
www.allitebooks.com

http://www.allitebooks.org

Praise for PHP 5 Objects, Patterns, and Practice:

"I would certainly recommend this book (as if there was any doubt)
to any PHP developer. This is especially true for anyone interested in
learning more about using objects and classes more appropriately
than ever before . .. Read it for yourself and I think you will agree: the
desk of nearly every PHP application developer will one day be hold­
ing a copy of this book."

-Daniel Holmes, Slashdot contributor (http:/ /slashdot.org)

"Highly recommended for PHP programmers making the move to
PHP 5 and PHP 5 programmers that need a handle on best practices."

-Midwest Book Review (http:/ /midwestbookreview.com)

'11 very approachable introduction to what the latest version of the
PHP platform has to offer to an 00 developer from the Java scene."

-Lasse Koskela, JavaRanch (http:/ /radio.javaranch.com)

"If you are looking for a book that treats PHP in a mature and adult
fashion, then this is exactly the book you need."

-Visual Systems Journal (www.vsj.co.uk)

www.allitebooks.com

http://www.allitebooks.org

PHP 5 Objects,
Patterns, and Practice

MATI ZANDSTRA

APress Media. LLC

www.allitebooks.com

http://www.allitebooks.org

PHP 5 Objects, Patterns, and Practice

Copyright 0 2004 by Matt landstra
Originally published by Apress in 2004

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN 978-1-59059-380-6 ISBN 978-1-4302-0403-9 (eBook)
DOI 10.1007/978-1-4302-0403-9

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jason Gilmore

Technical Reviewer: Tolan Blundell

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,
Chris Mills, Dominic Shakeshaft, Jim Sumser

Project Manager: Sofia Marchant

Copy Edit Manager: Nicole LeClerc

Copy Editor: Ami Knox

Production Manager: Karl Brooks-Copony

Production Editor: Janet Vail

Compositor: Susan Glinert Stevens

Proofreader: Sue Boshers

Indexer: Valerie Perry

Cover Designer: Kurt Krames

Manufacturing Manager: Tom Debolski

In the United States: phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders@springer-ny. com, or visit
http: //'vMti. springer-ny. com. Outside the United States: fax +49 6221 345229, e-mail orders@springer. de,
or visit http: //'vMtl. springer. de.

The information in this book is distributed on an "as is" basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or allege4 to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://'vMtl.apress.com in the Source Code section.

www.allitebooks.com

http://www.allitebooks.org

For Louise, who is the whole point.

www.allitebooks.com

http://www.allitebooks.org

Contents at a Glance

About the Author xiii

About the Technical Reviewer xiv

Acknowledgments xv

Introduction .. xvii

PART ONE Introduction
CHAPTER 1 PHP: Design and Management 3

PART TWO Objects
CHAPTER 2 PHP and Objects .. 11

CHAPTER 3 Object Basics ... 15

CHAPTER 4 Advanced Features 43

CHAPTER 5 Object Tools 69

CHAPTER 6 Objects and Design 93

PART THREE Patterns
CHAPTER 7

CHAPTER 8

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

What Are Design Patterns? Why Use Them? 111

Some Pattern Principles 125

Generating Objects 137

Designing for Object Relations 163

Performing and Representing Tasks 185

Enterprise Patterns 219

v

vi CONTENTS AT A GLANCE

PART FOUR Practice
CHAPTER 13 Good (and Bad) Practice 293

CHAPTER 14 An Introduction to PEAR 307

CHAPTER 15 Generating Documentation with phpDocumentor 323

CHAPTER 16 Version Control with CVS 339

CHAPTER 17 Automated Build with Phing 359

PART FIVE Conclusion
CHAPTER 18 Objects, Patterns, Practice 383

PART SIX Appendixes
APPENDIX A Bibliography ... 395

APPENDIX B A Simple Parser .. 399

INDEX .. 417

Contents

About the Author .. xiii

About the Technical Reviewer ... xiv

Acknowledgments ... xv

Introduction .. xvii

PART ONE • • Introduction
CHAPTER 1 PHP: Design and Management 3

The Problem ... 3
PHP and Other Languages 4
About This Book .. 6
Summary ... a

PART TWO • • Objects
CHAPTER 2 PHP and Objects .. 11

The Accidental Success of PHP Objects 11

Advocacy and Agnosticism, the Object Debate 14

Summary .. 14

CHAPTER 3 Object Basics ... 15

Classes and Objects ... 15

Setting Properties in a Class 16
Working with Methods ... 19
Arguments and Types .. 22

Inheritance ... 27
Summary .. 41

vii

viii CONTENTS

CHAPTER 4 Advanced Features 43

Static Methods and Properties 43
Constant Properties .. 47
Abstract Classes .. 47
Interfaces .. 49
Handling Errors .. 51
Final Classes and Methods 58
Working with Interceptors 59
Defining Destructor Methods 63
Copying Objects with _cloneO 64

Defining String Values for Your Objects 66

Summary .. 67

CHAPTER 5 Object Tools ... 69

PHP and Packages ... 69
The Class and Object Functions 73

The Reflection API ... 79

Summary .. 91

CHAPTER 6 Objects and Design 93

Defining Code Design .. 93

Object-Oriented and Procedural Programming 94
Choosing Your Classes ... 99
Polymorphism .. 100
Encapsulation .. 1 01

Forget How to Do It ... 102

Four Signposts ... 103

The UML .. 104

Summary ... 113

PART THREE Patterns
CHAPTER 7 What Are Design Patterns? Why Use Them? 111

What Are Design Patterns? 111

A Design Pattern Overview 119
The "Gang of Four" Format 120

Why Use Design Patterns? 121

lltONTENTS ix

PHP and Design Patterns 123

Summary ... 123

CHAPTER 8 Some Pattern Principles 125

The Pattern Revelation .. 125

Composition and Inheritance 126

Decoupling .. 132
Code to an Interface Not an Implementation 134
The Concept That Varies 135
Patternitis ... 135

The Patterns ... 136
Summary ... 136

"CHAPTER 9 Generating Objects 137

Problems and Solutions in Generating Objects 137
The Singleton Pattern ... 141
Factory Method Pattern .. 145

Abstract Factory .. 150
But That's Cheating! .. 160
Summary ... 161

CHAPTER 10 Designing for Object Relations 163

Structuring Classes to Allow Flexible Objects 163
The Composite Pattern .. 163
The Decorator Pattern ... 174
The Facade Pattern ... 180
Summary ... 184

CHAPTER 11 Performing and Representing Tasks 185

The Interpreter Pattern .. 185

Implementation .. 187

The Strategy Pattern .. 195

The Observer Pattern .. 200

The Visitor Pattern .. 201

The Command Pattern .. 213
Summary ... 218

x CONTENTS

CHAPTER 12 Enterprise Patterns 219

Introduction .. 219

Cheating Before We Start 222

The Presentation Layer .. 231
The Business Logic Layer 259
The Data Layer ... 267
Summary ... 288

PART FOUR Practice
CHAPTER 13 Good (and Bad) Practice 293

Beyond Code .. 293
Borrowing a Wheel. ... 294
Playing Nice ... 295
Giving Your Code Wings 296
Documentation ... 297

Testing ... 298

Summary ... 306

CHAPTER 14 An Introduction to PEAR 307

What Is PEAR? ... 307
Installing a Package with PEAR 308
Using a PEAR Package .. 309
Working with the PEAR Installer 312
Summary ... 321

CHAPTER 15 Generating Documentation with phpDocumentor 323

Why Document? .. 323

Installation .. 324

Generating Documentation 325

DocBiock Comments .. 327

Documenting Classes ... 328
File-Level Documentation 330

Documenting Properties 330
Documenting Methods .. 332

Creating Links in Documentation 334

Summary ... 336

lltONTENTS xi

IIICHAPTER 16 Version Control with CVS 339

Why Use Version Control? 339

Getting CVS .. 340

Configuring a CVS Repository 341

Beginning a Project ... 343

Updating and Committing 345

Adding and Removing Files and Directories 349

Tagging and Exporting a Release 353

Branching a Project ... 355

Summary ... 358

IIICHAPTER 17 Automated Build with Phing 359

What Is Phing? ... 359

Getting and Installing Phing 360

build.xml: The Build Document 361

Summary ... 378

PART FIVE Conclusion

IIICHAPTER 18 Objects, Patterns, Practice 383

Objects ... 383

Patterns ... 386

Practice ... 389

Summary ... 391

PART SIX Appendixes

IIIAPPENDIX A Bibliography ... 395

Books .. 395

Articles ... 396

Sites .. 396

II APPENDIX B A Simple Parser .. 399

The Scanner ... 399

The Parser .. 404

1111NDEX .. 417

About the Author

MATT ZANDSTRA has worked as a Web programmer, consultant, and writer for a decade. He has
been an object evangelist for most of that time. He is the author of SAMS Teach YourselfPHP in
24 Hours (three editions) and a contributor to DHTML Unleashed. He has written articles for
Linux Magazine and Zend.com. He works primarily with PHP, Perl, and Java, building online
applications. He is an engineer at Yahoo! in London.

Matt lives in Brighton with his wife, Louise, and two children, Holly and Jake. Because it
has been so long since he has had any spare time, he only distantly recollects that he runs
regularly to offset the effects of his liking for pubs and cafes, and for sitting around reading and
writing fiction.

xiii

About the
Technical Reviewer

xiv

rDLAN BLUNDELL is .a partner in BGZ Consultants LLP. When not liaising with clients, designing
applications, or writing specifications, he occasionally finds time to develop primarily Web-based
applications in PHP and Java. He has designed and built systems for clients including the BBC
and Red Bull.

The rare times that he escapes work find him writing code, animating and making music
for pleasure, as well as more social activities such as making loud noises in fields.

Acknowledgments

When you first have an idea for a book (in my case while drinking good coffee in a Brighton
cafe), it is the subject matter alone that grips you. In the enthusiasm of the moment, it is easy to
forget the scale of the undertaking. I soon rediscovered the sheer hard work a book demands,
and I learned once again that it's not something you can do alone. At every stage of this book's
development, I have benefited from enormous support.

In fact, my thanks must predate the book's conception. The themes of this book first saw the
light of day in a talk I gave for a Brighton initiative called Skillswap (http: //WtM. skill swap. org) run
by Andy Budd. It was Andy's invitation to speak that first planted the seeds of the idea in my
mind. For that I still owe Andy a pint, and much thanks.

By chance, attending that meeting was Jessey White-Cinis, another Apress author, who put me
in touch with Martin Streicher, who in turn commissioned the book for Apress straightaway. My
thanks go out to both Jessey and Martin for seeing potential in the slightest of beginnings.

The Apress team has provided enormous support under considerable provocation as the
commitments of a demanding job and a young family consistently ate away at deadline after
deadline. I would particularly like to thank Chris Mills and Jason Gilmore for their enthusiastic
lead, Sofia Marchant for her valiant struggle to prise chapters out of me, and Ami Knox for
grappling with my words.

It's easy to lose sight ofthe plot when you're playing with code and writing about it. My
friend and technical reviewer Tolan Blundell has done an excellent job of keeping me on track,
and reminding me that details matter. Thanks Tolan.

Thanks to Steven John Metsker for his kind permission to reimplement in PHP a brutally
simplified version of the parser API he presented in his book Building Parsers in Java.

I would also like to thank all at The Farm, the Brighton new media freelancers group, who
still let me drink with them despite my permanent job. Aside from much needed light relief,
Farm members have offered a welcome space to discuss themes and problems thrown up by
the book.

Many people showed considerable patience in the face of my increasing preoccupation.
Thanks to James Cowan and Paul Silver for cutting me slack on our project. Special thanks to
Mark Lester, my boss at Yahoo!, who granted me leave at short notice so that I could concentrate
on a tricky chapter.

Writing to a deadline is not conducive to family life, and so I must send my thanks and love
to my wife, Louise, and to our children, Holly and Jake. I have missed you all.

The soundtrack to the writing of this book, in fact the soundtrack to much of my life in
recent years, was provided by John Peel. John was a broadcaster who waged a 40-year war on
the bland and mass-produced in music simply by championing everything original and eclectic
he could lay his hands on. John died suddenly in October 2004, leaving listeners around the world
bereft. He had an extraordinary impact on many lives, and I would like to add my thanks here.

XV

Introduction

I have been using PHP in object -oriented projects since 2000. For most of that time, of course,
PHP meant PHP 4, with its relatively limited support for objects. Even so, I found that I could do
pretty much everything that I wanted with it, as long as I was careful and disciplined.

In early 2003, I began initial work on a book about PHP 4 and object -oriented programming.
A good portion of the book was to focus on the strategies, disciplines, and workarounds required
to get PHP to behave itself in an object-oriented context. Then I began to hear murmurs that
PHP 5 was on its way, which dated my project before I had even started on it. I put the idea to
one side and took up another book project.

It was for that project that I found myself investigating in detail the new features of PHP 5.
It was a revelation! Almost every annoyance I had encountered in the past was addressed by the
enhanced support of the Zend Engine 2 for object -oriented programming. I found myself once
again making notes for a book, but this time a book that exploited the resources of the language,
not a book that overcame its shortcomings.

This is that book. I have tried to write it for the programmer I was when I first started working
with objects on larger projects. I have taken a basic understanding ofPHP for granted. The
typical reader of this book either knows PHP or can read up on a feature of syntax or particular
function without help from me. The nuts and bolts of object orientation are not so transparent,
though, and because many of them are new to the language, I cover them in full here.

What I lacked most, though, was a sense of how to use objects effectively, and the reasons
for the choices I needed to make. At the same time I was adrift when it came to the best practices
to deploy around my code-what tools and principles to use to test my code, to document it,
and to install it.

These are the topics that this book attempts to address. I hope you find it as rewarding to
read as it has been challenging to write!

Matt Zandstra
Brighton, UK
November 2004

xvii

CHAPTER 1

PHP: Design and Management

of the changes wrought by PHP 5, among the most important is its enhanced support for
object-oriented programming. This has stimulated much interest in objects and design within
the PHP community. In fact, this is an intensification of a process that began when PHP 4 first
made object-oriented programming a serious reality.

In this chapter, we look at the needs that design can address. We very briefly summarize
the evolution of patterns and related practices in the Java world. We look at the signs that a
similar process is occurring among PHP coders.

We also outline the topics covered by this book.
We will look at

• The evolution of disaster. A project goes bad.

• Design and PHP: How object-oriented design techniques are infecting the PHP
community.

• This book: Objects. Patterns. Practice.

The Problem
The problem is that PHP is just too easy. It tempts you to try out your ideas, and flatters you
with good results. You write much of your code straight into your Web pages, because PHP is
designed to support that. You add the heavier code to functions in library files, and before you
know it you have a working Web application.

You are well on the road to ruin. You don't realize this, of course, because your site looks
fantastic. It performs well, your clients are happy, and your users are spending money.

Trouble strikes when you go back to the code to begin a new phase. Now you have a larger
team, some more users, a bigger budget. Yet without warning things begin to go wrong. It's as
if your project has been poisoned.

Your new programmer is struggling to understand code that is second nature to you,
though perhaps a little byzantine in its twists and turns. She is taking longer than you expected
to reach full strength as a team member.

A simple change, estimated at a day, takes three days when you discover that you must
update 20 or more Web pages as a result.

3

4 CHAPTER 1 • PHP: DESIGN AND MANAGEMENT

One of your coders saves his version of a file over major changes you made to the same
code some time earlier . The loss is not discovered for three days, by which time you have
amended your own local copy. It takes a day to sort out the mess, holding up a third developer
who was also working on the file.

Because of the popularity of the application, you need to shift the code to a new server.
The project needs to be installed by hand, and you discover that file paths, database names,
and passwords are hard coded into many source files. You halt work during the move because
you don't want to overwrite the configuration changes the migration entails. The estimated
two hours becomes eight as it is revealed that someone did something clever involving the
Apache module ModRewrite, and the application now requires this to operate properly.

You finally launch phase 2, and all is well. All is well for a day and a half. The first bug report
comes in as you are about to leave the office. The client phones minutes later to complain. Her
report is similar to the first, but a little more scrutiny reveals that it is a different bug causing
similar behavior. You remember the simple change back at the start of the phase that necessi­
tated extensive modifications throughout the rest of the project.

You realize that not all the required modifications are in place. This is either because they
were omitted to start with, or because the files in question were overwritten in merge collisions.
You hurriedly make the modifications needed to fix the bugs. You're in too much of a hurry to
test the changes, but they are a simple matter of copy and paste, so what can go wrong?

The next morning you arrive at the office to find that a shopping basket module has been
down all night. The last-minute changes you made omitted a leading quotation mark, rendering
the code unusable. You fix the problem, mollify the client, and gather the team for another
day's firefighting.

This everyday tale of coding folk may seem a little over the top, but I have seen all these
things happen over and over again. Many PHP projects start their life small and evolve into
monsters.

Because the presentation layer-the PHP pages containing HTML--also contains application
logic, duplication creeps in early as database queries, authentication checks, form processing,
and more are copied from page to page. Every time a change is required to one of these blocks
of code, it must be made everywhere the code is found, or bugs will surely follow.

Lack of documentation makes the code hard to read, and lack of testing allows obscure
bugs to go undiscovered until deployment. The changing nature of a client's business often
means that code evolves away from its original purpose until it is performing tasks to which it
is fundamentally unsuited. Because such code has often evolved as a seething intermingled
lump, it is hard, if not impossible, to switch out and rewrite parts of it to suit the new purpose.

Now, none of this is bad news if you are a freelance PHP consultant. Assessing and fixing a
system like this can fund expensive espresso drinks and DVD box sets for six months or more.
More seriously, though, problems of this sort can mean the difference between a business's
success or failure.

PHP and Other Languages
PHP's phenomenal popularity meant that its boundaries were tested hard and early. As we will
see in the next chapter, PHP started life as a set of macros for managing personal home pages.
With the advent of PHP 3 and, to a greater extent, PHP 4, the language was becoming the
successful power behind large Enterprise Web sites. In many ways, though, the legacy ofPHP' s

CHAPTER 1 PHP: DESIGN AND MANAGEMENT

beginnings carried through into script design and project management. In some quarters PHP
retained an unfair reputation as a hobbyist language, best suited for presentation tasks.

About this time (around the turn of the millennium), new ideas were gaining currency in
other coding communities. An interest in object -oriented design galvanized the Java community.
You may think that this is a truism, since Java is an object -oriented language. Java provides a
grain that is easier to work with than against, of course, but using classes and objects does not
in itself determine a particular design approach.

The concept of the design pattern as a way of describing a problem together with the
essence of its solution was first discussed in the '70s. Perhaps aptly, the idea was developed in
the field of architecture, and not computer science. By the early '90s object -oriented programmers
were using the same technique to name and describe problems of software design. Perhaps the
seminal book on design patterns, Design Patterns: Elements of Reusable Object-Oriented Software,
by the affectionately nick-named Gang of Four, was published in 1995, and is still indispensable
today. The patterns it contains are a required first step for anyone starting out in this field,
which is why most of the patterns in this book are drawn from it.

The Java language itself deployed many core patterns in its API, but it wasn't until the late
'90s that design patterns made the leap to the consciousness of the coding community at large.
Patterns quickly infected the computer sections of high street bookstores, and the first hype or
tripe flame wars began on mailing lists and forums.

Whether you think that patterns are a powerful way of communicating craft knowledge or
largely hot air (and you can probably guess where I stand on that issue), it is hard to deny that
the emphasis on software design they have encouraged is beneficial in itself.

Related topics also grew in prominence. Among them was eXtreme Programming (XP),

championed by Kent Beck. XP is an approach to projects that encourages flexible, design-oriented,
highly focused planning and execution.

Prominent among XP's principles is an insistence that testing is crucial to a project's
success. Tests should be automated, run often, and preferably designed before their target
code is written.

Projects should be broken down into small (very small) iterations. Both code and
requirements should be scrutinized at all times. Architecture and design should be a shared
and constant issue, leading to the frequent revision of code.

If XP is the militant wing of the design movement, then the moderate tendency was well
represented by one of the best books about programming I have ever read: The Pragmatic
Programmer by Andrew Hunt and David Thomas, which was published in 2000.

XP was deemed a tad cultish by some, but it grew out of two decades of object -oriented
practice at the highest level and its principles were widely cannibalized. In particular, code
revision, known as refactoring, was taken up as a powerful adjunct to patterns. Refactoring has
evolved since the '80s, but it was codified in Martin Fowler's catalog ofrefactorings, Refactoring:
Improving the Design of Existing Code, which was published in 1999 and defined the field.

Testing too became an increasingly hot issue with the rise in prominence ofXP and patterns.
The importance of automated tests was further underlined by the release of the powerful JUnit
test platform, which became a key weapon in the Java programmer's armory. A landmark
article on the subject, "Test Infected: Programmers Love Writing Tests" by Kent Beck and Erich
Gamma (http: I I j unit. sourceforge. net/ docltestinfectedltesting. htm), provided an excellent
introduction to the topic and remains hugely influential.

5

6 CHAPTER 1 • PHP: DESIGN AND MANAGEMENT

PHP 4 was released at about this time, bringing with it improvements in efficiency and,
crucially, enhancements in its support for objects. These enhancements made fully object­
oriented projects a possibility. Programmers embraced this feature, somewhat to the surprise
of Zend founders Zeev Suraski and Andi Gutmans, who had joined Rasmus Lerdorf to manage
PHP development. As we shall see in the next chapter, PHP's object support was by no means
perfect, but with discipline and careful use of syntax one could really think in both objects and
PHP at the same time.

Nevertheless, design disasters like the one that opened this chapter remained common.
Design culture was some way off, and almost nonexistent in PHP publishing. Online, though,
the interest was clear. Leon Atkinson wrote a piece about PHP and patterns for Zend in 2001
(http: I lwww. zend. comlzendltrickltricks-app-patt-php. php), and Harry Fuecks launched his
excellent journal at http: I lwww. phppatterns. com in 2002. Patterns-based framework projects
such as BinaryCloud began to emerge, as well as tools for automated testing and documentation.

The release of the first PHP 5 beta in 2003 ensured the future of PHP as a language for
object -oriented programming. The Zend 2 Engine provided greatly improved object support,
as we shall see. Equally important, it sent a signal that objects and object-oriented design are
now central to the PHP project.

About This Book
This book does not attempt to break new ground in the field of object-oriented design; in that
respect it perches precariously upon the shoulders of giants. Instead, we examine, in the context
of PHP, some well-established design principles, and some key patterns (particularly those
inscribed in Design Patterns, the classic Gang of Four book). Finally, we move beyond the strict
limits of code to look at tools and techniques that can help to ensure the success of a project.
Aside from this introduction, and a brief conclusion, the book is divided into three main parts:
objects, patterns, and practice.

Objects
We begin Part Two with a quick look at the history ofPHP and objects, charting their shift from
afterthought in PHP 3 to core feature in PHP 5.

You can be an experienced and successful PHP programmer with little or no knowledge of
objects. We start from first principles to explain objects, classes, and inheritance. Even at this
early stage, we look at some of the object enhancements that PHP 5 introduced.

The basics established, we delve deeper into our topic, examining PHP's more advanced
object-oriented features. We also devote a chapter to the tools that PHP provides to help you
work with objects and classes.

It is not enough, though, to know how to declare a class, and to use it to instantiate an
object. You must first choose the right participants for your system, and decide the best ways
for them to interact. These choices are harder to describe and to learn than the bald facts about
object tools and syntax. We finish Part Two with an introduction to object-oriented design
withPHP.

CHAPTER 1 • PHP: DESIGN AND MANAGEMENT 7

Patterns
Part Two far from exhausts the subject of design. A pattern describes a problem in software
design, and provides the kernel of a solution. A solution here does not mean the kind of cut­
and-paste code you might find in a cookbook (excellent as cookbooks are as resources for the
programmer). Instead, a design pattern describes an approach that can be taken to solve a
problem. A sample implementation may be given, but it is less important than the concept it
serves to illustrate.

Part Three begins by defining design patterns and describing their structure. We also look
at some of the reasons for their popularity.

Patterns tend to promote and follow certain core design principles. An understanding of
these can help in analyzing a pattern's motivation, and can be applied usefully to all programming.
We discuss some of these principles. We also examine the UML, a platform-independent way
of describing classes and their interactions.

Although this book is not a pattern catalog, we examine some of the most famous and
useful patterns over four chapters. I describe the problem that each pattern addresses, analyze
the solution, and present an implementation example in PHP.

Practice
Even a beautifully balanced architecture will fail if it is not managed correctly. In Part Four we
look at the tools available to help you create a framework that can ensure the success of your
project. If the rest of the book is about the practice of design and programming, Part Four is
about the practice of managing your code. The tools we examine can form a support structure
for a project, helping to track bugs as they occur, promoting collaboration amongst program­
mers, providing ease of installation and clarity of code.

We have already discussed the power of the automated test. We kick off Part Four with an
introductory chapter that also introduces PHPUnit2, a package based on the much ported }Unit
testing tool. As usual, we examine the problem that automated testing is designed to address.

Many programmers are guilty of giving in to the impulse to do everything themselves. The
PHP community maintains PEAR, a repository of quality-controlled packages that can be stitched
into projects with ease. We look at the trade-offs between implementing a feature yourself and
deploying a PEAR package.

While we are on the topic of PEAR, we look at the installation mechanism that makes the
deployment of a package as simple as a single command. Best suited for stand-alone packages,
this mechanism can be used to automate the installation of your own code. I show you how to
do it.

Documentation is a pain, and along with testing, it is probably the easiest part of a project
to jettison when deadlines loom. I argue that this is probably a mistake, and show you
PHPDocumentor, a tool that helps you tum comments in your code into a set ofhyperlinked
HTML documents that describe every element of your API.

Every tool or technique discussed in this book directly concerns, or is deployed using,
PHP. The one exception to this rule is Concurrent Versions System (CVS). CVS is a version
control system that enables many programmers to work together on the same codebase
without ovezwriting one another's work. CVS allows you to grab snapshots of your project at
any stage in development, to see who has made which changes, and to split the project into
mergeable branches. CVS will save your project one day.

8 CHAPTER 1 PHP: DESIGN AND MANAGEMENT

PEAR provides a build tool that is ideal for installing self-enclosed packages. For a complete
application, however, greater flexibility is required. Applications are messy. They may need
files installed in nonstandard locations, or to set up databases, or to patch server configuration.
In short, applications need stuff to be done during installation. Phing is a faithful port of a Java
tool called Ant. Phing and Ant interpret a build file, and process your source files in any way
you tell them to. At heart, this usually means copying them from a source directory to various
target locations around your system, but as your needs get more complex, Phing scales effort­
lessly to meet them.

Summary
This is a book about object -oriented design and programming. It is also about tools for managing
a code base from collaboration through to deployment.

These two approaches address the same problem from different but complementary
angles. The objective is to build systems that achieve their objectives and lend themselves well
to ongoing collaborative development.

A secondary objective lies in the aesthetics of software systems. As programmers, we build
machines that have shape and action. We invest many hours of our working day, and many
days of our lives, writing these shapes into being. We want both those polls: the instruction,
and the process it drives, the class and its objects, to form an elegant whole. The business of
version control, testing, documentation, and build does more than support this objective, it is
part of the shape we want to achieve. Just as we want clean and clever code, we want a code­
base that is designed well for developers and users alike. The mechanics of sharing, reading,
and deploying the project should be as important as the code itself.

CHAPTER 2

PHP and Objects

objects were not always a key part of the PHP project. In fact, objects have been described as
an afterthought by PHP's designers.

As afterthoughts go, this one has proved remarkably resilient. In this chapter, I introduce
coverage of objects by summarizing the development ofPHP's object-oriented features.

We will look at

• PHPIFI 2.0: PHP, but not as we know it.

• PHP 3: Objects make their first appearance.

• PHP 4: Object-oriented programming grows up.

• PHP 5: Objects at the heart of the language.

The Accidental Success of PHP Objects
With so many object-oriented PHP libraries and applications in circulation, to say nothing of
PHP 5's extensive object enhancements, the rise of the object in PHP may seem like the culmi­
nation of a natural and inevitable process. In fact, nothing could be further from the truth.

In the Beginning: PHP /FI
The genesis of the PHP as we know it today lies with two tools developed by Rasmus Lerdorf
using Perl. PHP stood for Personal Homepage Tools. FI stood for Form Interpreter. Together
they comprised macros for sending SQL statements to databases, processing forms, and
flow control.

These tools were rewritten in C and combined under the name PHP /FI 2.0. The language
at this stage looked different from the syntax we recognize today, but not that different. There
was support for variables, associative arrays, and functions. Objects, though, were not even on
the horizon.

Syntactic Sugar: PHP 3
In fact, even as PHP 3 was in the planning stage, objects were off the agenda. As now, the principle
architects of PHP 3 were Zeev Suraski and Andi Gutmans. PHP 3 was a complete rewrite of
PHP /Fl 2.0, but objects were not deemed a necessary part of the new syntax.

11

12 CHAPTER 2 PHP AND OBJECTS

According to Zeev Suraski, support for classes was added almost as an afterthought
(on 27 August 1997, to be precise). Classes and objects were actually just another way to define
and access associative arrays.

Of course, the addition of methods and inheritance made classes much more than glorified
associative arrays, but there were still severe limitations as to what you could do with your
classes. In particular, you could not access a parent class's overridden methods (don't worry if
you don't know what this means yet, I will cover it). Another disadvantage we will examine in
the next section was the less than optimal way that objects were passed around in PHP scripts.

That objects were a marginal issue at this time is underlined by their lack of prominence in
official documentation. The manual devoted one sentence and a code example to objects. The
example did not illustrate inheritance or properties.

PHP 4 and the Quiet Revolution
If PHP 4 was yet another ground-breaking step for the language, most of the core changes took
place beneath the surface. The Zend Engine (its name derived fromZeev andAndi) was written
from scratch to power the language.

From our object-ive perspective, the fact that it became possible to override parent methods
and access them from child classes was a major benefit.

The main drawback remained, however. Assigning an object to a variable, passing it to a
function, or returning it from a method, resulted in a copy being made. So an assignment like this:

$my_obj =new User('bob');
$other = $my_obj;

resulted in the existence of two User objects, rather than two references to the same User
object. In most object -oriented languages you would expect assignment by reference, rather
than by value as here. This means that you pass and assign handles that point to objects rather
than copy the objects themselves. The default pass-by-value behavior resulted in many obscure
bugs as programmers unwittingly modified objects in one part of a script, expecting the changes
to be seen via references elsewhere. Throughout this book we will see many examples in which
we maintain multiple references to the same object.

Luckily, there was a way of enforcing pass-by-reference, but it meant remembering to use
a clumsy construction.

To assign by reference:

$other =& $my_obj;
II $other and $my_obj point to same object

To pass by reference:

function setSchool(& $school) {
II $school is now a reference to not a copy of passed object

}

To return by reference:

function & getSchool() {

}

II returning a reference not a copy
return $this->school;

CHAPTER 2 • PHP AND OBJECTS 13

Although this worked fine, it was easy to forget to add the ampersand, and it was all too
easy for bugs to creep into object -oriented code. These were particularly hard to track down,
because they rarely caused any reported errors, just nonsensical behavior.

Coverage of syntax in general, and objects in particular, was extended in the PHP manual,
and object -oriented coding began to bubble up to the mainstream. Objects in PHP were not
uncontroversial (then, as now, no doubt), and threads like "Do I need objects?" were common
flame-bait in mailing lists. Indeed, the Zend site played host to articles that encouraged object­
oriented programming side by side with others that sounded a warning note.

Pass-by-reference issues and controversy notwithstanding, many coders just got on and
peppered their code with ampersand characters. Object -oriented PHP grew in popularity. As
Zeev Suraski wrote recently in an article for DevX.com:

One of the biggest twists in PHP's history was that despite the very limited
functionality, and despite a host of problems and limitations, object oriented
programming in PHP thrived and became the most popular paradigm for the
growing numbers of off-the-shelf PHP applications. This trend, which was
mostly unexpected, caught PHP in a sub-optimal situation. It became
apparent that objects were not behaving like objects in other 00 languages,
and were instead behaving like associating arrays.

[http://www.devx.com/webdev/Article/10007/0/page/1]

As noted in the previous chapter, interest in object-oriented design became obvious in
sites and articles online. PHP' s official software repository, PEAR, itself embraced object -oriented
programming. Some of the best examples of deployed object-oriented design patterns are to
be found in the packages that PEAR makes available to extend PHP' s functionality.

Change Embraced: PHP 5
PHP 5 represents an explicit endorsement of objects and object -oriented programming. That
is not to say that objects are now the only way to work with PHP (this book does not say that
either, by the way). Objects, are, however, now recognized as a powerful and important means
for developing enterprise systems, and PHP fully supports them in its core design.

Objects have moved from afterthought to language driver. Perhaps the most important
change is the default pass-by-reference behavior in place of the evils of object copying. This
is only the beginning though. Throughout the book, and particularly this part of it, we will
encounter many more changes that extend and enhance PHP's object support, including argu­
ment hinting, private and protected methods and properties, the static keyword, and exceptions,
among many others.

PHP remains a language that supports object-oriented development, rather than an
object-oriented language. Its support for objects, however, is now well enough developed to
justify books like this one that concentrate upon design from an exclusively object -oriented
point of view.

14 CHAPTER 2 PHP AND OBJECTS

Advocacy and Agnosticism, the Object Debate
Objects and object-oriented design seem to stir passions on both sides of the enthusiasm
divide. Many excellent programmers have produced excellent code for years without using
objects, and PHP continues to be a superb platform for procedural Web programming.

This book naturally displays an object -oriented bias throughout, a bias that reflects the
author's object-infected outlook. Because this book is a celebration of objects, and an intro­
duction to object -oriented design, it is inevitable that the emphasis is unashamedly object­
oriented. Nothing in this book is intended, however, to suggest that objects are the one true
path to coding success with PHP.

As you read, it is worth bearing in mind the famous Perl motto "There's more than one way
to do it." This is especially true of smaller scripts, where getting a quick working example up
and running is more important than building a structure that will scale well into a larger system
(test projects of this sort are known as "spikes" in the XP world).

Code is a flexible medium. The trick is to know when your quick proof of concept is becoming
the root of a larger development, and to call a halt before your design decisions are made for
you by sheer weight of code. Now that you have decided to take a design-oriented approach to
your growing project, there are plenty of books that will provide examples of procedural design
for many different kinds of projects. This book offers some thoughts about designing with
objects. I hope that it provides a valuable starting point.

Summary
This short chapter placed objects in their context in the PHP language. The future for PHP is
very much bound up with object -oriented design. In the next few chapters, I take a snapshot of
PHP's current support for object features, and introduce some design issues.

CHAPTER 3

Object Basics

objects and classes lie at the heart of this book and, with the introduction of the Zend 2
Engine, they lie at the heart of PHP too. In this chapter, I lay down the groundwork and show
you objects from first principles.

Things have changed quite radically since PHP 4, so even if you are an experienced PHP
programmer, you will probably find something new here. If you are new to object-oriented
programming, you should read this chapter carefully.

This chapter will cover

• Classes and objects: Declaring classes, instantiating objects

• Constructor methods: Automating the setup of your objects

• Primitive and class types: Why type matters

• Inheritance: Why we need inheritance, and how to use it

• Visibility: Streamlining your object interfaces and protecting your methods and proper­
ties from meddling

Classes and Objects
The first barrier to understanding object-oriented programming is the strange and wonderful
relationship between the class and the object. For many people it is this relationship that
represents the first moment of revelation, the first flash of object-oriented excitement. So let's
not skimp on the basics.

A First Class
Classes are often defined in terms of objects. This is interesting because objects are often defined in
terms of classes. This circularity can make the first steps in object-oriented programming hard
going. Since classes define objects, we should begin by defining a class.

In short, a class is a code template used to generate objects. We declare a class with the
class keyword and an arbitrary class name. Class names can be any combination of numbers
and letters, although they must not begin with a number. The code associated with a class must
be enclosed within braces. Let's combine these elements to build a class.

15

16 CHAPTER 3 OBJECT BASICS

class ShopProduct {
II class body

}

The Shop Product class in the example is already a legal class, although it is not terribly
useful yet. We have done something quite significant, however. We have defined a type. That

is, we have created a category of data that we can use in our scripts. The power of this should

become clearer as you work through the chapter.

A First Object (or Two)
If a class is a template for generating objects, it follows that an object is data that has been
structured according to the template defined in a class. An object is said to be an instance of its

class. It is of the type defined by the class.
We use our ShopProduct class as a mold for generating ShopProduct objects. To do this, we

need the new operator. The new operator is used in conjunction with the name of a class, like this:

$product1 = new ShopProduct();
$product2 = new ShopProduct();

The new operator is invoked with a class name as its only operand and generates an instance of

that class. That is, in our example, it generates a ShopProduct object.
We have used the ShopProduct class as a template to generate two ShopProduct objects.

Although they are functionally identical (that is, empty), $product1 and $product2 are different

objects of the same type generated from a single class.
If you are still confused, try this analogy. Think of a class as a cast in a plastic duck machine.

Our objects are the ducks that this machine generates. The type of thing they are is determined

by the mold from which they are pressed. They look identical in every way, but they are distinct

entities. In other words, they are different instances of the same thing. The ducks may even

have their own serial numbers to prove their identities. Every object that is created in a PHP
script is also given its own unique identity (unique to that process, that is, not globally unique).

We can prove this by printing out our $product1 and $product2 objects:

print "$product1\n";
print "$product2\n";
II output:
II Object id #1
II Object id #2

Objects are not meant to be printed directly, on the whole, but as you can see, printing an

object reveals its identity number.
In order to make our objects more interesting, we can amend the ShopProduct class to

support special data fields called properties.

Setting Properties in a Class
Classes can define special variables called properties. A property, also known as a member

variable, holds data that can vary from object to object. So in the case of ShopProduct objects we
may wish to manipulate title and price fields, for example.

CHAPTER 3 OBJECT BASICS 17

A property in a class looks similar to a standard variable except that we must precede our
declaration and assignment with a visiblity keyword. This can be public, protected, or private,
and determines the scope from which the property can be accessed.

Note Scope refers to the function or class context in which a variable has meaning. So a variable defined
in a function exists in local scope, and a variable defined outside of the function exists in global scope. As a
rule of thumb, it is not possible to access data defined in a scope that is more local than the current. So if you
define a variable inside a function, you cannot then access it from outside that function. Objects are more
permeable than this, in that some object variables can sometimes be accessed from other contexts. Which
variables can be accessed and from what context is determined by the public, protected, and private
keywords, as we shall see.

We will return to these keywords and the issue of visibility later in this chapter. For now,
let's declare some properties using the public keyword:

}

class ShopProduct {

public $title
public $producerMainName
public $producerFirstName
public $price

"default product";
"main name";
"first name";

= Oj

As you can see, we set up four properties, assigning a default value to each of them. Any
objects that we instantiate from the ShopProduct class will now be prepopulated with default
data. The public keyword in each property declaration ensures that we can access the property
from outside of the object context.

Note The visibility keywords public, private, and protected were introduced in PHP 5. If you are
running PHP 4, these examples will not work for you. In PHP 4 all properties should be declared with the var
keyword, which is identical in effect to using public:

class ShopProduct {
var $title

}

var $producerMainName
var $producerFirstName
var $price

"default product";
"main name";
"first name";

= Oj

As the examples in this book become more complex, it will become more difficult to adapt them to work with
PHP 4. If you have not yet done so, now might be the time to consider upgrading.

18 CHAPTER 3 • OBJECT BASICS

We can access property variables on an object-by-object basis using the characters 1
- > 1 in

conjunction with an object variable and property name, like this:

$product1 = new ShopProduct();
print $product1->title;
II outputs:
II default product

Because the properties are defined as public, we can assign values to them just as we can
read them, replacing any default value set in the class:

$product1 = new ShopProduct();
$product2 = new ShopProduct();
$product1->title="My Antonia";
$product2->title="Catch 22";

By declaring and setting the $title property in the Shop Product class, we ensure that all
Shop Product objects have this property. This means that client code can work with Shop Product
objects on that assumption. Because we can reset it, though, the value of $title may vary from
object to object.

In fact, PHP does not force us to declare all our properties in the class. We could add properties
dynamically to an object, like this:

$product1->arbitraryAddition = "treehouse";

This method of assigning properties to objects is not considered good practice in object­
oriented programming, and is almost never used.

•ote Is it bad practice to set properties dynamically? When you create a class you define a type. You
inform the world that your class (and any object instantiated from it) consists of a particular set of fields and
functions. If your ShopProduct class defines a $title property, then any code that works with ShopProduct
objects can proceed on the assumption that a $title property will be available. There can be no guarantees
about properties that have been dynamically set, though.

Our objects are still cumbersome at this stage. When we need to work with an object's
properties, we must currently do so from outside the object. We reach in to set and get property
information. Setting multiple properties on multiple objects will soon become a chore:

$product1 = new ShopProduct();
$product1->title = "My Antonia";
$product1->producerMainName = "Cather";
$product1->producerFirstName = "Willa";
$product1->price = 5.99;

We work once again with the Shop Product class, overriding all the default property values
one by one until we have set all product details. Now that we have set some data we can also
access it:

print "author: {$product1->producerFirstName} "
."{$product1->producerMainName}\n";

II output:
II author: Willa Cather

CHAPTER 3 OBJECT BASICS

There are a number of problems with this approach to setting property values. Because
PHP lets you set properties dynamically, you will not get warned if you misspell or forget a
property name. For example, we might mistakenly write the line

$product1->producerMainName = "Cather";

as

$product1->producerSecondName = "Cather";

As far as the PHP engine is concerned, this code is perfectly legal, and we are not warned.
When we come to print the author name, though, we will get unexpected results.

Another problem is that our objects are altogether too relaxed. We are not forced to set a
title, or a price, or producer names. Client code can be sure that these properties exist, but is
likely to be confronted with default values as often as not. Ideally, we would like to encourage
anyone who instantiates a ShopProduct object to set meaningful property values.

Finally, we have to jump through hoops to do something that we will probably want to do
quite often. Printing the full author name is a tiresome process:

print "author: {$product1->producerFirstName} "
."{$product1->producerMainName}\n";

It would be nice to have the object handle such drudgery on our behalf.
All of these problems can be addressed by giving our Shop Product object its own set of

functions that can be used to manipulate property data from within the object context.

Working with Methods
Just as properties allow your objects to store data, methods allow your objects to perform tasks.
Methods are special functions declared within a class. As you might expect, a method declara­
tion resembles a function declaration. The function keyword precedes a method name, followed
by an optional list of argument variables in parentheses. The method body is enclosed by braces:

public function myMethod($argument, $another) {
II ...

}

Unlike functions, methods must be declared in the body of a class. They can also accept a
number of qualifiers, including a visibility keyword. Like properties, methods can be declared
public, protected, or private. By declaring a method public, we ensure that it can be invoked
from outside of the current object. If you omit the visibility keyword in your method declaration,
the method will be declared public implicitly. We will return to method modifiers later in
sthe chapter.

19

20 CHAPTER 3 OBJECT BASICS

Note PHP 4 does not recognize visibility keywords for methods or properties. Adding public, protected,
or private to a method declaration will cause a fatal error. All methods in PHP 4 are implicitly public.

In most circumstances you will invoke a method using an object variable in conjunction
with->, and the method name. You must use parentheses in your method call as you would if
you were calling a function (even if you are not passing any arguments to the method).

$my0bj = new MyClass();
$myObj->myMethod("Harry", "Palmer");

Let's declare a method in our ShopProduct class:

class ShopProduct {
public $title
public $producerMainName
public $producerFirstName
public $price

function getProducer() {

"default product";
"main name";
"first name";

= o;

return "{$this->producerFirstName}".
" {$this->producerMainName}";

}
}

$productl = new ShopProduct();
$productl->title = "My Antonia";
$productl->producerMainName = "Cather";
$productl->producerFirstName = "Willa";
$productl->price = 5.99;

print "author: ". $productl- >get Producer(). "\n";
II outputs:
II author: Willa Cather

We add the get Producer() method to the Shop Product class. Notice that we do not include
a visibility keyword. This means that get Producer() is a public method and can be called from
outside the class.

We use a new feature in this method. The $this pseudo-variable is the mechanism by which
a class can refer to an object instance. If you find this concept hard to swallow, try replacing
$this with "the current instance." So the statement

$this->producerFirstName

translates to

the $producerFirstName property of the current instance.

CHAPTER 3 • OBJECT BASICS 21

So get Producer() combines and returns the $producerFirstName and $producerMainName
properties, saving us from the chore of performing this task every time we need to quote the
full producer name.

This has improved our class a little. We are still stuck with a great deal of unwanted flexi­
bility, though. We rely upon the client coder to change a ShopProduct object's properties from
their default values. This is problematic in two ways. Firstly, it takes five lines to properly
initialize a ShopProduct object, and no coder will thank you for that. Secondly, we have no way
of ensuring that any of the properties are set when a ShopProduct object is initialized. What we
need is a method that is called automatically when an object is instantiated from a class.

Creating a Constructor Method
A constructor method is invoked when an object is created. You can use it to set things up,
ensuring that essential properties are set, and any necessary preliminary work is completed. In
PHP versions previous to 5, constructor methods took on the name of the clas~ that enclosed
them. So the ShopProduct class would use a Shop Product () method as its constructor. As ofPHP 5
you should name your constructor method_ construct(). Note that the method name begins
with two underscore characters. We will see this naming convention for many other special
methods in PHP classes. Let's define a constructor for the Shop Product class.

class ShopProduct {

}

public $title;
public $producerMainName;
public $producerFirstName;
public $price = o;

function _construct($title,

}

$firstName, $mainName, $price) {
$this->title = $title;
$this->producerFirstName = $firstName;
$this->producerMainName = $mainName;
$this->price = $price;

function getProducer() {

}

return "{$this->producerFirstName}".
" {$this->producerMainName}";

Once again we gather functionality into the class, saving effort and duplication in the code
that uses it. The_ construct () method is invoked when an object is created using the new operator.

$product1 =new ShopProduct("My Antonia",
"Willa", "Cather", 5.99);

print "author: ". $product1->getProducer(). "\n";
II outputs:
II author: Willa Cather

22 CHAPTER 3 OBJECT BASICS

Any arguments supplied are passed to the constructor. So in our example, we pass the title,
the first name, the main name, and the product price to the constructor. The constructor
method uses the pseudo-variable $this to assign values to each of the object's properties.

Note PHP 4 does not recognize the construct () method as a constructor. If you are using PHP 4 you
can create a constructor by declaring a method with the same name as the class that contains it. So for a
class called ShopProduct, you would declare a constructor like this:

function ShopProduct($title,
$firstName, $mainName, $price) {

// ...
}

Php still honors this naming scheme, but unless you are writing for backwards compatibility, it is better to use
_construct() when you name your constructor methods.

A Shop Product object is now easier to instantiate and safer to use. Instantiation and setup
are completed in a single statement. Any code that uses a ShopProduct object can be reasonably
sure that all its properties are initialized.

This predictability is an important aspect of object -oriented programming. You should
design your classes so that users of objects can be sure of their features. By the same token,
when you use an object you should be sure of its type. In the next section, we examine a mech­
anism that we can use to enforce object types in method declarations.

Arguments and Types
Type determines the way that data can be managed in your scripts. You use the string type to
display character data, for example, and manipulate such data with string functions. Integers
are used in mathematical expressions, Boo leans are used in test expressions, and so on. These
categories are known as "primitive types." On a higher level, though, a class defines a type.
A ShopProduct object, therefore, belongs to the primitive type "object," but it also belongs to
the "ShopProduct" class type. In this section we will look at types of both kinds in relation to
class methods.

Method and function definitions do not necessarily require that an argument should be of
a particular type. This is both a curse and a blessing. The fact that an argument can be of any
type offers you flexibility. You can build methods that respond intelligently to different data
types, tailoring functionality to changing circumstances. This flexibility can also cause ambi­
guity to creep into code when a method body expects an argument to hold one type but gets
another.

Primitive Types
PHP is a loosely typed language. This means that there is no necessity for a variable to be
declared to hold a particular data type. The variable $number could hold the value 2 and the

CHAPTER 3 • OBJECT BASICS 23

string "two" within the same scope. In strongly typed languages such as Cor Java, you must
declare the type of a variable before assigning a value to it, and, of course, the value must be of
the specified type.

This does not mean that PHP has no concept of type. Every value that can be assigned to a
variable has a type. You can determine the type of a variable's value using one ofPHP's type­
checking functions. Table 3-llists the primitive types recognized in PHP and their corresponding
test functions. Each function accepts a variable or value and returns true if this argument is of
the relevant type.

Table 3-1. Primitive Types and Checking Functions in PHP

Type Checking Function Type Description

is_bool() Boolean One of the two special values true or false

is_integer() Integer A whole number

is_double() Double A floating point number (a number with a deci-
mal point)

is_string() String Character data

is_object() Object An object

is_array() Array An array

is_resource() Resource A handle for identifying and working with
external resources such as databases or files

is_null() NULL An unassigned value

Checking the type of a variable can be particularly important when you work with method
and function arguments.

Primitive Types Matter: An Example
You need to keep a close eye on type in your code. Let's look at an example of one of the many
type-related problems that you could encounter.

Imagine that you are extracting configuration settings from anXMLfile. The <resolvedomains>
XML element tells your application whether it should attempt to resolve IP addresses to
domain names, a useful but relatively expensive process in terms of time. Here is some
sampleXML:

<settings>
<resolvedomains>false</resolvedomains>

</settings>

The string "false" is extracted by your application and passed as a flag to a method called
outputAddresses(), which displays IP address data. Here is outputAddresses():

24 CHAPTER 3 • OBJECT BASICS

function outputAddresses($resolve) {

}

foreach ($this->addresses as $address) {
print $address;
if ($resolve) {

print" (".gethostbyaddr($address).")";
}
print "\n";

}

As you can see, the outputAddresses () method loops through an array of IP addresses,
printing each one. If the $resolve argument variable itself resolves to true, the method outputs
the domain name as well as the IP address.

Let's examine some code that might invoke this method:

$settings = simplexml_load_file("settings.xml");
$manager = new AddressManager();
$manager->outputAddresses($settings->resolvedomains);

The code fragment uses the SimpleXML API (which was introduced with PHP 5) to acquire
a value for the resolvedomains element. In our example, we know that this value is the string
"false".

This code will not behave as you might expect. In passing the string "false" to the
outputAddresses() method, we misunderstand the implicit assumption the method makes
about the argument. The method is expecting a Boolean value (that is true or false). The
string "false" will, in fact, resolve to true in a test. This is because PHP will helpfully cast a
nonempty string value to the Boolean true for you in a test context. So

if ("false") {
II ...

}

is equivalent to

if (true) {
II ...

}

There are a number of approaches you might take to fix this.
You could make the outputAddresses () method more forgiving so that it recognizes a

string and applies some basic rules to convert it to a Boolean equivalent.

function outputAddresses($resolve) {

}

if (is_string($resolve)) {

}
II

$resolve =

(preg_match("lfalselnoloffli", $resolve))?
false:true;

CHAPTER 3 OBJECT BASICS

You could leave the outputAddresses () method as it is, but include a comment containing
clear instructions that the $resolve argument should contain a Boolean value. This approach
essentially tells the coder to read the small print or reap the consequences.

!**
* Outputs the list of addresses.
* If $resolve is true then each address will be resolved
* @param $resolve
*I

function outputAddresses(
I I ...

}

Boolean Resolve the address?

$resolve) {

Finally, you could make outputAddresses() strict about the type of data it is prepared to
find in the $resolve argument.

function outputAddresses($resolve) {
if (! is_bool($resolve)) {

die("outputAddress() requires a Boolean argument\n");
}
!! ...

}

This approach forces client code to provide the correct data type in the $resolve argument.
Converting a string argument on the client's behalf would be the more friendly approach, but
would probably present other problems. In providing a conversion mechanism, we second­
guess the context and intent of the client. By enforcing the Boolean data type, on the other
hand, we leave the client to decide whether to map strings to Boolean values, and which word
will map to which value. The outputAddres ses () method, meanwhile, concentrates on the task
it is designed to perform. This emphasis upon performing a specific task in deliberate igno­
rance of the wider context is an important principle in object -oriented programming, and we
will return to it frequently throughout the book.

In fact, your strategies for dealing with argument types will depend upon the seriousness
of any potential bugs. PHP casts most primitive values for you depending upon context. Numbers
in strings are converted to their integer or floating point equivalents when used in a mathematical
expression, for example. So your code might be naturally forgiving of type errors. If you expect
one of your method arguments to be an array, however, you may need to be more careful.
Passing a nonarray value to one of PHP' s array functions will not produce a useful result, and
could cause a cascade of errors in your method.

It is likely, therefore, that you will strike a balance between testing for type, converting
from one type to another, and relying upon good, clear documentation (you should provide
the documentation whatever else you decide to do).

However you address problems of this kind, you can be sure of one thing: type matters.
The fact that PHP is loosely typed makes this all the more important. You cannot rely on a
compiler to prevent type-related bugs. It is up to you to consider the potential impact of unex­
pected types when they find their way into your arguments. You cannot afford to trust client
coders to read your thoughts, and you should always consider how your methods will deal with
incoming garbage.

25

26 CHAPTER 3 • OBJECT BASICS

Taking the Hint: Object Types
Just as an argument variable can contain any primitive type, by default it can contain an object
of any type. This flexibility has its uses, but can present problems in the context of a method
definition.

Imagine a method designed to work with a ShopProduct object:

class ShopProductWriter {

}

public function write($shopProduct) {
$str = "{$shopProduct->title}: ";
$str .= $shopProduct->getProducer();
$str .= " ({$shopProduct->price})\n";
print $str;

}

We can test this class like this:

$product1 =new ShopProduct("My Antonia",
"Willa", "Cather", 5.99);

$writer = new ShopProductWriter();
$writer->write($product1);
II output:
II My Antonia: Willa Cather (5.99)

The ShopProductWri ter class contains a single method: write (). The write () method
accepts a ShopProduct object and uses its properties and methods to construct and print a
summary string. We use the name of the argument variable, $shopProduct, as a signal that the
method expects a Shop Product object, but we do not enforce this.

To address this problem, PHP 5 introduced class type hints. To add a type hint to a method
argument, you simply place a class name in front of the method argument you need to constrain.
So we can amend our write() method thus:

public function write(ShopProduct $shopProduct) {
II ...

}

Now the write () method will only accept the $shopProduct argument if it contains an
object of type ShopProduct. Let's try to call write () with a dodgy object:

class Wrong { }
$writer = new ShopProductWriter();
$writer->write(new Wrong());

Because the write () method contains a class type hint, passing it a Wrong object causes a
fatal error.

Fatal error: Argument 1 must be an object of class ShopProduct ...

This saves us from having to test the type of the argument before we work with it. It also
makes the method signature much clearer for the client coder. She can see the requirements of

CHAPTER 3 OBJECT BASICS

the write() method at a glance. She does not have to worry about some obscure bug arising
from a type error, because the hint is rigidly enforced.

Even though this automating type checking is a great way of preventing bugs, it is impor­
tant to understand that hints are checked at runtime. This means that a class hint will only
report an error at the moment that an unwanted object is passed to the method. If a call to
write () is buried in a conditional clause that only runs on Christmas morning, then you may
find yourself working the holiday if you haven't checked your code carefully.

So far we have discussed types and classes as if they were synonymous. There is a key
difference, however. When you define a class you also define a type, but a type can describe an
entire family of classes. The mechanism by which different classes can be grouped together
under a type is called inheritance. We discuss inheritance in the next section.

Inheritance
Inheritance is the mechanism by which one or more classes can be derived from a base class.

A class that inherits from another is said to subclass it. This relationship is often described
in terms of parents and children. A child class is derived from and inherits characteristics from
the parent. These characteristics consist of both properties and methods. The child class will
typically add new functionality in addition to that provided by its parent (also known as a super
class); for this reason a child class is said to "extend" its parent.

Before we dive into the syntax of inheritance, let's examine the problems it can help us
to solve.

The Inheritance Problem
Look again at the ShopProduct class. At the moment it is nicely generic. It can handle all sorts
of products.

$product1 = new ShopProduct(
$product2 = new ShopProduct(

"My Antonia", "Willa", "Cather", 5.99);
"Exile on Coldharbour Lane",

print "author:
print "artist:

"The", "Alabama 3", 10.99);
".$product1->getProducer()."\n";
".$product2->getProducer()."\n";

II output:
II author: Willa Cather
II artist: The Alabama 3

Separating the producer name into two parts works well with both books and CDs. We want to
be able to sort on "Alabama 3" and "Cather", not on "The" and "Willa". Laziness is an excellent
design strategy, so there is no need to worry about using ShopProduct for more than one kind of
product at this stage.

If we add some new requirements to our example, however, things rapidly become more
complicated. Imagine, for example, that you need to represent data specific to books and CDs.
For CDs you must store the total playing time, for books the total number of pages. There could
be any number of other differences, but these will serve to illustrate the issue.

How can we extend our example to accommodate these changes? Two options immediately
present themselves. Firstly, we could throw all the data into the ShopProduct class. Secondly,
we could split ShopProduct into two separate classes.

27

28 CHAPTER 3 OBJECT BASICS

Let's examine the first approach. Here, we combine CD- and book-related data in a
single class:

class ShopProduct {
public $numPages;
public $playlength;
public $title;

}

public $producerMainName;
public $producerFirstName;
public $price;

function __ construct($title, $firstName,
$mainName, $price,
$numPages=O, $playlength=O) {

$this->title $title;

}

$this->producerFirstName =
$this->producerMainName
$this->price
$this->numPages
$this->playlength

function getNumberOfPages() {
return $this->numPages;

}

function getPlaylength() {
return $this->playlength;

}

function getProducer() {

$firstName;
$mainName;
$price;
$numPages;
$play length;

return "{$this->producerFirstName}".
" {$this->producerMainName}";

}

An object instantiated from this class will include a redundant method, and possibly an
unnecessary constructor argument. A CD will store information and functionality relating to
book pages, and a book will support play-length data. This is probably something you could
live with right now. But what would happen if we added more product types, each with its own
methods, and then added more methods for each type? Our class would become increasingly
complex and hard to manage.

So forcing fields that don't belong together into a single class leads to bloated objects with
redundant properties and methods.

The problem doesn't end with data, either. We run into difficulties with functionality as
well. Consider a method that summarizes a product. The sales department has requested a
clear summary line for use in invoices. They want us to include the playing time for CDs and a
page count for books, so we will be forced to provide different implementations for each type.
We also need to use a flag to keep track of the object's format. Here's an example:

CHAPTER 3 • OBJECT BASICS 29

function getSummaryline() {
$base = "{$this->title} ({$this->producerMainName}, ";
$base .= "{$this->producerFirstName})";

}

if ($this->type == 'book') {
$base .= ": page count- {$this->numPages}";

} else if ($this->type == 'cd') {
$base .= ": playing time - {$this->playlength}";

}
return $base;

Once again our ShopProduct class has become more complex than necessary. As we add
more differences to our formats, or add new formats, these functional differences will become
harder to manage. Perhaps we should try the second approach to this problem.

Since ShopProduct is beginning to feel like two classes in one, we could accept this and
create two types rather than one. Here's how we might do it:

class CdProduct {
public $playlength;
public $title;
public $producerMainName;
public $producerFirstName;
public $price;

function __ construct($title, $firstName,
$mainName, $price,
$playlength) {

}

$this->title = $title;
$this->producerFirstName = $firstName;
$this->producerMainName = $mainName;
$this->price = $price;
$this->playlength = $playlength;

function getPlaylength() {
return $this->playlength;

}

function getSummaryLine() {

}

$base "{$this->title} ({$this->producerMainName}, ";
$base .= "{$this->producerFirstName})";
$base .= ": playing time - {Sthis->playlength}";
return $base;

30 CHAPTER 3. OBJECT BASICS

}

function getProducer() {

}

return "{$this->producerFirstName}".
" {$this->producerMainName}";

class BookProduct {
public $numPages;
public $title;

}

public $producerMainName;
public $producerFirstName;
public $price;

function __ construct($title, $firstName,
$mainName, $price,
$numPages) {

'}

$this->title = $title;
$this->producerFirstName = $firstName;
$this->producerMainName = $mainName;
$this->price = $price;
$this->numPages = $numPages;

function getNumberOfPages() {
return $this->numPages;

}

function getSummaryline() {
$base "{$this->title} ({$this->producerMainName}, ";
$base .= "{$this->producerFirstName})";
$base .= ": page count - {$this->numPages}";
return $base;

}

function getProducer() {

}

return "{$this->producerFirstName}".
" {$this->producerMainName}";

We have addressed the complexity issue, but at a cost. We can now create a getSummaryline()
method for each format without having to test a flag. Neither class maintains fields or methods
that are not relevant to it.

The cost lies in duplication. The getProducerName () method is exactly the same in each
class. Each constructor sets a number of identical properties in the same way. This is another
unpleasant odor you should train yourself to sniff out.

CHAPTER 3 • OBJECT BASICS 31

If we need the getProducerName () method to behave identically for each class, any changes
we make to one implementation will need to be made for the other. Our class will soon slip out
of synchronization.

Even if we are confident that we can maintain the duplication, our worries are not over. We
now have two types rather than one.

Remember the ShopProductWri ter class? Its write () method is designed to work with a
single type: ShopProduct. How can we amend this to work as before? We could remove the class
type hint from the method declaration, but then we must trust to luck that write () is passed an
object of the correct type. We could add our own type checking code to the body of the method:

class ShopProductWriter {

}

public function write($shopProduct) {

}

if (! ($shopProduct instanceof CdWriter) &&

}

! ($shopProduct instanceof BookProduct)) {
die("wrong type supplied");

$str = "{$shopProduct->title}: ";
$str .= $shopProduct->getProducer();
$str .= " ({$shopProduct->price})\n";
print $str;

Notice the instanceof operator in the example. instanceof resolves to true if the object in
the left-hand operand is of the type represented by the right-hand operand.

Once again we have been forced to include a new layer of complexity. Not only do we have
to test the $shopProduct argument against two types in the write () method, but we have to
trust that each type will continue to support the same fields and methods as the other. It was
all much neater when we simply demanded a single type because we could use class type
hinting, and because we could be confident that the Shop Product class supported a particular
interface.

The CD and book aspects of the Shop Product class don't work well together, but can't live
apart, it seems. We want to work with books and CDs as a single type while providing a separate
implementation for each format. We want to provide common functionality in one place to
avoid duplication but allow each format to handle some method calls differently. We need to
use inheritance.

Working with Inheritance
The first step in building an inheritance tree is to find the elements of the base class that don't
fit together, or that need to be handled differently.

We know that the getPlaylength () and getNumberOfPages () methods do not belong together.
We also know that we would like to create different implementations for the getSummaryline ()
method. Let's use these differences as the basis for two derived classes:

32 CHAPTER 3 OBJECT BASICS

class ShopProduct {
public $numPages;
public $playlength;
public $title;

}

public $producerMainName;
public $producerFirstName;
public $price;

function __ construct($title, $firstName,

}

$mainName, $price,
$numPages=O, $playlength=O) {

$this->title = $title;
$this->producerFirstName = $firstName;
$this->producerMainName = $mainName;
$this->price = $price;
$this->numPages = $numPages;
$this->playlength = $playlength;

function getProducer() {

}

return "{$this->producerFirstName}".
" {$this->producerMainName}";

function getSummaryLine() {

}

$base = "$this->title ({$this->producerMainName}, ";
$base .= "{$this->producerFirstName})";
return $base;

class CdProduct extends ShopProduct {
function getPlayLength() {

}

return $this->playlength;
}

function getSummaryline() {

}

$base = "{$this->title} ({$this->producerMainName}, ".;
$base .= "{$this->producerFirstName})";
$base .= ": playing time - {$this->playlength}";
return $base;

class BookProduct extends ShopProduct {
function getNumberOfPages() {

return $this->numPages;
}

function getSummaryline() {

CHAPTER 3 • OBJECT BASICS 33

$base "{$this->title} ({$this->producerMainName}, ";
$base.= "{$this->producerFirstName})";.
$base .= ": page count - {$this->numPages}";
return $base;

}
}

To create a child class, you must use the extends keyword in the class declaration. In the
example we created two new classes, BookProduct and CdProduct. Both extend the Shop Product
class.

Because the derived classes do not define constructors, the parent class's constructor is
automatically invoked when they are instantiated. The child classes inherit access to all the
parent's public and protected methods. This means that we can call the getProducer() method
on an object instantiated from the CdProduct class, even though get Producer() is defined in the
ShopProduct class.

$product2 = new CdProduct("Exile on Coldharbour Lane",
"The", "Alabama 3",
10.99, null, 60.33);

print "artist: ". $product2->getProducer(). "\n";

So both our child classes inherit the behavior ofthe common parent. We can treat a
BookProduct object as if it were a Shop Product object. We can pass a BookProduct or CdProduct
object to the ShopProductWriter class's write() method and all will work as expected.

Notice that both our CdProduct and BookProduct classes override the getSummaryline()
method, providing their own implementation. Derived classes can extend but also alter the
functionality of their parents. At the same time, each class inherits its parent's properties. Both
BookProduct and CdProduct access the $title property in their versions of getSummaryline ().

Inheritance can be a difficult concept to grasp at first. By defining a class that extends
another, we ensure that an object instantiated from it is defined by the characteristics of first
the child, and then the parent class. Another way of thinking about this is in terms of searching.
When we invoke $product2->getProducer(), there is no such method to be found in the
CdProduct class, and the invocation falls through to the default implementation in ShopProduct.
When we invoke $product2->getSummaryline (), on the other hand, the getSummaryline ()
method is found in CdProduct and invoked.

The same is true of property accesses. When we access $title in the BookProduct class's
getSummaryline () method, the property is not found in the Book Product class. It is acquired
instead from the parent class, from ShopProduct. The $title property applies equally to both
subclasses, and therefore it belongs in the super class.

A quick look at the Shop Product constructor, however, shows that we are still managing
data in the base class that should be handled by its children. The BookProduct class should
handle the $numPages argument and property, and the CdProduct class should handle the

34 CHAPTER 3 OBJECT BASICS

$play length argument and property. To make this work, we will define constructor methods in
each of the child classes.

Constructors and Inheritance

When you define a constructor in a child class, you become responsible for passing any argu­
ments on to the parent. If you fail to do this, you can end up with a partially constructed object.

To invoke a method in a parent class, you must first find a way of referring to the class
itself: a "handle." PHP provides us with the parent keyword for this purpose.

To refer to a method in the context of a class rather than an object we use : : rather
than->. So

parent:: __ construct()

means "Invoke the __ construct() method of the parent class." Let's amend our example so
that each class handles only the data that is appropriate to it.

class ShopProduct {

}

public $title;
public $producerMainName;
public $producerFirstName;
public $price;

function __ construct($title, $firstName,

}

$mainName, $price) {
$this->title = $title;
$this->producerFirstName = $firstName;
$this->producerMainName = $mainName;
$this->price = $price;

function getProducer() {

}

}

return "{$this->producerFirstName}".
" {$this->producerMainName}";

function getSummaryline() {
$base = "{$this->title} ({$this->producerMainName}, ";
$base .= "{$this->producerFirstName})";
return $base;

class CdProduct extends ShopProduct {
public $playlength;

}

CHAPTER 3 OBJECT BASICS 35

function __ construct($title, $firstName,
$mainName, $price, $playlength) {

}

parent:: __ construct($title, $firstName,
$mainName, $price);

$this->playlength = $playlength;

function getPlaylength() {
return $this->playlength;

}

function getSummaryline() {

}

$base "{$this->title} ({$this->producerMainName}, ";
$base .= "{$this->producerFirstName})";
$base .= ": playing time - {$this->playlength}";
return $base;

class BookProduct extends ShopProduct {
public $numPages;

}

function __ construct($title, $firstName,

}

$mainName, $price, $numPages) {
parent:: __ construct($title, $firstName,

$mainName, $price);
$this->numPages = $numPages;

function getNumberOfPages() {
return $this->numPages;

}

function getSummaryline() {
$base "$this->title ($this->producerMainName, "
$base .= "$this->producerFirstName)";
$base .= ": page count - $this->numPages";
return $base;

}

Each child class invokes the constructor of its parent before setting its own properties. The

base class now knows only about its own data. Child classes are generally specializations of

their parents. As a rule of thumb, you should avoid giving parent classes any special knowledge

about their children.

36 CHAPTER 3 • OBJECT BASICS

•Note Prior to PHP 5, constructors took on the name of the enclosing class. The new unified constructors
use the name_ construct (). Using the old syntax, a call to a parent constructor would tie you to that
particular class:

parent::ShopProduct();

This could cause problems if the class hierarchy changed. Many bugs resulted from programmers changing
the immediate parent of a class but forgetting to update the constructor. Using the unified constructor, a call
to the parent constructor

parent::_construct()

inyokes the immediate parent, no matter what changes are made in the hierarchy. Of course, you still need
to ensure that the correct arguments are passed to an inserted parent!

Invoking an Overridden Method

The parent keyword can be used with any method that overrides its counterpart in a parent
class. When we override a method, we may not wish to obliterate the functionality of the parent
but rather extend it. We can achieve this by calling the parent class's method in the current
object's context. If you look again at the getSummaryline() method implementations, you will
see that they duplicate a lot of code. It would be better to use rather than reproduce the func­
tionality already developed in the Shop Product class.

II ShopProduct class •••
function getSummaryline() {

}

$base = "{$this->title} ({$this->producerMainName}, ";
$base .= "{$this->producerFirstName})";
return $base;

II BookProduct class •••
function getSummaryline() {

}

$base= parent::getSummaryline();
$base .= ": page count - {$this->numPages}";
return $base;

We set up the core functionality for the getSummaryline () method in the Shop Product base
class. Rather than reproduce this in the CdProduct and BookProduct subclasses, we simply call
the parent metho(j. before proceeding to add more data to the summary string.

Now that we have seen the basics of inheritance, we can at last look at property and
method visibility in light of the full picture.

CHAPTER 3 • OBJECT BASICS 37

public, private, protected: Managing Access to Your Classes
So far we have declared all properties public whether implicitly or otherwise. Public access is
the default setting for methods, and for properties if you use the old var keyword in your property
declaration.

Elements in your classes can be declared public, private, or protected.
Public properties and methods can be accessed from any context.
A private method or property can only be accessed from within the enclosing class. Even

subclasses have no access.
A protected method or property can only be accessed from within either the enclosing

class or from a subclass. No external code is granted access.
So how is this useful to us? Visibility keywords allow us to expose only those aspects of a

class that are required by a client. This sets a clear interface for your object.
By preventing a client from accessing certain properties, access control can also help

prevent bugs in your code. Imagine, for example, that we want to allow Shop Product objects to
support a discount. We could add a $discount property and a setDiscount () method.

II ShopProduct class

II
public $discount = o;

function setDiscount($num) {
$this->discount=$num;

}

Armed with a mechanism for setting a discount, we can create a get Price () method that
takes account of the discount that has been applied.

II ShopProduct class
function getPrice() {

return ($this->price - $this->discount);
}

At this point we have a problem. We only want to expose the adjusted price to the world,
but a client can easily bypass the getPrice () method and access the $price property:

print "The price is {$productl->price}\n";

This will print the raw price, and not the discount -adjusted price we wish to present. We
can put a stop to this straight away by making the $price property private. This will prevent
direct access, forcing clients to use the get Price() method. Any attempt from outside the
Shop Product class to access the $price property will fail. As far as the wider world is concerned,
this property has ceased to exist.

Setting properties to private can be an overzealous strategy. A private property cannot be
accessed by a child class. Imagine that our business rules state that books alone should be ineligible
for discount. We could override the getPrice() method so that it returns the $price property,
applying no discount.

38 CHAPTER 3 • OBJECT BASICS

II BookProduct class
function getPrice() {

return $this->price;
}

Since the private $price property is declared in the Shop Product class and not BookProduct,
the attempt to access it here will fail. The solution to this problem is to declare $price protected,
thereby granting access to child classes. Remember that a protected property or method cannot be
accessed from outside the class hierarchy in which it was declared. It can only be accessed
froni within its originating class, or from within children of the originating class.

As a general rule, err on the side of privacy. Make properties private or protected at first
and relax your restriction only as needed. Many (if not most) ·methods in your classes will be
public, but once again, if in doubt, lock it down. A method that provides local functionality for
other methods in your class has no relevance to your class's users. Make it private or protected.

Accessor Methods
Even when client programmers need to work with values held by your class, it is often a good
idea to deny direct access to properties, providing methods instead that relay the needed
values. Such me~ods are known as accessors or "getters and setters."

You have already seen one benefit afforded by accessor methods. You can use an accessor
to filter a property value according to circumstances, as was illustrated with the get Price ()
method.

You can also use a setter method to enforce a property type. We have seen that class type
hints can be used to constrain method arguments, but we have no direct control over property
types. Remember the ShopProductWri ter class that uses a Shop Product object to output list
data? Let's develop this further so that it writes any number of ShopProduct objects at one time:

class ShopProductWriter {

}

public $products = array();

public function addProduct(ShopProduct $shopProduct) {
$this->products[] = $shopProduct;

}

public function write() {
$str = "";

}

foreach ($this->products as $shopProduct) {
$str .= "{$shopProduct->title}: ";
$str .= $shopProduct->getProducer();
$str .= " ({$shopProduct->getPrice()})\n";

}
print $str;

The ShopProductWri ter class is now much more useful. It can hold many Shop Product
objects, and write data for them all in one go. We must trust our client coders to respect the
intentions of our class, though. Despite the fact that we have provided an add Product () method,

CHAPTER 3 • OBJECT BASICS 39

we have not prevented programmers from manipulating the $products property directly. Not
only could someone add the wrong kind of object to the $products array property, but they
could even overwrite the entire array and replace it with a primitive value. We can prevent this
by making the $products property private:

class ShopProductWriter {
private $products = array();

II ...

It's now impossible for external code to damage the $products property. All access must be
via the addProduct () method, and the class type hint we use in the method declaration ensures
that only Shop Product objects can be added to the array property.

The ShopProduct Classes
Let's close this chapter by amending the Shop Product class and its children to lock down
access control:

class ShopProduct {
private $title;
private $producerMainName;
private $producerFirstName;
protected $price;
private $discount = o;

public function __ construct($title, $firstName,

}

$mainName, $price) {
$this->title = $title;
$this->producerFirstName = $firstName;
$this->producerMainName = $mainName;
$this->price = $price;

public function getProducerFirstName() {
return $this->producerFirstName;

}

public function getProducerMainName() {
return $this->producerMainName;

}

public function setDiscount($num) {
$this->discount=$num;

}

public function getDiscount() {
return $this->discount;

}

40 CHAPTER 3 • OBJECT BASICS

}

public function getTitle() {
return $this->title;

}

public function getPrice() {
return ($this->price - $this->discount);

}

public function getProducer() {

}

return "{$this->producerFirstName}".
" {$this->producerMainName}";

function getSummaryline() {

}

$base = "{$this->title} ({$this->producerMainName}, ";
$base .= "{$this->producerFirstName})";
return $base;

class CdProduct extends ShopProduct {
private $playlength = o;

}

public function __ construct($title, $firstName,
$mainName, $price, $playlength) {

}

parent:: __ construct($title, $firstName,
$mainName, $price);

$this->playlength = $playlength;

public function getPlaylength() {
return $this->playlength;

}

function getSummaryline() {

}

$base= parent::getSummaryline();
$base .= ": playing time - {$this->playlength}";
return $base;

class BookProduct extends ShopProduct {
private $numPages = o;

}

CHAPTER 3 • OBJECT BASICS 41

public function __ construct($title, $firstName,
$mainName, $price, $numPages) {

}

parent:: __ construct($title, $firstName,
$mainName, $price);

$this->numPages = $numPages;

public function getNumberOfPages() {
return $this->numPages;

}

function getSummaryline() {

}

$base= parent::getSummaryline();
$base .= ": page count - {$this->numPages}";
return $base;

public function getPrice() {
return $this->price;

}

There is nothing substantially new in this version of the ShopProduct family. All methods
have been made explicitly public, and all properties are now either private or protected. We
have added a number of accessor methods to round things off.

Summary
This chapter covered a lot of ground, taking a class from an empty implementation through to
a fully featured inheritance hierarchy. You took in some design issues, particularly with regard
to type and inheritance. You saw PHP's new support for visibility and explored some of its uses.
In the next chapter, I will show you more features supported by the Zend 2 Engine that powers
PHP5.

CHAPTER 4

Advanced Features

P HP 5 opened new vistas of possibility for object-oriented programmers. We have already
seen how class type hinting and access control afford greater control over a class's interface.
In this chapter, we will delve deeper into PHP's enhanced object-oriented support.

This chapter will cover

• Static methods and properties: Accessing data and functionality through classes rather
than objects

• Abstract classes and interfaces: Separating design from implementation

• Error handling: Introducing exceptions

• Final classes and methods: Limiting inheritance

• Interceptor methods: Automating delegation

• Destructor methods: Cleaning up after your objects

• Cloning objects: Making object copies

• Resolving objects to strings: Creating a summary method

Static Methods and Properties
All the examples in the previous chapter worked with objects. I characterized classes as
templates from which objects are produced, and objects as active components, the things
whose methods we invoke and whose properties we access. I implied that the action in
object-oriented programming is to be found through instances of classes. Classes, after all,
are merely templates for objects.

In fact, it is not that simple. We can access both methods and properties in the context of
a class rather than that of an object. Such methods and properties are "static" and must be
declared so using the static keyword.

class StaticExample {

}

static public $aNum = o;
static public function sayHello() {

print "hello";
}

43

44 CHAPTER 4 ADVANCED FEATURES

Note The static keyword was introduced with PHP 5. It cannot be used in PHP 4 scripts.

Because you access a static element via a class and not an instance, you do not need a
variable that references an object. Instead, you use the class name in conjunction with : :.

print StaticExample::$aNum;
print StaticExample::sayHello();

This syntax should be familiar to you from the previous chapter. We used : : in conjunction
with parent to access an overridden method. Now, as before, we are accessing class rather than
object data. Class code can use the parent keyword to access a super class without using its
class name. To access a static method or property from within the same class (rather than from
a child), we would use the self keyword. self is to classes what the $this pseudo-variable is to
objects. So from outside the Static Example class we access the $aNum property using its class name:

StaticExample::$aNum;

From within the StaticExample class we can use the self keyword:

class StaticExample {

}

static public $aNum = o;
static public function sayHello() {

self: :$aNum++;
print "hello (".self::$aNum.")\n";

}

Note Making a method call using parent is the only circumstance in which you can use a static reference
to a nonstatic method using PHP 5. PHP 4 allowed you to treat any method as static simply by referencing it
as such. This results in a fatal error in PHP 5.

Unless you are accessing an overridden method, you should only ever use : : to access a method or property
that has been explicitly declared static.

Note You will often see static syntax used in documentation to refer to a method or property. This does not
mean that the item in question is necessarily static, just that it belongs to a certain class. The write ()
method of the ShopProductWri ter class might be referred to as ShopProductWri ter: :write (), for
example, even though the write () method is not static. You will see this syntax here when that level of
specificity is appropriate.

CHAPTER 4 ADVANCED FEATURES 45

By definition, static methods are not invoked in the context of an object. A consequence of
this is you cannot use the $this pseudo-variable inside a static method without causing a
fatal error.

So, why would we use a static method or property? Static elements have a number of char­
acteristics that can be useful. Firstly, they are available from anywhere in your script (presuming
that you have access to the class). This means you can access functionality without needing to
pass an instance of the class around from object to object, or worse, storing an instance in a
global variable. Secondly, a static property is available to every instance of a class, so you can
set values that you wish to be available to all members of a type. Finally, the fact that you don't
need an instance to access a static property or method can save you from instantiating an
object purely to get at a simple function.

Let's build a static method for the ShopProduct class that automates the instantiation of
Shop Product objects. Using SQLite or MySQL, we might define a products table like this:

CREATE TABLE products
id INT PRIMARY KEY,
type varchar(255),
firstname varchar(255),
mainname varchar(255),
title varchar(255),
price float,
numpages int,
playlength int,
discount int);

Let's build a getlnstance() method that accepts a row ID and DB_ common object, uses them
to acquire a database row, then returns a ShopProduct object. We can add these methods to
the ShopProduct class we created in the last chapter. The DB_ common class is the parent for the
connection objects in the PEAR: :DB package.

II require_once("DB.php");
II
II ShopProduct class ...

private $id = o;
II ...
public function setiD($id) {

$this->id = $id;
}
II
public static function getlnstance($id, DB_common $db) {

$query= "select* from products where id='$id'";
$query_result = $db->query($query);

if (DB::isError($query_result)) {
die($query_result->getMessage());

}

46 CHAPTER 4 ADVANCED FEATURES

}
}

$row = $query_result->fetchRow(DB_FETCHMODE_ASSOC);
if (empty($row)) { return null; }

if ($row['type'] == "book") {
$product = new BookProduct(

$row['title'],
$row['firstname'],
$row['mainname'],
$row[' price'] ,
$row['numpages']);

} else if ($row['type'] == "cd") {
$product = new CdProduct(

} else {

$row[' title'],
$row['firstname'],
$row['mainname'],
$row[' price'],
$row['playlength']);

$product = new ShopProduct(

}
$product->setld(
$product->setDiscount(
return $product;

$row[' title'],
$row['firstname'],
$row['mainname'],
$row['price']);

$row [' id']) ;
$row['discount']);

As you can see, the get!nstance() method returns a ShopProduct object and, based on a
type flag, is smart enough to work out the precise specialization it should instantiate. I have
omitted any error handling in order to keep the example compact.

This method is more useful in a class context than an object context. It lets us convert raw
materials into an object easily without requiring that we have a ShopProduct object to start
with. The method does not use any instance properties or methods, so there is no reason why
it should not be declared static. Given a valid DB Common object, we can invoke the method
from anywhere in an application:

require_once("DB.php");
$db = DB: :connect (" sqlite: I I ./products. db");
$obj = ShopProduct::getinstance(53, $db);

Methods like this act as "factories" in that they take raw materials and use them to produce
objects. The term "factory" is applied to code designed to generate object instances. We will
encounter factory examples again.

CHAPTER 4 ADVANCED FEATURES 47

Constant Properties
Some properties should not be changed. Pi is pi, and you will want it to stay that way. Error and
status flags will often be hard coded into your classes. Although they should be publicly and
statically available, client code should not be able to change them.

PHP 5 allows us to define constant properties within a class. Like global constants, class
constants cannot be changed once they are set. A constant property is declared with the cons t
keyword. Constants are not prefixed with a dollar sign like regular properties. By convention,
they are often named using only uppercase characters, like this:

class ShopProduct {
const AVAILABLE = o;
const OUT OF STOCK = 1;
II ...

Constant properties can contain only primitive values. You cannot assign an object to a
constant. Like static properties, constant properties are accessed via the class and not an
instance. You refer to a constant without a dollar sign, like this:

print ShopProduct::AVAILABLE;

An attempt to set a value on a constant once it has been declared will cause a parse error.
You should use constants when your property needs to be available across all instances of

a class, and when the property value needs to be fixed and unchanging.

Abstract Classes
The introduction of abstract classes was one of the major changes ushered in with PHP 5 and
the Zend 2 Engine. Its inclusion in the list of new features was another sign of PHP' s extended
commitment to object-oriented design.

An abstract class cannot be instantiated. Instead it defines (and optionally partially
implements) the interface for any class that might extend it.

You define an abstract class with the abstract keyword. Let's redefine the ShopProductWri ter
class we created in the last chapter as an abstract class.

abstract class ShopProductWriter {

}

protected $products = array();

public function addProduct(ShopProduct $shopProduct) {
$this->products[]=$shopProduct;

}

You can create methods and properties as normal, but any attempt to instantiate an
abstract object will cause an error like this:

$writer = new ShopProductWriter();
II output:
II Fatal error: Cannot instantiate abstract class
II shopproductwriter ...

48 CHAPTER 4 ADVANCED FEATURES

In most cases an abstract class will contain at least one abstract method. These are declared
once again with the abstract keyword. An abstract method cannot have an implementation.
You declare it as normal, but end the declaration with a semicolon rather than a method body.
Here we add an abstract write() method to the ShopProductWriter class:

abstract class ShopProductWriter {

}

protected $products = array();

public function addProduct(ShopProduct $shopProduct) {
$this->products[]=$shopProduct;

}

abstract public function write();

In creating an abstract method, you ensure that an implementation will be available in all
concrete child classes, but you leave the details of that implementation undefined.

If we were to create a class derived from ShopProductWriter that does not implement the
write() method, we would face the following error:

class ErroredWriter extends ShopProductWriter{}
II output:
II Fatal error: Class ErroredWriter contains 1 abstract methods
II and must therefore be declared abstract
II (ShopProductWriter::write) in ...

So any class that extends an abstract class must implement all abstract methods or must
itself be declared abstract. An extending class is responsible for more than simply implementing an
abstract method. In doing so it must reproduce the method signature. This means that the
access control of the implementing method cannot be stricter than that of the abstract method.
The implementing method should also require the same number of arguments as the abstract
method, reproducing any class type hinting.

Let's define two implementations of ShopProductWriter():

class XmlProductWriter extends ShopProductWriter{

}

public function write() {

}

$str = "<products>\n";

}

foreach ($this->products as $shopProduct) {
$str .= "\t<product title=\"{$shopProduct->getTitle()}\">\n";
$str .= "\t\t<summary>\n";
$str . = "\ t\t{$shopProduct->getSummaryline() }\n";
$str .= "\t\t<lsummary>\n";
$str .= "\t<lproduct>\n";

$str .= "<lproducts>\n";
print $str;

class TextProductWriter extends ShopProductWriter{
public function write() {

$str = "PRODUCTS:\n";

CHAPTER 4 • ADVANCED FEATURES 49

foreach ($this->products as $shopProduct) {
$str . = $shopProduct->getSummaryline(). "\n";

}
print $str;

}
}

We create two classes, each with its own implementation of the write() method. The first
outputs XML, and the second outputs text. A method that requires a ShopProductWri ter object
will not know which of these two classes it is receiving but can be absolutely certain that a
write() method will be implemented.

Abstract classes were often approximated in PHP 4 by creating methods containing warnings
or even die() statements. This forces a derived class to implement the abstract methods or risk
having them invoked.

class AbstractClass {
function abstractFunction() {

die("AbstractClass: :abstractFunction() is abstract\n");
}

}

The problem here is that the abstract nature of the base class is only tested when an abstract
method is invoked. In PHP 5, abstract classes are tested when they are parsed, which is much
safer.

Interfaces
While abstract classes let you provide some measure of implementation, interfaces are pure
templates. An interface can only define functionality; it can never implement it. An interface is
declared with the interface keyword. It can contain properties and method declarations, but

not method bodies.
Let's define an interface:

interface Chargeable {
public function getPrice();

}

As you can see, an interface looks very much like a class. Any class that incorporates this
interface commits to implementing all the methods it defines, or it must be declared abstract.

A class can implement an interface using the implements keyword in its declaration. Once

you have done this, the process of implementing an interface is the same as extending an
abstract class that contains only abstract methods. Let's make the ShopProduct class implement

Chargeable.

50 CHAPTER 4 • ADVANCED FEATURES

class ShopProduct implements Chargeable {
II ...
public function getPrice() {

}
II

return ($this->price - $this->discount);

Shop Product already had a get Price() method, so why might it be useful to implement the
Chargeable interface? The answer lies in type once again. An implementing class takes on the
type of the class it extends and the interface that it implements.

This means that the CdProduct class belongs to

CdProduct
ShopProduct
Chargeable

This can be exploited by client code. To know an object's type is to know its capabilities.
So the method

public function cdinfo(CdProduct $prod) {
II ...

}

knows that the $prod object has got a getPlaylength() method in addition to all the methods
defined in the Shop Product class.

Passed the same object, the method

public function addProduct(ShopProduct $prod) {
II ..

}

knows that $prod supports all the methods in ShopProduct, but without further testing it will
know nothing of the getPlaylength () method.

Once again, passed the same CdProduct object, the method

public function addChargeableitem(Chargeable $item) {
II ...

}

knows nothing at all of the Shop Product or CdProduct types. This method is only concerned that
,the $i tern argument contains a get Price () method.

Because any class can implement an interface (in fact, a class can implement any number
of interfaces), interfaces effectively join types that are otherwise unrelated. We might define an
entirely new class that implements Chargeable:

class Shipping implements Chargeable {

}

public function getPrice() {
II ...

}

CHAPTER 4 • ADVANCED FEATURES 51

We can pass a Shipping object to the addChargeableltem() method just as we can pass it a
ShopProduct object.

The important thing to a client working with a Chargeable object is that it can call a get Price()
method. Any other methods available are associated with other types, whether through the
object's own class, a super class, or another interface. These are irrelevant to the client.

A class can both extend a super class and implement any number of interfaces. The extends
clause should precede the implements clause:

class Consultancy extends TimedService implements Bookable, Chargeable {
II ...

}

Notice that the Consultancy class implements more than one interface. Multiple interfaces
follow the implements keyword in a comma-separated list.

PHP only supports inheritance from a single parent, so the extends keyword can precede
a single class name only.

Handling Errors
Things go wrong. Files are misplaced, database servers are left uninitialized, URLs are changed,
XML files are mangled, permissions are misset, disk quotas are exceeded. The list goes on and
on. In the fight to anticipate every problem, a simple method can sometimes sink under the
weight of its own error handling code.

Here is a simple Person class that stores some basic data:

class Person {
private $name;
private $age;
private $id = o;

}

function __ construct($name, $age) {
$this->name = $name;
$this->age = $age;

}

function setiD($id) {
$this->id = $id;

}

function getName() {
return $this->name;

}
function getAge() {

return $this->age;
}

The Person class does nothing but store $name, $age, and $id properties. $name and $age are
set in the constructor, and are accessible with "getter" methods. The $id property can be set

52 CHAPTER 4 • ADVANCED FEATURES

using the setiD() method. To illustrate some of the issues surrounding error handling, let's
create a class that writes Person object data to a database. The schema we will work with looks
like this:

CREATE TABLE persons (
id !NT PRIMARY KEY,
name varchar(255),
age int
);

The real error magnet in this example is a class dilled PersonPersist. PersonPersist takes
a Person object and writes it to a database. At least, that's what we are hoping it will do.

require_once("DB.php");

class PersonPersist {
private $dsn;
private $db_obj;

}

private $fields =array("name", "age");

function __ construct($dsn) {
$this->dsn = $dsn;

}

public function connect() {
$this->db_obj = DB::connect($this->dsn);

}

public function insert(Person $person) {
if (empty($this->db_obj)) {

$this->connect();

}

}
$row = array() ;
foreach($this->fields as $fieldname) {

$method = "get{$fieldname}";
$row[$fieldname] = $person->$method();

}
$row['id'] = $this->db_obj->next!d('persons_sequence');
$insert_result =

$this->db_obj->autoExecute(
'persons', $row, DB_AUTOQUERY_INSERT);

$person->set!d($row['id']);
return $row['id'];

CHAPTER 4 ADVANCED FEATURES

The PersonPersist class uses the PEAR: :DB package to write a Person object to a database
table. With this package, we are able to write database-agnostic code. The $fields property
contains an array of strings that match both database fields and the names of Person "getter"
methods. We use this conjunction in the insert () method to construct an array of keys and
values that can be passed to a PEAR: :DB method called autoexecute ().This method uses an
associative array to construct the SQL statement required to insert our Person data.

