I often
find that the base class can also provide useful common functionality for its derived objects.

Command

+execute()

Figure 11-8. The Command class

There are up to three other participants in the Command pattern: the client, which instan-
tiates the command object, the invoker, which deploys the object, and the receiver upon which
the command operates.

The receiver can be given to the command in its constructor by the client, or it can be
acquired from a factory object of some kind. Ilike the latter approach, keeping the constructor
method clear of arguments. All Command objects can then be instantiated in exactly the same way.

Let’s build a concrete Command class:

abstract class Command {
abstract function execute();

}

class LoginCommand extends Command {

function execute( CommandContext $context ) {

$manager = ReceiverFactory::getAccessManager();

$user = $context->get( 'username' );

$pass = $context->get( 'pass’' );

$user = $manager->login( $user, $pass );

if (! $user ) {
$this->context->setError( $manager->getError() );
return false;

}

$context->addParam( "user", $user );

return true;

The LoginCommand is designed to work with an AccessManager object. AccessManager is an
imaginary class whose task is to handle the nuts and bolts of logging users into the system.
Notice that our Command: :execute() method demands a CommandContext object (known as
RequestHelper in Core J2EE Patterns). This is amechanism by which request data can be passed



CHAPTER 11 PERFORMING AND REPRESENTING TASKS

to Command objects, and by which responses can be channeled back to the view layer. Using an
object in this way is useful, because we can pass different parameters to commands without
breaking the interface. The CommandContext is essentially an object wrapper around an associative
array variable, though it is frequently extended to perform additional helpful tasks. Here is a
simple CommandContext implementation:

class CommandContext {
private $params = array();
private $error = "";

function _ construct() {
$this->params = $_REQUEST;
}

function addParam( $key, $val ) {
$this->params[$key]=$val;
}

function get( $key ) {
return $this->params[$key];

}

function setError( $error ) {
$this->error = $error;

}

function getError() {
return $this->error;

}

So, armed with a Context object, the LoginCommand can access request data: the submitted
username and password. We use ReceiverFactory, a simple class with static methods for
generating common objects, to return the AccessManager object with which LoginCommand
needs to work. If AccessManager reports an error, the command lodges the error message with
the Context object for use by the presentation layer, and returns false. If all is well, LoginCommand
simply returns true. Note that Command objects do not themselves perform much logic. They
check input, handle error conditions, and cache data as well as calling on other objects to
perform the operations they must report on.

Now we are only missing the client: the class that generates command objects, and the
invoker. The easiest way of selecting which command to instantiate in a Web project is by
using a parameter in the request itself. Here is a simplified client:

class CommandNotFoundException extends Exception {}

class CommandFactory {
private static $dir = 'commands';

215



216 CHAPTER 11 PERFORMING AND REPRESENTING TASKS

function getCommand( $action='Default’ ) {
$class = ucfirst(strtolower($action))."Command";
$file = self::$dir."/$class.php";
if (! file_exists( $file ) ) {
throw new CommandNotFoundException( "could not find '$file'" );
}
require_once( $file );
if (! class_exists( $class ) ) {
throw new CommandNotFoundException( "no '$class’ class located" );
}
$cmd = new $class();
return $cmd;

The CommandFactory class simply looks in a directory called commands for a particular class
file. The file name is constructed using the CommandContext object’s $action parameter, which
in turn should have been passed to our system from the request. If the file is there, and the class
exists, then it is returned to the caller. We could add even more error checking here, ensuring
that the found class belongs to the Command family, that the user supplied $class string does not
contain a directory path, and that constructor is expecting no arguments, but this version will
do fine for our purposes. The strength of this approach is that you can drop a new Command
object into the commands directory at any time, and the system will immediately support it.

The invoker is now simplicity itself:

class Controller {
private $context;
function _ construct() {
$this->context = new CommandContext();

}

function getContext() {
return $this->context;

}

function process() {
$cmd = CommandFactory: :getCommand( $this->context->get('action') );
if (! $cmd->execute( $this->context ) ) {
// handle failure

} else {
print "all is well";
// success

}



CHAPTER 11 PERFORMING AND REPRESENTING TASKS

$controller = new Controller();

// fake user request

$context = $controller->getContext();
$context->addParam('action’, 'login’ );
$context->addParam('username’, 'bob' );
$context->addParam('pass', 'tiddles' );
$controller->process();

Before we call Controller: :process(), we fake up a Web request by setting parameters on
the CommandContext object instantiated in the controller’s constructor. The process() method
delegates object instantiation to the CommandFactory object. It then invokes execute() on the
returned command. Notice how the controller has no idea about the command’s internals. It
is this independence from the details of command execution that makes it possible for us to
add new Command classes with a relatively small impact on this framework.

Let’s create one more Command class:

class FeedbackCommand extends Command {

function execute( CommandContext $context ) {

$msgSystem = ReceiverFactory::getMessageSystem();

$email = $context->get( 'email’ );

$msg = $context->get( 'pass’ );

$topic = $context->get( "topic' );

$result = $msgSystem->despatch( $email, $msg, $topic );

if (! $user ) {
$this->context->setError( $msgSystem->getError() );
return false;

}

$context->addParam( "user", $user );

return true;

Note We will return to the Command pattern in Chapter 12 with a fuller implementation of a Command
factory class. The framework for running commands presented here is a simplified version of another pattern
that we will encounter: the Front Controller.

As long as this class is contained within a file called FeedbackCommand. php, and is saved in
the correct commands folder, it will be run in response to a “feedback” action string, without the
need for any changes in the controller or CommandFactory classes.

Figure 11-9 shows the participants of the Command pattern.

217



218

CHAPTER 11 PERFORMING AND REPRESENTING TASKS

Command

+execute($command: CommandContext): boole

A

— LoginCommand

+execute($command: CommandContext): boolea

— FeedbackCommand

+execute($command: CommandContext): booleai

CommandFactory "client" creates Comman%l

+getCommand($action:String): Comman

Controller "invoker" uses Comman%l

+process()
\ $cmd = $commandFactory—>getCommand('login'ﬁ

$cmd->execute( $context );

Figure 11-9. Command pattern participants

Summary

In this chapter, we wrapped up our examination the Gang of Four patterns. We designed a mini-
language and built its engine with the Interpreter pattern. We encountered in the Strategy
pattern another way of using composition to increase flexibility and reduce the need for repeti-
tive subclassing. The Observer pattern solved the problem of notifying disparate and varying
components about system events. We revisited our Composite example, and with the Visitor
pattern learned how to pay a call on, and apply many operations to, every component in a tree.
Finally, we saw how the Command pattern can help us to build an extensible tiered system.
In the next chapter, we will step beyond the Gang of Four to examine some patterns

specifically oriented toward Enterprise programming.



PHP is first and foremost a language designed for the Web. And with its newly extended
support for objects, it can also derive greater benefit from patterns hatched in other Enterprise
languages, particularly Java.

This chapter will cover

* Presentation patterns: Tools for managing and responding to requests, and for
presenting data to the user

* Business logic patterns: Getting to the real purpose of your system: addressing business
problems

* Data patterns: Taming the relational database

* Summary: A bullet point list covering all the patterns in this chapter

Introduction

Many (most, in fact) of the patterns in this chapter are designed to promote the independent
operation of several distinct tiers in an application. Just as classes represent specializations of
responsibilities, so do the tiers of an Enterprise system, albeit on a coarser scale. Figure 12-1
shows a typical breakdown of the layers in a system.

219



220

CHAPTER 12 ENTERPRISE PATTERNS

Generates

request :

directed to vemnn View <

Command and: o~ !

Control layer 1 :
> I

Interprets P Assesses

request and Command and Control results

queries Logic __._. < -, and chooses

layer E o~ 1 correct view
L] 1

Processes few -> - - ====' Returns

business Business Logic results

problem e to Command
7 and Control
LS

Handles -

data acquisition Data

and storage

Figure 12-1. The layers or tiers in a typical Enterprise system

The structure shown in Figure 12-1 is not written in stone: some of these tiers may be

combi

ned and different strategies used for communication between them depending upon

the complexity of your system. Nonetheless, Figure 12-1 illustrates a model that emphasizes
flexibility and reuse, and many Enterprise applications follow it to a large extent.

The View layer contains the interface that a system’s users actually see and interact with.
It is responsible for presenting the results of a user’s request, and providing the mecha-
nism by which the next request can be made to the system.

The Command and Control layer processes the request from the user. Based on this anal-
ysis, it delegates to the Business Logic layer to perform any processing required in order to
fulfill the request. It then chooses which view is best suited to present the results to the
user. In practice, this and the View layer are often combined into a single Presentation
layer. Even so, the role of display tends to be strictly separated from those of request
handling and business logic invocation.

The Business Logic layer is responsible for seeing to the business of a request. It performs
any required calculations and marshals the resulting data.

The Data layer insulates the rest of the system from the mechanics of saving and acquiring
persistent information. In some systems, the Command and Control layer uses the Data
layer to acquire the business objects with which it needs to work. In other systems, the
Data layer is hidden as far as possible. Later in the chapter, I will demonstrate a near-
transparent Data layer.

So what is the point of dividing a system in this way? As with so much else in the book, the

answe

t lies with decoupling. By keeping business logic independent of the View layer, you make

it possible to add new interfaces to your system with little or no rewriting.

Imagine a system for managing event listings (this will be a very familiar example by the
end of the chapter). The end user will naturally require a slick HTML interface. Technicians
maintaining the system may then require a command line interface for building into auto-
mated systems. At the same time, you may be developing versions of the system to work with



CHAPTER 12 i ENTERPRISE PATTERNS 221

cell phones and other handheld devices. You may even begin to consider Web Services like
XML-RPC and SOAP.

If you originally combined the underlying logic of your system with the HTML View layer
(which is still a common strategy whatever project managers might tell you), these requirements
would trigger an instant rewrite. If, on the other hand, you had created a tiered system, you
would be able to bolt on new presentation strategies without the need to reconsider your Business
Logic and Data layers.

By the same token, persistence strategies are subject to change. Once again, you should be
able to switch between storage models with minimal impact upon the other tiers in a system.

Testing is another good reason for creating systems with separated tiers. Web applications
are notoriously hard to test. Any kind of automated test tends to get caught up in the need to
parse the HTML interface at one end, and work with live databases at the other. This means
that tests must work with fully deployed systems, and risk undermining the very system that
they were written to protect. The classes in a tier that face other layers should be written so that they
extend an abstract super class or implement an interface. This supertype can then support
polymorphism. In a test context, an entire tier can be replaced by a set of dummy objects (often
called “stubs” or “mock objects”). In this way, you can test business logic using a fake Data
layer, for example.

Layers are useful even if you think that testing is for wimps, and your system will only ever
have a single interface. By creating tiers with distinct responsibilities, you build a system whose
constituent parts are easier to extend and debug. You limit duplication by keeping code with
the same kinds of responsibility in one place (rather than lacing a system with database calls,
for example, or with display strategies). Adding to a system is relatively easy because your
changes tend to be nicely vertical as opposed to messily horizontal.

A new feature, in a tiered system, might require a new interface component, additional
request handling, some more business logic, and an amendment to your storage mechanism.
That’s vertical change. In a nontiered system you might add your feature, and then remember
that five separate pages reference your amended database table, or was it six? There may be
dozens of places where your new interface may potentially be invoked, so you need to work
through your system adding code for that. This is horizontal amendment.

In reality, of course, you never entirely escape from horizontal dependencies of this sort,
especially when it comes to navigation elements in the interface. A tiered system can help to
minimize the need for horizontal amendment, however.

- Note While many of these patterns have been around for a while (that’s what patterns mean, after all), the
names and boundaries are drawn either from Martin Fowler’s key work on Enterprise patterns, Pafterns of
Enterprise Application Architecture, or from the influential Core J2EE Patterns by Alur et al. For the sake of
consistency, | have tended to use Martin Fowler’s naming conventions where the two sources diverge. This is
because the latter’s work is less focused upon a single technology, and therefore has the wider application.
Alur et al. tend to concentrate upon Enterprise Java Beans in their work, which means that many patterns are
optimized for distributed architectures. This is clearly a niche concern in the PHP world.

If you find this chapter useful, | would recommend both books as a next step. Even if you don’t know Java,
as an object-oriented PHP programmer you should find the examples reasonably easy to decipher.




222

CHAPTER 12 ENTERPRISE PATTERNS

All the examples in this chapter revolve around a fictional listings system with the whimsical-
sounding name “Woo,” which stands for something like “What’s On Outside.”

Participants of the system include venues (theaters, clubs, and cinemas), spaces (“screen 1,”
“the stage upstairs”) and events (The Long Good Friday, The Importance of Being Earnest).

The operations I will cover include creating a venue, adding a space to a venue, and listing
all venues in the system.

Remember that the aim of this chapter is to illustrate key Enterprise design patterns, and
not to build a working system. Reflecting the interdependent nature of design patterns, most
of these examples overlap to a large extent with code examples, making good use of ground
covered elsewhere in the chapter. Addressing the needs of demonstration code, though, does
not fulfill the criteria demanded by a production system. You should approach the examples as
a means of illustrating the patterns they implement, rather than as building blocks in a frame-
work or application.

Cheating Before We Start

Most of the patterns in this book find a natural place in the layers of an Enterprise architecture.
Some patterns are so basic that they stand outside of this structure. The Registry pattern is a
good example of this. In fact, Registry is a powerful way of breaking out of the constraints laid
down by layering. It is the exception that allows for the smooth running of the rule.

Registry
It is an article of faith that globals are bad. Like other sins, though, global data is fatally attractive.
This is so much the case that object-oriented architects have felt it necessary to reinvent globals
under a new name. We encountered the Singleton pattern in Chapter 9. This is unfair, of course,
because Singleton objects do not suffer from all the ills that beset global variables. In particular,
you cannot overwrite a Singleton by accident. Singletons, then, are low-fat globals. We remain
suspicious of Singleton objects, though, because they invite us to anchor our classes into a system,
thereby introducing coupling.

Even so, Singletons are so useful at times, that many programmers (including me) can’t
bring themselves to give them up.

The Problem

As you may know, many Enterprise systems are divided into layers, with each layer communi-
cating with its neighbors only through tightly defined conduits. This separation of tiers makes
an application flexible. You can replace or otherwise develop each tier with the minimum
impact on the rest of the system. What happens, though, when you acquire information in a
tier that you later need in another noncontiguous layer?



CHAPTER 12 ENTERPRISE PATTERNS

Note Some of the examples-in this chapter use the PEAR class naming convention. That is, they
include the package path in class names. This guards against name clashes, but can also be hard on
the eye in discussion. For that reason, where | discuss a class, | will use only its core name. So
woo_controller ApplicationHelper inan example may be referred to as ApplicationHelper
in the text.

Let’s say that we acquire configuration data in an ApplicationHelper class:

// woo_controller ApplicationHelper
function getOptions() {
if (1 file_exists( "data/woo_options.xml" ) ) {
throw new woo_base AppException(
"Could not find options file" );
}
$options = SimpleXml_load file( "data/woo_options.xml" );
$dsn = (string)$options->dsn;
// what do we do with this now?
/...

}

Acquiring the information is easy enough, but how do we get it to the Data layer where it is
later used? And what about all the other configuration information we must disseminate
throughout our system?

One answer would be to pass this information around the system from object to object:
from a controller object responsible for handling requests, through to objects in the Business
Logic layer, and on to an object responsible for talking to the database.

This is entirely feasible. In fact, you could pass the ApplicationHelper object itself around,
or alternatively a more specialized Context object. Either way, contextual information is trans-
mitted through the layers of your system to the object or objects that need it.

The trade-off is that in order to do this, you must alter the interface of all the objects that
relay the context object whether they need to use it or not. Clearly this undermines loose
coupling to some extent.

The Registry pattern provides an alternative that is not without its own consequences.

A Registry is simply a class that provides access to data (usually, but not exclusively, objects)
via static methods (or via instance methods on a Singleton). Every object in a system therefore
has access to these objects.

223



224

CHAPTER 12 ENTERPRISE PATTERNS

The term “Registry” is drawn from Martin Fowler’s Patterns of Enterprise Application
Architecture, but like all patterns, implementations pop up everywhere. David Hunt and David
Thomas (The Pragmatic Programmer) liken a Registry class to a police incident notice board.
Detectives on one shift leave evidence and sketches on the board, which are then picked up
by new detectives on another shift. I have also seen Registry elasses called Whiteboard and
Blackboard.

Implementation

Figure 12-2 shows a Registry object whose job it is to store and serve Request objects:

<<creates>>

Registry

= = {+instance(): Registry
+setRequest ($request:Request)
+getRequest()

Figure 12-2. A simple registry

Here is this class in code form:

class Registry {
private static $instance;
private $request;

static function instance() {
if (! self::$instance ) { self::$instance = new self(); }
return self::$instance;

}

function getRequest() {
return $this->request;

}

function setRequest( Request $request ) {
$this->request = $request;
}

}
// empty class for testing
class Request {}

You can then add a Request object in one part of a system.

$reg = Registry::instance();
$reg->setRequest( new Request() );



CHAPTER 12 ENTERPRISE PATTERNS 225

And access it from another part of the system.

$reg = Registry::instance();
print_r( $reg->getRequest() );

As you can see, the Registry is simply a Singleton (see Chapter 9 if you need a reminder
about Singleton classes). The code creates and returns a sole instance of the Registry class via
the instance() method. This can then be used to set and retrieve a Request object. Despite the
fact that PHP does not enforce return types, the value returned by getRequest() is guaranteed
to be a Request object because of the type hint in setRequest().

I have been known to throw caution to the winds and use a key-based system, like this:

class Registry {
private static $instance;
private $values = array();

static function instance() {
if (1 self::$instance ) { self::$instance = new self(); }
return self::$instance;

}

function get( $key ) {
return $this->values[$key];

}

function set( $key, $value ) {
$this->values[$key] = $value;
}

The benefit here is that you don’t need to create methods for every object you wish to store
and serve. The downside, though, is that you reintroduce global variables by the back door. The
use of arbitrary strings as keys for the objects you store means that there is nothing stopping
one part of your system overwriting a key/value pair when adding an object. I have found it
useful to use this map-like structure during development, and shift over to explicitly named
methods when I'm clear about the data I am going to need to store and retrieve.

Registry, Scope, and PHP

The term “scope” is often used to describe the visibility of an object or value in the context of
code structures. The lifetime of a variable can also be measured over time. There are three
levels of scope you might consider in this sense. The standard is the period covered by an HTTP
request. In terms of real in-memory scope, this is as far as it goes in the PHP world. We do not
have access to pools of memory in which we might store data for longer than a single request.
PHP also provides built-in support for session variables. These are serialized and saved to
the file system or the database at the end of a request, and then restored at the start of the next.
A session ID stored in a cookie or passed around in query strings is used to keep track of the
session owner. Because of this, you can think of some variables having session scope. You can
take advantage of this by storing some objects between requests, saving a trip to the database.



226

CHAPTER 12

ENTERPRISE PATTERNS

Clearly, you need to be careful that you don’t end up with multiple versions of the same object,
so you may need to consider a locking strategy when you check an object that also exists in a

database into a session.

In other languages, notably Java and Perl (running on the ModPerl Apache module), there
is the concept of application scope. Variables that occupy this space are available across all
instances of the application. This is fairly alien to PHP, but in larger applications it is very useful
to have access to an application-wide space for accessing configuration variables. You can
build a Registry class that emulates application scope, though you must be aware of some
pretty considerable caveats.

Figure 12-3 shows a possible structure for Registry classes that work on the three levels I

have described:

Registry

#get($key:String): mix
#set()

RequestRegistry

SessionRegistry

ApplicationRegistry

-instance(): RequestRegistry
#get($key:String): mixed
#set($key:String, $value:mixed)
+getAaa()(): Aaa
+setAaa($aaa:Aaa)

-instance(): SessionRegistry
#get($key:String): mixed
#set($key:String, $value:mixed)
+getBbb(): Bbb
+setBbb($bbb:Bbb)

-instance(): ApplicationRegistry
#get($key:String): mixed
#set(8key:String, $value:mixed)
+getCcc(): Ccc

+setCcc($ccec:Cecc)

self::instance()->set('Aaa', $aa l?l

S |

return self::instance()->get( 'Aaa!ﬁ

Figure 12-3. Implementing Registry classes for different scopes

The base class defines two protected methods, get() and set(). They are not available to
client code because we want to enforce type for get and set operations. The base class may

define other public methods such as isEmpty(), isPopulated(), and clear(), but I'll leave those
as an exercise for you to do.

ENote In a real-world system, you might want to extend this structure to include another layer of inheritance.
You might keep the concrete get () and set () methods in their respective implementations, but specialize
the public getAaa() and setAaa() methods into domain-specific classes. The new specializations would
become the Singletons. That way you could reuse the core save and retrieve operations across multiple
applications.




CHAPTER 12 ENTERPRISE PATTERNS

Here is the abstract class as code:

abstract class woo_base Registry {
private function _ construct() {}
abstract protected function get( $key );
abstract protected function set{ $key, $val );

The request level class is pretty straightforward. In another variation from our previous
example, we keep the Registry sole instance hidden, and provide static methods to set and get
objects. Apart from that, it’s simply a matter of maintaining an associative array.

class woo_base RequestRegistry extends woo base Registry {
private $values = array();
private static $instance;

static function instance() {
if (! self::$instance ) { self::$instance = new self(); }
return self::$instance;

}

protected function get( $key ) {
return $this->values[$key];

}

protected function set( $key, $val ) {
$this->values[$key] = $val;
}

static function getRequest() {
return self::instance()->get('request');

}

static function setRequest( woo_controller Request $request ) {
return self::instance()->set('request’', $request );

}

The session-level implementation simply uses PHP’s built-in session support:

class woo_base_SessionRegistry extends woo_base_Registry {
private static $instance;
private function _ construct() {
session_start();

}

227



228

CHAPTER 12 ENTERPRISE PATTERNS

static function instance() {
if (! self::$instance ) { self::$instance = new self(); }
return self::$instance;

}

protected function get( $key ) {
return $ SESSION[ CLASS ][$keyl;

}

protected function set( $key, $val ) {
$_SESSION[ CLASS_ ][$key] = $val;
}

function setComplex( Complex $complex ) {
self::instance()->set('complex', $complex);

}

function getComplex( ) {
return self::instance()->get('complex');

}

As you can see, this class uses the $_SESSION superglobal to set and retrieve values. We kick
off the session in the constructor with the session_start() method. As always with sessions,
you must ensure that you have not yet sent any text to the user before using this class.

As you might expect, the application-level implementation is more of an issue. As with all
code examples in this chapter, this is an illustration rather than production-quality code:

class woo_base_ApplicationRegistry extends woo_base Registry {
private static $instance;
private $freezefile = "data/applicationRegistry.txt";
private $values = array();
private $dirty = false;

private function _construct() {
$this->doReload( $this );

}

static function instance() {
if (! self::$instance ) { self::$instance = new self(); }
return self::$instance;

}

function _ destruct() {
if ( $this->dirty ) {
$this->save();

}



CHAPTER 12 ENTERPRISE PATTERNS

static function reload() {
self::instance()->doReload();
}

private function doReload() {
if (! file exists( $this->freezefile ) ) { return false; }
$serialized = file_get_contents( $this->freezefile, true );
$array = unserialize( $serialized );
if ( is_array( $array ) ) {
$array = array merge( $array, $this->values );
$this->values = $array;
return true;

}

return false;

}

private function save() {
$frozen = serialize( $this->values );
file put_contents( $this->freezefile, $frozen,
FILE_USE_INCLUDE_PATH );
$this->dirty = false;
}

protected function get( $key ) {
return $this->values[$key];

}

protected function set( $key, $val ) {
$this->dirty = true;
$this->values[$key] = $val;

}

static function iskmpty() {
return empty( self::instance()->values );

}

static function getDSN() {
return self::instance()->get('dsn');

}

static function setDSN( $dsn ) {
return self::instance()->set('dsn*, $dsn);

}

This class uses serialization to save and restore the $values property. The doReload()
method handles data acquisition, first checking for the file’s existence and then reading its
contents. Contents acquired, the method uses unserialize() to generate an array. reload()

229



230

CHAPTER 12 ENTERPRISE PATTERNS

is called when the ApplicationRegistry is first instantiated to ensure that the object starts out
with a populated $values array. It can also be invoked at any time via the static reload() method.

Whenever a client sets a value, a private flag, $dirty, is set to true (in the set() method).
The class implementsa __destruct() method, which is automatically invoked when the
ApplicationRegistry object is destroyed. If the $dirty property is set to true, then the save()
method is called. This works like reload() in reverse. The $values array is serialized and saved
to the storage file.

If you intend to use a variation on this code example, make sure you check out the next
section: there are some serious issues that you should consider.

Consequences

Because both SessionRegistry and ApplicationRegistry serialize data to the file system, it is
important to restate the obvious point that objects retrieved in different requests are identical
copies and not references to the same object. This should not matter with SessionRegistry,
because the same user is accessing the object in each instance. With ApplicationRegistry, this
could be a serious problem. If you are saving data promiscuously, you could arrive at a situation
where two processes conflict. Take a look at these steps:

Process 1 retrieves an object
Process 2 retrieves an object
Process 1 alters object
Process 2 alters object
Process 1 saves object
Process 2 saves object

The changes made by Process 1 are overwritten by the save of Process 2. If you really want
to create a shared space for data, you will need to work on ApplicationRegistry to implement
alocking scheme to prevent collisions like this. Alternatively, you can treat ApplicationRegistry
as a largely read-only resource. This is the way that I use the class in examples later in this
chapter. Data is set on it only once, and thereafter all interactions with it are read-only. The
code only calculates new values and writes them if the storage file cannot be found. You can
therefore force a reload of configuration data only by deleting the storage file. You may wish to
enhance the class so read-only behavior is enforced.

Another point to remember is that not every object is suitable for serialization. In particular,
if you are storing a resource of any type (a database connection handle, for example), it will not
serialize. You will have to devise strategies for disposing of the handle on serialization and
reacquiring it on unserialization.

Note One way of managing serialization is to implement the magic methods __sleep() and
__wakeup(). __sleep() is called automatically when an object is serialized. You can use it to perform any
cleaning up before the object is saved. In order to work, the method should return an array. The __ wakeup ()
method is invoked when an object is unserialized. You can use this to resume any file or database handles the
object may have been using at the time of storage.




CHAPTER 12 ENTERPRISE PATTERNS

Although serialization is a pretty efficient business in PHP, you should be careful of what
you save. A simple-seeming object may contain a reference to an enormous collection of
objects pulled from a database.

Registry objects make their data globally available. This means that any class that acts as
a client for a Registry will exhibit a dependency that is not declared in its interface. This can
become a serious problem if you begin to rely on Registry objects for lots of the data in your
system. Registry objects are best used sparingly, for a well-defined set of data items.

The Presentation Layer

When a request hits your system, you must interpret the requirement it carries, then you must
invoke any business logic needed, and finally return a response. For simple scripts, this whole
process often takes place entirely inside the view itself, with only the heavyweight logic and
persistence code split off into libraries.

‘Note A viewis an individual element in the View layer. It is usually a PHP page whose primary responsi-
bility is to display data and provide the mechanism by which new requests can be generated by the user.
It could also be a template in a templating system such as Smarty.

As systems grow in size, this default strategy becomes less tenable with request processing,
business logic invocation, and view dispatch logic necessarily duplicated from view to view.

In this section, we look at strategies for managing these three key responsibilities of the
Presentation layer. Because the boundaries between the View layer and the Command and
Control layer are often fairly blurred, it makes sense to treat them together under the common
term “Presentation layer.”

Front Controller

This pattern is diametrically opposed to the traditional PHP application with its multiple points
of entry. The Front Controller pattern presents a central point of access for all incoming requests,
ultimately delegating to a view to present results back to the user. This is a key pattern in the
Java Enterprise community. It is covered in great detail in Core J2EE Patterns, which remains
one of the most influential Enterprise patterns resources. The pattern is not universally loved
in the PHP community partly because of the overhead that initialization sometimes incurs.

Most systems [ write tend to gravitate toward the Front Controller. That is, I may not
deploy the entire pattern to start with, but I will be aware of the steps necessary to evolve my
project into a Front Controller implementation should I need the amazing power and flexibility
it affords.

The Problem

Where requests are handled at multiple points throughout a system, it is hard to keep dupli-
cation from the code. You may need to authenticate a user, translate terms into different
languages, or simply access common data. When a request requires common actions from

231



232

CHAPTER 12 ENTERPRISE PATTERNS

view to view, you may find yourself copying and pasting operations. This makes changes very
difficult, as a simple change to an operation must be repeated throughout your system. It is
very easy for some parts of your code to fall out of alignment with others. Of course, a first step
might be to centralize common operations into library code, but you are still left with the calls
to the library functions or methods distributed throughout your system.

Difficulty in managing the progression from view to view is another problem that can arise
in a system where control is distributed among its views. In a complex system, a submission in
one view may lead to any number of result pages, according to the input and the success of any
operations performed at the logic layer. Forwarding from view to view can get messy, especially
if the same view might be used in different flows.

Implementation

At heart, the Front Controller pattern defines a central point of entry for every request. It

processes the request and uses it to select an operation to perform. Operations are often

defined in specialized command objects organized according to the Command pattern.
Figure 12-4 shows an overview of a Front Controller implementation.

<<creates>>
== === > Command

Controller

+run() +execute($request:Request)
+init() #doExecute($request :Request)
+handleRequest() 4

DoAThing DoAnotherThing

#doExecute($request:Request) #doExecute($request:Request)

Figure 12-4. A Controller class and a command hierarchy

In fact, you are likely to deploy a few helper classes to smooth the process, but let’s begin
with the core participants. Here is a simple Controller class:

class woo_controller Controller {
private $applicationHelper;

private function _ construct() {}

static function run() {
$instance = new woo_controller Controller();
$instance->init();
$instance->handleRequest();



CHAPTER 12 ENTERPRISE PATTERNS

function init() {
$applicationHelper
= woo_controller ApplicationHelper::instance();
$applicationHelper->init();
}

function handleRequest() {
$request = new woo_controller Request();
$cmd_1 = new woo_command_CommandResolver();
$cmd = $cmd_r->getCommand( $request );
$cmd->execute( $request );

Simplified as this is, and bereft of error handling, there isn’t much more to the Controller
class. A controller sits at the tip of a system delegating to other classes. It is these other classes
that do most of the work.

run() is merely a convenience method that calls init() and handleRequest(). It is static
and the constructor is private, so the only option for client code is to kick off execution of our
system. I usually do this in a file called index. php that contains only a couple of lines of code:

require( "woo/controller/Controller.php" );
woo_controller Controller::run();

The distinction between the init() and handleRequest() methods is really one of category
in PHP. In some languages, init() would be run only at application startup, and handleRequest()
or equivalent would be run for each user request. This class observes the same distinction
between setup and request handling, even though init() is called for each request.

The init() method obtains an instance of a class called ApplicationHelper. This class
manages configuration data for the application as a whole. init(}) calls a method in
ApplicationHelper, also called init(), which, as you will see, initializes data used by the
application.

The handleRequest() method uses a CommandResolver to acquire a Command object, which it
runs by calling Command: :execute().

ApplicationHelper
The ApplicationHelper class is not essential to Front Controller. Most implementations must

acquire basic configuration data, though, so it’s as well to discuss a strategy for this. Here is a
simple ApplicationHelper:

class woo_controller ApplicationHelper {
private static $instance;
private $config = "data/woo_options.xml";

private function _ construct() {}

233



234 CHAPTER 12 ENTERPRISE PATTERNS

static function instance() {
if (! self::$instance ) {
self::$instance = new self();

}

return self::$instance;

}

function init() {

if ( ! woo_base ApplicationRegistry::isEmpty() ) {
return;

}
$this->getOptions();

}

private function getOptions() {
$this->ensure( file exists( $this->config ),

“Could not find options file" );
$options = @SimpleXml_load file( $this->config );
$this->ensure( $options instanceof SimpleXMLElement,

"Could not resolve options file" );
$dsn = (string)$options->dsn;
$this->ensure( $dsn, "No DSN found" );
woo_base_ApplicationRegistry::setDSN( $dsn );

// set other values

}

private function ensure( $expr, $message ) {
if (! $expr ) {
throw new woo_base_AppException( $message );
}
}

function DB() {

$dsn = woo_base ApplicationRegistry::getDSN();

$this->ensure( $dsn, "No DSN" );

if (!} $this->db ) {

$this->db = DB::connect( $dsn );

}

$this->ensure( (! DB::isError( $this->db )),
"Unable to connect to DB" );

return $this->db;

This class simply reads a configuration file and makes values available to clients. As you
can see, it is another Singleton, which is a useful way of making it available to any class in our
system. You could equally make it a standard class, and ensure that it is passed around to any
interested objects. I have already discussed the trade-offs involved there.



CHAPTER 12 ENTERPRISE PATTERNS

The fact that we are using an ApplicationRegistry here suggests a refactoring. It may be
worth making ApplicationHelper itself the Registry rather than have two Singletons in a system
with overlapping responsibilities. This would involve the refactoring suggested in the previous
section (splitting core ApplicationRegistry functionality from storage and retrieval of domain-
specific objects). I will leave that for you to do!

So the init() method is responsible for loading configuration data. In fact, it checks the
ApplicationRegistry toseeif the datais already cached. If the Registry object is already populated,
init() does nothing at all. This is useful for systems that do lots of very expensive initialization.
Complicated setup may be acceptable in a language that separates application initialization
from individual requests. In PHP, you need to minimize initialization in favor of the request.

Caching is very useful for ensuring that complex and time-consuming initialization processes
take place in an initial request only (probably one run by you), with all subsequent requests
benefiting from the results.

If this is the first run (or if the cache file has been deleted—a crude but effective way of
forcing the configuration file to be re-created), then the setOptions() method is invoked.

In real life, this would probably do a lot more work than the example shows. This version
satisfies itself with acquiring a DSN. setOptions() first checks that the configuration file exists
(the path is stored in a property called $config). It then attempts to load XML data from the file,
and sets the DSN.

Notice that the class uses a trick to throw exceptions. Rather than pepper the code with
conditionals and throw statements like this:

if (! file exists( "data/woo_options.txt" ) ) {
throw new woo_base AppException(
“Could not find options file" );

}

the class centralizes the test expression and the throw statement in a method called ensure().
You can confirm that a condition is true (and throw an exception otherwise) in a single (albeit
split) line:

$this->ensure( file_exists( $this->config ),
“Could not find options file" );

Finally, ApplicationHelper includes a DB() method, which serves up a DB_common object
(or throws an exception if things go wrong).

The cache approach taken here allows for the best of both worlds. The system can maintain
an easy-to-use XML configuration file, but caching means that its values can be accessed at
near native speed. Of course, if your end users are programmers too, or if you don’t intend to
change configuration very often, you could include PHP data structures directly in the helper
class. While inflexible, this approach is certainly the fastest.

CommandResolver

A controller needs a way of deciding how to interpret an HTTP request so that it can invoke the
right code in order to fulfill that request. You could easily include this logic within the Controller
class itself, but I prefer to use a specialist class for the purpose. That makes it easy to refactor
for polymorphism if necessary.

235



236

CHAPTER 12 ENTERPRISE PATTERNS

A Front Controller often invokes application logic by running a Command object (we covered
the Command pattern in Chapter 11). The Command that is chosen is usually selected according
to a parameter in the request or according to the structure of the URL itself (you might, for example,
use Apache configuration in order to make concrete-seeming URLs yield a key for use in
selecting a Command). In these examples, I will use a simple parameter: cmd.

There is more than one way of using the given parameter to select a Command. You can
test the parameter against a configuration file or data structure (a logical strategy). Or you can
test it directly against class files on the file system (a physical strategy).

Alogical strategy is more flexible, but also more labor intensive, both in terms of setup and
maintenance. You can see an example of this approach in the “Application Controller” section.

You saw an example of a command factory that used a physical strategy in the last chapter.
Here is a slight variation that uses reflection for added safety:

class woo_command_CommandResolver {
private static $base_cmd;
private static $default_cmd;

function _ construct() {
if (! self::$base_cmd ) {
self::$base_cmd = new ReflectionClass( "woo_command Command" );
self::$default_cmd = new woo_command DefaultCommand();

}

function getCommand( woo_controller Request $request ) {
$cmd = $request->getProperty( 'cmd' );
if (! $omd ) {
return self::$default_cmd;
}
$cmd=str replace( array('.','/'), "", $cmd );
$filepath = "woo/command/$cmd.php";
$classname = "woo_command_$cmd";
if ( file exists( $filepath ) ) {
@require once( "$filepath” );
if ( class_exists( $classname) ) {
$cmd_class = new ReflectionClass($classname);
if ( $cmd_class->isSubClassOf( self::$base cmd ) ) {
return $cmd_class->newInstance();
} else {
$request->addFeedback( "command '$cmd' is not a Command” );
}
}
}

$request->addFeedback( "command '$cmd' not found" );
return clone self::$default_cmd;



CHAPTER 12 ENTERPRISE PATTERNS

This simple class looks for a request parameter called cmd. Assuming that this is found,
and that it maps to areal class file in the command directory, and that the class file contains the
right kind of class, the method creates and returns an instance of the relevant class.

If any of these conditions are not met, the getCommand() method degrades gracefully by
serving up a default Command object.

You may wonder why this code takes it on trust that the Command class it locates does not
require parameters:

if ( $cmd_class->isSubClassOf( self::$base cmd ) ) {
return $cmd_class->newInstance();

}
The answer to this lies in the signature of the Command class itself.

abstract class woo_command_Command {
final function _ construct() { }

function execute( woo_controller Request $request ) {
$this->doExecute( $request );
}

abstract function doExecute( woo_controller Request $request );

By declaring the constructor method final, we make it impossible for a child class to over-
ride it. No Command class therefore will ever require arguments to its constructor.

Remember that you should never use input from the user without checking it first. L have
included a test to ensure that there is no path element to the provided “cmd” string, so that
only files in the correct directory can be invoked (and not something like ../../../tmp/
DodgyCommand. php). You can make code even safer by only accepting command strings that
match values in a configuration file.

Request

Requests are magically handled for us by PHP and neatly packaged up in superglobal arrays.
You might have noticed that we still use a class to represent a request. A Request object is passed
to CommandResolver, and later on to Command.

Why do we not let these classes simply query the $_REQUEST, $_POST, or $_GET arrays for
themselves? We could do that, of course, but by centralizing request operations in one place we
open up new options. You could, for example, apply filters to the incoming request. Or, as the
next example shows, you could gather request parameters from somewhere other than an
HTTP request, allowing the application to be run from the command line or from a test script.
Of course, if your application uses sessions, you may have to provide an alternative storage
mechanism for use in a command line context. The Registry pattern would work well for you
there, allowing you to generate different Registry classes according to the context of the
application.

The Request object is also a useful repository for data that needs to be communicated to
the View layer. In that respect, Request can also provide response capabilities.

237



238 CHAPTER 12 ENTERPRISE PATTERNS

Here is a simple Request class:

class woo_controller Request {
private $appreg;
private $properties;
private $feedback = array();

function _construct() {
$this->init();
woo_base_RequestRegistry::setRequest($this );
}

function init() {
if ( $_SERVER['REQUEST_METHOD'] ) {
$this->properties = $_REQUEST;
return;

}
foreach( $ SERVER['argv'] as $arg ) {

if ( strpos( $arg, '=' ) ) {
list( $key, $val )=explode( "=", $arg );
$this->setProperty( $key, $val );

}

function getProperty( $key ) {
return $this->properties|$key];
}

function setProperty( $key, $val ) {
$this->properties[$key] = $val;
}

function addFeedback( $msg ) {
array push( $this->feedback, $msg );

}

function getFeedback( ) {
return $this->feedback;

}
function getFeedbackString( $separator="\n" ) {

return implode( $separator, $this->feedback );

}



CHAPTER 12 ENTERPRISE PATTERNS

As you can see, most of this class is taken up with mechanisms for setting and acquiring
properties. The init() method is responsible for populating the private $properties array.
Notice that it works with command line arguments as well as the HTTP requests. This is extremely
useful when it comes to testing and debugging.

Once you have a Request object, you should be able to access an HTTP parameter via the
getProperty() method, which accepts a key string and returns the corresponding value (as stored
inthe $properties array). You can also add data via setProperty().

The class also manages a $feedback array. This is a simple conduit through which controller
classes can pass messages to the user.

A Command

You have already seen the Command base class, and Chapter 11 covered the Command pattern in
detail, so there’s no need to go too deep into Commands. It would be a shame to round up this
pattern without showing at least a simple concrete Command object:

class woo_command_DefaultCommand extends woo_command_Command {
function doExecute( woo_controller Request $request ) {
$request->addFeedback( "Welcome to WO0" );
include( "woo/view/main.php");

}

This is the Command object that is served up by CommandResolver if no explicit request for a particular
Command is received.

As you may have noticed, the abstract base class implements execute() itself, calling down
to the doExecute() implementation of its child class. This allows us to add setup and cleanup
code to all commands simply by altering the base class.