Of course, before we can make a query, we have to connect to the database. The connect ()
method uses a user-supplied Data Source Name (DSN) in conjunction with the static
DB: :connect () method to generate a DB_ Common object. We store the DB_ Common object in a property
named $db_obj, and we can use it to work with our database. We use the PersonPersist class
like this:

$person= new Person('bob', 44);
$saver = new PersonPersist("sqlite:/1./persons.db");
$saver->insert($person);

Person Persist is highly simplified. In particular, it has no strategy for distinguishing
between inserts and updates. It is also optimistic in outlook. It does not handle any of the
errors that might arise when working with a database.

What will happen, for example, if the database connection fails, or if the expected table
does not exist? A failed connection will cause a fatal error as we attempt to invoke methods on
an invalid $db_ obj method. Perhaps worse, a missing table will result in the database insert
failing silently.

Testing for these error conditions is relatively trivial, but we must still decide how we
should respond to them should they arise. We generally have two options:

Firstly, we could end execution. This is simple but drastic. Our humble method then presumes
to take responsibility for bringing an entire script crashing down around it. Although methods
like connect () and insert () are well placed to detect errors, they do not have the information
to decide how to handle them.

Rather than handle the error in our method, then, we could return an error flag of some
kind. This could be a Boolean or an integer value such as 0 or -1. Some classes will also set an
error string or flag so that the client code can request more information after a failure.

Many PEAR packages combine these two approaches by returning an error object (an instance
of PEAR_Error), which acts both as notification that an error has occurred and contains the
error message within it.

The problem here is that we pollute our return value. PHP does not enforce a unified return
value. There is no return class type hinting, so there is nothing to prevent us from returning an
error flag instead of the promised object or primitive. When we do this, we have to rely on the
client coder to test for the return type every time our error-prone method is called. This can be
risky. Trust no one!

When we return an error value to the calling code, there is no guarantee that the client will
be any more equipped than our method to decide how to handle the error. If this is the case,
then the problem begins all over again. The client method will have to determine how to
respond to the error condition, maybe even implementing a different error reporting strategy.

53

54 CHAPTER 4 ADVANCED FEATURES

Exceptions
Zend Engine 2 introduces exceptions to PHP, a radically different way of handling error conditions.
Different for PHP, that is. You will find them hauntingly familiar if you have Java or C++ expe­
rience. Exceptions address all of the issues that we have raised so far in this section.

An exception is a special object instantiated from the built-in Exception class (or from a
derived class). Objects of type Exception are designed to hold and report error information.

The Exception class constructor accepts two optional arguments, a message string and an
error code. The class provides some useful methods for analyzing error conditions. These are
described in Table 4-1.

Table 4-1. The Exception Class's Public Methods

Method

getMessage()

getCode()

get File()

getTrace()

getTraceAsString()

_toString()

Description

Get the message string that was passed to the constructor.

Get the code integer that was passed to the constructor.

Get the file in which the exception was generated.

Get a multidimensional array tracing the method calls that led to
the exception, including method, class, file, and argument data.

Get a string version of the data returned by getTrace().

Called automatically when the Exception object is used in string
context. Returns a string describing the exception details.

The Exception class is fantastically useful for providing error notification and debugging
information (the getTrace() and getTraceAsString() methods are particularly helpful in this
regard). In fact, it is almost identical to the PEAR_ Error class that has already been discussed.
There is much more to an exception than the information it holds, though.

Throwing an Exception

The throw keyword is used in conjunction with an Exception object. It halts execution of the
current method and passes responsibility for handling the error back to the calling code. Let's
amend the connect() method to use the throw statement:

public function connect() {

}

$this->db_obj = DB::connect($this->dsn);
if (DB::isError($this->db_obj)) {

throw new Exception("A connection error occured");
}

The insert() method can use a similar construct:

public function insert(Person $person) {
I I ...
$insert_result =

$this->db_obj->autoExecute(
'persons', $row, DB_AUTOQUERY_INSERT);

if (DB::isError($insert_result)) {

CHAPTER 4 • ADVANCED FEATURES 55

throw new Exception("Could not insert");
}
II ...

}

Our connect () and insert () methods can now check diligently for errors as they do their
work, but let code more fitted for the purpose decide how to respond to any errors detected.

So how does client code know how to handle an exception when thrown? When you invoke
a method that may throw an exception, you can wrap your call in a try clause. A try clause is
made up of the try keyword followed by braces. The try clause must be followed by at least one
catch clause in which you can handle any error, like this:

try {
$saver = new PersonPersist("sqlite:ll.lpersons.db");
$saver->insert($person);

} catch (Exception $e) {
die($e-> __ toString());

}

As you can see, the catch clause superficially resembles a method declaration. When an
exception is thrown, the catch clause in the invoking scope is called. The Exception object is
automatically passed to the argument variable.

Just as execution is halted within the throwing method when an exception is thrown, so it
is within the try clause--control passes directly to the catch clause.

Subclassing Exception
You can create classes that extend the Exception class as you would with any user-defined
class. There are two reasons why you might want to do this. Firstly, you can extend the class's
functionality. Secondly, the fact that a derived class defines a new class type can aid error
handling in itself.

You can, in fact, define as many catch clauses as you need for a try statement. The particular
catch clause invoked will depend upon the type of the thrown exception and the class type hint
in the argument list. Let's define some simple classes that extend Exception:

56 CHAPTER 4 • ADVANCED FEATURES

class DbException extends Exception {
protected $pearError;

}

function __ construct(PEAR_Error $error) {

}

parent:: __ construct($error->getMessage(), $error->getCode());
$this->pearError = $error;

function getPearError() {
return $this->pearError;

}

class DbConnectionException extends DbException{ }
class SqlException extends DbException{ }

The PEAR_ Error class resembles the Exception class. It has getMessage() and getCode()
methods. We take advantage of this similarity and use the PEAR_ Error object in the Db Exception
class. The SqlException and DbConnection classes do nothing more than subclass DbException.
We can now use these classes in our code and amend both connect() and insert():

II PersonPersist class ••.

}

public function connect() {

}

$this->db_obj = DB::connect($this->dsn);
if (DB::isError($db_obj)) {

throw new DbConnectionException($db_obj);
}

public function insert(Person $person) {
if (empty($this->db_obj)) {

$this->connect();

}

}
$row = array() ;
foreach($this->fields as $fieldname) {

$method = "get{$fieldname}";
$row[$fieldname] = $person->$method();

}
$row['id'] = $this->db_obj->nextld('persons_sequence');
$insert_result =

$this->db_obj->autoExecute(
'persons', $row, DB_AUTOQUERY_INSERT);

if (DB::isError($insert_result)) {
throw new SqlException($insert_result);

}
$person->setld($row['id']);
return $row['id'];

CHAPTER 4 • ADVANCED FEATURES 57

connect() throws aDbConnectionException and insert() throws an SqlException. Because the
insert () method calls connect (), it might throw either exception. How does this work? PHP
does not force a method to catch an exception. If an exception is uncaught within a method,
then it is implicitly thrown to that method's own calling code, and so on until the exception is
either caught or can be thrown no further. The insert () method explicitly throws an SqlException
and implicitly throws a DbConnectionException. This kind of hidden exception can make it hard
to trace what is happening in your code, so you may wish to manually rethrow any exceptions
you do not want to handle to make your method clearer:

public function insert(Person $person) {
try {

if (empty($this->db_obj)) {
$this->connect();

}
} catch (DbConnectionException $e) {

throw $e;
}
II ...

This try I catch pair is ultimately redundant, but does have the virtue of clarity. Which
approach you take is a matter of preference. Personally, I tend to let a calling method throw an
exception implicitly, and include clear documentation to signal the fact.

So, we have established that connect () might throw one of two possible exceptions. How
can we take advantage of this? Here's the code that invokes the insert() method:

try {
$saver= new PersonPersist("sqlite:ll.lpersons.db");
$saver->insert($person);

} catch (DbConnectionException $e) {
II perhaps try again with a new DSN?
print $e-> __ toString();

} catch (SqlException $e) {
II log and die?
print $e-> __ toString();

} catch (Exception $e) {

}

II should not currently get called
print $e-> __ toString();

We provide a catch clause for each class type. The clause invoked depends upon the
exception type thrown. The first to match will be executed, so remember to place the most
generic type at the end and the most specialized at the start. For example, if you were to place
the catch clause for Exception ahead of the clause for DbConnectionException and SqlException,
neither ofthese would ever be invoked. This is because both of these classes belong to the
Exception type, and would therefore match the first clause.

58 CHAPTER 4 ADVANCED FEATURES

The first catch clause (DbConnectionException) is invoked if there is an error in connection
(if the database file is unreadable, for example, or if the DSN is invalid). The second clause
(SqlException) is invoked if an error occurs during the insert (if the "products" table does not
exist or its schema does not match our fields, for example). The final clause (Exception) should
not be reached because our methods only generate two exceptions, which are both explicitly
handled. It is often a good idea to have a "backstop" clause like this, though, in case you add
new exceptions to the code during development.

So what happens if an exception is not caught? You have seen that you can allow a method
to rethrow an exception rather than handle it. You will have to deal with a thrown exception at
some point in your code, though, or suffer a fatal error. Here's what would happen if we did not
catch one of the exceptions in our example:

Fatal error: Uncaught exception "DbConnectionException"
with message 'DB Error: not found' in ...

So when you throw an exception you force the client to take responsibility for handling it.
This is not an abdication of responsibility. An exception should be thrown when a method has
detected an error but does not have the contextual information to be able to handle it intelli­
gently. The connect () method in our example knows when the attempt to connect has failed,
and it knows why, but it does not know what to do about it. This is as it should be. If we were to
make the Person Persist class more knowing that it currently is, it would lose focus and become
less reusable.

Final Classes and Methods
Inheritance allows for enormous flexibility within a class hierarchy. You can override a class or
method so that a call in a client method will achieve radically different effects according to the
particular class instance it has been passed. Sometimes, though, a class or method should
remain fixed and unchanging. If you have achieved the definitive functionality for your class or
method, and you feel that overriding it can only damage the ultimate perfection of your work,
you may need the final keyword.

final puts a stop to inheritance. A final class cannot be subclassed. Less drastically, a final
method cannot be overridden.

Let's declare a class final:

final class Checkout {
II ...

}

Any attempt to subclass the Checkout class will now cause a fatal error like this:

class IllegalCheckout extends Checkout {
II ...

}
II Fatal error: Class illegalcheckout may not inherit from
II final class (checkout) in ...

We could relax matters somewhat by declaring a method in Checkout final, rather than the
whole class. The final keyword should be placed in front of any other modifiers such as
protected or static, like this:

class Checkout {

}

final function totalize() {
II calculate bill

}

CHAPTER 4 • ADVANCED FEATURES 59

We can now subclass Checkout, but any attempt to override totalize() will cause a fatal error:

class IllegalCheckout extends Checkout {
final function totalize() {

II change bill calculation
}

}
II Fatal error: Cannot override final method
II checkout::totalize() in ...

Good object-oriented code tends to emphasize the well-defmed interface. Behind the
interface, though, implementations will often vary. Different classes or combinations of classes
conform to common interfaces but behave differently in different circumstances. By declaring
a class or method final, you limit this flexibility. There will be times when this is desirable, and
we will see some of them later in the book, but you should think carefully before declaring
something final. Are there really no circumstances in which overriding would be useful? You
could always change your mind later on, of course, but this might not be so easy if you are
distributing a library for others to use. Use final with care.

Working with Interceptors
PHP provides built-in interceptor methods, which can intercept messages sent to undefined
methods and properties. This is also known as "overloading," but since this term means some­
thing quite different in Java and C++, I think it is better to talk in terms of interception.

PHP 5 supports three built-in interceptor methods. Like_ construct (), these are invoked
for you when the right conditions are met. Table 4-2 describes the methods.

Table 4-2. The Interceptor Methods

Method

__ get($property)

__ set($property, $value)

__ call($method, $arg_array)

Description

Invoked when an undefined property is accessed

Invoked when a value is assigned to an undefined
property

Invoked when an undefined method is called

The _get () and_ set () methods are designed for working with properties that have not
been declared in a class (or its parents).

_get () is invoked when client code attempts to read an undeclared property. It is called
automatically with a single string argument containing the name of the property that the client

60 CHAPTER 4 ADVANCED FEATURES

is attempting to access. Whatever you return from the_ call () method will be sent back to the

client as if the target property exists with that value. Here's a quick example:

class Person {

}

function _get($property) {
$method = "get{$property}";

}

if (method_exists($this, $method)) {
return $this->$method();

}

function getName() {
return "Bob";

}

function getAge() {
return 44;

}

When a client attempts to access an undefined property, the __get () method is invoked.

We have implemented __get () to take the property name and construct a new string, prepending

the word "get". We pass this string to a function called method_ exists (),which accepts an

object and a method name and tests for method existence. If the method does exist, we invoke

it and pass its return value to the client. So if the client requests a $name property:

$p = new Person();
print $p->name;
II output:
II Bob

the getName () method is invoked behind the scenes. If the method does not exist, we do nothing.

The property that the user is attempting to access will resolve to NULL.

The_ set () method is invoked when client code attempts to assign to an undefined property.

It is passed two arguments: the name of the property, and the value the client is attempting to

set. You can then decide how to work with these arguments. Let's amend the Person class:

class Person {
private $_name;
private $_age;

function _set($property, $value) {
$method = "set{$property}";

}

if (method_exists($this, $method)) {
return $this->$method($value);

}

}

function setName($name) {
$this->_name = strtoupper($name);

}

function setAge($age) {
$this->_age = strtoupper($age);

}

CHAPTER 4 • ADVANCED FEATURES 61

In this example we work with "setter" methods rather than "getters." If a user attempts to
assign to an undefined property, the_ set () method is invoked with the property name and
the assigned value. We test for the existence of the appropriate method, and invoke it if it exists.
In this way we can filter the assigned value.

Note Remember that methods and properties in PHP documentation are frequently spoken of in static
terms in order to identify them with their classes. So we might talk about the Person: :$name property, even
though the property is not declared static and would in fact be accessed via an object, like this:

$person->name;

So if we create a Person object and then attempt to set a property called Person: :$name, the
_set () method is invoked, because this class does not define a $name property. The method is
passed the string "name" and the value we wish to set. It is up to us what we do with this infor­
mation. In this example, we construct a method name out of the property argument combined
with the string "set". The setName() method is found and duly invoked. This transforms the
incoming value and stores it in a real property.

$p = new Person();
$p->name = "bob";
II the $_name property becomes 'BOB'

The_ call () method is probably the most useful of all the interceptor methods. It is
invoked when an undefined method is called by client code._ call () is invoked with the
method name and an array holding all arguments passed by the client. Any value that you
return from the_ call () method is returned to the client as if it were returned by the method
invoked.

The_ call () method can be useful for delegation. Delegation is the mechanism by which
one object passes method invocations on to a second. It is similar to inheritance in that a child
class passes on a method call to its parent implementation. With inheritance the relationship
between child and parent is fixed, so the fact that you can switch the receiving object at
runtime means that delegation can be more flexible than inheritance. Let's clarify things a little
with an example. Here is a simple class for formatting information from the Person class:

62 CHAPTER 4 I ADVANCED FEATURES

class PersonWriter {

}

function writeName(Person $p) {
print $p->getName()."\n";

}

function writeAge(Person $p) {
print $p->getAge(). "\n";

}

We could, of course, subclass this to output Person data in various ways. Here is an imple­
mentation of the Person class that uses both a PersonWriter object and the _call() method:

class Person {

}

private $writer;

function _construct(PersonWriter $writer) {
$this->writer = $writer;

}

function _call($methodname, $args) {

}

if (method_exists($this->writer, $methodname)) {
return $this->writer->$methodname($this);

}

function getName() { return "Bob"; }
function getAge() { return 44; }

The Person class here demands a PersonWri ter object as a constructor argument and
stores it in a property variable. In the_ call () method, we use the provided $method name argument,
testing for a method of the same name in the PersonWri ter object we have stored. If we encounter
such a method, we delegate the method call to the PersonWri ter object, passing our current
instance to it (in the $this pseudo-variable). So if the client makes this call to Person:

$person = new Person(new PersonWriter());
$person->writeName();

the _call() method is invoked. We find a method called writeName() in our PersonWriter
object, and invoke it. This saves us from manually invoking the delegated method like this:

function writeName() {
$this->writer->writeName($this);

}

The Person class has magically gained two new methods. Although automated delegation can
save a lot oflegwork if you have to delegate to too many methods, there is a cost in clarity. You
present the world with a dynamic interface that will resist reflection (the runtime examination of

CHAPTER 4 ADVANCED FEATURES 63

class facets) and will not be clear to the client coder at first glance. The interceptor methods have
their place, but they should be used with care, and classes that rely on them should document this
fact very clearly.

We will return to the topics of delegation and reflection later in the book.

Defining Destructor Methods
We have seen that the _construct() method is automatically invoked when an object is
instantiated. PHP 5 also introduced the_ destruct () method. This is invoked just before an
object is garbage-collected, that is, before it is expunged from memory. You can use this
method to perform any final cleaning up that might be necessary.

Imagine, for example, a class that saves itself to a database when so ordered. We could use
the_ destruct () method to ensure that an instance saves its data when it is deleted.

class Person {

}

private $name;
private $age;
private $id;

function _construct($name, $age) {
$this->name = $name;
$this->age = $age;

}

function setld($id) {
$this->id = $id;

}

function _destruct() {

}

if (! empty($this->id)) {
II save Person data
print "saving person\n";

}

The_ destruct () method is invoked whenever a Person object is removed from memory.
This will happen either when you call the unset () function with the object in question or when
no further references to the object exist in the process. So if we create and destroy a Person
object, we can see the _destruct() method come into play.

$person = new Person("bob", 44);
$person->setld(343);
unset($person);
II output:
II saving person

64 CHAPTER 4 ADVANCED FEATURES

Copying Objects with _cloneO
In PHP 4, copying an object was a simple matter of assigning from one variable to another.

class CopyMe {}
$first = new CopyMe();
$second = $first;
II PHP 4: $second and $first are 2 distinct objects
II PHP s: $second and $first refer to one object

This "simple matter" was a source of many bugs, as object copies were accidentally spawned
when variables were assigned, methods called, and objects returned. This was made worse by
the fact that there was no way of testing two variables to see whether they referred to the same
object. Equivalence tests would tell you whether all fields were the same (==) or whether both
variables were objects(===), but not whether they pointed to the same object.

In PHP 5, objects are always assigned and passed around by reference. This means that
when our previous example is run with PHP 5, $first and $second contain references to the
same object instead of two copies. While this is generally what we want when working with
objects, there will be occasions when we need to get a copy of an object rather than a reference
to an object.

PHP 5 provides the clone keyword for just this purpose. clone operates upon an object
instance, producing a by-value copy.

class CopyMe {}
$first = new CopyMe();
$second = clone $first;
II PHP s: $second and $first are 2 distinct objects

The issues surrounding object copying only start here. Consider the Person class that we
implemented in the previous section. A default copy of a Person object would contain the iden­
tifier (the $id property) that in a full implementation we would use to locate the correct row in
a database. If we allow this property to be copied, we will have two distinct objects referencing
the same data source, which is probably not what we wanted when we made our copy. An
update in one object will affect the other, and vice versa.

Luckily we can control what is copied when clone is invoked on an object. We do this by
implementing a special method called_ clone () (note the leading two underscores that are
characteristic of built-in methods). _clone() is called automatically when the clone keyword
is invoked on an object.

When you implement_ clone (), it is important to understand the context in which the
method runs._ clone () is run on the copied object and not the original. Let's add_ clone () to
yet another version of the Person class:

class Person {
private $name;
private $age;
private $id;

}

function __ construct($name, $age) {
$this->name = $name;
$this->age = $age;

}

function setld($id) {
$this->id = $id;

}

function __ clone() {

$this->id = o;
}

CHAPTER 4 • ADVANCED FEATURES 65

When clone is invoked on a Person object, a new shallow copy is made, and its __ clone ()
method is invoked. This means that anything we do in __ clone () overwrites the default copy
already made. In this case, we ensure that the copied object's $id property is set to zero.

$person =new Person("bob", 44);
$person->setld(343);
$person2 = clone $person;
II $person2 :
II name: bob
II age: 44
II id: o.

A shallow copy ensures that primitive properties are copied from the old object to the new.
Object properties though are copied by reference, which may not be what you want or expect
when cloning an object. Say that we give our Person object an Account object property. This
object holds a balance that we want copied to the cloned object. What we don't want, though,
is for both Person objects to hold references to the same account.

class Account {

}

public $balance;
function __ construct($balance) {

$this->balance = $balance;
}

class Person {
private $name;
private $age;
private $id;
public $account;

66 CHAPTER 4 • ADVANCED FEATURES

}

function __ construct($name, $age, Account $account) {
$this->name = $name;
$this->age = $age;
$this->account = $account;

}

function setld($id) {
$this->id = $id;

}

function clone() {
$this->id = o;

}

$person= new Person("bob", 44, new Account(200));
$person->set!d(343);
$person2 = clone $person;

II give $person some money
$person->account->balance += 10;
II $person2 sees the credit too
print $person2->account->balance;

II output:
II 210

$person holds a reference to an Account object that we have kept publicly accessible for the
sake of brevity (as you know, we would usually restrict access to a property, providing an accessor
method if necessary). When the clone is created, it holds a reference to the same Account object
that $person references. We demonstrate this by adding to the $person object's Account, and
confirming the increased balance via $person2.

If we do not want an object property to be shared after a clone operation, then it is up to us
to clone it explicitly in the __ clone () method:

function clone() {
$this->id = o;
$this->account = clone $this->account;

}

Defining String Values for Your Objects
Another Java-inspired innovation in PHP 5 is the __ toString () method. By default, when you
print an object, it will resolve to a string like this:

class StringThing {}
$st = new StringThing();
print $st;
II output:
II Object id #1

CHAPTER 4 • ADVANCED FEATURES 67

By implementing a_ to String () method, you can control the way that your objects represent
themselves when printed._ toString () should be written to return a string value. The method
is invoked automatically when your object is passed to print or echo, and its return value
substituted. Let's add a _toString() version to a minimal Person class:

class Person {

}

function getName() { return "Bob"; }
function getAge() { return 44; }
function _toString() {

}

$desc = $this->getName();
$desc .="(age ".$this->getAge().")";
return $desc;

Now when we print a Person object, the object will resolve to this:

$person = new Person();
print $person;
II output:
II Bob (age 44)

The_ toString () method is particularly useful for logging and error reporting, and for
classes whose main task is to convey information. The Exception class, for example, summarizes
exception data in its_ toString () method.

Note At the time of writing, objects embedded within quotes are not converted into their string represen­
tation, although this is the ideal behavior. So

print "$person\n";

Does not resolve to the value returned by_ toString ().This feature has been disabled by PHP's architects
for developmental reasons. It may have been restored by the time you read this. Try it out!

Summary
In this chapter, we got to grips with PHP's advanced object-oriented features. Some of these
will become familiar as you work through the book. In particular, we will return frequently to
abstract classes, exceptions, and static methods.

In the next chapter, we take a step back from built-in object features and look at classes
and functions designed to help you work with objects.

CHAPTER 5

Object Tools

As we have seen, PHP supports object -oriented programming through language constructs
such as classes and methods. The language also provides wider support through object -related
functions and classes.

In this chapter, we will look at some tools and techniques that you can use to organize,
test, and manipulate objects and classes.

This chapter will cover

• Packages: PHP does not support packages explicitly, but that's no reason not to organize
your code into package-like structures.

• Include paths: Setting central accessible locations for your library code.

• Class and object functions: Functions for testing objects, classes, properties, and methods.

• The Reflection API: A powerful suite of built -in classes that provide unprecedented
access to class information at runtime.

PHP and Packages
A package is a set of related classes, usually grouped together in some way. Packages can be
used to separate parts of a system from one another. Some programming languages formally
recognize packages and provide them with distinct namespaces. Although the Zend 2 Engine
has no concept of a package, we can still use the file system to organize our classes, and devise
a strategy to guard against name collisions.

One of the themes of this book so far has been the shift away from trust to enforcement
ushered in by some of the new features in PHP 5. Where once we trusted that an object's property
would not be overwritten by client code, now we defend it with the private or protected
keywords. Where we hoped that a child class would implement its parent's empty methods,
now we use an abstract class to make certain of it.

This shift does not extend to support for packages. There were plans to introduce
namespaces in PHP 5, but these were abandoned shortly before the first beta was released.

Nevertheless, we can organize classes using the file system, which affords us a kind of
package structure. We might create util and business directories and include class files with
the require_ once() function, like this:

require_once('business/Customer.php');
require_once('util/WebTools.php');

69

70 CHAPTER 5 OBJECT TOOLS

Figure 5-l shows the util and business packages from the point of view of the Nautilus file
manager.

"' packages

"' business

121 Customer. php

121 lnvCllce.php

'V ulll

121 WebTools.php

Figure 5-1. PHP packages organized using the file system

Note require_ once() accepts a path to a file and includes it evaluated in the current script. The func­
tion will only incorporate its target if it has not already been incorporated elsewhere. This "one-shot"
approach is particularly useful when accessing library code because it prevents the accidental redefinition of
classes and functions. This can happen when the same file is included by different parts of your script in a
single process using a function like require() or include().

It is customary to use require() and require_ once() in preference to the similar include() and
include_ once () functions. This is because a fatal error encountered in a file accessed with the require ()
functions takes down the entire script. The same error encountered in a file accessed using the include ()
functions will cause the execution of the included file to cease, but will only generate a warning in the calling
script. The former, more drastic, behavior is safer.

Remember PHP has no concept of a package. We are simply placing library scripts in
different directories. Because of this, a class in one package can easily clash with a class in
another that happens to have the same name. We might define a User class in our business
package, for example, only to run into trouble later on when we include a third-party script that
also defines a User class in a package called forum:

require_once('business/User.php'); //defines User class
require_once('forum/User.php'); //defines another User class
II Fatal error: Cannot redeclare class user in ...

So how should we address the danger of name clashes? One answer is to use the naming
convention common to PEAR packages.

Note PEAR stands for the PHP Extension and Application Repository. It is an officially maintained archive
of packages and tools that add to PHP's functionality. Core PEAR packages are included in the PHP distribution,
and others can be added using a simple command line tool. You can browse the PEAR packages at
http: I /pear. php. net. We will look at some other aspects of PEAR in Chapter 14.

CHAPTER 5 OBJECT TOOLS

PEAR uses the file system to define its packages as I have described. Every class is then
named according to its package path, with each directory name separated by an underscore
character.

For example, PEAR includes a package called XML, which has an RPC subpackage. The
RPC package contains a file called Server. php. The class defined inside Server. php is not called
Server as you might expect. Sooner or later that would clash with another Server class elsewhere
in the PEAR project or in a user's code. Instead, the class is named XML _ RPC _Server. This makes
for unattractive class names. It does, however, make your code easy to read in that a class name
always describes its own context.

In line with this convention, we might rename our User class business_ User, in order to
distinguish it from the User object in the forum package.

Include Paths
I have glossed over the issue of include paths so far in this section. When we include a file, we
could refer to it using a relative path from the current working directory or an absolute path on
the file system.

The examples we have seen so far seem to suggest a relative path:

require_once('business/User.php');

But this would require that our current working directory contain the business directory,
which would soon become impractical. Using relative paths for our library inclusions, we would be
more likely to see torturous require_ once () statements:

require_once(' .. 1 .. /projectlib/business/User.php');

We could use an absolute path, of course:

require_once('/home/john/projectlib/business/User.php');

Neither solution is ideal. By specifying paths in this much detail, we freeze the library file
in place.

In using an absolute path, we tie the library to a particular file system. Whenever we install
the project on a new server, all require statements will need changing to account for a new
file path.

By using a relative path, we fix the relationship between the script's working directory and
the library, making hard-to-move libraries and impractical-to-share libraries between projects
without making copies. In either case, we lose the package idea in all the additional directories.
Is it the business package, or is it the projectlib/business package?

In order to make included libraries work well in our code, we need to decouple the invoking
code from the library so that

business/User.php

can be referenced from anywhere on a system. We can do this by putting the package in one of
the directories to which the include _path directive refers. include _path is usually set in PHP's
central configuration file, php. ini. It defines a list of directories separated by colons on Unix­
like systems and semicolons on Windows systems.

include_path = ".:/usr/local/lib/php-libraries"

71

72 CHAPTER 5 OBJECT TOOLS

When you use a file system function such as fop en() or require() with a nonabsolute path
that does not exist relative to the current working directory, the directories in the include path
are searched automatically, beginning with the first in the list (in the case of fopen () you must
include a flag in its argument list to enable this feature). When the target file is encountered,
the search ends and the file function completes its task.

So by placing a package directory in an include directory, we need only refer to packages
and files in our require () statements.

You may need to add a directory to the include _path so that you can maintain your own
library directory. To do this, you can, of course, edit the php. ini file (remember that for the
PHP server module you will need to restart your server for the changes to take effect).

If you do not have the privileges necessary to work with the php. ini file, you can set the
include path from within your scripts using the set_ include _path () function.
set_include_path() accepts an include path (as it would appear in php. ini) and changes the
include _path setting for the current process only. The php. ini file probably already defines a useful
value for include _path, so rather than overwrite it, you can access it using the get_ include _path ()
function, and append your own directory. Here's how you can add a directory to the current
include path:

set_include_path(get_include_path().":/home/john/phplib/");

If you are working on a Windows platform, you should use semicolons rather than colons
to separate each directory path.

Autoload
It is often a good idea to define each class in a project in a separate file. Each class file may bear
a fixed relationship to the name of the class it contains. So we might define a ShopProduct class
in a file named Shop Product. php. Using the PEAR convention, on the other hand, we would
name the file ShopProduct. php, but the class would be named according to its package address:
business_ ShopProduct, perhaps.

By splitting classes into individual files, and the files into separate packages, we promote
reuse and flexibility. We can use an individual class in separate projects simultaneously without
forcing the engine to parse irrelevant bundled classes.

The PEAR naming conventions make class name clashes unlikely. A project that consists of
tens of distinct class files, however, will soon begin to fill up with require_ once () statements as
each file attempts to include its peers. This is not in itself a problem as long as the inclusions are
necessary. As you improve your code, you may find that you are including some files unnecessarily.

PHP 5 introduces the_ autoload () interceptor function to help automate the inclusion of
class files. _autoload () should be implemented by the coder as a function requiring a single
argument. When the PHP engine encounters an attempt to instantiate an unknown class, it
invokes the _autoload() function (if defined), passing it the class name as a string. It is up to
the implementor to define a strategy for locating and including the missing class me.

Let's define an_autoload() function:

function _autoload($classname) {
include_once("$classname.php");

}

$product new ShopProduct('The Darkening', 'Harry', 'Hunter', 12.99);

CHAPTER 5 OBJECT TOOLS

Assuming that we have not already included a file that defines a class named ShopProduct,
the instantiation of Shop Product seems bound to fail. The PHP engine sees that we have defined
an_ autoload () function and passes it the string "Shop Product". Our implementation simply
attempts to include the file ShopProduct. php. This will only work, of course, if the file is in the
current working directory or in one of our include directories. We have no easy way here of
handling packages. This is another circumstance in which the PEAR naming scheme can pay off.

function _autoload($classname) {

}

$path= str_replace('_', DIRECTORY_SEPARATOR, $classname);
require_once("$path.php");

$y = new business_ShopProduct();

As you can see, the_ autoload () function transforms underscores in the supplied $class name
to the DIRECTORY_SEPARATOR character(! on Unix systems). We attempt to include the class file
(businesslshopProduct. php). If the class file exists, and the class it contains has been named
correctly, the object should be instantiated without error. Of course, this does require the
programmer to observe a naming convention that forbids the underscore character in a class
name except where it divides up packages.

According to the organization of your classes and files, the_ autoload() function can be a
useful way of managing your library inclusions.

The Class and Object Functions
PHP provides a powerful set of functions for testing classes and objects. Why is this useful?
After all, you probably wrote most of the classes you are using in your script.

In fact, you don't always know at runtime about the classes that you are using. You may
have designed a system to work transparently with third-party bolt-on classes, for example. In
this case, you will typically instantiate an object given only a class name. PHP allows you to use
strings to refer to classes dynamically like this:

II tasksiTask.php
class Task {

}

function doSpeak() {
print "hello";

}

II TaskRunner.php
$classname = "Task";

require_once("tasksl$classname.php");
$my0bj = new $classname();
$my0bj->do5peak();

You might acquire the string that we assign to $class name from a configuration file or by
comparing a Web request with the contents of a directory. You can then use the string to load
a class file and instantiate an object. Typically, you would do something like this when you

73

74 CHAPTER 5 • OBJECT TOOLS

want your system to be able to run user-created plug-ins. Before you do anything as risky as
that in a real project, you would have to check that the class exists, that it has the methods you
are expecting, and so on.

Some class functions have been superseded by the more powerful Reflection API, which
we will examine later in the chapter. Their simplicity and ease of use make them a first port of
call in some instances, however. For this reason, and because they can be used in PHP 4 compat­
ible scripts, we will look at them here.

Looking for Classes
The class_ exists () function accepts a string representing the class to check for and returns a
boolean true value if the class exists and false otherwise.

Using this function, we can make our previous fragment a little safer.

$classname = "Task";
$path = "tasks/$classname.php";
if (! file_exists($path)) {

throw new Exception("No such file as $path");
}
require_once($path);
if (! class_exists($classname)) {

throw new Exception("No such class as $classname");
}

Of course, we can't be sure that the class in question does not require constructor arguments.
For that level of safety, you would have to turn to the Reflection API, covered later in the chapter.
Nevertheless, we are able to ascertain that the class exists before we work with it.

You can also get an array of all classes defined in your script process using the
get_declared_classes()filnction.

print_r(get_declared_classes());

This will list user-defined and built-in classes. Remember that it only returns the classes
declared at the time of the function call. You may run require() or require_ once() later on and
thereby add to the number of classes in your script.

Learning About an Object or Class
As you know, we can constrain the types of method arguments using class type hinting. Even
with this tool we can't always be certain of an object's type. PHP 5 does not allow us to
constrain class type returned from a method or function, for example.

There are a number of basic tools available to check the type of an object. First of all, we
can check the class of an object with the get_ class () filnction. This accepts any object as an
argument and returns its class name as a string.

$product = getProduct();
if (get_class($product) == 'CdProduct') {

print "\$product is a CdProduct object\n";
}

CHAPTER 5 OBJECT TOOLS 75

In the fragment we acquire something from the get Product() function. To be absolutely
certain that it is a CdProduct object, we use the get_class() method.

Note In the first draft of this chapter, I tested the return value of get_ class() against a lowercase string,
"cdproduct". Until recently, PHP labeled classes using lowercase characters, no matter how they were
declared. getCla s s () now preserves case in its return value.

Here's the getProduct() function:

function getProduct() {
return new CdProduct(

}

"Exile on Coldharbour Lane",
"The", "Alabama 3", 10.99, 60.33);

get Product () simply instantiates and returns a CdProduct object. We will make good use of
this function in this section.

The get_ class () function is a very specific tool. We often want a more general confirmation of
a class's type. We may want to know that an object belongs to the ShopProduct family, but we
don't care whether its actual class is BookProduct or CdProduct. To this end, PHP 4 introduced
the is_ a () function. is_ a () requires an object and the name of a class or interface. The function
returns true if the object is an instance of the given type.

$product = getProduct();
if (is_a($product, 'ShopProduct')) {

print "\$product is a ShopProduct object\n";
}

PHP 5 has built this functionality into the heart of the language itself. The Zend 2 Engine
supports the instanceof keyword. This operator works with two operands, the object to test on
the left of the keyword and the class or interface name on the right.

$product = getProduct();
if ($product instanceof ShopProduct) {

print "\$product is a ShopProduct object\n";
}

Unless you need your code to be compatible with PHP 4, you should use instanceof in
preference to is_ a().

Learning About Methods
We can acquire a list of all the methods in a class using the get_ class_ methods () function. This
requires a class name and returns an array containing the names of all the methods in the class.

76 CHAPTER 5 OBJECT TOOLS

print_r(get_class_methods('CdProduct'));
I I Array
II (
II [o] => construct
II [1] => getPlayLength
II [2] => getSummaryLine
II [3] => getProducerFirstName
II [4] => getProducerMainName
II [5 J => setDiscount
II [6] => getDiscount
II [7] => getTitle
II [8] => getPrice
II [9] => getProducer

II

In the example, we pass a class name to get_ class_ methods() and dump the returned
array with the print_ r () function. We could alternatively have passed an object to
get_class_methods() with the same result.

There is no recognition of access control by the get_ class_ methods () function. All method
names are returned whether declared as public, private, or protected.

As you have seen, you are given a method name in a string variable, and you can invoke it
dynamically together with an object, like this:

$product = getProduct(); II acquire an object
$method = "getTitle"; I I define a method name
print $product->$method(); II invoke the method

Of course, this can be dangerous. What happens if the method does not exist? As you might
expect, your script will fail with an error. We have already encountered one way of testing that
a method exists:

if (in_array($method, get_class_methods($product))) {
print $product->$method(); II invoke the method

}

We check that the method name exists in the array returned by get_ class_ methods() before
invoking it. PHP provides us with more specialized tools for this purpose. We can check
method names to some extent with the two functions is_callable() and method_exists().
is_ callable() is the more sophisticated of the two functions.lt accepts a string variable repre­
senting a function name as its first argument and returns true ifthe function exists and can be
called. To apply the same test to a method, you should pass it an array in place of the function
name. The array must contain an object or class name as its first element and the method name
to check as its second element. The function will return true if the method exists in the class.

if (is_callable(array($product, $method))) {
print $product->$method(); II invoke the method

}

CHAPTER 5 OBJECT TOOLS n

is_ callable () optionally accepts a second argument: a Boolean. If you set this to true, the
function will only check the syntax of the given method or function name and not its actual
existence.

Warning At the time of writing (PHP 5.0.1), the is_ callable () function returns true when testing
methods declared private and protected. While this remains the case (and it may have changed by the
time you read this), the function should be used with caution in a PHP 5 context. If you are working with PHP 5,
you should use the Reflection API to check the status of a method before attempting to invoke it. I cover the
Reflection API later in the chapter.

The method_ exists () function requires an object and a method name, and returns true if
the given method exists in the object's class.

if (method_exists($product, $method)) {
print $product->$method(); II invoke the method

}

Note that method_ exists () does not accept a class name as its first argument-you must
use an object. If you do not have an object at hand, you can work around this limitation by
using get_class_methods() or is_callable(), both of which accept class names.

if (in_array($method, get_class_methods('CdProduct'))) {
II do something with the class

}

Warning Remember that in PHP 5 the fact that a method exists does not mean that it will be callable.
method_ exists () returns true for private and protected methods as well as for public ones.

Learning About Properties
Just as you can query the methods of a class, so can you query its fields. The get_ class_ vars ()
function requires a class name and returns an associative array. The returned array contains
field names as its keys and field values as its values. Let's apply this test to the CdProduct object.
For the purposes of illustration, we add a public property to the class: CdProduct: : $coverUr l.

print_r(get_class_vars('CdProduct'));
Array
(

[playlength] => 0
[coverUrl] =>
[price] =>

78 CHAPTER 5 OBJECT TOOLS

This function pays some attention to privacy. It reports only the properties that are visible
to the class. It does not, however, tell you which properties are accessible to you, reporting
protected, private, and public properties without distinction.

Note This is another function that has undergone marked evolution during the development of PHP 5.
Because its output may have changed again, it is worth running a test before working with it.

Learning About Inheritance
The class functions also allow us to chart inheritance relationships. We can find the parent of a
class, for example, with get _parent_ class ().This function requires either an object or a class
name, and it returns the name of the super class, if any. If no such class exists, that is, if the class we
are testing does not have a parent, then the function returns false.

print get_parent_class('CdProduct');
II ShopProduct

We can also test whether a class is a child of another using the is_ subclass_ of() function.
This requires a child object and the name of the parent class. The function returns true if the
second argument is a super class of the first argument.

$product = getProduct(); II acquire an object
if (is_subclass_of($product, 'ShopProduct')) {

print "CdProduct is a subclass of ShopProduct\n";
}

Method Invocation
We have already encountered an example in which we used a string to invoke a method
dynamically:

$product= getProduct(); II acquire an object
$method = "getTitle"; I I define a method name
print $product->$method(); II invoke the method

PHP also provides the call_ user_ func ()method to achieve the same end. call_ user_ func ()
can invoke either methods or functions. To invoke a function, it requires a single string as its
first argument:

$returnVal = call_user_func("myFunction");

To invoke a method, it requires an array. The first element of this should be an object and
the second should be the name of the method to invoke.

$returnVal = call_user_func(array($my0bj, "methodName"));

You can pass any arguments that the target method or function requires in additional
arguments to call_user_func(), like this:

$product= getProduct(); //acquire an object
call_user_func(array($product, 'setDiscount'), 20);

Our dynamic call is, of course, equivalent to

$product->setDiscount(20);

CHAPTER 5 OBJECT TOOLS

Because we can equally use a string directly in place of the method name, like this:

$method = "setDiscount";
$product->$method(20);

the call_ user_ func () method doesn't change our lives greatly. Much more impressive, though, is
the related call_ user_ func _array() function. This operates in the same way as call_ user_ func ()
as far as selecting the target method or function is concerned. Crucially, though, it accepts any
arguments required by the target method as an array.

So why is this useful? Occasionally you are given arguments in array form. Unless you
know in advance the number of arguments you are dealing with, it can be difficult to pass them
on. In Chapter 4, we looked at the interceptor methods that can be used to create delegator
classes. Here's a simple example of a_ call() method:

function _call($method, $args) {

}

if (method_exists($this->thirdpartyShop, $method)) {
return $this->thirdpartyShop->$method();

}

As we have seen, the_ call () method is invoked when an undefined method is called by
client code. In this example, we maintain an object in a property called $thirdpartyShop. If we
find a method in the stored object that matches the $method argument, we invoke it. We blithely
assume that the target method does not require any arguments, which is where our problems
begin. When we write the_ call() method, we have no way of telling how large the $args array
may be from invocation to invocation. If we pass $args directly to the delegate method, we will
pass a single array argument, and not separate arguments it may be expecting.
call_ user_ func _array() solves the problem perfectly:

function _call($method, $args) {

}

if (method_exists($this->thirdpartyShop, $method)) {
return call_user_func_array(

}

array($this->thirdpartyShop,
$method), $args);

The Reflection API
The first beta version ofPHP 5 was released in the summer of2003 to much excitement. Developers
descended upon PHP 5's long list of object-oriented features, analyzing and experimenting
with the nascent capabilities. Oddly, PHP 5's Reflection application programming interface
(API) was not part of that initial release, and was absent from the overview documentation.

79

80 CHAPTER 5 • OBJECT TOOLS

In the following weeks, the Reflection API quietly found its way into the PHP 5 source tree
without fuss or fanfare. Yet its stealthy arrival belies its importance: PHP 5 's Reflection API is to
PHP what the java.lang.reflect package is to Java.

The Reflection API consists of built-in classes for analyzing properties, methods, and
classes. It's similar in some respects to existing object functions such as get_ class_ vars (),but
is more flexible and provides much greater detail. It's also designed to work with PHP' s newest
object-oriented features, such as access control, interfaces, and abstract classes.

Getting Started
The Reflection API can be used to examine more than just classes. For example, the
Reflection Function class provides information about a given function, and Reflection Extension
yields insight about an extension compiled into the language. Table 5-llists some of the classes
in the API.

Table 5-1. Some of the Classes in the Reflection API

Class Description

Reflection

ReflectionClass

ReflectionMethod

ReflectionParameter

Reflection Property

Reflection Function

Reflection Extension

ReflectionException

Provides a static export () method for summarizing class
information

Class information and tools

Class method information and tools

Method argument information

Class property information

Function information and tools

PHP extension information

An error class

Between them, the classes in the Reflection API provide unprecedented runtime access to
information about the objects, functions, and extensions in your scripts.

Because of its power and reach, you should usually use the Reflection API in preference to
the class and object functions. You will soon find it indispensable as a tool for testing classes.
You might want to generate class diagrams or documentation, for example, or you might want
to save object information to a database, examining an object's accessor ("getter" and "setter")
methods to extract field names. Building a framework, that invokes methods in module classes
according to a naming scheme is another use of Reflection.

Time to Roll Up Your Sleeves
We have already encountered some functions for examining the attributes of classes. Many of
them are not yet fully equipped to provide information about the newer features in PHP 5. Let's
look at a tool that is up to the job. ReflectionClass provides methods that reveal information
about every aspect of a given class, whether it's a user-defmed or internal class. The constructor
of ReflectionClass accepts a class name as its sole argument:

$prod_class = new ReflectionClass('CdProduct');
Reflection::export($prod_class);

CHAPTER 5 OBJECT TOOLS 81

Once you've created a ReflectionClass object, you can use tbe Reflection utility class to
dump information about CdProduct. Reflection has a static export () method that outputs data
on any of the Reflection classes (that is, any class that implements the Reflector interface, to
be pedantic). Here's an extract from tbe output generated by a call to Reflection: :export():

Class [<user> class CdProduct extends ShopProduct] {
@@ /home/projects/sp/ShopProduct.php 59-80

}

- Constants [o] {
}

- Static properties [o] {
}

- Static methods [o] {
}

- Properties [3] {

}

Property [<default> private $playlength
Property [<default> public $coverUrl]
Property [<default> protected $price]

- Methods [11] {
Method [<user> <ctor> public method __ construct] {

@@ /home/projects/sp/ShopProduct.php 63 - 68

}

- Parameters [5] {

}

Parameter #0 [$title
Parameter #1 [$firstName
Parameter #2 [$mainName]
Parameter #3 [$price]
Parameter #4 [$playlength

Method [<user> public method getPlayLength] {
@@ /home/projects/sp/ShopProduct.php 70 - 72

}

Method [<user> public method getSummaryline] {
@@ /home/projects/sp/ShopProduct.php 74 - 78

}

82 CHAPTER 5 OBJECT TOOLS

As you can see, Reflection: :export () provides remarkable access to information about a
class. Reflection: :export () provides summary information about almost every aspect of
CdProduct, including the access control status of properties and methods, the arguments required
by every method, and the location of every method within the script document. Compare that
with a more established debugging function. The var_dump() function is a general-purpose

tool for summarizing data. You must instantiate an object before you can extract a summary,
and even then it provides nothing like the detail made available by Reflection: :export ().

var_dump(getProduct());

II object(CdProduct)#l (7) {
II ["playlength:private"]=>
II float(60.33)
II ["coverUrl"]=>
II string(o) ""
II ["title:private"]=>
II string(25) "Exile on Coldharbour Lane"
II ["producerMainName:private"]=>
II string(9) "Alabama 3"
II ["producerFirstName:private"]=>
II string(3) "The"
II ["price:protected"]=>
II float(10.99)
II ["discount:private"]=>
II int(o)
II }

var _dump() and its cousin print_ r () are fantastically convenient tools for exposing the
data in your scripts. For classes and functions, the Reflection API takes things to a whole new
level, though.

Examining a Class
The Reflection : :export () method can provide a great deal of useful information for debugging,

but we can use the API in more specialized ways. Let's work directly with the Reflection classes.
You've already seen how to instantiate a ReflectionClass object:

$prod_class = new ReflectionClass('CdProduct');

Next, let's use the ReflectionClass object to investigate CdProduct within a script. What

kind of class is it? Can an instance be created? Here's a function to answer these questions:

$prod_class = new ReflectionClass('CdProduct');
print classData($prod_class);

CHAPTER 5 • OBJECT TOOLS 83

function classData(ReflectionClass $class) {
$details = "";

}

$name = $class->getName();
if ($class->isUserDefined()) {

$details .= "$name is user defined\n";
}
if ($class->islnternal()) {

$details .= "$name is built-in\n";
}
if ($class->islnterface()) {

$details .= "$name is interface\n";
}
if ($class->isAbstract()) {

$details .= "$name is an abstract class\n";
}
if ($class->isFinal()) {

$details .= "$name is a final class\n";
}
if ($class->islnstantiable()) {

$details .= "$name can be instantiated\n";
} else {

$details .= "$name can not be instantiated\n";
}
return $details;

We create a ReflectionClass object, assigning it to a variable called $prod_ class by passing
the CdProduct class name to ReflectionClass's constructor. $prod_ class is then passed to a
function called cla s sData () that demonstrates some of the methods that can be used to query
a class.

The methods should be self-explanatory, but here's a brief description of each one:

• ReflectionClass: :getName() returns the name of the class being examined.

• The ReflectionClass:: isUserDefined() method returns true if the class has been
declared in PHP code, and ReflectionClass:: is Internal() yields true if the class is
built-in.

• You can test whether a class is abstract with ReflectionClass:: isAbstract(), and
whether it's an interface with ReflectionClass:: is Interface().

• If you want to get an instance of the class, you can test the feasibility of that with
ReflectionClass::isinstantiable().

84 CHAPTER 5 OBJECT TOOLS

You can even examine a user-defined class's source code. The ReflectionClass object
provides access to its class's file name, and to the start and finish lines of the class in the file.

Here's a quick-and-dirty method ReflectionClass:

class ReflectionUtil {

}

static function getClassSource(ReflectionClass $class) {
$path = $class->getFileName();
$lines =@file($path);
$from= $class->getStartline();
$to = $class->getEndline();
$len = $to-$from+1;
return implode(array_slice($lines, $from-1, $len));

}

print ReflectionUtil::getClassSource(
new ReflectionClass('CdProduct'));

ReflectionUtil is a simple class with a single static method,
Reflect ionUt il: : getCla s sSource (). That method takes a ReflectionClas s object as its only
argument, and returns the referenced class's source code. ReflectionClass: :getFileName()
provides the path to the class's file as an absolute path, so the code should be able to
go right ahead and open it. file () obtains an array of all the lines in the file.
ReflectionCla s s : :getS tartline () provides the class's start line; ReflectionCla s s : :get End Line()
fmds the final line. From there, it's simply a matter of using array_slice() to extract the lines
of interest.

To keep things brief, this code omits error handling. In a real-world application, you'd
want to check arguments and result codes.

Examining Methods
Just as ReflectionClass is used to examine a class, a ReflectionMethod object examines a method.

You can acquire a ReflectionMethod in two ways: you can get an array ofReflectionMethod
objects from ReflectionClass: :getMethods(), or if you need to work with a specific method,
ReflectionClass: : getMethod () accepts a method name and returns the relevant ReflectionMethod
object.

Here we use ReflectionClass: : getMethods () to put the ReflectionMethod class through
its paces.

$prod_class = new ReflectionClass('CdProduct');
$methods = $prod_class->getMethods();

foreach ($methods as $method) {
print methodData($method);
print "\n----\n";

}

function methodData(ReflectionMethod $method) {
$details = "";
$name = $method->getName();
if ($method->isUserDefined()) {

$details .= "$name is user defined\n";
}
if ($method->islnternal()) {

$details .= "$name is built-in\n";
}
if ($method->isAbstract()) {

$details .= "$name is abstract\n";
}
if ($method->isPublic()) {

$details .= "$name is public\n";
}
if ($method->isProtected()) {

$details .= "$name is protected\n";
}
if ($method->isPrivate()) {

$details .= "$name is private\n";
}
if ($method->is5tatic()) {

$details .= "$name is static\n";
}
if ($method->isFinal()) {

$details .= "$name is final\n";
}
if ($method->isConstructor()) {

$details .= "$name is the constructor\n";
}
if ($method->returnsReference()) {

CHAPTER 5 OBJECT TOOLS 85

$details .= "$name returns a reference (as opposed to a value)\n";
}
return $details;

}

The code uses ReflectionClass: :getMethods () to get an array of ReflectionMethod objects,

and then loops through the array, passing each object to methodData ().

The names of the methods used in methodData () reflect their intent: the code checks

whether the method is user-defined, built-in, abstract, public, protected, static, or final. You

can also check whether the method is the constructor for its class, and whether or not it returns

a reference.
One caveat: ReflectionMethod: :returns Reference() doesn't return true if the tested method

simply returns an object, even though objects are passed and assigned by reference in PHP 5.

Instead, ReflectionMethod: : returnsReference() only returns true if the method in question

has been explicitly declared to return a reference (by placing an ampersand character in front

of the method name).

86 CHAPTER 5 • OBJECT TOOLS

As you might expect, you can access a method's source code using a technique similar to
the one used previously with ReflectionClass:

class ReflectionUtil {

}

static function getMethodSource(ReflectionMethod $method) {
$path = $method->getFileName();
$lines =@file($path);
$from = $method->getStartline();
$to = $method->getEndLine();
$len = $to-$from+1;
return implode(array_slice($lines, $from-1, $len));

}

$class = new ReflectionClass('CdProduct');
$method = $class->getMethod('getSummaryline');
print ReflectionUtil::getMethodSource($method);

Because ReflectionMethod provides us with get FileName (), getStartline(), and getEnd Line ()
methods, it's a simple matter to extract the method's source code.

Examining Method Arguments
Now that method signatures can constrain the types of object arguments, the ability to examine
the arguments declared in a method signature becomes immensely useful. The Reflection API
provides the ReflectionParameter class just for this purpose. To get a Reflection Parameter
object, you need the help of a ReflectionMethod object. The ReflectionMethod: :get Parameters ()
method returns an array of ReflectionParameter objects.

Reflection Parameter can tell you the name of an argument, whether the variable is passed
by reference (that is, with a preceding ampersand in the method declaration), and can also tell
you the class required by argument hinting and whether the method will accept a null value for
the argument.

Here are some of Reflection Parameter's methods in action:

$prod_class = new ReflectionClass(CdProduct);
$method = $prod_class->getMethod("_construct");
$params = $method->getParameters();

foreach ($params as $param) {
print argData($param);

}

function argData(ReflectionParameter $arg) {
$details = "";

}

$name = $arg->getName();
$class = $arg->getClass();

if (! empty($class)) {
$classname = $class->getName();
$details .= "\$$name must be a $classname object\n";

}
if ($arg->allowsNull()) {

$details .= "\$$name can be null\n";
}
if ($arg->isPassedByReference()) {

$details .= "\$$name is passed by reference\n";
}
return $details;

CHAPTER 5 • OBJECT TOOLS 87

Using the ReflectionClass: :getMethod() method, the code acquires a ReflectionMethod
object. It then uses ReflectionMethod: :get Parameters () to get an array of Reflection Parameter
objects. The argData () function uses the ReflectionParameter object it was passed to acquire
information about the argument.

First, it gets the argument's variable name with Reflection Parameter: :getName(). The
Reflection Parameter: :get Class () method returns a ReflectionClass object if a hint's been
provided. Finally, the code checks whether the argument can be null with allowsNull(), and
whether it's a reference with isPassedByReference(). This last method seems to confirm that
all parameters can be null. I suspect that at some point there may have been plans for a
not_ null modifier for method parameters, but this does not seem to have come to pass.

An Example
With the basics of the Reflection API under your belt, you can now put the API to work.

Imagine that you're creating a class that calls Module objects dynamically. That is, it can
accept plug-ins written by third parties and slotted into the application without the need for
any hard coding. To achieve this, you might define an execute() method in the Module interface
or abstract base class, forcing all child classes to define an implementation. You could allow the
users of your system to list Module classes in an external XML configuration file. Your system can
use this information to aggregate a number of Module objects before calling execute () on each one.

What happens, however, if each Module requires dijferentinformation to do its job? In that
case, the XML me can provide property keys and values for each Module, and the creator of each
Module can provide setter methods for each property name. Given that foundation, it's up to
your code to ensure that the correct setter method is called for the correct property name.

88 CHAPTER 5 OBJECT TOOLS

Here's some groundwork for the Module interface and a couple of implementing classes:

class Person {

}

public $name;
function __ construct($name) {

$this->name = name;
}

interface Module {
function execute();

}

class FtpModule implements Module {
function setHost($host) {

}

print "FtpModule::setHost(): $host\n";
}

function setUser($user) {
print "FtpModule::setUser(): $user\n";

}

function execute() {
II do things

}

class PersonModule implements Module {
function setPerson(Person $person) {

}

print "PersonModule::setPerson(): {$person->name}\n";
}

function execute() {
II do things

}

Here, PersonModule and FtpModule both provide empty implementations of the execute()
method. Each class also implements setter methods that do nothing but report that they were
invoked. Our system lays down the convention that all setter methods must expect a single
argument: either a string, or an object that can be instantiated with a single string argument.
The PersonModule: :set Person ()method expects a Person object so we include a Person class in
our example.

To work with PersonModule and FtpModule, the next step is to create a ModuleRunner class.
It will use a multidimensional array indexed by module name to represent configuration infor­
mation provided in the XML file. Here's that code:

CHAPTER 5 OBJECT TOOLS 89

class ModuleRunner {
private $configData

= array(

}

"PersonModule" => array('person'=>'bob'),
"FtpModule" => array('host'

) ;
private $modules = array();

II ...

=>'example.com',
'user' =>'anon')

The ModuleRunner: : $configData property contains references to the two Module classes.
For each module element, the code maintains a subarray containing a set of properties.
ModuleRunner's ini t () method is responsible for creating the correct Module objects, as
shown here:

class ModuleRunner {
II ...

}

function init() {

}

II ...

$interface= new ReflectionClass('Module');
foreach ($this->configData as $modulename => $params) {

$module_class = new ReflectionClass($modulename);
if (! $module_class->isSubclassOf($interface)) {

}

throw new Exception("unknown module type: $modulename");
}
$module = $module_class->newlnstance();
foreach ($module_class->getMethods() as $method) {

$this->handleMethod($module, $method, $params);
II we cover handleMethod() in a future listing!

}
array_push($this->modules, $module);

$test = new ModuleRunner();
$test->init();

The ini t () method loops through the ModuleRunner: : $configData array and for each
module element it attempts to create a ReflectionClass object. An exception is generated
when ReflectionClass's constructor is invoked with the name of a nonexistent class, so
in a real-world context we would want to include more error handling here. We use the
ReflectionClass:: is_subclass_of() method to ensure that the module class belongs to
the Module type.

90 CHAPTER 5 OBJECT TOOLS

Before you can invoke the execute () method of each Module, an instance has to be created.
That's the purpose of method: : ReflectionClass: : newlnstance(). That method accepts any
number of arguments, which it passes on to the relevant class's constructor method. If all's
well, it returns an instance of the class. (For production code, be sure to code defensively:
check that the constructor method for each Module object doesn't require arguments before
creating an instance.)

ReflectionClass: : getMethods () returns an array of all ReflectionMethod objects available for
the class. For each element in the array, the code invokes the ModuleRunner: : handleMethod ()
method, passing it a Module instance, the ReflectionMethod object, and an array of properties
to associate with the Module. handleMethod() verifies and invokes the Module object's setter
methods.

class ModuleRunner {
II ...

}

function handleMethod(Module $module, ReflectionMethod $method, $params) {

}

$name $method->getName();
$args = $method->getParameters();

if (count($args) != 1 I I

}

substr($name, o, 3) != "set") {
return false;

$property = strtolower(substr($name, 3));
if (! isset($params[$property])) {

return false;
}

$arg_class = $args[o]->getClass()~

if (empty($arg_class)) {
$method->invoke($module, $params[$property]);

} else {
$method->invoke($module,

$arg_class->newlnstance($params[$property]));
}

handleMethod () first checks that the method is a valid setter. In the code, a valid setter
method must be named setXXXX (), and must declare one and only one argument.

Assuming that the argument checks out, the code then extracts a property name from the
method name by removing set from the beginning of the method name and converting the
resulting substring to lowercase characters. That string is used to test the $params array argument.
This array contains the user-supplied properties that are to be associated with the Module
object. If the $params array doesn't contain the property, the code gives up and returns false.

If the property name extracted from the module method matches an element in the
$params array, we can go ahead and invoke the correct setter method. To do that, the
code must check the type of the first (and only) required argument of the setter method.

CHAPTER 5 OBJECT TOOLS 91

The ReflectionParameter: :get Class () method provides this information. If the method returns an
empty value, the setter expects a primitive of some kind; otherwise, it expects an object.

To call the setter method, we need a new Reflection API method. ReflectionMethod: :invoke ()
requires an object and any number of method arguments to pass on to the method it repre­
sents. ReflectionMethod: :invoke () throws an exception if the provided object does not match
its method. We call this method in one of two ways. If the setter method doesn't require an
object argument, we call ReflectionMethod: :invoke () with the user-supplied property string.
If the method requires an object, we use the property string to instantiate an object of the
correct type, which is then passed to the setter.

The example assumes that the required object can be instantiated with a single
string argument to its constructor. It's best, of course, to check this before calling
ReflectionClass::newinstance().

By the time the ModuleRunner:: init() method has run its course, the object has a store
of Module objects, all primed with data. The class can now be given a method to loop through
the Module objects, calling execute() on each one.

Summary
In this chapter, we covered some of the techniques and tools that you can use to manage your
libraries and classes. Although PHP does not provide namespaces for packages, we saw that we
can combine include paths, the PEAR class naming convention, and the file system to provide
flexible organization for classes. We examined PHP's object and class functions, before taking
things to the next level with the powerful Reflection API. Finally, we used the Reflection classes
to build a simple example that illustrates one of the potential uses that Reflection has to offer.

CHAPTER 6

Objects and Design

Now that we have seen the mechanics of PHP' s object support in some detail, we step back
from the details in this chapter and consider how best to use the tools that we have encoun­
tered. In this chapter, I introduce you to some ofthe issues surrounding objects and design. We
will also look at the UML, a powerful graphical language for describing object-oriented systems.

This chapter will cover

• Design basics: What do we mean by design? How does object-oriented design differ from
procedural code?

• Class scope: How do you decide what to include in a class?

• Polymorphism: Hiding implementation behind interface.

• Encapsulation: Keeping your components independent of one another and the
wider system.

• The UML: Using diagrams to describe object-oriented architectures.

Defining Code Design
This is a fair question given the title of this chapter. One sense of"code design" concerns the
definition of a system: the determination of a system's requirements, scope, and objectives.
What does the system need to do? Who does it need to do it for? What are the outputs of the
system? Do they meet the stated need? On a lower level, design can be taken to mean the
process by which you define the participants of a system and organize their relationships. This
chapter is concerned with the second sense: the definition and disposition of classes and objects.

So what is a participant? An object-oriented system is made up of classes. It is important
to decide the nature of these players in your system. Classes are made up of methods, so in
defining your classes you must decide which methods belong together. As we will see, though,
classes are often combined in inheritance relationships to conform to common interfaces. It is
these interfaces, or types, that should be your first port of call in designing your system.

There are other relationships that you can define for your classes. You can create classes
that are composed of other types or that manage lists of other type instances. You can design
classes that simply use other objects. These relationships of composition or use are designed
into your classes (through class type hints, for example), but the actual object relationships
take place at runtime, which can add flexibility to your design. We will see how to model these
relationships in this chapter and explore them further throughout the book.

93

94 CHAPTER 6 OBJECTS AND DESIGN

As part of the design process, you must decide when an operation should belong to a type
and when it should belong to another class used by the type. Everywhere you turn you are
presented with choices, decisions that might lead to clarity and elegance, or might mire you in
compromise.

In this chapter, we will examine some issues that might influence a few of these choices.

Object-Oriented and Procedural Programming
How does object -oriented design differ from the more traditional procedural code? It is tempting to
say that the primary distinction is that object-oriented code has objects in it. This is neither
true nor useful. In PHP, you will often find procedural code using objects. You may also come
across classes that contain tracts of procedural code. The presence of classes does not guarantee
object-oriented design, even in a language like Java, which forces you to do everything inside
a class.

One core difference between object -oriented and procedural code can be found in the way
that responsibility is distributed. Procedural code takes the form of a sequential series of
commands and method calls. The controlling code tends to take responsibility for handling
differing conditions. This top-down control can result in the development of duplications and
dependencies across a project. Object -oriented code tries to minimize these dependencies
by moving responsibility for handling tasks away from client code and toward the objects in
the system.

Let's set ourselves a simple problem and analyze it in terms of both object-oriented and
procedural code to illustrate these points. Our project is to build a quick tool for reading from
and writing to configuration files. In order to maintain focus on the structures of the code, I will
omit implementation code in these examples.

We begin with a procedural approach to this problem. To start with, we will read and write
text in the format

key:value

We need only two functions for this purpose:

function readParams($sourceFile) {
$params = array();

}

II read text parameters from $sourceFile
return $params;

function writeParams($params, $sourceFile) {
II write text parameters to $sourceFile

}

The readParams() function requires the name of a source file. It attempts to open it, and
reads each line, looking for key /value pairs. It builds up an array as it goes. Finally, it returns the
array to the controlling code. wri teParams () accepts an associative array and the path to a
source file. It loops through the associative array, writing each key /value pair to the file. Here's
some client code that works with the functions:

$file = "./param. txt";
$array['key1'] "vall";
$array[' key2'] = "val2";
$array[' key3'] = "val3";

CHAPTER 6 • OBJECTS AND DESIGN 95

writeParams($array, $file); II array written to file
$output = readParams($file); II array read from file
print_r($output);

This code is relatively compact and should be easy to maintain.
Now, though, we are informed that the tool should support a simple XML format that

looks like this:

<params>
<param>

<key>my key<lkey>
<val>my val<lval>

<lparam>
<lparams>

The parameter file should be read in XML mode if the parameter file ends in ".xml".
Although this is not difficult to accommodate, it threatens to make our code much harder to
maintain. We really have two options at this stage. We can check the file extension in the controlling
code, or we can test inside our read and write functions. Let's go for the latter approach:

function readParams($source) {
$params = array();

}

if (substr($source, -4) == ".xml") {
II read XML parameters from $source

} else {
II read text parameters from $source

}
return $params;

function writeParams($params, $source) {
if (substr($source, -4) == ".xml") {

II write XML parameters to $source
} else {

II write text parameters to $source
}

}

As you can see, we have had to use the test for the XML extension in each of the functions.
It is this repetition that might cause us problems down the line. If we are asked to include yet
another parameter format, we will need to remember to keep the readParams () and wri teParams ()
functions in line with one another.

Let's address the same problem with some simple classes. First we create an abstract base
class that will define the interface for the type:

96 CHAPTER 6 • OBJECTS AND DESIGN

abstract class ParamHandler {
protected $source;

}

protected $params = array();

function __ construct($source) {
$this->source = $source;

}

function addParam($key, $val) {
$this->params[$key] = $val;

}

function getAllParams() {
return $this->params;

}

static function getinstance($filename) {

}

if (substr($filename, -4) == ".xml") {
return new XmlParam($filename);

}
return new TextParam($filename);

abstract function write();
abstract function read();

We define the addParam() method to allow the user to add parameters to the protected
$params property and getAllParams () to provide access to a copy of the array.

We also create a static getinstance() method that tests the file extension and returns a
particular subclass according to the results. Crucially we defme two abstract methods, read ()
and write (), ensuring that any subclasses will support this interface.

Now let's define the subclasses, once again omitting the details ofimplementation to keep
the example clean:

class XmlParam extends ParamHandler {

}

function write() {
II write XML
II using $this->params

}

function read() {
II read XML
II and populate $this->params

}

class TextParam extends ParamHandler {

}

function write() {
II write text
II using $this->params

}

function read() {
II read text
II and populate $this->params

}

CHAPTER 6 • OBJECTS AND DESIGN

These classes simply provide implementations of the write () and read () methods. Each
class will write and read according to the appropriate format.

Client code will write to both text and XML formats entirely transparently according to the
file extension:

$test= ParamHandler::getinstance(".lparams.xml");
$test->addParam("key1", "vall");
$test->addParam("key2", "val2");
$test->addParam("key3", "val3");
$test->write(); II writing in XML format

We can also read from either file format:

$test= ParamHandler::getinstance(".lparams.txt");
$test->read(); II reading in text format

So, what can we learn from these two approaches?

Responsibility
The controlling code in the procedural example takes responsibility for deciding about format,
not once but twice. The conditional code is tidied away into functions, certainly, but this
merely disguises the fact of a single flow making decisions as it goes. The call to readParams ()
must always take place in a different context from a call to wri teParams (), so we are forced to
repeat the file extension test in each function (or to perform variations on this test).

In the object -oriented version, this choice about file formatis made in the static getlnstance()
method, which tests the file extension only once, serving up the correct subclass. The client
code takes no responsibility for implementation. It uses the provided object with no knowledge
of, or interest in, the particular subclass it belongs to. It knows only that it is working with a
ParamHandler object, and that it will support write() and read(). While the procedural code
busies itself about details, the object -oriented code works only with an interface, unconcerned
about the details of implementation. Because responsibility for implementation lies with the
objects and not with the client code, it would be easy to switch in support for new formats
transparently.

98 CHAPTER 6 OBJECTS AND DESIGN

Cohesion
Cohesion is the extent to which proximate procedures are related to one another. Ideally,
you should create components that share a clear responsibility. If your code spreads related
routines widely, then you will find them harder to maintain as you have to hunt around to
make changes.

Our ParamHandler classes collect related procedures into a common context. The methods
for working with XML share a context in which they can share data, and where changes to one
method can easily be reflected in another if necessary (if we needed to change an XML element
name, for example). The ParamHandler classes can therefore be said to have "high cohesion."

The procedural example, on the other hand, separates related procedures. The code for
working with XML is spread across functions.

Coupling
Tight coupling occurs when discrete parts of a system's code are tightly bound up with one
another so that a change in one part necessitates changes in the others. Tight coupling is by no
means unique to procedural code, though its sequential nature makes it prone to the problem.

We can see this kind of coupling in the procedural example. The wri teParams () and
readParams () functions run the same test on a file extension to determine how they should
work with data. Any change in logic we make to one will have to be implemented in the other.
If we were to add a new format, for example, we would have to bring the functions into line
with one another so that they both implement a new file extension test in the same way. This
problem can only get worse as we add new parameter-related functions.

The object-oriented example decouples the individual subclasses from one another and
from the client code. If we were required to add a new parameter format, we could simply
create a new subclass, amending a single test in the static getlnstance() method.

Orthogonality
The killer combination in components of tightly defined responsibilities together with inde­
pendence from the wider system is sometimes referred to as orthogonality (The Pragmatic
Programmer).

Orthogonality, it is argued, promotes reuse in that components can be plugged into new
systems without needing any special configuration. Such components will have clear inputs
and outputs independent of any wider context. Orthogonal code makes change easier because
the impact of altering an implementation will be localized to the component being altered.
Finally, orthogonal code is safer. The effects of bugs should be limited in scope. An error in
highly interdependent code can easily cause knock-on effects in the wider system.

There is nothing automatic about loose coupling and high cohesion in a class context. We
could, after all, embed our entire procedural example into one misguided class. So how do we
achieve this balance in our code? I usually start by considering the classes that should live in
my system.

CHAPTER 6 OBJECTS AND DESIGN 99

Choosing Your Classes
It can be surprisingly difficult to define the boundaries of your classes, especially as they will
evolve with any system that you build.

It can seem straightforward when you are modeling the real world. Object -oriented systems
often feature software representations of real things-Person, Invoice, and Shop classes abound.
This would seem to suggest that defining a class is a matter of finding the things in your system
and then giving them agency through methods. This is not a bad starting point, but it does have
its dangers. If you see a class as a noun, a subject for any number of verbs, then you may find it
bloating as ongoing development and requirement changes call for it to do more and more things.

Let's consider the ShopProduct example that we created in Chapter 3. Our system exists to
offer products to a customer, so defining a ShopProduct class is an obvious choice, but is that
the only decision we need to make? We provide methods such as getTitle() and get Price()
for accessing product data. When we are asked to provide a mechanism for outputting summary
information for invoices and delivery notes, it seems to make sense to define a write () method.
When the client asks us to provide the product summaries in different formats, we look again
at our class. We duly create writeXML() and writeXHTML() methods in addition to the write()
method. Or we add conditional code to write () to output different formats according to an
option flag.

Either way, the problem here is that the ShopProduct class is now trying to do too much.
It is struggling to manage strategies for display as well as for managing product data.

How should we think about defining classes? The best approach is to think of a class as
having a primary responsibility, and to make that responsibility as singular and focused as
possible. Put the responsibility into words. Peter Coad wrote that you should be able to describe a
class's responsibility in 25 words or less, rarely using the words "and" or "or." If your sentence
gets too long, or mired in clauses, it is probably time to consider defining new classes along the
lines of some of the responsibilities you have described.

So ShopProduct classes are responsible for managing product data. If we add methods for
writing to different formats, we begin to add a new area of responsibility: product display. As
you saw in Chapter 3, we actually defined two types based on these separate responsibilities.
The ShopProduct type remained responsible for product data, and the ShopProductWri ter type
took on responsibility for displaying product information. Individual subclasses refined these
responsibilities.

lfllote Very few design rules are entirely inflexible. You will sometimes see code for saving object data in an
otherwise unrelated class, for example. While this would seem to violate the rule that a class should have a
singular responsibility, it can be the most convenient place for the functionality to live because a method has
to have full access to an instance's fields. Using local methods for persistence can also save us from creating
a parallel hierarchy of persistence classes mirroring our savable classes, and thereby introducing unavoidable
coupling. We deal with other stategies for object persistence in Chapter 12. Avoid religious adherence to
design rules; they are not a substitute for analyzing the problem before you. Try to remain alive to the
reasoning behind the rule, and emphasize that over the rule itself.

100 CHAPTER 6 OBJECTS AND DESIGN

Polymorphism
Polymorphism, or class switching, is a common feature of object-oriented systems. We have
encountered it several times already in this book.

Polymorphism is the maintenance of multiple implementations behind a common inter­
face. This sounds complicated, but in fact it should be very familiar to you by now. The need for

polymorphism is often signaled by the presence of extensive conditional statements in your code.
When we first created the ShopProduct class in Chapter 3, we experimented with a single

class, which managed functionality for books and CDs in addition to generic products. In order
to provide summary information, we relied upon a conditional statement:

function getSummaryline() {

}

$base = "$this->title ($this->producerMainName, ";
$base .= "$this->producerFirstName)";
if ($this->type == 'book') {

$base .= ": page count - $this->numPages";
} else if ($this->type == 'cd') {

$base .= ": playing time - $this->playlength";
}
return $base;

These statements suggested the shape for the two subclasses: CdProduct and BookProduct.
By the same token, the conditional statements in our procedural parameter example

contained the seeds of the object-oriented structure we fmally arrived at. We repeated the
same condition in two parts of the script.

function readParams($source) {
$params = array();

}

if (substr($source, -4 ".xml") {
II read XML parameters from $source

} else {
II read text parameters from $source

}
return $params;

function writeParams($params, $source) {
if (substr($source, -4) == ".xml") {

II write XML parameters to $source
} else {

II write text parameters to $source
}

}

Each clause suggested one of the subclasses we finally produced: XmlParam and TextParam,
extending the abstract base class ParamHandler's write() and read() methods.

II could return XmlParam or TextParam
$test= ParamHandler::getinstance($file);

CHAPTER 6 • OBJECTS AND DESIGN 101

$test->read(); II could be XmlParam::read() or TextParam::read()
$test->addParam("key1", "vall");
$test->write(); II could be XmlParam::write() or TextParam::write()

It is important to note that polymorphism doesn't banish conditionals. Methods like
ParamHandler: : getlnstance() will often determine which objects to return based upon switch
or if statements. These tend to centralize the conditional code into one place, though.

As we have seen, PHP 5 enforces the interfaces defined by abstract classes. This is useful
because we can be sure that a child class will implement a method signature in exactly the
same way as defined by an abstract parent. This includes all class type hints and access control.
Client code can therefore treat all members of a type interchangeably. There is an important
exception to this rule: there is no way of constraining the return type of a method. This means
that it is possible for methods in different subclasses to return different class types or primitives,
which can undermine the interchangeability of types. You should try to be consistent with your
return values. Some methods may be defmed to take advantage of PHP's loose typing and
return different types according to circumstances. Other methods enter into a contract with
client code, effectively promising that they will return a particular type. If this contract is laid
down in an abstract super class, it should be honored by its concrete children so that clients
can be sure of consistent behavior. If you commit to return an object of a particular type, you
can, of course, return an instance of a subtype. Although the interpreter does not enforce
return types, you can make it a convention in your projects that certain methods will behave
consistently. Use comments in the source code to specify a method's return type.

Encapsulation
Encapsulation simply means the hiding of data and functionality from a client. And once again
it is a key object -oriented concept.

On the simplest level we encapsulate data by declaring properties private or protected. By
hiding a property from client code, we enforce an interface and prevent the accidental corruption
of an object's data.

Polymorphism illustrates another kind of encapsulation. By placing different implemen­
tations behind a common interface, we hide these underlying strategies from the client. This
means that any changes that are made behind this interface are transparent to the wider system.
We can add new classes or change the code in a class without causing errors. The interface is
what matters, and not the mechanisms working beneath it. The more independent these
mechanisms are kept, the less chance that changes or repairs will have a knock-on effect in

your projects.
Encapsulation is in some ways the key to object -oriented programming. Our objective should

be to make each part as independent as possible from its peers. Classes and methods should
receive as much information as is necessary to perform their allotted tasks, which should be
limited in scope and clearly identified.

The introduction of the private, protected, and public keywords have made encapsulation
easier. Encapsulation is also a state of mind, though. Working with PHP 4 privacy was signaled

102 CHAPTER 6 OBJECTS AND DESIGN

using documentation and naming conventions alone. An underscore, for example, is a common
way of signaling a private property:

var $_touchezpas;

Code had to be checked closely, of course, because privacy was not strictly enforced.
Interestingly, though, errors were rare, because the structure and style of the code made it
pretty clear which properties wanted to be left alone.

By the same token even in PHP 5, we could break the rules and discover the exact subtype
of an object that we are using in a class-switching context, simply by passing it to the
get_ class() method.

function workWithProducts(ShopProduct $prod) {
if (get_class($prod) == "cdproduct") {

II do cd thing

}

} else if (get_class($prod) == "bookproduct") {
II do book thing

}

You may have a very good reason to do this, but in general it carries with it a slightly uncer­
tain odor. By querying the specific subtype in the example, we are setting up a dependency.
While the specifics of the subtype were hidden by polymorphism, it would have been possible
to have changed our ShopProduct inheritance hierarchy entirely with no ill effects. Our code
ends that. Now if we need to rationalize the CdProduct and BookProduct classes, we may cause
unexpected side effects in the workWi thProducts () method.

There are two lessons to take away from this example. Firstly, encapsulation helps you to
create orthogonal code. Secondly, the extent to which encapsulation is enforceable is beside
the point. Encapsulation is a technique that should be observed equally by classes and their clients.

Forget How to Do It
If you are like me, the mention of a problem will set your mind racing, looking for mechanisms
that might provide a solution. You might select functions that will address an issue, revisit
clever regular expressions, track down PEAR packages. You probably have some paste-able
code in an old project that does something somewhat similar. At the design stage, you can
profit by setting all that aside for a while. Empty your head of procedures and mechanisms.

Think only about the key participants of your system: the types it will need, and their inter­
faces. Of course, your knowledge of process will inform your thinking. A class that opens a file
will need a path, database code will need to manage table names and passwords, and so on. Let
the structures and relationships in your code lead you, though. You will find that the imple­
mentation falls into place easily behind a well-defined interface. You then have the flexibility
to switch out, improve, or extend an implementation should you need to without affecting the
wider system.

In order to emphasize interface, think in terms of abstract base classes rather than concrete
children. In our parameter-fetching code, for example, the interface is the most important
aspect of the design. We want a type that reads and writes name/value pairs. It is this respon­
sibility that is important about the type, not the actual persistence medium or the means of

CHAPTER 6. OBJECTS AND DESIGN 103

storing and retrieving data. We design the system around the abstract ParamHandler class, and
only add in the concrete strategies for actually reading and writing parameters later on. In this
way we build both polymorphism and encapsulation into our system from the start. The structure
lends itself to class switching.

Having said that, of course, we knew from the start that there would be text and XML
implementations of ParamHandler, and there is no question that this influenced our interface.
There is always a certain amount of mental juggling to do when designing interfaces.

The Gang of Four (Design Patterns) summed up this principle with the phrase "Program to
an interface, not an implementation." It is a good one to add to your little book of wisdom.

Four Signposts
Very few people get it absolutely right at the design stage. Most of us amend our code as
requirements change, or as we gain a deeper understanding of the nature of the problem we
are addressing.

As we amend our code, it can easily drift beyond our control. An added method here, and
a new class there, and gradually our system begins to decay. As we have seen already, your code
can point the way to its own improvement. These pointers in code are sometimes referred to as
"code smells" -that is, features in code that may suggest particular fixes, or at least call you to
look again at your design. In this section, I distill some of the points already made into four
signs that you should watch out for as you code.

Code Duplication
Duplication is one of the great evils in code. If you get a strange sense of deja vu as you write a
routine, the chances are you have a problem.

Take a look at the instances of repetition in your system. Perhaps they belong together.
Duplication generally means tight coupling. If you change something fundamental about one
routine, will the similar routines need amendment? If this is the case, they probably belong in
the same class.

The Class Who Knew Too Much
It can be a pain passing parameters around from method to method. Why not simply reduce
the pain by using a global variable? With a global, everyone can get at the data.

Global variables have their place, but they do need to be viewed with some level of suspi­
cion. That's quite a high level of suspicion, by the way. By using a global variable, or by giving a
class any kind of knowledge about its wider domain, you anchor it into its context, making it
less reusable and dependent upon code beyond its control. Remember, you want to decouple
your classes and routines, and not create interdependence. Try to limit a class's knowledge of
its context. We will look at some strategies for doing this later in the book.

The Jack of All Trades
Is your class trying to do too many things at once? If so, see if you can list the responsibilities of
the class. You may find that one of them will form the basis of a good class itself.

104 CHAPTER 6 OBJECTS AND DESIGN

Leaving an overzealous class unchanged can cause particular problems if you subclass.
Which responsibility are you extending by sub classing? What would you do if you needed to
subclass for more than one responsibility? You are likely to end up with too many subclasses,
or an overreliance on conditional code.

Conditional Statements
You will use if and switch statements with perfectly good reason throughout your projects.
Sometimes, though, such structures can be a cry for polymorphism.

If you find that you are testing for certain conditions frequently within a class, and espe­
cially if you find these tests mirrored across more than one method, this could be a sign that
your one class should be two or more. See whether the structure of the conditional code suggests
responsibilities that could be expressed in classes. The new classes should implement a shared
abstract base class. The chances are that you will then have to work out how to pass the right
class to client code. I will cover some patterns for creating objects in Chapter 9.

The UML
So far in this book, we have let the code speak for itself. We have used short examples to illustrate
concepts such as inheritance and polymorphism.

This is useful because PHP is a common currency here. It's a language we have in common
if you have read this far. As our examples grow, though, it becomes something of an absurdity
to use code alone to illustrate the broad sweep of design. It is hard to see an overview in a few
lines of code.

UML stands for Unified Modeling Language. The initials are correctly used with the definite
article. This isn't just a unified modeling language, it is the Unified Modeling Language.

Perhaps this magisterial tone derives from the circumstances of the language's forging.·
According to Martin Fowler (UML Distilled, 1999), the UML emerged as a standard only after
long years of intellectual and bureaucratic sparring amongst the great and good of the object­
oriented design community.

The result of this struggle is a powerful graphical syntax for describing object -oriented
systems. We will only scratch the surface in this section, but you will soon find that a little UML
(sorry, a little of the UML) goes a long way.

Class diagrams in particular can describe structures and patterns so that their meaning
shines through. This luminous clarity is often harder to find in code fragments and bullet points.

Class Diagrams
Although class diagrams are only one aspect of the UML, they are perhaps the most ubiquitous.
Because they are particularly useful for describing object -oriented relationships, I will focus on
them in this book.

Representing Classes

As you might expect, classes are the main constituents of class diagrams. A class is represented
by a named box, as in Figure 6-1.

CHAPTER 6 • OBJECTS AND DESIGN 105

Shop Product

Figure 6-1. A class

The class is divided into three sections, with the name displayed in the first. These dividing
lines are optional when we present no more information than the class name. In designing a
class diagram, we may find that the level of detail in Figure 6-1 is enough for some classes. We
are not obligated to represent every field and method, or even every class in a class diagram.

Abstract classes are represented either by italicizing the class name as in Figure 6-2 or by
adding {abstract} to the class name as in Figure 6-3. The first method is the more common of
the two, but the second is more useful when you are making notes.

Note The {abstract} syntax is an example of a constraint. Constraints are used in class diagrams to
describe the way in which specific elements should be used. There is no special structure for the text between
the braces; it should simply provide a short clarification of any conditions that may apply to the element.

ShopProductWriter

Figure 6-2. An abstract class

ShopProductWriter
{abstract}

Figure 6-3. An abstract class defined using a constraint

Interfaces are defined in the same way as classes, except that they must include a "stereotype"
(that is an extension to the UML), as in Figure 6-4.

<<interface>>

Chargeable

Figure 6-4. An interface

106 CHAPTER 6 OBJECTS AND DESIGN

Attributes

Broadly speaking, attributes describe a class's properties.
Attributes are listed in the section directly beneath the class name as in Figure 6-5.

Shop Product

#$price: int = 0

Figure 6-5. An attribute

Let's take a close look at the attribute in the example. The initial symbol represents the
level of visibility, or access control, for the attribute. Table 6-1 shows the three symbols
available.

Table 6-1. Visibility Symbols

Symbol Visibility Explanation

+ Public Available to all code

Private Available to the current class only

Protected Available to the current class and its subclasses only

The visibility symbol is followed by the name of the attribute. In this case, we are describing
the Shop Product: :$price property. A colon is used to separate the attribute name from its type
(and optionally its default value).

Once again, you need only include as much detail as is needed for clarity. It is quite
common to see an unqualified attribute name in a class diagram.

Operations

Operations describe methods. Or more properly, they describe the calls that can be made on
an instance of a class. Figure 6-6 shows two operations in the ShopProduct class.

Shop Product

#$price: int = 0
+setDiscount(amount:int)
+getTitle(): String

Figure 6-6. Operations

CHAPTER 6 • OBJECTS AND DESIGN 107

As you can see, operations use a similar syntax to that used by attributes. The visibility
symbol precedes the method name. A list of parameters is enclosed in parentheses. The
method's return type, if any, is delineated by a colon. Parameters are separated by commas,
and follow the attribute syntax, with the attribute name separated from its type by a colon.

As you might expect, this syntax is relatively flexible. You can omit the visibility flag and the
return type. Parameters are often represented by their type alone, as the argument name is not
usually significant.

Describing Inheritance and Implementation
The UML describes the inheritance relationship as "generalization." This relationship is signified
by a line leading from the subclass to its parent. The line is tipped with an empty closed arrow.

Figure 6-7 shows the relationship between the Shop Product class and its child classes.

Shop Product

~

CdProduct BookProduct

Figure 6-7. Describing inheritance

The UML describes the relationship between interfaces and the classes that implement
them as "realization." So if the ShopProduct class were to implement the Chargeable interface,
we could add it to our class diagram as in Figure 6-8.

- - - - - · <<interface>>
Chargeable

BookProduct

Figure 6-8. Describing interface implementation

Associations
Inheritance is only one of a number of relationships in an object -oriented system. An association
occurs when a class property is declared to hold a reference to an instance (or instances) of
another class.

108 CHAPTER 6 • OBJECTS AND DESIGN

In Figure 6-9, we model two classes and create an 'association between them.

I ET~ea~c~he~•lr-----------IPuplll
Figure 6-9. An association

At this stage, we are vague about the nature of this relationship. We have only specified that a
Teacher object will have a reference to one or more Pupil objects or vice versa. This relationship
may or may not be reciprocal.

We can use arrows to describe the direction of the association. If the Teacher class has an
instance of the Pupil class but not the other way round, then we should make our association an
arrow leading from the Teacher to the Pupil class. This association, which is called "unidirectional,"
is shown in Figure 6-10.

IET~ea~ch~e3•1r---------~>~1Pupill
Figure 6-10. A unidirectional association

If each class has a reference to the other, we can use a double-headed arrow to describe a
"bidirectional" relationship as in Figure 6-11.

Figure 6-11. A bidirectional association

We can also specify the number of instances of a class that are referenced by another in an
association. We do this by placing a number or range beside each class. We can also use * to
stand for any number. So in Figure 6-12 there can be one Teacher object and any number of
Pupil objects.

E~T~ea§ch§e3~----------~~Pupill
Figure 6-12. Defining multiplicity for an association

In Figure 6-13, there can be one Teacher object and between 5 and 10 Pupil objects in
the association.

CHAPTER 6 OBJECTS AND DESIGN

Teacherh

Pupil
5 .. 10

Figure 6-13. Defining multiplicity for an association

Aggregation and Composition

Aggregation and composition are similar to association. All describe a situation in which a
class holds a permanent reference to one or more instances of another. With aggregation and
composition, though, the referenced instances form an intrinsic part of the referring object.

In the case of aggregation, the contained objects are a core part of the container, but they
can also be contained by other objects at the same time. The aggregation relationship is illustrated
by a line that begins with an unfilled diamond.

In Figure 6-14 we define two classes, SchoolClass and Pupil. The SchoolClass class
aggregates Pupil.

SchooiCiass

C)

Pupil

Figure 6-14. Aggregation

Pupils make up a class, but the same Pupil object can be referred to by different
SchoolClass instances at the same time. If we were to dissolve a school class, we would not
necessarily delete the pupil, who may attend other classes.

Composition represents an even stronger relationship than this. In composition, the
contained object can be referenced by its container only. It should be deleted when the container
is deleted. Composition relationships are depicted in the same way as aggregation relationships,
except that the diamond should be filled. We illustrate a composition relationship in Figure 6-15.

109

110 CHAPTER 6 • OBJECTS AND DESIGN

Person

n

I
SociaiSecu rityData

Figure 6-15. Composition

A Person class maintains a reference to a Social Sec uri tyData object. The contained
instance can belong only to the containing Person object.

Describing Use
The use relationship is described as a dependency in the UML. It is the most transient of
the relationships discussed in this section because it does not describe a permanent link
between classes.

A used class may be passed as an argument or acquired as a result of a method call.
The Report class in Figure 6-16 uses a ShopProductWri ter object. It does not, however,

maintain this reference as a property in the same way that a ShopProductWri ter object maintains
an array of Shop Product objects.

--------, I Re~ortl '

BookProduct

Figure 6-16. A dependency relationship

Using Notes

Class diagrams can capture the structure of a system, but they provide no sense of process.

CHAPTER 6 • OBJECTS AND DESIGN 111

Figure 6-16 tells us about the classes in our system. We know that a Report object uses a
ShopProductWri ter, but we don't know the mechanics of this. In Figure 6-17 we use a note to
clarify things somewhat.

--------. I Re~onl 1

v
Swriter->addProducts($products);
Swriter->write();

ShopProductWriter

I
... ShopProduct I

+addProduct()

I I
I I

I XmiWriter I I TextWriter I I CdProduct I

Figure 6-17. Using a note to clarify a dependency

I BookProduct I

As you can see, a note consists of a box with a folded corner. It will often contain scraps of
pseudo-code.

This clarifies our diagram; we can now see that the Report object uses a ShopProductWri ter
to output product data. This is hardly a revelation, but then use relationships are not always so
obvious. In some cases, even a note might not provide enough information. Luckily, we can
model the interactions of objects in our system as well as the structure of our classes.

Sequence Diagrams
A sequence diagram is object based rather than class based. It is used to model a process in a
system step by step.

Let's build up a simple diagram, modeling the means by which a Report object writes
product data. A sequence diagram presents the participants of a system from left to right as
in Figure 6-18.

I Report I ProductS tore ShopProductWriter ShopProduct

Figure 6-18. Objects in a sequence diagram

We have labeled our objects with class names alone. If we had more than one instance of
the same class working independently in our diagram, we would include an object name using
the format label: class (productl: Shop Product, for example).