The execute() method is passed a Request object that gives access to user input, as well as
to the setFeedback() method. DefaultCommand makes use of this to set a welcome message.

Finally, the command dispatches control to a view, simply by calling include(). Embedding
the map from command to view in the Command classes is the simplest dispatch mechanism, but
for small systems it can be perfectly adequate. A more flexible strategy can be seen in the
“Application Controller” section.

Overview

It is possible that the detail of the classes covered in this section might disguise the simplicity
of the Front Controller pattern. Figure 12-5 shows a sequence diagram that illustrates the life-
cycle of a request.

As you can see, the Front Controller delegates initialization to the ApplicationHelper
object (which uses caching to short-circuit any expensive setup). The Controller then acquires
a Command object from the CommandResolver object. Finally, it invokes Command: :execute() in
order to kick off the application logic.

In this implementation of the pattern, the Command itself is responsible for delegating to
the View layer. You can see a refinement of this in the next section.

239



240

CHAPTER 12 ENTERPRISE PATTERNS

Controller ApplicationHelper CommandResolver Command
T T T T
e | | |
init() | |
| I | |
| getCommand() ! :
| |
< - - --- —————— [
execute() |

Figure 12-5. The Front Controller in operation

Consequences

So Front Controller is not for the fainthearted. It does require a lot of up-front development
before you begin to see benefits. This is a serious drawback if your project requires fast turn-
around, or if it is small enough that the Front Controller framework would weigh in heavier
than the rest of the system.

Having said that, once you have successfully deployed a Front Controller in one project,
you will find that you can reuse it for others with lightning speed. You can abstract much of its
functionality into library code, effectively building yourself a reusable framework.

The requirement that all configuration information is loaded up for every request is
another drawback. All approaches will suffer from this to some extent, but Front Controller
often requires additional information, such as logical maps of commands and views.

This overhead can be eased considerably by caching such data. The most efficient way of
doing this is to add the data to your system as native PHP. This is fine if you are the sole main-
tainer of a system, but if you have nontechnical users, you may need to provide a configuration
file. You can still automate the native PHP approach, though, by creating a system that builds
PHP data structures from and writes them to an include file. Less efficient but much easier is
the approach I took in the ApplicationRegistry class—simply serialize the data.

On the plus side, Front Controller centralizes the presentation logic of your system. This
means that you can exert control over the way that requests are processed and views selected
in one place (well, in one set of classes, anyway). This reduces duplication and decreases the
likelihood of bugs.

Front Controller is also very extensible. Once you have a core up and running, you can add
new Command classes and views very easily.

In this example, Commands handled their own view dispatch. If you use the Front
Controller pattern with an object that helps with view (and possibly Command) selection,
then the pattern allows for excellent control over navigation, which is harder to maintain
elegantly when presentation control is distributed throughout a system. I cover such an
object in the next section.



CHAPTER 12 ENTERPRISE PATTERNS

Application Controller

Allowing commands to invoke their own views is acceptable for smaller systems, but it is not
ideal. It is preferable to decouple your Commands from your View layer as much as possible.

An Application Controller takes responsibility for mapping requests to commands, and
commands to views. This decoupling means that it becomes easier to switch in alternative sets
of views without changing the codebase. It also allows the system owner to change the flow of
the application, again without the need for touching any internals. By allowing for a logical
system for Command resolution, the pattern also makes it easier for the same Command to be
used in different contexts within a system.

The Problem

Remember the nature of our example problem. An administrator needs to be able to add a
venue to the system, and to associate a space with it. The system might therefore support the
AddVenue and AddSpace commands. According to the examples so far, these commands would
be selected using a direct map from a request parameter (cmd=AddVenue) to a class (AddVenue).

Broadly speaking, a successful call to the AddVenue command should lead to an initial call
to the AddSpace command. This relationship might be hard coded into the classes themselves,
with AddVenue invoking AddSpace on success. AddSpace might then include a view that contains
the form for adding the space to the venue.

Both commands may be associated with atleast two different views, a core view for presenting
the input form and an error or “thank you” screen. According to the logic already discussed, the
Command classes themselves would include those views (using conditional tests to decide which
view to present in which circumstances).

This level of hard coding is fine, as long as the commands will always be used in the same
way. It begins to break down, though, if we want a special view for AddVenue in some circum-
stances, and if we want to alter the logic by which one command leads to another (perhaps one
flow might include an additional screen between a successful venue addition and the start of
a space addition). If each of your commands is only used once, in one relationship to other
commands, and with one view, then you should hard code your commands’ relationship with
each other and their views. Otherwise you should read on.

An Application Controller class can take over this logic, freeing up Command classes to concen-
trate on their job, which is to process input, invoke application logic, and handle any results.

Implementation

As always, the key to this pattern is the interface. An Application Controller is a class (or a set of
classes) that the Front Controller can use to acquire commands based on a user request, and to
find the right view to present after the command has been run. You can see the bare bones of
this relationship in Figure 12-6.

As with all patterns in this chapter, the aim is to make things as simple as possible for the
client code—hence our spartan Front Controller class. Behind the interface, though, we must
deploy an implementation. The approach laid out here is just one way of doing it. As you work
through this section, remember that the essence of the pattern lies in the way that the partici-
pants, the Application Controller, the commands, and the views, interact, and not with the
specifics of this implementation.

Let’s begin with the code that uses the Application Controller.

241



242

CHAPTER 12 ENTERPRISE PATTERNS

<<uses>,
FrontController = = = — ===~ AppController
+processRequest() +getCommand(): Command
+invokeView() +getView(): String

while ( $command = $appController->getCommand() )
$command->execute( $request );

¥

$view = $appController->getView();

Figure 12-6. The Application Controller pattern

The Front Controller
Here is how the FrontController might work with the AppController class (simplified and
stripped of error handling):

function handleRequest() {
$request = new woo_controller Request();
$app_c = $this->applicationHelper->appController();
while( $cmd = $app_c->getCommand( $request ) ) {
$cmd->execute( $request );
}
$this->invokeView( $app_c->getView( $request ) );
}

function invokeView( $target ) {
include( "woo/view/$target.php" );
exit;

}

As you can see, the principle difference from the previous Front Controller example is that
here Command objects are retrieved and executed in a loop. The code also uses AppController to
get the name of the view that it should include.

So how do we move from a cmd parameter to a chain of commands and ultimately a view?

Implementation Overview

A Command class might demand a different view according to different stages of operation. The
default view for the AddVenue command might be a data input form. If the user adds the wrong
kind of data, the form may be re-presented, or an error page may be shown. If all goes well,
and the venue is created in the system, then we may wish to forward to another in a chain of
Command objects: AddSpace, perhaps.

The Command objects tell the system of their current state by setting a status flag. Here are the
flags that this minimal implementation recognizes (as set as a property in the Command super class):



CHAPTER 12 ENTERPRISE PATTERNS

private static $STATUS_STRINGS = array (
'CMD_DEFAULT'=>0,
"CMD_OK' => 1,
'CMD_ERROR" => 2,
'CMD_INSUFFICIENT DATA' => 3

)

The Application Controller finds and instantiates the correct Command class using the
Request object. Once it has been run, the Command will be associated with a status. This combi-
nation of Command and status can be compared against a data structure to determine which
command should be run next, or if no more commands should be run, which view to serve up.

The Configuration File

The system’s owner can determine the way that commands and views work together in a set of
configuration directives. Here is an extract:

<control>
<view>main</view>
<view status="CMD_OK">menu</view>
<view status="CMD_ERROR">error</view>

<command name="ListVenues">
<viewslistvenues</view>
</command>

<command name="QuickAddvenue">
<classroot name="AddVenue" />
<view>quickadd</view>
</command>

<command name="AddVenue">
<view>addvenue</view>
<status value="CMD_OK">
<forward>AddSpace</forward>
</status>
</command>

<command name="AddSpace">
<view>addspace</view>
<status value="CMD_OK">
<forward>ListVenues</forward>
</status>
</command>

</control>

243



244

CHAPTER 12 ENTERPRISE PATTERNS

This simplified XML fragment shows one strategy for abstracting the flow of commands
and their relationship to views from the Command classes themselves. The directives are all
contained within a control element. The logic here is search-based. The outermost elements
defined are the most generic. They can be overridden by their equivalents within command elements.

So the first element, view, defines the default view for all commands if no other directive
contradicts this order. The other view elements on the same level declare status attributes
(which correspond to flags set in the Command class). Each status represents a flag that might be
set by a Command object to signal its progress with a task. Because these elements are more
specific than the first view element, they have priority. If a command sets the CMD_0K flag, then
the corresponding view “menu” is the one that will be included, unless an even more specific
element overrides this.

Having set these defaults, the document presents the command elements. By default these
elements map directly to Command classes (and their class files on the file system) as in the
previous CommandResolver example. So if the cmd parameter is set to AddVenue, then the corre-
sponding element in the configuration document is selected. The string “AddVenue” is used to
construct a path to the AddVenue. php class file.

Aliases are supported, however. So if cmd is set to QuickAddVenue, then the following element

is used:

<command name="QuickAddVenue">
<classroot name="AddVenue" />
<view>quickadd</view>
</command>

Here the command element named QuickAddVenue does not map to a class file. That mapping
is defined by the classroot element. This makes it possible to reference the Addvenue class in
the context of many different flows, and many different views.

Command elements work from outer elements to inner elements, with the inner, more specific,
elements having priority. By setting a view element within a command, we ensure that the command

is tied to that view.

<command name="AddVenue">
<view>addvenue</view>
<status value="CMD_OK">
<forward>AddSpace</forward>
</status>
</command>

So here the addvenue view is associated with the AddVenue command (as set in the Request
object’s cmd parameter). This means that the addvenue. php view will always be included when
the AddVenue command is invoked. Always, that is, unless the status condition is matched. If
the AddVenue class sets a flag of CMD_0K, the default view for the Command is overridden.

The status element could simply contain another view that would be included in place of
the default. Here, though, the forward element comes into play. By forwarding to another
command, the configuration file delegates all responsibility for handling views to the new element.



CHAPTER 12 = ENTERPRISE PATTERNS

Parsing the Configuration File

This is a reasonably flexible model for controlling display and command flow logic. The docu-
ment, though, is not something that you would want to parse for every single request. We have
already seen a solution to this problem. The ApplicationHelper class provides a mechanism for
caching configuration data.

Here is an extract:

private function getOptions() {
$this->ensure( file exists( $this->config ),
"Could not find options file" );
$options = @SimpleXml_load_file( $this->config );

// ...set DSN...
$map = new woo_controller ControllerMap();

foreach ( $options->control->view as $default view ) {
$stat_str = trim($default view['status']);
$status = woo_command_Command: :statuses( $stat str );
$map->addView( 'default’, $status, (string)$default view );

}

// ... more parse code omitted ...

woo_base_ApplicationRegistry::setControllerMap( $map );

}

function appController() {
~ $map = woo_base_ApplicationRegistry::getControllerMap();
$this->ensure( is_object($map), "No ControllerMap" );
return new woo_controller AppController( $map );

}

Parsing XML, even with the excellent SimpleXML package, is a wordy business, and not
particularly challenging, so I leave most of the details out here. The key thing to note is that
the getOptions() method is only invoked if configuration has not been cached into the
ApplicationRegistry object.

Storing the Configuration Data

The cached object in question is a ControllerMap. ControllerMap is essentially a wrapper around
three arrays. We could use raw arrays, of course, but ControllerMap gives us the security of knowing
that each array will follow a particular format. Here is the ControllerMap class:

245



246 CHAPTER 12 ENTERPRISE PATTERNS

class woo_controller ControllerMap {
private $viewMap = array();
private $forwardMap = array();
private $classrootMap = array();

function addClassroot( $command, $classroot ) {
$this->classrootMap[$command]=$classroot;

}

function getClassroot( $command ) {
return ($name = $this->classrootMap[$command])?
$name : $command;

}

function addView( $command='default', $status=0, $view ) {
$this->viewMap[$command][$status]=$view;

}

function getView( $command, $status ) {
return $this->viewMap[$command]{$status];

}

function addForward( $command, $status=0, $newCommand ) {
$this->forwardMap[$command][$status]=$newCommand;

}

function getForward( $command, $status ) {
return $this->forwardMap[$command][$status];

}

The $classroot property is simply an associative array that maps command handles (that
is, the names of the command elements in configuration) to the roots of Command class names
(that is, AddVenue, as opposed to woo_command_AddVenue). This is used to determine whether the
cmd parameter is an alias to a particular class file. During the parsing of the configuration file,
the addClassroot () method is called to populate this array.

The $forwardMap and $viewMap arrays are both two-dimensional, supporting combinations
of commands and statuses.

Returning to this fragment:

<command name="AddVenue">
<view>addvenue</view>
<status value="CMD_OK">
<forward>AddSpace</forward>
</status>
</command>



CHAPTER 12 ENTERPRISE PATTERNS

Here is the call the parse code will make to add the correct element to the $viewMap property:
$map->addView( 'AddVenue', 0, 'addvenue' );

And here is the call for populating the $forwardMap property:

$map->addForward( 'AddVenue', 1, 'AddSpace’ );

The Application Controller class uses these combinations in a particular search order.
Let’s say the AddVenue command has returned CMD_OK (which maps to 1, while 0 is CMD_DEFAULT).
The Application Controller will search the $forwardMap array from the most specific combina-
tion of Command and status flag to the most general. The first match found will be the command
string that is returned:

$viewMap[ 'AddVenue'][1]; // AddVenue CMD OK [MATCHED]
$viewMap[ 'AddVenue'][0]; // AddVenue CMD DEFAULT
$viewMap[ 'default'][1]; // DefaultCommand CMD_OK
$viewMap['default'][0]; // DefaultCommand CMD_DEFAULT

The same hierarchy of array elements is searched in order to retrieve a view.
Here is an Application Controller:

class woo_controller AppController {
private static $base_cmd;
private static $default_cmd;
private $controllerMap;
private $invoked = array();

function _ construct( ControllerMap $map ) {
$this->controllerMap = $map;
if (! self::$base cmd ) {
self::$base_cmd = new ReflectionClass( "woo_command Command" );
self::$default cmd = new woo_command_DefaultCommand();

}

function getView( woo_controller Request $req ) {
$view = $this->getResource( $req, "View" );
return $view;

}

function getForward( woo_controller Request $req ) {
$forward = $this->getResource( $req, "Forward" );
if ( $forward ) {
$req->setProperty( 'cmd', $forward );
}

return $forward;

247



248 CHAPTER 12 ENTERPRISE PATTERNS

private function getResource( woo_controller Request $req,

}

$res ) {
$cmd_str = $req->getProperty( 'cmd' );
$previous = $req->getLastCommand();
$status = $previous->getStatus();
if (! $status ) { $status = 0; }
$acquire = "get$res”;
$resource = $this->controllerMap->$acquire(
$cmd_str, $status );

if (! $resource ) {

$resource = $this->controllerMap->$acquire( $cmd_str,

0);

}
if (! $resource ) {

$resource = $this->controllerMap->$acquire( 'default’,

$status );

}
if (! $resource ) {

$resource = $this->controllerMap->$acquire( 'default',

0);

}

return $resource;

function getCommand( woo_controller Request $req ) {

$previous = $req->getLastCommand();
if (! $previous ) {
// this is the first command this request
$cmd = $req->getProperty(‘cmd');
if (! $emd ) {
// no cmd property - using default
$req->setProperty(‘cmd’, 'default’ );
return self::$default_cmd;
}
} else {
// a command has been run already this request
$cmd = $this->getForward( $req );
if (! $cmd ) { return null; }
}

// we now have a command name in $cmd

// turn it into a Command object
$cmd_obj = $this->resolveCommand( $cmd );
if (! $cmd_obj ) {
throw new woo_base AppException( "couldn't
resolve "$cmd'" );



CHAPTER 12 ENTERPRISE PATTERNS

$cmd_class = get_class( $cmd_obj );
$this->invoked[$cmd_class]++;
if ( $this->invoked[$cmd_class] > 1) {

throw new woo_base AppException( "circular forwarding" );
}
// return the Command object
return $cmd_obj;

}

function resolveCommand( $cmd ) {
$cmd=str_replace( array('.','/'), "", $cmd );
$classroot = $this->controllerMap->getClassroot( $cmd );
$filepath = "woo/command/$classroot.php";
$classname = "woo_command_$classroot”;
if ( file_exists( $filepath ) ) {
require_once( "$filepath" );
if ( class_exists( $classname) ) {
$cmd_class = new ReflectionClass($classname);
if ( $cmd_class->isSubClassOf( self::$base_cmd ) ) {
return $cmd_class->newInstance();
}
}
}

return null;

The getResource() method implements the search for both forwarding and view selection.
Itis called by getview() and getForward(), respectively. Notice how it searches from the most
specific combination of command string and status flag to the most generic.

getCommand() is responsible for returning as many commands as have been configured
into a forwarding chain. It works like this: when the initial request is received, there should be
a cmd property available, and no record of a previous Command having been run in this request.
The Request object stores this information. If the cmd request property has not been set, then
the method uses “default”, and returns the default Command class. The $cmd string variable is
passed to resolveCommand(), which uses it to acquire a Command object.

When getCommand() is called for the second time in the request, the Request object
will be holding a reference to the Command previously run. getCommand() then checks to
see if any forwarding is set for the combination of that Command and its status flag (by calling
getForward()). If getForward() finds a match, it returns a string that can be resolved to a
Command and returned to the Controller.

Another thing to note in getCommand() is the essential check we impose to prevent circular
forwarding. We maintain an array indexed by Command class names. If the tally for any element
exceeds 1, we know that this command has been retrieved previously. This puts us at risk of
falling into an infinite loop, which is something we really don’t want, so we throw an exception
if this happens.

249



250

CHAPTER 12 ENTERPRISE PATTERNS

The Command Class

You may have noticed that the AppController class relies upon previous commands having
been stored in the Request object. This is done by the Command base class:

abstract class woo_command_Command {

private static $STATUS STRINGS = array (
'CMD_DEFAULT'=>0,
'C(MD_OK' => 1,
'CMD_ERROR' => 2,
"CMD_INSUFFICIENT DATA' => 3

);

private $status = 0;
final function _ construct() { }

function execute( woo_controller Request $request ) {
$this->status = $this->doExecute( $request );
$request->setCommand( $this );

}

function getStatus() {
return $this->status;

}

static function statuses( $str='CMD _DEFAULT' ) {
if ( empty( $str ) ) { $str = 'CMD_DEFAULT'; }
// convert string into a status number
return self::$STATUS STRINGS[$str];

}

abstract function doExecute( woo_controller Request $request );

The Command class defines an array of status strings (severely cut for the sake of this example).
It provides the statuses() method for converting a string (‘CMD_OK?”) to its equivalent number,
and getStatus() for revealing the current Command object’s status flag. If you want to be strict,
statuses() could throw an Exception on failure. As it is, the method returns null by default if
the right element is not defined. The execute() method uses the return value of the abstract
doExecute() to set the status flag, and to cache itself in the Request object.

A Concrete Command

Here is how a simple AddVenue command might look:



CHAPTER 12 ENTERPRISE PATTERNS

class woo_command_AddVenue extends woo_command_Command {
function doExecute( woo_controller Request $request ) {
$name = $request->getProperty("venue_name");
if (! $name ) {
$request->addFeedback( "no name provided" );
return self::statuses('CMD_INSUFFICIENT DATA');
} else {
$venue_obj = new woo_domain_Venue( null, $name );
$request->setObject( 'venue', $venue_obj );
$request->addFeedback( "'$name' added ({$venue_obj->getId()})" );
return self::statuses('CMD OK');

Some of this code will make more sense later in the chapter. The key thing to note is that
the doExecute() method returns a status flag that the abstract base class stores in a property.
The decision as to how to respond to the fact that this object has been invoked and has set this
status is entirely driven by the configuration file. So according to the example XML, if C(MD_OK is
returned, the forwarding mechanism will cause the AddSpace class to be instantiated. This chain of
events is triggered in this way only if the request contains cmd=AddVenue. If the request contains
cmd=QuickAddVenue, then no forwarding will take place, and the quickaddvenue view will
be displayed.

Incidentally, although this example looks to be stripped of any code for saving a Venue
object to the database, such is the magic of the patterns still to come that persistence is actually
handled for us behind the scenes!

Consequences

This pattern is a pain to set up because of the sheer amount of work that must go into acquiring
and applying metadata that describes the relationship between command and request, command
and command, and command and view.

For this reason, I tend to implement something like this when my application tells me it is
needed. This is generally when I find myself adding switches to my commands that invoke
different views or invoke other commands according to circumstances. It is at about this time
that I feel that command flow and display logic are beginning to spiral out of my control.

Once you have implemented an Application Controller, though, things should become
much easier, as long as you have built adequate functionality into your system. In our imple-
mentation, for example, we omitted one feature I would probably consider—the ability to
include subcommands within a Composite command and define this at runtime. This is not
difficult to implement on top of the current implementation.

Page Controller

Much as I like the Front Controller pattern, it is not always the right approach to take. The
investment in up-front design tends to reward the larger system and penalize simple need-
results-now projects. Page Controller probably does not need too much attention here,

251



252

CHAPTER 12 = ENTERPRISE PATTERNS

as I guess that it is the default approach for most PHP developers. It is worth rehearsing some
of the issues, though.

The Problem

Once again, the problem is your need to manage the relationship between request, domain
logic, and presentation. This is pretty much a constant for Enterprise projects. What differs,
though, are the constraints placed upon you.

If you have a relatively simple project, and one where the time spent on infrastructure
design will impinge upon schedule, Page Controller can be a good option for managing requests
and views.

Let’s say that you want to present a page that displays a list of all venues in the WOO
system. Even with the database retrieval code finished, without a Front Controller already in
place, we have a daunting task to get just this simple result.

The view is a list of venues, the request is for a list of venues. Errors permitting, the request
does not lead to a new view, as you might expect in a complex task. The simplest thing that
works here is to associate the view and the controller—often in the same page.

Implementation

Although the practical reality of Page Controller projects can become fiendish, the pattern is
simple. Control is related to a view, or to a set of views. In the simplest case, this means that the
control sits in the view itself, although it can be abstracted, especially when a view is closely
linked with others (that is when you might need to forward to different pages in different
circumstances).

Here is the simplest flavor of Page Controller:

try {
$venues = woo_domain_Venue::findAll();

} catch ( Exception $e ) {
include( ‘error.php' );
exit(0);

}

// default page follows
?>

<html>

<head>
<title>Venues</title>
</head>

<body>

<hi>Venues</h1>

<?php foreach( $venues as $venue ) { >
<?php print $venue->getName(); ?><br />
<?php } >

</body>
</html>



CHAPTER 12 ENTERPRISE PATTERNS

This document has two elements to it. The view element handles display, whilst the controller
element manages the request, and invokes application logic. Even though view and controller
inhabit the same page, they are rigidly separated.

There is very little to this example (aside from the database work going on behind the
scenes, of which more in the section “The Data Layer”). The PHP block at the top of the page
attempts to get a list of Venue objects, which it stores in the $venues global variable.

If an error occurs, then the page delegates to a page called “error.php” by using include(),
followed by exit() to kill any further processing on the current page. I prefer this mechanism
to an HTTP forward, which is much more expensive, and loses you any environment you may
have set up in memory. If no include takes place, then the HTML at the bottom of the page (the
view) is shown.

Figure 12-7 shows this crude model.

Venues Controller Error Controller

Venues View Error View

Figure 12-7. Page Controllers embedded in views

This will do as a quick test, but a system of any size or complexity will probably need more
support than that.

The Page Controller code was previously implicitly separated from the view. Here I make
the break starting with a rudimentary Page Controller base class:

abstract class woo_controller PageController {
private $request;
function _ construct() {
$request = woo_base_RequestRegistry::getRequest();
if (! $request ) { $request = new woo_controller Request(); }
$this->request = $request;

}

abstract function process();

function forward( $resource ) {
include( $resource );
exit( 0 );

}

function getRequest() {
return $this->request;

}

253



254

CHAPTER 12 ENTERPRISE PATTERNS

This class uses some of the tools that we have already looked at, in particular the Request
and RequestRegistry classes. The PageController class’s main roles are to provide access to a
Request object, and to manage the including of views. This list of purposes would quickly grow
in a real project as more child classes discover a need for common functionality.

A child class could live inside the view, and thereby display it by default as before, or it
could stand separate from the view. The latter approach is cleaner, I think, so that’s the path I
take. Here is a PageController that attempts to add a new venue to the system:

class woo_controller AddVenueController extends woo_controller_PageController {
function process() {
try {
$request = $this->getRequest();
$name = $request->getProperty( 'venue_name' );
if (! $request->getProperty('submitted') ) {
$request->addreedback("choose a name for the venue");
$this->forward( 'add_venue.php' );
} else if (! $name ) {
$request->addFeedback("name is a required field");
$this->forward( 'add_venue.php' );
}
// just creating the object is enough to add it
// to the database
$venue = new woo_domain_Venue( null, $name );
$this->forward( "ListVenues.php" );
} catch ( Exception $e ) {
$this->forward( 'error.php' );
}
}
}

$controller = new woo_controller AddVenueController();
$controller->process();

The AddVenueController class only implements the process() method. process() is
responsible for checking the user’s submission. If the user has not submitted a form, or has
completed the form incorrectly, the default view (add_venue. php) is included, providing feed-
back and presenting the form. If we successfully add a new user, then the method invokes
forward() to send the user to the ListVenues Page Controller.

Note the format I used for the view. I tend to differentiate view files from class files by using
all lowercase file names in the former and camel case in the latter.

Here is the view associated with the AddVenueController class:

<?php

require_once( "woo/base/Registry.php" );

$request = woo_base_RequestRegistry::getRequest();
[

<html>

<head>

<title>Add Venue</title>

</head>



CHAPTER 12 ENTERPRISE PATTERNS

<body>
<h1>Add Venue</h1>

<table>

<tr>

<td>

<?php

print $request->getFeedbackString("</td></tr><tr><td>");
>

</td>

</tr>

</table>

<form action="AddVenue.php" method="get">
<input type="hidden" name="submitted" value="yes"/>
<input type="text" name="venue_name" />

</form>

</body>
</html>

As you can see, the view does nothing but display data and provide the mechanism for
generating a new request. The request is made to the PageController, not back to the view.
Remember, it is the PageController class that is responsible for processing requests.

You can see an overview of this more complicated version of the Page Controller pattern
in Figure 12-8.

PageController

+process()
+forward()

AddVenuel - = =>>|ListVenues

+process() +process()

add_venue.php error.php list_venues.php

Figure 12-8. A Page Controller class hierarchy and its include relationships



256

CHAPTER 12 ENTERPRISE PATTERNS

Consequences

This approach has the great benefit that it makes sense to anyone with any Web experience
straightaway. We make a request for venues. php, and that is precisely what we get. Even an
error is within the bounds of everyday expectation, with “server error” and “page not found”
pages an everyday reality.

Things get a little more complicated if you separate the view from the Page Controller, but
the near one-to-one relationship between the participants is clear enough.

One potential area of confusion lies with the inclusion of views. A Page Controller includes
its view once it has completed processing. In some circumstances, though, it might use the
same inclusion code to include another Page Controller. So, for example, when AddVenue
successfully adds a venue, it no longer needs to display the addition form. Instead it delegates
to another Page Controller called ListVenues. You need to be clear about when you are dele-
gating to a view, and when you are delegating to another Page Controller. It is the responsibility
of the Page Controller to ensure that its views have the data they need to do their job.

Although a Page Controller class might delegate to Command objects, the benefit of doing so
is not so marked as it is with Front Controller. Front Controller classes need to work out what
the purpose of a request is; Page Controller classes already know this. The light request checking
and logic layer calls that you would put in a Command sit just as easily in a Page Controller class,
and you benefit from the fact that you do not need a mechanism to select your Command objects.

Duplication can be a problem, but the use of a common super class can factor away a lot
of that. You can also save on setup time, because you can avoid loading data you won't be
needing in the current context. Of course, you could do that with Front Controller too, but the
process of discovering what is and is not needed would be much more complicated.

The real drawback to the pattern lies in situations where the paths through your views are
complex—especially when the same view is used in different ways at different times (add and
edit screens are a good example of this). You can find that you get tangled up in conditionals
and state checking, and it becomes hard to get an overview of your system.

It is not impossible to start with a Page Controller and move toward a Front Controller,
however. This is especially true if you are using a PageController super class.

As arule of thumb, if I estimate a system should take me less than a week or so to complete,
and that it isn’t going to need more phases in the future,  would choose a Page Controller, and
benefit from fast turnaround. If I were building a large project that needs to grow over time and
has complex view logic, I would go for a Front Controller every time.

Template View and View Helper

Template View is pretty much what you get by default in PHP, in that we can commingle
presentation markup (HTML) and system code (native PHP). As I have said before, this is both
ablessing and a curse, because the ease with which these can be brought together represents a
temptation to combine application and display logic in the same place with potentially disas-
trous consequences.

In PHP then, programming the view is largely a matter of restraint. If it isn’t strictly a
matter of display, then treat any code with the greatest suspicion.

To this end, the View Helper pattern (Alur et al.) provides for a helper class that may be
specific to a view or shared between multiple views to help with any tasks that require more
than the smallest amount of code.



CHAPTER 12 ENTERPRISE PATTERNS 257

The Problem

These days it is becoming rarer to find SQL queries and other business logic embedded directly
in display pages, but it still happens. I have covered this particular evil in great detail in previous
chapters, so let’s keep this brief.

Web pages that contain too much code can be hard for Web producers to work with, as
presentation components become tangled up in loops and conditionals.

Business logic in the presentation forces you to stick with that interface. You can’t switch
in a new view easily without porting across a lot of application code too.

With many operations recurring from view to view, systems that embed application code
in their templates tend to fall prey to duplication as the same code structures are pasted from
page to page. Where this happens, bugs and maintenance nightmares surely follow.

To prevent this happening, you should handle application processing elsewhere, and
allow views to manage presentation only. This is often achieved by making views the passive
recipients of data. Where a view does need to interrogate the system, it is a good idea to provide
a View Helper object to do any involved work on the view’s behalf.

Implementation

Once you have created a wider framework, the View layer is not a massive programming
challenge. Of course, it remains a huge design and information architecture issue, but that’s
another book!

Template View was so named by Martin Fowler. It is a staple pattern used by most Enterprise
programmers. In some languages an implementation might involve cooking up a templating
system that translates tags to values set by the system. We have that option in PHP too. We
could use a templating engine like the excellent Smarty. My preferred option, though, is to use
PHP’s existing functionality, but to use it with care.

In order for a view to have something to work with, it must be able to acquire data. I like to
define a View Helper that views can use. From this, they can get access to the Request object
and through it to any other objects that they need to do their job.

Here is a simple View Helper class:

class VH {
static function getRequest() {
return woo_base RequestRegistry::getRequest();

}

All this class does at present is to provide access to a Request object. You can extend it to
provide additional functionality as your application evolves. If you find yourself doing some-
thing in a view that takes up more than a couple of lines, chances are it belongs in the View
Helper. In a larger application, you may provide multiple View Helper objects in an inheritance
hierarchy in order to provide different tools for different parts of your system.

Here is a simple view that uses both the View Helper and the Request object:



258

CHAPTER 12 ENTERPRISE PATTERNS

<?php

require_once( "woo/view/ViewHelper.php" );
$request = VH::getRequest();

$venue = $request->getObject('venue');

”

<html>

<head>

<title>Add a Space for venue <?php echo $venue->getName() ?></title>
</head>

<body>

<h1>Add a Space for Venue '<?php print $venue->getName() ?>'</h1>

<table>

<tr>

<td>

<?php print $request->getFeedbackString("</td></tr><tr><td>"); ?»
</td>

</tr>

</table>

<form method="post">
<input type="text"
value="<?php echo $request->getProperty( 'space_name' ) ?>" name="space_name"/>
<input type="hidden" name="venue_id" value="<?php echo $venue->getId() ?>" />
<input type="submit" value="submit" />

</form>

</body>
</html>

The view (add_space.php) gets a Request object from the View Helper (VH) and uses its
methods to supply the dynamic data for the page. In particular, the getFeedback() method
returns any messages set by commands, and getObject () acquires any objects cached for the
View layer. getProperty() is used to access any parameters set in the HTTP request.

You could simplify things still further here by making the View Helper a proxy that delegates
for the Request object’s most useful methods, saving the View layer the bother of even acquiring
areference to Request.

Clearly this example doesn’t banish code from the view, but it does severely limit the
amount and kind of coding that needs to be done. The page contains simple print statements
and a few method calls. A designer should be able to work around code of this kind with little
or no effort.

Slightly more problematic are if statements and loops. These are difficult to delegate to a
View Helper because they are usually bound up with formatted output. I tend to keep both
simple conditionals and loops (which are very common in building tables that display rows of
data) inside the Template View, but to keep them as simple as possible, delegating things like
test clauses where possible.



CHAPTER 12 ENTERPRISE PATTERNS

Consequences

There is something slightly disturbing about the way that data is passed to the view layer, in
that a view doesn’t really have a fixed interface that guarantees its environment. I tend to think
of every view as entering into a contract with the system at large. The view effectively says to the
application, “If I am invoked, then I have a right to access object This, object That, and object
TheOther.” It is up to the application to ensure that this is the case.

Surprisingly, I have always found that this works perfectly well for me, though you could
make views stricter by adding assertions to view-specific helper classes. If you go as far as this,
you could go for complete safety and provide accessor methods in the helper classes that do
away with the need for the evil Request: :getObject () method, which is clearly just a wrapper
around an associative array.

While I like type safety where I can get it, I find the thought of building a parallel system of
views and View Helper classes exhausting in the extreme. I tend to register objects dynamically
for the view layer, whether through a Request object, a SessionRegistry, or a RequestRegistry.

While templates are often essentially passive, populated with data resulting from the last
request, there may be times when the view may need to make an ancillary request. The View
Helper is a good place to provide this functionality, keeping any knowledge of the mechanism
by which data is required hidden from the view itself. Even the View Helper should do as little
work as possible, delegating to a command or contacting the domain layer via a Facade.

Note We saw the Facade pattern in Chapter 10. Alur et al. look at one use of Facades in Enterprise
programming in the Session Facade pattern (which is designed to limit fine-grained network transactions).
Martin Fowler also describes a pattern called Service Layer which provides a simple point of access to the
complexities within a layer.

The Business Logic Layer

If the control layer orchestrates communication with the outside world and marshals a system’s
response to it, the logic layer gets on with the business of an application. This layer should be as
free as possible of the noise and trauma generated as query strings are analyzed, HTML tables
are constructed, and feedback messages composed. Business logic is about doing the “stuff”
that needs doing—the true purpose of the application. Everything else exists just to support
these tasks.

In a classic object-oriented application, the Business Logic layer is often composed of
classes that model the problems that the system aims to address. As we shall see, this is a flexible
design decision. It also requires significant up-front planning.

Let’s begin, then, with the quickest way of getting a system up and running.

Transaction Script

The Transaction Script pattern (Patterns of Enterprise Application Architecture) describes the
way that many systems evolve of their own accord. It is simple, intuitive, and effective, although it
becomes less effective as systems grow. It is also a hard pattern to categorize, because it combines

259



CHAPTER 12 ENTERPRISE PATTERNS

elements from other layers in this chapter. I have chosen to present it as part of the Business Logic
layer because the pattern’s motivation is to achieve the business aims of the system.

The Problem

Every request must be handled in some way. As we have seen, many systems provide a layer
that assesses and filters incoming data. Ideally, though, this layer should then call on classes
that are designed to fulfill the request. Each of these classes will provide a set of methods, and
each method will be crafted to handle a particular request.

The problem then is the need to provide a fast and effective mechanism for fulfilling a
system’s objectives.

The great benefit of this pattern is the speed with which you can get results. Each script
takes input, and manipulates the database to ensure an outcome. Beyond organizing related
methods within the same class, and keeping the Transaction Script classes in their own tier
(that is, as naive as possible of the Command and Controller and View layers), there is little up-
front design required.

While Business Logic layer classes tend to be clearly separated from the Presentation layer,
they are often more embedded in the Data layer. This is because retrieving and storing data is
key to the tasks that such classes often perform. We will see mechanisms for decoupling logic
objects from the database later in the chapter. Transaction Script classes, though, usually know
all about the database (though they can use gateway classes to handle the details of their actual
queries).

Implementation

Let’s return to our events listing example. In this case, the system supports three relational
database tables: venue, space, and event. A venue may have a number of spaces (a theater can
have more than one stage, for example, a dance club may have different rooms, and so on).
Each space plays host to many events. Here is the schema:

CREATE TABLE venue

( id INT PRIMARY KEY, name TEXT );

CREATE TABLE space

( id INT PRIMARY KEY, venue INT, name TEXT );

CREATE TABLE event

( id INT PRIMARY KEY, space INT, start long, duration int, name text );

Clearly our system will need mechanisms for adding both venues and events. Each of
these represents a single transaction. We could give each method its own class (and organize
our classes according to the Command pattern that we encountered in the last chapter). In this
case, though, we are going to place the methods in a single class, albeit as part of an inheritance
hierarchy. You can see the structure in Figure 12-9.

So why does this example include an abstract super class? In a script of any size, we would
be likely to add more concrete classes to this hierarchy. Since most of these will work with the
database, a common super class is an excellent place to put core functionality for making data-
base requests.



CHAPTER 12 ENTERPRISE PATTERNS

woo_process_Base

+prepareStatement ($stmt:String)
+doStatement($stmt:String, $values:array]

woo_process_VenueManager

+addVenue ($name:String, $space_array:array)
+bookEvent ($venue_id:int,$name:String,$time:int,$duration:ing]

Figure 12-9. A Transaction Script class with its super class

In fact, this is a pattern in its own right (Martin Fowler has named it Layer Supertype),
albeit one that most programmers use without thinking. Where classes in a layer share charac-
teristics, it makes sense to group them into a single type, locating utility operations in the base
class. We will see this a lot in this chapter.

In this case, the base class acquires a DB object, which it stores in a static property. It also
provides methods for caching database statements and making queries.

abstract class woo_process_Base {
static $DB;
static $stmts = array();

function _ construct() {
self::$DB = woo_base_RequestRegistry::getDB( "DB" );
if (! self::$DB ) {
throw new woo_base_AppException( "No DB object" );
}
if ( DB::isError( self::$DB ) ) {
throw new woo_base DBException( self::$DB );

}

protected function prepareStatement( $stmt_s ) {
if ( self::$stmts[$stmt s] ) {
return self::$stmts[$stmt s];
} |
$stmt_handle = self::$DB->prepare($stmt_s);
if ( DB::isError( $stmt_handle ) ) {
throw new woo_base DBException( $stmt_handle );
}
self::$stmts[$stmt_s] = $stmt_handle;
return $stmt_handle;

261



CHAPTER 12 ENTERPRISE PATTERNS

protected function doStatement( $stmt_s, $values_a ) {
$st_handle = $this->prepareStatement( $stmt_s );
$db_result = self::$DB->execute( $st_handle, $values_a );
if ( DB::isError( $db_result ) ) {
throw new woo_base DBException( $db_result );

It

}

return $db_result;

There’s less to this class than meets the eye. Most of the bulk you can see is code for throwing
exceptions when things go wrong.

We use the RequestRegistry class to acquire a DB_common object, which we store in the
static $DB property. If we fail to acquire a DB_common object, we throw an exception, ensuring
that the type can only be used with a valid database connection.

The prepareStatement () method simply calls DB_Common class’s prepare() method, which
returns a statement handle. This is eventually passed to the execute() method. To run a query
though in this method, we simply cache the resource in a static array called $stmts. We use the
SQL statement itself as the array element’s index.

prepareStatement() can be called directly by child classes, but it is more likely to be invoked
via doStatement(). This accepts an SQL statement, and a mixed array of values (strings and
integers). This array should contain the values that are to be passed to the database in executing
the statement. The method then uses the SQL statement in a call to prepareStatement (), acquiring
astatement resource that it uses with the DB_common: :execute() method. If an error occurs, we
throw an exception. As we will see, all this work is hidden from our transaction scripts. All they
need to do is formulate the SQL and get on with business logic.

Here is the start of the VenueManager class, which sets up our SQL statements:

class woo_process_VenueManager extends woo_process_Base {
static $add venue = "INSERT INTO venue

( id, name )

values( 2, ? )";

"INSERT INTO space

( id, name, venue )

values( ?, 7, ?2)";

"SELECT id, name

FROM event

WHERE space=?

AND (start+duration) > ?

AND start < ?";

static $add_event = "INSERT INTO event
( id, name, space, start, duration )
values( 2, 2, 2, 2, 2)";

static $add_space

static $check slot

/...

Not much new here. These are the SQL statements that the transaction scripts will use.
They are constructed in a format accepted by the DB package’s prepareStatement () method.
The question marks are placeholders for the values that will be passed to doStatement().