We show the lifetime of the process we are modeling from top to bottom as in Figure 6-19.

112 CHAPTER 6 OBJECTS ANO OESIGN

0

0

Figure 6-19. Object lifelines in a sequence diagram

The vertical broken lines represent the lifetime of the objects in the system. The larger
boxes that follow the lifelines represent the focus of a process. If you read Figure 6-19 from top
to bottom, you can see how the process moves between objects in the system. This is hard to
read without showing the messages that are passed between the objects. We add these in
Figure 6-20.

The arrows represent the messages sent from one object to another. Return values are
often left implicit (though they can be represented by a broken line, passing from the invoked
object to the message originator). Each message is labeled using the relevant method call. You
can be quite flexible with your labeling, though there is some syntax. Square brackets represent
a condition. So

[okToPrint]
write()

means that the write () invocation should only be made if the correct condition is met. An
asterisk is used to indicate a repetition, optionally with further clarification in square brackets:

*[for each ShopProduct]
write()

So we can interpret Figure 6-20 from top to bottom. First a Report object acquires a list of
ShopProduct objects from a ProductS tore object. It passes these to a ShopProductWri ter object,
which stores references to them (though we can only infer this from the diagram). The
ShopProductWriter object calls ShopProduct: : getSummaryline () for every ShopProduct object it
references, adding the result to its output.

write()

Figure 6-20. The complete sequence diagram

CHAPTER 6 OBJECTS AND DESIGN 113

I

I
* [for each ShopProdvct] getSummaryline()

As you can see, sequence diagrams can model processes, freezing slices of dynamic inter­
action and presenting them with surprising clarity.

Note Look at Figures 6-16 and 6-20. Notice how the class diagram illustrates polymorphism, showing the
classes derived from ShopProductWri ter and ShopProduct. Now notice how this detail becomes trans­
parent when we model the communication between objects. Where possible, we want objects to work with
the most general types available so that we can hide the details of implementation.

Summary
In this chapter, we went beyond the nuts and bolts of object -oriented programming to look at
some key design issues. We examined features such as encapsulation, loose coupling, and
cohesion that are essential aspects of a flexible and reusable object -oriented system. We went
on to look at the UML, laying groundwork that will be essential in working with patterns later
in the book.

CHAPTER 7

What Are Design Patterns?
Why Use Them?

Most problems we encounter as programmers have been handled time and again by others
in our community. Design patterns can provide us with the means to mine that wisdom. Once
a pattern becomes a common currency, it enriches our language, making it easy to share
design ideas and their consequences. Design patterns simply distill common problems, define
tested solutions, and describe likely outcomes. They take up where the nuts-and-bolts how-to
books end.

In this chapter, I introduce you to design patterns and look at some of the reasons for their
popularity.

This chapter will cover

• Pattern basics: What are design patterns?

• Pattern structure: The key elements of a design pattern.

• Pattern benefits: Why patterns are worth your time.

What Are Design Patterns?

In the world of software, a pattern is a tangible manifestation of an organiza­
tion's tribal memory.

-Grady Booch, Core]2EE Patterns (introduction)

[A pattern is} a solution to a problem in a context.

-Design Patterns, p. 3

A design pattern is a problem analyzed, and good practice for its solution explained.
Problems tend to recur, and as Web programmers we must solve them time and time

again. How are we going to handle an incoming request? How can we translate this data into
instructions for our system? How should we acquire data? Present results? Over time, we

117

118 CHAPTER 7 WHAT ARE DESIGN PATTERNS? WHY USE THEM?

answer these questions with a greater or lesser degree of elegance, and evolve an informal set
of techniques that we use and reuse in our projects. These techniques are patterns of design.

Design patterns inscribe and formalize these problems and solutions, making hard-won
experience available to the wider programming community. Patterns are (or should be) essen­
tially bottom-up and not top-down. They are rooted in practice and not theory. That is not to
say that there isn't a strong theoretical element to design patterns (as we will see in the next
chapter), but patterns are based upon real-world techniques used by real programmers.
Renowned pattern-hatcher Martin Fowler says that he discovers patterns, he does not invent
them. For this reason, many patterns will engender a sense of deja vu as you recognize tech­
niques you have used yourself.

A catalog of patterns is not a cookbook. Recipes can be followed slavishly, code can be
copied and slotted into a project with minor changes. You do not always need even to under­
stand all the code used in a recipe. Design patterns inscribe approaches to particular problems.
The details of implementation may vary enormously according to the wider context. This
context might include the programming language you are using, the nature of your applica­
tion, the size of your project, and the specifics of the problem.

The very act of naming a pattern is valuable; it provides the kind of common vocabulary
that has arisen naturally over the years in the older crafts and professions. Such shorthand
greatly aids collaborative design as alternative approaches, and their consequences are
weighed and tested.

Finally, it is illegal, according to international law, to write about patterns without quoting
Christopher Alexander, an architecture academic whose work heavily influenced the original
object -oriented pattern advocates:

Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in
such a way that you can use this solution a million times over, without ever
doing it the same way twice.

-A Pattern Language

It is significant that this definition (which applies to architectural problems and solutions)
begins with the problem and its wider setting and proceeds to a solution. There has been some
criticism in recent years that design patterns have been overused, especially by inexperienced
programmers. This is often a sign that solutions have been applied where the problem and
context are not present. Patterns are more than a particular organization of classes and objects,
cooperating in a particular way. Patterns are structured to define the conditions in which solu­
tions should be applied, and to discuss the effects of the solution.

In this book, we will focus upon a particularly influential strand in the patterns field: the
form described in Design Patterns: Elements of Reusable Object-Oriented Software by Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides. The authors of this book are often
referred to as the Gang of Four and the book itself as the Gang of Four book. It concentrates
upon patterns in object-oriented software development and inscribes some of the classic
patterns that are present in most modern object-oriented projects.

CHAPTER 7 • WHAT ARE DESIGN PATTERNS? WHY USE THEM? 119

The Gang of Four book is important because it inscribes key patterns, but also because it
describes the design principles that inform and motivate these patterns. We will look at some
of these principles in the next chapter.

A Design Pattern Overview
At heart, a design pattern consists of four parts:

Name
Names matter. They enrich the language of programmers, a few short words standing in for
quite complex problems and solutions. They must balance brevity and description. The Gang
of Four claim:

Finding good names has been one of the hardest parts of developing
our catalog.

-Design Patterns, p. 3

Martin Fowler agrees:

Pattern names are crucial, because part of the purpose of patterns is to create a
vocabulary that allows developers to communicate more effectively.

-Patterns of Enterprise Application Architecture, p. 11

In Patterns ofEnterpriseApplicationArchitecture, Martin Fowler refines a database access
pattern I first encountered in Core]2EE Patterns. He defines two patterns that describe special­
izations of the older pattern. The logic of his approach is clearly correct (one of the new patterns
models domain objects, while the other models database tables, a distinction that was vague in
the earlier work). It was hard to train myself to think in terms of the new patterns. I had been
using the name of the original in design sessions and documents for so long that it had become
part of my language.

The Problem
No matter how elegant the solution (and some are very elegant indeed), the problem and its
context are the grounds of a pattern. Recognizing a problem is harder than applying any one of
the solutions in a pattern catalog. This is one reason that some pattern solutions can be misap­
plied or overused.

Patterns describe a problem space with great care. The problem is described in brief, and
then contextualized, often with a typical example and one or more diagrams. It is broken down
into its specifics, its various manifestations. Any warning signs that might help in identifying
the problem are described.

120 C.HAPTER 7 WHAT ARE DESIGN PATTERNS? WHY USE THEM?

The Solution
The solution is summarized initially in conjunction with the problem. It is also described in
detail often using UML class and interaction diagrams. The pattern usually includes a code
example.

Although code may be presented, the solution is never cut and paste. The pattern
describes an approach to a problem. There may be hundreds of nuances in implementation.
Think about instructions for sowing a food crop. If you simply follow a set of steps blindly, you
are likely to go hungry come harvest time. More useful would be a pattern-based approach that
covers the various conditions that may apply. The basic solution to the problem (making your
crop grow) will always be the same (plant seeds, irrigate, harvest crop), but the actual steps you
take will depend on all sorts of factors such as your soil type, your location, the orientation of
your land, local pests, and so on.

Martin Fowler refers to solutions in patterns as "half-baked." That is, the coder must take
away the concept and finish it for himself (Patterns of Enterprise Application Architecture, p.
11).

Consequences
Every design decision you make will have wider consequences. This should include the satis­
factory resolution of the problem in question, of course. A solution, once deployed, may be
ideally suited to work with other patterns. There may also be dangers to watch for.

The "Gang of Four" Format
As I write, I have five pattern catalogs on the desk in front of me. A quick look at the patterns in
each confirms that not one uses the same structure as the others. Some are more formal than
others, some are fine-grained, with many subsections, others are discursive.

There are a number of well-defined pattern structures, including the original form devel­
oped by Christopher Alexander (the "Alexandrian Form"), the narrative approach favored by
the Portland Pattern Repository (the "Portland Form"). Because the Gang of Four book is so
influential, and because we will cover many of the patterns they describe, let's examine a few
of the sections they include in their patterns.

• Intent. A brief statement of the pattern's purpose. You should be able to see the point of
the pattern at a glance.

• Motivation: The problem described, often in terms of a typical situation. The anecdotal
approach can help make the pattern easy to grasp.

• Applicability: An examination of the different situations in which you might apply the
pattern. While the motivation describes a typical problem, this section defines specific
situations, and weighs the merits of the solution in the context of each.

• Structure/Interaction: These sections may contain UML class and interaction diagrams
describing the relationships between classes and objects in the solution.

• Implementation: This section looks at the details of the solution. It examines any issues
that may come up when applying the technique and provides tips for deployment.

CHAPTER 7 WHAT ARE DESIGN PATTERNS? WHY USE THEM? 121

• Sample Code: I always skip ahead to this section. I find that a simple code example often
provides a way into a pattern. The example is often chopped down to the basics in order
to lay the solution bare. It could be in any object -oriented language. Of course, in this
book it will always be PHP.

• Known Uses: Real systems in which the pattern (problem, context, and solution) occur.
Some people say that for a pattern to be genuine it must be found in at least three
publicly available contexts. This is sometimes called the "rule of three."

• Related Patterns: Some patterns imply others. In applying one solution, you can create
the context in which another becomes useful. This section examines these synergies. It
may also discuss patterns that have similarities in problem or solution and any anteced­
ents: patterns defined elsewhere upon which the current pattern builds.

Why Use Design Patterns?
So what benefits can patterns bring? Given that a pattern is a problem defined and solution
described, the answer should be obvious. Patterns can help you to solve common problems.

There is more to patterns, of course:

A Design Pattern Defines a Problem
How many times have your reached a stage in a project and found that there is no going
forward? The chances are you must backtrack some way before starting out again.

By defining common problems, patterns can help you to improve your design. Sometimes
the first step to a solution is recognizing that you have a problem.

A Design Pattern Defines a Solution
Having defined and recognized the problem (and made certain that it is the right problem), a
pattern gives you access to a solution, together with an analysis of the consequences of its use.
Although a pattern does not absolve you of the responsibility to consider the implications of a
design decision, you can at least be certain that you are using a tried-and-tested technique.

Design Patterns Are Language Independent
When I first started using patterns, I read code examples in C++ and Smalltalk and deployed my
solutions in a Java context. Patterns define objects and solutions in object -oriented terms. This
means that many patterns apply equally in more than one language. Others transfer with
modifications to the pattern's applicability or consequences but remain valid. Either way,
patterns can help you as you move between languages. Equally, an application that is built
upon good object -oriented design principles can be relatively easy to port between languages
(although there are always issues that must be addressed).

Patterns Define a Vocabulary
By providing developers with names for techniques, patterns make communication richer.
Imagine a design meeting. I'm describing my plans to Bob.

122 CHAPTER 7 WHAT ARE DESIGN PATTERNS? WHY USE THEM?

ME: I'm thinking of using a Composite.

BOB: I don't think you've thought that through.

OK, Bob didn't agree with me. He never does. But he knew what I was talking about, and
therefore why my idea sucked. Let's play that scene through again without a design vocabulary.

ME: I intend to use a tree of objects that share the same type. The type's interface will
provide methods for adding child objects of its own type. In this way, we can build up
complex combinations of implementing objects at runtime.

BOB: Huh?

Patterns, or the techniques they describe, tend to intemperate. The Composite pattern
lends itself to collaboration with Visitor:

ME: And then we can use Visitors to summarize the data.

BOB: You're missing the point.

Ignore Bob. I won't describe the tortuous nonpattern version of this. We will cover
Composite in Chapter 10 and Visitor in Chapter 11.

The point is that without a pattern language we would still use these techniques. They
precede their naming and organization. If patterns did not exist, they would evolve on their
own anyway. Any tool that is used sufficiently will eventually acquire a name.

Patterns Are Tried and Tested
So if patterns document good practice, is naming the only truly original thing about pattern
catalogs? In some senses, that would seem to be true. Patterns represent best practice in an
object-oriented context. To some highly experienced programmers, this may seem an exercise
in repackaging the obvious. To the rest of us, patterns provide access to problems and solu­
tions we would otherwise have to discover the hard way.

Patterns make design accessible. As pattern catalogs emerge for more and more special­
izations, even the highly experienced can find benefits as they move into new aspects of their
field. A GUI programmer can gain fast access to common problems and solutions in enterprise
programming, for example. A Web programmer can quickly chart strategies for avoiding the
pitfalls that lurk in PDA and cell phone projects.

Patterns Are Designed for Collaboration
By their nature, patterns should be "generative" and "composable." This means that you
should be able to apply one pattern and thereby create conditions suitable for the application
of another. In other words, in using a pattern you may find other doors opened for you.

Pattern catalogs are usually designed with this kind of collaboration in mind, and the
potential for pattern composition is always documented in the pattern itself.

CHAPTER 7 WHAT ARE DESIGN PATTERNS? WHY USE THEM? 123

Design Patterns Promote Good Design
Design patterns demonstrate and apply principles of object-oriented design. So a study of
design patterns can yield more than a specific solution in a context. You can come away with a
new perspective on the ways that objects and classes can be combined to achieve an objective.

PHP and Design Patterns
There is little in this chapter that is specific to PHP, which is characteristic of our topic to some
extent. Many patterns apply to many object -capable languages with few or no implementation
issues.

This is not always the case, of course. Some enterprise patterns work well in languages in
which an application process continues to run between server requests. PHP does not work
that way. A new script execution is kicked off for every request. This means that some patterns
need to be treated with more care. Front Controller, for example, often requires some serious
initialization time. This is fine when the initialization takes place once at application startup,
but more of an issue when it must take place for every request. That is not to say that we can't
use the pattern; I have deployed it with very good results in the past. We must simply ensure
that we take account ofPHP-related issues when we discuss the pattern. PHP forms the context
for all the patterns that this book examines.

I referred to object-capable languages earlier in this section. You can code in PHP without
defining any classes at all (although with PEAR's continuing development you will probably
manipulate objects to some extent). Although this book focuses almost entirely upon object­
oriented solutions to programming problems, it is not a broadside in an advocacy war.
Patterns and PHP can be a powerful mix, and they form the core of this book; they can,
however, coexist quite happily with more traditional approaches. PEAR is an excellent testa­
ment to this. PEAR packages use design patterns elegantly. They tend to be object-oriented in
nature. This makes them more, not less, useful in procedural projects. Because PEAR packages
are self-enclosed, and hide their complexity behind clean interfaces, they are easy to stitch into
any kind of project.

Summary
In this chapter, I introduced design patterns, showed you their structure (using the Gang of
Four form), and suggested some reasons why you might want to use design patterns in your
scripts.

It is important to remember that design patterns are not snap-on solutions that can be
combined like components to build a project. They are suggested approaches to common
problems. These solutions embody some key design principles. It is these that we will examine
in the next chapter.

CHAPTER 8

Some Pattern Principles

A though design patterns simply describe solutions to problems, they tend to emphasize
solutions that promote reusability and flexibility. To achieve this, they manifest some key
object -oriented design principles. We will encounter some of them in this chapter and in more
detail throughout the rest of the book.

This chapter will cover

• Composition: How to use object aggregation to achieve greater flexibility than you could
with inheritance alone

• Deco up ling: How to reduce dependency between elements in a system

• The power of the interface: Patterns and polymorphism

• Pattern categories: The types of pattern that this book will cover

The Pattern Revelation
I first started working in an object -oriented context using the Java language. As you might
expect, it took a while before some concepts clicked. When it did happen, though, it happened
very fast, almost with the force of revelation. The elegance of inheritance and encapsulation
bowled me over. I could sense that this was a different way of defining and building systems.
I "got" polymorphism, working with a type and switching implementations at runtime.

All the books on my desk at the time focused on language features and the very many APis
available to the Java programmer. Beyond a brief definition of polymorphism, there was little
attempt to examine design strategies.

Language features alone do not engender object-oriented design. Although my projects
fulfilled their functional requirements, the kind of design that inheritance, encapsulation, and
polymorphism had seemed to offer continued to elude me.

My inheritance hierarchies grew wider and deeper as I attempted to build new classes for
every eventuality. The structure of my systems made it hard to convey messages from one tier
to another without giving intermediate classes too much awareness of their surroundings,
binding them into the application and making them unusable in new contexts.

It wasn't until I discovered Design Patterns, otherwise known as the Gang of Four book,
that I realized I had missed an entire design dimension. By that time I had already discovered
some of the core patterns for myself, but others contributed to a new way of thinking.

125

126 CHAPTER 8 • SOME PATTERN PRINCIPLES

I discovered that I had overprivileged inheritance in my designs, trying to build too much
functionality into my classes. But where else can functionality go in an object-oriented system?

I found the answer in composition. Software components can be defined at runtime by
combining objects in flexible relationships. The Gang of Four boiled this down into a principle:
"favor composition over inheritance." The patterns described ways in which objects could be
combined at runtime to achieve a level of flexibility impossible in an inheritance tree alone.

Composition and Inheritance
Inheritance is a powerful way of designing for changing circumstances or contexts. It can limit
flexibility, however, especially when classes take on multiple responsibilities.

The Problem
As you know, child classes inherit the methods and properties of their parents (as long as they
are protected or public elements). We use this fact to design child classes that provide special­
ized functionality.

Figure 8-1 presents a simple example using the UML.

Lesson

+ __ construct(Sduration)
+cost()
+cbargeType()

it
I I

Fixed Price lesson Timed Price lesson

+cost() +cost()
+chargeType() +charge Type()

Figure 8-1. A parent class and two child classes

The abstract Lesson class in Figure 8-1 models a lesson in a college. It defines abstract cost ()
and charge Type() methods. The diagram shows two implementing classes, FixedPriceLesson
and TimedPricelesson, which provide distinct charging mechanisms for lessons.

Using this inheritance scheme, we can switch between lesson implementations. Client
code will know only that it is dealing with a Lesson object, so the details of costing will be
transparent.

CHAPTER 8 • SOME PATTERN PRINCIPLES 127

What happens, though, if we introduce a new set of specializations? We need to handle
lectures and seminars. Because these organize enrollment and lesson notes in different ways,
they require separate classes. So now we have two forces that operate upon our design. We
need to handle pricing strategies and separate lectures and seminars.

Figure 8-2 shows a brute-force solution.

Lesson

+ __ construct($duration)
+cost()
+cbargeType()

Lt
I

I Lecture I I seminar!

_!).. * I I I
FixedPricelecture TimedPricelecture FixedPriceSeminar TimedPriceSeminar

+cost() +cost() +cost() +cost()
+chargeType() +chargeType() +chargeType() +chargeType()

Figure 8-2. A poor inheritance structure

Figure 8-2 shows a hierarchy that is clearly faulty. We can no longer use the inheritance
tree to manage our pricing mechanisms without duplicating great swathes of functionality.
The pricing strategies are mirrored across the Lecture and Seminar class families.

At this stage, we might consider using conditional statements in the Lesson super class,
removing those unfortunate duplications. Essentially, we remove the pricing logic from the
inheritance tree altogether, moving it up into the super class. This is the reverse of the usual
refactoring where we replace a conditional with polymorphism. Here is an amended Lesson class:

abstract class Lesson {
protected $duration;
const FIXED = lj
const TIMED = 2;
private $costtype;

function __ construct($duration, $costtype=1) {
$this->duration $duration;
$this->costtype = $costtype;

}

128 CHAPTER 8 • SOME PATTERN PRINCIPLES

}

function cost() {

}

switch ($this->costtype) {
CASE self::TIMED :

}

return (5 * $this->duration);
break;

CASE self::FIXED
return 30;
break;

default:
$this->costtype = self::FIXED;
return 30;

function chargeType() {

}

switch ($this->costtype) {
CASE self::TIMED :

}

return "hourly rate";
break;

CASE self::FIXED :
return "fixed rate";
break;

default:
$this->costtype = self::FIXED;
return "fixed rate";

II more lesson methods ••.

class Lecture extends Lesson {
II Lecture-specific implementations

}

class Seminar extends Lesson {
II Seminar-specific implementations

}

You can see the new class diagram in Figure 8-3.

CHAPTER 8 SOME PATTERN PRINCIPLES

Lesson

+ __ construct($duration,$costtype=l
+cost()
+chargeType()

if
I

Lecture Seminar

Figure 8-3. Inheritance hierarchy improved by removing cost calculations from subclasses

We have made the class structure much more manageable, but at a cost. Using conditionals in
this code is a retrograde step. Usually, we would try to replace a conditional statement with
polymorphism. Here we have done the opposite. As you can see, this has forced us to duplicate
the conditional statement across the charge Type() and cost() methods.

We seem doomed to duplicate code.

Using Composition
We can use the Strategy pattern to compose our way out of trouble. Strategy is used to move a
set of algorithms into a separate type. In moving cost calculations, we can simplify the Lesson
type. You can see this in Figure 8-4.

Lesson CostStrategy

r--- +cost() +cost($1esson:Lesson)
+chargeType() +charge Type()
+getDuration()

~ Lt I I I I
I Lecturej I seminar I FixedCostStrategy TimeCostStrategy

+cost($lesson:Lesson) r- +cost($lesson:Lesson)
+chargeType() +chargeType()

L-1 $this->costStrategy->cost($this~ ~ return ($lesson->getDuration()*~

Figure 8-4. Moving algorithms into a separate type

129

130 CHAPTER 8 SOME PATTERN PRINCIPLES

We create an abstract class, CostStrategy, which defines the abstract methods cost() and
charge Type 0. The cost () method requires an instance of Lesson, which it will use to generate
cost data. We provide two implementations for CostStrategy. Lesson objects work only with
the Cost Strategy type, not a specific implementation, so we can add new cost algorithms at
any time by subclassing CostStrategy. This would require no changes at all to any Lesson classes.

Here's a simplified version ofthe new Lesson class illustrated in Figure 8-4:

abstract class Lesson {

}

private $duration;
private $costStrategy;

function __ construct($duration, CostStrategy $strategy) {
$this->duration = $duration;
$this->cost5trategy = $strategy;

}

function cost() {
return $this->costStrategy->cost($this);

}

function chargeType() {
return $this->cost5trategy->chargeType();

}

function getDuration() {
return $this->duration;

}

II more lesson methods ...

The Lesson class requires a Cost Strategy object, which it stores as a property. The
Lesson: :cost() method simply invokes CostStrategy: :cost(). Equally, Lesson: :charge Type()
invokes CostStrategy: :chargeType(). This explicit invocation of another object's method in
order to fulfill a request is known as delegation. In our example, the Cost Strategy object is the
delegate of Lesson. The Lesson class washes its hands of responsibility for cost calculations and
passes on the task to a CostStrategy implementation. Here it is caught in the act of delegation:

function cost() {
return $this->costStrategy->cost($this);

}

Here is the CostStrategy class, together with its implementing children:

abstract class CostStrategy {

}

abstract function cost(Lesson $lesso,n) ;
abstract function chargeType();

class TimedCostStrategy extends CostStrategy {
function cost(Lesson $lesson) {

}

return ($lesson->getDuration() * 5);
}
function chargeType() {

return "hourly rate";
}

class FixedCostStrategy extends CostStrategy {
function cost(Lesson $lesson) {

}

return 30;
}

function chargeType() {
return "fixed rate";

}

CHAPTER 8 • SOME PATTERN PRINCIPLES 131

We can change the way that any Lesson object calculates cost by passing it a different
CostStrategy object at runtime. This approach then makes for highly flexible code. Rather than
building functionality into our code structures statically, we can combine and recombine
objects dynamically.

$lessons[] = new Seminar(4, new TimedCostStrategy());
$lessons[] = new Lecture(4, new FixedCostStrategy());

foreach ($lessons as $lesson) {

}

print "lesson charge {$lesson->cost()}. ";
print "Charge type: {$lesson->chargeType()}\n";

II output:
II lesson charge 20. Charge type: hourly rate
II lesson charge 30. Charge type: fixed rate

As you can see, one effect of this structure is that we have focused the responsibilities of
our classes. CostStrategy objects are responsible solely for calculating cost, and Lesson objects
manage lesson data.

So, composition can make your code more flexible because objects can be combined to
handle tasks dynamically in many more ways than you can anticipate in an inheritance hier­
archy alone. There can be a penalty with regard to readability, though. Because composition
tends to result in more types, with relationships that aren't fixed with the same predictability
as they are in inheritance relationships, it can be slightly harder to digest the relationships in

a system.

132 CHAPTER 8 SOME PATTERN PRINCIPLES

Decoupling
We saw in Chapter 6 that it makes sense to build independent components. A system with
highly interdependent classes can be hard to maintain. A change in one location can require
a cascade of related changes across the system.

The Problem
Reusability is one of the key objectives of object -oriented design, and tight -coupling is its
enemy. We diagnose tight coupling when we see that a change to one component of a system
necessitates many changes elsewhere. We aspire to create independent components so that
we can make changes in safety.

We saw an example oftight coupling in Figure 8-2. Because the costing logic was mirrored
across the Lecture and Seminar types, a change to Timed Price Lecture would necessitate a
parallel change to the same logic in TimedPriceSeminar. By updating one class and not the
other, we would break our system, but without any warning from the PHP engine. Our first
solution, using a conditional statement, produced a similar dependency between the cost ()
and chargeType() methods.

By applying the Strategy pattern, we distilled our costing algorithms into the Cost Strategy
type, locating them behind a common interface, and implementing each only once.

Coupling of another sort can occur when many classes in a system are embedded explicitly
into a platform or environment. Let's say that you are building a system that works with
a MySQL database, for example. You might use functions such as mysql_connect() and
mysql_query() to speak to the database server.

Should you be required to deploy the system on a server that does not support MySQL,
you could convert your entire project to use SQLite. You would be forced to make changes
throughout your code, though, and face the prospect of maintaining two parallel versions of
your application.

The problem here is not the dependency of the system upon an external platform. Such a
dependency is inevitable. We need to work with code that speaks to a database. The problem
comes when such code is scattered throughout a project. Talking to databases is not the
primary responsibility of most classes in a system, so the best strategy is to extract such code,
and group it together behind a common interface. In this way you promote the independence
of your classes. At the same time, by concentrating your "gateway" code in one place, you make
it much easier to switch to a new platform without disturbing your wider system.

Loosening Your Coupling
To handle database code flexibly, we should decouple the application logic from the specifics
of the database platform it uses. Fortunately, this is as easy as using a PEAR package: PEAR:: DB.

Here is some code that uses PEAR: :DB to work first with MySQL, and then with SQLite:

require_once("DB.php");
$dsn_array[] "mysql://bob:bobs_pass@localhostlbobs_db";
$dsn_array[] = "sqlite://./bobs_db.db";

CHAPTER 8 SOME PATTERN PRINCIPLES 133

foreach ($dsn_array as $dsn) {
print "$dsn\n\n";

}

$db= DB::connect($dsn);
$query_result = $db->query("SELECT* FROM bobs_table");
while ($row = $query_result->fetchRow(DB_FETCHMODE_ARRAY)) {

printf("I %-4sl %-4sl %-25sl", $row[o], $row[2], $row[1]);
print "\n";

}
print "\n";
$query_result->free();
$db->disconnect();

Note that we have stripped this example of error handling for the sake of brevity. I covered
PEAR errors and the DB package in Chapter 4.

The DB class provides a static method called connect () that accepts a Data Source Name
(DSN) string. According to the makeup of this string, it returns a particular implementation of
a class called DB_ Common. So for the string "mysql: I I", the connect () method returns a DB_ mysql
object, and for a string that starts with "sqlite:l I", it returns a DB_sqlite object. You can see the
class structure in Figure 8-5.

+connect($dsn)

Figure 8-5. PEAR::DB decouples client code from database objects

The PEAR: :DB package, then, enables you to decouple your application code from the
specifics of your database platform. As long as you use uncontroversial SQL, you should be able
to run a single system with MySQL, SQLite, MSSQL, and many others without changing a line
of code (apart from the DSN, of course, which is the single point at which the database context
must be configured).

This design bears some resemblance to the Abstract Factory pattern described in the Gang
of Four book, and later in this book. Although it is simpler in nature, it has the same motivation,
to generate an object that implements an abstract interface without requiring the client to
instantiate the object directly.

Of course, by decoupling your system from the specifics of a database platform, the DB
package still leaves you with your own work to do. If your (now database-agnostic) SQL code is
sprinkled throughout your project, you may find that a single change in one aspect of your project
causes a cascade of changes elsewhere. An alteration in the database schema would be the most
common example here, where an additional field in a table might necessitate changes to many
duplicated database queries. You should consider extracting this code and placing it in a single
package, thereby decoupling your application logic from the details of a relational database.

134 CHAPTER 8 SOME PATTERN PRINCIPLES

Code to an Interface Not an Implementation
This principle is one of the all-pervading themes of this book. We saw in Chapter 6 (and in the
last section) that we can hide different implementations behind the common interface defined
in a super class. Client code can then require an object of the super class's type rather than that
of an implementing class, unconcerned by the specific implementation it is actually getting.

Parallel conditional statements, like the ones we built into Lesson: :cost () and
lesson:: charge Type(), are a common signal that polymorphism is needed. They make code
hard to maintain because a change in one conditional expression necessitates a change in its
twins. Conditional statements are occasionally said to implement a "simulated inheritance."

By placing the cost algorithms in separate classes that implement CostStrategy, we remove
duplication. We also make it much easier should we need to add new cost strategies in the future.

From the perspective of client code, it is often a good idea to require abstract or general
types in your methods' parameter lists. By requiring more specific types, you could limit the
flexibility of your code at runtime.

Having said that, of course, the level of generality you choose in your argument hints is a
matter of judgment. Make your choice too general, and your method may become less safe.
If you require the specific functionality of a subtype, then accepting a differently equipped
sibling into a method could be risky.

Still, make your choice of argument hint too restricted, and you lose the benefits of poly­
morphism. Take a look at this altered extract from the Lesson class:

function __ construct($duration,
FixedPriceStrategy $strategy) {
$this->duration = $duration;
$this->costStrategy = $strategy;

}

There are two issues arising from the design decision in this example. Firstly, the Lesson
object is now tied to a specific cost strategy, which closes down our ability to compose dynamic
components. Secondly, the explicit reference to the FixedPriceStrategy class forces us to
maintain that particular implementation.

By requiring a common interface, you can combine a Lesson object with any Cost Strategy
implementation.

function __ construct($duration, CostStrategy $strategy) {
$this->duration = $duration;
$this->costStrategy = $strategy;

}

You have, in other words, decoupled your Lesson class from the specifics of cost calcula­
tion. All that matters is the interface and the guarantee that the provided object will honor it.

Of course, coding to an interface can often simply defer the question of how to instantiate
your objects. When we say that a Lesson object can be combined with any CostStrategy inter­
face at runtime, we beg the question, "But where does the Cost Strategy object come from?"

When you create an abstract super class, there is always the issue as to how its children
should be instantiated. Which one do you choose in which condition? This subject forms a
category of its own in the GoP pattern catalog, and we will examine some of these in the next
chapter.

CHAPTER 8 SOME PATTERN PRINCIPLES 135

The Concept That Varies
It's easy to interpret a design decision once it has been made, but how do you decide where
to start?

The Gang of Four recommend that you "encapsulate the concept that varies." In terms of
our lesson example, the "varying concept" is the cost algorithm. Not only is the cost calculation
one of two possible strategies in the example, but it is obviously a candidate for expansion:
special offers, overseas student rates, introductory discounts, all sorts of possibilities present
themselves.

We quickly established that subclassing for this variation was inappropriate and we resorted to
a conditional statement. By bringing our variation into the same class, we underlined its suit­
ability for encapsulation.

The Gang of Four recommend that you actively seek varying elements in your classes and
assess their suitability for encapsulation in a new type. Each alternative in a suspect conditional
may be extracted to form a class extending a common abstract parent. This new type can then
be used by the class or classes from which it was extracted. This has the effect of

• Focusing responsibility

• Promoting flexibility through composition

• Making inheritance hierarchies more compact and focused

• Reducing duplication

So how do we spot variation? One sign is the misuse of inheritance. This might include
inheritance deployed according to multiple forces at one time (lecture/seminar, fixed/timed
cost). It might also include subclassing on an algorithm where the algorithm is incidental to the
core responsibility of the type. The other sign of variation suitable for encapsulation is, of
course, a conditional expression.

Patternitis
One problem for which there is no pattern is the unnecessary or inappropriate use of patterns.
This has earned patterns a bad name in some quarters. Because pattern solutions are neat, it is
tempting to apply them wherever you see a fit, whether they truly fulfill a need or not.

The eXtreme Programming methodology offers a couple of principles that might apply
here. The first is "You aren't going to need it" (often abbreviated to YAGNI). This is generally
applied to application features, but it also makes sense for patterns.

When I build large environments in PHP, I tend to split my application into layers, sepa­
rating application logic from presentation and persistence layers. I use all sorts of core and
enterprise patterns in conjunction with one another.

When I am asked to build a feedback form for a small business Web site, however, I may
simply use procedural code in a single page script. I do not need enormous amounts of flexi­
bility, I won't be building upon the initial release. I don't need to use patterns that address
problems in larger systems. Instead I apply the second XP principle: "Do the simplest thing
that works."

136 CHAPTER 8 • SOME PATTERN PRINCIPLES

When you work with a pattern catalog, the structure and process of the solution are what
stick in the mind, consolidated by the code example. Before applying a pattern, though, pay
close attention to the "problem" or "when to use it" section, and read up on the pattern's
consequences. In some contexts, the cure may be worse than the disease.

The Patterns
This book is not a pattern catalog. Nevertheless, in the coming chapters, I will introduce a few
of the key patterns in use at the moment, providing PHP implementations and discussing them
in the broad context of PHP programming.

The patterns described will be drawn from key catalogs including Design Patterns, Patterns
of Enterprise Application Architecture, and Core]2EE Patterns. I follow the Gang of Four's
categorization, dividing patterns as follows:

Patterns for Generating Objects
These patterns are concerned with the instantiation of objects. This is an important category
given the principle "Code to an interface." If we are working with abstract parent classes in our
design, then we must develop strategies for instantiating objects from concrete subclasses. It is
these objects that will be passed around our system.

Patterns for Organizing Objects and Classes
These patterns help us to organize the compositional relationships of our objects. More simply,
these patterns show how we combine objects and classes.

Task -oriented Patterns
These patterns describe the mechanisms by which classes and objects cooperate to achieve
objectives.

Enterprise Patterns
We look at some patterns that describe typical Internet programming problems and solutions.
Drawn largely from Patterns of Enterprise Application Architecture and Core]2EE Patterns, the
patterns deal with database persistence, presentation, and application logic.

Summary
In this chapter, we looked at some of the principles that underpin many design patterns. We
looked at the use of composition to enable object combination and recombination at runtime,
resulting in more flexible structures than would be available using inheritance alone. We intro­
duced decoupling, the practice of extracting software components from their context to make
them more generally applicable. We reviewed the importance of interface as a means of decou­
pling clients from the details of implementation.

In the coming chapters, we will examine some design patterns in detail.

CHAPTER 9

Generating Objects

Creating objects is a messy business. So many object-oriented designs deal with nice, clean
abstract classes, taking advantage of the impressive flexibility afforded by polymorphism (the
switching of concrete implementations at runtime). To achieve this flexibility though, we must
devise strategies for object generation. This is the topic we will look at here.

This chapter will cover

• The Singleton pattern: A special class that generates one and only one object instance

• The Factory Method pattern: Building an inheritance hierarchy of creator classes

• The Abstract Factory pattern: Grouping the creation of functionally related products

• The Prototype pattern: Using clone to generate objects

Problems and Solutions in Generating Objects
Object creation can be a weak point in object-oriented design. In the previous chapter, we saw
the principle "Code to an interface, not to an implementation." To this end, we are encouraged
to work with abstract supertypes in our classes. This makes code more flexible, allowing you to
use objects instantiated from different concrete subclasses at runtime. This has the side effect
that object instantiation is deferred.

Here's a class that accepts a name string and instantiates a particular object:

abstract class Employee {
protected $name;

}

function __ construct($name) {
$this->name = $name;

}
abstract function fire();

class Minion extends Employee {
function fire() {

print "{$this->name}: I'll clear my desk\n";
}

}

137

138 CHAPTER 9 GENERATING OBJECTS

class CluedUp extends Employee {
function fire() {

print "{$this->name}: I'll call my lawyer\n";
}

}

class NastyBoss {

}

private $employees = array();

function addEmployee($employeeName) {
$this->employees[] = new Minion($employeeName);

}

function projectFails() {

}

if (count($this->employees)) {

}

$emp = array_pop($this->employees);
$emp->fire();

$boss = new NastyBoss();
$boss->addEmployee("harry");
$boss->addEmployee("bob");
$boss->addEmployee("mary");
$boss->projectFails();

II output:
II mary: I'll clear my desk

As you can see, we define an abstract base class: Employee, with a downtrodden implemen­

tation: Minion. Given a name string, the NastyBoss: :add Employee() method instantiates a new

Minion object. Whenever a NastyBoss object runs into trouble (via the NastyBoss:: projectFails ()

method), it looks for a Minion to fire.
By instantiating a Minion object directly in the NastyBoss class, we limit flexibility. If a

Na styBos s object could work with any instance of the Employee type, we could make our code

amenable to variation at runtime as we add more Employee specializations. You should find the

polymorphism in Figure 9-1 familiar.

CHAPTER 9 • GENERATING OBJECTS 139

NastyBoss

~
Employee

+addEmployee($employee:Employee +fire()
+projectFails()

~
I I I

Minion WeiiConnected Clued Up

I I'll clear my des?!-- +fire() +fire() +fire()

I I'll call my da~

I ~ I'll call my lawyer I

Figure 9-1. Working with an abstract type enables polymorphism

If the NastyBoss class does not instantiate a Minion object, where does it come from?
Authors often duck out of this problem by constraining an argument type in a method declaration
and then conveniently omitting to show the instantiation in anything other than a test context.

class NastyBoss {

}

private $employees = array();

function addEmployee(Employee $employee) {
$this->employees[] = $employee;

}

function projectFails() {

}

if (count($this->employees)) {

}

$emp = array_pop($this->employees);
$emp->fire();

$boss = new NastyBoss();
$boss->addEmployee(new Minion("harry"));
$boss->addEmployee(new CluedUp("bob"));
$boss->addEmployee(new Minion("mary"));
$boss->projectFails();
$boss->projectFails();
II output:
II mary: I'll clear my desk
II bob: I'll call my lawyer
II harry: I'll clear my desk

140 CHAPTER 9 GENERATING OBJECTS

Although this version of the NastyBoss class works with the Employee type, and therefore
benefits from polymorphism, we still haven't defined a strategy for object creation. Instanti­
ating objects is a dirty business, but it has to be done. This chapter is about classes and objects
that work with concrete classes so that the rest of your classes do not have to.

If there is a principle to be found, here it is "Delegate object instantiation." We did this
implicitly in the previous example by demanding that an Employee object is passed to the
NastyBoss:: add Employee() method. We could, however, equally delegate to a separate class or
method that takes responsibility for generating Employee objects. Let's add a static method to
the Employee class that implements a strategy for object creation:

abstract class Employee {
protected $name;

}

private static $types = array('minion', 'cluedup', 'wellconnected');

static function recruit($name) {

}

$num =rand(1, count(self::$types))-1;
$class= self::$types[$num];
return new $class($name);

function __ construct($name) {
$this->name = $name;

}
abstract function fire();

As you can see, this takes a name string and uses it to instantiate a particular Employee
subtype at random. We can now delegate the details of instantiation to the Employee class's
recruit() method.

$boss = new NastyBoss();
$boss->addEmployee(Employee::recruit("harry"));
$boss->addEmployee(Employee::recruit("bob"));
$boss->addEmployee(Employee::recruit("mary"));

We saw a simple example of such a class in Chapter 4. We placed a static method in the
ShopProduct class calledgetlnstance(). getlnstance() is responsible for generating the correct
Shop Product subclass based upon a database query. The Shop Product class, therefore, has a dual
role. It defines the ShopProduct type, but it also acts as a factory for concrete Shop Product objects.

II class ShopProduct
public static function getlnstance($id, DB_common $db) {

$query = "select * from products where id=' $id "';
$query_result = $db->query($query);

if (DB::isError($query_result)) {
die($query_result->getMessage());

}

}

CHAPTER 9 • GENERATING OBJECTS 141

$row = $query_result->fetchRow(DB_FETCHMODE_ASSOC);
if (empty($row)) { return null; }

if ($row['type'] =="book") {
II instantiate a BookProduct object

} else if ($row['type'] == "cd") {
II instantiate a CdProduct object

} else {
II instantiate a ShopProduct object

}
$product->setid(
$product->setDiscount(
return $product;

$row['id']);
$row['discount']);

IUiote We use the term "factory" frequently in this chapter. A factory is a class or method with responsibility
for generating objects.

The getinstance() method uses a large switch statementto determine which subclass to
instantiate. Conditionals like this are quite common in factory code. Although we often attempt to
excise large conditional statements from our projects, this often has the effect of pushing the
conditional back to the moment at which an object is generated. This is not generally a serious
problem, because we remove parallel conditionals from our code in pushing the decision
making back to this point.

In this chapter, then, we will examine some of the key Gang of Four patterns for generating
objects.

•Note "Gang of Four" is the affectionate nickname of Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides, who are the authors of Design Patterns: Elements of Reusable Object-Oriented Software. This
book is one of the most important design pattern catalogs, which is often known as the "Gang of Four book."

The Singleton Pattern
The global variable is one of the great bugbears of the object -oriented programmer. The reasons
should be familiar to you by now. Global variables tie classes into context, undermining encap­
sulation. A class that relies on global variables becomes impossible to pull out of an application
and use in another, without first ensuring that the new application itself defines the same
global variables.

142 CHAPTER 9 GENERATING OBJECTS

Although this is undesirable, the unprotected nature of global variables can be a greater
problem. Once you start relying upon global variables, it is perhaps just a matter of time before
one of your libraries declares a global that clashes with another declared elsewhere. We have
seen already that PHP is vulnerable to class name clashes, but this is much worse. PHP will not
warn you when globals collide. The first you will know about it is when your script begins to
behave oddly.

Globals remain a temptation, however. This is because there are times when the sin inherent
in global access seems a price worth paying in order to give all your classes access to an object.

The Problem
Well-designed systems generally pass object instances around via method calls. Each class
retains its independence from the wider context, collaborating with other parts of the system
via clear lines of communication. Sometimes, though, you find that this forces you to use some
classes as conduits for objects that do not concern them, introducing dependencies in the
name of good design.

Imagine a Preferences class that holds application-level information. We might use a
Preferences object to store data such as DSN strings (Data Source Names hold table and user
information about a database), URL roots, file paths, and so on. This is the sort of information
that will vary from installation to installation. The object may also be used as a "notice board,"
a central location for messages that could be set or retrieved by otherwise unrelated objects in
a system.

Passing a Preferences object around from object to object may not always be a good idea.
Many classes that do not otherwise use the object could be forced to accept it simply so that
they could pass it on to the objects that they work with. This is just another kind of coupling.

We also need to be sure that all objects in our system are working with the same Preferences
object. We do not want objects setting values on one object, while others read from an entirely
different one.

Let's distill the forces in this problem:

• A Preferences object should be available to any object in our system.

• A Preferences object should not be stored in a global variable, which can be overwritten.

• There should be no more than one Preferences object in play in the system. This means
that object Y can set a property in the Preferences object, and object Z can retrieve the
same property, without either one talking to the other directly.

Implementation
To address this problem, we can start by asserting control over object instantiation. Here we
create a class that cannot be instantiated from outside of itself. That may sound difficult, but
it's simply a matter of defining a private constructor:

class Preferences {

}

private $props = array();

private function __ construct() { }

public function setProperty($key, $val) {
$this->props[$key] = $val;

}

public function getProperty($key) {
return $this->props[$key];

}

CHAPTER 9 • GENERATING OBJECTS 143

Of course, at this point the Preferences class is entirely unusable. We have taken access
restriction to an absurd level. Because the constructor is declared private, no client code can
instantiate an object from it. The setProperty() and getProperty() methods are therefore
redundant.

We can use a static method and a static property to mediate object instantiation.

class Preferences {

}

private $props = array();
private static $instance;

private function __ construct() { }

public static function getinstance() {

}

if (empty(self::$instance)) {
self::$instance =new Preferences();

}
return self::$instance;

public function setProperty($key, $val) {
$this->props[$key] = $val;

}

public function getProperty($key) {
return $this->props[$key];

}

144 CHAPTER 9 GENERATING OBJECTS

The $instance property is private and static, so it cannot be accessed from outside the
class. The getlnstance() method has access though. Because getlnstance() is public and
static, it can be called via the class from anywhere in a script.

$pref = Preferences::getlnstance();
$pref->setProperty("name", "matt");
unset($pref);

$pref2 = Preferences::getlnstance();
print $pref2->getProperty("name");

A static method cannot access object properties because it is, by definition, invoked in a
class and not an object context. It can, however, access a static property. When getlnstance()
is called, we check the Preferences: :$instance property. If it is empty, then we create an
instance of the Preferences class and store it in the property. Then we return the instance to
the calling code. Because the static getlnstance() method is part of the Preferences class, we
have no problem instantiating a Preferences object even though the constructor is private.

Figure 9-2 shows this structure in the UML.

.----------- ~

1<<creates>> v
I Preferences
I
I -~instance

I -_construct()
;.::....=....: +getinstance()

+setProperty($key:String,$value:String
+getProperty($key:String)

~
if (empty(self::$instance)) {

self: :$instance= new Preferences();
}
return self: :$instance;

Figure 9-2. An example of the Singleton pattern

Consequences
So, how does the Singleton approach compare to using a global variable? First the bad news.
Both Singletons and global variables can be misused. Because Singletons can be accessed from
anywhere in a system, they can serve to create dependencies that can be hard to debug. Change
a Singleton, and classes that use it may be affected. Dependencies are not a problem in themselves.
Mter all, we create a dependency every time we declare that a method requires an argument

CHAPTER 9 • GENERATING OBJECTS 145

of a particular type. The problem is that the global nature of the Singleton lets a programmer
bypass the lines of communication defined by class interfaces. When a Singleton is used, the
dependency is hidden away inside a method and not declared in its signature. This can make it
harder to trace the relationships within a system. Singleton classes should therefore be deployed
sparingly and with care.

Nevertheless, I think that moderate use of the Singleton pattern can improve the design of
a system, saving you from horrible contortions as you pass objects unnecessarily around your
system.

Singletons represent an improvement over global variables in an object-oriented context.
You cannot overwrite a Singleton with the wrong kind of data. This kind of protection is espe­
cially important in PHP, which does not support names paces. Any name clash will be caught at
compile time, ending script execution.

Factory Method Pattern
Object-oriented design emphasizes the abstract class over the implementation. That is, we
work with generalizations rather than specializations. The Factory Method pattern addresses
the problem of how to create object instances when your code focuses on abstract types. The
answer? Let specialist classes handle instantiation.

The Problem
Imagine a personal organizer project. Among others, we manage Appointment objects. Our
business group has forged a relationship with another company, and we must communicate
appointment data to them using a format called BloggsCal. The business group warns us that
we may face yet more formats as time wears on, though.

Staying at the level of interface alone, we can identify two participants right away. We need
a data encoder that converts our Appointment objects into a proprietary format. Let's call that
class ApptEncoder. We need a manager class that will retrieve an encoder, and maybe work with
it to communicate with a third party. We can call that CommsManager. Using the terminology of
the pattern, the CommsManager is the creator, and the ApptEncoder is the product. You can see
this structure in Figure 9-3.

'-<~c:_e~e.!>~ __ -.. CommsManager , ._. ApptEncoder

t=======~ +getApptEncoder(): ApptEncod~ +eucode(): String

Figure 9-3. Abstract creator and product classes

How do we get our hands on a real concrete ApptEncoder, though?
We could demand that an ApptEncoder is passed to the CommsManager, but that simply defers

our problem, and we want the buck to stop about here. Let's instantiate a BloggsApptEncoder
object directly within the CommsManager class:

146 CHAPTER 9 GENERATING OBJECTS

abstract class ApptEncoder {
abstract function encode();

}

class BloggsApptEncoder extends ApptEncoder {
function encode() {

return "Appointment data encoded in BloggsCal format\n";
}

}

class MegaApptEncoder extends ApptEncoder {
function encode() {

return "Appointment data encoded in MegaCal format\n";
}

}
class CommsManager {

function getApptEncoder() {
return new BloggsApptEncoder();

}
}

The CommsManager class is responsible for generating BloggsApptEncoder objects. When

the sands of corporate allegiance inevitably shift and we are asked to convert our system

to work with a new format called Mega Cal, we can simply add a conditional into the

CommsManager: :getApptEncoder() method. This is the strategy we have used in the past,
after all. Let's build a new implementation of CommsManager that handles both BloggsCal

and MegaCal formats:

class CommsManager {

}

const BLOGGS = 1;
const MEGA = 2;
private $mode = 1;

function __ construct($mode) {
$this->mode = $mode;

}

function getApptEncoder() {
switch ($this->mode) {

case (self::MEGA):

}
}

return new MegaApptEncoder();
default:

return new BloggsApptEncoder();

$comms =new CommsManager(CommsManager::MEGA);
$apptEncoder = $comms->getApptEncoder();
print $apptEncoder->encode();

CHAPTER 9 • GENERATING OBJECTS 147

We use constant flags to define two modes in which the script might be run: MEGA and
BLOGGS. We use a switch statement in the getApptEncoder() method to test the $mode property
and instantiate the appropriate implementation of ApptEncoder.

There is little wrong with this approach. Conditionals are sometimes considered examples
of bad "code smells," but object creation often requires a conditional at some point. We should
be less sanguine if we see duplicate conditionals creeping into our code. The CommsManager
class provides functionality for communicating calendar data. Imagine that the protocols we
work with require us to provide header and footer data. Let's extend our previous example to
support a getHeaderText () method:

class CommsManager {

}

const BLOGGS = 1;
const MEGA = 2;
private $mode = 1;

function __ construct($mode) {
$this->mode = $mode;

}

function getHeaderText() {
switch ($this->mode) {

case (self::MEGA):

}
}

return "MegaCal header\n";
default:

return "BloggsCal header\n";

function getApptEncoder() {
switch ($this->mode) {

case (self::MEGA):

}
}

return new MegaApptEncoder();
default:

return new BloggsEncoder();

As you can see, the need to support header output has forced us to duplicate the protocol
conditional test. This will become unwieldy as we add new protocols, especially if we also add
a getFooterText () method.

148 CHAPTER 9 GENERATING OBJECTS

So, to summarize our problem:

• We do not know until runtime the kind of object we need to produce (BloggsAppt Encoder
or MegaApptEncoder).

• We need to be able to add new product types with relative ease. (SyncML support is just
a new business deal away!)

• Each product type is associated with a context that requires other customized operations
(getHeaderText(), getFooterText()).

Additionally, we might note that we are using conditional statements, and we have seen
already that these are naturally replaceable by polymorphism. The Factory Method pattern
enables us to use inheritance and polymorphism to encapsulate the creation of concrete products.
In other words, we create a CommsManager subclass for each protocol, each one implementing
the getApptEncoder() method.

Implementation
The Factory Method pattern splits creator classes from the products they are designed to
generate. The creator is a factory class that defines a method for generating a product object.
If no default implementation is provided, it is left to creator child classes to perform the instan­
tiation. Typically, each creator subclass instantiates a parallel product child class.

Let's redesignate CommsManager as an abstract class. That way we keep a flexible super class
and put all our protocol-specific code in the concrete subclasses. You can see this alteration in
Figure 9-4.

CommsManager ApptEncoder

+getHeaderText(): String +encode(): String
+getApptEncoder(): ApptEncodez
+getFooterText(): String ~

f
BloggsCommsManager

<<creates>>
::::>- BloggsApptEncoder

+getHeaderText(): String +encode(): String
- +getApptEncoder(): ApptEncodei

+getFooterText(): String

~return new BloggsApptEncoder()~
Figure 9-4. Concrete creator and product classes

Here's some simplified code:

abstract class ApptEncoder {
abstract function encode();

}

class BloggsApptEncoder extends ApptEncoder {
function encode() {

CHAPTER 9 GENERATING OBJECTS 149

return "Appointment data encode in BloggsCal format\n";
}

}

abstract class CommsManager {

}

abstract function getHeaderText();
abstract function getApptEncoder();
abstract function getFooterText();

class BloggsCommsManager extends CommsManager {
function getHeaderText() {

}

return "BloggsCal header\n";
}

function getApptEncoder() {
return new BloggsApptEncoder();

}

function getFooterText() {
return "BloggsCal footer\n";

}

The BloggsCommsManager:: getTtdEncoder() method returns a BloggsApptEncoder object.
Client code calling getApptEncoder() can expect an object of type ApptEncoder, and will not
necessarily know about the concrete product it has been given. In some languages, method
return types are enforced, so client code calling a method like getApptEncoder() can be absolutely
certain that it will receive an ApptEncoder object. In PHP 5, this is a matter of convention. It is
important to document return types or otherwise signal them through naming conventions.

So when we are required to implement MegaCal, supporting it is simply a matter of writing
a new implementation for our abstract classes. Figure 9-5 shows the Mega Cal classes.

150 CHAPTER 9 • GENERATING OBJECTS

CommsManager

+getHeaderText(): String
+getApptEncoder(): ApptEncodm
+getFooterText(): String

* I I
-- MegaCommsManager BloggsCommsManager --

+getHeaderText(): String +getHeaderText(): String
~ +getApptEncoder(): ApptEncodei +getApptEncoder(): ApptEncodei -

+getFooterText(): String +getFooterText(): String

L-1 return new MegaApptEncoder()~ I return new BloggsApptEncoder()~
1<<creates>>
I

>

ApptEncoder

+encode(): String

¢.
I I

MegaApptEncoder BloggsApptEncoder

+encode(): String +encode(): String

figure 9-5. Extending the design to support a new protocol

Consequences

r:e

-.,

I
1«creates»

I

Notice that our creator classes mirror the product hierarchy. This is a common consequence of
the Factory Method pattern and disliked by some as a special kind of code duplication. Another
issue is the possibility that the pattern could encourage unnecessary subclassing. If your only
reason for sub classing a creator is to deploy the Factory Method pattern, you may need to think
again (that's why we introduced the header and footer constraints to our example here).

We have focused only on appointments in our example. If we extend it somewhat to include
"to do" items and contacts, we face a new problem. We need a structure that will handle sets of
related implementations at one time. The Factory Method pattern is often used with the Abstract
Factory pattern, as we will see in the next section.

Abstract Factory
In large applications, you may need factories that produce related sets of classes. The Abstract
Factory pattern addresses this problem.

CHAPTER 9 GENERATING OBJECTS

The Problem
Let's look again at our organizer example. We manage encoding in two formats, BloggsCal and
Mega Cal. We can grow this structure "horizontally" by adding more encoding formats, but
how can we grow "vertically," adding encoders for different types of PIM object? In fact, we
have been working toward this pattern already.

In Figure 9-6, you can see the parallel families with which we will want to work.

ApptEncoder

+encode(): String

!:;:..
I I

MegaApptEncoder BloggsApptEncoder

+encode(): String +encode(): String

TtdEncoder

+encode(): String

!:;:..
I I

MegaTtd Encoder BloggsTtdEncoder

+encode(): String +encode(): String

ContactEncoder

+encode(): String

~
I I

MegaContactEncoder Blogg sContactEncode r

+encode(): String +encode(): String

Figure 9-6. Three product families

The BloggsCal classes are unrelated to one another by inheritance (although they could
implement a common interface), but they are functionally parallel. If our system is currently
working with BloggsTtdEncoder, it should also be working with BloggsContactEncoder.

To see how we enforce this, we can begin with the interface as we did with the Factory
Method pattern (see Figure 9-7).

151

152 CHAPTER 9 • GENERATING OBJECTS

CommsManager 1- - _«~re~e!_>>- - ;:;> ApptEncoder

~============~ I ~======~
+getHeaderText(): String
+getApptEncoder(): ApptEncoder
+getTtdEncoder(): TtdEncoder
+getContactEncoder(): ContactEncoder
+getFooterText(): String

1 +encode(): String

I

~-- ->
~=;:::==:::::1

+encode(): String

TtdEncoder

I
L - - - ::;.. ContactEncoder

+encode(): String

Figure 9-7. An abstract creator and its abstract products

Implementation
The abstract CommsMa nager class defines the interface for generating each of the three products
(ApptEncoder, TtdEncoder, and ContactEncoder). We need to implement a concrete creator in
order to actually generate the concrete products for a particular family. We do that for the
BloggsCal format in Figure 9-8.

CommsManager ApptEncoder

+getHeaderText(): String +encode(): String
+getApptEncoder(): ApptEncoder
+getTtdEncoder(): TtdEncoder ~
+getContactEncoder(): ContactEncoder
+getFooterText(): String r---> BlogsApptEncoder

I +encode{): String

BloggsCommsManager TtdEncoder

+getHeaderText(): String
+getApptEncoder(): ApptEncoder
+getTtdEncoder(): TtdEncoder
+getContactEncoder(): Contact Encoder

+encode(): String

if I
+getFooterText(): String L----> BloggsTtdEncoder

+encode{): String

ContadEncoder

+encode(): String

if
;;:. BloggsContactEncoder

+encode{): String

Figure 9-8. Adding a concrete creator and some concrete products

CHAPTER 9 GENERATING OBJECTS 153

Here is a code version of CommsManager and BloggsCommsManager:

abstract class CommsManager {

}

abstract function getHeaderText();
abstract function getApptEncoder();
abstract function getTtdEncoder();
abstract function getContactEncoder();
abstract function getFooterText();

class BloggsCommsManager extends CommsManager {
function getHeaderText() {

}

return "BloggsCal header\n";
}

function getApptEncoder() {
return new BloggsApptEncoder();

}

function getTtdEncoder() {
return new BloggsTtdEncoder();

}

function getContactEncoder() {
return new BloggsContactEncoder();

}

function getFooterText() {
return "BloggsCal footer\n";

}

Notice that we use the Factory Method pattern in this example. getContact () is abstract in
CommsManager and implemented in BloggsCommsManager. Design patterns tend to work together
in this way, one pattern creating the context that lends itself to another. In Figure 9-9, we add
support for the Mega Cal format.

"'1
"1

 =· c a CD

I !.1:
1 ~ ~- 8 ~ ('

) ~

@
'

('
) ~

~
 8'

<:1

~
 [~ ~

(I
) 8 ~ ('
) ~

@
'

'1::
:! a >:l
...

>:::

('
) 1;
l'

C
o

m
m

sM
a

n
a

g
e

r

+
g

e
t:

H
e

a
d

e
rT

e
x
t:

()
:

S
t:

ri
n

g

+
g

e
t:

A
p

p
t:

E
n

c
o

d
e

r(
):

A

p
p

t:
E

n
co

d
e

r
+

g
e

t:
T

t:
d

E
n

c
o

d
e

r(
):

T

t:
d

E
n

co
d

e
r

+
g

e
t:

C
o

n
t:

a
c
t:

E
n

c
o

d
e

r(
):

C

o
n

t:
a

ct
:E

n
co

d
e

+

g
e

t:
F

o
o

t:
e

rT
e

x
t:

()
:

S
t:

ri
n

g

~

I
I

B
lo

g
g

sC
o

m
m

sM
a

n
a

g
e

r
I

M
e

g
a

C
o

m
m

sM
a

n
a

g
e

r
I

+
g

et
H

ea
d

er
T

ex
t(

):

S
tr

in
g

I

+
ge

tH
ea

de
rT

ex
t(

):

S
tr

in
g

+

ge
tA

pp
tE

nc
od

er
()

:
A

pp
tE

nc
od

er

I
+

ge
tA

pp
tE

nc
od

er
()

:
A

pp
tE

nc
od

er

+
g

et
T

td
E

n
co

d
er

()
:

T
td

E
nc

od
er

I

+
ge

tT
td

E
nc

od
er

()
:

T
td

E
nc

od
er

+

g
et

C
o

n
ta

ct
E

n
co

d
er

()
:

C
on

ta
ct

E
nc

od
e

I
+

g
et

C
o

n
ta

ct
E

n
co

d
er

()
:

C
on

ta
ct

E
nc

od
eJ

+

g
et

F
o

o
te

rT
ex

t (
)
=
~
-
S
t
r
i
n
g

I
+

g
et

F
o

o
te

rT
ex

t(
):

S

tr
in

g

A
p

p
tE

n
co

d
e

r

r
-
- +

en
co

de
()

:
S

tr
in

g

+
en

co
d

e(
):

S

tr
in

g

I I I I I I I I I I I
_

J I I I
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
 J

... ~

(
')

:r:

:
)>

 .., -1

m

:r
l

<.
0 - C) m

:z

m

:r
l

)>

-1

:z

C
)

0 cc

c.
..

m

(
')

-1

C

/)

CHAPTER 9 • GENERATING OBJECTS 155

Consequences
So what does this pattern buy us?

• Firstly, we decouple our system from the details of implementation. We can add or remove
any number of encoding formats to our example without causing a knock on effect.

• We enforce the grouping of functionally related elements of our system. So by using
BloggsCommsManager, we are guaranteed that we will work only with BloggsCal-related
classes.

• Adding new products can be a pain. Not only do we have to create concrete implemen­
tations of the new product, but also we have to amend the abstract creator and every one
of its concrete implementers in order to support it.

Many implementations of the Abstract Factory pattern use the Factory Method pattern.
This may be because most examples are written in Java or C++. PHP, however, does not enforce
a return type for a method, which affords us some flexibility that we might leverage.

Rather than create separate methods for each Factory Method, we can create a single
make() method that uses a flag argument to determine which object to return.

abstract class CommsManager {

}

const APPT = 1;
const TTD = 2;
const CONTACT = 3;
abstract function getHeaderText();
abstract function make($flag_int);
abstract function getFooterText();

class BloggsCommsManager extends CommsManager {
function getHeaderText() {

}

return "BloggsCal header\n";
}
function make($flag_int) {

switch ($flag_int) {
case self::APPT:

}
}

return new BloggsApptEncoder();
case self::CONTACT:

return new BloggsContactEncoder();
case self: :TTD:

return new BloggsTtdEncoder();

function getFooterText() {
return "BloggsCal footer\n";

}

156 CHAPTER 9 GENERATING OBJECTS

As you can see, we have made the class interface more compact. We've done this at a
considerable cost, though. In using Factory Methods, we define a clear interface and force all
concrete factory objects to honor it. In using a single make() method, we must remember to
support all product objects in all the concrete creators. We also introduce parallel conditionals,
as each concrete creator must implement the same flag tests. A client class cannot be certain
that concrete creators generate all the products because the internals of make() are a matter of
choice in each case.

On the other hand, we can build more flexible creators. The base creator class can provide
a make() method that guarantees a default implementation of each product family. Concrete
children could then modify this behavior selectively. It would be up to implementing creator
classes to call the default make() method after providing their own implementation.

We will see another variation on the Abstract Factory pattern in the next section.

Prototype
The emergence of parallel inheritance hierarchies can be a problem with the Factory Method
pattern. This is a kind of coupling that makes some programmers uncomfortable. Every time
you add a product family, you are forced to create an associated concrete creator (the BloggsCal
encoders are matched by BloggsCommsManager, for example). In a system that grows fast to
encompass many products, maintaining this kind of relationship can quickly become tiresome.

One way of avoiding this dependency is to use PHP' s clone keyword to duplicate existing
concrete products. The concrete product classes themselves then become the basis of their
own generation. This is the Prototype pattern. It enables us to replace inheritance with
composition. This in turn promotes runtime flexibility and reduces the number of classes
we must create.

The Problem
Imagine a Civilization-style Web game in which units operate on a grid oftiles. Each tile can
represent sea, plains, or forests. The terrain type constrains the movement and combat abilities of
units occupying the tile. We might have a Terrain Factory object that serves up Sea, Forest, and
Plains objects. We decide that we will allow the user to choose between radically different
environments, so the Sea object is an abstract super class implemented by Mars Sea and
EarthSea. Forest and Plains objects are similarly implemented. The forces here lend them­
selves to the Abstract Factory pattern. We have distinct product hierarchies (Sea, Plains, Forests),
with strong family relationships cutting across inheritance (Earth, Mars). Figure 9-10 presents a
class diagram that shows how we might deploy the Abstract Factory and Factory Method
patterns to work with these products.

As you can see, we rely on inheritance to group the terrain family for the products that a
factory will generate. This is a workable solution, but it requires a large inheritance hierarchy,
and it is relatively inflexible. When you do not want parallel inheritance hierarchies, and when
you need to maximize runtime flexibility, the Prototype pattern can be used in a powerful vari­
ation on the Abstract Factory pattern.

CHAPTER 9 GENERATING OBJECTS

Terrain Factory

+getSea(): Sea
+getPlains(): Plains
+getForest(): Forest

~
I I

EarthTerrainFactory MarsTerrainFactory ..
+get Sea(): Sea +getSea(): Sea
+getPlains(): Plains +getPlains(): Plains
+getForest(): Forest +getForest(): Forest

_____________________________ !

Figure 9-1 0. Handling terrains with the Abstract Factory method

Implementation
When we work with the Abstract Factory/Factory Method patterns, we must decide at some
point which concrete creator we wish to work with, probably by checking some kind of prefer­
ence flag. Since we must do this anyway, why not simply create a factory class that stores
concrete products, and populate this during initialization? We can cut down on a couple of
classes this way, and, as we shall see, take advantage of other benefits. Here's some simple code
that uses the Prototype pattern in a factory:

class Sea {}
class EarthSea extends Sea {}
class MarsSea extends Sea {}

class Plains {}
class EarthPlains extends Plains {}
class MarsPlains extends Plains {}

class Forest {}
class EarthForest extends Forest {}
class MarsForest extends Forest {}

157

158 CHAPTER 9 I GENERATING OBJECTS

class TerrainFactory {
private $sea;
private $forest;
private $plains;

}

function __ construct(Sea $sea, Plains $plains, Forest $forest) {
$this->sea = $sea;
$this->plains = $plains;
$this->forest = $forest;

}

function getSea() {
return clone $this->sea;

}

function getPlains() {
return clone $this->plains;

}

function getForest() {
return clone $this->forest;

}

$factory = new TerrainFactory(new EarthSea(),
new EarthPlains(),
new EarthForest());

print_r($factory->getSea());
print_r($factory->getPlains());
print_r($factory->getForest());

As you can see, we load up a concrete TerrainFactory with instances of our product
objects. When a client calls get Sea (),we return a clone of the Sea object that we cached during
initialization. Not only have we saved a couple of classes, but also we have bought additional
flexibility. Want to play a game on a new planet with Earth-like seas and forests, but Mars-like
plains? No need to write a new creator class--we can simply change the,mix of classes we add
to Terrain Factory.

$factory = new TerrainFactory(new EarthSea(),
new MarsPlains(),
new EarthForest());

So the Prototype pattern allows us to take advantage of the flexibility afforded by compo­
sition. We get more than that, though. Because we are storing and cloning objects at runtime,
we reproduce object state when we generate new products. Imagine that Sea objects have a
$navigability property. The property influences the amount of movement energy a sea tile
saps from a vessel, and can be set to adjust the difficulty level of a game.

class Sea {

}

private $navigability = o;
function __ construct($navigability) {

$this->navigability = $navigability;
}

CHAPTER 9 • GENERATING OBJECTS 159

Now when we initialize the TerrainFactory object, we can add a Sea object with a naviga­
bility modifier. This will then hold true for all Sea objects served by TerrainFactory.

$factory = new TerrainFactory(new EarthSea(-1),
new EarthPlains(),
new EarthForest());

This flexibility is also apparent when the object you wish to generate is composed of other
objects. Perhaps all Sea objects can contain Resource objects (FishResource, OilResource, etc.).
According to a preference flag, we might give all Sea objects a FishResource by default Remember
that if your products reference other objects, you should implement a __ clone () method in
order to ensure that you make a deep copy.

•Note We covered object cloning in Chapter 4. The clone keyword generates a shallow copy of any object
to which it is applied. This means that the product object will have the same properties as the source. If any
of the source's properties are objects, then these will not be copied into the product. Instead, the product will
reference the same object properties. It is up to us to change this default, and to customize object copying in
any other way, by implementing a_ clone () method. This is called automatically when the clone keyword
is used.

class Contained { }

class Container {

}

public $contained;
function __ construct() {

$this->contained = new Contained();
}

function __ clone() {

}

II Ensure that cloned object holds a
II clone of self::$contained and not
II a reference to it
$this->contained = clone $this->contained;

160 CHAPTER 9 • GENERATING OBJECTS

But That's Cheating!
I promised that this chapter would deal with the logic of object creation, doing away with the
sneaky buck-passing of many object-oriented examples. Yet some patterns here have slyly
dodged the decision-making part of object creation, if not the creation itself.

The Singleton pattern is not guilty. The logic for object creation is built in and unambig­
uous. The Abstract Factory pattern groups the creation of product families into distinct
concrete creators. How do we decide which concrete creator to use though? The Prototype
pattern presents us with a similar problem. Both these patterns handle the creation of objects,
but they defer the decision as to which object, or group of objects, should be created.

The particular concrete creator that a system chooses is often decided according to the
value of a configuration switch of some kind. This could be located in a database, a configuration
file, a server file (such as Apache's local server configuration file, usually called . htaccess) or it
could even be hard coded as a PHP variable or property. Because PHP applications must be
reconfigured for every request, we need script initialization to be as painless as possible. For
this reason, I often opt to hard code configuration flags in PHP code. This can be done by hand,
or by writing a script that auto-generates a class file. Here's a crude class that includes a flag for
calendar protocol types:

class Settings {
static $COMMSTYPE = 'Mega';

}

Now that we have a flag (however inelegant), we can create a class that uses it to decide
which CommsManager to serve on request. It is quite common to see a Singleton used in conjunction
with the Abstract Factory pattern, so let's do that:

require_once('Settings.php');

class AppConfig {
private static $instance;
private $commsManager;

private function __ construct() {
II will run once only
$this->init();

}

private function init() {

}

switch (Settings::$COMMSTYPE) {
case 'Mega':

}

$this->commsManager = new MegaCommsManager();
break;

default:
$this->commsManager = new BloggsCommsManager();

}

public static function getlnstance() {
if (empty(self::$instance)) {

self::$instance =new self();
}
return self::$instance;

}

public function getCommsManager() {
return $this->commsManager;

}

CHAPTER 9 GENERATING OBJECTS 161

The AppConfig class is a standard Singleton. For that reason, we can get an AppConfig
instance anywhere in our system, and we will always get the same one. The ini t () method
is invoked by the class's constructor, and is therefore only run once in a process. It tests the
Settings:: $COMMSTYPE property, instantiating a concrete CommsManager object according to its
value. Now our script can get a CommsManager object and work with it without ever knowing
about its concrete implementations or the concrete classes they generate.

$commsMgr = AppConfig::getinstance()->getCommsManager();
$commsMgr->getApptEncoder()->encode();

Summary
This chapter covered some of the tricks you can use to generate objects. We examined the
Singleton pattern, which provides global access to a single instance. We looked at the Factory
Method pattern, which applies the principle of polymorphism to object generation. We combined
Factory Method with the Abstract Factory pattern to generate creator classes that instantiate
sets of related objects. Finally, we looked at the Prototype pattern and saw how object cloning
can allow composition to be used in object generation.

CHAPTER 10

Designing for Object Relations

With strategies for generating objects covered, we're free now to look at some strategies for
structuring classes and objects. We will focus in particular on the principle that composition
provides greater flexibility than inheritance. The patterns we examine in this chapter are once
again drawn from the Gang of Four catalog.

This chapter will cover

• The Composite pattern: Composing structures in which groups of objects can be used as
if they were individual objects

• The Decorator pattern: A flexible mechanism for combining objects at runtime to extend
functionality

• The Facade pattern: Creating a simple interface to complex or variable systems

Structuring Classes to Allow Flexible Objects
Way back in Chapter 4, I said that beginners often confuse objects and classes. This was only
half true. In fact, most of the rest of us occasionally scratch our heads over UML class diagrams,
attempting to reconcile the static inheritance structures they show with the dynamic object
relationships their objects will enter into off the page.

Remember the pattern principle "Favor composition over inheritance"? This principle
distills this tension between the organization of classes and of objects. In order to build flexi­
bility into our projects, we structure our classes so that their objects can be built into useful
structures at runtime.

This is a common theme running through the first two patterns of this chapter. Inheritance is
an important feature in both, but it is important in part for providing the mechanism by which
composition can be used to represent structures and extend functionality.

The Composite Pattern
The Composite pattern is perhaps the most extreme example of inheritance deployed in the
service of composition. It is a simple and yet breathtakingly elegant design. It is also fantasti­
cally useful. Be warned, though, it is so neat, you might be tempted to overuse this strategy.

163

164 CHAPTER 10 DESIGNING FOR OBJECT RELATIONS

The Composite pattern is a simple way of aggregating and then managing groups of
similar objects such that an individual object is indistinguishable to a client from a collection
of objects. The pattern is, in fact, very simple, but it is also often confusing. One reason for this
is the similarity in structure of the classes in the pattern to the organization ofits objects. Inher­
itance hierarchies are trees, beginning with the super class at the root, and branching out into
specialized subclasses. The inheritance tree of classes laid down by the Composite pattern is
designed to allow the easy generation and traversal of a tree of objects.

If you are not already familiar with this pattern, you have every right to feel confused at this
point. Let's try an analogy to illustrate the way that single entities can be treated in the same
way as collections of things. Given broadly irreducible ingredients such as cereals and meat (or
soya if you prefer), we can make a food product-a sausage, for example. We then act on the
result as a single entity. Just as we eat, cook, buy, or sell meat, we can eat, cook, buy, or sell the
sausage that the meat in part composes. We might take the sausage and combine it with the
other composite ingredients to make a pie, thereby rolling a composite into a larger composite.
We behave in the same way to the collection as we do to the parts. The Composite pattern helps
us to model this relationship between collections and components in our code.

The Problem
Managing groups of objects can be quite a complex task, especially if the objects in question
might also contain objects of their own. This kind of problem is very common in coding. Think
of invoices, with line items that summarize additional products or services, or things-to-do
lists with items that themselves contain multiple subtasks. In content management, we can't
move for trees of sections, pages, articles, media components. Managing these structures from
the outside can quickly become daunting.

Let's return to a previous scenario. We are designing a system based on a game called
Civilization. A player can move units around hundreds of tiles that make up a map. Individual
counters can be grouped together to move, fight, and defend themselves as a unit. Let's define
a couple of unit types:

abstract class Unit {
abstract function bombardStrength();

}

class Archer extends Unit {
function bombardStrength() {

return 4;
}

}

class LaserCanonUnit extends Unit {
function bombardStrength() {

return 44;
}

}

The Unit class defines an abstract bombard Strength () method, which sets the attack
strength of a unit bombarding an adjacent tile. We implement this in both the Archer and

CHAPTER 10 • DESIGNING FOR OBJECT RELATIONS 165

LaserCanonUnit classes. These classes would also contain information about movement and
defensive capabilities, but let's keep things simple. We could define a separate class to group
units together like this:

class Army {

}

private $units = array();

function addUnit(Unit $unit) {
array_push($this->units, $unit);

}

function bombardStrength() {
$ret = o;

}

foreach($this->units as $unit) {
$ret += $unit->bombardStrength();

}
return $ret;

The Army class has an addUnit() method that accepts anaddUnit() object. Unit objects are
stored in an array property called $units. We calculate the combined strength of our army in
the bombardStrength () method. This simply iterates through the aggregated Unit objects,
calling the bombardStrength () method of each one.

This model is perfectly acceptable as long as the problem remains as simple as this. What
happens, though, when we add some new requirements? Let's say that an army should be able
to combine other armies. Each army should retain its own identity, so we can't just decant the
units from each army into a new force.

We could amend the Army class to accept Army objects as well as Unit objects:

function addArmy(Army $army) {
array_push($this->armies, $army);

}

We need to amend the bombard Strength () method to iterate through all armies as well
as units:

function bombardStrength() {
$ret = o;

}

foreach($this->units as $unit) {
$ret += $unit->bombard5trength();

}

foreach($this->armies as $army) {
$ret += $army->bombardStrength();

}

return $ret;

166 CHAPTER 10 DESIGNING FOR OBJECT RELATIONS

This additional complexity is not too problematic at the moment. Remember, though, we
need to do something similar in methods like defensiveStrength(), movementRange(), and so
on. Our game is going to be richly featured. Already the client is calling for troop carriers that
can hold up to 10 units to improve their movement range on certain terrains. Clearly a troop
carrier is similar to an army in that it groups units. It also has its own characteristics. We could
further amend the Army class to handle TroopCarrier objects, but we know that there will be a
need for still more unit groupings. It is clear that we need a more flexible model.

Let's look again at the model we have been building. All the classes we created shared the
need for a bombardStrength () method. In effect, a client does not need to distinguish between
an army, a unit, or a troop carrier. They are functionally identical. They need to move, attack,
and defend. Those objects that contain others need to provide methods for adding and removing.
These similarities lead us to an inevitable conclusion. Because container objects share an
interface with the objects that they contain, they are naturally suited to share a type family.

Implementation
The Composite pattern defines a single inheritance hierarchy that lays down two distinct sets
of responsibilities. We have already seen both of these in our example. Classes in the pattern
must support a common set of operations as their primary responsibility. For us, that means
the bombard Strength () method. Classes must also support methods for adding and removing
child objects.

Figure 10-1 shows a class diagram that illustrates the Composite pattern as applied to
our problem.

Unit -
+addUnit($unit:Unit)
+removeUnit($unit:Unit)
+bombardStrengtb(): int

~
I I

Archer Army

+bombardStrength(): int +addUnit($unit:Unit)
+removeUnit($unit:Unit)

LaserCanon
+bombardStrength(): int

+bombardStrength(): int TroopCarrier

+addUnit($unit:Unit)
+removeUnit($unit:Unit)
+hombardStrength(): int

Figure 10-1. The Composite pattern

As you can see, all the units in our model extend the Unit class. A client can be sure, then,
that any Unit object will support the bombard Strength () method. So an Army can be treated in
exactly the same way as an Archer.

The Army and TroopCarrier classes are composites: designed to hold Unit objects. The
Archer and LaserCanon classes are leaves, designed to support unit operations but not to hold

CHAPTER 10 • DESIGNING FOR OBJECT RELATIONS 167

other Unit objects. There is actually an issue as to whether leaves should honor the same inter­
face as composites, but we will return to this shortly. Here is the abstract Unit class:

class UnitException extends Exception {}

abstract class Unit {

}

abstract function addUnit(Unit $unit);
abstract function removeUnit(Unit $unit);
abstract function bombardStrength();

As you can see, we lay down the basic functionality for all Unit objects here. Now let's see
how a composite object might implement these abstract methods:

class Army extends Unit {
private $units = array();

}

function addUnit(Unit $unit) {

}

foreach ($this->units as $thisunit) {
if ($unit === $thisunit) {

return;
}

}
$this->units[] = $unit;

function removeUnit(Unit $unit) {
$units = array();

}

foreach ($this->units as $thisunit) {
if ($unit !== $thisunit) {

$units[] = $thisunit;
}

}
$this->units = $units;

function bombardStrength() {
$ret = o;

}

foreach($this->units as $unit) {
$ret += $unit->bombardStrength();

}
return $ret;

The addUni t () method checks that we have not yet added the same Unit object before
storing it in the private $units array property. removeUnit () uses a similarloop to remove a
given Unit object from the property.

168 CHAPTER 10 DESIGNING FOR OBJECT RELATIONS

Note At the time of writing, functions such as in_ array() do not check properly for object instances.

in_ array() returns true for two different objects instantiated from the same class if their property values
are equivalent. This forces us to loop through the $units property and test for the $unit object manually

using the=== operator. The correct operation of=== is a great step forward in PHP 5, however. In order to

test object identity in PHP 4, it was necessary to assign a unique value to every object used in the Composite

pattern.

Army objects, then, can store Units of any kind, including other Army objects, or leaves such
as Archer or LaserCanonUnit. Because all units are guaranteed to support bombardStrength(),
our Army: : bombardStrength () method simply iterates through all the child Unit objects stored
in the $units property, calling the same method on each.

One problematic aspect of the Composite pattern is the implementation of add and
remove functionality. The classic pattern places add () and remove () methods in the abstract
super class. This ensures that all classes in the pattern share a common interface. As you can
see here, though, it also means that leaf classes must provide an implementation:

class Archer extends Unit {

}

function addUnit(Unit $unit) {
throw new UnitException(get_class($this)." is a leaf");

}

function removeUnit(Unit $unit) {
throw new UnitException(get_class($this)." is a leaf");

}

function bombardStrength() {
return 4;

}

We do not want to make it possible to add a Unit object to an Archer object, so we throw
exceptions if addUni t () or removeUni t () are called. We will need to do this for all leaf objects, so
we could perhaps improve our design by replacing the abstract addUni t () /removeUni t () methods
in Unit with default implementations like the one in the preceding example.

class UnitException extends Exception {}

abstract class Unit {
abstract function bombardStrength();

function addUnit(Unit $unit) {
throw new UnitException(get_class($this)." is a leaf");

}

CHAPTER 10 DESIGNING FOR OBJECT RELATIONS

function removeUnit(Unit $unit) {
throw new UnitException(get_class($this)." is a leaf");

}
}

class Archer extends Unit {
function bombardStrength() {

return 4;
}

}

This removes duplication in leaf classes but has the drawback that a Composite is not
forced at compile time to provide an implementation of addUni t () and removeUni t (),which
could cause problems down the line.

We willlook in more detail at some ofthe problems presented by the Composite pattern in
the next section. Let's end this section by reminding ourselves of some of the benefits.

• Flexibility: Because everything in the Composite pattern shares a common super type, it
is very easy to add new composite or leaf objects to the design without changing a program's
wider context.

• Simplicity: A client using a Composite structure has a straightforward interface. There is
no need for a client to distinguish between an object that is composed of others, and a
leaf object. A call to Army: :bombard Strength () may cause a cascade of delegated calls
behind the scenes, but to the client the process and result are exactly equivalent to those
associated with calling Archer: :bombard Strength ().

• Implicit reach: Objects in the Composite pattern are organized in a tree. Each composite
holds references to its children. An operation on a particular part of the tree therefore
can have a wide effect. We might remove a single Army object from its Army parent, and
add it to another. This simple act is wrought on one object, but it has the effect of changing
the status of the Army object's referenced Unit objects and of their own children.

• Explicit reach: Tree structures are easy to traverse. They can be iterated in order to gain
information or to perform transformations. We will look at a particularly powerful tech­
nique for this in the next chapter when we deal with the Visitor pattern.

Often you really see the benefit of a pattern from a client's perspective, so let's create a
couple of armies:

II create an army
$main_army = new Army();

II add some units
$main_army->addUnit(new Archer());
$main_army->addUnit(new LaserCanonUnit());

II create a new army
$sub_army = new Army();

169

170 CHAPTER 10 DESIGNING FOR OBJECT RELATIONS

II add some units
$sub_army->addUnit(new Archer());
$sub_army->addUnit(new Archer());
$sub_army->addUnit(new Archer());

II add the second army to the first
$main_army->addUnit($sub_army);

II all the calculations handled behind the scenes
print "attacking with strength: {$main_army->bombardStrength()}\n";

We create a new Army object and add some primitive Unit objects. We repeat the process
for a second Army object that we then add to the first. When we call Unit: :bombard Strength ()
on the first Army object, all the complexity of the structure that we have built up is entirely hidden.

Consequences
If you're anything like me, you would have heard alarm bells ringing when you saw the code
extract for the Archer class. Why do we put up with these redundant addUni t () and removeUni t ()
methods in leaf classes that do not need to support them? An answer of sorts lies in the trans­
parency of the Unit type.

If a client is passed a Unit object, it knows that the addUnit() method will be present. The
Composite pattern principle that primitive (leaf) classes have the same interface as composites
is upheld. This does not actually help us much because we still do not know how safe we might
be calling addUnit() on any Unit object we might come across.

If we move these add/remove methods down so that they are available only to composite
classes, then passing a Unit object to a method leaves us with the problem that we do not know
by default whether or not it supports addUni t (). Nevertheless, leaving booby-trapped methods
lying around in leaf classes makes me uncomfortable.

We can split composite classes off into their own subtype quite easily. First of all, we excise
add/remove behavior from Unit.

abstract class Unit {
function getComposite() {

return null;
}

abstract function bombardStrength();
}

CHAPTER 10 • DESIGNING FOR OBJECT RELATIONS 171

Notice the new getComposite() method. We will return to this in a little while. Now we
need a new abstract class to hold addUnit() and removeUnit(). We can even provide default
implementations.

abstract class CompositeUnit extends Unit {
private $units = array();

}

function getComposite() {
return $this;

}

protected function units() {
return $this->units;

}

function removeUnit(Unit $unit) {
$units = array();

}

foreach ($this->units as $thisunit) {
if ($unit !== $thisunit) {

$units[] = $thisunit;
}

}
$this->units = $units;

function addUnit(Unit $unit) {

}

foreach ($this->units as $thisunit) {
if ($unit === $thisunit) {

return;
}

}
$this->units[] = $unit;

The CompositeUnit class is declared abstract, even though it does not itself declare an
abstract method. It does, however, extend Unit, and does not implement the abstract
bombard Strength () method. Army (and any other composite classes) can now extend
Composi teUni t. The classes in our example are now organized as in Figure 10-2.

172 CHAPTER 10 DESIGNING FOR OBJECT RELATIONS

Unit

+bombardStrength(): int
+getComposite(): CompositeUnit

f
I I I

Archer LaserCanon Composite Unit ~

+bombardStrength(): int +bombardStrength(): int +addUnit($unit:Unit)
+removeUnit($unit:Unit)
+getComposite(): CompositeUnit

it
I I

TroopCarrier Army

+bombardStrength(): int +bombardStrength(): int

Figure 10-2. Moving add/remove methods out of the base class

We have lost the annoying, useless implementations of add/remove methods in the leaf
classes, but the client must still check to see whether it has a Composi teUni t before it can use
addUnit().

This is where the _getComposi te () method comes into its own. By default this method
returns a null value. Only in a CompositeUnit class does it return CompositeUnit. So if a call to
this method returns an object, we should be able to call addUnit() on it. Here's a client that
uses this technique:

class UnitScript {

}

static function joinExisting(Unit $newUnit,

}

Unit $occupyingUnit) {
$camp;
if ($camp $occupyingUnit->getComposite()) {

$comp->addUnit($newUnit);
} else {

}

$camp = new Army();
$comp->addUnit($occupyingUnit);
$comp->addUnit($newUnit);

return $camp;

The join Existing() method accepts two Unit objects. The first is a newcomer to a tile, and
the second is a prior occupier. If the second Unit is a CompositeUnit, then the first will attempt
to join it. If not, then a new Army will be created to cover both units. We have no way of knowing
at first whether the $occupyingUnit argument contains a CompositeUnit. A call to getComposi te ()
settles the matter, though. If getComposi te() returns an object, we can add the new Unit object
to it directly. If not, then we create the new Army object, and add both.

CHAPTER 10 • DESIGNING FOR OBJECT RELATIONS 173

These contortions are symptomatic of a drawback to the Composite pattern. Simplicity is
achieved by ensuring that all classes are derived from a common base. The benefit of simplicity
is sometimes bought at a cost to type safety. The more complex your model becomes, the more
manual type checking you are likely to have to do. Let's say that we have a Cavalry object. If the
rules of our game state that you cannot put a horse on a troop carrier, we have no automatic
way of enforcing this with the Composite pattern.

class TroopCarrier {

}

function addUnit(Unit $unit) {
if ($unit instanceof Cavalry) {

throw new UnitException("Can't get a horse on the vehicle");
}
super::addUnit($unit);

}

function bombardStrength() {
return o;

}

We are forced to use the instanceof operatorto test the type of the object passed to addUni t ().
Too many special cases of this kind, and the drawbacks of the pattern begin to outweigh its
benefits. Composite works best when most of the components are interchangeable.

Another issue to bear in mind is the cost of some Composite operations. The
Army: :bombardStrength() method is typical in that it sets off a cascade of calls to the same
method down the tree. For a large tree with lots of sub-armies, a single call can cause an
avalanche behind the scenes. bombardStrength () is not itself very expensive, but what would
happen if some leaves performed a complex calculation in order to arrive at their return value?
One way around this problem is to cache the result of a method call of this sort in the parent
object, so that subsequent invocations are less expensive. You need to be careful, though, to
ensure that the cached value does not grow stale. You should devise strategies to wipe any
caches whenever any operations take place on the tree. This may require that you give child
objects references to their parents.

Finally, a note about persistence. The Composite pattern is elegant, but it doesn't lend
itself neatly to storage in a relational database. This is because, by default, you access the entire
structure only through a cascade of references. So to construct a Composite structure from a
database in the natural way you would have to make multiple expensive queries. We can get
round this problem by assigning an ID to the whole tree, so that all components can be drawn
from the database in one go. Having acquired all the objects, however, we would still have the
task of recreating the parent/ child references which themselves would have to be stored in the
database. This is not difficult, but it is somewhat messy.

While Composites sit uneasily with relational databases, they lend themselves very well
indeed to XML. This is because XML elements are often themselves composed of trees of
subelements.

174 CHAPTER 10 • DESIGNING FOR OBJECT RELATIONS

Composite in Summary
So the Composite pattern is useful when you need to treat a collection of things in the same
way as you would an individual, either because the collection is intrinsically like a component
(armies and archers), or because the context gives the collection the same characteristics as the
component Oine items in an invoice). Composites are arranged in trees, so an operation on the
whole can affect the parts, and data from the parts is transparently available via the whole. The
Composite pattern makes such operations and queries transparent to the client. Trees are easy
to traverse (as we shall see in the next chapter).lt is easy to add new component types to
Composite structures. On the downside, Composites rely on the similarity of their parts. As
soon as we introduce complex rules as to which composite object can hold which set of compo­
nents, our code can become hard to manage. Composites do not lend themselves well to storage
in relational databases, but are well suited to XML persistence.

The Decorator Pattern
While the Composite pattern helps us to create a flexible representation of aggregated compo­
nents, the Decorator pattern uses a similar structure to help us to modify the functionality of
concrete components. Once again, the key to this pattern lies in the importance of composi­
tion at runtime. Inheritance is a neat way of building on characteristics laid down by a parent
class. This neatness can lead you to hard code variation into your inheritance hierarchies, often
causing inflexibility.

The Problem
Building all your functionality into an inheritance structure can result in an explosion of
classes in a system. Even worse, as you try to apply similar modifications to different branches
of your inheritance tree, you are likely to see duplication emerge.