CHAPTER 12 ENTERPRISE PATTERNS

Let’s look at the first method designed to fulfill a specific business need:

function addVenue( $name, $space array ) {

// check input here

$ret = array();

$v_id = self::$DB->nextId('venue');

$ret['venue'] = array( $v_id, $name );

$this->doStatement( self::$add_venue, $ret['venue']);

$ret['spaces'] = array();

foreach ( $space array as $space_name ) {
$s_id = self::$DB->nextId( 'space');
$values = array($s_id, $space_name, $v_id );
$this->doStatement( self::$add_space, $values);
$ret['spaces' ][] = $values;

}

return $ret;

}

As you can see, addVenue() requires a venue name, and an array of space names. It uses
these to populate the venue and space tables. It also creates a data structure that contains this
information, along with the newly generated ID values for each row.

This method is spared lots of tedious database work by the super class. We acquire a table-
unique ID value from the database and pass that, along with the venue name provided by the
caller, to doStatement (). If there’s an error with this, remember, an exception is thrown. We
don’t catch any exceptions here, so anything thrown by doStatement() or (by extension)
prepareStatement () will also be thrown by this method. This is the result we want, although we
should be careful to make it clear that this method throws exceptions in our documentation.

Having created the venue row, we loop through $space_array, adding a row in the space
table for each element. Notice that we include the venue ID as a foreign key in each of the space
rows we create, associating the row with the venue.

The second Transaction Script is similarly straightforward:

function bookEvent( $space_id, $name, $unixtime, $duration ) {
$result =
$this->doStatement( self::$check_slot,
array( $space_id, $unixtime, ($unixtime+$duration) ) );
if ( $result->numRows() > 0 ) {
throw new woo_base_AppException( "double booked!
try again" );
}
$e_id = self::$DB->nextId('event');
$this->doStatement( self::$add_event,
array( $e_id, $name, $space_id, $unixtime, $duration ) );

}

The purpose of this script is to add an event to the events table, associated with a space.
Notice that we use the SQL statement contained in $check_slot to make sure that the proposed
event does not clash with another in the same space.



CHAPTER 12 ENTERPRISE PATTERNS

Consequences

The Transaction Script pattern is an effective way of getting good results fast. It is also one of
those patterns many programmers have used for years without imagining it might need a name.
With a few good helper methods like those we added to the base class, you can concentrate on
application logic without getting too bogged down in database fiddle-faddling.

I have seen Transaction Script appear in a less welcome context. I thought I was writing a
much more complex and object-heavy application than would usually suit this pattern. As the
pressure of deadlines began to tell, I found that I was placing more and more logic in what was
intended to be a thin facade onto a Domain Model (see the next section). Although the result
was less elegant than I had wanted, I have to admit that the application did not appear to suffer
for its implicit redesign.

In most cases, you would choose a Transaction Script approach with a small project when
you are certain itisn’t going to grow into a large one. The approach does not scale well, because
duplication often begins to creep in as the scripts inevitably cross one another. You can go
some way to factoring this out, of course, but you probably will not be able to excise it completely.

In our example, we decide to embed database code in the Transaction Script classes them-
selves. As you saw, though, the code wants to separate the database work from the application
logic. We can make that break absolute by pulling it out of the class altogether and creating a
gateway class whose role it is to handle database interactions on the system’s behalf.

Domain Model

The Domain Model is the pristine logical engine that many of the other patterns in this chapter
strive to create, nurture, and protect. It is an abstracted representation of the forces at work in
your project. A kind of plane of forms, where your business problems play out their nature
unencumbered by nasty material issues like databases and Web pages.

If that seems a little flowery, let’s bring it down to reality. A Domain Model is a representa-
tion of the real-world participants of your system. It is in the Domain Model that the object-as-
thing rule of thumb is truer than elsewhere. Everywhere else, objects tend to embody respon-
sibilities. In the Domain Model, they often describe a set of attributes, with added agency. They
are things that do stuff.

The Problem

If you have been using Transaction Scripts, you may find that duplication becomes a problem
as different scripts need to perform the same tasks. That can be factored out to a certain extent,
but over time it’s easy to fall into cut-and-paste coding.

You can use a Domain Model to extract and embody the participants and process of your
system. Rather than using a script to add space data to the database, and then associate event
data with it, you can create Space and Event classes. Booking an event in a space can then become
as simple as a call to Space: :bookEvent (). A task like checking for a time clash becomes
Event::intersects(), and so on.



CHAPTER 12 ENTERPRISE PATTERNS

Clearly, with an example as simple as Woo, a Transaction Script is more than adequate,
but as domain logic becomes more complex, it becomes much easier to handle, and less riddled
with conditional code if the problems are rendered as a model.

implementation

Domain Models can be relatively simple to design. Most of the complexity around the subject
lies with the patterns that are designed to keep the model pure—that is, to separate it from the
other tiers in the application.

Separating the participants of a Domain Model from the presentation layer is largely a
matter of ensuring that they keep to themselves. Separating the participants from the Data
layer is much more problematic. Although the ideal is to consider a Domain Model only in
terms of the problems it represents and resolves, the reality of the database is hard to escape.

It is common for Domain Model classes to map fairly directly to tables in a relational data-
base, and this certainly makes life easier. Figure 12-10, for example, shows a class diagram that
sketches some of the participants of the Woo system.

—{>] DomainObject

+getId()

Venue >

+getName(): String
+getSpaces(): SpaceCollection
+addSpace($space: Space)

Space

+getName(): String [ —
+bookEvent ($event:Event)

Event

+getName(): String
+intersects($event:Event)

Figure 12-10. An extract from a Domain Model

The objects in Figure 12-10 mitror the tables that were set up for the Transaction Script
example. This direct association makes a system easier to manage, but it is not always possible,
especially if you are working with a database schema that precedes your application.



CHAPTER 12 ENTERPRISE PATTERNS

Just because a Domain Model often mirrors the structure of a database does not mean that
its classes should have any knowledge of it. By separating the model from the database, you
make the entire tier easier to test, and less likely to be affected by changes of schema, or even
changes of storage mechanism. It also focuses the responsibility of each class upon its core tasks.

Here is a simplified Venue object:

class woo_domain_Venue extends woo_domain_DomainObject {
private $name;
private $spaces;

function _ construct( $id=null, $name=null ) {
$this->name = $name;
$this->spaces = self::getCollection("woo_domain_Space");
parent::__construct( $id );

}

function setSpaces( woo_domain SpaceCollection $spaces ) {
$this->spaces = $spaces;

}

function getSpaces() {
return $this->spaces;

}

function addSpace( woo_domain_Space $space ) {
$this->spaces->add( $space );
$space->setVenue( $this );

}

function setName( $name_s ) {
$this->name = $name_s;

$this->markDirty();
}

function getName( ) {
return $this->name;

}

There a few points that distinguish this class from one intended to run without persis-
tence. Instead of an array, we are using an object of type SpaceCollection to store any Space
objects the Venue might contain. (Though we could argue that a type-safe array is a bonus whether
you are working with a database or not!) Because this class works with a special collection
object rather than an array of Space objects, the constructor needs to instantiate an empty
collection on startup. It does this by calling a static method on the Layer Supertype.

$this->spaces = self::getCollection("woo_domain_Space");



CHAPTER 12 = ENTERPRISE PATTERNS

I'will return to this system’s collection objects shortly.

We expect an $id parameter in the constructor that we pass to the super class for storage.
It should come as no surprise to learn that the $id parameter represents the unique ID of a row
in the database. Notice also that we call a method on the super class called markDirty() (this
will covered when we encounter the Unit of Work pattern).

Consequences

The design of a Domain Model needs to be as simple or complicated as the business processes
you need to emulate. The beauty of this is that you can focus on the forces in your problem
as you design the model, and handle issues like persistence and presentation in other layers.
In theory, that is.

In practice I think that most developers design their domain models with at least one eye
on the database. No one wants to design structures that will force you (or, worse, your
colleagues) into somersaults of convoluted code when it comes to getting your objects in and
out of the database.

This separation between Domain Model and the Data layer comes at a considerable cost
in terms of design and planning. It is possible to place database code directly in the model
(although you would probably want to design a gateway to handle the actual SQL). For relatively
simple models, and especially if each class broadly maps to a table, this approach can be a real
win, saving you the considerable design overhead of devising an external system for reconciling
your objects with the database.

The Data Layer

In discussions with clients, it's usually the Presentation layer that dominates. Fonts, colors,
and ease of use are the primary topics of conversation. Amongst developers it is often the data-
base thatlooms large. It’s not the database itself that concerns us; we can trust that to do its job
unless we're very untucky. No, it’s the mechanism we use to translate the rows and columns of
a database table into data structures that cause the problems. In this section, we look at code
that can help with this process.

Not everything presented here sits in the Data layer itself. Rather I have grouped here
some of the patterns that help to solve persistence problems.

Data Mapper

If you thought I glossed over the issue of saving and retrieving Venue objects from the database

in the “Domain Model” section, here is where you might find at least some answers. The Data

Mapper pattern is described by both Alur et al. (as Data Access Object) and Martin Fowler.

(In fact, Data Access Object is not an exact match as it generates data transfer objects, but since

such objects are designed to become the real thing if you add water, the patterns are close enough.)
As you might imagine, a Data Mapper is a class that is responsible for handling the transi-

tion from database to object.

267



CHAPTER 12 ENTERPRISE PATTERNS

The Problem

Objects are not organized like tables in a relational database. As you know, database tables are
grids made up of rows and columns. One row may relate to another in a different (or even the
same) table by means of a foreign key. Objects, on the other hand, tend to relate to one another
more organically. One object may “contain” another, and different data structures will organize
the same objects in different ways, combining and recombining objects in new relationships at
runtime.

So how do we make that transition? One answer is to give a class (or a set of classes)
responsibility for just that problem, effectively hiding the database from the Domain Model,
and managing the inevitable rough edges of the translation.

Implementation

Although with careful programming it may be possible to create a single Mapper class to service
multiple objects, it is common to see an individual Mapper for a major class in the Domain Model.
Figure 12-11 shows three concrete Mapper classes and an abstract super class.

Mapper

+find($id:int)

#doFind()
+insert($obj:DomainObject)
+update($obj:DomainObject)
+load()
#doload($array:array)

JaY

VenueMapper SpaceMapper EventMapper
#doFind() #doFind() #doFind()
+insert($obj:DomainObject) +insert($obj:DomainObject) +insert($obj:DomainObject)
+update($obj:DomainObject) +update($obj:DomainObject) +update($obj:DomainObject)
#doLoad($array:array) #doLoad($array:array) #doLoad($array:array)

Figure 12-11. Mapper classes

In fact, since the Space objects are effectively subordinate to Venue objects, it may be
possible to factor the SpaceMapper class into VenueMapper. For the sake of these exercises, I'm
going to keep them separate.

As you can see, the classes present common operations for saving and loading data. The
base class stores common functionality, delegating to its children to handle object-specific
operations. Typically these operations include actual object generation and constructing
queries for database operations.

The base class often performs housekeeping before or after an operation, which is why
Template Method is used for explicit delegation (calls from concrete methods like load() to
abstract ones like doLoad (), etc.). Implementation determines which of the base class methods
are made concrete in this way, as you will see later in the chapter.

Here is a simplified version of a Mapper base class:



CHAPTER 12 ENTERPRISE PATTERNS

abstract class woo_mapper Mapper {
protected static $DB;
function _ construct() {
if (! self::$DB ) {
self::$DB = woo_controller ApplicationHelper::
instance()->DB( );

function load( DB Result $result ) {
$array = $result->fetchRow( DB_FETCHMODE ASSOC );
if (! is_array( $array ) ) { return null; }
if (! $array['id'] ) { return null; }
$object = $this->loadArray( $array );
return $object;

}

function loadArray( $array ) {
$obj = $this->doLoad( $array );
return $obj;

}

function find( $id ) {
return $this->doFind( $id );
}

protected function doStatement( $sth, $values ) {
$db_result = self::$DB->execute( $sth, $values );
if ( DB::isError( $db result ) ) {
throw new woo_base_DBException( $db_result );

}

return $db_result;
}
abstract function insert( woo_domain_DomainObject $obj );
abstract function update( woo_domain_DomainObject $object );
protected abstract function doLoad( $array );
protected abstract function doFind( $id );

The constructor method uses an ApplicationHelper to get a DB_common object. A stand-
alone Singleton or a request-scoped Registry really come into their own for classes like this.
There isn’t always a sensible path from the presentation layer to a Mapper along which data
can be passed. I have omitted code to test the DB_common object for validity, although in fact the
ApplicationHelper object does this and throws an exception if it has problems, so we are safe
enough.

269



270

CHAPTER 12 ™ ENTERPRISE PATTERNS

The find() method does nothing but delegate to doFind(). This would be something that
I would factor out in favor of an abstract find() method were it not for the fact that I know that
the implementation will be useful here in due course.

doFind() is responsible for constructing and running any queries that are needed. Indi-
vidual child classes take responsibility for that, finishing up by calling load(). load() is
responsible for extracting an associative array from the DB_result object. Having acquired the
array, it calls a method named loadArray(), which is responsible for transforming an associative
array into a DomainObject instance. loadArray() does this by delegating to the child class’s
implementation of doLoad().

Child classes will also implement custom methods for finding data according to specific
criteria (we will want to locate Space objects that belong to Venue objects, for example).

The doStatement () method is a utility method. It accepts a statement handle and an array
of values, and invokes the DB_common: : execute() method, returning a DB_result handle, all
being well. This method is called by all mapper code that needs to make a database query.

You can take a look at the process from the child’s perspective here:

class woo_mapper_VenueMapper extends woo_mapper_Mapper {
private $selectStmt;
private $updateStmt;
private $insertStmt;

function _ construct() {
parent::__construct();
$this->selectStmt = self::$DB->prepare(
"SELECT * FROM venue WHERE id=?");
$this->updateStmt = self::$DB->prepare(
"UPDATE venue SET name=?, id=? WHERE id=?");
$this->insertStmt = self::$DB->prepare(
"INSERT into venue (name, id)
values( ?, 2)");

}

function doFind( $id ) {
$result = $this->doStatement( $this->selectStmt, array( $id ) );
return $this->load( $result );

}

protected function doLoad( $array ) {
$obj = new woo_domain_Venue( $array['id'] );
$obj->setName( $array['name'] );
return $obj;



CHAPTER 12 == ENTERPRISE PATTERNS

function insert( woo_domain_DomainObject $object ) {
$id = $this->newId();
$object->setId( $id );
$values = array( $object->getname(), $object->getid() );
$this->doStatement( $this->insertStmt, $values );

}

public function newId() {
return self::$DB->nextId('venue');

}

function update( woo_domain_DomainObject $object ) {
$values = array( $object->getname(),
$object->getid(), $object->getId() );
$this->doStatement( $this->updateStmt, $values );

Once again, this class is stripped of some of the goodies that are still to come. Nonetheless,
it does its job. The constructor prepares some SQL statements for use later on. These could be
made static and shared across VenueMapper instances, or a single Mapper object could be stored
in a Registry, thereby saving the cost of repeated instantiation. These are refactorings I will
leave to you!

The doFind() method uses the $selectStmt property and the user-supplied $id to invoke
doStatement () on the super class. This should result in a result handle that is passed on to
load(). As you have seen, load() delegates to doLoad() where a Venue object is created.

From the point of view of the client, this process is simplicity itself:

$mapper = new woo_mapper_VenueMapper();
$venue = $mapper->find( 39 );
print_r( $venue );

The print_r() method is a quick way of confirming that find() was successful. In my
system (where there is a row in the venue table with ID 39), the output from this fragment is

woo_domain_Venue Object

(
[name:private] => The Hairy Arms
[spaces:private] =>
[id:private] => 39

)

The insert() and update() methods reverse the process established by find(). Each
accepts a DomainObject, extracts row data from it, and calls doStatement () with the resulting
information. Notice that the insert() method sets an ID on the provided object. Remember
that objects are passed by reference in PHP 5, so the client code will see this change via its own
reference.

Another thing to note is that insert () and update() are not really type safe. They will accept
any DomainObject subclass without complaint. You should probably perform an instanceof

n



272

CHAPTER 12 @ ENTERPRISE PATTERNS

test, and throw an Exception if the wrong object is passed. This will guard against unfortunate

but inevitable bugs.
Once again, here is a client perspective on inserting and updating:

$venue = new woo_domain Venue();

$venue->setName( "The Likey Lounge" );

// add the object to the database

$mapper->insert( $venue );

// find the object again - just prove it works!
$venue = $mapper->find( $venue->getId() );
print_r( $venue );

// alter our object

$venue->setName( "The Bibble Beer Likey Lounge" );
// call update to enter the amended data
$mapper->update( $venue );

// once again, go back to the database to prove it worked
$venue = $mapper->find( $venue->getId() );
print_x( $venue );

Handling Multiple Rows

The find() method is pretty straightforward because it only needs to return a single object. What
do you do though if you need to pull lots of data from the database? Your first thought may be to
return an array of objects. This will work, but there is a major problem with the approach.

If you return an array, each object in the collection will need to be instantiated first, which,
if you have a result set of 1,000 objects, may be needlessly expensive. An alternative would be
to simply return an array and let the calling code sort out object instantiation. This is possible,
but it violates the very purpose of our Mapper classes.

There is one way we can have our cake and eat it. It is a feature new to PHP 5 called the
Iterator interface.

The Iterator interface requires implementing classes to define methods for querying a
list. If you do this, then your class can be used in foreach loops just like an array. There are
some people who say that iterator implementations are unnecessary in a language like PHP
with such good support for arrays. Tish and piffle! I will show you at least three good reasons
for using PHP’s built-in Iterator interface in this chapter.

Table 12-1 shows the methods that the Iterator interface requires.

Table 12-1. Methods Defined by the Iterator Interface

Name Description

rewind() Send pointer to start of list.

current() Return element at current pointer position.

key() Return current key (i.e., pointer value).

next() Return element at current pointer and advance pointer.

valid() Confirm that there is an element at the current pointer position.




CHAPTER 12 ENTERPRISE PATTERNS

So in order to implement an Iterator, you need to implement its methods, and keep track
of a pointer with relation to some kind of set of data. How you acquire that data, or order it, or
otherwise filter it is hidden from the client.

Here is an Iterator implementation that works like an array, but also accepts DB_Result
and Mapper objects in its constructor for reasons that will become apparent:

abstract class woo_mapper_Collection implements Iterator {
private $mapper;
private $result;
private $total = 0;
private $pointer = 0;
private $objects = array();
private $raw = array();

function _ construct( $result=null, $mapper=null ) {
if ( $result 8& $mapper ) {
$this->init db( $result, $mapper );
}
}

protected function init_db( DB_Result $result,
woo_mapper_Mapper $mapper ) {
$this->result = $result;
$this->mapper = $mapper;
$this->total += $result->numrows();
while ( $row = $this->result->fetchRow( DB_FETCHMODE_ASSOC ) ) {
$this->raw[] = $row;
}

}

protected function doAdd( woo_domain_DomainObject $object ) {
$this->notifyAccess();
$this->objects[$this->total] = $object;
$this->total++;

}

protected function notifyAccess() {
// deliberately left blank!

}

private function getObjectAt( $num ) {
$this->notifyAccess();
if ( $num >= $this->total || $num < 0 ) {
return null;

}

273



274 CHAPTER 12 ™ ENTERPRISE PATTERNS

if ( $this->objects{$num] ) {
return $this->objects[$num];

}

if ( $this->raw[$num] ) {
$this->objects[$num]=$this->mapper->loadArray( $this->raw[$num] );
return $this->objects[$num]; .

}

public function rewind() {
$this->pointer = 0;

}

public function current() {
return $this->getObjectAt( $this->pointer );

}

public function key() {
return $this->pointer;

}

public function next() {
$row = $this->getObjectAt( $this->pointer );
if ( $row ) { $this->pointer++; }
return $row;

}

public function valid() {
return ( ! is_null( $this->current() ) );
}
}

The constructor expects to be called with no arguments or with two. Because the constructor
accepts null values, it defers type checking to the init_db() method (if you use a type hint,
then your method will not accept a null value for that argument).

Assuming that the client has set the $result and $mapper arguments (it will be a Mapper
object that does this), then init_db() is invoked. init_db() acquires all rows from the result set
and stores them in an array property called $raw. In fact, there is no really compelling reason
why this operation needs to take place inside the Iterator. It could be done inside the Mapper
and the resulting multidimensional array passed to the Iterator. Feel free to refactor!

If no arguments were passed to the constructor, the class starts out empty, though note
that there is the doAdd () method for adding to the collection.

The class maintains two arrays, $objects and $raw. If a client requests a particular element,
then the getObjectAt () method looks first in $objects to see if it has one already instantiated.



CHAPTER 12 ENTERPRISE PATTERNS

If so, that gets returned. Otherwise, the method looks in $raw for the row data. $raw data is only
present if aMapper object is also present, so the raw data can be passed to a new Mapper method,
loadArray (), which is simply the array loading stage of the find process pulled out into a sepa-
rate operation. This returns a DomainObject object, which is cached in the $objects array with
the relevant index. The object is returned to the user.