Let's return to our game. Here we define a Tile class, and a derived type:

abstract class Tile {
abstract function getWealthFactor();

}

class Plains extends Tile {

}

private $wealthfactor = 2;
function getWealthFactor() {

return $this->wealthfactor;
}

We defme a Tile class. This represents a square upon which our units might be found.
Each tile has certain characteristics. In this example, we have defined a getWeal thFactor()
method that affects the revenue a particular square might generate if owned by a player. As you
can see, Plains objects have a wealth factor of 2. Obviously, tiles manage other data. They might
also hold a reference to image information so that the board could be drawn. Once again, we
keep things simple here.

CHAPTER 10 DESIGNING FOR OBJECT RELATIONS

We need to modify the behavior of the Plains object to handle the effects of natural
resources and human abuse. We wish to model the occurrence of diamonds on the landscape,
and the damage caused by pollution. One approach might be to inherit from the Plains object:

class DiamondPlains extends Plains {
function getWealthFactor() {

return parent::getWealthFactor() + 2;
}

}

class PollutedPlains extends Plains {
function getWealthFactor() {

return parent::getWealthFactor() - 4;
}

}

We can now acquire a polluted tile very easily:

$tile = new PollutedPlains();
print $tile->getWealthFactor();

You can see the class diagram for this example in Figure 10-3.

Tile

+getWealthFactor(): int

f
Plains

+getWealthFactor(): int

~
I I

Diamond Plains Polluted Plains

+getWealthFactor(): int +getWealthFactor(): int

Figure 10-3. Building varation into an inheritance tree

This structure is obviously inflexible. We can get plains with diamonds. We can get polluted
plains. But can we get them both? Clearly not, unless we are willing to perpetrate the horror
that is PollutedDiamondPlains. This situation can only get worse when we introduce the Forest
class, which can also have diamonds and pollution.

This is an extreme example, of course, but the point is made. Relying entirely upon inher­
itance to define your functionality can lead to a multiplicity of classes, and a tendency toward
duplication.

175

176 CHAPTER 10 • DESIGNING FOR OBJECT RELATIONS

Let's take a more realistic example at this point. Serious web applications often have to
perform a range of actions upon a request before a task is initiated to form a response. We might
need to authenticate the user, for example, and to log the request. Perhaps we should process
the request to build a data structure from raw input. Finally, we must perform our core processing.
We are presented with the same problem.

We can extend the functionality of a base ProcessRequest class with additional processing
in a derived LogRequest class, in a StructureRequest class, and in anAuthenticateRequest class.
You can see this class hierarchy in Figure 10-4.

~
Process Request AuthenticateLogRequest?

AuthenticateStructureRequest?
+process($req:RequestHelper StructureLogRequest?

etc etc J.~

I l
Log Request Authenticate Request Structure Request

+process($req:&equestHelper r-- +process($req:RequestHelper +process($req:RequestHelper

function process(RequestHelper $req)~
...._ II authenticate, then

parent::process(Sreq);
}

Figure 10-4. More hard-coded variations

What happens, though, when we need to perform logging and authentication but not data
preparation? Do we create a LogAndAuthenticateProcessor class? Clearly it is time to find a
more flexible solution.

Implementation
Rather than use only inheritance to solve the problem of varying functionality, the Decorator
pattern uses composition and delegation. In essence, Decorator classes hold an instance of
another class of their own type. A Decorator will implement an operation so that it calls the
same operation on the object to which it has a reference before (or after) performing its own
actions. In this way it is possible to build a pipeline of decorator objects at runtime.

Let's rewrite our game example to illustrate this.

CHAPTER 10

abstract class Tile {
abstract function getWealthFactor();

}

class Plains extends Tile {

}

private $wealthfactor = 2;
function getWealthFactor() {

return $this->wealthfactor;
}

abstract class TileDecorator extends Tile {
protected $tile;

}

function __ construct(Tile $tile) {
$this->tile = $tile;

}

DESIGNING FOR OBJECT RELATIONS

Here we have declared Tile and Plains classes as before, but introduced a new class:
TileDecorator. This does not implement getWeal thFactor(), so it must be declared abstract.
We define a constructor that requires a Tile object, which it stores in a property called $tile. We
make this property protected so that child classes can gain access to it. Let's redefine our
Pollution and Diamond classes:

class DiamondDecorator extends TileDecorator {
function getWealthFactor() {

return $this->{tile}->getWealthFactor()+2;
}

}

class PollutionDecorator extends TileDecorator {
function getWealthFactor() {

return $this->{tile}->getWealthFactor()-4;
}

}

Each of these classes extends TileDecorator. This means that they have a reference to
a Tile object. When getWealthFactor() is invoked, each of these classes invokes the same
method on its Tile reference befor,e making its own adjustment.

By using composition and delegation like this, we make it easy to combine objects at
runtime. Because all the objects in the pattern extend Tile, the client does not need to know
which combination it is working with. It can be sure that a getWealthFactor() method is available
for any Tile object, whether it is decorating another behind the scenes or not.

1n

178 CHAPTER 10 DESIGNING FOR OBJECT RELATIONS

$tile = new Plains();
print $tile->getWealthFactor(); II 2
II Plains is a component. It simply returns 2

$tile = new DiamondDecorator(new Plains);
print $tile->getWealthFactor(); II 4
II DiamondDecorator has a reference to a Plains object. It invokes
II getWealthFactor() before adding its own weighting of 2

$tile = new PollutionDecorator(
new DiamondDecorator(new Plains()));

print $tile->getWealthFactor(); II 0
II PollutionDecorator has a reference to a DiamondDecorator
II object which as its own Tile reference.

You can see the class diagram for this example in Figure 10-5.

Tile

+getWealthFactor(): int

t
I I

Plains Tile Decorator ~

+getWealthFactor(): int
#$tile
+ __ construct($tile:Tile)

Lt
I I

Diamond Decorator Polluted Decorator

+getWealthFactor(): int +getWealthFactor(): int

Figure 1 0-5. The Decorator pattern

This model is very extensible. We can add new decorators and components very easily. With
lots of decorators we can build very flexible structures at runtime. The component class, Plains in
this case, can be significantly modified in very many ways witll.out the need to build the totality of
the modifications into the class hierarchy. In plain English, this means we can have a polluted
Plains object that has diamonds without having to create a PollutedDiamondPlains object.

The Decorator pattern builds up pipelines that are very useful for creating filters. The Java
IO package makes great use of decorator classes. The client coder can combine decorator objects
with core components to add filtering, buffering, compression, and so on to core methods like
read(). Our Web request example can also be developed into a configurable pipeline. Here's a
simple implementation that uses the Decorator pattern:

CHAPTER 10

class RequestHelper{}

abstract class ProcessRequest {
abstract function process(RequestHelper $req);

}

class MainProcess extends ProcessRequest {
function process(RequestHelper $req) {

DESIGNING FOR OBJECT RELATIONS

print _CLASS_.": doing something useful with request\n";
}

}

abstract class DecorateProcess extends ProcessRequest {
protected $processrequest;

}

function _construct(ProcessRequest $pr) {
$this->processrequest = $pr;

}

As before, we define an abstract super class (ProcessRequest), a concrete component
(MainProcess), and an abstract decorator (DecorateProcess). Main Process:: process() does
nothing but report that it has been called. DecorateProcess stores a Process Request object on
behalf of its children. Here are some simple concrete decorator classes:

class LogRequest extends DecorateProcess {

}

function process(RequestHelper $req) {
print _CLASS_.": logging request\n";
$this->processrequest->process($req);

}

class AuthenticateRequest extends DecorateProcess {
function process(RequestHelper $req) {

}
}

print _CLASS_.": authenticating request\n";
$this->processrequest->process($req);

class StructureRequest extends DecorateProcess {
function process(RequestHelper $req) {

}
}

print _CLASS_.": structuring request data\n";
$this->processrequest->process($req);

179

180 CHAPTER 10 • DESIGNING FOR OBJECT RELATIONS

Each process () method outputs a message before calling the referenced ProcessRequest
object's own process () method. We can now combine objects instantiated from these classes
at runtime to build filters that perform different actions on a request and in different orders.
Here's some code to combine objects from all these concrete classes into a single filter:

$process = new AuthenticateRequest(new StructureRequest(
new LogRequest (
new MainProcess()
)));

$process->process(new RequestHelper());

This code will give the following output:

AuthenticateRequest: authenticating request
StructureRequest: structuring request data
LogRequest: logging request
MainProcess: doing something useful with request

Mote This example is, in fact, also an instance of an enterprise pattern called Intercepting Filter. Inter­
cepting Filter is described in Core J2EE Patterns.

Consequences
Like the Composite pattern, Decorator can be confusing. It is important to remember that both
composition and inheritance are coming into play at the same time. So LogRequest inherits its
interface from ProcessRequest, but it is acting as a wrapper around another ProcessRequest
object.

Because a decorator object forms a wrapper around a child object, it is important to keep
the interface as sparse as possible. If we build a heavily featured base class, then decorators are
forced to delegate to all public methods in their contained object. This can be done in the abstract
decorator class, but still introduces the kind of coupling that can lead to bugs.

Some programmers create decorators that do not share a common type with the objects
they modify. As long as they fulfill the same interface as these objects, this strategy can work
well. You get the benefit of being able to use the built-in interceptor methods to automate dele­
gation (implementing_ call () to catch calls to nonexistent methods and invoking the same
method on the child object automatically). However, by doing this you also lose the safety
afforded by class type checking. In our examples so far, client code can demand a Tile or a
ProcessRequest object in its argument list and be certain ofits interface, whether or not the
object in question is heavily decorated.

The Facade PaHern
You may have had occasion to stitch third-party systems into your own projects in the past.
Whether or not the code is object-oriented, it will often be daunting, large, and complex. Your
own code, too, may become a challenge to the client programmer who needs only to access a

CHAPTER 10 DESIGNING FOR OBJECT RELATIONS

few features. The Facade pattern is a way of providing a simple, clear interface to complex
systems.

The Problem
Systems tend to evolve large amounts of code that is really only useful within the system itself.
Just as classes define clear public interfaces and hide their guts away from the rest of the world,
so should discreet systems. However, it is not always clear which parts of a system are for
public consumption and which are best hidden.

As you work with subsystems (like Web forums or gallery applications) you may find your­
self making calls deep into the logic of the code. If the subsystem code is subject to change over
time, and your code interacts with it at many different points, you may find yourself with a
serious maintenance problem as the subsystem evolves.

Similarly, when you build your own systems, it is a good idea to organize distinct parts into
separate tiers. Typically, you may have a tier responsible for application logic, another for data­
base interaction, another for presentation, and so on. You should aspire to keep these tiers as
independent of one another as you can, so that a change in one area of your project will have
minimal repercussions elsewhere. If code from one tier is tightly integrated into code from
another, then this objective is hard to meet.

Here is some deliberately confusing procedural code that makes a song-and-dance routine
of the simple process of getting log information from a file and turning it into object data:

function getProductFilelines($file) {
return file($file);

}

function getProductObjectFromld($id, $productname) {
II some kind of database lookup
return new Product($id, $productname);

}

function getNameFromline($line) {

}

if (preg_match("1.*-(.*)\s\d+l", $line, $array)) {
return str_replace('_',' ', $array[l]);

}
return '';

function getiDFromline($line) {

}

if (preg_match("/"(\d{1,3})-l", $line, $array)) {
return $array[1];

}
return -1;

181

182 CHAPTER 10 DESIGNING FOR OBJECT RELATIONS

class Product {
public $id;
public $name;

}

function __ construct($id, $name) {
$this->id = $id;
$this->name = $name;

}

Let's imagine that the internals of this code are more complicated than they actually are,
and that we are therefore stuck with using it rather than rewriting it from scratch. In order to
turn a file that contains lines like

234-ladies_jumper 55
532-gents_hat 44

into an array of objects, we must call all of these functions (note that for the sake of brevity we
don't extract the fmal number, which represents a price):

$lines= getProductFilelines('test.txt');
$objects = array();
foreach ($lines as $line) {

}

$id = getiDFromline($line);
$name = getNameFromline($line);
$objects[$id] = getProductObjectFromiD($id, $name);

If we call these functions directly like this throughout our project, our code will become
tightly wound into the subsystem it is using. This could cause problems if the subsystem changes,
or if we decide to switch it out entirely. We really need to introduce a gateway between the
system and the rest of our code.

Implementation
Here is a simple class that provides an interface to the procedural code we encountered in the
previous section:

class ProductFacade {
private $products = array();

function __ construct($file) {
$this->file = $file;
$this->compile();

}

}

CHAPTER 10 • DESIGNING FOR OBJECT RELATIONS 183

private function compile() {
$lines = getProductFilelines($this->file);
foreach ($lines as $line) {

}
}

$id = getiDFromline($line);
$name = getNameFromline($line);
$this->products[$id] = getProductObjectFromiD($id, $name);

function getProducts() {
return $this->products;

}

function getProduct($id) {
return $this->products[$id];

}

From the point of view of client code, now access to Product objects from a log file is much
simplified:

$facade = new ProductFacade('test.txt');
$facade->getProduct(234);

Consequences
A Facade is really a very simple concept. It is just a matter of creating a single point of entry for
a tier or subsystem. This has a number of benefits. It helps to decouple distinct areas in a
project from one another. It is useful and convenient for client coders to have access to simple
methods that achieve clear ends. It reduces errors by focusing use of a subsystem in one place
so changes to the subsystem should cause failure in a predictable location. Errors are also
minimized by Facade classes in complex subsystems where client code might otherwise use
internal functions incorrectly.

Despite the simplicity of the Facade pattern, it is all too easy to forget to use it, especially if
you are familiar with the subsystem you are working with. There is a balance to be struck, of
course. On the one hand the benefit of creating simple interfaces to complex systems should be
clear. On the other hand, one could abstract systems with reckless abandon, and then abstract
the abstractions. If you are making significant simplifications for the clear benefit of client
code, and/ or shielding it from systems that might change, then you are probably right to
implement the Facade pattern.

184 CHAPTER 10 DESIGNING FOR OBJECT RELATIONS

Summary
In this chapter, we looked at a few of the ways that classes and objects can be organized in a
system. In particular, we focused on the principle that composition can be used to engender
flexibility where inheritance fails. In both the Composite and Decorator patterns, inheritance
is used to promote composition, and to define a common interface that provides guarantees
for client code. We also saw delegation used effectively in these patterns. Finally, we looked at
the simple but powerful Facade pattern. Facade is one of those patterns that many people have
been using for years without having a name to give it. Facade lets us provide a clean point of
entry to a tier or subsystem. In PHP, the Facade pattern is also used to create object wrappers
that encapsulate blocks of procedural code.

CHAPTER 11

Performing and
Representing Tasks

I n this chapter, we get active. We look at patterns that help us to get things done, whether
mterpreting a mini-language or encapsulating an algorithm.

This chapter will cover

• The Interpreter pattern: Building a mini-language interpreter that can be used to create
scriptable applications

• The Strategy pattern: Identifying algorithms in a system and encapsulating them into
their own types

• The Observer pattern: Creating hooks for alerting disparate objects about system events

• The Visitor pattern: Applying an operation to all the nodes in a tree of objects

• The Command pattern: Command objects that can be saved and passed around

The Interpreter PaHern
Languages are written in other languages (at least at first). PHP itself, for example, is written in
C. By the same token, odd as it may sound, we can define and run our own languages using
PHP. Of course, any language we might create will be slow and somewhat limited. Nonetheless,
mini-languages can be very useful, as we will see in this chapter.

When we create Web (or command line) interfaces in PHP, we give the user access to ftmction­
ality. The trade-off in interface design is between power and ease of use. As a rule, the more power
you give your user, the more cluttered and confusing your interface becomes. Good interface
design can help a lot here, of course, but if 90 percent of users are using the same 30 percent of
your features, the costs of piling on the functionality may outweigh the benefits. You may wish
to consider simplifying your system for most users. But what of the power users, that 10 percent
who use your system's advanced features? Perhaps you can accommodate them in a different
way. By offering such users a domain language, you might actually extend the power of your
application.

185

186 CHAPTER 11 PERFORMING AND REPRESENTING TASKS

Of course, we have a programming language to hand right away. It's called PHP. Here's
how we could allow our users to script our system:

$form_input = "print file_get_ contents(' /etc/passwd'); ";
eval($form_input);

This approach to making an application scriptable is clearly insane. Just in case the reasons
are not blatantly obvious, they boil down to two issues: security and complexity. The security
issue is well addressed in our example. By allowing users to execute PHP via our script, we are
effectively giving them access to the server the script runs on. The complexity issue is just as big
a drawback. No matter how clear your code is, the average user is unlikely to extend it easily,
and certainly not from the browser window.

A mini-language, though, can address both these problems. You can design flexibility into
the language, reduce the possibility that the user can do damage, and keep things focused.

Imagine an application for authoring quizzes. Producers design questions and establish
rules for marking the answers submitted by contestants. It is a requirement that quizzes must
be marked without human intervention, even though some answers can be typed into a text
field by users.

Here's a question:

How many members in the Design Patterns gang?

We can accept "four" or "4" as correct answers. We might create a Web interface that allows
a producer to use regular expression for marking responses:

"4lfour$

Most producers are not hired for their knowledge of regular expressions, however. To
make everyone's life easier, we might implement a more user-friendly mechanism for marking
responses:

$input equals "4" or $input equals "four"

We propose a language that supports variables, an operator called equals and Boolean
logic (or and and). Programmers love naming things, so let's call it MarkLogic. It should be easy
to extend, as we envisage lots of requests for richer features. Let's leave aside the issue of
parsing input for now and concentrate on a mechanism for plugging these elements together
at runtime to produce an answer. This, as you might expect, is where the Interpreter pattern
comes in.

CHAPTER 11 PERFORMING AND REPRESENTING TASKS

Implementation
Our language is made up of expressions (that is, things that resolve to a value). As you can see
in Table 11-1, even a tiny language like MarkLogic needs to keep track of a lot of elements.

Table 11-1. Elements of the MarkLogic Grammar

Description EBNFName Class Name Example

Variable variable VariableExpression $input

String literal <string literal> Litera1Expression "four"

Boolean and andExpr BooleanAndExpression $input equals '4'
$other equals '6'

Boolean or orExpr BooleanOrExpression $input equals '4'
$other equals '6'

Equality test equalsExpr Equals Expression $input equals '4'

Table 11-1lists EBNF names. So what is EBNF all about? It's a notation that we can use to
describe a language grammar. EBNF stands for Extended Backus-Naur Form. It consists of a
series oflines (called productions), each one consisting of a name, and a description that takes
the form of references to other productions and to terminals (that is, elements that are not
themselves made up of references to other productions). Here is one way of describing our
grammar using EBNF:

expr
operand
orExpr
andExpr
eqExpr
variable

::=operand (orExpr I andExpr)*
.. - ('(' expr ')' I <string literal> I variable) (eqExpr)*

'or' operand
'and' operand
'equals' operand
'$' <word>

Some symbols have special meanings (that should be familiar from regular expression
notation):* means zero or more, for example, and I means "or." We can group elements using
brackets. So in the example, an expression (expr) consists of an operand followed by zero or
more of either orExpr, andExpr, or eqExpr. An operand can be a bracketed expression, a quoted
string (I have omitted the production for this), or a variable. Once you get the hang of referring
from one production to another, EBNF becomes quite easy to read.

In Figure 11-1, we represent the elements of our grammar as classes.

187

and

or

188 CHAPTER 11 PERFORMING AND REPRESENTING TASKS

LiteraiExpressioni--+--IOperatorExpression

Variable Expression BooleanOrExpression

BooleanAndExpression

Equals Expression

Figure 11-1. The Interpreter classes that make up the MarkLogic language

As you can see, BooleanAndExpression and its siblings inherit from OperatorExpression.
This is because these classes all perform their operations upon other Expression objects.
VariableExpression and Li teralExpression work directly with values.

All Expression objects implement an interpret () method that is defined in the abstract
base class, Expression. The interpret () method expects a Context object that is used as a
shared data store. Each Express ion object can store data in the Context object. The Context will

then be passed along to other Expression objects. So that data can be retrieved easily from the
Context, the Expression base class implements a get Key() method that returns a unique handle.
Let's see how this works in practice with an implementation of Expression:

abstract class Expression {

}

abstract function interpret(Context $context);

function getKey() {
return (string)$this;

}

class LiteralExpression extends Expression {
private $value;

}

function __ construct($value) {
$this->value = $value;

}

function interpret(Context $context) {
$context->replace($this, $this->value);

}

CHAPTER 11 PERFORMING AND REPRESENTING TASKS

class Context {
private $expressionstore = array();
function replace(Expression $exp, $value) {

$this->expressionstore($exp->getKey()] = $value;
}

function lookup(Expression $exp) {
return $this->expressionstore[$exp->getKey()];

}
}

$context = new Context();
$literal= new LiteralExpression('four');
$literal->interpret($context);
print $context->lookup($literal);

Let's start with the Context class. As you can see, it is really only a front end for an
associative array, $expressionstore, which we use to hold data. The replace () method accepts
an Expression object as key and a value of any type, and adds the pair to $expressionstore. It
also provides a lookup () method for retrieving data.

The Expression class defines the abstract interpret() method and a concrete getKey()
method that uses the current object (as stored in $this) to generate a label. We do this by
casting $this to a string. The default behavior for an object in string context is for it to be
replaced with a string containing the object's identifier.

class PrintMe{}
$test = new PrintMe();
print "$test";

II output: Object id #1

The get Key () method makes good use of this behavior to generate a key. This method is
used by Context:: lookup() and Context: :replace() to convert their Expression arguments to
their string equivalents.

Note Casting objects to strings for use as associative array keys is useful, but may not always be safe.
At the time of writing, PHP 5 will always generate an object ID string when an object is cast to a string. It
seems likely that at some time in the future the engine will respect the_ toString() method in this context.
This would mean that you would no longer be guaranteed a unique string from an object to string cast if you
also implement_ toString (). The return value from_ toString () would be substituted instead. One
way around this problem might be to implement a_ toString () method that enforces the default behavior
and declare it final to prevent child classes from providing their own implementation:

final function _toString() {
return (string)$this;

}

189

190 CHAPTER 11 PERFORMING AND REPRESENTING TASKS

The Li teralExpression class defines a constructor that accepts a value argument. The

interpret() method requires a Context object. We simply call replace(), using getKey() to

define the key for retrieval and the $value property. This will become a familiar pattern as we

examine the other expression classes. The interpret () method always inscribes its results

upon the Context object.
We include some client code as well, instantiating both a Context object and a

LiteralExpression object (with a value of"four"). We pass the Context object to

Li teralExpression: :interpret ().The interpret () method stores the key/value pair in

Context, from where we retrieve the value by calling lookup().
Let's define the remaining terminal class. VariableExpression is a little more complicated.

class VariableExpression extends Expression {

}

private $name;
private $val;

function __ construct($name, $val=null) {
$this->name = $name;
$this->val = $val;

}

function interpret(Context $context) {

}

if (! is_null($this->val)) {
$context->replace($this, $this->val);
$this->val = null;

}

function setValue($value) {
$this->val = $value;

}

function getKey() {
return $this->name;

}

$context = new Context();
$myvar = new VariableExpression('input', 'four');
$myvar->interpret($context);
print $context->lookup($myvar);
II output: four

$newvar = new VariableExpression('input');
$newvar->interpret($context);
print $context->lookup($newvar);
II output: four

CHAPTER 11 PERFORMING AND REPRESENTING TASKS

$myvar->setValue("five");
$myvar->interpret($context);
print $context->lookup($myvar);
II output: five
print $context->lookup($newvar);
II output: five

The VariableExpression class accepts both name and value arguments for storage in
property variables. We provide the setValue () method so that client code can change the value
at anytime.

The interpret () method checks whether or not the $val property has a nonnull value. If
the $val property has a value, it sets it on the Context. We then set the $val property to null in
case interpret() is called again later after another instance ofVariableExpression with the
same name has changed the value in the context. This is quite a limited variable, accepting
only string values as it does. If we were going to extend our language, we should consider
having it work with other Express ion objects, so that it could contain the results of tests and
operations. For now, though, VariableExpression will do the work we need of it. Notice that we
have overridden the get Key() method so that variable values are linked to the variable name
and not to the object ID.

Operator expressions in our language all work with two other Expression objects in order
to get their job done. It makes sense therefore to have them extend a common super class. Here
is the OperatorExpression class:

abstract class OperatorExpression extends Expression {
protected $l_op;

}

protected $r_op;

function __ construct(Expression $l_op, Expression $r_op) {
$this->l_op = $l_op;
$this->r_op = $r_op;

}

function interpret(Context $context) {
$this->l_op->interpret($context);
$this->r_op->interpret($context);

}

$result_l = $context->lookup($this->l_op);
$result_r = $context->lookup($this->r_op);
$this->do0peration($context, $result_l, $result_r);

protected abstract function doOperation(Context $context,
$result_l,
$result_r) ;

OperatorExpression is an abstract class. It implements interpret (),but it also defines the
abstract dolnterpret() method.

The constructor demands two Expression objects, $1_ op and $r _ op, which it stores in
properties.

191

192 CHAPTER 11 PERFORMING AND REPRESENTING TASKS

The interpret () method begins by invoking interpret () on both its operand properties.
(If you have read the previous chapter, you might notice that we are creating an instance of the
Composite pattern here.) Once the operands have been run, interpret () still needs to acquire
the values that this yields. It does this by calling Context: :lookup () for each property. It then
calls dolnterpret(), leaving it up to child classes to decide what to do with the results of these
operations.

Here's the Equals Expression class, which tests two Expression objects for equality:

class EqualsExpression extends OperatorExpression {
protected function doOperation(Context $context,

$result_!, $result_r) {
$context->replace($this, $result_! $result_r);

}
}

EqualsExpression only implements the dolnterpret () method, which tests the equality of
the operand results it has been passed by the interpret () method, placing the result in the
Context object.

To wrap up the Expression classes, here are BooleanOrExpression and BooleanAndExpression:

class BooleanOrExpression extends OperatorExpression {

}

protected function doOperation(Context $context,

}

$result_!, $result_r) {
$context->replace($this, $result_! I I $result_r);

class BooleanAndExpression extends OperatorExpression {
protected function doOperation(Context $context,

}
}

$result_!, $result_r) {
$context->replace($this, $result_! && $result_r);

Instead of testing for equality, the BooleanOrExpression class applies a logical or operation
and stores the result of that via the Context:: replace() method. BooleanAndExpression, of
course, applies a logical and operation.

We now have enough code to execute the mini-language fragment we quoted earlier. Here
it is again:

$input equals "4" or $input equals "four"

Here's how we can build this statement up with our Expression classes:

$context = new Context();
$input= new VariableExpression('input');
$statement = new BooleanOrExpression(

);

new EqualsExpression($input, new LiteralExpression('four')),
new EqualsExpression($input, new LiteralExpression('4'))

CHAPTER 11 PERFORMING AND REPRESENTING TASKS

We instantiate a variable called 'input', but hold off from providing a value for it. We then
create a BooleanOrExpression object that will compare the results from two Equals Expression
objects. The first of these objects compares the VariableExpression object stored in $input
with a LiteralExpression containing the string "four", the second compares $input with a
LiteralExpression object containing the string "4".

Now with our statement prepared, we are ready to provide a value for the input variable,
and run the code:

foreach (array("four", "4", "52") as $val) {
$input->setValue($val);

}

print "$val:\n";
$statement->interpret($context);
if ($context->lookup($statement)) {

print "top marks\n\n";
} else {

print "dunce hat on\n\n";
}

In fact, we run the code three times, with three different values. First time through we
set the temporary variable $val to "four", assigning it to the input VariableExpression object
using its setValue() method. We then call interpret () on our topmost Expression object (the
BooleanOrExpression object that contains references to all other expressions in the statement).
Let's step through the internals of this invocation:

• $statement calls interpret() on its $l_op property (the first Equals Expression object).

• The first EqualsExpression object calls interpret () on its $1_ op property (a reference to
the input VariableExpression object which is currently set to "four").

• The input VariableExpression object writes its current value to the provided Context
object by calling Context:: replace().

• The first EqualsExpression object calls interpret () on its $r _ op property
(a LiteralExpression object charged with the value "four").

• The LiteralExpression object registers its key and its value with Context.

• The first Equals Expression object retrieves the values for $1_ op ("four") and $r _ op
("four") from the Context object.

• The first EqualsExpression object compares these two values for equality and registers
the result (true) together with its key with the Context object.

• Back at the top of the tree the $statement object (BooleanOrExpression) calls interpret ()
on its $r _ op property. This resolves to a value (false, in this case) in the same way as the
$1_ op property did.

• The $statement object retrieves values for each of its operands from the Context object
and compares them using 11. It is comparing true and false, so the result is true. This
final result is stored in the Context object.

193

194 CHAPTER 11 • PERFORMING ANO REPRESENTING TASKS

And all that is only for the first iteration through our loop. Here is our final output:

four:
top marks

4:
top marks

52:
dunce hat on

You may need to read through this section a few times before the process clicks. The old
issue of object versus class trees might confuse you here. Express ion classes are arranged in an
inheritance hierarchy just as Expression objects are composed into a tree at runtime. As you
read back through the code, keep this distinction in mind.

Figure 11-2 shows the complete class diagram for our example.

Context

+lookup($expr:Expression): mixed
+replace($expr:Expression,$val:mixed

Expression

I- - _!!.S~s- - - +interpret($context:ConteJCt
+getKey(): string

Literal Expression 1--+--1 OperatorExpression I
1==========1 +interpret($context:Context)

VariableExpression

+interpret($context:Context)
+getKey(): string

Figure 11-2. The Interpreter pattern deployed

Interpreter Issues

- BooleanOrExpression

+interpret($context:Context)

BooleanAndExpression

+interpret($context:Context)

..._ EqualsExpression

+interpret(Scontext:Context)

Once you have set up the core classes for an Interpreter pattern implementation, it becomes
easy to extend. The price you pay is in the sheer number of classes you could end up creating.
For this reason, Interpreter is best applied to relatively small languages. If you have a need for
a full programming language, you would do better to look for a third-party tool to use.

CHAPTER 11 • PERFORMING AND REPRESENTING TASKS 195

Because Interpreter classes often perform very similar tasks, it is worth keeping an eye on
the classes you create with a view to factoring out duplication.

Many people approaching the Interpreter pattern for the first time are disappointed after
some initial excitement to discover that it does not address parsing. This means that we are not
yet in a position to offer our users a nice friendly language. Appendix B contains some rough
code to illustrate one strategy for parsing a mini -language.

The Strategy Pattern
Classes often try to do too much. It's understandable: you create a class that performs a few
related actions. As you code, some of these actions need to be varied according to circumstances.
At the same time, your class needs to be split into subclasses. Before you know it, your design
is being pulled apart by competing forces.

The Problem
Since we have recently built a marking language, let's stick with the quiz example. Quizzes
need questions, so we build a Question class, giving it a mark() method. All is well until we need
to support different marking mechanisms.

Let's say that we are asked to support the simple MarkLogic language, marking by straight
match and marking by regular expression. Your first thought might be to subclass for these
differences, as in Figure 11-3.

Question

+mark()

~
I I I

MarklogicQuestion MatchQuestion RegexpQuestion

+mark() +mark() +mark()

Figure 11-3. Defining subclasses according to marking strategies

This would serve us well as long as marking remains the only aspect of the class that varies.
Imagine, though, that we are called upon to support different kinds of question: those that are
text based and those that support rich media. This presents us with a problem when it comes
to incorporating these forces in one inheritance tree as you can see in Figure 11-4.

196 CHAPTER 11 • PERFORMING AND REPRESENTING TASKS

Question

+mark()

!>.
I I

TextQuestion AVQuestion

+doTextyThings() +doCleverAVThings()

~ .L~

TextMarklogicQuestion 1-- - AVMarklogicQuestion

+mark() +mark()

TextMatchQuestion 1-- - AVMatchQuestion

+mark() +mark()

TextRegexpQuestion -__ AVRegexpQuestion

+mark() +mark()

Figure 11-4. Defining subclasses according to two forces

Not only have the number of classes in the hierarchy ballooned, but we also necessarily
introduce repetition. Our marking logic is reproduced across each branch of the inheritance
hierarchy.

Whenever you find yourself repeating an algorithm across siblings in an inheritance tree
(whether through subclassing or repeated conditional statements), consider abstracting these
behaviors into their own type.

Implementation
As with all the best patterns, Strategy is simple and powerful. When classes must support
multiple implementations of an interface (multiple marking mechanisms, for example), the
best approach is often to extract these implementations and place them in their own type,
rather than to extend the original class to handle them.

So, in our example, our approach to marking might be placed in a Marker type. Figure 11-5
shows the new structure.

Remember the Gang of Four principle "Favor composition over inheritance"? This is
an excellent example. By defining and encapsulating the marking algorithms, we reduce
subclassing and increase flexibility. We can add new marking strategies at any time without the
need to change the Question classes at all. All Question classes know is that they have an
instance of a Marker at their disposal, and that it is guaranteed by its interface to support a
mark () method. The details of implementation are entirely somebody else's problem.

CHAPTER 11 PERFORMING AND REPRESENTING TASKS

Question - l

+mark()

~
TextQuestion AVQuestion

+doTextyThings() +doCleverAVThings()

Figure 11-5. Extracting algorithms into their own type

Here are the Question classes rendered as code:

abstract class Question {
protected $prompt;
protected $marker;

Marker

+mark()

~
f--

r--

......_

function __ construct($prompt, Marker $marker) {
$this->marker=$marker;
$this->prompt = $prompt;

}

function mark($response) {
return $this->marker->mark($response);

}
}

class TextQuestion extends Question {
II do text question specific things

}

class AVQuestion extends Question {
II do audiovisual question specific things

}

MarklogicMarker

+mark()

Match Marker

+mark()

RegexpMarker

+mark()

197

198 CHAPTER 11 • PERFORMING AND REPRESENTING TASKS

As you can see, we have left the exact nature of the difference between TextQuestion and
AVQuestion to the imagination. The Question base class provides all the real functionality,
storing a prompt property and a Marker object. When Question: :mark () is called with a response
from the end user, the method simply delegates the problem solving to its Marker object.

Let's define some simple Marker objects:

abstract class Marker {

}

protected $test;

function __ construct($test) {
$this->test = $test;

}

abstract function mark($response);

class MarkLogicMarker extends Marker {
private $engine;

}

function __ construct($test) {

}

parent:: __ construct($test);
//$this->engine =new MarkParse($test);

function mark($response) {

}

//return $this->engine->evaluate($response);
II dummy return value
return true;

class MatchMarker extends Marker {
function mark($response) {

return ($this->test == $response);
}

}

class RegexpMarker extends Marker {
function mark($response) {

return (preg_match($this->test, $response));
}

}

There should be little if anything that is particularly surprising about the Marker classes
themselves. Note that the MarkParse object is designed to work with the simple parser devel­
oped in Appendix B. This isn't necessary for the sake of this example though, so we simply
return a dummy value of true from MarklogicMarker: :mark().The key here is in the structure
that we have defined, rather than in the detail of the strategies themselves. We can swap
RegexpMarker for MatchMarker, with no impact on the Question class.

CHAPTER 11 PERFORMING AND REPRESENTING TASKS

Of course, you must still decide what method to use to choose between concrete Marker
objects. I have seen two real-world approaches to this problem. In the first, producers used
radio buttons to select the marking strategy they preferred. In the second, the structure of the
marking condition was itself used: a match statement was left plain:

five

A MarkLogic statement was preceded by a colon:

:$input equals 'five'

And a regular expression used forward slashes:

/f.ve/

Here is some code to run our classes through their paces:

$markers = array(new RegexpMarker("/f.ve/"),
new MatchMarker("five") ,
new MarkLogicMarker('$input equals "five"')

) ;

foreach ($markers as $marker) {
print get_class($marker)."\n";

}

$question= new TextQuestion("how many beans make five", $marker);
foreach (array("five", "four") as $response) {

}

print "\tresponse: $response: ";
if ($question->mark($response)) {

print "well done\n";
} else {

print "never mind\n";
}

We construct three strategy objects, using each in turn to help construct a TextQuestion
object. The TextQuestion object is then tried against two sample responses.

The MarkLogicMarker class shown here is a placeholder at present, and its mark() method
always returns true. The commented out code does work, however, with the parser example
shown in Appendix B, or could be made to work with a third-party parser.

Here is the output:

RegexpMarker
response: five: well done
response: four: never mind

MatchMarker
response: five: well done
response: four: never mind

MarklogicMarker
response: five: well done
response: four: well done

199

200 CHAPTER 11 PERFORMING AND REPRESENTING TASKS

Remember that the MarkLogicMarker class is a dummy at present. It always returns true, so
always marks the user correct.

In our example, we passed specific data (the $response variable) from the client to the
strategy object via the mark() method. Sometimes you may encounter circumstances in which
you don't always know in advance how much information the strategy object will require when
its operation is invoked. You can delegate the decision as to what data to acquire by passing the
strategy an instance of the client itself. The strategy can then query the client in order to build
the data it needs.

The Observer Pattern
Orthogonality is a virtue we have discussed before. One of our objectives as programmers
should be to build components that can be altered or moved with minimal impact upon other
components. If every change you make to one component necessitates a ripple of changes
elsewhere in the code base, the task of development can quickly become a spiral of bug creation
and elimination.

Of course, orthogonality is often just a dream. Elements in a system must have embedded
references to other elements. You can, however, deploy various strategies to minimize this. We
have seen various examples of polymorphism in which the client understands a component's
interface but where the actual component may vary at runtime.

In some circumstances, you may wish to drive an even greater wedge between components
than this. Consider a class responsible for handling a user's access to a system.

class Login {
const LOGIN USER UNKNOWN = 1;
const LOGIN_WRONG_PASS = 2;
const LOGIN_ACCESS = 3;
private $status = array();

function handleLogin($user, $pass, $ip) {
switch (rand(1,3)) {

}

}

case 1:
$this->setStatus(self::LOGIN_ACCESS, $user, $ip);
$ret = true; break;

case 2:
$this->setStatus(self::LOGIN_WRONG_PASS, $user, $ip);
$ret = false; break;

case 3:
$this->setStatus(self::LOGIN_USER_UNKNOWN, $user, $ip);
$ret = false; break;

return $ret;

}

CHAPTER 11 PERFORMING AND REPRESENTING TASKS

private function setStatus($status, $user, $ip) {
$this->status = array($status, $user, $ip);

}
function getStatus() {

return $this->status;
}

This class fakes the login process using the rand () function. There are three potential
outcomes of a call to handle Login(). The status flag may be setto LOGIN_ ACCESS, LOGIN_ WRONG _PASS,
or LOGIN USER UNKNOWN.

Because the Login class is a gateway guarding the treasures of your business team, it may
excite much interest during development and in the months beyond. Marketing might call you
up and ask that you keep a log of domain names. You can add a call to your system's Logger class:

function handleLogin($user, $pass, $ip) {

}

switch (rand(1,3)) {

}

case 1:
$this->setStatus(self::LOGIN_ACCESS, $user, $ip);
$ret = true; break;

case 2:
$this->setStatus(self::LOGIN_WRONG_PASS, $user, $ip);
$ret = false; break;

case 3:
$this->setStatus(self::LOGIN_USER_UNKNOWN, $user, $ip);
$ret = false; break;

Logger::logiP($user, $ip, $this->getStatus());
return $ret;

Worried about security, the system administrators might ask for notification offailed
logins. Once again, you can return to the login method and add a new call.

if (! $ret) {

}

Notifier::mailWarning($user, $ip,
$this->getStatus());

The business development team might announce a tie-in with a particular ISP and ask that
a cookie be set when particular users log in. And so on. And on.

These are all easy enough requests to fulfill, but at a cost to our design. The Login class
soon becomes very tightly embedded into this particular system. We cannot pull it out and
drop it into another product without going through the code line by line and removing every­
thing that is specific to the old system. This isn't too hard, of course, but then we are off down
the road of cut'n'paste coding. Now that we have two similar but distinct Login classes in our
systems, we find that an improvement to one will necessitate the same changes in the other,
until inevitably and gracelessly they fall out of alignment with one another.

So what can we do to save the Login class? The Observer pattern is a powerful fit here.

201

202 CHAPTER 11 PERFORMING AND REPRESENTING TASKS

Implementation
At the core of the Observer pattern is the unhooking of client elements (the observers) from a
central class (the subject). Observers need to be informed when events occur that the subject
knows about. At the same time, we do not want the subject to have a hard-coded relationship
with its observer classes.

To achieve this, we can allow observers to register themselves with the subject. We give the
Login class three new methods, attach(), detach(), and notify(), enforcing this using an

interface called Observable.

interface Observable {

}

function attach(Observer $observer);
function detach(Observer $observer);
function notify();

II ... Login class
private $observers;
II ...
function attach(Observer $observer) {

$this->observers[] = $observer;
}

function detach(Observer $observer) {
$this->observers =

array_diff($this->observers, array($observer));
}

function notify() {

}
II ...

}

foreach ($this->observers as $obs) {
$obs->update($this);

So the Login class manages a list of observer objects. These can be added by a third party
using the attach() method, and removed via detach(). The notify() method is called to tell

the observers that something of interest has happened. The method simply loops through the
list of observers, calling update() on each one.

The Login class itself calls notify() from its handle Login() method.

function handleLogin($user, $pass, $ip) {
switch (rand(1,3)) {

case 1:
$this->setStatus(self::LOGIN_ACCESS, $user, $ip);
$ret = true; break;

case 2:

$this->setStatus(self::LOGIN_WRONG_PASS, $user, $ip);
$ret = false; break;

}

CHAPTER 11 PERFORMING AND REPRESENTING TASKS

case 3:
$this->setStatus(self::LOGIN_USER_UNKNOWN, $user, $ip);
$ret = false; break;

}
$this->notify();
return $ret;

Let's define the interface for the Observer class:

interface Observer {
function update(Observable $observable);

}

Any object that uses this interface can be added to the Login class via the attach () method.
Let's create a few concrete instances:

class SecurityMonitor extends Observer {
function update(Observable $observable) {

$status = $observable->getStatus();

}
}

if ($status[o] == Login::LOGIN_WRONG_PASS) {
II send mail to sysadmin
print _CLASS_.":\tsending mail to sysadmin\n";

}

class GeneralLogger extends Observer {

}

function update(Observable $observable) {
$status = $observable->getStatus();
II add login data to log
print _CLASS_.":\tadd login data to log\n";

}

class PartnershipTool extends Observer {

}

function update(Observable $observable) {
$status = $observable->getStatus();
II check $ip address
II set cookie if it matches a list
print _CLASS_.":\tset cookie if it matches a list\n";

}

Notice how the observer objects use the instance of Observable to get more information
about the event. It is up to the subject class to provide methods that observers can query to
learn about state. In this case, we have defined a method called get Status () that observers can
call to get a snapshot of the current state of play.

Instances of any classes that implement Observable can be registered with Login.

203

204 CHAPTER 11 PERFORMING AND REPRESENTING TASKS

$login = new Login();
$login->attach(new SecurityMonitor());
$login->attach(new GeneralLogger());
$login->attach(new PartnershipTool());

So now we have created a flexible association between the subject classes and the
observers. You can see the class diagram for our example in Figure 11-6.

<<interface>>

Observable

+attach($observable:Observable
+detach($observable:Observable
+notify()

4

Login

+attach($observable:Observable)
+detach($observable:Observable)
+notify()
+get Status()

Figure 11-6. The Observer pattern

......
I <<interface>>

Observer

+update($observable:Observable

4
I

SecurityMonitor - ,

+update($observable:Observable)

Generallogger - - 1

+update($observable:Observable)

Partnership Tool

+update($observable:Observable)

We have seen most of the parts of our Observer pattern example. For the sake of clarity,
here is the whole lot in one listing:

interface Observable {

}

function attach(Observer $observer);
function detach(Observer $observer);
function notify();

class Login implements Observable {
private $observers = array();
canst LOGIN USER UNKNOWN 1;
const LOGIN WRONG PASS 2;
canst LOGIN ACCESS 3;
private $status = array();

}

CHAPTER 11

function attach(Observer $observer) {
$this->observers[] = $observer;

}

function detach(Observer $observer) {

PERFORMING AND REPRESENTING TASKS

$this->observers = array_diff($this->observers, array($observer));
}

function notify() {

}

foreach ($this->observers as $obs) {
$obs->update($this);

}

function handlelogin($user, $pass, $ip) {
switch (rand(1,3)) {

}

case 1:
$this->set5tatus(self::LOGIN_ACCESS, $user, $ip);
$ret = true; break;

case 2:
$this->set5tatus(self::LOGIN_WRONG_PASS, $user, $ip);
$ret = false; break;

case 3:
$this->set5tatus(self::LOGIN_USER_UNKNOWN, $user, $ip);
$ret = false; break;

}
$this->notify();
return $ret;

private function setStatus($status, $user, $ip) {
$this->status = array($status, $user, $ip);

}

function getStatus() {
return $this->status;

}

interface Observer {
function update(Observable $observer);

}

205

206 CHAPTER 11 • PERFORMING AND REPRESENTING TASKS

class SecurityMonitor extends Observer {
function update(Observable $observable) {

$status = $observable->get5tatus();

}
}

if ($status[O] == Login::LOGIN_WRONG_PASS) {
II send mail to sysadmin
print _CLASS_.":\tsending mail to sysadmin\n";

}

class GeneralLogger extends Observer {

}

function update(Observable $observable) {
$status = $observable->get5tatus();
II add login data to log
print _CLASS_.":\tadd login data to log\n";

}

class PartnershipTool extends Observer {

}

function update(Observable $observable) {
$status = $observable->get5tatus();
II check $ip address
II set cookie if it matches a list
print _CLASS_.":\tset cookie if it matches a list\n";

}

There are, of course, some variations and issues relating to this pattern. Firstly, the state
method (get Status ()) is not inscribed in the Observable interface. This means that Observable
is extremely flexible, but it also loses us a measure of type safety. What would happen if one of
the observer objects that uses getS tat us () found itself attached to an Observable class that did
implement such a method? Well, we know what would happen.

As always, there is a trade-off. Omitting the specifics of state data retrieval from the
Observable interface makes it flexible, but allows some risk that the wrong Observer may attach
to the wrong Observable. Adding get Status () to the Observable interface, on the other hand, is
safe but might be limiting. Some Observable classes may need to provide several status
methods, for example.

Another approach to this problem could be to pass specific state information via the
update () method, rather than an instance of the subject class. For a quick-and-dirty solution,
this is often the approach I would take initially. So in our example, update () would expect a
status flag, the username, and IP address (probably in an array for portability), rather than an
instance of Login. This saves us from having to write a state method in the Login class. On the
other hand, where the subject class stores a lot of state, passing an instance of it to update ()
allows observers much more flexibility.

You could also lock down type completely, by making the Login class refuse to work with
anything other than a specific type of observer class (LoginObserver perhaps). If you want to do
that, then you may consider some kind of runtime check on objects passed to the attach ()
method; otherwise, you may need to reconsider the Observable interface altogether.

CHAPTER 11 PERFORMING AND REPRESENTING TASKS

Once again we have used composition at runtime to build a flexible and extensible model.
The Login class can be extracted from the context and dropped into an entirely different project
without qualification. There, it might work with a different set of observers.

The Visitor Pattern
As we have seen, many patterns aim to build structures at runtime, following the principle that
composition is more flexible than inheritance. The ubiquitous Composite pattern is an excel­
lent example of this. When you work with collections of objects, you may need to apply various
operations to the structure that involve working with each individual component. Such opera­
tions can be built into the components themselves. After all, components are often best placed
to invoke one another.

This approach is not without issues. You do not always know about all the operations you
may need to perform on a structure. If you add support for new operations to your classes on a
case-by-case basis, you can bloat your interface with responsibilities that don't really fit. As you
might guess, the Visitor pattern addresses these issues.

The Problem
Think back to the Composite example from the previous chapter. For a game, we created an
army of components such that the whole and its parts can be treated interchangeably. We saw
that operations can be built into components. Typically, leaf objects perform an operation and
composite objects call upon their children to perform the operation.

class Army extends CompositeUnit {

}

function bombardStrength() {
$ret = o;

}

foreach($this->units() as $unit) {
$ret += $unit->bombardStrength();

}
return $ret;

class LaserCanonUnit extends Unit {
function bombardStrength() {

return 44;
}

}

Where the operation is integral to the responsibility of the composite class, there is no
problem. There are more peripheral tasks, however, that may not sit so happily on the interface.

Here's an operation that dumps textual information about leaf nodes. It could be added to
the abstract Unit class.

207

208 CHAPTER 11 PERFORMING AND REPRESENTING TASKS

II Unit
function textDump($num=O) {

$ret = "";

}

$pad = 4*$num;
$ret .= sprintf("%{$pad}s", "");
$ret .= get_class($this).": ";
$ret.= "bombard: ".$this->bombardStrength()."\n";
return $ret;

This method can then be overridden in the CompositeUnit class:

II CompositeUnit

}

function textDump($num=O) {
$ret = "";
$pad = 4*$num;
$ret .= sprintf("%{$pad}s", "");
$ret .= get_class($this).": ";
$ret .= "bombard: ".$this->bombardStrength()."\n";
foreach ($this->units as $unit) {

$ret .= $unit->textDump($num + 1);

}
return $ret;

We could go on to create methods for counting the number of units in the tree, for saving
components to a database, and for calculating the food units consumed by an army.

Why would we want to include these methods in the composite's interface? There is only
one really compelling answer. We include these disparate operations here because this is where
an operation can gain easy access to related nodes in the composite structure.

Although it is true that ease of traversal is part of the Composite pattern, it does not follow
that every operation that needs to traverse the tree should therefore claim a place in the
Composite's interface.

So these are the forces at work. We want to take full advantage of the easy traversal
afforded by our object structure, but we want to do this without bloating the interface.

Implementation
Let's start with our interfaces. In the abstract Unit class we define an accept() method.

function accept(ArmyVisitor $visitor) {
$method = "visit".get_class($this);
$visitor->$method($this);

}

As you can see, the accept () method expects an ArmyVisi tor object to be passed to it. PHP
allows us dynamically to define the method on the ArmyVisi tor we wish to call. This saves us
from implementing accept () on every leaf node in our class hierarchy. The only other accept ()
method we need to define is in the abstract composite class.

CHAPTER 11

function accept(ArmyVisitor $visitor) {
$method= "visit".get_class($this);
$visitor->$method($this);

}

foreach ($this->units as $thisunit) {
$thisunit->accept($visitor);

}

PERFORMING AND REPRESENTING TASKS

This method does the same as Unit: :accept (),with one addition. It constructs a method
name based on the name of the current class, and invokes that method on the provided
ArmyVisitor object. So if the current class is Army, then it invokes ArmyVisitor: :visitArmy(),
and if the current class is TroopCarrier, it invokes ArmyVisi tor: : visi tTroopCarrier(), and so
on. Having done this, it then loops through any child objects calling accept ().In fact, because
accept () overrides its parent operation, we could factor out the repetition here:

function accept(ArmyVisitor $visitor) {
parent::accept($visitor);

}

foreach ($this->units as $thisunit) {
$thisunit->accept($visitor);

}

Eliminating repetition in this way can be very satisfying, though in this case we have saved
only one line, arguably at some cost to clarity. In either case, the accept () method allows us to
do two things:

• Invoke the correct visitor method for the current component.

• Pass the visitor object to all the current element children via the accept () method
(assuming the current component is composite).

We have yet to define the interface for ArmyVisitor. The accept() methods should give you
some clue. The visitor class should define accept () methods for each of the concrete classes in
the class hierarchy. This allows us to provide different functionality for different objects. In my
version of this class, I also define a default visit() method that is automatically called if imple­
menting classes choose not to provide specific handling for particular Unit classes.

abstract class ArmyVisitor {
abstract function visit(Unit $node);

function visitArcher(Archer $node) {
$this->visit($node);

}
function visitCavalry(Cavalry $node) {

$this->visit($node);
}

function visitlaserCanonUnit(LaserCanonUnit $node) {
$this->visit($node);

}

209

210 CHAPTER 11 PERFORMING AND REPRESENTING TASKS

}

function visitTroopCarrierUnit(TroopCarrierUnit $node) {
$this->visit($node);

}

function visitArmy(Army $node) {
$this->visit($node);

}

So now it's just a matter of providing implementations of ArmyVisi tor, and we are ready to
go. Here is our simple text dump code reimplemented as an Army Visitor object:

class TextDumpArmyVisitor extends ArmyVisitor {

}

private $text="";

function visit(Unit $node) {
$ret= "";

}

$pad = 4*$node->getDepth();
$ret .= sprintf("%{$pad}s", "");
$ret .= get_class($node).": ";
$ret . = "bombard: ". $node->bombardStrength(). "\n";
$this->text .= $ret;

function getText() {
return $this->text;

}

Let's look at some client code, and then walk through the whole process:

$main_army = new Army();
$main_army->addUnit(new Archer());
$main_army->addUnit(new LaserCanonUnit());
$main_army->addUnit(new Cavalry());

$textdump = new TextDumpArmyVisitor();
$main_army->accept($textdump);
print $textdump->getText();

This code yields the following output:

Army: bombard: so
Archer: bombard: 4
LaserCanonUnit: bombard: 44
Cavalry: bombard: 2

We create an Army object. Because Army is composite, it has an addUni t () method that
we use to add some more Unit objects. We then create the TextDumpArmyVisitor object. We
pass this to the Army: :accept (). The accept () method constructs a method call and invokes
TextDumpArmyVisitor: :visitArmy(). In this case, we have provided no special handling for

CHAPTER 11 • PERFORMING AND REPRESENTING TASKS 211

Army objects, so the call is passed on to the generic visit() method. visit() has been passed a
reference to our Army object. It invokes its methods (including a new one, getDepth (), which
tells anyone who needs to know how far down the object hierarchy it is) in order to generate
summary data. The call to visitArmy() complete, the Army: :accept() operation now calls
accept() on its children in turn, passing the visitor along. In this way, the ArmyVisitor class
visits every object in the tree.

With the addition of just a couple of methods, we have created a mechanism by which new
functionality can be plugged into our composite classes without compromising their interface,
and without lots of duplicated traversal code.

On certain squares in our game, our armies are subject to tax. The tax collector visits the
army and levies a fee for each unit it finds. Different units are taxable at different rates. Here's
where we can take advantage of the specialized methods in the visitor class:

class TaxCollectionVisitor extends ArmyVisitor {

}

private $due=O;
private $report="";

function visit(Unit $node) {
$this->levy($node, 1);

}

function visitArcher(Archer $node) {
$this->levy($node, 2);

}

function visitCavalry(Cavalry $node) {
$this->levy($node, 3);

}

function visitTroopCarrierUnit(TroopCarrierUnit $node) {
$this->levy($node, 5);

}

private function levy(Unit $unit, $amount) {
$this->report .="Tax levied for ".get_class($unit);
$this->report .= ": $amount\n";
$this->due += $amount;

}

function getReport() {
return $this->report;

}

function getTax() {
return $this->due;

}

212 CHAPTER 11 PERFORMING AND REPRESENTING TASKS

In this simple example, we make no direct use of the Unit objects passed to the various
visit methods. We do, however, use the specialized nature of these methods, levying different
fees according to the specific type of the invoking Unit object.

Here's some client code:

$main_army = new Army();
$main_army->addUnit(new Archer());
$main_army->addUnit(new LaserCanonUnit());
$main_army->addUnit(new Cavalry());

$taxcollector = new TaxCollectionVisitor();
$main_army->accept($taxcollector);
print "TOTAL: ";
print $taxcollector->getTax(). "\n";

The TaxCollectionVisi tor object is passed to the Army object's accept ()method as before.

Once again Army passes a reference to itselfto the visi tArmy() method, before calling accept()
on its children. The components are blissfully unaware of the operations performed by their
visitor. They simply collaborate with its public interface, each one passing itself dutifully to the
correct method for its type.

In addition to the methods defined in the ArmyVisi tor class, TaxCollectionVisitor provides

two summary methods, get Report() and getTax(). Invoking these provides the data you might
expect:

Tax levied for Army: 1
Tax levied for Archer: 2

Tax levied for LaserCanonUnit: 1
Tax levied for Cavalry: 3
TOTAL: 7

Figure 11-7 shows the participants in this example.

ArmyVisitor f<:- - - - Unit

+visit($node:Unit) +accept($visitor:ArmyVisitor)
+visitLaserCanon($node:LaserCanon
+visitArmy($node:Army)

~ I
I 1

TextDumpArmyVisitor I LaserCanonUnitl CompositeUnit ~

+visit($node:Unit) +accept($visitor:ArmyVisitor)

TaxCollectionVisitor

+visit($node:VDit)

~
I Army I

Figure 11-7. The Visitor pattern

CHAPTER 11 PERFORMING AND REPRESENTING TASKS

Visitor Issues
The Visitor pattern, then, is another that combines simplicity and power. There are a few
things to bear in mind when deploying this pattern, however.

Firstly, although it is perfectly suited to the Composite pattern, Visitor can, in fact, be used
with any collection of objects. So you might use it with a list of objects where each object stores
a reference to its siblings, for example.

By externalizing operations, you may risk compromising encapsulation. That is, you may
need to expose the guts of your visited objects in order to let visitors do anything useful with
them. We saw, for example, that for our first Visitor example, we were forced to provide an
additional method in the Unit interface in order to provide information for TextDumpArmyVisi tor
objects.

Because iteration is separated from the operations that visitor objects perform, you must
relinquish a degree of control. For example, you cannot easily create a visit () method that
does something both before and after child nodes are iterated. One way around this would be
to move responsibility for iteration into the visitor objects. The trouble with this is that you may
end up duplicating the traversal code from visitor to visitor.

By default, I prefer to keep traversal internal to the visited classes, but externalizing it
provides you with one distinct advantage. You can vary the way that you work through the
visited classes on a visitor-by-visitor basis.

The Command Pattern
In recent years, I have rarely completed a Web project without deploying this pattern. Originally
conceived in the context of graphical user interface design, command objects make for good
enterprise application design, encouraging a separation between the controller (request and
dispatch handling) and domain model (application logic) tiers. Put more simply, the
Command pattern makes for systems that are well organized and easy to extend.

The Problem
All systems must make decisions about what to do in response to a user's request. In PHP, that
decision-making process is often handled by a spread of point -of-contact pages. In selecting a
page (feedback. php), the user clearly signals the functionality and interface she requires. Increas­
ingly, PHP developers are opting for a single point-of-contact approach (as I will discuss in the
next chapter). In either case, however, the receiver of a request must delegate to a tier more
concerned with application logic. This delegation is particularly important where the user can
make requests to different pages. Without it, duplication inevitably creeps into the project.

So, imagine we have a project with a range of tasks that need performing. In particular,
our system must allow some users to log in and others to submit feedback. We could create
login. php and feedback. php pages that handle these tasks, instantiating specialist classes to
get the job done. Unfortunately, views in a system rarely map neatly to the tasks that the
system is designed to complete. We may require login and feedback capabilities on every page,
for example. If pages must handle many different tasks, then perhaps we should think of tasks
as things that can be encapsulated. In doing this, we make it easy to add new tasks to our
system, and we build a boundary between our system's tiers. This, of course, brings us to the
Command pattern.

213

214 CHAPTER 11 PERFORMING AND REPRESENTING TASKS

Implementation
The interface for a command object could not get much simpler. It requires a single method:
execute().

In Figure 11-8, I have represented Command as an abstract class. At this level of simplicity, it
could be defined instead as an interface. I tend to use abstracts for this purpose because I often
find that the base class can also provide useful common functionality for its derived objects.

Command

+execute()

Figure 11-8. The Command class

There are up to three other participants in the Command pattern: the client, which instan­
tiates the command object, the invoker, which deploys the object, and the receiver upon which
the command operates.

The receiver can be given to the command in its constructor by the client, or it can be
acquired from a factory object of some kind. I like the latter approach, keeping the constructor
method clear of arguments. All Command objects can then be instantiated in exactly the same way.

Let's build a concrete Command class:

abstract class Command {
abstract function execute();

}

class LoginCommand extends Command {

}

function execute(CommandContext $context) {
$manager= ReceiverFactory::getAccessManager();
$user = $context->get('username');

}

$pass = $context->get('pass');
$user = $manager->login($user, $pass);
if (! $user) {

}

$this->context->setError($manager->getError());
return false;

$context->addParam("user", $user);
return true;

The LoginCommand is designed to work with an AccessManager object. AccessManager is an
imaginary class whose task is to handle the nuts and bolts of logging users into the system.
Notice that our Command: :execute() method demands a CommandContext object (known as
RequestHelper in Core]2EE Patterns). This is a mechanism by which request data can be passed

CHAPTER 11 PERFORMING AND REPRESENTING TASKS

to Command objects, and by which responses can be channeled back to the view layer. Using an
object in this way is useful, because we can pass different parameters to commands without
breaking the interface. The CommandContext is essentially an object wrapper around an associative
array variable, though it is frequently extended to perform additional helpful tasks. Here is a
simple CommandContext implementation:

class CommandContext {

}

private $params = array();
private $error = "";

function __ construct() {
$this->params = $_REQUEST;

}

function addParam($key, $val) {
$this->params[$key]=$val;

}

function get($key) {
return $this->params[$key];

}

function setError($error) {
$this->error = $error;

}
function getError() {

return $this->error;
}

So, armed with a Context object, the LoginCommand can access request data: the submitted
username and password. We use ReceiverFactory, a simple class with static methods for
generating common objects, to return the AccessManager object with which LoginCommand
needs to work. If AccessManager reports an error, the command lodges the error message with
the Context object for use by the presentation layer, and returns false. If all is well, LoginCommand
simply returns true. Note that Command objects do not themselves perform much logic. They
check input, handle error conditions, and cache data as well as calling on other objects to
perform the operations they must report on.

Now we are only missing the client: the class that generates command objects, and the
invoker. The easiest way of selecting which command to instantiate in a Web project is by
using a parameter in the request itself. Here is a simplified client:

class CommandNotFoundException extends Exception {}

class CommandFactory {
private static $dir = 'commands';

215

216 CHAPTER 11 PERFORMING AND REPRESENTING TASKS

}

function getCommand($action='Default') {

}

$class= ucfirst(strtolower($action))."Command";
$file= self::$dir."l$class.php";
if (! file_exists($file)) {

throw new CommandNotFoundException("could not find '$file'");
}
require_once($file);
if (! class_exists($class)) {

throw new CommandNotFoundException("no '$class' class located");
}
$cmd = new $class();
return $cmd;

The Command Factory class simply looks in a directory called commands for a particular class
file. The flle name is constructed using the CommandContext object's $action parameter, which
in turn should have been passed to our system from the request. If the file is there, and the class
exists, then it is returned to the caller. We could add even more error checking here, ensuring
that the found class belongs to the Command family, that the user supplied $class string does not
contain a directory path, and that constructor is expecting no arguments, but this version will
do fine for our purposes. The strength of this approach is that you can drop a new Command
object into the commands directory at any time, and the system will immediately support it.

The invoker is now simplicity itself:

class Controller {

}

private $context;
function __ construct() {

$this->context = new CommandContext();
}

function getContext() {
return $this->context;

}

function process() {

}

$cmd = CommandFactory::getCommand($this->context->get('action'));
if (! $cmd->execute($this->context)) {

II handle failure
} else {

}

print "all is well";
II success

CHAPTER 11 • PERFORMING AND REPRESENTING TASKS 217

$controller = new Controller();
II fake user request
$context = $controller->getContext();
$context->addParam('action', 'login');
$context->addParam('username', 'bob');
$context->addParam('pass', 'tiddles');
$controller->process();

Before we call Controller: :process (), we fake up a Web request by setting parameters on
the CommandContext object instantiated in the controller's constructor. The process() method
delegates object instantiation to the Command Factory object. It then invokes execute() on the
returned command. Notice how the controller has no idea about the command's internals. It
is this independence from the details of command execution that makes it possible for us to
add new Command classes with a relatively small impact on this framework.

Let's create one more Command class:

class FeedbackCommand extends Command {

}

function execute(CommandContext $context) {
$msgSystem = ReceiverFactory::getMessageSystem();
$email = $context->get('email');

}

$msg = $context->get('pass');
$topic = $context->get('topic');
$result = $msgSystem->despatch($email, $msg, $topic);
if (! $user) {

}

$this->context->setError($msgSystem->getError());
return false;

$context->addParam("user", $user);
return true;

aNote We will return to the Command pattern in Chapter 12 with a fuller implementation of a Command
factory class. The framework for running commands presented here is a simplified version of another pattern
that we will encounter: the Front Controller.

As long as this class is contained within a file called FeedbackCommand. php, and is saved in
the correct commands folder, it will be run in response to a "feedback" action string, without the
need for any changes in the controller or Command Factory classes.

Figure 11-9 shows the participants of the Command pattern.

218 CHAPTER 11 PERFORMING AND REPRESENTING TASKS

Command

+execute($command:CommandContext): boo lea

~

r- LoginCommand

+execute($cornmand:CornmandContext): boo lea

..._ FeedbackCommand

+execute($cornmand:CommandContext): boo lea

1----1: "client" creates Cornman~
I========~

Command Factory

+getCommand($action:String): Commanc

Controller 1 "invoker" uses Cornman~
+process() ~

$cmd = $commandFactory->getCornmand('login'~
$cmd->execute($context);

Figure 11-9. Command pattern participants

Summary
In this chapter, we wrapped up our examination the Gang of Four patterns. We designed a mini­
language and built its engine with the Interpreter pattern. We encountered in the Strategy
pattern another way of using composition to increase flexibility and reduce the need for repeti­
tive subclassing. The Observer pattern solved the problem of notifying disparate and varying
components about system events. We revisited our Composite example, and with the Visitor
pattern learned how to pay a call on, and apply many operations to, every component in a tree.
Finally, we saw how the Command pattern can help us to build an extensible tiered system.

In the next chapter, we will step beyond the Gang of Four to examine some patterns
specifically oriented toward Enterprise programming.

CHAPTER 12

Enterprise Patterns

P HP is first and foremost a language designed for the Web. And with its newly extended
support for objects, it can also derive greater benefit from patterns hatched in other Enterprise
languages, particularly Java.

This chapter will cover

• Presentation patterns: Tools for managing and responding to requests, and for
presenting data to the user

• Business logic patterns: Getting to the real purpose of your system: addressing business
problems

• Data patterns: Taming the relational database

• Summary. A bullet point list covering all the patterns in this chapter

Introduction
Many (most, in fact) of the patterns in this chapter are designed to promote the independent
operation of several distinct tiers in an application. Just as classes represent specializations of
responsibilities, so do the tiers of an Enterprise system, albeit on a coarser scale. Figure 12-1
shows a typical breakdown of the layers in a system.