The rest of the class is simple manipulation of the $pointer property, and calls to
getObjectAt(). Apart, that is, from the notifyAccess() method, which will become important
when we encounter the Lazy Load pattern.

You may have noticed that the Collection class is abstract. You need to provide specific
implementations for each domain class:

class woo_mapper VenueCollection
extends woo_mapper_Collection

{

function add( woo_domain Venue $venue ) {
$this->doAdd( $venue );
}

The VenueCollection class simply extends Collection, and implements an add() method
that ensures that only Venue objects can be added to the collection. You could provide additional
checking in the constructor as well if you wanted to be even safer. Clearly this class should only
work with a VenueMapper. In practical terms, though, this is a reasonably type-safe collection,
especially as far as the Domain Model is concerned.

Because the Domain Model needs to instantiate Collection objects, and because we may
need to switch the implementation at some point (especially for testing purposes), we provide
a factory class in the Domain layer for generating Collection objects on a type-by-type basis.
Here’s how we get an empty VenueCollection object:

$collection = woo_domain_HelperFactory::getCollection("woo_domain_Venue");
You can then add values to it and loop through it as if it were an array:

$collection->add( new woo_domain_Venue( null, "Loud and Thumping" ) );
$collection->add( new woo_domain Venue( null, "Eeezy" ) );
$collection->add( new woo_domain_Venue( null, "Duck and Badger" ) );

foreach( $collection as $venue ) {
print $venue->getName()."\n";

}

With the implementation we have built here, there isn’t much else you can do with this
collection, but adding elementAt (), deleteAt(), count(), etc. methods is a trivial exercise.
(And fun, too! Enjoy!)

The DomainObject super class is a good place for convenience methods that acquire
collections.

275



276

CHAPTER 12 ENTERPRISE PATTERNS

// DomainObject

static function getCollection( $type ) {
return woo_domain_HelperFactory::getCollection( $type );

}

function collection() {
return self::getCollection( get_class( $this ) );

}

The class supports two mechanisms for acquiring a Collection object: static and instance.
In both cases, the methods simply call HelperFactory: :getCollection() with a class name. We
saw the static getCollection() method used in the Domain Model example earlier in the
chapter.

In light of all this, the Venue class can be extended to manage the persistence of Space
objects. The class initializes itself with an empty SpaceCollection object like this:

function _ construct( $id=null, $name=null ) {
$this->name = $name;
$this->spaces = self::getCollection("woo domain Space");
parent:: construct( $id );

}

Venue provides methods for adding individual Space objects to its SpaceCollection, or for
switching in an entirely new SpaceCollection.

function setSpaces( woo_domain_SpaceCollection $spaces ) {
$this->spaces = $spaces;

}

function getSpaces() {
return $this->spaces;

}

function addSpace( woo_domain_Space $space ) {
$this->spaces->add( $space );
$space->setVenue( $this );

}

The setSpaces () operation is really designed to be used by the VenueMapper class in
constructing the Venue. It takes it on trust that all Space objects in the collection refer back to
the current Venue. It would be easy enough to add checking to the method. This version keeps
things simple though.



CHAPTER 12 ENTERPRISE PATTERNS

The VenueMapper needs to set up a SpaceCollection for each Venue object it creates.

// VenueMapper
protected function doLoad( $array ) {

$obj = new woo_domain Venue( $array['id'] );
$obj->setname( $array['name'] );
$space_mapper = new woo_mapper SpaceMapper();
$space_collection = $space_mapper->findByVenue( $array['id'] };
$obj->setSpaces( $space_collection );
$obj->markClean();
return $obj;

}

The VenueMapper : :doLoad() method gets a SpaceMapper, and acquires a SpaceCollection
from it. As you can see, the SpaceMapper class implements a findByVenue() method. This is
identical to findA11() except for the SQL statement used. The resulting collection is set on the
Venue object via Venue: :setSpaces().

So Venue objects now arrive fresh from the database, complete with all their Space objects
in a neat type-safe list. None of the objects in that list are instantiated before requested.

Figure 12-12 shows the process by which a client class might acquire a SpaceCollection,
and how the SpaceCollection class interacts with SpaceMapper: : loadArray() to convert its raw
data into an object for returning to the client.

Client SpaceCollection SpaceMapper

T
= findByVenue( 33} !
1

>-h

loadArray()

Figure 12-12. Acquiring a SpaceCollection, and using it to get a Space object

Consequences

The drawback with the approach we took to adding Space objects to Venue ones is that we had
to take two trips to the database. In most instances, I think that is a price worth paying. If efficiency
becomes an issue, however, it should be easy enough to factor out SpaceMapper altogether and
retrieve all the data you need in one go using an SQL join.

2n



278

CHAPTER 12 ENTERPRISE PATTERNS

Of course, your code may become less portable as a result of that, but efficiency optimiza-
tion always comes at a price!

Ultimately, the granularity of your Mapper classes will vary. If an object type is stored solely
by another, then you may consider only having a Mapper for the container.

The great strength of this pattern is the strong decoupling it effects between Domain layer
and database. The Mapper objects take the strain behind the scenes and can adapt to all sorts of
relational twistedness.

Perhaps the biggest drawback with the pattern is the sheer amount of slog involved in
creating the implementing Mapper classes. However, there is a large amount of boilerplate code
that can be automatically generated. A neat way of generating the common methods for Mapper
classes is through reflection. You can query a domain object, discover its setter and getter methods
(perhaps in tandem with an argument naming convention), and generate basic Mapper classes
ready for amendment. This is how all the Mapper classes featured in this chapter were initially
produced.

One issue to be aware of with mappers is the danger of loading too many objects at one
time. The Iterator implementation helps us here, though. Because a Collection object only
holds row data at first, the secondary request (for a Space object) is only made when a particular
Venue is accessed and converted from array to object. This form oflazy loading can be enhanced
even further, as we shall see.

You should be careful of ripple loading. Be aware as you create your mapper that the use
of another one to acquire a property for your object may be the tip of a very large iceberg. This
secondary mapper may itself use yet more in constructing its own object. If you are not careful,
you could find that what looks on the surface like a simple find operation sets off tens of other
similar operations.

Identity Map

Do you remember the nightmare of pass-by-value errors in PHP 4?2 The sheer confusion that
ensued when two variables that you thought pointed to a single object turned out to refer to
different but cunningly similar ones? Well, the nightmare has returned.

The Problem

Let’s look back to some test code created to try out the Data Mapper example.

$venue = new woo_domain_Venue();

$venue->setName( "The Likey Lounge" );
$mapper->insert( $venue );

$venue = $mapper->find( $venue->getId() );
print_r( $venue );

$venue->setName( "The Bibble Beer Likey Lounge" );
$mapper->update( $venue );

$venue = $mapper->find( $venue->getId() );
print_r( $venue );

The purpose of this code was to demonstrate that an object that we add to the database
could also be extracted via a Mapper, and would be identical. Identical, that is, in every way
except for being the same object. I cheated this problem by assigning the new Venue object over
the old. Unfortunately, you won’t always have thatkind of control over the situation. The same
object may be referenced at several different times within a single request. If you alter one



CHAPTER 12 ENTERPRISE PATTERNS

version of it, and save that to the database, can you be sure that another version of the object
(perhaps stored already in a Collection object) won't be written over your changes?

Not only are duplicate objects risky in a system, they also represent a considerable over-
head. Some popular objects could be loaded three or four times in a process, with all but one
of these trips to the database entirely redundant.

Fortunately, fixing this problem is relatively straightforward.

Implementation

An Identity Map is simply an object whose task it is to keep track of all the objects in a system,
and thereby help to ensure that nothing that should be one object becomes two.

In fact, the Identity Map itself does not prevent this from happening in any active way. Its
role is to manage information about objects. Here is a simple Identity Map:

class woo_domain_ObjectWatcher {
private $all = array();
private static $instance;

private function _ construct() { }

static function instance() {
if (! self::$instance ) {
self::$instance = new woo_domain_ObjectWatcher();

}

return self::$instance;

}

function globalKey( woo_domain_DomainObject $obj ) {
$key = get_class( $obj ).".".$obj->getId();
return $key;

}

static function add( woo_domain_DomainObject $obj ) {
$inst = self::instance();
$inst->all[$inst->globalkey( $obj )] = $obj;

}

static function exists( $classname, $id ) {
$inst = self::instance();
$key = "$classname.$id";
return $inst->all[$key];

The main trick with an Identity Map is, pretty obviously, identifying objects. This means
that you need to tag each object in some way. There are a number of different strategies you
can take here. The database table key that all objects in the system already use is no good
because the ID is not guaranteed to be unique across all tables.

279



280

CHAPTER 12 ™ ENTERPRISE PATTERNS

The DB package supports unique database-wide keys as standard (by means of managing
akey table), so this is one candidate solution. You would need to add a field to the database for
each object, and generate a key whenever an object is inserted. The overheads of this are rela-
tively slight, and it would be easy to do.

As you can see, I have gone for an altogether simpler approach. I concatenate the name of
the object’s class with its table ID. There can be no two objects of type woo_domain_Event with
an ID of 4, so my key of “woo_domain_Event.4” is safe enough for my purposes.

The globalKey() method handles the details of this. The class provides an add() method
for adding new objects. Each object is labeled with its unique key in an array property: $all.

The exists() method accepts a class name and an $id rather than an object. We don’t
want to have to instantiate an object to see whether or not it already exists! The method builds
a key from this data and checks to see if it indexes an element in the $all property. If an object
is found, a reference is duly returned.

There is only one class where I work with the ObjectWatcher class in its role as an Identity
Map. The Mapper class provides functionality for generating objects, so it makes sense to add
the checking there.

// Mapper
function getFromMap( $id ) {
return woo_domain_ObjectWatcher::exists
( $this->targetClass(), $id );
}

function addToMap( woo_domain_DomainObject $obj ) {
return woo_domain_ObjectWatcher::add( $obj );

}

function find( $id ) {
$old = $this->getFromMap( $id );
if ( $old ) { return $old; }

return $this->doFind( $id );
}

function loadArray( $array ) {
$old = $this->getFromMap( $array['id']);
if ( $old ) { return $old; }
$obj = $this->doLoad( $array );
$this->addToMap( $obj );
return $obj;

}

protected abstract function targetClass();

The class provides two convenience methods: addToMap() and getFromMap(). These save
the bother of remembering the full syntax of the static call to ObjectWatcher. More importantly,
they call down to the child implementation (VenueMapper, etc.) to get the name of the class
currently awaiting instantiation.



CHAPTER 12 ENTERPRISE PATTERNS

This is achieved by calling targetClass(), an abstract method that is implemented by all
concrete Mapper classes. It should return the name of the class that the Mapper is designed to
generate. Here is the SpaceMapper class’s implementation of targetClass():

protected function targetClass() {
return "woo_domain Space";

}

Both find() and loadArray() first check for an existing object by passing the table ID to
getFromMap(). If an object is found, it is returned to the client and method execution ends. If,
however, there is no version of this object in existence yet, object instantiation goes ahead. In
loadArray() the new object is passed to addToMap() to prevent any clashes in future.

So why are we going through part of this process twice, with calls to getFromMap() in both
find() and loadArray()? The answer lies with Collections. When these generate objects, they
do so by calling loadArray(). We need to make sure that the row encapsulated by a Collection
object is not stale, and ensure that the latest version of the object is returned to the user.

Consequences

As long as you use the Identity Map in all contexts in which objects are generated from the
database, the possibility of duplicate objects in your process is practically zero.

Of course, this only works within your process. Different processes will inevitably access
versions of the same object at the same time. It is important to think through the possibilities
for data corruption engendered by concurrent access. If there is a serious issue, you may need
to consider a locking strategy.

Unit of Work

When do you save your objects? Until I discovered the Unit of Work pattern (written up by
David Rice in Martin Fowler’s Patterns of Enterprise Application Architecture), I sent out save
orders from the Presentation layer upon completion of a command. This turned out to be an
expensive design decision.

The Unit of Work pattern helps you to save only those objects that need saving.

The Problem

One day I echoed my SQL statements to the browser window to track down a problem and had
a shock. I found that I was saving the same data over and over again in the same request. I had
a neat system of composite commands, which meant that one command might trigger several
others, and each one was cleaning up after itself.

Not only was I saving the same object twice, I was saving objects that didn’t need saving.

This problem then is similar in some ways to that addressed by Identity Map. That problem
involved unnecessary object loading, this problem lies at the other end of the process. Just as
these issues are complementary, so are the solutions.

Implementation

To determine what database operations are required, you need to keep track of various events
that befall your objects. Probably the best place to do that is in the objects themselves.

281



282

CHAPTER 12 ENTERPRISE PATTERNS

You also need to maintain a list of objects scheduled for each database operation (insert,

update, delete). I am only going to cover insert and update operations here. Where might be a
good place to store a list of objects? It just so happens that we already have a ObjectWatcher
object, so we can develop that further:

// ObjectWatcher

//

private $all = array();

private $dirty = array();

private $new = array();

private $delete = array(); // unused in this example
private static $instance;

/1l ...

static function addDirty( woo_domain_DomainObject $obj ) {
$inst = self::instance();
if (! $inst->new[$inst->globalKey( $obj )] ) {
$inst->dirty[$inst->globalKey( $obj )] = $obj;
}
}

static function addNew( woo_domain_DomainObject $obj ) {
$inst = self::instance();

$inst->new[$inst->globalKey( $obj )] = $obj;
}

static function addClean(woo_domain_DomainObject $obj ) {
$self = self::instance();
// unset( $self->delete[$self->globalKey( $obj )] );
// not implementing deletes in this example!
unset( $self->dirty[$self->globalKey( $obj )1 );

}

function performOperations() {

foreach ( $this->dirty as $key=>$obj ) {
$obj->finder()->update( $obj );

}

foreach ( $this->new as $key=>$obj ) {
$obj->Ffinder()->insert( $obj );

}

$this->dirty = array();

$this->new = array();

}

function __destruct() {
$this->performOperations();

}



CHAPTER 12 ENTERPRISE PATTERNS

The ObjectWatcher class remains an Identity Map, and continues to serve its function of
tracking all objects in a system via the $all property. This example simply adds more function-
ality to the class.

Objects are described as “dirty” when they have been changed since extraction from the
database. A dirty object is stored in the $dirty array property (via the addDirty() method) until
the time comes to update the database. Client code may decide that a dirty object should not
undergo update for its own reasons. It can ensure this by marking the dirty object clean (via the
addClean() method). As you might expect, a newly created object should be added to the $new
array (via the addNew() method). Objects in this array are scheduled for insertion into the data-
base. We are notimplementing delete functionality in these examples, but the principle should
be clear enough.

The addDirty() and addNew() methods each add an object to their respective associative
array properties, using the globalKey() method covered in the last pattern. addClean(), on the
other hand removes the given object from the $dirty array, marking it as no longer pending
update.

When the time finally comes to process all objects stored in these arrays, the
performOperations() method is invoked. This loops through the $dirty and $new arrays either
updating or adding the objects. We can call the performOperations() method from client code
at any time, but we have also added an invocation to the magic _ destruct() method. As you
know, _destruct() is called automatically whenever an object is deleted. This means that
object update and insertion is entirely automated by this class!

The ObjectWatcher class now provides a mechanism for updating and inserting objects.
The code is still missing a means of adding objects to the ObjectWatcher object.

Since it is these objects that are operated upon, they are probably best placed to perform
this notification. Here are some utility methods we can add to the DomainObject class. Notice
also the constructor method.

// DomainObject
function _ construct( $id=null ) {
$this->id = $id;
if (! $this->id ) {
$this->id = $this->finder()->newld();
$this->markNew();

}

function finder() {
return self::getFinder( get_class( $this ) );

}

static function getFinder( $type ) {
return woo_domain_HelperFactory::getFinder( $type );

}

function markNew() {
woo_domain_ObjectWatcher::addNew( $this );

}



284

CHAPTER 12 ENTERPRISE PATTERNS

function markDirty() {
woo_domain ObjectWatcher::addDirty( $this );

}

function markClean() {
woo_domain_ObjectWatcher::addClean( $this );

}

Before looking at the Unit of Work code, it is worth noting that Domain object here has
finder() and getFinder () methods. These work in exactly the same way as collection() and
getCollection(), querying a simple factory class, HelperFactory, in order to acquire Mapper
objects when needed.

Asyou can see, the constructor method marks the current object as new (by calling markNew())
if no $id property has been passed to it. First, though, it acquires a new $id from its Mapper. This
is where the DB object’s ID generation mechanism works in our favor; we can generate a new ID
before entering the related row into the database. Here is the implementation of newID() in
VenueMapper:

public function newId() {
return self::$DB->nextId('venue');

}

We also need to add some code to the Mapper class:

// Mapper
function loadArray( $array ) {

$old = $this->getFromMap( $array['id']);
if ( $0ld ) { return $old; }
$obj = $this->doLoad( $array );
$this->addToMap( $obj );
$obj->markClean();
return $obj;

}

Because setting up an object involves marking it new via the constructor’s call to
ObjectWatcher: :addNew(), we must call markClean(), or every single object extracted from
the database will be saved at the end of the request, which is not what we want.

The only thing remaining to do is to add markDirty() invocations to methods in the
Domain Model classes. Remember, a “dirty” object is one that has been changed since it was
retrieved from the database. This is the one aspect of this pattern that has a slightly fishy odor.
Clearly it’s important to ensure that all methods that mess up the state of an object are marked
dirty, but the manual nature of this task means that the possibility of human error is all too real.

Here are some methods in the Space object that call markDirty():

function setName( $name_s ) {
$this->name = $name_s;
$this->markDirty();



CHAPTER 12 ENTERPRISE PATTERNS

function setVenue( woo _domain_Venue $venue ) {
$this->venue = $venue;
$this->markDirty();

}

The results of this pattern, combined with some of the others in this chapter, are truly
marvelous. This at least looks like the Shangri-la of the persistent model with a magically invis-
ible persistence layer.

Here is some code for adding a new Venue and Space to the database, taken from a Command
class:

$venue = new woo_domain Venue( null, "The Green Trees" );
$venue->addSpace(

new woo_domain_Space( null, 'The Space Upstairs' ) );
$venue->addSpace(

new woo_domain Space( null, 'The Bar Stage' ) );

I have added some debug code to the ObjectWatcher so you can see what happens at the
end of the request:

inserting The Green Trees
inserting The Space Upstairs
inserting The Bar Stage

Because the ObjectWatcher object calls the performOperations() method from its
__destruct() method, all you need to do is create or modify an object, and the Unit of Work
class (ObjectWatcher) will do its job behind the scenes.

Consequences

This pattern is very useful, but there are a few issues to be aware of. You need to be sure that all
modify operations actually do mark the object in question dirty. Failing to do this can result in
hard-to-spot bugs.

You may like to look at other options for testing for modified objects. Reflection sounds
like a good option there, but you should look into the performance implications of such testing—
the pattern is meant to improve efficiency, not undermine it.

You need to watch out for temporary objects as well. You may wish to create an Event
object in order to test it against an existing object (using a method such as intersects()), for
example. You don't want this added to the database in error. In this situation, you could explicitly
mark your temporary objects for deletion, or perhaps have a setTemporary() method on the
DomainObject class.

Lazy Load

Lazy Load is one of those core patterns most Web programmers learn for themselves very
quickly, simply because it’s such an essential mechanism for avoiding massive database hits,
which is something we all want to do.

285



CHAPTER 12 = ENTERPRISE PATTERNS

The Problem

In the example that has dominated this chapter, we have set up a relationship between Venue,
Space, and Event objects. When a Venue object is created, it is automatically given a SpaceCollection
object. If we were to list every Space object in a Venue, this automatically kicks off a database request
to acquire all the Events associated with each Space. These are stored in an EventCollection object.
If we don’t wish to view any events, we have nonetheless made several journeys to the database
for no reason. With many venues, each with a two or three spaces, and with each space managing
tens, perhaps hundreds, of events, this is a costly process.

Clearly we need to throttle back on this automatic inclusion of collections in some
instances.

Here is the code in SpaceMapper that acquires Event data:

protected function doLoad{ $array ) {
$obj = new woo_domain_Space( $array['id'] );
$obj->setname( $array['name'] );
$ven_mapper = new woo_mapper_VenueMapper();
$venue = $ven_mapper->find( $array['venue'] );
$obj->setVenue( $venue );

$event_mapper = new woo_mapper_EventMapper();
$event_collection = $event_mapper->findBySpaceId( $array['id'] );

$obj->setEvents( $event_collection );
$obj->markClean();
return $obj;

}

The doLoad() method first acquires the Venue object with which the space is associated.
This is not costly, because it is almost certainly already stored in the ObjectWatcher object.
Then the method calls the EventMapper : : findBySpaceld() method. This is where the system
could run into problems.