219

220 CHAPTER 12 • ENTERPRISE PATTERNS

Generates

~~~~~=~to • ---- .l_v_i_e_w ________ """'ll<:-- ~ 
Command and 1 

Control layer 1 

Interprets 
request and 
queries Logic 
layer 

Command and Control 

Processes 
business 
problem 

~---:~Business Logic 

I 
I 

data acquisition Data 

1-- __ I 

Handles ~- - -)>I 
and storage L. ----------....1 

Assesses 
results 
and chooses 
correct view 

Returns 
results 
to Command 
and Control 

Figure 12-1. The layers or tiers in a typical Enterprise system 

The structure shown in Figure 12-1 is not written in stone: some of these tiers may be 
combined and different strategies used for communication between them depending upon 
the complexity of your system. Nonetheless, Figure 12-1 illustrates a model that emphasizes 
flexibility and reuse, and many Enterprise applications follow it to a large extent. 

• The View layer contains the interface that a system's users actually see and interact with. 
It is responsible for presenting the results of a user's request, and providing the mecha­
nism by which the next request can be made to the system. 

• The Command and Control layer processes the request from the user. Based on this anal­
ysis, it delegates to the Business Logic layer to perform any processing required in order to 
fulfill the request. It then chooses which view is best suited to present the results to the 
user. In practice, this and the View layer are often combined into a single Presentation 
layer. Even so, the role of display tends to be strictly separated from those of request 
handling and business logic invocation. 

• The Business Logic layer is responsible for seeing to the business of a request. It performs 
any required calculations and marshals the resulting data. 

• The Data layer insulates the rest of the system from the mechanics of saving and acquiring 
persistent information. In some systems, the Command and Control layer uses the Data 
layer to acquire the business objects with which it needs to work. In other systems, the 
Data layer is hidden as far as possible. Later in the chapter, I will demonstrate a near­
transparent Data layer. 

So what is the point of dividing a system in this way? As with so much else in the book, the 
answer lies with decoupling. By keeping business logic independent of the View layer, you make 
it possible to add new interfaces to your system with little or no rewriting. 

Imagine a system for managing event listings (this will be a very familiar example by the 
end of the chapter). The end user will naturally require a slick HTML interface. Technicians 
maintaining the system may then require a command line interface for building into auto­
mated systems. At the same time, you may be developing versions of the system to work with 



CHAPTER 12 • ENTERPRISE PATTERNS 221 

cell phones and other handheld devices. You may even begin to consider Web Services like 
XML-RPC and SOAP. 

If you originally combined the underlying logic of your system with the HTML View layer 
(which is still a common strategy whatever project managers might tell you), these requirements 
would trigger an instant rewrite. If, on the other hand, you had created a tiered system, you 
would be able to bolt on new presentation strategies without the need to reconsider your Business 
Logic and Data layers. 

By the same token, persistence strategies are subject to change. Once again, you should be 
able to switch between storage models with minimal impact upon the other tiers in a system. 

Testing is another good reason for creating systems with separated tiers. Web applications 
are notoriously hard to test. Any kind of automated test tends to get caught up in the need to 
parse the HTML interface at one end, and work with live databases at the other. This means 
that tests must work with fully deployed systems, and risk undermining the very system that 
they were written to protect. The classes in a tier that face other layers should be written so that they 
extend an abstract super class or implement an interface. This supertype can then support 
polymorphism. In a test context, an entire tier can be replaced by a set of dummy objects (often 
called "stubs" or "mock objects"). In this way, you can test business logic using a fake Data 
layer, for example. 

Layers are useful even if you think that testing is for wimps, and your system will only ever 
have a single interface. By creating tiers with distinct responsibilities, you build a system whose 
constituent parts are easier to extend and debug. You limit duplication by keeping code with 
the same kinds of responsibility in one place (rather than lacing a system with database calls, 
for example, or with display strategies). Adding to a system is relatively easy because your 
changes tend to be nicely vertical as opposed to messily horizontal. 

A new feature, in a tiered system, might require a new interface component, additional 
request handling, some more business logic, and an amendment to your storage mechanism. 
That's vertical change. In a nontiered system you might add your feature, and then remember 
that five separate pages reference your amended database table, or was it six? There may be 
dozens of places where your new interface may potentially be invoked, so you need to work 
through your system adding code for that. This is horizontal amendment. 

In reality, of course, you never entirely escape from horizontal dependencies of this sort, 
especially when it comes to navigation elements in the interface. A tiered system can help to 
minimize the need for horizontal amendment, however. 

•.Note While many of these patterns have been around for a while (that's what patterns mean, after all), the 
names and boundaries are drawn either from Martin Fowler's key work on Enterprise patterns, Patterns of 
Enterprise Application Architecture, or from the influential Core J2EE Patterns by Alur et al. For the sake of 
consistency, I have tended to use Martin Fowler's naming conventions where the two sources diverge. This is 
because the latter's work is less focused upon a single technology, and therefore has the wider application. 
Alur et al. tend to concentrate upon Enterprise Java Beans in their work, which means that many patterns are 
optimized for distributed architectures. This is clearly a niche concern in the PHP world. 

If you find this chapter useful, I would recommend both books as a next step. Even if you don't know Java, 
as an object-oriented PHP programmer you should find the examples reasonably easy to decipher. 



222 CHAPTER 12 • ENTERPRISE PATTERNS 

All the examples in this chapter revolve around a fictional listings system with the whimsical­
sounding name "Woo," which stands for something like "What's On Outside." 

Participants of the system include venues (theaters, clubs, and cinemas), spaces ("screen 1," 
"the stage upstairs") and events (The Long Good Friday, The Importance of Being Earnest). 

The operations I will cover include creating a venue, adding a space to a venue, and listing 
all venues in the system. 

Remember that the aim of this chapter is to illustrate key Enterprise design patterns, and 
not to build a working system. Reflecting the interdependent nature of design patterns, most 
of these examples overlap to a large extent with code examples, making good use of ground 
covered elsewhere in the chapter. Addressing the needs of demonstration code, though, does 
not fulfill the criteria demanded by a production system. You should approach the examples as 
a means of illustrating the patterns they implement, rather than as building blocks in a frame­
work or application. 

Cheating Before We Start 
Most of the patterns in this book find a natural place in the layers of an Enterprise architecture. 
Some patterns are so basic that they stand outside of this structure. The Registry pattern is a 
good example of this. In fact, Registry is a powerful way of breaking out of the constraints laid 
down by layering. It is the exception that allows for the smooth running of the rule. 

Registry 
It is an article of faith that globals are bad. Uke other sins, though, global data is fatally attractive. 
This is so much the case that object -oriented architects have felt it necessary to reinvent globals 
under a new name. We encountered the Singleton pattern in Chapter 9. This is unfair, of course, 
because Singleton objects do not suffer from all the ills that beset global variables. In particular, 
you cannot overwrite a Singleton by accident. Singletons, then, are low-fat globals. We remain 
suspicious of Singleton objects, though, because they invite us to anchor our classes into a system, 
thereby introducing coupling. 

Even so, Singletons are so useful at times, that many programmers (including me) can't 
bring themselves to give them up. 

The Problem 
As you may know, many Enterprise systems are divided into layers, with each layer communi­
cating with its neighbors only through tightly defined conduits. This separation of tiers makes 
an application flexible. You can replace or otherwise develop each tier with the minimum 
impact on the rest of the system. What happens, though, when you acquire information in a 
tier that you later need in another noncontiguous layer? 



CHAPTER 12 • ENTERPRISE PATTERNS 223 

•wote Some of the examples-in this chapter use the PEAR class naming convention. That is, they 
include the package path in class names. This guards against name clashes, but can also be hard on 
the eye in discussion. For that reason, where I discuss a class, I will use only its core name. So 
woo_controller_ApplicationHelper in an example may be referred to as ApplicationHelper 
in the text. 

Let's say that we acquire configuration data in an ApplicationHelper class: 

II woo_controller_ApplicationHelper 
function getOptions() { 

} 

if ( ! file_exists( "datalwoo_options.xml" ) ) { 
throw new woo_base_AppException( 

"Could not find options file" ); 
} 
$options = SimpleXml_load_file( "datalwoo_options.xml" ); 
$dsn = (string)$options->dsn; 
II what do we do with this now? 
II ... 

Acquiring the information is easy enough, but how do we get it to the Data layer where it is 
later used? And what about all the other configuration information we must disseminate 
throughout our system? 

One answer would be to pass this information around the system from object to object: 
from a controller object responsible for handling requests, through to objects in the Business 
Logic layer, and on to an object responsible for talking to the database. 

This is entirely feasible. In fact, you could pass the ApplicationHelper object itself around, 
or alternatively a more specialized Context object. Either way, contextual information is trans­
mitted through the layers of your system to the object or objects that need it. 

The trade-off is that in order to do this, you must alter the interface of all the objects that 
relay the context object whether they need to use it or not. Clearly this undermines loose 
coupling to some extent. 

The Registry pattern provides an alternative that is not without its own consequences. 
A Registry is simply a class that provides access to data (usually, but not exclusively, objects) 

via static methods (or via instance methods on a Singleton). Every object in a system therefore 
has access to these objects. 



224 CHAPTER 12 ENTERPRISE PATTERNS 

The term "Registry" is drawn from Martin Fowler's Patterns of Enterprise Application 

Architecture, but like all patterns, implementations pop up everywhere. David Hunt and David 

Thomas (The Pragmatic Programmer) liken a Registry class to a police incident notice board. 

Detectives on one shift leave evidence and sketches on the board, which are then picked up 

by new detectives on another shift. I have also seen Registry classes called Whiteboard and 

Blackboard. 

Implementation 
Figure 12-2 shows a Registry object whose job it is to store and serve Request objects: 

L 

<<creates>> 

Registry 

+instance(): Registry 
+setRequest($request:Request) 
+getRequest() 

Figure 12-2. A simple registry 

Here is this class in code form: 

class Registry { 

} 

private static $instance; 
private $request; 

static function instance() { 

} 

if ( ! self::$instance) { self::$instance new self(); } 
return self::$instance; 

function getRequest() { 
return $this->request; 

} 

function setRequest( Request $request ) { 
$this->request = $request; 

} 

II empty class for testing 
class Request {} 

You can then add a Request object in one part of a system. 

$reg= Registry::instance(); 
$reg->setRequest( new Request() ); 



And access it from another part of the system. 

$reg= Registry::instance(); 
print_r( $reg->getRequest() ); 

CHAPTER 12 ENTERPRISE PATTERNS 

As you can see, the Registry is simply a Singleton (see Chapter 9 if you need a reminder 
about Singleton classes). The code creates and returns a sole instance of the Registry class via 
the instance() method. This can then be used to set and retrieve a Request object. Despite the 
fact that PHP does not enforce return types, the value returned by get Request () is guaranteed 
to be a Request object because of the type hint in setRequest (). 

I have been known to throw caution to the winds and use a key-based system, like this: 

class Registry { 

} 

private static $instance; 
private $values = array(); 

static function instance() { 

} 

if ( ! self::$instance) { self::$instance =new self(); } 
return self::$instance; 

function get( $key ) { 
return $this->values[$key]; 

} 

function set( $key, $value ) { 
$this->values[$key] = $value; 

} 

The benefit here is that you don't need to create methods for every object you wish to store 
and serve. The downside, though, is that you reintroduce global variables by the back door. The 
use of arbitrary strings as keys for the objects you store means that there is nothing stopping 
one part of your system overwriting a key/value pair when adding an object. I have found it 
useful to use this map-like structure during development, and shift over to explicitly named 
methods when I'm clear about the data I am going to need to store and retrieve. 

Registry, Scope, and PHP 

The term "scope" is often used to describe the visibility of an object or value in the context of 
code structures. The lifetime of a variable can also be measured over time. There are three 
levels of scope you might consider in this sense. The standard is the period covered by an HTTP 
request. In terms of real in-memory scope, this is as far as it goes in the PHP world. We do not 
have access to pools of memory in which we might store data for longer than a single request. 

PHP also provides built-in support for session variables. These are serialized and saved to 
the file system or the database at the end of a request, and then restored at the start of the next. 
A session ID stored in a cookie or passed around in query strings is used to keep track of the 
session owner. Because of this, you can think of some variables having session scope. You can 
take advantage of this by storing some objects between requests, saving a trip to the database. 

225 



226 

r--

CHAPTER 12 ENTERPRISE PATTERNS 

Clearly, you need to be careful that you don't end up with multiple versions of the same object, 
so you may need to consider a locking strategy when you check an object that also exists in a 
database into a session. 

In other languages, notably Java and Perl (running on the ModPerl Apache module), there 
is the concept of application scope. Variables that occupy this space are available across all 
instances of the application. This is fairly alien to PHP, but in larger applications it is very useful 
to have access to an application-wide space for accessing configuration variables. You can 
build a Registry class that emulates application scope, though you must be aware of some 
pretty considerable caveats. 

Figure 12-3 shows a possible structure for Registry classes that work on the three levels I 
have described: 

Registry 

#get($key:String): mixe~ 
#set() 

~ 
I I J 

RequestRegistry Session Registry Application Registry 

-instance(): RequestRegistry -instance(): SessionRegistry -instance(): ApplicationRegistr 
#get($key:String): mixed #get($key:String): mixed #get($key:String): mixed 
#set($key:String,$value:mixed) #set($key:String,$value:mixed) #set($key:String,$value:mixed) 
+getAaa()(): Aaa +getBbb(): Bbb +getCcc(): Ccc 

14 ....... ($ •• ., A~) ....... " ••• ,. •• , +setCcc($ccc:Ccc) 

self: :instance()->set('Aaa', $aa~ 

Y return self:: instance()->get( 'Aaa ~ 
Figure 12-3. Implementing Registry classes for different scopes 

The base class defines two protected methods, get() and set(). They are not available to 
client code because we want to enforce type for get and set operations. The base class may 
define other public methods such as is Empty (), is Populated (), and clear(), but I'll leave those 
as an exercise for you to do. 

181ote In a real-world system, you might want to extend this structure to include another layer of inheritance. 

You might keep the concrete get () and set () methods in their respective implementations, but specialize 
the public getAaa () and setAaa () methods into domain-specific classes. The new specializations would 

become the Singletons. That way you could reuse the core save and retrieve operations across multiple 
applications. 



CHAPTER 12 ENTERPRISE PATTERNS 227 

Here is the abstract class as code: 

abstract class woo_base_Registry { 

} 

private function __ construct() {} 
abstract protected function get( $key ); 
abstract protected function set( $key, $val ); 

The request level class is pretty straightforward. In another variation from our previous 
example, we keep the Registry sole instance hidden, and provide static methods to set and get 
objects. Apart from that, it's simply a matter of maintaining an associative array. 

class woo_base_RequestRegistry extends woo_base_Registry { 

} 

private $values = array(); 
private static $instance; 

static function instance() { 

} 

if ( ! self::$instance) { self::$instance =new self(); } 
return self::$instance; 

protected function get( $key ) { 
return $this->values[$key]; 

} 

protected function set( $key, $val ) { 
$this->values[$key] = $val; 

} 

static function getRequest() { 
return self::instance()->get('request'); 

} 

static function setRequest( woo_controller_Request $request ) { 
return self::instance()->set('request', $request); 

} 

The session-level implementation simply uses PHP's built-in session support: 

class woo_base_SessionRegistry extends woo_base_Registry { 
private static $instance; 
private function __ construct() { 

session_start(); 
} 



228 CHAPTER 12 • ENTERPRISE PATTERNS 

} 

static function instance() { 

} 

if ( ! self::$instance) { self::$instance =new self(); } 
return self::$instance; 

protected function get( $key ) { 
return $_SESSION[ __ CLASS __ ][$key]; 

} 

protected function set( $key, $val ) { 
$_SESSION[ __ CLASS __ ][$key] =$val; 

} 

function setComplex( Complex $complex ) { 
self::instance()->set('complex', $complex); 

} 

function getComplex( ) { 
return self::instance()->get('complex'); 

} 

As you can see, this class uses the$_ SESSION superglobal to set and retrieve values. We kick 
off the session in the constructor with the session_start() method. As always with sessions, 
you must ensure that you have not yet sent any text to the user before using this class. 

As you might expect, the application-level implementation is more of an issue. As with all 
code examples in this chapter, this is an illustration rather than production-quality code: 

class woo_base_ApplicationRegistry extends woo_base_Registry { 
private static $instance; 
private $freezefile = "data/applicationRegistry.txt"; 
private $values = array(); 
private $dirty = false; 

private function __ construct() { 
$this->doReload( $this ); 

} 

static function instance() { 

} 

if ( ! self::$instance) { self::$instance =new self(); } 
return self::$instance; 

function __ destruct() { 
if ( $this->dirty ) { 

$this->save(); 
} 

} 



} 

static function reload() { 
self::instance()->doReload(); 

} 

private function doReload() { 

CHAPTER 12 ENTERPRISE PATTERNS 229 

if ( ! file_exists( $this->freezefile ) ) { return false; } 
$serialized = file_get_contents( $this->freezefile, true ); 
$array = unserialize( $serialized ); 

} 

if ( is_array( $array ) ) { 

} 

$array = array_merge( $array, $this->values ); 
$this->values = $array; 
return true; 

return false; 

private function save() { 

} 

$frozen = serialize( $this->values ); 
file_put_contents( $this->freezefile, $frozen, 

FILE_USE_INCLUDE_PATH ); 
$this->dirty = false; 

protected function get( $key ) { 
return $this->values[$key]; 

} 

protected function set( $key, $val ) { 
$this->dirty = true; 
$this->values[$key] = $val; 

} 

static function isEmpty() { 
return empty( self::instance()->values ); 

} 

static function getDSN() { 
return self::instance()->get('dsn'); 

} 

static function setDSN( $dsn ) { 
return self::instance()->set('dsn', $dsn); 

} 

This class uses serialization to save and restore the $values property. The doReload () 
method handles data acquisition, first checking for the file's existence and then reading its 
contents. Contents acquired, the method uses unserialize() to generate an array. reload() 



230 CHAPTER 12 ENTERPRISE PATTERNS 

is called when the ApplicationRegistry is first instantiated to ensure that the object starts out 
with a populated $values array. It can also be invoked at any time via the static reload () method. 

Whenever a client sets a value, a private flag, $dirty, is set to true (in the set() method). 
The class implements a_ destruct () method, which is automatically invoked when the 
ApplicationRegistry object is destroyed. If the $dirty property is set to true, then the save() 
method is called. This works like reload () in reverse. The $values array is serialized and saved 
to the storage file. 

If you intend to use a variation on this code example, make sure you check out the next 
section: there are some serious issues that you should consider. 

Consequences 
Because both SessionRegistry and ApplicationRegistry serialize data to the flle system, it is 
important to restate the obvious point that objects retrieved in different requests are identical 
copies and not references to the same object. This should not matter with SessionRegistry, 
because the same user is accessing the object in each instance. With ApplicationRegistry, this 
could be a serious problem. If you are saving data promiscuously, you could arrive at a situation 
where two processes conflict. Take a look at these steps: 

Process 1 retrieves an object 
Process 2 retrieves an object 
Process 1 alters object 
Process 2 alters object 
Process 1 saves object 
Process 2 saves object 

The changes made by Process 1 are overwritten by the save of Process 2. If you really want 
to create a shared space for data, you will need to work on ApplicationRegistry to implement 
a locking scheme to prevent collisions like this. Alternatively, you can treat ApplicationRegistry 
as a largely read -only resource. This is the way that I use the class in examples later in this 
chapter. Data is set on it only once, and thereafter all interactions with it are read-only. The 
code only calculates new values and writes them if the storage file cannot be found. You can 
therefore force a reload of configuration data only by deleting the storage file. You may wish to 
enhance the class so read-only behavior is enforced. 

Another point to remember is that not every object is suitable for serialization. In particular, 
if you are storing a resource of any type (a database connection handle, for example), it will not 
serialize. You will have to devise strategies for disposing of the handle on serialization and 
reacquiring it on unserialization. 

Note One way of managing serialization is to implement the magic methods_ sleep () and 
_wakeup(). _sleep() is called automatically when an object is serialized. You can use itto perform any 
cleaning up before the object is saved. In order to work, the method should return an array. The_ wakeup () 
method is invoked when an object is unserialized. You can use this to resume any file or database handles the 
object may have been using at the time of storage. 



CHAPTER 12 ENTERPRISE PATTERNS 

Although serialization is a pretty efficient business in PHP, you should be careful of what 
you save. A simple-seeming object may contain a reference to an enormous collection of 
objects pulled from a database. 

Registry objects make their data globally available. This means that any class that acts as 
a client for a Registry will exhibit a dependency that is not declared in its interface. This can 
become a serious problem if you begin to rely on Registry objects for lots of the data in your 
system. Registry objects are best used sparingly, for a well-defined set of data items. 

The Presentation Layer 
When a request hits your system, you must interpret the requirement it carries, then you must 
invoke any business logic needed, and finally return a response. For simple scripts, this whole 
process often takes place entirely inside the view itself, with only the heavyweight logic and 
persistence code split off into libraries. 

Note A view is an individual element in the View layer. It is usually a PHP page whose primary responsi­
bility is to display data and provide the mechanism by which new requests can be generated by the user. 
It could also be a template in a templating system such as Smarty. 

As systems grow in size, this default strategy becomes less tenable with request processing, 
business logic invocation, and view dispatch logic necessarily duplicated from view to view. 

In this section, we look at strategies for managing these three key responsibilities of the 
Presentation layer. Because the boundaries between the View layer and the Command and 
Control layer are often fairly blurred, it makes sense to treat them together under the common 
term "Presentation layer." 

Front Controller 
This pattern is diametrically opposed to the traditional PHP application with its multiple points 
of entry. The Front Controller pattern presents a central point of access for all incoming requests, 
ultimately delegating to a view to present results back to the user. This is a key pattern in the 
Java Enterprise community. It is covered in great detail in Core ]2EE Patterns, which remains 
one of the most influential Enterprise patterns resources. The pattern is not universally loved 
in the PHP community partly because of the overhead that initialization sometimes incurs. 

Most systems I write tend to gravitate toward the Front Controller. That is, I may not 
deploy the entire pattern to start with, but I will be aware of the steps necessary to evolve my 
project into a Front Controller implementation should I need the amazing power and flexibility 
it affords. 

The Problem 
Where requests are handled at multiple points throughout a system, it is hard to keep dupli­
cation from the code. You may need to authenticate a user, translate terms into different 
languages, or simply access common data. When a request requires common actions from 

231 



232 CHAPTER 12 ENTERPRISE PATTERNS 

view to view, you may find yourself copying and pasting operations. This makes changes very 
difficult, as a simple change to an operation must be repeated throughout your system. It is 
very easy for some parts of your code to fall out of alignment with others. Of course, a first step 
might be to centralize common operations into library code, but you are still left with the calls 
to the library functions or methods distributed throughout your system. 

Difficulty in managing the progression from view to view is another problem that can arise 
in a system where control is distributed among its views. In a complex system, a submission in 
one view may lead to any number of result pages, according to the input and the success of any 
operations performed at the logic layer. Forwarding from view to view can get messy, especially 
if the same view might be used in different flows. 

Implementation 
At heart, the Front Controller pattern defines a central point of entry for every request. It 
processes the request and uses it to select an operation to perform. Operations are often 
defined in specialized command objects organized according to the Command pattern. 

Figure 12-4 shows an overview of a Front Controller implementation. 

Controller 

+run() 
+init() 
+handleRequest 

<<.:_r~a!_es~>- .;:> 

() 

I 

Command 

+execute($request:Request) 
#doErecute($request:Request 

f 
I 

DoAThing DoAnotherThing 

#doExecute($request:Request) #doExecute($request:Request) 

Figure 12-4. A Controller class and a command hierarchy 

In fact, you are likely to deploy a few helper classes to smooth the process, but let's begin 
with the core participants. Here is a simple Controller class: 

class woo_controller_Controller { 
private $applicationHelper; 

private function __ construct() {} 

static function run() { 

} 

$instance = new woo_controller_Controller(); 
$instance->init(); 
$instance->handleRequest(); 



} 

CHAPTER 12 

function init() { 
$applicationHelper 

} 

= woo_controller_ApplicationHelper::instance(); 
$applicationHelper->init(); 

function handleRequest() { 

} 

$request = new woo_controller_Request(); 
$cmd_r = new woo_command_CommandResolver(); 
$cmd = $cmd_r->getCommand( $request ); 
$cmd->execute( $request ); 

ENTERPRISE PATTERNS 

Simplified as this is, and bereft of error handling, there isn't much more to the Controller 
class. A controller sits at the tip of a system delegating to other classes. It is these other classes 
that do most of the work. 

run() is merely a convenience method that calls in it() and handleRequest(). It is static 
and the constructor is private, so the only option for client code is to kick off execution of our 
system. I usually do this in a file called index. php that contains only a couple of lines of code: 

require( "woo/controller/Controller.php" ); 
woo_controller_Controller::run(); 

The distinction between the ini t () and handleRequest () methods is really one of category 
in PHP. In some languages, ini t () would be run only at application startup, and handleRequest () 
or equivalent would be run for each user request. This class observes the same distinction 
between setup and request handling, even though init() is called for each request. 

The ini t () method obtains an instance of a class called ApplicationHelper. This class 
manages configuration data for the application as a whole. ini t 0 calls a method in 
ApplicationHelper, also called ini t (),which, as you will see, initializes data used by the 
application. 

The handleRequest () method uses a CommandResol ver to acquire a Command object, which it 
runs by calling Command: :execute(). 

ApplicationHelper 

The ApplicationHelper class is not essential to Front Controller. Most implementations must 
acquire basic configuration data, though, so it's as well to discuss a strategy for this. Here is a 
simple ApplicationHelper: 

class woo_controller_ApplicationHelper { 
private static $instance; 
private $config = "data/woo_options.xml"; 

private function __ construct() {} 

233 



234 CHAPTER 12 ENTERPRISE PATTERNS 

} 

static function instance() { 

} 

if ( ! self::$instance) { 
self::$instance =new self(); 

} 
return self::$instance; 

function init() { 

} 

} 

if ! woo_base_ApplicationRegistry::isEmpty() ) { 
return; 

} 
$this->get0ptions(); 

private function getOptions() { 
$this->ensure( file_exists( $this->config ), 

"Could not find options file" ) ; 
$options = @SimpleXml_load_file( $this->config ); 
$this->ensure( $options instanceof SimpleXMLElement, 

"Could not resolve options file" ) ; 
$dsn = (string)$options->dsn; 
$this->ensure( $dsn, "No DSN found" ); 
woo_base_ApplicationRegistry::setDSN( $dsn ); 
II set other values 

private function ensure( $expr, $message ) { 
if ( ! $expr ) { 

throw new woo_base_AppException( $message ); 
} 

} 

function DB() { 

} 

$dsn = woo_base_ApplicationRegistry::getDSN(); 
$this->ensure( $dsn, "No DSN" ); 
if ( ! $this->db ) { 

$this->db = DB::connect( $dsn ); 
} 
$this->ensure( (! DB::isError( $this->db )), 

"Unable to connect to DB" ); 
return $this->db; 

This class simply reads a configuration file and makes values available to clients. As you 
can see, it is another Singleton, which is a useful way of making it available to any class in our 
system. You could equally make it a standard class, and ensure that it is passed around to any 
interested objects. I have already discussed the trade-offs involved there. 



CHAPTER 12 • ENTERPRISE PATTERNS 235 

The fact that we are using an ApplicationRegistry here suggests a refactoring. It may be 
worth making ApplicationHelper itself the Registry rather than have two Singletons in a system 
with overlapping responsibilities. This would involve the refactoring suggested in the previous 
section (splitting core ApplicationRegistry functionality from storage and retrieval of domain­
specific objects). I will leave that for you to do! 

So the ini t () method is responsible for loading configuration data. In fact, it checks the 
ApplicationRegistry to see if the data is already cached. If the Registry object is already populated, 
in it () does nothing at all. This is useful for systems that do lots of very expensive initialization. 
Complicated setup may be acceptable in a language that separates application initialization 
from individual requests. In PHP, you need to minimize initialization in favor of the request. 

Caching is very useful for ensuring that complex and time-consuming initialization processes 
take place in an initial request only (probably one run by you), with all subsequent requests 
benefiting from the results. 

If this is the first run (or if the cache file has been deleted-a crude but effective way of 
forcing the configuration file to be re-created), then the setOptions () method is invoked. 

In real life, this would probably do a lot more work than the example shows. This version 
satisfies itself with acquiring a DSN. setOption s () first checks that the configuration file exists 
(the path is stored in a property called $config). It then attempts to load XML data from the file, 
and sets the DSN. 

Notice that the class uses a trick to throw exceptions. Rather than pepper the code with 
conditionals and throw statements like this: 

if ( ! file_exists( "data/woo_options.txt" ) ) { 
throw new woo_base_AppException( 

"Could not find options file" ); 
} 

the class centralizes the test expression and the throw statement in a method called ensure (). 
You can confirm that a condition is true (and throw an exception otherwise) in a single (albeit 
split) line: 

$this->ensure( file_exists( $this->config ), 
"Could not find options file" ); 

Finally, ApplicationHelper includes a DB() method, which serves up a DB_ common object 
(or throws an exception if things go wrong). 

The cache approach taken here allows for the best of both worlds. The system can maintain 
an easy-to-use XML configuration file, but caching means that its values can be accessed at 
near native speed. Of course, if your end users are programmers too, or if you don't intend to 
change configuration very often, you could include PHP data structures directly in the helper 
class. While inflexible, this approach is certainly the fastest. 

CommandResolver 

A controller needs a way of deciding how to interpret an HTTP request so that it can invoke the 
right code in order to fulfill that request. You could easily include this logic within the Controller 
class itself, but I prefer to use a specialist class for the purpose. That makes it easy to refactor 
for polymorphism if necessary. 



236 CHAPTER 12 ENTERPRISE PATTERNS 

A Front Controller often invokes application logic by running a Command object (we covered 
the Command pattern in Chapter 11). The Command that is chosen is usually selected according 
to a parameter in the request or according to the structure of the URL itself (you might, for example, 
use Apache configuration in order to make concrete-seeming URLs yield a key for use in 
selecting a Command). In these examples, I will use a simple parameter: cmd. 

There is more than one way of using the given parameter to select a Command. You can 
test the parameter against a configuration file or data structure (a logical strategy). Or you can 
test it directly against class files on the file system (a physical strategy). 

A logical strategy is more flexible, but also more labor intensive, both in terms of setup and 
maintenance. You can see an example of this approach in the "Application Controller" section. 

You saw an example of a command factory that used a physical strategy in the last chapter. 
Here is a slight variation that uses reflection for added safety: 

class woo_command_CommandResolver { 

} 

private static $base_cmd; 
private static $default_cmd; 

function __ construct() { 

} 

if ( ! self::$base_cmd) { 

} 

self::$base_cmd =new ReflectionClass( "woo_command_Command" ); 
self::$default_cmd =new woo_command_DefaultCommand(); 

function getCommand( woo_controller_Request $request ) { 
$cmd = $request->getProperty( 'cmd' ); 

} 

if ( ! $cmd ) { 
return self::$default_cmd; 

} 
$cmd=str_replace( array('.','/'), $cmd ); 
$filepath = "woo/command/$cmd.php"; 
$classname = "woo_command_$cmd"; 
if ( file_exists( $filepath ) ) { 

} 

@require_once( "$filepath" ); 
if ( class_exists( $classname) ) { 

} 

$cmd_class = new ReflectionClass($classname); 
if ( $cmd_class->is5ubClassOf( self::$base_cmd) ) { 

return $cmd_class->newlnstance(); 
} else { 

$request->addFeedback( "command '$cmd' is not a Command" ); 
} 

$request->addFeedback( "command '$cmd' not found" ); 
return clone self::$default_cmd; 



CHAPTER 12 ENTERPRISE PATTERNS 

This simple class looks for a request parameter called cmd. Assuming that this is found, 
and that it maps to a real class flle in the command directory, and that the class file contains the 
right kind of class, the method creates and returns an instance of the relevant class. 

If any of these conditions are not met, the getCommand () method degrades gracefully by 
serving up a default Command object. 

You may wonder why this code takes it on trust that the Command class it locates does not 
require parameters: 

if ( $cmd_class->isSubClassOf( self::$base_cmd) ) { 
return $cmd_class->newlnstance(); 

} 

The answer to this lies in the signature of the Command class itself. 

abstract class woo_command_Command { 

} 

final function __ construct() { } 

function execute( woo_controller_Request $request ) { 
$this->doExecute( $request ); 

} 

abstract function doExecute( woo_controller_Request $request ); 

By declaring the constructor method final, we make it impossible for a child class to over­
ride it. No Command class therefore will ever require arguments to its constructor. 

Remember that you should never use input from the user without checking it first. I have 
included a test to ensure that there is no path element to the provided "cmd" string, so that 
only files in the correct directory can be invoked (and not something like .. I . . I . . ltmpl 
DodgyCommand. php). You can make code even safer by only accepting command strings that 
match values in a configuration file. 

Request 

Requests are magically handled for us by PHP and neatly packaged up in superglobal arrays. 
You might have noticed that we still use a class to represent a request. A Request object is passed 
to CommandResolver, and later on to Command. 

Why do we not let these classes simply query the$_ REQUEST, $_POST, or$_ GET arrays for 
themselves? We could do that, of course, but by centralizing request operations in one place we 
open up new options. You could, for example, apply filters to the incoming request. Or, as the 
next example shows, you could gather request parameters from somewhere other than an 
HTTP request, allowing the application to be run from the command line or from a test script. 
Of course, if your application uses sessions, you may have to provide an alternative storage 
mechanism for use in a command line context. The Registry pattern would work well for you 
there, allowing you to generate different Registry classes according to the context of the 
application. 

The Request object is also a useful repository for data that needs to be communicated to 
the View layer. In that respect, Request can also provide response capabilities. 

237 



238 CHAPTER 12 ENTERPRISE PATTERNS 

Here is a simple Request class: 

class woo_controller_Request { 
private $appreg; 

} 

private $properties; 
private $feedback = array(); 

function __ construct() { 

} 

$this->init(); 
woo_base_RequestRegistry::setRequest($this ); 

function init() { 

} 

if ( $_SERVER['REQUEST_METHOD'] ) { 
$this->properties = $_REQUEST; 
return; 

} 
foreach( $_SERVER['argv'] as $arg) { 

if ( strpos( $arg, '=' ) ) { 

} 
} 

list( $key, $val )=explode( "=", $arg ); 
$this->setProperty( $key, $val ); 

function getProperty( $key ) { 
return $this->properties[$key]; 

} 

function setProperty( $key, $val ) { 
$this->properties[$key] = $val; 

} 

function addFeedback( $msg ) { 
array_push( $this->feedback, $msg ); 

} 

function getFeedback( ) { 
return $this->feedback; 

} 
function getFeedbackString( $separator="\n" ) { 

return implode( $separator, $this->feedback ); 
} 



CHAPTER 12 ENTERPRISE PATTERNS 

As you can see, most of this class is taken up with mechanisms for setting and acquiring 
properties. The ini t () method is responsible for populating the private $properties array. 
Notice that it works with command line arguments as well as the HTTP requests. This is extremely 
useful when it comes to testing and debugging. 

Once you have a Request object, you should be able to access an HTTP parameter via the 
get Property() method, which accepts a key string and returns the corresponding value (as stored 
in the $properties array). You can also add data via setProperty(). 

The class also manages a $feedback array. This is a simple conduit through which controller 
classes can pass messages to the user. 

A Command 

You have already seen the Command base class, and Chapter 11 covered the Command pattern in 
detail, so there's no need to go too deep into Commands. It would be a shame to round up this 
pattern without showing at least a simple concrete Command object: 

class woo_command_DefaultCommand extends woo_command_Command { 

} 

function doExecute( woo_controller_Request $request ) { 
$request->addFeedback( "Welcome to WOO" ); 
include( "woo/view/main.php"); 

} 

This is the Command object that is served up by CommandResol ver if no explicit request for a particular 
Command is received. 

As you may have noticed, the abstract base class implements execute () itself, calling down 
to the doExecute() implementation of its child class. This allows us to add setup and cleanup 
code to all commands simply by altering the base class. 

The execute() method is passed a Request object that gives access to user input, as well as 
to the setFeedback() method. DefaultCommand makes use of this to set a welcome message. 

Finally, the command dispatches control to a view, simply by calling include(). Embedding 
the map from command to view in the Command classes is the simplest dispatch mechanism, but 
for small systems it can be perfectly adequate. A more flexible strategy can be seen in the 
"Application Controller" section. 

Overview 

It is possible that the detail of the classes covered in this section might disguise the simplicity 
of the Front Controller pattern. Figure 12-5 shows a sequence diagram that illustrates the life­
cycle of a request. 

As you can see, the Front Controller delegates initialization to the ApplicationHelper 
object (which uses caching to short -circuit any expensive setup). The Controller then acquires 
a Command object from the CommandResol ver object. Finally, it invokes Command: :execute() in 
order to kick off the application logic. 

In this implementation of the pattern, the Command itself is responsible for delegating to 
the View layer. You can see a refinement of this in the next section. 

239 



240 CHAPTER 12 • ENTERPRISE PATTERNS 

.... 
I 
I 

Command Resolver 

I 
init() 1 

~ getCommand() : 

<- - - - - - ~ - - - - - - _'] 
I execute() I 
I I 

I I 

Figure 12-5. The Front Controller in operation 

Consequences 

I Com~and I 
I 

So Front Controller is not for the fainthearted. It does require a lot of up-front development 
before you begin to see benefits. This is a serious drawback if your project requires fast turn­
around, or if it is small enough that the Front Controller framework would weigh in heavier 
than the rest of the system. 

Having said that, once you have successfully deployed a Front Controller in one project, 
you will find that you can reuse it for others with lightning speed. You can abstract much of its 
functionality into library code, effectively building yourself a reusable framework. 

The requirement that all configuration information is loaded up for every request is 
another drawback. All approaches will suffer from this to some extent, but Front Controller 
often requires additional information, such as logical maps of commands and views. 

This overhead can be eased considerably by caching such data. The most efficient way of 
doing this is to add the data to your system as native PHP. This is fine if you are the sole main­
tainer of a system, but if you have nontechnical users, you may need to provide a configuration 
file. You can still automate the native PHP approach, though, by creating a system that builds 
PHP data structures from and writes them to an include file. Less efficient but much easier is 
the approach I took in the ApplicationRegistry class-simply serialize the data. 

On the plus side, Front Controller centralizes the presentation logic of your system. This 
means that you can exert control over the way that requests are processed and views selected 
in one place (well, in one set of classes, anyway). This reduces duplication and decreases the 
likelihood of bugs. 

Front Controller is also very extensible. Once you have a core up and running, you can add 
new Command classes and views very easily. 

In this example, Commands handled their own view dispatch. If you use the Front 
Controller pattern with an object that helps with view (and possibly Command) selection, 
then the pattern allows for excellent control over navigation, which is harder to maintain 
elegantly when presentation control is distributed throughout a system. I cover such an 
object in the next section. 



CHAPTER 12 ENTERPRISE PATTERNS 

Application Controller 
Allowing commands to invoke their own views is acceptable for smaller systems, but it is not 
ideal. It is preferable to decouple your Commands from your View layer as much as possible. 

An Application Controller takes responsibility for mapping requests to commands, and 
commands to views. This decoupling means that it becomes easier to switch in alternative sets 
of views without changing the codebase. It also allows the system owner to change the flow of 
the application, again without the need for touching any internals. By allowing for a logical 
system for Command resolution, the pattern also makes it easier for the same Command to be 
used in different contexts within a system. 

The Problem 
Remember the nature of our example problem. An administrator needs to be able to add a 
venue to the system, and to associate a space with it. The system might therefore support the 
AddVenue and Add Space commands. According to the examples so far, these commands would 
be selected using a direct map from a request parameter (cmd=AddVenue) to a class (AddVenue). 

Broadly speaking, a successful call to the AddVenue command should lead to an initial call 
to the AddSpace command. This relationship might be hard coded into the classes themselves, 
with AddVenue invoking Add Space on success. Add Space might then include a view that contains 
the form for adding the space to the venue. 

Both commands may be associated with at least two different views, a core view for presenting 
the input form and an error or "thank you" screen. According to the logic already discussed, the 
Command classes themselves would include those views (using conditional tests to decide which 
view to present in which circumstances). 

This level of hard coding is fine, as long as the commands will always be used in the same 
way. It begins to break down, though, if we want a special view for AddVenue in some circum­
stances, and if we want to alter the logic by which one command leads to another (perhaps one 
flow might include an additional screen between a successful venue addition and the start of 
a space addition). If each of your commands is only used once, in one relationship to other 
commands, and with one view, then you should hard code your commands' relationship with 
each other and their views. Otherwise you should read on. 

An Application Controller class can take over this logic, freeing up Command classes to concen­
trate on their job, which is to process input, invoke application logic, and handle any results. 

Implementation 
As always, the key to this pattern is the interface. An Application Controller is a class (or a set of 
classes) that the Front Controller can use to acquire commands based on a user request, and to 
find the right view to present after the command has been run. You can see the bare bones of 
this relationship in Figure 12-6. 

As with all patterns in this chapter, the aim is to make things as simple as possible for the 
client code-hence our spartan Front Controller class. Behind the interface, though, we must 
deploy an implementation. The approach laid out here is just one way of doing it. As you work 
through this section, remember that the essence of the pattern lies in the way that the partici­
pants, the Application Controller, the commands, and the views, interact, and not with the 
specifics of this implementation. 

Let's begin with the code that uses the Application Controller. 

241 



242 CHAPTER 12 ENTERPRISE PATTERNS 

FrontController f- - - - - ~<':!.s~>~ AppCont 

+processRequest() +get Command() 
+invokeView() +getView(): s 

while ( $command = $appController->getCommand() )~ 
$command->execute( $request ); 

} 
$view= $appController->getView(); 

Figure 12-6. The Application Controller pattern 

The Front Controller 

roller 

: Command 
tring 

Here is how the FrontController might work with the AppController class (simplified and 
stripped of error handling): 

function handleRequest() { 

} 

$request = new woo_controller_Request(); 
$app_c = $this->applicationHelper->appController(); 
while( $cmd = $app_c->getCommand( $request ) ) { 

$cmd->execute( $request ); 
} 
$this->invokeView( $app_c->getView( $request ) ); 

function invokeView( $target ) { 
include( "woo/view/$target.php" ); 
exit; 

} 

As you can see, the principle difference from the previous Front Controller example is that 
here Command objects are retrieved and executed in a loop. The code also uses AppController to 
get the name of the view that it should include. 

So how do we move from a cmd parameter to a chain of commands and ultimately a view? 

Implementation Overview 

A Command class might demand a different view according to different stages of operation. The 
default view for the AddVenue command might be a data input form. If the user adds the wrong 
kind of data, the form may be re-presented, or an error page may be shown. If all goes well, 
and the venue is created in the system, then we may wish to forward to another in a chain of 
Command objects: Add Space, perhaps. 

The Command objects tell the system of their current state by setting a status flag. Here are the 
flags that this minimal implementation recognizes (as set as a property in the Command super class): 



private static $STATUS_STRINGS array ( 
'CMD_DEFAULT'=>O, 

); 

'CMD_OK' => 1, 
'CMD_ERROR' => 2, 
'CMD_INSUFFICIENT_DATA' => 3 

CHAPTER 12 ENTERPRISE PATTERNS 

The Application Controller finds and instantiates the correct Command class using the 
Request object. Once it has been run, the Command will be associated with a status. This combi­
nation of Command and status can be compared against a data structure to determine which 
command should be run next, or if no more commands should be run, which view to serve up. 

The Configuration File 

The system's owner can determine the way that commands and views work together in a set of 
configuration directives. Here is an extract: 

<control> 
<view>main</view> 
<view status="CMD OK">menu</view> 
<view status="CMD ERROR">error</view> 

<command name="ListVenues"> 
<view>listvenues</view> 

</command> 

<command name="QuickAddVenue"> 
<classroot name="AddVenue" I> 
<view>quickadd</view> 

</command> 

<command name="AddVenue"> 
<view>addvenue</view> 
<status value="CMD_OK"> 

<forward>AddSpace</forward> 
</status> 

</command> 

<command name="AddSpace"> 
<view>addspace</view> 
<status value="CMD_OK"> 

<forward>ListVenues</forward> 
</status> 

</command> 

<!control> 

243 



244 CHAPTER 12 • ENTERPRISE PATTERNS 

This simplified XML fragment shows one strategy for abstracting the flow of commands 
and their relationship to views from the Command classes themselves. The directives are all 
contained within a control element. The logic here is search-based. The outermost elements 
defined are the most generic. They can be overridden by their equivalents within command elements. 

So the first element, view, defines the default view for all commands if no other directive 
contradicts this order. The other view elements on the same level declare status attributes 
(which correspond to flags set in the Command class). Each status represents a flag that might be 
set by a Command object to signal its progress with a task. Because these elements are more 
specific than the first view element, they have priority. If a command sets the CMD _OK flag, then 
the corresponding view "menu" is the one that will be included, unless an even more specific 
element overrides this. 

Having set these defaults, the document presents the command elements. By default these 
elements map directly to Command classes (and their class files on the file system) as in the 
previous CommandResolver example. So if the cmd parameter is set to AddVenue, then the corre­
sponding element in the configuration document is selected. The string "AddVenue" is used to 
construct a path to the AddVenue. php class file. 

Aliases are supported, however. So if cmd is set to QuickAddVenue, then the following element 
is used: 

<command name="QuickAddVenue"> 
<classroot name="AddVenue" I> 
<view>quickadd</view> 

</command> 

Here the command element named QuickAddVenue does not map to a class file. That mapping 
is defined by the class root element. This makes it possible to reference the AddVenue class in 
the context of many different flows, and many different views. 

Command elements work from outer elements to inner elements, with the inner, more specific, 
elements having priority. By setting a view element within a command, we ensure that the command 
is tied to that view. 

<command name="AddVenue"> 
<view>addvenue</view> 
<status value="CMD OK"> 

<forward>AddSpace</forward> 
</status> 

</command> 

So here the addvenue view is associated with the AddVenue command (as set in the Request 
object's cmd parameter). This means that the addvenue. php view will always be included when 
the AddVenue command is invoked. Always, that is, unless the status condition is matched. If 
the AddVenue class sets a flag of CMD _OK, the default view for the Command is overridden. 

The status element could simply contain another view that would be included in place of 
the default. Here, though, the forward element comes into play. By forwarding to another 
command, the configuration file delegates all responsibility for handling views to the new element. 



CHAPTER 12 • ENTERPRISE PATTERNS 245 

Parsing the Configuration File 

This is a reasonably flexible model for controlling display and command flow logic. The docu­
ment, though, is not something that you would want to parse for every single request. We have 
already seen a solution to this problem. The ApplicationHelper class provides a mechanism for 
caching configuration data. 

Here is an extract: 

private function getOptions() { 

} 

$this->ensure( file_exists( $this->config ), 
"Could not find options file" ); 

$options = @SimpleXml_load_file( $this->config ); 

I I ... set DSN ... 

$map = new woo_controller_ControllerMap(); 

foreach ( $options->control->view as $default_view ) { 
$stat_str = trim($default_view['status']); 

} 

$status= woo_command_Command::statuses( $stat_str ); 
$map->addView( 'default', $status, (string)$default_view ); 

II ... more parse code omitted ... 
woo_base_ApplicationRegistry::setControllerMap( $map); 

function appController() { 

} 

$map= woo_base_ApplicationRegistry::getControllerMap(); 
$this->ensure( is_object($map), "No ControllerMap" ); 
return new woo_controller_AppController( $map ); 

Parsing XML, even with the excellent SimpleXML package, is a wordy business, and not 
particularly challenging, so I leave most of the details out here. The key thing to note is that 
the getOption s () method is only invoked if configuration has not been cached into the 
ApplicationRegistry object. 

Storing the Configuration Data 

The cached object in question is a ControllerMap. ControllerMap is essentially a wrapper around 
three arrays. We could use raw arrays, of course, but ControllerMap gives us the security of knowing 
that each array will follow a particular format. Here is the ControllerMap class: 



246 CHAPTER 12 ENTERPRISE PATTERNS 

class woo_controller_ControllerMap { 
private $viewMap = array(); 
private $forwardMap = array(); 
private $classrootMap = array(); 

} 

function addClassroot( $command, $classroot ) { 
$this->classrootMap[$command]=$classroot; 

} 

function getClassroot( $command ) { 

} 

return ($name = $this->classrootMap[$command])? 
$name : $command; 

function addView( $command='default', $status=O, $view ) { 
$this->viewMap[$command][$status]=$view; 

} 

function getView( $command, $status ) { 
return $this->viewMap[$command][$status]; 

} 

function addForward( $command, $status=O, $newCommand ) { 
$this->forwardMap[$command][$status]=$newCommand; 

} 

function getForward( $command, $status ) { 
return $this->forwardMap[$command][$status]; 

} 

The $class root property is simply an associative array that maps command handles (that 
is, the names of the command elements in configuration) to the roots of Command class names 
(that is, AddVenue, as opposed to woo_ command_ AddVenue). This is used to determine whether the 
cmd parameter is an alias to a particular class file. During the parsing of the configuration file, 
the addClassroot() method is called to populate this array. 

The $forwardMap and $viewMap arrays are both two-dimensional, supporting combinations 
of commands and statuses. 

Returning to this fragment: 

<command name="AddVenue"> 
<view>addvenue</view> 
<status value="CMD OK"> 

<forward>AddSpacec/forward> 
</status> 

</command> 



CHAPTER 12 • ENTERPRISE PATTERNS 247 

Here is the call the parse code will make to add the correct element to the $viewMap property: 

$map->addView( 'AddVenue', o, 'addvenue' ); 

And here is the call for populating the $forwardMap property: 

$map->addForward( 'AddVenue', 1, 'AddSpace' ); 

The Application Controller class uses these combinations in a particular search order. 
Let's say the AddVen ue command has returned CMD _OK (which maps to 1, while 0 is CMD _DEFAULT). 
The Application Controller will search the $forwardMap array from the most specific combina­
tion of Command and status flag to the most general. The first match found will be the command 
string that is returned: 

$viewMap['AddVenue'][1]; // AddVenue CMD_OK [MATCHED] 
$viewMap['AddVenue'][o]; // AddVenue CMD DEFAULT 
$viewMap['default'][1]; // DefaultCommand CMD OK 
$viewMap['default'][o]; // DefaultCommand CMD DEFAULT 

The same hierarchy of array elements is searched in order to retrieve a view. 
Here is an Application Controller: 

class woo_controller_AppController { 
private static $base_cmd; 
private static $default_cmd; 
private $controllerMap; 
private $invoked = array(); 

function __ construct( ControllerMap $map ) { 
$this->controllerMap = $map; 

} 

if ( ! self::$base_cmd) { 

} 

self::$base_cmd =new ReflectionClass( "woo_command_Command" ); 
self::$default_cmd =new woo_command_DefaultCommand(); 

function getView( woo_controller_Request $req ) { 
$view = $this->getResource( $req, "View" ); 
return $view; 

} 

function getForward( woo_controller_Request $req ) { 
$forward = $this->getResource( $req, "Forward" ); 
if ( $forward ) { 

$req->setProperty( 'cmd', $forward); 
} 
return $forward; 

} 



248 CHAPTER 12 ENTERPRISE PATTERNS 

private function getResource( woo_controller_Request $req, 

} 

$res ) { 
$cmd_str = $req->getProperty( 'cmd' ); 
$previous = $req->getLastCommand(); 
$status = $previous->getStatus(); 
if (! $status ) { $status = o; } 
$acquire = "get$res"; 
$resource = $this->controllerMap->$acquire( 

$cmd_str, $status ); 
if ( ! $resource ) { 

} 

$resource = $this->controllerMap->$acquire( $cmd_str, 
0 ); 

if ( ! $resource ) { 

} 

$resource= $this->controllerMap->$acquire( 'default', 
$status ); 

if ( ! $resource ) { 

} 

$resource = $this->controllerMap->$acquire( 'default', 
0 ); 

return $resource; 

function getCommand( woo_controller_Request $req ) { 
$previous = $req->getlastCommand(); 
if ( ! $previous ) { 

II this is the first command this request 
$cmd = $req->getProperty('cmd'); 
if ( ! $cmd ) { 

} 

II no cmd property - using default 
$req->setProperty('cmd', 'default' ); 
return self::$default_cmd; 

} else { 

} 

II a command has been run already this request 
$cmd = $this->getForward( $req ); 
if ( ! $cmd ) { return null; } 

II we now have a command name in $cmd 

II turn it into a Command object 
$cmd_obj = $this->resolveCommand( $cmd ); 
if ( ! $cmd_obj ) { 

} 

throw new woo_base_AppException( "couldn't 
resolve '$cmd'" ); 



} 

} 

$cmd_class = get_class( $cmd_obj ); 
$this->invoked[$cmd_class]++; 
if ( $this->invoked[$cmd_class] > 1 ) { 

CHAPTER 12 • ENTERPRISE PATTERNS 249 

throw new woo_base_AppException( "circular forwarding" ); 
} 
II return the Command object 
return $cmd_obj; 

function resolveCommand( $cmd ) { 
$cmd=str_replace( array('.',' I'), "", $cmd ) ; 

} 

$classroot = $this->controllerMap->getClassroot( $cmd ); 
$filepath = "woolcommandl$classroot.php"; 
$classname = "woo_command_$classroot"; 
if ( file_exists( $filepath ) ) { 

} 

require_once( "$filepath" ); 
if ( class_exists( $classname) ) { 

} 

$cmd_class = new ReflectionClass($classname); 
if ( $cmd_class->isSubClassOf( self::$base_cmd) ) { 

return $cmd_class->newlnstance(); 
} 

return null; 

The get Resource () method implements the search for both forwarding and view selection. 
It is called by getView() and get Forward (), respectively. Notice how it searches from the most 
specific combination of command string and status flag to the most generic. 

getCommand () is responsible for returning as many commands as have been configured 
into a forwarding chain. It works like this: when the initial request is received, there should be 
a cmd property available, and no record of a previous Command having been run in this request. 
The Request object stores this information. If the cmd request property has not been set, then 
the method uses "default", and returns the default Command class. The $cmd string variable is 
passed to resol veCommand (), which uses it to acquire a Command object. 

When get Command () is called for the second time in the request, the Request object 
will be holding a reference to the Command previously run. getCommand() then checks to 
see if any forwarding is set for the combination of that Command and its status flag (by calling 
get Forward ()). If get Forward () finds a match, it returns a string that can be resolved to a 
Command and returned to the Controller. 

Another thing to note in get Command () is the essential check we impose to prevent circular 
forwarding. We maintain an array indexed by Command class names. If the tally for any element 
exceeds 1, we know that this command has been retrieved previously. This puts us at risk of 
falling into an infinite loop, which is something we really don't want, so we throw an exception 
if this happens. 



250 CHAPTER 12 ENTERPRISE PATTERNS 

The Command Class 

You may have noticed that the AppController class relies upon previous commands having 
been stored in the Request object. This is done by the Command base class: 

abstract class woo_command_Command { 

} 

private static $STATUS_STRINGS = array 
'CMD_DEFAULT'=>O, 

) ; 

'CMD_OK' => 1, 
'CMD_ERROR' => 2, 
'CMD_INSUFFICIENT_DATA' => 3 

private $status = o; 

final function __ construct() { } 

function execute( woo_controller_Request $request ) { 
$this->status = $this->doExecute( $request ); 
$request->setCommand( $this ); 

} 

function getStatus() { 
return $this->status; 

} 

static function statuses( $str='CMD_DEFAULT' ) { 
if (empty( $str)) { $str = 'CMD_DEFAULT'; } 
II convert string into a status number 
return self::$STATUS_STRINGS[$str]; 

} 
abstract function doExecute( woo_controller_Request $request ); 

The Command class defines an array of status strings (severely cut for the sake of this example). 
It provides the statuses() method for converting a string ("CMD_OK") to its equivalent number, 
and getS tat us () for revealing the current Command object's status flag. If you want to be strict, 
statuses () could throw an Exception on failure. As it is, the method returns null by default if 
the right element is not defined. The execute () method uses the return value of the abstract 
do Execute () to set the status flag, and to cache itself in the Request object. 

A Concrete Command 

Here is how a simple AddVenue command might look: 



CHAPTER 12 

class woo_command_AddVenue extends woo_command_Command { 
function doExecute( woo_controller_Request $request ) { 

$name = $request->getProperty("venue_name"); 
if ( ! $name ) { 

$request->addFeedback( "no name provided" ); 
return self::statuses('CMD_INSUFFICIENT_DATA'); 

} else { 

ENTERPRISE PATTERNS 

$venue_obj = new woo_domain_Venue( null, $name ); 
$request->set0bject( 'venue', $venue_obj ); 
$request->addFeedback( "'$name' added ({$venue_obj->getrd()})" ); 
return self::statuses('CMD_OK'); 

} 

} 
} 

Some of this code will make more sense later in the chapter. The key thing to note is that 
the doExecute () method returns a status flag that the abstract base class stores in a property. 
The decision as to how to respond to the fact that this object has been invoked and has set this 
status is entirely driven by the configuration file. So according to the example XML, if CMD _OK is 
returned, the forwarding mechanism will cause the AddSpace class to be instantiated. This chain of 
events is triggered in this way only if the request contains cmd=AddVenue. If the request contains 
cmd=QuickAddVenue, then no forwarding will take place, and the quickaddvenue view will 
be displayed. 

Incidentally, although this example looks to be stripped of any code for saving a Venue 
object to the database, such is the magic of the patterns still to come that persistence is actually 
handled for us behind the scenes! 

Consequences 
This pattern is a pain to set up because of the sheer amount of work that must go into acquiring 
and applying metadata that describes the relationship between command and request, command 
and command, and command and view. 

For this reason, I tend to implement something like this when my application tells me it is 
needed. This is generally when I find myself adding switches to my commands that invoke 
different views or invoke other commands according to circumstances. It is at about this time 
that I feel that command flow and display logic are beginning to spiral out of my control. 

Once you have implemented an Application Controller, though, things should become 
much easier, as long as you have built adequate functionality into your system. In our imple­
mentation, for example, we omitted one feature I would probably consider-the ability to 
include subcommands within a Composite command and define this at runtime. This is not 
difficult to implement on top of the current implementation. 

Page Controller 
Much as I like the Front Controller pattern, it is not always the right approach to take. The 
investment in up-front design tends to reward the larger system and penalize simple need­
results-now projects. Page Controller probably does not need too much attention here, 

251 



252 CHAPTER 12 ENTERPRISE PATTERNS 

as I guess that it is the default approach for most PHP developers. It is worth rehearsing some 
of the issues, though. 

The Problem 
Once again, the problem is your need to manage the relationship between request, domain 
logic, and presentation. This is pretty much a constant for Enterprise projects. What differs, 
though, are the constraints placed upon you. 

If you have a relatively simple project, and one where the time spent on infrastructure 
design will impinge upon schedule, Page Controller can be a good option for managing requests 
and views. 

Let's say that you want to present a page that displays a list of all venues in the WOO 
system. Even with the database retrieval code finished, without a Front Controller already in 
place, we have a daunting task to get just this simple result. 

The view is a list of venues, the request is for a list of venues. Errors permitting, the request 
does not lead to a new view, as you might expect in a complex task. The simplest thing that 
works here is to associate the view and the controller-often in the same page. 

Implementation 
Although the practical reality of Page Controller projects can become fiendish, the pattern is 
simple. Control is related to a view, or to a set of views. In the simplest case, this means that the 
control sits in the view itself, although it can be abstracted, especially when a view is closely 
linked with others (that is when you might need to forward to different pages in different 
circumstances). 

Here is the simplest flavor of Page Controller: 

try { 
$venues= woo_domain_Venue::findAll(); 

} catch ( Exception $e ) { 
include( 'error.php' ); 
exit(o); 

} 

II default page follows 
?> 
<html> 
<head> 
<title>Venues</title> 
</head> 
<body> 
<hl>Venues</hl> 

<?php foreach( $venues as $venue ) { ?> 
<?php print $venue->getName(); ?><br I> 

<?php } ?> 

</body> 
</html> 



CHAPTER 12 ENTERPRISE PATTERNS 

This document has two elements to it. The view element handles display, whilst the controller 
element manages the request, and invokes application logic. Even though view and controller 
inhabit the same page, they are rigidly separated. 

There is very little to this example (aside from the database work going on behind the 
scenes, of which more in the section "The Data Layer"). The PHP block at the top of the page 
attempts to get a list of Venue objects, which it stores in the $venues global variable. 

If an error occurs, then the page delegates to a page called "error.php" by using include(), 
followed by exit () to kill any further processing on the current page. I prefer this mechanism 
to an HTTP forward, which is much more expensive, and loses you any environment you may 
have set up in memory. If no include takes place, then the HTML at the bottom of the page (the 
view) is shown. 

Figure 12-7 shows this crude model. 

Venues Controller Error Controller 

Venues View Error View 

Figure 12-7. Page Controllers embedded in views 

This will do as a quick test, but a system of any size or complexity will probably need more 
support than that. 

The Page Controller code was previously implicitly separated from the view. Here I make 
the break starting with a rudimentary Page Controller base class: 

abstract class woo_controller_PageController { 

} 

private $request; 
function __ construct() { 

} 

$request= woo_base_RequestRegistry::getRequest(); 
if ( ! $request ) { $request = new woo_controller_Request(); } 
$this->request = $request; 

abstract function process(); 

function forward( $resource ) { 
include( $resource ); 
exit( o ); 

} 

function getRequest() { 
return $this->request; 

} 

253 



254 CHAPTER 12 ENTERPRISE PATTERNS 

This class uses some of the tools that we have already looked at, in particular the Request 
and RequestRegistry classes. The PageController class's main roles are to provide access to a 
Request object, and to manage the including of views. This list of purposes would quickly grow 
in a real project as more child classes discover a need for common functionality. 

A child class could live inside the view, and thereby display it by default as before, or it 
could stand separate from the view. The latter approach is cleaner, I think, so that's the path I 
take. Here is a PageController that attempts to add a new venue to the system: 

class woo_controller_AddVenueController extends woo_controller_PageController { 
function process() { 

} 
} 

try { 
$request = $this->getRequest(); 
$name = $request->getProperty( 'venue_name' ); 
if ( ! $request->getProperty('submitted') ) { 

$request->addFeedback("choose a name for the venue"); 
$this->forward( 'add_venue.php' ); 

} else if ( ! $name ) { 

} 

$request->addFeedback("name is a required field"); 
$this->forward( 'add_venue.php' ); 

II just creating the object is enough to add it 
II to the database 
$venue = new woo_domain_Venue( null, $name ); 
$this->forward( "ListVenues.php" ); 

} catch ( Exception $e ) { 
$this->forward( 'error.php' ); 

} 

$controller = new woo_controller_AddVenueController(); 
$controller->process(); 

The AddVenueController class only implements the process () method. process () is 
responsible for checking the user's submission. If the user has not submitted a form, or has 
completed the form incorrectly, the default view (add_ venue. php) is included, providing feed­
back and presenting the form. If we successfully add a new user, then the method invokes 
forward () to send the user to the ListVenues Page Controller. 

Note the format I used for the view. I tend to differentiate view files from class files by using 
all lowercase file names in the former and camel case in the latter. 

Here is the view associated with the AddVenueController class: 

<?php 
require_once( "woo/base/Registry.php" ); 
$request= woo_base_RequestRegistry::getRequest(); 
?> 
<html> 
<head> 
<title>Add Venue</title> 
</head> 



<body> 
<hl>Add Venue</hl> 

<table> 
<tr> 
<td> 
<?php 

CHAPTER 12 

print $request->getFeedbackString("</td></tr><tr><td>"); 
?> 
<ltd> 
<ltr> 
</table> 

<form action="AddVenue.php" method="get"> 
<input type="hidden" name="submitted" value="yes"/> 
<input type="text" name="venue name" I> 

</form> 

</body> 
</html> 

ENTERPRISE PATTERNS 

As you can see, the view does nothing but display data and provide the mechanism for 
generating a new request. The request is made to the PageController, not back to the view. 
Remember, it is the PageController class that is responsible for processing requests. 

You can see an overview of this more complicated version of the Page Controller pattern 
in Figure 12-8. 

Page Controller 

+process() 
+forward() 

~-
I I 

AddVenue 1----> ListVenues 

+process() +process() 
I 

.q--'--~-'--V/ 

add_venue.php c:_____J list_venues.php 

Figure 12-8. A Page Controller class hierarchy and its include relationships 

255 



256 CHAPTER 12 ENTERPRISE PATTERNS 

Consequences 
This approach has the great benefit that it makes sense to anyone with any Web experience 
straightaway. We make a request for venues. php, and that is precisely what we get. Even an 
error is within the bounds of everyday expectation, with "server error" and "page not found" 
pages an everyday reality. 

Things get a little more complicated if you separate the view from the Page Controller, but 
the near one-to-one relationship between the participants is clear enough. 

One potential area of confusion lies with the inclusion of views. A Page Controller includes 
its view once it has completed processing. In some circumstances, though, it might use the 
same inclusion code to include another Page Controller. So, for example, when AddVenue 
successfully adds a venue, it no longer needs to display the addition form. Instead it delegates 
to another Page Controller called ListVenues. You need to be clear about when you are dele­
gating to a view, and when you are delegating to another Page Controller. It is the responsibility 
of the Page Controller to ensure that its views have the data they need to do their job. 

Although a Page Controller class might delegate to Command objects, the benefit of doing so 
is not so marked as it is with Front Controller. Front Controller classes need to work out what 
the purpose of a request is; Page Controller classes already know this. The light request checking 
and logic layer calls that you would put in a Command sit just as easily in a Page Controller class, 
and you benefit from the fact that you do not need a mechanism to select your Command objects. 

Duplication can be a problem, but the use of a common super class can factor away a lot 
of that. You can also save on setup time, because you can avoid loading data you won't be 
needing in the current context. Of course, you could do that with Front Controller too, but the 
process of discovering what is and is not needed would be much more complicated. 

The real drawback to the pattern lies in situations where the paths through your views are 
complex-especially when the same view is used in different ways at different times (add and 
edit screens are a good example of this). You can find that you get tangled up in conditionals 
and state checking, and it becomes hard to get an overview of your system. 

It is not impossible to start with a Page Controller and move toward a Front Controller, 
however. This is especially true if you are using a PageController super class. 

As a rule of thumb, ifl estimate a system should take me less than a week or so to complete, 
and that it isn't going to need more phases in the future, I would choose a Page Controller, and 
benefit from fast turnaround. Ifl were building a large project that needs to grow over time and 
has complex view logic, I would go for a Front Controller every time. 

Template View and View Helper 
Template View is pretty much what you get by default in PHP, in that we can commingle 
presentation markup (HTML) and system code (native PHP). As I have said before, this is both 
a blessing and a curse, because the ease with which these can be brought together represents a 
temptation to combine application and display logic in the same place with potentially disas­
trous consequences. 

In PHP then, programming the view is largely a matter of restraint. If it isn't strictly a 
matter of display, then treat any code with the greatest suspicion. 

To this end, the View Helper pattern (Alur et al.) provides for a helper class that may be 
specific to a view or shared between multiple views to help with any tasks that require more 
than the smallest amount of code. 



CHAPTER 12 ENTERPRISE PATTERNS 

The Problem 
These days it is becoming rarer to find SQL queries and other business logic embedded directly 
in display pages, but it still happens. I have covered this particular evil in great detail in previous 
chapters, so let's keep this brief. 

Web pages that contain too much code can be hard for Web producers to work with, as 
presentation components become tangled up in loops and conditionals. 

Business logic in the presentation forces you to stick with that interface. You can't switch 
in a new view easily without porting across a lot of application code too. 

With many operations recurring from view to view, systems that embed application code 
in their templates tend to fall prey to duplication as the same code structures are pasted from 
page to page. Where this happens, bugs and maintenance nightmares surely follow. 

To prevent this happening, you should handle application processing elsewhere, and 
allow views to manage presentation only. This is often achieved by making views the passive 
recipients of data. Where a view does need to interrogate the system, it is a good idea to provide 
a View Helper object to do any involved work on the view's behalf. 

Implementation 

Once you have created a wider framework, the View layer is not a massive programming 
challenge. Of course, it remains a huge design and information architecture issue, but that's 
another book! 

Template View was so named by Martin Fowler. It is a staple pattern used by most Enterprise 
programmers. In some languages an implementation might involve cooking up a templating 
system that translates tags to values set by the system. We have that option in PHP too. We 
could use a templating engine like the excellent Smarty. My preferred option, though, is to use 
PHP's existing functionality, but to use it with care. 

In order for a view to have something to work with, it must be able to acquire data. I like to 
define a View Helper that views can use. From this, they can get access to the Request object 
and through it to any other objects that they need to do their job. 

Here is a simple View Helper class: 

class VH { 
static function getRequest() { 

return woo_base_RequestRegistry::getRequest(); 
} 

} 

All this class does at present is to provide access to a Request object. You can extend it to 
provide additional functionality as your application evolves. If you fmd yourself doing some­
thing in a view that takes up more than a couple of lines, chances are it belongs in the View 
Helper. In a larger application, you may provide multiple View Helper objects in an inheritance 
hierarchy in order to provide different tools for different parts of your system. 

Here is a simple view that uses both the View Helper and the Request object: 

257 



258 CHAPTER 12 • ENTERPRISE PATTERNS 

<?php 
require_once( "woo/view/ViewHelper.php" ); 
$request= VH::getRequest(); 
$venue = $request->get0bject('venue'); 
?> 

<html> 
<head> 
<title>Add a Space for venue <?php echo $venue->getName() ?></title> 
</head> 
<body> 
<hl>Add a Space for Venue '<?php print $venue->getName() ?>'</hl> 

<table> 
<tr> 
<td> 
<?php print $request->getFeedbackString("</td></tr><tr><td>"); ?> 
<ltd> 
</tr> 
</table> 

<form method="post"> 
<input type="text" 
value="<?php echo $request->getProperty( 'space_name' ) ?>" name="space_name"l> 

<input type="hidden" name="venue_id" value="<?php echo $venue->getld() ?>" I> 
<input type="submit" value="submit" I> 

</form> 

</body> 
</html> 

The view (add_ space. php) gets a Request object from the View Helper (VH) and uses its 
methods to supply the dynamic data for the page. In particular, the get Feedback() method 
returns any messages set by commands, and getObject () acquires any objects cached for the 
View layer. get Property () is used to access any parameters set in the HTTP request. 

You could simplify things still further here by making the View Helper a proxy that delegates 
for the Request object's most useful methods, saving the View layer the bother of even acquiring 
a reference to Request. 

Clearly this example doesn't banish code from the view, but it does severely limit the 
amount and kind of coding that needs to be done. The page contains simple print statements 
and a few method calls. A designer should be able to work around code of this kind with little 
or no effort. 

Slightly more problematic are if statements and loops. These are difficult to delegate to a 
View Helper because they are usually bound up with formatted output. I tend to keep both 
simple conditionals and loops (which are very common in building tables that display rows of 
data) inside the Template View, but to keep them as simple as possible, delegating things like 
test clauses where possible. 



CHAPTER 12 • ENTERPRISE PATTERNS 259 

Consequences 
There is something slightly disturbing about the way that data is passed to the view layer, in 
that a view doesn't really have a fixed interface that guarantees its environment. I tend to think 
of every view as entering into a contract with the system at large. The view effectively says to the 
application, "Ifl am invoked, then I have a right to access object This, object That, and object 
TheOther." It is up to the application to ensure that this is the case. 

Surprisingly, I have always found that this works perfectly well for me, though you could 
make views stricter by adding assertions to view-specific helper classes. If you go as far as this, 
you could go for complete safety and provide accessor methods in the helper classes that do 
away with the need for the evil Request: :getObject() method, which is clearly just a wrapper 
around an associative array. 

While I like type safety where I can get it, I find the thought of building a parallel system of 
views and View Helper classes exhausting in the extreme. I tend to register objects dynamically 
for the view layer, whether through a Request object, a SessionRegistry, or a RequestRegistry. 

While templates are often essentially passive, populated with data resulting from the last 
request, there may be times when the view may need to make an ancillary request. The View 
Helper is a good place to provide this functionality, keeping any knowledge of the mechanism 
by which data is required hidden from the view itself. Even the View Helper should do as little 
work as possible, delegating to a command or contacting the domain layer via a Facade. 

•Note We saw the Facade pattern in Chapter 10. Alur et al. look at one use of Facades in Enterprise 
programming in the Session Facade pattern (which is designed to limit fine-grained network transactions). 
Martin Fowler also describes a pattern called Service Layer which provides a simple point of access to the 
complexities within a layer. 

The Business Logic Layer 
If the control layer orchestrates communication with the outside world and marshals a system's 
response to it, the logic layer gets on with the business of an application. This layer should be as 
free as possible of the noise and trauma generated as query strings are analyzed, HTML tables 
are constructed, and feedback messages composed. Business logic is about doing the "stuff" 
that needs doing-the true purpose of the application. Everything else exists just to support 
these tasks. 

In a classic object-oriented application, the Business Logic layer is often composed of 
classes that model the problems that the system aims to address. As we shall see, this is a flexible 
design decision. It also requires significant up-front planning. 

Let's begin, then, with the quickest way of getting a system up and running. 

Transaction Script 
The Transaction Script pattern (Patterns of Enterprise Application Architecture) describes the 
way that many systems evolve of their own accord. It is simple, intuitive, and effective, although it 
becomes less effective as systems grow. It is also a hard pattern to categorize, because it combines 



260 CHAPTER 12 ENTERPRISE PATTERNS 

elements from other layers in this chapter. I have chosen to present it as part of the Business Logic 

layer because the pattern's motivation is to achieve the business aims of the system. 

The Problem 

Every request must be handled in some way. As we have seen, many systems provide a layer 

that assesses and filters incoming data. Ideally, though, this layer should then call on classes 

that are designed to fulfill the request. Each of these classes will provide a set of methods, and 

each method will be crafted to handle a particular request. 
The problem then is the need to provide a fast and effective mechanism for fulfilling a 

system's objectives. 
The great benefit of this pattern is the speed with which you can get results. Each script 

takes input, and manipulates the database to ensure an outcome. Beyond organizing related 

methods within the same class, and keeping the Transaction Script classes in their own tier 

(that is, as naive as possible of the Command and Controller and View layers), there is little up­

front design required. 
While Business Logic layer classes tend to be clearly separated from the Presentation layer, 

they are often more embedded in the Data layer. This is because retrieving and storing data is 

key to the tasks that such classes often perform. We will see mechanisms for decoupling logic 

objects from the database later in the chapter. Transaction Script classes, though, usually know 

all about the database (though they can use gateway classes to handle the details of their actual 

queries). 

Implementation 

Let's return to our events listing example. In this case, the system supports three relational 

database tables: venue, space, and event. A venue may have a number of spaces (a theater can 

have more than one stage, for example, a dance club may have different rooms, and so on). 

Each space plays host to many events. Here is the schema: 

CREATE TABLE venue 
( id !NT PRIMARY KEY, name TEXT ); 
CREATE TABLE space 
( id !NT PRIMARY KEY, venue !NT, name TEXT ); 
CREATE TABLE event 
( id !NT PRIMARY KEY, space !NT, start long, duration int, name text ); 

Clearly our system will need mechanisms for adding both venues and events. Each of 

these represents a single transaction. We could give each method its own class (and organize 

our classes according to the Command pattern that we encountered in the last chapter). In this 

case, though, we are going to place the methods in a single class, albeit as part of an inheritance 

hierarchy. You can see the structure in Figure 12-9. 
So why does this example include an abstract super class? In a script of any size, we would 

be likely to add more concrete classes to this hierarchy. Since most of these will work with the 

database, a common super class is an excellent place to put core functionality for making data­

base requests. 



CHAPTER 12 ENTERPRISE PATTERNS 

woo_process_Base 

+prepareStatement($stmt:String) 
+doStatement($stmt:String,$values:array 

r 
woo_process_ VenueManager 

+addVenue($name:String,$space_array:array) 
+bookEvent($venue id:int,$name:String,$time:int,$duration:in 

Figure 12-9. A Transaction Script class with its super class 

In fact, this is a pattern in its own right (Martin Fowler has named it Layer Supertype), 
albeit one that most programmers use without thinking. Where classes in a layer share charac­
teristics, it makes sense to group them into a single type, locating utility operations in the base 
class. We will see this a lot in this chapter. 

In this case, the base class acquires a DB object, which it stores in a static property. It also 
provides methods for caching database statements and making queries. 

abstract class woo_process_Base { 
static $DB; 
static $stmts = array(); 

function __ construct() { 

} 

self: :$DB = woo_base_RequestRegistry: :getDB( "DB" ); 
if ( ! self::$DB) { 

throw new woo_base_AppException( "No DB object" ); 
} 
if ( DB::isError( self::$DB) ) { 

throw new woo_base_DBException( self::$DB ); 
} 

protected function prepareStatement( $stmt_s ) { 
if ( self::$stmts[$stmt_s] ) { 

} 

return self::$stmts[$stmt_s]; 
} 
$stmt_handle = self::$DB->prepare($stmt_s); 
if ( DB::isError( $stmt_handle) ) { 

throw new woo_base_DBException( $stmt_handle ); 
} 
self::$stmts[$stmt_s] $stmt_handle; 
return $stmt_handle; 

261 



262 CHAPTER 12 ENTERPRISE PATTERNS 

} 

protected function doStatement( $stmt_s, $values_a ) { 
$st_handle = $this->prepareStatement( $stmt_s ); 
$db_result = self::$DB->execute( $st_handle, $values_a ); 
if ( DB::isError( $db_result) ) { 

throw new woo_base_DBException( $db_result ); 
} 
return $db_result; 

} 

There's less to this class than meets the eye. Most of the bulk you can see is code for throwing 

exceptions when things go wrong. 
We use the RequestRegistry class to acquire a DB_ common object, which we store in the 

static $DB property. If we fail to acquire a DB_ common object, we throw an exception, ensuring 

that the type can only be used with a valid database connection. 
The prepareStatement () method simply calls DB_ Common class's prepare() method, which 

returns a statement handle. This is eventually passed to the execute () method. To run a query 

though in this method, we simply cache the resource in a static array called $stmts. We use the 

SQL statement itself as the array element's index. 
prepareStatement () can be called directly by child classes, but it is more likely to be invoked 

via doStatement(). This accepts an SQL statement, and a mixed array of values (strings and 

integers). This array should contain the values that are to be passed to the database in executing 
the statement. The method then uses the SQL statement in a call to prepare Statement (), acquiring 

a statement resource that it uses with the DB_ common: :execute () method. If an error occurs, we 
throw an exception. As we will see, all this work is hidden from our transaction scripts. All they 
need to do is formulate the SQL and get on with business logic. 

Here is the start of the VenueManager class, which sets up our SQL statements: 

class woo_process_VenueManager extends woo_process_Base { 
static $add_venue = "INSERT INTO venue 

( id, name ) 
values( ?, ? )"; 

static $add_space "INSERT INTO space 
( id, name, venue 
values ( ? , ? , ? ) "; 

static $check_slot "SELECT id, name 
FROM event 
WHERE space=? 
AND (start+duration) > ? 
AND start< ?"; 

static $add_event "INSERT INTO event 

!! ... 

( id, name, space, start, duration ) 
values ( ? , ? , ? , ? , ? ) "; 

Not much new here. These are the SQL statements that the transaction scripts will use. 
They are constructed in a format accepted by the DB package's prepareStatement () method. 

The question marks are placeholders for the values that will be passed to doStatement (). 



CHAPTER 12 ENTERPRISE PATTERNS 

Let's look at the first method designed to fulfill a specific business need: 

function addVenue( $name, $space_array ) { 

} 

II check input here 
$ret = array(); 
$v_id = self::$08->nextld('venue'); 
$ret['venue'] =array( $v_id, $name); 
$this->doStatement( self::$add_venue, $ret['venue']); 
$ret['spaces'] =array(); 
foreach ( $space_array as $space_name ) { 

$s_id = self::$08->nextld('space'); 

} 

$values = array($s_id, $space_name, $v_id ); 
$this->doStatement( self::$add_space, $values); 
$ret['spaces'][] =$values; 

return $ret; 

As you can see, addVenue () requires a venue name, and an array of space names. It uses 
these to populate the venue and space tables. It also creates a data structure that contains this 
information, along with the newly generated ID values for each row. 

This method is spared lots oftedious database work by the super class. We acquire a table­
unique ID value from the database and pass that, along with the venue name provided by the 
caller, to doStatement(). If there's an error with this, remember, an exception is thrown. We 
don't catch any exceptions here, so anything thrown by doStatement () or (by extension) 
prepareStatement ()will also be thrown by this method. This is the result we want, although we 
should be careful to make it clear that this method throws exceptions in our documentation. 

Having created the venue row, we loop through $space_ array, adding a row in the space 
table for each element. Notice that we include the venue ID as a foreign key in each of the space 
rows we create, associating the row with the venue. 

The second Transaction Script is similarly straightforward: 

function bookEvent( $space_id, $name, $unixtime, $duration ) { 
$result = 

} 

$this->doStatement( self::$check_slot, 
array( $space_id, $unixtime, ($unixtime+$duration) ) ); 

if ( $result->numRows() > o ) { 

} 

throw new woo_base_AppException( "double booked! 
try again" ); 

$e_id = self::$08->nextld('event'); 
$this->doStatement( self::$add_event, 

array( $e_id, $name, $space_id, $unixtime, $duration ) ); 

The purpose of this script is to add an event to the events table, associated with a space. 
Notice that we use the SQL statement contained in $check_ slot to make sure that the proposed 
event does not clash with another in the same space. 

263 



264 CHAPTER 12 ENTERPRISE PATTERNS 

Consequences 
The Transaction Script pattern is an effective way of getting good results fast. It is also one of 
those patterns many programmers have used for years without imagining it might need a name. 
With a few good helper methods like those we added to the base class, you can concentrate on 
application logic without getting too bogged down in database fiddle-faddling. 

I have seen Transaction Script appear in a less welcome context. I thought I was writing a 
much more complex and object-heavy application than would usually suit this pattern. As the 
pressure of deadlines began to tell, I found that I was placing more and more logic in what was 
intended to be a thin facade onto a Domain Model (see the next section). Although the result 
was less elegant than I had wanted, I have to admit that the application did not appear to suffer 
for its implicit redesign. 

In most cases, you would choose a Transaction Script approach with a small project when 
you are certain it isn't going to grow into a large one. The approach does not scale well, because 
duplication often begins to creep in as the scripts inevitably cross one another. You can go 
some way to factoring this out, of course, but you probably will not be able to excise it completely. 

In our example, we decide to embed database code in the Transaction Script classes them­
selves. As you saw, though, the code wants to separate the database work from the application 
logic. We can make that break absolute by pulling it out of the class altogether and creating a 
gateway class whose role it is to handle database interactions on the system's behalf. 

Domain Model 
The Domain Model is the pristine logical engine that many of the other patterns in this chapter 
strive to create, nurture, and protect. It is an abstracted representation of the forces at work in 
your project. A kind of plane of forms, where your business problems play out their nature 
unencumbered by nasty material issues like databases and Web pages. 

If that seems a little flowery, let's bring it down to reality. A Domain Model is a representa­
tion of the real-world participants of your system. It is in the Domain Model that the object-as­
thing rule of thumb is truer than elsewhere. Everywhere else, objects tend to embody respon­
sibilities. In the Domain Model, they often describe a set of attributes, with added agency. They 
are things that do stuff. 

The Problem 
If you have been using Transaction Scripts, you may find that duplication becomes a problem 
as different scripts need to perform the same tasks. That can be factored out to a certain extent, 
but over time it's easy to fall into cut-and-paste coding. 

You can use a Domain Model to extract and embody the participants and process of your 
system. Rather than using a script to add space data to the database, and then associate event 
data with it, you can create Space and Event classes. Booking an event in a space can then become 
as simple as a call to Space: : bookEvent ().A task like checking for a time clash becomes 
Event: :intersects (), and so on. 



CHAPTER 12 • ENTERPRISE PATTERNS 265 

Clearly, with an example as simple as Woo, a Transaction Script is more than adequate, 
but as domain logic becomes more complex, it becomes much easier to handle, and less riddled 
with conditional code if the problems are rendered as a model. 

Implementation 
Domain Models can be relatively simple to design. Most of the complexity around the subject 
lies with the patterns that are designed to keep the model pure-that is, to separate it from the 
other tiers in the application. 

Separating the participants of a Domain Model from the presentation layer is largely a 
matter of ensuring that they keep to themselves. Separating the participants from the Data 
layer is much more problematic. Although the ideal is to consider a Domain Model only in 
terms of the problems it represents and· resolves, the reality of the database is hard to escape. 

It is common for Domain Model classes to map fairly directly to tables in a relational data­
base, and this certainly makes life easier. Figure 12-10, for example, shows a class diagram that 
sketches some of the participants of the Woo system. 

rt> DomainObject 

+getld() 

1-- Venue -
+getName(): String 
+getSpaces(): SpaceCollectio~ 
+addSpace($space:Space) 

f-- Space 

+getName(): String 
+bookEvent($event:Event) 

......__ Event 

+getName(): String 
+intersects($event:Event) 

Figure 12-10. An extract from a Domain Model 

The objects in Figure 12-10 mirror the tables that were set up for the Transaction Script 
example. This direct association makes a system easier to manage, but it is not always possible, 
especially if you are working with a database schema that precedes your application. 



268 CHAPTER 12 ENTERPRISE PATTERNS 

Just because a Domain Model often mirrors the structure of a database does not mean that 
its classes should have any knowledge of it. By separating the model from the database, you 
make the entire tier easier to test, and less likely to be affected by changes of schema, or even 
changes of storage mechanism. It also focuses the responsibility of each class upon its core tasks. 

Here is a simplified Venue object: 

class woo_domain_Venue extends woo_domain_DomainObject { 
private $name; 

} 

private $spaces; 

function __ construct( $id=null, $name=null ) { 
$this->name = $name; 

} 

$this->spaces = self::getCollection("woo_domain_Space"); 
parent:: __ construct( $id ); 

function setSpaces( woo_domain_SpaceCollection $spaces ) { 
$this->spaces = $spaces; 

} 

function getSpaces() { 
return $this->spaces; 

} 

function addSpace( woo_domain_Space $space ) { 
$this->spaces->add( $space ); 
$space->setVenue( $this ); 

} 

function setName( $name_s ) { 
$this->name = $name_s; 

$this->markDirty(); 
} 

function getName( ) { 
return $this->name; 

} 

There a few points that distinguish this class from one intended to run without persis­
tence. Instead of an array, we are using an object of type SpaceCollection to store any Space 
objects the Venue might contain. (Though we could argue that a type-safe array is a bonus whether 
you are working with a database or not!) Because this class works with a special collection 
object rather than an array of Space objects, the constructor needs to instantiate an empty 
collection on startup. It does this by calling a static method on the Layer Supertype. 

$this->spaces = self: :getCollection( "woo_ domain _Space"); 



CHAPTER 12 • ENTERPRISE PATTERNS 267 

I will return to this system's collection objects shortly. 
We expect an $id parameter in the constructor that we pass to the super class for storage. 

It should come as no surprise to learn that the $id parameter represents the unique ID of a row 
in the database. Notice also that we call a method on the super class called markDirty() (this 
will covered when we encounter the Unit of Work pattern). 

Consequences 
The design of a Domain Model needs to be as simple or complicated as the business processes 
you need to emulate. The beauty of this is that you can focus on the forces in your problem 
as you design the model, and handle issues like persistence and presentation in other layers. 
In theory, that is. 

In practice I think that most developers design their domain models with at least one eye 
on the database. No one wants to design structures that will force you (or, worse, your 
colleagues) into somersaults of convoluted code when it comes to getting your objects in and 
out of the database. 

This separation between Domain Model and the Data layer comes at a considerable cost 
in terms of design and planning. It is possible to place database code directly in the model 
(although you would probably want to design a gateway to handle the actual SQL). For relatively 
simple models, and especially if each class broadly maps to a table, this approach can be a real 
win, saving you the considerable design overhead of devising an external system for reconciling 
your objects with the database. 

The Data Layer 
In discussions with clients, it's usually the Presentation layer that dominates. Fonts, colors, 
and ease of use are the primary topics of conversation. Amongst developers it is often the data­
base that looms large. It's not the database itself that concerns us; we can trust that to do its job 
unless we're very unlucky. No, it's the mechanism we use to translate the rows and columns of 
a database table into data structures that cause the problems. In this section, we look at code 
that can help with this process. 

Not everything presented here sits in the Data layer itself. Rather I have grouped here 
some of the patterns that help to solve persistence problems. 

Data Mapper 
If you thought I glossed over the issue of saving and retrieving Venue objects from the database 
in the "Domain Model" section, here is where you might find at least some answers. The Data 
Mapper pattern is described by both Alur et al. (as Data Access Object) and Martin Fowler. 
(In fact, Data Access Object is not an exact match as it generates data transfer objects, but since 
such objects are designed to become the real thing if you add water, the patterns are close enough.) 

As you might imagine, a Data Mapper is a class that is responsible for handling the transi­
tion from database to object. 



268 CHAPTER 12 • ENTERPRISE PATTERNS 

The Problem 
Objects are not organized like tables in a relational database. As you know, database tables are 
grids made up of rows and columns. One row may relate to another in a different (or even the 
same) table by means of a foreign key. Objects, on the other hand, tend to relate to one another 
more organically. One object may "contain" another, and different data structures will organize 
the same objects in different ways, combining and recombining objects in new relationships at 
runtime. 

So how do we make that transition? One answer is to give a class (or a set of classes) 
responsibility for just that problem, effectively hiding the database from the Domain Model, 
and managing the inevitable rough edges of the translation. 

Implementation 

Although with careful programming it may be possible to create a single Mapper class to service 
multiple objects, it is common to see an in,dividual Mapper for a major class in the Domain Model. 

Figure 12-11 shows three concrete Mapper classes and an abstract super class. 

Mapper 

+find($id:int) 
#doFind() 
+insert($obj:Domain0bject) 
+update($obj:Domain0bject) 
+load() 
#doLoad($array:array) 

Lt 
I I 1 

VenueMapper Space Mapper EventMapper 

#do Find() #doFind() #do Find() 
+insert($obj:Domain0bject) +insert($obj:DomainObject) +insert($obj:Domain0bject) 
+update($obj:Domain0bject) +update($obj:DomainObject) +update($obj:Domain0bject) 
#doLoad($array:array) #doLoad($array:array) #doLoad($array:array) 

Figure 12-11. Mapper classes 

In fact, since the Space objects are effectively subordinate to Venue objects, it may be 
possible to factor the SpaceMapper class into VenueMapper. For the sake of these exercises, I'm 
going to keep them separate. 

As you can see, the classes present common operations for saving and loading data. The 
base class stores common functionality, delegating to its children to handle object -specific 
operations. Typically these operations include actual object generation and constructing 
queries for database operations. 

The base class often performs housekeeping before or after an operation, which is why 
Template Method is used for explicit delegation (calls from concrete methods like load() to 
abstract ones like do Load (), etc.). Implementation determines which of the base class methods 
are made concrete in this way, as you will see later in the chapter. 

Here is a simplified version of a Mapper base class: 



CHAPTER 12 ENTERPRISE PATTERNS 269 

abstract class woo_mapper_Mapper { 
protected static $DB; 

} 

function __ construct() { 

} 

if ( ! self::$DB) { 

} 

self::$DB = woo_controller_ApplicationHelper:: 
instance()->DB( ); 

function load( DB_Result $result ) { 

} 

$array = $result->fetchRow( DB_FETCHMODE_ASSOC ); 
if ( ! is_array( $array ) ) { return null; } 
if ( ! $array['id'] ) {return null; } 
$object = $this->loadArray( $array ); 
return $object; 

function loadArray( $array ) { 

} 

$obj = $this->doload( $array ); 
return $obj; 

function find( $id ) { 
return $this->doFind( $id ); 

} 

protected function doStatement( $sth, $values ) { 
$db_result = self::$DB->execute( $sth, $values); 
if ( DB::isError( $db_result) ) { 

throw new woo_base_DBException( $db_result ); 
} 
return $db_result; 

} 
abstract function insert( woo_domain_DomainObject $obj ); 
abstract function update( woo_domain_DomainObject $object ); 
protected abstract function doload( $array ); 
protected abstract function doFind( $id ); 

The constructor method uses an ApplicationHelper to get a DB_ common object. A stand­
alone Singleton or a request-scoped Registry really come into their own for classes like this. 
There isn't always a sensible path from the presentation layer to a Mapper along which data 
can be passed. I have omitted code to test the DB_ common object for validity, although in fact the 
ApplicationHelper object does this and throws an exception if it has problems, so we are safe 
enough. 



270 CHAPTER 12 ENTERPRISE PATTERNS 

The find() method does nothing but delegate to doFind ().This would be something that 
I would factor out in favor of an abstract find () method were it not for the fact that I know that 
the implementation will be useful here in due course. 

do Find() is responsible for constructing and running any queries that are needed. Indi­
vidual child classes take responsibility for that, finishing up by calling load (). load () is 