Implementation

As you may know, a Lazy Load means to defer acquisition of a property until it is actually
requested by a client.

The easiest way of doing this is to make the deferral explicit in the containing object.
Here’s how we might do this in the Space object:

// Space
function getEvents() {
if ( is_null($this->events) ) {
$this->events = self::getFinder('woo_domain Event')
->findBySpaceld( $this->getId() );
}

return $this->events;



CHAPTER 12 ENTERPRISE PATTERNS

This method checks to see whether or not the $events property is set. If it isn’t set, then
the method acquires a Finder (that is, a Mapper) and uses its own $id property to get the
EventCollection with which it is associated. Clearly, for this method to save us a potentially
unnecessary database query, we would also need to amend the SpaceMapper code so that it
does not automatically preload an EventCollection object as it does in the preceding example!

This approach will work just fine, although it is a little messy. Wouldn't it be nice to tidy the
mess away?

This brings us back to the Iterator implementation that goes to make the Collection
object. We are already hiding one secret behind that interface (the fact that raw data may not
yet have been used to instantiate a domain object at the time a client accesses it), perhaps we
can hide still more.

The idea here is to create an EventCollection object that defers its database access until a
request is made of it. This means that a client object (such as Space, for example) need never
know that it is holding an empty Collection in the first instance. As far as a client is concerned,
itis holding a perfectly normal EventCollection.

Here is the DeferredEventCollection object:

class woo_mapper_DeferredEventCollection
extends woo_mapper_EventCollection {
private $stmt;
private $valueArray;
private $mapper;
private $run=false;

function _ construct( woo_mapper_EventMapper $mapper,
$stmt_handle, $valueArray ) {
parent:: construct( );
$this->stmt = $stmt_handle;
$this->valueArray = $valueArray;
$this->mapper = $mapper;

}

function notifyAccess() {
if (! $this->run ) {
$result =
$this->mapper->doStatement( $this->stmt,
$this->valueArray );
$this->init_db( $result, $this->mapper );
}

$this->run=true;

As you can see, this class extends a standard EventMapper. Its constructor requires an
EventMapper object and a primed DB statement handle. In the first instance, the class does
nothing but store its properties, and wait. No query has been made of the database.

287



288

CHAPTER 12 ENTERPRISE PATTERNS

You may remember that the Collection base class defines the empty method called
notifyAccess() that I mentioned in the “Data Mapper” section. This is called from any method
whose invocation is the result of a call from the outside world.

DeferredEventCollection overrides this method. Now if someone attempts to access the
Collection, the class knows it is time to end the pretense and acquire some real data. It does
this by passing the statement handle to the VenueMapper’s doStatement () method. This yields a
DB_result object that can then be passed to the init_db() method. Remember that init_db()
simply decants a database result set into an array, and does some other housekeeping.

Here is the method in EventMapper that instantiates a DeferredEventCollection:

function findBySpaceId( $s_id ) {
return new woo_mapper DeferredEventCollection(
$this,
$this->selectBySpaceStmt, array( $s_id ) );

Consequences

Lazy loading is a good habit to get into, whether or not you explicitly add deferred loading logic
to your domain classes.

Over and above type safety, the particular benefit of using a collection rather than an array
for your properties is the opportunity this gives you to retrofit lazy loading should you need it.

Summary

This is the longest chapter in this book, and for good reason. PHP is a Web-oriented language
before it is an object-oriented language. You are probably reading this now because you are
involved in coding for the Web at some level.

I have covered an enormous amount of ground here (although I have also left a lot out).
You should not feel daunted by the sheer volume of code in this chapter. Patterns are meant to
be used in the right circumstances and combined when useful. Here is a list of the patterns I
covered. Raid from them when you feel that the needs of your project are matched by a summary,
and do not feel that you must build an entire framework before embarking upon a project.

We examined the following patterns:

* Registry: This pattern is useful for making data available to all classes in a process.
Through careful use of serialization, it can also be used to store information across a
session, or even across instances of an application.

* Front Controller: Use this for larger systems in which you know that you will need as
much flexibility as possible in managing many different views and commands.

¢ Application Controller: Create a class to manage view logic and command selection.

¢ Template View: Create pages that manage display and user interface only, incorporating
dynamic information into display markup with as little raw code as possible.



CHAPTER 12 1 ENTERPRISE PATTERNS

¢ Page Controller: Lighter-weight but less flexible than Front Controller, Page Controller
addresses the same need. Use this pattern to manage requests and handle view logic if
you want fast results and your system is unlikely to grow substantially in complexity.

¢ Transaction Script.: When you want to get things done fast, with minimal up-front plan-
ning, fall back on procedural library code for your application logic. This pattern does
not scale well.

e Domain Model: On the opposite pole from Transaction Script, use this pattern to build
object-based models of your business participants and processes. This pattern requires
a relatively complex framework to decouple it from quotidian concerns of presentation
and persistence.

* Data Mapper: Create specialist classes for mapping Domain Model objects to and from
relational databases.

¢ Identity Map: Keep track of all the objects in your system to prevent duplicate instantia-
tions and unnecessary trips to the database.

¢ Unitof Work: Automate the process by which objects are saved to the database, ensuring
that only objects that have been changed are updated and only those that have been
newly created are inserted.

In the next chapter, we take a welcome break from code and introduce some of the wider
practices that can contribute to a successful project.






SO far this in this book, we have focused on coding, concentrating particularly on the role of
design in building flexible and reusable tools and applications. Development doesn’t end with
code, however. It is possible to come away from books and courses with a solid understanding
of alanguage, and yet still run into trouble when it comes to running and deploying a project.
In this chapter, we will move beyond code to introduce some of the tools and techniques
that form the underpinnings of a successful development process. This chapter will cover

* Third-party packages: Where to get them, when to use them
* Version control: Bringing harmony to the development process
* Documentation: Writing code that is easy to understand, use, and extend

* Unit testing: A tool for automated bug prevention

Beyond Code

When I first graduated from working on my own and took a place in a development team, [ was
astonished at how much stuffother developers seemed to have to know. Good-natured arguments
simmered endlessly over issues of vital-seeming importance: Which is the best text editor?
Should the team standardize on an integrated development environment? Should we impose
a coding standard? How should we test our code? Should we document as we develop? Some-
times these issues seemed more important than the code itself, and my colleagues seemed to
" have acquired their encyclopedic knowledge of the domain through some strange process of
0SInosis.

The books I had read on PHP, Perl, and Java certainly didn’t stray from the code itself to
any great extent. As I have already discussed, most books on programming platforms rarely
divert from their tight focus on functions and syntax to take in code design. If design is off
topic, you can be sure that version control and code documentation are rarely discussed. This
is not a criticism—if a book professes to cover the main features of a language, it should be no
surprise that this is what it does.

In learning about code, however, I found that I had neglected many of the mechanics of a
project’s day-to-day life. I discovered that some of these details were critical to the success or
failure of projects I helped develop. In this chapter, and in more detail in coming chapters, we
will look beyond code to explore some of the tools and techniques upon which the success of
your projects may depend.

293



CHAPTER 13 ™ GOOD (AND BAD) PRACTICE

Borrowing a Wheel

When faced with a challenging but discrete aspect to a project, there is a lot to be said for building
a component that addresses the need. It can be one of the best ways to learn your craft. In
creating a package, you gain insight into a problem, and file away new techniques that might
have wider application. You invest at once in your project and in your own skills. By keeping
your functionality internal to your system, you can avoid the need for your users to download
third-party packages, and occasionally sidestep thorny licensing issues. There’s nothing like
the sense of satisfaction you can get when you test a component you designed yourself and
find that, wonder of wonders, it works—it does exactly what you wrote on the tin.

There is a dark side to all this, of course. Many packages represent an investment of thousands
of man-hours: a resource that you may not have on hand. You may be able to address this by
developing only the functionality needed specifically by your project, while a third-party tool
might fulfill a myriad of other needs as well. The question remains though, If a freely available
tool exists, why are you squandering your talents in reproducing it? Do you have the time and
resources to develop, test, and debug your package? Might not this time be better deployed
elsewhere?

I am one of the worst offenders when it comes to wheel reinvention. Picking apart problems
and inventing solutions to them is a fundamental part of what we do as coders. Getting down
to some serious architecture is a more rewarding prospect than writing some glue to stitch
together three or four existing components. When this temptation comes over me, [ remind
myself of projects past. Although the choice to build from scratch has never killed a project in
my experience, I have seen it devour schedules and murder profit margins. There I sit with a
manic gleam in my eye, hatching plots and spinning class diagrams, failing to notice as I obsess
over the details of my component that the big picture is now a distant memory.

Now when I map out a project, I try to develop a feel for what belongs inside the codebase,
and what should be treated as a third-party requirement. For example, your application may
generate (or read) an RSS feed, you may need to validate e-mail addresses and automate mail-
outs, authenticate users, or read from a standard format configuration file. All of these needs
can be fulfilled by external packages.

Once you have defined your needs, your first stop should be the PEAR Web site at
http://pear.php.net. PEAR stands for the PHP Extension and Application Repository, and is
an officially maintained and quality-controlled repository of packages. It is also a mechanism
for installing packages seamlessly, and managing package interdependencies. I will cover PEAR
in more detail in the next chapter, in which I'look at the way that you can use PEAR functionality to
prepare your own packages. To give you some idea of what’s available in the PEAR repository,
here are just a very few of the things you can do with PEAR packages:

* Cache output with Cache_Lite.

¢ Test the efficiency of your code with Benchmark.

* Abstract the details of database access with DB.

* Manipulate Apache .htaccess files with File_HtAccess.

¢ Extract or encode news feeds with XML_RSS.

Send mail with attachments with Mail_Mime.



CHAPTER 13 1= GOOD (AND BAD) PRACTICE

 Parse configuration file formats with Config.
¢ Password protected environments with Auth.

The PEAR Web site provides a list of packages categorized by topic. You may find packages
that broadly address your needs here, or you may need to cast your net wider (using the major
search engines). Either way, you should always take time to assess existing packages before
setting out to potentially reinvent that wheel.

The fact that you have a need, and that a package exists to address it, should not be the
start and end of your deliberations. Although it is preferable to use a package where it will save
you otherwise unnecessary development, in some cases it can add an overhead without real
gain. Your client’s need for your application to send mail, for example, does not mean that you
should automatically use PEAR’s Mail package. PHP provides a perfectly good mail() function,
so to start with all the benefit lies with a simple internal implementation. As soon as you realize
that you have to validate all e-mail addresses according to the RFC822 standard, and that the
design team wants to send image attachments with the mails, you may begin to weigh the options
differently. As it happens there are PEAR packages for both these features.

Many programmers, myself included, often place too much emphasis upon the creation of
original code, sometimes to the detriment of their projects. This emphasis upon authorship
may be one reason that there often seems to be more creation than actual use of reusable code.

Effective programmers see original code as just one of the tools available to aid them in
engineering a project’s successful outcome. Such programmers look at the resources they have
at hand and deploy them effectively. If a package exists to take some strain, then that is a win.
To steal and paraphrase an aphorism from the Perl world: good coders are lazy.

Playing Nice

The truth of Sartre’s famous dictum that “Hell is other people” is proved on a daily basis in
some software projects. This might describe the relationship between clients and developers,
symptomized by the many ways that lack of communication leads to creeping features and
skewed priorities. But the cap fits too for happily communicative and cooperative team members
when it comes to sharing code.

As soon as a project has more than one developer, version control becomes an issue. A single
coder may work on code in place, saving a copy of her working directory at key points in devel-
opment. Introduce another programmer to this mix, and this strategy breaks down in minutes.
If the new developer works in the same development directory, then there is a real chance that
one programmer will overwrite the work of his colleague when saving, unless both are very
careful to always work on different files.

Alternatively, our two developers can each take a version of the codebase to work on
separately. That works fine until the moment comes to reconcile the two versions. Unless the
developers have worked on entirely different sets of files, the task of merging two or more
development strands rapidly becomes an enormous headache.

This is where Concurrent Versions System (CVS) and similar tools come in. Using CVS you
can check out your own version of a codebase and work on it until you are happy with the
result. You can then update your version with any changes that your colleagues have been
making. CVS will automatically merge these changes into your files, notifying you of any conflicts
it cannot handle. Once you have tested this new hybrid, you can save it to the central CVS
repository, making it available to other developers.

295



CHAPTER 13 GOOD (AND BAD) PRACTICE

CVS provides you with other benefits. It keeps a complete record of all stages of a project,
so you can roll back to, or grab a snapshot of, any point in the project’s lifetime. You can also
create branches, so that you can maintain a public release at the same time as a bleeding-edge
development version.

Once you have used version control on a project, you will not want to attempt another
without it. Despite the mind-numbing tangle of revisions and branches you will occasionally
have to conceptualize, version control is just too useful to live without. I cover CVS in Chapter 16.

“Note cvs isn't the only game in town when it comes to version control. A newer package called Subversion has
made a relatively recent debut. It is free of some of the eccentricities of the more venerable CVS. Subversion
is covered in detail by Garrett Rooney in Practical Subversion (Apress, 2004).

Giving Your Code Wings

Have you ever seen your code grounded because it is just too hard to install? This is especially
true for projects that are developed in place. Such projects settle into their context, with pass-
words and directories, databases and helper application invocations programmed right into
the code. Deploying a project of this kind can be a major undertaking, with teams of program-
mers picking through source code to amend settings so that they fit the new environment.

This problem can be eased to some degree by providing a centralized configuration file or
class so that settings can be changed in one place, but even then installation can be a chore.
The difficulty or ease of installation will have a major impact upon the popularity of any appli-
cation you distribute. It will also impede or encourage multiple and frequent deployment
during development.

As with any repetitive and time-consuming task, installation should be automated. An
installer can determine default values for install locations, check and change permissions,
create databases, and initialize variables, among other tasks. In fact, an installer can do just
about anything you need to get an application from a source directory in a distribution to full
deployment.

This doesn’t absolve the user from the responsibility for adding information about his
environment to the code, of course, but it can make the process as easy as answering a few
questions or providing a few command line switches.

For developers, installers have the further virtue of memory. Once an installer has been
run from a distribution directory, it can cache many of its settings, making subsequent instal-
lations even easier. So the second time you install from a distribution directory, you may not
need to provide configuration information like database names and install directories. These
are remembered from the first installation. This is important for developers who frequently
update their local development space using version control. Version control makes it easy to
acquire the latest version of a project. There is little point, however, to removing impedence
from the acquisition of code if you have a bottleneck restricting its deployment.

There are various build tools available to the developer. PEAR, for example, is, in part, an
installation solution. Most of the time, you will use the PEAR installer to deploy code from the
official PEAR repository. It is possible, however, to create your own PEAR packages that can be
downloaded and installed by users with ease. The PEAR installer is best suited to self-enclosed,



CHAPTER 13 ™ GOOD (AND BAD) PRACTICE

functionally focused packages. It is relatively rigid about the role and install locations of the
files a package should contain, and it tends to concentrate upon the process of placing file A in
location B. I cover this aspect of PEAR in detail in Chapter 14.

If you need greater flexibility than this, as you might for application installation, you may
need an installer that is more scriptable. In Chapter 17 we will look at an application called
Phing. This open source project is a port of the popular Ant build tool that is written in and for
Java. Phing is written in and for PHP, though in either case you can easily perform any task that
you could on the command line or programmatically. Where PEAR does a few things very well,
and offers the simplest possible configuration, Phing is more daunting at first, but with the
tradeoff of immense flexibility. Not only can you use Phing to automate anything from file
copying to XSLT transformation, you can easily write and incorporate your own tasks should
you need to extend the tool. Phing is written using PHP 5’s object-oriented features, and its
design emphasizes modularity and ease of extension.

Documentation

My code is so sparse and elegant that it doesn’t need documenting. Its purpose is luminously
clear at the slightest of glances. I know your code is the same. The others, though, have a problem.

Allirony aside, itis true that good code documents itself to some extent. By defining a clear
interface and well-defined responsibility for each class and method, and naming each descrip-
tively, you communicate your code’s intent. However, you can improve the transparency of
your work still further by avoiding unnecessary obfuscation: clarity beats cleverness unless
cleverness brings with it immense, and required, gains in efficiency.

The naming of properties, variables, and arguments, too, can play a tremendous role in
making your code easy for others to read. Choose descriptive names, where possible. I often
add information about the type of a variable to the name—especially for argument variables.

public function setName( $name_str, $age int ) {
..
}

No matter how clear your code is, though, it can never be quite clear enough on its own.
We have seen that object-oriented design often involves combining many classes together in
relationships of inheritance, aggregation, or both. When you look at a single class in such a
structure, it is often very hard to extrapolate the bigger picture without some kind of explicit
pointer.

At the same time, every programmer knows what a pain it is to write documentation. You
tend to neglect it during development because the code is in flux, and really your project is
about getting the code right. Then when you have reached a point of stability, you suddenly see
the enormity of the task of documenting your work. Who would have thought that you would
create so many classes and methods? Now your deadline is looming, so it’s time to cut your
losses and concentrate on quality assurance.

This is an understandable but shortsighted attitude, as you will discover when you return
to your code for a second phase in a year’s time. Here’s a programmer quoted on the popular
repository for Internet Relay Chat (IRC) witticism http://www.bash.org:

<@Logan> I spent a minute looking at my own code by accident.
<@Logan> I was thinking "What the hell is this guy doing?"
—http://www.bash.org/?6824



CHAPTER 13 GOOD (AND BAD) PRACTICE

Without documentation, you are destined to play out that story: wasting your time second-
guessing decisions you probably made for very good reasons (if you only knew what they were).
This is bad enough, but the situation becomes worse, and more expensive, when you hand off
your work to a colleague. Undocumented code will cost you expensive work days, as your new
hire is forced to pepper your code with debug messages, and work her way through fat printouts
of promiscuously interrelated classes.

Clearly the answer is to document, and to do it as you code, but can the process be stream-
lined? As you might imagine, the answer is “yes” and once again the solution is borrowed from
aJava tool. phpDocumentor (http://www.phpdoc.org/) is a reimplementation of JavaDoc, the
documentation application that ships with the Java SDK. From a coder’s perspective, the principle
is simple. Add specially formatted comments above all classes, most methods, and some
properties, and phpDocumentor will incorporate them into a hyperlinked web of documents.
Even if you omit these comments, the application will read the code, summarizing and linking
up the classes it finds. This is a benefit in itself, allowing you to click from class to class, and to
observe inheritance relationships at a glance.

We examine phpDocumentor in Chapter 15.

Testing

Every component in a system depends for its continued smooth running upon the consistency
of operation and interface of its peers. By definition, then, development breaks systems. As you
improve your classes and packages, you must remember to amend any code that works with
them. For some changes, this can create a ripple effect, affecting components far away from
the code we originally changed. Eagle-eyed vigilance and an encyclopedic knowledge of a
system’s dependencies can help to address this problem. Of course, while these are excellent
virtues, systems soon grow too complex for every unwanted effect to be easily predicted, not
least because systems often combine the work of many developers. To address this problem, it
is a good idea to test every component regularly. This, of course, is a repetitive and complex
task and as such it lends itself well to automation.

Testing is essential in any project. Even if you don’t formalize the process, you must have
found yourself developing informal lists of actions that put your system through its paces. This
process soon becomes wearisome, and that can lead to a fingers-crossed attitude to programming.

One approach to testing starts at the interface of a project, modeling the various ways in
which a user might negotiate the system. This is probably the way you would go when testing
by hand, although there are various frameworks for automating the process. These functional
tests are sometimes called acceptance tests because a list of actions performed successfully
can be used as criteria for signing off a project phase.

While functional tests work from the top down, unit tests, the subject of this section, work
from the bottom up. Unit testing tends to focus on classes, with test methods grouped together
in test cases that put a class through a rigorous workout, checking that each method performs
as advertised, and that it fails as it should. These test cases are then grouped together into test
suites. Tests can be run as part of the build process, directly from the command line, or even
via a Web page.

Unit testing is a good way of ensuring the quality of design in a system. Tests reveal the
responsibilities of classes and functions. Some programmers even advocate a test-first approach.
You should, they say, write the tests before you even begin work on a class. This lays down a



CHAPTER 13 GOOD (AND BAD) PRACTICE 299

class’s purpose, ensuring a clean interface and short, focused methods. Personally, I have
never attained this level of purity, but I do attempt to write tests as I go.