responsible for extracting an associative array from the DB_ result object. Having acquired the 
array, it calls a method named loadArray (), which is responsible for transforming an associative 
array into a Doma inObj ect instance. loadArray () does this by delegating to the child class's 
implementation of do load (). 

Child classes will also implement custom methods for finding data according to specific 
criteria (we will want to locate Space objects that belong to Venue objects, for example). 

The doStatement () method is a utility method. It accepts a statement handle and an array 
of values, and invokes the DB_common: :execute() method, returning a DB_result handle, all 
being well. This method is called by all mapper code that needs to make a database query. 

You can take a look at the process from the child's perspective here: 

class woo_mapper_VenueMapper extends woo_mapper_Mapper { 
private $selectStmt; 
private $updateStmt; 
private $insertStmt; 

function __ construct() { 

} 

parent:: __ construct(); 
$this->selectStmt = self::$DB->prepare( 

"SELECT* FROM venue WHERE id=?"); 
$this->updateStmt = self::$DB->prepare( 

"UPDATE venue SET name=?, id=? WHERE id=?"); 
$this->insertStmt = self::$DB->prepare( 

"INSERT into venue (name, id) 
values( ?, ?)"); 

function doFind( $id ) { 

} 

$result = $this->doStatement( $this->selectStmt, array( $id ) ); 
return $this->load( $result ); 

protected function doload( $array ) { 

} 

$obj =new woo_domain_Venue( $array['id'] ); 
$obj->setName( $array['name'] ); 
return $obj; 



} 

CHAPTER 12 ENTERPRISE PATTERNS 271 

function insert( woo_domain_DomainObject $object ) { 
$id = $this->newid(); 

} 

$object->setld( $id ); 
$values = array( $object->getname(), $object->getid() ); 
$this->doStatement( $this->insert5tmt, $values ); 

public function newld() { 
return self::$DB->nextid('venue'); 

} 

function update( woo_domain_DomainObject $object ) { 
$values = array( $object->getname(), 

} 

$object->getid(), $object->getid() ); 
$this->do5tatement( $this->updateStmt, $values ); 

Once again, this class is stripped of some of the goodies that are still to come. Nonetheless, 
it does its job. The constructor prepares some SQL statements for use later on. These could be 
made static and shared across VenueMapper instances, or a single Mapper object could be stored 
in a Registry, thereby saving the cost of repeated instantiation. These are refactorings I will 
leave to you! 

The do Find () method uses the $select5tmt property and the user-supplied $id to invoke 
doStatement () on the super class. This should result in a result handle that is passed on to 
load ().As you have seen, load () delegates to do load () where a Venue object is created. 

From the point of view of the client, this process is simplicity itself: 

$mapper = new woo_mapper_VenueMapper(); 
$venue = $mapper->find( 39 ); 
print_r( $venue ); 

The print_r() method is a quick way of confirming that find() was successful. In my 
system (where there is a row in the venue table with ID 39), the output from this fragment is 

woo_domain_Venue Object 
( 

[name:private] => The Hairy Arms 
[spaces:private] => 
[id:private] => 39 

The insert () and update () methods reverse the process established by find (). Each 
accepts a DomainObject, extracts row data from it, and calls doStatement () with the resulting 
information. Notice that the insert() method sets an ID on the provided object. Remember 
that objects are passed by reference in PHP 5, so the client code will see this change via its own 
reference. 

Another thing to note is that insert() and update() are not really type safe. They will accept 
any DomainObject subclass without complaint. You should probably perform an instanceof 



272 CHAPTER 12 ENTERPRISE PATTERNS 

test, and throw an Exception if the wrong object is passed. This will guard against unfortunate 
but inevitable bugs. 

Once again, here is a client perspective on inserting and updating: 

$venue = new woo_domain_Venue(); 
$venue->setName( "The Likey Lounge" ); 
II add the object to the database 
$mapper->insert( $venue ); 
II find the object again- just prove it works! 
$venue = $mapper->find( $venue->getld() ); 
print_r( $venue ); 
II alter our object 
$venue->setName( "The Bibble Beer Likey Lounge" ); 
II call update to enter the amended data 
$mapper->update( $venue ); 
II once again, go back to the database to prove it worked 
$venue = $mapper->find( $venue->getld() ); 
print_r( $venue ); 

Handling Multiple Rows 

The find () method is pretty straightforward because it only needs to return a single object. What 
do you do though if you need to pull lots of data from the database? Your first thought may be to 
return an array of objects. This will work, but there is a major problem with the approach. 

If you return an array, each object in the collection will need to be instantiated first, which, 
if you have a result set of 1,000 objects, may be needlessly expensive. An alternative would be 
to simply return an array and let the calling code sort out object instantiation. This is possible, 
but it violates the very purpose of our Mapper classes. 

There is one way we can have our cake and eat it. It is a feature new to PHP 5 called the 
Iterator interface. 

The Iter at or interface requires implementing classes to define methods for querying a 
list. If you do this, then your class can be used in foreach loops just like an array. There are 
some people who say that iterator implementations are unnecessary in a language like PHP 
with such good support for arrays. Tish and piffle! I will show you at least three good reasons 
for using PHP's built-in Iterator interface in this chapter. 

Table 12-1 shows the methods that the Iterator interface requires. 

Table 12-1. Methods Defined by the Iterator Interface 

Name 

rewind() 

current() 

key() 

next() 

valid() 

Description 

Send pointer to start of list. 

Return element at current pointer position. 

Return current key (i.e., pointer value). 

Return element at current pointer and advance pointer. 

Confirm that there is an element at the current pointer position. 



CHAPTER 12 ENTERPRISE PATTERNS 273 

So in order to implement an Iterator, you need to implement its methods, and keep track 
of a pointer with relation to some kind of set of data. How you acquire that data, or order it, or 
otherwise filter it is hidden from the client. 

Here is an Iterator implementation that works like an array, but also accepts DB_ Result 
and Mapper objects in its constructor for reasons that will become apparent: 

abstract class woo_mapper_Collection implements Iterator { 
private $mapper; 
private $result; 
private $total = o; 
private $pointer = o; 
private $objects = array(); 
private $raw = array(); 

function __ construct( $result=null, $mapper=null ) { 
if ( $result && $mapper ) { 

$this->init_db( $result, $mapper ); 
} 

} 

protected function init_db( DB_Result $result, 

} 

woo_mapper_Mapper $mapper ) { 
$this->result = $result; 
$this->mapper = $mapper; 
$this->total += $result->numrows(); 
while ( $row = $this->result->fetchRow( DB_FETCHMODE_ASSOC ) ) { 

$this->raw[] = $row; 
} 

protected function doAdd( woo_domain_DomainObject $object ) { 
$this->notifyAccess(); 
$this->objects[$this->total] = $object; 
$this->total++; 

} 

protected function notifyAccess() { 
II deliberately left blank! 

} 

private function getObjectAt( $num ) { 
$this->notifyAccess(); 
if ( $num >= $this->total I I $num < o ) { 

return null; 
} 



274 CHAPTER 12. ENTERPRISE PATTERNS 

} 

} 

if ( $this->objects[$num] ) { 
return $this->objects[$num]; 

} 

if ( $this->raw[$num] ) { 
$this->objects[$num]=$this->mapper->loadArray( $this->raw[$num] ); 
return $this->objects[$num]; 

} 

public function rewind() { 
$this->pointer = o; 

} 

public function current() { 
return $this->getObjectAt( $this->pointer ); 

} 

public function key() { 
return $this->pointer; 

} 

public function next() { 

} 

$row= $this->getObjectAt( $this->pointer ); 
if ( $row ) { $this->pointer++; } 
return $row; 

public function valid() { 
return ( ! is_null( $this->current() ) ); 

} 

The constructor expects to be called with no arguments or with two. Because the constructor 
accepts null values, it defers type checking to the init_db() method (if you use a type hint, 
then your method will not accept a null value for that argument). 

Assuming that the client has set the $result and $mapper arguments (it will be a Mapper 
object that does this), then ini t _db () is invoked. ini t _db () acquires all rows from the result set 
and stores them in an array property called $raw. In fact, there is no really compelling reason 
why this operation needs to take place inside the Iterator. It could be done inside the Mapper 
and the resulting multidimensional array passed to the Iterator. Feel free to refactor! 

If no arguments were passed to the constructor, the class starts out empty, though note 
that there is the doAdd () method for adding to the collection. 

The class maintains two arrays, $objects and $raw.lf a client requests a particular element, 
then the getObjectAt () method looks first in $objects to see if it has one already instantiated. 



CHAPTER 12 • ENTERPRISE PATTERNS 275 

If so, that gets returned. Otherwise, the method looks in $raw for the row data. $raw data is only 
present if a Mapper object is also present, so the raw data can be passed to a new Mapper method, 
loadArray(), which is simply the array loading stage of the find process pulled out into a sepa­
rate operation. This returns a DomainObject object, which is cached in the $objects array with 
the relevant index. The object is returned to the user. 

The rest of the class is simple manipulation of the $pointer property, and calls to 
getObjectAt(). Apart, that is, from the notifyAccess() method, which will become important 
when we encounter the Lazy Load pattern. 

You may have noticed that the Collection class is abstract. You need to provide specific 
implementations for each domain class: 

class woo_mapper_VenueCollection 

{ 

} 

extends woo_mapper_Collection 

function add( woo_domain_Venue $venue ) { 
$this->doAdd( $venue ); 

} 

The VenueCollection class simply extends Collection, and implements an add () method 
that ensures that only Venue objects can be added to the collection. You could provide additional 
checking in the constructor as well if you wanted to be even safer. Clearly this class should only 
work with a VenueMapper. In practical terms, though, this is a reasonably type-safe collection, 
especially as far as the Domain Model is concerned. 

Because the Domain Model needs to instantiate Collection objects, and because we may 
need to switch the implementation at some point (especially for testing purposes), we provide 
a factory class in the Domain layer for generating Collection objects on a type-by-type basis. 
Here's how we get an empty VenueCollection object: 

$collection= woo_domain_HelperFactory::getCollection("woo_domain_Venue"); 

You can then add values to it and loop through it as if it were an array: 

$collection->add( new woo_domain_Venue( null, "Loud and Thumping" ); 
$collection->add( new woo_domain_Venue( null, "Eeezy" ) ); 
$collection->add( new woo_domain_Venue( null, "Duck and Badger" ) ); 

foreach( $collection as $venue ) { 
print $venue->getName()."\n"; 

} 

With the implementation we have built here, there isn't much else you can do with this 
collection, but adding elementAt (), deleteAt (), count (), etc. methods is a trivial exercise. 
(And fun, too! Enjoy!) 

The DomainObject super class is a good place for convenience methods that acquire 
collections. 



276 CHAPTER 12 ENTERPRISE PATTERNS 

II DomainObject 

static function getCollection( $type ) { 
return woo_domain_HelperFactory::getCollection( $type); 

} 

function collection() { 
return self::getCollection( get_class( $this) ); 

} 

The class supports two mechanisms for acquiring a Collection object: static and instance. 
In both cases, the methods simply call HelperFactory: : getCollection ()with a class name. We 
saw the static getCollection () method used in the Domain Model example earlier in the 
chapter. 

In light of all this, the Venue class can be extended to manage the persistence of Space 
objects. The class initializes itself with an empty SpaceCollection object like this: 

function __ construct( $id=null, $name=null ) { 
$this->name = $name; 

} 

$this->spaces = self::getCollection("woo_domain_Space"); 
parent:: __ construct( $id ); 

Venue provides methods for adding individual Space objects to its SpaceCollection, or for 
switching in an entirely new SpaceCollection. 

function setSpaces( woo_domain_SpaceCollection $spaces ) { 
$this->spaces = $spaces; 

} 

function getSpaces() { 
return $this->spaces; 

} 

function addSpace( woo_domain_Space $space ) { 
$this->spaces->add( $space ); 
$space->setVenue( $this ); 

} 

The setSpaces () operation is really designed to be used by the VenueMapper class in 
constructing the Venue. It takes it on trust that all Space objects in the collection refer back to 
the current Venue. It would be easy enough to add checking to the method. This version keeps 
things simple though. 



CHAPTER 12 ENTERPRISE PATTERNS 

The VenueMapper needs to set up a SpaceCollection for each Venue object it creates. 

II VenueMapper 
protected function doload( $array ) { 

} 

$obj =new woo_domain_Venue( $array['id'] ); 
$obj->setname( $array['name'] ); 
$space_mapper = new woo_mapper_SpaceMapper(); 
$space_collection = $space_mapper->findByVenue( $array['id'] ); 
$obj->setSpaces( $space_collection ); 
$obj->markClean(); 
return $obj; 

The VenueMapper: :doload() method gets a SpaceMapper, and acquires a SpaceCollection 
from it. As you can see, the SpaceMapper class implements a findByVenue() method. This is 
identical to findAll () except for the SQL statement used. The resulting collection is set on the 
Venue object via Venue: : setSpaces (). 

So Venue objects now arrive fresh from the database, complete with all their Space objects 
in a neat type-safe list. None of the objects in that list are instantiated before requested. 

Figure 12-12 shows the process by which a client class might acquire a SpaceCollection, 
and how the SpaceCollection class interacts with SpaceMapper: : loadArray () to convert its raw 
data into an object for returning to the client. 

I Cli~nt I SpaceCollection 

findByVenue( 33 ~ 

- - - - - -1 - - - - - - - -

I 
next) 

loadArray() 

Figure 12-12. Acquiring a SpaceCollection, and using it to get a Space object 

Consequences 
The drawback with the approach we took to adding Space objects to Venue ones is that we had 
to take two trips to the database. In most instances, I think that is a price worth paying. If efficiency 
becomes an issue, however, it should be easy enough to factor out SpaceMapper altogether and 
retrieve all the data you need in one go using an SQL join. 

277 



278 CHAPTER 12 ENTERPRISE PATTERNS 

Of course, your code may become less portable as a result of that, but efficiency optimiza­
tion always comes at a price! 

Ultimately, the granularity of your Mapper classes will vary. If an object type is stored solely 
by another, then you may consider only having a Mapper for the container. 

The great strength of this pattern is the strong decoupling it effects between Domain layer 
and database. The Mapper objects take the strain behind the scenes and can adapt to all sorts of 
relational twistedness. 

Perhaps the biggest drawback with the pattern is the sheer amount of slog involved in 
creating the implementing Mapper classes. However, there is a large amount of boilerplate code 
that can be automatically generated. A neat way of generating the common methods for Mapper 
classes is through reflection. You can query a domain object, discover its setter and getter methods 
(perhaps in tandem with an argument naming convention), and generate basic Mapper classes 
ready for amendment. This is how all the Mapper classes featured in this chapter were initially 
produced. 

One issue to be aware of with mappers is the danger ofloading too many objects at one 
time. The Iterator implementation helps us here, though. Because a Collection object only 
holds row data at first, the secondary request (for a Space object) is only made when a particular 
Venue is accessed and converted from array to object. This form of lazy loading can be enhanced 
even further, as we shall see. 

You should be careful of ripple loading. Be aware as you create your mapper that the use 
of another one to acquire a property for your object may be the tip of a very large iceberg. This 
secondary mapper may itself use yet more in constructing its own object. If you are not careful, 
you could find that what looks on the surface like a simple find operation sets off tens of other 
similar operations. 

Identity Map 
Do you remember the nightmare of pass-by-value errors in PHP 4? The sheer confusion that 
ensued when two variables that you thought pointed to a single object turned out to refer to 
different but cunningly similar ones? Well, the nightmare has returned. 

The Problem 

Let's look back to some test code created to try out the Data Mapper example. 

$venue = new woo_domain_Venue(); 
$venue->setName( "The Likey Lounge" ); 
$mapper->insert( $venue ); 
$venue = $mapper->find( $venue->getld() ); 
print_r( $venue ); 
$venue->setName( "The Bibble Beer Likey Lounge" ); 
$mapper->update( $venue ); 
$venue = $mapper->find( $venue->getld() ); 
print_r( $venue ); 

The purpose of this code was to demonstrate that an object that we add to the database 
could also be extracted via a Mapper, and would be identical. Identical, that is, in every way 
except for being the same object. I cheated this problem by assigning the new Venue object over 
the old. Unfortunately, you won't always have that kind of control over the situation. The same 
object may be referenced at several different times within a single request. If you alter one 



CHAPTER 12 ENTERPRISE PATTERNS 279 

version of it, and save that to the database, can you be sure that another version of the object 
(perhaps stored already in a Collection object) won't be written over your changes? 

Not only are duplicate objects risky in a system, they also represent a considerable over­
head. Some popular objects could be loaded three or four times in a process, with all but one 
of these trips to the database entirely redundant. 

Fortunately, fixing this problem is relatively straightforward. 

Implementation 

An Identity Map is simply an object whose task it is to keep track of all the objects in a system, 
and thereby help to ensure that nothing that should be one object becomes two. 

In fact, the Identity Map itself does not prevent this from happening in any active way. Its 
role is to manage information about objects. Here is a simple Identity Map: 

class woo_domain_ObjectWatcher { 

} 

private $all = array(); 
private static $instance; 

private function __ construct() { } 

static function instance() { 
if ( ! self::$instance) { 

self::$instance =new woo_domain_ObjectWatcher(); 
} 
return self::$instance; 

} 

function globalKey( woo_domain_DomainObject $obj ) { 
$key= get_class( $obj ).".".$obj->getld(); 
return $key; 

} 

static function add( woo_domain_DomainObject $obj ) { 
$inst = self::instance(); 
$inst->all[$inst->globa1Key( $obj )] = $obj; 

} 

static function exists( $classname, $id ) { 
$inst = self: :instance(); 
$key = "$classname.$id"; 
return $inst->all[$key]; 

} 

The main trick with an Identity Map is, pretty obviously, identifying objects. This means 
that you need to tag each object in some way. There are a number of different strategies you 
can take here. The database table key that all objects in the system already use is no good 
because the ID is not guaranteed to be unique across all tables. 



280 CHAPTER 12 ENTERPRISE PATTERNS 

The DB package supports unique database-wide keys as standard (by means of managing 
a key table), so this is one candidate solution. You would need to add afield to the database for 
each object, and generate a key whenever an object is inserted. The overheads of this are rela­
tively slight, and it would be easy to do. 

As you can see, I have gone for an altogether simpler approach. I concatenate the name of 
the object's class with its table ID. There can be no two objects of type woo_ domain_ Event with 
an ID of 4, so my key of "woo_domain_Event.4" is safe enough for my purposes. 

The globalKey() method handles the details of this. The class provides an add() method 
for adding new objects. Each object is labeled with its unique key in an array property: $all. 

The exists() method accepts a class name and an $id rather than an object. We don't 
want to have to instantiate an object to see whether or not it already exists! The method builds 
a key from this data and checks to see if it indexes an element in the $all property. If an object 
is found, a reference is duly returned. 

There is only one class where I work with the Obj ectWatcher class in its role as an Identity 
Map. The Mapper class provides functionality for generating objects, so it makes sense to add 
the checking there. 

II Mapper 
function getFromMap( $id ) { 

} 

return woo_domain_ObjectWatcher::exists 
( $this->targetClass(), $id ); 

function addToMap( woo_domain_DomainObject $obj ) { 
return woo_domain_ObjectWatcher::add( $obj ); 

} 

function find( $id ) { 

} 

$old = $this->getFromMap( $id ); 
if ( $old ) { return $old; } 

return $this->doFind( $id ); 

function loadArray( $array ) { 

} 

$old= $this->getFromMap( $array['id']); 
if ( $old ) { return $old; } 
$obj = $this->doload( $array ); 
$this->addToMap( $obj ); 
return $obj; 

protected abstract function targetClass(); 

The class provides two convenience methods: addToMap() and getFromMap(). These save 
the bother of remembering the full syntax of the static call to ObjectWatcher. More importantly, 
they call down to the child implementation (VenueMapper, etc.) to get the name of the class 
currently awaiting instantiation. 



CHAPTER 12 • ENTERPRISE PATTERNS 281 

This is achieved by calling targetClass (), an abstract method that is implemented by all 
concrete Mapper classes. It should return the name of the class that the Mapper is designed to 
generate. Here is the SpaceMapper class's implementation oftargetClass(): 

protected function targetClass() { 
return "woo_domain_Space"; 

} 

Both find () and loadArray () first check for an existing object by passing the table ID to 
getFromMap(). If an object is found, it is returned to the client and method execution ends. If, 
however, there is no version of this object in existence yet, object instantiation goes ahead. In 
loadArray() the new object is passed to addToMap() to prevent any clashes in future. 

So why are we going through part of this process twice, with calls to getFromMap() in both 
find() and loadArray()? The answer lies with Collections. When these generate objects, they 
do so by calling loadArray (). We need to make sure that the row encapsulated by a Collection 
object is not stale, and ensure that the latest version of the object is returned to the user. 

Consequences 
As long as you use the Identity Map in all contexts in which objects are generated from the 
database, the possibility of duplicate objects in your process is practically zero. 

Of course, this only works within your process. Different processes will inevitably access 
versions of the same object at the same time. It is important to think through the possibilities 
for data corruption engendered by concurrent access. If there is a serious issue, you may need 
to consider a locking strategy. 

UnitofWork 
When do you save your objects? Until I discovered the Unit of Work pattern (written up by 
David Rice in Martin Fowler's Patterns ofEnterpriseApplicationArchitecture), I sent out save 
orders from the Presentation layer upon completion of a command. This turned out to be an 
expensive design decision. 

The Unit of Work pattern helps you to save only those objects that need saving. 

The Problem 
One day I echoed my SQL statements to the browser window to track down a problem and had 
a shock. I found that I was saving the same data over and over again in the same request. I had 
a neat system of composite commands, which meant that one command might trigger several 
others, and each one was cleaning up after itself. 

Not only was I saving the same object twice, I was saving objects that didn't need saving. 
This problem then is similar in some ways to that addressed by Identity Map. That problem 

involved unnecessary object loading, this problem lies at the other end of the process. Just as 
these issues are complementary, so are the solutions. 

Implementation 
To determine what database operations are required, you need to keep track of various events 
that befall your objects. Probably the best place to do that is in the objects themselves. 



282 CHAPTER 12 ENTERPRISE PATTERNS 

You also need to maintain a list of objects scheduled for each database operation (insert, 
update, delete). I am only going to cover insert and update operations here. Where might be a 
good place to store a list of objects? It just so happens that we already have a Obj ectWatcher 
object, so we can develop that further: 

II ObjectWatcher 
II 

II 

private $all = array(); 
private $dirty = array(); 
private $new = array(); 
private $delete = array(); II unused in this example 
private static $instance; 

static function addDirty( woo_domain_DomainObject $obj ) { 
$inst = self::instance(); 

} 

if ( ! $inst->new[$inst->globalKey( $obj )] ) { 
$inst->dirty[$inst->globalKey( $obj )] = $obj; 

} 

static function addNew( woo_domain_DomainObject $obj ) { 
$inst = self::instance(); 

$inst->new[$inst->globalKey( $obj )] = $obj; 
} 

static function addClean(woo_domain_DomainObject $obj ) { 
$self= self::instance(); 

} 

II unset( $self->delete[$self->globalKey( $obj )] ); 
II not implementing deletes in this example! 
unset( $self->dirty[$self->globalKey( $obj )] ); 

function performOperations() { 

} 

foreach ( $this->dirty as $key=>$obj ) { 
$obj->finder()->update( $obj ); 

} 
foreach ( $this->new as $key=>$obj ) { 

$obj->finder()->insert( $obj ); 
} 
$this->dirty = array(); 
$this->new = array(); 

function __ destruct() { 
$this->perform0perations(); 

} 



CHAPTER 12 ENTERPRISE PATTERNS 283 

The ObjectWatcher class remains an Identity Map, and continues to serve its function of 
tracking all objects in a system via the $all property. This example simply adds more function­
ality to the class. 

Objects are described as "dirty" when they have been changed since extraction from the 
database. A dirty object is stored in the $dirty array property (via the add Dirty () method) until 
the time comes to update the database. Client code may decide that a dirty object should not 
undergo update for its own reasons. It can ensure this by marking the dirty object clean (via the 
addClean() method). As you might expect, a newly created object should be added to the $new 
array (via the add New() method). Objects in this array are scheduled for insertion into the data­
base. We are not implementing delete functionality in these examples, but the principle should 
be clear enough. 

The addDirty() and addNew() methods each add an object to their respective associative 
array properties, using the globalKey () method covered in the last pattern. addClean (), on the 
other hand removes the given object from the $dirty array, marking it as no longer pending 
update. 

When the time finally comes to process all objects stored in these arrays, the 
performOperations () method is invoked. This loops through the $dirty and $new arrays either 
updating or adding the objects. We can call the performOperations () method from client code 
at any time, but we have also added an invocation to the magic_ destruct () method. As you 
know,_ destruct () is called automatically whenever an object is deleted. This means that 
object update and insertion is entirely automated by this class! 

The ObjectWatcher class now provides a mechanism for updating and inserting objects. 
The code is still missing a means of adding objects to the ObjectWatcher object. 

Since it is these objects that are operated upon, they are probably best placed to perform 
this notification. Here are some utility methods we can add to the DomainObject class. Notice 
also the constructor method. 

II DomainObject 
function _construct( $id=null ) { 

$this->id = $id; 

} 

} 

if ( ! $this->id ) { 

} 

$this->id = $this->finder()->newld(); 
$this->markNew(); 

function finder() { 
return self::getFinder( get_class( $this) ); 

static function getFinder( $type ) { 
return woo_domain_HelperFactory::getFinder( $type); 

} 

function markNew() { 
woo_domain_Objectwatcher::addNew( $this); 

} 



284 CHAPTER 12 ENTERPRISE PATTERNS 

function markDirty() { 
woo_domain_ObjectWatcher::addDirty( $this); 

} 

function markClean() { 
woo_domain_ObjectWatcher::addClean( $this ); 

} 

Before looking at the Unit of Work code, it is worth noting that Domain object here has 
finder() and get Finder() methods. These work in exactly the same way as collection() and 
getCollection(), querying a simple factory class, HelperFactory, in order to acquire Mapper 
objects when needed. 

As you can see, the constructor method marks the current object as new (by calling markNew()) 
if no $id property has been passed to it. First, though, it acquires a new $id from its Mapper. This 
is where the DB object's ID generation mechanism works in our favor; we can generate a new ID 
before entering the related row into the database. Here is the implementation of newiD() in 
VenueMapper: 

public function newld() { 
return self::$DB->nextld('venue'); 

} 

We also need to add some code to the Mapper class: 

II Mapper 
function loadArray( $array ) { 

} 

$old= $this->getFromMap( $array['id']); 
if ( $old ) { return $old; } 
$obj = $this->doload( $array ); 
$this->addToMap( $obj ); 
$obj->markClean(); 
return $obj; 

Because setting up an object involves marking it new via the constructor's call to 
ObjectWatcher: : addNew(), we must call markClean (), or every single object extracted from 
the database will be saved at the end of the request, which is not what we want. 

The only thing remaining to do is to add markDirty () invocations to methods in the 
Domain Model classes. Remember, a "dirty" object is one that has been changed since it was 
retrieved from the database. This is the one aspect of this pattern that has a slightly fishy odor. 
Clearly it's important to ensure that all methods that mess up the state of an object are marked 
dirty, but the manual nature of this task means that the possibility of human error is all too real. 

Here are some methods in the Space object that call markDirty(): 

function setName( $name_s ) { 
$this->name = $name_s; 
$this->markDirty(); 

} 



function setVenue( woo_domain_Venue $venue ) { 
$this->venue = $venue; 
$this->markDirty(); 

} 

CHAPTER 12 ENTERPRISE PATTERNS 

The results of this pattern, combined with some of the others in this chapter, are truly 
marvelous. This at least looks like the Shangri-la of the persistent model with a magically invis­
ible persistence layer. 

Here is some code for adding a new Venue and Space to the database, taken from a Command 
class: 

$venue = new woo_domain_Venue( null, "The Green Trees" ); 
$venue->addSpace( 

new woo_domain_Space( null, 'The Space Upstairs' ); 
$venue->addSpace( 

new woo_domain_Space( null, 'The Bar Stage' ) ); 

I have added some debug code to the ObjectWatcher so you can see what happens at the 
end of the request: 

inserting The Green Trees 
inserting The Space Upstairs 
inserting The Bar Stage 

Because the ObjectWatcher object calls the performOperations () method from its 
_destruct() method, all you need to do is create or modify an object, and the Unit ofWork 
class (ObjectWatcher) will do its job behind the scenes. 

Consequences 
This pattern is very useful, but there are a few issues to be aware of. You need to be sure that all 
modify operations actually do mark the object in question dirty. Failing to do this can result in 
hard-to-spot bugs. 

You may like to look at other options for testing for modified objects. Reflection sounds 
like a good option there, but you should look into the performance implications of such testing­
the pattern is meant to improve efficiency, not undermine it. 

You need to watch out for temporary objects as well. You may wish to create an Event 
object in order to test it against an existing object (using a method such as intersects () ), for 
example. You don't want this added to the database in error. In this situation, you could explicitly 
mark your temporary objects for deletion, or perhaps have a setTemporary() method on the 
DomainObject class. 

Lazy Load 
Lazy Load is one of those core patterns most Web programmers learn for themselves very 
quickly, simply because it's such an essential mechanism for avoiding massive database hits, 
which is something we all want to do. 

285 



286 CHAPTER 12 ENTERPRISE PATTERNS 

The Problem 
In the example that has dominated this chapter, we have set up a relationship between Venue, 
Space, and Event objects. When a Venue object is created, it is automatically given a SpaceCollection 
object. If we were to list every Space object in a Venue, this automatically kicks off a database request 
to acquire all the Events associated with each Space. These are stored in an EventCollection object. 
If we don't wish to view any events, we have nonetheless made several journeys to the database 
for no reason. With many venues, each with a two or three spaces, and with each space managing 
tens, perhaps hundreds, of events, this is a costly process. 

Clearly we need to throttle back on this automatic inclusion of collections in some 
instances. 

Here is the code in SpaceMapper that acquires Event data: 

protected function doload( $array ) { 

} 

$obj =new woo_domain_Space( $array['id'] ); 
$obj->setname( $array['name'] ); 
$ven_mapper = new woo_mapper_VenueMapper(); 
$venue= $ven_mapper->find( $array['venue'] ); 
$obj->setVenue( $venue ); 

$event_mapper = new woo_mapper_EventMapper(); 
$event_collection = $event_mapper->findBySpaceld( $array['id'] ); 

$obj->setEvents( $event_collection ); 
$obj->markClean(); 
return $obj; 

The do load () method first acquires the Venue object with which the space is associated. 
This is not costly, because it is almost certainly already stored in the ObjectWatcher object. 
Then the method calls the EventMapper: : findBySpaceid () method. This is where the system 
could run into problems. 

Implementation 

As you may know, a Lazy Load means to defer acquisition of a property until it is actually 
requested by a client. 

The easiest way of doing this is to make the deferral explicit in the containing object. 
Here's how we might do this in the Space object: 

II Space 
function getEvents() { 

} 

if ( is_null($this->events) ) { 

} 

$this->events = self::getFinder('woo_domain_Event') 
->findBySpaceid( $this->getld() ); 

return $this->events; 



CHAPTER 12 ENTERPRISE PATTERNS 

This method checks to see whether or not the $events property is set. If it isn't set, then 
the method acquires a Finder (that is, a Mapper) and uses its own $id property to get the 
EventCollection with which it is associated. Clearly, for this method to save us a potentially 
unnecessary database query, we would also need to amend the SpaceMapper code so that it 
does not automatically preload an EventCollection object as it does in the preceding example! 

This approach will work just fine, although it is a little messy. Wouldn't it be nice to tidy the 
mess away? 

This brings us back to the Iterator implementation that goes to make the Collection 
object. We are already hiding one secret behind that interface (the fact that raw data may not 
yet have been used to instantiate a domain object at the time a client accesses it), perhaps we 
can hide still more. 

The idea here is to create an EventCollection object that defers its database access until a 
request is made of it. This means that a client object (such as Space, for example) need never 
know that it is holding an empty Collection in the first instance. As far as a client is concerned, 
it is holding a perfectly normal EventCollection. 

Here is the DeferredEventCollection object: 

class woo_mapper_DeferredEventCollection 

} 

extends woo_mapper_EventCollection { 
private $stmt; 
private $valueArray; 
private $mapper; 
private $run=false; 

function construct( woo_mapper_EventMapper $mapper, 

} 

$stmt_handle, $valueArray ) { 
parent:: __ construct( ); 
$this->stmt = $stmt_handle; 
$this->valueArray = $valueArray; 
$this->mapper = $mapper; 

function notifyAccess() { 
if ( ! $this->run ) { 

$result = 

} 

} 

$this->mapper->doStatement( $this->stmt, 
$this->valueArray ); 

$this->init_db( $result, $this->mapper ); 

$this->run=true; 

As you can see, this class extends a standard EventMapper. Its constructor requires an 
EventMapper object and a primed DB statement handle. In the first instance, the class does 
nothing but store its properties, and wait. No query has been made of the database. 

287 



288 CHAPTER 12 • ENTERPRISE PATTERNS 

You may remember that the Collection base class defines the empty method called 
noti fyAccess () that I mentioned in the "Data Mapper" section. This is called from any method 
whose invocation is the result of a call from the outside world. 

DeferredEventCollection overrides this method. Now if someone attempts to access the 
Collection, the class knows it is time to end the pretense and acquire some real data. It does 
this by passing the statement handle to the VenueMapper's doStatement () method. This yields a 
DB_result object that can then be passed to the init_dbO method. Remember that init_db() 
simply decants a database result set into an array, and does some other housekeeping. 

Here is the method in EventMapper that instantiates a DeferredEventCollection: 

function findBySpaceld( $s_id ) { 

} 

return new woo_mapper_DeferredEventCollection( 
$this, 
$this->selectBySpaceStmt, array( $s_id ) ); 

Consequences 
Lazy loading is a good habit to get into, whether or not you explicitly add deferred loading logic 
to your domain classes. 

Over and above type safety, the particular benefit of using a collection rather than an array 
for your properties is the opportunity this gives you to retrofit lazy loading should you need it. 

Summary 
This is the longest chapter in this book, and for good reason. PHP is a Web-oriented language 
before it is an object-oriented language. You are probably reading this now because you are 
involved in coding for the Web at some level. 

I have covered an enormous amount of ground here (although I have also left a lot out). 
You should not feel daunted by the sheer volume of code in this chapter. Patterns are meant to 
be used in the right circumstances and combined when useful. Here is a list of the patterns I 
covered. Raid from them when you feel that the needs of your project are matched by a summary, 
and do not feel that you must build an entire framework before embarking upon a project. 

We examined the following patterns: 

• Registry. This pattern is useful for making data available to all classes in a process. 
Through careful use of serialization, it can also be used to store information across a 
session, or even across instances of an application. 

• Front Controller. Use this for larger systems in which you know that you will need as 
much flexibility as possible in managing many different views and commands. 

• Application Controller. Create a class to manage view logic and command selection. 

• Template View: Create pages that manage display and user interface only, incorporating 
dynamic information into display markup with as little raw code as possible. 



CHAPTER 12 ENTERPRISE PATTERNS 

• Page Controller. Lighter-weight but less flexible than Front Controller, Page Controller 
addresses the same need. Use this pattern to manage requests and handle view logic if 
you want fast results and your system is unlikely to grow substantially in complexity. 

• Transaction Script: When you want to get things done fast, with minimal up-front plan­
ning, fall back on procedural library code for your application logic. This pattern does 
not scale well. 

• Domain Model: On the opposite pole from Transaction Script, use this pattern to build 
object-based models of your business participants and processes. This pattern requires 
a relatively complex framework to decouple it from quotidian concerns of presentation 
and persistence. 

• Data Mapper. Create specialist classes for mapping Domain Model objects to and from 
relational databases. 

• Identity Map: Keep track of all the objects in your system to prevent duplicate instantia­
tions and unnecessary trips to the database. 

• Unit ofWork: Automate the process by which objects are saved to the database, ensuring 
that only objects that have been changed are updated and only those that have been 
newly created are inserted. 

In the next chapter, we take a welcome break from code and introduce some of the wider 
practices that can contribute to a successful project. 

289 





CHAPTER 13 

Good {and Bad) Practice 

So far this in this book, we have focused on coding, concentrating particularly on the role of 
design in building flexible and reusable tools and applications. Development doesn't end with 
code, however. It is possible to come away from books and courses with a solid understanding 
of a language, and yet still run into trouble when it comes to running and deploying a project. 

In this chapter, we will move beyond code to introduce some of the tools and techniques 
that form the underpinnings of a successful development process. This chapter will cover 

• Third-party packages: Where to get them, when to use them 

• Version control: Bringing harmony to the development process 

• Documentation: Writing code that is easy to understand, use, and extend 

• Unit testing: A tool for automated bug prevention 

Beyond Code 
When I first graduated from working on my own and took a place in a development team, I was 
astonished at how much stuff other developers seemed to have to know. Good-natured arguments 
simmered endlessly over issues of vital-seeming importance: Which is the best text editor? 
Should the team standardize on an integrated development environment? Should we impose 
a coding standard? How should we test our code? Should we document as we develop? Some­
times these issues seemed more important than the code itself, and my colleagues seemed to 
have acquired their encyclopedic knowledge of the domain through some strange process of 
osmosis. 

The books I had read on PHP, Perl, and Java certainly didn't stray from the code itself to 
any great extent. As I have already discussed, most books on programming platforms rarely 
divert from their tight focus on functions and syntax to take in code design. If design is off 
topic, you can be sure that version control and code documentation are rarely discussed. This 
is not a criticism-if a book professes to cover the main features of a language, it should be no 
surprise that this is what it does. 

In learning about code, however, I found that I had neglected many of the mechanics of a 
project's day-to-day life. I discovered that some of these details were critical to the success or 
failure of projects I helped develop. In this chapter, and in more detail in coming chapters, we 
will look beyond code to explore some of the tools and techniques upon which the success of 
your projects may depend. 

293 



294 CHAPTER 13 GOOD (AND BAD) PRACTICE 

Borrowing a Wheel 
When faced with a challenging but discrete aspect to a project, there is a lot to be said for building 
a component that addresses the need. It can be one of the best ways to learn your craft. In 
creating a package, you gain insight into a problem, and file away new techniques that might 
have wider application. You invest at once in your project and in your own skills. By keeping 
your functionality internal to your system, you can avoid the need for your users to download 
third-party packages, and occasionally sidestep thorny licensing issues. There's nothing like 
the sense of satisfaction you can get when you test a component you designed yourself and 
find that, wonder of wonders, it works-it does exactly what you wrote on the tin. 

There is a dark side to all this, of course. Many packages represent an investment of thousands 
of man -hours: a resource that you may not have on hand. You may be able to address this by 
developing only the functionality needed specifically by your project, while a third-party tool 
might fulfill a myriad of other needs as well. The question remains though, If a freely available 
tool exists, why are you squandering your talents in reproducing it? Do you have the time and 
resources to develop, test, and debug your package? Might not this time be better deployed 
elsewhere? 

I am one of the worst offenders when it comes to wheel reinvention. Picking apart problems 
and inventing solutions to them is a fundamental part of what we do as coders. Getting down 
to some serious architecture is a more rewarding prospect than writing some glue to stitch 
together three or four existing components. When this temptation comes over me, I remind 
myself of projects past. Although the choice to build from scratch has never killed a project in 
my experience, I have seen it devour schedules and murder profit margins. There I sit with a 
manic gleam in my eye, hatching plots and spinning class diagrams, failing to notice as I obsess 
over the details of my component that the big picture is now a distant memory. 

Now when I map out a project, I try to develop a feel for what belongs inside the code base, 
and what should be treated as a third-party requirement. For example, your application may 
generate (or read) an RSS feed, you may need to validate e-mail addresses and automate mail­
outs, authenticate users, or read from a standard format configuration file. All of these needs 
can be fulfilled by external packages. 

Once you have defined your needs, your first stop should be the PEAR Web site at 
http: I /pear .php.net. PEAR stands for the PHP Extension and Application Repository, and is 
an officially maintained and quality-controlled repository of packages. It is also a mechanism 
for installing packages seamlessly, and managing package interdependencies. I will cover PEAR 
in more detail in the next chapter, in which I look at the way that you can use PEAR functionality to 
prepare your own packages. To give you some idea of what's available in the PEAR repository, 
here are just a very few of the things you can do with PEAR packages: 

• Cache output with Cache_Lite. 

• Test the efficiency of your code with Benchmark. 

• Abstract the details of database access with DB. 

• Manipulate Apache . htaccess files with File_HtAccess. 

• Extract or encode news feeds with XML_RSS. 

• Send mail with attachments with Mail_Mime. 



CHAPTER 13 • GOOD (AND BAD) PRACTICE 295 

• Parse configuration file formats with Config. 

• Password protected environments with Auth. 

The PEAR Web site provides a list of packages categorized by topic. You may find packages 
that broadly address your needs here, or you may need to cast your net wider (using the major 
search engines). Either way, you should always take time to assess existing packages before 
setting out to potentially reinvent that wheel. 

The fact that you have a need, and that a package exists to address it, should not be the 
start and end of your deliberations. Although it is preferable to use a package where it will save 
you otherwise unnecessary development, in some cases it can add an overhead without real 
gain. Your client's need for your application to send mail, for example, does not mean that you 
should automatically use PEAR's Mail package. PHP provides a perfectly good mail () function, 
so to start with all the benefit lies with a simple internal implementation. As soon as you realize 
that you have to validate all e-mail addresses according to the RFC822 standard, and that the 
design team wants to send image attachments with the mails, you may begin to weigh the options 
differently. As it happens there are PEAR packages for both these features. 

Many programmers, myselfincluded, often place too much emphasis upon the creation of 
original code, sometimes to the detriment of their projects. This emphasis upon authorship 
may be one reason that there often seems to be more creation than actual use of reusable code. 

Effective programmers see original code as just one of the tools available to aid them in 
engineering a project's successful outcome. Such programmers look at the resources they have 
at hand and deploy them effectively. If a package exists to take some strain, then that is a win. 
To steal and paraphrase an aphorism from the Perl world: good coders are lazy. 

Playing Nice 
The truth of Sartre's famous dictum that "Hell is other people" is proved on a daily basis in 
some software projects. This might describe the relationship between clients and developers, 
symptomized by the many ways that lack of communication leads to creeping features and 
skewed priorities. But the cap fits too for happily communicative and cooperative team members 
when it comes to sharing code. 

As soon as a project has more than one developer, version control becomes an issue. A single 
coder may work on code in place, saving a copy of her working directory at key points in devel­
opment. Introduce another programmer to this mix, and this strategy breaks down in minutes. 
If the new developer works in the same development directory, then there is a real chance that 
one programmer will overwrite the work of his colleague when saving, unless both are very 
careful to always work on different files. 

Alternatively, our two developers can each take a version of the codebase to work on 
separately. That works fine until the moment comes to reconcile the two versions. Unless the 
developers have worked on entirely different sets of files, the task of merging two or more 
development strands rapidly becomes an enormous headache. 

This is where Concurrent Versions System (CVS) and similar tools come in. Using CVS you 
can check out your own version of a code base and work on it until you are happy with the 
result. You can then update your version with any changes that your colleagues have been 
making. CVS will automatically merge these changes into your files, notifying you of any conflicts 
it cannot handle. Once you have tested this new hybrid, you can save it to the central CVS 
repository, making it available to other developers. 



296 CHAPTER 13 GOOD (AND BAD) PRACTICE 

CVS provides you with other benefits. It keeps a complete record of all stages of a project, 
so you can roll back to, or grab a snapshot of, any point in the project's lifetime. You can also 
create branches, so that you can maintain a public release at the same time as a bleeding-edge 
development version. 

Once you have used version control on a project, you will not want to attempt another 
without it. Despite the mind-numbing tangle of revisions and branches you will occasionally 
have to conceptualize, version control is just too useful to live without. I cover CVS in Chapter 16. 

Note CVS isn't the only game in town when it comes to version control. A newer package called Subversion has 
made a relatively recent debut. It is free of some of the eccentricities of the more venerable CVS. Subversion 
is covered in detail by Garrett Rooney in Practical Subversion (Apress, 2004). 

Giving Your Code Wings 
Have you ever seen your code grounded because it is just too hard to install? This is especially 
true for projects that are developed in place. Such projects settle into their context, with pass­
words and directories, databases and helper application invocations programmed right into 
the code. Deploying a project of this kind can be a major undertaking, with teams of program­
mers picking through source code to amend settings so that they fit the new environment. 

This problem can be eased to some degree by providing a centralized configuration file or 
class so that settings can be changed in one place, but even then installation can be a chore. 
The difficulty or ease of installation will have a major impact upon the popularity of any appli­
cation you distribute. It will also impede or encourage multiple and frequent deployment 
during development. 

As with any repetitive and time-consuming task, installation should be automated. An 
installer can determine default values for install locations, check and change permissions, 
create databases, and initialize variables, among other tasks. In fact, an installer can do just 
about anything you need to get an application from a source directory in a distribution to full 
deployment. 

This doesn't absolve the user from the responsibility for adding information about his 
environment to the code, of course, but it can make the process as easy as answering a few 
questions or providing a few command line switches. 

For developers, installers have the further virtue of memory. Once an installer has been 
run from a distribution directory, it can cache many of its settings, making subsequent instal­
lations even easier. So the second time you install from a distribution directory, you may not 
need to provide configuration information like database names and install directories. These 
are remembered from the first installation. This is important for developers who frequently 
update their local development space using version control. Version control makes it easy to 
acquire the latest version of a project. There is little point, however, to removing impedence 
from the acquisition of code if you have a bottleneck restricting its deployment. 

There are various build tools available to the developer. PEAR, for example, is, in part, an 
installation solution. Most of the time, you will use the PEAR installer to deploy code from the 
official PEAR repository. It is possible, however, to create your own PEAR packages that can be 
downloaded and installed by users with ease. The PEAR installer is best suited to self-enclosed, 



CHAPTER 13 GOOD (AND BAD) PRACTICE 2.97 

functionally focused packages. It is relatively rigid about the role and install locations of the 
files a package should contain, and it tends to concentrate upon the process of placing file A in 
location B. I cover this aspect of PEAR in detail in Chapter 14. 

If you need greater flexibility than this, as you might for application installation, you may 
need an installer that is more scriptable. In Chapter 17 we will look at an application called 
Phing. This open source project is a port of the popular Ant build tool that is written in and for 
Java. Phing is written in and for PHP, though in either case you can easily perform any task that 
you could on the command line or programmatically. Where PEAR does a few things very well, 
and offers the simplest possible configuration, Phing is more daunting at first, but with the 
tradeoff of immense flexibility. Not only can you use Phing to automate anything from file 
copying to XSLT transformation, you can easily write and incorporate your own tasks should 
you need to extend the tool. Phing is written using PHP 5's object-oriented features, and its 
design emphasizes modularity and ease of extension. 

Documentation 
My code is so sparse and elegant that it doesn't need documenting. Its purpose is luminously 
clear at the slightest of glances. I know your code is the same. The others, though, have a problem. 

All irony aside, it is true that good code documents itself to some extent. By defining a clear 
interface and well-defined responsibility for each class and method, and naming each descrip­
tively, you communicate your code's intent. However, you can improve the transparency of 
your work still further by avoiding unnecessary obfuscation: clarity beats cleverness unless 
cleverness brings with it immense, and required, gains in efficiency. 

The naming of properties, variables, and arguments, too, cau play a tremendous role in 
making your code easy for others to read. Choose descriptive names, where possible. I often 
add information about the type of a variable to the name-especially for argument variables. 

public function setName( $name_str, $age_int ) { 
// ... 

} 

No matter how clear your code is, though, it can never be quite clear enough on its own. 
We have seen that object-oriented design often involves combining many classes together in 
relationships of inheritance, aggregation, or both. When you look at a single class in such a 
structure, it is often very hard to extrapolate the bigger picture without some kind of explicit 
pointer. 

At the same time, every programmer knows what a pain it is to write documentation. You 
tend to neglect it during development because the code is in flux, and really your project is 
about getting the code right. Then when you have reached a point of stability, you suddenly see 
the enormity of the task of documenting your work. Who would have thought that you would 
create so many classes and methods? Now your deadline is looming, so it's time to cut your 
losses and concentrate on quality assurance. 

This is an understandable but shortsighted attitude, as you will discover when you return 
to your code for a second phase in a year's time. Here's a programmer quoted on the popular 
repository for Internet Relay Chat (IRC) witticism http: I /www. bash. org: 

<@Logan> I spent a minute looking at my own code by accident. 
<@Logan> I was thinking "What the hell is this guy doing?" 

--http://www.bash.org/?6824 



298 CHAPTER 13 GOOD (AND BAD) PRACTICE 

Without documentation, you are destined to play out that story: wasting your time second­
guessing decisions you probably made for very good reasons (if you only knew what they were). 
This is bad enough, but the situation becomes worse, and more expensive, when you hand off 
your work to a colleague. Undocumented code will cost you expensive work days, as your new 
hire is forced to pepper your code with debug messages, and work her way through fat printouts 
of promiscuously interrelated classes. 

Clearly the answer is to document, and to do it as you code, but can the process be stream­
lined? As you might imagine, the answer is "yes" and once again the solution is borrowed from 
a Java tool. phpDocumentor (http: I /www. phpdoc. org/) is a reimplementation of JavaDoc, the 
documentation application that ships with the Java SDK. From a coder's perspective, the principle 
is simple. Add specially formatted comments above all classes, most methods, and some 
properties, and phpDocumentor will incorporate them into a hyperlinked web of documents. 
Even if you omit these comments, the application will read the code, summarizing and linking 
up the classes it finds. This is a benefit in itself, allowing you to click from class to class, and to 
observe inheritance relationships at a glance. 

We examine phpDocumentor in Chapter 15. 

Testing 
Every component in a system depends for its continued smooth running upon the consistency 
of operation and interface of its peers. By definition, then, development breaks systems. As you 
improve your classes and packages, you must remember to amend any code that works with 
them. For some changes, this can create a ripple effect, affecting components far away from 
the code we originally changed. Eagle-eyed vigilance and an encyclopedic knowledge of a 
system's dependencies can help to address this problem. Of course, while these are excellent 
virtues, systems soon grow too complex for every unwanted effect to be easily predicted, not 
least because systems often combine the work of many developers. To address this problem, it 
is a good idea to test every component regularly. This, of course, is a repetitive and complex 
task and as such it lends itself well to automation. 

Testing is essential in any project. Even if you don't formalize the process, you must have 
found yourself developing informal lists of actions that put your system through its paces. This 
process soon becomes wearisome, and that can lead to a fingers-crossed attitude to programming. 

One approach to testing starts at the interface of a project, modeling the various ways in 

which a user might negotiate the system. This is probably the way you would go when testing 
by hand, although there are various frameworks for automating the process. These functional 

tests are sometimes called acceptance tests because a list of actions performed successfully 
can be used as criteria for signing off a project phase. 

While functional tests work from the top down, unit tests, the subject of this section, work 

from the bottom up. Unit testing tends to focus on classes, with test methods grouped together 
in test cases that put a class through a rigorous workout, checking that each method performs 

as advertised, and that it fails as it should. These test cases are then grouped together into test 
suites. Tests can be run as part of the build process, directly from the command line, or even 
via a Web page. 

Unit testing is a good way of ensuring the quality of design in a system. Tests reveal the 

responsibilities of classes and functions. Some programmers even advocate a test-first approach. 
You should, they say, write the tests before you even begin work on a class. This lays down a 



CHAPTER 13. GOOD (AND BAD) PRACTICE 299 

class's purpose, ensuring a clean interface and short, focused methods. Personally, I have 
never attained this level of purity, but I do attempt to write tests as I go. 

So,let' s create some classes to test. Here is a class that places user information in persistent 
storage. For the sake of demonstration, it saves the information in an array: 

class UserStore { 

} 

private $users = array(); 
function addUser( $name=null, $mail=null, $pass=null ) { 

} 

if ( is_null( $name ) I I is_null( $mail ) I I is_null( $pass ) ) { 
return false; 

} 

if ( strlen( $pass ) < 5 ) { 
throw new Exception( 

"Password must have 5 or more letters"); 
} 

$this->users[$mail] =array( 'pass' =>$pass, 
'mail' => $mail, 
'name' => $name ); 

return true; 

function getUser( $mail ) { 
return ( $this->users[$mail] ); 

} 

This class accepts user data with the addUser() method, and retrieves it via getUser(). 
The user's e-mail address is used as the key for retrieval. 

Here is a client class. It uses UserS tore to confirm that a user has provided the correct 
authentication information. 

class Validator { 
private $store; 

} 

public function __ construct( UserStore $store ) { 
$this->store = $store; 

} 

public function validateUser( $mail, $pass ) { 

} 

if ( ! is_array($user = $this->store->getUser( $mail )) ) { 
return false; 

} 
if ( $user['pass'] ==$pass ) { 

return true; 
} 
return false; 



300 CHAPTER 13 GOOD (AND BAD) PRACTICE 

The class requires a UserS tore object, which it saves in the $store property. This property 
is used by the validateUser() method first of all to ensure that the userreferenced by the given 
e-mail address exists in the store, and secondly that the user's password matches the provided 
argument. If both these conditions are fulfilled, the method returns true. 

In order to test these classes, we need a PEAR package called PHPUnit2. The original PHPU nit 
package is no longer maintained, and does not use PHP 5. We will deal with PEAR installation 
in the next chapter, but in most cases you need only type the following at the command line in 
order to acquire a package: 

$ pear install PHPUnit2 

Note I show commands that are input at the command line in bold to help distinguish them from any 
output they may produce. 

Armed with PHPUnit2, we can write tests for the UserS tore class. Tests should be collected 
in a single class that extends PHPUni t2 _Framework_ TestCase, one of the classes made available 
by the PHPUnit2 package. Here's how to create a minimal test case class: 

require_once('PHPUnit21FrameworkiTestCase.php'); 

class UserStoreTest extends PHPUnit2_Framework_TestCase { 
public function setUp() { 
} 

public function tearDown() { 
} 
II ... 

} 

I named the test case class UserStoreTest. You are not obliged to use the name of the class 
you are testing in the test's name, though that is what most developers do. Each test in a test 
case class is run in isolation of its siblings. The setUp () method is automatically invoked for 
each test, allowing us to set up a sane environment for the test. tearDown () is invoked after each 
test method is run. If your tests change the wider environment of your system, you can use this 
method to reset state. 

In order to test the UserS tore class, we need an instance of it. We can instantiate this in 
setUp () and assign it to a property. Let's create a test method as well: 



CHAPTER 13 

require_once('UserStore.php'); 
require_once('PHPUnit2/Framework/TestCase.php'); 

class UserStoreTest extends PHPUnit2_Framework_TestCase { 
private $store; 

public function setUp() { 
$this->store = new UserStore(); 

} 

public function tearDown() { 
} 
public function testGetUser() { 

$this->store->addUser( "bob williams", 
"bob@example.com", 
"12345" ); 

GOOD (AND BAD) PRACTICE 

$user = $this->store->getUser( "bob@example.com" ); 
$this- >assertEquals ( $user [ 'name' ], "bob williams" ) ; 
$this->assertEquals( $user['mail'], "bob@example.com" ); 
$this->assertEquals( $user[' pass'], "12345" ) ; 

} 
} 

Test methods should be named to begin with the word "test" and should require no argu­
ments. This is because the test case class is manipulated using reflection. 

Note Reflection is covered in detail in Chapter 5. 

The object that runs the tests looks at all the methods in the class and only invokes those 
that match this pattern. In the example, we test the retrieval of user information. First we 
invoke UserS tore: :addUser() with dummy data, then we retrieve that data and test each of its 
elements. For each individual test, we use an inherited method: assert Equals(). This compares 
the two provided arguments and checks them for equivalence. If they do not match, then the 
test method will be deemed a failure. Having subclassed PHPUni t2 _Framework_ TestCase, we 
have access to a set of assert methods. These methods are listed in Table 13-1. 

301 



302 CHAPTER 13 GOOD (AND BAD) PRACTICE 

Table 13-1. The PHPUnit2_Framework_TestCase Assert Methods 

Method Description 

assert Equals ( $vall, $val2, $delta, $message) Fail if $vall is not equivalent to $val2. ($delta repre-
sents an allowable margin of error.) 

assertFalse( $expression, $message) Evaluate $expression. Fail if it does not resolve to false. 

assertTrue ( $expression, $message) Evaluate $expression. Fail if it does not resolve to true. 

assertNotNull( $val, $message Fail if$valis null. 

assertNull( $val, $message ) Fail if$valis anything other than null. 

assertSame( $obj1, $obj2, $message) Failif$objland$obj2 arenotreferencestothesame 
object. 

assertNotSame( $obj1, $obj2, $message ) Failif$objland$obj2 arereferencestothesameobject. 

assertRegExp( $regexp, $val, $message ) Fail if$valis not matched by regular expression $regexp. 

assertType( $typestring, $val, $message Fail if$val is not the type described in $type. 

fail() Fail. 

Here is a test that checks the behavior of the UserS tore class when an operation fails: 

II ... 
public function testAddUser_ShortPass() { 

try { 

} 

$this->store->addUser( "bob williams", "bob@example.com", "ff" ); 
} catch ( Exception $e ) { return; } 
$this->fail("Short password exception expected"); 

II ... 

If you look back at the UserS tore: : addUser () method, you will see that we throw an exception 
if the user's password is less than 5 characters long. Our test attempts to confirm this. We add 
a user with an illegal password in a try clause. If the expected exception is thrown, then all is 
well and we return silently. The final line of the method should never be reached, and we there­
fore invoke the fail() method there. If the addUser() method does not throw an exception as 
expected, the catch clause is not invoked, and the fail () method is called. 

If we are testing the UserS tore class, we should also test Validator. Here is a cut -down 
version of a class called Validate Test that tests the Validator: : validateUser ()method: 

require_once('UserStore.php'); 
require_once('Validator.php'); 
require_once('PHPUnit21FrameworkiTestCase.php'); 



CHAPTER 13 I GOOD (AND BAD) PRACTICE 303 

class ValidatorTest extends PHPUnit2_Framework_TestCase { 
private $validator; 

} 

public function setUp() { 
$store = new UserStore(); 

} 

$store->addUser( "bob williams", "bob@example.com", "12345" ); 
$this->validator = new Validator( $store ); 

public function tearDown() { 
} 
public function testValidate_CorrectPass() { 

} 

$this->assertTrue( 
$this->validator->validateUser( "bob@example.com", "12345" ), 
"Expecting successful validation" 
) ; 

So now that we have written some tests, how do we go about running them? We must first 
give the names of our TestCase classes to a PHPUnit2_Framework_TestSuite object. This class 
has an addTestSuite() method for this purpose. Here is some code that runs our UserStoreTest 
and ValidatorTest classes: 

define('PHPUnit2_MAIN_METHOD', 'AppTests::main'); 

require_once( "PHPUnit2/Framework/TestSuite.php" ); 
require_once( "PHPUnit2/Textui/TestRunner.php" ); 

require_once( "tests/UserStoreTest.php" ); 
require_once( "tests!ValidatorTest.php" ); 

class AppTests { 

} 

public static function main() { 

} 

$ts =new PHPUnit2_Framework_TestSuite( 'User Classes'); 
$ts->addTestSuite('UserStoreTest'); 
$ts->addTestSuite('ValidatorTest'); 
PHPUnit2_TextUI_TestRunner::run( $ts ); 

AppTests::main(); 



304 CHAPTER 13 GOOD (AND BAD) PRACTICE 

We begin by defining a constant: PHPUni t2 _MAIN_ METHOD. We set this to refer to our static 
AppTests: :main() method. This tells the PHPUnit2_TextUI_TestRunner class that we have defined 
our own main () method in place of its default, which gathers information about the test it wants 
to run from the command line. If we did not reset PHPUnit2_MAIN_METHOD, the static method 
PHPUni t2 _ TextUI _ TestRunner: :main () would be run as soon as the TestRunner class was included. 

In the main() method we instantiate a PHPUnit2_Framework_TestSuite object and call its 
addTestSuite() method for each of the test case classes we wish to run. Once we have set up 
our TestSuite object, we pass it to the static run() method of the PHPUnit2_ TextUI _ TestRunner 
class. This runs all tests and writes the results to standard output. Finally we invoke our rna in () 
method. If we run this code from the command line, this is the output: 

$ php tests/AllTests.php 
PHPUnit 2.0.1 by Sebastian Bergmann. 

Time: 0.0572509765625 

OK (3 tests) 

Tests Succeed When They Fail 
While everyone agrees that testing is a fine thing, it is generally only after it has saved your 
bacon a few times that you grow to really love it. Let's simulate a situation where a change in 
one part of a system has an unexpected effect elsewhere. 

Our UserS tore class has been running for a while, when during a code review it is agreed 
that it would be neater for the class to generate User objects rather than associative arrays. Here 
is the new version: 

class UserStore { 

} 

private $users = array(); 
function addUser( $name=null, $mail=null, $pass=null ) { 

} 

if ( is_null( $name ) I I is_null( $mail ) I I is_null( $pass ) ) { 
return false; 

} 

$this->users[$mail] = new User( $name, $mail, $pass ); 

if ( strlen( $pass ) < 5 ) { 
throw new Exception("Password must have 5 or more letters"); 

} 
return true; 

function getUser( $mail ) { 
return ( $this->users[$mail] ); 

} 



Here is the simple User class: 

class User { 
private $name; 
private $mail; 
private $pass; 

CHAPTER 13 • GOOD (AND BAD) PRACTICE 305 

function __ construct( 
$this->name 
$this->mail 
$this->pass 

$name, $mail, 
= $name; 

$pass ) { 

} 

= $mail; 
= $pass; 

} 

function getMail() { 
return $this->mail; 

} 

Of course, we amend the UserS tore Test class to account for these changes. So code designed 
to work with an array like this: 

public function testGetUser() { 
$this->store->addUser( "bob williams", "bob@example.com", "12345" ); 
$user = $this->store->getUser( "bob@example.com" ); 
$this->assert Equals ( $user[' mail'], "bob@example. com" ) ; 

is converted into code designed to work with an object like this: 

public function testGetUser() { 
$this->store->addUser( "bob williams", "bob@example.com", "12345" ); 
$user = $this->store->getUser( "bob@example.com" ); 
$this->assertEquals( $user->getMail(), "bob@example.com" ); 

When we come to run our test suite however, we are rewarded with a warning that our 
work is not yet done: 

$ php5 tests/AllTests.php 
PHPUnit 2.0.1 by Sebastian Bergmann • 

• • • • • • • F 

Time: 0.061473846435547 
There was 1 failure: 
1) testvalidate_correctpass 
Expecting successful validation 
/home/projects/556/tests/ValidatorTest.php:25 
/home/projects/556/tests/Al1Tests.php:17 
/home/projects/556/tests/Al1Tests.php:21 



306 CHAPTER 13 • GOOD (AND BAD) PRACTICE 

FA! LURES! ! ! 
Tests run: 7, Failures: 1, Errors: o, Incomplete Tests: o. 

There is a problem with TestValidate. Let's take another look at the 
Validator: :validateUser() method: 

public function validateUser( $mail, $pass ) { 

} 

if ( ! is_array($user = $this->store->getUser( $mail )) ) { 
return false; 

} 
if ( $user['pass'] ==$pass ) { 

return true; 
} 
return false; 

We invoke getUser(). Although getUser() now returns an object and not an array, our 
method does not generate a warning. getUser () originally returned the requested user array on 
success or null on failure, so we validated users by checking for an array using the is_ array () 
function. Now of course, getUser() returns an object, and our validateUser() method will 
always return false. Without the test framework, the Validator would have simply rejected all 
users as invalid without fuss or warning. 

Now imagine making this neat little change on a Friday night without a test framework in 
place. Think about the frantic pager messages that would drag you out of your pub, armchair 
or restaurant-"What have you done? All our customers are locked out!" 

The worst bugs don't cause the interpreter to report that something is wrong. They take 
the form of perfectly legal code and they silently break the logic of your system. The worst bugs 
don't manifest where you are working, they are caused there, but the effects pop up elsewhere, 
days or even weeks later. A test framework can help you catch at least some of these insidious bugs. 

Write tests as you code, and run them often. If someone reports a bug, first add a test to 
your framework to confirm it, then fix the bug so that the test is passed-bugs have a funny 
habit of recurring. 

Summary 
A coder's aim is always to deliver a working system. Writing good code is an essential part of 
this aim's fulfillment, but it is not the whole story. 

In this chapter, I introduced PEAR (which is also the subject of the next chapter). We 
discussed two great aids to collaboration: documentation and version control. We saw that 
version control requires automated build, and I introduced Phing, a PHP implementation of 
Ant, a Java build tool. Finally, we discussed unit testing, and since this is the only topic to which 
we will not return, I offered an example demonstrating its power to catch and prevent bugs. 



CHAPTER 14 

An Introduction to PEAR 

Programmers aspire to produce reusable code. This is one of the great goals of object orien­
tation. We like to abstract useful functionality from the messiness of specific context, turning it 
into a tool that can be used again and again. To come at this from another angle, if program­
mers love the reusable, they hate duplication. By creating libraries that can be reapplied, 
programmers avoid the need to implement similar solutions across multiple projects. Even if 
we avoid duplication in our own code, though, there is a wider issue. For every tool you create, 
how many other programmers have implemented the same solution? This is wasted effort on 
an epic scale: wouldn't it be much more sensible for programmers to collaborate, and to focus 
their energies on making a single tool better, rather than producing hundreds of variations on 
a theme? This is where PEAR (PHP Extension and Application Repository) comes in. 

PEAR is a repository of quality-controlled PHP packages that extend the functionality of 
PHP. It is also a client-server mechanism for distributing and installing packages, and for 
managing interpackage dependencies. 

This chapter will cover 

• PEAR basics: What is this strange fruit? 

• Installing PEAR packages: All it takes is one command. 

• Adding PEAR packages to your projects: An example, some notes on error handling. 

• package.xml: The anatomy of a build file. 

• Automation: Programmatic generation of the package. xml file. 

What Is PEAR? 
At its core PEAR is a collection of packages, organized into broad categories, such as networking, 
mail, and XML. The PEAR repository is managed centrally, so that when you use an official 
PEAR package, you can be sure of its quality. 

You can browse the available packages at http: I /pear .php. net. Before you create a tool 
for a project, you should get into the habit of checking the PEAR site to see if someone has got 
there first. 

Support for PEAR comes bundled with PHP, which means that some of the core packages 
are available on your system straightaway (unless PHP was compiled to exclude it using the 
-without-pear configure flag). Packages are installed in a configurable location (on Unix systems 

307 



308 CHAPTER 14 • AN INTRODUCTION TO PEAR 

this will often be /usr/local/lib/php). You can check this using the pear command line 
application: 

$ pear config-get php_dir 
/usr/local/lib/php 

The core packages (known as the PHP Foundation Classes) provide a backbone for the 
wider repository-including core functions such as error handling and the processing of 
command line arguments. 

We have already seen the pear application in action. This is a tool for interacting with all 
aspects of PEAR, and as such it is an important part of PEAR in itself. The pear application 
supports a number of subcommands. We used config-get, which shows the value of a particular 
configuration setting. You can see all settings and their values with the config-show subcommand: 

$ pear config-show 
Configuration: 

PEAR executables directory bin dir /usr/local/bin 
PEAR documentation directory doc dir /usr/local/lib/php/doc 

Although pear supports many subcommands, you will probably get the most use out of 
one in particular. pear install is used for installing PEAR packages. 

Installing a Package with PEAR 
Once you have selected your package, you can download and install it with a single command. 
Here is the process for installing Log, a package that provides enhanced support for error 
logging: 

pear install log 

It really is as simple as that. The PEAR installer is bundled with PHP and locates, down­
loads, and installs the Log package on your behalf. If the package you wish to install depends 
upon others, the installation will fail with a warning message by default: 

requires package 'Fandango' >= 10.5 
dialekt: Dependencies failed 

You can either install the required package before trying again, or you could run pear 
install with the -o flag. 

pear install -o log 

The -o flag ensures that the PEAR installer will automatically install any required depen­
dencies for you. Some PEAR packages specify optional dependencies, and these are ignored if 
-o is specified. To have all dependencies installed automatically, use the -a flag instead. 

Although the PEAR repository exists in a particular location online, you will find that many 
developers produce PEAR-compatible packages for ease of installation. You may be given the 
location of a tarball (a tarred and gzipped package). Installing this using PEAR is almost as easy 
as installing an official package: 



CHAPTER 14 AN INTRODUCTION TO PEAR 309 

$ pear install -o http://www.example.com/MegaQuiz-1.2.tgz 
downloading MegaQuiz-1.2.tgz ... 
Starting to download MegaQuiz-1.2.tgz (592 bytes) 
.... done: 592 bytes 
install ok: MegaQuiz 1.2 

You can also download a package and install it from the command line. Here we use 
a Unix command called wget to fetch the MegaQuiz package before installing it from the 
command line: 

$ wget -nv http://127.0.1.2/MegaQuiz-1.2.tgz 
09:40:36 URL:http://127.0.1.2/MegaQuiz-1.2.tgz [592/592] 

-> "MegaQuiz-1.2.tgz" [1] 
$ pear install MegaQuiz-1.2.tgz 
install ok: MegaQuiz 1.2 

You can also install a PEAR package by referencing an XML file (usually named 
package. xml), which provides information about what files are to be installed where. 

$ pear install package.xml 
install ok: MegaQuiz 1.2 

Using a PEAR Package 
Once you have installed a PEAR package, you should be able to use it in your projects immedi­
ately. Your PEAR directory should already be in your include path-there should be no problem 
including the package. Here's how yo~ might work with the bundled DB package, for example: 

require_once("DB.php"); 
$dsn = "mysql://bob:pib44@localhost/test"; 
$db= DB::connect($dsn); 

//drop and re-create table 'scores' 
$db->query( "DROP TABLE scores" ); 
$db->query( "CREATE TABLE scores ( id !NT PRIMARY KEY, 

name VARCHAR 
score !NT )"); 

//add some rows 
foreach ( array( 

} 

array( 'harry', 44), 
array( 'mary', 66 ) ) as $row ) { 

$id = $db->nextld('score_sequence'); 
$ret= $db->query( "insert into scores values( $id, '$row[o]', $row[1])" ); 



310 CHAPTER 14 AN INTRODUCTION TO PEAR 

II output the rows 
$query_result = $db->query( "SELECT * FROM scores"); 
while ( $row = $query_result->fetchRow( DB_FETCHMODE_ASSOC ) ) { 

print "row: {$row['id']} {$row['name']} {$row['score']}\n"; 
} 

$query_result->free(); 
$db->disconnect(); 

Although the details of individual PEAR packages are beyond the scope of this chapter, it 
would be perverse not to explain this example. 

We begin by including DB. php. Most PEAR packages work in this way, providing a single 
top-level point of access. All further require statements are then made by the package itself. 

We construct a DSN (which stands for Data Source Name). A DSN is a URL-like string that 
includes the database type, the user name, the password, the host, and the database name. 
This string is passed to DB: :connect (). DB: :connect () uses it to determine the correct subclass 
of DB Common to return. 

We then use the query() method to pass various SQL statements to the database platform: 
we drop the scores table, and re-create it. We add some rows using INSERT statements. Rather 
than using MySQL' s auto-increment feature to generate row IDs, we implement a sequence 
table. The DB package automatically creates this for us, and generates a unique ID when we 
call nextiD ().This mechanism ensures that our SQL will be portable across platforms, because 
SQLite, in particular, does not supportAUTOINCREMENT fields. 

The argument to our final query() invocation is an SQL SELECT statement. query() returns 
a DB_ Result object, which provides methods for working with our database result set. We call 
the fetch Row() method, passing it a constant that specifies the format we would like. Finally, 
we print each row. 

The DB package is worth mastering. It provides a platform-agnostic interface to multiple 
databases. The idea is that you write code to work with the DB API, and it handles the database­
specific syntax. The package will be used again in later examples, so you might want to take a 
look at the documentation at http: I /pear. php. net/DB. 

This is an excellent example of good object -oriented design-an abstract class called 
DB_ common defines an interface that supports the operations we have illustrated (in particular 
query() and nextlndex()), and a set of concrete children provide the implementation. In this 
way your application is ready to work with MySQL, SQLite, MSSQL, or Oracle with no change 
in your code (as long as you use standard SQL syntax). Our preceding example is designed to 
work with MySQL, but we can change it to work with SQLite simply by changing the DSN: 

$dsn = "sqlite://./test.db"; 
$db= DB::connect($dsn); 

Every PEAR package is different, of course, and each one should be associated with complete 
usage instructions. In the case of official PEAR packages, you will find API instructions on the 
Web site at http: I /pear. php. nett. In all cases you should expect to be able to add the functionality 
of PEAR package to your script with minimal effort. The package should provide you with a 
clear, well-documented API. 



CHAPTER 14 AN INTRODUCTION TO PEAR 311 

Handling PEAR Errors 
Many, if not most, PEAR packages use the standard PEAR error class PEAR_ Error. This is often 
returned in place of the expected return value if something goes wrong in an operation. If 
this is the case, it will be documented, and you should test return values using the static 
PEAR: :isError() method. 

$dsn = "qlite://./test.db"; 
$db= DB::connect($dsn); 

if ( PEAR::isError( $db ) ) { 
print "message: " $db->getMessage() ."\n"; 
print "code: " $db->getCode() ."\n\n"; 
print "Backtrace:\n"; 

foreach ( $db->getBacktrace() as $caller ) { 
print $caller['class'].$caller['type']; 
print $caller['function']."() "; 

} 

} 
die; 

print "line ".$caller['line']."\n"; 

Here we test the return value from DB: :connect () after making a deliberate mistake with 
the DSN. 

PEAR::isError( $db) 

is the functional equivalent of 

$db instanceof PEAR_Error 

So within our conditional block we know that $db is a PEAR_ Error rather than a DB Common 
object. This pollution of a method's return value was an unfortunate necessity before the 
advent of PHP 5. More packages are likely to use Exceptions as well as or instead of return 
values in the future. 

Once we are sure we have a PEAR _Error object, we can interrogate it for more information 
about the error. In our example, we have three of the most useful methods: getMessage () 
returns a message that describes the error, get Code () returns an integer corresponding to the 
error type (this is an arbitrary number that the package author will have declared as a constant 
and, we hope, documented), and finally, getBacktrace() returns an array of the methods and 
classes that lead to the error. This enables us to work our way back through our script's opera­
tion and locate the root cause of the error. As you can see, getBacktrace () is itself an array, 
which describes each method or function that led to the error. The elements are described in 
Table 14-1. 



312 CHAPTER 14 AN INTRODUCTION TO PEAR 

Table 14-1. Fields Provided by PEAR_Error::getBacktraceO 

Field Description 

file Full path to PHP file 

args The arguments passed to the method or function 

class The name of the class (ifin class context) 

function The name of the function or method 

type If in class context, the nature ofthe method call (: : or - >) 

line The line number 

Working with the PEAR Installer 
Packages from the PEAR repository are well documented and designed to be easy to use. How 
easy are they to create, though, and how do you go about creating your own? In this section, we 
will look at the anatomy of a PEAR package. 

package.:xml 
The package. xml file is the heart of any PEAR package. It provides information about a package, 
determines where and how its participants should be installed, and defines its dependencies. 
Whether it operates upon a URL, the local file system, or a tarred and gzipped archive, the 
PEAR installer needs the package.xml file to acquire its instructions. 

No matter how well designed and structured your package is, if you omit the build file, the 
install will fail. Here's what happens if you attempt to install an archive that does not contain 
package. xml: 

$ pear install megafail.tgz 
Unable to open /tmp/pearzd890n/package.xml 

User Warning: Could not open dir /tmp/pearzd8gon in System.php on line 87 

The PEAR installer first unpacks our archive to the temporary directory, and then looks for 
package. xml. Here it falls at the first hurdle. So if package. xml is so important, what does it 
consist of? 

Package Elements 
The package file must begin with an XML declaration. All elements are then enclosed by the 
root package element: ' 

<?xml version="l.o" encoding="IS0-8859-1" ?> 
<! DOCTYPE package SYSTEM "http: I /pear. php. net/dtd/package-1.0"> 
<package version="l.O"> 

<!-- additional elements here --> 

</package> 



CHAPTER 14 ,. AN INTRODUCTION TO PEAR 313 

This example would fail with an error. The PEAR installer requires a number of elements 
to work with. To start with, we must provide overview information. 

<?xml version="l.O" encoding="IS0-88S9-1" ?> 
<!DOCTYPE package SYSTEM "http://pear.php.net/dtd/package-1.0"> 
<package version="l.O"> 

<name>Dialekt</name> 
<summary> 

</summary> 
<description> 

A package for translating text and web pages 
into silly tones of voice 

Be the envy of your friends with this 
hilarious dialect translator. Easy to extend 
and altogether delightful. 

</description> 

<!-- additional elements here --> 

</package> 

These new elements should be pretty self-explanatory. The name element defmes the 
handle by which the user will refer to the package. The summary element contains a one-line 
overview of the package, and description provides a little more detail. All these elements 
should be regarded as compulsory (although you can force the PEAR installer to attempt to 
install without them). 

Next, you should provide information about the team behind your package. The maintainers 
element is used for this purpose. It should contain at least one maintainer element: 

<maintainers> 
<maintainer> 

cuser>mattz</user> 
<name>Matt Zandstrac/name> 
<email>matt@example.com</email> 
<role>developer</role> 

</maintainer> 
</maintainers> 

Once again the elements used here should be fairly clear. The value you choose for the 
role element should be one of lead, developer, contributor, or helper. These are designations 
recognized by the PEAR community, but they should adequately cover most non-PEAR projects 
too. The user element refers to the contributor's user name with PEAR. Most teams use similar 
handles to allow users to log in to CVS, a development server, or both. 

The release Element 
The real heart of a package document is to be found in its release element. This provides infor­
mation about the current version of your package, as well as instructions for installing its 
components. Let's look at the information side of release first of all: 



314 CHAPTER 14 AN INTRODUCTION TO PEAR 

<release> 
<version>0.2</version> 
<date>2004-01-01</date> 
<license>PHP License</license> 
<state>beta</state> 
<notes>initial work</notes> 

<!-- additional elements here --> 

</release> 

The version element is used by PEAR in dependency calculations. If another system 
claims to require Dialekt 1. o, and the installing user only has version o. 2 on her system, PEAR 
will halt its installation, or attempt to fetch a later version, depending upon the mode in which 
it was run. If you are releasing your package according to specific license terms (such as GNU's 
GPL license, for example) you should add this information to the license element. The state 
element can be one of dev, devel, alpha, beta, snapshot, or stable; you should choose the one 
that best describes your project. 

Working with Files and Directories 
Now that we've described the package, its contributors, and the current release, we are finally 
ready to talk about the files and directories in the package. Every file in a PEAR package has a 
role. Every role is associated with a default (configurable) location. Table 14-2 describes the 
common roles. 

Table 14-2. Some Common PEAR File Roles 

Role 

php 

test 

script 

data 

doc 

Description PEAR Config Name Example Location 

PHP file php_dir /usr/local/lib/php 

Unit test file test dir /usr/local/lib/php/test/<package> 

Command line script bin dir /usr/local/bin 

Resource file data dir /usr/local/lib/php/data/<package> 

Documentation file doc dir /usr/local/lib/php/doc/<package> 

When installation takes place, files of role, doc, data, and test, are not dropped directly 
into their respective directories. Instead a subdirectory named after the package is created in 
the test_dir and data_dir directories, and files are installed into this. 

In a PEAR project, everything must have a role, and every role has its place. If you do not 
have the correct privileges to work with the default role locations, you can set your own locations 
using the pear command line tool: 



$ pear config-set php_dir -tphp/lib/ 
$ pear config-set data_dir -tphp/lib/data/ 
$ pear config-set bin_dir -/php/bin/ 
$ pear config-set doc_dir -tphp/lib/doc/ 
$ pear config-set test_dir -tphp/lib/test/ 

CHAPTER 14 AN INTRODUCTION TO PEAR 315 

Now PEAR will use your directories rather than those described in Table 14-2. Remember 
that if you do this, you should add the lib directory to your include path: either in the php.ini 
file, an. htaccess file, or using the ini_set() function in your scripts. You should also ensure 
that the bin directory is in your shell's path so that command line commands can be found. 

Our example revolves around a fictitious package called Dialekt. Here is the package's 
directory and file structure: 

./package.xml 

./data 
./data/dalek.txt 
./data/alig.txt 

./script 
./script/dialekt.sh 
./script/dialekt.bat 

./cli-dialekt.php 

./Dialekt.php 

./Dialekt 
./Dialekt/AliG.php 
./Dialekt/Dalek.php 

As you can see, we have mirrored some of the standard PEAR roles in our data structure. 
So we include data and script directories. The top-level directory contains two PHP files. 
These should be installed in the PEAR directory {lusr /local/php/lib by default). Dialekt. php is 
designed to be the first port of call for client code. The user should be able to include Dialekt with 

require_once("Dialekt.php"); 

Additional PHP files (Dalek. php and AliG. php) are stored in a Dialekt directory that will be 
added to the PEAR directory (these are responsible for the detailed process of translating Web 
pages and text files into oh -so-funny versions of themselves). Dialekt. php will include these on 
behalf of client code. In order that the Dialekt package can be used from the command line, we 
have included a shell script that will be moved to PEAR's script directory. Dialekt uses configu­
ration information stored in text files. These will be installed in PEAR's data directory. 

When we last looked at our package. xml file, we had reached the release element. In addition 
to general information, the release element must contain a filelist element, which in tum 
must contain file elements that describe the files in the release. 

<file list> 
<file role="php" name="cli-dialekt.php" I> 

<lfilelist> 



316 CHAPTER 14. AN INTRODUCTION TO PEAR 

Now, for the first time in this chapter, package. xml is legal! We can run it from the command 
line, and a single file will be installed. As you can see, we have defined a file with the role php. 
The file is named cli-dialekt.php and can be found on the same level as package.xml. Let's 
run the package.xml file: 

$ pear install package.xml 

cli-dialekt.php should now appear in the PEAR directory (whether that's -Jphpllib or 
/usr/local/php/lib). If you change your mind about the package, you can uninstall it from the 
command line like this: 

$ pear uninstall dialekt 

You do not need to specify a package.xml file in order to uninstall-PEAR maintains a 
registry of installed packages. 

Now let's include Dialekt. php in the package: 

<file role="php" name="Dialekt.php"> 
<replace type="pear-config" 

from="@bin_dir@" to="bin_dir"l> 
</file> 

We have included a new element in this fragment. The replace element causes the PEAR 
installer to search the file for the trigger string given in the from attribute, replacing it with the 
PEAR config setting in the to attribute. So our Dialekt. php file might start out looking like this: 

<?php 
/* 
* Use this from PHP scripts, for a CLI implementation use 
* @bin_dir@/dialekt 
*I 

class Dialekt { 
const DIALEKT_ALIG=1; 
const DIALEKT_DALEK=2; 

II ... 
} 

After installation, the same class comment should look something like this: 

I* 
* Use this from PHP scripts, for a CLI implementation use 
* /home/mattz/php/bin/dialekt 
*I 

In order to install our command line tool, we need to set the role attribute for the file to 
script. This ensures that the file is copied to the directory specified in the bin_ dir setting. 



<file role="script" 
platform="(.*nixl .*nux)" 
install-as="dialekt" 
name="scriptldialekt.sh"> 
<replace type="pear-config" 

CHAPTER 14 AN INTRODUCTION TO PEAR 317 

from="@php_dir@" to="php_dir"l> 
<replace type="pear-config" 

from="@bin_dir@" to="bin_dir"l> 
<replace type="pear-config" 

from="@php_bin@" to="php_bin"l> 
<!file> 

The install-as attribute specifies that the file dialekt. sh should be renamed dialekt on 
installation. We also introduce the platform attribute in which you can define a regular expression 
test. If the current platform matches this test, then the file is installed; otherwise the entire 
element is ignored. 

Although you must specify every individual file in a package, you can apply some attributes 
to multiple files. For this you must use the dir element. Here we use dir to group php and 
data files: 

<dir name="Dialekt" role="php"> 
<file name="Dalek.php" I> 
<file name="AliG.php" I> 

<ldir> 

<dir name="data" role="data"> 
<file install-as="dalek" name="dalek.txt" I> 
<file install-as="alig" name="alig.txt" I> 

<ldir> 

In each instance, we specify a role in the dir element rather than in the file elements it 
contains. This saves us from specifying the role for every file element. We also define the 
common part of the name attribute for each flle. The dir element saves typing and makes file 
elements clearer, both by shortening and grouping them. Here is an equivalent to the preceding 
fragment that does not use the dir element: 

<file role="php" name="Dialekt/Dalek.php" I> 
<file role="php" name="DialektiAliG.php" I> 
<file role="data" 

install-as="dalek" name="dataldalek.txt" I> 
<file role="data" 

install-as="alig" name="datalalig.txt" I> 

We specify that our data files should be installed without the . txt suffix. This means that 
they will be installed as <data_ dir>ldialektldalek and <data _dir>ldialektlalig. We do not 
need to specify the dialekt subdirectory-this is automatically included for files with a data role. 



318 CHAPTER 14 AN INTRODUCTION TO PEAR 

In the case of the data files, however, the situation is more involved. They are stored locally 
in . /data/dalek. txt and. /data/alig. txt. We want them to end up in a directory called Dialekt 
in PEAR's data directory. We can't use their local path to determine their output directory, so 
we set baseinstalldir to "Dialekt". If we simply left it at that, though, PEAR would still use the 
local path: the files would be saved to <data_dir>/Dialect/data/. To prevent this we set the 
install-as attribute. This transforms the data files' names (stripping the. txt extension), but 
it also removes the directory path. If we want to keep the full path, we would have to specify it 
in install-as. 

Dependencies 
Although packages are generally stand-alone entities, they often make use of one another. Any 
use of another package introduces a dependency. If the used package is not present on the 
user's system, then the package that uses it will not run as expected. 

You can specify dependencies in package. xml. If these are not satisfied, PEAR will refuse to 
install the package by default. A package can depend upon another package, a PHP extension 
(such as zlib or gd) or a particular version ofPHP. Here we insist that Dialekt has access to PHP 
5 or greater and the DB package: 

<deps> 
<dep type="php" rel="ge" version="s.o.o"/> 
<dep type="pkg" rel="ge" version="1.5" 
optional="yes">DB</dep> 

</deps> 

As you can see, dependencies are defined by the dep element. dep elements are organized 
by the deps element. Each dep element must define a type attribute. Table 14-3 lists depen­
dency types. 

Table 14-3. package.xml Dependency Types 

Type Description 

php The PHP application 

pkg A PEAR package 

sa pi A server API ("apache", for example) 

ext A PHP extension (a capability compiled into PHP such as zlib or GD) 

prog A third-party program (such as cp or cvs) 

os An operating system 

zend A version of the Zend Engine (either 1 or 2 at time of writing) 

doc Documentation file 

In addition to a type of dependency, you can define the dependency relationship. This 
defaults to has. By setting the rel attribute of the dep element to "has", you are requiring that 
the user has a particular package, extension, or program, regardless of version number. All 



CHAPTER 14 • AN INTRODUCTION TO PEAR 319 

other values to rel require that a version attribute is also set. You can insist that a particular 
version of a package is installed by setting rel to "eq". If you need the version to be less than a 
particular value, you would specify a rel of "lt". For a version less than or equal to a particular 
value, you would use "le". To require a version greater than, or greater than or equal to, a 
particular value, you would use "gt" or "ge" respectively. 

We also used the optional attribute in our example. When PEAR encounters an unfilled 
optional dependency, it will raise a warning, but will continue to install nonetheless. You 
should set optional to "yes", where your package can limp along adequately without the 
preferred package or extension. 

If the user runs the pear install command with the -o flag: 

pear install -o package.xml 

then PEAR will attempt to download and install all unmet required dependencies. Running the 
command with the -a flag also automates the download of dependencies, but will take in 
optional as well as required packages. 

Automating package.xml Generation with 
PEAR_PackageFileManager 
PEAR provides a package for generating the package. xml file. This might seem needlessly 
convoluted at first glance, but if you are managing a package that is set to evolve and grow over 
time, it could save you maintenance headaches. As we have seen, in order to install a package 
you must use the package.xml file to describe every individual file that belongs to it. This 
process is clearly ripe for automation. 

The PEAR_PackageFileManager package provides a mechanism for describing every aspect 
of a package. xml file, and for adding every file in a directory structure to it. The package is not 
bundled with PHP by default, so you may need to install it: 

$ pear install PEAR_PackageFileManager 

You can then include and instantiate the PEAR _PackageFileManager class: 

require_once('PEAR/PackageFileManager.php'); 
$pkg_man = new PEAR_PackageFileManager(); 

PEAR _PackageFileManager accepts a large number of options that equate to package. xml 
elements. Here we use some of these to describe the dialekt package: 

$pkg_man->set0ptions( 
array( 
'baseinstalldir' 
'version' 
'packagedirectory' 
'simpleoutput' 
'state' 
'package' 
'summary' 

=> , I,, 

=> '0.1', 

=> . , 
=> true, 
=> 'beta', 
=> 'dialekt', 
=> 'A package for translating text ' 

'and web pages into silly tones ' 
'of voice', 



320 CHAPTER 14 AN INTRODUCTION TO PEAR 

) ; 

'description' 

'notes' 
'dir roles' 

'installas' 

=> 'Be the envy of your friends with '. 
'this hilarious dialect translator. ' 
'Easy to extend and altogether'. 
'delightful.', 

=> 'autogenerated build', 
=> array( 'script' 

'data' 
=> 'script', 
=> 'data'), 

=> array( 'data/alig.txt' => 
'data/dalek.txt' => 

'script/dialekt.bat' => 
'script/dialekt.sh' => 

'alig', 
'dalek', 
'dialekt', 
'dialekt', 

Options are passed to the PEAR_PackageFileManager object via the setOptions () method, 
which accepts an associative array. Like most methods in this package, setOptions () returns 
a PEAR_Error object if it encounters any problems, so it is safest to test the return value with 
PEAR: :is Error(). We will omit this for the sake of brevity. 

Many of the options accepted by setOptions () such as package, summary, and description, 
refer directly to package. xml elements that we have already encountered. The packagedirectory 
element includes a path to the package's development folder. PEAR _PackageFileManager needs 
this path in order to construct the release element with its file and dir elements. We have 
used a single dot for the path, because we intend to run this code from within the package 
directory. 

The dir_roles element allows you to associate the contents of a directory with a particular 
role. We ensure that the contents of the script and data directories take on the right roles. 

The installas option is like a centralized version of the install-as attribute we encountered 
previously. It consists of an array whose keys are the paths to the files affected, with the values 
the new file names. We reproduce the transformations we set up manually. 

Some features of PEAR _PackageFileManager can be set through their own methods. Here 
we add our sole maintainer: 

$pkg_man ->addMaintainer ( 
'mattz 'Matt Zandstra', 'matt@example.com'); 

The addMaintainer() method accepts a user name, a maintainer role, a full name, and an 
e-mail address. 

In our package. xml file, we used the platform attribute to make the installation of certain files 
dependent upon operating system. We achieve the same effect in PEAR _PackageFileManager with 
the addPlatformException() method. 

$pkg_man->addPlatformException('script/dialekt.bat', 'windows'); 
$pkg_man->addPlatformException('script/dialekt.sh', 'linux'); 

addPlatformException () requires a file path and a platform. The file will only be installed 
if the platform matches the current operating system. 



CHAPTER 14 • AN INTRODUCTION TO PEAR 321 

The other operation we describe in package. xml is keyword replacement. 
PEAR_PackageFileManager provides the addReplacement() method. 

$pkg_man->addReplacement( 
'script/dialekt.sh', 'pear-config', 
'@php_dir@', 'php_dir'); 

This method requires a file path, a type, the string to replace, and the name of the replace­
ment. In this case, we have chosen the pear-config type, and elect to replace the target string 
with the php_dir pear-config variable. Other types include php-const, where the replacement 
value should be a PHP constant, and package- info, where the value is a package value such as 
summary. 

Having configured our PEAR _PackageFileManager object, we need to provide a mechanism 
for generating the package. xml file. There are two methods of note here. The first writes the 
contents of package. xml to standard output: 

$pkg_man->debugPackageFile(); 

This is very useful for checking your configuration before writing your file. Once you have 
checked your output, it is time to write the file: 

$pkg_man->writePackageFile(); 

Preparing a Package for Shipment 
Now that we have created our package and generated a package. xml file, whether manually or 
automatically, it is time to generate an archived and compressed product. 

There is a single PEAR command to achieve this. We ensure we are in the root directory of 
our project and run this subcommand: 

$ pear package 

This will generate a tarred and gzipped archive suitable for distribution. 

Summary 
PEAR is extensive almost by definition, and I have only had space to provide an introduction 
here. Nevertheless, you should leave this chapter with a sense of how easy it is to leverage PEAR 
packages to add power to your projects. Through the package.xml file and the PEAR installer, 
you can also make your code accessible to other users. 

PEAR is best suited for relatively self-enclosed packages with well-defined functionality. 
For larger applications, other build solutions come into their own. We will be looking at Phing, 
a powerful tool for building applications, later in the book. 



CHAPTER 15 

Generating Documentation 
with phpDocumentor 

Remember that tricky bit of code? The one in which you treated that method argument as a 
string, unless it was an integer? Or was it a Boolean? Would you recognize it if you saw it? 
Maybe you tidied it up already? Coding is a messy and complex business, and it's hard to keep 
track of the way your systems work and what needs doing. The problem becomes worse when 
you add more programmers to the project. Whether you need to signpost potential danger areas 
or fantastic features, documentation can help you. For a large code base, documentation or its 
absence can make or break a project. 

This chapter will cover 

• The phpDocumentor application: Installing phpDocumentor, running it from the 
command line 

• Documentation syntax: The DocBlock comment, documentation tags 

• Documenting your code: Using DocBlock comments to provide information about 
classes, properties, and methods 

• Creating links in documentation: Linking to Web sites and to other documentation 
elements 

Why Document? 
Programmers love and loathe documentation in equal measure. When you are under pressure 
from deadlines, with managers or customers peering over your shoulders, documentation is 
often the first thing to be jettisoned. The overwhelming drive is to get results. Write elegant 
code, certainly (though that can be another sacrifice), but with a code base undergoing rapid 
evolution, documentation can feel like a real waste of time. After all, you'll probably have to 
change your classes several times in as many days. Of course, everyone agrees that it's desir­
able to have good documentation. It's just that no one wants to undermine productivity in 
order to make it happen. 

323 



324 CHAPTER 15. GENERATING DOCUMENTATION WITH PHPDOCUMENTOR 

Imagine a very large project. The code base is enormous, consisting of very clever code 
written by very clever people. The team members have been working on this single project (or 
set of related subprojects) for over five years. They know each other well, and they understand 
the code absolutely. Documentation is sparse, of course. Everyone has a map of the project in 
their heads, and a set of unofficial coding conventions that provide clues as to what is going on 
in any particular area. Then the team is extended. The two new coders are given a good basic 
introduction to the complex architecture and thrown in. This is the point at which the true cost 
of undocumented code begins to tell. What would otherwise have been a few weeks of acclima­
tization soon becomes months. Confronted with an undocumented class, the new programmers 
are forced to trace the arguments to every method, track down every referenced global, check 
all the methods in the inheritance hierarchy. And with each trail followed, the process begins 
again. If, like me, you have been one of those new team members, you soon learn to love 
documentation. 

Lack of documentation costs. It costs in time, as new team members join a project, or 
existing colleagues shift beyond their area of specialization. It costs in errors as coders fall into 
the traps that all projects set. Code that should be marked private is called, argument variables 
are populated with the wrong types, functionality that already exists is needlessly re-created. 

Documentation is a hard habit to get into because you don't feel the pain of neglecting it 
straightaway. Documentation needn't be difficult, though, if you work at it as you code. This 
process can be significantly eased if you add your documentation in the source itself as you 
code. You can then run a tool to extract the comments into neatly formatted Web pages. This 
chapter is about just such a tool. 

phpDocumentor is based on a Java tool called JavaDoc. Both systems extract special 
comments from source code, building sophisticated application programming interface (API) 
documentation from both the coder's comments and the code constructs they find in the 
source. 

Installation 
The easiest way to install phpDocumentor is by using the PEAR command line interface. First, 
though, you need to get your hands on the package. You can find the phpDocumentor Web site 
at http: I !VMW. phpdoc. org. Once you have the package on your file system, you should decom­
press it. Assuming that you have downloaded the tarred and gzipped version, and that you are 
on a Unix-like command line, you might use the following command: 

tar -xvzf phpdocumentor-1.3.0rc3.tar.gz 

II Note There is also a distribution of phpDocumentor archived in Zip format available for Windows users. 



CHAPTER 15 • GENERATING DOCUMENTATION WITH PHPDOCUMENTOR 325 

Of course, by the time you read this, the version number of phpDocumentor may have 
changed. Substitute the current name of the package for the one just quoted. Once you have 
unpacked the package, change your current working directory to the package root: 

cd phpdocumentor-1.3.0rc3 

At this level you should see a me named package. xml. This is used by PEAR to install 
phpDocumentor. 

pear install package.xml 

That should be that! PEAR prints a confirmation message, and we are ready to get started. 
If you have any problems with installation, the phpDocumentor package includes a me named 
INSTALL, which contains extensive instructions and troubleshooting hints. 

Generating Documentation 
It might seem odd to generate documentation before we have even written any, but 
phpDocumentor parses the code structures in our source code, so it can gather information 
about our project before we even start. 

We are going to document aspects of an imaginary project called "megaquiz." It consists 
of two directories, command and quiztools, which contain class ffies. These are also the names 
of packages in the project. phpDocumentor can be run as a command line tool, or through a 
slick Web GUI. We will concentrate on the command line, because it's easy then to embed 
documentation updates into build tools or shell scripts. The command to invoke phpDocumentor 
is phpdoc. You will need to run the command with a number of arguments in order to generate 
documentation. Here's an example: 

phpdoc -d /home/projects/megaquiz/ \ 
-t /home/projects/docs/megaquiz/ \ 
-ti 'Mega Quiz' \ 
-dn 'megaquiz' 

The -d flag denotes the directory whose contents you intend to document. -t denotes your 
target directory (the directory to which you wish to write the documentation ffies). Use -ti to 
set a project title, and -dn to define the default package name. 

If we run this command on our undocumented project, we get a surprising amount of 
detail. You can see the menu page of our output in Figure 15-l. 



326 CHAPTER 15 GENERATING DOCUMENTATION WITH PHPDOCUMENTOR 

f)le Edit YJew !;i.o §.ookmarks Iools I:!<!IP ~ I -
'1:/ • ~ • [D flle:f//homeMffld/WO!Illng{oaphp-book/ffB ltJ --=--- OJ] 

mega quiz 

mega quiz 
Ducription 

Class tree5 
lnde~ or elt"ments 

Cln • 
.-\arssMa.na~r 

Command 
Comrnanck2ontexl 
FeedbackCommand 

I LoginCommand 
Receherfaetnry 
User 

Fil£s 
M<e sManager.pbp 
Commnod.pbp 
CommandConte~t.php 
FeedbackCommaod.php 
LoginCommand.php 
moio.php 
Us•r.php 

JJhJJ"h:"nw:nror u 

•.s.oRQI 

Mega Quiz 
\Velcome to megaquizl 

This docwnentation was generatEd by phpDocumen tor Vl.J.oRC3 

Figure 15-1. A basic phpDocumentor output menu 

As you can see, all the classes and files in the project are listed in the left-hand frame. Both 
the project name and the package name are incorporated into the documentation. The class 
names are all hyperlinks. In Figure 15-2, you can see some of the documentation for the Command 
class that we created in Chapter 11. 

phpDocumentor is smart enough to recognize that Command is an abstract class, and that it 
is extended by FeedbackCommand and LoginCommand. Notice also that it has reported both the 
name and the type of the argument required by the execute () method. 

Because this level of detail alone is enough to provide an easily navigable overview of a 
large project, it is a huge improvement upon no documentation at all. However, we can 
improve it significantly by adding comments to our source code. 



CHAPTER 15 • GENERATING DOCUMENTATION WITH PHPDOCUMENTOR 327 

_M~a Quiz : Mozilla F~rebird~- ____ - ----- - -- --------------
f ile ~dit Ylew s:;o _!look marks Iools Jjelp l< . • ~ > I [) file:///homettnffld/Worklf191oophp-book/fnEJ IIQ I . megaqutz 

megaquiz 
.. 

I 
uoitl c~ul:e (Com"10ndCot1 texr EJ;coiJtcxt) I Drs:ription 

Class trees 
index of elements 

!Methods I Clnsses 
Act"essManagcr 

Dcornption I Jlc,.cndcnl• l Method. (d..·ouL•) 
1;;'!.!:!!.!!!~.9.\1 
CommandContext 
FeedbockCorumand execute (line 3) 
LoginCommand 
Recei\"l!fF.lt'tory 

• absb'll.ct: U.ser 
Fires 

AcressManagt:or.php uoid CXDCUL-e (ConunanrlCont~.t't kontcxt) 
Command.php 

RedfP}i.ned in dcsoendantsCU": CommandContext.php 
FecdbockComrnand.php • F~edbackCommi1nd:xl{("('"utc{) 
LoginCornmand.php 

• lr.JJ;inCommantl:e~cntcO ~ ~ 
IJser.php 

phplh:unvmtor u 
1.3.oRC;J Lb:umcntatOn gcnl!rofudon Sal, 5 Jun 2004 14:4/l:.,S +0100 &$1 php/)Dt.u"'C"tHor 

I .J.ORC3 . r--
Oooe 

Figure 15-2. Default documentation for the Command class 

DocBiock Comments 
DocBlock comments are specially formatted to be recognized by a documentation application. 
They take the form of standard multiline comments. Standard, that is, with the single addition 
of an asterisk to each line within the comment: 

1** 
* My DocBlock comment 
*I 

phpDocumentor is designed to expect special content within DocBlocks. This content 
includes normal text descriptive of the element to be documented (for our purposes, a file, 
class, method, or property). It also includes special keywords called tags. Tags are defined 
using the at sign(@), and may be associated with arguments. So the following DocBlock placed 
at the top of a class tells phpDocumentor the package to which it belongs: 

!** 
* @package command 
*I 



328 CHAPTER 15 GENERATING DOCUMENTATION WITH PHPDOCUMENTOR 

If we add this comment to every class in our project (with the appropriate package name, 
of course), phpDocumentorwill organize our classes for us. You can see phpDocumentor output 
that includes packages in Figure 15-3. 

command 
Description 

Cbsstrec• 
Index of elements 

c1n ..... 
Command 
Comm3ndC'ontext 
Feedbacl"Command 
Login Command 

File• 
Command.php 
CommandConlllxt.php 
Feodbad<Command.php 
LoginCommund.php 

phpi'Jo<umcutor ,. • .,y.oRQI 

mega quiz 
megaquiz I command I quiztools 

Class Command 

Description 
I ".!<ripll'>n I D<:a:cndentol Method• (detail•) 

• abstract: 

Lantal in / €amm .. n ltcl,/Commo "d .pltp (line S) 

Direct descendents 
De.IICriplion l l 'tt.,\1tr.•nJ,,mu I Method• (dcbils) 

s~-··-·- .. ·-·-·-·-.. --··-.. ······--.. --. ______ o..""':!P~.':''-'-- ·----
Feedb~ckcomm:\nd 

L.oginCommand 

Figure 15-3. Documentation output that recognizes the @package tag 

In Figure 15-3, notice that packages have been added to the navigation (top-right comer). 
In addition to the default megaquiz package we defined as a command line switch, we can now 
click command or quiztools . Because we are currently examining classes in the command package, 
the links that form the left-hand navigation list only those classes. 

Generally, packages in documentation will mirror your directory structure. So the command 
package maps to a command directory. That isn't necessary, however. A third-party developer 
may wish to create a Command class that is part of the command package but lives in her own directory, 
for example. So the @package tag makes you take responsibility for associating classes with 
packages, but it also affords you flexibility that would not be available by using the file system 
to guess at package names. 

Documenting Classes 
Let's add some more tags and text that are useful in class- or file-level DocBlocks. We should 
identify the class, explain its uses, and add authorship and copyright information. 



CHAPTER 15 • GENERATING DOCUMENTATION WITH PHPDOCUMENTOR 329 

Here is the Command class in its entirety: 

!** 
* Defines core functionality for commands. 
* Command classes perform specific tasks in a system via 
* the execute() method 

* 
* @package command 
* @author Clarrie Grundie 
* @copyright 2004 Ambridge Technologies Ltd 
*I 

abstract class Command { 
abstract function execute( CommandContext $context ); 

} 

The DocBlock comment has grown significantly. The first sentence is a one-line summary. 
This is emphasized in the output, and also extracted for use in overview listings. The subse­
quent lines of text contained more detailed description. It is here that you can provide detailed 
usage information for the programmers who come after you. As we will see, this section can 
contain links to other elements in the project, fragments of code in addition to descriptive text. 
We also include @author and @copyright tags, which should be self-explanatory. You can see 
the effect of our extended class comment in Figure 15-4. 

., .. ' 
., . - Jr~ \'X 

Ble J;:dll \[lew !iO !!ookmarks Iools J:jelp ~ 
~ ? .. -~ I D lile:f{/homl'/lriffld,lworking,/ooph!)-book/fronterEJ I~ I - - - ~ 

mega quiz 
megaquiz I command I quiztool, 

command 
.. 

Class Command 
Dl!scription 

Clnss trees I Description I ~ Index of elements 
ClaSSI!5 

t;§inii:i:~:ij,~ /:lc'Rrr;ptrm I Dc:.ccndcnlt l MetJ•ocb (dc:blil11) 
CornmandContext 
FeerlbnckCommand 
LoginComrn:~nd Defines core functionality for oornmnn.ds. 

Fil£s 
Command.php Command classes perfurm specific tasks in a systEm via the executE() method 
ComrnaudContext.php 
FeedbackCommand.php 

• abstract: LoginCornmand.php 

phpDownwntor u t.s.oRCs 
• copyright: 2004 Ambridge Technologies Ltd 
• author: Clarrie Gruodie 

Lomtr:x:l in fc:ommarui/Couunand.pltp (line u ) 

.. 
file:{//homl'/lrlffld,lworklng/ooph!}-book/frontendfsourcetlSfdcx.ootjcommand/Command.html 

Figure 15-4. Class details in documentation output 



330 CHAPTER 15 GENERATING DOCUMENTATION WITH PHPDOCUMENTOR 

Notice that we didn't need to tell phpDocumentor that the Command class is abstract. This 
confirms something that we already know, that phpDocmentor interrogates the classes it 
works with even without our help. But it is also important to see that DocBlocks are contextual. 
phpDocumentor understands that we are documenting a class in the previous listing, because 
the DocBlock it encounters immediately precedes a class declaration. 

File-Level Documentation 
Although I tend to think in terms of classes rather than of the files that contain them, there are 
good reasons in some projects for providing a layer of documentation at the file level. 

First of all, phpDocumentor likes file comments. If you fail to include a DocBlock for a file 
in your project, a warning is raised that can clutter up the application's reporting, especially in 
large projects. A file comment should be the first DocBlock in a document. It should contain a 
@package tag, and it should not directly precede a coding construct. In other words, if you add 
a file-level DocBlock, you should ensure that you also add a class-level comment before the 
first class declaration. 

Many open source projects require that every file includes a license notice, or a link to one. 
Page-level DocBlock comments can be used, therefore, for including license information that 
you do not want to repeat on a class-by-class basis. You can use the @license tag for this. 
@license should be followed by a URL, pointing to a license document, and a description: 

/** 
*@license http://www.example.com/lic.html Borsetshire Open License 
* @package command 
*I 

The URL in the license tag will become clickable in the phpDocumentor output. 

Documenting Properties 
All properties are mixed in PHP. That is, a property can potentially contain a value of any type. 

There may be some situations in which you require this flexibility, but most of the time you 

think of a property as containing a particular data type. phpDocmentor allows you to document 
this fact using the @var tag. 

Here are some properties documented in the CommandContext class: 



CHAPTER 15 • GENERATING DOCUMENTATION WITH PHPDOCUMENTOR 331 

class CommandContext { 
I** 
* The application name. 
* Used by various clients for error messages, etc. 
* @var string 
*I 

public $applicationName; 

I** 
* Encapsulated Keys/values. 
* This class is essentially a wrapper for this array 
* @var array 
*I 

private $params = array(); 

/** 
* An error message. 
* @var string 
*I 

II 
private $error = nn. , 

As you can see, we provide a summary sentence for each property, and fuller information 
for the first two. We use the @var tag to define each property's type. If we were to use the same 
phpdoc command line arguments as usual to generate output at this point, we would only see 
documentation for the public $applicationName property. This is because private methods and 
properties do not appear in documentation by default. 

Whether or not you choose to document private elements depends in large part upon your 
intended audience. If you are writing for client coders, then you should probably hide your 
classes' internals. If, on the other hand, your project is under development, your team members 
may need more detailed documentation. You can make phpDocumentor include private 
elements by using the -pp (--parsepri vat e) command line argument when you invoke the script: 

phpdoc -d /home/projects/megaquiz/ \ 
-t /home/projects/docs/megaquiz/ \ 
-ti 'Mega Quiz' \ 
-dn 'megaquiz' \ 
-pp on 

Notice that you must explicitly set the -pp flag to on; it is not enough to include the flag on 
its own. You can see our documented properties in Figure 15-5. 



332 CHAPTER 15 • GENERATING DOCUMENTATION WITH PHPDOCUMENTOR 

y - . . • 

Flle f_dlt '!'lew !;io B_ookmarks Iools !:!elp 

mega quiz 
mt')!aqui:z I command I qui:z~.,Js 

.. 
command •tring $applimtionNBJile (line 21) 

De;cription n.e npplicotion niUTlC. Classt:r<oes 
lndc• ofek:menls 

Cia.,.,. Used by various clients for error m...,ges, elr. 
Command 
CommondContcxt • nccc91: public 
FeedhackComm•nd 
LogmCommand 

Files 
Commond.pbp string $error • "" (line 34) CommondContext.php 
l'eedbockeommo nd.php 

An error 1nessage. LogmCommond.php 

php/)orontontDr u 1.s.oRC3 • access: private ~ 

array $panuns D arrayQ (line 28) 

Enrupsulnted Ke "/"d.ucs. 

Th5 cla55 ises;entially a wrapper for this array 

• nccel'i8: prhra te 

'--- . 
Done 

Figure 15-5. Documenting properties 

Documenting Methods 
Together with classes, methods lie at the heart of a documentation project. At the very least, 
readers need to understand the arguments to a method, the operation performed, and its 
return value. 

As with class-level DocBlock comments, method documentation should consist of two 
blocks oftext: a one-line summary and an optional description. You can provide information 
about each argument to the method with the @param tag. Each @par am tag should begin a new 
line, and should be followed by the argument name, its type, and a short description. 

Because PHP 5 does not constrain return types, it is particularly important to document 
the value a method returns. You can do this with the @return tag. @return should begin a new 
line, and should be followed by the return value's type and a short description. We put these 
elements together here: 



CHAPTER 15 • GENERATING DOCUMENTATION WITH PHPDOCUMENTOR 333 

I** 
* Perform the key operation encapsulated by the class. 
* Command classes encapsulate a single operation. They 
* are easy to add to and remove from a project, can be 
* stored after instantiation and execute() invoked at 
* leisure. 
* @param $context CommandContext Shared contextual data 
* @return bool false on failure, true on success 
*I 

abstract function execute( CommandContext $context ); 

It may seem strange to add more documentation than code to a document. Documenta­
tion in abstract classes is particularly important, though, because it provides directions for 
developers who need to understand how to extend the class. If you are worried about the 
amount of dead space the PHP engine must parse and discard for a well-documented project, 
it is a relatively trivial matter to add code to your build tools to strip out comments on installa­
tion. You can see our documentation's output in Figure 15-6. 

., .... . -. -~ 
file fdlt Ytew ~0 ~ookmarlcs Iools ]:jelp ~ 

~ . ~- · ~ ' I D flle:///homeJ!~ffld/Worlclng/oophp--book/frontend/sourcejlS/d EJ IIQ I 
I . megaqu1z 

I 
meg<~quiz I command I q,U.toob 

command 
.. 

Dex=ription 
II execute (line 22) 

Class trees Pe rfonn the k•y ope mtion e nmpsulat• d by the dass. Index of elements 
Classes 

Command claSISeS encapsulate n single operation. They are easy to add to and remove ~1!).1:'1.;!.~ 
ommtmdContext from a project~ cnn be stored aftrr instantiation and execu~O invoked at leisure. 

FeedOO.ckf'ommand 
lngmCommand • return: fa be on failure, true on success 

FilEs 
Commond.php • abs tractt 
Com mandCon tex t.ph p 

boo I e.ucute ( ommatulConte:ct $conte.~) FeedbnckCornmand.php 
I..oglnCommand.php 

• $contExt Scontext: ConunandContl"xt Slw.T'l"ll contExtual dntn 
php/)txumcntor t• 1.9.oRCs 

Rf!ldt.1fnl'lll in druamdant.s a3: 

~ 
• FccdOOckCommnnd:~:-rcuk() 

• Lo;.inComman&:c:ccutcC) 

- .. 
~le:ll/home/l~fftd/Worklngtoophp--book/frontendjsourcetlS{docOUVcommand/Command.html 

Figure 15-6. Documenting methods 



334 CHAPTER 15 GENERATING DOCUMENTATION WITH PHPDOCUMENTOR 

Creating Links in Documentation 
phpDocumentor generates a hyperlinked documentation environment for you. Sometimes, 
though, you will want to generate your own hyperlinks, either to other elements within docu­
mentation or to external sites. In this section we will look at the tags for both of these and 
encounter a new syntax: the inline tag. 

As you construct a DocBlock comment, you may want to talk about a related class, property, 
or method. To make it easy for the user to navigate to this feature, you can use the @see tag. @see 
requires a reference to an element in the format 

class 
class: :method() 

or 

class::$property 

So in the following DocBlock comment, we document the CommandContext object, and 
emphasize the fact that it is commonly used in the Command: :execute() method: 

I** 
* Encapsulates data for passing to, from and between Commands. 
* Commands require disparate data according to context. The 
* CommandContext object is passed to the Command::execute() 
* method, and contains data in key/value format. The class 
* automatically extracts the contents of the $_REQUEST 
* superglobal. 

* 
* @package command 
* @author Clarrie Grundie 
* @copyright 2004 Ambridge Technologies Ltd 
*@see Command::execute() 
*I 

class CommandContext { 
II 

As you can see in Figure 15-7, the @see tag resolves to a link. Clicking this will lead you to 
the execute() method. 



CHAPTER 15 . GENERATING DOCUMENTATION WITH PHPDOCUMENTOR 335 

.., Mega Qlllz - Mozilla Firebird - ~ )( 

file Ell! ~lew !;!o itooltmarks Iools l;!elp ~ 

~ · @ • Q J; C I D flle:f/{homef!r11fld/Worlclnq/oophp-bookJfmntenE.Ji jK:J I 
• 

'" . mega.qmz 
•' 

,., 
mepquilf command I qoizluola 

~ 

command Class CommandContext 
.. 

Des;ription ~ 
Closs trees 

j Description I lnclt.•x of ell"menb 
c~n .... 

command l h .. •$c.'ript•nt I Va.riio (de:laih;J I Method.,. (dct:t.il ~>) 

CommanclContexl 
Fecd1,.1dcCommand 
Lol9nCommand E.ncops uL'ltes data for pas._~n.g to , &om and he. tween Comn1...-m.d..tt. 

File• 
Cornmand.J>hp Commands require disparate data according to context. The 
CommandContextphp 
Pecrlhar~-command.php CommnndContext object il. p assed to the Command::executeQ method, a nd 
LogiuCommand.php contains data in keyfvalue format. The class automatic:aDy extracts the 

phpl).xunk:ntor v s.s.oR (;:J contents of the $_REQUESTsuperglobal. 

• see: Command::t.-X{'Cute() 

• copyright: 2004 Ambridge Technologies Ltd 
• author: Cl~tnie Grundic r• 

Looalt'd fn /commmLd/Cnmncmuleuttc.Jtt,JNfll (line J6) . 
Done 

Figure 15-7. Creating a link with the @see tag 

Notice, though, that we also embedded a reference to Command: :execute() in the DocBlock 
description text. We can transform this into a live link by using the @link tag. @link can be added 
at the beginning of a line, as @see is, but it can also be used inline. In order to differentiate inline 
tags from their surroundings, you must surround them with curly brackets. So, to make our 
embedded reference to Command: :execute () clickable, we would use the following syntax: 

II 
* Commands require disparate data according to context. The 
* CommandContext object is passed to the {@link Command::execute()} 
* method, and contains data in key/value format. The class 

II ... 



336 CHAPTER 15 GENERATING DOCUMENTATION WITH PHPDOCUMENTOR 

Because the @link tag in the previous fragment includes only the element reference 
(Command: :execute()), it is this string that becomes clickable. If we were to add some description 
here, it would become clickable instead. 

@link can be used to refer to URLs as well. Simply replace the element reference with a 
URL: 

@link http://www.example.com More info 

Once again, the URL is the target, and the description that follows it is the clickable text. 
You may want to make a reciprocal link. Command uses CommandContext objects so we might 

decide to create a link from Command: :execute() to the CommandContext class, and a reciprocal 
link in the opposite direction. We could, of course, do this with two @link or @see tags. @uses 
handles it all with a single tag, however: 

!** 
* Perform the key operation encapsulated by the class. 

* 
* @param $context {@link CommandContext} Shared contextual data 
* @return bool false on failure, true on success 
*@link http://www.example.com More info 
* @uses CommandContext 
*I 

abstract function execute( CommandContext $context ); 

In adding the @uses tag, we create a link in the Command: :execute() documentation: "Uses: 
CommandContext". In the CommandContext class documentation, a new link will appear: "Used by: 
Command::execute()". 

You can see the latest output in Figure 15-8. Note that we have not used @link inline, so it 
is output in list format. 

Summary 
In this chapter, I covered the core features ofphpDocumentor. We encountered the DocBlock 
comment syntax and the tags that can be used with it. We looked at approaches to documenting 
classes, properties, and methods, providing you with enough material to transform your docu­
mentation, and so to improve collaborative working immeasurably (especially when used in 
conjunction with build tools and version control). There is a lot more to this fantastic applica­
tion than I have space to cover, though, so be sure to check the phpDocumentor homepage at 
http://www.phpdoc.org. 



CHAPTER 15 • GENERATING DOCUMENTATION WITH PHPDOCUMENTOR 337 

~a O.~ ·Mozolla Forebird~~ . _ -·-"' -~ -~ .. 
----~~-

£lie .Edit lllew SiO ll.ookmarks Iools l:!eiP ~ - ·-

~ · • lr:f •• ti l CJ flle://fhomellriflld/'wO<k.in!j'oophp-book/fromend/soEJlj~ I -- . megaqu1z 
mego.qwz I commune! I qui:llool' 

.. 
command execute (Fine 24) 

.I:Jesc:riph"on Perfonn the keyopeNrion encnpsu.lutc:d hytbe class. 
Class ~es 
lnde:< ofek1-meots 

Commnndclasoesencapsulall' a single operation. They are easy to add to and lasses 
Command remove from a project, cnn be stored after instantiation andexecuteQ invoked 
CommilndContext 
feedbod<Comm•nd 

at leisure. 

l..o~Comm11nd 
• l"eturn: false on failurr, true on success Fi/J!s 

Commond.php • nhst....et: 
Commnndeontl"I-J>hp • link: More information on Comm ;md objects 
FeedbBckCommond.php • uses: CommnndContext LoginComm>nd.php 

php/X.,un• nmr u t.s.oRCs boo/exec ute (Com=ruiConrexr $context) 

• $con!J!xt$co ntext: CommandContl!xt Sha.r.dron!J!xtuoldatn 
I' 

Rn1A/int!d in Jc.1ttndanu a6: 

• f'Ccdh.l~o:"l.Commftnd::t-'!Z'cutc() 

I • Lo,PnCommilnd::c:.oecul~() 

.. 
I Done 

Figure 15-8. Documentation including @link and @uses tags 



CHAPTER 16 

Version Control with GVS 

Have you ever noticed a particular moment at which a project seems to run out of control? 
Perhaps it's when you make "just a couple of changes" and find that you have brought every­
thing crashing down around you (and even worse, you're not quite sure how to get back to the 
point of stability you have just destroyed). It could be when you realize that three members of 
your team have been working on the same set of classes and merrily saving over each other's 
work. Or perhaps it's when you discover that a bug fix you have implemented twice has somehow 
disappeared from the code base yet again. Wouldn't it be nice if there was a tool to help you 
manage collaborative working, allowing you to take snapshots of your projects and roll them 
back if necessary, and to merge multiple strands of development? In this chapter, we look at 
CVS, a tool that does all that and more. 

This chapter will cover 

• Basic configuration: Some tips for setting up CVS 

• Importing: Starting a new project 

• Committing changes: Saving your work to the repository 

• Updating: Merging other people's work with your own 

• Branching: Maintaining parallel strands of development 

Why Use Version Control? 
If it hasn't already, version control will change your life (if only your life as a developer). How 
many times have you reached a stable moment in a project, drawn a breath, and plunged 
onward into development chaos once again? How easy was it to revert to the stable version 
when it came time to demonstrate your work in progress? Of course, you may have saved a 
snapshot of your project when it reached a stable moment, probably by duplicating your devel­
opment directory. Now, imagine that your colleague is working on the same code base. Perhaps 
she has saved a stable copy of the code as you have. The difference is that her copy is a snap­
shot of her work, not yours. Of course, she has a messy development directory too. So you have 
four versions of your project to coordinate. Now imagine a project with four programmers and 
a Web developer. You're looking pale. Perhaps you would like to lie down? 

CVS stands for Concurrent Versions System, and it exists exclusively to address this problem. 
Using CVS, all your developers check out their own copies of the codebase from a central 
repository. Whenever they reach a stable point in their code, they update their copy. This merges 

339 



340 CHAPTER 16 • VERSION CONTROL WITH CVS 

any changes in the shared code with their own recent work. After they fix any conflicts, they can 
check their new stable version backinto the shared repository. There is now only one authori­
tative source of code in your project. The fact that each developer merges his work into the 
central repository means that you no longer have to worry about reconciling multiple strands 
of development by hand. Even better, you can check out versions of your code base based upon 
a date or a label. So when your code reaches a stable point, suitable for showing to a client as 
work in progress, for example, you can tag that with an arbitrary label. You can then use that 
tag to check out the correct codebase when your client swoops into your office looking to 
impress an investor. 

Wait! There's more! You can also manage multiple strands of development at the same 
time. If this sounds needlessly complicated, imagine a mature project. You have already 
shipped the first version, and you're well into development of version 2. Does version l.n go 
away in the meantime? Of course not. Your users are spotting bugs and requesting enhance­
ments all the time. You may be months away from shipping version 2, so where do you make 
and test the changes? CVS will let you maintain distinct branches of the codebase. So you might 
create a bug-fix branch of your version l.n for development on the current production code. At 
key points this branch can be merged back into the version 2 code (the "trunk"), so that your 
new release can benefit from improvements to version Ln. 

Let's get on and look at some of these features in practice. 

GeHing CVS 
If you are working on a Unix machine, you will almost certainly already have a CVS client 
installed and ready to use. 

Try typing 

$ cvs 

from the command line. You should see some usage information that will confirm that you are 
ready to get started. 

II Note Throughout this chapter, I denote command line input by displaying it in bold text. A dollar sign ($) 
represents the command prompt. 

If you get an error message, you may need to download and install CVS yourself. You can acquire both source 
and binaries from https: I lwww. cvshome. orgl. 

CVS graphical user interface clients for Windows and MacOS can be downloaded from 
http: I lwww. wincvs . org/. These will need to be used in conjunction with a CVS server installed 
on a Unix or Linux machine. 



CHAPTER 16 VERSION CONTROL WITH CVS 341 

Note If you have no access to Unix, there are server solutions you can deploy on Windows that are compatible 
with CVS clients. You may like to take a look at CVSNT (http: I /www. cvsnt. org/wiki). 

CVS is by its nature a network application. Although this chapter is written from the 
perspective of the Linux command line, you will find menu items that match the commands 
we examine. 

Configuring a CVS Repository 
Whether you are running CVS locally or across multiple clients, you must have a repository in 
place before you can start work. What's more, every user's CVS process must know where that 
repository is. In this section, we look at the steps necessary to get CVS up and running, either 
on a single machine or over the Internet. We assume root access to a Linux machine. 

Creating a Repository 
You can create a CVS repository with a simple CVS subcommand: ini t. This will create a properly 
configured CVS repository directory. 

Here we create a repository in the directory /usr/local/cvs. We must use the flag -d to tell 
CVS which directory we wish to work with. Generally speaking, only the root user can create 
and modify directories in /usr!local, so we run the following command as root: 

$ cvs -d /usr/local/cvs init 

This command will execute silently, but you should find that it has created a directory 
called cvs in the /usr!local directory. The cvs directory should contain a directory called 
CVSROOT that contains configuration information. 

Let's assume that you have multiple users on this Linux machine, all of whom will need to 
commit to and update from this repository. We need to ensure that they can all write to the 
/usr /local/ cvs directory. We can do this by adding these users to a common group and 
making the directory writable by this group. 

You can create a new group (called "cvsusers") on the command line like this: 

$ groupadd cvsusers 

You must run the groupadd command as root. You should now have this group on your 

system. 
First let's add a user on the current host, "bob," to the cvsusers group. We do this by editing a 

special file called I etc/ group. In I etc/ group you should find a line that looks like this: 

cvsusers:x:504: 



342 CHAPTER 16 • VERSION CONTROL WITH CVS 

We can add "bob" to the group: 

cvsusers:x:S04:bob, 

Now we need to ensure that /etcllocal/cvs is writable by anyone in the cvsusers group. 
We can do this by changing the group of /usr/local/cvs to cvsusers. 

$ cd /usr/local/cvs 
$ chgrp -R cvsusers 
$ chmod g+s • 

The final line in the previous fragment causes all directories created here to take on the 
wheel group. We should also ensure that the cvs directory is group writable. 

$ chmod 775 • 

Configuring the Client 
So how does a CVS process know where to find the repository we have just created? You could 
tell it on the command line as part of every CVS command you invoke, but it is easier to set an 
environment variable called CVSROOT and forget about it until you need to make a change. 

If you are using the Bash shell, you can set CVSROOT in a file called . bash _profile, which 
should be found in (or can be added to) your home directory and is executed automatically on 
login (other shells have equivalent files). Simply add this line: 

export CVSROOT=/usr/local/cvs 

That should be all you need to start working with CVS. Remember that any users who want 
to use the repository must have write access to the repository directory. You achieve this by 
adding them to the wheel group. 

Running CVS Across Multiple Machines 
CVS works fme locally, of course, but for any serious work, you are likely to have a central CVS 
server managing code for developers on any number of client machines. We need a strategy to 
enable remote users to connect to the CVS repository and to work with it. The approach we take 
here is by no means the only one, so if you are taking on ownership of a CVS repository, you 
would be well advised to spend some time reading up on the subject. https :I /WtM. cvshome. org/ is 
a good starting point. 

CVS includes a password server, called "pserver," that can be configured to allow remote 
access. However, I prefer the security of SSli, which encrypts all data it transfers. Setting up 
CVS for working with SSH is relatively trivial, although there are a couple of annoyances. It is 
hard, for example, to allow users full access to your repository without first giving them a shell 
account on the CVS machine. (If you are allowing non trusted users, you could look into setting 
up a "chroot jail," which supports an extremely restricted environment for user accounts. 



CHAPTER 16 • VERSION CONTROL WITH CVS 343 

This strays too far into the realms of system administration for this chapter!) Also annoying for 
users is the requirement to continually type in their password or pass phrase for every CVS 
command. We will summarize a solution to the latter problem at least later in the section. 

We have already set user "bob" up on our CVS machine. Now he tells us he wants to access 
the repository and install a working directory on another machine. In fact, all he needs to do is 
to set up the . bash _profile file on his remote machine: 

export CVS_RSH=ssh 
export CVSROOT=:ext:bob@the-cvs-server.com:/usr/local/cvs 

This is enough to get him up and running. The finer details ofSSH configuration are beyond 
the scope of this book. In brief, though, Bob should generate a public key with a program called 
ssh- keygen on his client machine. He will be prompted to create a pass phrase. He should copy 
the generated public key, which he will find in. ssh/id_rsa.pub (where. ssh is in his client 
home directory), and append itto a file called. ssh/authorized _keys (where . ssh is in his home 
directory) on the CVS server. He can now use a program called ssh-agent to handle the details 
of authentication for him. 

Beginning a Project 
In order to work with a project using CVS, you must add it to the repository. You can do this by 
importing a project directory and any contents you might already have. 

Before you start, take a good look at your files and directories, removing any temporary 
items you might find. Failure to do this is a common and annoying mistake. Temporary items 
to watch for include automatically generated files such as phpDocumentor output, build direc­
tories, installer logs, and so on. 

Once your project is clean, ensure that your current working directory is the project directory, 
and not its parent. This is another gotcha: importing from the directory that holds your project 
will add everything at that level to the repository. Let's say that we want to import a directory: 
/home/harry/projects/megaquiz. 

$ cd /home/harry/projects/megaquiz 
$ cvs import megaquiz harry releaseo 

Let's break down this use of the cvs command. CVS is a very big package consisting of 
many subcommands and switches. The purpose of the import subcommand should be clear 
enough. import requires three arguments: the name of the project, a vendor name, and a 
release tag. For your own projects, the vendor and release tag arguments are immaterial; the 
project name is, of course, vitally important-it is the name that everyone on your team will 
use to acquire their copies of the codebase (their "sandboxes"). 

When you run the import subcommand, you will be presented with an editor window and 
instructed to provide an import message. In Figure 16-1, you can see vi, my default editor, 
demanding just such input. 



344 CHAPTER 16 • VERSION CONTROL WITH CVS 

tial importl 

Enter Log. Lines beginning with ·cvs:' are removed automatically 

Figure 16-1. Providing an import message 

The import subcommand should generate output that looks something like this: 

N megaquiz/main.php 
cvs import: Importing /usr/local/cvs/megaquiz/command 
N megaquiz/command/Command.php 
N megaquiz/command/FeedbackCommand.php 
N megaquiz/command/LoginCommand.php 
N megaquiz/command/CommandContext.php 
cvs import: Importing /usr/local/cvs/megaquiz/quiztools 
N megaquiz/quiztools/AccessManager.php 
cvs import: Importing /usr/local/cvs/megaquiz/quizobjects 
N megaquiz/quizobjects/User.php 

No conflicts created by this import 

As you can see, CVS generates a report for every directory and file it encounters in your 
project directory. 



CHAPTER 16 • VERSION CONTROL WITH CVS 345 

Now that you have imported your project, you should move your source directory out of 
the way. If you're feeling bold, you could delete it; otherwise rename it. I generally add the 
extension . orig to the directory name: 

$ cd •• 
$ mv megaquiz megaquiz.orig 

The point to remember here is that importing a project does not in any way transform the 
source directory. If you want to use version control, you must check your project out from the 
repository after you have imported it. We can check out a project with the checkout subcommand. 

$ cvs checkout megaquiz 

Remember, the dollar sign at the beginning of the line represents the shell prompt. The 
rest of the line is what a user might type. CVS will re-create the megaquiz directory, reporting as 
it does so: 

cvs checkout: Updating megaquiz 
U megaquiz/main.php 
cvs checkout: Updating megaquiz/command 
U megaquiz/command/Command.php 
U megaquiz/command/CommandContext.php 
U megaquiz/command/FeedbackCommand.php 
U megaquiz/command/LoginCommand.php 
cvs checkout: Updating megaquiz/quizobjects 
U megaquiz/quizobjects/User.php 
cvs checkout: Updating megaquiz/quiztools 
U megaquiz/quiztools/AccessManager.php 

If you look into the newly created megaquiz directory, you will see that it, and all of its 
subdirectories, contain a folder called CVS. This contains metadata about your project and its 
repository. You can pretty much ignore the CVS directories, but you should not delete any of 
them. 

Now that you have a sandbox set up, it is time to start work. You can edit and save your files 
as normal, but remember, you are no longer alone! You need to keep your work synchronized· 
with the central repository, or you will lose the benefits afforded by CVS. 

Updating and Committing 
For the purposes of this chapter, we have invented a team member named Bob. Bob is working 
with us on the MegaQuiz project. Bob is, of course, a fine and talented fellow. Except, that is, 
for one common and highly annoying trait: he cannot leave other people's code alone. 

Bob is smart and inquisitive, easily excited by shiny new avenues of development, and 
keen to help optimize new code. As a result, everywhere we tum, we seem to see the hand of 
Bob. Bob has added to our documentation, Bob has implemented an idea we mentioned over 
coffee. We may have to kill Bob. In the meantime, though, we must handle the fact that the 
code we are working on needs to be merged with Bob's input. 



346 CHAPTER 16. VERSION CONTROL WITH CVS 

Here's a file called quizobjectsiUser. php. At the moment, it contains nothing but the 
barest of bones: 

<?php 
class User {} 
?> 

We have decided to add some documentation. As you know from the last chapter, we 
should add file and class comments. We begin by adding the file comment: 

<?php 
I** 
* @license 
* @package 
*I 

class User {} 
?> 

http:llwww.example.com Borsetshire Open License 
quizobjects 

Meanwhile, Bob is keen as ever, and he has created the class comment: 

<?php 

I** 
* @package quizobjects 
*I 

class User {} 
?> 

So we now have two distinct versions of User. php. At this time, the CVS repository contains 
only the recently imported version ofMegaQuiz. We decide to add our changes to the CVS 
repository. This requires only one command, but two are advisable: 

$ cvs update User.php 
M User.php 

The update subcommand instructs CVS to merge any changes stored in the repository into 
your local document or documents. Before we commit our own work, it is good practice to first 
see if anyone else's changes conflict with our own, resolving any such conflicts in our own 
space. The "M" character at the start of the command's output means that we have modified 
User. php, but no third-party changes need be applied. We can now go ahead and commit our 
changes: 

$ cvs commit -m'added doc level comment' User.php 
Checking in User.php; 
lusrllocallcvslmegaquizlquizobjectsiUser.php,v <-- User.php 
new revision: 1.2; previous revision: 1.1 
done 



CHAPTER 16 VERSION CONTROL WITH CVS 347 

As you can see, we use the commit subcommand to check new data into the CVS repository. 
CVS tells us where the version information for User. php is stored, and the new revision number 
for the document. Notice that we have used a new command line switch with commit. -mallows 
us to add a message on the command line, rather than via an editor. 

Now it's Bob's turn to update and commit: 

$ cvs update User.php 
RCS file: /usr/local/cvs/megaquiz/quizobjects/User.php,v 
retrieving revision 1.1 
retrieving revision 1.2 
Merging differences between 1.1 and 1.2 into User.php 
rcsmerge: warning: conflicts during merge 
cvs update: conflicts found in User.php 
C User.php 

Take a close look at the output generated by the update subcommand. It helpfully tells us 
exactly what it is doing. First it identifies the data from the repository it needs to merge with 
Bob's additions. This data is the difference between revision 1.1 (the initial import, and the 
version that Bob checked out) and 1.2 (the document-level comment we added previously).lt 
then takes this information and attempts to merge it into Bob's amended version of User. php. 
But then disaster strikes! CVS has no means of handling changes that affect the same lines. 
How can it decide what is to have priority? Should the repository overwrite Bob's changes, or 
the other way around? Should both changes coexist? Which should go first? CVS has no choice 
but to report a conflict and let Bob sort out the problem. Here's what CVS has done to Bob's 
document: 

<?php 
« « < « User. php 

/** 
* @package quizobjects 
*I 

/** 
* @license 
* @package 
*I 

»»>» 1.2 

class User {} 
?> 

http://www.example.com Borsetshire Open License 
quizobjects 

As you can see, CVS includes both Bob's comment and our own, together with metadata 
that tells us which part originates where. The conflicting information is separated by a line of 
equals signs. Bob's input is signaled by a line oflesser-than signs followed by the name of the 
document. Data pulled from the repository is delineated by a line of greater-than signs and the 
version number. It is up to Bob to resolve the conflict, which he does by deleting the metadata 
and arranging the content in the right order: 



348 CHAPTER 16 • VERSION CONTROL WITH CVS 

<?php 
I** 
* @license 
* @package 
*I 

/** 
* @package 
*I 

class User {} 
?> 

http://www.example.com Borsetshire Open License 
quizobjects 

quizobjects 

Bob can now commit as normal: 

$ cvs commit -m'added class comment' User.php 
Checking in User.php; 
/usr/local/cvs/megaquiz/quizobjects/User.php,v <-- User.php 
new revision: 1.3; previous revision: 1.2 
done 

So far we have updated and committed a single file only. By omitting the file argument 
altogether, we can apply these commands to every file and directory in the project. Here we 
run update from the root directory of the project: 

$ cvs update 
cvs update: Updating • 
cvs update: Updating command 
cvs update: Updating quizobjects 
U quizobjects/User.php 
cvs update: Updating quiztools 

CVS visits every directory in our project, finding nothing to update until it encounters the 
document User. php. Bob's changes are then incorporated into our version of the document. 

We can commit globally in the same way. In this example, we have made minor changes to 
two documents, command/Command. php and quiztools/ AccessManager. php: 

$ cvs commit -m'documentation amendments' 
cvs commit: Examining • 
cvs commit: Examining command 
cvs commit: Examining quizobjects 
cvs commit: Examining quiztools 
Checking in command/Command.php; 
/usr/local/cvs/megaquiz/command/Command.php,v <-- Command.php 
new revision: 1.2; previous revision: 1.1 
done 
Checking in quiztools/AccessManager.php; 
/usr/local/cvs/megaquiz/quiztools/AccessManager.php,v <-- AccessManager.php 
new revision: 1.2; previous revision: 1.1 
done 



CHAPTER 16 VERSION CONTROL WITH CVS 349 

Once again, CVS works through every directory below our current working directory. It 
takes no action until it encounters a changed file. At this point it checks the changes in to the 
repository. 

Adding and Removing Files and Directories 
Projects change shape as they develop. Version control software must take account of this, 
allowing users to add new files and remove deadwood that would otherwise get in the way. 

Adding a File 
You can add a new document to CVS with the add subcommand. Here we add a document 
called Question. php to the project: 

$ touch Question.php 
$ cvs add Question.php 
cvs add: scheduling file 'Question.php' for addition 
cvs add: use 'cvs commit' to add this file permanently 

In a real-world situation, we would probably start out by adding some content to 
Question. php. Here we confine ourselves to creating an empty file using the standard touch 
command. As the output from add tells us, once we have added a document, we must still 
invoke the commit subcommand to complete the addition. 

$ cvs commit -m'initial check in' Question.php 
RCS file: /usr/local/cvs/megaquiz/quizobjects/Question.php,v 
done 
Checking in Question.php; 
/usr/local/cvs/megaquiz/quizobjects/Question.php,v <-- Question.php 
initial revision: 1.1 

done 

Question. php is now in the repository. 

Removing a File 
Should we discover that we have been too hasty and need to remove the document, it should 
come as no surprise to learn that we can use a subcommand called remove. 

$ cvs remove Question.php 
cvs remove: file 'Question.php' still in working directory 
cvs remove: 1 file exists; remove it first 

CVS is cautious by nature, and requires that you remove the file from your sandbox before 
it will go ahead and mark it as removed from the repository. Alternatively, you can force CVS to 
remove the document from your sandbox as well as the repository by passing it the - f flag. 



350 CHAPTER 16 VERSION CONTROL WITH CVS 

$ cvs remove -f Question.php 
cvs remove: scheduling 'Question.php' for removal 
cvs remove: use 'cvs commit' to remove this file permanently 

Once again a commit is required to finish the job. 

Adding a Directory 
We can also add and remove directories with add and remove. 

$ mkdir resources 
$ cvs add resources/ 
Directory /usr/local/cvs/megaquiz/resources added to the repository 

When you add a directory, CVS makes the change straightaway with no commit required. 
If you take a look inside the resources directory, you will see that CVS has created a utility 
folder inside it. 

Now when Bob updates, he should get a resources directory of his own. Shouldn't he? 

$ cvs update 
cvs update: Updating . 
U README 
cvs update: Updating command 
U command/Command.php 
cvs update: Updating quizobjects 
U quizobjects/Question.php 
cvs update: Updating quiztools 
U quiztools/AccessManager.php 
$ ls 
command CVS main.php quizobjects quiztools README 

If you look carefully at the output in the preceding example, you will see that the resources 
directory has not appeared. The update command does not add directories to a sandbox by 
default. To ensure that new directories are added, Bob should use the -d flag with the update 
command. 

$ cvs update -d 
cvs update: Updating 
cvs update: Updating command 
cvs update: Updating quizobjects 
cvs update: Updating quiztools 
cvs update: Updating resources 
$ ls 
command CVS main.php quizobjects quiztools README resources 



CHAPTER 16 • VERSION CONTROL WITH CVS 351 

Adding Binary Files 
CVS evolved to work with text files. As we will see, in addition to its key tasks of finding and 
merging textual information, CVS looks for special flags in documents and substitutes timely 
information such as dates and revision numbers. Clearly this behavior could be positively 
harmful in a GIF file. It is lucky then that CVS allows us to flag files as binary when we add them. 

We can ensure that a file is treated as binary by using the - kb flag. Here we add a GIF to the 
resources directory: 

$ cvs add -kb resources/logo.gif 
cvs add: scheduling file 'resources/logo.gif' for addition 
cvs add: use 'cvs commit' to add this file permanently 

$ cvs commit -m'import of logo' resources/logo.gif 
RCS file: /usr/local/cvs/megaquiz/resources/logo.gif,v 
done 
Checking in resources/logo.gif; 
/usr/local/cvs/megaquiz/resources/logo.gif,v <-- logo.gif 
initial revision: 1.1 
done 

Notice that CVS is pretty silent about our use of the -kb flag. It has nonetheless flagged the 
file as binary, and won't attempt to merge differences or perform substitutions. 

It is easy to forget to import binary files correctly, especially when you are adding entire 
directories or importing a project. Luckily, you can set the - kb flag after the event with the admin 
subcommand. Let's say we have already added a binary file, resources/ correct. gif, as text. 
Here we correct our mistake with admin: 

$ cvs admin -kb resources/correct.gif 
RCS file: /usr/local/cvs/megaquiz/resources/correct.gif,v 
done 

Removing Directories 
As you might expect, you can remove directories with the remove subcommand. There are a 
couple of issues to watch out for, though. 

Let's try to remove the resources directory: 

$ cvs remove resources 
cvs remove: Removing resources 
cvs remove: file 'resources/correct.gif' still in working directory 
cvs remove: file 'resources/logo.gif' still in working directory 
cvs remove: 2 files exist; remove them first 



352 CHAPTER 16 VERSION CONTROL WITH CVS 

As you can see, we cannot remove a directory that has contents (other than the CVS directory). 
We should remove the contents first: 

$ cvs remove -f resources/*.* 
cvs remove: scheduling 'resources/correct.gif' for removal 
cvs remove: scheduling 'resources/logo.gif' for removal 
cvs remove: use 'cvs commit' to remove these files permanently 
$ cvs commit -m'removing res files' resources 
cvs commit: Examining resources 
Removing resources/correct.gif; 
/usr/local/cvs/megaquiz/resources/correct.gif,v <-- correct.gif 
new revision: delete; previous revision: 1.1 
done 
Removing resources/logo.gif; 
/usr/local/cvs/megaquiz/resources/logo.gif,v <-- logo.gif 
new revision: delete; previous revision: 1.1 
done 

Once we have emptied the resources directory, we can tell CVS that we want to remove the 
directory itself. 

$ cvs remove resources 
cvs remove: Removing resources 

Finally, we must delete it from our sandbox. 

$ rm -rf resources 

Now that we have removed the resources directory, our changes should be reflected in 
Bob's sandbox when he next updates. Or should they? 

$ cvs update -d 
cvs update: Updating 
cvs update: Updating command 
cvs update: Updating quizobjects 
cvs update: Updating quiztools 
cvs update: Updating resources 
cvs update: resources/correct.gif is no longer in the repository 
cvs update: resources/logo.gif is no longer in the repository 
$ ls resources/ 
cvs 

CVS removes the files in resources, but leaves the directory in place. So that deleted direc­
tories are removed from his sandbox, Bob should use the -P flag ("P" stands for "prune") with 
the update subcommand. 



$ cvs update -Pd 
cvs update: Updating 
cvs update: Updating command 
cvs update: Updating quizobjects 
cvs update: Updating quiztools 
cvs update: Updating resources 
$ ls resources 
ls: resources: No such file or directory 

CHAPTER 16 • VERSION CONTROL WITH CVS 353 

It is a good idea to foster the habit of including -d and -P whenever you use update. 

Tagging and Exporting a Release 
All being well, a project will eventually reach a state of readiness, and you will want to ship it or 
deploy it. CVS can help you here in two ways. Firstly, you can generate a version of the project 
that does not contain CVS metadata. Secondly, you can freeze this moment in your project's 
development so that you can always return to it later on. 

Tagging a Project 
A tag is simply a handle that is attached to a moment in your project's development. Once you 
have applied a tag, you can use it to acquire a copy of your project as it existed at that time. 

You can apply a tag with the tag subcommand, passing it a label: 

$ cvs tag MegaQuiz_1_o_o 
cvs tag: Tagging 
T README 
T main.php 
cvs tag: Tagging command 
T command/Command.php 
T command/CommandContext.php 
T command/FeedbackCommand.php 
T command/LoginCommand.php 
cvs tag: Tagging quizobjects 
T quizobjects/User.php 
cvs tag: Tagging quiztools 
T quiztools/AccessManager.php 

As you can see from the output in the previous example, CVS responds to the tag subcom­
mand by applying the tag individually to every file below the current working directory. 

Retrieving a Project by Tag 
Releasing a project does not generally end its development. Your current project directory will 
likely evolve as you fix bugs, add new features, and so on. If you need to access your first 
release, however, you can do so easilybyusingthe checkout subcommand with the -r flag. 



354 CHAPTER 16 VERSION CONTROL WITH CVS 

Here, Bob retrieves MegaQuiz release 1: 

$ cvs checkout -r MegaQuiz_1_o_o megaquiz 

cvs checkout: Updating megaquiz 
U megaquiz/README 
U megaquiz/main.php 
cvs checkout: Updating megaquiz/command 

U megaquiz/command/Command.php 

U megaquiz/command/CommandContext.php 

U megaquiz/command/FeedbackCommand.php 

U megaquiz/command/LoginCommand.php 
cvs checkout: Updating megaquiz/quizobjects 

U megaquiz/quizobjects/User.php 
cvs checkout: Updating megaquiz/quiztools 

U megaquiz/quiztools/AccessManager.php 
cvs checkout: Updating megaquiz/resources 

As you can see, Bob uses checkout in the usual way, except for the addition of the -r flag, 

which is used here in conjunction with the tag label. By now, of course, Bob may be suffering 

from a confusing multiplicity of directories called megaquiz. He can require that checkout 

generates a differently named directory by specifying a new flag: -d. 

$ cvs checkout -r MegaQuiz_1_o_o -d megaquiz_release_1 megaquiz 

When used with the checkout subcommand, the -d flag causes a project to be output to a 

specified directory rather than the default. 

Exporting a Project 
As we have seen, a checked-out project includes administrative directories (named CVS, appro­

priately enough). These will clutter up an official release of your project. CVS provides the 

export subcommand to generate clean release versions of your codebase. 

export requires an -r flag with revision information (a tag label in our example). The -d 

flag works as it does with checkout. Finally, the command requires the name of the project. 

Here we generate a distribution directory ready for tarballing: 

$ cvs export -r MegaQuiz_1_o_o -d megaquiz-release-1_0_0 megaquiz 

The output from this command looks similar to that generated by checkout, but when we 

peek into the new directory, we see no CVS directories. 

$ ls megaquiz-release-1_0_0/ 
command main.php quizobjects quiztools README 

Because this output now bears no relation at all to our CVS repository, it is important to 

remember not to make any changes here. 



CHAPTER 16 • VERSION CONTROL WITH CVS 355 

Branching a Project 
Now that our project has been released, we can pack it away, and wander off to do something 
new, right? After all, it was so elegantly written that bugs are an impossibility, and so thoroughly 
specified that no user could possibly require any new features! 

Meanwhile, back in the real world, we must continue to work with the code base on at least 
two levels. Bug reports should be trickling in right about now, and the wish list for version 1.2.0 
swelling with demands for fantastic new features. How do we reconcile these forces? We need 
to fix the bugs as they are reported, and we need to push on with primary development. We 
could fix the bugs as part of development, and release in one go when the next version is stable. 
But then users may have a long wait before they see any fixes. This is plainly unacceptable. On 
the other hand, we could release as we go. Here we risk shipping broken code. Clearly, we need 
two strands to our development. 

CVS allows us to maintain parallel strands of development in a project. We continue 
working on as before in our main strand (known as the trunk). It is here that we will add new 
and experimental code. Let's use a particular file, commandiFeedbackCommand. php, as an example. 

class FeedbackCommand extends Command { 

} 

function execute( CommandContext $context ) { 
II new and risky development 

} 

II goes here 
$msgSystem = ReceiverFactory::getMessageSystem(); 
$email = $context->get( 'email' ); 
$msg = $context->get( 'pass' ); 
$topic = $context->get( 'topic' ); 
$result = $msgSystem->despatch( $email, $msg, $topic ); 
if ( ! $user ) { 

} 

$this->context->setError( $msgSystem->getError() ); 
return false; 

$context->addParam( "user", $user ); 
return true; 

All we have done here is to add a comment to simulate an addition to the code. Meanwhile, 
users begin to report that they are unable to use the feedback mechanism in our system. We 
locate the bug in this very rue: 

II ... 
$result = $msgSystem->despatch( $email, $msg, $topic ); 
if ( ! $user ) { 

$this->context->setError( $msgSystem->getError() ); 
II ... 



356 CHAPTER 16 VERSION CONTROL WITH CVS 

We should, in fact, be testing $result, and not $user. We could fix this here, of course, but 
the users would not see the fix until our experimental code is stable. Instead, let's create a 
branch of our project. 

We need to fix the code as it stood at the point oflast release. We move out of the develop­
ment project directory (so that our current working directory does not contain a CVS administration 
directory), and then check out the project. 

$ cvs checkout -d megaquiz-bugfix -r MegaQuiz_1_0_0 megaquiz 
cvs checkout: Updating megaquiz-bugfix 
U megaquiz-bugfix/README 
U megaquiz-bugfix/main.php 
cvs checkout: Updating megaquiz-bugfix/command 
U megaquiz-bugfix/command/Command.php 
U megaquiz-bugfix/command/CommandContext.php 
U megaquiz-bugfix/command/FeedbackCommand.php 
U megaquiz-bugfix/command/LoginCommand.php 
cvs checkout: Updating megaquiz-bugfix/quizobjects 
U megaquiz-bugfix/quizobjects/User.php 
cvs checkout: Updating megaquiz-bugfix/quiztools 
U megaquiz-bugfix/quiztools/AccessManager.php 
cvs checkout: Updating megaquiz-bugfix/resources 

We mo<Ufy checkout with two flags. -d allows us to define a directory name for the checked-out 
project, and - r determines the revision we are checking out. We use the release tag we set up in 
the previous section. Before we can go ahead and work in this directory, we need to create a 
branch to work with. 

$ cd megaquiz-bugfix 
$ cvs tag -b MegaQuiz_bugbranch 

We move into our bug-fix directory. Notice that we use a new flag with the tag subcom­
mand. The - b flag that ensures that changes made to a project checked out under this tag will 
not affect the trunk. Creating the branch only affects the repository, and not our current working 
directory. To begin working with the branch, we need either to check out a new working directory 
(using the - r flag) or to update the megaquiz- bugfix directory to shift it over to the branch. Just 
as we can check out a tagged project with the - r flag, we can use it with update to convert a 
project: 

$ cvs update -r MegaQuiz_bugbranch 
cvs update: Updating . 
cvs update: Updating command 
cvs update: Updating quizobjects 
cvs update: Updating quiztools 

Now we are ready to fix our bug: 



CHAPTER 16 • VERSION CONTROL WITH CVS 357 

class FeedbackCommand extends Command { 

function execute( CommandContext $context ) { 
$msgSystem = ReceiverFactory::getMessageSystem(); 
$email= $context->get( 'email' ); 

} 
} 

$msg = $context->get( 'pass' ); 
$topic = $context->get( 'topic' ); 
$result = $msgSystem->despatch( $email, $msg, $topic ); 
if ( ! $result ) { 

} 

$this->context->setError( $msgSystem->getError() ); 
return false; 

$context->addParam( "user", $user ); 
return true; 

We have changed 

if ( ! $user ) { 

to 

if ( ! $result ) { 

Notice, though, that there is no sign of our "experimental" comments-these were committed 
to the trunk, and bear no relation to this document. Let's commit the code, and create a new 
distribution (this example omits the output): 

$ cvs commit -m'fixed result test' 
$ cvs tag MegaQuiz_1_0_2 
$ cd .. 
$ cvs export -r MegaQuiz_1_0_2 -d megaquiz-release-1_0_2 MegaQuiz 

It doesn't end there, though. Now that we have fixed our bug, we need to apply the change 
to our main development strand (the trunk). 

The update subcommand supports the -j flag, which stands for "join." Using this, we can 
join our bug branch back into the trunk: 

$ cd megaquiz 
$ cvs update -j MegaQuiz_bugbranch 
cvs update: Updating . 
cvs update: Updating command 
RCS file: /usr/local/cvs/megaquiz/command/FeedbackCommand.php,v 
retrieving revision 1.1 
retrieving revision 1.1.1.1.4.1 
Merging differences between 1.1 and 1.1.1.1 into FeedbackCommand.php 
cvs update: Updating quizobjects 
cvs update: Updating quiztools 
cvs update: Updating resources 



358 CHAPTER 16 • VERSION CONTROL WITH CVS 

Now, when we look at the version of FeedbackCommand in the trunk, we see that all changes 

have been merged. 

function execute( CommandContext $context ) { 
II new and risky development 

} 

II goes here 
$msgSystem = ReceiverFactory::getMessageSystem(); 
$email = $context->get( 'email' ); 
$msg = $context->get( 'pass' ); 
$topic = $context->get( 'topic' ); 
$result = $msgSystem->despatch( $email, $msg, $topic ); 
if ( ! $result ) { 

} 

$this->context->setError( $msgSystem->getError() ); 
return false; 

$context->addParam( "user", $user); 
return true; 

The execute () method includes both our simulated trunk development: 

II new and risky development 
II goes here 

and our bug fix: 

if ( ! $result ) { 

Branches are often seen as an advanced CVS topic, largely because of the difficulty of some 
of the concepts involved. For large or long-lived projects, though, branching soon becomes an 
essential technique. 

Summary 
CVS comprises an enormous number of tools, each with a daunting range of options and capa­
bilities. I can only hope to provide a brief introduction in the space available. Nonetheless, if 
you only use the features I have covered in this chapter, you should see the benefit in your own 
work, whether through protection against data loss or improvements in collaborative working. 

In this chapter, we took a tour through the basics of CVS. We looked briefly at configuration, 
before importing a project. We checked out, committed, and updated code, finally tagging and 
exporting a release. We ended the chapter with a brieflook at branches, demonstrating their 
usefulness in maintaining concurrent development and bug-fix strands in a project. 

There is one issue that we have glossed over here to some extent. We established the prin­
ciple that developers should check out their own versions of a project. On the whole, though, 
projects will not run in place. In order to test their changes, developers need to deploy code 
locally. Sometimes this is as simple as copying over a few directories. More often, though, 
deployment must address a whole range of configuration issues. In the next chapter, we will 
look at some techniques for automating this process. 



CHAPTER 17 

Automated Build with Phing 

If version control is one side of the coin, then automated build is the other. Version control 
allows multiple developers to work collaboratively on a single project. With many coders each 
deploying a project in her own space, automated build soon becomes essential. One developer 
may have her Web-facing directory in /usr/local/apache/htdocs, another might use /home/ 
bibble/public _ html. Developers may use different database passwords, library directories, or 
mail mechanisms. A flexible code base might easily accommodate all of these differences, but 
the effort of changing settings and manually copying directories around your file system to get 
things working would soon become tiresome-especially if you need to install code in progress 
several times a day (or several times an hour) . 

And then there are your users. The elegance of your code is irrelevant if it takes a degree in 
computer science to install it. Your customers may be willing to type a command or two on the 
command line in order to get your system running, but that is about as far as it goes. 

Wouldn't it be nice if you could automate installation, and do it in such a way that it can be 
customized for your own particular project, for the needs of your developers, and for the ease 
of your customers? In this chapter, I introduce you to Phing, which is just such a tool. This 
chapter will cover 

• Getting and installing Phing: Who builds the builder? 

• Properties: Setting and getting data. 

• Types: Describing complex parts of a project. 

• Targets: Breaking a build into callable, interdependent sets of functionality. 

• Tasks: The things that get stuff done. 

What Is Phing? 
Phing is a PHP tool for building projects. It is very closely modeled on a hugely popular (and 
very powerful) Java tool called Ant. Ant was so named because, like an ant, the application is 
relatively small but capable of constructing things that are very large indeed. Both Phing and 
Ant use an XML file (usually named build. xml) to determine what to do in order to install or 
otherwise work with a project. 

The PHP world really needs a good install solution. Serious developers have had a number 
of options in the past. Firstly, it is possible to use make, the ubiquitous Unix build tool that is 
still used for most C and Perl projects. make is extremely picky about syntax, however, and 

359 



360 CHAPTER 17 AUTOMATED BUILD WITH PHING 

requires quite a lot of shell knowledge, up to and including scripting-this can be a steep 
learning curve for many PHP programmers. What's more, make provides very few built-in tools 
for common build operations such as transforming file names and contents. It is really a glue 
for shell commands. This makes it hard to write programs that will install across platforms. Not 
all environments will have the same version of make, or even have it at all. Even if you have 
make, you may not have all the commands the makefile (the configuration file that drives 
make) requires. 

Phing' s relationship with make is illustrated in its name: Phing stands for PHing Is Not Gnu 
make. This playful recursion is a common coder's joke (for example, GNU itself stands for 
Gnu is Not Unix). 

Phing is a native PHP application that interprets a user-created XML file in order to perform 
operations upon a project. Such operations would typically involve the copying of files from a 
distribution to various destination directories, but there is much more to Phing. Phing can be 
used to generate documentation, run tests, invoke commands, run arbitrary PHP code, create 
PEAR packages, replace keywords in files, strip comments, and generate tar-gzipped package 
releases. If Phing does not yet do what you need, it is easy to extend by design. 

Because Phing is itself a PHP application, all you need to run it is a recent PHP engine. 
Since Phing is an application for installing PHP applications, the presence of a PHP executable 
is a pretty safe bet. 

We have seen that PEAR packages are breathtakingly easy to install. PEAR supports its own 
automated build mechanism. Since PEAR is bundled with PHP, should we not use the PEAR 
mechanism to install our own projects? At the time of writing, PEAR is primarily (and rightly) 
designed for the installation of PEAR packages. It has, in other words, a very specific purpose. 
It assumes a particular set of destination directories, and provides a limited feature set. It does 
not handle applications well. Applications tend to be messy, requiring that files are installed in 
nonstandard places, needing support from databases and other third-party tools. The PEAR 
installer is not designed to be easy to extend. Phing begins and ends with flexibility and exten­
sibility. Because PEAR installation is so easy and increasingly familiar for the end user, one useful 
technique is to use Phing for project development, but to have it generate a PEAR package 
upon release. This approach is used in building the Phing application itself. 

Getting and Installing Phing 
If it is difficult to install an install tool, then something is surely wrong! However, assuming that 
you have PHP 5 on your system (and if you haven't, this isn't the book for you!), installation of 
Phing could not be easier. 

You can acquire and install Phing with a single command. 

$pear install http://phing.info/pear/phing-current.tgz 

This will install Phing as a PEAR package. You should have write permission for your PEAR 
directories, which, on most Unix systems, will mean running the command as the root user. 

If you run into any installation problems, you should download and unpack the release at 
http: I /phing. info/pear /phing-current. tgz. You will find plenty of installation instructions 
there. 



CHAPTER 17 , AUTOMATED BUILD WITH PHING 361 

build.xml: The Build Document 
You should now be ready to get cracking with Phing! Let's test things out: 

$ phing -v 
Phing version 2.0.0b3 

The -v flag to the ph ing command causes the script to return version information. By the 
time you read this, the version number may have changed, but you should see a similar message 
when you run the command on your system. 

Now let's run the phing command without arguments: 

$ phing 
Buildfile: build.xml does not exist! 

As you can see, Phing is lost without instructions. By default it will look for a file called 
build. xml. Let's build a minimal document so that we can at least make that error message go 
away: 

<?xml version="l.O"?> 
<!-- build xml --> 

<project name="megaquiz" default="main"> 
<target name="main"/> 

</project> 

This is the bare minimum you can get away with in a build file. If we save the previous 
example as build. xml, and run phing again, we should get some more interesting output. 

$ phing 
Buildfile: /home/bob/working/megaquiz/build.xml 

megaquiz > main: 

BUILD FINISHED 

Total time: 0.2557 seconds 

A lot of effort to achieve precisely nothing, you may think, but we have to start somewhere! 
Let's look again at that build file. Because we are dealingwithXML, we include anXML decla­
ration. As you probably know, XML comments look like this: 

<!-- Anything here is ignored. Because it's a comment. OK? --> 

The second line in our build file is ignored. You can put as many comments as you like in 
your build files, and as they grow, you should make full use of this fact. Large build files can be 
hard to read. 



362 · CHAPTER 17 AUTOMATED BUILD WITH PHING 

The real start of any build file is the project element. The project element can include up 
to three attributes. Of these, name and default are compulsory. The name attribute establishes 
the project's name. default defines a target to run if none are specified on the command line. 
You can specify the context directory for the build using a basedir attribute. If this is omitted, 
the current working directory will be assumed. You can see these attributes summarized in 
Table 17-l. 

Table 17-1. The Attributes to the project Element 

Attribute 

name 

default 

basedir 

Required 

Yes 

Yes 

No 

Description 

The name of the project 

The default target to run 

The file system context in which build will run 

Default Value 

Current directory (.) 

Once we have defined our project element, we must create at least one target-the one we 
reference in the default attribute. 

Targets 
Targets are similar in some senses to functions. A target is a set of actions grouped together to 
achieve an objective: to copy a directory from one place another, for example, or to generate 
documentation. 

In our previous example, we included a bare-minimum implementation for a target: 

<target name="main"/> 

As you can see, a target must define at least a name attribute. We have made use of this in 
the project element. Because the default element points to the main target, this target will be 
invoked whenever Phing is run without command-line arguments. This was confirmed by our 
output: 

megaquiz > main: 

Targets can be organized to depend upon one another. By setting up a dependency between 
targets, you tell Phing that one target should not run before the target it depends upon has 
been run. Let's add a dependency to our build file: 

c?xml version="l.O"?> 
<!-- build xml --> 

<project name="megaquiz" 
default="main" 

> 
<target name="runfirst" /> 
<target name="runsecond" depends="runfirst"/> 
<target name="main" depends="runsecond"/> 

</project> 



CHAPTER 17 • AUTOMATED BUILD WITH PHING 383 

As you can see, we have introduced a new attribute for the target element. depends tells 
Phing that the referenced target should be executed before the current one. So we might want 
a target that copies certain files to a directory to be invoked before one that runs a transforma­
tion on all files in that directory. We added two new targets in the example: run second, upon 
which main depends, and runfirst, upon which run second depends. Let's see what happens 
when we run Phing with this build file: 

$ phing 
Buildfile: /home/bob/working/megaquiz/build.xml 

megaquiz > runfirst: 

megaquiz > runsecond: 

megaquiz > main: 

BUILD FINISHED 

Total time: 0.3029 seconds 

As you can see, the dependencies are honored. Phing encounters the main target, sees its 
dependency, and moves back to runsecond. run second has its own dependency and Phing 
invokes runfirst. Having satisfied its dependency, Phing can invoke run second. Finally, main 
is invoked. The depends attribute can reference more than one target at a time. A comma­
separated list of dependencies can be provided, and each will be honored in turn. 

Now that we have more than one target to play with, let's override the project element's 
default attribute from the command line: 

$ phing runsecond 
Buildfile: /home/bob/working/megaquiz/build.xml 

megaquiz > runfirst: 

megaquiz > runsecond: 

BUILD FINISHED 

Total time: 0.2671 seconds 

By passing in a target name, we cause the default attribute to be ignored. The target 
matching our argument is invoked instead (as well as the target upon which it depends). 

The target element also supports an optional description attribute, to which you can 
assign a brief description of the target's purpose: 



364 CHAPTER 17 AUTOMATED BUILD WITH PHING 

<?xml version="l.O"?> 
<!-- build xml --> 

<project name="megaquiz" 
default="main" 
basedir="."> 

<target name="runfirst" 
description="The first target" I> 

<target name="runsecond" 
depends="runfirst" 
description="The second target" I> 

<target name="main" 

</project> 

depends="runsecond" 
description="The main target" I> 

Adding a description to your targets makes no difference to the normal build process. If 
the user runs Phingwith a -projecthelp flag, however, the descriptions will be used to summarize 
the project. 

$ phing -projecthelp 
Buildfile: /home/bob/working/megaquiz/build.xml 
Default target: 

main The main target 

Main targets: 

main 
runfirst 
run second 

The main target 
The first target 
The second target 

Properties 
Most projects of any complexity will require local configuration values: a database name, and 
its host and password, for example, or a nonstandard public HTML directory. Phing allows you 
to set such values using the property element. 

Properties are similar to global variables in a script. As such, they are often declared toward 
the top of a project to make it easy for developers to work out what's what in the build file. Here 
we create a build file that works with database information: 



<?xml version="l.O"?> 
<!-- build xml --> 

<project name="megaquiz" 
default="main" 
basedir="."> 

CHAPTER 17 AUTOMATED BUILD WITH PHING 365 

<property name="dbname" value="megaquiz" I> 
<property name="dbpass" value="default" I> 
<property name="dbhost" value="localhost" I> 

<target name="main"> 
<echo>database: ${dbname}</echo> 
<echo>pass: ${dbpass}</echo> 
<echo>host: ${dbhost}</echo> 

</target> 
</project> 

We introduced a new element: property. property requires name and value attributes. 
Notice also that we have added to the main target. echo is an example of a task. We will explore 
tasks more fully in the next section. For now, though, it's enough to know that echo does exactly 
what you would expect-it causes its contents to be output. Notice the syntax we use to refer­
ence the value of a property here: by using a dollar sign, and wrapping the property name in 
curly brackets, you tell Phing to replace the string with the property value. 

${propertyname} 

All this build file achieves is to declare three properties, and to print them to standard 
output. Let's see this in action: 

$ phing 
Buildfile: /home/bob/working/megaquiz/build.xml 

megaquiz > main: 
[echo] database: 
[echo] pass: 
[echo] host: 

BUILD FINISHED 

megaquiz 
default 
localhost 

Total time: 0.4402 seconds 



366 CHAPTER 17 AUTOMATED BUILD WITH PHING 

Now that I have introduced properties, we can wrap up our exploration of targets. The 
target element accepts two additional attributes: if and unless. Each of these should be set 
with the name of a property. When you use if with a property name, the target will only be 
executed if the given property is set. If the property is not set, the target will exit silently. Here 
we comment out the dbpass property and make the main task require it using the if attribute: 

<property name="dbname" value="megaquiz" I> 
<!--<property name="dbpass" value="default" />--> 
<property name="dbhost" value="localhost" /> 

<target name="main" 
<echo>database: 
<echo>pass: 
<echo>host: 

</target> 

Let's run phing again: 

$ phing 

if="dbpass"> 
${dbname}</echo> 
${dbpass}</echo> 
${dbhost}</echo> 

Buildfile: /home/bob/working/megaquiz/build.xml 

megaquiz > main: 

BUILD FINISHED 

Total time: 0.2628 seconds 

As you can see, we have raised no error, but the main task did not run. Why might we want 
to do this? There is another way of setting properties in a project. They can be specified on the 
command line. You tell Phing that you are passing it a property with the -D flag followed by a 
property assignment. So the argument should look like this: 

-Dname=value 

In our example, we want the dbname property to be made available via the command line. 
Let's try it: 

$ phing -Ddbpass=userset 
Buildfile: /home/bob/working/megaquiz/build.xml 

megaquiz > main: 
· [echo] database: 

[echo] pass: 
[echo] host: 

BUILD FINISHED 

megaquiz 
userset 
localhost 

Total time: 0.4611 seconds 



CHAPTER 17 AUTOMATED BUILD WITH PHING 367 

The if attribute of the main target is satisfied that the dbpass property is present, and the 
target is allowed to execute. 

As you might expect, the unless attribute is the opposite of if. If a property is set and it is 
referenced in a target's unless attribute, then the target will not run. This is useful if you want 
to make it possible to suppress a particular target from the command line. So we might add 
something like this to the main target: 

<target name="main" unless="suppressmain"> 

main will be executed unless a suppressmain property is present: 

$ phing -Dsuppressmain=yes 

Now that we have wrapped up the target element, let's take a look at a summary of its 
attributes as presented in Table 17-2. 

Table 17-2. The Attributes to the target Element 

Attribute Required Description 

name Yes The name of the target. 

depends No Targets upon which the current depends. 

if No Execute target only if given property is present. 

unless No Execute target only if given property is not present. 

description No A short summary of the target's purpose. 

When a property is set on the command line, it overrides any and all property declarations 
within the build file. There is another condition in which a property value can be overwritten. 
By default, if a property is declared twice, the originalvalue will have primacy. You can alter 
this behavior by setting an attribute called override in the second property element. Here's an 
example: 

<?xml version="l.O"?> 
<!-- build xml --> 

<project name="megaquiz" 
default="main" 
basedir="."> 

<property name="dbpass" value="default" /> 

<target name="main"> 
<property name="dbpass" override="yes" value="specific" I> 
<echo>pass: ${dbpass}</echo> 

</target> 

</project> 



368 CHAPTER 17 AUTOMATED BUILD WITH PHING 

We set a property called dbpass, giving it the initial value "default". In the main target we 
set the property once again, adding an override attribute set to "yes" and providing a new value. 
The new value is reflected in the output: 

$ phing 
Buildfile: /home/bob/working/megaquiz/build.xml 

megaquiz > main: 
[echo] pass: 

BUILD FINISHED 

specific 

Total time: 0.3802 seconds 

If we had not set the override element in the second property element, the original value 
of" default" would have stayed in place. It is important to note that targets are not functions: 
there is no concept of local scope. If you override a property within a task, it remains overridden 
for all other tasks throughout the build file. You could get around this, of course, by storing a 
property value in a temporary property before overriding, and then resetting it when you have 
finished working locally. 

So far we have dealt with properties that you define yourself. Phing also provides built-in 
properties. You reference these in exactly the same way that you would reference properties 
you have declared yourself. Here's an example: 

<?xml version~"l.O"?> 
<!-- build xml --> 

<project name~"megaquiz" 
default~"main" 

basedir~"."> 

<target name~"main"> 
<echo>name: ${phing.project.name}</echo> 
<echo>base: ${project.basedir}</echo> 
<echo>home: ${user.home}</echo> 
<echo>pass: ${env.DBPASS}</echo> 

</target> 

</project> 

We reference just a few of the built -in Phing properties. phing. project. name resolves to the 
name of the project as defined in the name attribute of the project element; project. basedir 
gives the starting directory; user. home provides the executing user's home directory (this is 
useful for providing default install locations). Finally, the env prefix in a property reference 
indicates an operating system environment variable. So by specifying${ env. DB PASS}, we are 
looking for an environment variable called DBPASS. Let's run Phing on this file: 



CHAPTER 17 • AUTOMATED BUILD WITH PHING 369 

$ phing 
Buildfile: /home/bob/working/megaquiz/build.xml 

megaquiz > main: 
[echo] name: 
[echo] base: 
[echo] home: 
[echo] pass: 

BUILD FINISHED 

megaquiz 
/home/bob/working/oophp-book-phing 
/home/bob 
${env.DBPASS} 

Total time: 0.5190 seconds 

Notice that the final property has not been translated. This is the default behavior when a 
property is not found-the string referencing the property is left untransformed. If we set the 
DB PASS environment variable and run again, we should see the variable reflected in the output: 

$ export DBPASS=wooshpoppow 
$ phing 
Buildfile: /home/bob/working/megaquiz/build.xml 

megaquiz > main: 

[echo] pass: whooshpoppow 

BUILD FINISHED 

Total time: 0.2852 seconds 

So now we have seen three ways of setting a property: the property element, a command 
line argument, and an environment variable. 

You can use targets to ensure that properties are populated. Let's say, for example, that our 
project requires a dbpass property. We would like the user to set dbpass on the command line 
(this always has priority over other property assignment methods). Failing that, we should look 
for an environment variable. Finally, we should give up and go for a default value: 

<?xml version="l.O"?> 
<!-- build xml --> 

<project name="megaquiz" 
default="main" 
basedir="."> 

<target name="setenvpass" if="env.DBPASS" unless="dbpass"> 
<property name="dbpass" override="yes" value="${env.DBPASS}" /> 

</target> 



370 CHAPTER 17 AUTOMATED BUILD WITH PHING 

<target name="setpass" unless="dbpass" depends="setenvpass"> 
<property name="dbpass" override="yes" value="default" I> 

</target> 

<target name="main" 
<echo>pass: 

</target> 

</project> 

depends="setpass"> 
${dbpass}</echo> 

So, as usual the default target, main is invoked first. This has a dependency set, so Phing 

goes back to the setpass target. setpass, though, depends on setenvpass, so we start there. 

setenvpass is configured to run only if dbpass has not been set, and if env. DB PASS is present. If 

these conditions are met, then we set the dbpass property using the property element. At this 

stage then, dbpass is populated either by a command line argument or by an environment variable. 

If neither of these were present, then the property remains unset at this stage. The setpass 
target is now executed, but only if dbpass is not yet present. In this case, it sets the property to 

the default string: "default". 

Types 
You may think that by looking at properties, we are through with data. In fact, Phing supports 

a set of special elements called types that encapsulate different kinds of informatio,n useful to 

the build process. 

FileSet 

Let's say that you need to represent a directory in your build file, a common situation as you 

might imagine. You could use a property to represent this directory, certainly, but you'd run 

into problems straightaway if your developers use different platforms that support distinct 

directory separators. The answer is the FileSet data type. FileSet is platform independent, so if 

you represent a directory with forward slashes in the path, they will be automatically translated 

behind the scenes into backslashes when the build is run on a Windows machine. You can 

define a minimal FileSet element like this: 

<fileset dir="src/lib" I> 

As you can see, we use the dir attribute to set the directory we wish to represent. You can 

optionally add an id attribute, so that you can refer to the FileSet later on. 

<fileset dir="src/lib" id="srclib"> 

The FileSet data type is particularly useful in specifying types of documents to include or 

exclude. When installing a set of files, you may not wish those that match a certain pattern to 

be included. You can handle conditions like this in an excludes attribute: 

<fileset dir="src/lib" id="srclib" 
excludes="**/*_test.php **/*Test.php" I> 



CHAPTER 17 AUTOMATED BUILD WITH PHING 371 

Notice the syntax we have used in the excludes attribute. Double asterisks represent zero 
or more directories. A single asterisk represents zero or more characters. So we are specifying 
that we would like to exclude files that end in "_test.php" or "Test.php" in all directories below 
the starting point defined in the dir attribute. The excludes attribute accepts multiple patterns 
separated by white space. 

We can apply the same syntax to an includes attribute. Perhaps our src/lib directories 
contain many non-PHP files that are useful to developers but should not find their way into an 
installation. We could exclude those files, of course, but it might be simpler just to define the 
kinds of files we can include. In this case, if a file doesn't end in ".php", it isn't going to be installed: 

<fileset dir="srcllib" id="srclib" 
excludes="**l*_test.php **I*Test.php" 
includes="**l*.php" I> 

As you build up include and exclude rules, your fileset element is likely to become overly 
long. Luckily, you can pull out individual exclude rules and place each one in its own exclude 
subelement. You can do the same for include rules. We can now rewrite our FileSet like this: 

<fileset dir="srcllib" id="srclib"> 
<exclude name="**l*_test.php" I> 
<exclude name="**I*Test.php" I> 
<include name="**l*.php" I> 

<lfileset> 

You can see some of the attributes of the fileset element in Table 17-3. 

Table 17-3. Some Attributes of the fileset Element 

Attribute Required Description 

id No A unique handle for referring to the element. 

dir No The fileset directory. 

excludes No A list of patterns for exclusion. 

includes No A list of patterns for inclusion. 

refid No Current fileset is a reference to fileset of given ID. 

Pattern Set 
As we build up patterns in our fileset elements (and in others), there is a danger that we will 
begin to repeat groups of exclude and include elements. In our previous example, we defined 
patterns for test files and regular code files. We may add to these over time (perhaps we wish to 
include .conf and. inc extensions to our definition of code files). If we define other fileset 
elements that also use these patterns, we will be forced to make any adjustments across all 
relevant fileset elements. 

We can overcome this problem by grouping patterns into pattern set elements. The 
pattern set element groups include and exclude elements so that they can be referenced later 



372 CHAPTER 17 AUTOMATED BUILD WITH PHING 

from within other types. Let's extract the include and exclude elements from our file set 

example and add them to pattern set elements. 

<patternset id="inc_code"> 
<include name="**l*.php" I> 
<include name="**l*.inc" I> 
<include name="**l*.conf" I> 

<lpatternset> 

<patternset id="exc_test"> 
<exclude name="**l*_test.php" I> 
<exclude name="**I*Test.php" I> 

<I pattern set> 

We create two patternset elements, setting their id attributes to inc_ code and exc _test 
respectively. inc_ code contains the include elements for including code files, and exc _test 
contains the exclude files for excluding test files. We can now reference these patternset 

elements within a fileset: 

<fileset dir="srcllib" id="srclib"> 
<patternset refid="inc code" I> 
<patternset refid="exc test" I> 

<lfileset> 

To reference an existing pattern set, you must use another pattern set element. The 
second element must set a single attribute: refid. The refid attribute should refer to the id 
of the pattern set element you wish to use in the current context. In this way, we can reuse 
patternset elements: 

<fileset dir="srclviews" id="srcviews"> 
<patternset refid="inc code" I> 

<lfileset> 

Any changes we make to the inc_ code pattern set will automatically update any types that 

use it. As with FileSet, you can place exclude rules either in an excludes attribute or a set of 
exclude subelements. The same is true of include rules. 

The pattern set element's attributes are summarized in Table 17-4. 

Table 17-4. Some Attributes of the patternset Element 

Attribute Required Description 

id 

excludes 

includes 

refid 

No 

No 

No 

No 

A unique handle for referring to the element. 

A list of patterns for exclusion. 

A list of patterns for inclusion. 

Current pattern set is a reference to patternset of given ID. 



CHAPTER 17 AUTOMATED BUILD WITH PHING 373 

FilterChain 

The types that we have encountered so far have provided mechanisms for selecting sets of files. 
FilterChain, by contrast, provides a flexible mechanism for transforming the contents of text 
files. 

In common with all types, defining a fil terchain element does not in itself cause any 
changes to take place. The element and its children must first be associated with a task-that 
is, an element that tells Phing to take a course of action. We will return to tasks a little later. 

A fil terchain element groups any number of filters together. Filters operate on files like a 
pipeline-the first alters its file, and passes its results on to the second, which makes its own 
alterations, and so on. By combining multiple filters in a fil terchain element, you can effect 
flexible transformations. 

Let's dive straight in and create a fil terchain that removes PHP comments from any text 
passed to it: 

<filterchain> 
<stripphpcomments I> 

<lfil terchain> 

The StripPhpComments task does just what the name suggests. If you have provided 
detailed API documentation in your source code, you may have made life easy for developers, 
but you have also added a lot of dead weight to your project. Since all the work that matters 
takes place within your source directories, there is no reason why you should not strip out 
comments upon installation. 

1\lote If you use a build tool for your projects, ensure that no one makes changes in the installed code. 
The installer will copy over any altered files, and the changes will be lost. I have seen it happen. 

Let's sneak a preview of the next section and place the fil tercha in element in a task: 

<target name="main"> 
<copy todir="build/lib"> 

<fileset refid="srclib"/> 
<filterchain> 

<stripphpcomments I> 
</filterchain> 

</copy> 
</target> 

The Copy task is probably the one you get most use out of. It copies flies from place to 
place. As you can see, we define the destination directory in the todir attribute. The source of 
the files is defined by the fileset element we created in the previous section. Then comes the 
fil terchain element. Any flle copied by the Copy task will have this transformation applied to it. 

Phing supports fllters for many operations including stripping new lines (StripLineBreaks), 
replacing tabs with spaces (TabToSpaces). There is even anXsltFilter! Perhaps the most commonly 
used filter, though, is ReplaceTokens. This allows you to swap tokens in your source code for 



374 CHAPTER 17 AUTOMATED BUILD WITH PHING 

properties defined in your build file, pulled from environment variables, or passed in on the 
command line. This is very useful for customizing an installation. 

ReplaceTokens optionally accepts two attributes, begintoken and endtoken. You can use 
these to define the characters that delineate token boundaries. If you omit these, Phing will 
assume the default character of"@". In order to recognize and replace tokens, you must add 
token elements to the replacetokens element. Let's add a replacetokens element to our example: 

<copy todir="build/lib"> 
<fileset refid="srclib"/> 
<filterchain> 

<stripphpcomments I> 
<replacetokens> 

<token key="dbname" value="${dbname}" I> 
<token key="dbhost" value="${dbhost}" I> 
<token key="dbpass" value="${dbpass}" I> 

</replacetokens> 
</filterchain> 

</copy> 

As you can see, token elements require key and value attributes. Let's see the effect of 
running this task with its transformations upon a file in our project. The original file lives in a 
source directory: src/lib/Config. php: 

I* 
* Quick and dirty Conf class 
*I 

class Config { 

} 

public $dbname ="@dbname@"; 
public $dbpass ="@dbpass@"; 
public $dbhost ="@dbhost@"; 

Running our main target containing the Copy task defined previously gives the following 
output: 

$ phing 
Buildfile: /home/bob/working/megaquiz/build.xml 

megaquiz > main: 
[delete] Deleting directory /home/bob/working/megaquiz/build 

[copy] Copying 8 files to /home/bob/working/megaquiz/build/lib 
[filter:ReplaceTokens] Replaced "@dbname@" with "megaquiz" 
(filter:ReplaceTokens] Replaced "@dbpass@" with "pass" 
[filter:ReplaceTokens] Replaced "@dbhost@" with "localhost" 

BUILD FINISHED 

Total time: 1.1186 second 



CHAPTER 17 AUTOMATED BUILD WITH PHING 375 

The original file is untouched, of course, but thanks to the Copy task it has been reproduced 
at build!lib/Config. php: 

class Config { 

} 

public $dbname ="megaquiz"; 
public $dbpass ="pass"; 
public $dbhost ="localhost"; 

Not only has the comment been removed, but the tokens have been replaced with their 
property equivalents. 

Tasks 
Tasks are the elements in a build file that get things done. You won't achieve much without 
using a task, which is why we have cheated and used a couple already. Let's reintroduce these. 

Echo 
The Echo task is perfect for the obligatory "Hello World" example. In the real world you can use 
it to tell the user what you are about to do or what you have done. You can also sanity-check 
your build process by displaying the values of properties. As we have seen, any text placed 
within the opening and closing tags of an echo element will be printed to the browser: 

<echo>The pass is '${dbpass}', shhh!</echo> 

Alternatively, you can add the output message to a msg attribute. 

<echo msg="The pass is '${dbpass}', shhh!" /> 

This will have the identical effect of printing the following to standard output: 

[echo] The pass is 'pass', shhh! 

Copy 

Copying is really what installation is all about. Typically, you will create one target that copies 
files from your source directories and assembles them in a temporary build directory. You will 
then have another target that copies the assembled (and transformed) files to their output 
locations. Breaking the installation into separate build and install phases is not absolutely 
necessary, but it does mean that you can check the results of the initial build before commit­
ting to overwriting production code. You can also change a property and install again to a 
different location without the need to run a potentially expensive copy/replace phase again. 

At its simplest, the Copy task allows you to specify a source flle and a destination directory 
or file: 

<copy file="src/lib/Config.php" todir="build/conf" I> 

As you can see, we specify the source file using the file attribute. You may be familiar 
already with the todir attribute, which is used to specify the target directory. If the target directory 
does not exist, Phing will create it for you. 



376 CHAPTER 17 • AUTOMATED BUILD WITH PHING 

If you need to specify a target file, rather than a containing directory, you can use the 
tofile attribute instead oftodir. 

<copy file="src/lib/Config.php" tofile="build/conf/myConfig.php" /> 

Once again the build/ conf directory is created if necessary, but this time Config. php is 
renamed to myConfig. php. 

As we have seen, to copy more than one file at a time, you need to add a fileset element 
to copy: 

<copy todir="build/lib"> 
<file set refid=" srclib "I> 

</copy> 

The source files are defined by the srclib file set element, so all we have to set in copy is 
the todir attribute. 

Phing is smart enough to test whether or not your source file has been changed since the 
target file was created. If no change has been made, then Phing will not copy. This means that 
you can build many times and only the files that have changed in the meantime will be installed. 
This is fine, as long as other things are not likely to change. If a file is transformed according to 
the configuration of a replacetokens element, for example, you may want to ensure that the file 
is transformed every time that the Copy task is invoked. You can do this by setting an overwrite 
attribute: 

<copy todir="build/lib" overwrite="yes"> 
<fileset refid="srclib"/> 
<filterchain> 

<stripphpcomments I> 
<replacetokens> 

<token key="dbpass" value="${dbpass}" I> 
<lreplacetokens> 

</filterchain> 
</copy> 

Now whenever copy is run, the files matched by the fileset element are replaced whether 
or not the source has been recently updated. 

You can see the copy element summarized in Table 17-5. 

Table 17-5. The Attributes to the copy Element 

Attribute Required 

todir 

tofile 

file 

overwrite 

Yes (if tofile not present) 

Yes (iftodir not present) 

No 

No 

Description 

Directory to copy into. 

The file to copy to. 

Source file. 

Overwrite target if it already exists. 

Default Value 

no 



CHAPTER 17 AUTOMATED BUILD WITH PHING 3n 

Input 

We have seen that the echo element is used to send output to the user. To gather input .from the 
user, we have used separate methods involving the command line, and an environment variable. 
These mechanisms are neither very structured nor interactive, however. 

II Note One reason for allowing users to set values at build time is to allow for flexibility from build environ­

ment to build environment. In the case of database passwords, another benefit is that this sensitive data is 

not enshrined in the build file itself. Of course, once the build has been run, the password will be saved into 

a source file, so it is up to the developer to ensure the security of his system! 

The input element allows you to output a prompt message. Phing then awaits user input, 
and assigns it to a property. Let's see it in action: 

<target name="setpass" unless="dbpass"> 
<input message="You don't seem to have set a db password" 

propertyName="dbpass" 
defaultValue="default" 
promptChar=" >" I> 

</target> 

<target name="main" 
<echo>pass: 

</target> 

depends="setpass"> 
${dbpass}</echo> 

Once again, we have a default target: main. This depends upon another target, setpass, 
which is responsible for ensuring that the dbpass property is populated. To this end, we use the 
target element's unless attribute, which ensures that it will not run if dbpass is already set. 

The set pass target consists of a single input task element. An input element can have a 
message attribute, which should contain a prompt for the user. The propertyName attribute is 
required, and defines the property to be populated by user input. If the user hits Enter at the 
prompt without setting a value, the property is given a fallback value if the defaul tValue 
attribute is set. Finally, you can customize the prompt character using the promptChar attribute­
this provides a visual cue for the user to input data. Let's run Phing using the previous targets: 

$ phing 
Buildfile: /home/bob/working/megaquiz/build.xml 

megaquiz > setpass: 
You don't seem to have set a db password [default] > mypass 

megaquiz > main: 
[echo] pass: 

BUILD FINISHED 

mypass 

Total time: 6.0322 seconds 



378 CHAPTER 17 AUTOMATED BUILD WITH PHING 

We summarize the input element in Table 17-6. 

Table 17-6. The Attributes to the input Element 

Attribute Required Description 

propertyName 

message 

defaultValue 

promptChar 

Delete 

Yes 

No 

No 

No 

The property to populate with user input 

The prompt message 

A value to assign to the property if the user does not provide input 

A visual cue that the user should provide input 

Installation is generally about creating, copying, and transforming files. Deletion has its place 
as well, though. This is particularly the case when you wish to perform a clean install. As we 
have already discussed, files are generally only copied from source to destination for source 
files that have changed since the last build. By deleting a build directory, you ensure that the 
full compilation process will take place. 

Let's delete a directory: 

<target name="clean"> 
<delete dir="build" I> 

</target> 

When we run phing with the argument clean (the name of the target), our delete task 
element is invoked. Here's Phing's output: 

$ phing clean 
Buildfile: /home/bob/working/megaquiz/build.xml 

megaquiz > clean: 
[delete] Deleting directory /home/bob/working/megaquiz/build 

BUILD FINISHED 

The delete element accepts an attribute, file, which can be used to point to a particular 
file. Alternatively, you can fine-tune your deletions by adding a file set subelement to delete. 

Summary 
Serious development rarely happens in one place. A code base needs to be separated from its 
installation, so that work in progress does not pollute production code that needs to remain 
functional at all times. Version control allows developers to check out a project and work on it 
in their own space. This requires that they should be able to configure the project easily for 
their environment. Finally, and perhaps most importantly, the customer (even if the "customer" 
is you in a year's time when you've forgotten the ins and outs of your code) should be able to 
install your project after a glance at a README file. 



CHAPTER 17 AUTOMATED BUILD WITH PHING 379 

In this chapter, I have covered some of the basics of Phing, a fantastic tool, which brings 
much of the functionality of Jakarta Ant to the PHP world. With this chapter, we have really 
only seen a few ofPhing's capabilities. Nevertheless, once you are up and running with the 
targets, tasks, types, and properties discussed here, you'll find it easy to bolt on new elements 
for advanced features, like creating tar/gzipped distributions, automatically generating PEAR 
package installations, and running PHP code directly from the build file. If you find that Phing 
does not satisfy all your build needs, you will discover that, like Ant, it is designed to be exten­
sible-get out there and build your own tasks! Even if you don't add to Phing, you should take 
some time out to examine the source code. Phing is written entirely in object-oriented PHP 5, 
and the code is chock full of design examples. 





CHAPTER 18 

Objects, Patterns, Practice 

from object basics through design pattern principles, and on to tools like phpDocumentor, 
CVS, and Phing, this book has concentrated on two aspects of the journey to meet a single 
objective: the successful PHP project. 

In this chapter, I recap some of the topics I have covered and points made throughout the 
book: 

·• PHP 5 and objects: How the Zend Engine 2 ushers in an object-oriented future for PHP 

• Objects and design: Summarizing some 00 design principles 

• Patterns: What makes them cool 

• Pattern principles: A recap of the guiding object-oriented principles that underlie many 
patterns 

• The tools for the job: Revisiting the tools I have described, and checking out a few I 
haven't 

Objects 
As we saw in Chapter 2, for a long time objects were something of an afterthought in the PHP 
world. Support was rudimentary to say the least in PHP 3, with objects barely more than asso­
ciative arrays in fancy dress. Although things improved radically for the object enthusiast with 
PHP 4, there were still significant problems, the default behavior that objects were assigned 
and passed by reference not the least of them. 

The introduction of PHP 5 (powered by the Zend Engine 2) has finally dragged objects 
center stage. You can still program in PHP without ever declaring a class, of course, but there 
can be no doubt that the language is optimized for object -oriented design. 

In Chapters 3, 4, and 5, we looked at PHP 5's improved object-oriented support in detail. 
Objects are now passed by reference, and the complexity of object copying is acknowledged 
with the introduction of the_ clone () method. Here are some of the new features PHP 5 has 
brought us: reflection, exceptions, private and protected methods and properties, the 
_ toString() method, the static modifier, abstract classes and methods, final methods and 
properties, interfaces, iterators, type hinting, the const modifier, and the _construct() 
method. The extensive nature of this list reveals the degree to which object-oriented program­
ming is now bound up with the future of PHP. 

383 



384 CHAPTER 18 OBJECTS, PATTERNS, PRACTICE 

I would have liked to have seen a few features included that did not make it to the final list, 
such as hinting for primitive types as well as object types. I would also like to be able to hint 
return values as well as method arguments, and I would have loved to see package namespaces 
supported. 

These are quibbles, though. The Zend Engine 2 and PHP 5 have made object -oriented 
design central to the PHP project, opening up the language to a new set of developers and 
opening up new possibilities for existing devotees. 

In Chapter 6, we looked at the benefits that objects can bring to the design of your projects. 
Since objects and design are one of the central themes of this book, it is worth recapping some 
conclusions in detail. 

Choice 
There is no law that says you have to develop with classes and objects only. Well-designed 