So, let’s create some classes to test. Here is a class that places user information in persistent
storage. For the sake of demonstration, it saves the information in an array:

class UserStore {
private $users = array();
function addUser( $name=null, $mail=null, $pass=null ) {
if ( is_null( $name ) || is_null( $mail ) || is_null( $pass )} ) {
return false;

}

if ( strlen( $pass ) < 5) {
throw new Exception(
“Password must have 5 or more letters");

}

$this->users[$mail] = array( 'pass’' => $pass,
‘mail’ => $mail,
‘name’' => $name );
return true;

}

function getUser( $mail ) {
return ( $this->users[$mail] );

}

This class accepts user data with the addUser() method, and retrieves it via getUser ().
The user’s e-mail address is used as the key for retrieval.

Here is a client class. It uses UserStore to confirm that a user has provided the correct
authentication information.

class Validator {
private $store;
public function _ construct( UserStore $store ) {
$this->store = $store;

}

public function validateUser( $mail, $pass ) {
if (! is_array($user = $this->store->getUser( $mail )) ) {
return false;
}
if ( $user['pass'] == $pass ) {
return true;

}

return false;



CHAPTER 13 ™ GOOD (AND BAD) PRACTICE

The class requires a UserStore object, which it saves in the $store property. This property
is used by the validateUser () method first of all to ensure that the user referenced by the given
e-mail address exists in the store, and secondly that the user’s password matches the provided
argument. If both these conditions are fulfilled, the method returns true.

In order to test these classes, we need a PEAR package called PHPUnit2. The original PHPUnit
package is no longer maintained, and does not use PHP 5. We will deal with PEAR installation
in the next chapter, but in most cases you need only type the following at the command line in
order to acquire a package:

$ pear install PHPUnit2

Note | show commands that are input at the command line in bold to help distinguish them from any
output they may produce.

Armed with PHPUnit2, we can write tests for the UserStore class. Tests should be collected
in a single class that extends PHPUnit2_Framework TestCase, one of the classes made available
by the PHPUnit2 package. Here’s how to create a minimal test case class:

require once('PHPUnit2/Framework/TestCase.php');

class UserStoreTest extends PHPUnit2_Framework TestCase {
public function setUp() {
}

public function tearDown() {

}
/...

Inamed the test case class UserStoreTest. You are not obliged to use the name of the class
you are testing in the test’s name, though that is what most developers do. Each test in a test
case class is run in isolation of its siblings. The setUp() method is automatically invoked for
each test, allowing us to set up a sane environment for the test. tearDown() is invoked after each
test method is run. If your tests change the wider environment of your system, you can use this
method to reset state.

In order to test the UserStore class, we need an instance of it. We can instantiate this in
setUp() and assign it to a property. Let’s create a test method as well:



CHAPTER 13 GOOD (AND BAD) PRACTICE

require_once('UserStore.php');
require_once('PHPUnit2/Framework/TestCase.php');

class UserStoreTest extends PHPUnit2_Framework TestCase {
private $store;

public function setUp() {
$this->store = new UserStore();

}

public function tearDown() {
}
public function testGetUser() {
$this->store->addUser( "bob williams",
"bob@example.com”,
"12345" );
$user = $this->store->getUser( "bob@example.com" );
$this->assertEquals( $user['name'], "bob williams" );
$this->assertEquals( $user['mail'], "bob@example.com" );
$this->assertEquals( $user['pass'], "12345" );

Test methods should be named to begin with the word “test” and should require no argu-
ments. This is because the test case class is manipulated using reflection.

ote Reflection is covered in detail in Chapter 5.

The object that runs the tests looks at all the methods in the class and only invokes those
that match this pattern. In the example, we test the retrieval of user information. First we
invoke UserStore: :addUser () with dummy data, then we retrieve that data and test each of its
elements. For each individual test, we use an inherited method: assertEquals(). This compares
the two provided arguments and checks them for equivalence. If they do not match, then the
test method will be deemed a failure. Having subclassed PHPUnit2_Framework TestCase, we
have access to a set of assert methods. These methods are listed in Table 13-1.

301



302 CHAPTER 13 ™ GOOD (AND BAD) PRACTICE

Table 13-1. The PHPUnit2_Framework_TestCase Assert Methods

Method

Description

assertkEquals( $vali, $val2, $delta, $message)

assertFalse( $expression, $message)
assertTrue( $expression, $message)
assertNotNull( $val, $message )
assertNull( $val, $message )

assertSame( $obj1, $obj2, $message )

assertNotSame( $obj1, $obj2, $message )
assertRegExp( $regexp, $val, $message )

assertType( $typestring, $val, $message )
fail()

Fail if $val1 is not equivalent to $val2. ($delta repre-
sents an allowable margin of error.)

Evaluate $expression. Fail if it does not resolve to false.
Evaluate $expression. Fail if it does not resolve to true.
Fail if $val is null.

Fail if $val is anything other than null.

Fail if $obj1 and $obj2 are not references to the same
object.

Fail if $obj1 and $obj2 are references to the same object.
Fail if $val is not matched by regular expression $regexp.

Fail if $val is not the type described in $type.
Fail.

Here is a test that checks the behavior of the UserStore class when an operation fails:

/...

public function testAddUser ShortPass() {

try {
$this->store->addUser(

"bob williams", "bob@example.com", "ff" );

} catch ( Exception $e ) { return; }
$this->fail("Short password exception expected");

}
/...

Ifyou look back at the UserStore: :addUser () method, you will see that we throw an exception
if the user’s password is less than 5 characters long. Our test attempts to confirm this. We add
a user with an illegal password in a try clause. If the expected exception is thrown, then all is
well and we return silently. The final line of the method should never be reached, and we there-
fore invoke the fail() method there. If the addUser () method does not throw an exception as
expected, the catch clause is not invoked, and the fail() method is called.

If we are testing the UserStore class, we should also test Validator. Here is a cut-down
version of a class called ValidateTest that tests the Validator: :validateUser()method:

require_once('UserStore.php');
require_once('Validator.php');

require_once('PHPUnit2/Framework/TestCase.php');



CHAPTER 13 ™ GOOD (AND BAD) PRACTICE

class ValidatorTest extends PHPUnit2_ Framework TestCase {
private $validator;

public function setUp() {
$store = new UserStore();
$store->addUser( "bob williams", "bob@example.com", "12345" );
$this->validator = new Validator( $store );

}
public function tearDown() {
}
public function testValidate CorrectPass() {
$this->assertTrue(
$this->validator->validateUser( "bob@example.com", "12345" ),
"Expecting successful validation"

)5

So now that we have written some tests, how do we go about running them? We must first
give the names of our TestCase classes to a PHPUnit2_Framework TestSuite object. This class
has an addTestSuite() method for this purpose. Here is some code that runs our UserStoreTest
and ValidatorTest classes:

define('PHPUnit2_MAIN METHOD', 'AppTests::main');

require_once( "PHPUnit2/Framework/TestSuite.php" );
require_once( "PHPUnit2/TextUI/TestRunner.php" );

require_once( "tests/UserStoreTest.php" );
require_once( "tests/ValidatorTest.php" );

class AppTests {
public static function main() {
$ts = new PHPUnit2 Framework_TestSuite( 'User Classes');
$ts->addTestSuite('UserStoreTest');
$ts->addTestSuite('ValidatorTest');
PHPUnit2 TextUI_TestRunner::run( $ts );

}

AppTests::main();



CHAPTER 13 GOOD (AND BAD) PRACTICE

We begin by defining a constant: PHPUnit2_MAIN_METHOD. We set this to refer to our static
AppTests: :main() method. This tells the PHPUnit2_TextUI_TestRunner class that we have defined
our own main() method in place of its default, which gathers information about the test it wants
to run from the command line. If we did not reset PHPUnit2_MAIN_METHOD, the static method
PHPUnit2 TextUI_TestRunner::main() would be run as soon as the TestRunner class was included.

In the main() method we instantiate a PHPUnit2 Framework TestSuite object and call its
addTestSuite() method for each of the test case classes we wish to run. Once we have set up
our TestSuite object, we pass it to the static run() method of the PHPUnit2_TextUI_TestRunner
class. This runs all tests and writes the results to standard output. Finally we invoke our main()
method. If we run this code from the command line, this is the output:

$ php tests/AllTests.php
PHPUnit 2.0.1 by Sebastian Bergmann.

Time: 0.0572509765625

0K (3 tests)

Tests Succeed When They Fail

While everyone agrees that testing is a fine thing, it is generally only after it has saved your
bacon a few times that you grow to really love it. Let’s simulate a situation where a change in
one part of a system has an unexpected effect elsewhere.

Our UserStore class has been running for a while, when during a code review it is agreed
that it would be neater for the class to generate User objects rather than associative arrays. Here
is the new version:

class UserStore {
private $users = array();
function addUser( $name=null, $mail=null, $pass=null ) {
if ( is_null( $name ) || is_null( $mail ) || is_null( $pass ) ) {
return false;

}

$this->users[$mail] = new User( $name, $mail, $pass );

if ( strlen( $pass ) <5 ) {
throw new Exception("Password must have 5 or more letters");

}

return true;

}

function getUser( $mail ) {
return ( $this->users[$mail] );

}



CHAPTER 13 GOOD (AND BAD) PRACTICE

Here is the simple User class:

class User {
private $name;
private $mail;
private $pass;

function _ construct( $name, $mail, $pass ) {

$this->name = $name;
$this->mail = $mail;
$this->pass = $pass;

}

function getMail() {
return $this->mail;

}

Of course, we amend the UserStoreTest class to account for these changes. So code designed
to work with an array like this:

public function testGetUser() {
$this->store->addUser( "bob williams", "bob@example.com", "12345" );
$user = $this->store->getUser( "bob@example.com" };
$this->assertEquals( $user['mail'], "bob@example.com" );

is converted into code designed to work with an object like this:

public function testGetUser() {
$this->store->addUser( "bob williams", "bob@example.com", "12345" );
$user = $this->store->getUser( "bob@example.com" };
$this->assertEquals( $user->getMail(), "bob@example.com" );

When we come to run our test suite however, we are rewarded with a warning that our
work is not yet done:

$ phps tests/AllTests.php
PHPUnit 2.0.1 by Sebastian Bergmann.

Time: 0.061473846435547

There was 1 failure:

1) testvalidate correctpass

Expecting successful validation
/home/projects/556/tests/ValidatorTest.php:25
/home/projects/556/tests/AllTests.php:17
/home/projects/556/tests/AllTests.php:21



306 CHAPTER 13 GOOD (AND BAD) PRACTICE

FAILURES!!!
Tests run: 7, Failures: 1, Errors: 0, Incomplete Tests: O.

There is a problem with TestValidate. Let’s take another look at the
Validator: :validateUser() method:

public function validateUser( $mail, $pass ) {
if (! is_array($user = $this->store->getUser( $mail )) ) {
return false;
}
if ( $user['pass'] == $pass ) {
return true;

}

return false;

}

We invoke getUser (). Although getUser () now returns an object and not an array, our
method does not generate a warning. getUser () originally returned the requested user array on
success or null on failure, so we validated users by checking for an array using the is_array()
function. Now of course, getUser () returns an object, and our validateUser () method will
always return false. Without the test framework, the Validator would have simply rejected all
users as invalid without fuss or warning.

Now imagine making this neat little change on a Friday night without a test framework in
place. Think about the frantic pager messages that would drag you out of your pub, armchair
or restaurant—"“What have you done? All our customers are locked out!”

The worst bugs don’t cause the interpreter to report that something is wrong. They take
the form of perfectly legal code and they silently break the logic of your system. The worst bugs
don’t manifest where you are working, they are caused there, but the effects pop up elsewhere,
days or even weeks later. A test framework can help you catch at least some of these insidious bugs.

Write tests as you code, and run them often. If someone reports a bug, first add a test to
your framework to confirm it, then fix the bug so that the test is passed—bugs have a funny
habit of recurring.

Summary

A coder’s aim is always to deliver a working system. Writing good code is an essential part of
this aim’s fulfillment, but it is not the whole story.

In this chapter, I introduced PEAR (which is also the subject of the next chapter). We
discussed two great aids to collaboration: documentation and version control. We saw that
version control requires automated build, and I introduced Phing, a PHP implementation of
Ant, aJava build tool. Finally, we discussed unit testing, and since this is the only topic to which
we will not return, I offered an example demonstrating its power to catch and prevent bugs.



Programmers aspire to produce reusable code. This is one of the great goals of object orien-
tation. We like to abstract useful functionality from the messiness of specific context, turning it
into a tool that can be used again and again. To come at this from another angle, if program-
mers love the reusable, they hate duplication. By creating libraries that can be reapplied,
programmers avoid the need to implement similar solutions across multiple projects. Even if
we avoid duplication in our own code, though, there is a wider issue. For every tool you create,
how many other programmers have implemented the same solution? This is wasted effort on
an epic scale: wouldn’t it be much more sensible for programmers to collaborate, and to focus
their energies on making a single tool better, rather than producing hundreds of variations on
a theme? This is where PEAR (PHP Extension and Application Repository) comes in.

PEAR is a repository of quality-controlled PHP packages that extend the functionality of
PHP. It is also a client-server mechanism for distributing and installing packages, and for
managing interpackage dependencies.

This chapter will cover

* PEAR basics: What is this strange fruit?

e [nstalling PEAR packages: All it takes is one command.

Adding PEAR packages to your projects: An example, some notes on error handling.

package.xml: The anatomy of a build file.

Automation: Programmatic generation of the package.xml file.

What Is PEAR?

At its core PEAR is a collection of packages, organized into broad categories, such as networking,
mail, and XML. The PEAR repository is managed centrally, so that when you use an official
PEAR package, you can be sure of its quality.

You can browse the available packages at http://pear.php.net. Before you create a tool
for a project, you should get into the habit of checking the PEAR site to see if someone has got
there first.

Support for PEAR comes bundled with PHP, which means that some of the core packages
are available on your system straightaway (unless PHP was compiled to exclude it using the
-without-pear configure flag). Packages are installed in a configurable location (on Unix systems

307



CHAPTER 14 ™ AN INTRODUCTION TO PEAR

this will often be /usr/local/lib/php). You can check this using the pear command line
application:

$ pear config-get php_dir
/ust/local/lib/php

The core packages (known as the PHP Foundation Classes) provide a backbone for the
wider repository—including core functions such as error handling and the processing of
command line arguments.

We have already seen the pear application in action. This is a tool for interacting with all
aspects of PEAR, and as such it is an important part of PEAR in itself. The pear application
supports a number of subcommands. We used config-get, which shows the value of a particular
configuration setting. You can see all settings and their values with the config-show subcommand:

$ pear config-show
Configuration:

PEAR executables directory bin dir /usr/local/bin
PEAR documentation directory doc_dir /usr/local/lib/php/doc

Although pear supports many subcommands, you will probably get the most use out of
one in particular. pear install is used for installing PEAR packages.

Installing a Package with PEAR

Once you have selected your package, you can download and install it with a single command.
Here is the process for installing Log, a package that provides enhanced support for error

logging:
pear install log

It really is as simple as that. The PEAR installer is bundled with PHP and locates, down-
loads, and installs the Log package on your behalf. If the package you wish to install depends
upon others, the installation will fail with a warning message by default:

requires package 'Fandango' >= 10.5
dialekt: Dependencies failed

You can either install the required package before trying again, or you could run pear
install with the -o flag.

pear install -o log

The -o flag ensures that the PEAR installer will automatically install any required depen-
dencies for you. Some PEAR packages specify optional dependencies, and these are ignored if
-o is specified. To have all dependencies installed automatically, use the -a flag instead.

Although the PEAR repository exists in a particular location online, you will find that many
developers produce PEAR-compatible packages for ease of installation. You may be given the
location of a tarball (a tarred and gzipped package). Installing this using PEAR is almost as easy
as installing an official package:



CHAPTER 14 11 AN INTRODUCTION TO PEAR

$ pear install -o http://www.example.com/MegaQuiz-1.2.tgz
downloading MegaQuiz-1.2.tgz ...

Starting to download MegaQuiz-1.2.tgz (592 bytes)
....done: 592 bytes

install ok: MegaQuiz 1.2

You can also download a package and install it from the command line. Here we use
a Unix command called wget to fetch the MegaQuiz package before installing it from the
command line:

$ wget -nv http://127.0.1.2/MegaQuiz-1.2.tgz

09:40:36 URL:http://127.0.1.2/MegaQuiz-1.2.tgz [592/592]
-> "MegaQuiz-1.2.tgz" [1]

$ pear install MegaQuiz-1.2.tgz

install ok: MegaQuiz 1.2

You can also install a PEAR package by referencing an XML file (usually named
package.xml), which provides information about what files are to be installed where.

$ pear install package.xml
install ok: MegaQuiz 1.2

Using a PEAR Package

Once you have installed a PEAR package, you should be able to use it in your projects immedi-
ately. Your PEAR directory should already be in your include path—there should be no problem
including the package. Here’s how you might work with the bundled DB package, for example:

require_once("DB.php");
$dsn = "mysql://bob:pib44@localhost/test"”;
$db = DB::connect($dsn);

//drop and re-create table 'scores'

$db->query( "DROP TABLE scores" );

$db->query( "CREATE TABLE scores ( id INT PRIMARY KEY,
name VARCHAR
score INT )");

//add some rows
foreach ( array(
array( 'harry', 44),
array( 'mary', 66 ) ) as $row ) {
$id = $db->nextId('score_sequence');
$ret = $db->query( "insert into scores values( $id, '$row[0]', $row[1])" );

309



310

CHAPTER 14 ™ AN INTRODUCTION TO PEAR

// output the rows

$query result = $db->query( "SELECT * FROM scores");

while ( $row = $query result->fetchRow( DB_FETCHMODE_ASSOC ) ) {
print "row: {$row['id']} {$row['name']} {$row[ 'score']}\n";

}

$query result->free();
$db->disconnect();

Although the details of individual PEAR packages are beyond the scope of this chapter, it
would be perverse not to explain this example.

We begin by including DB. php. Most PEAR packages work in this way, providing a single
top-level point of access. All further require statements are then made by the package itself.

We construct a DSN (which stands for Data Source Name). A DSN is a URL-like string that
includes the database type, the user name, the password, the host, and the database name.
This string is passed to DB: : connect(). DB: : connect () uses it to determine the correct subclass
of DB_Common to return.

We then use the query() method to pass various SQL statements to the database platform:
we drop the scores table, and re-create it. We add some rows using INSERT statements. Rather
than using MySQL’s auto-increment feature to generate row IDs, we implement a sequence
table. The DB package automatically creates this for us, and generates a unique ID when we
call nextID(). This mechanism ensures that our SQL will be portable across platforms, because
SQLite, in particular, does not support AUTOINCREMENT fields.

The argument to our final query() invocation is an SQL SELECT statement. query() returns
aDB_Result object, which provides methods for working with our database result set. We call
the fetchRow() method, passing it a constant that specifies the format we would like. Finally,
we print each row.

The DB package is worth mastering. It provides a platform-agnostic interface to multiple
databases. The idea is that you write code to work with the DB API, and it handles the database-
specific syntax. The package will be used again in later examples, so you might want to take a
look at the documentation at http://pear.php.net/DB.

This is an excellent example of good object-oriented design—an abstract class called
DB_common defines an interface that supports the operations we have illustrated (in particular
query () and nextIndex()), and a set of concrete children provide the implementation. In this
way your application is ready to work with MySQL, SQLite, MSSQL, or Oracle with no change
in your code (as long as you use standard SQL syntax). Our preceding example is designed to
work with MySQL, but we can change it to work with SQLite simply by changing the DSN:

$dsn = "sqlite://./test.db";
$db = DB::connect($dsn);

Every PEAR package is different, of course, and each one should be associated with complete
usage instructions. In the case of official PEAR packages, you will find API instructions on the
Web site at http://pear.php.net/. Inall cases you should expect to be able to add the functionality
of PEAR package to your script with minimal effort. The package should provide you with a
clear, well-documented APIL.



CHAPTER 14 ™ AN INTRODUCTION TO PEAR

Handling PEAR Errors

Many, if not most, PEAR packages use the standard PEAR error class PEAR_Error. This is often
returned in place of the expected return value if something goes wrong in an operation. If
this is the case, it will be documented, and you should test return values using the static

PEAR: :isError() method.

$dsn = "qlite://./test.db";
$db = DB::connect($dsn);

if ( PEAR::isError( $db ) ) {
print "message: ". $db->getMessage() ."\n";
print “"code: ". $db->getCode() J"\n\n";
print "Backtrace:\n";

foreach ( $db->getBacktrace() as $caller ) {
print $caller['class'].$caller[ type'];
print $caller['function']."() “;
print "line ".$caller['line']."\n";

}

die;

Here we test the return value from DB: : connect () after making a deliberate mistake with
the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>