object-oriented code provides a clean interface that can be accessed from any client code, 
whether procedural or object oriented. Even if you have no interest in writing objects (unlikely 
if you are still reading this book), you will probably find yourself using them, if only as a client 
of PEAR packages. 

Encapsulation and Delegation 
Objects mind their own business and get on with their allotted tasks behind closed doors. They 
provide an interface through which requests and results can be passed. Any data that need not 
be exposed, and the dirty details of implementation, are hidden behind this facade. 

This gives object-oriented and procedural projects different shapes. The controller in an 
object -oriented project is often surprisingly sparse, consisting of a handful of instantiations 
that acquire objects, and invocations that call up data from one set and pass it on to another. 

A procedural project, on the other hand, tends to be much more interventionist. The 
controlling logic descends into implementation to a greater extent, referring to variables, 
measuring return values, taking turns along different pathways of operation according to 
circumstance. 

Decou piing 
To decouple is to remove interdependence between components, so that making a change to 
one component does not necessitate changes to others. Well-designed objects are self­
enclosed. That is, they do not need to refer outside of themselves to recall a detail they learned 
in a previous invocation. 

By maintaining an internal representation of state, objects reduce the need for global vari­
ables-a notorious cause of tight coupling. In using a global variable, you bind one part of a 
system to another. If a component (whether a function, a class, or a block of code) refers to a 
global variable, there is a risk that another component will accidentally use the same variable 
name and pollute its value for the first. There is a chance that a third component will come to 
rely on the value in the variable as set by the first. Change the way that the first component 
works, and you may cause the third to stop working. The aim of object-oriented design is to 
reduce such interdependence, making each component as self-sufficient as possible. 



CHAPTER 18 OBJECTS, PATTERNS, PRACTICE 385 

Another cause of tight coupling is code duplication. Where you must repeat an algorithm 
in different parts of your project, you will find tight coupling. What happens when you come to 
change the algorithm? Clearly you must remember to change it everywhere it occurs. Forget to 
do this, and your system is in trouble. 

A common cause of code duplication is the parallel conditional. If your project needs to do 
things in one way according to a particular circumstance (running on Linux, for example), and 
another according to an alternative circumstance (running on Windows), you will often find 
the same if I else clauses popping up in different parts of your system. If we add a new circum­
stance together with strategies for handling it (MacOS), then we must ensure that all 
conditionals are updated. 

Object-oriented programming provides a technique for handling this problem. You can 
replace conditionals with polymorphism. Polymorphism, otherwise known as class switching, 
is the transparent use of different subclasses according to circumstance. Because each 
subclass supports the same interface as the common super class, the client code neither knows 
nor cares which particular implementation it is using. 

Conditional code is not banished from object-oriented systems, it is merely minimized 
and centralized. Conditional code of some kind must be used to determine which particular 
subtypes are to be served up to clients. This test, though, generally takes place once, and in one 
place, thus reducing coupling. 

Reusability 
Encapsulation promotes decoupling, which promotes reuse. Components that are self­
sufficient and communicate with wider systems only through their public interface can often 
be moved from one system and used in another without change. 

In fact, this is rarer than you might think. Even nicely orthogonal code can be project 
specific. When creating a set of classes for managing the content of a particular Web site, for 
example, it is worth taking some time in the planning stage to look at those features that are 
specific to your client, and those that might form the foundation for future projects with 
content management at their heart. 

Another tip for reuse: centralize those classes that might be used in multiple projects. Do 
not, in other words, copy a nicely reusable class into a new project. This will cause tight 
coupling on a macro level as you will inevitably end up changing the class in one project, and 
forgetting to do so in another. You would do better to manage common classes in a central 
repository that can be shared by your projects. 

Aesthetics 
This is not going to convince anyone who is not already convinced, but to me object-oriented 
code is aesthetically pleasing. The messiness of implementation is hidden away behind clean 

interfaces, making an object a thing of apparent simplicity to its client. 
I love the neatness and elegance of polymorphism, so that an API allows you to manipulate 

vastly different objects that nonetheless perform interchangeably, and transparently-the way 

that objects can be stacked up neatly or slotted into one another like children's blocks. 



386 CHAPTER 18 OBJECTS, PATTERNS, PRACTICE 

Of course, there are those who argue that the converse is true. Object-oriented code can 
lead to torturous class names that must be combined with method names to form even more 
labored invocations. This is especially true of PEAR where class names include their package 
names to make up for PHP' s lack of support for namespaces. 

Another fair criticism is that object-oriented code can dissolve into a babel of classes and 
objects that can be very hard to read. There is no denying that this can be the case, although 
matters can be eased considerably through careful documentation containing usage 
examples. 

Patterns 
Recently a Java programmer applied for a job in a company with which I have some involve­
ment. In his cover letter, he apologized for only having used patterns for a couple of years. This 
assumption that design patterns are a recent discovery-a transformative advance-is testa­
ment to the excitement they have generated. In fact, it is likely that this experienced coder has 
been using patterns for a lot longer than he thinks. 

Patterns describe common problems and tested solutions. Patterns name, codify, and 
organize real-world best practice. They are not components of an invention, or clauses in a 
doctrine. A pattern would not be valid if it did not inscribe practices that are already common 
at the time of hatching. 

Remember that the concept of a pattern language originated in the field of architecture. 
People were building courtyards and arches for many thousands of years before patterns were 
proposed as a means of describing solutions to problems of space and function. 

Having said that, it is true that design patterns often provoke the kind of emotions associ­
ated with religious or political disputes. Devotees roam the corridors with an evangelistic 
gleam in their eye and a copy of the Gang of Four book under their arm. They accost the unini­
tiated and reel off pattern names like articles of faith. It is little wonder that some critics see 
design patterns as hype. 

In languages such as Perl and PHP, patterns are also controversial because of their firm 
association with object-oriented programming. In a context in which objects are a design deci­
sion and not a given, associating oneself with design patterns amounts to a declaration of 
preference, not least because patterns beget more patterns, and objects beget more objects. 

What Patterns Buy Us 
I introduced patterns in Chapter 7. Let's reiterate some of the benefits that patterns can buy us. 

Tried and Tested 

First of all, as I've noted, patterns are proven solutions to particular problems. Drawing an 
analogy between patterns and recipes is dangerous: recipes can be followed blindly, whereas 
patterns are "half-baked" (Martin Fowler) by nature and need more thoughtful handling. 
Nevertheless, both recipes and patterns share one important characteristic: they have been 
tried out, and tested thoroughly before inscription. 



CHAPTER 18 OBJECTS, PATTERNS, PRACTICE 387 

Patterns Suggest Other Patterns 

Patterns have grooves and curves that fit one another. Certain patterns slot together with a 
satisfying click. Solving a problem using a pattern will inevitably have ramifications. These 
consequences can become the conditions that suggest complementary patterns. It is impor­
tant, of course, to be careful that you are addressing real needs and problems when you choose 
related patterns, and not just building elegant but useless towers of interlocking code. It is 
tempting to build the programming equivalent of the architectural folly. 

A Common Vocabulary 

Patterns are a means of developing a common vocabulary for describing problems and solu­
tions. Naming is important-it stands in for describing, and therefore lets us cover lots of 
ground very quickly. Naming, of course, also obscures meaning for those who do not yet share 

the vocabulary, which is one reason why patterns can be so infuriating at times. 

Patterns Promote Design 

As discussed in the next section, patterns can encourage good design when used properly. It is, 
of course, important to hedge statements like that with plenty of caveats. Patterns are not fairy 
dust. 

Patterns and Principles of Design 
Design patterns are, by their nature, concerned with good design. Used well, they can help you 
build loosely coupled and flexible code. Pattern critics have a point, though, when they say that 
patterns can be overused by the newly infected. Because pattern implementations form pretty 
and elegant structures, it can be tempting to forget that good design always lies in fitness for 
purpose. Remember that patterns exist to address problems. 

When I first started working with patterns, I found myself creating Abstract Factories all 

over my code. I needed to generate objects, and Abstract Factory certainly helped me to do 
that. 

In fact, though, I was thinking lazily and making unnecessary work for myself. The sets of 
objects I needed to produce were indeed related, but they did not yet have alternative imple­
mentations. The classic Abstract Factory pattern is ideal for situations in which you have 
alternative sets of objects to generate according to circumstance. To make Abstract Factory 
work, you need to create factory classes for each type of object and a class to serve up the 

factory class. It's exhausting just describing the process. 
My code would have been much cleaner had I created a basic factory class, only refac­

toring to implement Abstract Factory if I found myself needing to generate a parallel set of 

objects. 
The fact that you are using patterns does not guarantee good design. When developing, it 

is a good idea to bear in mind two expressions of the same principle: KISS ("Keep it simple, 
stupid") and "Do the simplest thing that works." eXtreme programmers also give us another, 

related, acronym: YAGNI: "You aren't going to need it," meaning that you should not imple­
ment a feature unless it is truly required. 



388 CHAPTER 18 OBJECTS, PATTERNS, PRACTICE 

With the warnings out of the way, we can resume the tone of breathless enthusiasm. As I 
laid out in Chapter 9, patterns tend to embody a set of principles that can be generalized and 
applied to all code. 

Favor Composition over Inheritance 
Inheritance relationships are powerful but inflexible. By relying on inheritance in design, we 
produce either limited structures or torturous inheritance hierarchies infested with 
duplication. 

Avoid Tight Coupling 

I have already talked about this issue in this chapter, but it is worth mentioning here for the 
sake of completeness. You can never escape the fact that change in one component may 
require changes in other parts of your project. You can, however, minimize this by avoiding 
duplication (typified in our examples by parallel conditionals), overuse of global variables (or 
Singletons), and use of concrete subclasses when abstract types can be used to promote poly­
morphism. This last point leads us to another principle: 

Code to an Interface, Not an Implementation 
Design your software components with clearly defined public interfaces that make the respon­
sibility of each transparent. If you define your interface in an abstract super class and have 
client classes demand and work with this abstract type, you then decouple clients from specific 
implementations. 

Having said that, remember the YAGNI principle. If you start out with the need for only 
one implementation for a type, there is no immediate need to create an abstract super class. 
You can just as well define a clear interface in a single concrete class. As soon as you find that 
your single implementation is trying to do more than one thing at the same time, you can 
redesignate your concrete class as the abstract parent of two subclasses. Client code need be 
none the wiser, since it continues to work with a single type. 

A classic sign that you may need to split an implementation and hide the resultant classes 
behind an abstract parent is the emergence of conditional statements in the implementation. 

Encapsulate the Concept That Varies 

If you find that you are drowning in subclasses, it may be that you should be extracting the 
reason for all this subclassing into its own type. This is particularly the case if the reason is a 
means to achieving an end that is incidental to your type's main purpose. 

Given a type UpdatableThing, for example, you may find yourself creating 
FtpUpdatableThing, HttpUpdatableThing, and FileSystemUpdatableThing subtypes. The 
responsibility of your type, though, is to be a thing that is updatable-the mechanism for 
storage and retrieval are incidental to this purpose. Ftp, Http, and FileSystem are the things 
that vary here, and they belong in their own type-let's call it 
UpdateMechanism. UpdateMechanism will have subclasses for the different implementations. You 
can then add as many update mechanisms as you want without disturbing the UpdatableThing 
type, which remains focused on its core responsibility. 



CHAPTER 18 OBJECTS, PATTERNS, PRACTICE 389 

Notice also that we have replaced a static compile-time structure with a dynamic runtime 
arrangement here, bringing us (as if by accident) back to our first principle: "Favor composi­
tion over inheritance." 

Practice 
The issues that I covered in this section of the book (and introduced in Chapter 13) are often 
ignored by texts and coders alike. In my own life as a programmer, I discovered that these tools 
and techniques were at least as relevant to the success of a project as design. There is little 
doubt that issues like documentation and automated build are less revelatory in nature than 
wonders such as the Composite pattern. 

llllote Let's just remind ourselves of the beauty of Composite: a simple inheritance tree whose objects can 
be joined at runtime to form structures that are also trees, but are orders of magnitude more flexible and 
complex. Multiple objects that share a single interface by which they are presented to the outside world. The 
interplay between simple and complex, multiple and singular, has gotto get your pulse racing-that's not just 
software design, it's poetry. 

Even if issues like documentation and build, testing, and version control are more prosaic 
than patterns, they are no less important. In the real world, a fantastic design will not survive if 
multiple developers cannot easily contribute to it or understand the source. Systems become 
hard to maintain and extend without automated testing. Without build tools, no one is going to 
bother to deploy your work. As PHP' s user base widens, so does our responsibility as devel­
opers to ensure quality and ease of deployment. 

A project exists in two modes. It is its structures of code and functionality, and it is a set of 
files and directories, a ground for cooperation, a set of sources and targets, a subject for trans­
formation. In this sense, a project is a system from the outside as much as it is within its code. 
Mechanisms for build, testing, documentation, and version control require equal attention to 
detail as the code such mechanisms support. Focus on the meta-system with as much fervor as 
you do the system itself. 

Testing 
Although testing is part of the framework that one applies to a project from the outside, it is 
intimately integrated into the code itself. Because total decoupling is not possible, or even 
desirable, test frameworks are a powerful way of monitoring the ramifications of change. 
Altering the return type of a method could influence client code elsewhere, causing bugs to 
emerge weeks or months after the change is made. A test framework gives you half a chance of 
catching errors of this kind. 

Testing is also credited as a tool for improving object -oriented design. Testing first (or at 
least concurrently) helps to focus the coder on a class's interface, and to think carefully about 
the responsibility and behavior of every method. I introduced the PHPUnit2 package in 
Chapter 13. 



390 CHAPTER 18 • OBJECTS, PATTERNS, PRACTICE 

Documentation 
Your code is not as clear as you think it is. A stranger visiting a codebase for the first time can 
be faced with a daunting task. Even you, as author of the code, will eventually forget how it all 
hangs together. In Chapter 15, I covered phpDocurnentor, which allows you to document as 
you go, and automatically generates hyperlinked output. 

The output from phpDocumentor is particularly useful in an object -oriented context, as it 
allows the user to click around from class to class. As classes are often contained in their own 
files, reading the source directly can involve complex trails from source file to source file. 

Version Control 
Collaboration is hard. Let's face it, people are awkward. Programmers are even worse than 
people. Once you've sorted out the roles and tasks on your team, the last thing you want to deal 
with is clashes in the source code itself. As we saw in Chapter 16, CVS (and similar tools such as 
Subversion) enable you to merge the work of multiple programmers into a single repository. 
Where clashes are unavoidable, CVS flags the fact and points you to the source to fix the 
problem. 

Even if you are a solo programmer, version control is a necessity. It supports branching, so 
that you can maintain a software release and develop the next version at the same time, 
merging bug fixes from the stable release to the development branch. 

CVS also provides a record of every commit ever made on your project. This means that 
you can roll back by date or tag to any moment. This will save your project one day-believe 
me. 

Automated Build 
Version control without automated build is oflirnited use. A project of any complexity takes 
work to deploy. Various files need to be moved to different places on a system, configuration 
files need to be transformed to have the right values for the current platform and database, 
database tables need to be set up or transformed. I covered two tools designed for installation. 
The first, PEAR (Chapter 14), is ideal for standalone packages and small applications. The 
second build tool I covered was Phing (Chapter 17), which is a tool with enough power and 
flexibility to automate the installation of the largest and most labyrinthine project. 

Automated build transforms deployment from a chore to a matter of a line or two at the 
command line. With little effort, you can invoke your test framework and your documentation 
output from your build tool. If the needs of your developers do not sway you, bear in mind the 
pathetically grateful cries of your users as they discover that they need no longer spend an 
entire afternoon copying files and changing configuration fields every time you release a new 
version of your project. 

What We Missed 
A few tools I have had to omit from this book due to time and space constraints are, nonethe­
less, supremely useful in any project. 

Perhaps foremost amongst these is Bugzilla. Its name should suggest two things to you. 
Firstly, it is a tool concerned with bug tracking. Secondly, it is part of the Mozilla project. 



CHAPTER 18 OBJECTS, PATTERNS, PRACTICE 391 

. Like CVS, Bugzilla is one of those productivity tools that, once you have tried it on a 
project, you cannot imagine not using. Bugzilla is available for download from http: I I 
www.bugzilla.org. 

It is designed to allow users to report problems with a project, but in my experience it is 
just as often used as a means of describing required features, and allocating their implementa­
tion to team members. 

You can get a snapshot of open bugs at any time, narrowing the search according to 
product, bug owner, version number, and priority. Each bug has its own page, in which you can 
discuss any ongoing issues. Discussion entries and changes in bug status can be copied by mail 
to team members, so it's easy to keep an eye on things without going to the Bugzilla URL all the 
time. 

Trust me. You want Bugzilla in your life. 
Every serious project needs at least one mailing list so that users can be kept informed of 

changes and usage issues, and developers can discuss architecture and allocation of resources. 
My favorite mailing list software is Mailman (http: I /www. gnu. org/ software/mailman/), which 
is free, relatively easy to install, and highly configurable. If you don't want to install your own 
mailing list software, however, there are plenty of sites that allow you to run mailing lists or 
newsgroups for free. 

Although inline documentation is important, projects also generate a broiling heap of 
written material. This includes usage instructions, consultation on future directions, client 
assets, meeting minutes, and party announcements. During the lifetime of a project such 
materials are very fluid, and a mechanism is often needed to allow people to collaborate in 
their evolution. 

Wiki (which is apparently Hawaiian for "very fast") is the perfect tool for creating collabo­
rative webs of hyperlinked documents. Pages can be created or edited at the click of a button, 
and hyper links are automatically generated for words that match page names. Wiki is another 
one of those tools that seems so simple, essential, and obvious that you are sure you probably 
had the idea first but just didn't get around to doing anything about it. There are a number of 
Wikis to choose from. I have had good experience with one called TWiki, which is available for 
download from http: I /www. twiki. org. TWiki is written in Perl. Naturally, there is a Wiki written 
in PHP. It is called PhpWiki and can be downloaded from http: I /phpwiki. sourceforge. net. 

Summary 
In this chapter, we wrapped things up, revisiting the core topics that make up the book. 
Although we haven't tackled any concrete issues such as individual patterns or object func­
tions here, this chapter should serve as a reasonable summary of this book's concerns. 

There is never enough room or time to cover all the material that one would like. Never­
theless, I hope that this book has served to make one argument. PHP is growing up. It is now 
one of the most popular programming languages in the world, and with the advent of PHP 5 it 
is fully object oriented. I hope that PHP remains the hobbyist's favorite language, and that 
many new PHP programmers are delighted to discover how far they can get with just a little 
code. At the same time, though, more and more professional teams are building large commer­
cial and open source systems with PHP. Such projects deserve more than a just-do-it 
approach. PHP has given us the power to develop at the highest level; it is our responsibility to 
meet that challenge with careful design and good practice. 





APPENDIX A 

Bibliography 

Books 
Applied Java Patterns: 

Stelting, Stephen and Olav Maasen, Applied Java Patterns. Sun Microsystems Press, 2002. 

Building Parsers with Java: 

Metsker, Steven John, Building Parsers with]ava. Addison-Wesley, 2001. 

Core J2EE Patterns: 

Alur, Deepak, John Crupi, and Dan Malks, Core ]2EE Patterns: Best Practices and Design 
Strategies. Prentice Hall PTR, 2001. 

Design Patterns: 

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements of 
Reusable Object-Oriented Software. Addison-Wesley, 1995. 

Design Patterns Explained: 

Shalloway, Alan and James R. Trott, Design Patterns Explained: A New Perspective on 
Object-Oriented Design. Addison-Wesley, 2002. 

Data Access Patterns: 

Nock, Clifton, Data Access Patterns: Database Interactions in Object-Oriented Applications. 
Addison-Wesley, 2004. 

Extreme Programming Explained: 

Beck, Kent, Extreme Programming Explained: Embrace Change. Addison-Wesley, 1999. 

Open Source Development with CVS: 

Fogel, Karl and Moshel Bar, Open Source Development with CVS, 2nd Edition. Coriolis 
Group, 2001. 

A Pattern Language: 

Alexander, Christopher, Sara Ishikawa, Murray Silverstein, Max Jacobson, Ingrid Fiksdahl-King 
and Shlomo Angel, A Pattern Language: Towns, Buildings, Construction. Oxford University 
Press, 1977. 

395 



396 APPENDIX A BIBLIOGRAPHY 

Patterns of Enterprise Application Architecture: 

Fowler, Martin, Patterns of Enterprise Application Architecture. Addison-Wesley, 2003. 

The Pragmatic Programmer: 

Hunt, Andrew and David Thomas, The Pragmatic Programmer. From Journeyman to Master. 
Addison-Wesley, 2000. 

Refactoring: 

Fowler, Martin, Kent Beck, John Brant, William Opdyke, and Don Roberts, Refactoring: 
Improving the Design of Existing Code. Addison-Wesley, 1999. 

UML Distilled: 

Fowler, Martin and Kendall Scott, UML Distilled: A Brief Guide to the Standard Object Modeling 
Language, Second Edition. Addison-Wesley, 1999. 

Articles 
"Applying patterns to PHP": 

Atkinson, Leon, http://www. zend .com/zend/trick/tricks-app-patt-php. php 

"The Object-Oriented Evolution ofPHP": 

Zeev Suraski, Zeev, http://www. devx. com/webdev I Article/10007 /0/page/1 

"PHP/FI Brief History'': 

Lerdorf,Rasmus,http://www.php.net//manua1/phpfi2.php#history 

"Test Infected: Programmers Love Writing Tests": 

Beck, Kent and Erich Gamma, http:/ /junit. sourceforge. netldoc/testinfected/testing. htm 

Sites 
BinaryCloud: 

http://www.binarycloud.com/ 

CVS: 

https://www.cvshome.org/ 

Phing: 

http://phing.info/wiki/index.php 

::PHPPatterns(): 

Harry Fuecks, http://www. phppatterns. com 

PEAR: 

http:/ I pear. php. net 



PUP: 

http://www. php. net 

PHPDocumentor: 

http://www.phpdoc.org/ 

Portland Pattern Repository's Wild: 

Ward Cunningham, http://www. c2. com/ cgi/wiki 

Zend: 

http://www.zend.com 

APPENDIX A • BIBLIOGRAPHY 397 



APPENDIX B 

A Simple Parser 

The Interpreter pattern discussed in Chapter 11 does not cover parsing. An interpreter without 
a parser is pretty incomplete, unless you persuade your users to write PHP code to invoke the 
interpreter! Third-party parsers are available that could be deployed to work with the Interpreter 
pattern, and that would probably be the best choice in a real-world project. This appendix, 
however, presents a very simple object-oriented parser designed to work with the MarkLogic 
interpreter built in Chapter 11. Be aware that these examples are no more than a proof of 
concept. They are not designed for use in real-world situations. 

~Note The interface and broad structure of this parser code are based on Steven John Metsker's Building 
Parsers with Java (Addison-Wesley, 2001). The brutally simplified implementation is my fault, however, and 
any mistakes should be laid at my door. John has given kind permission for the use of his original concept. 

The Scanner 
In order to parse a statement, we must first break it down into a set of words and characters 
(known as tokens). The following class uses a number of regular expressions to define tokens. 
It also provides a convenient result stack that we will be using later in this section. Here is the 
Scanner class: 

class Scanner { 
canst WORD = 1; 
canst QUOTE = 2; 
canst APOS = 3; 
canst WHITESPACE = 6; 
canst EOL = 8; 
canst CHAR = 99; 
canst EOF = o; 

399 



400 APPENDIX B • A SIMPLE PARSER 

protected $in; 
protected $line_no =-1; 

·protected $char_no = o; 
protected $token; 
protected $token_type; 
protected $regexps; 
public $resultstack = array(); 

function __ construct( $in_str ) { 
$this->in = $in_str; 
$this->setRegexps(); 
$this->nextToken(); 
$this->eatWhiteSpace(); 

} 

II push a result on to the result stack 
function pushResult( $mixed ) { 

array_push( $this->resultstack, $mixed ); 
} 

II remove and return result from result stack 
function popResult( ) { 

return array_pop( $this->resultstack ); 
} 

II number of items on the result stack 
function resultCount() { 

return count( $this->resultstack ); 
} 

II return the last item on the result stack but 
II don't remove 
function peekResult( ) { 

if ( empty( $this->resultstack ) ) { 
throw new Exception( "empty resultstack" ); 

} 
return $this->resultstack[count( $this->resultstack ) -1 ]; 

} 

II set up regular expressions for tokens 
private function setRegexps() { 

$this->regexps = array( 

); 

self::WHITESPACE => '[ \t]', 
self::EOL => '\n', 
self::WORD => '[a-zA-Z0-9_-]+\b', 
self::QUOTE => '"', 
self::APOS => "'", 



} 

$this->typestrings = array( 

) ; 

self::WHITESPACE => 'WHITESPACE', 
self::EOL => 'EOL', 
self::WORD => 'WORD', 
self::QUOTE => 'QUOTE', 
self: :APOS => "APOS", 
self::CHAR => 'CHAR', 
self::EOF => 'EOF' 

II skip through any whitespace 
function eatWhiteSpace( ) { 

$ret = o; 
if ( $this->token_type != self::WHITESPACE && 

$this->token_type != self::EOL) { 
return $ret; 

} 
II by calling nextToken() we gobble up any 
II whitespace 

APPENDIX B A SIMPLE PARSER 401 

while ( $this->nextToken() == self::WHITESPACE I I 
$this->token_type == self::EOL) { 

$ret++; 
} 
return $ret; 

} 

II given a constant number, return a 
II string version 
II eg 1 => 'WORD', 
function getTypeString( $int=-1 ) { 

if ( $int<O ) { 
$int=$this->token_type(); 

} 
return $this->typestrings[$int]; 

} 

II the type of the current token 
function token_type() { 

return $this->token_type; 
} 



402 APPENDIX B A SIMPLE PARSER 

II the text being scanned 
II gets shorter as the tokens are 
II pulled from it 
function input() { 

return $this->in; 
} 

II the current token 
function token() { 

return $this->token; 
} 

II the current line number (great for error messages) 
function line_no() { 

return $this->line_no; 
} 

II current char no 
function char_no() { 

return $this->char_no; 
} 

II attempt to pull another token from 
II the input. If no token match is found_then 
II it's a character token 
function nextToken() { 

} 

if ( ! strlen( $this->in ) ) { 
return ( $this->token_type = self::EOF ); 

} 

$ret = o; 
foreach ( $this->regexps as $type=>$regex ) { 

} 

if ( $ret = $this->testToken( $regex, $type ) ) { 
if ($ret== self::EOL) { 

$this->line_no++; 
$this->char_no = o; 

} else { 
$this->char_no += strlen( $this->token() ); 

} 
return $ret; 

} 

$this->token = substr( $this->in, o, 1 ); 
$this->in = substr( $this->in, 1 ); 

$this->char_no += 1; 
return ( $this->token_type = self::CHAR );' 



} 

II given a regular expression check for a match 
private function testToken( $regex, $type ) { 

$matches = array(); 

APPENDIX B • A SIMPLE PARSER 403 

if ( preg_match( "l"($regex)(.*)ls", $this->in, $matches ) ) { 
$this->token = $matches[1]; 
$this->in = $matches[2]; 
return ( $this->token_type = $type ); 

} 
return o; 

} 

II given another scanner, make this one a clone 
function updateToMatch( Scanner $other ) { 

$this->in = $other->in; 

} 

$this->token = $other->token; 
$this->token_type = $other->token_type; 
$this->char_no = $other->char_no; 
$this->line_no = $other->line_no; 
$this->resultstack = $other->resultstack; 

First off we set up constants for the tokens we care about. We are going to match characters, 
words, whitespace, and quote characters. We define regular expressions for these in the 
setRegexps () method. The heart of the class is the getToken () method. This attempts to match 
the next token in a given string. Perhaps the best way to see how this class might be used is to 
use it. Here is some code to break up our example statement into tokens: 

$user_in = "\$input equals '4' or \$input equals 'four"'; 
$scanner = new Scanner( $user_in ); 
do { 

print $scanner->token(); 
print "\t{$scanner->char_no()}"; 
print "\t{$scanner->getTypeString()}\n"; 

} while ( $scanner->nextToken() != Scanner::EOF ); 

When we initialize the Scanner object, it automatically moves to the first token in the given 
string. So we use a do •.. while statement to eat up all the tokens. The token() method returns 
the current portion of the input matched. char_no() tells us where we are in the string, and 
get TypeS tring () returns a string version of the constant flag representing the current token. 
This is what the output should look like: 



404 APPENDIX 8 • A SIMPLE PARSER 

$ 1 CHAR 
input 6 WORD 

7 WHITE SPACE 
equals 13 WORD 

14 WHITE SPACE 
15 APOS 

4 16 WORD 
17 APOS 
18 WHITE SPACE 

or 20 WORD 
21 WHITE SPACE 

$ 22 CHAR 
input 27 WORD 

28 WHITE SPACE 
equals 34 WORD 

35 WHITE SPACE 
36 APOS 

four 40 WORD 
41 APOS 

We could, of course, match finer-grained tokens than this, but this is good enough for our 
purposes. Breaking up the string is the easy part. How do we build up a grammar in code? 

The Parser 
One approach is to build a tree of Parser objects. Here is the abstract Parser class that we will 
be using: 

abstract class Parser { 
protected $debug = false; 
private $discard = false; 
protected $name; 

function __ construct( $name=null ) { 
if ( is_null( $name ) ) { 

$this->name = (string)$this; 
} else { 

$this->name = $name; 
} 

} 

function setHandler( Handler $handler ) { 
$this->handler = $handler; 

} 



APPENDIX B A SIMPLE PARSER 405 

function invokeHandler(. Scanner $scanner ) { 
if ( ! empty( $this->handler ) ) { 

} 
} 

if ( $this->debug ) { 
$this->report( "calling handler: ".get_class( $this->handler ) ); 

} 
II delegate to a handler on successful match 
$this->handler->handleMatch( $this, $scanner ); 

function report( $msg ) { 
print "<{$this->name}> ".get_class( $this ).": $msg\n"; 

} 

function push( Scanner $scanner ) { 
if ( $this->debug ) { 

} 

$this->report("pushing {$scanner->token()}"); 
} 
II push the current from Scanner to the 
II scanner's result stack 
$scanner->pushResult( $scanner->token() ); 

function scan( Scanner $scanner ) { 
II delegate to child class for real scan 
$ret = $this->doScan( $scanner ); 
II on a match push the current token to the scanner's 
II result stack (if we are a terminal and we haven't 
II been told to discard the result) 
if ( $ret && ! $this->discard && $this->term() ) { 

$this->push( $scanner ); 
} 
II on a match call the handler if assigned 
if ( $ret ) { 

$this->invokeHandler( $scanner ); 
} 
if ( $this->debug ) { 

$this->report("::scan returning $ret"); 
} 
II move on to the next token 
if ( $this->term() && $ret ) { 

} 

$scanner->nextToken(); 
II gobble up any unused space 
$scanner->eatWhiteSpace(); 



406 APPENDIX B • A SIMPLE PARSER 

} 

return $ret; 
} 

function discard() { 

} 

II if this is set, the matching token won't be 
II pushed onto the scanner's result stack 
$this->discard = true; 

II are the conditions right to attempt match? 
abstract function trigger( Scanner $scanner ); 

abstract protected function doScan( Scanner $scan ); 

function term() { 

} 

II distinguish between collections and terminals. 
II if this method returns true, then the 
II implementation is a leaf. 
return true; 

The place to start with this class is the scan () method. It is here that most logic resides. 
scan () is given a Scanner object to work with. The first thing that the Scanner does is to defer to 
a concrete child class, calling the abstract doScan() method. doScan () returns true or false, 
and we will see a concrete example later in the section. 

If doScan () reports success, and a couple of other conditions are fulfilled, then the results 
of the parse are pushed to the Scanner object's result stack. The scanner object maintains a stack 
that is used by Parser objects to communicate results. The actual pushing of the successful parse 
takes place in the Parser: :push () method. 

function push( Scanner $scanner ) { 
$this->report("pushing {$scanner->token()}"); 
$scanner->pushResult( $scanner->token() ); 

} 

In addition to a parse failure, there are two conditions that might prevent the result being 
pushed to the scanner's stack. Firstly, client code can ask a parser to discard a successful match 
by calling the discard() method. This toggles a property called $discard to true. Secondly, 
only terminal parsers (that is, parsers that are not composed of other parsers) should push 
their result to the stack. Composite parsers (instances ofCollectionParser and often referred 
to in the following text as collection parsers) will instead let their successful children push their 
results. We test whether or not a parser is terminal using the is Term() method, which is over­
ridden to return false by collection parsers. 

If the concrete parser has been successful in its matching, then we call another method: 
invokeHandler(). This is passed the Scanner object. If a Handler (that is an object that imple­
ments the Handler interface) has been attached to Parser (using the setHandler() method), 



APPENDIX B• A SIMPLE PARSER 407 

then its handleMatch ()method is invoked here. We use handlers to make a successful grammar 
actually do something, as we shall see shortly. 

Back in the scan () method, we call on the Scanner object to advance its position by calling 
its nextT oken () and eatWhi teSpace () methods before returning the value it was given by do Scan(). 

In addition to doScan(), notice the abstract trigger() method. This is used to determine 
whether a parser should bother to attempt a match. If trigger () returns false, then the condition 
is not right for parsing. Let's take a look at a concrete terminal Parser. CharacterParse is 
designed to match a particular character: 

class CharacterParse extends Parser { 

} 

private $char; 

function __ construct( $char, $name=null ) { 
parent:: __ construct( $name); 
$this->char = $char; 

} 

function trigger( Scanner $scanner ) { 
return ( $scanner->token() == $this->char ); 

} 

protected function doScan( Scanner $scanner ) { 
return ( $this->trigger( $scanner ) ); 

} 

The constructor accepts a character to match, and an optional parser name for debugging 
purposes. The trigger() method simply checks whether the scanner is pointing to a character 
token that matches the sought character. Because no further scanning than this is required, the 
doScan() method simply invokes trigger(). 

Terminal matching is a reasonably simple affair, as you can see. Let's look now at a collection 
parser. Firstly we'll define a common super class, and then go on to create a concrete example. 

II This abstract class holds subparsers 
abstract class CollectionParse extends Parser { 

protected $parsers = array(); 

function add( Parser $p ) { 
if ( is_null( $p ) ) { 

} 

throw new Exception( "argument is null" ); 
} 
$this->parsers[]= $p; 
return $p; 



408 APPENDIX B A SIMPLE PARSER 

} 

function term() { 
return false; 

} 

class SequenceParse extends CollectionParse { 

} 

function trigger( Scanner $scanner ) { 
if ( empty( $this->parsers ) ) { 

return false; 
} 
return $this->parsers[o]->trigger( $scanner ); 

} 

protected function doScan( Scanner $scanner ) { 
$s_copy = clone $scanner; 

} 

foreach( $this->parsers as $parser ) { 

} 

if ( ! ( $parser->trigger( $s_copy ) && 
$scan=$parser->scan( $s_copy )) ) { 

return false; 
} 

$scanner->updateToMatch( $s_copy ); 
return true; 

The abstract Collection Parse class simply implements an add () method that aggregates 
Parsers and overrides is Term() to return false. 

The SequenceParse: :trigger() method tests only the first child Parser it contains, invoking 
its trigger() method. The calling Parser will first call CollectionParse: :trigger() to see if it is 
worth calling Collection Parse:: scan(). If Collection Parse:: scan() is called, then doScan() is 
invoked, and the trigger() and scan () methods of all Parser children are called in turn. A single 
failure results in Collection Parse: :do Scan () reporting failure. 

For the sake of completeness, here are all the remaining Parser classes: 

II This matches if zero or more subparsers match 
class RepetitionParse extends CollectionParse { 

function trigger( Scanner $scanner ) { 
return true; 

} 

protected function doScan( Scanner $scanner ) { 
$s_copy = clone $scanner; 
if ( empty( $this->parsers ) ) { 

return true; 
} 
$parser= $this->parsers[o]; 



} 
} 

while ( true ) { 

} 

if ( ! $parser->trigger( $s_copy ) ) { 
$scanner->updateToMatch( $s_copy ); 
return true; 

} 

$s_copy2 = clone $s_copy; 
if ( ! $parser->scan( $s_copy2 ) ) { 

$scanner->updateToMatch( $s_copy ); 
return true; 

} 
$s_copy = $s_copy2; 

return true; 

APPENDIX B A SIMPLE PARSER 409 

II This matches if one or other of two subparsers match 
class AlternationParse extends CollectionParse { 

} 

function trigger( Scanner $scanner ) { 
foreach ( $this->parsers as $parser ) { 

if ( $parser->trigger( $scanner ) ) { 
return true; 

} 
} 
return false; 

} 

protected function doScan( Scanner $scanner ) { 
$type = $scanner->token_type(); 

} 

foreach ( $this->parsers as $parser ) { 
$s_copy = clone $scanner; 

} 

if ( $type == $parser->trigger( $s_copy ) && 
$parser->scan( $s_copy ) ) { 
$scanner->updateToMatch($s_copy); 
return true; 

} 

return false; 

II this terminal parser matches a string literal 
class StringliteralParse extends Parser { 



410 APPENDIX B A SIMPLE PARSER 

} 

function trigger( Scanner $scanner ) { 

} 

return ( $scanner->token_type() == Scanner::APOS I I 
$scanner->token_type() == Scanner::QUOTE ); 

function push( Scanner $scanner ) { 
return; 

} 

protected function doScan( Scanner $scanner ) { 
$quotechar = $scanner->token_type(); 

} 

$ret = false; 
$string= ""; 
while ( $token = $scanner->nextToken() ) { 

if ( $token == $quotechar ) { 
$ret = true; 
break; 

} 
$string .= $scanner->token(); 

} 

if ( $string && ! $this->discard ) { 
$scanner->pushResult( $string ); 

} 

return $ret; 

II this terminal parser matches a word token 
class WordParse extends Parser { 

} 

function __ construct( $word=null, $name=null ) { 
parent:: __ construct( $name); 
$this->word = $word; 

} 

function trigger( Scanner $scanner ) { 

} 

if ( $scanner->token_type() != Scanner::WORD) { 
return false; 

} 
if ( is_null( $this->word ) ) { 

return true; 
} 
return ( $this->word == $scanner->token() ); 

protected function doScan( Scanner $scanner ) { 
$ret = ( $this->trigger( $scanner ) ); 
return $ret; 

} 



APPENDIX B • A SIMPLE PARSER 411 

Parser 

+scan($scanner:Scanner): boolean 
+doScan($scanner: Scanner): boolean 
+trigger($scanner: Scanner): boolem 
+isTerm(): boolean 

CharacterParse Collection Parse 

+doScan($scanner:Scanner): boolean 
+trigger(Sscanner:Scanner): boolea 

+add(Sparser:Parser) 
+isTerm(): boolean 

Word Parse 

+doScan($scanner:Scanner): boolean 
+trigger($scanner:Scanner): boolear 

String Literal Parse 

+doScan(Sscanner:Scanner): boolean 
+trigger($scanner:Scanner): boolea 

Figure B-1. The Parser classes 

~ -

--

-

Alternation Parse 

+doScan($scanner:Scanner): boolean 
+trigger(Sscanner:Scanner): boolear 

SequenceParse 

+doScan($scanner:Scanner): boolean 
+trigger($scanner:Scanner): boolear 

Repetition Parse 

+doScan($scanner:Scanner): boolean 
+trigger($scanner:Scanner): boolear 

The idea behind this use of the Composite pattern is that a client can build up a grammar 
in code that closely matches EBNF notation. Table B-1 shows the parallels between these 
classes and EBNF fragments. 

Table B-1. Composite Parsers and EBNF 

Class 

AlternationParse 

SequenceParse 

RepetitionParse 

EBNF Example 

orExpr I andExpr 

'and' operand 

( eqExpr)* 

Description 

Either one or another 

A list (all required in order) 

Zero or more required 

So let's build some client code to implement our mini-language. As a reminder, here is the 
EBNF fragment I presented in Chapter 11: 



412 APPENDIX B A SIMPLE PARSER 

expr 
operand 
orExpr 
andExpr 
eqExpr 
variable 

::=operand (orExpr I andExpr )* 
.. - ( '(' expr ')' I <stringliteral> I variable) ( eqExpr )* 

'or' operand 
'and' operand 
'equals' operand 
'$' <word> 

This simple class builds up a grammar based upon this fragment and runs it: 

class MarkParse { 
private $expression; 
private $operand; 
private $interpreter; 

function __ construct( $statement ) { 
$this->compile( $statement ); 

} 

function evaluate( $input ) { 
$context = new Context(); 

} 

$prefab= new VariableExpression('input', $input ); 
II add the input variable to Context 
$prefab->interpret( $context ); 

$this->interpreter->interpret( $context ); 
$result = $context->lookup( $this->interpreter ); 
return $result; 

function compile( $statement ) { 
II build parse tree 

} 

$scanner = new Scanner( $statement ); 
$statement = $this->expression(); 
$scanresult = $statement->scan( $scanner ); 

if ( ! $scanresult I I $scanner->token_type() != Scanner::EOF) { 

} 

$msg 1111; 

$msg . = II line: {$scanner-> line_ no()} II; 

$msg .= II char: {$scanner->char_no()} 11 ; 

$msg .= II token: {$scanner->token()}\n 11 ; 

throw new Exception( $msg ); 

$this->interpreter = $scanner->popResult(); 



APPENDIX B A SIMPLE PARSER 413 

function expression() { 

} 

if ( ! isset( $this->expression ) ) { 
$this->expression = new SequenceParse(); 
$this->expression->add( $this->operand() ); 
$bools = new RepetitionParse(); 

} 

$whichbool = new AlternationParse(); 
$whichbool->add( $this->orExpr() ); 
$whichbool->add( $this->andExpr() ); 
$bools->add( $whichbool ); 
$this->expression->add( $bools ); 

return $this->expression; 

function orExpr() { 

} 

$or = new SequenceParse( ); 
$or->add( new WordParse('or') )->discard(); 
$or->add( $this->operand() ); 
$or->setHandler( new BooleanOrHandler() ); 
return $or; 

function andExpr() { 

} 

$and = new SequenceParse(); 
$and->add( new WordParse('and') )->discard(); 
$and->add( $this->operand() ); 
$and->setHandler( new BooleanAndHandler() ); 
return $and; 

function operand() { 

} 

if ( ! isset( $this->operand ) ) { 
$this->operand = new SequenceParse( ); 
$comp = new AlternationParse( ); 

} 

$exp = new SequenceParse( ); 
$exp->add( new CharacterParse( '(' ))->discard(); 
$exp->add( $this->expression() ); 
$exp->add( new CharacterParse( ')' ))->discard(); 
$comp->add( $exp ); 
$comp->add( new StringliteralParse() ) 

->setHandler( new StringliteralHandler() ); 
$comp->add( $this->variable() ); 
$this->operand->add( $comp ); 
$this->operand->add( new RepetitionParse() )->add($this->eqExpr()); 

return $this->operand; 



414 APPENDIX B • A SIMPLE PARSER 

} 

function eqExpr() { 

} 

$equals = new SequenceParse(); 
$equals->add( new WordParse('equals') )->discard(); 
$equals->add( $this->operand() ); 
$equals->setHandler( new EqualsHandler() ); 
return $equals; 

function variable() { 

} 

$variable = new SequenceParse(); 
$variable->add( new CharacterParse( '$' ))->discard(); 
$variable->add( new WordParse()); 
$variable->setHandler( new VariableHandler() ); 
return $variable; 

This may seem like a complicated class, but all it is doing is building up the grammar we 
have already defined. Most of the methods are analogous to production names (that is, the 
names that begin each production line in EBNF, such as eqExpr and andExpr). If you look at the 
expression () method, you should see that we are building up the same rule as we defined in 
EBNF earlier: 

II expr ::=operand (orExpr I andExpr )* 
function expression() { 

} 

if ( ! isset( $this->expression ) ) { 
$this->expression = new SequenceParse(); 
$this->expression->add( $this->operand() ); 
$bools = new RepetitionParse(); 

} 

$whichbool = new AlternationParse(); 
$whichbool->add( $this->orExpr() ); 
$whichbool->add( $this->andExpr() ); 
$bools->add( $whichbool ); 
$this->expression->add( $bools ); 

return $this->expression; 

In both the code and the EBNF notation, we define a sequence that is formed of a refer­
ence to an operand, followed by zero or more instances of an alternation between orExpr and 
andExpr. Notice that we are storing the Parser returned by this method in a property variable. 
This is to prevent infinite loops as methods invoked from express ion () themselves reference 
expression(). 

The only methods that are doing more than just building the grammar are compile () and 
evaluate (). compile () can be called directly or automatically via the constructor, which 
accepts a ~tatement string and uses it to create a Scanner object. It calls the expression() 
method, which returns a tree of Parser objects that make up the grammar. It then calls 
Parser:: scan(), passing it the Scanner object. If the raw code does not parse, the compile() 
method throws an exception. Otherwise it retrieves the result of compilation as left on the 



APPENDIX B A SIMPLE PARSER 415 

Scanner object's result stack. As we will see shortly, this should be an Expression object. This 
result is stored in a property called $interpreter. 

The evaluate() method makes a value available to the Expression tree. It does this by 
predefining a VariableExpression object named "input" and registering it with the Context 
object that is then passed to the main Expression object. As with variables like$_ REQUEST 
in PHP, this $input variable is always available to MarkLogic coders. evaluate() calls the 
Expression: :interpret () method to generate a final result. Remember, we need to retrieve 
interpreter results from the Context object. 

So far we have seen how we parse text and how we build a grammar. We have also seen 
how we combine Expression objects to process a query. We have not yet seen, though, how we 
relate the two processes. How do we get from a parse tree to our interpreter? The answer lies in 
the Handler objects that can be associated with Parser objects using Parser: : setHandler(). 
Let's take a look at the way we manage variables. We associate a VariableHandler with the 
Parser in the variable () method: 

$variable->setHandler( new VariableHandler() ); 

Here is the VariableHandler (and the interface it implements): 

interface Handler { 
abstract function handleMatch( Parser $parser, Scanner $scanner ); 

} 
class VariableHandler implements Handler { 

} 

function handleMatch( Parser $parser, Scanner $scanner ) { 
$varname = $scanner->popResult(); 
$scanner->pushResult( new VariableExpression( $varname ) ); 

} 

If the Parser with which VariableHandler is associated matches on a scan operation, then 
handleMatch () is called. By definition the last item on the stack will be the name of the variable. 
We remove this, and replace it with a new VariableExpression object with the correct name. 
Similar principles are used to create EqualsExpression, LiteralExpression objects, and so on. 

Here are the remaining handlers: 

class StringliteralHandler implements Handler { 

} 

function handleMatch( Parser $parser, Scanner $scanner ) { 
$value = $scanner->popResult(); 
$scanner->pushResult( new LiteralExpression( $value ) ); 

} 

class EqualsHandler implements Handler { 

} 

function handleMatch( Parser $parser, Scanner $scanner ) { 
$comp1 = $scanner->popResult(); 
$comp2 = $scanner->popResult(); 
$scanner->pushResult( new EqualsExpression( $comp1, $comp2 ) ); 

} 



416 APPENDIX B A SIMPLE PARSER 

class VariableHandler implements Handler { 

} 

function handleMatch( Parser $parser, Scanner $scanner ) { 
$varname = $scanner->popResult(); 
$scanner->pushResult( new VariableExpression( $varname ) ); 

} 

class BooleanOrHandler implements Handler { 

} 

function handleMatch( Parser $parser, Scanner $scanner ) { 
$comp1 = $scanner->popResult(); 
$comp2 = $scanner->popResult(); 
$scanner->pushResult( new BooleanOrExpression( $comp1, $comp2 ) ); 

} 

class BooleanAndHandler implements Handler { 

} 

function handleMatch( Parser $parser, Scanner $scanner ) { 
$comp1 = $scanner->popResult(); 
$comp2 = $scanner->popResult(); 
$scanner->pushResult( new BooleanAndExpression( $comp1, $comp2 ) ); 

} 

Bearing in mind that you also need the Interpreter example from Chapter 11 at hand, we 
can work with the MarkParse class like this: 

$input = '4' ; 
$statement = "( \$input equals '4' or \$input equals 'four' )"; 

$engine = new MarkParse( $statement ); 
$result = $engine->evaluate( $input ); 
print "input: $input evaluating: $statement\n"; 
if ( $result ) { 

print "true !\n"; 
} else { 

print "false!\n"; 
} 
II output: input: 4 evaluating: ( $input equals '4' or $input equals 'four' ) 
II output: true! 



INDEX 

[!i7!5ymbols 
- (private) visibility symbol, using with class 

diagrams, 106 
# (protected) visibility symbol, using with 

class diagrams, 106 
$(dollar sign) in CVS line, meaning of, 345 
0 (parentheses), using with methods, 20 
!** and* I in phpDocumenter, using with 

comments, 327 
: (colon) 

preceding MarkLogic statements with, 199 
using with Unix directories, 71 

::notation 
using with methods and classes, 34 
using with static elements, 44 

? (question mark), use in DB package's 
prepareStatement() method, 262 

{}(braces), using with methods, 19 
+ (public) visibility symbol, using with class 

diagrams, 106 
== and === notation, meaning of, 64 
=======,appearance in CVS, 347 
->characters 

accessing property variables with, 18 
invoking methods with, 20 

"(quotes), effect of embedding objects in, 67 
; (semicolon) 

using with abstract methods, 48 
using with Windows directories, 71 -absolute paths, using with library 

inclusions, 71 
abstract classes. See also child classes; classes 

class diagrams of, 105 
CommsManager, 148-149 
defining,47,95-96 
enforcement of interfaces defined by, 101 

Abstract Factory pattern. See also factories 
consequences of, 155-156 
implementation of, 152 

overview of, 150 
problem associated with, 151-152 
using Singleton pattern with, 160-161 

abstract methods 
implementing with composite objects, 167 
limitations of, 48 

abstract super classes, using with 
Transaction Script pattern, 260-261 

accept() method, defining for Unit class in 
Visitor pattern, 208-209 

AccessManager class, using with Command 
pattern, 214 

accessor methods, using, 38-39. See also 
constructor methods; functions; 
methods; overridden methods 

Account objects, using _clone() methods 
with,66 

add subcommand in CVS 
using -kb flag with, 351 
using with directories, 350 
using with files, 349 

addDirty() method, using with Unit of Work 
pattern, 283 

addMaintainer() method, using with 
P~_PackageFileManager,320 

addNew() method, using with Unit of Work 
pattern, 283 

addParam() method, defining, 96 
addPlatformException() method, using with 

P~_PackageFileManager, 320 
addProduct() method, adding to 

ShopProductWriter class, 38-39 
addReplacement() method, using with 

P~_PackageFileManager, 321 
addU nit() method, using with Composite 

pattern, 167 
AddVenue command, using with Application 

Controller pattern, 250-251 
addVenue() method, using in Transcript 

Script pattern, 263 

417 



418 INDEX 

addvenue view, using in Application 
Controller pattern, 244 

AddVenueController class, using with Page 
Controller pattern, 254 

aggregation, class diagram of, 109 
Alexander, Christopher and design patterns, 

118, 120 
algorithms 

extracting into types, 197 
moving into separate types with Strategy 

pattern, 129-,.131 
aliases, support in Application Controller 

pattern, 244 
API instructions, obtaining for PEAR 

packages, 310 
AppConfig Singleton, example of, 160-161 
applicability, relationship to design 

patterns, 120 
Application Controller pattern 

class diagram of, 242 
configuration file for, 243-244 
consequences of, 251 
example of, 247-249 
implementation of, 241-251 
overview of, 241 
parsing configuration file in, 245 
problem associated with, 241 
search order in, 24 7 
storing configuration data for, 245-249 

application scope, explanation of, 226 
ApplicationHelper class 

using in Front Controller pattern, 233-235 
using with Registry pattern, 223 

ApplicationRegistry class, using in Front 
Controller pattern, 235 

"Applying Patterns to PHP," Web address 
for, 396 

Appointment objects, using Factory Method 
pattern with, 145 

ApptEncoder class, using Factory Method 
pattern with, 145 

Archer class, creating for Civilization game, 
164-165 

args field ofPEAR_Error::getBackTrace() 
method, description of, 312 

argument hints, guidelines for use of, 134 
argument types, strategies for dealing with, 25 
arguments 

examining with ReflectionParameter 
object, 86-87 

naming, 297 
passing to target methods, 78-79 

Army class, creating for Civilization game, 165 
Army objects, creating with Composite 

pattern, 169-170 
ArmyVisitor object, implementing in Visitor 

pattern, 210 
array of classes, getting, 7 4 
array types, uses of, 23 
arrays, using to invoke methods, 78 
assert* methods for 

PHPUnit2_Framework_TestCase, 
descriptions of, 302 

associations, class diagram of, 107-109 
associative array keys, casting objects to 

strings for use as, 189 
associative array, maintaining with Registry 

pattern, 227 
attach() method, using with Login class for 

Observer pattern, 202-203 
attributes, representing in class diagrams, 106 
_autoload() interceptor, automating 

inclusion of class files with, 72-73 
automated build. See PEAR (PHP Extension 

and Application Repository; Phing 
automated testing, relationship to XP and 

patterns, 5 

B 
-b flag, using with tag subcommand in 

CVS,356 
basedir attribute in project element, 

description of; 362 
bidirectional associations, class diagram 

of, 108 
binary files, adding in CVS, 351 
BinaryCloud, Web address for, 396 
BloggsApptEncoder object, instantiating, 

145-146 
BloggsCal format, implementing concrete 

creator in, 152 
BloggsCommsManager class, using Abstract 

Factory pattern with, 153 
"bob" user 

adding to cvsusers group, 341-342 
including comments from, 347 
setting up .bash_profile file for, 343 

bold code, appearance of, 300 
bombardStrength() method, defining for 

Civilization game, 164-166 



BookProduct class, creating, 32-33 
Boolean classes, using with Interpreter 

pattern, 192 
Boolean types 

converting methods to, 24-25 
uses of, 22-23 

braces({}), using with methods, 19 
branching projects with CVS, 355-358 
bug branch, joining into trunk in CVS, 357 
bug-fix directory, using with CVS, 356 
Bugzilla, features of, 390-391 
build.xml document in Phing. See also PEAR 

(PHP Extension and Application 
Repository); Phing 

FileSet type in, 370-371 
FilterChain type in, 373-375 
overview of, 361-362 
PatternSet type in, 371-372 
properties in, 364-370 
targets in, 362-364 
tasks in, 375-378 

business directory, using require_once() 
function with, 69-70 

Business Logic layer in Enterprise systems, 
description of, 220 

Business Logic patterns. See also 
design patterns 

Domain Model pattern, 264-267 
overview of, 259 
Transaction Script pattern, 259-264 

c 
_call() interceptor method 

description of, 59 
using with Person class, 62 

_call() interceptor method, description 
of, 61 

_call() method, invoking, 79 
call_user_func() method, example of, 78-79 
call_user_func_array() method, example 

of, 79 
catch clause 

invoking, 58 
using with exceptions, 55 

CdProduct class 
creating, 32-33 
examining with ReflectionClass object, 

82-84 

INDEX 419 

CdProduct::$coverUrl class, adding public 
propertyto, 77-78 

CharacterParse class 
code for, 407 
effect of, 408 

Chargeable interface 
class diagram of, 105 
implementing with Shipping class, 50-51 
implementing with Shop Product class, 

49-50 
checking functions, examples of, 23 
Checkout class 

attempting subclassing of, 58 
subclassing, 59 

checkout subcommand in CVS 
using, 345, 356 
using -d flag with, 354 
using -r flag with, 353-354 

child classes. See also abstract classes; classes 
creating, 33 
versus parent classes, 35 

Civilization game 
applying Composite pattern to, 164-166 
applying Decorator pattern to, 176-180 
defining Tile class for, 174 

class comments, adding for CVS, 346 
class diagrams 

of aggregation and composition, 109-110 
of Application Controller pattern, 242 
of associations, 107-109 
of attributes, 106 
of classes, 104-105 
of Command pattern, 218 
of Composite pattern, 166 
of Data Mapper pattern, 268 
of Decorator pattern, 178 
of Domain Model pattern, 265 
of Front Controller pattern, 232, 240 
of Observer pattern, 204 
of operations, 106-107 
of Page Controller pattern, 255 
of Parser classes, 411 
of polymorphism, 113 
of Singleton pattern, 144 
of Transcript Script pattern, 261 
ofuse, 110 
using notes with, 110-111 
ofVisitor pattern, 212 



420 JNDEX 

class field of PEAR_Error::getBackTrace() 
method, description of, 312 

class type hints, adding to method 
arguments, 26 

The Class Who Knew Too Much signpost, 
significance of, 103 

class_exists() function, example of, 74 
classes. See also abstract classes; child classes 

building, 15-16 
centralizing configuration files for, 296 
checking, 7 4 
choosing, 99 
components of, 93 
defining in separate files, 72 
defining relationships for, 93 
defining types with, 22 
describing inheritance and 

implementation in, 107 
documenting with phpDocumenter, 

328-330 
examining with Reflection API, 82-84 
extending Exception class with, 55-58 
finding parents of, 78 
getting array of, 74 
versus interfaces, 49 
looking for, 74 
managing access to, 37-41 
versus objects, 163 
organizing with file system, 69-70 
patterns for organization of, 136 
referring to dynamically, 73 
in Reflection API, 80 
relationship to objects, 15-16 
role in object-oriented systems, 93 
setting properties in, 16-19 
as templates for generating objects, 16 
testing, 73, 299 

cli-dialekt.php file, defining with php role, 316 
clone keyword, using with Prototype pattern, 

156, 159 
_clone() method, copying objects with, 64--66 
code, easing installation of, 296-297 
code design, definition of, 93 
code duplication, causes of, 385 
coding signposts 

The Jack of All Trades, 103-104 
The Class Who Knew Too Much, 103 
code duplication, 103 
conditional statements, 104 

cohesion, treatment by procedural versus 
object-oriented programming, 98 

colon(:) 
preceding MarkLogic statements with, 199 
using with Unix directories, 71 

Command and Control layer in Enterprise 
systems, description of, 220 

Command class 
default documentation for, 326-327 
using in Application Controller pattern, 242 
using with Application Controller 

pattern, 250 
command elements, using in Application 

Controller pattern, 244 
command factory, using with Front 

Controller pattern, 236 
Command objects 

using in Application Controller pattern, 
242-243 

using with Front Controller pattern, 239 
Command pattern 

class diagram of, 218 
implementation of, 214-218 
overview of, 213 
problem associated with, 213 

Command Context class, properties 
documentedin,330-331 

Command Context implementation, 
example of, 215 

Command Context object, documenting with 
phpDocumenter, 334 

Command::execute() documentation, 
linkingto,336 

CommandFactory class, using with 
Command pattern, 216 

command/FeedbackComand.php file, 
example with CVS, 355 

CommandResolver class, using in Front 
Controller pattern, 235-237 

commands 
mapping requests to, 241-251 
mapping to views, 241-251 

comments in phpDocumenter. See DocBlock 
comments in phpDocumenter 

commit subcommand in CVS 
using, 34 7, 349 
using -m flag with, 352 



CommsManager class 
instantiating BloggsApptEncoder object 

in, 145-147 
redesignating as abstract class, 148-149 
using Abstract Factory pattern with, 153 
using patterns with, 161 

compile() method, using with sample 
parser, 414 

components, benefits of, 294 
composite classes, splitting into subtypes, 

170-171 
Composite pattern. See also inheritance 

benefits of, 169, 389 
class diagram of, 166 
consequences of, 170-173 
costs associated with, 173 
drawback of, 173 
implementation of, 166-170 
overview of, 163-164 
problem associated with, 164-166, 168 
relationship to EBNF notation, 411 
uses for, 174 

composites 
examples of, 166 
implementing abstract methods with, 167 

composition 
class diagram of, 110 
increasing code flexibility with, 131 
versus inheritance, 126, 196, 388 
using, 129-131 
using with Decorator pattern, 176-180 

"concept that varies," encapsulating, 135, 
388-389 

concrete creators, using with patterns, 160 
conditionals, replacing with 

polymorphism, 385 
configuration data, storing for Application 

Controller pattern, 245-249 
configuration file 

for Application Controller pattern, 
243-244 

centralizing for classes, 296 
parsing in Application Controller 

pattern, 245 
configuration settings, extracting from XML 

files,23-25 
connect() method, using throw statement 

with, 54-57 

INDEX 421 

constant flags, using with Factory Method 
pattern, 147 

constant properties, defining within classes, 
4 7. See also properties 

_construct() method 
invoking, 21-22 
invoking for parent class, 34 
using with parent constructors, 36 

constructor methods. See also accessor 
methods; functions; methods; 
overridden methods 

creating, 21-22 
naming of, 36 
relationship to inheritance, 34-35 
using with Data Mapper pattern, 27 4 

Context class, using with Interpreter 
pattern, 189 

Controller class, example of, 232-233 
Controller Map class, using with Application 

Controller pattern, 245-246 
Copy task in Phing build.xml document, 

example of, 375-376 
Copy task, using with FilterChain type in 

Phing, 373-374 
CostStrategy abstract class, creating, 130 

· coupling. See also decoupling; tight coupling 
causes of, 384-385 
diagnosing, 132 
treatment by procedural versus 

object-oriented programming, 98 
current() method oflterator interface, 

description of, 272 
CVS (Concurrent Versions System). See also 

version control 
adding binary files in, 351 
adding directories in, 350 
adding files in, 349 
beginning projects in, 343-345 
branching projects with, 355-358 
configuring client for, 341-342 
exporting projects with, 354 
features of, 339-340 
getting, 340-341 
import subcommand in, 343-344 
removing directories in, 351-353 
removing files in, 349-350 
resource for, 395 
retrieving projects by tag in, 353-354 



422 INDEX 

running across multiple machines, 
342-343 

significance of, 7, 295-296 
tagging projects with, 353 
updating and committing in, 345-349 
Web address for, 396 

cvs command, using, 343 
CVS repositories 

adding changes to, 346 
creating, 341-342 

CVSNT, Web address for, 341 
CVSROOT environment variable, setting, 342 
cvsusers group 

adding users to, 341-342 
creating, 341 

D 
-d flag 

for checkout subcommand in CVS, 354 
for phpDocurnenter, 325, 331 
for update subcommand in CVS, 350, 352 

Data layer in Enterprise systems, description 
of, 220 

Data Mapper pattern 
class diagram of, 268 
consequences of, 277-278 
handling multiple rows with, 272-277 
implementation of, 268-277 
overview of, 267 
problem associated with, 268 

Data patterns. See also design patterns 
Data Mapper pattern, 267-278 
Identity Map pattern, 278-281 
Lazy Load pattern, 285-288 
overview of, 267 
Unit of Work pattern, 281-285 

data role in PEAR files, description of, 314 
database code flexibility, handling with 

decoupling, 132-133 
DB() method, using in Front Controller 

pattern, 235 
DB packages, working with, 309-310 
DB_common object 

generating for PersonPersist class, 53 
using with ShopProduct class, 45-46 

DbConnectionException, throwing, 57 
DBPASS environment variable, running 

Phing on, 368-369 

Decorator pattern 
class diagram for, 178 
consequences of, 180 
implementation of, 176-180 
overview of, 17 4 
problem associated with, 17 4-176 

decoupling. See also coupling; tight coupling 
example of, 134 
overview of, 132-133, 384-385 

default attribute in project element 
description of, 362 
overriding, 363 

defaultValue attribute of input element in 
Phing, description of, 378 

DeferredEventCollection object, using with 
Lazy Load pattern, 287-288 

delegation 
of object instantiation, 140 
relationship to objects, 384 
using _call method for, 61-62 
using Strategy pattern with, 130-131 
using with Decorator pattern, 176-180 

Delete task in Phing build.xml document, 
example of, 378 

dependency relationships 
describing in class diagrams, 110-111 
in PEAR packages, 318-319 

depends attribute, using with target 
elements in build.xml, 363, 367 

description attribute, using with target 
element in build.xml, 367 

design decisions, interpreting, 135 
design patterns. See also Business Logic 

patterns; Data patterns; Enterprise 
patterns; PHP and patterns; 
Presentation patterns 

Abstract Factory pattern, 150-159 
benefits of, 386-387 
collaboration aspect of, 122 
Command pattern, 213-218 
Composite pattern, 163-17 4 
Decorator pattern, 17 4-180 
Facade pattern, 180-183 
Factory Method pattern, 145-150 
inappropriate use of, 135-136 
Interpreter pattern, 185-195 
language independence of, 121 
and names, 119 
Observer pattern, 200-207 



origin of, 5 
overview of, 7, 117-119,386 
andPHP, 123 
and principles of design, 387-389 
promoting good design with, 123 
Prototype pattern, 156 
reasons for use of, 121-123 
Registry pattern, 222-231 
resources for, 395 
Singleton pattern, 141-145 
Strategypattern, 129-131, 195-200 
tried and tested status of, 122 
types of, 136 
using concrete creators with, 160 
Visitor pattern, 207-213 
vocabulary of, 121-122 

design rules, flexibility of, 99 
destination directories and rues, specifying 

with Copy task in Phing, 375-376 
destructor methods, defining, 63 
detach() method, using with Login class for 

Observer pattern, 202 
Dialekt fictitious package, directory and ffie 

structure of, 315 
dialekt package, describing with 

PEAR_PackageFileManager options, 
319-320 

Dialekt.php, including in PEAR package, 316 
die() statements, using with abstract classes 

inPHP4,49 
dir attribute of ffieset element in Phing, 

description of, 371 
dir element, grouping php and data rues 

with,317 
directories 

adding and removing in CVS (Concurrent 
Versions System), 350 

adding to include_paths, 72 
deleting in Phing, 378 
in PEAR packages, 314-318 
removing in CVS (Concurrent Versions 

System), 351-353 
"dirty" objects, significance of, 283. See also 

objects 
$discount property, adding to Shop Product 

object, 37 
-dn flag, using with phpDocumenter, 324, 331 

.INDEX 423 

"Do the simplest thing that works" principle, 
applying, 135 

doAdd() method, using with Data Mapper 
pattern, 274 

doc dependency type in package.xml, 
description of, 318 

doc role in PEAR ffies, description of, 314 
DocBlock comments in phpDocumenter 

using,327-330 
using with Command class, 329 
using with links in documentation, 

333-336 
using with methods, 333 

documentation. See also phpDocumenter 
creating links in, 334-336 
generating with phpDocumenter, 325-327 
importance of, 297-298, 323-324, 389 

doExecute() method, using with Application 
Controller pattern, 251 

doFind() method, using with Data Mapper 
pattern, 270-271 

dollar sign ($) in CVS line, meaning of, 345 
Domain Model pattern 

class diagram of, 265 
consequences of, 267 
implementation of, 265-267 
overview of, 265 
problem associated with, 264-265 

DomainObject super class 
using with Data Mapper pattern, 275-276 
using with Unit of Work pattern, 283-284 

doReload() method, using with Registry 
pattern,229 

doScan() method of Parser class, explanation 
of, 406 

doStatement() method, using with Data 
Mapper pattern, 270 

double types, uses of, 23 
DSN (Data Source Name), constructing for 

PEAR packages, 310 
DSN strings, contents of, 142 

II£ 
EBNF (Extended Backus-Naur Form) names 

relationship to Composite parsers, 
411-414 

using with Interpreter pattern, 187 
Echo task in Phing build.xml document, 

example of, 375 



424 INDEX 

Employee abstract class 
adding static method to, 140 
example of, 137-138 

encapsulation 
of "concept that varies," 135, 388-389 
features of, 385 
overview of, 101-102 
relationship to objects, 384 

Enterprise patterns. See also design patterns 
definition of, 136 
resources for, 221 

Enterprise systems, tiers in, 220 
EqualsExpression class, testing Expression 

objects for equality with, 192 
errors, handling, 51-58 
evaluate() method, using with sample parser, 

414-415 
event listing system. See Woo (What's On 

Outside) listings system 
EventMapper, extending with Lazy Load 

pattern, 287-288 
events, adding with Transcription Script, 263 
Exception class 

extending, 55-58 
public methods for, 54 

exceptions 
throwing, 54-55 
throwing for leaf objects using Composite 

pattern, 168-169 
excludes attribute 

of fileset element in Phing, 371 
of patternset element in Phing, 372 

execute() method 
using DocBlock comment to link to, 

334-335 
using with Command pattern, 214, 217 

exists() method, using with Identity Map 
pattern, 280 

export() method, using with Reflection utility 
class, 81-82 

export subcommand in CVS, using -r flag 
with,354 

Expression abstract base class, using with 
Interpreter pattern, 188-189 

expression() method, using with sample 
parser, 414 

Expression objects, testing for equality with 
Interpreter pattern, 192 

ext dependency type in package.xml, 
description of, 318 

extends keyword 
creating child classes with, 33 
preceding implements clause with, 5Q-51 

Extreme Programming. See XP (eXtreme 
Programming) 

f 
-f flag, using with remove subcommand in 

cvs, 349-350, 352 
Facade pattern 

consequences of, 183 
implementation of, 182-183 
overview of, 180-181 
problem associated with, 181-182 

factories. See also Abstract Factory pattern 
behavior of methods as, 46 
definition of, 141 
using Prototype pattern in, 157-159 

Factory Method pattern 
consequences of, 150 
implementation of, 148-150 
overview of, 145 
problem associated with, 145-148 

FeedbackCommand class, creating for 
cvs, 355 

FI (Form Interpreter), significance of, 11 
fields of classes, querying, 77-78 
file attribute of copy element in Phing, 

description of, 376 
file comments, adding for CVS, 346 
file field ofPEAR_Error::getBackTrace() 

method, description of, 312 
file system, organizing classes with, 69-70 
file-level documentation, creating with 

phpDocumenter, 330 
fllelist in release element of PEAR packages, 

example of, 315 
files 

adding in CVS (Concurrent Versions 
System), 349 

in PEAR packages, 314-318 
removing in CVS (Concurrent Versions 

System), 349-350 
FileSet type in Phing, overview of, 37Q-371 
FilterChain type in Phing, overview of, 

373-375 



filters, facilitating with Decorator pattern, 
178,180 

fmal class, declaring, 58 
final keyword, placement of, 58-59 
find() method 

using with Data Mapper pattern, 270 
using with Identity Map pattern, 281 

fopen() function, using with file systems, 72 
forward elements, using in Application 

Controller pattern, 244 
Front Controller pattern. See also design 

patterns 
ApplicationHelper class in, 233-235 
class diagram of, 232, 240 
Command object in, 237-239 
CommandResolver class in, 235-237 
consequences of, 240 
implementation of, 232-240 
invoking application logic with, 236 
overview of, 231 
problem associated with, 231-232 
Request object in, 237-239 

FtpModule, creating ModuleRunner class 
for, 88-89 

function field ofPEAR_Error::getBackTrace() 
method, description of, 312 

function keyword, using with method 
names, 19 

functions, relationship of scope to, 17. See 
also accessor methods; constructor 
methods; methods; overridden 
methods 

• Gang of Four format for design patterns, 
overview of, 120--121 

_get() interceptor method, description of, 
59--60 

get() protected method, using with Registry 
pattern,226 

get*() public methods for Exception class, 
descriptions of, 54 

get_class() function, example of, 74-75 
get_class_methods() function, listing 

methods with, 75-77 
get_class_vars() function, example of, 77-78 

get_declared_classes() function, example 
of, 74 

get_parent_class() function, example of, 78 
getAllParams() method, defining, 96 
getCommand() method, using with 

Application Controller pattern, 249 
getComposite() method, using with 

Composite pattern, 171-172 
getHeaderText() method, using Factory 

Method pattern with, 147 
getlnstance() method 

building for ShopProduct class, 45-46 
defining,96 
using switch statement with, 141 
using with Singleton pattern, 144 

getKey() method, using with Interpreter 
pattern, 189 

getObjectAt() method, using with Data 
Mapper pattern, 274 

getPrice() method, adding to ShopProduct 
object, 37 

getProducer() method, adding to 
ShopProduct class, 20--21 

getProducerName() method, using with 
ShopProduct class, 30-31 

getProduct() function, example of, 75 
getResource() method, using with 

Application Controller pattern, 249 
getSummaryline() method 

duplicated code related to, 36 
generating for ShopProduct class, 30-31 

getters and setters, using, 38-39,61,90--91 
getWealthFactor() method, defining for 

Civilization game, 17 4 
global variables 

advisory about, 103 
using Singleton pattern with, 141-145 

globalKeyO method, using with Identity Map 
pattern,280 

BH 
handleRequest() method, using with 

woo_controller_Controller class, 233 
handlers, using with sample parser, 415-416 
has dependency relationship, defming in 

PEAR, 318 
"Hello World" example, using Phing Echo 

task for, 375 



426 .lNDEX 

• id attribute 
of fileset element in Phing, description 

of, 371 
of patternset element in Phing, 

description of, 372 
Identity Map pattern 

consequences of, 281 
implementation of, 279-281 
overview of, 278 
problem associated with, 278-279 

if attribute, using with target elements in 
build.xrnl, 366-367 

if statements, advisory about use of, 104 
implementations 

avoiding coding to, 388 
class diagram of, 107 
combining objects with, 134 
hiding details of, 113 
relationship to design patterns, 120 

implements keyword, using with interfaces, 
49-51 

import subcommand, using with CVS, 
343-344 

in_array() function, limitation of, 168 
include paths 

adding directories to, 72 
overview of, 71-72 

includes attribute 
of patternset element in Phing, 372 
using with FileSet type in Phing, 371 

inheritance. See also Composite pattern 
applying to Registry pattern, 226 
class diagram of, 107 
versus composition, 126, 196, 388 
and constructors, 34-35 
definition, 27 
versus delegation, 61-62 
limitations of, 17 4-175 
problem associated with, 27-31, 126-129 
using with Prototype pattern, 156 
working with, 31-34 

inheritance hierarchy, defining with 
Composite pattern, 166 

inheritance relationships, charting, 78 
init() method 

using with patterns, 161 
using with Request class in Front 

Controller pattern, 239 

using with woo_controller_Controller 
class, 233, 235 

Input task in Phing build.xrnl document, 
example of, 377-378 

insert() method 
invoking, 57 
using throw statement with, 55 
using with Data Mapper pattern, 271 

install-as attribute, using with pear 
command line tool, 317 

installers, benefits of, 296-297 
instanceof operator 

example of, 75 
using with Composite pattern, 173 
using with Data Mapper pattern, 271-272 
using with ShopProductWriter class, 31 

instantiation, delegating, 140 
integer types, uses of, 22-23 
intent, relationship to design patterns, 120 
Intercepting Filter enterprise pattern, 

example of, 180 
interceptor methods 

_autoload(), 72-73 
descriptions of, 59 

interfaces 
codingto,134,388 
defining, 49 
emphasizing, 102-103 
enforcement of, 101 
and implementations, 59 
role in Application Controller pattern, 241 

Interpreter pattern 
deploying, 194 
implementation of, 187-194 
issues related to, 194-195 
overview of, 185-186 
using operator expressions with, 191 

invokeHandler() method of Parser class, 
explanation of, 406-407 

IP address data, displaying in XML with 
outputAddresses() method, 23-25 

is_* type checking functions, descriptions 
of,23 

is_callable() function, example of, 76-77 
is_subclass_of() function, checking child 

classes with, 78 
Iterator interface, using with Data Mapper 

pattern, 272-27 4 



J 
-j flag, using with update subcommand in 

cvs, 357 
J2EE patterns, resource for, 395 
The Jack of All Trades signpost, significance 

of, 103-104 
Java patterns and parsers, resources for, 395 
joinExisting() method, using with Composite 

pattern, 172 

K 
-kb flag, using with add subcommand in 

CVS,351 
key() method of Iterator interface, 

description of, 272 
known uses, relationship to design 

patterns, 121 

l 
LaserCanonUnit class, creating for 

Civilization game, 164-165 
Layer Supertype pattern 

calling static method on, 266 
significance of, 261 

layers in Enterprise systems 
overview of, 220 
reasons for separation of, 221 

Lazy Load pattern 
consequences of, 288 
implementation of, 286--288 
overview of, 285 
problem associated with, 286 

leaf nodes, dumping textual information 
about, 207-208 

leaf objects. See leaves 
leaves 

relationship to Composite pattern, 
166--167 

relationship to Visitor pattern, 207 
throwing exceptions for, 168-169 

Lesson class 
decoupling, 134 
using inheritance with, 126--128 
using Strategy pattern with, 130 

library inclusions, using relative paths 
with, 71 

line field ofPEAR_Error::getBackTrace() 
method, description of, 312 

@link tag, documenting, 336--337 
links, creating in documentation, 334-336 

LiteralExpression class, using with 
Interpreter pattern, 190 

loadArray() method 

INDEX 427 

using with Data Mapper pattern, 275 
using with Identity Map pattern, 281 

Login class 
creating for Observer pattern, 20Q-201 
methods of, 202 
saving, 202-207 

Login Command, creating with Command 
pattern, 214 

M 
-m flag, using with commit subcommand in 

cvs, 352 
magic methods, implementing for 

serialization, 230 
Mailman mailing list software, Web address 

for, 391 
make() method, using Abstract Factory 

pattern with, 155-156 
Mapper class 

example of, 280 
using with Data Mapper pattern, 268-269 

markDirty() method, usingwith UnitofWork 
pattern, 284-285 

Marker objects, defining with Strategy 
pattern, 198-199 

MarkLogic language 
example of, 186 
grammar of, 187 
Interpreter classes in, 188 
preceding statements with colons (:) in, 199 

MegaCal format 
implementing, 149-150 
using Abstract Factory pattern with, 

153-154 
MegaQuiz package, fetching with wget 

command in Linux, 309 
megaquiz project, documenting, 324-325 
message attribute of input element in Phing, 

description of, 378 
method arguments, examining with 

Reflection API, 86--87 
method_exists() function, example of, 77 
method::ReflectionClass::newlnstance() 

method, example of, 90 



428 INDEX 

methods. See also accessor methods; 
constructor methods; functions; 
overridden methods 

acquiring list of, 75-77 
adding type hints to, 26 
declaring, 19 
declaring with static keyword, 43-44 
definition of, 19 
documenting with phpDocumenter, 

332-333 
examining with Reflection API, 84-86 
as factories, 46 
invoking,20, 78-79 
invoking in parent classes, 34 
oflterator interface, 272 
inPHP4,20 
for ShopProduct object, 26-27 
in visitor class, 211 

Minion object, instantiating in NastyBoss 
class, 138-140 

Module objects, calling dynamically, 87-91 
motivation, relationship to design 

patterns, 120 
multiplicity of associations, class diagram of, 

108-109 

14 
name attribute 

in project element, description of, 362 
using with target element in build.xml, 367 

names, role in design patterns, 119 
NastyBoss class, instantiating Minion object 

in, 138-140 
new operator 

using with _construct method, 21-22 
using with classes, 16 

newiD() method, using with Unit of Work 
pattern, 284 

next() method oflterator interface, 
description of, 272 

notes, using with class diagrams, 110-111 
notify() method, using with Login class for 

Observer pattern, 202-203 
NULL types, uses of, 23 

D 
-o flag, using with PEAR installer, 308 
object instantiation 

controlling with Singleton pattern, 142-144 
delegating, 140 
mediating with static method, 143 

object types 
checking, 74-75 
uses of, 23 

object-oriented design, example of, 310 
"The Object-Oriented Evolution ofPHP," 

Web address for, 396 
object -oriented programming 

controversy associated with, 14 
endorsement in PHP 5, 13 
growth of, 13 
versus procedural programming, 94-98 
support for, 3 

objects. See also "dirty" objects 
absence in PHP 3, 11-12 
aesthetics of, 385-386 
casting to strings for use as associative 

array keys, 189 
versus classes, 163 
combining with implementations, 134 
copying with _clone() method, 64-66 
deciding on use of, 384 
decoupling,384-385 
defining string values for, 66-67 
encapsulation and delegation 

considerations, 384 
generating from classes, 16 
identifying with Identity Map pattern, 

279-281 
managing with Composite pattern, 

164-166 
overview of, 383-384 
patterns for generation of, 136 
patterns for organization of, 136 
relationship to classes, 15-16 
relationship to PHP 3, 12-13 
reusability of, 385 
in sequence diagrams, 111-112 
significance of, 6 
testing, 73 

ObjectWatcher object, using with Unit of 
Work pattern, 282-283 

Observer pattern 
class diagram of, 204 
implementation of, 202-207 
overview of, 200-201 

operations, class diagram of, 106-107 
operator expressions, using with Interpreter 

pattern, 191 
.orig extension, adding to directory names in 

cvs, 345 



orthogonality 
relationship to Observer pattern, 200 
treatment by procedural versus 

object-oriented programming, 98 
os dependency type in package.xml, 

description of, 318 
outputAddresses() method, displaying IP 

address data with, 23-25 
overridden methods, invoking, 36. See also 

accessor methods; constructor 
methods; functions; methods 

override attribute, setting in property 
elements ofbuild.xml, 367-368 

overwrite attribute of copy element in Phing, 
description of, 376 

':'~P 
-P flag, using with update subcommand in 

cvs, 352-353 
packages 

benefits of, 294 
definition of, 69 
installing with PEAR, 308-309 

package.xml file in PEAR 
automating generation with 

PEAR_PackageFileManager, 319-321 
keyword replacement in, 321 
overview of, 312 
running from command line, 316 
specifying dependencies in, 318 

Page Controller pattern 
class diagram of, 255 
consequences of, 256 
implementation of, 252-255 
overview of, 251-252 
problem associated with, 252 

parent classes 
versus child classes, 35 
finding, 78 
invoking methods in, 34 

parent constructors, using _construct() 
method with, 36 

parent keyword, invoking overridden 
methods with, 36 

parentheses (()), using with methods, 20 
parser, creating scanner for, 399-404 
Parser classes 

associating VariableHandler with, 415 
class diagram of, 411 
codefor,404-406,408-410 

participants of systems 
explanation of, 93 

.INDEX 429 

extracting and embodying with Domain 
Model pattern, 264-267 

significance of, 102 
pass-by-references, enforcement in PHP 4, 

12-13 
pattern language, resource for, 395 
patterns. See design patterns 
PatternSet type in Phing, overview of, 

371-372 
PEAR (PHP Extension and Application 

Repository). See also build.xml 
document in Phing; Phing 

installing packages with, 308-309 
overview of, 307-308 
significance of, 70 
Web address for, 294, 396 

PEAR class naming convention, explanation 
of, 223 

PEAR command line interface 
installing, 316-317 
installing phpDocumenter from, 324-325 
setting default role locations with, 314-315 

PEAR errors, handling, 311-312 
PEAR file roles, descriptions of, 314 
PEAR installer 

requirements of, 313 
working with, 312-321 

PEAR packages 
browsing, 70, 307 
dependencies in, 318-319 
elements of, 312-313 
example of, 71 
features of, 294-295 
obtaining API instructions for, 310 
package.xml file in, 312 
preparing for shipment, 321 
release element in, 313-314 
using, 309-312 
working with files and directories in, 

314-318 
PEAR repository, significance of, 7-8 
PEAR_Error class, getMessage() and 

getCode() methods of, 56 
PEAR_PackageFileManager, automating 

package.xml generation with, 
319-321 

PEAR::DB, using with MySQL and SQLite, 
132-133 



430 INDEX 

persistence, relationship to Composite 
pattern, 173 

Person class 
adding _toString() method to, 67 
amending for use with interceptor 

method,6~1 

data stored in, 51 
formatting information from, 61-62 
using _clone() method with, 64-65 

Person object, using _destruct() method 
with, 63 

personal organizer project, using Factory 
Method pattern with, 145-148 

PersonModule, creating ModuleRunner 
class for, 88--89 

PersonPersist class, error generated by, 
52-53 

Person Writer object, using with Person 
class, 62 

Phing. See also build.xml document in Phing; 
PEAR (PHP Extension and 
Application Repository) 

getting and installing, 360 
overview of, 359-360 
running on DBPASS environment 

variable, 368-369 
Web address for, 396 

phing command, using -vflagwith, 361 
PHP 

and design patterns, 123 
as loosely typed language, 22-23 
primitive types and checking functions 

in,23 
Web address for, 397 

PHP 3, absence of objects in, 11-12 
PHP4 

advisory about using _construct() method 
in, 22 

development of, 12-13 
methods in, 20 
release of, 6 
upgrading from, 17 

PHP5 
endorsement of object-oriented 

programming in, 13 
and other languages, 4-6 
problem associated with, 3-4 

PHP and patterns, online resource for, 6. See 
also design patterns 

php dependency type in package.xml, 
description of, 318 

PHP Foundation Classes, significance of, 308 
php role in PEAR files 

defining cli-dialekt.php file with, 316 
description of, 314 

phpDocumenter. See also documentation 
creating file-level documentation with, 330 
creating links in documents with, 334-336 
documenting classes with, 328-330 
documenting methods with, 332-333 
documenting properties with, 330-332 
flags used with, 325 
generating documentation with, 324-325 
installing, 324-325 
output menu in, 326 
using DocBlock comments with, 327-328 
Web address for, 298, 397 

"PHP/FI Brief History," Web address for, 396 
php.ini file, editing to add directories to 

include_paths, 72 
PHPUnit2 PEAR package, testing classes 

with, 300 
PHPUnit2_Framework_testCase assert 

methods, descriptions of, 302 
PHPUnit2_MAIN_METHOD constant, 

defining, 304 
PhpWiki tool, Web address for, 391 
pkg dependency type in package.xml, 

description of, 318 
Plains class, defining with Decorator pattern, 

176-177 
polymorphism 

benefits of, 385 
determining application of, 134 
example of, 138-139 
overview of, 100-101,385 
refactoring in Front Controller pattern, 235 
representing in class diagrams, 113 

Portland Form of design patterns, 
significance of, 120 

Portland Pattern Repository's Wiki, Web 
address for, 397 

-pp flag, using with phpDocumenter, 331 
Preferences class, example of, 142 
prepareStatement() method, using in 

Transaction Script pattern, 262 
presentation layer, significance of, 4 



Presentation patterns. See also design 
patterns 

Application Controller pattern, 241-251 
Front Controller pattern, 231-240 
Page Controller pattern, 251-256 
Template View and View Helper patterns, 

256-259 
primitive types 

definition of, 22 
overview of, 22-25 

print_r() method 
using with Data Mapper pattern, 271 
using with Reflection::export(), 82 

private (-) visibility symbol, using with class 
diagrams, 106 

private constructor, defining for Singleton 
pattern, 142-143 

private elements, including in 
phpDocumenter, 331 

private keyword, relationship to 
encapsulation, 101-102 

private properties 
applying to $products, 39 
setting, 37-38 

problems 
defining with design patterns, 121 
describing with design patterns, 119 
formalizing with design patterns, 118 

procedural versus object-oriented 
programming, 94-98 

process() method 
using with Command pattern, 217 
using with Decorator pattern, 180 

ProcessRequest class, extending 
functionality of, 176 

productions, relationship to Interpreter 
pattern, 187 

$products property, making private, 39 
products table, defining for Shop Product 

class, 45 
prog dependency type in package.xml, 

description of, 318 
programming languages, relationships 

between,185-186 
project element in build files, attributes 

associated with, 362 

projects 
beginning in CVS, 343-345 
branching with CVS, 355-358 
checking out in CVS, 345 
exporting with CVS, 354 
modes of, 389 
retrieving by tag in CVS, 353-354 
tagging with CVS, 353 

INDEX 431 

promptChar attribute of input element in 
Phing, description of, 378 

properties. See also constant properties 
accessing, 33 
declaring with static keyword, 43-44 
documenting with phpDocumenter, 

330-332 
naming, 297 
preventing access of, 37 
setting dynamically, 18 
setting in classes, 16-19 
setting in Phing build.xml document, 

364-370 
property values, setting, 19 
propertyname attribute of input element in 

Phing, description of, 378 
protected (#) visibility symbol, using with 

class diagrams, 106 
protected keyword, relationship to 

encapsulation, 101-102 
protected methods 

accessing, 37 
using with Registry pattern, 226 

Prototype pattern 
implementation of, 157-159 
overview of, 156 
problem associated with, 156 

pserver password server, using with CVS, 342 
public ( +) visibility symbol, using with class 

diagrams, 106 
public keyword 

declaring properties with, 17-18 
effect of, 37 
relationship to encapsulation, 101-102 

public methods for Exception class, 
descriptions of, 54 

public property, adding to 
CdProduct::$coverUrl class, 77-78 

Pupil aggregation, class diagram of, 109 
Pupil class association, class diagram of, 

108-109 



432 lNDEX 

ll 
query() method, using with PEAR packages, 

310 
Question classes, rendering with Strategy 

pattern, 197 
question mark(?), use in DB package's 

prepareStatement() method, 262 
quizobjects/User.php file, relationship to 

CVS,346 
quotes("), effect of embedding objects in, 67 

R 
-r flag 

for checkout subcommand in CVS, 
353-354 

for export subcommand in CVS, 354 
read() abstract method, defining, 96-97 
readParams() function, example of, 94-95, 97 
recruit() method of Employee class, delegating 

instantiation details to, 140 
refactoring, resource for, 396 
reference assignment in PHP 4, example of, 

12-13 
refid attribute 

of fileset element in Phing, 371 
of patternset element in Phing, 372 

reflecting, role in testing classes, 301 
Reflection API (application programming 

interface) 
examining classes with, 82-84 
examining method arguments with, 86-87 
examining methods with, 84-86 
example of, 87-91 
features of, 79-80 

Reflection utility class, using static export() 
method with, 81-82 

ReflectionClass object 
constructor of, 80-81 
examining CdProduct with, 82-84 

ReflectionMethod object, examining 
methods with, 84-86 

ReflectionMethod::invoke() method, 
example of, 91 

ReflectionParameter object, examining 
method arguments with, 86-87 

Registry pattern 
consequences of, 230-231 
implementation of, 224-231 
overview of, 222 

problem associated with, 222-224 
versus Singleton pattern, 225 

related patterns, relationship to design 
patterns, 121 

relative paths, using with library inclusions, 71 
release element in PEAR packages 

filelist element in, 315-316 
information in, 313-314 

releases, tagging and exporting in CVS, 353-354 
reload() method, using with Registry pattern, 

229-230 
remove subcommand in CVS, using, 349-353 
remove Unit() method, using with Composite 

pattern, 167 
Replace Tokens filter, using in Phing, 373-37 4 
Request class, using in Front Controller 

pattern, 237-239 
Request objects 

adding to Registry pattern, 224-225 
using with View Helper pattern, 257-258 

RequestRegistry class, using in Transcript 
Script pattern, 262 

requests, mapping to commands, 241-251 
require() function, using with file systems, 72 
require_once() function 

using with relative paths, 71 
using with util and business directories, 

69-70 
resource types, uses of, 23 
resources 

for applied Java patterns, 395 
"Applying Patterns to PHP," 396 
for building parsers with Java, 395 
for core J2EE patterns, 395 
"The Object-Oriented Evolution of 

PHP," 396 
for open source development with CVS, 395 
for pattern language, 395 
for Patterns of Enterprise Application 

Architecture, 396 
"PHP/FI Brief History," 396 
refactoring, 396 
"Test Infected: Programmers Love Writing 

Tests," 396 
forUML, 396 

resources directory 
adding in CVS, 350 
removing in CVS (Concurrent Versions 

System), 351-353 



responsibility 
distribution by procedural versus 

object-oriented programming, 94, 97 
of ShopProduct class, 99 

reusability, significance of, 385 
rewind() method oflterator interface, 

description of, 272 
RPC sub package in PEAR XML package, 

purpose of, 7l 
run() method, using with 

woo_controller~Controller class, 233 

IllS 
sample code, relationship to design 

patterns, 121 
sa pi dependency type in package.xml, 

description of, 318 
scan() method of Parser class, explanation of, 

406-407 
scanner, creating for parser, 399-404 
SchoolClass aggregation, class diagram of, 109 
scope 

relationship to classes and functions, 17 
relationship to Registry pattern, 225--226 

script role in PEAR rues, description of, 314 
@see tag, linking with phpDocumenter, 335 
self keyword, using with StaticExample 

class, 44 
semicolon (;) 

using with abstract methods, 48 
using with Windows directories, 7l 

sequence diagrams, objects in, 111-112 
serialization 

managing, 230 
using with woo_base_Registry abstract 

class, 229 
session variables, support for, 225, 227-228 
_set() interceptor method, description of, 

59-61 
set() protected method, using with Registry 

pattern,226 
setDiscount() method, adding to 

ShopProduct object, 37 
setpass target, using in Phing build.xml 

document, 370 
setSpaces() operation, using with Data 

Mapper pattern, 276 
setters and getters, using, 38-39,61,90-91 

III1NDEX 433 

setUp() method, using with UserStoreTest 
class, 300 

Shipping class, implementing Chargeable 
interface with, 50-51 

ShopProduct class 
adding getProducer() method to, 20-21 
building static method for, 45 
class diagram of, 105 
combining CD- and book-related data 

in,28 
creating, 16 
creating two types for, 29-30 
declaring and setting $title property in, 18 
defining constructor method for, 21 
extending with inheritance, 27-31 
as factory for ShopProduct objects, 

140-141 
implementing Chargeable interface with, 

49-50 
locking down visibility in, 39-41 
responsibilities of, 99 

ShopProduct object 
adding $discount property and 

setDiscount() method to, 37 
method for, 26-27 
primitive type associated with, 22 
writing, 38-39 

ShopProductWriter class 
class diagram of, 105 
example of, 31 
method of, 26 
redefining as abstract class, 47 
using accessor methods with, 38-39 

ShopProductWriter() method, defining two 
implementations of, 48-49 

signposts of coding 
The Class Who Knew Too Much, 103 
code duplication, 103 
conditional statements, 104 
The Jack of All Trades, 103-104 

Singleton pattern 
consequences of, 144-145 
implementation of, 142-144 
overview of, 141-142 
problem associated with, 142 
and Registry pattern, 225 
using with Abstract Factory pattern, 

160-161 



434 1NDEX 

_sleep() magic method, implementing for 
serialization, 230 

solutions 
defining with design patterns, 121 
formalizing with design patterns, 118 
summarizing with design patterns, 120 

source code, examining for user-defined 
classes, 84 

source fll.es, specifying with Copy task in 
Phing, 375-376 

Space objects 
managing with Data Mapper pattern, 276 
using with Lazy Load pattern, 286 

SpaceCollection class, acquiring with Data 
Mapper pattern, 277 

SqlException, throwing, 57-58 
SSH, setting up CVS for, 342-343 
static export() method, using with Reflection 

utility class, 81-82 
static keyword, declaring methods and 

propertieswith,43-44 
static method 

accessing static properties with, 144 
adding to Employee abstract class, 140 
calling on Layer Supertype, 266 
guidelines for use of, 45 
mediating object instantiation with, 143 

StaticExample class, using self keyword 
with, 44 

status elements, using in Application 
Controller pattern, 244 

Strategy pattern 
implementation of, 196-200 
moving algorithms into separate types 

with, 129-131 
overview of, 195 
problem associated with, 195-196 

string types 
referring to classes dynamically with, 73 
uses of, 22-23 

string values, defining for objects, 66-67 
structure/interaction, relationship to design 

patterns, 120 
subclasses 

defining according to marking 
strategies, 195 

defining according to two forces, 196 

switch statements 
advisory about use of, 104 
using in getApptEncoder() method, 14 7 
using with getinstance () method, 141 

__ J 
-t flag, using with phpDocumenter, 325, 331 
tag subcommand in CVS 

using -b flag with, 356 
using with projects, 353 

target elements 
attributes to, 367 
using if and unless attributes with, 366 

targetClass() method, using with Identity 
Map pattern, 281 

targets in build.xml document, using, 
362-364 

task-oriented patterns, definition of, 136 
tasks in Phing build.xml document 

Copy task, 375 
Delete task, 378 
Echo task, 375 
Inputtask,377-378 

TaxCollectionVisitor object, using in Visitor 
pattern, 212 

Teacher class association, class diagram of, 
108-109 

tear Down() method, using with 
UserStoreTest class, 300 

Template View and View Helper patterns 
consequences of, 259 
implementation of, 257-258 
overview of, 256 
problem associated with, 257 

terminal Parser, example of, 407 
TerrainFactory object 

initializing, 159 
loading with instances of objects, 158 
using Prototype pattern with, 156 

"Test Infected: Programmers Love Writing 
Tests," Web address for, 5, 396 

test role in PEAR files, description of, 314 
testing 

importance of, 298-304, 389 
relationship to XP and patterns, 5 

tests 
running, 303 
success of, 304-306 



$this pseudo-variable 
using with methods, 20 
using with static methods, 45 

throw keyword, using with Exception 
objects, 54-57 

-ti flag, using with phpDocumenter, 325, 331 
tiers in Enterprise systems 

overview of, 220 
reasons for separation of, 221 

tight coupling. See also coupling; decoupling 
avoiding, 388 
diagnosing, 132 

Tile class, defining for Civilization game, 174 
TileDecorator class, defining with Decorator 

pattern, 176-177 
$title property, declaring and setting in 

ShopProduct class, 18 
todir attribute of copy element in Phing, 

description of, 376 
tofile attribute of copy element in Phing, 

description of, 376 
tokens, defining for parser, 399-404 
_toStringO method 

relationship to Interpreter pattern, 189 
using with objects, 66-67 

Transaction Script pattern 
class diagram of, 261 
consequences of, 264 
implementation of, 260-263 
overview of, 259-260 
problem associated with, 260 

trigger() method of Parser class, explanation 
of, 407 

try clause, using with exceptions, 55 
TWiki tool, Web address for, 391 
.txt suffix, omitting from data files in PEAR, 

317 
type field ofPEAR_Error::getBackTrace() 

method, description of, 312 
type hints, adding to method arguments, 26 
types 

definition and significance of, 22-23 
extracting algorithms into, 197 
problems associated with, 23-25 

types in Phing build.xml document 
FileSettype,370-371 
FilterChain type, 373-375 
PatternSet type, 371-372 

\i:U 
UML (Unified Modeling Language) 

and class diagrams, 104-111 
overview of, 104 
resource for, 396 

.INDEX 435 

and sequence diagrams, 111-113 
unidirectional associations, class diagram 

of, 108 
Unit class 

extending with Composite pattern, 
166-167 

using with Visitor pattern, 208-209 
Unit of Work pattern 

consequences of, 285 
implementation of, 281-285 
overview of, 281 
problem associated with, 281 

unit types, defining for Civilization game, 
164-165 

unless attribute, using with target elements 
in build.xml, 366-367 

unserialize() method, using with Registry 
pattern, 229 

update() method, using with Data Mapper 
pattern, 271 

update subcommand in CVS 
using, 346, 348 
using -d flag with, 350, 352 
using -j flag with, 357 
using -P flag with, 352-353 
using with directories, 350 

use, describing with class diagram, 110 
User class, effect of defining in business 

package, 70 
user-defined classes, examining source code 

for, 84 
users, adding to cvsusers group, 341-342 
UserStore class, testing, 299, 304 
UserStoreTest class, testing, 300 
@uses tag, documenting, 336-337 
util directory, using require_once() function 

with, 69-70 

·,;'!,v 

-v flag, using with phing command, 361 
valid() method of Iterator interface, 

description of, 272 
Validator class, testing, 299-300, 302-303 



var_dump() method, using with 
Reflection::export(), 82 

variable() method, using with sample 
parser, 415 

VariableExpression class, using with 
Interpreter pattern, 190-191 

variables, naming; 297 
Venue object, using with Domain Model 

pattern, 266 
VenueCollection class, using with Data 

Mapper pattern, 275 
VenueManager class, using in Transaction 

Script pattern, 262 
version control. See also CVS (Concurrent 

Versions System) 
reasons for use of, 339-340, 390 
resolving with CVS, 295-296 

view elements, using with Application 
Controller pattern, 243-244 

View Helper and Template View patterns 
consequences of, 259 
implementation of, 257-258 
overview of, 256 
problem associated with, 257 

View layer in Enterprise systems, description 
of, 220 

views 
for AddVenueController class, 254-255 
definition of, 231 
mapping commands to, 241-251 
Page Controllers embedded in, 253 

visibility symbols, using with class 
diagrams, 106 

Visitor pattern 
class diagram for, 212 
implementation of, 208-212 
issues related to, 213 
overview of, 207 
problem associated with, 207-208 

.. w 
_wakeup() magic method, implementing 

for serialization, 230 
Web sites 

BinaryCloud, 396 
Bugzilla, 391 
CVS (Concurrent Versions System), 340,396 

CVSNT,341 
DB package documentation, 310 
Mailman, 391 
PEAR,294 
PEAR (PHP Extension and Application 

Repository), 396 
PEAR packages, 70, 307 
Phing, 396 
PHP, 397 
PHP and patterns, 6 
phpDocumenter, 298, 324, 397 
PhpWiki, 391 
Portland Pattern Repository's Wiki, 397 
"Test Infected: Programmers Love Writing 

Tests," 5 
TWiki tool, 391 
Zend,397 

wget command in Unix, fetching Mega Quiz 
package with, 309 

Wiki tool, features of, 391 
Woo (What's On Outside) listings system 

applying Transaction Script pattern to, 
260-263 

functionality of, 220-222 
woo_base_Registry abstract class 

code for, 227 
extending, 228-229 

woo_controller_AddVenueController class, 
code for, 254 

woo_controller_Controller class, code for, 
232-233 

woo_controller_PageController base class, 
code for, 253 

woo_mapper_DeferredEventCollection 
class, code for, 287 

woo_mapper_ VenueCollection class, code 
for, 275 

woo_mapper_ VenueMapper class, code for, 
270-271 

write() abstract method, defining, 96-97 
write() method of ShopProductWriter class 

as abstract method, 48 
effect of, 26-27, 31 

writeParamsO function, example of, 94-95, 97 



•« 
XML declarations, using with PEAR 

packages,312-313 
XML files, extracting configuration settings 

from, 23-25 
XML package in PEAR, RPC subpackage 

in, 71 
XP (eXtreme Programming) 

origin of, 5 
resource for, 395 

XP principles 
"Do the simplest thing that works," 135 
YAGNI (you aren't going to need it), 135 

a1NDEX 437 

aY 
YAGNI (you aren't going to need it) principle, 

applying to patterns, 135 

az 
Zend, Web address for, 397 
zend dependency type in package.:xml, 

description of, 318 
Zend engine, origin of, 12 



JOIN THE APRESS FORUMS AND BE PART OF OUR COMMUNilY. You'll find discussions that cover topics 

of interest to IT professionals, programmers, and enthusiasts just like you. If you post a query to one of our 

forums, you can expect that some of the best minds in the business-especially Apress authors, who all write 

with The Expert's VoicerM_will chime in to help you. Why not aim to become one of our most valuable partic­

ipants (MVPs) and win cool stuff? Here's a sampling of what you'll find: 

DATABASES 

Data drives everything. 

Share information, exchange ideas, and discuss any database 
programming or administration issues. 

INTERNET TECHNOLOGIES AND NETWORKING 

Try living without plumbing (and eventually 1Pv6). 

Talk about networking topics induding protocols, design, 
administration, wireless, wired, storage, backup, certifications, 
trends, and new technologies. 

JAVA 

We've come a long way from the old Oak tree. 

Hang out and discuss Java in whatever flavor you choose: 
J2SE, J2EE, J2ME, Jakarta, and so on. 

MAC OSX 

All about the Zen of OS X. 
OS X is both the present and the future for Mac apps. Make 
suggestions, offer up ideas, or boast about your new hardware. 

OPEN SOURCE 

Source code is good; understanding (open) source is better. 

Discuss open source technologies and related topics such as 
PHP, MySOL, Linux, Peri, Apache, Python, and more. 

HOW TO PARTICIPATE: 

PROGRAMMING/BUSINESS 

Unfortunately, it is. 

Talk about the Apress line of books that cover software 
methodology, best practices, and how programmers interact with 
the "suits." 

WEB DEVELOPMENT/DESIGN 

Ugly doesn't cut it anymore, and CGI is absurd. 
Help is in sight for your site. Rnd design solutions for your 
projects and get ideas for building an interactive Web site. 

SECURITY 

Lots of bad guys out there-the good guys need help. 

Discuss computer and network security issues here. Just don't let 
anyone else know the answers! 

TECHNOLOGY IN ACTION 

Cool things. Fun things. 

It's after hours. It's time to play. Whether you're into LEGQ® 
MINDSTORMS™ or turning an old PC into a DVR, this is where 
technology turns into fun. 

WINDOWS 

No defenestration here. 

Ask questions about all aspects of Windows programming, get 
help on Microsoft technologies covered in Apress books, or 
provide feedback on any Apress Windows book. 

Go to the Apress Forums site at http://forums.apress.com/. 

Click the New User link. 




